INCLUDES

NETWORK
ROUTING

Algorithms, Protocols, and Architectures

DEEPANKAR MEDHI

"""""""""""" KARTHIKEYAN RAMASAMY

Network Routing

The Morgan Kaufmann Series in Networking

Series Editor, David Clark, M.I.T.

Computer Networks: A Systems Approach, 4e
Larry L. Peterson and Bruce S. Davie

Network Routing: Algorithms, Protocols, and Architectures
Deepankar Medhi and Karthikeyan Ramasamy

Deploying IP and MPLS QoS for Multiservice Networks:
Theory and Practice
John Evans and Clarence Filsfils

Traffic Engineering and QoS Optimization of Integrated Voice
and Data Networks
Gerald R. Ash

IPv6 Core Protocols Implementation
Qing Li, Tatuya Jinmei, and Keiichi Shima

Smart Phone and Next-Generation Mobile Computing
Pei Zheng and Lionel Ni

GMPLS: Architecture and Applications
Adrian Farrel and Igor Bryskin

Network Security: A Practical Approach
Jan L. Harrington

Content Networking: Architecture, Protocols, and Practice
Markus Hofmann and Leland R. Beaumont

Network Algorithmics: An Interdisciplinary Approach to
Designing Fast Networked Devices
George Varghese

Network Recovery: Protection and Restoration of Optical,
SONET-SDH, IP, and MPLS

Jean Philippe Vasseur, Mario Pickavet, and

Piet Demeester

Routing, Flow, and Capacity Design in Communication and
Computer Networks
Michat Piéro and Deepankar Medhi

Wireless Sensor Networks: An Information Processing
Approach
Feng Zhao and Leonidas Guibas

Communication Networking: An Analytical Approach
Anurag Kumar, D. Manjunath, and Joy Kuri

The Internet and Its Protocols: A Comparative Approach
Adrian Farrel

Modern Cable Television Technology: Video, Voice, and Data
Communications, 2e

Walter Ciciora, James Farmer, David Large, and Michael
Adams

Bluetooth Application Programming with the Java APIs
C. Bala Kumar, Paul J. Kline, and Timothy J. Thompson

Policy-Based Network Management: Solutions for the Next
Generation
John Strassner

Network Architecture, Analysis, and Design, 2e
James D. McCabe

MPLS Network Management: MIBs, Tools, and Techniques
Thomas D. Nadeau

Developing IP-Based Services: Solutions for Service Providers
and Vendors
Monique Morrow and Kateel Vijayananda

Telecommunications Law in the Internet Age
Sharon K. Black

Optical Networks: A Practical Perspective, 2e
Rajiv Ramaswami and Kumar N. Sivarajan

Internet QoS: Architectures and Mechanisms
Zheng Wang

TCP/IP Sockets in Java: Practical Guide for Programmers
Michael J. Donahoo and Kenneth L. Calvert

TCP/IP Sockets in C: Practical Guide for Programmers
Kenneth L. Calvert and Michael J. Donahoo

Multicast Communication: Protocols, Programming, and
Applications
Ralph Wittmann and Martina Zitterbart

MPLS: Technology and Applications
Bruce S. Davie and Yakov Rekhter

High-Performance Communication Networks, 2e
Jean Walrand and Pravin Varaiya

Internetworking Multimedia
Jon Crowcroft, Mark Handley, and Ian Wakeman

Understanding Networked Applications: A First Course
David G. Messerschmitt

Integrated Management of Networked Systems: Concepts,
Architectures, and their Operational Application
Heinz-Gerd Hegering, Sebastian Abeck, and Bernhard
Neumair

Virtual Private Networks: Making the Right Connection
Dennis Fowler

Networked Applications: A Guide to the New Computing
Infrastructure
David G. Messerschmitt

Wide Area Network Design: Concepts and Tools for
Optimization
Robert S. Cahn

For further information on these books and for a list of
forthcoming titles,
please visit our Web site at http://www.mkp.com.

Network Routing

Algorithms, Protocols, and Architectures

Deepankar Medhi

Karthikeyan Ramasamy

AMSTERDAM e BOSTON e HEIDELBERG ¢ LONDON
NEW YORK e OXFORD e PARIS ¢ SAN DIEGO M | 4 “’"
SAN FRANCISCO e SINGAPORE e SYDNEY ¢ TOKYO [

ELSEVIER Morgan Kaufmann is an imprint of Elsevier MORGAN KAUFMANN PUBLISHERS

-

Senior Acquisitions Editor Rick Adams

Acquisitions Editor Rachel Roumeliotis

Publishing Services Manager George Morrison

Senior Production Editor Dawnmarie Simpson

Cover Design Eric DeCicco/Yvo Riezebos Design
Cover Image Getty Images

Composition VTEX

Copyeditor SPi

Proofreader SPi

Indexer SPi

Interior printer The Maple-Vail Book Manufacturing Group
Cover printer Phoenix Color, Inc.

Morgan Kaufmann Publishers is an imprint of Elsevier.
500 Sansome Street, Suite 400, San Francisco, CA 94111

This book is printed on acid-free paper.
©2007 by Elsevier Inc. All rights reserved.

Designations used by companies to distinguish their products are often claimed as trademarks or registered trademarks.
In all instances in which Morgan Kaufmann Publishers is aware of a claim, the product names appear in initial capital or
all capital letters. Readers, however, should contact the appropriate companies for more complete information regarding
trademarks and registration.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means—
electronic, mechanical, photocopying, scanning, or otherwise—without prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK: phone: (+44)
1865 843830, fax: (+44) 1865 853333, E-mail: permissions@elsevier.com. You may also complete your request online via the
Elsevier homepage (http://elsevier.com), by selecting

“Support & Contact” then “Copyright and Permission” and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data
Medhi, Deepankar.
Network routing : algorithms, protocols, and architectures / Deepankar Medhi, Karthikeyan Ramasamy.
.cm.
Includes bibliographical references and index.
ISBN-13: 978-0-12-088588-6 (hardcover : alk. paper)
ISBN-10: 0-12-088588-3 (hardcover : alk. paper) 1. Computer networks. 2. Routers (Computer networks) 3. Computer
network architectures. I. Ramasamy, Karthikeyan, 1967- II. Title.
TK5105.5.M425 2007
004.6-dc22

2006028700

ISBN 13: 978-0-12-088588-6
ISBN 10: 0-12-088588-3

For information on all Morgan Kaufmann publications,
visit our Web site at www.mkp.com or www.books.elsevier.com

Printed in the United States of America
07 08 09 10 54321

Working together to grow
libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER BOOKAID g0 Foundation

To Karen, Neiloy, and Robby: the core routers in our dynamic network where the distance
cost varies instantaneously and over time, and where alternate routing and looping occur ...

Love,

Deep/Dad

To my parents, R. Chellammal and N. Ramasamy—backplane of my life.

Love and regards,

Karthik

This page intentionally left blank

Contents

Foreword
Preface
About the Authors
Part I: Network Routing: Basics and Foundations
1 Networking and Network Routing: An Introduction
1.1 Addressing and Internet Service: An Overview
1.2 Network Routing: An Overview
1.3 IP Addressing
1.3.1 Classful Addressing Scheme
1.3.2 Subnetting/Netmask
1.3.3 Classless Interdomain Routing
1.4 On Architectures
1.5 Service Architecture
1.6 Protocol Stack Architecture
1.6.1 OSI Reference Model
1.6.2 IP Protocol Stack Architecture
1.7 Router Architecture
1.8 Network Topology Architecture
1.9 Network Management Architecture
1.10 Public Switched Telephone Network
1.11 Communication Technologies
1.12 Standards Committees
1.12.1 International Telecommunication Union
1.12.2 Internet Engineering Task Force
1.12.3 MFA Forum
1.13 Last Two Bits

1.13.1 Type-Length-Value
1.13.2 Network Protocol Analyzer

XX1ii
XXV

XXX1

O 0 N\ Ul N =

10
11
12
13
13
14
19
20
21
21
22
24
24
25
25
25
25
26

viii

Contents

1.14 Summary

Further Lookup
Exercises

2 Routing Algorithms: Shortest Path and Widest Path

2.1
2.2

23

24
25
2.6
2.7

2.8
29

Background

Bellman-Ford Algorithm and the Distance Vector Approach
22.1 Centralized View: Bellman-Ford Algorithm

222 Distributed View: A Distance Vector Approach
Dijkstra’s Algorithm

23.1 Centralized Approach

232 Distributed Approach

Comparison of the Bellman-Ford Algorithm and Dijkstra’s Algorithm
Shortest Path Computation with Candidate Path Caching
Widest Path Computation with Candidate Path Caching
Widest Path Algorithm

2.7.1 Dijkstra-Based Approach

2.7.2 Bellman-Ford-Based Approach

k-Shortest Paths Algorithm

Summary

Further Lookup

Exercises

3 Routing Protocols: Framework and Principles

3.1
3.2
3.3

34

3.5

3.6

Routing Protocol, Routing Algorithm, and Routing Table

Routing Information Representation and Protocol Messages

Distance Vector Routing Protocol

3.3.1 Conceptual Framework and Illustration

3.3.2 Why Timers Matter

3.3.3 Solutions

3.34 Can We Avoid Loops?

3.3.5 Distance Vector Protocol Based on Diffusing Computation with
Coordinated Update

Link State Routing Protocol

341 Link State Protocol: In-Band Hop-by-Hop Disseminations

3.42 Link State Protocol: In-Band Based on End-to-End Session

3.43 Route Computation

Path Vector Routing Protocol

3.5.1 Basic Principle

3.5.2 Path Vector with Path Caching

Link Cost

3.6.1 ARPANET Routing Metrics

3.6.2 Other Metrics

26
27
27

30
31
33
33
36
38
38
40
42
43
45
47
47
49
49
51
53
53

56
57
59
60
60
66
70
74

74
82
83
91
92
93
93
97
102
102
103

Contents X

3.7 Summary 104
Further Lookup 105
Exercises 105

4 Network Flow Modeling 108

41 Terminologies 109

42 Single-Commodity Network Flow 110
421 A Three-Node Illustration 110
422 Formal Description and Minimum Cost Routing Objective 111
423 Variation in Objective: Load Balancing 114
424 Variation in Objective: Average Delay 116
425 Summary and Applicability 117

4.3 Multicommodity Network Flow: Three-Node Example 118
43.1 Minimum Cost Routing Case 118
432 Load Balancing 123
433 Average Delay 125

44 Multicommodity Network Flow Problem: General Formulation 128
441 Background on Notation 129
442 Link-Path Formulation 130
443 Node-Link Formulation 135

45 Multicommodity Network Flow Problem: Non-Splittable Flow 137

4.6 Summary 138
Further Lookup 139
Exercises 139

Part II: Routing in IP Networks 141
5 IP Routing and Distance Vector Protocol Family 142

51 Routers, Networks, and Routing Information: Some Basics 143
51.1 Routing Table 143
512 Communication of Routing Information 146

5.2 Static Routes 146

5.3 Routing Information Protocol, Version 1 (RIPv1) 147
531 Communication and Message Format 147
53.2 General Operation 149
533 IsRIPv1 Good to Use? 150

5.4 Routing Information Protocol, Version 2 (RIPv2) 150

5.5 Interior Gateway Routing Protocol (IGRP) 153
551 Packet Format 153
552 Computing Composite Metric 154

5.6 Enhanced Interior Gateway Routing Protocol (EIGRP) 157
5.6.1 Packet Format 157

5.7 Route Redistribution 160

58 Summary 161

Contents

Further Lookup
Exercises

6 OSPF and Integrated IS-IS

6.1
6.2

6.3
6.4
6.5

6.6
6.7

From a Protocol Family to an Instance of a Protocol
OSPF: Protocol Features

6.2.1 Network Hierarchy

6.2.2 Router Classification

6.23 Network Types

6.24 Flooding

6.25 Link State Advertisement Types

6.2.6 Subprotocols

6.2.7 Routing Computation and Equal-Cost Multipath
6.2.8 Additional Features

OSPF Packet Format

Examples of Router LSAs and Network LSAs
Integrated IS-1IS

6.5.1 Key Features

Similarities and Differences Between IS-IS and OSPF
Summary

Further Lookup

Exercises

7 1P Traffic Engineering

7.1

7.2

7.3
7.4

7.5
7.6

Traffic, Stochasticity, Delay, and Utilization

711 What Is IP Network Traffic?

7.1.2 Traffic and Performance Measures

713 Characterizing Traffic

7.14 Average Delay in a Single Link System

7.1.5 Nonstationarity of Traffic

Applications’ View

721 TCP Throughput and Possible Bottlenecks
7.2.2 Bandwidth-Delay Product

7.2.3 Router Buffer Size

Traffic Engineering: An Architectural Framework
Traffic Engineering: A Four-Node Illustration

741 Network Flow Optimization

74.2 Shortest Path Routing and Network Flow
Link Weight Determination Problem: Preliminary Discussion
Duality of the MCNF Problem

7.6.1 Illustration of Duality Through a Three-Node Network
7.6.2 General Case: Minimum Cost Routing

7.6.3 Minimization of Maximum Link Utilization
7.6.4 A Composite Objective Function

7.6.5 Minimization of Average Delay

163
164

166
167
168
168
168
169
170
171
171
172
176
177
183
185
186
189
191
191
191

194
195
195
195
196
197
199
200
200
201
202
203
204
204
206
211
213
213
215
219
221
222

Contents

7.7

7.8
7.9

8 BGP

8.1
8.2
8.3

8.4
8.5
8.6
8.7

8.8

8.9
8.10

8.11
8.12

8.13

Mustration of Link Weight Determination Through Duality

771 Case Study:1
772 Case Study: II

Link Weight Determination: Large Networks

Summary
Further Lookup
Exercises

BGP: A Brief Overview

BGP: Basic Terminology

BGP Operations

83.1 Message Operations
8.3.2 BGP Timers

BGP Configuration Initialization

Two Faces of BGP: External BGP and Internal BGP

Path Attributes
BGP Decision Process
8.7.1 BGP Path Selection Process

8.7.2 Route Aggregation and Dissemination

873 Recap

Internal BGP Scalability

8.8.1 Route Reflection Approach

8.8.2 Confederation Approach

Route Flap Dampening

BGP Additional Features

8.10.1 Communities

8.10.2 Multiprotocol Extension

Finite State Machine of a BGP Connection
Protocol Message Format

8.12.1 Common Header

8.12.2 Message Type: OPEN

8.12.3 Message Type: UPDATE

8.12.4 Message Type: NOTIFICATION
8.12.5 Message Type: KEEPALIVE

8.12.6 Message Type: ROUTE-REFRESH
8.12.7 Path Attribute in UPDATE message
Summary

Further Lookup

Exercises

9 Internet Routing Architectures

9.1
9.2

Internet Routing Evolution
Addressing and Routing: Illustrations
9.21 Routing Packet: Scenario A

xi

226
226
231
232
234
235
235

238
239
242
243
243
244
245
247
250
254
254
256
257
257
258
261
262
265
265
265
266
270
270
270
272
274
274
274
276
277
278
278

280
281
283
285

xii

9.3

94
9.5

9.6
9.7
9.8
9.9

9.22
923

Contents

Routing Packet: Scenario B
Routing Packet: Scenario C

Current Architectural View of the Internet

9.3.1
932
9.3.3
9.3.4

Customers and Providers, Peering and Tiering, and Exchange Points

A Representative Architecture
Customer Traffic Routing: A Geographic Perspective
Size and Growth

Allocation of IP Prefixes and AS Number
Policy-Based Routing

9.5.1

BGP Wedgies

Point of Presence

Traffic Engineering Implications
Internet Routing Instability
Summary

Further Lookup

Exercises

Part III: Routing in the PSTN

286
288
290
291
294
297
298
301
304
306
307
309
311
312
312
313

315

10 Hierarchical and Dynamic Call Routing in the Telephone Network 316
10.1 Hierarchical Routing

10.2

10.3
10.4
10.5
10.6
10.7
10.8
10.9

10.1.1
10.1.2
10.1.3
10.1.4

Basic Idea

A Simple Illustration

Overall Hierarchical Routing Architecture

Telephone Service Providers and Telephone Network Architecture

The Road to Dynamic Routing

10.2.1
10.2.2
10.2.3
10.2.4
10.2.5
10.2.6
10.2.7

Limitation of Hierarchical Routing

Historical Perspective

Call Control and Crankback

Trunk Reservation

Where Does Dynamic Routing Fit with Hierarchical Routing?
Mixing of OCC and PCC

Summary

Dynamic Nonhierarchical Routing

Dynamically Controlled Routing

Dynamic Alternate Routing

Real-Time Network Routing

Classification of Dynamic Call Routing Schemes
Maximum Allowable Residual Capacity Routing
Dynamic Routing and Its Relation to Other Routing

10.9.1
10.9.2

10.9.3

Dynamic Routing and Link State Protocol

Path Selection in Dynamic Routing in Telephone Networks and IP
Routing

Relation to Constraint-Based Routing

317
317
318
320
321
322
322
323
325
326
326
327
327
328
330
333
334
336
337
339
339

339
340

Contents xiii

10.10 Recap 340
Further Lookup 341
Exercises 342

11 Traffic Engineering in the Voice Telephone Network 344

11.1 Why Traffic Engineering? 345

11.2 Traffic Load and Blocking 346
11.2.1 Computing Erlang-B Loss Formula 349

11.3 Grade-of-Service and Trunk Occupancy 350

11.4 Centi-Call Seconds and Determining Offered Load 352

11.5 Economic CCS Method 354

11.6 Network Controls for Traffic Engineering 356
11.6.1 Guidelines on Detection of Congestion 357
11.6.2 Examples of Controls 357
11.6.3 Communication of Congestion Control Information 361
11.6.4 Congestion Manifestation 361

11.7 State-Dependent Call Routing 362

11.8 Analysis of Dynamic Routing 363
11.8.1 Three-Node Network 364
11.8.2 N-Node Symmetric Network 366
11.8.3 N-Node Symmetric Network with Trunk Reservation 367
11.8.4 Illustration Without and with Trunk Reservation 369

11.9 Summary 371
Further Lookup 371
Exercises 372

12 SS7: Signaling Network for Telephony 374

12.1 Why S57? 375

12.2 SS7 Network Topology 375
1221 Node Types 376
12.2.2 SS7 Links 376

12.3 Routing in the SS7 Network 378

12.4 Point Codes: Addressing in 557 380
1241 North American Point Code 380
1242 ITU Point Code 381

12.5 Point Code Usage 382
1251 Address Assignment 382
12.5.2 Relationship Between a Telephone Switch and an SSP 382
12.5.3 Interworking of SS7 Networks with Different Addressing Schemes 383

12.6 SS7 Protocol Stack 384
12.6.1 Lower-Layer Protocols: MTP1, MTP2, and MTP3 384
12.6.2 Upper-Layer Protocols 388

12.7 SS7 Network Management 388

12.8 ISUP and Call Processing 389

12.8.1 Called/Calling Party Number Format 395

Xiv

13

Contents

12.9 ISUP Messages and Trunk Management
12.10 ISUP Messages and Dynamic Call Routing
12.10.1 Functionalities
12.10.2 Ilustration
12.11 Transaction Services
12.11.1 SCCP: Signaling Connection Control Part
12.11.2 TCAP: Transaction Capabilities Application Part
12.12 SS7 Link Traffic Engineering
12.12.1 SS7 Network Performance Requirements
12.13 Summary
Further Lookup
Exercises

Public Switched Telephone Network: Architecture and Routing
13.1 Global Telephone Addressing
13.1.1 National Numbering Plan
13.1.2 Dialing Plan
13.2 Setting Up a Basic Telephone Call and Its Steps
13.3 Digit Analysis versus Translation
13.4 Routing Decision for a Dialed Call
13.5 Call Routing: Single National Provider Environment
13.5.1 Handling Dialed Numbers
13.5.2 Illustration of Call Routing
13.5.3 Some Observations
13.6 Call Routing: Multiple Long-Distance Provider Case
13.6.1 Illustration of Call Routing
13.6.2 Impact on Routing
13.7 Multiple-Provider Environment: Multiple Local Exchange Carriers
13.8 Routing Decision at an Intermediate TDM Switch
13.9 Number Portability
13.9.1 Introduction
13.9.2 Portability Classification
13.10 Nongeographic or Toll-Free Number Portability
13.10.1 800-Number Management Architecture
13.10.2 Message and Call Routing
13.11 Fixed/Mobile Number Portability
13.11.1 Portability Architecture
13.11.2 Routing Schemes
13.11.3 Comparison of Routing Schemes
13.11.4 Impact on IAM Message
13.11.5 Number Portability Implementation
13.11.6 Routing in the Presence of Transit Network
13.12 Multiple-Provider Environment with Local Number Portability

396
396
397
398
400
400
401
402
403
404
404
405

406
407
409
412
415
417
417
417
418
419
423
424
427
430
432
433
434
434
435
436
437
438
439
439
442
446
446
448
448
451

Contents XV

13.13 Summary 453
Further Lookup 454
Exercises 454

Part IV: Router Architectures 457
14 Router Architectures 458

14.1 Functions of a Router 459
14.1.1 Basic Forwarding Functions 460
14.1.2 Complex Forwarding Functions 460
14.1.3 Routing Process Functions 461
14.14 Routing Table versus Forwarding Table 462
14.1.5 Performance of Routers 463

14.2 Types of Routers 463

14.3 Elements of a Router 465

14.4 Packet Flow 468
1441 Ingress Packet Processing 468
14.4.2 Egress Packet Processing 469

14.5 Packet Processing: Fast Path versus Slow Path 470
14.5.1 Fast Path Functions 471
14.5.2 Slow Path Operations 474

14.6 Router Architectures 475
14.6.1 Shared CPU Architectures 476
14.6.2 Shared Forwarding Engine Architectures 479
14.6.3 Shared Nothing Architectures 481
14.6.4 Clustered Architectures 484

14.7 Summary 485
Further Lookup 485
Exercises 486

15 IP Address Lookup Algorithms 488

15.1 Impact of Addressing on Lookup 489
15.1.1 Address Aggregation 490

15.2 Longest Prefix Matching 492
15.2.1 Trends, Observations, and Requirements 493

15.3 Naive Algorithms 495

15.4 Binary Tries 495
154.1 Search and Update Operations 496
15.4.2 Path Compression 498

15.5 Multibit Tries 500
15.5.1 Prefix Transformations 500
15.5.2 Fixed Stride Multibit Trie 502
15.5.3 Search Algorithm 503

1554 Update Algorithm 504

16

15.6

15.7

15.8

15.9

15.10
15.11

Contents

15.5.5 Implementation

15.5.6 Choice of Strides

15.5.7 Variable Stride Multibit Trie
Compressing Multibit Tries

15.6.1 Level Compressed Tries

15.6.2 Lulea Compressed Tries

15.6.3 Tree Bitmap

Search by Length Algorithms

15.7.1 Linear Search on Prefix Lengths
15.7.2 Binary Search on Prefix Lengths
Search by Value Approaches

15.8.1 Prefix Range Search

Hardware Algorithms

159.1 RAM-Based Lookup

159.2 Ternary CAM-Based Lookup
15.9.3 Multibit Tries in Hardware
Comparing Different Approaches
Summary

Further Lookup

Exercises

IP Packet Filtering and Classification

16.1
16.2

16.3
16.4
16.5

16.6

16.7

16.8

16.9

Importance of Packet Classification

Packet Classification Problem

16.2.1 Expressing Rules

16.2.2 Performance Metrics

Packet Classification Algorithms

Naive Solutions

Two-Dimensional Solutions

16.5.1 Hierarchical Tries: Trading Time for Space
16.5.2 Set Pruning Tries: Trading Space for Time
16.5.3 Grid-of-Tries: Optimizing Both Space and Time
Approaches for d Dimensions

16.6.1 Geometric View of Classification: Thinking Differently
16.6.2 Characteristics of Real-Life Classifiers: Thinking Practically
Extending Two-Dimensional Solutions

16.7.1 Naive Extensions

16.7.2 Native Extensions

Divide and Conquer Approaches

16.8.1 Lucent Bit Vector

16.8.2 Aggregated Bit Vector

16.8.3 Cross-Producting

16.8.4 Recursive Flow Classification

Tuple Space Approaches

505
506
506
507
507
510
514
519
520
520
522
522
525
525
526
528
530
531
531
532

534
535
537
538
538
540
540
541
541
544
545
548
549
551
552
552
553
555
556
558
560
562
568

Contents

16.10

16.11

16.12
16.13

16.9.1 Tuple Space Search

16.9.2 Tuple Space Pruning

Decision Tree Approaches

16.10.1 Hierarchical Intelligent Cuttings
16.10.2 HyperCuts

Hardware-Based Solutions

16.11.1 Ternary Content Addressable Memory (TCAM)
Lessons Learned

Summary

Further Lookup

Exercises

Part V: Toward Next Generation Routing

17 Quality of Service Routing

18

17.1
17.2
17.3

17.4
17.5
17.6
17.7

17.8

17.9

Background

QoS Attributes

Adapting Shortest Path and Widest Path Routing: A Basic Framework
17.3.1 Single Attribute

17.3.2 Multiple Attributes

17.3.3 Additional Consideration

Update Frequency, Information Inaccuracy, and Impact on Routing
Lessons from Dynamic Call Routing in the Telephone Network
Heterogeneous Service, Single-Link Case

A General Framework for Source-Based QoS Routing with Path Caching
17.71 Routing Computation Framework

17.7.2 Routing Computation

17.7.3 Routing Schemes

17.7.4 Results

Routing Protocols for QoS Routing

17.8.1 QOSPEF: Extension to OSPF for QoS Routing

17.82 ATM PNNI

Summary

Further Lookup

Exercises

MPLS and GMPLS

18.1
18.2
18.3

Background

Traffic Engineering Extension to Routing Protocols
Multiprotocol Label Switching

18.3.1 Labeled Packets and LSP

18.3.2 Label Distribution

18.3.3 RSVP-TE for MPLS

18.3.4 Traffic Engineering Extensions to OSPF and IS-IS

XVil

569
570
571
572
575
576
576
578
579
579
580

582

584
585
589
590
590
591
592
593
595
596
599
600
601
602
603
608
608
609
610
611
611

612
613
614
614
616
619
619
625

xviii

19

20

Contents

18.4 Generalized MPLS

18.4.1
18.4.2
18.4.3
18.4.4
18.4.5

GMPLS Labels

Label Stacking and Hierarchical LSPs: MPLS/GMPLS
RSVP-TE for GMPLS

Routing Protocols in GMPLS

Control and Data Path Separation and Link Management Protocol

18.5 MPLS Virtual Private Networks

18.5.1
18.5.2

BGP/MPLS IP VPN
Layer 2 VPN

18.6 Summary
Further Lookup
Exercises

Routing and Traffic Engineering with MPLS
19.1 Traffic Engineering of IP/MPLS Networks

19.1.1
19.1.2

A Brisk Walk Back in History
MPLS-Based Approach for Traffic Engineering

19.2 VPN Traffic Engineering

19.2.1
19.2.2
19.2.3
19.2.4
19.2.5

Problem Illustration: Layer 3 VPN

LSP Path Determination: Constrained Shortest Path Approach
LSP Path Determination: Network Flow Modeling Approach
Layer 2 VPN Traffic Engineering

Observations and General Modeling Framework

19.3 Routing/Traffic Engineering for Voice Over MPLS
194 Summary

Further Lookup

Exercises

VoIP Routing: Interoperability Through IP and PSTN
20.1 Background
20.2 PSTN Call Routing Using the Internet

20.2.1
20.2.2
20.2.3
20.2.4
20.2.5
20.2.6

Conceptual Requirement

VoIP Adapter Functionality
Addressing and Routing

Service Observations

Traffic Engineering

VoIP Adapter: An Alternative Scenario

20.3 PSTN Call Routing: Managed IP Approach
20.4 IP-PSTN Interworking for VoIP

204.1
20.4.2
204.3
2044
2045
20.4.6
20.4.7

Gateway Function

SIP Addressing Basics
SIP Phone to POTS Phone
POTS Phone to SIP Phone
PSTN-IP-PSTN

Traffic Engineering
Relation to Using MPLS

626
627
628
629
630
632
634
635
639
640
640
641

642
643
643
644
647
647
650
652
656
657
657
660
660
660

662
663
664
664
666
666
670
671
673
673
675
675
676
677
680
680
683
684

Contents

20.5

20.6

20.7
20.8
20.9

Appendix A: Notations, Conventions, and Symbols

Al
A2

IP Multimedia Subsystem

20.5.1 IMS Architecture

20.5.2 Call Routing Scenarios
Multiple Heterogeneous Providers Environment
20.6.1 Via Routing

20.6.2 Carrier Selection Alternative
All-IP Environment of VoIP Services
Addressing Revisited

Summary

Further Lookup

Exercises

On Notations and Conventions
Symbols

Appendix B: Miscellaneous Topics

B.1
B.2
B.3
B4
B.5
B.6
B.7
B.8
B.9
B.10
B.11
B.12

B.13
B.14

Functions: Logarithm and Modulo
Fixed-Point Equation

Computational Complexity

Equivalence Classes

Using CPLEX

Exponential Weighted Moving Average
Nonlinear Regression Fit

Computing Probability of Path Blocking or Loss
Four Factors in Packet Delay

Exponential Distribution and Poisson Process
Self-Similarity and Heavy-Tailed Distributions
Markov Chain and Birth-and-Death Process
B.12.1 Birth-and-Death Process

B.122 M/M/1 System

B.12.3 Trunk Reservation Model

Average Network Delay

Packet Format: IPv4, IPv6, TCP, and UDP

Solutions to Selected Exercises

Bibliography

Index

Part VI: Advanced Topics (Bonus Material on CD-ROM)

21 Switching Packets

21.1

Generic Switch Architecture

Xix

684
685
686
688
688
690
690
691
692
693
694

696
697
699

700
701
701
702
704
704
706
707
708
709
710
712
713
714
715
716
717
717

720
724
768

XX

22

Contents

21.2 Requirements and Metrics
21.3 Shared Backplanes
21.3.1 Shared Bus
21.4 Switched Backplanes
21.5 Shared Memory
21.51 Scaling Memory Bandwidth
21.6 Crossbar
21.6.1 Take-a-Ticket Scheduler
21.6.2 Factors That Limit Performance
21.7 Head-of-Line Blocking
21.8 Output Queueing
21.9 Virtual Output Queueing
21.9.1 Maximum Bipartite Matching
21.9.2 Parallel Iterative Matching
21.9.3 iSLIP Scheduling
2194 Priorities and Multicast in iSLIP
21.10 Input and Output Blocking
21.11 Scaling Switches to a Large Number of Ports
21.12 Clos Networks
21.12.1 Complexity of Scheduling Algorithms
21.13 Torus Networks
21.13.1 Packaging Using Short Wires
21.14 Scaling Switches for High-Speed Links
21.14.1 Bit Slicing
21.14.2 Time Slicing
21.14.3 Distributed Scheduling
21.15 Conclusions
21.16 Summary
Further Lookup
Exercises

Packet Queueing and Scheduling
22.1 Packet Scheduling
22.1.1 First-In, First-Out Queueing
22.1.2 Priority Queueing
22.1.3 Round-Robin and Fair Queueing
2214 Weighted Round-Robin and Weighted Fair Queueing
22.1.5 Deficit Round-Robin Queueing
22.1.6 Modified Deficit Round-Robin Queueing
22.2 TCP Congestion Control
2221 Slow Start
22.2.2 Additive Increase, Multiplicative Decrease
22.2.3 Fast Retransmit and Fast Recovery
22.3 Implicit Feedback Schemes

O NI N Q1 Q1

10
12
14
15
16
19
20
22
27
30
32
33
34
37
39
42
43
44
44
45
46
47
47
48

O Ul b W WIN

11
12
13
14
15

Contents

23

24

224

22.5

22.6

22.7
22.8
229

22.3.1 Drop Position

22.3.2 Proactive versus Reactive Dropping
Random Early Detection (RED)

2241 Computing Average Length of Queue
22.42 Computing Drop Probability

2243 Setting Omin and Omax

Variations of RED

2251 Weighted Random Early Detection
2252 Adaptive Random Early Detection
Explicit Feedback Schemes

22.6.1 Choke Packets

22.6.2 Explicit Congestion Notification
New Class of Algorithms

Analyzing System Behavior

Summary

Further Lookup

Exercises

Traffic Conditioning

23.1
23.2
23.3

23.4

235

23.6

Service Level Agreements

Traffic Conditioning Mechanisms
Traffic Shaping

23.3.1 Leaky Bucket

23.3.2 Token Bucket

Traffic Policing

2341 Comparing Traffic Policing and Shaping
Packet Marking

2351 Graded Profiles

2352 Single-Rate Tricolor Marking
23.5.3 Two-Rate Tricolor Marking
Summary

Further Lookup

Exercises

Transport Network Routing

241
24.2
243
244
245
24.6

Why Transport Network/Service

Timing of Request and Transport Service Provisioning
Multi-Time Period Transport Network Routing Design
Transport Routing with Varied Protection Levels
Solution Approaches

Summary

Further Lookup

Exercises

xXX1

15
17
18
20
20
21
22
22
23
26
26
27
29
29
30
31
31

g Uk W IN

12
14
14
16
17
18
19
19
20

Q1 W

14
16
17
17
17

XXxii

Contents

25 Optical Network Routing and Multilayer Routing

25.1

25.2

25.3

254
25.5

SONET/SDH Routing

25.1.1 SONET/SDH Overview

25.1.2 Routing in a SONET Ring

25.1.3 Routing in SONET/SDH Transport Cross-Connect Networks
WDM Routing

2521 WDM Overview

25.2.2 Routing in WDM with Full Conversion: Transport Mode
25.2.3 No Conversion Case

25.24 Protection Routing

25.2.5 On-Demand, Instantaneous WDM services

Multilayer Networking

25.3.1 Overview

2532 IP Over SONET: Combined Two-Layer Routing Design
Overlay Networks and Overlay Routing

Summary

Further Lookup

Exercises

O O NJ Ul WwWwiN

11
12
12
13
13
16
19
20
21
22

Foreword

My involvement with computer networking started with TheoryNet (1977), an e-mail system
for theoretical computer scientists. Later (1981) I helped lead the computer science network
(CSNET) project, which eventually connected most academic and many industrial computer
research groups. In the early days, our efforts were primarily focused on providing connec-
tivity and being able to use applications such as e-mail, ftp, and telnet. However, even in the
simple (by today’s standards) environment of the 1970s and early 1980s (Arpanet, CSNET,
and other experimental Internet networks), getting routing “right” turned out to be quite
challenging.

I was fortunate to be part of the NSENET regional /backbone model development. This
is when I began to fully understand the significance of routing in a large-scale multi-domain
network and, in particular, the central role of policy issues in such a decentralized environ-
ment. Over the past decade, as the Internet became ubiquitous and global in scale, routing
has become ever more important. Packets must be forwarded efficiently from one end of the
world to the other with minimal perception of delay. This has required tremendous efforts
on many fronts: how to evolve routing protocols for large-scale loosely-coupled networking
environments, how to engineer a network for efficient routing from an operational point of
view, how to do efficient packet processing at routers, and how to effectively take into ac-
count the complexity of policy issues in the determination of routes. And while there have
been many exciting advances over the past two decades, much work remains to be done.

In parallel, we have seen tremendous advances in traditional telephony. The underly-
ing telecommunication system has changed from analog to digital and has incorporated the
latest advances in optical technologies and, more recently, voice over IP. Throughout these
revolutionary changes, routing has continued to play a critical role.

We are now at a crossroad. Various efforts are underway to determine a framework for
next generation networks that allow seamless convergence of services and a platform to more
easily create new services. Among other things, this requires a fresh look at routing. To be
successful, it is important that we understand what has worked to date. To better understand
the issues and complexities, we should look at this broadly, considering a variety of different
network architectures, not just for the Internet. For each such network architecture, we can
benefit from understanding its principles, protocols, algorithms, and functions, with a focus
on routing. This will help give us perspective as we consider how to design routing for the
next-generation network.

In this regard, Deepankar Medhi and Karthikeyan Ramasamy’s book, Network Routing:
Algorithms, Protocols, and Architectures, is very timely. Departing from most other works, it

XX1V Foreword

is unique in providing an in-depth understanding of routing in a wide variety of types of
networks. It includes extensive coverage of the evolution of routing over time. Particularly
appealing is its in-depth coverage across a spectrum of algorithmic, technical, experiential,
and practical issues. In addition, the detailed coverage of routers and switches is particularly
valuable, as it helps the reader gain an understanding of why different approaches and com-
ponents are needed to address packet processing, especially for scalability. In this regard, it is
uniquely successful in drawing an important connection between routing and routers.

Medhi and Ramasamy’s presentation is clear and approachable, allowing a wide audi-
ence to understand and gain an appreciation of network routing. I believe that it will become
a core reference book on routing for router developers, network providers, students, and
researchers for both today’s practitioners and those who are interested in next-generation
routing.

LAWRENCE LANDWEBER

Past John P. Morgridge Chair and Past Department Chairman
Computer Science Department, University of Wisconsin-Madison
Fellow, Association for Computing Machinery and

Recipient of IEEE Award on International Communication

Former President and Chair of the Board of Trustees, Internet Society

Preface

In the span of a quarter-century, network routing in communication networks has evolved
tremendously. Just a quarter-century ago, the public switched telephone network (PSTN) was
running hierarchical routing, ARPANET routing was operational, and the telecommunication
infrastructure had fixed static transport routes. In the 1980s, we saw the first tremendous
growth in routing: Internet routing was deployed under the TCP/IP stack starting, first with
the RIP protocol; the telephone network started deploying dynamic call routing schemes; and
the telecommunication transport network deployed SONET transport mechanisms, which
could reroute in a ring topology in 40 millisec in the event of a failure. In the past fifteen years,
we have seen the need for policy routing because of multiprovider settings, and the need
to develop fast lookup algorithms for packet processing that enables efficient routing. We
have also seen interdependency between addressing and routing as first addressed through
classless interdomain routing (CIDR) and more recently, because of number portability in the
PSTN. More importantly, we saw how the way an addressing scheme is deployed can impact
routing and lookup algorithms.

Network routing can be broadly divided into three basic fundamental categories: packet
routing, circuit-switched routing, and transport routing; certainly, a combination is possible.
The evolution over the past quarter-century has brought to the foreground the need to un-
derstand and examine where and how different dimensions of routing, from algorithms to
protocols to architectures, can differ for different types of networks, and where they inter-
sect. Certainly, the goal is to learn from our past experiences and prepare ourselves for next
generation networks and routing.

While numerous papers have been written on the subject of network routing, and several
books are now available on routing for specific networks, the field still lacks a comprehensive
or systematic guide that encompasses various routing paradigms. Second, even in discus-
sions of a single routing type (for example, either the Internet or PSTN), the focus often ap-
pears to be either on protocols or algorithms without tying them together with analysis and
implementation; or, the work delves more into router command-line for router configuration;
or, being informational without explaining the whys. Furthermore, how the addressing mech-
anism can affect routing decisions is yet another important topic that is rarely discussed. For
efficient routing, how routers are architectured—and why—is yet another mystery. Finally,
the relation between traffic engineering and efficient routing is also another topic. In the end,
one needs to be somewhat of an “expert” in different routing paradigms to get a well-rounded
view.

XXVi Preface

Last, after investigating routing in different networks for a number of years, we have
come to the conclusion that network routing is like an economy. Similar to macroeconomics
and microeconomics, network routing also has macro- and micro-centric issues. In addition,
seemingly different and conflicting systems can and do co-exist. Not all of the issues are
purely technical; business relations and regulatory issues are also important to recognize and
consider. This book is an attempt to paint a broad picture that encompasses various aspects
of network routing in one place.

AUDIENCE

Our goal has been to create a book that can be used by a diverse set of audiences, with varied
levels of background. Specifically, we set out to create a book that can be used by profession-
als, as well as students and researchers. In general, this is intended as a self-study. We assume
that the reader already has some basic knowledge of networking. Among professionals, the
intent has been to cover two broad groups: router developers, including protocol designers
and router architects, and network designers and operators, with the overall goal to bring out
issues that one group might want to understand that the other group faces. For students, this
book is intended to help learn about routing in depth, along with the big picture and lessons
from operational and implementation experience. For researchers who want to know what
has been done so far and what critical issues to address for next-generation routing, this is
intended as a helpful reference. In general, this book has been intended as a one-stop treat for
all interested in network routing in different networks.

ORGANIZATION AND APPROACH

The book is organized into six parts. Each part starts with a chapter-level summary. We
present below a brief overview of each part:

e Part I (four chapters): We cover the basic foundations of routing from algorithms to pro-
tocols, along with network flow modeling.

e PartII (five chapters): This part is about IP network routing, from standardized protocols
for both intra- and inter-domain routing, to IP traffic engineering and Internet routing
architectures.

e Part III (four chapters): This part covers PSTN routing, from hierarchical routing to dy-
namic routing, and from addressing to traffic engineering, including the role of signaling
in routing, along with the impact of number portability in routing.

e Part IV (three chapters): In this part, we cover router architectures for different scale
routers for efficient packet processing, along with address lookup algorithms and packet
filtering and classification mechanisms.

e Part V (four chapters): As impetuses for next generation routing, we present quality-of-
service routing, multiprotocol label switching, generalized multiprotocol label switching,
and routing at the intersection of IP-PSTN for voice over IP.

e Part VI (five chapters): This bonus material (available on the CD-ROM) is made up of two
sub-parts: the first three chapters continue beyond Part IV by delving more into routers by

Preface xxvii

presenting efficient switching, packet queueing and scheduling, and traffic conditioning;
the remaining two chapters extend Part V by covering transport network routing, optical
network routing, and multi-layer routing.

At the beginning of each chapter, a reading guideline is provided. This gives a brief de-
scription on the background needed to read the chapter; it also discusses which other chapters
this chapter is connected to or has dependency on. In general, it is not necessary to read the
chapters in sequential order. Furthermore, the chapters are organized in a way so that the
reader who has familiarity with a particular topic can move on and read other chapters of
interest. Similarly, there are a few chapters on traffic engineering that require a certain level
of mathematical background. They can be read independently if the reader has the back-
ground, or can be skipped for later reading, without missing the broad picture. Regardless,
each chapter contains a Further Lookup section, which includes a brief discussion on addi-
tional reading; followed by a set of exercises that is meant for a wide audience. Notations,
conventions, and symbols used in the book are summarized in Appendix A. Miscellaneous
refresher topics that are helpful in understanding the material presented in this book are in-
cluded in Appendix B.

In general, we have given special attention to being concise about describing each topic,
while ensuring that the material is approachable for a wider audience. The book is still hefty
in size in order to cover routing in different networks. Despite our keen interest, we needed to
make the decision to leave out certain important topics instead of cutting corners on the top-
ics presented. The topics not covered in the book (except for cursory remarks) are: multicast
routing, routing in ATM networks, routing in cellular/wireless networks, routing in sensor
networks, and security vulnerabilities in routing. The router command-line-based configu-
ration of protocols is not included in this book, because there are many detailed books avail-
able on this aspect for various Internet routing protocols. Finally, there is a direct connection
between routing and capacity design and planning. For an in-depth treatment of capacity
design and planning, the reader is referred to the companion book [564].

BONUS MATERIALS AND ONLINE RESOURCES

The book, in its printed form, has 20 chapters. A CD-ROM is provided with the book that
contains an additional five chapters labeled “Advanced Topics.” Of these five chapters, three
chapters are related to router architectures: switching packets (Chapter 21), packet queueing
and scheduling (Chapter 22), and traffic conditioning (Chapter 23). The remaining two chap-
ters are related to transport and next-generation routing: transport network routing (Chap-
ter 24), and optical network routing and multilayer routing (Chapter 25).

Additional support materials (for example, instructional materials and additional ex-
ercises) will be available at http:/ /www.mkp.com/?isbn=9780120885886 and http://www.
NetworkRouting.net. The latter site will also serve as a resource site and will provide links to
materials available on the web on network routing.

xxviii Preface

ACKNOWLEDGMENTS

To quote Jeff Doyle, “An author of a technical book is just a front man for a small army of
brilliant, dedicated people.” We could not have said it better.

Our official technical reviewers did a tremendous job of reading carefully and providing
detailed comments. We thank Jennifer Rexford (Princeton University), Ibrahim Matta (Boston
University), K. R. Krishnan (Telcordia Technologies), and Kannan Varadhan (Juniper Net-
works) for lending their expertise, time, and effort.

In addition, many afforded their expertise by reading one or more chapters and by pro-
viding valuable feedback; we gratefully acknowledge Amit Shukla (Microsoft), Arthi Ayyan-
gar (Nuova Systems), Caterina Scoglio (Kansas State University), Chelian Pandian (Juniper
Networks), Dana Blair (Cisco Systems), David Walden (BBN, retired), Debashis Talukdar
(Embarq), Dock Williams (Juniper Networks), Driss Benhaddou (University of Houston),
Hua Qin (Beijing University of Technology), Hui Zhang (Carnegie Mellon University), Jeff
Naughton (University of Wisconsin-Madison), Jignesh M. Patel (University of Michigan),
Johannes Gehrke (Cornell University), John Strand (AT&T Labs), Mario Baldi (Politecnico di
Torino), Prasad Deshpande (IBM), Prosper Chemouil (France Telecom R&D), Rahul Agrawal
(Juniper Networks), Ravi Chandra (Sonoa Systems), Raymond Reeves (Sprint), Saad Siddiqi
(Sprint), Shachi Sharma (Alcatel), Srinivas Seshadri (Kosmix), Steve Dispensa (Positive Net-
works), Vamsi Valluri (Cisco Systems), Venkatesh Iyengar (Sun Microsystems), and Vijay Ta-
lati (Juniper Networks).

The first author’s colleagues in the Networking group at the University of Missouri-
Kansas City, Appie van de Liefvoort, Baek-Young Choi, Cory Beard, Jerry Place, Ken Mitchell,
and Khosrow Sohraby, served as great resources. They read one or more chapters, were
around to have a quick discussion and to provide their theoretical as well as practical ex-
pertise when needed. Appie van de Liefvoort and Khosrow Sohraby, in their roles as admin-
istrators, provided a much-needed environment for the first author to carry out a project of
this magnitude without too many distractions. More than a decade ago, a former colleague,
Adrian Tang, was instrumental and believed in the importance of creating a separate course
on network routing; with his interest and the nod from Richard Hetherington (the then di-
rector), the first author developed and taught a course on network routing encompassing
different networks for the first time in fall 1995; he also benefited from the publication of
[667] in 1995 that helped jump-start this course. Since then, he has been teaching this course
every fall (except when he was on a sabbatical leave). The content has changed significantly
in this short span of time to keep up with what has been happening in the field, providing an
exciting challenge and opportunity. He gratefully acknowledges having a sabbatical in 2004
to plan for the initial preparation for this book.

The current and recent PhD students of the first author also read many chapters and pro-
vided valuable feedback. Many thanks to Amit Sinha, Balaji Krithikaivasan, Dijiang Huang,
Gaurav Agrawal, Haiyang Qian, Plarent Tirana, and Shekhar Srivastava.

Several students who took the course, Network Routing, from the first author, in the
fall of 2005, read the initial version of the first few chapters. When he taught it again in the
fall 2006 semester, the entire manuscript was ready in its draft form; the entire class helped
debug it by carefully reading various chapters and providing detailed feedback. For their
help, we would like to thank Aditya Walavalkar, Ajay Karanam, Amol Rege, Dong Yoo, Fran-
cisco Jose Landeras, Hafeez Razzaq, Haiyang Qian, Hui Chang, Jignesh K. Patel, Jin-Ho Lee,

Preface XXiX

Jorge Rodriguez, Palani Ramalingam, Phaneesh Gururaj, Ravi Aute, Rehan Ishrat, Ron Mc-
Manaman, Satoru Yamashita, Sreeram Gudipudi, Swapnil Deshmukh, Shamanth Kengeri,
Shashank Manchireddy, Sundeep Udutha, Tongan Zhao, and Venkat Pagadala. Needless to
say, the first author greatly benefited from many questions and discussions from teaching
this course over the past decade that altogether attracted more than 300 students. The second
author also benefited from his many interactions with colleagues while working at Juniper
Networks. As a result, a range of interrelated topics is included in the book to give a broader
perspective of network routing.

Over the years, we have both benefited from informative and enlightening discussions on
routing in different domains and related topics from many individuals; many also answered
queries during the preparation of this book. We like to thank the following: Aekkachai Rat-
tanadilokochai (Cisco Systems), Ake Arvidsson (Ericsson), Amarnath Mukherjee (Clarifyre),
Ananth Nagarajan (Juniper Networks), André Girard (INRS-EMT), Bharani Chadalavada
(Juniper Networks), Brion Feinberg (Sereniti), Brunilde Sanso (University of Montréal),
David DeWitt (University of Wisconsin-Madison), David Tipper (University of Pittsburgh),
David Mills (University of Delaware), David Walden (BBN, retired), Debasis Mitra (Bell
Labs), Di Yuan (Link&ping Institute of Technology), Fu Chang (Academia Sinica), Ger-
ald Ash (AT&T Labs), Gerald Combs (CACE Technologies, creator of Ethereal/Wireshark),
Geoff Huston (APNIC), Gotz Grife (HP Labs), Hadriel Kaplan (Acme Packet), Indrajanti
(Yanti) Sukiman (Cisco Systems), Iraj Saniee (Bell Labs), Jean-Francois Labourdette (Verizon),
Jeff Naughton (University of Wisconsin-Madison), Jim Pearce (Sprint), John Strand (AT&T
Labs), Keith Ross (Polytechnic University), Larry Landweber (University of Wisconsin—
Madison), Lindsay Hiebert (Cisco Systems), Lorne Mason (McGill University), Michat
Piéro (Warsaw University of Technology and Lund University), Mikkel Thorup (AT&T
Labs—Research), Mostafa Ammar (Georgia Tech), Mukesh Kacker (NetApp), Nitin Bahadur
(Juniper Networks), Oscar Gonzalez-Soto (ITU), Philip Smith (Cisco Systems), Pramod Srini-
vasan (Juniper Networks), Prosper Chemouil (France Telecom R&D), Rajat Monga (Attrib-
utor), Ravi Chandra (Sonoa Systems), Richard Harris (Massey University), Robert Dover-
spike (AT&T Labs—Research), Ron Skoog (Telcordia Technologies), Saad Siddiqi (Sprint),
Samir Shah (Cisco Systems), Saravan Rajendran (Cisco Systems), Sergio Beker (France Tele-
com R&D), Shankar Satyanarayanan (Cisco Systems), Srinivasa Thirumalasetty (Ciena Cor-
poration), Steve Dispensa (Positive Networks), Steve Robinson (University of Wisconsin—
Madison), Toshikane Oda (Nippon Ericsson), Ulka Ranadive (Cisco Systems), Vamsi Valluri
(Cisco Systems), Villy Beek Iversen (Technical University of Denmark), Wayne Grover (TR-
Labs & University of Alberta), Wen-Jung Hsin (Park University), Wesam Alanqgar (Sprint),
Yufei Wang (VPI Systems), and Zhi-Li Zhang (University of Minnesota). Furthermore, the
first author benefited from Karen Medhi’s insight and expertise in transport network routing
and design.

Folks at AS3390 often provided their perspective from the viewpoint of running a stub
AS by answering our questions. Our sincere thanks to the following individuals at AS3390:
David Johnston, George Koffler, Jim Schonemann, II, and Justin Malyn.

We thank David Clark (M.1.T.), Series Editor for the Morgan Kaufmann series in Network-
ing, for recognizing the importance of having a book that spans network routing in different
networks, and for greenlighting our book proposal. We are honored that Larry Landweber

XXX Preface

(University of Wisconsin-Madison) gladly accepted our request to write the Foreword for
this book.

The first author would like to thank the Defense Advanced Research Project Agency, the
National Science Foundation, the University of Missouri Research Board, and Sprint Corpo-
ration for supporting his networking research.

Two individuals deserve special note: (1) Jane Zupan took Network Routing from the
first author in 2000. She typed his scattered notes, which gave the initial idea for planning
this book. Then, at a conference in 2003, the three of us casually joked about doing this book,
and the plan finally started. Jane was an initial partner in this project but could not continue
to work on it because of time constraints. She, however, continued to provide much help,
even at the last stage, by reading and editing, despite her busy schedule. We sincerely thank
her for her great help. (2) Balaji Krithikaivasan, who completed a Ph.D. under the first author,
passionately read many chapters of the book and provided feedback despite his deteriorating
health. Unfortunately, he did not live long enough to see the final publication of the book.
Thank you, Bala, wherever you are.

It has been a pleasure to work with Rick Adams and Rachel Roumeliotis of Morgan Kauf-
mann Publishers/Elsevier. From the initial proposal of the book to final production, they pro-
vided guidance in many ways, not to mention the occasional reminder. We appreciate their
patience with us during the final stages of the manuscript preparation. Arline Keithe did a
nice job of copyediting. In the pre-production phase, we received help from Project Managers
Dawnmarie Simpson and Tracy Grace. Folks at VIEX did an excellent job of taking our ETEX
files and transforming them to production quality, and Judy Ahlers did great work on the
final proofread. We thank them all.

Our immediate family members suffered the most during our long hours of being glued
to our laptops. Throughout the entire duration, they provided all sorts of support, entertain-
ments, and distractions. And often they queried “Are you ever going to get this done?” Deep
would like to thank his wife, Karen, and their sons, Neiloy and Robby, for love and patience,
and for enduring this route (for the second time). He would also like to thank cc76batch—you
know who you are—for their friendship. Karthik would like to thank his wife, Monika, for
her love and patience. He would also like to acknowledge his family members, Sudarshan
Kumar and Swarn Durgia, Sonu and Rajat Monga, and Tina and Amit Babel for keeping him
motivated. In addition, he would like to thank his many friends for their support. Finally, we
like to thank our parents and our siblings for their support and encouragement.

DEEPANKAR (DEEP) MEDHI KARTHIKEYAN (KARTHIK) RAMASAMY
Kansas City, Missouri, USA Santa Clara, California, USA
dmedhi@umkc.edu karthik@cs.wisc.edu

About the Authors

Deepankar Medhi is Professor of Computer Networking in the Computer Science & Electri-
cal Engineering Department at the University of Missouri-Kansas City, USA. Prior to joining
UMKC in 1989, he was a member of the technical staff in the traffic network routing and
design department at the AT&T Bell Laboratories. He was an invited visiting professor at
Technical University of Denmark and a visiting research fellow at the Lund University, Swe-
den. He is currently a Fulbright Senior Specialist. He serves as a senior technical editor of the
Journal of Network & Systems Management, and is on the editorial board of Computer Networks,
Telecommunication Systems, and IEEE Communications Magazine. He has served on the techni-
cal program committees of numerous conferences including IEEE INFOCOM, IEEE NOMS,
IEEE IM, ITC, and DRCN. He received B.Sc. (Hons.) in Mathematics from Cotton College,
Gauhati University, India, an M.Sc. in Mathematics from the University of Delhi, India, and
an M.S. and a Ph.D. in Computer Sciences from the University of Wisconsin-Madison, USA.
He has published more than 70 papers, and is co-author of the book Routing, Flow, and Ca-
pacity Design in Communication and Computer Networks, also published by Morgan Kaufmann
(July 2004).

Karthikeyan Ramasamy has 15 years of software development experience, including work-
ing with companies such as Juniper Networks, Desana Systems, and NCR. His primary areas
of technical expertise are networking and database management. As a member of the tech-
nical staff at Juniper, he developed and delivered a multitude of features spanning a diverse
set of technologies including protocols, platforms, databases, and high availability solutions
for the JUNOS routing operating system. As a principal engineer at Desana Systems, he was
instrumental in developing and delivering many fundamental components of an L7 switch
for managing data centers. While pursuing his doctorate, he worked on a parallel object re-
lational database system, which was spun off as a company and later acquired by NCR. Sub-
sequently, he initiated a project in data warehousing which was adapted by NCR. As a con-
sulting software engineer at NCR, he assisted in the commercialization of these technologies.
Currently, he serves as an independent consultant. He received a B.E. in Computer Science
and Engineering with distinction from Anna University, India, an M.S. in Computer Science
from the University of Missouri-Kansas City, USA, and a Ph.D. in Computer Sciences from
the University of Wisconsin-Madison, USA. He has published papers in premier conferences
and holds 7 patents.

This page intentionally left blank

Part I: Network
Routing: Basics and
Foundations

We start with basics and foundations for network routing. It has four chapters.

In Chapter 1, we present a general overview of networking. In addition, we present a
broad view of how addressing and routing are tied together, and how different architectural
components are related to routing.

A critical basis for routing is routing algorithms. There are many routing algorithms ap-
plicable to a variety of networking paradigms. In Chapter 2, we present shortest and widest
path routing algorithms, without referring to any specific networking technology. The intent
here is to understand the fundamental basis of various routing algorithms, both from a cen-
tralized as well as a distributed point of view.

In Chapter 3, we consider routing protocols that play complementary roles to routing
algorithms. The important point to understand about routing protocols is the nature of its
operation in a distributed environment in which information are to be exchanged, and when
and what information to be exchanged. Fundamentally, there are two routing protocol con-
cepts: distance vector and link state. The path vector routing protocol extends the distance
vector approach by including path information; however, this results in an operational be-
havior that can be drastically different than a distance vector protocol. Thus, the scope of this
chapter is to present routing protocols in details, along with illustrations, however, without
any reference to a particular networking technology.

This part concludes by presenting background material that is important for traffic en-
gineering of networks. It may be noted that routing and traffic engineering are inter-twined.
Thus, a good understanding of the fundamentals of how network flow modeling and opti-
mization can be helpful in traffic engineering is important. Chapter 4 covers network flow
modeling and introduces a number of objectives that can be application for network traffic
engineering, and describes how different objectives can lead to different solutions.

1

Networking and
Network Routing:
An Introduction

Not all those who wander are lost.
J. R. R. Tolkien

CHAPTER 1 Networking and Network Routing: An Introduction 3

It is often said that if anyone were to send a postcard with minimal address information such
as “Mahatma Gandhi, India” or “Albert Einstein, USA,” it would be routed to them due to
their fame; no listing of the street address or the city name would be necessary. The postal
system can do such routing to famous personalities usually on a case-by-case basis, relying
on the name alone.

In an electronic communication network, a similar phenomenon is possible to reach any
website or to contact any person by telephone anywhere in the world without knowing where
the site or the person is currently located. Not only that, it is possible to do so very efficiently,
within a matter of a few seconds.

How is this possible in a communication network, and how can it be done so quickly?
At the heart of the answer to this question lies network routing. Network routing refers to
the ability of an electronic communication network to send a unit of information from point
A to point B by determining a path through the network, and by doing so efficiently and
quickly. The determination of an efficient path depends on a number of factors, as we will be
discussing in detail throughout this book.

First, we start with a key and necessary factor, known as addressing. In a communication
network, addressing and how it is structured and used plays a critical role. In many ways,
addressing in a communication network has similarities to postal addressing in the postal
system. Thus, we will start with a brief discussion of the postal addressing system to provide
an analogy.

A typical postal address that we write on a postcard has several components—the name
of the person, followed by the street address with the house number (“house address”), fol-
lowed by the city, the state name, and the postal code. If we, on the other hand, take the
processing view to route the postcard to the right person, we essentially need to consider this
address in the reverse order of listing, i.e., start with the postal code, then the city or the state
name, then the house address, and finally the name of the person. You may notice that we
can reduce this information somewhat; that is, you can just use the postal code and leave out
the name of the city or the name of the state, since this is redundant information. This means
that the information needed in a postal address consists of three main parts: the postal code,
the street address (with the house number), and the name.

A basic routing problem in the postal network, then, is as follows: the postcard is first
routed to the city or the geographical region where the postal code is located. Once the card
reaches the postal code, the appropriate delivery post office for the address specified is iden-
tified and delivered to. Next, the postman or postwoman delivers the postcard at the address,
without giving much consideration to the name listed on the card. Rather, once the card ar-
rives at the destination address, the residents at this address take the responsibility of handing
it to the person addressed.

You may note that at a very high-level view, the routing process in the postal system is
broken down to three components: how to get the card to the specific postal code (and sub-
sequently the post office), how the card is delivered to the destination address, and finally,
how it is delivered to the actual person at the address. If we look at it in another way, the
place where the postcard originated in fact does not need to know the detailed information
of the street or the name to start with; the postal code is sufficient to determine to which
geographical area or city to send the card. Thus, we can see that postal routing uses address
hierarchy for routing decisions. An advantage of this approach is the decoupling of the rout-

1.1

4 1.1 Addressing and Internet Service: An Overview

ing decision to multiple levels such as the postal code at the top, then the street address,
and so on. An important requirement of this hierarchical view is that there must be a way
to divide the complete address into multiple distinguishable parts to help with the routing
decision.

Now consider an electronic communication network; for example, a critical communi-
cation network of the modern age is the Internet. Naturally, the first question that arises is:
how does addressing work for routing a unit of information from one point to another, and
is there any relation to the postal addressing hierarchy that we have just discussed? Second,
how is service delivery provided? In the next section, we address these questions.

Addressing and Internet Service: An Overview

In many ways, Internet addressing has similarities to the postal addressing system. The ad-
dressing in the Internet is referred to as Internet Protocol (IP) addressing. An IP address defines
two parts: one part that is similar to the postal code and the other part that is similar to the
house address; in Internet terminology, they are known as the netid and the hostid, to identify
a network and a host address, respectively. Thus, a host is the end point of communication
in the Internet and where a communication starts. A host is a generic term used for indicat-
ing many different entities; the most common ones are a web-server, an email server, and
certainly the desktop, laptop, or any computer we use for accessing t he Internet. A netid
identifies a contiguous block of addresses; more about IP Addressing later in Section 1.3.

Like any service delivery system, we also need a delivery model for the Internet. For
example, in the postal system, one can request guaranteed delivery for an additional fee.
The Internet’s conceptual framework, known as TCP/IP (Transmission Control Protocol/Internet
Protocol), relies on a delivery model in which TCP is in charge of the reliable delivery of
information, while IP is in charge of routing, using the IP addressing mechanism. IP, however,
does not worry about whether the information is reliably delivered to the address or is lost
during transit. This is somewhat similar to saying that the postal system will route a postcard
to the house address, while residents at this address (not the postal authority) are responsible
for ensuring that the person named on the card receives it. While this may seem odd at first,
this paradigm has been found to work well in practice, as the success of the Internet shows.

A key difference in the Internet as opposed to the postal system is that the sending host
first sends a beacon to the destination address (host) to see if it is reachable, and waits for
an acknowledgment before sending the actual message. Since the beacon also uses the same
transmission mechanism, i.e., IP, it is possible that it may not reach the destination. In order
to allow for this uncertainty to be factored in, another mechanism known as a timer is used.
That is, the sending host sends the beacon, then waits for a certain amount of time to see
if it receives any response. If it does not hear back, it tries to send the beacon a few more
times, waiting for a certain amount of time before each attempt, until it stops trying after
reaching the limit on the maximum number of attempts. The basic idea, then, requires that
the receiving host should also know the address of the sender so that it can acknowledge the
receipt of the beacon. As you can see, this means that when the sending host sends its beacon,
it must also include its source IP address.

Once the connectivity is established through the beacon process, the actual transmission
of the content transpires. This is where a good analogy is not available in the postal system;

1.2

CHAPTER 1 Networking and Network Routing: An Introduction 5

rather, the road transportation network is a better fit to describe an analogy. If we imagine
a group of 100 friends wanting to go to a game, then we can easily see that not all can fit in
one car. If we consider that a car can hold five people, we will need twenty cars to transport
this entire group. The Internet transfer model also operates in this fashion. Suppose that a
document that we want to download from a host (web-server) is 2 MB. Actually, it cannot
be accommodated entirely into a single fundamental unit of IP, known as packet or datagram,
due to a limitation imposed by the underlying transmission system. This limitation is known
as the Maximum Transmission Unit (MTU). MTU is similar to the limitation on how many
people can fit into a single car. Thus, the document would need to be broken down into
smaller units that fit into packets. Each packet is then labeled with both the destination and
the source address, which is then routed through the Internet toward the destination. Since
the IP delivery mechanism is assumed to be unreliable, any such packet can possibly get
lost during transit, and thus would need to be retransmitted if the timer associated with this
packet expires. Thus another important component is that content that has been broken down
into smaller packets, once it arrives at the destination, needs to be reassembled in the proper
order before delivering the document.

We conclude this section by pointing out that the acknowledgment and retransmission
mechanism is used for most well-known applications on the Internet such as web or email.
A slightly different model is used for applications that do not require reliable delivery; this
will be discussed later in the chapter.

Network Routing: An Overview

In the previous section, we provided a broad overview of addressing and transfer mecha-
nisms for data in Internet communication services. Briefly, we can see that eventually packets
are to be routed from a source to a destination. Such packets may need to traverse many
cross-points, similar to traffic intersections in a road transportation network. Cross-points in
the Internet are known as routers. A router’s functions are to read the destination address
marked in an incoming IP packet, to consult its internal information to identify an outgoing
link to which the packet is to be forwarded, and then to forward the packet. Similar to the
number of lanes and the speed limit on a road, a network link that connects two routers is
limited by how much data it can transfer per unit of time, commonly referred to as the band-
width or capacity of a link; it is generally represented by a data rate, such as 1.54 megabits
per second (Mbps). A network then carries traffic on its links and through its routers to the
eventual destination; traffic in a network refers to packets generated by different applications,
such as web or email.

Suppose that traffic suddenly increases, for example, because of many users trying to
download from the same website; then, packets that are generated can possibly be queued
at routers or even dropped. Since a router maintains a finite amount of space, known as a
buffer, to temporarily store backlogged packets, it is possible to reach the buffer limit. Since
the basic principle of TCP/IP allows the possibility of an IP packet not being delivered or
being dropped enroute, the finite buffer at a router is not a problem. On the other hand,
from an efficient delivery point of view, it is desirable not to have any packet loss (or at least,
minimize it) during transit. This is because the reliable delivery notion works on the principle
of retransmission and acknowledgment and any drop would mean an increase in delay due

6 1.2 Network Routing: An Overview

to the need for retransmission. In addition, during transit, it is also possible that the content
enclosed in a data packet is possibly corrupted due to, for example, an electrical signaling
problem on a communication link. This then results in garbling of a packet. From an end-to-
end communication point of view, a garbled packet is the same as a lost packet.

Thus, for efficient delivery of packets, there are several key factors to consider: (1) routers
with a reasonable amount of buffer space, (2) links with adequate bandwidth, (3) actual
transmission with minimal error (to minimize packets being garbled), and (4) the routers’
efficiency in switching a packet to the appropriate outgoing link. We have already briefly dis-
cussed why the first two factors are important. The third factor, an important issue, is outside
the scope of this book since encoding or development of an error-free transmission system is
an enormous subject by itself; interested readers may consult books such as [666]. Thus, we
next move to the fourth factor.

Why is the fourth factor important? A packet is to be routed based on the IP address of the
destination host; however, much like street address information in a postal address, there are
far too many possible hosts; it is impossible and impractical to store all host addresses at any
router. For example, for a 32-bit address, theoretically a maximum of 232 hosts are possible—
a very large number (more about IP addressing in the next section). Rather, a router needs to
consider a coarser level of address information, i.e., the netid associated with a host, so that
an outgoing link can be identified quickly just by looking up the netid. Recall that a netid is
very much like a postal code. There is, however, a key difference—netids do not have any
geographical proximity association as with postal codes. For example, postal codes in the
United States are five digits long and are known as ZIP (Zonal Improvement Plan) codes.
Consider now Kansas City, Missouri, where a ZIP code starts with 64 such as 64101, 64102,
and so on. Thus, a postcard can be routed to Kansas City, MO (“64”) which in turn then can
take care of routing to the specific ZIP code. This idea is not possible with IP addressing since
netids do not have any geographical proximity. In fact, an IP netid address such 134.193.0.0
can be geographically far away from the immediately preceding IP netid address 134.192.0.0.
Thus, at the netid level, IP addressing is flat; there is no hierarchy.

You might be wondering why IP address numbering is not geographic. To give a short
answer, an advantage of a nongeographic address is that an organization that has been as-
signed an IP address block can keep its address block even if it moves to a different location
or if it wants to use a different provider for connectivity to the Internet. A geographically
based address system usually has limitations in regard to providing location-independent
flexibility.

In order to provide the flexibility that two netids that appear close in terms of their ac-
tual numbering can be geographically far away, core routers in the Internet need to main-
tain an explicit list of all valid netids along with an identified outgoing link so that when a
packet arrives the router knows which way to direct the packet. The list of valid netids is
quite large, currently at 196,000 entries. Thus, to minimize switching time at a router, efficient
mechanisms are needed that can look up an address, identify the appropriate outgoing link
(direction), and process the packet quickly so that the processing delay can be as minimal as
possible.

There is, however, another important phase that works in tandem with the lookup
process at a router. This is the updating of a table in the router, known as the routing table,
that contains the identifier for the next router, known as the next hop, for a given destination

1.3

CHAPTER 1 Networking and Network Routing: An Introduction 7

netid. The routing table is in fact updated ahead of time. In order to update such a table, the
router would need to store all netids it has learned about so far; second, if a link downstream
is down or congested or a netid is not reachable for some reason, it needs to know so that
an alternate path can be determined as soon as possible. This means that a mechanism is re-
quired for communicating congestion or a failure of a link or nonreachability of a netid. This
mechanism is known as the routing protocol mechanism. The information learned through a
routing protocol is used for generating the routing table ahead of time.

If new information is learned about the status of links or nodes, or the reachability of a
netid through a routing protocol, a routing algorithm is then invoked at a router to determine
the best possible next hop for each destination netid in order to update the routing table. For
efficient packet processing, another table, known as the forwarding table, is derived from the
routing table that identifies the outgoing link interfaces. The forwarding table is also known
as the Forwarding Information Base (FIB). We will use the terms forwarding table and FIB
interchangeably.

It should be noted that a routing algorithm may need to take into account one or more
factors about a link, such as the delay incurred to traverse the link, or its available bandwidth,
in order to determine the best possible path among a number of possible paths. If a link along
a path does not have adequate bandwidth, congestion or delay might occur. To minimize
delay, an important function, called traffic engineering, is performed. Traffic engineering is
concerned with ways to improve the operational performance of a network and identifies
procedures or controls to be put in place ahead of time to obtain good network performance.

Finally, there is another important term associated with networking in general and net-
work routing in particular, labeled as architecture. There are two broad ways the term archi-
tecture from the architecture of a building is applicable here: (1) a floor inside a building
may be organized so that it can be partitioned efficiently for creating office spaces of different
sizes by putting in flexible partitions without having to tear down any concrete walls, (2) it
provides standardized interfaces, such as electrical sockets, so that equipment that requires
power can be easily connected using a standardized socket without requiring modification
to the building or the floor or the equipment. Similarly, there are several ways we use the
term architecting a network: for example, from the protocol point of view, various functions
are divided so that each function can be done separately, and one function can depend on
another through a well-defined relationship. From a router’s perspective, architecting a net-
work refers to how it is organized internally for a variety of functions, from routing protocol
handling to packet processing. From a network perspective, this means how the network
topology architecture should be organized, where routers are to be located and bandwidth of
links determined for efficient traffic engineering, and so on. Later, we will elaborate more on
architectures.

To summarize, we can say that the broad scope of network routing is to address routing
algorithms, routing protocols, and architectures, with architectures encompassing several dif-
ferent aspects for efficient routing. In this book, we will delve into these aspects in depth. With
the above overview, we now present IP addressing in detail.

IP Addressing

If one has to send data to any host in the Internet, there is a need to uniquely identify all the
hosts in the Internet. Thus, there is a need for a global addressing scheme in which no two

1.3.1

8 1.3 IP Addressing

hosts have the same address. Global uniqueness is the first property that should be provided
in an addressing scheme.

Classful Addressing Scheme

An IP address assigned to a host is 32 bits long and should be unique. This addressing, known
as IPv4 addressing, is written in the bit format, from left to right, where the left-most bit is
considered the most significant bit. The hierarchy in IP addressing, similar to the postal code
and the street address, is reflected through two parts, a network part and a host part referred
as the pair (netid, hostid). Thus, we can think of the Internet as the interconnection of networks
identified through netids where each netid has a collection of hosts. The network part (netid)
identifies the network to which the host is attached, and the host part (hostid) identifies a
host on that network. The network part is also referred as the IP prefix. All hosts attached to
the same network share the network part of their IP addresses but must have a unique host
part.

To support different sizes for the (netid, hostid) part, a good rule on how to partition
the total IP address space of 232 addresses was needed, i.e., how many network addresses
will be allowed and how many hosts each of them will support. Thus, the IP address space
was originally divided into three different classes, Class A, Class B, and Class C, as shown in
Figure 1.1 for networks and hosts. Each class was distinguished by the first few initial bits of
a 32-bit address.

For readability, IP addresses are expressed as four decimal numbers, with a dot between
them. This format is called the dotted decimal notation. The notation divides the 32-bit IP ad-
dress into 4 groups of 8 bits and specifies the value of each group independently as a decimal
number separated by dots. Because of 8-bit breakpoints, there can be at most 256 (= 2%) dec-
imal values in each part. Since 0 is an assignable value, no decimal values can be more than
255. Thus, an example of an IP address is 10.5.21.90 consisting of the four decimal values,
separated by a dot or period.

0 8 16 24 31
Class A 0 netid hostid

0 8 16 24 31
Class B 110 netid hostid

0 8 16 24 31
ClassC |1|1/0 netid hostid

0 8 16 24 3
Class D 1{1{1(0 multicast address

FIGURE 1.1 Classful IP addressing scheme.

1.3.2

CHAPTER 1 Networking and Network Routing: An Introduction 9

Each Class A address has the first bit set to 0 and is followed by 7 bits for the network part,
resulting in a maximum of 128 (= 27) networks; this is then followed by a 24-bit host part.
Thus, Class A supports a maximum of 224 — 2 hosts per network. This calculation subtracts
2 because 0s and 1s in the host part of a Class A address may not be assigned to individual
hosts; rather, all Os that follows a netid such as 10.0.0.0 identify the network, while all 1s that
follow a netid such as 10.255.255.255 are used as the broadcast address for this network. Each
Class B network address has the first two bits set to “10,” followed by a 14-bit network part,
which is then followed by a 16-bit host part. A maximum of 2!4 networks can be defined with
up to 2!® — 2 hosts per network. Finally, a Class C network address has the first three bits
set as “110” and followed by a 21-bit network part, with the last 8 bits to identify the host
part. Class C provides support for a maximum of 22! (= 2,097,152) networks with up to 254
(28 — 2) hosts. In each class, a set of network addresses is reserved for a variety of purposes;
see [319].

Three address classes discussed so far are used for unicasting in the Internet, that is,
for a host-to-host communication. There is another class of IP addresses, known as Class D
addressing, that is used for multicasting in the Internet; in this case, the first four bits of the
32-bit address are set to “1110” to indicate that it is a multicast address. A host can use a
multicast address as the destination address for a packet generated to indicate that the packet
is meant for any hosts on the Internet; in order for any hosts to avail this feature, they must
use another mechanism to tune into this address. Multicast address on the Internet can be
thought of as similar to a radio station frequency; a radio station transmits on a particular
frequency—any listener who wants to listen to this radio station must tune the radio dial to
this frequency.

The original rationale behind classes of different sizes was to provide the flexibility to
support different sized networks, with each network containing a different number of hosts.
Thus, the total address length can still be kept fixed at 32 bits, an advantage from the point
of view of efficient address processing at a router or a host. As the popularity of the Internet
grew, several disadvantages of the addressing scheme came to light. The major concerns were
the rate at which the IP address blocks that identify netids were being exhausted, especially
when it was necessary to start assigning Class C level netids. Recall from our earlier discus-
sion that IP netids are nongeographic; thus, all valid netids are required to be listed at the
core routers of the Internet along with the outgoing link, so that packets can be forwarded
properly. If we now imagine all Class C level netids being assigned, then there are over 2 mil-
lion entries that would need to be listed at a core router; no current routers can handle this
number of entries without severely slowing packet processing. This issue, first recognized
in the early 1990s, led to the development of the concept of classless addressing. In order to
understand this concept, we first need to understand subnetting/netmask.

Subnetting/Netmask

Consider the IP address 192.168.40.3 that is part of Class C network 192.168.40.0. A subnet
or sub-network is defined through a network mask boundary using the specified number
of significant bits as 1s. Since Class C defines networks with a 24-bit boundary, we can then
consider that the most significant 24 bits are 1s, and the lower 8 bits are Os. This translates
to the dotted decimal notation 255.255.255.0, which is also compactly written as /24" to

1.3.3

10 1.3 IP Addressing

indicate how many most significant bits are 1s. We can then do a bit-wise logical “AND”
operation between the host address and the netmask to obtain the Class C network address
as shown below:

11000000 10101000 00101000 00000011 — 192.168.40.3

AND 11111111 11111111 11111111 00000000 — netmask (/24)
11000000 10101000 00101000 00000000 — 192.168.40.0

As you can see, both the host address and the netmask have 1s in the first two positions from
the left; thus, the “AND” operation results in 1s for these two positions. For the third position
from left, the host has 0 while the netmask has 1; thus, the result of the “AND” operation
is zero; and so on. Note that for network addresses such as Class C address, the netmask
is implicit and it is on a /24 subnet boundary. Now consider that we want to change the
netmask explicitly to /21 to identify a network larger than a 24-bit subnet boundary. If we
now do the bit-wise operation

11000000 10101000 00101000 00000011 — 192.168.40.3
AND 11111111 11111111 11111000 00000000 — netmask (/21)
11000000 10101000 00101000 00000000 — 192.168.40.0

we note that the network address is again 192.168.40.0. However, in the latter case, the net-
work boundary is 21 bits. Thus, to be able to clearly distinguish between the first and the
second one, it is necessary to explicitly mention the netmask. This is commonly written for
the second example as 192.168.40.0/21, where the first part is the netid and the second part is
the mask boundary indicator. In this notation, we could write the original Class C address as
192.168.40.0/24 and thus, there is no ambiguity with 192.168.40.0/21.

Classless Interdomain Routing

Classless Interdomain Routing (CIDR) uses an explicit netmask with an IPv4 address block
to identify a network, such as 192.168.40.0/21. An advantage of explicit masking is that an
address block can be assigned at any bit boundaries, be it /15 or /20; most important, the as-
signment of Class C level addresses for networks that can show up in the global routing table
can be avoided or minimized. For example, a contiguous address block can be assigned at
the /21 boundary which can be thought of as an aggregation of subnets at the /24 boundary.
Because of this, the term supernetting or variable-length subnet masking (VLSM) is also used in
reference to the explicit announcement of the netmask.

Through such a process, and because of address block assignment at boundaries such as
/21, the routing table growth at core routers can be delayed. In the above example, only the
netid 192.168.40.0/21 needs to be listed in the routing table entry, instead of listing eight en-
tries from 192.168.40.0/24 to 192.168.47.0/24. Thus, you can see how the routing table growth
can be curtailed. CIDR was introduced around the mid-1990s; the current global routing ta-
ble size, as of this writing, is about 196,000 entries. The routing table growth over time, along
with projection, is shown later in Figure 9.10. In order for CIDR to take effect, any network
address reachability announcement that is communicated with a routing protocol such as the
Border Gateway Protocol must also carry the mask information explicitly. Its usage and applica-
bility will be discussed in more detail in Chapter 8 and Chapter 9. In Table 1.1, we show a set
of IP addresses reserved for a variety of purposes; see [319] for the complete list.

1.4

CHAPTER 1 Networking and Network Routing: An Introduction 11

TABLE 1.1 Examples of reserved IP address blocks.

Address Block Current Usage

0.0.0.0/8 Identifies source hosts in the current network
10.0.0.0/8 Private-use IP networks
127.0.0.0/8 Host loopback address
169.254.0.0/16 Link local for communication between links on a single link
172.16.0.0/12 Private-use IP networks
192.168.0.0/16 Private-use IP networks
240.0.0.0/4 Reserved for future use

On Architectures

Architectures cover many different aspects of networking environments. Network routing
must account for each of the following architectural components. Some aspects of the archi-
tectures listed below are critical to routing issues:

e Service Architecture: A service model gives the basic framework for the type of services a
network offers.

e Protocol Stack Architecture: A protocol stack architecture defines how service delivery may
require different functions to be divided along well-defined boundaries so that respon-
sibilities can be decoupled. It does not describe how actual resources might be used or
needed.

e Router Architecture: A router is a specialized computer that is equipped with hard-
ware/software for packet processing. It is also equipped for processing of routing pro-
tocols and can handle configuration requirements. A router is architected differently de-
pending on its role in a network, such as a core router or an edge router, although all
routers have a common set of requirements.

e Network Topology Architecture: For efficient operation as well as to provide acceptable ser-
vice to its users, a network is required to be organized based on a network topology ar-
chitecture that is scalable and allows growth. In order to address efficient services, there is
also a direct connection among the topology architecture, traffic engineering, and routing.

e Network Management Architecture: A network needs to provide several additional functions
in addition to carrying the user traffic from point A to point B; for clarity, the user data
traffic forwarding is considered as the data plane. For example, from an operational point
of view, a management plane handles the configuration responsibility of a network, and a
control plane addresses routing information exchanges.

In the following sections, we elaborate on the above architectural facets of networking.
To simplify matters, most of the following discussions will center around IP networks. Keep
in mind that these architectures are applicable to most communication networking environ-
ments as well.

1.5

12 1.5 Service Architecture

Service Architecture

An important aspect of a networking architecture is its service architecture. The service archi-
tecture depends partly also on the communication paradigm of its information units. Every
networking environment has a service architecture, much like the postal delivery system. In
the following, we focus on discussing three service models associated with IP networks.

BEST-EFFORT SERVICE ARCHITECTURE

Consider an IP network. The basic information unit of an IP network is a packet or a datagram
which is forwarded from one router to another towards the destination. To do that, the IP net-
work uses a switching concept, referred to as packet switching. This means that a router makes
decisions by identifying an outgoing link on a packet-by-packet basis instantaneously after
the packet arrives. At the conceptual level, it is assumed that no two packets are related, even
though they might arrive one after another and possibly for the same web-page downloaded.
Also, recall that at the IP level, the packet forwarding function is provided without worrying
about reliable delivery; in a sense, IP makes its best effort to deliver packets. Because of this,
the IP service paradigm is referred to as the best-effort service.

INTEGRATED SERVICES ARCHITECTURE

Initially, the best-effort service model was developed for the reliable delivery of data services,
since it was envisioned that services would be data-oriented services that can tolerate delay,
but not loss of packets. This model worked because the data rate provided during a session
can be adaptive.

The concept for integrated services (“int-serv”) architecture was developed in the early
1990s to allow functionalities for services that are real-time, interactive, and that can toler-
ate some loss, but require a bound on the delay. Furthermore, each session or connection
requires a well-defined bandwidth guarantee and a dedicated path. For example, interac-
tive voice and multimedia applications fall into this category. Note that the basic best-effort
IP framework works on the notion of statelessness; that is, two consecutive packets that be-
long to the same connection are to be treated independently by a router. Yet, for services in
the integrated services architecture that require a connection or a session for a certain du-
ration of time, it became necessary to provide a mechanism to indicate the longevity of the
session, and the ability for routers to know that resources are to be reserved for the entire
duration.

Since the basic IP architecture works on the notion of statelessness, and it was infeasible
to completely change the basic IP service architecture, a soft-state concept was introduced to
handle integrated-services. To do that, a session setup and maintenance protocol was also de-
veloped that can be used by each service—this protocol is known as the resource ReSerVation
Protocol (RSVP). The basic idea was that once a session is established, RSVP messages are pe-
riodically generated to indicate that the session is alive. The idea of integrated services was a
novel concept that relies on the soft-state approach. A basic problem is the scalability of han-
dling the number of RSVP messages generated for all sessions that might be simultaneously
active at a router or a link.

1.6

1.6.1

CHAPTER 1 Networking and Network Routing: An Introduction 13

DIFFERENTIATED SERVICES ARCHITECTURE

The differentiated services (“diff-serv”) architecture was developed to provide prioritized
service mechanisms without requiring connection-level information to be maintained at
routers. Specifically, this approach gives priority to services by marking IP packets with diff-
serv code points located in the IP header. Routers along the way then check the diff-serv code
point and prioritize packet processing and forwarding for different classes of services. Sec-
ond, this model does not require the soft-state concept and thus avoids the connection-level
scalability issue faced with RSVP. Diff-serv code points are identified through a 6-bit field in
the IPv4 packet header; in the IPv6 packet header, the traffic class field is used for the same
purpose.

SUPPLEMENTING A SERVICE ARCHITECTURE

Earlier in this section, we introduced the best-effort service model. In a realistic sense, and
to provide acceptable quality of service performance, the basic concept can be supplemented
with additional mechanisms to provide an acceptable service architecture, while functionally
it may still remain as the best-effort service architecture. For example, although the basic
conceptual framework does not require it, a router can be designed to do efficient packet
processing for packets that belong to the same web-page requested by a user since they are
going to the same destination. That is, a sequence of packets that belongs to the same pair
of origination and destination IP addresses, to the same pair of source and destination port
numbers, and to the same transport protocol (either TCP or UDP) can be thought of as a single
entity and is identified as a microflow. Thus, packets belonging to a particular microflow can
be treated in the same manner by a router once a decision on forwarding is determined based
on the first packet for this microflow.

Another way to fine-tune the best-effort service architecture is through traffic engineer-
ing. That is, a network must have enough bandwidth so that delay or backlog can be minimal,
routers must have adequate buffer space, and so on, so that traffic moves efficiently through
the network. In fact, both packet processing at a router and traffic engineering work in tan-
dem for providing efficient services.

Similarly, for both integrated-services and differentiated-service architecture, packet han-
dling can be optimized at a router. Furthermore, traffic engineering can be geared for inte-
grated services or differentiated services architectures.

Protocol Stack Architecture

Another important facet of a networking environment is the protocol stack architecture. We
start with the OSI (Open Systems Interconnections) reference model and then discuss the IP
protocol stack architecture and its relation to the OSI reference model.

OSI Reference Model

The OSI reference model was developed in the 1980s to present a general reference model for
how a computer network architecture should be functionally divided. As part of OSI, many
protocols have also been developed. Here, we will present the basic reference model.

1.6.2

14 1.6 Protocol Stack Architecture

OSI reference model IP reference model
Layer 7 Application Layer i >
Layer 6 Presentation Layer Application
Layer 5 Session Layer
Layer 4 Transport Layer TCP | UDP
Layer 3 Network Layer 2L > P
Layer 2 Data Link Layer Network Interface
Layer 1 Physical Layer

FIGURE 1.2 The OSI reference model and the IP reference model.

The OSI reference model uses a layered hierarchy to separate functions, where the layer-
ing is strictly enforced. That is to say that an N-layer uses services provided by layer N — 1;
it cannot receive services directly from layer N — 2. In the OSI model, a seven-layer archi-
tecture is defined; this is shown in Figure 1.2. The seven layers are also referenced by layer
numbering counting from bottom up. From a functional point of view, layer 1 provides phys-
ical layer functions. Layer 2 provides the data link function between two directly connected
entities. Layer 3 is the network layer, where addressing and routing occurs. Layer 4 is the
transport layer that can provide either reliable or unreliable transport services, with or with-
out defining a connection (“connection-oriented” or “connection-less”). Layer 5 is the session
layer, addressing communication that may transcend multiple connections. Layer 6 is the
presentation layer that addresses structured information and data representation. Layer 7 is
where the application layer protocols are defined.

While not every computer networking environment strictly adheres to the OSI reference
model, it does provide an easy and simple way to check and compare what a particular net-
working environment might have to consider. Thus, this reference model is often quoted; in
fact, you will hear use of terms such as “layer 2” device or “layer 3” device in the technical
community quite often, assuming you know what they mean.

IP Protocol Stack Architecture

The IP architectural model can be classified into the following layers: the network interface,
the IP layer, the transport layer, and the application layer (see Figure 1.2). We can easily see
that it does not exactly map into the seven-layer OSI reference model. Actual applications are
considered on the top of the application layer, although the IP model does not strictly follow
layering boundaries as in the OSI reference model. For example, it allows an application to
be built without using a transport layer; ping is such an example. We have discussed earlier
that IP includes both the destination and the source address—this is accomplished through a
header part in the IP packet that also contains additional information. The IP model does not
explicitly declare how the layer below the IP layer needs to be; this part is simply referred to
as the network interface that can support IP and will be discussed later in the chapter.

CHAPTER 1 Networking and Network Routing: An Introduction 15

NETWORK AND TRANSPORT LAYER

The IP addressing is defined at the IP layer, where the delivery mode is assumed to be un-
reliable. The transport layer that is above the IP layer provides transport services, which can
be either reliable or unreliable. More important, the transport layer provides another form
of addressing, commonly known as the port number. Port numbers are 16 bits long. Thus,
the unreliable transport layer protocol, known as the User Datagram Protocol (UDP), can be
thought of as allowing the extension of the address space by tagging a 16-bit port number to
the 32-bit IP address. However, the role of the port number is solely at the host while routing
is still done using the IP address. This is similar to the decoupling of the postal code and
the house address in the postal addressing system. The reliable transport counterpart of UDP
is known as the Transmission Control Protocol (TCP) which also uses a 16-bit port number,
but provides reliable transport layer service by using a retransmission and acknowledgment
mechanism. To be able to include the port number and other information, both TCP and UDP
have well-defined headers. Because of two-way communication, similar to an IP packet in-
cluding both the source and the destination address, TCP and UDP also include port numbers
both for the source and the destination side. Since both TCP and UDP are above IP, a field in
the IP header, known as the protocol type field, is used to be able to distinguish them. That is,
through five pieces of information consisting of the source and the destination IP addresses,
the source and the destination port numbers, and the transport protocol type, a connection in
the Internet can be uniquely defined. This is also known as a microflow.

There are two IP packet formats: IPv4 and IPv6 (see Figure 1.3). IPv4 uses the 32-bit
IP address and is the most widely deployed addressing scheme. IPv6 uses a longer 128-bit
address that was developed in the mid-1990s; initially, it was designed anticipating that IPv4
addresses would be running out soon. This did not happen as initially thought, partly because
of the proliferation of private IP address usage (see Table 1.1) that has been made possible by
mechanisms known as network address translation (NAT) devices, which can map and track
multiple private IP addresses to a single IP address. Packet formats for TCP and UDP are
shown in Figure 1.4. So far, we have already discussed several well-known fields in these
packets, such as IP source and destination addresses, source and destination port numbers,
the protocol type field, and the diff-serv code point; other key fields shown in packets formats
will be discussed later in Appendix B.14.

APPLICATION LAYER AND APPLICATIONS

Information structure at the transport layer is still at the byte level; there is no structured, se-
mantic information considered at this level. However, structural information is needed for a
particular application. For example, an email requires fields such as “From,” “To” before the
body of a message is added; this then helps the receiving end know how to process the struc-
tured information. In order to provide the structured information for different applications,
the IP architectural model allows the ability to define application layer protocols on the top of
the transport layer protocols. Application layer protocols use unique listening port numbers
from the transport layer level to distinguish one application from another. In other words, the
IP architectural model cleverly uses the transport layer port number to streamline different
application layer protocols, instead of defining yet another set of addresses at the application
layer protocol level. Examples of application layer protocols are Simple Mail Transfer Pro-
tocol (SMTP), and HyperText Transport Protocol (HTTP), which are used by email and web

16 1.6 Protocol Stack Architecture

01234567 012345670123 45¢670123452¢67

Version | Hdr Len |DiffServ (DSCP)| Not Total Length
(4 bits) | (4 bits) (6 bits) Used (2 bytes)
Identification Flags Fragment Offset
(2 bytes) (3 bits) (13 bits) 20 bytes
Time to Live (TTL) Protocol Type Header Checksum
(1 byte) (1byte) (2 bytes)
Source Address
(4 bytes)
Destination Address
(4 bytes)
Options Padding

(a) IPv4 packet
01234567 0123456701234567012345¢67
Version Traffic Class Flow Label A
(4 bits) (1 byte) (20 bits)
Payload Length Next Header Hop Limit
(2 bytes) (1 byte) (1 byte)
Source Address 40 bytes
(16 bytes)
Destination Address

(16 bytes)

Data

(b) IPv6 packet

FIGURE 1.3 Packet formats: IPv4 and IPv6.

applications, respectively. However, the terminology is a bit confusing with some of the older
application layer protocols, since both the application layer protocol and its associated appli-
cation are described by the same name; for example, File Transfer Protocol (FIP), and telnet.
It may be noted that this set of application layer protocols (SMTP, HTTP, FTP, telnet) requires
reliable data delivery and, thus, uses TCP as the transport layer protocol.

There are other applications that do not require reliable data delivery. Voice over IP proto-
col, commonly referred to as VoIP, is one such application that can tolerate some packet loss
and thus, retransmission of lost packets is not necessary. Such an application can then use

CHAPTER 1 Networking and Network Routing: An Introduction 17

01234567 0122345670123 4567012345¢%67

Source Port Destination Port
(2 bytes) (2 bytes)
Sequence Number
(4 bytes) 20
Acknowledgment Number bytes
(4 bytes)
HdrLen | Rsvd | ECN Control Bits Advertised Window
(4 bits) | (3 bits) | (3 bits) (6 bits) (2 bytes)
Checksum Urgent Pointer
(2 bytes) (2 bytes)
Options Padding
(Variable)

(a) TCP packet
01234567 01234567 012345670123 45TQ67
Source Port Destination Port I
(2 bytes) (2 bytes)
Length Checksum 8 bytes
(2 bytes) (2 bytes) v

(b) UDP packet

FIGURE 14 Packet formats: TCP and UDP.

UDP. Since UDP does not provide any structural boundaries, and because many real-time
communications, such as voice and video, require similar structural formats with the ability
to distinguish different encoding mechanisms, Real-time Transport Protocol (RTP) has been
defined above UDP. For example, a voice stream, with its coding based on G.711 PCM coding
standards, can use RTP, while a motion JPEG video can also use RTP; they are distinguished
through a payload-type field in RTP.

ROLE OF HEADERS

By now, it might have become apparent that each layer needs to add a header to provide
its functionality; and it then encapsulates the content received from the layer above. For ex-
ample, RTP adds a header so that the payload time, among other things, can be indicated.
How is then a message or a web page generated at an application level related to the lay-
ered data units, along with a header? To see this, consider transferring a web page. First, the

18 1.6 Protocol Stack Architecture

HTTP protocol adds its header to the entire content of the page. Suppose that the combina-
tion of this header and the content of the page comes to 50 kbytes. This content is then broken
into smaller units. If such a unit is to be of 1000 bytes each, for example, due to a limitation
imposed by the maximum transmission unit of a link, then we have to create 50 units of in-
formation. First, TCP will include its header which is 20 bytes in the default case, to make
each unit, commonly referred to as a segment, to be 1020 bytes. Then, IP will include its own
header, which is 20 bytes in the default mode. Thus, altogether each unit becomes a packet of
size 1040 bytes at the IP level.

WHERE DO ROUTING PROTOCOLS FIT IN?

We next discuss the exchange of information required for routing protocols. It is important
to note that such exchanges of information for routing protocols also use the same protocol
architectural framework. The information content of a routing protocol exchange has specific
semantic meaning so that two routers can exchange and understand this information using
these semantics. Interestingly, a router in the Internet is a also a host and is assigned an IP
address. Thus, any communication between two adjacent routers is similar to any commu-
nication between any two hosts. Since IP is the core network layer, this means that IP is also
used for this information exchange, much like using IP for communications related to the
web or email. This is where the protocol-type field in the IP header, and the port numbering
at the transport layer, can be used for distinguishing information exchanges related to differ-
ent routing protocols. Three well-known routing protocols that we will be discussing later in
the book are: Routing Information Protocol (RIP), Open Shortest Path First protocol (OSPF),
and Border Gateway Protocol (BGP). Each of these protocols uses a different approach and
exchanges different types of information. RIP is a protocol defined on top of UDP through a
well-known listening port number and the unreliable delivery provided by UDP is used. Al-
though not a transport layer protocol, OSPF is defined directly on top of IP by being assigned
a protocol-type field at the IP level. It has its own retransmission and acknowledgment mech-
anism since it requires reliable delivery mechanisms. BGP is defined on top of TCP through
a well-known listening port number, and BGP relies on TCP’s reliable service to transfer its
structured contents. An application, usually a command-line interface, is available with each
router so that specific commands can be issued for each of these routing protocols, which are
then translated into respective routing protocol exchange messages for communication with
its adjacent routers.

AUXILIARY APPLICATIONS

Besides applications for actual user data traffic and applications for providing routing in-
formation exchanges, the IP architecture also supports auxiliary applications needed for
a variety of functions. A well-known application is the name-to-address translation func-
tion provided through the Domain Name System (DNS), such that a domain name like
www.NetworkRouting.net can be mapped into a valid IP address. This function can be ei-
ther invoked indirectly when a user accesses a website or can be invoked directly by using
the command, nslookup. DNS is an application layer protocol that typically uses UDP for the
transport layer function, but it can use TCP if needed. This example also shows that it is pos-
sible to define end applications that may depend on more than one transport layer protocol.

1.7

CHAPTER 1 Networking and Network Routing: An Introduction

Multimedia R
Applications Web E-Mail ping (VoIP, Video) nslockup Command

Line Interface
Application Layer | HTTP @
Protocols

P

| BGP

oS
Transport Layer

Protocols TCP
o _-/_'_ICM'P OSPF
Netwaork Layer P
Protocol
Network Network
Interface

FIGURE 1.5 Protocol layering in IP architecture.

19

Another well-known utility application is ping, which is written on top of Internet Control

Message Protocol (ICMP), that is directly over IP.

In Figure 1.5, we summarize the protocol dependency of different applications in terms

of the application, transport, and network layer in the IP architecture.

Router Architecture

A router provides several important functions in order to ensure proper packet forwarding,
and to do so in an efficient manner. A router is a specialized computer that handles three

primary functions:

Packet Forwarding: On receiving an incoming packet, a router checks whether the packet
is error free. After inspecting the header of a packet for destination address, it performs a
table lookup function to determine how to find the appropriate outgoing link.

Routing Protocol Message Processing: A router also needs to handle routing protocol pack-
ets and determine if any changes are needed in the routing table by invoking a routing
algorithm, when and if needed.

Specialized Services: In addition, a router is required to handle specialized services that can
aid in monitoring and managing a network.

A high-level functional view of a router is shown in Figure 1.6; it also shows how the

routing table and the forwarding table fit in the overall process. In Part IV of this book, we
will examine in detail router architectures, address lookup, packet processing, and so on.

1.8

20 1.8 Network Topology Architecture

Router

I

I

I

I

|

| Route Exchanges
I With Neighbor
: Nodes
I
|
I
I
I
I

Qutgoin
Packets

Incoming
Packets

FIGURE 1.6 Router architecture: a functional view.

Network Topology Architecture

The network topology architecture encompasses how a network is to be architected in an
operational environment while accounting for future growth. What does topology mean? It
refers to the form a network will adopt, such as a star, ring, manhattan-street network, or
a fully mesh topology, or a combination of them. The topological architecture then covers
architecting a network topology that factors in economic issues, different technological capa-
bilities, and limitations of devices to carry a certain volume of expected traffic and types of
traffic, for an operational environment. Certainly, a network topology architecture also needs
to take into account routing capability, including any limitation or flexibility provided by a
routing protocol. It is up to a network provider, also referred to as a network operator or a
service provider, to determine the best topological architecture for the network.

It is important to note that the operational experience of an existing network can con-
tribute to the identification of additional features required from a routing protocol, or the
development of a new routing protocol, or the development of a new routing algorithm
or modification of an existing algorithm. We briefly discuss two examples: (1) when it was
recognized in the late 1980s that the Internet needed to move from being under one network
administrative domain to more flexible loosely connected networks managed by different
administrative domains, BGP was developed, (2) when it was felt in the late 1970s that the
telephone network needed to move away from a hierarchical architecture that provided lim-
ited routing capability to a more efficient network, dynamic call routing was developed and
deployed. This also required changes in the topological architecture.

It may be noted that the term network architecture is also fairly commonly used in place
of network topology architecture. One difficulty with the term network architecture is that it is
also used to refer to a protocol architecture. It is not hard to guess that network providers are
the ones who usually use the term network architecture to refer to a topological architecture.

1.9

1.10

CHAPTER 1 Networking and Network Routing: An Introduction 21

Network Management Architecture

From the discussion in the previous sections, we can see that the routing information ex-
change uses the same framework as the user data traffic in the Internet. For an operational
network, it is important to have a network management architecture where various functions
can be divided into “planes.” Specifically, we consider three different planes: the management
plane, the control plane, and the data plane.

The management plane addresses router configuration and collection of various statistics,
such as packet throughput, on a link. Router configuration refers to configuration of a router
in a network by assigning an IP address, identifying links to its adjacent routers, invoking one
or more routing protocols for operational usage, and so on. Statistics collection may be done,
for example, through a protocol known as Simple Network Management Protocol (SNMP).
The management plane of a router is closely associated with network operations.

The control plane exchanges control information between routers for management of a
variety of functions, such as setting up a virtual link. The control plane is also involved in
identifying the path to be taken between the endpoints of this virtual link, which relies on the
routing information exchange.

Another clarification is important to point out. Since these functions are different, the
routing-related functions are in the control plane, and the data transfers, such as the web or
email, are in the data plane. These two planes, as well as the management plane, use IP for
communication, so at the IP layer, there is no distinction between these functional planes. As
we go through additional networking environments in this book, you will find that there are
environments in which the control plane and the management plane are completely parti-
tioned from the data plane.

It may be noted that for efficient traffic engineering of a network, certain information
is also required from different routers. Such information exchanges can be conducted either
through the control plane or through the management plane. In certain networking envi-
ronments, some functions can overlap across different planes. Thus, the three planes can be
thought of as interdependent. A schematic view is presented in Figure 1.7.

Public Switched Telephone Network

So far, our discussions have been primarily related to the Internet. In this section, we present
a brief overview of Public Switched Telephone Network (PSTN), another important commu-
nication network.

An information unit in the PSTN is a call. Many of the architectural aspects discussed
so far apply to the PSTN as well. The PSTN has a global addressing scheme to uniquely
identify an end device; an end device is commonly referred to as a telephone, while a more
generic term is customer premise equipment (CPE). The global addressing scheme is known
as E.164 addressing. It is a hierarchical addressing scheme that identifies the country code at
the top level followed by the city or area code, and finally the number assigned to a subscriber.
Nodes in the PSTN are called switches, which are connected by intermachine trunks (IMTs),
also known as trunkgroups.

From a protocol architecture point of view, and using the OSI reference model, PSTN can
be simply summed up as consisting of application layer, network layer, and physical layer.
The application layer enables the telephone service, the network layer handles addressing

1.11

22 1.11 Communication Technologies

e

A A
nh
I{oum Router
\11n1gemen: Mmgemenl
’\danap;c'ml:nl Plane v '\v{anagmn:nl Plam: Y
./- Rouler Ruuter
\‘_;\ia_nagpmpnt Managpmom
A A * LY
SNMP, v SNMPE SINME, . ' SNMI’ SNMP, : ; SNMP, S.\IMI’.E . SNME,
Configs + + Configs Configs! &Cﬁllﬁgﬁ Configs ¢+ &+ Configs Configs! o Configs
' & ' "

'
.
H
.
Control Plane Control Flane ¥

Data Plane *

FIGURE 1.7 Network management architecture: data plane, control plane, and
management plane.

and routing, while the physical transmission system carries the actual signal for voice com-
munication. From a service architecture perspective, it provides the service model of blocked-
calls-cleared mode using circuit switching. Circuit switching means that for a call requesting
to be connected, a dedicated path is to be established instantaneously on demand from the
source to the destination. The dedicated path is in fact a dedicated circuit with a specific band-
width allocated—this value is 4 kilohertz (kHz) in an analog circuit and 64 kbps in a wireline
digital circuit. The bandwidth of the circuit cannot be used by any other calls as long as this
call is actively using it. Blocked-calls-cleared mode means that if the sequence of trunkgroups
on all possible paths attempted from the source to destination does not have a circuit avail-
able for this call, then the call request is blocked and cleared from the system (not queued).
Typically, a blocked call is indicated through a fast busy tone. Certainly, a user may retry.
More detail about routing in PSTN and its evolution will be covered later in Part III of
this book. Routing in the IP-PSTN interworking environment will be presented in Chapter 20.

Communication Technologies

Communication technologies are used for carrying network layer services, whether for the In-
ternet or PSTN. In this sense, communication technologies provide transport services for both
the Internet and PSTN. Note that the use of the term transport services is not to be confused
with the term transport layer of the OSI reference model. Unfortunately, the term transport
is used in several ways in networking; these are two such examples. To provide transport

CHAPTER 1 Networking and Network Routing: An Introduction 23

TABLE 1.2 Modular data rates.

Signal/data rate name Bit rate (Mbps)
DS0 (voice circuit) 0.064
T1 (DS-1) 1.54
El 2.04
Ethernet 10.00
T3 (DS-3) 45.00
E3 34.36
STS-1 51.84
Fast Ethernet 100.00
OC-3/5TS-3/STM-1 155.52
OC-12/STS-12/STM-4 622.08
Gigabit Ethernet 1,000.00
OC-48/STS-48/STM-16 2,488.32
OTU1 (Optical Transport Unit-1) 2,666.06
0OC-192/STS-192/STM-64 9,953.28
OTU2 (Optical Transport Unit-2) 10,709.22
OC-768/STS-768/STM-256 39,813.12
OTU3 (Optical Transport Unit-3) 43,018.41

services, transport networks are deployed that may be based on one or more communication
technologies. At the real physical (duct) level though, fibers or coaxial cables are used for
wired transport services. Such cables are either buried underground or carried overground
on poles; submarine cabling is used for connecting different continents. Nowadays, subma-
rine cables are almost exclusively based on fiber cables; for a recent map of global submarine
cabling, see [693].

On top of cabling, a set of digital communication technologies can be provided; for exam-
ple, SONET, T1/E1, T3/E3, and so on with well-defined data rates. A summary of different
technologies and data rates is listed in Table 1.2, with all data rates listed using Mbps. A net-
work is formed at any technological level, for example, SONET can use different rates such
as OC-3 or OC-12. Similarly, a network can be formed at the T1 level or the T3 level. In partic-
ular, data rate multiplexing is also possible to go from one rate to another, such as from T1 to
T3. The telecommunication infrastructure uses a mix of technologies, and transport services
are provided either through networks at different levels, such as a network of T1s, a network
of T3s, a network of SONET rings, or a combination of them. Each such transport network
also needs to handle routing. For example, if a customer wants a T1 dedicated permanent
circuit from Los Angeles to New York, the routing path needs to be mapped out. Certainly,
the customer who wants the T1 transport service does not care how the T1 is routed in the
transport network. However, for the T1 provider, it is an important problem since for all its
T1 customers it needs to find efficient routing between different places.

In reference to the OSI terminology, the communication technologies reside mostly at
layer 1 and sometimes in layer 2. Thus, instead of thinking about routing “purely” at the
network layer (layer 3), routing problems also arise below layer 3 for transport network

1.12

1.12.1

24 1.12 Standards Committees

providers. In recent years, virtual private networking has become immensely popular. It
requires another form of routing that is above layer 2, but below layer 3, often dubbed as
layer 2.5. For example, MultiProtocol Label Switching (MPLS) and Asynchronous Transfer
Mode (ATM) fall into this category.

Essentially, to provide transport services using communication technologies, a variety of
transport network routing problems arises that need to take into account the capability of
a particular communication technology and the “routing” device. Second, multilayered net-
working and multilayered routing can also be envisioned going from layer 3 down to layer 1
due to transport network routing. Third, new technologies for transport networking are be-
ing continually developed with new capabilities, creating new opportunities in transport net-
work routing. Finally, traditionally, different transport networks had very little capability to
communicate with each other and thus relied on manual configurations. We are now starting
to see development of new capabilities that allow dynamic configuration and the ability to ex-
change information between networks at different layers so that dynamically reconfigurable
multilayer routing will be possible in the coming years. However, such multilayer routing
brings new challenges. In Part V and Part VI of this book, we will cover transport network
routing and multilayered routing, and the evolution of next-generation routing.

Standards Committees

It is important to note that for all technologies developed, standards play important roles. In
fact, standards have been defined from a specific technology, such as T1, to packet formats,
such as an IP packet. Standardization allows different vendors to develop products that can
talk to each other so that customers can choose products from multiple vendors; this helps
bring the price down. Furthermore, vendors look for innovative ways to implement specific
standards to reduce their costs and be competitive with other vendors, who are offering sim-
ilar products.

There are two types of standards: de jure and de facto. De jure standards are arrived at
through consensus by national or international standards bodies; for example, ITU-T and
IETE De facto standards are usually the result of an effort by one or more vendors to stan-
dardize a technology by forming a consortium. Sometimes, an early effort for de facto stan-
dards eventually transitions to de jure standards. There are many standards bodies that ad-
dress issues related to networking and networking technologies. We briefly discuss some of
them below.

International Telecommunication Union

ITU (http:/ /www.itu.int/) plays the role of standardizing international telecommunications;
it is a United Nations specialized agency. One of the key sections of ITU is known as ITU
Telecommunication Standardization Sector (ITU-T). ITU-T brings both the public and private
sectors together in an international forum. ITU-T is in charge of standardization of the in-
ternational telephone numbering system, such as E.164 addressing. It also defines signaling
protocol standards, and so on. Standards generated by ITU-T are called Recommendations.

You will see in the bibliography at the end of the book a number of ITU-T recommenda-
tions that we have referenced.

1.12.2

1.12.3

1.13

1.13.1

CHAPTER 1 Networking and Network Routing: An Introduction 25

Internet Engineering Task Force

IETF (http:/ /www.ietf.org/), as its web site says, “is a large, open international community
of network designers, operators, vendors, and researchers concerned with the evolution of
the Internet architecture and the smooth operation of the Internet. It is open to any interested
individual.” The IETF is structured around working groups, which then are grouped into
areas. Areas have Area Directors (ADs). The ADs are members of the Internet Engineering
Steering Group (IESG).

Standards generated by IETF are published as Requests for Comments (RFCs). This name
stuck since its original use. The intent was to request for comments from the networking com-
munity; over time, it has become the avenue for IETF to publish standards. It may be noted
that IETF also publishes informational documents as RFCs. Thus, each RFC is marked with
a category such as standards track or informational. RFCs are available online from many
web sites, for example, http:/ /www.rfc-editor.org/. In the bibliography, we have referenced
many routing-related RFCs.

In relation to IETE, there are several associated bodies. For example, the Internet Ad-
visory Board (IAB) is chartered as a committee of IETF; it is also an advisory body of the
Internet Society (ISOC). IAB handles architectural oversight of IETF activities, Internet Stan-
dards Process oversight and appeal. The IAB is also responsible for the management of the
IETF protocol parameter registries.

Another important organization, the Internet Corporation for Assigned Names and
Numbers (ICANN) (http://www.icann.org/), is an internationally organized, nonprofit cor-
poration that now has responsibility for IP address space allocation, protocol identifier as-
signment, generic and country code top-level domain name system management, and root
server system management functions. These services were originally performed by the In-
ternet Assigned Numbers Authority (IANA) (http://www.iana.org/) and other entities.
ICANN now performs the IANA function. Any new protocol parameter values identified
by the IETF in a standard must be coordinated with the IANA to avoid any ambiguity.

MFA Forum

The MPLS and Frame Relay Alliance (MFA) Forum (http:/ /www.mfaforum.org/) is an inter-
national, industry-wide forum consisting primarily of telecommunications and networking
companies. It is focused on the creation of specifications on how to build and deliver MPLS,
Frame Relay and ATM networks, and services. MFA also handles interoperability testing of
different vendors’ products.

Last Two Bits

In this section, we present two topics. The first, TLV, is a concept used in many protocols. The
second topic is the protocol analyzer.

Type-Length-Value

An important concept used in protocol messages is Type-Length-Value (TLV). This concept
is used in headers as well as the body of a packet, and by different layers of a networking

1.13.2

1.14

26 1.14 Summary

architecture. For simplicity, consider that the IP header includes 32-bit IP addresses, one for
the source and the other for the destination. First, for each receiving end to interpret properly,
the source and the destination address must be listed in the same order in the header. Second,
such information has a well-defined structure: it is of a certain type (IP address, in this case),
itis of certain length (32 bits in this case), and it contains a value (the actual IP address). When
such information is well-structured within a packet header and because of the well-known
nature of such information, it is not often necessary to explicitly indicate the type and the
length; just the allocation of the 32-bit space for an IP address in the header suffices. That is,
for well-structured information that has a well-defined position in a packet header, the type
and the length can be implicit.

In many instances, the length may vary, or the type is preferred to be left open for future
extensions of a protocol. To do that, the type and the length need to be explicitly declared
along with the value—this notion is what is known as TLV. As you go through this book, you
will see many examples of how the TLV notion is used. Briefly, when the type and the length
are to be explicit, then the length for each of these must be clearly defined, so that the value
can be allowed to be of variable length. For example, a byte may be assigned to indicate the
type (so that up to 256 different types can be defined), followed by two bytes for the length
(to indicate through its 16 bits the length of value, that is counted in bytes), such that the
value field can be up to 65,536 (=2!°) bytes. Because of the well-defined structure of TLV,
the information content can be processed and another TLV can follow. Furthermore, a nested
notion of TLV is also possible where the “V” part may include one or more TLV encoded sets
of data.

Network Protocol Analyzer

Packet formats for networking protocols are described in standards documents by respective
standards bodies. Many details about what a protocol can do lie in the header of a packet.
Yet, just by looking at a packet format and reading a standards document, it is still difficult
to grasp. Network protocol analyzers are used to capture packets from live networks. By
studying headers captured through such analyzers, it is often easier to understand a packet
header, and more important, a protocol.

In this book, we have presented sample headers (or relevant parts of headers) associated
with a few protocols to illustrate them. Sample header captures for many routing protocols
are available from the website of public-domain network protocol analyzers such as WIRE-
SHARK [743]. Additionally, packet headers of both request-and-response messages of a pro-
tocol can be studied from such captures—this is sometimes very helpful in understanding
a protocol. Sample captures using WIRESHARK for many protocols are found at [744]. We
strongly recommend studying sample captures from this site or similar sites for helping you
to understand protocols better.

Summary

In this introductory chapter, we have presented a brief overview of networking, and the scope
and goal of network routing. We have also presented architectural aspects of communication
networks that are useful in network routing.

CHAPTER 1 Networking and Network Routing: An Introduction 27

All of these components have a history and a set of issues to address. The state of network
routing today is the result of theoretical progress, technological advances, and operational
experience. It is also impacted by economic and policy issues. From which angle should these
interconnected facets of network routing be viewed? In an email to the authors, Ibrahim Matta
wrote:

“To me, it would be invaluable to highlight concepts and techniques in routing that sur-
vived the various instances in different networks; for example, the concepts of scalability-
performance tradeoff (scalability techniques include area hierarchy, virtual paths, periodic
updates . ..), routing information propagation vs. forwarding, etc.”

The rest of the book will explore each aspect of network routing, with a nod toward the
historical part, due respect for the scalability-performance tradeoff, and lessons learned from
operational experience.

Further Lookup

Early works in the development of ARPANET have been instrumental in understanding to-
day’s computer communication network. ARPANET design decisions are discussed in [464].
Cerf and Kahn’s seminal paper [112] discusses the TCP/IP protocol communication. The de-
sign philosophy of the Internet is discussed, for example, in [143]. A comprehensive discus-
sion on architecture can be found in [142].

A comprehensive summary of the telecommunication network can be found in Bell Sys-
tem’s Engineering and Operations handbook, last published in 1984 [596]. While this book is
almost a quarter century old and out of print, it still serves as a good resource book on basic
telecommunication networking.

Naming, addressing, and routing are interrelated topics for a communication network. In
1978, Shoch [639] wrote “The name of a resource indicates what we seek, an address indicates
where it is, a route tells how to get there.” Shoch’s original work has a lot to do with how
we think about naming, addressing, and routing in the Internet, even today. Certainly we
can no longer say that an address is where it is. Also, the naming and addressing are now
blurry. For additional discussions on naming, addressing, and routing, see [285], [366], [497],
[618].

Finally, the focus of this book, as the title says, is network routing. You may consult books
such as [152], [386], [562], [668], [683], to improve your understanding of computer network-
ing in general; in fact, it might be handy to have one of them with you as you read through
this book. If you are interested in understanding in depth the OSI architecture and protocols
that were developed for OSI, you may consult books such as [567], [684]. For a comprehen-
sive discussion of protocols developed by IETF for the Internet, you may consult [211]. For a
summary of technology-specific standards, see [560].

Exercises
1.1 Review questions:

(a) Given the IP address of a host and the netmask, explain how the network address
is determined.

28

1.2

1.3

14

1.5

1.6

1.7

1.8

1.9

1.10

1.14 Exercises

(b) Identify the key differences between the differentiated services architecture and the
integrated services architecture.

(c) Whatis TLV?

Consider IP address 10.22.8.92 that is given to be part of a /14 address block. Determine
the IP prefix it belongs to in the CIDR notation.

Consider IP address 10.21.5.90 that is given to be part of a /17 address block. Determine
the IP prefix it belongs to in the CIDR notation.

From the TCP packet format, you will notice that it does not have a field that indicates
the length of a TCP packet. How can you determine the TCP payload length, i.e., the
length of the data carried in a TCP packet?

Why is it necessary to reserve some addresses from an address space rather than making
all of them available?

Consider an IPv4 packet going through a router.

(a) Determine which fields in the header are minimally changed before the packet is
forwarded.

(b) Which fields are also possibly changed at a router?

Are there any fields from the header of an IPv4 packet that are no longer maintained in
the header of an IPv6 packet?

Investigate why the header fields in an IPv6 packet are significantly different than the
header fields in an IPv4 packet.

Visit the IETF web-site (http://www.ietf.org/), and identify routing related working
groups. Familiarize yourself with the type of routing protocols issues currently being
addressed by these working groups.

Find out about other standards bodies, such as Institute of Electrical and Electronics En-
gineers (IEEE), American National Standards Institute (ANSI), Optical Internetworking
Forum (OIF), especially regarding networking standards they are actively involved in.

This page intentionally left blank

2

Routing
Algorithms:
Shortest Path and
Widest Path

“If everybody minded their own business,” the Duchess said in a hoarse
growl, “the world would go round a deal faster than it does.”

Lewis Carroll in Alice in Wonderland

Reading Guideline

Shortest path algorithms are applicable to IP networks and widest path algorithms
are useful for telephone network dynamic call routing and quality-of-service-based
routing. If you are primarily interested in learning about routing in IP networks, you
may read material on shortest path routing algorithms, and then come back to read
about widest path algorithms later. If you are interested in understanding routing
in a voice over IP (VoIP) environment or a Multiprotocol Label Switching (MPLS)
network, researching widest path routing is also recommended.

2.1

CHAPTER 2 Routing Algorithms: Shortest Path and Widest Path 31

In this chapter, we will describe two classes of routing algorithms: shortest path routing and
widest path routing. They appear in network routing in many ways and have played crit-
ical roles in the development of routing protocols. The primary focus of this chapter is to
describe how they work, without discussing how they are used by a specific communication
network, or in the context of routing protocols. These aspects will be addressed throughout
this book.

Background

In general, a communication network is made up of nodes and links. Depending on the type
of the network, nodes have different names. For example, in an IP network, a node is called
a router while in the telephone network a node is either an end (central) office or a toll switch.
In an optical network, a node is an optical or electro-optical switch. A link connects two nodes;
a link connecting two routers in an IP network is sometimes called an IP trunk or simply
an IP link, while the end of a link outgoing from a router is called an interface. A link in
a telephone network is called a trunkgroup, or an intermachine trunk (IMT), and sometimes
simply a trunk.

We first briefly discuss a few general terms. A communication network carries traffic
where traffic flows from a start node to an end node; typically, we refer to the start node as the
source node (where traffic originates) and the end node as the destination node. Consider now
the network shown in Figure 2.1. Suppose that we have traffic that enters node 1 destined for
node 6; in this case, node 1 is the source node and node 6 is the destination node. We may
also have traffic from node 2 to node 5; for this case, the source node will be node 2 and the
destination node will be node 5; and so on.

An important requirement of a communication network is to flow or route traffic from
a source node to a destination node. To do that we need to determine a route, which is a
path from the source node to the destination node. A route can certainly be set up manually;
such a route is known as a static route. In general, however, it is desirable to use a routing
algorithm to determine a route. The goal of a routing algorithm is in general dictated by the
requirement of the communication network and the service it provides as well as any addi-
tional or specific goals a service provider wants to impose on itself (so that it can provide a

15

FIGURE 2.1 A six-node network (the entry shown next to a link is the cost of the link).

32 2.1 Background

better service compared to another provider). While goals can be different for different types
of communication networks, they can usually be classified into two broad categories: user-
oriented and network-oriented. User-oriented means that a network needs to provide good
service to each user so that traffic can move from the source to the destination quickly for this
user. However, this should not be for a specific user at the expense of other users between
other source-destination nodes in the network. Thus, a network’s goal (“network-oriented”)
generally is to address how to provide an efficient and fair routing so that most users receive
good and acceptable service, instead of providing the “best” service to a specific user. Such
a view is partly required because there are a finite amount of resources in a network, e.g.,
network capacity.

We next consider two very important algorithms that have profound impact on data net-
works, in particular on Internet routing. These two algorithms, known as the Bellman—Ford
algorithm and Dijkstra’s algorithm, can be classified as falling under user-oriented in terms of
the above broad categories. They are both called shortest path routing algorithms, i.e., an al-
gorithm where the goal is to find the shortest path from a source node to a destination node.
A simple way to understand a shortest path is from road networks where shortest can be de-
fined in terms of distance, for example, as in what is the shortest distance between two cities,
which consists of the link distance between appropriate intermediate places between the end
cities. However, it is possible that notions other than the usual distance-based measure may
be applicable as well, for instance, time taken to travel between two cities. In other words, an
equally interesting question concerns the shortest route between two cities in terms of time.
This means that the notion of distance need not always be in terms of physical distance; it can
be in other measures such as time.

Instead of worrying about the unit of measurement, it is better to have an algorithm that
works independent of the measuring unit and considers a generic measure for distance for
each link in a network. In communication networks, a generic term to refer to a distance
measure without assigning any measure units is called cost, link cost, distance cost, or link
metric. Consider again Figure 2.1. We have assigned a value with each link, e.g., link 4-6 has
the value 15; we will say that the link cost, or distance cost, or link metric of link 4-6 is 15.
No measuring units are used; for example, in road networks, it could be in miles, kilometers,
or minutes. By simple inspection, it is not hard to see that the shortest path between nodes 1
and 6 is the path 1-4-3-6 with a total minimum cost of 3. It may be noted that the shortest
path in this case did not include the link 4-6, although from the viewpoint of the number of
nodes visited, it would look like the path 1-4-6 is the shortest path between nodes 1 and 6. In
fact, this would be the case if the link cost was measured in terms of nodes visited, or hops. In
other words, if the number of hops is important for measuring distance for a certain network,
we can then think about the network in Figure 2.1 by considering the link cost for each link to
be 1 instead of the number shown on each link in the figure. Regardless, having an algorithm
that works without needing to worry about how cost is assigned to each link is helpful; this
is where the Bellman-Ford and Dijkstra’s algorithms both fit in.

At this point, it is important to point out that in computing the shortest path, the ad-
ditive property is generally used for constructing the overall distance of a path by adding
a cost of a link to the cost of the next link along a path until all links for the path are
considered, as we have illustrated above. Thus, we will first start with this property for
shortest path routing in describing the Bellman-Ford and Dijkstra’s algorithms, and their

2.2

221

V)
W

CHAPTER 2 Routing Algorithms: Shortest Path and Widest Path

variants. You will see later that it is possible to define distance cost between two nodes
in terms of nonadditive concave properties to determine the widest path (for example, re-
fer to Section 2.7, 2.8, 10.9.2, 17.3, or 19.2.2). To avoid confusion, algorithms that use a
non-additive concave property will be generally referred to as widest path routing algo-
rithms.

We conclude this section by discussing the relation between a network and a graph. A net-
work can be expressed as a graph by mapping each node to a unique vertex in the graph
where links between network nodes are represented by edges connecting the corresponding
vertices. Each edge can carry one or more weights; such weights may depict cost, delay, band-
width, and so on. Figure 2.1 depicts a network consisting of a graph of six nodes and ten links
where each link is assigned a link cost/weight.

Bellman-Ford Algorithm and the Distance Vector Approach

The Bellman-Ford algorithm uses a simple idea to compute the shortest path between two
nodes in a centralized fashion. In a distributed environment, a distance vector approach is
taken to compute shortest paths. In this section, we will discuss both the centralized and the
distributed approaches.

Centralized View: Bellman-Ford Algorithm

To discuss the centralized version of the Bellman-Ford algorithm, we will use two generic
nodes, labeled as node i and node j, in a network of N nodes. They may be directly connected
as a link such as link 4-6 with end nodes 4 and 6 (see Figure 2.1). As can be seen from Fig-
ure 2.1, many nodes are not directly connected, for example, nodes 1 and 6; in this case, to
find the distance between these two nodes, we need to resort to using other nodes and links.
This brings us to an important point; we may have the notion of cost between two nodes,
irrespective of whether they are directly connected or not. Thus, we introduce two important
notations:

d;j = Link cost between nodes i and j

D; = Cost of the computed minimum cost path from node i to node j.

Since we are dealing with different algorithms, we will use overbars, underscores, and
hats in our notations to help distinguish the computation for different classes of algorithms.
For example, overbars are used for all distance computation related to the Bellman—Ford
algorithm and its variants. Note that these and other notations used throughout this chapter
are summarized later in Table 2.5.

If two nodes are directly connected, then the link cost d;; takes a finite value. Consider
again Figure 2.1. Here, nodes 4 and 6 are directly connected with link cost 15; thus, we can
write d4¢ = 15. On the other hand, nodes 1 and 6 are not directly connected; thus, dig = co.
What then is the difference between d;; and the minimum cost 5,7? From nodes 4 to 6, we see
that the minimum cost is actually 2, which takes path 4-3-6; that is, Dy =2 while dyg = 15.
For nodes 1 and 6, we find that Djg = 3 while dig = co. As can be seen, a minimum cost
path can be obtained between two nodes in a network regardless of whether they are directly

34 2.2 Bellman—Ford Algorithm and the Distance Vector Approach

FIGURE 2.2 Centralized Bellman-Ford Algorithm (solid line denotes a direct link;
dashed line denotes distance).

connected or not, as long as one of the end nodes is not completely isolated from the rest of
the network.

The question now is how to compute the minimum cost between two nodes in a network.
This is where shortest path algorithms come in. To discuss such an algorithm, it is clear from
the six-node example that we also need to rely on intermediate nodes. For that, consider
a generic node k in the network that is directly connected to either of the end nodes; we
assume that k is directly connected to the destination node j, meaning dy; has a finite value.
The following equations, known as Bellman’s equations, must be satisfied by the shortest
path from node i to node j:

D;=0, foralli, (2.2.1a)

Dy =min{Di +dy}, forij. (22.1b)
i

Simply put, Eq. (2.2.1b) states that for a pair of nodes i and j, the minimum cost is de-
pendent on knowing the minimum cost from i to k and the direct link cost dj; for link k-j.
A visual is shown in Figure 2.2. Note that there can be multiple nodes k that can be directly
connected to the end node j (say they are marked k, k3, and so on; note that k =i is not ruled
out either); thus, we need to consider all such ks to ensure that we can compute the minimum
cost. It is important to note that technically, a node & that is not directly connected to j is also
considered; since for such k, we have dyj = 0o, the resulting minimum computation is not
impacted. On close examination, note that Eq. (2.2.1b) assumes that we know the minimum
cost, Djx, from node i to k first somehow! Thus, in an actual algorithmic operation, a slight
variation of Eq. (2.2.1b) is used where the minimum cost is accounted for by iterating through
the number of hops. Specifically, we define the term for the minimum cost in terms of number

CHAPTER 2 Routing Algorithms: Shortest Path and Widest Path 35

of hops h as follows:
Egl) = cost of the minimum cost path from node i to node j when up to 4
number of hops are considered.

The Bellman-Ford algorithm that iterates in terms of number of hops is given in Algo-
rithm 2.1. Note the use of (/) in the superscript in Eq. (2.2.2c); while the expression on the
right side is up to 4 hops, with the consideration of one more hop, the expression on the left
hand side is now given in 4 4 1 hops.

ALGORITHM 2.1 Bellman-Ford centralized algorithm.
Initialize for nodes i and j in the network:

=) =0

Dii = 0, for all l, Dl] = 00, for l ;ﬁ] (222a)
Forh=0to N —1do

DIV —0, foralli (2.2.2b)

HA+D [k ' .

Dy = I}(&?{Dzk + di; } fori#j. (2.2.2¢)

For the six-node network (Figure 2.1), the Bellman-Ford algorithm is illustrated in Ta-
ble 2.1. A nice way to understand the hop-iterated Bellman-Ford approach is to visualize
through an example. Consider finding the shortest path from node 1 to node 6 as the num-
ber of hops increases. When /& =1, it means considering a direct link path between 1 and 6;
since there is none, Dglé) = 00. With & = 2, the path 1-4-6 is the only one possible since this
is a two-link path, i.e., it uses two hops, consisting of the links 1-4 and 4-6; in this case, the
hop-iterated minimum cost is 16 (= D%)). At h =3, we can write the Bellman-Ford step as
follows (shown only for k for which dye < 00) since there are three possible paths that need
to be considered:

k=3 Dy +de=2+1=3
k=5 Dy +dss=3+1=4
k=4 D\ +dg=1+15=16.

In this case, we pick the first one since the minimum cost is 3, i.e., 5&? = 3 with the short-
est path 1-4-3-6. It is important to note that the Bellman—Ford algorithm computes only the
minimum cost; it does not track the actual shortest path. We have included the shortest path
in Table 2.1 for ease of understanding how the algorithm works. For many networking en-
vironments, it is not necessary to know the entire path; just knowing the next node k for
which the cost is minimum is sufficient—this can be easily tracked with the min operation in
Eq. (2.2.2¢).

2.2.2

36 2.2 Bellman—Ford Algorithm and the Distance Vector Approach

TABLE 2.1 Minimum cost from node 1 to other nodes using Algorithm 2.1.

hn| DY path | D2 Path | DY Path | DY Path | DY Path
0 00 - 00 - 00 - 00 - 00 -

1 1 1-2 00 - 1 1-4 00 - 00 -

2 1 1-2 2 1-4-3 1 1-4 3 1-4-5 16 1-4-6
3 1 1-2 2 1-4-3 1 1-4 3 1-4-5 3 1-4-3-6
4 1 1-2 2 1-4-3 1 1-4 3 1-4-5 3 1-4-3-6
5 1 1-2 2 1-4-3 1 1-4 3 1-4-5 3 1-4-3-6

Distributed View: A Distance Vector Approach

In a computer network, nodes need to work in a distributed fashion in determining the short-
est paths to a destination. If we look closely at the centralized version discussed above, we
note that a source node needs to know the cost of the shortest path to all nodes immediately

prior to the destination, i.e., Eg:), so that the minimum cost to the destination can be com-
puted; this is the essence of Eq. (2.2.2c), communicated through Figure 2.2. This view of the
centralized Bellman-Ford algorithm is not directly suitable for a distributed environment. On
the other hand, we can consider an important rearrangement in the minimum cost computa-
tion to change the view. That is, what if we change the order of consideration in Eq. (2.2.1b)
and instead use the minimum cost computation step as follows:

Djj= rlgién{dik + Dy}, fori#j. (2.2.3)
1

Note the subtle, yet distinctive difference between Eq. (2.2.1b) and Eq. (2.2.3); here, we first
look at the outgoing link out of node i to a directly connected node k with link cost d;, and
then consider the minimum cost Dy;j from k to j without knowing how k determined this
value. The list of directly connected nodes of i, i.e., neighbors of i, will be denoted by ;.
In essence, what we are saying is that if node i finds out from its neighbor the cost of the
minimum cost path to a destination, it can then use this information to determine cost to the
destination by adding the outgoing link cost djx; this notion is known as the distance vector ap-
proach, first applied to the original ARPANET routing. With this approach, the computational
step Eq. (2.2.3) has a nice advantage in that it helps in building a computational model for a
distributed environment.

We illustrate the change of order and its advantage for the distributed environment using
Figure 2.3. Suppose that node i periodically receives the minimum cost information Dy; from
its neighboring node k for node k’s minimum cost to node j; this variation can be addressed
by introducing the dependency on the time domain, #, using Dy;(t) for node k’s cost to j—this

will then be available to node i (compare this expression to hop-based 5,(:;)). Now, imagine
for whatever reason that node k recomputes its cost to j and makes it available to another
source node, say i, but not to node i as shown in Figure 2.3. In other words, from the view
of the source node i, the best we can say is that the minimum cost value from node k to node
j that is available to node i is as node i has been able to receive; that is, it is more appropriate

to use the term 5;{]-([) than Ek]-(t) to indicate that the minimum cost from node k to node j, as

CHAPTER 2 Routing Algorithms: Shortest Path and Widest Path 37

FIGURE 2.3 Distance vector view for computing the shortest path.

available to source node i at time ¢; to distinguish, the cost availability to i, can be written as

E;fj(t) since ip may receive at a different time instant ¢. Furthermore, in a dynamic network,
the direct link cost djx from node i to k can also change with time ¢, for example, to reflect
change in network load/traffic. Thus, we can generalize the direct link cost to write as d;(?)
to indicate dependency on time ¢. With these changes, we present the distributed distance
vector approach in Algorithm 2.2.

ALGORITHM 2.2 Distance vector algorithm (computed at node i).

Initialize

D;i(t) =0; Bl-j(t) =o00, (fornode jthatnode iis aware of). (2.2.4a)
For (nodes j that node i is aware of) do

D;i(1) {dw@ +Dj0}. forj#i. (2.2.4b)

= mi
k directly connected to i

We will now illustrate the distributed variation. For simplicity, we will assume that node

k, which is directly connected to node i, is sending Bicj(t) at the same instant to other directly
connected nodes like i. Furthermore, we will assume that the direct link cost does not change
with time, i.e., djx (f) does not change with time.

Our illustration will consider the same six-node example by considering computing the
shortest path cost from node 1 to node 6 (see Table 2.2). This time, we will interpret the
hop-based cost computation in terms of discrete time windows; for example, = 0 means
what node 4 sees about cost to node 6 when zero hops away, t = 1 means what node 4 sees
about cost to node 6 when information from one hop away is received, and so on. Note that

node 1 is directly connected to node 2 and node 4. Thus, node 1 will have 5;6(0/ the cost

between node 2 and node 6 from node 2, and 54116(0/ the cost between node 4 and node 6
from node 4.

To summarize, in the distance vector approach, a node relies on its neighboring nodes’
known cost to a destination to determine its best path. To do so, it does periodic computa-
tion as and when it receives information from its neighbor. For this entire process to work,

2.3

23.1

38 2.3 Dijkstra’s Algorithm

TABLE 2.2 Distance vector based distributed computation at time ¢ from node 1 to
node 6.

Time, t 5}‘6(0 5;6(0 Computation at node 1 Dis(1)

min{dy4(t) + 516 (®), dr2(t) + Eia(t)}

0 o0 o0 min{1 + oo, 1 4+ oo} o0
1 15 o0 min{l 4+ 15,1 + oo} 16
2 2 3 min{l + 2,1 + 3} 3

the key idea is that a node k needs to distribute its cost to j given by Bkj(t) to all its di-
rectly connected neighbor i—the dependency on i and ¢ means that each node i may get
such information potentially at a different time instant ¢. The difference between this idea
and the centralized Bellman-Ford algorithm is subtle in that the order of computation along
with the link considered in computation leads to different views to computing the shortest
path.

Dijkstra’s Algorithm

Dijkstra’s algorithm is another well-known shortest path routing algorithm. The basic idea
behind Dijkstra’s algorithm is quite different from the Bellman-Ford algorithm or the dis-
tance vector approach. It works on the notion of a candidate neighboring node set as well as
the source’s own computation to identify the shortest path to a destination. Another interest-
ing property about Dijkstra’s algorithm is that it computes shortest paths to all destinations
from a source, instead of just for a specific pair of source and destination nodes at a time—
which is very useful, especially in a communication network, since a node wants to compute
the shortest path to all destinations.

Centralized Approach

Consider a generic node i in a network of N nodes from where we want to compute
shortest paths to all other nodes in the network. The list of N nodes will be denoted by
N={1,2,...,N}]. A generic destination node will be denoted by j (j # i). We will use the
following two terms:

d;j = link cost between node i and node j

D;

j = cost of the minimum cost path between node i and node ;.

Note that to avoid confusing this with the computation related to the Bellman—Ford al-
gorithm or the distance vector approach, we will be using underscores with uppercase D, as
in Dj;, for the cost of the path between nodes i and j in Dijkstra’s algorithm.

Dijkstra’s algorithm divides the list A of nodes into two lists: it starts with permanent
list S, which represents nodes already considered, and tentative list S’, for nodes not consid-
ered yet. As the algorithm progresses, list S expands with new nodes included while list S’

shrinks when nodes newly included in S are deleted from this list; the algorithm stops when

CHAPTER 2 Routing Algorithms: Shortest Path and Widest Path 39

ALGORITHM 2.3 Dijkstra’s shortest path first algorithm (centralized approach).

1. Start with source node i in the permanent list of nodes considered, i.e., S = {i}; all the rest
of the nodes are put in the tentative list labeled as &’. Initialize

D;=d;, foralljeS'.

2. Identify a neighboring node (intermediary) k not in the current list S with the minimum
cost path from node i, i.e., find k € S’ such that D;; = min,,cs' D,
Add k to the permanent list S, i.e.,, S =S U {k},
Drop k from the tentative list §’, i.e., &’ = S'\{k}.
If &’ is empty, stop.

3. Consider the list of neighboring nodes, N, of the intermediary k (but do not consider
nodes already in S) to check for improvement in the minimum cost path, i.e.,
forje NpgNS'

D;; =min{D;;, Dy + dij}. (2.3.1)

ij =i

Go to Step 2.

list S’ becomes empty. Initially, we have S = {i} and &' = M\{i} (i.e., all nodes in N except
node i).

The core of the algorithm has two parts: (1) how to expand the list S, and (2) how to
compute the shortest path to nodes that are neighbors of nodes of list S (but nodes not in this
list yet). List S is expanded at each iteration by considering a neighboring node k of node
i with the least cost path from node i. At each iteration, the algorithm then considers the
neighboring nodes of k, which are not already in S, to see if the minimum cost changes from
the last iteration.

We will illustrate Dijkstra’s algorithm using the network given in Figure 2.1. Suppose
that node 1 wants to find shortest paths to all other nodes in the network. Then, initially,
S={1},and &' ={2,3,4,5, 6}, and the shortest paths to all nodes that are direct neighbors of
node 1 can be readily found while for the rest, the cost remains at oo, i.e.,

Dy, =1,Dy4=1, Dj3=D;5=Dj5=00.

For the next iteration, we note that node 1 has two directly connected neighbors: node 2
and node 4 with dj; =1 and dj4 = 1, respectively; all the other nodes are not directly con-
nected to node 1, and thus, the “direct” cost to these nodes remains at co. Since both nodes 2
and 4 are neighbors with the same minimum cost, we can pick either of them to break the tie.
For our illustration, we pick node 2, and this node becomes intermediary, k. Thus, we now
have S = {1, 2}, and S’ becomes the list {3, 4,5, 6}. Then, we ask node 2 for cost to its direct

2.3.2

40 2.3 Dijkstra’s Algorithm

S={1} S={1,2}

S={1,24}

FIGURE 24 [terative view of Dijkstra’s algorithm.

neighbors not already in set S. We can see from Figure 2.1 that node 2’s neighbors are node 3
and node 4. Thus, we compare and compute cost from node 1 for these two nodes, and see if
there is any improvement:

D3 =min{D,3, D{, + dy3} =min{oo,1+2} =3
Dy =min{D4, Dy, +dp4} =min{l,1+ 1} =1.

Note that there is no improvement in cost to node 4; thus, we keep the original shortest
path. For node 3, we now have a shortest path, 1-2-3. For the rest of the nodes, the cost remains
at co. This completes this iteration. We then move to the next iteration and find that the next
intermediary is kK =4, and the process is continued as before. In Table 2.3, we summarize all
the steps until all nodes are considered in list S, and in Figure 2.4, we give a visual illustration
to how the algorithm adds a new intermediary k to list S. The centralized version of Dijkstra’s
algorithm is formally presented in Algorithm 2.3.

Distributed Approach

The distributed variant of Dijkstra’s algorithm is very similar to the centralized version. The
main difference is that the link cost of a link received by one node could be different from
another node since this information is disseminated in an asynchronous manner. Thus, we

CHAPTER 2 Routing Algorithms: Shortest Path and Widest Path 41

TABLE 2.3 [terative steps in Dijkstra’s algorithm.

Iteration | List, S Dy, Path| D;; Path | D;, Path| D;s Path | D;; Path
1 {1) 1 12 | oo - 1 14 | oo - 0o -
2 {1,2} 1 12 3 123 1 14 | oo - o -
3 {1,2,4) 1 12 2 143 1 14 3 145| 16 1-4-6
4 {1,2,4,3) 1 12 2 143 1 14 3 145 3 1436
5 {1,2,4,3,5) 1 12 2 143 1 14 3 145 3 1436
6 {1,2,4,3,5,6}| 1 12 2 143 1 14 3 145 3 1436

denote the cost of link k-m as received at node i at time ¢ by d (). Similarly, the minimum
distance from i to j is time-dependent and is denoted by D;;(1).

Dijkstra’s algorithm for the distributed environment is presented in Algorithm 2.4. The
steps are similar to the centralized version. Thus, in the distributed version, it is really the
communication of the link cost information in a distributed manner that is taken into account
by the algorithm. The steps are the same as in Table 2.3—this time we can think of the iterative

ALGORITHM 24 Dijkstra’s shortest path first algorithm (a distributed ap-
proach).

1. Discover nodes in the network, A, and cost of link k-m, d;cm (1), as known to node i at the
time of computation, ¢.

2. Start with source node i in the permanent list of nodes considered, i.e., S = {i}; all the rest
of the nodes are put in the tentative list labeled as §’. Initialize

Dyt =dj;(1), foralljesS'.
3. Identify a neighboring node (intermediary) k not in the current list § with the minimum
cost path from node i, i.e., find k € &’ such that D;, (1) = minycs D, (1).
Add k to the permanent list S, i.e., S=S U {k},
Drop k from the tentative list &', i.e., ' = S'\{k}.
If §' is empty, stop.

4. Consider neighboring nodes Ny of the intermediary k (but do not consider nodes already
in §) to check for improvement in the minimum cost path, i.e.,
forje NxnNS’

D;i(t) = min{Dy(1), Dy (6) + dj; (1)} 23.2)

Go to Step 3.

24

42 2.4 Comparison of the Bellman—Ford Algorithm and Dijkstra’s Algorithm

ALGORITHM 2.5 Dijkstra’s shortest path first algorithm (with tracking of next hop).

0 // Computation at time ¢

1 S={i} // permanent list; start with source node i

2 S'=N\{i} //tentative list (of the rest of the nodes)

3 for (jin S’) do

4 if (dﬁ:j(t) < o0) then //ifiis directly connected to j

5 D= d;-]-(l)

6 H;j=j [/ setis nexthop to be

7 else

8 Ql/(z) =00

9 Hjj=-1 /I next hop not set

10 endif

11 endfor

12 while (8’ is not empty) do // while tentative list is not empty
13 Dtemp = oo // find minimum cost neighbor k

14 for (min S’) do

15 if (D, (t) < Dtemp) then

16 Dtemp = D, (1)

17 k=m

18 endif

19 endfor

20 S=8U{k} // addto permanent list

21 S =8'\{k} // delete from tentative list

22 for (jin Ny NS’) do

23 if (Djj(0) > Dige(0) +d} ;1)) then //if cost improvement via k
24 D;j(n =Dy + dicj(t)

25 Hjj=Hj, I/ next hop for destination j; inherit from k
26 endif

27 endfor

28 endwhile

steps as the increment in time in terms of learning about different links and link costs in the
network.

Determination of the next hop is important in many networking environments; next hop
refers to the next directly connected node that the source node i should go to for reach-
ing a destination j; ideally, the next hop should be on the optimal path. In Algorithm 2.5,
we present a somewhat formal version of Dijkstra’s algorithm—the purpose is to highlight
the logic conditions for the benefit of the interested reader. In this algorithm, we have also
included another identifier H;; to track the next hop from i for destination j. Finally, in
many situations, the shortest path to a specific destination j, instead of being to all destina-
tions, is sufficient to compute. This can be easily incorporated in Algorithm 2.5 by insert-
ing the following operation between line 19 and line 20: “if (k is same as destination j),
then exit the while loop;” this means that we have found the shortest path to destina-
tion j.

Comparison of the Bellman-Ford Algorithm and Dijkstra’s
Algorithm

This is a good time to do a quick comparison between Dijksta’s algorithm (Algorithm 2.3)
and the Bellman-Ford algorithm (Algorithm 2.1). First, the Bellman-Ford algorithm com-

2.5

CHAPTER 2 Routing Algorithms: Shortest Path and Widest Path 43

putes the shortest path to one destination at a time while Dijksta’s algorithm computes the
shortest paths to all destinations (sometimes called the shortest path tree). When we compare
the minimum cost computation for each algorithm, i.e., between Eq. (2.2.1b) and Eq. (2.3.1), it
may seem that they are similar. However, there are actually very important subtle differences.
In both of them, there is an intermediary node k; in the case of the Bellman—-Ford algorithm,
node k is over all nodes to find the best next hop to node j, while in the case of Dijkstra’s
algorithm, node k is an intermediary first determined and fixed, and then the shortest path
computation is done to all j, not already covered. Table 2.1 and Table 2.3 are helpful in under-
standing this difference.

Since there are various operations in an algorithm, it is helpful to know the computa-
tional complexity (see Appendix B.3) so that a comparison of two or more algorithms can be
done in terms of computational complexity using the “big-O” notation. Given N as the total
number of nodes and L as the total number of links, the computational complexity of the
Bellman-Ford algorithm is O(L N). The complexity of Dijkstra’s algorithm is O(N?) but can
be improved to O(L + NlogN) using a good data structure. Note that if a network is fully
connected, the number of bidirectional links is N(N — 1)/2; thus, for a fully connected net-
work, the complexity of the Bellman-Ford algorithm is O(N?) while for Dijkstra’s algorithm,
itis O(N?).

Two key routing protocol concepts, the distance vector protocol concept and the link-
state protocol concept, have fairly direct relation to the Bellman-Ford algorithm (or the
distance vector-based shortest path computation approach) and Dijkstra’s algorithm, re-
spectively. These two key routing protocol concepts will be discussed later in Sections 3.3
and 3.4.

Shortest Path Computation with Candidate Path Caching

We will next deviate somewhat from the Bellman-Ford algorithm and Dijkstra’s algorithm.
There are certain networking environments where a list of possible paths is known or deter-
mined ahead of time; such a path list will be referred to as the candidate path list. Path caching
refers to storing of a candidate path list at a node ahead of time. If through a distributed pro-
tocol mechanism the link cost is periodically updated, then the shortest path computation at
a node becomes very simple when the candidate path list is already known.

Consider again the six-node network shown in Figure 2.1. Suppose that node 1 somehow
knows that there are four paths available to node 6 as follows: 1-2-3-6, 1-4-3-6, 1-4-5-6, and
1-4-6; they are marked in Figure 2.5.

Using the link cost, we can then compute path cost for each path as shown in the table
in Figure 2.5. Now, if we look for the least cost path, we will find that path 1-4-3-6 is the
most preferred path due to its lowest end-to-end cost. Suppose now that in the next time
period, the link cost for link 4-3 changes from 1 to 5. If we know the list of candidate paths,
we can then recompute the path cost and find that path 1-4-3-6 is no longer the least cost;
instead, both 1-2-3-6 and 1-4-5-6 are now the shortest paths—either can be chosen based on a
tie-breaker rule.

44 2.5 Shortest Path Computation with Candidate Path Caching

Path Cost

1-2-3-6 | dip+dy; +dze=4
1-4-3-6 | dig+dyz+dze=3
1-4-5-6 | dig+dys+dsg=4
1-4-6 dig +dys =16

FIGURE 2.5 Paths identified from node 1 to node 6, along with associated path cost.

We will now write the shortest path calculation in the presence of path caching in a
generic way, considering that this calculation is done at time ¢. We consider a candidate path
p between nodes i and node j, and its cost at time ¢ as

Dyjyp(t) = > (D), (2.5.1)
link /-m in path p

where dfm(t) is the cost of link /-m at time ¢ as known to node i, and the summation is over
all such links that are part of path p. The list of candidate paths for the pair i and j will be
denoted by P;;; the best path will be identified by p. The procedure to compute the shortest
path is given in Algorithm 2.6.

ALGORITHM 2.6 Shortest path computation when candidate paths are known.

At source node i, a list of candidate paths 'P;; to destination node j is available,
and link cost, dfm (¥), of link I-m at time t is known:
/[Initialize the least cost:

Djj(t) = 00
/I Consider each candidate path in the list
for (p in P) do
Dijjp() =0
for (link /-m in path p) do // add up cost of links for this path
Dijyp(®) = Dijjp (D) + dj,, (1) (25.2)
end for

if (Dyj/p (1) < Dyj(1)) then // if this is cheaper, note it
Dij(t) = Djjp(0)
p=p
end if
end do

It is important to note that the candidate path list is not required to include all possible
paths between node i and j, only a sublist of paths that are, for some reason, preferable to
consider for a particular networking environment. The way to think about this is to think of a

2.6

CHAPTER 2 Routing Algorithms: Shortest Path and Widest Path 45

road network in a city where to go from your home to school/ office, you are likely to use only
a selected set of paths. In a communication network, this approach of computing the shortest
path involves a trade-off between storage and time complexity. That is, by storing multiple
candidate paths ahead of time, the actual computation is simple when new link costs are
received. The set of candidate paths can be determined using, for example, the K-shortest
path algorithm (see Algorithm 2.10); since the interest in the case of path caching is obtain a
good working set, any reasonable link cost can be assumed; for example, we can set all link
costs to 1 (known also as hop count) and use Algorithm 2.10 to obtain a set of K candidate
paths.

It is worth noting that such a candidate path-based approach can potentially miss a good
path. For example, if a node is configured to keep only three candidate paths, it can poten-
tially miss including 1-4-3-6; thus, in the first cycle of computation before the link cost dy3 for
link 4-3 was updated, this path would not be chosen at all.

Widest Path Computation with Candidate Path Caching

So far, we have assumed that the shortest path is determined based on the additive cost prop-
erty. There are many networking environments in which the additive cost property is not
applicable; for example, dynamic call routing in the voice telephone network (refer to Chap-
ter 10) and quality of service based routing (refer to Chapter 17). Thus, determining paths
when the cost is nonadditive is also an important problem in network routing; an important
class among the nonadditive cost properties is concave cost property that leads to widest path
routing. We will first start with the case in which path caching is used, so that it is easy to
transition and compare where and how the nonadditive concave case is different from the
additive case described in the previous section.

Suppose a network link has a certain bandwidth available, sometimes referred to as resid-
ual capacity; to avoid any confusion, we will denote the available bandwidth by by, for link
[-m, as opposed to dy,, for the additive case. Note that b, = 0 then means that the link is not
feasible since there is no bandwidth; we can also set by,, = 0 if there is no link between nodes
I and m (compare this with dj,, = oo for the additive case). We start with a simple illustra-
tion. Consider a path between node 1 and node 2 consisting of three links: the first link has
10 units of bandwidth available, the second link has 5 units of bandwidth available, and the
third link has 7 units of bandwidth available. Now, if we say the cost of this path is additive,
ie, 22(=1045+7), it is unlikely to make any sense. There is another way to think about it.
Suppose that we have new requests coming in, each requiring a unit of dedicated bandwidth
for a certain duration. What is the maximum number of requests this path can handle? It is
easy to see that this path would be able to handle a maximum of five additional requests
simultaneously since if it were more than five, the link in the middle in this case would not
be able to handle more than five requests. That is, we arrive at the availability of the path
by doing min{10, 5, 7} = 5. Thus the path “cost” is 5; certainly, this is a strange definition of
a path cost; it is easier to see this as the width of a path (see Figure 2.6). Formally, similar to
Eq. (2.5.1), for all links /-m that make up a path p, we can write the width of the path as

Bii(t) = min bt @}, 2.6.1
o link /-m in path p{ m] ()

46 2.6 Widest Path Computation with Candidate Path Caching

Width

FIGURE 2.6 Width of a path—a visual depiction.

Regardless, the important point to note is that this path cost is computed using a non-
additive cost property, in this case the minimum function. It may be noted that the minimum
function is not the only nonadditive cost property possible for defining cost of a path; there
are certainly other possible measures, such as the nonadditive multiplicative property given
by Eq. (B.8.1) discussed in Appendix B.8.

Now consider a list of candidate paths; how do we define the most preferable path? One
way to define it is to find the path with the largest amount of available bandwidth. This is
actually easy to do once the path “cost” for each path is determined since we can then take
the maximum of all such paths. Consider the topology shown in Figure 2.7 with available
bandwidth on each link as marked. Now consider three possible paths between node 1 and
node 5:

Path Cost

1-2-3-5 | min{b1, b3, b35} = 10
1-4-3-5 | min{by4, ba3, b35} =15
1-4-5 min{b4, bys} =20

ALGORITHM 2.7 Widest path computation (non-additive, concave) when candidate
paths are known.

At source node i, a list of candidate paths 'P;; to destination node j is available,
and link bandwidth, b;m (¥), of link I-m at time t is known:
// Initialize the least bandwidth:

Byj(t)=0
for p in P;; do
Bijjp () = 00
for (link /-m in path p) do // find bandwidth of the bottleneck link
E,’]’/p(t) = min {Eij/p(t)ﬂ b;m(t)} (2.6.2)
end for

if @i]-/p (3] > Ei,-(t)) then // if this has more bandwidth, note it
Bij(t) = Bij/p (1)
p=r
end if
end do

2.7

2.71

CHAPTER 2 Routing Algorithms: Shortest Path and Widest Path 47

It is easy to see that the third path, 1-4-5, has the most bandwidth and is thus the preferred
path. This means that we need to do a maximum over all paths in the case of the nonadditive
property to find the widest path as opposed to the minimum over all paths when additive cost
property is used. A widest path so selected is sometimes referred to as the maximal residual
capacity path. The procedure is presented in detail in Algorithm 2.7. It is helpful to contrast
this algorithm with its counterpart, Algorithm 2.6, where the additive cost property was used;
for example, you can compare Eq. (2.6.2) with Eq. (2.5.2), especially the logical “if” condition
statements.

FIGURE 2.7 Network example for widest path routing.

Remark 2.1. Relation between shortest path routing and widest path routing.

While the cost of a path is determined differently, by using the additive property in
Eq. (2.5.1), and by the nonadditive property in Eq. (2.6.1), there is a direct relation be-
tween shortest and widest. If we imagine the path cost to be the negative of the quan-
tity given in Eq. (2.6.1), then widest translates to being the minimum of this negative
cost. Thus, the widest path is the cheapest path in the sense of this negative representa-
tion. In other words, the widest path can be thought of as the nonadditive (concave) shortest

path. ¢

Widest Path Algorithm

We are coming back full circle to no path caching for widest path routing algorithms. We
present two approaches: first we show an extension of Dijkstra’s shortest path first algorithm;
next, we extend the Bellman—-Ford algorithm.

Dijkstra-Based Approach

When there is no path caching, the algorithm is very similar to Dijkstra’s algorithm that is
adapted from [731], and is listed in Algorithm 2.8.

Consider the network topology shown in Figure 2.7 where each link is marked with an
available bandwidth. The algorithmic steps with Algorithm 2.8 are detailed in Table 2.4 for

48 2.7 Widest Path Algorithm

ALGORITHM 2.8 Widest path algorithm, computed at node i (Dijkstra-based).

1. Discover list of nodes in the network, N and available bandwidth of link k-m, b}; (D), as
known to node i at the time of computation, .

2. Initially, consider only source node i in the set of nodes considered, i.e., S = {i}; mark the
set with all the rest of the nodes as S’. Initialize

Bji(6) = bj;(1).

3. Identify a neighboring node (intermediary) k not in the current list S with the maximum
bandwidth from node i, i.e., find k € &’ such that B, (1) = max,,cs B;,,, ()
Add k to the list S, i.e.,, S =S U {k}

Drop k from &', ie., &’ = S'\{k}.

If S’ is empty, stop.
4. Consider nodes in S’ to update maximum bandwidth path, i.e.,
forjeS’
Bji(f) = max{B;;(¢), min{By, bi;(0}}. 2.7.1)
Go to Step 3.

TABLE 2.4 lterative steps based on Algorithm 2.8.

Iteration | List, S B, Path| By; Path | B, Path| B;s Path
1 0 30 12 0 - 20 14 0 -
2 {1,2} 30 1-2 10 1-2-3 20 1-4 0 -
3 {1,2,4} 30 1-2 15 1-4-3 20 1-4 20 1-4-5
4 {1,2,4,3} 30 1-2 15 1-4-3 20 1-4 20 1-4-5
5 {1,2,4,3,5} 30 1-2 15 1-4-3 20 1-4 20 1-4-5

the distributed time-dependent case from the point of view of node 1, i.e., suppose that node 1
wants to find the path with most available bandwidth to all other nodes in the network. Then,
initially, S = {1} and &’ = {2, 3, 4, 5}, and the widest paths to all nodes that are direct neighbors
of node 1 can be readily found while for the rest, the “cost” remains at 0, i.e.,

By, =30, By4=20, Bj3=B;5=0.

Since maxjes: El}' =30 is attained for j = 2, we add node 2 to list S. Thus, we have the updated
lists: S={1,2} and S’ = (3,4, 5}.

2.7.2

2.8

CHAPTER 2 Routing Algorithms: Shortest Path and Widest Path 49

Now for j not in §, we update the available bandwidth to see if it is better than going via
node 2, as follows:

B; =max{B;;, min{B13, by3}} = max{0, min{30, 10}} =10 // use 1-2-3
B, =max{B;,, min{B12, by4}} = max{20, min{30, 10}} =20 // stay on 1-2
B1s =max{B;5, min{B12, bys}} = max{0, min{30,0}} =0 // no change

Now we are in the second pass of the algorithm. This time, maxjcs Bij =
max{By3, B4, Bis} = 20. This is attained for j = 4. Thus, S becomes ({1,2,4}. Updating the
available bandwidth to check via node 4 will be as follows:

B3 =max{B;;, min{B4, bs3}} = max{10, min{20, 15}} =15 // use 1-4-3
B5 =max{B;5, min{B14, bs5}} = max{0, min{20, 40}} =20 // use 1-4-5

This time, j = 3 will be included in S. Thus, S becomes {1, 2, 4, 3}. There is no further
improvement in the final pass of the algorithm.

Bellman-Ford-Based Approach

The widest path algorithm that uses the Bellman—Ford-based approach is strikingly similar to
the Bellman-Ford shortest path routing algorithm given in Algorithm 2.2. For completeness,
this is listed in Algorithm 2.9.

ALGORITHM 29 Widest path algorithm, computed at node i (Bellman-Ford-based).
Initialize

B;i(t) =0; E,-j(t) =0, (fornodejthatnodeiis aware of). (2.7.2a)

For (nodes j that node i is aware of) do

Bjj(h) = max min |by), BLo)), forj#i. (2.7.2b)
Y k directly connected to i { ' ki }

k-Shortest Paths Algorithm

We now go back to the class of shortest path algorithms to consider an additional case. In
many networking situations, it is desirable to determine the second shortest path, the third
shortest path, and so on, up to the k-th shortest path between a source and a destination.
Algorithms used for determining paths beyond just the shortest paths are generally referred
to as k-shortest paths algorithms.

A simple way to generate additional paths would be to start with, say Dijkstra’s shortest
path first algorithm, to determine the shortest path; then, by temporarily deleting each link on
the shortest path one at a time, we can consider the reduced graph where we can apply again

50 2.8 k-Shortest Paths Algorithm

ALGORITHM 210 k-shortest paths algorithm.
1. Initialize k:=1.

2. Find the shortest path P between source (i) and destination (j) in graph G, using Dijkstra’s
Algorithm.

Add P to permanent list I, i.e., K := {P}.
If K =1, stop.
Add P to set X and pair (P, i) toset S,ie, X :={P}and S :={(P,i)}.
3. Remove P from X, i.e., X := X\{P}.
4. Find the unique pair (P, w) € S, and corresponding deviation node w associated with P.
5. For each node v, except j, on subpath of P from w to j (subp(w, j)):
Construct graph G’ by removing the following from graph G:
(@) All the vertices on subpath of P from i to v, except v.
(b) All the links incident on these deleted vertices.
(c) Links outgoing from v toward j for each P’ € KU {P}, such that subp (i, v) = subp: (i, v).
Find the shortest path Q' from v to j in graph G’ using Dijkstra’s Algorithm.
Concatenate subpath of P from i to v and path @', ie., Q =subp(i,v) ® Q'.
Add Q to X and pair (Q,v) to S, i.e., X ;==X U{Q}and S :=SU{(Q,v)}.
6. Find the shortest path P among the paths in X and add P to K, i.e, K:=KUP.
7. Increment k by 1.
8. If k < K and X is not empty, go to Step 4, else stop.

Dijkstra’s shortest path first algorithm. This will then give us paths that are longer than the
shortest path. By identifying the cost of each of these paths, we can sort them in order of suc-
cessively longer paths. For example, consider finding k-shortest paths from node 1 to node 6
in Figure 2.1. Here, the shortest path is 1-4-3-6 with path cost 3. Through this procedure, we
can find longer paths such as 1-2-3-6 (path cost 4), 1-4-5-6 (path cost 4), and 1-4-3-5-6 (path
cost 4). It is easy to see that paths so determined may have one or more links in common.
Suppose that we want to find k-shortest link disjoint paths. In this case, we need to tem-
porarily delete all the links on the shortest path and run Dijkstra’s algorithm again on the
reduced graph—this will then give the next shortest link disjoint path; we can continue this
process until we find k-shortest link disjoint paths. Sometimes it might not be possible to find
two or more link disjoint paths, if the reduced graph is isolated into more than one network.
Consider again Figure 2.1. Here, the shortest path from node 1 to node 6 is 1-4-3-6 with path
cost 3. If we temporarily delete the links in this path, we find the next link-disjoint shortest

2.9

CHAPTER 2 Routing Algorithms: Shortest Path and Widest Path 51

path to be 1-2-4-5-6 of path cost 5. If we now delete links in this path, node 1 becomes isolated
in the newly obtained reduced graph.

In Algorithm 2.10, we present a k-shortest path algorithm that is based on an idea, orig-
inally outlined in [756]; see also [454], [549] for additional references for this method. In this
algorithm, a fairly complicated process is applied beyond finding the shortest path. For ex-
ample, it uses an auxiliary list S in order to track/determine longer paths. This is meant
for die-hard readers, though. A description with each step is included in Algorithm 2.10 to
convey the basic idea behind this algorithm.

Finally, recall that we discussed widest path computations with candidate path caching;
such candidate paths to be cached can also be determined using a k-shortest paths algorithm.
Typically, in such situations, the link cost for all links can be set to 1 because usually hop-
length-based k-shortest paths are sufficient to determine candidate paths to cache.

Summary

We first start with notations. In discussing different shortest path algorithms, we have used a
set of notations. While the notations might look confusing at first, there is some structure to
the notations used here.

First, for a link i-k connecting node i and node k, the link cost for the additive case has
been denoted by djx, while the link cost for the nonadditive case was denoted by b;x. From
a computational results point of view, we needed to track the minimum path cost between
node i and j for various algorithms that can be distinctly identifiable—they can be classified
as follows:

Algorithm Indicator Additive | Nonadditive (Widest)
Bellman-Ford | “overbar” 51-]- Eij
Dijkstra “underscore” | D;; By
Path caching “hat” D ij §[/

A superscript is used when we discuss information as known to a node, especially node
i where the algorithmic computation is viewed from in the distributed environment. Thus,

we have used Ezj to denote the minimum additive path cost from node k to node j as known
to node i. Finally, the temporal aspect is incorporated by making an expression a function

of time ¢. Thus, we use E;q(t) to indicate dependency on time ¢. While there are a few more
notations, such as path list, these notations basically capture the essence and distinction of
various algorithms. In any case, all notations are summarized in Table 2.5.

We have presented several shortest path and widest path routing algorithms that are
useful in communication network routing. We started with the centralized version of the
Bellman-Ford algorithm and then presented the distance vector approach, first used in the
ARPANET distributed environment. Similarly, we presented Dikstra’s algorithm, both the
centralized and its distributed variant. We then considered routing algorithms when a non
additive cost property (based on minimum function) is applicable; such algorithms can be
classified as widest path routing when nonadditive cost property is concave. It may be noted
that there may be several widest paths between two nodes, each with a different number of

52

2.9 Summary

TABLE 2.5 Summary of notations used in this chapter

Notation Remark

i Source node

j Destination node

k Intermediate node

N List of nodes in a network

S Permanent list of nodes in the Dijkstra’s algorithm (considered
so far in the calculation)

S Tentative list of nodes in the Dijkstra’s algorithm (yet to be
considered in calculation)

Nk List of neighboring nodes of node k

d;j Link cost between nodes i and j

d;j(1) Link cost between nodes i and j at time ¢

Dj; Cost of the minimum cost path from node i to node j (Bellman-—
Ford)

Bﬁj") Cost of the minimum cost path from node i to node j when £ hops
have been considered

5,-,-([) Cost of the minimum cost path from node i to node j at time ¢

dj;j(t) Link cost between nodes k and j at time ¢ as

' known to node i

E;Cj(t) Cost of the minimum cost path from node k to node j at time ¢ as
known to node i

Dy Cost of the minimum cost path from node i to node j (Dijkstra)

Dijp(0) Cost of path p from node i to node j (path caching)

B;i(1) Nonadditive cost (width) of the best path from node i to node j at
time ¢ (Dijkstra)

Eij(t) Nonadditive cost (width) of the best path from node i to node j at
time ¢ (path caching)

Pij The list of cached path at node i for destination j

H;; Next hop for source i for destination j

hops. It is sometimes useful to identify the shortest-widest path; if “shortest” is meant in terms
of the number of hops, then it can be more appropriately referred to as the least-hop-widest
path, i.e., the widest path that uses the least number of hops between two nodes. Another
consideration is the determination of the widest-shortest path, i.e., a feasible path with the
minimum cost, for example, in terms of hop count; if there are several such paths, one with
the maximum bandwidth is used. These will be discussed later in Chapter 17.

Note that in this chapter, we have presented our discussion using origin and destination
nodes. When a network structure is somewhat complicated, that is, when we have a backbone
network that is the carrier of traffic between access networks, we also use the term ingress
node to refer to a entry point in the core network and the term egress node to refer to an exit
point in the core network. It is important to keep this in mind.

CHAPTER 2 Routing Algorithms: Shortest Path and Widest Path

Q1
(O]

Finally, it is worth noting that the Bellman—Ford algorithm can operate with negative link
cost while Dijkstra’s algorithm requires the link costs to be nonnegative; on the other hand,
Dijkstra’s algorithm can be modified to work with negative link cost as well. Communication
network routing protocols such as Open Shortest Path First (OSPF) and Intermediate System-
to-Intermediate System (IS-IS) (refer to Chapter 6) that are based on the link state protocol
concept do not allow negative weights. Thus, for all practical purposes, negative link cost
rarely plays a role in communication networking protocols. Thus, in this book, we primarily
consider the case when link costs are nonnegative. Certainly, from a graph theory point of
view, it is important to know whether a particular algorithm works with negative link cost;
interested readers may consult books such as [624].

Further Lookup

The Bellman-Ford shortest path algorithm for computing the shortest path in a centralized
manner was proposed by Ford [231] in 1956. Bellman [68] described a version independently
in 1958, by using a system of equations that has become known as Bellman’s equations. Moore
also independently presented an algorithm in 1957 that was published in 1959 [499]. Thus,
what is often known as the Belllman-Ford algorithm, especially in communications network-
ing, is also known as the Bellman—Ford—Moore algorithm in many circles.

The distance vector approach for the shortest path computation in a distributed environ-
ment is subtly as well as uniquely different from the centralized Bellman—Ford approach. The
distance vector approach is also known as the original or “old” ARPANET routing algorithm,
yet is sometimes attributed as the “distributed Bellman—Ford” algorithm. For a discussion on
how these different naming and attributions came to be known, refer to [725]. For a compre-
hensive summary of ARPANET design decisions in the early years, see [464].

In 1959, Dijkstra presented his shortest path first algorithm for a centralized environment
[178]. The “new” ARPANET routing took the distributed view of Dijkstra’s algorithm along
with considerations for numerous practical issues in a distributed environment; for example,
see [368], [462], [463], [599].

Widest path routing with at most two links for a path has been known since the advent
of dynamic call routing in telephone networks in the early 1980s. In this context, it is often
known as maximum residual capacity routing or maximum available trunk routing; for example,
see [680]. The widest path algorithm based on Dijkstra’s framework given in Algorithm 2.8
and the distance vector framework given in Algorithm 2.9 are adapted from [731]. Widest
path routing and its variations are applicable in a quality-of-service routing framework.

The k-shortest paths algorithm and its many variants have been studied by numerous
researchers; see [202] for an extensive bibliography.

Exercises
2.1. Review questions:

(@) In what ways, are the Bellman-Ford algorithm (Algorithm 2.1) and the distance
vector algorithm (Algorithm 2.2) different?

(b) What are the main differences between shortest path routing and widest path rout-
ing?

54

2.9 Exercises

FIGURE 2.8 A 5-node example.

2.2.

2.3.

24.

2.5.

2.6.

2.7.

2.8.

2.9.

(c) What is the difference between minimum hop routing and shortest path routing?

For the network example presented in Figure 2.1, compute the shortest paths from
node 2 to all other nodes using the centralized Bellman—Ford algorithm (Algorithm 2.1).

For the network example presented in Figure 2.1, use Dijkstra’s algorithm (Algo-
rithm 2.3) to compute the shortest paths from node 6 to the other nodes. Next, consider
that link 3-6 fails; recompute the shortest paths from node 6 to the other nodes.

Consider the network topology in Figure 2.1. Assume now that the links have the follow-
ing bandwidth: 1-2: 1, 1-4: 1, 2-3: 2, 2-4: 2, 3-4: 1, 3-5: 1, 3-6: 4-5: 2; 4-6: 3; 5-6: 2. Determine
the widest paths from node 6 to all the other nodes.

Consider the network topology in Figure 2.8. The number listed next to the links are link
costs.

(a) Determine the shortest path from node 1 to node 5 using Algorithm 2.2 and also
using Algorithm 2.3.

(b) Now suppose that the link cost for link 1-4 is changed to 45. Determine again the
shortest path from node 1 to node 5 using Algorithm 2.2 and also using Algo-
rithm 2.3. Also, generate an iterative view similar to Figure 2.4.

Consider the network topology in Figure 2.8. The number listed next to the links are
assumed to be bandwidth. Determine the widest path from node 2 to node 5 using Al-
gorithm 2.8.

Identify networking environments where path caching might be helpful that require
either the shortest path or the widest path computation.

Develop a specialized k-shortest paths algorithm, given that a path cannot consist of
more than two links.

Implement the k-shortest paths algorithm described in Algorithm 2.10.

This page intentionally left blank

Routing Protocols:
Framework and
Principles

There is nothing so annoying as to have two people talking when you're
busy interrupting.

Mark Twain

Reading Guideline

This chapter is organized by topics for each routing protocol family. You may choose
to read each one separately while we do encourage reading both Section 3.1 and
Section 3.2 before doing so. For each routing protocol family, we include a general
discussion followed by a descriptive discussion. Specific details of a protocol are
listed as templates; thus, if you are interested in a general understanding, you may
skip the templates. However, you can study the specifics of a protocol by directly
going into its details in the template format. Certainly, you can get the most out
of a protocol by reading both the descriptive discussion as well as studying the
specifics given in the template format. Notations used in this chapter are closely
related to routing algorithms described in Chapter 2; in particular, you will be able to
see the connection between a protocol message and the mathematical representation
of information.

3.1

CHAPTER 3 Routing Protocols: Framework and Principles 57

In this chapter, we consider three classes of routing protocols: distance vector, link state, and
path vector. We present the basic working of these classes of protocols along with how special
cases are handled, and types of problems a protocol might face in a distributed operating
environment. We also show how routing protocols are related to routing algorithms.

Routing Protocol, Routing Algorithm, and Routing Table

In Chapter 2, we presented two important classes of shortest path routing algorithms, the
Bellman-Ford algorithm and Dijkstra’s algorithm, including their distributed variants. The
role of a routing protocol arises only when we consider a distributed environment. From the
discussion of the distributed algorithms, we can see that for a node to compute the shortest
paths, certain information must be available at that node; the node needs to somehow get this
information from its neighbor or use the neighbor as a conduit to obtain information from
other nodes. At the same time, the node might need to let its neighbors know the information
it has. A major role of a routing protocol is to facilitate this exchange of information in a
standardized manner, sometimes also coupled with routing computation.

From the discussion of the distributed variant of both the Bellman-Ford algorithm and
Dijkstra’s algorithm, we can see that what a node needs to know is different from one algo-
rithm to another to compute the shortest paths. Thus, when we say standardization, we mean
the standardization of information that is applicable within an algorithmic framework where
all nodes conform to this framework. For example, all nodes that conform to computing the
shortest paths using the Bellman—Ford algorithm would need the same type of information;
thus, the exchange of information needs to be standardized around this requirement. Simi-
larly, this is the case for Dijkstra’s algorithm.

When the exchange of information is coupled to a particular algorithm such as the
Bellman-Ford algorithm, it can give the impression that a routing protocol is closely tied to
a specific shortest path route computation algorithm. While the concept of routing protocols
has direct connection to routing algorithms such as the Bellman—Ford algorithm or Dijkstra’s
algorithm, it is also important to distinguish and decouple the basic routing protocol concept
from a specific routing algorithm. Fundamentally, a routing protocol addresses what type of
information a node may need to receive from its neighbors and also may need to pass infor-
mation to its neighbor. In other words, a routing protocol need not necessary worry about
how a node uses this information to compute the shortest paths (or multiple paths), how
often it computes the shortest paths.

At the same time, historically, there has been a close tie between a shortest path algorithm
and a routing protocol, for example, between the Bellman-Ford algorithm and a distance
vector routing protocol, and between Dijkstra’s algorithm and a link state routing protocol.
That is, it is hard to sometimes distinguish and often this leads to confusion. Regardless, it
is best to think about a routing protocol separately from a routing computation algorithm.
As you go through the book, you will find out that there are link state routing protocols that
do not use Dijkstra’s shortest path first algorithm. Similarly, there are distance vector proto-
cols that do not use just the distributed Bellman-Ford algorithm for determining the shortest
paths; additional functionalities are needed. On the other hand, when a specific standardiza-
tion or implementation of a particular protocol concept is considered, an algorithm is often
closely tied to the protocol; for example, consider the Routing Information Protocol (RIP) (see

58 3.1 Routing Protocol, Routing Algorithm, and Routing Table

Section 5.3), which is based on a distance vector protocol concept and uses the distance vector
(“distributed Bellman—Ford”) algorithm for computing the shortest paths; similarly, consider
the Open Shortest Path First (OSPF) protocol (refer to Section 6.2), which is based on the link
state routing protocol concept and uses Dijkstra’s shortest path first routing algorithm. How-
ever, a networking environment enabled to use MPLS or GMPLS (refer to Chapter 18) also
uses OSPF/IS-IS as routing protocols, yet use of Dijkstra’s shortest path first algorithm is not
required. Consider another example, real-time network routing (RTNR), used for dynamic
call routing in the telephone network, RTNR uses a link state protocol while the actual routing
computation is quite different from Dijkstra’s algorithm (refer to Section 10.6). Finally, there
are routing environments where no information exchange is done in order to select/compute
routes; while this may seem odd, there are adaptive algorithms that work (and work well)
without the paradigm of information exchange (see Section 10.5).

ROUTING INFORMATION: PUSH OR PULL

We stated earlier that a routing protocol addresses what type of information a node needs
to receive from its neighbors and to pass information to its neighbors. This brings up an-
other important issue that can best be stated as information push and information pull. Push
refers to a node pushing information to other nodes (usually on a periodic basis), while pull
refers to a node contacting/requesting other nodes to obtain information needed usually for
routing computation, but information can be for other network controls as well (refer to Sec-
tion 11.6). Some routing protocols use the push mode while others use the pull mode, and
yet others use a hybrid push-pull mode. For various routing protocols discussed in this book,
we will identify which mode is used. A routing protocol is also required to handle special
cases, such as when a link or a node fails; in such cases, special messages might need to be
exchanged.

MODES OF COMMUNICATING ROUTING INFORMATION

We next discuss how the routing information exchange is accomplished in a particular net-
work. Essentially, there are two communication modes for exchanging routing information:
in-band and out-of-band. While these two terms are used in a variety of ways in communica-
tion networking, we first clarify the use of these terms as they relate to this book. Specifically,
in-band, in our context, means that the communication network that carries user traffic also
carries routing information exchange; that is, there are mechanisms that allow carrying these
two types of traffic in the same communication network. For example, an in-band mechanism
is used in the Internet since eventually all are IP packets; how this is done in specific instances
of routing protocols has been already discussed briefly in Chapter 1 and will be discussed
later in Part II of this book. Out-of-band, as we use here, means that a completely separate
network or mechanism is used for exchanging routing information from the communication
network where the user traffic is carried. For example, for the circuit-switched telephone net-
work, routing information exchanges are accomplished through an out-of-band mechanism.
A simple analogy might be helpful here. Consider the road network in a large metropolitan
area; here user traffic is motorists driving various automobiles. To indicate congestion, out-
of-band mechanisms are used such as a helicopter to monitor from the sky, reporting to radio
stations, which in turn use their radio frequency to transmit to motorists; thus, motorists, on
listening to a radio station, can make a decision to choose an alternate path. That is, from a

3.2

CHAPTER 3 Routing Protocols: Framework and Principles 59

networking point of view, the control plane and data plane are completely separate in the
out-of-band mode.

ROUTING TABLE AND FORWARDING TABLE

Finally, there is another important component that goes with any routing environment.
It is called the routing table. A routing table at a node provides a lookup entry for each
destination by identifying an outgoing link/interface or a path. A routing table can be
set up with an entry that remains static forever—this is the case when static routing is
used. When dynamic routing is used, and based on exchange of information, a node per-
forms route computation to determine paths to each destination and then creates/updates
a routing table; this can be on a periodic basis or due to an extraordinary event such
as a link failure. Thus, it is important to decouple the need for the routing table from
whether the network employs static or dynamic routing—a routing table is needed in
a communication network whether the mechanism is accomplished statically or dynami-
cally. Typically, two forms of routing table entries are possible: (1) next hop—based or hop-
by-hop routing based, and (2) explicit route based or source routing based. In the case of
next hop-based, a node stores the pointer only to the next node(s) or hop(s) for desti-
nations it is aware of, while in the case of explicit route based, a node stores the en-
tire path to a destination; the second one is sometimes referred to as route pinning. The
originating node then tags the pinned route to a packet for traversal through the nodes
listed in the pinned route; however, this does not rule out the possibility of a node down-
stream replacing a pinned route with its own source route to destination. Next hop—
based routing toward a destination is commonly used in the Internet, although source
routing is an option possible within an intradomain routing protocol such as OSPF or
IS-IS. Routing in the telephone network with progressive call control is also based on
next hop routing, while routing is source-based if originating call control is used (see
Section 10.1).

There is another terminology, forwarding table, often used in place of a routing table. While
at the conceptual level there is no difference between these two terms, there are important dif-
ferences when it comes to implementation at a routing device such as a router; this will be
discussed later in Section 14.1.4. In this chapter, we will consistently use the term routing
table.

Routing Information Representation and Protocol Messages

Several routing information entities will be covered starting in the next section. For consis-
tency, we will follow notations that we have used earlier in Chapter 2. For example, djy refers
to the distance cost (link-cost) on the direct link between node i and node k. Ek]- refers to
the computed cost between node k and j, whether on a direct link or through other nodes
in the network, and 5;{]- refers to the cost between node k and j, as known to node i. Recall
from Chapter 2 that an overbar over uppercase D, as in D, is used in the the Bellman-Ford
algorithm and the distance vector algorithm approach; for consistency, it will be used here
in the discussion of a distance vector routing protocol. A lowercase d with subscript, such
as dj, is used for link-cost from node i to node k in a link state protocol. For a path found
from node i to node j, the immediate next hop of node i will be denoted by Hj;. The list of

3.3

3.3.1

60 3.3 Distance Vector Routing Protocol

neighbors of node i will be denoted by N;. All protocols will be discussed from the point of view of
node .

There are two types of link representation, bidirectional links and unidirectional links;
their usage depends on a routing protocol. A bidirectional link between nodes 1 and 2 will be
denoted by 1-2, while the unidirectional link from node 1 to node 2 will be denoted by 1—2.
Similarly, a bidirectional path between node 1 and node 3 where a link directly connects
node 1 and node 2 and another connects node 2 and node 3 will be denoted by 1-2-3; its
unidirectional counterpart from node 1 to node 3 will be denoted by 1—2— 3. Finally, we will
use another notation for a path when referring to nodes that are in series without referring
to links connecting any two nodes. For example, path (1,2, 3) connects node 1 to node 2 to
node 3 without saying anything about the links in between; in other words, this path notation
does not rule out the possibility that there may be multiple links between between node 1
and 2, or node 2 and 3. In general, we denote a list of paths between nodes i and j by P;;, and
between nodes k and j as known to node i by 7)]’;].; in the second case, we typically assume
that k is a neighbor of node i.

We will use a box around texts to indicate a protocol message such as this one:

. A protocol message will be partitioned by “|” between two different message

entities such as ‘ Message-1 | Message-2 | ... | A general delimiter of information pieces within a
message will be marked by “,” while “;” will be used for special markers of separate infor-
mation within a message, for example, (2,3;3,2,1 | 3,1;1 |

These are the main representations to keep in mind. We will introduce other representa-

tions as we progress through the chapter.

Distance Vector Routing Protocol

In some ways, a distance vector protocol is the oldest routing protocol in practice. Thus, much
has been learned from and about distance vector protocols. In the following, we will start
with the basic concept of a distance vector protocol, followed by issues faced and how they
are addressed, leading to identifying factors in the design of recent distance vector protocols.
It is important to read the following with a general view of what a generic distance vector
protocol is and should/can be, rather than to tie in to a specific instance of a distance vector
protocol such as RIP (see Section 5.3). In other words, limitations of a specific instance of a
distance vector protocol should not be confused with limitations of the concept of a distance
vector protocol in general.

Conceptual Framework and Illustration

In Chapter 2, we presented the distance vector routing algorithm (see Algorithm 2.2). It tells
us that a node, say node i, needs to know the distance or cost from its neighbors to a desti-
nation, say node j, to determine the shortest path to node j. Since node i can have multiple
neighbors, it is preferable to know the distance from all its neighbors to node j so that node i
can compare and determine the shortest path. The basic information exchange aspect about
a distance vector protocol is that a node needs the distance cost information from each of its
neighbors for all destinations; this way, it can compare and determine the shortest paths to
all destinations. This means that our discussion about a distance vector protocol is strongly

CHAPTER 3 Routing Protocols: Framework and Principles 61

tied to the distance vector routing algorithm (Algorithm 2.2), but keep in mind that it is not
necessary to do so in general.

The main operation of a distance vector protocol needs to address dissemination and
reception of information. Thus, we start with the basic operation of a distance vector protocol
from the point of view of a node as shown in Figure 3.1. We clarify a few aspects about the
protocol description:

e The protocol does not need to know ahead of time how many nodes are in the network; in
other words, through the information received periodically that may contain a new node
information, the receiving node can update the list of destination nodes.

e Actual numbering of a node can be done through some addressing scheme outside the
protocol (for example, IP addressing with RIP).

e For each destination j (from node i), the protocol maintains/updates the next hop, to be
denoted as H;;.

e With the arrival of a distance vector message from a neighbor £, the protocol updates the
cost to a destination if the currently stored next hop for this destination is also k.

e Steps indicated are not necessarily in any specific order (except for initialization).

e There is possibly a time wait between steps and within substeps of a step.

We will now illustrate the basic working of a distance vector protocol through the six-
node network discussed earlier in Chapter 2. We reproduce the topology (along with link
cost information) in Figure 3.2 for ease of reference. Since we do not consider time-dependent
distance cost, we will ignore time parameter ¢, i.e., we will use dj; and 5,7, instead of dj (¢)
and D;;(1), respectively. Recall that d refers to the link cost on the link i-k connecting node
i to node k, while 5,-/- refers to the cost between node i and j. Consider that node 1 wants
to compute the shortest paths to all its destinations. It needs to receive cost information
from its neighbor nodes 2 and 4. Assuming for now that node 2 knows the best information
(somehow), it is easy to see that node 2 needs to transmit the following protocol message to
node 1:

Note that the first subscript with D is the node generating this distance vector infor-
mation (2 in this case), while the second subscript indicates the destination for which this
distance cost is provided. Since the first subscript is common, it can be ignored as long as the
receiving node knows who it is coming from. The second subscript is the most relevant iden-
tifier that indicates the destination. Obviously, a routing protocol exchange message cannot
understand or indicate a subscript as we can do with a notation in describing the protocol!
Thus, the message format, shown above, looks more like the following where the destination
j is identified first with a node number followed by the distance cost D, which is repeated for
every j:

62 3.3 Distance Vector Routing Protocol

Initialize:

- Node is configured with a unique node ID, say i

- Node i’s distance vector to itself is set to zero, i.e., D;; =0

- Initialize module that determines the link cost to its directly connected neighbor (either manually or based
on measurements), i.e., d;; for all neighbors k, and set the routing table entry to indicate the next hop for k
as k itself, i.e., Hy, =k

Transmit mode:

- Transmit the most recently computed cost (distance) for all known destination nodes to all its neighbors k
on a periodic basis

Receive mode:

- Node i receives a distance vector from its neighbor k
a. If the distance vector contains a new destination node j, then a new node entry in the routing table is
created and set Dy = 00

b. The distance vector 52/ for each destination node j received from neighbor k at node i is temporarily
stored
c. If the currently stored next hop for a destination j is the same as k itself, then update the distance cost for
this destination, i.e.,
If (Hjj=k)then //ifnexthopisk
Djj =dj + Di;
Endif
- Route Computation
For each destination j: // shortest path computation
For all neighbors k (or, the last received neighbor k)
Compute temp = dj + 5;(]4
If (temp < 51‘/) then
51-]- =temp // update the new cost
Hjj=k //update next hop in the routing table
Endif
Special Cases:
- If for any neighbor k, link i-k goes down, then
Set dj = o0
If Hij =k, then BU =00
Broadcast a distance vector to each neighbor
Endif
- Iffor any neighbor k, link i-k is up again, then
Update dj, (fixed or dynamic)
Broadcast a distance vector to each neighbor
Endif

FIGURE 3.1 Distance vector protocol (node i’s view): basic framework.

Based on the above message information, we can also see that the term distance vector then
refers to the vector of distance or direction. This is communicated through the above message
to a neighbor so that the neighbor can determine its best distance to a destination.

While it looks odd to include information about cost to node 1 itself in such a message,
this is indeed the case in the basic or naive distance vector protocol since node 2 does not dif-
ferentiate who its neighbors are when disseminating such information. Upon receiving this
information, node 1 will add its cost to this neighbor (1 in this case) for each destination sep-
arately to compare and determine the best cost to every destination. Assuming that until this
instant, node 1 does not know the cost to any destination (except itself), it will then compare
and update the cost (see Eq. (2.2.4b) in Chapter 2) really for itself resulting in no improve-

CHAPTER 3 Routing Protocols: Framework and Principles 63

ment; it also computes cost to all other destinations based on the information received and
creates entries in its routing table, and tracks the outgoing link identifier. Thus, the routing
table at node 1 is as given in Table 3.1.

Now compare Table 3.1 and the topology given in Figure 3.2; it is clear that for node 4
as destination, the entry is not optimal. This means that at this point, to route to node 4,
node 1 will send to node 2 hoping that node 2 knows how to get to node 4. In fact, the
routing table will stay in the above form as long as node 1 does not hear updated distance
vector information from node 4 directly (to which it is also connected). In other words, a node
actually never knows if it has the optimal cost as well as the best outgoing link identified for
each destination (i.e., it is only the network administrator who can do optimal route analysis
based on measurements). A node assumes that its neighbor is giving the correct distance
vector information all the time. Furthermore, a node may or may not know if it has the view
of the entire list of active nodes.

Now suppose that sometime after the above update, node 1 receives a distance vector
from node 4 as given below:

FIGURE 3.2 Six-node, ten-link network example (the entry shown next to a link is the
cost of the link).

TABLE 3.1 Routing table information at

node 1 (after receiving distance vector from
node 2).

Destination Node | Cost | Outgoing Link

1 0 local
2 1 1-2
3 3 1-2
4 2 1-2
5 4 1-2
6 4 1-2

64 3.3 Distance Vector Routing Protocol

Upon receiving this information, node 1 performs an updated computation as shown in Ta-
ble 3.2. You may note that this computation, marked as action-6 in Figure 3.1, is the same
as Eq. (2.2.4b) in Algorithm 2.2; here, d14(¢) = 1, and node 1 receives 54]~(t),j =1,2,...,6as
the distance vector message described above. The basic difference in the computation is that
while the Bellman-Ford algorithm does not explicitly state that the outgoing link should be
tracked, a distance vector routing protocol usually tracks this information for the purpose of
creating/updating the routing table.

While it may not be apparent from the discussion so far, we learn the following lessons
in regard to how timing (and timers) influences a routing protocol (see also Figure 3.3):

o The order of information as received matters: In the example discussed so far, we started by
assuming that node 1 receives a distance vector from node 2 first before receiving a distance
vector from node 4. Had node 1 received a distance vector from node 4 first, the entire
routing table in the first round would have been different.

o How often the distance vector information is disseminated matters: Assume for the sake of ar-
gument that a distance vector is disseminated by node 2 every minute while node 4 does
it every 10 min. Clearly, this would make a difference to node 1 in terms of how quickly it
would be able to arrive at the best routing table.

o The instant when a node broadcasts the distance vector (after an event) matters: It is important to
distinguish this item from the previous item. While the previous item discusses periodicity
of the update interval, this one refers to whether a node should trigger an immediate
update after a major event such as a failure of a link connected to it.

o The instant when a routing computation is performed matters: Suppose a node receives a dis-
tance vector from a neighbor every 2 min while it performs the route computation every
3 min. Certainly, these update cycles have an impact on obtaining the best route in a timely
manner.

TABLE 3.2 Cost and routing able updating at node 1 (after receiving distance
vector from node 4).

Destination | Current | New Possible | Updated Cost | Update Outgoing
Node Cost Cost (Update?) Link (If Any)
1 0 1+1 0 (No) local
2 1 1+1 1 (No) 1-2
3 3 1+1 2 (Yes) 1-4
4 2 1+0 1 (Yes) 1-4
5 4 1+2 3 (Yes) 1-4
6 4 1+2 3 (Yes) 1-4

CHAPTER 3 Routing Protocols: Framework and Principles 65

Node 1 Node 2

Distance Vector

Distance Vector ‘/

| Update Received
Distance Vector
v | Update Received |
Route
Time . Computation !
. Route
: . Computation
: v
. Routing
! J
E Routing
- | Table Update
L]
H Distance Vector
: | UpdateSent | v
E Distance Vector
H . UpdateSent
\J

Distance Vector

FIGURE 3.3 Time line of different activities at two different nodes.

e The instant when the routing table is updated matters: Suppose a node waits another 30 sec af-
ter performing a route computation before updating the routing table. This would impact
the flow of user data.

An important corollary of the above discussion is that time (and timers) matter when it
comes to a routing protocol, and that a routing environment encounters a transient period
during which different nodes may have different views of the network; this is the root cause
of many undesirable problems, which are discussed next. While common sense indicates
that extended gaps between events as highlighted in Figure 3.3 are probably not necessary,
it is important to understand what can happen if they do exist. This is explored in the next
section.

3.3.2

66 3.3 Distance Vector Routing Protocol

Why Timers Matter

An important issue with any routing protocol is convergence; convergence refers to the same
view arrived at by all nodes in a network from an inconsistent view, which may have resulted
due to a failure or a cost change. Depending on how often the timers are activated, the con-
vergence of a distance vector routing protocol can be delayed. We will discuss several aspects
of this. There are some undesirable behaviors we will now highlight.

SLOW CONVERGENCE

Consider again Figure 3.2, but this time only with a partial view where we consider four
nodes being activated at the same time: node 1, node 2, node 3, and node 6 (see Figure 3.4).
We assume that nodes 4 and 5 are not activated yet; thus, nodes 1, 2, 3, and 6 form a linear
network with a link connecting the adjacent nodes in the given order; also note that the link
cost is 1 for every link in this linear network except for link 2-3 which has cost 2.

Suppose that at time ¢ = 0 sec, when all four routers come alive simultaneously, they
broadcast their presence to their neighbors, and then wait for 60 sec before doing another dis-
tance vector message. We assume that immediately after receiving a distance vector message,
a node invokes the shortest path computation step and updates the routing table—for sim-
plicity, we assume that this step takes 1 sec. We show below routing tables at various nodes
as time passes (the destination node is labeled as D-node and the outgoing link is labeled as

O-link):

Time: t= 0 sec: Nodes 1, 2, 3, and 6 are activated and the initial distance vector broadcast is sent.
Time: t=1 sec: Routing tables at different nodes:

Node 1: Node 2: Node 3: Node 6:
D-node | Cost | O-link D-node | Cost | O-link D-node | Cost | O-link D-node | Cost | O-link
1 0 local 1 1 2-1 2 2 3-2 3 1 6-3
2 1 1-2 2 0 local 3 0 local 6 0 local
3 2 2-3 6 1 3-6
Time: t= 60 sec: Distance vector broadcast.
Time: t= 61 sec: Routing tables at different nodes:
Node 1: Node 2: Node 3: Node 6:
D-node | Cost | O-link D-node | Cost | O-link D-node | Cost | O-link D-node | Cost | O-link
1 0 local 1 1 2-1 1 3 3-2 2 3 6-3
2 1 1-2 2 0 local 2 2 3-2 3 1 6-3
3 3 1-2 3 2 2-3 3 0 local 6 0 local
6 3 2-3 6 1 3-6
Time: t= 120 sec: Distance vector broadcast.
Time: t= 121 sec: Routing tables at different nodes:
Node 1: Node 2: Node 3: Node 6:
D-node | Cost | O-link D-node | Cost | O-link D-node | Cost | O-link D-node | Cost | O-link
1 0 local 1 1 2-1 1 3 3-2 1 4 6-3
2 1 1-2 2 0 local 2 2 3-2 2 3 6-3
3 3 1-2 3 2 2-3 3 0 local 3 1 6-3
6 4 1-2 6 3 2-3 6 1 3-6 6 0 local

CHAPTER 3 Routing Protocols: Framework and Principles 67

—0—0—0O

FIGURE 3.4 A four-node linear network.

From the above sequence of tables, we see that at different point of time, different nodes
have different views of the network, including partial views. It is easy to see that all routing
tables do not converge until =121 sec.

ROUTING LooOPS

A major problem with a distance vector protocol is that it can cause routing loops; this refers
to a scenario in which a node’s routing table points to the next hop, which in turn points to
another hop and so on, and eventually the last node points back to the original node. In this
situation, user traffic will go in a circular manner unless some mechanism is introduced to
halt it. Looping can occur, for example, when a link fails. To illustrate, we first assume that
the routing given in Figure 3.2 has fully converged. We first list below the sequence of events
that occurs as viewed at node 2 and node 3:

time, fy —converged state; a routing computation performed for all destinations.

time, f; —nodes 2 and 3 update their respective routing tables (based on the result of
routing computation at time fy).

time, t, —link 3-6 fails.

time, 3 —node 3 updates its routing table entry for destination node 6 by listing cost
as oo.

time, t4 —node 2 sends distance vector to node 3.

time, 5 —nodes 2 and 3 both perform a routing computation for all destinations.

time, f¢ —nodes 2 and 3 update their respective routing tables.

We now elaborate what is happening at some of these time instances. At time ¢, the
routing table entries at node 2 and node 3 for destination node 6 are as follows:

Atnode 2: Atnode 3:
Destination Node Cost | Outgoing Link Destination Node Cost Outgoing Link
6 3 2-3 6 1 3-6

Then, at time #3, the routing table entry at node 3 for destination node 6 becomes:

Destination Node Cost Outgoing Link
6) 3-6

At time #4, node 3 receives the following distance vector message from node 2:

68 3.3 Distance Vector Routing Protocol

In particular, note that node 3 receives node 2’s cost to destination node 6 as 3. At time 5,
both node 2 and node 3 perform a routing computation. Since node 2 has not received any
distance vector, there is no change at node 2; thus, there is no change in the routing ta-
ble entry either. For clarity, we show the routing table at node 2 for destination nodes 3
and 6:

Destination Node Cost Outgoing Link
3 2 2-3
6 3 2-3

On the other hand, for node 3 the following update occurs:

Destination | Current | New Possible | Updated Cost | Update Outgoing
Node Cost Cost (update?) Link (if any)

6 o0 1+3 4 (yes) 3-2

This results in node 3 pointing to node 2 for destination node 6. Thus, if user traffic now
arrives at node 2 destined for node 6, node 2’s routing table will send the packet on the out-
going link 2-3; on receiving this packet, node 3 looks up the routing table entry for destination
node 6, and ships the user traffic on 3-2 to node 2! Thus, these data will keep looping back
and forth between nodes 2 and node 3 forever unless the network provides a way to stop this
through some other mechanism such as a time-to-live parameter. This looping effect is also
called the bouncing effect.

COUNTING TO INFINITY

Counting to infinity is another problem faced with a distance vector protocol. Consider again
Figure 3.2 and assume that routing tables have converged at all nodes. We will now consider
the consequence of two-link failures in term of the following time line:

time, { —node 4 sends distance vector to node 5.

time, t, —links 3-6 and 5-6 both fail.

time, 13 —node 5 informs node 4 (and node 3) that its cost to node 6 is oco.
—node 3 informs node 4 (and node 5) that its cost to node 6 is co.

time, t4 —mnode 4 performs a shortest path computation.

time, 5 —node 4 receives a distance vector from node 1 indicating that its cost to
node 6 is 3 (i.e., node 1 has not learned about the failures yet).

time, s —mnode 4 performs a shortest path computation again.

time, t; —node 4 sends its distance vector to node 5 and node 3 (and others).

time, g —mnode 3 updates their routing tables based on information from node 4.

Now, we walk through the details at each time event. At time ¢, node 4 has the following
routing table:

CHAPTER 3 Routing Protocols: Framework and Principles 69

Destination Node Cost Outgoing Link
1 1 4-1
4-2
4-3
local
4-5
4-3

N Gl = W DN
N N O = =

and broadcasts the following distance vector:

| j=1.D=1 ‘j:Z,ﬁ:l ‘j:3,5:1 j=4D=0|j=5D=2 | j=6D=2

The link failures occur at time t; thus, node 5 sets the cost to node 6 as oo since link 5-6 is the
outgoing link for this destination. At time #3, node 5 broadcasts the following distance vector
to node 4 (and node 3):

| j=1D=3 | j=2.D=3 ‘j:3,5:1 ‘j:4,5:2 ‘ j=5.D=0 | j=6,D=00 ‘

while node 3 broadcasts the following distance vector to node 4 (and node 5):

| j=1.D=2|j=2D=2|j=3D=0|j=4D=1|j=5D=1]j=6D=c |

At time #4 and after receiving the above distance vectors from node 3 and node 5, node 4
performs a shortest path computation. In particular, consider the case of destination node 6;
since node 3 reports the cost to node 6 to be co and node 3 happens to be the next hop for
node 4 in regard to destination node 6, node 4 updates its cost to co for destination node 6 as
required by the protocol.

At node 4, a new distance vector from node 1 is received at time 5 that reports that the
best cost to destination node 6 is 3. At time f5, node 4 performs the shortest path computation
again; for destination 6, node 4 notices that

Destination | Current | New Possible | Updated Cost | Update Outgoing
Node Cost Cost (update?) Link (if any)

6 00 1+3 4 (Yes) 4-1

and, thus, updates the routing table entry for destination node 6. This is, in fact, the start of
the main trouble. Next at time 7, node 4 send the following distance vector message to node 3
and node 5:

j=1.D=1 | j=2.D=1 ‘j:3,5:3 ‘j:4,5:0 ‘ j=5D=2 | j=6.D=4

On receiving this message, node 3 notices node 6 is reachable via node 4 and the cost to be 4;
thus, node 3 updates its cost to 5(= 1 + 4). It then sends the distance vector to node 4 with
this cost. Thus, it will continue on in the following cycle (assuming cost to be x, to start with):

3.3.3

70 3.3 Distance Vector Routing Protocol

e Node 4 sends a distance vector to node 3 with cost for destination node 6 as x

e Node 3 computes the distance to node 6 as x + 1

e Node 3 sends a distance vector to node 4 with cost for destination node 6 as x + 1
e Node 4 updates its cost tonode 6asx +2=(1+x+1)

e Node 4 sends a distance vector to node 3 with cost for destination node 6 as x + 2

until at node 4, the cost to node 6 is more than 15 (which is the direct cost to node 6 on link
4-6). Incidentally, all this time, node 4 knew about the direct link with cost 15 but ignored it,
mistakenly assuming that there is a path through node 3 that is cheaper.

As you can see, due to periodic update, it will take several rounds before recognizing
about the high cost path. This phenomenon is known as counting to infinity.

Solutions

In this section, we discuss a set of solutions to the issues discussed above.

SPLIT HORIZON AND SPLIT HORIZON WITH POISONED REVERSE

We have seen from previous illustrations that when a node transmits a distance vector up-
date, it sends information about all nodes of which it is aware; it also includes information
about itself as well as about the node to which this distance vector is sent. We also saw that
this actually led to providing a false indication when a failure occurs, thus causing behavior
such as the count to infinity. Split horizon is a technique that can help speed up convergence
and can also solve the count to infinity problem in some instances. The basic idea of split
horizon is quite simple: when transmitting a distance vector update on an outgoing link,
send updates only for nodes for which this link is not on its routing table as the outgoing link.

To illustrate split horizon, consider node 4 in Figure 3.2. When fully converged, it will
have the following values about cost to various destinations and the entry of the outgoing
link in the routing table:

Destination Node Cost | Outgoing Link
1 1 4-1
2 1 4-2
3 1 4-3
4 0 local
5 2 4-5
6 2 4-3

The basic distance vector protocol tells us to advertise the following;:

‘ j=1,D=1 |j=2,5=1 ’j=3,5=1 ‘,’:4,5:0 ‘ j=5D=2|j=6D=2

With split horizon, node 4 will send the following distance vector to node 3

‘ j=1.D=1 |j:2,5:1 ‘j:4,5:0 ‘ j=5D=2 ‘

CHAPTER 3 Routing Protocols: Framework and Principles 71

since nodes 3 and 6 have link 4-3 as the outgoing link for these nodes. However, node 4 will
send the following distance vector to node 5 instead:

j=1.D=1|j=2D=1 | j=3,D=1 | j=4,D=0 j:6,b:2|

From the above example, we note that a node may generate different distance vector updates
depending on the outgoing link.

It can also be argued that 10 news is not necessarily always good news. There is, however,
another variation of split horizon, called the split horizon with poisoned reverse, where news
about all nodes is provided. In this case, the ones accessible on the outgoing link are marked
as co. Thus, node 4 will send the following distance vector to node 3:

j=1,D=1|j=2,D=1| j=3,D=oco | j=4,D=0 | j=5,D=2 | j=6,D=o00

This essentially says that it is good to transmit bad news as well. Split horizon with poisoned re-
verse is more aggressive than split horizon and can stop looping between two adjacent nodes.
Consider Figure 3.2 again. Suppose that node 4 incorrectly believes that it can reach node 1
via node 2—this can happen, for example, due to corrupted information. For the case of split
horizon, node 3 would not indicate that it cannot reach node 1. On the other hand, for the
case of split horizon with poisoned inverse, node 3 would indicate to node 4 that node 1 is
unreachable—this then lets node 4 correct its misconception that there is a path to node 1 via
node 2, and can avoid looping back and forth.

TIMER ADJUSTMENT (JITTER)

In discussing various examples, we have deliberately injected a time gap between different
events in a distance vector protocol. Certainly, common sense would tell us that such time
gaps are not necessary; moreover, such gaps can cause unnecessary problems during a tran-
sient period. Thus, the following are good steps to take in a distance vector protocol:

e Once the shortest path is computed by a node, it immediately updates the routing table—
there is no reason to inject a time gap.

e When an outgoing link is found to be down, the routing table is immediately updated
with an infinite cost for the destinations that would have used this link as the outgoing
link, and a distance vector is generated to other outgoing links to communicate explicitly
about nodes that are not reachable.

e As part of normal operations, it is a good idea to periodically send a distance vector to
neighbors, even if the cost has not changed. This helps the neighbor to recognize/realize
that its neighbor is not down.

e If a routing environment uses an unreliable delivery mechanism for dissemination of the
distance vector information, then, besides the periodic update timer (“Keep-alive” timer),
an additional timer called a holddown timer is also used. Typically, the holddown timer has
a value several times the value of the periodic update timer. This way, even if a periodic
update is sent and a neighboring node does not hear it, for example, due to packet corrup-
tion or packet loss, the node would not immediately assume that the node is unreachable;

72

3.3 Distance Vector Routing Protocol

it would instead wait till the holddown timer expires before updating the routing table
(for more discussion, see Section 5.3 about Routing Information Protocol (RIP)—a proto-
col that uses unreliable delivery mechanism for routing information).

If a routing environment uses a reliable delivery mechanism for dissemination of the dis-
tance vector information, the holddown timer does not appear to be necessary (in addition
to the periodic update timer). However, the holddown timer can still play a critical role,
for example, when a node’s CPU is busy and cannot generate the periodic update mes-
sages within its timer window. Instead of assuming that it did not receive the periodic
update because its neighbor is down, it can wait till the holddown timer expires. Thus, for
such situations, the holddown timer helps to avoid unnecessary destabilization.

The count to infinity situation was aggravated partly because one of the critical links had
a much higher cost than the other links. Thus, in a routing environment running a dis-
tance vector protocol, it is often recommended that link costs be of comparable value and
certainly should not be different in orders of magnitude.

From the illustrations, it is clear that while the periodic update is a good idea, certain up-
dates should be communicated as soon as possible; for example, when a node is activated,
when a link goes down, or when a link comes up. In general, if the cost of a link changes
significantly, it is a good idea to generate a distance vector update immediately, often re-
ferred to as the triggered update. This would then lead to faster convergence; furthermore,
the count to infinity problem can be minimized (although it cannot be completely ruled
out).

If the cost on a link changes and then it changes back again very quickly, this would re-
sult in two triggered updates that can lead to other nodes updating their routing tables
and then reverting back to the old tables. This type of oscillatory behavior is not desir-
able. Thus, to avoid such frequent oscillations, it is often recommended that there be a
minimum time interval (holddown timer) between two consecutive updates. This certainly
stops it from updating new information as quickly as possible and dampens convergence;
but, at the same time, this also helps in stopping the spread of bad information too quickly.

There is another effect possible with a distance vector protocol. Nodes are set up to send
distance vector updates on a periodic basis, as mentioned earlier. Now, consider a node
that is directly connected to 10 other nodes. Then, this node will be sending a distance
vector on 10 outgoing links and at the same time it will be receiving from all of them. This
situation can lead to congestion at the node including CPU overload. Thus, it is preferable
that periodic updates from different nodes in a network be asynchronous. To avoid syn-
chronous operations, instead of updating on expiration of an exact update time, a node
computes the update time as a random amount around a mean value. For example, sup-
pose that the average update time is 1 min; thus, an update time can be chosen randomly
from a uniform distribution with 1 min as the average + 10 sec. This way, the likelihood
of advertising at the same time by different routers can be reduced.

The last item requires a bit of clarification. It is not hard to see that even if all the routers

are set to start at a random start time and are independent events, all nodes eventually can
synchronize in terms of update time, especially due to triggered update. This phenomenon

CHAPTER 3 Routing Protocols: Framework and Principles 73

is known as the pendulum effect [228] —the name stems from physics where you can start
two independent pendulums physically close to each other with different swing cycles that
eventually have synchronized swing cycles. Injection of random timer adjustment on the
update time helps avoid the pendulum effect; however, the variation should be set to a large
value to avoid synchronization. Note that this randomization is used for any subsequent
update; certainly, if there is a failure, the triggered update still be generated.

From the illustrations and the above comments, it is also important to recognize that
while a routing protocol needs a variety of timers, the actual value of the timers should not
be rigidly defined as a part of the protocol description. In certain older routing protocols,
values of timers were rigidly defined (see Section 5.3). Since then, we have learned enough
to know that it is important to leave the rigid values out of the protocol; instead, include
threshold values and range, and let the operational environment determine what are good
values to use in practice. Needless to say, the timer values need to be chosen very carefully.
A similar comment is also applicable to the link cost update timers; we will discuss this later
in Section 3.6 and in subsequent chapters.

DISTANCE VECTOR MESSAGE CONTENT

The distance vector message discussed so far includes a distance cost for each destination
node; there are some variations as to the value of the cost and/or which node should or
should not be included in a distance vector broadcast, for example, to address for split hori-
zon. It is, however, important to realize that perhaps additional attributes should be included
with a distance vector message.

A simple first extension is to include next hop with a distance vector update for each
destination as follows:

Destination Node,
Next Hop,
Distance D

It may be noted that if the next hop information is included, a node on receiving a distance
vector from a neighbor has the ability to determine if the next hop for its neighbor goes
through itself. Thus, what we were trying to accomplish by split horizon can be essentially
accomplished by having this additional information. Note that this does not help solve the
looping problem; it only helps to identify a possible loop and to stop doing a mistaken short-
est path computation and avoid forwarding user traffic.

Another important aspect to consider is the type of event. If it is a link failure, or if the
link cost has changed significantly, this is an important event compared to a normal periodic
update. Thus, for example, for each distance, we may identify whether this is a normal pe-
riodic update, or a special update due to an event; this will then allow the receiving node a
differential, based on which it may take different actions. Furthermore, a sequence number
may be included that is incremented each time a new update is generated. Thus, a possible
format for each destination may be as follows:

3.34

3.3.5

74 3.3 Distance Vector Routing Protocol

Destination Node,

Distance Vector Sequence Number,
Normal Periodic Update or Special Event Indicator,
Next Hop,

Distance D

Note that we have added a new field: Normal periodic update or special event indicator.
It may be noted that if a distance cost is infinite, this may implicitly mean that an unusual
event has occurred. On the other hand, a node may explicitly request information from its
neighbor; for this case, it would be necessary to indicate this. Thus, the above format has
some additional benefit. As an example, a distance vector message will have the following
format:

j=1, Sequence Number = 1, Update=normal, Next Hop =7, D=3

j =2, Sequence Number = 1, Update=normal, Next Hop =7, D=2

Alternately, the sequence number may be done at a level of the message boundary (instead
of for each distance direction), especially if the distance vector message is done for all nodes
instead of a partial list of nodes.

Can We Avoid Loops?

So far, we have discussed a distance vector protocol and ways to circumvent a variety of
issues faced in its operation. There is, however, one critical aspect that none of the mech-
anisms discussed so far can address adequately—the looping problem. In some ways, we
could say that looping is the most serious problem since user packets will bounce back and
forth between two (or more) nodes. Thus, an important question is: can looping be com-
pletely avoided in a distance vector protocol? To answer this question, we first need to un-
derstand the source of looping. On close scrutiny, you will note that the looping is induced by
the Bellman—Ford computation in a distributed environment and it occurs when a link fails.
In fact, looping can occur when the link cost increases also; incidentally, link failure can be
thought of as a special case of increases in link cost (when link cost is set to co0). You might
wonder: what about a link cost decrease? This case is actually not a problem since Bellman—
Ford can be applied as before.

To address loop-free routing for the case in which a link fails or its link cost increases,
some extra work is required. Briefly, if the distance vector broadcast contains certain ad-
ditional information beyond just the distance, and additionally, route computation is per-
formed through inter-nodal coordination between a node and its neighbors, then looping can
be avoided; this is considered in the next section.

Distance Vector Protocol Based on Diffusing Computation with
Coordinated Update

The most well-known scheme that accomplishes loop-free routing in a distance vector proto-
col framework is the diffusing computation with coordinated update approach [244], [245],

CHAPTER 3 Routing Protocols: Framework and Principles 75

that incorporates the concept of diffusing computation [179] and the coordinated update ap-
proach [336]; this approach has been implemented in Enhanced Interior Gateway Routing
Protocol (EIGRP) (see Section 5.6) and is known as the Diffusing Update Algorithm (DUAL).
To identify that this approach is still built on the notion of a distance vector protocol frame-
work, we will refer to this approach simply as the loop-free distance vector protocol, while we
will refer to the original distance vector protocol discussed earlier as the basic distance vector
protocol.

We start with three important assumptions for the loop-free approach: (1) within a finite
time, a node must be able to determine the existence of a new neighbor or if the connectivity to
a neighbor is lost, (2) distance vector updates are performed reliably, and (3) message events
are processed one at a time, be it an update or a link failure message or a message about new
neighbors being discovered.

It may be noted that the basic distance vector protocol does not explicitly address the
first assumption. This assumption helps to build adjacency with neighbors in a finite time
and is now a common feature in other, more recent routing protocols as well. The second as-
sumption was also not addressed in the basic distance vector protocol—we have noted earlier
that the lack of this functionality heavily affects convergence time and in the determination
of whether a link has gone down. The third assumption is specifically about workings of
diffusing computation with coordinated update.

The basic distance vector protocol has only a single message type, which is the dis-
tance vector update. However, the loop-free approach has multiple different message types:
(1) hello—used in neighbor discovery, (2) ack—acknowledgment of a hello message, (3) up-
date—for distance vector update, (4) query—for querying a neighbor for specific information,
and (5) reply—for response to a query. Given the first assumption, you can clearly see the
need for hello/ack messages. In the case of the loop-free distance vector (DV) protocol, up-
date messages are not periodic, unlike the basic distance vector protocol, and can contain
partial information. Query reply messages help in accomplishing loop-free routing and are
used for coordination. This is also a good time to bring up information push and informa-
tion pull in regard to protocol exchanges, as discussed earlier in Section 3.1. While the basic
distance vector protocol operates in an information push mode, the loop-free distance vector
protocol employs both the push mode for updates and the pull mode when hello or query are
generated.

To execute the loop-free distance vector protocol, each node i maintains the following
information:

o A list of neighboring/adjacent nodes, represented by N;.

e A network node table that includes every node j in the network along with the following
information:

— Lowest feasible distance to node j (represented as Eij).

— Alist of feasible next hops k—this means that a sublist N ;j) of neighbors, ;, for which
the distance from such a neighbor (as known to i) is smaller than its own distance to j;

this means that 5;(]- <Dj,.

— Feasible next hop’s advertised distance (i.e., 5;.(]- for k € Njy).

76 3.3 Distance Vector Routing Protocol

2

FIGURE 3.5 Six-node, nine-link network example.

— Distance through all feasible neighbors (“working distance”) determined as D ij=dix+
E;Cj fork e Ni]'.
— Active or passive states (more discussion later).

e A routing table that contains the next hop, H;j, for which i has the lowest feasible distance
for node j. If there are multiple next hops that have the same lowest feasible distance, then
they are all entered in the routing table. There are two benefits to having suchentries in
the routing table: (1) user traffic can be distributed among equal cost paths, and (2) if one
link goes down, then there is a second one readily available to carry user traffic.

Given the information maintained by node i, it can generate a distance vector message
that has the following components:

| Destination Node, Message Type, Next Hop, Distance |

It is important to note that in loop-free distance vector protocol, distance vector updates
are not periodic and also need not contain the distance for all destinations; furthermore,
through message type, it can be indicated whether a message is an update message or other-
wise.

Example 3.1 [llustration of a network node table and message type.

Consider the six-node network that we have discussed earlier; this time with link 4-6
deleted; the new topology is shown in Figure 3.5.

Here, we will consider node 5’s view; thus, i = 5. It has three neighboring nodes 3, 4,
and 6. Thus, N5 = {3, 4, 6}. We will illustrate the node table and routing table for destination
node 6. The shortest distance for node 5 to reach node 6 is the direct link 5-6 with cost 1. Thus,
the lowest feasible distance is Dsg = 1. Consider the distance cost of its other neighbors to

node 6; we see that 526 =1land 54516 =2, and that none is lower than its distance (Dss = 1) to
node 6, except node 6 itself. Thus, the only feasible next hop is node 6 itself; thus, Nsg = {6).

CHAPTER 3 Routing Protocols: Framework and Principles 77

. , . . . =5 . .
It also stores feasible next hop’s advertised distance, i.e., Dgs = 0, and its current distance

through them, i.e., Dsg = dse + 526 = 1. Certainly, there is no difference here between this and
the lowest feasible distance since there is only one feasible next hop for destination node 6.
The next hop in the routing table for destination node 6 has one entry: Hs¢ = 6.

The node table and routing table for all destinations are summarized below:

Network node table at node i =5

Destination | Distance | Feasible Next Hop | Advertised | Working Distance State:
j 1-_)5]‘ keN sj Distance, Eij st =ds; + 1-_)2]‘ Active (1)/Passive (0)
1 3 4 1 3 0
2 3 3,4 2,1 3,3 0
3 1 3 0 1 0
4 2 4,3 0,1 2,2 0
5 0 5 0 0 0
6 1 6 0 1 0

Routing table at Node i = 5:

Destination, j | Next Hop, H;;
1 3
2 3,4
3 3
4 4,3
5 0
6 6

A distance vector update message generated at node 5 in regard to destination node 6 will
be in the following form . For brevity, we will write this as , where U
stands for update (similarly, Q stands for query, R for reply, and so on). A

Now consider the operation of the loop-free distance vector protocol. Recall that in the
case of the basic distance vector protocol, a node does route computation using distributed
Bellman-Ford and then updates the routing table. In the case of the loop-free distance vec-
tor protocol, route computation is a bit different depending on the situation; furthermore,
there are three additional aspects that need to be addressed: building of the neighbor table,
node discovery and creating entry in the network node table, and coordination activity when
link cost changes or link fails. Building of the neighbor table typically occurs when a node is
first activated; this is where hello messages are sent to neighbor—once an ack message is re-
ceived in response, the neighbor relationship is set up. It is important to note that hello is also
periodically transmitted to determine/maintain availability and connectivity to a neighbor-
ing node. Typically, node discovery occurs immediately after the initial /ello message when
the neighboring node sends a distance vector update to the newly activated node. Since the
newly activated node may be connected to multiple nodes, it will do such an exchange with
each of the neighbors; furthermore, it will do its own route computation and send an update
message to its neighbors. For message exchange once a node is activated, there is a series of
exchanges involved (see Figure 3.6).

78 3.3 Distance Vector Routing Protocol

Node i Node k
MNode is activated
B S
Hello, ACK

o Eem

Full) With Split Horizon
Time Update (Fu

Update, Ack

Uﬁatg Node
Upda te

\b

Update, ACK

FIGURE 3.6 Protocol message exchanges when a node is activated.

A node performs various tasks depending on an event; primarily, a node provides up-
dates under normal situations and coordinates activities when an event such as a link going
down occurs. To do that, a node is required to maintain two states: passive (0) and active (1).
When it is passive, it can receive or send normal distance vector updates. A node moves to an
active state for a specific destination when, for example, a link failure occurs. When it is in an
active state, node table entries are frozen. Note that when it is in an active state, a node gen-
erates the request message instead of the update message and keeps track of which requests
are outstanding; it moves to the passive state when responses to all outstanding requests are
received. It may be noted that a request may be forwarded if the receiving node does not have
an answer (in this case, a feasible next hop). In Figure 3.7, we show two different instances of
how request response messages are handled. Finally, in Figure 3.8, we present the loop-free
distance vector protocol in a compact manner.

It is possible that one or more events occur before the completion of exchanges during an
active state. For example, a link goes down; before the coordination phase is completely done,
the link comes back up again. While it is possible to handle multiple events and computations
through diffusing computation (for example, see [245]), it can be essentially restricted to just
one event handling at a time by enforcing a holddown timer; we have discussed the notion
of a holddown timer earlier in this chapter. That is, when a link cost changes or link failure
event occurs, a holddown timer is started; another link status change event for the same link
is not permitted to be communicated through the network until the first holddown timer
expires. If the duration of the holddown timer is chosen properly, the coordination phase for
a single event can be completed. In general, the holddown timer makes the state maintenance

CHAPTER 3 Routing Protocols: Framework and Principles 79

Node i Node k
* No feasible route to destination j
| Change to active state for routetoj .
Query
L‘E&sib!e il |
- E"”‘“Pfonode}'?f
| Response
 Yes, here it is.

i, * Perform computation
(a)
Nodei Node k Node k,

* No feasible route to destination j

!Feasible n Q”ﬂ}" }

ext-hop to Node j 2

* No feasible route to destination j

Time [Que:y

. Feasibl,

E ible next-hop to ode j 7
E Response

H | Yes, here it is.|
E * Perform computation

: » Change to passive state for route toj

E Response

. Yes, here itis..

E * Perform computation

A

(b)

FIGURE 3.7 Request/response handling in a loop-free distance vector protocol.

mechanism much simpler compared to when multiple events are needed to be taken care of
simultaneously.

In the following, we illustrate how a link failure is handled by the loop-free distance
vector protocol.

80 3.3 Distance Vector Routing Protocol

Initialization:
- Node i initializes itself in a passive state with an infinite distance for all its known neighbors and zero
distance to itself
— Initiate hello protocol with neighbor k and update value dj;
— Receive update message from all neighbors k, and update node and routing table
Node i in passive mode:
- Node i detects change in a link cost/status to neighbor k that changes Dij for some j
If (this is due to link failure) then dj; = oo, 52,» =00
— Check for a feasible next hop already in the node table (i.e., a neighbor k in the node table that satisfied
Bk]- < Bij prior to the link status change)
~ If (Node i finds one or more feasible next hops, k € N;;) then
// initiate local computation (much like D-BF)

If (there is a feasible k such that d;; + Ekj <d;, Hy + EIHM_, j- that is, cost through
this k is better than the current next hop Hj;) then '
Set k as the new next hop{ ie., H,-]- =k
If (DZHM j<Djj) then Dy = D},l_./_, i
Send update, Dj;, to all its neighbors
Endif
— If (Node i cannot find a feasible next hop) then
Set Eij = 51‘;’ =dj, + 5;,]» where i is the current next hop for node j
Set feasible distance to DZ i
// initiate diffusing computation
Change state to node j to active state, freeze any change for destination j, and set action flag to 1
Send query to all neighbors k € N;
Endif
Node i in receiving mode:
Node i in passive mode:
Receive update message:
Update node table, determine new next hop, routing table, and update message
Receive Query:
If (feasible next hop exists) respond with l~),~j
If (Bi]- changes) send update to neighbors
If (no feasible next hop exists)
change to active mode, R =1 and send query to other neighbors
Node i in active mode:
If (response received from neighbors k to all queries) then
Change to passive mode (R = 0)
Reset Bij
Update node table, determine new next hop, update routing table
Endif

FIGURE 3.8 Loop-free distance vector protocol based on diffusing computation with
coordinated update (node i’s view).

Example 3.2 Link failure handling in the loop-free distance vector protocol.

We continue with Example 3.1 to illustrate the link failure case. Consider that the net-
work has converged as illustrated earlier in Example 3.1 and all nodes are in passive states.
We will consider only part of the information from the node table just for destination node 6:
specifically (5, D, passive/active status), i.e., distance, working distance, and state. This in-

CHAPTER 3 Routing Protocols: Framework and Principles 81

(3,3,0) (1,1,0)

(3,3,0)

——
(6, R, 3,2)

220 (1,1,0) (%, %, 1)

Converged State (before link failure) Bep2

(2,2,0) 22,0

Step 1 4
Converged State (after link failure)

FIGURE 3.9 Coordination activities in the loop-free distance vector protocol.

formation is shown in Figure 3.9 at each node for destination node 6. For example, at node 5,
for destination node 6, we have (5, D, passive/active status) = (1,1, 0).

Now suppose that link 5-6 goes down; it will be marked as the active state and node 5 will
change the entry in the node table for node 6 from (1, 1, 0) to (o0, co, 1). It will then generate
the query message to be sent to the other two outgoing links, 5-3 and 5-4. To keep
track of outstanding requests, the following will be set for requested tracking parameters:
R§6 =1 (i.e.,, node 5 querying node 3 in regard to node 6) and Rf% =1 (i.e, node 5 querying
node 4 in regard to node 6). On receiving the query message from node 5 at node 3, it will
check to see if it has a feasible next hop to node 6. In this case, it does. Thus, it will generate
the following response message to node 5. Similarly, node 4 will generate a response
message to node 5 as follows: . Note that node 5 has to receive response messages to
both its outstanding requests to move from the active state to the passive state. Once it does,
it performs a computation for the node table and generates a new shortest path to destination
node 6. A

As you can see, the loop-free distance vector protocol resolves the looping problem faced
due to a link-failure in the basic distance vector protocol. A general question (with any proto-
col): are there any limitations? Below, we discuss two possible problematic scenarios for the
loop-free distance vector approach:

e In some situations, the loop-free distance vector protocol requires quite a bit of coordi-
nation between neighboring nodes, thus creating a chatty mode. A general problem with

34

82 3.4 Link State Routing Protocol

such a chatty protocol is that it can consume a significant percentage of the bandwidth if
the link between two neighboring nodes is a low-speed link, thus affecting performance
for user traffic.

e Recall that a holddown timer is started in this protocol once a node moves to the active
state; before the holddown timer expires, the node is supposed to hear responses back
about a query. However, under an unrelated multi-event situation, it is possible that the
time expires before the situation is resolved; this is known as the stuck in active (SIA) con-
dition. For example, a node, say A, loses a link to a neighboring node B that happens
to isolate the network into two networks. Node A would not realize the isolation of the
overall network; it will query its other neighbors, say C and D, about determining a path
to node B. In turn, nodes C and D will inquire of its neighbors about any path to node B
and change to the active state. Now, assume that there is a congestion problem between
node D and its neighboring node E that delays getting a response back. In the meantime,
the timer at node A expires, thus resulting in the SIA condition at node A. In general, this
is a difficult problem to resolve.

To summarize, it is possible to use a distance vector protocol framework and extend it for
loop-free routing by using diffusing computation with coordinated update. Like any proto-
cols, it has limitations under certain conditions.

Link State Routing Protocol

The idea of a link state routing protocol has its roots in Dijkstra’s shortest path first algorithm
(see Section 2.3). An important aspect to understand about Dijkstra’s algorithm is that it re-
quires a node to have topological information to compute the shortest paths. By topological
information, we mean links in the network and the nodes to which they are connected, along
with the cost of each link; that is, just a node table as in the loop-free distance vector protocol
is not sufficient. A node in the network needs to store the cost of a link and record whether
this link is up or down—generally referred to as the state of the link. This then gives rise to the
name link state and the information about links a node needs to store as the link state database.
Thus, a link state protocol is a way to communicate information among the nodes so that all
nodes have the consistent link state database. While this basic idea is very simple, it is not so
easy to make this work in a distributed environment.

There are several important issues to consider. First, how does each node find out the link
state information of all links? Second, do all nodes have the exact same link state information?
What may cause one node to have different link state information than others? Finally, how
can we disseminate link state information? How can inconsistency be avoided or minimized?
And last, but not least, how does link state information affect the shortest path computation?

IN-BAND VERSUS OUT-OF-BAND

First, recall our brief discussion about in-band and out-of-band in Section 3.1. To address
issues discussed there, we need to first know whether a particular network uses in-band or
out-of-band mechanisms to communicate link state information, and whether this is accom-
plished through information push or information pull or a hybrid mechanism.

3.4.1

CHAPTER 3 Routing Protocols: Framework and Principles 83

If a communication network uses an out-of-band mechanism for communicating the link
state information, then there are two possibilities: (1) any pair of nodes talk to each other
through this mechanism irrespective of their location, (2) all nodes communicate to a central
system through a dedicated channel, which then communicate back to all nodes. Both these
options have been applied for dynamic routing in the telephone network where either a sig-
naling network or dedicated circuits are used to accomplish the communication of link state
information. In the second case, it also typically means that the central system is used for
doing route computation and disseminating the computed result back to the nodes. For ex-
ample, dynamically controlled routing (see Section 10.4) uses dedicated circuits and a central
system for routing computation, while real-time network routing (see Section 10.6) uses a sig-
naling network with distributed route computation. In DCR, link state information is pushed
to the central system, yet the central system may pull information from the nodes if needed.
In the case of RTNR, no information push is done; a node pulls link state information from
another node when needed. In Chapter 10, we will cover these aspects in detail.

In-band communication about routing information can be divided into two categories:
in-band on a hop-by-hop basis and in-band on a connection/session basis. Why do we make
these distinctions? In a data network, a simple distinction on a packet type can be used for
communicating routing information on a hop-by-hop basis. On the other hand, a data net-
work also provides the functionality of a virtual reliable connection (such as a TCP-based
connection); thus, routing information can be exchanged using such a virtual connection be-
tween any two nodes. The rest of the discussion in this section mostly centers around ex-
change of routing information using in-band communication on a hop-by-hop basis. At the
end of this section, we will also discuss in-band communication on a session basis.

Link State Protocol: In-Band Hop-by-Hop Disseminations

First and foremost, in-band hop-by-hop basis is possible for link state information exchange
since packets can be marked either as user data packets or routing packets to communicate
link state information. How this is specifically done will be covered in detail for protocols
such as OSPF in later chapters. For now, our discussion will be limited to the basic idea of link
state protocol when in-band communication on a hop-by-hop basis is used for exchanging
link state routing information.

We start with two important points:

e The link state information about a particular link in one part of a network to another part
can traverse on a hop-by-hop communication basis to eventually spread it throughout the
network; this is often referred to as flooding.

e On receiving link state information that is forwarded through the hop-by-hop basis, a
node can do its own route computation in a distributed manner.

The second component is really related to performing route computation and can be de-
coupled from the protocol itself. The first part is an essential part of the link state routing
protocol.

84 3.4 Link State Routing Protocol

FIGURE 3.10 Six-node, eight-link network example.

LINK STATE ADVERTISEMENT AND FLOODING

A link state message, often referred to as a link state advertisement (LSA), is generated by a
node for each of its outgoing links, and each LSA needs to contain at least

| Source node, Link ID, Link Cost | (3.4.1)

which is then forwarded throughout the network. Certainly, we need to ask the question:
is the flooding reliable or unreliable? That is, is the information flooded received intact by
each node in the network, or is it corrupted? From the discussion about a distance vector
protocol, we know that routing information exchange using unreliable delivery mechanisms
causes additional problems. Thus, since the early days of a distance vector protocol, we have
learned one important thing: reliable delivery of routing information is important. We already
saw its use in the loop-free distance vector protocol. You will find out that in fact almost
all routing protocols since the early days of the basic distance vector protocol use reliable
delivery of routing information. Henceforth, we will assume reliable flooding with the link
state protocol.

We first examine the LSA format as given in protocol message (3.4.1). Consider the link
that connects from node 1 to node 2 in Figure 3.10: this LSA will be generated by node 1;
however, the reverse direction, LSA for the same link from node 2 to node 1, will be generated
by node 2. In other words, links in a link state protocol are directional (while directionality is
not an issue for a distance vector protocol). To avoid any confusion between a bidirectional
and a unidirectional link, we will use 1-2 to denote the bidirectional link that connects node 1
and node 2 while 1—-2 to denote the directional link from node 1 to node 2. In addition to
the directional aspect, there is a critical issue we need to understand in regard to hop-by-
hop traversal. Consider Figure 3.10, and the link cost di; =1 from node 1 to node 2, which
needs to be disseminated. Thus, the link state information about the link that originates at
node 1 and ends at node 2, that is for 1—-2, would be generated at node 1 as the message
‘ i=1,Link=1-2,dy; =1 ‘, which can be written as in short; this message is forwarded
to both nodes 2 and 4. These nodes can, in turn, forward (“flood”) on their outgoing links; for
example, from node 2 to both node 4 and node 3. We can immediately see that node 4 would
receive the same information in two different ways!

CHAPTER 3 Routing Protocols: Framework and Principles 85

If the cost value of both the LSAs for the same link is the same, then it is not difficult to
resolve. However, if the value is different, then a receiving node needs to worry about which
LSA for a particular link was generated more recently. Consider the following illustration in
terms of times event:

time fp: LSA|1,1-2,1|is generated at node 1 and is sent to node 2 and node 4.
time #;: LSA|1,1-2,1 |is forwarded by node 2 to node 4.

time t: 1—2 fails; node 1 generates the new LSA to node 4.
time f3: LSA is received at node 4 from node 2.

From the above illustration, node 4 would receive LSA for the same link with two differ-
ent cost values: oo first and then 1 next; however, the failure occurred afterward! We can see
that the LSA needs to carry at least another piece of information that helps to identify LSA
at a receiving node based on when it was generated. Thus, some way to time-stamp an LSA
would then avoid any ambiguity. Thus, instead of using (3.4.1), LSA should contain a time
stamp resulting in the format:

Source Node, Link ID, Link Cost, Time stamp ‘ (3.4.2)

The question is how to indicate a time stamp that works in a distributed networked envi-
ronment. There are two possibilities: either all nodes are clock-synchronized through some
geosynchronous timing system, or a clock-independent mechanism is used. While a geo-
synchronous timing system is a good idea, until recently this was not feasible; furthermore,
a separate mechanism independent of the protocol would be required. Most link state routing
protocols use a clock-independent mechanism called sequence number to indicate the notion
of a time stamp that can be defined within the context of the protocol. That is, a node, when it
generates an LSA for an outgoing link, stamps it with a sequence number and the LSA then
has the following modified format:

Source Node, Link ID, Link Cost, Sequence Number (3.4.3)

When the same node needs to generate a new LSA for the same outgoing link, it increments
the sequence number counter, inserts this new value in the LSA message, and sends out the
LSA packet. Going back to the previous example, if the sequence number for link 1—-2 is 1
before failure, then the first LSA announcement would be . After failure at time
f, the sequence number counter would be incremented to 2, and the new LSA would be
. Thus, when at time t3, node 4 receives LSAs for the same link from two different
directions, it can check the sequence number and discard the one with the older sequence
number, in this case, the one received from node 2 with sequence number 1.

It is important that each node maintains a different sequence number counter for each
outgoing link, and that other nodes maintain their own sequence number counters for their
outgoing links; in other words, there is no dependency among nodes, which is an advantage
of using the concept of a source-initiated, link-based sequence number. There is, however,
a key issue to consider: the size of the sequence number space. In any data network environ-
ment, usually a fixed length field is used for the sequence number space. Suppose that the
sequence number space is only 3 bits long; this would mean that it can take values 1 to §,

86 3.4 Link State Routing Protocol

and after it reaches 7, it would need to wrap around and start at 1 again. Here is the first
problem we encounter due to wrapping of the sequence number. When a node receives two
LSAs for the same link ID from two different neighbors, one with sequence number 7 and
the other with sequence number 2, the receiving node has no way of knowing if the sequence
number 2 is after the number is wrapped or before; in other words, the receiving node has no
way of knowing which is more recent. This tells us that the size of the sequence number space
should not be small. Typically, the sequence number space is a 32-bit field; in most cases, this
would solve the problem. However, there is still some ambiguity, for example, when a node
goes down and then comes back up with the sequence number set to one, or when a network
is isolated into two separate networks. Essentially, what this means is that some additional
safeguard is required to ensure that a receiving node is not confused. A possible way to pro-
vide this safeguard is to use an additional field in LSA that tells the age of the LSA. Taking
this information into account, the LSA takes the form:

Source Node, Link ID, Link Cost, Sequence Number, Age (3.4.4)

Now we describe how to handle the age field at different nodes. The originating node sets the
starting age field at a maximum value; the receiving node decrements this counter periodi-
cally while storing the link state information in its memory. When the age field reaches zero
for a particular link, the link state information for this link is considered to be too old or stale.
The following is a classical example of what can happen if sequence number and age are not
addressed properly.

Example 3.3 ARPANET operational problem due to sequence number and age.

From an operational environment, we can learn a lot about what does or does not work
in practice. A case in point is the sequence and age field, as used and as observed through
its early use in ARPANET. This example is very nicely described in [559], and is reproduced
here.

ARPANET at that time used a 3-bit-long age field with 8 sec as the time unit. This means
that the starting maximum age was 56 sec (= 7 x 8), which was decremented every 8 sec.
To avoid the age becoming stale by the time an LSA reaches a downstream node, each node
needed to generate a new LSA for an outgoing link within 60 sec. When a node starts up
(either initial activation, or if rebooted), it needed to wait for 90 sec before generating the
first LSA. The idea was that this would allow any old LSA in the memory of the node to
decrement the age counter to 0; at the same time, it can receive new LSAs from neighboring
nodes.

ARPANET was found to be nonfunctional one night (these things always happen at
night!) with the queue at a router filled with multiple LSAs from a specific router, say Z,
where each of these LSAs had different sequence numbers ay, ap, a3 with a1 < a, < a3z and
then wrap around to a;. Now, consider a router that has a stored LSA from Z with sequence
number aj, and it receives an LSA with sequence number a; it would overwrite the one
in memory since ay > a1 and, in addition, it will flood this “new” LSA to its neighbors
who in turn will update accordingly. This pattern of updating the sequence number was
repeated.

CHAPTER 3 Routing Protocols: Framework and Principles 87

It was found that LSAs did not age out. The problem was in the inherent assumption
that the age counter will be decremented at a node every 8 sec. If a received LSA leaves a
particular node within this 8 sec, its age field would not get decremented. However, it was
originally envisioned that if a node receives an LSA and immediately sends it out, the age
counter would get decremented. This simple logic problem caused the network to become
nonfunctioning. A

In recent protocols, the sequence number space is large enough to avoid any such prob-
lems; for example, a 32-bit signed sequence number space is used. Furthermore, in many
protocol implementations, the sequence number space is considered as a lollypop sequence
number space; in this scheme, from the entire range of possible numbers, two are not used.
For example, consider a 32-bit signed sequence number space. The sequence number is var-
ied from the negative number —23! + 1 to the positive number 23! — 2 while the ends —23!
and 2°! — 1 are not used. The sequence number begins in the negative space and continues
to increment; once it reaches the positive space, it continues to the maximum value, but cy-
cles back to 0 instead of going back to negative; that is, it is linear in the negative space and
circular in the positive space giving the shape of a lollypop and thus the name. The lollypop
sequence number is helpful when a router, say R1, restarts after a failure. R1 announces the
sequence number —23! + 1 to its neighbor R2. The neighbor R2 immediately knows that R1
must have restarted and sends a message to R1 announcing where R1 left off as the last se-
quence number before the failure. On hearing this sequence number, R1 now increments the
counter and starts from the next sequence number in the next LSA. Note that not all protocols
use lollypop sequence numbering—the complete linear sequence number space that starts at
negative and continues to positive in a linear fashion is also used; if the maximum value is
reached, other mechanisms such as flushing of LSA are used when the maximum positive
value is reached.

LSA AND LSU

Along with LSA, there is another terminology commonly used: link state update (LSU). It
is important to understand and distinguish LSA from LSU. An LSA is an announcement
generated by a node for its outgoing links; a node receiving LSAs from multiple nodes may
combine them in an LSU message to forward to other nodes.

Example 3.4 LSA and LSU.

Consider Figure 3.10. Here, node 1 generates the link state for 1—4 as using
the originating age counter as 60 and sends to node 4. Similarly, node 2 generates the link state
for 2—4: and sends to node 4. Node 4 can combine these two LSAs along with
the link state for link 4—5, and assuming it takes one time unit to process, it decrements the
age counter by one for the received LSAs and sends out the link state update to node 5 as

1,1-4,1,1,59[2,2+4,1,1,59 [4,4-5,2,1,60

A

88 3.4 Link State Routing Protocol

SPECIAL CASES

How does a link state protocol handle special cases? There are two scenarios we consider
here: a node going down and coming back up again, and a link going down and coming
back up again. The node failure has an immediate impact on the sequence number and the
age field since nodes are, after all, specialized computing devices. When a node is restarted,
the sequence number space may be reinitialized to 1 again; this again leaves a receiving node
wondering whether it has received a new or old LSA generated from the node that just recov-
ered from a failure. While in some cases such an exception can be handled through additional
attributes in an LSA, it is usually done through additional mini-protocol mechanisms along
with the proper logic control within the framework of the link state routing protocol. For ex-
ample, there are several aspects to address: (1) the clock rate for aging needs to be about the
same at all nodes, (2) receiving, storing, and forwarding rules for an LSA need to take into
account the age information, (3) the maximum-age field should be large enough (for exam-
ple, an hour), and (4) if the sequence number is the same for a specific link that is received
from two incoming links at a receiving node, then the age field should be checked to deter-
mine any anomaly. Thus, typically a link state routing protocol consists of three subprotocol
mechanisms:

e Hello protocol
e Resynchronization protocol

e Link state advertisement (normal).

The hello protocol is used for initialization when a node is first activated; this is somewhat
similar to the hello protocol used in the loop-free distance vector protocol. In this case, the
hello protocol is useful in letting neighbors know its presence as well as the links or neigh-
bors to which it is connected and to learn about the rest of the network from its neighbor so
that it can perform route computation and build a routing table. The hello protocol is also
periodically invoked to see if the link is operational to a neighbor. Thus, the hello proto-
col has both information push and information pull. The resynchronization protocol is used
after recovery from a link or a node failure. Since the link state may have been updated sev-
eral cycles during the failure, resynchronization is merely a robust mechanism to bring the
network to the most up-to-date state at the nodes involved so that LSA can be triggered.
The resynchronization step includes a link state database exchange between neighboring
nodes, and thus involves both information pull and push. The normal LSA by an originat-
ing node is information push. The entire logic control for a link state protocol is shown in
Figure 3.11.

We will illustrate the need for the resynchronization step in the following example. Note
that this step is also called “bringing up adjacencies.”

Example 3.5 Need for resynchronization.

We will use the same network as the one shown in Figure 3.10. We will start by assum-
ing that the network has converged with all links having sequence number 1. We will also
consider that the failure of link 4-5 occurred resulting in a new sequence number for each

CHAPTER 3 Routing Protocols: Framework and Principles 89

Initialization:
- Use hello protocol to establish neighbor relation and learn about links from neighbors
Link State Advertisement (normal):

— Generate LSA periodically (before the expiration of the age counter), incrementing the sequence number
from the last time, and set the age field to the maximum value for this LSA; start the timer on the age
field

Receive (new):

— Receive LSA about a new link /—m from neighboring node k

— Update the link state database and send LSA for this link to all neighbors (except k)

— Start the timer for decrementing the age counter

Receive (normal):

— Receive LSA about known link /—m from neighboring node k

— Compare the sequence number to check if I have the most recent LSA for this link

- If yes, send LSA for this link back to neighboring node k

— If not, decrement the age counter, store the recent LSA for link /—m in the link state database, and
forward it on all other outgoing links to the rest of the neighbors (except for k)

- Ifitis the same sequence number and the age difference is small, do nothing; if the age difference is large,
store the most recent record

— Start the timer for decrementing the age counter

Compute:
— Perform route computation using the local copy of the link state database
- Update the routing table

Special Cases:

— Link failure: set the link cost to oo and send LSA immediately to neighbors

- Link recovery: perform link state database resynchronization

- Node recovery: perform link state database resynchronization; alternately, flush records and perform
hello protocol

— (Action mode when the age counter reaches 0 for a link ID):

(1) Do not consider this link in route computation
(2) Inform neighbors through advertisement stating that the age field is zero
(3) Delete this link entry from the database

- (Receive mode with age 0): accept this LSA. This would set the age to zero, and thus, perform ‘action

mode when age counter reaches 0.” If the record is already deleted, ignore this advertisement.

FIGURE 3.11 Link state protocol from the point of view of node i (with in-band
hop-by-hop communication for flooding).

direction with link cost set to co; this information has also converged. Our interest is in the
second failure, i.e., the failure of the second link, 2-3. We show the two network states, before
and after failure of link 2-3, in Figure 3.12.

Note that when 4-5 fails, both its end nodes (node 4 and node 5) will increment the se-
quence number count to 2 and generate the directional LSAs with cost set to co to advertise
to their neighbors. This information will be flooded throughout the network, and all nodes
will eventually converge to having the link state database as shown in Table 3.3(a). When the
second link 2-3 fails, we can see that the network will be isolated into two separate smaller
networks. Node 2, on recognizing this failure, will increment the sequence number counter
to 2 and generate an LSA for the directional link 2—3 with cost set to oco; this will be dis-
seminated which can reach only nodes 1 and 4. Similarly, node 3, on recognizing the same
failure, will increment the sequence number counter to 2 and generate LSA for the directional
link 3—2 with cost set to co; this will be disseminated, which can reach only nodes 5 and 6.
Thus, in the network on the left side consisting of the nodes 1, 2, and 4, the link state database

90 3.4 Link State Routing Protocol

FIGURE 3.12 Six-node network: before and after failure of link 2-3 (assuming link 4-5
has already failed).

TABLE 3.3 Link state database as viewed before and after failure of link 2-3.

(a) (b) (c)

Before Failure of Link 2-3 After Failure of Link 2-3 After Failure of Link 2-3

(as Seen by Every Node) (as Seen by Nodes 1, 2, 4) (as Seen by 3, 5, 6)

Link-ID | Cost | Seq# Link-ID | Cost | Seq# Link-ID | Cost | Seq#
1-2 1 1 1-2 1 1 1-2 1 1
2—1 1 1 2—1 1 1 2—1 1 1
1—4 1 1 1—-4 1 1 1—4 1 1
4—1 1 1 4—1 1 1 4—1 1 1
2—4 1 1 2—4 1 1 2—4 1 1
4—2 1 1 42 1 1 4—2 1 1
2—3 2 1 2—3 (%) 2 2—3 2 1
32 2 1 3—2 2 1 32 %) 2
4—5 00 2 4—5 o0 2 4—-5 o0 2
5—4 00 2 5—4 00 2 5—4 (%) 2
3—6 1 1 36 1 1 3—6 1 1
6—3 1 1 6—3 1 1 6—3 1 1
3—5 1 1 3—5 1 1 3—5 1 1
5-3 1 1 5-3 1 1 5—3 1 1
5—6 1 1 5—6 1 1 5—6 1 1
6—5 1 1 6—5 1 1 6—5 1 1

will become as shown in Table 3.3(b), while for the network on the right side consisting of
nodes 3, 5, and 6, the link state database will become as shown in Table 3.3(c). Notice the
subtle difference in regard to the entry for directional links 2—3 and 3—2 since either side
would not find out about the directional entry after the failure.

So far we have not discussed the issue of age of the LSA. In fact, for now, we will ignore
it and will come back to it soon. Due to possible changes in cost values of links, each part of
the network will evolve over time, which means an increase in the sequence number counter
value for other links in the network, cost change, and so on. Now consider that the link 4-5

3.4.2

CHAPTER 3 Routing Protocols: Framework and Principles 91

has recovered. On recognizing that the link has recovered, node 4 will generate LSA for 4—5
and node 5 will generate for 5—4 and flood to the rest of the network. However, with normal
flooding, node 4 or node 5 would not do anything in regard to link 2-3, although both have
different views! This is partly why resynchronization is important. When a failed link or a
node is recovered, the best thing to do is to exchange the entire list of link numbers along
with the current sequence number between the neighbor nodes through a database description
message. This allows the node on each side to determine where they differ, and then request
the cost information for the ones where they differ in terms of sequence number. It may seem
odd to request the database description first followed by the link cost update. There are two
reasons why this approach is beneficial: (1) usually a link state message contains much more
than just the link cost (especially if multiple metrics are allowed); thus, the message size
stays smaller if only the database description is exchanged; and (2) a different message type
for database description exchange avoids needing to invoke a full link state update between
these two neighbors. Certainly, once the end nodes (nodes 4 and 5 in this case) have done
resynchronization, each will generate a standard /normal link state update message to let the
rest of the nodes know about the changed entries.

Now we will bring age into the picture. If two parts have been isolated for a long time,
the age field of LSAs received from the other side will decrement all the way to zero. This will
then trigger exception advertisement on both sides for the appropriate set of links. Through
this process, links will be deleted from the local copy at the nodes. For example, nodes 1, 2,
and 4 from the left side will not have any information about links on the right side. In this
case, when link 4-5 recovers, nodes 4 and node 5 would do database description exchange
and find out about the existence of new links will be synchronized and then flooded to the
rest of the network through a normal link state update. A

Link State Protocol: In-Band Based on End-to-End Session

From the above discussion, it is clear that many of the problems, such as sequence number
and age, and safeguards needed to address them are primarily due to the flooding mecha-
nism, which is based on in-band communication on a hop-by-hop basis. The flooding mecha-
nism is used so that each node can build the link state database to perform route computation.
Traditionally, the flooding mechanism is considered an inherent part of the link state protocol;
as a result, it has become tightly coupled with a link state protocol.

We can, however, ask an opposing question: if the link state database is primarily what
a node needs, is in-band hop-by-hop flooding the only mechanism that can accomplish it?
The answer is clearly no. In fact, in a data network, since virtual connection functionality
is available, the link state information can be exchanged by setting up virtual connections
between any two nodes that are kept alive as long as both nodes are operational. This would
mean that in an N node network, each node would need to set up N — 1 virtual connection
sessions with the rest of the nodes. Through such a connection, a node can query another
node about the link state status of all its outgoing links so that it can update its link state
database, and vice versa. If a link fails, the node to which this link is connected can inform
the other nodes through the virtual connection about the change of status.

3.4.3

92 3.4 Link State Routing Protocol

With the classical link state protocol (based on flooding and LSA), there is no way for a
node to know if the node to which it is directly connected has failed; at most, it knows that
the link that connects these two nodes is not operational. It might be able to infer later through
much flooding and learning from other neighboring nodes that perhaps the node has actually
failed. However, for a link state protocol with an end-to-end session for link state exchange, a
node can immediately determine if another node has failed since the virtual connection will
die down.

There are, however, scalability issues with the notion of a virtual connection between
any two nodes. For example, if N is large, there are too many sessions a node is required to
keep activated simultaneously; this may not be desirable since a node is a specialized device
whose primary job is to route/forward user traffic by looking up the routing table. A pos-
sible alternative is to have a pair of primary and secondary specialized link state servers
in a network; this way, each node would need to have just two connections to this pair of
servers to retrieve all the link state information. This would mean that such servers would
have many connections to all the nodes—this is not too many when you consider a typ-
ical high-end web server that handles a large number of TCP connections to clients at a
time.

You may discover that the idea of virtual connection is not much different from the idea
of out-of-band communication used in circuit-switched routing, whether it is through a dedi-
cated channel or a signaling network. Furthermore, there are examples in the Internet as well
where the routing information exchange is done through virtual connections (through a TCP
session); Border Gateway Protocol (BGP) discussed later in Chapter 8 is such an example.
Certainly, BGP does not use a link state information exchange; however, reliable routing in-
formation communication is similar in need. In addition, in recent years, providers of large
intradomain networks have started using servers similar to the notion link state servers to
upload link state metrics to routers (see Chapter 7); thus, the entire concept of servers that
provide link state information is quite realistic, and are being currently considered for net-
works known as overlay networks.

Route Computation

When a node has constructed the link state database, even if information for some links is not
recent or not all links in the network are known to the node yet, it is ready to compute routes
to known destinations. If the goal is to compute the shortest path, Dijkstra’s algorithm can
be used as described earlier in Section 2.3.2; thus, we will not repeat illustrations described
there. In this section, we briefly discuss route computation as related to the protocol.

It is important to note that each node independently invokes Dijkstra’s shortest path com-
putation based on the most recent link state database available to the node; no centralized
processor is involved in this computation. Due to the availability of the link state database, a
node actually knows the entire route to any destination after the route computation, unlike a
distance vector protocol. Thus, a node can use source route with route pinning, if this func-
tion is used in the network. Alternately, it can still create a routing table entry by identifying
the next hop from the computed route. Because of the way Dijkstra’s shortest path compu-
tation works, looping can be completely avoided when all nodes have the same copy of the
link state database, even though the routing table entry at each node stores just the next hop

3.5

3.5.1

CHAPTER 3 Routing Protocols: Framework and Principles 93

for each of the destination nodes. To ensure that all nodes have the same link state database
entries, flooding plays an important role along with link state database resynchronization to
quickly reach a consistent link state database throughout the network.

Finally, there are networking environments where the basic essence of the link state pro-
tocol is used, yet the routing computation is not based on Dijkstra’s algorithm; we will discuss
this later in regard to dynamic call routing in telephone networks (refer to Chapter 10) and
quality-of-service routing (refer to Chapter 17).

Path Vector Routing Protocol

A path vector routing protocol is a more recent concept compared to both a distance vector
protocol and the link state routing protocol. In fact, the entire idea about the path vector
protocol is often tightly coupled to BGP. In this section, we will present the general idea
behind the path vector protocol mechanism; thus, it is important to distinguish and decouple
the generic path vector protocol presented here from BGP4, a specific instance of a path vector
protocol; we will discuss BGP in detail later in Chapter 8.

First and foremost, a path vector protocol has its roots in a distance vector protocol. We
already know that there are several problems with the basic distance vector protocol; for
example, looping, count to infinity, unreliable information exchange, and so on. We have al-
ready discussed that both the loop-free distance vector protocol and the link state protocol
use reliable delivery for exchange of routing information; this itself takes care of certain un-
desirable behavior. In fact, you will find that all modern routing protocols now use a reliable
delivery mechanism for routing information exchange along with a hello protocol for ini-
tialization. Thus, we will start with the built-in assumption that a path vector protocol uses
reliable delivery mechanism for information exchange related to routing and a hello protocol
is used for initialization.

In a path vector protocol, a node does not just receive the distance vector for a particular
destination from it neighbor; instead, a node receives the distance as well as the entire path to
the destination from its neighbor. The path information is then helpful in detecting loops. For
example, consider the basic distance vector protocol: at time ¢, node i receives the distance

cost 5;(]-(1) from its neighbor k for all known destinations j, as known to node i. In the case
of a path vector protocol, node i receives both the distance and the entire path list from its
neighbor k for each of the known destination nodes, that is, both B;Cj(t) and the list of nodes,
denoted by P,ij(t), from k to j as known to node i. A node is thus required to maintain two
tables: the path table for storing the current path to a destination, and the routing table to
identify the next hop for a destination for user traffic forwarding.

Basic Principle

We first explain the basic principle behind a path vector protocol through a simple illustra-
tion.

A SIMPLE ILLUSTRATION

We start with a simple illustration using the topology and cost given in Figure 3.13 and will
ignore the time dependency on . Consider node 2 (that is, i = 2) that is receiving a path vector

94 3.5 Path Vector Routing Protocol

FIGURE 3.13 Network topology for illustration of the path vector protocol.

from node 3 (that is, kK = 3), which is providing distance and path to the nodes of which it is
aware. Thus, node 3 will need to send the following information for destination nodes 3, 4,
5, and 6 where a path is identified using the representation (3, 4), which means that the path
contains the nodes 3 and 4 in that order:

D33=0, P3=03)

Dy=1, P3=(3.4)
D3s=1, P3=(3.5)
Diys=1, P =(3,6).

In a protocol message, the above information will need to be sent using the following for-
mat:

Destination Node, Cost, Number of Nodes in the Path; Node List of the Path | ... |

In particular, the information for the first entry (destination 3) will need to be embedded in
the protocol message format as

j=3, D33 =0, Number of Nodes = 1; 77%3 =(3)

Without writing the identifiers explicitly, this and the rest can be written in the following path
vector message that node 3 will send to node 2:

3,0,1;3141,23,415,1,235]6,1,2,3,6 |

Assume that node 2 has received the above path vector for the first time from node 3. Fur-
thermore, we assume that node 2, through the hello protocol, has learned about neighbors
node 1 and node 4 and has already initialized paths to these neighbors. Thus, the initial path
table at node 2 is

Destination | Cost | Path
1 1 2,1
4 1 2,4

CHAPTER 3 Routing Protocols: Framework and Principles 95

On receiving the path vector from node 3, node 2 will compare and find out that it already has
a path to node 4 that is cheaper than the new path, and thus, does not need to be changed,
and that it has learned about new nodes. Thus, the path table at node 2 will be updated
to

Destination | Cost | Path
1 1 2,1
3 2 2,3)
4 1 2,4
5 3 2,3,5
6 3 (2,3,6)

We can see from the above table that it is possible to have parts of paths being common
for different destinations. Based on the above information, node 2 sends the following path
vector message to nodes 4, 3, and 1:

1,1,2;2,112,0,1;2 13,2,22,314,1,22,415,3,32,3,5]6,3,32,3,6 \ (3.5.1)

It is important to realize from the above message that the path vector message can include
information for all known destinations since the entire path is included for each destination;
inclusion of the path vector allows a receiving node to catch any looping immediately; thus,
rules such as split horizon used in a distance vector protocol to resolve similar issues are not
always necessary.

On receiving the path vector message from node 2, the receiving nodes (nodes 1, 2, and 4,
in this case) can check for any looping problem based on the path list and discard any path
that can cause looping, and update their path table that has the least cost. It is important to
note that the path vector protocol inherently uses Bellman-Ford for computing the shortest
path.

Next, we consider how a link failure is handled by the nodes. To show this, we first
assume that the network has converged, and all nodes have built their path table for all des-
tination nodes. For our illustration, we show the path table entry at each source node, just for
the single destination node 6 (see Figure 3.14):

From Node | To Destination | Cost | Path Table Entry
1 6 3 |(1,43,6)
2 6 3]1@.3,6)
3 6 1]1@G.6
4 6 2 | 43,6
5 6 I 16,6

96 3.5 Path Vector Routing Protocol

(2,3,6) (3,6)
D——0
1 1
G ©
4,3,6) (5, 6)

FIGURE 3.14 DPath vector to destination node 6.

LINK FAILURE CASE

We will now consider the failure of the link between nodes 3 and 6. We know from the in-
formation presented above that this failure will affect routing for nodes 1, 2, and 4. However,
node 3 has no way of knowing who will be affected. Thus, node 3 will send an “unreachable”
message to its neighbors 2, 4, and 5 stating that path (3, 6) is not available. On receiving this
message, node 2 will realize that its path to node 6 was through node 3, and will mark it
unavailable, and send an “unreachable” message upstream to nodes 4 and 1, in case they are
also using node 2 as the next hop for destination node 6. At about the same time, on receiv-
ing the “unreachable” message from node 3, node 4 will take the same action for destination
node 6. However, node 5, on receiving the “unreachable” message from node 3, will realize
that it can reach node 6, and thus will inform node 3 of its path vector to node 6. In turn,
node 3, on learning about the new path vector, will send a follow-up path vector message to
node 2 and node 4: . On receiving this message, node 2 will update its path table
to node 6 as follows:

Destination | Cost | Path Table Entry
6 4 (2,3,5,6)

and node 4 will update its path table to node 6 as follows:

Destination | Cost | Path Table Entry
6 3 4,3,5,6)

If after the above updates, a path vector message is received at node 4 from node 5, the path
table will remain the same since the path cost does not decrease.

3.5.2

CHAPTER 3 Routing Protocols: Framework and Principles 97

We can see that a path vector protocol requires more than the exchange of just path vector
messages; specifically, a path vector protocol needs to provide the ability to coordinate with
neighbors which is helpful in discovering a new route, especially after a failure.

Path Vector with Path Caching

There are additional aspects that may impact the actual working of a path vector protocol. To
see this, observe that an advantage of the path vector announcement is that a node may learn
about multiple nonlooping paths to a destination from its different neighbors. It may choose
to cache multiple path entries in its path table for each destination that it has learned from all
or some of its neighboring nodes, instead of caching just the best one; this is an advantageous
feature of a path vector protocol. Note, however, that while the path table may have multiple
entries for each destination, the routing table points only to the next hop for the best or single
preferred path for each destination unless there is a tie; in case of a tie, the routing table will
enter the next hop for both paths.

Thus, we will now illustrate a generalization of the basic concept of a path vector proto-
col where a node is allowed to cache multiple paths for every destination in the path table.
For simplicity, we assume that each node stores two best paths per destination that it has
learned from different neighbors. Thus, for destination node 6, each source node will have
the following path entries:

From Node | To Destination | Cost | Path Table Entry
1 6 3 (1,4,3,6)
1 6 4 1,2,3,6)
2 6 3 2,3,6)

2 6 3 2,4,3,6)
3 6 1]@3,6)

3 6 2 (3,5,6)

4 6 2 4,3,6)

4 6 3 4,5,6)

5 6 1 (5,6)

5 6 2 (35,3,6)

Consider again the failure of the link between node 3 and node 6. When node 3 recognizes
this link failure, it will realize that it has a second path to node 6, i.e., (3,5, 6). Thus, it will
delete path (5, 6), make route (3, 5, 6) the preferred route in the path table, make appropriate
adjustments in the routing table, and advertise path (3, 5, 6) with its cost to its neighbors 2, 4,
and 5 as .

We will first consider the situation at node 5. On receiving the above message, node 5 will
immediately detect that this will create a loop, and thus it will ignore this message. Node 2,

98 3.5 Path Vector Routing Protocol

on receiving the new path vector from node 3, will notice that it will need to update the first
path. This will make the second path cheaper, although the second path has an unreachable
path.

Node 4, on receiving the new path vector from node 3, will change its path via node 3 to
(4,3,5,6) and the cost to 3. Now, both paths for destination node 6 will be of cost 3. It will then
transmit a path vector message to nodes 2 and 1 about the new path vector to destination 6.

Node 1 will receive an updated path vector from node 2 in regard to destination node 6,
and update both its paths via node 2. Node 2 will receive another one from node 4 and will
update that path as well.

Eventually, different nodes will have new path entries to destination node 6 as follows
(invalid paths are marked with a strikethrough):

From Node | To Destination | Cost | Path Table Entry
1 6 4 (1,4,3,5,6)
1 6 5 1,2,3,5,6)
2 6 4 (2,3,5,6)

2 6 4 (2,4,3,5,6)
3 6 1 (3+6)

3 6 2 3,5,6)

4 6 3 4,3,5,6)

4 6 3 4,5,6)

5 6 1 (5,6)

5 6 2 (536

It may be noted that path caching can be helpful as it provides a node with additional
paths through its neighbors if the first one does not work because of a link failure. The basic
idea behind a path vector protocol with path caching is outlined in Figure 3.15. It usually con-
verges to a new solution quickly. Thus, it can give the impression that path caching is a good
idea. However, path caching is not always helpful; in fact, it can result in poor convergence
in case of a node failure, especially when the node is connected to multiple nodes. We will
describe this next.

NODE FAILURE CASE

To illustrate the node failure case, we consider a four-node fully connected network example
[594] shown in Figure 3.16; we assume that the distance cost between any two nodes is 1.
Preferred direct path and alternate cached paths are shown in the following table (top of the
next page) from nodes 1, 2, and 3 to destination node 0.

CHAPTER 3 Routing Protocols: Framework and Principles 99
From Node | To Destination | Cost | Path Table Entry
1 0 1 1,0
1 0 2 11,20
1 0 2 11,30
2 0 L]@0
2 0 2 | @21,0
2 0 2 1@23,0
3 0 1 3.0)
3 0 2 13620
Initialization:

— Node i is activated and exchanges “hello” message with neighbors; table exchange updates are per-
formed to find paths for all known destination nodes j
Node i in the receiving mode:
Announcement/Advertisement Message:
- Receive a path vector P]i i from neighbor k regarding destination node j
- If (destination node j is not previously in routing and path table)
create a new entry and continue
- If (for destination node j there is already an entry for the previously announced path from node k in the
path table)
Replace the old path by the new path Pli i in the path table

- Update candidate path cost: [N),-i =dj + 52}»
If (Dij < Dij) then
Mark best path as i — P ;
Update the routing table entry for destination j
else
For destination j, identify neighbor & that results in minimum cost

over all neighbors, i.e., Ei]- =dg+ 5%]. = mingen; {di + EZj}
Mark the best path through this new neighbor as i — 73%]_

Update the routing table entry for destination j
Node i in sending mode: send the new best path to all its neighbors
Endif
Withdrawal Message:
- If (a withdrawal message is received from a neighbor for a particular destination j) then
Mark the corresponding entry as “unreachable”
If (there is a next best path in the path table for this destination)
Advertise this to the rest of the neighbors
Endif
Special Cases: (node i lost communication with neighbor k [“link failure”]):
— For those destinations j for which the best path was through k, mark the path as “unreachable” in the
path table (and also routing table)
- If (another path is available in cache for the same destination through another neighbor &’)
Advertise/announce this to all the remaining neighbors
— If (there is no other path available in cache for destination j)
Send a message to all neighbors that path to node j is “withdrawn”

FIGURE 3.15 Path vector protocol with path caching (node i’s view).

100 3.5 Path Vector Routing Protocol

Consider now the failure of node 0. Immediately, all the other nodes lose their direct path
to node 0. All of them switch to their second path in the path table entry. For example, node 1
will switch from (1,0) to (1,2,0); furthermore, node 1 will send the following path vector
announcement to node 3 and node 2: . This announcement will be understood by
the receiving nodes as an implicit withdrawal, meaning its previous one does not work and
it is replaced by a new one. This would lead to a cascading of path changes; for example,
at node 2, first path (2, 0) will be dropped and will be replaced by (2, 1, 0). On hearing from
node 1 that (1, 0) is not reachable, it will then switch to (2, 3, 0). It will go through another
step to (2, 1, 3, 0) before recognizing that no more paths are available, and noting then that a
path to destination node 0 is unavailable.

In this illustration, we assume that node 2 finds out about the connectivity being down
to node 0 before node 1 and node 3 have recognized that their connectivity to node 0 is down
as well; in other words, node 2 does not receive the first path withdrawal messages from
node 1 and node 3 before it sends out to them. The following sequence of steps will then take
place:

— Node 2 sees that path (2, 0) is no longer available and crosses it off. By inspecting paths cached
in its routing table, it then switches to (2, 1, 0), which is least as the next preferred path.
Node 2 informs both node 1 and node 3 about withdrawal of path (2, 0).

— Node 1 recognizes that path (1, 0) is no longer available and crosses it off.
Node 1 switches to its next preferred path (1, 2, 0).
Node 1 receives withdrawal of path (2, 0) from node 2, before it has time to inform others about
(1,0).
Node 1 switches to (1, 3, 0) and advertises this path to node 2.

— Node 2 receives the advertisement (1, 3, 0) from node 1 and recognizes that the preferred path of
node 1 to node 0 is no longer (1, 0); thus, node 1 strikes off (2, 1, 0).
Node 2 compares the last path in its preferred list (2, 3, 0) to the newly advertised path (1, 3, 0)
received from node 1, i.e., compare (2,3, 0) with (2, 1, 3, 0), and switches to (2, 3, 0) since this is
preferred over (2,1, 3, 0).

— Node 3 recognizes that path (3, 0) is no longer available and crosses it off.
Node 3 receives withdrawal of path (1, 0) from node 1 and withdrawal of path (2, 0) from node 2.

Node 3 thus realizes that (3, 1, 0) and (3, 2, 0) are no longer available and crosses them off.
Node 3 informs node 1 and node 2 that path (3, 0) is no longer available.

— Upon receiving withdrawal of path (3,0) from node 3, node 2 realizes that path (2,3, 0) is no
longer available, thus, it switches to (2, 1, 3, 0), since this is the only path remaining in its table.

— Upon receiving withdrawal of path (3, 0) from node 3, node 1 realizes that (1, 3, 0) is no longer
available and thus inform node 2 that path (1, 3, 0) is no longer available.

— Upon receiving withdrawal of path (1, 3, 0) from node 3, node 2 finally realizes that it no longer
has any path to node 0.

The key point about this illustration is that due to path exploration, convergence can take
quite a bit of time in case of a node failure when the failing node has multiple connectivity.
You may wonder why the node failure case is so important since the nodes are built to be
robust to start with. There are two reasons for this:

CHAPTER 3 Routing Protocols: Framework and Principles 101

(1,0
(1! 2)‘ D)
(1,30

(2,0)
(2,1,0
(2,30

FIGURE 3.16 Four-node fully connected network.

e From a theoretical point of view, it is important to understand how the entire protocol
works so that fail-safe mechanisms can be added, if needed.

e While the node failure case discussed above seems like an unlikely case, this is a fairly
common case in BGP since a node such as node 0 is a specialized node. Actually, such a node
is not a real node and in fact represents an address block (IP prefix) that is conceptually
represented as a specialized node in the above illustration; we will discuss this in detail
in Chapter 8. In this sense, the above illustration is really about how quickly the overall
network may learn about losing connectivity to an address block or a route and helps us
see the implication of a node failure.

Finally, an important comment here. A path vector protocol tries to avoid looping by not
accepting a path from a neighboring node if this path already contains itself. However, in the
presence of path caching, a node can switch to a secondary path, which can in fact lead to an
unusual oscillatory problem during the transient period; thus, an important problem in the
operation of a path vector protocol is the stable paths problem [265]. This says that instead of
determining the shortest path, a solution that reaches an equilibrium point is desirable where
each node has only a local minimum; note that it is possible to have multiple such solutions
at equilibrium.

IMPLICIT COST AND RELATION TO BGP

In our basic description of the path vector protocol with path caching, we have assumed that
the cost to destination is included; this is helpful when the cost between two neighboring
nodes is different. When the cost between two neighboring nodes is implicitly set to 1, it
means that the link cost is hop-based. In this case, it is not necessary to include the cost to
destination in the path vector message. Thus, a message format would be:

Destination Node, Number of Nodes in the Path; Node List of the Path | ... |

3.6

3.6.1

102 3.6 Link Cost

As for example, instead of using the protocol message given in (3.5.1), the following will be
transmitted:

1,22,11212]3223|4224]5,323,5] 63236 |

Certainly, this implicitly assumes that all costs are hop-based instead of link costs shown
in Figure 3.2. In fact, BGP uses the notion of implicit hop-based cost. BGP has another differ-
ence; the node as described here is a model of a supernode this is called an autonomous system
in the Internet. This also results in a difference, instead of the simplifying assumption we
have made that the node ID is what is contained in a path vector message. Furthermore, two
supernodes may be connected by multiple links where there may be a preference in regard
to selecting one link over another. Thus, BGP is quite a bit more complicated than what we
have described and illustrated here in regard to a path vector protocol; BGP will be discussed
in detail in Chapter 8.

Link Cost

In this chapter, you may note that the term link cost, sometimes referred to also as the distance
or the distance cost, is generically used to indicate the cost of a link in a network. Because
of the generic nature, the term metric is also used instead. In this chapter, we do not give
much indication on how the link cost is obtained or what factors need to be considered in
determining the link cost.

As a matter of fact, determination of the link cost is itself an interesting and important
problem. Common sense would tell us that since we want user traffic to move from one node
to another as quickly as possible in a packet-switched network, we need to ensure that delay;,
and probably link speed, are somehow taken into account. In this regard, we briefly discuss
below metrics considered in ARPANET routing and the lessons learned.

ARPANET Routing Metrics

During its life time, ARPANET routing used both the distance vector protocol framework
(“old” ARPANET routing) and the link state protocol framework (“new” ARPANET routing).
The metrics considered also were very much along the line of the protocol framework.

In the “old” ARPANET routing from early 1970s, the link metric was determined based
on the queue length plus a fixed constant where the queue length was computed at the instant
the link cost is to be updated to its neighboring nodes. The intent was to capture the delay
cost based on the queue length, meaning preference was to be given in considering links
with shorter queues over longer queues in computing the shortest path in the distance vector
framework. However, the queue length can change significantly from one instant to the other
that led to (1) packets going from one short queue to another, instead of moving toward the
destination, and (2) routing oscillations; certainly, the fixed constant that was added helped
in relieving the oscillation problem, but not completely. There were also looping problems, as
you would guess from our discussions earlier with a distance vector protocol. Also, the link
cost did not consider link speed.

3.6.2

CHAPTER 3 Routing Protocols: Framework and Principles 103

When ARPANET moved to the link state protocol framework in the late 1970s, the link
metric computation was also changed. Two link metrics were considered; in the first one,
the delay was measured directly by first timestamping each incoming packet when it arrives
and then recording the time when it leaves a node; thus, it captured both the queueing and
processing delay for every packet. Then, for each outgoing link, delay is first averaged over
the delay measurements for packets that arrived in the past 10 sec; this value is compared
to the last value similarly computed to see if there was any significant change. If the change
was significant, the link cost would take the new value and it is flooded. Note that if the link
cost has not changed significantly over five such time windows, i.e., 50 sec, the link cost is
reported anyway. For stability, the link cost was bounded below with a fixed value that was
determined based on the link speed; this means that an idle link can never report its cost to be
zero. This link metric was found to be more stable than the old metric. However, the difficulty
with this new metric was in the assumption that the measured link delay is a good indicator,
rather predictor, for efficient routing of traffic that will be arriving in the next 10 sec. It was
found that it was indeed a good indicator for lightly and moderately loaded links, but not for
highly loaded links. Note that the goal of each node was to find the best shortest path to all
destinations. While it is good to be able to give the best path to everyone, it was problematic
during heavy loads. Instead, during heavy loads, a better goal is to determine good paths to
most destinations rather than trying to give everyone the best path.

Thus, a revision was made to ARPANET routing metric in the late 1980s. The goal was
to resolve the problem faced with the new metric from the early 1980s so that the revised
metric works in a heavy load situation; this was accomplished by taking into account link
speed along with dampening any oscillation from one time window to another. First, the
delay was measured as before. But, this time, it was transformed to a link utilization value
using the simple M /M /1 queueing delay formula (refer to Appendix B.12.2) assuming the
average packet size to be 600 bits; that is, the average delay, t, for utilization p, link speed C,
and average packet size of « is given by:

K

T=—. (3.6.1)
cd-p)
Rearranging, the average utilization, p, can be written as
K
=1-—. 3.6.2
o e (3.6.2)

Since link speed C is known for each link type, thus, using the average packet size (x = 600
bits) and the measured delay 7, the average utilization can be computed. The utilization value
was then smoothed (see Appendix B.6) by averaging with the previous value to dampen any
oscillatory behavior from one time window to the next. The link metric is then chosen as a
linear function of the smoothed utilization, with limits put on how little and how much it
can change from the last reported value. This way of computing the link metric was found to
work well in heavy loads for ARPANET routing.

Other Metrics

We can see from the above discussion that ARPANET pursued dynamic link cost determina-
tion, starting from its early days. In the early 1980s, the first round of development of Routing

3.7

104 3.7 Summary

Information Protocol (RIP) for use in a TCP/IP environment took place; RIP is a distance vec-
tor protocol that we will cover in detail in Chapter 5. It may be noted that RIP uses just hop
count as the link cost. In Chapter 5, we will discuss how link cost is calculated in other dis-
tance vector routing protocols such as Interior Gateway Routing Protocol (IGRP). Later we
will discuss in the chapter on IP traffic engineering (see Chapter 7) how link cost can be deter-
mined through centralized coordination, especially for large networks, by taking into account
network goals.

Summary

In this chapter, we have presented three important classes of routing protocols: distance vec-
tor protocol, link state protocol, and path vector protocol. In presenting these classes of pro-
tocols, we focus primarily on the basic principles behind them and their strengths and weak-
nesses.

In this chapter, we have purposefully stayed with the general principles rather than how
a specific instance of a class of protocols works. There are two reasons for this: (1) to com-
municate that the basic idea is not always complicated, and (2) to be able to see how routing
protocols may evolve or a new routing protocol may be developed knowing the strength and
weakness from the basic framework and principles.

There are several important aspects about any routing protocol: (1) initialization of a pro-
tocol, for example, through a hello message, (2) ability to avoid looping, (3) what information
to communicate, (4) transient behavior and the rate of convergence, (5) how an exception is
handled, for example, when a link failure occurs, and (6) scalability. We have also commented
that exchange of routing information through some reliable means is important as well.

It is also important to understand that for most routing protocols, what information is
to be exchanged can depend on what action might have taken place. In fact, all nodes in a
network seem to live in a symbiotic relationship. If certain aspects do not work properly, a
large segment of a network can go into a tailspin (remember the ARPANET example). This
brings up another important aspect about routing protocols: routing protocols other than
the basic distance vector protocol are stateful protocols where the nodes have peer-to-peer
relationships. It is important to not confuse this statefulness (“in” the network) with whether
a node needs to maintain states for user traffic on a packet-by-packet basis. As an example,
IP in the TCP/IP protocol stack is stateless; however, OSPF, a link state routing protocol used
for routing information exchange, is a stateful protocol.

From the practical side, there is another important point to note that arises from protocol
information exchanges. Some routing protocols require a significant number of message ex-
changes, especially in the event of some problem. Thus, the volume of message exchanges can
be high enough to consume sizable bandwidth on a link; this then impacts how much is left
for the user traffic to use on a link. Typically, routing protocols are not designed to consider
how to take this bandwidth factor into account. Sometimes, an indirect mechanism is used
such as a node that is not supposed to generate a message to a neighboring node more than
once every x sec. The most sophisticated mechanism in practice is to introduce a dampening
factor (refer to Section 8.9). Nowadays, a mechanism outside the protocol is also possible in
which the data rate for different streams can be capped at specific values through a node’s
packet scheduling mechanism.

CHAPTER 3 Routing Protocols: Framework and Principles 105

It is also important to note that a routing protocol is not just limited to serving network
layer traffic routing; a routing protocol can be developed for overlay networks—an overlay
network is conceived at a layer above the network layer where specialized hosts serve as
routing nodes for the overlay network; these hosts form a peering relation and exchange
routing information pertinent to the overlay network. Thus, basic principles discussed here
can be applied in overlay network routing with appropriate adjustments.

Finally, we have given several examples of vulnerabilities with protocols presented in
this chapter, mostly related to the issue of correct operation of a protocol. Besides the ones
discussed, there is another type of vulnerabilities that can affect a routing protocol: this type
can be referred to as security-related vulnerabilities. The question is: is a routing protocol
secure and robust to defray any attacks? This is an important question, and there are many
efforts currently being pursued to address this question for all routing protocols. In this book,
we make only cursory remarks on security-related vulnerabilities; this is not to say that this
problem is not important. Detailed discussion would require almost another book in its own
right.

Further Lookup

There have been extensive work on routing protocols in the past three decades. Much has
been learned from the early days of ARPANET routing protocols that started with a distance
vector framework and moved to a link state framework; for example, [461], [462], [463], [599],
[724]. A good summary of ARPANET routing metrics, including the revised metric and its
performance, can be found in [368]. Also, see [610] for an early work on routing performance
in packet-switched networks.

Topics such as how to avoid looping and how to provide stability in shortest path routing
have received considerable attention starting in the late 1970s; for example, see [78], [79],
[244], [336], [484], [627], [638].

Path vector protocols have received considerable attention in recent years in regard to
convergence and stability issues due to wide-scale deployment of BGP; for example, see [95],
[116], [265], [390], [434], [553], [554], [555], [728].

Exercises

3.1 Review questions:
(a) How is split horizon with poisoned reverse different from split horizon?
(b) What are the sub-protocols of a link state protocol?
(c) List three differences between a distance vector protocol and a link state protocol.

(d) Compare and contrast announcements used by a basic distance vector protocol and
the enhanced distance vector protocol based on the diffusing computation with co-
ordinated update.

3.2 Identify issues faced in a distance vector protocol that are addressed by a path vector
protocol.

106

3.3

34

3.5

3.6

3.7
3.8

39

3.10

3.11

3.7 Exercises

Consider a link state protocol. Now, consider the following scenario: a node must not
accept an LSA with age 0 if no LSA from the same node is already stored. Why is this
condition needed?

Study the ARPANET vulnerability discussed in RFC 789 [605].

Consider the network given in Figure 3.12. Write the link state database at different
nodes (similar to Table 3.3) before and after failure of link 4-5.

Consider a seven-node ring network.

(a) If a distance vector protocol is used, determine how long it will take for all nodes
to have the same routing information if updates are done every 10 sec.

(b) If a link state protocol is used, how long will it take before every node has the iden-
tical link-state database if flooding is done every 5 sec. Determine how many link-
state messages in total are flooded till the time when all nodes have the identical
database.

Solve Exercises 3.6, now for a fully-connected 7-node network.

Investigate how to resolve a stuck in active (SIA) situation that can occur in a distance
vector protocol that is based on the diffusing computation with coordinated update.

Consider a fully-mesh N node network that is running a link state protocol. Suppose one
of the nodes goes down. Estimate how many total link state messages will be generated.

Implement a distance vector protocol using socket programming where the different
“nodes” may be identified using port numbers. For this implementation project, define
your own protocol format and the fields it must constitute.

Implement a link state protocol using socket programming. You may do this imple-
mentation over TCP using different port numbers to identify different nodes. For this
implementation project, define your own protocol format and the fields it must consti-
tute.

This page intentionally left blank

4

Network Flow
Modeling

If the weak were to

Tide across the rapids of life
With your help,

What do you stand to lose?

Bhupen Hazarika (Based on a translation by Pradip Acharya)

Reading Guideline

This chapter is useful for understanding traffic engineering approaches. The chapter
is organized by considering first what traffic means for different communication net-
works. We then consider a single demand to show how the optimization plays a role
depending on a goal. We then discuss a multiple flow model, and then complete the
chapter with the general formalism to address a traffic engineering problem. We also
comment on solution space, which can be very helpful in obtaining insights about
what you might want to do in engineering a network. The background provided
here is useful in understanding material presented in several subsequent chapters
such as Chapters 7, 19, and 24.

4.1

CHAPTER 4 Network Flow Modeling 109

A critical function of a communication network is to carry or flow the volume of user traffic.
The traffic volume or demand volumes can impact routing and routing decisions, which are
also influenced by the goal or objective of the network. So far in Chapter 2, we discussed rout-
ing algorithms for determining paths for flowing user traffic, and in Chapter 3, we discussed
mechanisms needed in a distributed network environment to accomplish routing.

In this chapter, we present the basic foundation of network flow models along with a
variety of objective functions that are applicable in different communication networks. Net-
work flow models are used for traffic engineering of networks and can help in determining
routing decisions. In later chapters, we will discuss how models presented in this chapter are
applicable to different networking environments.

Terminologies

To discuss network flow models, we start with a few key terminologies.

The volume of traffic or demand, to be referred to as traffic volume or demand volume, is
an important entity in a communication network that can impact routing. In general, traffic
volume will be associated with traffic networks while demand volume will be associated
with transport networks; for example, in regard to IP networks or the telephone network, we
will use the term traffic volume; However, for transport networks such as DS3-cross-connect,
SONET, or WDM networks where circuits are deployed on a longer term basis, we will use
the term demand volume. Similarly, routing in a traffic network is sometimes referred to as
traffic routing while in a transport network it is referred to as transport routing, circuit routing,
or demand routing.

The measurement units can also vary depending on the communication network of in-
terest. For example, in IP networks, traffic volume is measured often in terms of Megabits per
sec (Mbps) or Gigabits per sec (Gbps), while in the telephone network, it is measured in Erlangs.
When we consider telecommunications transport networks, the demand volume is measured
in terms of number of digital signals such as DS3, OC-3, and so on.

In this chapter, we will uniformly use the term demand volume, instead of switching be-
tween traffic volume and demand volume, without attaching a particular measurement unit
or a network type since our goal here is to present the basic concepts of network flow models.
For any demand volume between two nodes in a network, one or more paths may need to be
used to carry it. Any amount of demand volume that uses or is carried on a path is referred to
as flow; this is also referred to as path flow, or flowing demand volume on a path, or even routing
demand volume on a path. A path is one of the routes possible between two end nodes with or
without positive flows. Since a network consists of nodes and links, we will also use the term
link flow to refer to the amount of flow on a link regardless of which end nodes the demand
volume is for.

This is also a good time to point out that the term flow is used in many different ways in
communication networking. For example, as we discussed earlier in Chapter 1, a connection
in the TCP/IP environment is uniquely defined by a source/destination IP address pair, a
source/destination port number pair, and the transport protocol used—this is also referred to
as a flow in the networking literature; in this book, we use the term microflow to refer to such
a connection identifier, a term used in many Internet RECs; this helps us in distinguishing
microflows from the use of the term flow in general for network flow modeling, and so on.

4.2

4.2.1

110 4.2 Single-Commodity Network Flow

A given network may not always be able to carry all its demand volume; this can be due
to limits on network capacity but also can be dictated by the stochastic nature of traffic. If the
network capacity is given, then we call such a network a capacitated network. Typically, traffic
engineering refers to the best way to flow the demand volume in a capacitated network—this
is where network flow models are helpful in determining routing or flow decisions.

A communication network can be represented as a directed network, or an undirected net-
work. A directed network is one in which the flow is directional from one node to another and
the links are considered as directional links. An undirected network is a network in which
there is no differentiation between the direction of flow; thus, it is common to refer to such
flows as bidirectional and links as bidirectional links. For example, an IP network that uses
OSPF protocol (refer to Chapter 6) is modeled as a directed network with directional links.
However, a telephone network is an undirected network in which a link is bidirectional and
where calls from either end can use the undirected link. In this chapter, we present network
flow models assuming networks to be undirected since this allows small models to be ex-
plained in a fairly simple way. For instance, for a three-node network we need to consider
only three links in an undirected network while six links are required to be considered in a
directed network. A pair of demand nodes will be referred to as a node pair or a demand pair.
A node pair in a network will be denoted by i:j where i and j are the end nodes for this pair;
if it is a directed network, the first node i should be understood as the origin or source while
the second node should be understood as the destination or sink. For an undirected network,
i and j are interchangeable while we will typically write the smaller numbered node first; for
example, the demand pair with end nodes 2 and 5 will be written as 2:5. A link directly con-
necting two nodes i and j in general will be denoted as i-j ; in case we need to illustrate a point
about a directional link, we will specifically use i — j to denote the directional link from node
i to node j. In fact, we have already used the notion of directed links and undirected links in
earlier chapters. This summary is presented here for the purpose of understanding network
flow models. Finally, we use the term unit cost of flow on a link or unit link cost of flow in regard
to carrying demand volume; this term should not be confused with link cost or distance cost of
a link used earlier in Chapter 2.

Single-Commodity Network Flow

We start with the single-commodity network flow problem. This means that only a node
pair has positive demand volume, thus, the name single-commodity where the term commodity
refers to a demand. For illustration of network flow models, we will use a three-node network
in this section.

A Three-Node Illustration

Consider a three-node network where 5 units of demand volume need to be carried between
node 1 and node 2 (see Figure 4.1); we assume that the demand volume is a deterministic
number. We are given that all links in the network are bidirectional and have a capacity of
10 units each. It is easy to see that the direct link 1-2 can easily accommodate the 5 units of
demand volume since there the direct link can handle up to 10 units of capacity; this remains
the case as long as the demand volume between node 1 and node 2 is 10 units or less. As soon
as the demand volume becomes more than 10 units, it is clear that the direct link path cannot

4.2.2

CHAPTER 4 Network Flow Modeling 111

W\ Capacity

Demal.nd Volume
between 1 and 2

FIGURE 4.1 Three-node network with single demand between node 1 and node 2.

carry all of the demand volume between node 1 and node 2. In other words, any demand in
excess of 10 units would need to be carried on the second path 1-3-2 .

This simple illustration illustrates that not all demand volume can always be carried on a
single path or the shortest, hop-based path; the capacity limit on a link along a path matters.
In addition, we have made an implicit assumption up to this point that the direct link path
1-2 is less costly per unit of demand flow than the two-link alternate path 1-3-2. However, in
many networks, this may not always be true. If we instead suppose that the per-unit cost of
the two-link path 1-3-2 is 1 while the per-unit cost on the direct link 1-2 is 2, then it would
be more natural or optimal to route demand volume first on the alternate path 1-3-2 for up
to the first 10 units of demand volume, and then route any demand volume above the first
10 units on the direct link path 1-2.

The above illustration helps us to see that the actual routing decision should depend on
the goal of routing, irrespective of the hop count. This means that we need a generic way to
represent the problem so that various situations can be addressed in a capacitated network
in order to find the best solution.

Formal Description and Minimum Cost Routing Objective

We are now ready to present the above discussion in a formal manner using unknowns or
variables. We assume here that the capacity of each link is the same and is given by c. Let the
demand volume for node pair 1:2 be denoted by 4. For example, in the above illustration
capacity ¢ was set to 10.

Since the demand volume for the node pair 1:2 can possibly be divided between the direct
link path 1-2 and the two-link path 1-3-2, we can use two unknowns or variables to represent
this aspect. Let x1, be the amount of the total demand volume 4 to be routed on direct link
path 1-2 , and let x13; be any amount of the demand volume to be routed on the alternate
path 1-3-2 (see Figure 4.2). Note the use of subscripts so that it is easy to track a route with
flows. Since the total demand volume is required to be carried over these two paths, we can
write

X12 +Xx13 =h. (4.2.1a)

This requirement is known as the demand flow constraint, or simply the demand constraint. It is
clear that the variables cannot take negative values since a path may not carry any negative

112 4.2 Single-Commodity Network Flow

-
- -

FIGURE 4.2 Single-commodity network flow modeling: three-node network.

demand; this means the lowest value that can be taken is zero. Thus, we include the following
additional conditions on the variables:

x12 >0, x132 > 0. (4.2.1b)

In addition, we need to address the capacity limit on each link. Certainly, any flow on a path
due to routing cannot exceed the capacity on any of the links that this path uses. An implicit
assumption here is that the flow and the capacity are using the same measurement units;
we will discuss deviations from this assumption in later chapters. Since we assume that the
capacity limit is the same on all links in this three-node network, we can write

X12 =¢, X132 = ¢. (4.2.1¢)

The first one addresses the flow on the direct link 1-2 being less than its capacity; flow x132
uses two links 1-3 and 2-3, and we can use only a single condition here since the capacity is
assumed to be the same on each link. Constraints (4.2.1c) are called capacity constraints.

From the above discussion, we can see that we need conditions (4.2.1a), (4.2.1b), and
(4.2.1c) to define the basic system. It is important to note that it is not a system of equations;
while the first one, i.e., (4.2.1a), is an equation, the second and the third ones, i.e., (4.2.1b)
and (4.2.1c), are inequalities. Together, the system of equations and inequalities given by
Eq. (4.2.1), which consists of conditions (4.2.1a), (4.2.1b), and (4.2.1c), is referred to as con-
straints of the problem. Even when all the constraints are known, our entire problem is not
complete since we have not yet identified the goal of the problem. In fact, without defining a
goal, system (4.2.1) has infinite numbers of solutions since an infinite combination of values
can be assigned to x1 and x13; that satisfies constraints (4.2.1a), (4.2.1b), and (4.2.1c).

As the first goal, we consider the cost of routing flows. To do that, we introduce a generic
nonnegative cost per unit of flow on each path: &5 (> 0) for direct path 1-2 and &;3; (> 0) for
alternate path 1-3-2 . Thus, the total cost of the demand flow can be written as

Total cost = &1px12 + E132x132. (4.2.2)

CHAPTER 4 Network Flow Modeling 113

The total cost is referred to as the objective function. In general, the objective function will be
denoted by F. If the goal is to minimize the total cost of routing, we can write the complete
problem as follows:

minimize(x, x5} F=%§12x12 +§132x132
subject to X2 +xim=nh

X2 =€, X132 =¢C

x12 >0, x132 > 0.

(4.2.3)

The problem presented in Eq. (4.2.3) is a single-commodity network flow problem,; it is also re-
ferred to as a linear programming problem since the requirements given by Eq. (4.2.1) are all lin-
ear, which are either equations or inequalities, and the goal given by Eq. (4.2.2) is also linear.
In general, a representation as given in Eq. (4.2.3) is referred to as the formulation of an opti-
mization problem. The system given by Eq. (4.2.1) is referred to as constraints. To avoid any
confusion, we will identify the variables in any formulation by marking them as subscripts
with minimize. Thus, in the above problem, we have noted that x1; and x13; are variables by
indicating so as subscripts with minimize. Often, the list of variables can become long; thus,
we will also use a short notation such as x in the subscript with minimize to indicate that all
xs are variables.

Because of the way the goal is described in Eq. (4.2.3), the problem is also known as
the minimum cost routing or minimum cost network flow problem. An optimal solution to an
optimization problem is a solution that satisfies the constraints of the problem, i.e., it is a
feasible solution and the objective function value attained is the lowest (if it is a minimization
problem) possible for any feasible solution. For clarity, the optimal solution to a problem such
as Eq. (4.2.3) will be denoted with asterisks in the superscript, for example, x7, and xj5,.

INSTANCE 1:

We now consider some specific cases discussed earlier in Section 4.2.1 to obtain solutions to
problem (4.2.1). First, we consider the capacity to be 10, i.e., ¢ = 10.

If the unit cost is based on a unit flow per link, then we can clearly write cost components
as &12 =1 (since it is a direct link path) and &3, =2 (due to two links making a path). This
will then correspond to the first case discussed in Section 4.2.1. In this case, optimal flows can
be written as:

x5, =10, X]3, =0 when0<h <10

X, =10, X3 =h—10 whenh >10, and 1 <20. (4.2.4)

If h > 20, it is clear that the network does not have enough capacity to carry all of the de-
mand volume—this is referred to as an infeasible situation and the problem is considered to
be infeasible.

INSTANCE 2:

Consider the alternate case where per unit cost on the alternate path is 1 while on the direct
pathitis 2,ie., &2 =2 and &3, = 1. In this case, optimal flows can be written as:

xf, =0, X3, =10 when0<h <10

xi,=h—10, x%,=10 whenh>10, and h <20. (4.2.5)

4.2.3

114 4.2 Single-Commodity Network Flow

ON SOLVING PROBLEM (4.2.3)

We now consider the general solution to Problem (4.2.3) when the demand volume is less
than the capacity of a link, i.e., 4 < c. With two unknowns, problem (4.2.3) can be solved by
using substitutions, i.e., by setting x13; = & — x12 and using it back in the objective. Then, the
objective becomes

F=§&px12 4+ &132(h — x12) = (612 — &132)%12 + 1321,

Note that the last term, £13,4, remains constant for a specific problem instance. Thus, we need
to consider the minimization of the rest of the expression, i.e.,

minimizeyy (§12 — §132)X12

subject to appropriate constraints. We can easily see that if £15 < &3, then the problem is at
minimum when x}, = h; however, if &1 > &132, then the minimum is observed when x7, =0.
When £17 = £132, then x1 can take any value in the range [0, /], that is, the problem has
multiple optimal solutions.

Consider now the case in which demand volume, %, is more then ¢ but the problem is still
feasible, i.e., h > ¢, but i <2c. In this case, we need to take the bounds into account properly;
thus, if £15 < &13, then x7, = min{h, c}; similarly, if &2 > &137, then the minimum is observed
when x}, = max{0, & — c}.

Thus, for values of & ranging from 0 to 2c, we can see that optimal flows are as we have
already identified in (4.2.4) and (4.2.5), corresponding to &2 < &132 and &5 > &132, respectively.

Variation in Objective: Load Balancing

In model (4.2.3), we have considered the goal to be based on minimizing the routing cost
by incorporating the unit cost of a path. While this is applicable in some communication
networks, other goals or objectives are also applicable in other communication networks.

We now consider another goal—minimization of maximum link utilization. This goal is also
referred to as load balancing flows in the network. To illustrate this, we will again use con-
straints (4.2.1) discussed above. The link utilization is defined as the amount of flow on a link
divided by the capacity on that link. We know that the only flow using link 1-2 is x1 while
X137 uses both links 1-3 and 3-2 . Thus, the utilization on link 1-2 can be written as

xi
C

while utilization on either link 1-3 or 3-2 can be written as
X132
—~

Then, the maximum utilization over all links means the maximum over these two expres-
sions, i.e.,

X12 X132
max{ —, —— t.
c c

CHAPTER 4 Network Flow Modeling 115

Note that x17 and x13; are variables that are constrained given by Eq. (4.2.1). Thus, for load
balancing, we want to pick the values of the variables in such a way that the maximum link
utilization is at a minimum. That is, the load balancing problem can be formally written as

minimizey F=max{2, 6 "2}

subjectto xip+x132=h
X12=¢, X132 =¢
x12 >0, x130 >0.

(4.2.6)

To illustrate the meaning of maximum link utilization, consider ¢ =10 and & = 5. If all
of the demand volume is routed on the direct link path 1-2 , then xj» =5 and x13; = 0; the
maximum of the link utilization is then max{5/10,0/10} = 1/2. However, if we were to route
one unit of demand volume on the alternate path, i.e., x;32 = 1, while keeping the rest on
the direct link, i.e., x1p = 4, then the maximum link utilization is max{4/10, 1/10} = 2/5; this
utilization value is lower than if all of the demand volume were routed on the direct link path.
The question is: can we do even better? The answer is yes, leading to the optimal solution for
the load balancing case.

In fact, we can discuss the optimal solution for the general formulation given by
Eq. (4.2.6) without needing to consider specific values of ¢ or h. First note that the maxi-
mum in the objective is over only two terms; thus, the minimum can be achieved if they are
equal, i.e., at optimality, we must have

k *
12 _ M3
C C

Note that the unknowns are related by x7, + x}3, = h. Thus, substituting x};,, we obtain

*
X _h—xj

Cc

Transposing and noting that the denominators are the same on both sides, we get
X}, =h/2. (4.2.7)

Thus, we see that when the load balancing of flows is the main goal, the optimal solution for
Eq. (4.2.6) is to split the flows equally on both paths. Certainly, this result holds true as long as
the demand volume / is up to and including 2¢; the problem becomes infeasible when £ > 2c.

VARIATION IN CAPACITY

We now consider a simple variation in which the link capacities in the network are not the
same. To consider this case, we keep the capacity of link 1-2 at ¢ but increase the capacity of
the other two links to 10 times that of 1-2 , i.e., to 10c. Note that the utilization on links 1-3
and 3-2 are now x132/(10¢), and Formulation (4.2.6) changes to the following:

minimize, F= max{m m}
subject to X2 +x132="h
x12 <c, x132<10c¢
x12>0, x132>0.

(4.2.8)

4.24

116 4.2 Single-Commodity Network Flow

In this case, too, the optimal load balance is achieved when

b _ X3
c 10c¢’
On simplification, we obtain
xj, =h/11

and thus, x5, = 10h/11. This essentially says that load balancing on a network with non-
uniform capacity results in utilization being balanced, but not necessarily flows. A simple
way to visualize this is to consider the capacity of link 1-2 to be 10 Mbps, and the capacity
of other links to be 100 Mbps; it would be preferable to send more traffic to the fatter /higher
capacity link.

Variation in Objective: Average Delay

Another goal commonly defined, especially in data networks, is the minimization of the av-
erage packet delay. For this illustration, we consider again the three-node network with de-
mand volume / between node 1 and node 2; the capacity of all links is set to c. The average
delay in a network (see Appendix B.13 for details) with flow x1, on the direct link path and
x132 on the alternate path can be captured through the expression

X12 2x132
+ .
cC—X12 Cc—X132

Here again, the capacity is normalized so that the measurement units for flow and capacity
are the same. The goal of minimizing the average delay is to solve the following problem:
minimizey F= 2+ Lz_x%
subject to X2 +x132="h (4.2.9)
X12 =€, X132 =¢
x12 =20, x132>0.

First, we want to point out that the objective function is not defined when x1, = c or x13; =c.
In fact, the problem is meaningful only when x1; < ¢ and x13; < c. Thus, in reality, we want
to limit the bounds on the unknowns below ¢ by a small positive amount, say, (> 0), i.e.,
xpp<c—¢cand xjzp <c—e.

To solve Eq. (4.2.9), we have two nonnegative variables, x12 and x13,, which are related by
X12 + x132 = h; thus, we can rewrite the objective function in terms of just a single unknown,
say in x1, as

po 12 2(h —x12)
c—xpp c—(h—x12)

This is a nonlinear function that we want to minimize. We can use calculus to solve this
problem. That is, we differentiate expression I’ with respect to x» (i.e., %) and set the result

4.2.5

CHAPTER 4 Network Flow Modeling 117

to zero, i.e., % = 0; then, we can solve this as an equation to find solution x1,. You can do the

“second-derivative” test at this solution to verify that it is indeed minimum, not a maximum.

In our case, % = 0 translates to solving a quadratic equation; this means that we obtain

two solutions. However, only one solution, xj = —h+3c—2 V2¢ + +/2h, is relevant since we
must have x1, > 0; furthermore, we need to ensure that the resulting solution is never beyond
the demand volume #, i.e., x12 < h. Thus, we can write the solution from differentiation by
incorporating the necessary bounds as follows:

Xty =min{h, —h+3c—2v2c + V2h). (4.2.10)

From the above result, we can see that if the demand volume is low, the optimal solution
is route all flow on the direct link path; but as the demand volume grows, it is optimal to flow
some of the value on of the second path.

Summary and Applicability

In this section, we have considered the single-commodity network flow problem for three
different goals: minimum cost routing, load balancing, and minimization of the average de-
lay. In Figure 4.3, we have plotted the optimal flow on the direct link path, x7,, given by
(4.2.4), (4.2.5), (4.2.7), and (4.2.10) for the three different objectives (including two cases for
minimum cost routing) for demand volume, %, ranging from 0 to 20. From the optimal solu-
tions obtained for these cases, it is clear that although the domain of each problem is the same,
that is, the constraint set is the same, the actual optimal solution is different depending on the
goal; furthermore, the actual values of / and c also matter.

While we have illustrated here solutions for only a three-node single-commodity case, the
general behavior is quite applicable in any size network. That is, it is important to note that

16 T T T T I T
— MinCostRouting, &;, < &5,
ul |~ AvgDelayMin U
w - LoadBalanceOpt
= .- MinCostRouting, &,> &4,
2L L]
< : :
< . .
A 10 : :
10 . -
£ : : L -7
A L e
0 : : PN
g : : : -7
£ sr g : PESre]
A : : -
: : PR
g S
sl TR e 1
2 T
2 Lot
= P -
< - -
LRl Ot T 1
g 72 [P
2 / Fs - : -
0 G 1 it 1 L le 1 1 1 1
4] 2 4 6 8 10 12 14 16 18 20

Demand Volume, & (c=10)

FIGURE 4.3 Optimal flow on the direct link path with different objectives.

4.3

4.3.1

118 4.3 Multicommodity Network Flow: Three-Node Example

the optimal solution with different objective functions usually has minimal difference when
the demand volume is low compared to the capacity (“lowly-loaded case”), and also have
surprisingly minimal difference when the demand volume is closer to the capacity (“highly-
loaded case”); however, in the moderately-loaded region, the flow solution can vary signif-
icantly from one objective function to another. Thus, the important lesson here is that for a
particular communication networking and/or operational environment, we need to be care-
ful in choosing the primary goal and the load to capacity region considered matters. In other
words, we cannot choose one goal and then wonder why the optimal solution for this goal is
quite different from another goal.

Multicommodity Network Flow: Three-Node Example

In this section, we consider multiple commodities, that is, multiple demand pairs have pos-
itive demand volumes. As with the single-commodity case, we will consider again the three
different objectives. We will again use a three-node network to explain the multicommodity
network flow problem.

Minimum Cost Routing Case

For the multicommodity case in a three-node network, all three demand pairs can have pos-
itive demand volumes. For clarity, we will use a subscript with demand volume notation %
to identify different demands; thus, the demand volume between nodes 1 and 2 will be iden-
tified as A1y, between 1 and 3 as /13, and between 2 and 3 as /3. For each demand pair, the
volume of demand can be accommodated using two paths: one is the direct link path and
the other is the alternate path through the third node. In Figure 4.4, we show all the possible
paths for each demand pair. The amount of flow on each path is the unknown that is to be
determined based on an objective; we denote the unknowns as x1; for path 1-2 for demand
pair 1:2, and x;3; for path 1-3-2 , and so on.

Demand Pair 1:3

)

Path: 1-2-3

Demand Pair 2:3

Demand Pair 1:2 o 2 3

@—@ (1) 2 Path: 23 Path: 213

Path: 1-2 Path: 1-3-2

FIGURE 4.4 Three node example with all possible paths.

CHAPTER 4 Network Flow Modeling 119

Much as shown earlier for the single-commodity flow problem, we can write that the
demand volume for a node pair must be carried over the two paths. Thus, for demand pair
1:2, we can write

X12 + X132 = h12. (4.3.1a)
Similarly, for demand pairs 1:3 and 2:3, we can write the following:

xX13 +x123 = h13 (4.3.1b)

X3 + X213 = ho3. (4.3.1¢)

These unknown flow amounts, while satisfying the demand volume requirements, must also
satisfy capacity limits on any link. We denote capacities of links 1-2, 1-3 , and 2-3 by c12, c13,
and cy3, respectively.

By following the paths listed in Figure 4.4, we note that three different paths from three
different demand pairs use link 1-2; they are paths 1-2, 1-2-3, and 2-1-3 (see Figure 4.5). Since
the sum of the flow over these three paths cannot exceed the capacity, c12, of link 1-2 , we can
write the following inequality (constraint):

X12 + X123 + X213 = C12. (4.3.2a)
Similarly, for the other two links 1-3 and 2-3, we can write

X13 + X132 + X213 = €13 (4.3.2b)
X23 + X132 + X123 < €23. (4.3.2¢)

We next consider the objective function for minimum cost routing. If the unit costs of routing
on paths 1-2, 1-3-2, 1-3, 1-2-3, 2-3, and 2-1-3 are denoted by &1, &132, &13, £123, £23, and &13,
respectively, then the total routing cost can be written as

total cost = £10x12 + &132Xx132 + £13X13 + 123X123 + £23%03 + £213%213- (4.3.3)

Path: 2-1-3

Path: 1-2-3

Link-flow: 1-2 ="’ Path: 1-2

FIGURE 4.5 Link flow on link 1-2 for paths for different demand pairs.

120 4.3 Multicommodity Network Flow: Three-Node Example

Thus, the entire problem can be formulated as follows:

minimize;y, F =§&2x12 + &132%132 + §13%13 + §123%123 + §23%23 + £213%213
subject to X12 +X132 = hip

x13 +x123 = hi3

x23 +x213 = h3

X12 + X123 + X213 < €12

X13 + X132 + X213 = €13

X23 + X132 + X123 < €23

x1220, x132>0, x13>0, x123 >0, x3 >0, x213>0.

(4.3.4)

The above problem has six nonnegative variables, and six constraints.

Example 4.1 Illustration of solution for Eq. (4.3.4).

Consider demand volumes to be h12 =5, k13 = 10, and hy3 = 7, and capacities to be
c12 =10, ¢13 =10, cp3 = 15 (see Figure 4.6). If the unit cost is based on the number of links
a flow traverses, that is, 1 for a single-link path and 2 for a two-link path, then we can write
&12 = €13 = &3 = 1, £130 = £123 = &213 = 2. Clearly, the optimal solution to Eq. (4.3.4) is to flow
demand volume for each demand pair on the respective direct link path, i.e., we set x], =35,
xj3 =10, x5, = 7 with the other variables taking the value zero since all constraints are satis-
fied; here, the total cost at optimality is 22.

However, if the unit costs are different, such as a single link path costing twice that of a
two-link path, i.e., &2 = &13 = &3 =2, &132 = &123 = £13 = 1, then the optimal solution that
satisfies all the constraints would be: x}, =1, x]3, =4, x]3 =3.5, x],3 = 6.5, X33 =4.5, x3,5 =
2.5, with the total cost being 31. A

Unlike the ease with which we were able to determine the optimal solution for the single-
commodity network flow problem given by Eq. (4.2.3), it is not so easy to do so for the multi-
commodity network flow problem given by Eq. (4.3.4) since the latter problem has six vari-
ables and six constraints. Thus, we need to resort to an algorithmic approach to solving this
problem.

First, recall that problems such as Eq. (4.3.4) are classified as linear programming (LP) prob-
lems since all constraints as well as the objective function are linear. LP problems can be solved
using the well-known simplex method, and other methods such as the interior point method;
for example, see [164], [515], [711]. While these methods work well in practice, they are fairly
complicated algorithms, and their description is beyond the scope of this book. Fortunately,
there are many software packages for solving LP problems; for example, see [237] for a sur-
vey of LP solvers. Such a package allows a user to enter the problem almost in the way it is
described in Eq. (4.3.4).

Example 4.2 Solving Eq. (4.3.4) using CPLEX.

We will illustrate here how to solve Eq. (4.3.4) when the alternate path is cheaper than the
direct path, i.e., £&12 =2, £&132 = 1, and so on. We will use CPLEX [158], a popular LP solver for
this illustration. In CPLEX, you can enter the data for the second case of Example 4.1 as given
below (see Appendix B.5 for additional information):

CHAPTER 4 Network Flow Modeling 121

Demand Volume 5

FIGURE 4.6 Demand volume and capacity data for three-node network.

Minimize 2 x12 + x132 + 2 x13 + x123 + 2 x23 + x213
subject to

d12: x12+x132=5

d13: x13+x123=10

d23: x23 +x213=7

c12: x12 +x123 + x213 <= 10

c13: x132 +x13 +x213<=10

c23: x132 + x123 + x23 <= 15
Bounds

0<=x12

0 <=x132

0<=x13

0<=x123

0 <=x23

0<=x213
End

The above representation is very similar to Formulation (4.3.4). Problem data in CPLEX
are entered in the ASClII-based text format; thus, subscripts are directly tagged on to the
variables; similarly, note the use of <= instead of <.

Using CPLEX, we can find the optimal solution to Eq. (4.3.4). Solutions can be displayed
by giving the display command as follows:

CPLEX> display solution variables -

Variable Name Solution Value
x12 1.000000
x132 4.000000
x13 3.500000
x123 6.500000
x23 4.500000
x213 2.500000
Thus, we have xTz =1, x’{32 =4, xf3 =3.5, xTB =6.5, x% =4.5, x§13 =2.5. A

It may be noted that the above solution gives fractional values, which is the case in gen-
eral for an LP problem. That is, the multicommodity flow model as given by Eq. (4.3.4) is
for variables taking values in the real number space. Sometimes we do have restrictions; for
example, some or all variables are allowed to take only integer values. If some of the vari-
ables take integral values, then such problems are labeled as mixed integer linear programming
(MILP) problems; if all variables take integral values, then such problems are referred to as
integer linear programming (ILP) problems. Many real-world communication network problems

122 4.3 Multicommodity Network Flow: Three-Node Example

are appropriately modeled as MILP or ILP problems; we will illustrate such real examples
later in this book.

If variables take only integral values, then this is in fact a form of constraints; thus, they
need to be explicitly stated as part of the problem definition. If we do in fact require Eq. (4.3.4)
to include the requirement that all variables take integral values, then we can rewrite it as
follows:

minimize;y, F=&x12 + &1320132 + &13%13 + E123%123 + §23%23 + £213%213
subject to X12 +X132 = his
x13 +x123 = I3
X3 + X213 = hy3
x12 + X123 + X213 < 12 (4.3.5)
X13 + X132 + X213 = €13
X23 + X132 + X123 < €23
x1220, x132>0, x13>0, x123 >0, x23 >0, x213>0
all xs integer.

Example 4.3 Multicommodity network flow with integer solution.

Considering again demand volumes to be h13 =5, h13 = 10, and hy3 = 7, and capacities to
be c12 =10, ¢13 =10, c23 = 15, in CPLEX, we can enter the above ILP problem in the following
way where integrality of variables is explicitly listed:

Minimize 2 x12 + x132 + 2 x13 + x123 + 2 x23 + x213
subject to

di: x12+x132=5

d2: x13+x123=10

d3: x23 +x213=7

cl: x12+x123 + x213 <= 10

c2: x132 +x13 +x213<=10

c3: x132 + x123 + x283 <= 15

Bounds
0<=x12<=10
0<=x132<=10
0<=x183<=10
0<=x123<=10
0<=x283<=10
0<=x213<=10

Integer
x12 x132 x13 x123 x23 x213

End

An important point to note here is that when variables are explicitly declared as integers,
an upper bound for these variables is required to be specified since CPLEX assumes that the
default for the upper bound is 1. In the above case, we have artificially set the upper bound at
10 since from demand volume values we know that no variables will take more than 10 units
of flow at optimality. The optimal solution with integrality requirement is obtained as

* * * * * *
X =1 =4 X3 =4, X753 =0,X33 =5,x33=2

and the total cost at optimality is 32. A

4.3.2

CHAPTER 4 Network Flow Modeling 123

You may note that the optimal objective cost is higher when the variables take integral
values compared to the counterpart when variables are allowed to take real values. It is in-
deed true that for a minimization problem, the optimal cost for the integral-valued problem
is always higher than or equal to the counterpart problem when the variables take real val-
ues, i.e., when integrality is relaxed. Note that the integrality requirement can be thought of
as additional constraints to a problem; any time additional constraints are added to a base
problem, the optimal objective cost goes up as long as the objective is minimization based.
Finally, note that problems with integrality constraints are in general harder to solve, i.e.,
more time-consuming in general. Furthermore, a problem with integrality constraints cannot
be solved by the simplex method; instead, methods such as branch-and-bound and branch-
and-cut are used. Tools such as CPLEX support these methods in addition to the simplex
method; this is exactly what happened when we solved Eq. (4.3.5). For very large problems
(with many variables and constraints), sometimes commercial solvers are not effective; thus,
we resort to developing specialized algorithms by exploiting the structure of a problem; for
various approaches to solving large communication network optimization problems, refer
to [564].

Load Balancing
We now present the formulation for when maximum link utilization is minimized for the

multicommodity case. We first introduce a set of dependent variables for flow on each link. If
we denote the link flow on link 1-2 by y;, then based on our discussion earlier, we can write

Y12 =X12 + X123 + X213. (4.3.6a)
Similarly, for the other two links, we introduce y13 and y;3, and write

Y13 =X13 + X132 + X213 (4.3.6b)

Y23 = X23 + X132 + X123. (4.3.6¢)

Given y12, y13, Y23, we can write the link utilization as y12/c12, y13/¢13, y23/¢23 for links 1-2,

1-3, and 2-3, respectively. The maximum link utilization over these three links can be written

as
max{&,)ﬂ,)ﬁ} (4.3.7)

€12 €13 €23

Note that the actual maximum value is influenced by link flow variables, which are, in turn,

affected by how much flow is assigned to path flow variables. Recall that the goal of load

balancing is to minimize the maximum link utilization. We can write the entire formulation as

124 4.3 Multicommodity Network Flow: Three-Node Example

minimize, y, F =max {)C% o=, %}
subject to X12 +X132 = /’l12
X13 + X123 = I3
X23 +x213 = ho3
X12 + X123 + X213 = Y12 (4.3.8)
X13 + X132 + X213 = Y13
X23 + X132 + X123 = ¥23
Y12 = €12, Y13 = €13, Y23 = (23
x12>0, x132 >0, x13>0, X123 >0,x23 >0, x213>0
y12>0, y13>0, y23>0.

It is important to note that the maximum link utilization is a quantity that lies between 0 and
1 since link flow should be less then the capacity of the respective link for a feasible problem.
Note that problem (4.3.8) is, however, not an LP problem since the objective function (4.3.7) is
nonlinear; rather it is a piecewise linear function. That means that the standard LP approach
that we discussed earlier cannot be directly used. Fortunately, the maximum link utilization
function has a nice property. To discuss it, we first introduce the definition of a convex function.
A function f is convex if for any two points z; and z; in its domain, and for a parameter « in
0 <« <1, the following holds:

flazi + (A —@)z2) <af(z1) + (1 —a)f (22). (4.3.9)

This means that the convex combination of the line segment connecting the function values
at f(z1) and f(z2) will be grater than or equal to the function between the points z; and z5.
A pictorial view is presented in Figure 4.7.

We now consider again the objective (4.3.7); it is easy to see that it is convex; also recall
that it is piecewise linear. Thus, if we write (4.3.7) as

,,Zmax{yﬁ, Y yﬁ} (43.10)
C12 €13 €23

fiz)
fiz)

o fiz)) + (1-at) fiz,)

FIGURE 4.7 Convex function.

4.3.3

CHAPTER 4 Network Flow Modeling 125

then clearly r is greater than or equal to each of its components, i.e.,

pu 2 oYy (4.3.11)

12 €13 €23

Since the goal is to minimize Eq. (4.3.7), this is equivalent to minimizing r subject to con-
straints Eq. (4.3.11). Using this result and noting that r > {% is the same as yqp < c1p7, and
similarly for the other two links, we can write Eq. (4.3.8) as the following equivalent problem:

minimizey.y, F=r
subject to X12 +X132 = hip
x13 +x123 = h13
X3 +x213 = h3
X12 + X123 + X213 = Y12
X13 + X132 + X213 = Y13 (4.3.12)
X23 + X132 + X123 = y23
Y12 = €12, Y13 =C13, Y23 = €23
Y12 =C12F, Y13 €137, Y23 =37
x12>0, x132>0, x13>0, x123 >0, x23>0, x213>0
y1220, y13>0,y23 > 0.

An advantage with the above formulation is that it is an LP problem and, thus, can be solved
using an LP solver such as CPLEX. Note that in transforming Eq. (4.3.8) to Eq. (4.3.12),
we have introduced an additional variable r and three additional constraints as given
by Eq. (4.3.11).

Example 4.4 Solution for the load balancing problem.

We again considering demand volumes to be 12 =5, h13 = 10, and A3 = 7, and capacities
to be ¢12 =10, ¢13 =10, and ¢3 = 15. Using CPLEX on formulation (4.3.12), we obtain the
optimal solution as

X[, =5,X3=75,x,3=25x5,=7
and the maximum link utilization at optimality is r* = 0.75. A

Remark 4.1. Dropping capacity constraints from Eq. (4.3.8) and Eq. (4.3.12).

In formulations (4.3.8) and (4.3.12), constraints y{; < c12, y13 < ¢13, and y,3 < ¢3 can be
dropped from the formulation without changing the problem. If for the optimal solution the
maximum link utilization is found to be greater than 1, this automatically implies that the
network does not have enough capacity to carry all the demand volume. ¢

Average Delay

We now consider the problem of minimizing the average delay. To do so, we will use link
flow variables, y12, y13, and y3, that we have introduced in the previous section. The average
delay function (see Appendix B.13) is given by

(Yo o _ys o ¥) (43.13)
hip+hiz+h3a\ci2—y12 ci3—y13 €3—y3

fO1.y2,y3) =

126 4.3 Multicommodity Network Flow: Three-Node Example

Since the total external offered load, s + h13 + h23, is a constant it can be ignored from the
objective function. Similar to Eq. (4.3.8), this time with the average delay function, we can
write the formulation as follows:

minimize,) F= (Clzyizylz + 613)}13)/13 + 623))33}’23)
subject to X172 + x1320 = h12
X13 + X123 = I3
X3 + X213 = ho3
X12 + X123 + X213 = Y12
X13 + X132 + X213 = Y13
X23 + X132 + X123 = ¥23
Y12 = €12, Y13 = €13, Y23 < (23
x1220, x132>0, x13>0, x123 >0, x23 >0, x213>0
y12=0, y13>0, y23 >0.

(4.3.14)

We note that the objective function is undefined whenever the link load for any of the links
equals the capacity of that link, a situation that certainly is not desirable when solving the
above problem. Thus, in developing an algorithm to solve this formulation, a slightly modi-
fied version is used where the link is restricted below the capacity by a small positive quan-
tity, say, ¢; that is, a capacity constraint such as yj2 < c12 is replaced by y12 < c12 — ¢; this is
similar for the other two links. Note that we discussed this adjustment earlier for the single-
commodity network flow problem.

It is important to note that the objective function is convex when the link flow is less than
capacity. However, unlike the maximum link utilization case, this function is not piecewise
linear; rather, it is highly nonlinear as the load approaches the capacity. To solve this non-
linear optimization problem, approaches such as the flow deviation algorithm can be used;
for example, see [564, Chapter 5]. We will now describe another approach that considers a
piecewise linear approximation of the objective function.

First observe that the objective function includes the functional form

fo) = cyTy for0<y/c<1. (4.3.15)

This function, scaled by ¢, i.e., cf(y) can be approximated by the following piecewise linear
function by matching the function at several points on the curve such as £ =0 1,2 and so

s 39 37
on:
%y, for 05%5%
%y—c, for%§%<%
Fop=| Dy se for % =<3 (4.3.16)

50y — 36¢, for $<2 <3

200y —171c, for g<¥ <3

4000y —3781c, for ¥ > 13.

CHAPTER 4 Network Flow Modeling 127

50 T I T T T T T T
: — Yle-p : :
45 - : - - Piecewise Linear Approximation : : 4

40 -

35

30 -

FIGURE 4.8 Piecewise linear approximation function (4.3.16) of y/(c — y) (when ¢ =1).

In Figure 4.8, we have plotted both Eq. (4.3.15) and Eq. (4.3.16) when ¢ = 1; it is easy to see
that the match is very close. Thus, we can say that cf(y) ~ f(y). The approximate function,
(4.3.16), can also be written as the maximum of each of the linear pieces as follows:

f() =max{3y, 3y —c, 15y — 8¢, 50y — 36¢, 200y — 171c,

(4.3.17)
4000y —3781c}, fory > 0.

Recall our approach to transform the minimization of max function given by Eq. (4.3.10) in
the previous section to an equivalent problem with constraints. We can do the same transfor-
mation here, and write the minimization of Eq. (4.3.17) in the following form:

minimizey r

subject to

~ N
vV 1V
< <
|
o

~
v
N 1o W

W
~
|
0
9)

(4.3.18)
r

v

0y —36c¢
00y —171c
000y — 3781c

v
()

r

v
I

r

<
v
o

Now consider again Formulation (4.3.14); the objective function has three parts, one for each
link, and each of the exact same form y/(c — y). Thus, for each part, we can use the piecewise
linear approximation as we have described above, and introduce variables rq3, r13, and r3
and the related constraints. Using this approximation, and accounting for the scaling factor

4.4

128 4.4 Multicommodity Network Flow Problem: General Formulation

c12, €13, and ¢y3 in the approximation, we can write an approximate equivalent problem of
Eq. (4.3.14) as follows:

F= C%hz + %rm + 613723
x12 +x132 =h12

X13 + X123 = I3

X23 +x213 = ho3

X12 + X123 + X213 = Y12

X13 + X132 + X213 = Y13

X23 + X132 + X123 =¥23

minimizey.y
subject to

Fij = %.Vij,

Tij = %)’ij — Cyj,

rij = 15)’:‘;‘ - 8Cl‘j,

rij = 50 yij — 36¢;;,

rij = 200)’[]’ - 171Ci]',
rij = 4000yij — 37810,']',

@.)p=(1,2),1,3),2.3)
.p=(1,2),1,3),2,3)
.)=01,2),1,3),(2,3)
.)=01,2),1,3),(2,3)
.p=01,2).1,3).(@2,3)
.)=01,2).1,3).(2,3)

(4.3.19)

x12>0, x132>0, x13>0
x123 > 0,x3 >0, x213>0
y12=>0, y13>0, y3>0
r12>0, r;3>0, r3>0.

The good news about the above formulation is that it is an LP problem; as such, we can use
tools such as CPLEX.

Example 4.5 Minimization based on a piecewise linear approximation for the delay function.
Again consider demand volumes to be /12 =5, h13 = 10, and A3 =7, and capacities to

be c12 =10, ¢13 = 10, and ¢33 = 15. For Formulation (4.3.19) using CPLEX, we obtain optimal

flows as: x], =35, x]; =8, x])3 =2, and x5, =7. A

Remark 4.2. On Formulation (4.3.19).

First note that similar to the previous section, capacity constraints y12 < c12, y13 < c13,
and y»3 < ¢p3 can be ignored from this formulation since a high value of r;; would indicate
whether the capacity limit is exceeded. Second, due to piecewise linear approximation, we do
not need to worry about issues such as the discontinuity of the nonlinear function, (4.3.15), at
the capacity limit. ¢

Multicommodity Network Flow Problem: General Formulation

In previous sections, we considered a three-node network example, first for the single-
commodity network flow problem and then for the multicommodity network flow problem.
In this section, we generalize the multicommodity flow problem for an arbitrary size network.
First we establish a set of notations that works well for representing a general problem.

4.4.1

CHAPTER 4 Network Flow Modeling 129

Background on Notation

Consider a network with N nodes that has L number of links. With N nodes in a network,
there are N(N — 1)/2 demand pairs possible when we consider bidirectional demands, or
N(N — 1) demand pairs possible when we consider unidirectional demands. In a practical
network, not all nodes in the network are sources or sinks for external traffic; there are of-
ten transit nodes used solely for the purpose of routing; thus, it makes sense to say that we
consider demand pairs that have positive demand volume. Thus, to avoid listing which node
pairs have demand and which do not, a simple way to list them is by using a separate index,
ie, k=1,2,...,K, where K is the total number of demand pairs having positive demand
volumes. This means that from a pair of demand nodes i, j a mapping must be maintained to
index k,i.e,i:j— k.

We illustrate the new labeling /indexing though a three-node network example (see Fig-
ure 4.4). In this network (with nodes labeled 1, 2, 3) consider that there are positive demand
volumes for node pairs 1 and 2, and 2 and 3, but not between 1 and 3. We can index the
demand pairs as follows:

Pair | Index

1:2 1
2:3 2

with K =2. However, if all demand pairs have positive demand volume we can index the
demand pairs as follows:

Pair | Index

1:2 1
1:3 2
2:3 3

with K = 3. In other words, actual demand pair mapping to index can be different depending
on the number of demands with positive demand volumes. Similarly, candidate paths can be
indexed p =1,2,..., Py for each demand identifier k, where Py is the total number of can-
didate paths for demand k. Consider the three-node network with all demand pairs having
positive demand volume. Each demand pair has two possible paths, one direct and the other
via the third node; thus, P1 =2, P, =2, and P3 = 2. If we label the pathsas p =1 and p =2 for
each pair, we can define flow variable (unknown) for demand k and path p using the generic
name Xy, In the case of the three-node network, we can write

X1 +xp2=mn
X1 +xn=h (4.4.1)
X31 + X33 = h3.

Note that the above equations are the same as Eq. (4.3.1); only the subscripts are relabeled
with the new indexing scheme for demand pairs and paths.

4.4.2

130 4.4 Multicommodity Network Flow Problem: General Formulation

Now we consider indexing for the three links as follows:

Link | Index
1-2 1
1-3 2
2-3 3

With this indexing, the direct path for demand index 1 (i.e., for demand pair 1:2), which is the
path index 1, uses link index 1; the alternate path for demand index 1, which is path index 2,
uses links 2 and 3. This is similar for the other demand. Thus, we can write the capacity
constraints as:

X11 +X2+Xx32<C1
X21 +X12 +X32 =2 (4.4.2)
X31 +X12 + X220 < C3.

Overall we can write the relationship between a link and a path by indicating which paths
take a specific link—such a link-path match-up is marked with a 1 (and 0, otherwise). This is
presented in Table 4.1.

Incidentally, the representation shown in Table 4.1 can be thought of as a matrix repre-
sentation and if it is multiplied on the right with a vector of all path variables xs in the order
listed, we arrive again at the left-hand side of Eq. (4.4.2); the matrix of information for the
left side is shown in Table 4.1. As an example, the minimum cost routing problem described
earlier in Eq. (4.3.4) can be rewritten with the new labels/indexes for demand pair, link, and
paths, as follows:

minimize, F=E&11x11 +&1ax12 + &1x01 +E0x20 +E31x31 + &30X32

subject to
X1 +xn = M
X1 +xxp = h
x31 +xn = h3 (443)
X11 + x22 +x3 =
X2 +Xx21 +x3 =
X12 + X2 +Xx31 < c3

X11, X12, X21, X22, X31, X32 > 0.

Because of representation of the relationship between links and paths, the above representa-
tion is known as the link-path representation or formulation.

Link-Path Formulation

We are ready to consider the general case. Consider an N-node network with K demand
pairs having positive demand volumes, each with Py (k=1,2, ..., K) candidate paths. Thus,
extending from two paths for the three-node network given in Eq. (4.4.1) to the number of
paths Py, we can write

X+ x4+ xep, =he, k=1,2,... K. (4.4.4)

CHAPTER 4

Network Flow Modeling

TABLE 41 Link-path incidence information.

131

Link\Path | k=1,p=1|k=1,p=2 | k=2,p=1|k=2,p=2 | k=3,p=1|k=3,p=2
1 1 0 0 1 0 1
2 0 1 1 0 0 1
3 0 1 0 1 1 0
Using summation notation, the above can be rewritten as
Py
Y xip=he. k=1.2,....K. (4.4.5)
p=1

For capacity constraints, we introduce a new notation, called the § notation, which paral-
lels the information presented in Table 4.1. Define

Sxpe = 1 if path p for demand pair k uses the link ¢; 0, otherwise.

Now consider again Table 4.1; the information that is reflected in the table is in fact nothing
but 8xp¢. For example, when k =1, p =1 and we consider link £ = 1, then we are referring
to the direct link path for demand pair 1:2 and whether it uses the direct link 1-2 ; since it
does, 8111 =1 as we can see from the table. On the other hand, this same path does not use
1-3 (link identifier 2), which means by definition of the § notation that 8121 should be zero,
which is reflected also in Table 4.1. If we work though a few more examples like these two,
we can see that the § notation allows us to reflect all capacity constraints, specifically the
left-hand side. In general, consider first a specific demand pair k; for a specific link ¢, the
term

Py
Z 8kp£xkp
p=1

indicates that we are to add flows for only the paths that use link £. Now, if we do summation
overallk=1,2,....K,ie,

K Py

Z Z SkpeXkp,

k=1p=1

then this term represents the summation of all paths for all demand pairs that use link ¢,
which is then the link flow for link ¢; the link flow will be denoted by the dependent vari-
ables yy also, i.e.,

K Py

ZZSkp@xkp:yg, £=1,2,...

k=1p=1

, L.

Since the link flow must be less than or equal to the capacity of the link, then we can
write

132 4.4 Multicommodity Network Flow Problem: General Formulation

TABLE 4.2 Notation used in the link-path formulation.

Notation | Explanation
Given:
K Number of demand pairs with positive demand volume
L Number of links
hy Demand volume of demand index k=1,2,..., K
ce Capacity of link £ =1,2,..., L
Py Number of candidate paths for demand k, k=1,2,...,K
Skpe Link-path indicator, set to 1 if path p for demand pair k uses the link ¢; 0,
otherwise
Exp Nonnegative unit cost of flow on path p for demand &
Variables:
Xkp Flow amount on path p for demand k
Ve Link-flow variable for link £
K P
Yo=Y Sipexip <co. €=12.... L. (4.4.6)
k=1p=1

It is easy to see that y, is really a dependent variable, and is used here for convenience; it can
be dropped without affecting the overall model. Here we will discuss the general formulation
for the minimum cost routing problem. Thus, if &, is the unit cost of path p for demand pair
k, then we can write

K P

Total cost = Z Z EkpXkp-

k=1p=1

Thus, the general formulation for the minimum cost routing problem can be written
as

K P
minimizeyy, F= Z Z EkpXip
k=1p=1
subject to

Py
> xip = . k=1,2,....K (4.4.7)
p=1

K Py
Zzﬁkpzxkpsclg, ¢=1,2,...,L

k=1p=1

Xkp = 0, p=12,....Pr, k=1,2,....K.

We now discuss the size of the problem. For an undirected network with N nodes, there
are N(N — 1)/2 demand pairs, which is also the number of demand constraints if all demand
pairs have positive demand volume; for L links, there are L capacity constraints. If on average
Py candidate paths are considered for each demand pair &, then the number of flow variables

CHAPTER 4

TABLE 4.3 Size of minimum cost routing problem (undirected network).

Network Flow Modeling

N L Py Variables Constraints
(average) Demand Capacity
5 7 4 40 10 7
10 30 7 315 45 30
50 200 10 12,250 1225 200

W

is N(N — 1)Py /2. In Table 4.3, we list the size of Problem (4.4.7) for several values of N, L, and
Py. 1t is clear that the problem size grows significantly as the network size grows. Still such a
formulation can be solved by tools such as CPLEX for problems of reasonable size. Certainly,
specialized algorithms can be used as well; for example, see [564] for a survey of different
specialized methods.

Remark 4.3. Generating candidate paths for Eq. (4.4.7).

It may be noted that any link-path formulation assumes that a set of candidate paths
for each demand pair is available as an input. For many networks, the network administra-
tors have a good sense about what candidate paths to consider-thus such paths are not too
difficult to determine. Certainly, a k-shortest path algorithm (refer Section 2.8) can be used to
generate a set of candidate paths, which can then be used as input to the above models. Since
the purpose of candidate paths is to serve as a feeder to the link-path formulation, the k-
shortest paths can be generated using such an algorithm by using just the hopcount to reflect
cost on a link. ¢

The above remark, however, does not indicate how many candidate paths to generate for
each demand pair. The following important result gives us a very good clue, instead.

Result 4.1. If Eq. (4.4.7) is feasible, then at most K + L flow variables are required to be nonzero at
optimality.

To see the above result, consider just the demand and capacity constraints of Prob-
lem (4.4.7). Note that there are K demand constraints that are equations and L capacity con-
straints that are inequalities. For each capacity constraint, we add a nonnegative variable s,
(called the slack variable) to convert it to an equation. Thus, we can write the following system
of equations for demand and capacity constraints of Problem (4.4.7):

Py

> xip =y, k=1.2,....K

p=1

K P (448)
ZZ(Skpexkp-i-Se:Ce, £=1,2,...,L.

k=1p=1

Linear programming theory (for example, see Section 1.2 in [397]) says that the number of
nonzero variables in any basic feasible solution, a requirement at optimality, is at most require
to be the number of equations. Here, we can easily see that there are K + L equations; thus,
at most K 4 L of the flow variables x;,, are required to be nonzero at optimality. It should be
noted that Result 4.1 is true only when the objective function is linear.

134 4.4 Multicommodity Network Flow Problem: General Formulation

Example 4.6 Meaning of Result 4.1.

Consider the case of N =50 nodes from Table 4.3. Since this network has 200 links and
all 1225 demand pairs are assumed to have positive demand volume, Result 4.1 implies that
at most 1425 out of 12,250 flow variables will need to be nonzero at optimality. More impor-
tantly, even if we were to increase the number of candidate paths for each pair from 10 to 20,
which increases the total number of flow variables to 24,450, the requirement for the number
of nonzero flows at optimality remains at 1425. Note that every demand pair must have at
least one nonzero flow due to demand constraints. This means that at most 200 demand pairs
will need to have two or more paths with nonzero flows and one path with nonzero flow for
at least the remaining 1025 (= 1225 — 200) demand pairs. A

Remark 4.4. Common sense on candidate path generation and relation to optimal solution.

A general observation from the above discussion is that for a large network, only a very
few paths for each demand pair will have nonzero flows at optimality, while most demand
pairs will have only a single path with nonzero flow at optimality. The difficulty ahead of
time is not knowing which demand pairs will have multiple paths with nonzero flows at
optimality; in other words, we do not know exactly which candidate paths to consider as
input to the model. Since for most communication networks in practice, network designers
and administrators have a reasonable idea on what paths are likely to be on the optimal
solution, the candidate path consideration can be tailored as needed. However, there is still
a possibility that for a specific network scenario a path that could have been in the optimal
solution was not even included in the set of candidate paths; thus, even after solving a model
such as Eq. (4.4.7), we might not have arrived at the “ultimate” optimality. This is where
we need to keep in mind another important aspect of real-world communication networks;
the demand volume used in a multicommodity flow formulation is often an estimate based
either on measurements and/or forecast; some error in the demand volume estimate cannot
be completely ruled out. Thus, any attempt to find “ultimate” optimality based on demand
volume information that has a certain error margin to begin with can be best construed as
defying common sense. Thus, a candidate path set with a reasonable number of paths per
demand pair suffices in practice. In our experience, we have found that for most moderate
to large networks, considering/generating 5-10 candidate paths per demand pair is often
sufficient. ¢

We next consider the multicommodity network flow problem where the goal is to mini-
mize the maximum link utilization, i.e., the load balancing case. We will write this using the
additional variable r along with dependent link-flow variables y,. Thus, similar to Eq. (4.3.11)
for the three-node case, we can write the constraints

yzicgr7 K:1’21"'1L7 (4.4.9)
which captures the maximum link utilization factor. Overall, we can write the generation

formulation for minimizing maximum link utilization as the following linear programming
problem:

4.4.3

CHAPTER 4 Network Flow Modeling 135

minimizey.y, F=r

subject to
Py
Zkath, k=1,2,....K
p=1
K Py
ZZSkpgku,:y@, (=1,2,...,L (4.4.10)
k=1p=1
Ye=<cet, £=1,2,...,L
Xip > 0, p=12,...,P, k=1,2,...,K
ye =0, ¢=1,2,...,L
r>0.

Remark 4.5. Revisiting Result 4.1 for Eq. (4.4.10).

Note that Result 4.1 would come out somewhat different for Eq. (4.4.10). An important
point about Result 4.1 is that it is driven by the constraints of a problem, other than nonneg-
ative constraints. From Eq. (4.4.10), we can combine the first three sets of constraints into the
following two sets of constraints by eliminating ys:

Py

> xip =i, k=1,2,....K

p=1

K P (4.4.11)
ZZSkpekaSCN, (=1,2,...,L.

k=1p=1

Thus, we still have K + L equations when we transform the second set to equality by adding
slack variables. In this case, at most K + L — 1 flow variables need to be nonzero at optimal-
ity since variable r must be positive at optimality; thus, together, they total K + L nonzero
variables. ¢

For the case of minimizing the average link delay, we can take a similar approach to
formulate the general model, especially when using the piecewise linear approximation of
the load-latency function as given earlier in Eq. (4.3.16). This formulation as well as how
many flows need to be nonzero at optimality is left as an exercise.

Node-Link Formulation

In this section, we present another approach for representing a multicommodity network
flow problem that is based on node-link representation. We will illustrate it for the minimiza-
tion of maximum link utilization problem; the new notation is summarized in Table 4.4.

The idea here is that instead of taking the notion of paths, the point of view is taken
from a node. For any demand volume for a demand pair, a node is either a source node
(that is the demand starting point) or a destination node (that is the demand termination
point), or an intermediary node where any flow that enters for this demand pair through
one link must go out through another link to maintain conservation of flows. While it may
not be apparent, the node-link formulation is inherently described for a directed network

136 4.4 Multicommodity Network Flow Problem: General Formulation

(with directed links). Somewhat similar to the § notation for the link-path formulation, we
introduce a pair of (a, b) notation for node-link formulation (see Table 4.4).

Regarding variables, they are considered to be flow variables in terms of links (not paths)
for every demand pair. Thus, if we define zyx as the amount of flow on link ¢ for demand pair
identifier k, then the flow conservation requirement for k& (k=1,2,..., K) can be written as
follows:

L L hk, ifv =Sk
> aveze— Y bwze =10, ifv#se, e, v=12,....N
=1 =1 —hy, ifv=t.

The relation between zx and y, can be stated as follows:

K
Zsz=Ye, t=1,2,..., K.
k=1

The minimization of the maximum link utilization problem can be represented in the node-
link representation by the following linear programming problem:

minimize; y, F=r

subject to
L L hk, ifV:Sk
Zavgzgk—vagzgk =10, ifve#sg,ty, v=12,...,V
£=1 =1 —hy, ifv=t,
k=1,2,...,K
K (44.12)
ZZ[kzye, 521,2,...,K
k=1
Ye=Cpt, £=1,2,...,K
Zok >0, ¢=1,2,...,L, k=1,2,...,K
ye =0, ¢=1,2,...,L
r>0.

Thus, the above formulation is the counterpart of the link-path formulation presented in
Eq. (4.4.10) for the minimization of maximum link utilization. An advantage of the node-link
formulation is that it is not constrained by the candidate path set being an input. Thus, from
a purely theoretical point of view, the node-link formulation is more general. However, once
a node-link formulation is solved, it is not easy to construct the optimal paths as well as the
flows (except for the single-commodity case). Knowing the paths that have positive flows is
often the requirement of many network designers and administrators since this information
allows them to see how the demand volume is flowing in the model and whether it is com-
parable to the observation from the actual network. Thus, the link-path formulation is more
practical than the node-link formulation and will be primarily used in the rest of the book. We
have presented here the node-link representation because this representation is often used in
many scientific publications.

4.5

CHAPTER 4 Network Flow Modeling 137

TABLE 4.4 Notation used in the node-link formulation.

Notation | Explanation
Given:
N Number of nodes (indexed by v=1,2, ..., N)
K Number of demand pairs with positive demand volume
L Number of links
hy Demand volume of demand identifier k=1,2,..., K
Sk Source node of demand identifier k =1,2,..., K
t Destination node of demand identifier k=1,2,..., K
Ce Capacity of link ¢ =1,2,..., L
ave Link-path indicator, set to 1 if path p for demand pair k uses the link ¢; 0, other-
wise
bye Link-path indicator, set to 1 if path p for demand pair k uses the link ¢; 0, other-
wise
Variables:
20k Flow amount on link ¢ for demand k
Ye Link-flow variable for link ¢
r Maximum link utilization variable

Multicommodity Network Flow Problem: Nonsplittable Flow

In many instances, the demand volume between an origination-destination node pair is not
allowed be split into multiple paths. In this section, we consider the case when the demand
volume is nonsplittable. For ease of comparison and simplicity, we will consider the coun-
terpart of the minimum cost routing case given by Eq. (4.4.7) in the link-path representation
framework. A similar approach can be taken for other objectives.

From a modeling point of view, we need to pick only a single path out of a set of candidate
paths for a demand pair. In other words, the decision to choose a path is a binary decision,
however, with the additional requirement that only one of them per demand pair is to be
selected. Thus, if we assign a 0/1 decision variable, u,, to path p for demand pair k, we
must have the requirement that

Py
dup=1, k=12 K. (4.5.1)
p=1

You may compare this equation with Eq. (4.4.5) to note the differences. To determine the link
flow on a link, we need to first identify which candidate paths are using a particular link for
a particular demand pair k%, i.e,, Zﬁi 1 Skpetikp on link £. To bring into account the demand
volume Ay with this expression, we simply multiply it and obtain Zﬁi 1 Skpehiugp. Since only
one path is selected, A is counted only once for the path selected, although multiple candi-

4.6

138 4.6 Further Lookup

date paths for a demand pair are potentially likely to use a particular link. Now, summing
over all demand pair, and bringing the capacity constraint requirement, we can write

K Py

DD Spthiunp <ce, £=1,2,..., L (45.2)
k=1p=1

as the counterpart to Eq. (4.4.6). Then, the minimum cost routing problem with nonsplittable
multicommodity flow can be written as:

K P
minimizey,, F= Zngphkukp
k=1p=1
subject to
Py
> ugp =1, k=1.2,....K (45.3)
p=1
K Py
Zzakpéhkukpfcé, £=1,2,...,L
k=1p=1
uip=0orl, p=12,...,P, k=1,2,... K.

It is easy to see the similarity between this formulation and Formulation (4.4.7). The main dif-
ference is that the nonsplittable flow problem is an integer multicommodity flow model, with
the special requirement that only one path is be chosen for each demand pair. It is interesting
to note that if we relax the binary requirement on uy, in the above formulation and allow
ukps to also take fractional values between 0 and 1 instead, the relaxed problem is equivalent
to Formulation (4.4.7) since we can then write xy, = hxuy.

Summary

In this chapter, we introduce you to network flow modeling, especially to link-path formu-
lation of the single and multicommodity network flow problems along with consideration of
different objective functions. Such models are often used in traffic engineering of communi-
cation networks. Thus, the material here serves the purpose of introducing you to how to do
abstract representations of flows and paths, especially when it comes to network modeling.

It may be noted that we have presented Formulations (4.4.7) and (4.4.10) assuming that
flow variables take continuous values. In many communication networks problems, flow
variables are integer-valued only or the demand volume for a demand pair is nonsplittable
(refer to Formulation (4.5.3)). Similarly, objective functions other than the ones illustrated here
can be developed for appropriate problems. These variations will be introduced later in the
book as and when we discuss specific communication network routing problems.

Further Lookup

Kalaba and Juncosa [345] in 1956 were the first to address problems in communication net-
working using a multicommodity flow approach; incidently, their formulation can be consid-
ered the first node-link-based multicommodity flow representation in which the term message

CHAPTER 4 Network Flow Modeling 139

is used to generically describe communication demand. A quote from this paper is interest-
ing: “In a system such as the Western Union System, which has some 15 regional switching
centers all connected to each other, an optimal problem of this type would have about 450 con-
ditions (constraints) and involve around 3000 variables.” By referencing the Kalaba—Juncosa
paper, Ford and Fulkerson [232] were perhaps the first to formulate the maximal flow mul-
ticommodity problem using the link-path representation; incidently, the origin of the “delta”
notation (i.e., 8xp¢) can be attributed to this work.

While we have briefly discussed solution approaches to models presented here, this chap-
ter primarily focuses on problem formulation. We have, however, mentioned tools such as
CPLEX to solve such formulations. While such tools work well, they might not be the best
tools for all types and sizes of multicommodity network flow problems. A detailed discus-
sion of various algorithms that might be applicable is outside the scope of this book. Thus,
we direct you to the companion book [564] if you are interested in understanding the details
of algorithmic approaches and implementation for a variety of network flow models.

Finally, for additional discussion on network flow modeling, see books such as [6], [80].

Exercises

4.1 Consider a three-node network where the nodes are denoted by 1, 2, and 3. You're given
the following information:

Pair | Demand Link | Capacity
1:2 5 1-2 10
1:3 9 1-3 10
2:3 - 2-3 5

Assume that only direct routing is allowed for pair 1:2 demand, while the other pair is
allowed to split its demand volume.

(a) Formulate the minimum cost routing problem assuming that the cost of unit flow on
any link is one, except 2-3 where it is zero. Determine the optimal solution.

(b) Formulate the problem of optimal load balancing (min-max) flows in the network.
Determine the optimal solution.

4.2 Consider a four-node ring network where nodes are connected as follows: 1-2-3-4-1. As-
sume that demand volume between 1 and 3 is 25, between 2 and 4 is 30, and between 2
and 3 is 10. Capacity on each link is 50.

(a) Formulate an optimization problem in which the goal is to maximize free capacity
availability. Determine the optimal flow for this objective.

(b) Formulate an optimization problem in which the goal is to load balance the network.
Determine the optimal flow for this objective.

(c) What would happen when we consider either of the above objectives if the following
additional requirement is added: the demand volume for each demand pair must not
be split into two paths?

140

4.6 Exercises

1 2 3
e ==
4 5 6

e—as

) 8 9

S

FIGURE 4.9 A nine-node Manhattan street network.

4.3

44

4.5

4.6

Consider a four-node network in which nodes are numbered 1, 2, 3, 4. All nodes are
directly connected to each other except that there is no link between nodes 1 and 2.

Link capacities are given as follows: 30 on link 1-3, 5 on link 1-4, 15 on link 2-3, 10 on link
2-4, and 10 on link 3-4.

Demand volumes are given to be 15 for pair 1:2, 20 for pair 1:3, and 10 for pair 2:3.

(a) Formulate the load balancing optimization problem, and determine the optimal so-
lution.

(b) Formulate the problem of minimizing average delay where the average delay is ap-
proximated using the piecewise linear function (4.3.16). Determine the optimal solu-
tion.

Consider the nine-node Manhattan street network in Figure 4.9.

(a) Assume that all links have 100 units of capacity, and the goal is to load balance the
network. Find optimal flows (1) if a single demand between node 1 and 9 with vol-
ume of 60 units is considered, (2) if two demands, one between 1 and 9 and another
between 3 and 7, each of volume 60, considered.

(b) Assume that all links have 100 units of capacity except for links 2-5, 4-5, 5-6, 5-8,
which have 60 units of capacity. The goal is to load balance the network. Find op-
timal flows (1) if single demand between node 1 and 9 with volume of 60 units is
considered, (2) if two demands, one each between 1 and 9 and another between 3
and 7, each of volume 60, are considered.

Consider the same demand/capacity scenarios described in Exercise 4.4. Find optimal
flows if minimum cost routing is the objective used instead (assume unit cost of flow on
each link).

Consider the same demand/capacity scenarios described in Exercise 4.4. Find optimal
flows if a composite objective function that combines minimum cost routing with load
balancing is used. Determine how the solution changes as the parameters associated with
the cost components of the composite object are varied.

Part II: Routing in IP
Networks

In this part, we focus on routing in IP networks. It is divided into five chapters.

In Chapter 5, we first present the basic background on IP routing in the presence of IP
addressing, and how the routing table is organized and used by routers for packet forward-
ing. We then present protocols for Internet that falls into the distance vector protocol family.
Specifically, we discuss three well-known protocols RIP, IGRP, and EIGRP. The connection
is also drawn between a protocol specification such as RIP and and the basic concept of a
distance vector protocol.

Chapter 6 covers OSPF and integrated IS-IS. In discussing OSPF, we point out why dif-
ferent types of link statement advertisements are required to cater to the needs in different
operational configuration scenarios. For the integrated IS-IS protocol, we show its similarities
and subtle differences with OSPF, although as of now there are no fundamental differences.

An important aspect of efficient routing in an operational network is proper traffic engi-
neering. In Chapter 7, we show how network flow modeling can be applied to determine link
weights for IP traffic engineering. In doing so, we also discuss how traffic demands are taken
into account in the traffic engineering decision process.

Next, we present Border Gateway Protocol (BGP) in Chapter 8. The role of BGP in the
Internet is critical as it allows exchange of reachable IP prefixes and in determinating AS-
paths. There are, however, several attributes to consider in the path selection process; more
importantly, policy constraints are also taken into account. Thus, many facets of BGP are
covered in this chapter.

Finally, in Chapter 9, we present Internet routing architectures. This brings together how
BGP is used, interaction between different domains either through public or private peering,
and how points of presence are architected. Furthermore, we discuss growth in routing table
entries.

5

IP Routing and
Distance Vector
Protocol Family

If I have seen further than others, it is by standing upon the shoulders of
giants.

Isaac Newton

Reading Guideline

This chapter is geared to provide you with details of distance vector protocols RIP,
IGRP, and EIGRP. Thus, each topic can be read separately. However, to understand
the context of the protocols, some basics are included at the beginning about routers
and networks, including addressing. A comparative summary of these protocols
including a discussion on configuration complexity is provided at the end in the
section titled Summary.

5.1

5.1.1

CHAPTER 5 IP Routing and Distance Vector Protocol Family 143

In this chapter, we start with the basics of IP routing. Thus, this builds on our overview
discussion about IP addressing and routing, presented in Chapter 1. We then present IP dis-
tance vector routing protocol family: Routing Information Protocol (RIP), Interior Gateway
Routing Protocol (IGRP), and Enhanced Interior Gateway Routing Protocol (EIGRP). In sub-
sequent chapters, we will discuss Open Shortest Path First (OSPF) and Intermediate System
to Intermediate System (IS-IS)—two link state routing protocols, followed by Border Gateway
Protocol (BGP), the path vector protocol used in the Internet.

The primary goal here is to see how a specific protocol is described and its intrinsic fea-
tures, including any limitations. We also discuss any specific issues that need addressing to
go from the basic concept of a distance vector protocol to an actual protocol used in IP net-
works. To consider various protocols in an IP network, it is helpful to understand how IP
addressing and routing tables are related to a router-based IP network. Furthermore, since
communication of any routing information brings up the issue of whether this information is
reliably delivered, we also discuss how the TCP/IP protocol stack plays a role.

The protocols described here were all originally intended for IP intradomain networks
but are possible to use for interdomain routing interactions. In this regard, we also present a
short discussion on route redistribution.

Routers, Networks, and Routing Information: Some Basics

In this section, we will discuss a few important points in regard to an IP network and com-
munication of routing information. This is helpful in understanding and differentiating how
a real protocol’s applicability to a networking environment requires consideration of the ad-
dressing mechanism, and in considering unreliable or reliable delivery of routing informa-
tion, the functionalities provided in the TCP/IP protocol stack. It is important that you are
familiar with IPv4 addressing, subnetting, and CIDR, and the basics of the TCP/IP protocol
stack, described earlier in Chapter 1.

Routing Table

A communication network connects a set of nodes through links so that traffic can move from
an originating node to a destination node; for all the traffic to go to its destination, nodes in
the network must provide directions so that the traffic goes toward the destination. To do that,
each node in the network maintains a routing table so that user traffic can be forwarded by
looking up the routing table to the next hop. In Chapter 3, we indicated that nodes need
identifiers along with a link identifier so that those identified can be used in the routing table.

In an IP network, nodes are routers and links are often identified by interfaces at each
end of routers. However, user traffic originates from host computers and goes to other host
computers in the network; that is, the traffic does not originate or terminate at the router level
(except routing information traffic between routers). Thus, we first need to understand what
entries are listed in the routing table at an IP router if the traffic eventually terminates at a
host.

To understand this, we need to refer to IP addressing and its relation to routing table
entries. A routing table entry at a router can contain information at three levels: addressable
networks (or IP prefixes, or network numbers), subnets, or directly at the host level, which is

144 5.1 Routers, Networks, and Routing Information: Some Basics

conceptually possible because the IP addressing structure allows all three levels to be spec-
ified without any change in the addressing scheme. These three levels are often referred to
using the generic term routes. Furthermore, this also means that a router maintains entries for
IP destinations, not to the router itself. We will now illustrate the relationship between an IP
addressing and routing table through a three-node example shown in Figure 5.1. For simplic-
ity, we consider routing table entries for addressable networks at Class C address boundaries,
and thus, subnet masking is /24.

In Figure 5.1, the IP core network consists of three routers: “Alpha,” “Bravo,” and “Char-
lie;” they help movement of traffic between the following subnets: 192.168.4.0, 192.168.5.0,
192.168.6.0, and 192.168.7.0; as you can see, these are the networks attached to routers Al-
pha, Bravo, and Charlie, respectively. You will also notice that we use another set of IP ad-
dresses/subnets to provide interfacing between different routers; specifically, address block
192.168.1.0 between routers Alpha and Bravo, 192.168.2.0 between routers Alpha and Charlie,
and 192.168.3.0 between routers Bravo and Charlie. Furthermore, each interface that connects
to a router has a specific IP address; for example, IP address 192.168.1.2 is on an interface on
router Bravo that router Alpha sees while IP address 192.168.3.1 is on another interface that
router Charlie sees while 192.168.5.254 is on yet another interface that the addressable net-
work 192.168.5.0 sees. We have shown the routing table at each router for all different address
blocks in Table 5.1.

Now consider host “catch22” with IP address 192.168.4.22 in the network 192.168.4.0 that
has an IP packet to send to host “49ers” with IP address 192.168.5.49 in network 192.168.5.0.
This packet will arrive at router Alpha on the interface with IP address 192.168.4.254; through
routing table lookup, router Alpha realizes that the next hop is 192.168.1.2 for network
192.168.5.0 and will forward the packet to router Bravo. On receiving this packet, router Bravo
realizes that network 192.168.5.0 is directly connected and thus will send it out on interface
192.168.5.254. Now, consider an IP packet going in the reverse direction from 49ers to catch22.
The packet will arrive at the interface with IP address 192.168.5.254 at router Bravo. Imme-
diately, router Bravo realizes that for this packet, the next hop is 192.168.1.1 to forward to
router Alpha. On receiving this packet, router Alpha will recognize that network 192.168.4.0 is

catch22 49ers
192.168.4.22 192.168.5.49

192.168.4.254 192.168.5.254

192.168.1.2

192.168.1.1
Alpha @ ~Bravo

192.168.6.254 ~ 192.168.7.254

Charlie
192.168.676 _g ‘E 1921687221 | 1
76ers 221bBakerStreet g ﬁ

FIGURE 5.1 IP network illustration.

CHAPTER 5 IP Routing and Distance Vector Protocol Family 145

TABLE 5.1 Routing table at each router for the network shown in Figure 5.1.

Router: Alpha Router: Bravo Router: Charlie
Network/Mask | Next Hop Network/Mask | Next Hop Network/Mask | Next Hop
192.168.1.0/24 direct 192.168.1.0/24 direct 192.168.1.0/24 192.168.2.1
192.168.2.0/24 direct 192.168.2.0/24 192.168.1.1 192.168.2.0/24 direct
192.168.3.0/24 192.168.1.2 192.168.3.0/24 direct 192.168.3.0/24 direct
192.168.4.0/24 | direct 192.168.4.0/24 | 192.168.1.1 192.168.4.0/24 | 192.168.2.1
192.168.5.0/24 | 192.168.1.2 192.168.5.0/24 | direct 192.168.5.0/24 | 192.168.3.1
192.168.6.0/24 | 192.168.2.2 192.168.6.0/24 | 192.168.3.2 192.168.6.0/24 | direct
192.168.7.0/24 | 192.168.2.2 192.168.7.0/24 | 192.168.3.2 192.168.7.0/24 | direct

directly connected and thus will forward it along the interface with IP address 192.168.4.254.
Now let us consider what catch22 and 49ers might see based on interface addresses:

192.168.4.22 (catch22) —> 192.168.4.254 (Alpha) —> 192.168.1.2 (Bravo) —> 192.168.5.49 (49ers)
192.168.5.49 (49ers) —> 192.168.5.254 (Bravo) —> 192.168.1.1 (Alpha) —> 192.168.4.22 (catch22)

Thus, catch22 sees Alpha as 192.168.4.254, while Bravo sees the same router as 192.168.1.1.
From an interface point of view, both are correct. How do we know that these two IP ad-
dresses “belong” to the same router? From a cursory look at IP interface addresses, there is
no simple way to know this since there is going to be an address for each interface, and a
router has to have at least two interfaces (otherwise, it is not routing /forwarding anything!).
To avoid any confusion, a router is assigned a router ID, which is either one of the interface
addresses or a different address altogether. For example, typically the interface address with
the highest IP address is assigned as the address of the router. For ease of human tracking, a
router with its different interfaces is typically associated with an easy to remember domain
name, say Alpha.NetworkRouting.net; then, interface addresses are assigned relevant do-
main names such as 4net.Alpha.NetworkRouting.net and 1net.Alpha.NetworkRouting.net,
so that the subnets can be easily identified and their association with a router is easy to fol-
low.

In the above illustration, we have used a Class C address block for addressable networks.
We can easily add a subnet in the routing table that is based on variable-length subnet mask-
ing (VLSM) where the subnet mask needs to be explicitly noted due to CIDR. Further more, a
host can have an entry in the routing table as well. Suppose a host with IP address 192.168.8.88
is directly connected to router Charlie through a point-to-point link (not shown in Figure 5.1).
If this is so, all routers will have an entry in the routing table for 192.168.8.88 (see Exercise 5.8).
Usually, direct connection of hosts to a router is not advisable since this can lead to significant
growth in the routing table, thus impacting packet processing and routing table lookup (see
Chapter 15).

From the above illustration, you may also notice that the term nefwork is used in mul-
tiple ways. Consider the following statement: user traffic moves from a network to another
network that is routed through one or more routers in the IP network. Certainly, this is a con-
fusing statement. To translate this, the first two uses of network refer to a network identified
through an IP prefix where traffic originates or terminates at hosts, while the third use of net-
work refers to a network in the topological sense where routers are nodes connected by links.

5.1.2

5.2

146 5.2 Static Routes

The first two uses of network are also referred to as route. Since a routing table can have an en-
try directly for a specific host (at least in theory), the term route is a good term without being
explicit as to whether it is a network number or a host. For clarity and to avoid confusion,
a network identified using an IP prefix will be referred to as network number or addressable net-
work, or simply as IP prefix; we will also use the term route interchangeably. This then avoids
any confusion with the generic term network used throughout the book.

Communication of Routing Information

An important aspect of the TCP/IP protocol stack is that all types of communications must
take place within the same TCP/IP stack framework; that is, there are no separate networks
or channels or dedicated circuits for communicating control or routing messages separately
from user traffic. To accommodate different types of messages or information, the TCP/IP
stack provides functionalities at both the IP layer and the transport layer; this is done differ-
ently for different routing protocols. For example, in the case of the RIP protocol, messages
are communicated above the transport layer using a UDP-based port number; specifically,
port number 520 is used with UDP as the transport protocol. How about other routing pro-
tocols? BGP is assigned port number 179 along with TCP as the transport protocol. However,
for several routing protocols, identification is done directly above the IP layer using protocol
number field; for example, protocol number 9 for IDRP protocol, 88 for EIGRP, and 89 for
OSPF protocol. It may be noted that reliability of message transfer in BGP is inherently ad-
dressed since TCP is used; however, for OSPF and EIGRP, which require reliable delivery of
routing information, reliability cannot be inherently guaranteed since they are directly above
the IP layer; thus, for communication of routing information in OSPF, for example, through
flooding, it is required that the protocol implementation ensures that communication is re-
liable by using acknowledgment and retransmission (if needed). In any case, while it may
sound strange, all routing protocols act as applications in the TCP/IP framework where RIP
and BGP are application layer protocols while OSPF and IS-IS are protocols that sit just above
the IP layer. In other words, to get the routing information out for the IP layer to establish
routing/forwarding of user traffic, the network relies on a higher layer protocol.

Static Routes

While routing protocols are useful to determine routes dynamically, it is sometimes desirable
in an operational environment to indicate routes that remain static. These routes, referred to
as static routes, are required to be configured manually at routers. For example, sometimes a
network identified by an IP prefix is connected to only one router in another network; this
happens to be the only route out to the Internet. Such a network is called a stub network; in
such a case, a static route can be manually configured to a stub network. Static routes can also
be defined when two autonomous systems must exchange routing information.

It is important to set up any static routes carefully. For example, if not careful, it is possible
to get into open jaw routes. This terms means that there is a path defined from an origin to a
destination; however, the destination takes a different path in return that does not make it
back to the origin.

5.3

5.3.1

CHAPTER 5 IP Routing and Distance Vector Protocol Family 147

Routing Information Protocol, Version 1 (RIPv1)

RIP is the first routing protocol used in the TCP/IP-based network in an intradomain envi-
ronment. While the RIP specification was first described in RFC 1058 in 1988 [290], it was
available when RIP was packaged with 4.3 Berkeley Software Distribution (BSD) as part of
“routed” daemon software in the early 1980s. The following passage from RFC 1058 is inter-
esting to note: “The Routing Information Protocol (RIP) described here is loosely based on the
program routed, distributed with the 4.3 Berkeley Software Distribution. However, there are
several other implementations of what is supposed to be the same protocol. Unfortunately,
these various implementations disagree in various details. The specifications here represent
a combination of features taken from various implementations.”

The name RIP can be deceiving since all routing protocols need to exchange “routing
information.” RIP should be understood as an instance of a distance vector protocol family,
regardless of its name. It was one of the few protocols for which an implementation was
available before a specification was officially complete. The original RIP is now referred to
as RIP version 1, or RIPv1 in short. It has since evolved to RIPv2, which is standardized in
RFC 2453 [442].

RIP remains one of the popular routing protocols for a small network environment. In
fact, most DSL/cable modem routers such as the ones from Linksys come bundled with RIP.
Thus, if you want to set up a private layer-3 IP network in your home or small office, you can
do so by using multiple routers where you can invoke RIP.

Communication and Message Format

Since distance vector information is obtained from a neighboring router, the communication
of routing information is always between two neighboring routers in the case of RIP. Further-
more, since RIP is UDP based, there is no guarantee that a routing information message is
received by a receiving router. Also, no session is set up; a routing packet is just encapsulated
and sent to the neighbor, normally through broadcast. Thus, we can envision a routing packet
in the TCP/IP stack as shown in Figure 5.2.

Next we consider the format of a RIPvl message; this is shown in Figure 5.3. As
a commonly accepted convention in IP, the packet format for RIPv1 is shown in 32-bit
(4-byte) boundaries. A RIPv]l message has a common header of 4 bytes, followed by a 20-
byte message for each route for which the message is communicating, up to a maximum of
25 routes/addresses. Thus, the maximum size of a RIP message (including IP/UDP headers)

Maximum of 532 bytes

1P uDP
RIP M
Header Header 5j essage

20 bytes

8 bytes

FIGURE 5.2 RIP message structure, with IP and UDP header.

148 5.3 Routing Information Protocol, Version 1 (RIPv1)

01234567 01234567 01234567 01234567
Command Version Must be zero
(1 byte) (1 byte) (2 bytes)
Address Family of net 1 Must be zero
(2 bytes) (2 bytes)
IP Address of net 1

(4 bytes)

Must be zero
(4 bytes)

Must be zero
(4 byes)

Hop Distance Metric to net 1
(4 bytes)
Address Family of net N Must be zero
(2 bytes) (2 bytes)
IP Address of net N

(4 bytes)

Must be zero
(2 bytes)

Must be zero
(2 bytes)

Hop Distance Metric to net N

(4 bytes)

20 bytes

FIGURE 5.3 RIPv1 packet format.

is 20 + 8 + 4 + 25 x 20 = 532 bytes while the minimum is 20 + 8 4 4 4+ 20 = 52 bytes. It is
important to note that the message size does not limit the size of the network in terms of
the number of routers; rather it is in terms of the number of addressable networks or routes.
Consider again the three-router network shown in Figure 5.1 along with the routing table in
Table 5.1. We can see that there are seven different addressable networks while there are three
routers; thus, the routing table needs to have entries for all seven addressable networks, not
in terms of routers.

It is important to note that the message size does not limit the size of the addressing net-
works to 25 networks (certainly not to routers); if an IP network has more than 25 address-
able networks, say 40 of them, a neighbor can send distance vector information for 25 ad-
dressable networks in one message and the rest of the 15 addressable networks in another
message.

Let us now look at the various fields. A common practice in many protocols is to have
some spaces left out for future enhancement of the protocol; often, these spaces are marked
with Must Be Zero. As can be seen, there are many places where this occurs in the RIPv1
message format; soon, we will see how some of them are utilized in the RIPv2 message for-
mat. Thus, a RIPv]l message has the following five fields: command, version, address family
identifier, IP address, and metric. They are described below with command being discussed
last:

e Version (1 byte): This field indicates the RIP protocol version. This is set to 1 for RIPv1. If
this field happens to be zero, the message is to be ignored.

o Address family identifier (2 bytes): This field identifies the address family. This is set to 2
for the IP address family. Originally, the intent was to provide RIP for other address fam-

5.3.2

CHAPTER 5 IP Routing and Distance Vector Protocol Family 149

ilies, although in practice this RIP packet format has not been used for any other address
family. There is a special use case when this field is set to zero; see command field be-
low.

e [P address (4 bytes): This is the destination network, identified by a subnet or a host.

e Metric (4 bytes): This is based on hop count; it is a number between 1 and 16 where 16
means unreachable or infinity.

e Command (1 byte): This field is used for different command sets in a RIPv1 message. While
there were five different commands originally defined, only two are used: request and re-
sponse; the others are obsolete. The request command can be used by a router to request a
neighboring router for distance vector information. If the entire routing table is desired, a
request message (referred to as “request-full”) is sent where the address family identifier
is set to 0 and the metric to infinity; the response, however, follows a split horizon (see
Section 3.3.3). However, if responses are sought for a set of address blocks (referred to
as “request-partial”), the request flag is set, the address family identifier is set to IP, and
the addresses are listed; the responding router sends a response to all addresses listed;
no split horizon is done in this case. This is with the understanding that such a special
request is not a normal request. It may be noted that the periodic distance vector update
message is also sent with command set to response mode. Since there is no identification
field in a RIPv1 message (unlike, say, a DNS message format), a receiving router has no
direct way to determine whether the response was a periodic response or a response to its
“request-full” or “request-partial.”

Due to the availability of the request message type, RIP can do information pull, instead
of completely relying on information push.

General Operation

The following are the primary operational considerations in regard to the RIP protocol:

e General packet handling: if any of the must-be-zero fields have nonzero values anywhere
or if the version field is zero, the packet is discarded.

e Initialization: when a router is activated and it determines that all the interfaces are alive,
and it broadcasts a request message that goes to all interfaces in the “request-full” mode.
The neighboring routers handle responses following the split horizon rule. Once the re-
sponses are received, the routing table is updated with new routes the router has learned
about.

e Normal routing updates: in the default case, this is done approximately every 30 sec
(”Autoupdate timer”) where updates are broadcasted with command fields set to the re-
sponse mode; as discussed earlier about timer adjustment in Section 3.3.3, a large variation
is added to avoid the pendulum effect.

e Normal response received: the routing table is updated by doing the distributed Bellman-—
Ford step; only a single best route is stored for each destination.

5.3.3

5.4

150 5.4 Routing Information Protocol, Version 2 (RIPv2)

o Triggered updates: if the metric for an addressable network changes, an update message
is generated containing only the affected networks.

e Route expiration: if an addressable network has not been updated for 3 min (“expiration
timer”) in the default case, its metric is set to infinity and it is a candidate for deletion.
However, it is kept in the routing table for another 60 sec; this extra time window is re-
ferred to as garbage collection or flush timer.

Is RIPv1 Good to Use?

In some sense, RIP has gone through the growing pains of being one of the oldest routing pro-
tocols in practice, coupled with the fact that it is a distance vector protocol that has various
problems. Some key problems have been addressed through triggered update and avoid-
ing the pendulum effect. However, it cannot avoid the looping problem and slow conver-
gence.

In addition, RIP inherently imposes a few additional restrictions: the link cost is based
only on hop count, a destination cannot be longer than 15 hops (since infinity is defined to
be 16), and subnet masking is not provided. The last item deserves further elaboration. If
you look at the RIPv1 message format, you will notice that it has a field for the addressable
network, but no way to indicate anything specific about this network. This is partly because
RIPv1 is an old protocol from the days of IP classful addressing; that is, RIPv1 assumes that an
address included follows a Class A, Class B, Class C boundary implicitly. Subnet masking is
an issue only for an address block that is not directly connected to a router. We illustrate this
by considering the example network shown in Figure 5.1. Suppose that we want to connect
subnet address block 172.16.1.0 to router Alpha and subnet 172.16.2.0 to router Charlie. RIPv1,
however, implicitly assumes 172.16.0.0 to be a Class B address and thus cannot make the
distinction; this means subnet allocation to different routers would not be routable, especially
for traffic coming from a network attached to router Bravo.

From an actual operational point of view, RIPv1 is good to use in a small network envi-
ronment where links are not likely to fail; this means looping is unlikely to occur. It is also
good to use when link cost is not a factor, for example, a simple campus network or a small
home network or a simple topology (e.g., hub-and-spoke) where the traffic may be low com-
pared to the link speed. If a link or an interface card is likely to fail, RIPv1 faces serious
transient issues including possibly creating black hole routes.

Routing Information Protocol, Version 2 (RIPv2)

RIPv2 [442] extends RIPv1 in several ways. Most importantly, it allows explicit masking; also,
authentication is introduced. Authentication refers to using some mechanism to authenticate
the message and/or its contents when a router receives it in such a way that it knows that
the data can be trusted. To do that, changes were introduced in the RIP message format from
v1 while keeping the overall format similar by taking advantage of fields previously marked
as must be zero. This also shows why when designing a protocol, it is good to leave some
room for future improvement. Thus, we start with the basic packet format as shown in Fig-
ure 5.4.

We can see from Figure 5.4 that the common header part, i.e., the first 4 bytes, is the same
as in RIPv1; in this, case the version field is set to 2, and the must-be-zero field is labeled as

CHAPTER 5 IP Routing and Distance Vector Protocol Family 151

012345467 01234567 01234567 012345767
Command Version Unused
(1 byte) (1 byte) (2 bytes)
Address Family of net 1 Route Tag
(2 bytes) (2 bytes)
IP Address of net 1
(4 bytes)
Subnet Mask to net 1
(4 bytes) 20 bytes
Next Hop
(4 bytes)
Hop Distance Metric to net 1
(4 bytes)

e
- = = =]

Address Family of net N Route Tag

(2 bytes) (2 bytes)
IP Address of net N
(4 bytes)
Subnet Mask of net N
(4 bytes)
Next Hop
(4 bytes)
Hop Distance Metric to net N
(4 bytes)

FIGURE 54 RIPv2 packet format.

unused while command can be either a request or a response. We now discuss the new ones
beyond RIPv1:

e Route Tug (2 bytes): this field is provided to differentiate internal routes within a RIP rout-
ing domain from external routes. For internal routes, this field is set to zero. If a route
is obtained from an external routing protocol, then an arbitrary value or preferably the
autonomous system number of the external route is included here to differentiate it from
internal routes.

e Subnet mask (4 bytes): this field allows routing based on subnet instead of doing classful
routing, thus eliminating a major limitation of RIPv1. In particular, variable-length subnet
masking (VLSM) may be used.

e Next hop (4 bytes): typically, an advertising router is the best next hop from its own view
point when it lets its neighbors know about a route; at least, this is the basic assumption.
However, in certain unusual circumstances, an advertising router might want to indicate
a next hop that is different from itself, such as when two routing domains are connected
on the same Ethernet network ([189], [441]).

Unlike RIPv1, RIPv2 allows a simple form of authentication. For the purpose of authen-
tication, a first entry block of 20 bytes can be allocated for authentication instead of being
a route entry. That is, when authentication is invoked, a RIPv2 message can contain only a
maximum of 24 routes since one route table entry is used up for authentication. The address
family identifier for the authentication part is tagged as OxFFFF (i.e., all 1s, written in hexadec-

152 5.4 Routing Information Protocol, Version 2 (RIPv2)

01234567 01234567 01234567 0123456 7

‘ Command Version Unused

(1 byte) (2 bytes) (2 bytes)
OxFFFF Authentication Type

(2 bytes)

Authentication

Address Family of net N Route Tag

(2 bytes) (2 types)
IP Address of net 1

(4 bytes)
Subnet Mask to net T 20

(4 bytes) bytes
Next Hop
(4 bytes)

Hop Distance Metric to net 1

(4 bytes)

Address Family of net N
(2 bytes)

Route Tag
(2 bytes)

IP Address of net N
(4 bytes)
Subnet Mask of net N
(4 bytes)
Next Hop
(4 bytes)
Hop Distance Metric to net N
(4 bytes)

FIGURE 5.5 RIPv2 packet format with authentication.

imal notation), and the authentication type is set to 2 to indicate that it is a simple clear-text
password; then the remaining 16 bytes contain the clear-text password. The packet format
with authentication is shown in Figure 5.5. Certainly, a clear-text password is not a very good
form of authentication. Thus, in practice, this is not used much.

From an operational consideration, RIPv2 messages are multicast on 224.0.0.9 instead of
broadcast as was done in RIPv1. However, a network can be configured where routers can
be on a nonbroadcast network; an example of a nonbroadcast network is an ATM network.
Then, point-to-point unicast can be used for sending routing information. We also note that
the address family identifier can now take three values: 2 for normal IP addressing, all 1s for
authentication, which is done only in the first route entry after the common header, and 0
(coupled with metric set to 16) to a request message to obtain a full distance vector from a
neighbor. In the common header, the unused field means that they do not need to be all zeros
like RIPv1; that is, any information in this field will be ignored as opposed RIPv1’s handling
to discard the packet if this field contains nonzero entries.

RIPv2 has been extended for use with IPv6 addressing; this extension is known as RIPng
[443]. They are very similar otherwise; see Table 5.2 later in the chapter for a quick compari-
son.

5.5

5.5.1

CHAPTER 5 IP Routing and Distance Vector Protocol Family 15

(O))

Interior Gateway Routing Protocol (IGRP)

IGRP was developed by Cisco primarily to overcome the hop count limit and hop count
metric of RIPv1. In general, IGRP differs from RIPv1 in the following ways:

e IGRP runs directly over IP with protocol type field set to 9.

e Autonomous system is part of the message fields.

e Distance vector updates include five different metrics for each route, although one is not
used in computing the composite metric.

e External routes can be advertised.

e It allows multiple paths for a route for the purpose of load balancing; this requires mod-
ification of the Bellman—Ford computation so that instead of a single best path to a desti-
nation, multiple “almost” equal cost paths can be stored.

IGRP’s normal routing update is sent every 90 sec on average with a variation of 10% to
avoid synchronization. It has an invalid timer to indicate nonreachability of a route; this is
set to three times the value of the update period. It is important to note that IGRP does not
support variable length subnet masking, much like RIPv1; this is an instance in which IGRP
differs from RIPv2.

Packet Format

IGRP packet is fairly compact consisting of 12-byte header fields followed by 14 bytes for
each route entry (see Figure 5.6). The header field consists of the following fields:

e Version (4 bits): This field is set to 1.

e Opcode (4 bits): This field is equivalent to the command code in RIP. 1 is a Request and 2 is
an Update. In case of a request, only the header is sent; there are no entries.

e Edition (1 byte): A counter that is incremented by the sender; this helps prevent a receiving
router from using an old update; it essentially plays the role of a timestamp.

e Autonomous system number (2 bytes): ID number of an IGRP process.

e Number of interior routes (2 bytes): A field to indicate the number of routing entries in an
update message that are subnets of a directly connected network.

e Number of system routes (2 bytes): This is a counterpart of the number of interior routes;
this field is used to indicate the number of route entries that are not directly connected.

e Number of exterior routes (2 bytes): The number of route entries that are default networks.
This and the previous two fields, the number of interior routes and the number of system
routes, together constitute the total number of 14-byte route entries.

o Checksum (2 bytes): This value is calculated on the entire IGRP packet (header + entries).

For each route entry, there are seven fields that occupy 14 bytes:

154 5.5 Interior Gateway Routing Protocol (IGRP)

01234567 01234567 012345¢67 01234567

Version | OPcode Edition Autonomous System Number
(1 nibble) | (1 nibble) (1 byte) (2 bytes)
Number of Internal Routes Number of System Routes
(2 bytes) (2 bytes)
Number of Exterior Routes Checksum
(2 bytes) (2 bytes)
Destination Delay
(3 bytes) (3 bytes)
Delay B?;Swid)th
ytes
14 bytes — MTU Reliability
(2 bytes) (1 byte)
Load Hop Count
(1 byte) (1 byte)

Destination
(3 bytes)
Destination Delay
(3 bytes)
Bandwidth MTU
(3 bytes) (2 bytes)
77777 MTU Reliability Toad Hop Count
(1 byte) (1 byte) (1 byte)

FIGURE 5.6 IGRP packet format.

e Destination (3 bytes): This is the destination network for which the distance vector is gen-
erated. It seems confusing to see that this field is only 3 bytes instead of the standard
4 bytes for IP addresses. However, for classful addresses, this is workable. If the update is
for a system route, the first 3 bytes of the address are included; for example, if IP address
of a route is 192.168.1.0, entry 192.168.1 is listed in this field. On the other hand, if it is an
interior route, the last 3 bytes are listed; for example, if the field lists 16.2.0 for an interior
route that is received on interface 172.16.1.254 /24, it is meant for the subnet 172.16.2.0.

e Delay (3 bytes), bandwidth (3 bytes), reliability (1 byte), and load (1 byte): These fields are
explained in Section 5.5.2 while discussing how the composite metric is computed.

e Hop count (1 byte): A number between 0 and 255 used to indicate the number of hops to
the destination.

e MTU (2 bytes): The smallest MTU of any link along the route to the destination.

5.5.2 Computing Composite Metric

An interesting aspect of IGRP is the elaborate method it uses to compute the composite metric
to represent the link cost; this was included to provide the flexibility to compute better or
more accurate routes from a link cost rather than just using a hop count as a link cost as
in RIPv1 or RIPv2. The composite metric in IGRP is based on four factors: bandwidth (B),

CHAPTER 5 IP Routing and Distance Vector Protocol Family 155

delay (D), reliability (R), and load (L), along with five nonnegative coefficients (K1, K3, K3,
K4, Ks) for weighing these factors. The composite metric, C (“cost of a link”), is given as
follows:

(Ki x B+ Kz x g5 + K3 x D) x (). if K5 #0

C= R-ky (5.5.1)

Ki x B+K; x 52+ + K3 x D, if K5 =0.

This composite cost metric is used in routing table computation. Here, the special case for
Ks = 0 means that the last part, K5/(R + K4), which considers the reliability of a link, is not
included; in other words, this means that if K5 =0, all links have the same level of reliability.
In the default case, K1 = K3 =1 and K, = K4 = K5 = 0. Thus, the composite metric reduces
to

Cdefauit = B+ D. (5.5.2)

This shows that the default composite metric is the summation of bandwidth and delay.
Now, certainly this seems odd since bandwidth is typically given in mbps or kbps while
delay is given in time unit such as sec or, millisec; that is, how do you add apples and
oranges? IGRP uses a transformation process to map the raw parameters to a comparable
level.

First, the raw bandwidth (Braw) is expressed in kbps. Thus an Ethernet link with a data
rate of 10 mbps is given the raw value 10,000. The calculated bandwidth, B, is the inverse of
the raw bandwidth multiplied by the factor 107 to scale everything in terms of 10 gbps. That
is,

107
B=)
Braw

(5.5.3)

Thus, in the case of an Ethernet link, B = % = 1000, and for a Fast-Ethernet link, B = 100.
Essentially, this means that the faster the data rate of a link, the smaller the value of B is
capping with B =1 for a 10 Gbps link. Since 24 bits are provided for the bandwidth field,
even for a 1 kbps link the value is within the range. Certainly, we do not expect any network
to have a 1-kbps link anymore! In any case, the intent behind making a higher bandwidth
data rate translate to a smaller value is that it takes less time to send a data packet—in other
words, inverting the raw data rate allows us to think in terms of time. In some sense, this is
no different than a road network in which you can drive to a place in much less time on a
road with a speed limit of 120 Kmph compared to a road with a speed limit of 70 kmph.

Bandwidth or raw bandwidth assumes that the road is clear and your packet is the only
packet traveling; it does not assume how much time the packet itself will take from the first
bit of the packet to the last bit of the packet. Thus, the delay parameter is meant to capture the
packet transmission delay on an interface, which is given in tens of usec of raw delay, Dyaw.
That is,

D = Dyaw/10. (5.5.4)

Thus, if the raw delay is 1000 usec, we have D = 100. Also, 24 bits are assigned for the delay
field. Thus, for an interface running Ethernet and a delay computed to be 1000 usec, the

156 5.5 Interior Gateway Routing Protocol (IGRP)

default composite metric value, Cgefault, is 1000 + 100 = 1100. The default composite metric is
computing a link cost that essentially reflects delay due to path delay and packet transmission
delay.

Going beyond the default composite metric, consider the middle term with coefficient K,
in the generic composite metric given in Eq. (5.5.1). This term incorporates delay “cost” due
to load on a link, that is, due to traffic. For the load factor, an 8-bit field is used; thus, raw
load, L;aw, which is a fraction between 0 and 1, can be written as

Loy = % (55.5)
so that L can take a value between 0 and 255 (inclusive) to represent link load.

The delay cost term in the middle term in Eq. (5.5.1) essentially follows the queueing
delay formula modeled using an M /M /1 queue system (see Appendix B.12.2). If § is the av-
erage packet size and A is the average arrival rate of packets, the average delay foran M /M /1
queueing system is given by

1

z =
Bl"er ’
S

(5.5.6)

By pulling Braw/S out of the expression in the denominator, we can rewrite it as

S 1
= X .
Braw (11— Si)

raw

T

However, SA/Braw = Lraw is the raw load. Thus, we arrive at

S 1

T= X .
Braw (1 — Lraw)

Multiplying the numerator and denominator by 256, we get

S 256

T = .
Braw (256 — 256 Lraw)

Using relations for B and L given in Eq. (5.5.3) and Eq. (5.5.5), respectively, we can then finally
write this expression as

,_SxB 25 _Sx256 B

107 C(256—-L) 107 < 25%6—1L) (5:5.7)

Since the first term S x 256/107 is a constant, we can assign a coefficient, K5, including
accounting for any proportion compared to other terms—this is then the middle term in
Eq. (6.5.1).

We can see that IGRP provides an elaborate way to compute cost of a link. In practice,
the default composite metric given in Eq. (5.5.2) is often used. You might notice that if the
network has an interface of the same data rate, the value of the default composite metric will
be the same for all links; this essentially means that network routing is working as if a hop
count metric is in place much like RIP.

5.6

5.6.1

CHAPTER 5 IP Routing and Distance Vector Protocol Family 157

Next, we consider the reliability term Ks/(R+ Ky) in Eq. (5.5.1) and discuss possible ways
to set K4 and K. First observe that if a link is not fully reliable, we want the cost of the link
to be higher than if it is reliable. It is given that the “base” reliability is 1 (when K5 = 0); thus,
for an unreliable link, we want

Ks

1.
R+ Ky

This means
Ks> R+ Ky.

Since the largest value of R is 255, this implies that K5 and K4 should be chosen such that
Ks > K4+ 255. (5.5.8)

It is worth noting that the protocol message includes all the different metric components
rather than the composite metric; in other words, the composite metric is left to a router to
compute first, before doing the Bellman-Ford computation for the shortest path. This also
means that it is extremely important to ensure that each router is configured with the same
value of the coefficients K1, K3, K3, K4, K5. For example, if in one router K; is set to 1 and
the rest to zero, while in another router K3 is set to 1 and the rest to zero, their view of the
shortest path would be different, thus potentially causing yet another problem.

Enhanced Interior Gateway Routing Protocol (EIGRP)

EIGRP is another routing protocol from Cisco; it is, however, more than a simple enhance-
ment of IGRP. The one thing in common between IGRP and EIGRP is the composite metric.
Although EIGRP is also from the distance vector protocol family, in many ways it is com-
pletely different from protocols such as RIP and IGRP. A major difference is that EIGRP pro-
vides loop-free routing; this is accomplished through diffusing computation discussed earlier
in Section 3.3.5; this also shows that not every distance vector protocol uses a straightforward
Bellman—-Ford computation for shortest path routing. There is an active coordination phase
before routing computation when a link fails or link cost changes; to do that, additional infor-
mation is sought for which the diffusing update algorithm (DUAL) needs to maintain states.
DUAL allows EIGRP to attain faster convergence. In addition, EIGRP includes a hello proto-
col for neighbor discovery and recovery, and a reliable transfer mechanism for exchange of
distance vector data.

EIGRP is provided directly over IP using protocol number 88. Furthermore, all EIGRP
related message communication is multicast on the address 224.0.0.10; however, acknowl-
edgments are unicasted. Since EIGRP requires reliable delivery, and given that the protocol
is built directly over IP and multicast addressing is used, a reliable multicast mechanism is
used.

Packet Format

The EIGRP packet is divided into two parts: an EIGRP header part, which is 20 bytes long, fol-
lowed by various entities that are encoded using a variable-length TLV (Type-Length-Value)

158 5.6 Enhanced Interior Gateway Routing Protocol (EIGRP)

012345467 01234567 01234567 01234586 7
Version OpCode Checksum
(1 byte) (1 byte) (2 bytes)

Flags
(4 bytes)
Sequence
(4 bytes)
ACK
(4 bytes)
Autonomous System Number
(4 bytes)

FIGURE 5.7 EIGRP packet header.

format (refer to Section 1.13.1). In the EIGRP header, there are seven fields (see Figure 5.7),
which are described below:

e Version (1 byte): This field is set to 1.

e OpCode (1 byte): This field is used to specify the EIGRP packet type. There are four key
types for IP networks: update, query, reply, and hello. Note that the need for these fields
has been already discussed in Section 3.3.5.

e Checksum (2 bytes): Checksum is calculated over the entire EIGRP packet.

e Flags: If this value is 1, it indicates a new neighbor relationship. This value is set to 2 to
indicate a conditional receive bit for a propriety multicast algorithm Cisco implements for
reliable delivery using the multicast address 224.0.0.10.

e Sequence: This is a 32-bit sequence number used by the reliable delivery mechanism.

e ACK: This field lists the sequence number from the last heard from neighbor. For an initial
hello packet, this field is set to zero. A hello packet type with a nonzero ACK value is an
acknowledgment to an initial hello message. An important distinction is that acknowledg-
ment is sent as a unicast message; this ACK field is nonzero only for unicast.

e Autonomous system number: This identifies the EIGRP domain.

Beyond the header, different entities are separated using the TLV format in an EIGRP
packet (see Figure 5.8). Each TLV entity is of variable length where the type field is fixed
at 1 byte, the length field is fixed at 1 byte, while the value field is of variable length; the
length of the value field is indicated through the length field. Most importantly, through the
type field, the packet type is identified; this field is not to be confused with the OpCode in
the header field used for message type. Cisco has defined abilities to do different types such
as general information, or network-specific information, such as whether the packet is for
IP or other networks (e.g., IPX, developed by Novell NetWare, which many organizations
deployed).

In our discussion, we specifically consider two types that are relevant and important:
(1) EIGRP parameters and (2) IP internal routes. The type field is set with value 0x0001
for an EIGRP parameter description in which the information content includes coefficients
K1, K>, K3, K4, and Ks, which are used in the calculation of the composite cost metric (see

CHAPTER 5 IP Routing and Distance Vector Protocol Family 159

012345467 012345%6 7 012345%67 012345°¢6 7

Type
(2 bytes)

Length
(2 bytes)

FIGURE 5.8 Data encoding in EIGRP packet: Generic TLV format.

Figure 5.9). Thus, unlike IGRP, EIGRP allows coefficients used by a router to be communi-
cated to its neighboring routers. Despite that, a router has no way of knowing if the same or
all coefficient values are used by all routers internally in their computation and in determining
the shortest paths. Thus, inconsistency in computing the route, if different coefficient values

are used by different routers, cannot be completely ruled out.

For the distance vector packet type for internal routes for IP networks, the type field is set
to 0x0102; this type is for the route table entry having fields similar to the fields used in IGRP
(compare Figure 5.10 with Figure 5.6). Thus, let us consider only the key differences between
EIGRP and the other protocols. A next hop field is included in EIGRP much like RIPv2; this is
not done in IGRP. Delay and bandwidth fields are 4 bytes long in EIGRP instead of 3 bytes in

012345467 01234567 01234567 01234567

Length
Type = 0x0001 (2 bytes)
K1 K2 K3 K4
(1 byte) (1 byte) (1 byte) (1 byte)
K5 Reserved Hold Time
(1 byte) (1 byte) (2 bytes)

FIGURE 5.9 EIGRP: TLV type for EIGRP parameters.

01234567 01234567 012345@67 012345867

Type = 0x0102 Length
(2 bytes)
Next Hop
(4 bytes)
Delay
(4 bytes)
Bandwidth
(4 bytes)
MTU Hop Count
(3 bytes) (1 byte)
Reliability Load Reserved
(1 byte) (1 byte) (2 bytes)
Prefix Length Destination
(1 byte) (3 or 4 bytes)

FIGURE 510 EIGRP: TLV type for communicating distance vector of an internal route.

5.7

160 5.7 Route Redistribution

IGRP since EIGRP uses a 256 multiplier for a finer metric granularity than IGRP; thus, if the
composite metric as given in Eq. (5.5.1) for IGRP is denoted by Cigrp, the composite metric,
Cgigrp, for EIGRP can be written as follows:

CeiGrp =256 x CiGRp- (5.6.1)

Through the combination of PrefixLength and Destination fields, variable-length subnet
masking is communicated. For example, if an addressable network is 10.1.0.0/16, Pre-
fixLength is 16 and Destination field will contain 10.1. If the addressable network is
167.168.1.128 /25, PrefixLength will be 25 and the Destination field will be set to 167.168.1.128.

Route Redistribution

Often in practice, we face the situation of connecting two networks where each network
speaks a different routing protocol. Then the question is: how does one network learn about
the routes (IP prefixes) of the other network, and vice versa? The benefit is that when one
network learns about IP prefixes in the other network, it can forward any user traffic to ad-
dresses in the other network. An important way to learn about IP prefixes in other networks
is through Border Gateway Protocol (BGP)—this will be covered in detail in Chapter 8. How-
ever, BGP is not the only way to learn about routes. It is possible to learn about routes, for
example, if one network uses RIPv2 and the other network uses IGRP, without relying on
BGP.

To learn about routes (IP prefixes), a router at the boundary that is connected to both
networks is required to perform route redistribution; this means that this router redistributes
routes it has learned from the first network to the second network using the routing protocol
used by the second network, and vice versa. Suppose that one network is running IGRP and
the other is running RIPv2. Then the boundary router is configured to operate both IGRP
and RIPv2. To let one network know about routes learned from the other network, protocols
must provide functionalities to indicate routes so learned. Suppose that a boundary router
has learned about an IP prefix from its IGRP side; it can use the RouteTag field in RIPv2 to
tag that this route has been learned from another protocol/mechanism and let the routers in
the RIPv2 side know. Similarly, if a boundary router learns a route from RIPv2 and wants to
announce to the IGRP side, the number of external routes in the IGRP packet format must be
positive and the route would be announced. In IGRP, internal and system routes are listed
first; thus, it is easy to identify if a route is an external route. Note that route redistribution is
often used for static routes learned.

Besides the capability of a protocol to advertise external routes, an important issue is met-
ric compatibility. For example, RIPv2 uses a hop-based metric while IGRP uses a composite
metric, while a static route has no metric value. Thus, the boundary router is required to
somehow translate the metric value from one protocol to the other protocol. Since there is not
really a direct translation, an externally learnt route is assigned an administrative distance
instead; this is helpful if a route is learned from two different ways so that the most preferred
route can be selected. Such administrative distances can be based on how much you can trust
a routing protocol; for example, since EIGRP is a loop-free protocol, it is better to give a lower
administrative distance for a route from EIGRP (e.g., say 90) than learned through IGRP (e.g.,
say 100); similarly, a route learned from IGRP can be given a lower distance than from RIPv2

5.8

CHAPTER 5 IP Routing and Distance Vector Protocol Family 161

10.1.1.0/24 10.1.1.0/24 R2 : 10.1.1.0/24

¥2/0TT0L

<€ ------

FIGURE 511 Route redistribution example with two routing protocols: RIPv2 and IGRP.

(e.g., say 120). Typically, static routes are given the lowest cost (e.g., 1) since it is assumed to
be directly connected.

It is important to note that administrative distances do help in preferring path selections
among different routing protocols; however, they cannot always solve problems that arise
due to route redistribution. For example, looping can still occur, and convergence can be a
problem. Consider Figure 5.11 in which we have two networks: one running RIPv2 among
routers R1, R2, and R5, and the other running IGRP among R2, R3, R4, and R5. In this case,
there are two boundary routers, R2 and R5, that are not directly connected to each other.
Addressable network 10.1.1.0/24 attached to R1 is announced to R2 and R5 through the
distance vector mechanism. Now for the IGRP side, R2, on learning route 10.1.1.0/24, an-
nounces to R3 about this external route, and so on. We can see that router R5 learns about
10.1.1.0/24 from R1 (RIPv2 side) and also from R4 (IGRP side). While from Figure 5.11, we
can see that it is clearly better to forward traffic from R5 to 10.1.1.0/24 via R1, it would not
do so if the administrative distance gives lower weight to a route learnt from IGRP over
RIPv2; that is, packets arriving at R5 destined for 10.1.1.0/24 would instead be forwarded
to R4 for further forwarding to R3, then to R2, and finally to R1. Note that if split horizon
is implemented on the RIPv2 side, a routing loop can be avoided. However, convergence
and looping can still occur if routers R3 and R4 fail and come back up again, i.e., during the
transient time. Fortunately, such problems can be avoided by introducing a simple policy: do
not announce routes originally received from a routing protocol back into the same routing
protocol.

Finally, route redistribution is not just limited to RIPv2 and IGRP; this is possible between
any combination of routing protocols, including protocols such as EIGRP and OSPF. An im-
portant point to note is that route redistribution requires careful handling, as we can see from
the above example.

Summary

We have described different protocols in the distance vector family for IP networks. A sum-
mary comparison is listed in Table 5.2. It is important to recognize that a distance vector
protocol can have a variety of manifestations. From a basic routing protocol point of view,
fast convergence is important as well as whether a routing protocol is loop-free. From the

162

TABLE 5.2 Comparison of protocols in the distance vector protocol family.

5.8 Summary

Protocol RIPv1 RIPv2 IGRP EIGRP RIPng
Address IPv4 IPv4 IPv4 IPv4 IPv6
Family
Metric Hop Hop Composite Composite Hop
Information Unreliable, unreliable, Unreliable, Reliable, Unreliable,
Communica- | broadcast multicast multicast multicast multicast
tion
Routing Bellman-— Bellman-— Bellman-— Diffusing Bellman-—
Computation | Ford Ford Ford computation | Ford
VLSM/CIDR | No Yes No Yes v6-based
Remark Slow conver- | Slow conver- | Slow conver- | Fast, loop- | Slow con-
gence; split | gence; split | gence; split | free conver- | vergence;
horizon horizon horizon gence; chatty | split hori-
protocol zon

perspective of the addressing and the operational usage requirement of running a protocol
in a network, some additional issues emerge: how the protocol handles the inherent need
of the addressing scheme of the network, whether a protocol provides support for external
protocols and routes, and whether the information is delivered reliably or not.

Often, we also learn much from operational experience. For example, triggered update
and split horizon with poison reverse are important timer-based issues to implement in a
distance vector family. Update synchronization, known as the pendulum effect, was a prob-
lem encountered in the early days of RIPv1 deployment; to overcome this problem, a large
delay variation between updates was recommended. Finally, to overcome the looping prob-
lem that is inherent in the basic distance vector concept, a loop-free distance vector protocol
based on diffusing computation emerged. While the loop-free distance vector protocol has
certain added complexities in terms of state management, the routing convergence is fast and
loop-free. From a network routing management point of view in an operational network, the
complexity of the protocol is not always a critical issue.

In an operational environment, issues are more centered around whether a routing pro-
tocol and its features are easy to configure and manage; these may be labeled as configuration
complexities. Here are a few to note:

o If at the command prompt level of a router, EIGRP can be configured as easily as RIPv1
or RIPv2, and knowing that EIGRP is loop-free, it will be natural for a network provider
to opt for EIGRP. Furthermore, EIGRP is much easier to configure than link state pro-
tocols such as OSPE. Note that EIGRP is a chatty protocol; if routers are connected by
low-bandwidth links, this factor can have an impact on inducing congestion in certain
situations.

e Route management at routers for internal and external routes is an important feature.

CHAPTER 5 IP Routing and Distance Vector Protocol Family 163

e Scalability and growth of a network should be considered. For example, for a campus
network, the number of routers may remain fixed at a small number for a number of
years while for a regional or national ISP, the number of routers may rapidly increase
over the years, sometimes in months. Thus, for a campus network, it is best to deploy
EIGRP, especially since the link speed between routers now are at least at Fast-Ethernet
(100 mbps) data rate; thus, the chattiness of EIGRP is not a concern.

e Sometimes, a rich feature available with a protocol is not always used since it is poorly
understood; a case in point is the composite metric that can be used in IGRP and EIGRP.
Given different coefficients and factors, the composite metric for IGRP /EIGRP can be con-
fusing sometimes; thus, it is often found that in an operational environment, the simplest
case of coefficients known as “defaults” is used. In many small or campus networking en-
vironments, the simplest form of the composite metric is even desirable, especially when
the link speed between connecting routers is not a bottleneck.

In an operational environment, a common principle about deploying any routing proto-
colis to use routers from the same vendor with the same software release. Certainly, for busi-
ness reasons, it is desirable to use multiple vendors so that a provider does not get locked
in with one vendor. While RIP is a standardized specification and it should be possible to
use products from multiple vendors in the same network, it is usually not advisable. A mi-
nor difference in implementation can cause unnecessary problem. Similarly, having the same
software release on all routers from the same vendors in a network is also advisable. Fur-
thermore, the command sets to configure routers can conceivably be different for different
router vendors; thus, the network operational staff would need to be conversant with differ-
ent command sets, an additional requirement that should be avoided if possible. Note that
these are general guidelines, not cast in stone; a size of a network is also a critical factor in
regard to consideration of products from multiple vendors, and proper training is required
for operational personnel.

Finally, we note that configuration complexities are not the only issues in an operational
network; there are other issues such as security and reliability that need to be addressed. To
summarize, it is important to recognize that from a basic concept of a routing protocol, to
its specification, to its vendor implementation, and finally to its operational deployment, the
issues and needs can be quite different.

Further Lookup

RIPv1 is the oldest routing protocol in practice for intradomain routing in the Internet that
was designed and implemented in the early 1980s, although an RFC was not officially avail-
able until 1988 [290]. IGRP was developed by Cisco in the mid-1980s. RIPv2 was first de-
scribed in the early 1990s [442]. Cisco developed EIGRP at about the same time that imple-
mented a loop-free distance vector algorithm called the diffusing coordination with coordi-
nated update (see Section 3.3.5). Thus, it is not surprising that RIPv1l and IGRP are used for
classful IP addressing while RIPv2 and EIGRP allow variable length subnet masking. RIPng
was first described in 1997; for additional details, see RFC 2080 [443].

164 5.8 Exercises

There are many books that cover the entire family of IP distance vector routing proto-
cols; for example, see [301], [571]. For an excellent coverage of routing protocols along with
command line information on how to configure routers, see [189].

Exercises
5.1. Review questions:
(a) What are the main differences between RIPv1 and RIPv2?
(b) What are the three timers in RIPv1?
5.2. Under what conditions would RIPv2 and IGRP essentially behave the same way?

5.3. Consider adding a host with IP address 192.168.8.88 directly to router Charlie through a
point-to-point link in the network shown in Figure 5.1. List the routing tables entries in
each router for this route; include any additional consideration you need to address.

5.4. Consider the route redistribution example shown in Figure 5.11. Assume that networks
have converged. Now consider that routers R3 and R4 went down and came back up
again. Identify the sequence of steps during the transient time that will take place that
would lead to a routing loop (assuming no policy rule is in place).

5.5. Why do some routing protocols message identification at above the transport layer while
some other do so directly over the IP layer?

This page intentionally left blank

6

OSPF and
Integrated IS-IS

In protocol design, perfection has been reached not when there is nothing left
to add, but when there is nothing left to take away.

Ross Callon (RFC 1925)

Reading Guideline

This chapter provides specifics about OSPF, including its key features and protocol
formats. We have also highlighted integrated IS-IS. The basic concept of a link state
protocol discussed separately in Section 3.4 is recommended reading along with
this material to see the distinction between the link state routing protocol family
and instances of this protocol family. A basic knowledge of OSPF and/or IS-IS is
also helpful in understanding IP traffic engineering, discussed later in Chapter 7.

6.1

CHAPTER 6 OSPF and Integrated 15-1S 167

In this chapter, we consider two important link state routing protocols: Open Shortest Path
First (OSPF) and Intermediate System-to-Intermediate System (IS-IS). The currently used ver-
sion of OSPF in IPv4 networks is known as OSPF, version 2 (OSPFv2); here, we will simply
refer to it as OSPE. While OSPF is exclusively designed for IP networks, IS-IS was designed
for the connection-less network protocol (CLNP) in the OSI reference model. For use in IP
networks, an integrated IS-IS or dual IS-IS protocol has been used to support both CLNP and
IP, thus allowing an OSI routing protocol in IP networks. Most of our discussion will focus
on the OSPF protocol; at the same time, we will highlight a few key features of integrated
IS-IS; however, as of now, there are no fundamental differences between OSPF and IS-IS. In

any case, we will highlight certain similarities and differences between OSPF and Integrated
IS-IS.

From a Protocol Family to an Instance of a Protocol

OSPF is an instance of a link state protocol based on hop-by-hop communication of routing
information, specifically designed for intradomain routing in an IP network. Recall from our
earlier discussion in Section 3.4.1 that such a routing protocol requires information about the
state (e.g., cost) of a link, and the ability to advertise this link state reliably through in-band
(in-network) communication. Furthermore, a link state protocol uses twosub protocols, one
to establish a neighborhood relationship through a hello protocol, and another for database
synchronization.

Going from a basic understanding of a protocol concept to an instance applicable in a
specific networking environment requires certain customization, including provision for flex-
ibility to handle various possible variations. Consider the following examples/scenarios:

e Flooding the link state advertisement (LSA) is not always necessary since a network may
have different types of transmission media. For example, if N routers in a network are,
say, in the same local area network (LAN), it unnecessarily creates N(N — 1) links while a
single-link definition is sufficient; furthermore, it also results in unnecessary shortest path
computation in each router without any gain. Thus, some summarization is desirable.

e Besides LAN, are there other types of networks for which any customization is needed?

e An intradomain network may consist of a large number of routers, possibly geograph-
ically spread out; thus, scalability is an important issue. Thus, from the point of view of
manageability and scalability, it is desirable to have the ability to cluster the entire domain
into several subdomains by introducing hierarchy. This, in turn, raises the possibility that
an entire LSA from one subdomain to another may not need to be distributed, especially
if two subdomains are connected by just a link; some form of summarization is sufficient
since all traffic would need to use this link after all. A major benefit of this hierarchy is
that the shortest path computation at a router needs to consider links only within its sub-
domain.

e How can flooding of a LSA be accomplished in an IP network?

From the above discussion, we can see that a protocol intended for use in practice
is required to address many functionalities and features. In the following section, we de-

168 6.2 OSPF: Protocol Features

scribe primary key features of OSPF, a commonly deployed link state protocol in IP net-
works.

6.2 OSPF: Protocol Features

OSPF provides many features. We will highlight the key features below. The packet format
for various OSPF packets and the key fields are described later in Section 6.3. For clarity, any
packet that carries OSPF routing information or is used for an OSPF protocol will be referred
to as an OSPF packet, to distinguish it from packets for user traffic.

6.2.1 Network Hierarchy

OSPF provides the functionality to divide an intradomain network (an autonomous system)
into subdomains, commonly referred to as areas. Every intradomain must have a core area,
referred to as a backbone area; this is identified with Area ID 0. Areas are identified through a
32-bit area field; thus Area ID 0 is the same as 0.0.0.0.

Usually, areas (other than the backbone) are sequentially numbered as Area 1 (i.e., 0.0.0.1),
Area 2, and so on. OSPF allows a hierarchical setup with the backbone area as the top level
while all other areas, connected to the backbone area, are referred to as low-level areas; this
also means that the backbone area is in charge of summarizing the topology of one area to
another area, and vice versa. In Figure 6.1, we illustrate network hierarchy using low-level
areas.

6.2.2 Router Classification

With the functionality provided to divide an OSPF network into areas, the routers are classi-
fied into four different types (Figure 6.1):

R2 - AS Boundary Router R5, R6, R8, R13 - Area Border Routers

R3, R4, R7 - Core Routers R9, R10, R11, R12, R14, R15 - Interior Routers

FIGURE 6.1 OSPF backbone and low-level areas.

6.2.3

CHAPTER 6 OSPF and Integrated 15-1S 169

e Area-Border Routers: These are the routers that sit on the border between the backbone
and the low-level areas. Each area-border router must have at least one interface to the
backbone; it also has at least one interface to each area to which it is connected.

e Internal Routers: These are the routers in each low-level area that have interfaces only to
other internal routers in the same area.

e Backbone Routers: These are the routers located in Area 0 with at least one interface to other
routers in the backbone. Area-border routers can also be considered as backbone routers.

e AS Boundary Routers: These routers are located in Area 0 with connectivity to other AS;
they must be able to handle more than one routing protocol. For example, to exchange
information with another AS, they must be able to speak BGP. These routers also have
internal interfaces for connectivity to other backbone routers.

The above terminologies, as described, are OSPF specific; however, it is also common to
use names such as backbone routers in general. You will see such usage throughout this book;
such usage should not be confused with Backbone Routers as used in the context of OSPF.

Network Types

OSPF is designed to address five different types of networks: (1) point-to-point networks,
(2) broadcast networks, (3) non-broadcast multiaccess (NBMA) networks, (4) point-to-multi-
point networks, and (5) virtual links.

Point-to-point networks refer to connecting a pair of routers directly by an interface/link
such as OC-3. A router may be connected to multiple different routers by such point-to-point
interfaces. Point-to-point links are typically used when an OSPF domain is spread out in a
geographically distributed region.

Broadcast networks refer to networks such as LANs connected by a technology such as
Ethernet. Broadcast networks, by nature, are multiaccess where all routers in a broadcast
network can receive a single transmitted packet. In such networks, a router is elected as a
Designated Router (DR) and another as a Backup Designated Router (BDR).

Non-broadcast multiaccess networks use technologies such as ATM or frame relay where
more than two routers may be connected without broadcast capability. Thus, an OSPF packet
is required to be explicitly transmitted to each router in the network. Such networks require
an extra configuration to emulate the operation of OSPF on a broadcast network. Like broad-
cast networks, NBMA networks elect a DR and a BDR.

Point-to-multipoint networks are also non-broadcast networks much like NBMA networks;
however, OSPF’s mode of operation is different and is in fact similar to point-to-point
links.

Virtual links are used to connect an area to the backbone using a nonbackbone (transit)
area. Virtual links are configured between two area-border routers. Virtual links can also be
used if a backbone is partitioned into two parts due to a link failure; in such a case, virtual
links are tunneled through a nonbackbone area. Consider again Figure 6.1. Here Area 3 is con-
nected to the backbone area using transit Area 2 through a virtual link that connects router 6
to router 7. Also note that if the link between router 2 and router 3 in the backbone area

6.2.4

170 6.2 OSPF: Protocol Features

goes down, Area 0 becomes partitioned; to avoid that, a virtual link between Area-Border
Routers 4 and 5 is established through Area 1.

Finally, an important point to understand about OSPF networks is that the neighborhood
relation is not based on routers or networks connected by physical links, but is based on
logical adjacencies established.

Flooding

OSPF uses in-network functionality to flood routing information such as LSAs. In-network
means OSPF packets are carried in the same network as user traffic. From the discussion
above, we note that there are different possible network types. Thus, transmission of OSPF
packets requires some tailoring.

First note that multiple LSAs can be combined into an OSPF link state update packet.
Flooding is required for link state update packets, as well as for LSA packets (for a discussion
about different packet types, see Section 6.3); the protocol type field in an IP packet header
is set to 89 for OSPF packets. Also note that flooding is selective in that a router forwards an
update only if it is not stale; for this, it relies on checking the age and the sequence number
field, discussed earlier in Section 3.4.1.

On point-to-point networks, updates use the IP multicast address 224.0.0.5, referred to as
AlISPFRouters. A router on receiving an update forwards it to other routers, if needed (after
checking the sequence number), again using the same multicast address.

On broadcast networks, all non-DR and non-BDR routers send link state update and
LSA packets using the IP multicast address 224.0.0.6, referred to as AlIDRouters. Any OSPF
packets that originates from a DR or a BDR, however, use the IP multicast address 224.0.0.5.

In NBMA networks, LSAs are sent as unicast from non-DR/non-BDR routers to the DR
and the BDR. DR, in turn, sends a copy of the LSA as unicast to all adjacent neighbors. On
point-to-multipoint networks and virtual link networks, updates are sent as unicast using the
interface’s IP address of the adjacent neighbor.

Regardless of the network type, OSPF flooding must be reliable. Since OSPF sits directly
on top of IP in the TCP/IP stack, OSPF is required to provide its own reliable mechanism,
instead of being able to use a reliable transport protocol such as TCP. OSPF addresses reliable
delivery of packets through use of either implicit or explicit acknowledgment. An implicit
acknowledgment means that a duplicate of the LSA as an update is sent back to the router
from which it has received the update. An explicit acknowledgment means that the receiving
router sends a LSA packet on receiving a link state update. Since a router may not receive
acknowledgment from its neighbor to whom it has sent a link state update message, a router
is required to track a link state retransmission list of outstanding updates. An LSA is retrans-
mitted, always as unicast, on a periodic basis (based on the value RxmtInterval) until an
acknowledgment is received, or the adjacency is no longer available.

Finally, OSPF defines three global parameters in regard to flooding of LSAs. LSRefresh-
Time indicates the maximum acceptable time between generation of any particular LSA, re-
gardless of whether the content of the LSA such as the metric value has changed; this time
window is set to 30 min. MinLSInterval reflects the minimum time between generation of any
particular LSA; this is set to 5 sec. Finally, MinLSArrival is the minimum time between re-
ception of new LSAs during flooding, set to 1 sec; this parameter serves as the hold-down
timer.

6.2.5

6.2.6

CHAPTER 6 OSPF and Integrated 15-1S 171

Link State Advertisement Types

From the discussion about network hierarchy and network types, it is clear that an OSPF
network requires different LSA types. The five most commonly known LSA types are:
Router LSA (type code = 1), Network LSA (type code = 2), Network Summary LSA (type
code = 3), AS Border Router (ASBR) Summary LSA (type code = 4), and AS External LSA
(type code =5).

A Router LSA is the most basic or fundamental LSA that is generated for each interface.
Such LSAs are generated for point-to-point links. Router LSAs are recorded in the link state
database and are used by the routing computation module. Flooding of Router LSAs is re-
stricted to the area where they originate.

Network LSAs are applicable in multiaccess networks where they are generated by the
DR. All attached routers and the DR are listed in the Network LSA. Flooding of Network
LSAs is also restricted to the area where they originate.

Area-Border Routers generate Network Summary LSAs that are used for advertising destina-
tions outside an area. In other words, Network Summary LSAs allow advertising IP prefixes
between areas. Area Border Routers also generate ASBR Summary LSAs; in this case, they
advertise AS Border Routers external to an area.

AS External LSAs are generated by AS Border Routers. Destinations external to an OSPF
AS are advertised using AS external LSAs.

There are six additional LSA types; they are described later in Section 6.2.8.

Subprotocols

In our discussion of a link state protocol earlier in Section 3.4.1, we mentioned that subproto-
col mechanisms are also used for the operation of a link state protocol in addition to the main
function of LSA through flooding. Two key subprotocols are the hello protocol and the data-
base synchronization protocol. It should be noted that to accomplish these protocols, various
packet types such as the hello packet, database description packet, link state request packet,
and link state update packet have been defined as part of the OSPF protocol; these packet
types are outlined in detail later in Section 6.3.

HELLO PROTOCOL

While its name seems to imply that the hello protocol is just for initialization, it is actually
much more than that. Recall that the OSPF protocol is designed for several different types of
networks as discussed earlier in Section 6.2.3. First, during initialization/activation, the hello
protocol is used for neighbor discovery as well as to agree on several parameters before two
routers become neighbors; this means that using the hello protocol, logical adjacencies are
established; this is done for point-to-point, point-to-multipoint, and virtual link networks.
For broadcast and NBMA networks, not all routers become logically adjacent; here, the hello
protocol is used for electing DRs and BDRs. After initialization, for all network types, the
hello protocol is used to keep alive connectivity, which ensures bidirectional communication
between neighbors; this means, if the keep alive hello messages are not received within a cer-
tain time interval that was agreed upon during initialization, the link/connectivity between
the routers is assumed to be not available.

6.2.7

172 6.2 OSPF: Protocol Features

To accomplish various functions described above, a separate hello packet is defined for
OSPF; details about the field are described in Section 6.3.

DATABASE SYNCHRONIZATION PROCESS

Beyond basic initialization to discover neighbors, two adjacent routers need to build adja-
cencies. This is important more so after a failed link is recovered between two neighboring
routers. Since the link state database maintained by these two routers may become out of
sync during the time the link was down, it is necessary to synchronize them again. While a
complete LSA of all links in the database of each router can be exchanged, a special data-
base description process is used to optimize this step. For example, during database descrip-
tion, only headers of LSA are exchanged; headers serve as adequate information to check if
one side has the latest LSA. Since such a synchronization process may require exchange of
header information about many LSAs, the database synchronization process allows for such
exchanges to be split into multiple chunks. These chunks are communicated using database
description packets by indicating whether a chunk is an initial packet (using I-bit) or a con-
tinuation/more packet or last packet (using M-bit). Furthermore, one side needs to serve as
a master (MS-bit) while the other side serves as a slave—this negotiation is allowed as well;
typically, the neighbor with the lower router ID becomes the slave. It is not hard to see that
the database synchronization process is a stateful process.

In Figure 6.2, we illustrate the database synchronization process, starting with initial-
ization through the hello packet, adapted from [505]. After initialization, this process goes
through several states: from exchange start to exchange using database description packets
to synchronizing their respective databases by handling one outstanding database descrip-
tion packet at a time, followed by a loading state when the last step of synchronization is
done. After that, for link state request and update for the entire LSA for which either side
requires updated information, the communication takes place in the full state until there are
no more link state requests.

Routing Computation and Equal-Cost Multipath

First note that LSAs are flooded throughout an area; this allows every router in an area to
build link state databases with identical topological information. Shortest path computation
based on Dijkstra’s algorithm (see Section 2.3) is performed at each router for every known
destination based on the directional graph determined from the link state database; the cost
used for each link is the metric value advertised for the default type of service in the link LSA
packet; see Figure 6.11 presented later for the metric field. Originally, it was envisioned that
there be different types of services that might require different metrics. Thus, a type of service
(TOS) field was created. The default TOS is indicated by setting field, Number of TOS, to 0.
Metric field allows the value to be between 1 and 65,535, both inclusive. If additional types
of services are defined and supported by routers in an area, then for each type of service the
shortest path can be computed separately. While the default metric is dimensionless, addi-
tional types of services are identified based on attributes such as monetary cost, reliability,
throughput, and delay. At the same time, the default metric being dimensionless provides
the flexibility to not explicitly consider metrics for other types of services in an operational
environment since through IP traffic engineering the link metric/cost can be determined and

CHAPTER 6 OSPF and Integrated 15-1S 173

Router ID = 10.1.2.254 Router ID = 10.1.1.254

H. e
==
Init

Hello (DR = 0.0.0.0, Isee=0)

Hello (DR = 10.1.2.254, [see = 10.1.1.254)

Y

Exch Start
DD (Seq = x, Init, More, Master) ange

Exchange Start DD (Seq =y, Init, More, Master)

DD = y, More, Slave
i e Exchange

Exchange DD (Seq =y+1, Init, More, Master)

DD (Seq = y+1, More, Slave)

A

DD (Seq =y+n, NoMore, Master)

DD (Seq =y-+n, NoMore, Slave) Loading

A

Full LS Request

LS Update

LS Request

LS Update

—

Full

FIGURE 6.2 OSPF link state database synchronization process (based on [505]).

set just under the default TOS, which can still take into account diverse goals of a network
and the network provider; we will discuss link cost determination for IP intradomain traffic
engineering in Chapter 7.

A nice feature of Dijkstra’s algorithm computed at each router is that the entire shortest
path from a source to a destination (in fact, for all destinations) is available at the end. OSPF
allows a source routing option that can be used by user traffic on the path determined by Dijk-
stra’s algorithm. Certainly, OSPF allows the default next hop option commonly deployed in
IP networks; thus, once the path is computed, the next hop is also extracted from the shortest

174 6.2 OSPF: Protocol Features

path computation to update the routing table, and subsequently, the forwarding table. Note
that routing table entries are for destinations identified through hosts or subnets or simply
IP prefixes (with CIDR notation), not in terms of end routers. Thus, once the shortest path
first computation is performed from a router to other reachable routers, reachable addresses
from each destination router as learned through LSAs are identified, and the routing table en-
tries are accordingly created for all such addresses. Because of CIDR, multiple similar route
entries are possible. For example, there might be an entry for 10.1.64.0/24, and another for
10.1.64.0/18, where the difference is in the netmask. To select the route to be preferred by
an arriving packet, OSPF uses a best route selection process. According to this process, the
route(s) with the most specific match to the destination is to be selected, which is the one with
the longest match. As an example, 10.1.64.0/24 would be preferred over 10.1.64.0/18. In case
there are multiple paths available after this step, the second step selects the route where an
intra-area path is given preference over an interarea path, which, in turn, gives preference
over external paths for routers learned externally (refer to Section 6.2.8).

ECMP

An important feature of OSPF routing computation is the equal-cost multipath (ECMP) option;
that is, if two paths have the same lowest cost, then the outgoing link (next hop) for both
can be listed in the routing table so that traffic can be equally split. It may be noted the orig-
inal Dijkstra’s algorithm generates only one shortest path even if multiple shortest paths are
available. To capture multiple shortest paths, where available, Dijkstra’s algorithm is slightly
modified. In line 23 of Algorithm 2.5 in Chapter 2, if the greater than sign (>) is changed to
a greater than or equal to sign (>), it is possible to capture multiple shortest paths by identi-
fying the next hops. In this case, line 25 is then updated to collect all next hops that meet the
minimum, instead of just one when the strictly greater than sign is used. Thus, more than one
outgoing link in the case of multiple shortest paths would need to be stored, instead of just
one.

It is important to note that ECMP is based on the number of outgoing interfaces (links)
involved on the shortest path at node level along the path, not at the source-destination
path level. Consider the six-router network shown in Figure 6.3. Suppose the paths between
router 1 and router 6 are of equal cost. Thus, for traffic from router 1 to router 6, it will be
equally split at router 1 along the two directional links 1-2 and 1-5; traffic from router 1
that arrived at router 2 will be equally split further along its two outgoing links 2—3 and
2—4. Thus, of the traffic from router 1 destined for router 6, 25% each will arrive at router 6
from links 3—6 and 4— 6, while one-half will arrive from link 5— 6. This illustrates the mean-
ing of equal-cost being node interface-based. Since OSPF routing is directional, the traffic
splitting for this example will be different for traffic going the other direction from router 6
to router 1. Since router 6 has three outgoing links, traffic will be split equally among the
links 63, 64, and 6—5. Note that the traffic sent on the first two links will be combined
at router 2; thus, two-thirds of the traffic from router 6 destined for router 1 will arrive at
router 6 from link 2— 1, while one-third will arrive from link 5—1.

It may be noted that the OSPF specification does not say exactly how ECMP is to be
accomplished from an implementation point of view. In concept, packets that arrive for the
same destination router can be equally split among outgoing links of ECMP paths. However,
this is not desirable for several reasons. For example, for a single TCP session (microflow), if

CHAPTER 6 OSPF and Integrated 15-1S 175

1-\

N~ —. Y /ea,,
= = ©

FIGURE 6.3 OSPF equal-cost multipath (ECMP) example.

5

the packets are sent on different ECMP paths that might consist of links with different link
bandwidths, packets can arrive with different delays; this can then affect TCP throughput.
If packets for this session are alternated across each link, then packets can arrive out of or-
der. Thus, router software implementation handles ECMP path selection on a per-microflow
basis. Yet, implementation at a per-microflow choice level at a router can have an effect as
well. If every router in the network makes identical decisions because of the way flows are
processed by the router software, for example, due to prefix matching, then microflows that
arrive at router 1 destined for router 6 that are directed to link 1-2 would use only one of
the paths 2-3-6 or 2-4-6 (see Figure 6.3). Thus, sophisticated, yet fast, router software imple-
mentation addresses randomization of microflows to different ECMP outgoing links so that
such situations do not occur. In summary, ECMP is possible only as approximate split by ran-
domizing at a per-microflow level (or destination address level) from a practical point of
view.

The ECMP feature is helpful in load balancing traffic, but may not be helpful when trou-
bleshooting a network. Thus, some providers try to avoid using ECMP; that is, they seek the
single shortest paths, to the extent possible. This will be discussed further in relation to IP
traffic engineering in Chapter 7.

INTERAREA ROUTING COMPUTATION

It is important to note that Dijkstra-based shortest path computation using link state in-
formation is applied only within an area. For routing update between areas, information
from one area is summarized using Summary LSAs without providing detailed link infor-
mation; thus, interarea routing computation in OSPF is similar to the distance vector flavor.
Since OSPF employs only a two-level hierarchy, a looping problem typically known to oc-
cur with a distance vector approach is not conceptually possible. Yet, due to aggregation
and hierarchy, in certain situations, it is possible to create a scenario where looping can oc-
cur [589].

6.2.8

176 6.2 OSPF: Protocol Features

Additional Features

OSPF has the capability to authenticate packet exchanges between two routers. Such authen-
tication can be either simplex password-based or MD5-based. Furthermore, extensions to
OSPF, to add digital signature authentication to LSA data and to provide a certification mech-
anism for router data, have been addressed in RFC 2154 [514]. We will highlight here a few
additional features in OSPF.

STUB AREAS AND STUB NETWORKS

Recall that we discussed backbone and low-level areas earlier. OSPF provides additional
ways to define low-level areas. A low-level area is considered to be a regular area if all types
of LSAs are permitted into this area; thus, all routers in a regular area can determine the best
path to a destination. A stub area is an area where information about external routes, commu-
nicated through AS external LSAs, is not sent; the area border router on this stub area creates
a default external route for use by the stub area. Consider Figure 6.1 again; here, Area 3 is a
stub area.

A not-so-stubby area (NSSA) is a stub area that can import AS external routes—this means
that this stub area has an unusual connectivity to another AS. Since routes/networks from
this AS would need to be known to the rest of the Internet, this information needs to be
imported. To accomplish this, an additional LSA type called NSSA-LSA (type code =7) is
defined so that routes from an AS connected to an NSSA can be imported to an area border
router where they can be converted to a type 5 LSA (AS-external-LSA) for flooding. For ex-
ample, if you imagine such an area connected to Area 3 in Figure 6.1 (not shown in figure)
that is outside the OSPF domain, then this area would be an NSSA. In addition, another area
type called a totally stubby area is being used in practice; this type of area is useful for a large
OSPF network since such an area can use default route for all destinations outside this area
(in addition to external routes), thereby saving on memory requirement of routers in the area.

There is another term, stub networks, that should not to be confused with stub areas.
A stub network is a network identified by an IP prefix that is connected to only one router
within an area.

ADDITIONAL LSA TYPES

In addition to the LSA types described earlier in Section 6.2.5 and the one described above,
there are five more LSA types have been defined so far. Group Membership LSA (type code
= 6) is used in multicast OSPFE. External Attributes (type code = 8) has been deprecated; in its
place, three new LSA types, known as the Opaque LSA option, have been defined. The role
of opaque LSA is to carry information that is not used by SPF calculation, but can be useful
for other types of calculations. For example, traffic engineering extensions to OSPF utilize the
opaque LSA option; see Section 18.3.4. Three types of opaque LSA options have been defined
to indicate the scope of propagation of information, i.e., whether it is link-local, area-local, or
AS scope.

ROUTE REDISTRIBUTION

In Section 5.7, we discussed route redistribution, especially for distance vector protocols.
Route redistribution is similarly possible with OSPF (and IS-IS); for example, one side can

6.3

CHAPTER 6 OSPF and Integrated 15-1S 177

be EIGRP while the other side is OSPF. For OSPF that learns a route from another proto-
col such as EIGRP, NSS External LSA (type = 7) can be used. To allow for route redistri-
bution and metric compatibility, NSSS External LSA has an E-bit field to indicate whether
to use cost that is the external cost plus the cost of the path to the AS border router (“E1
type external path”), or simply the external cost (“E2 type external path”), and External
Route Tag field for help in external route management. For the purpose of path selection
for external routes, an E1 type external path is given preference over an E2 type external
path.

OSPF Packet Format

In this section, we describe packet formats for several key OSPF packet types.

COMMON HEADER

The common header has the following key fields (Figure 6.4):

e Version: This field represents the OSPF version number; the current version is 2.

e Type: This field specifies the type of packet to follow. OSPF has five packet types: hello (1),
database description (2), link state request (3), link state update (4), and LSA (5).

e Packet Length: This indicates the length of the OSPF packet.

e Router ID: This field indicates the ID of the originating router. Since a router has multiple
interfaces, there is no definitive way to determine which interface IP address should be
the router ID. According to RFC 2328 [505], it could be either the largest or the smallest
IP address among all the interfaces. It may be noted that if a router is brought up with
no interface connected, then it has no ability to acquire a router ID. To avoid this sce-
nario, a loopback interface, being a virtual interface, can be used to acquire a router ID.
In general, a router ID that is based on a loopback interface provides much more flexi-
bility to network operators in terms of management than a physical interface-based ad-
dress.

e Area ID: This is the ID of the area where the OSPF packet originated. Value 0.0.0.0 is re-
served for the backbone area.

01234567 01234567 01234567 0122345¢67

Version Type Packet Length
(1 byte) (1 byte) (2 bytes)
Router 11D
(4 bytes)
Area ID
(4 bytes)
Checksum Authentication Type
(2 bytes) (2 bytes)
Authentication
(4 bytes)
Authentication
(4 bytes)

FIGURE 6.4 OSPF packet common header.

178 6.3 OSPF Packet Format

e Checksum: This is the IP checksum over the entire OSPF packet.

o AuType and Authentication Field: AuType works with the Authentication field for authen-
tication. There are three authentication types:

AuType | Meaning Authentication Field

0 No authentication Can be anything

1 Simple, clear text password-based authenti- | An 8-byte password
cation

2 Cryptographic MD5 checksum authentica- | 8-byte is divided as shown in
tion Figure 6.5

Note that when AuType is 2, it contains a KeyID, an Authentication Data Length, and a
Cryptographic Sequence Number. MD5 checksum is used to produce a 16-byte message
digest that is not part of the OSPF packet; rather, it is appended to the end of the OSPF
packet.

012345467 01234567 012345%67012345°%67
Key ID Au Data Length
(1 byte) (1 byte)
| Crytographic Sequence Number
(4 bytes)

| 0x000

FIGURE 6.5 OSPF AuType = 2.

HELLO PACKET

The primary purpose of the hello packet (Figure 6.6) is to establish and maintain adjacencies.
This means that it maintains a link with a neighbor that is operational. The hello packet is
also used in the election process of the DR and BDR in broadcast networks. The hello packet
is also used for negotiating optional capabilities.

o Network Mask: This is the address mask of the router interface from which this packet is
sent.

o Hello Interval: This field designates the time difference in seconds between any two hello
packets. The sending and the receiving routers are required to maintain the same value;
otherwise, a neighbor relationship between these two routers is not established. For point-
to-point and broadcast networks, the default value is 10 sec, while for non-broadcast net-
work the default value used is 30 sec.

e Options: Options field allows compatibility with a neighboring router to be checked.

e Priority: This field is used when electing the designated router and the backup designated
router.

CHAPTER 6 OSPF and Integrated 15-1S 179

01234567 01234567 01234567 012345¢%67
Network Mask
(4 bytes)
Hello Interval Options Priority
(2 bytes) (1 byte) (1 byte)
Router Dead Interval
(4 bytes)
Designated Router
(4 bytes)
Packup Designated Router
(4 bytes)

Neighbors
(4 bytes each)

__—|_—
el — /.

Neighbors

FIGURE 6.6 OSPF hello packet (OSPF packet type = 1).

e Router Dead Interval: This is the length of time in which a router will declare a neighbor
to be dead if it does not receive a hello packet. This interval needs to be larger than the
hello interval. Also note that the neighbors need to agree on the value of this parameter;
this way, a routing packet that is received, which does not match this field on a receiv-
ing router’s interface, is dropped. The default value is typically four times the default
value for the hello interval; thus, in point-to-point networks and broadcast networks, the
default value used is 40 sec while in non-broadcast networks, the default value used is
120 sec.

e Designated Router (DR) (Backup Designated Router (BDR)): DR (BDR) field lists the IP ad-
dress of the interface of the DR (BDR) on the network, but not its router ID. If the DR
(BDR) field is 0.0.0.0, then this means there is no DR (BDR).

e Neighbor: This field is repeated for each router from which the originating router has re-

ceived a valid Hello recently, meaning in the past RouterDeadInterval.

DATABASE DESCRIPTION PACKET

The OSPF database description packet has the following key features (Figure 6.7):

e Interface Maximum Transmission Unit (MTU): This field indicates the size of the largest
transmission unit the interface can handle without fragmentation.

e Options: Options fields consist of several bit-level fields. The most critical one is the E-bit,
which is set when the attached area is capable of processing AS-external LSAs.

e I/M/MS bits: I-bit (initial-bit) is initialized to 1 for the initial packet that starts a database
description session; for other packets for the same session, this field is set to 0. M-bit (more-
bit) is used to indicate that this packet is not the last packet for the database description
session by setting it to 1; the last packet for this session is set to 0. MS-bit (master-slave

180 6.3 OSPF Packet Format

01234567 012345067 012345467 012345¢67

Interface MTU Options 0000 o i|mM
(2 bytes) (1 byte) 5
DD Sequence Number

(4 bytes)

LSA Headers

FIGURE 6.7 OSPF database description packet (OSPF packet type = 2).

bit) is used to indicate that the originator is the master by setting this field to 1, while the
slave sets this field to 0. This was illustrated earlier in Figure 6.2.

o DD Sequence number: This field is used for incrementing the sequence numbers of packets
from the side of the master during a database description session; the master sets the initial
value for the sequence number.

e LSA Header: This field lists headers of the LSAs in the originator’s link state database; it
may list some or all of them.

LINK STATE REQUEST PACKET

The link state request packet is used for pulling information. For example, based on database
description received from a neighbor, a router might want to know link state information
from its neighbor. The link state request packet has the following fields, which are repeated
for each unique entry (Figure 6.8):

o Link State Type: This field identifies a link state type such as a router or network.

01234567 01234567 012345670123456€67
Link State Type
(4 bytes)
Link State ID
(2 bytes)
Advertising Router
(4 bytes)

Link State Type
(4 bytes)
Link State ID
(2 bytes)
Advertising Router
(4 bytes)

FIGURE 6.8 OSPF link state request packet (OSPF packet type = 3).

CHAPTER 6 OSPF and Integrated 15-1S 181

0123 4567 01234567 01234567 012345@%667
Number of LSAs
(4 bytes)

LSAs

W
L

LSAs

FIGURE 6.9 OSPF link state update packet (OSPF packet type = 4).

e Link State ID: This field is dictated by the link state type.
e Advertising Router: This is the address of the router that has generated this LSA.

LINK STATE UPDATE PACKET

This packet (Figure 6.9) contains the first field to be the number of LSAs followed by informa-
tion on LSAs that follow the LSA packet format. Thus, a link state update packet can contain
one or more LSAs.

LINK STATE ACKNOWLEDGMENT PACKET

The LSA packet is used in acknowledging each link state advertisement received from a
neighboring router. This includes the LSA headers that follow the OSPF packet header where
the type field is set to 5.

OSPF LINK STATE ADVERTISEMENT

In some sense, this is the heart of the link state protocol concept. A LSA packet consists of
a header, followed by data for different link state types. Here, we will present packet for-
mats for Router LSA and Network LSA. First, the common LSA header has the following
fields:

e Age: This field reflects the time in seconds since the LSA was originated. The originating
router sets this value to 0. Through a global parameter, MaxAge, the maximum life of an
LSA is set to 1 hour. When the age field for an LSA reaches MaxAge, LSA is flooded again
regardless of change in the link state of this LSA.

e Options: This is used to identify optional capabilities supported by the OSPF routing do-
main.

e Type: This field indicates the LSA type: 1 for Router LSA, 2 for Network LSA, and so on.
This type field is not to be confused with the OSPF packet type discussed earlier.

e Link State ID: This field uniquely identifies an LSA.

e Advertising router: This is the OSPF router ID of the originating router.

182 6.3 OSPF Packet Format

o Sequence number: This field is incremented each time a new LSA is generated by the origi-
nating router.

o Checksum and Length: The checksum is over the entire packet except for the age field.
Length is counted in bytes for the enter LSA including header.

Router LSA:

A Router LSA consists of the LSA header (Figure 6.10) followed by the content of the
Router LSA (Figure 6.11). Every router generates a Router LSA that lists all the routers, outgo-
ing interfaces (links); for each interface, the state and cost of the link are included. In addition
to the LSA header, a Router LSA has the following fields:

e V/E/B-bits: V-bit indicates if it is a virtual link, E-bit indicates an AS boundary router, and
B-bit indicates an area border router.

e Number of Links: This field indicates the total number of router interfaces.

e Link ID, Link Data, and Link Type: Link ID and Link Data are better understood in the
context of Link Type ([189], [505]); this is summarized in Table 6.1.

e Metric: This is the cost of an interface/link. The value is in the range 1 to 65,535 (=216 —1).
OSPF specification does not specify what values are to be used here. Rather, this is left to
the network service provider to decide. In Chapter 7, we will discuss how values might
be chosen for the purpose of traffic engineering of a network.

e Number of TOS, TOS, and TOS Metric: The Number of TOS field indicates the different
number of Type of Service; if this field is zero, then TOS and TOS Metric fields are not
applicable. If the Number of TOS is 2, then TOS and TOS Metric fields are repeated twice;
here TOS would then refer to a particular type such as normal service, maximize relia-
bility, or minimize delay, while the TOS Metric field would then include the cost for the
associated TOS field.

Network LSA:
Network LSAs are generated by DRs. In addition to the LSA header, a Network LSA has
the following fields (Figure 6.12):

01234567 01234567 012345467 012345%67
Age Options Type
(2 bytes) (1 byte) (1 byte)
Link State ID
(4 bytes)
Advertising Router

(4 bytes)
Sequence Number
(4 bytes)
Checksum Length
(2 bytes) (2 bytes)

FIGURE 6.10 OSPF link state advertisement header.

6.4

CHAPTER 6

OSPF and Integrated 15-1S

TABLE 6.1 Router LSA: Link Type, Link ID, and Link Data.

183

LinkType | Description Link ID Link Data
1 Point-to-point link Neighboring router’s | Interface IP address of
Router ID originating router
2 Link to transit network | Interface IP address of | Interface IP address of
Designated Router originating router
3 Link to stub network IP network or subnet ad- | Network’s IP address
dress
4 Virtual link Neighboring router’s | Interface IP address
Router ID
01234567 01234567 01234567 012345%67
0 vielr 0 Number of Links
(2 bytes)
Link ID
(4 bytes)
Link Data
(4 bytes)
Link Type Number of TOS Metric
(1 byte) (1 byte) (2 bytes)
TOS 0 TOS Metric
(1 byte) (2 bytes)

o QST oottt W o] BT i
— = = L |

Link ID

(4 bytes)

Link Data

(4 bytes)

Link Type Number of TOS Metric
(1 byte) (1 byte) (2 bytes)
TOS 0 TOS Metric

(1 byte) (2 bytes)

FIGURE 6.11 OSPF Router LSA content (LSA type = 1).

e Network Mask: This is the standard subnet mask information.

e Attached Router: This field is repeated once for each router that is fully adjacent to the DR.

Examples of Router LSAs and Network LSAs

In this section, we will illustrate router and network LSAs through an example, adapted from
[505]. We will use private IP address space in this illustration. In Figure 6.13, we show two
areas: Area 0 and Area 1. In Area 1, there are three stub networks: N1 identified by IP prefix
192.168.1.0, N2 by 192.168.2.0, and N3 by 192.168.3.0, which are off routers R1, R2, and R3,
respectively. The transit network N4 is identified by 192.168.4.0 with R4 as the DR, while
having IP interfaces to R1, R2, and R3, as noted. Both R3 and R4 area border routers are

184 6.4 Examples of Router LSAs and Network LSAs

01234567 01234567 01234567 012345%67
Network Mask
(4 bytes)

Attached Routers
(4 bytes each)

Attached Routers

FIGURE 6.12 OSPF Network LSA content (LSA type = 2).

Area 0 N4

192.168.4.0 Areal

R5
104.5.1 @

R1
N1

192.168.1.0 ——
oh _@ 192.168.4.1

R2

N2
192.168.2.0 _@ 192.168.4.2

10.3.6.1 % 192.168.6.1
Rb

N3
192.168.3.0

FIGURE 6.13 OSPF network example.

connected to Area 0. In our discussion, we will identify the router ID of a router by the highest
IP address of all its interfaces. For example, router ID of R1 is 192.168.4.1 since this address is
higher than its other interface to network N1 (192.168.1.0). For simplicity, we will assume all
metric values to be 1.

Router R3 will generate two Router LSAs: one for Area 1 and the other for Area 0. For
Area 1, it is necessary to identify two Link IDs: one for the transit network identified by
DR 192.168.4.4 and the other for stub network 192.168.3.0. Now you can see how networks/IP
prefixes are communicated to other routers in the network. Thus, when a router computes
the shortest path tree, it first computes it for all the routers in its area. Then, any networks it
learns about from any of the Router LSAs of various routers, it can add a leaf for a route to
such networks. This means that once completed, a router’s routing table contains entries for
all other routers as well as for destination networks. The information content of Router LSA
for R3 for Area 1 is shown in Figure 6.14.

6.5

CHAPTER 6

OSPF and Integrated 15-1S

/I Router LSA of R3 for Area 1
LSage=0
Options = (E-bit)
LS type =1
Link State ID = 192.168.4.3
Advertising Router = 192.168.4.3
bitE=0
bit B =1
#links = 2
Link ID = 192.168.4.4
Link Data = 192.168.4.3
Type =2
TOS metrics =0
metric = 1
Link ID = 192.168.3.0
Link Data = 255.255.255.0
Type =3
TOS metrics =0
metric = 1

//always true on origination

/lindicates Router LSA
//R3’s Router ID

//R3’s Router ID

//Inot an AS boundary router
//area border router

//IP address of Designated Router
//IR3’s IP interface to net
//connects to transit network

// End of first Link ID info
/1P Network number
//Network mask
//connects to stub network

/I End of Second Link ID info

FIGURE 6.14 Router LSA of R3 in Area 1 for the network example in Figure 6.13.

/I Network LSA for Network N4

LSage=0

Options = (E-bit)

LS type =2

Link State ID = 192.168.4.4

Advertising Router = 192.168.4.4

Network Mask = 255.255.255.0
Attached Router = 192.168.4.4
Attached Router = 192.168.4.1
Attached Router = 192.168.4.2
Attached Router = 192.168.4.3

/lalways true on origination

/findicates Network LSA
//\P address of Designated Router
//R4’s Router ID

//Router 1D
//Router ID
//Router 1D
//Router ID

185

FIGURE 6.15 Network LSA for Network N4 for the network example in Figure 6.13.

Router LSAs within Area 1 generated by routers R1 and R2 will be similar. Since R4 is the
DR in Area 1, it will generate a network LSA for transit network N4 (Figure 6.15), which also
identifies all the attached routers.

Now consider Area 0. R3 is connected to router R6 by a point-to-point link in Area 0;
Router LSA for R3 would be different than when it sends to Area 1, as shown in Figure 6.16.
Router LSA for R4, which is connected to router R5, will be similar.

Integrated IS-IS

Integrated IS-IS for both CLNP and IP protocols is described in RFC 1195 [105] while the
original IS-IS protocol was described in [321], [537]. IS-IS comes with its own terminology
that is different from OSPF. For example, routers are referred to as intermediate systems; thus,
the name intermediate systems-to-intermediate systems means router-to-router. For consis-
tency, we will use the term routers instead of intermediate systems. LSAs are called link state

6.5.1

186 6.5 Integrated IS-1S

// R3’s Router LSA for Area 0
LSage=0 //always true on origination
Options = (E-bit)
LS type =1 /lindicates Router LSA
Link State ID = 192.168.4.3 //IR3’s router ID
Advertising Router = 192.168.4.3 //R3'’s router ID
bitE=0 //Inot an AS boundary router
bit B =1 //area border router
#links = 1
Link ID = 192.168.6.1 //Neighbor’s Router ID
Link Data = 10.3.6.1 /IMIB-II ifindex of P-P link
Type =1 //connects to router
TOS metrics =0
metric = 1

FIGURE 6.16 Router LSA for R3 in Area 0 for the network example in Figure 6.13.

protocol data units, or LSPs, in short. A broadcast network is referred to as a pseudonode; a
designated intermediate system is elected from all the ISs to represent a broadcast network. An
address to identify an intermediate system is called a network service access point (NSAP). IS-IS
runs directly over layer-2 protocols, unlike OSPF that runs over IP. Similar to OSPF, IS-IS has
also been extended to provide traffic engineering capabilities; this will be discussed later in
Section 18.3.4.

Key Features

We now highlight the main features of IS-IS protocols.

AREAS

IS-IS provides two-level network hierarchy using areas that are similar to OSPE. The routers
in the backbone area are called L2 routers; the internal routers in low-level areas are called L1
routers. A network that has any low-level (L1) areas must also have at least one L1/L2 router
that sits in the L1 area but is connected to the L2 (backbone) area by a link. Note that in IS-IS,
a router is entirely within an area, unlike OSPF, where a router can sit on the border between
two areas; connectivity between areas is only through a link.

ADDRESSING IN IS-IS

Addressing in IS-IS is based on OSI-NSAP addressing and is compatible with USA GOSIP
version 2.0 NSAP address format. GOSIP stands for Government Open Systems Interconnec-
tion Profile, the federal standard for network systems procurement that was standardized in
the early 1990s. The OSI-NSAP addressing has, key fields, as shown on the table on the next

page.

CHAPTER 6 OSPF and Integrated 15-1S 187

Field Size Value
AFI (Authority and Format Identifier) 1byte | “47”
ICD (International Code Designator) 2 bytes | “00 05”

DFI (Domain-Specific Path Format Identifier) | 1 byte | “xx”
AAI (Administrative Authority Identifier) 3bytes | “xx xx xx”

Reserved 2 bytes | Must be “00 00”

RDI (Routing Domain identifier) 2 bytes | Contains autonomous system
number

Area 2 bytes | Assigned by the authorities re-

sponsible for the routing domain
to uniquely identify areas
System ID 6 bytes | Use either (1) “02 00” prepended
to the 4-byte IP address of the
router, or (2) IEEE 802 48-bit MAC
address

N-Selector (upper layer identifier) 1byte | Setto zero

As you can see, several fields are used for setup in IP networks. The important ones are:
RDI, Area, and System ID. When the last byte, N-selector, is set to zero, there is no upper-layer
user, and the address is meant purely for routing; such routing-layer-only NSAP addresses
are called Network Entity Titles (NET). In effect, IS-IS for IP networks uses NET addressing. It
is important to note that NET is a router identifier, not an interface identifier.

PSEUDONODES AND NONPSEUDONODES

IS-IS allows handling of different network types. For example, a broadcast network is treated
as a pseudonode where one of the routers serves as the pseudonode, which is labeled the
designated intermediate system (DIS), with links to each attached router.

For links that are not for broadcast networks but are for point-to-point networks and stub
networks, a nonpseudonode is created. Essentially, a nonpseudonode is similar to a router
LSA in OSPE

SHORTEST PATH CALCULATION

Shortest path calculation is based on Dijkstra’s algorithm. Once a router receives a new LSP, it
waits for 5 sec before running the shortest path calculation. There is a 10 sec hold-down timer
between two consecutive shortest-path calculations within the same area. However, L1/L2
routers that reside in L1 areas must run separate shortest path calculations, one for the L1
area and the other for the L2 area.

Link metric in IS-IS has been originally limited to 6 bits and, thus, the value ranges from
0 to 63 and the total path cost in an IS-IS domain can have a maximum value of 1023. This
6-bit metric is known as a narrow metric. A wide metric extension is now available through
traffic engineering extensions to IS-IS that permits a 24-bit metric, thus allowing a range of 0
to 16,777,215 (=22 — 1).

188 6.5 Integrated IS-IS

CATEGORIZATION OF PACKETS

IS-IS defines four categories of protocol packets, or protocol data units (PDUs): hello packet,
link state PDUs (LSP), complete sequence number PDUs (CSNP), and partial sequence num-
ber PDUs (PSNP).

The purpose of the hello packet is similar to the hello packet for OSPF. IS-IS defines three
types of hello packets; they are for (1) point-to-point interfaces, (2) L1 routers, and (3) L2
routers.

There are two types of LSPs—one for level 1 and the other for level 2. Each LSP contains
three key pieces of information: LSP ID (8 bytes), the sequence number (4 bytes), and the re-
maining lifetime (2 bytes). LSP ID is system ID (6 bytes) followed by pseudonode ID; if the
first byte of the pseudonode ID field is nonzero, then this LSP orginated from a DIS in a broad-
cast network; the last byte is used for identification in case the LSP needs to be fragmented
because it exceeds the maximum transmission unit of an interface. The remaining lifetime
field is the same as the age field in an OSPF LSA; the difference is that the lifetime field value
is set at the maximum age of 1200 sec (20 min) at the beginning and is then decreased unlike
OSPF where it is set to zero at the beginning and is then increased. In addition to this, an LSP
uses a Type-Length-Value (TLV) format to include information such as a list of connected IP
prefixes along with subnet masks. This makes it possible to determine destination networks
to which the domain is connected so that the routing table can properly list such destinations.

CSNPs are like database description packets in OSPF and are used for link state data-
base synchronization. A router creates CSNPs with all LSPs in its local link state database.
A PSNP is created when upon receiving a CSNP from a neighbor, it realizes that some parts
are missing; this means that this router has received certain other LSPs that are in its location
link state database but the neighbor’s CSNP did not include them. Thus, the receiving router
generates a PSNP to request newer copy of the missing LSPs. In essence, PSNPs are similar
to the link state request packet in OSPE.

PACKET FORMAT AND INFORMATION ENCODING THROUGH TLV

The first 8 bytes of IS-IS PDUs form the common header that includes fields such as version
number, header length, and PDU types. After the common header, PDU-specific fields are
included followed by variable-length fields. For example, PDU-specific fields in the hello
packet include fields equivalent to Router Dead Interval in OSPF hello packet. IS-IS Link
state PDUs are similar to OSPF LSAs. A subtle difference is that while OSPF LSAs start with
the age field set to zero and the counter is incremented until MaxAge to indicate the expiry
of time, IS-IS link state PDUs start with a remaining lifetime and the counter is decremented
until zero to indicate that the lifetime has expired. Since there are two types of routers in IS-IS,
L1 and L2, a field is included to indicate the originating router type.

The variable-length field that follows the header is encoded using TLV encoding where
1 byte is assigned for code type (T), 1 byte for length (L), and a variable-length value (V) field
not to exceed 255 bytes since one byte is assigned for the length field. A representative set of
well-known types is listed in Table 6.2; note that many types are as originally described in
ISO 10589 [321] while for IP environments several additional types were added in RFC 1195
[105] and in recent RFCs such as RFC 3784 [649]. An updated list is maintained at [316].

CHAPTER 6 OSPF and Integrated 15-1S 189

TABLE 6.2 TLV codes for Integrated IS-1S protocol.

Type TLV
1 Area Addresses (ISO 10589 [321])
2 IS Neighbors (LSPs) (ISO 10589 [321])
3 ES Neighbors (ISO 10589 [321])
4 Partition Designated level 2 IS (ISO 10589 [321])
5 Prefix Neighbors (ISO 10589 [321])
6 IS Neighbors (Hellos) (ISO 10589 [321])
8 Padding (ISO 10589 [321])
9 LSP Entries (ISO 10589 [321])
10 Authentication Information (ISO 10589 [321])
14 LSP Buffersize (ISO 10589 [321])
22 Extended IS reachability (RFC 3784 [649])
128 IP Internal Reachability Information (RFC 1195 [105])
129 Protocols Supported (RFC 1195 [105])
130 IP External Reachability Information (RFC 1195 [105])
131 Inter-Domain Routing Protocol Information (RFC 1195 [105])
132 IP Interface Address (RFC 1195 [105])
133 Authentication Information (RFC 1195 [105])
134 Traffic Engineering router ID TLV (RFC 3784 [649])
135 Extended IP reachability TLV (RFC 3784 [649])
138 Shared Risk Link Group (RFC 4205 [373])

6.6 Similarities and Differences Between IS-IS and OSPF

It is helpful to consider the similarities and differences between IS-IS and OSPF. First, it
should be noted that fundamentally there is little difference between OSPF and IS-IS. Thus,
the differences center more on how certain things are done, often stylistic differences.

SIMILARITIES

There are several similarities between IS-IS and OSPF:

e Both protocols provide network hierarchy through two-level areas.

e Both protocols use Hello packets to initially form adjacencies and then continue to main-
tain them.

e Both protocols have the ability to do address summarization between areas.

e Both protocols maintain a link state database, and shortest path computation performed
using Dijkstra’s algorithm.

e Both protocols have the provision to elect a designated router for representing a broadcast
network.
DIFFERENCES

While there are similarities as noted above, there are several differences:

190 6.6 Similarities and Differences Between I5-1S and OSPF

TABLE 6.3 IS-IS and OSPF development/deployment timeline (adapted from [354]).
Year Note

1987 IS-IS (CLNP) chosen as the OSI intradomain protocol from DECnet proposal
1988 NSFnet deployed; routing protocol uses an early draft of IS-IS

Work on OSPF started

IP extensions to IS-IS defined
1989 OSPFv1 (RFC 1131) published

Proteon ships OSPF implementation

IS-IS becomes ISO proposed standard

1990 Integrated IS-IS (RFC 1195) published

1991 OSPF v2 (RFC 1247) published

Cisco ships its OSPF implementation

Cisco ships its OSI-only IS-IS implementation

1992 Cisco ships dual-IS-IS implementation
Many deployment of OSPF

1993 Novell publishes NLSP

1994 Cisco ships NLSP, rewriting IS-IS as well

IS-IS is recommended for large ISPs due to recent rewrite and OSPF field ex-
perience, and CLNP mandate by NSF

1995 ISPs begin deployment of IS-IS

1996-1998 IS-IS niche popularity continues to grow (some ISPs switch to it from OSPF)
IS-IS becomes barrier to entry for router vendors targeting large ISPs

Juniper and other vendors ship IS-IS—capable routers

1999-present | Extensions continue for both protocols in parallel (e.g., Traffic Engineering)

e With OSPF, an area border router can sit on the boundary between the backbone area and
a low-level area with some interfaces in the area while other interfaces are in the other
area. In IS-IS, routers are entirely within one or the other area—the area borders are on
links, not on routers.

e While OSPF packets are encapsulated in IP datagrams, IS-IS packets are directly encapsu-
lated in link layer frames.

e The OSPF dimension-less link metric value is in the range 1 to 65,535, while IS-IS allows
the metric value to be in the range 0 to 63 (narrow metric), which has been extended to the
range 0 to 16,777,215 (wide metric).

e IS-IS being run directly over layer 2 is relatively safer than OSPF from spoofs or attacks.

e IS-IS keepalives can be used for MTU detection since they are MTU-sized TLVs that are
explicitly checksummed and need to be verified as such.

o IS-IS allows overload declaration through an overload bit by a router to other routers.
This is used, for example, by other routers to not consider an overloaded router in path
computation.

6.7

CHAPTER 6 OSPF and Integrated 15-1S 191

Along with similarities and differences, it is helpful to also consider a timeline of evolu-
tion of OSPF and IS-IS as outlined in Table 6.3.

Summary

In this chapter, we have presented the OSPF protocol, discussing its main features at length.
We have also described packet formats for certain key packets in OSPF. Furthermore, we
have presented examples of LSAs for OSPF networks. We also presented the integrated IS-IS
protocol through a summary of its key features. It is important to note that OSPF and IS-IS are
stateful protocols. Note that both OSPF and IS-IS allow route redistribution capability (refer
to Section 5.7).

We also provided a brief summary on similarities and differences between the OSPF and
the IS-IS protocol. It may be noted that as of now there are no fundamental differences be-
tween OSPF and IS-IS. In retrospect, it can be said that market competition made both pro-
tocols as robust as possible. Thus, the choice of routing protocol for deployment in an ISP’s
network is based on issues such as configuration management, maintainability of large net-
works, in-house expertise, and so on. Typically, medium- to large-scale ISPs use either OSPF
or IS-IS protocol, while small providers or campus networks use routing protocols such as
EIGRP. Finally, while OSPF defines the concept of areas, many providers deploy their net-
works configured simply with a single area (Area 0); in many instances, a single area is found
to be easy to manage since all routers see the same view, which can be helpful in troubleshoot-
ing any routing problem.

Further Lookup

While the link state routing protocol goes back to ARPANET when the “new” ARPANET
routing was introduced [463], this approach gained significance during the early days of OSI
protocol development. IS-IS was introduced in 1987. Factors including NSFnet deployment
were key drivers in creating the first version of the OSPF protocol [503]. It was also recognized
in the late 1980s that the IS-IS protocol can be tweaked to work in an IP environment [105].

The current OSPF standard, known as version 2, is described in RFC 2328 [505]; also, see
[504] for a detailed discussion of OSPFE. For a comparative discussion on OSPF and IS-IS, see
[354]. For additional discussions on the similarities and differences between OSPF and IS-IS,
see [83], [189], [211], [558]. For details on command line level configuration of OSPF and IS-IS,
there are several books available; for example, see [189] for an excellent coverage.

OSPF has been extended for use with IPv6 addressing; often, this version of OSPF is
referred to as OSPFv3; for details, see REC 2740 [150].

Exercises
6.1. Review questions:
(a) What are the different OSPF packet types?
(b) What is the range of allowable metric values in OSPF and IS-1S?

(c) What is a database description packet?

192

6.2.
6.3.
6.4.

6.5.

6.6.

6.7.
6.8.
6.9.
6.10.
6.11.

6.7 Exercises

(d) Whatis a link state advertisement?

(e) What is a designated router?

(f) What is an network entity title?

Describe an usage of a not-so-stubby area.

Explore route redistribution between OSPF and EIGRP.

Identify the functionality in OSPF that allows a static route to be injected into an OSPF
domain.

Consider a five-router OSPF network. How many entries will be in the routing table at
each router?

Consider a fully-connected N-router OSPF network. Suppose one of the routers goes
down. Estimate how many total link state messages would be generated before the
network converges.

Why are different types of LSAs defined in OSPF?

How is the router ID determined in OSPF? How about IS-1S?

How is an OSPF area different from an IS-IS area?

Can you redistribute route learned from OSPF to IS-IS and vice-versa?

Refer to the discussion about the generic link state routing protocol framework in
Section 3.4. Present a comparative assessment between the basic framework and
OSPE/IS-IS.

This page intentionally left blank

7

IP Traffic
Engineering

As late as 1842 a train was started only when sufficient traffic was waiting
along the road to warrant the use of the engine.

John Moody

Reading Guideline

To get the most out of this chapter, we assume that you are already familiar with
network flow modeling (discussed in Chapter 4); some familiarity with IP routing
protocols such as OSPF and IS-IS (see Chapter 6) is necessary. By reading this chap-
ter, you will know how to determine link weights for IP traffic engineering for an
interior gateway protocol (IGP) such as OSPF or IS-IS.

7.1
7.1.1

7.1.2

CHAPTER 7 IP Traffic Engineering 195

In this chapter, we discuss traffic engineering for IP intradomain networks. The role of traf-
fic engineering is to optimize an operational network so that performance requirements are
met, yet network resources are well utilized. Traffic engineering is an essential component of
IP intradomain operational networks, especially if the network is large. Traffic engineering
addresses medium-term goals of a network and overall behavior of operational networks;
typically, it does not cover adding new capacity, which falls under the network dimensioning
problem. Furthermore, traffic engineering does not address issues such as traffic surge that
last a few seconds to a few minutes, which may result in excessive delay for a very brief
period; this is important to keep in mind in order to understand the context of traffic engi-
neering.

Traffic, Stochasticity, Delay, and Utilization
What Is IP Network Traffic?

We start with a discussion about traffic in IP networks. To describe traffic, we first need to
consider sources that generate IP traffic.

An IP network provides many services such as web and email; there are also interactive
services such as telnet, ssh for terminal services. In current IP networks, the predominant
traffic is due to applications that use TCP for transport layer; it has been reported that on a
backbone link approximately 90% of traffic is TCP based [350]. A message content created
by applications is broken into smaller TCP pieces, called TCP segments, by including TCP
header information, which are then transmitted over the IP network after including IP header
information; the data entity at the IP level is IP datagrams, while packet is also a commonly
used term. Thus, traffic in an IP network is IP datagrams generated by various applications,
without wondering which among the applications it is for.

Thus, when we talk about traffic volume on an IP network link, we are interested in
knowing the number of IP packets flowing on a link in a certain unit of time. Usually, the
time unit is considered in seconds. Thus, traffic volume can be specified in terms of IP pack-
ets offered per second, or packets per sec (pps). On the other hand, there is another measure
of traffic volume that is often used—raw data rate units such as Megabits per sec (Mbps) or
Gigabits per sec (Gbps). Indeed, there is a relation between pps and Mbps (or Gbps). Sup-
pose we consider the average packet size to be K Megabits. Then pps is related to Mbps as
follows:

Traffic data rate (Mbps) = Packets per sec x Average packet size (Megabits). (7.1.1)

It is, however, not required that the average packet size be counted separately to obtain
the data rate. With the sophisticated network monitoring system in current IP networks, the
traffic data rate in Mbps (or Gbps) can be estimated based on measurements through either
an active or passive monitoring system.

Traffic and Performance Measures

In an IP network environment, delay is a critical performance parameter since we are inter-
esting in ensuring that a packet generated from one end reaches the other end as soon as

7.1.3

196 7.1 Traffic, Stochasticity, Delay, and Utilization

possible. Interestingly, there is an analogy between road transportation networks and IP net-
works. In road transportation networks, delay depends on the volume of traffic as well as
the number of street lanes (and speed limit) imposed by the system. Similarly, delay in an IP
network can depend on the amount of traffic as well as the capacity of the system; thus, the
following functional relation can be generally written:

Delay = F(Traffic volume data rate, Capacity). (7.1.2)

To be specific, the above relation is true only in a single-link system. When we consider a
network where routing is also a factor, then a more general functional relation is as follows:

Delay = F (Traffic volume data rate, Capacity, Routing). (7.1.3)

Characterizing Traffic

So far, we have not said much about traffic volume except for Eq. (7.1.1); that is, traffic volume
may be given through a single number, such as packets per second or Megabits per second.
How do we obtain a number like this one?

Consider the arrival of packets to a network link. If we consider just a single request for a
web page that is traversing the link, it may appear that the packets at the IP level are arriving
in a deterministic fashion; the page is generated by the web server, which is broken into TCP
segments that are wrapped with an IP header, and is then transmitted one after another; this
is certainly from the point of view of a single web session. However, in a network link, many
web sessions are active, each one being requested at a random start point by a user; this is
similar for other traffic due to applications such as email, and so on. Thus, from the point of
view of a network link, if we consider only the IP level, the link then sees random arrival of
packets. Thus, a number that may represent pps cannot be a fixed, deterministic number; it is
rather dictated by the randomness of traffic arrival. Thus, at most what we can say is average
pps or average Mbps in regard to random traffic arrival. The primary question is: can we say
anything about the characteristics of the random behavior?

Traditionally, it has been assumed that arrival of packets follows a well-known random
process called the Poisson process, and the average arrival rate is the average rate for this Pois-
son process. However, in the early to mid-1990s, there were a series of studies based on ac-
tual measurements of packet traffic that reported that packet arrival behavior is not Poisson;
rather traffic is self-similar in different time scales following heavy-tailed distributions, ex-
hibiting long-range dependency; for example, see [160], [404], [545], [551], [740], [741]. Not to
clutter the discussion here, definitions for Poisson process, self-similarity, long-range depen-
dency, and heavy-tailed distributions are provided in Appendix B.10 and in Appendix B.11.
The key point to note here is that self-similarity contradicts the Poisson assumption; further-
more, a self-similar process with a heavy-tailed distribution impacts the delay behavior much
worse than for a Poisson process. In a recent illuminating study [350] based on measurements
from a backbone network link at OC-48 speed, it was observed that it is indeed possible that
both Poisson behavior and self-similarity can co-exist; it is a matter of the time frame being
considered. Specifically, they reported that in a subsecond time scale, the behavior is Poisson
while in the scale of seconds long-range dependency is observed. We thus start with the as-
sumption of the Poisson model and discuss how self-similarity can be factored in indirectly
for the purpose of traffic engineering.

7.1.4

CHAPTER 7 IP Traffic Engineering 197

Average Delay in a Single-Link System

First, we assume that packet arrival to a network link follows a Poisson process with the
average arrival rate as A packets per sec. The average service rate of packets by the link
is assumed to be pu packets per sec. We consider here the case in which the average ar-
rival rate is lower than the average service rate, i.e., A < u; otherwise, we would have an
overflow situation. If we assume that the service time is exponentially distributed (see Appen-
dix B.10), in addition to packet arrival being Poissonian, then the average delay, , can be
given by the following formula, which is based on the M/M /1 queueing model (see Appen-
dix B.12.2):

1

Now consider that the average packet size is ¥ Megabits, and that the packet size is
exponentially distributed. Then, there is a simple relation between the link speed ¢ (in
Mbps), the average packet size k, and the packet service rate p, which can be written
as:

C=K. (7.1.5)

This is then essentially the relation discussed earlier in Eq. (7.1.1). Combining « with the
packet arrival rate A, we can consider the arrival rate, /2, in Mbps as follows:

h= k. (7.1.6)

If we multiply the numerator and the denominator by «, we can then transform Eq. (7.1.4) as
follows:

K K
= = . 7.1.7
‘ k(wm—A) c—h ()
This relation can be rewritten as:
T 1
- = . 7.1.8
Kk c¢c—h ()

If we now compare Eq. (7.1.4) and Eq. (7.1.8), we see that the average packet delay can be
derived directly from the link speed and arrival rate given in a measure such as Mbps;
the only difference is the factor «, the average packet size. Second, although it may sound
odd, the quantity, %, can be thought of as the average “bit-level” delay on a network link
where the average traffic arrival rate is assumed to be 7 Mbps. In other words, if we track
the traffic volume in Mbps on a link and know the link data rate, we can get a pretty
good idea about the average delay. There are a couple of advantages to this observation:
first, we can use traffic volume, s, and link speed, c, in other units such as Gbps with-
out changing the basic behavior on delay given by 1/(c — h); second, it is not always nec-
essary to track the average packet size; third, if the delay is to be measured in millisec
instead of sec, then 1/(c — h) must be multiplied by the constant, 1000, without chang-
ing the basic structure of the formula. Finally, whether we consider measures in packets

198 7.1 Traffic, Stochasticity, Delay, and Utilization

per sec or Mbps (or Gbps), the link utilization parameter, p, that captures the ratio of
traffic volume over the link rate, remains the same regardless of the average packet size
since

A A
Kit [
In essence, we can say that under the M/M/1 queueing assumption, the average delay,
t(= t/k), can be given in terms of the link speed c¢ and the traffic rate & where & < ¢
as
1

= 7.1.10
" ()

with utilization given by p = A/c. Incidentally, Eq. (7.1.10) then gives a functional rela-
tion mentioned earlier in Eq. (7.1.2). What happens if we were to consider self-similarity
of traffic? Unfortunately, there is no simple formula like the above when traffic is self-
similar. It has been reported that the delay behavior with heavy-tail traffic is worse than
that of the M/M/1 delay. Thus, we will create a fictitious delay function for self-similar
traffic and plot it along with the M/M/1 delay as shown in Figure 7.1; note that in this
figure the link speed c is kept fixed while the traffic rate / is increased—this is why the
x-axis is marked in terms of link utilization, p, given in percentage as p goes from 0 to
100%.

Figure 7.1 is, in fact, very helpful in letting us see a problem from the perspective of traffic
engineering. For instance, suppose that to provide acceptable perception to users, we want
to maintain the average delay at say 20 millisec. From the graph, we can see that with the
M/M/1 average delay formula, the link can handle an arrival traffic rate up to about 80% of
the link capacity while maintaining the acceptable average delay. However, if the traffic does
not follow the Poisson process, then the delay would be much worse at the same utilization

180

: : - - Fictitious Delay :
160 - : : — M/M/] :

Average Delay (millisec)

0 10 20 30 40 50 60 70 80 %0 100
Link utilization (%)

FIGURE 71 The M/M/1 average delay curve along with a fictitious delay curve.

7.1.5

CHAPTER 7 IP Traffic Engineering 199

value; for instance, in this fictitious graph of delay, we can see that the delay would be about
50 millisec instead. Certainly this is not desirable when the acceptable delay is required to
be below 20 millisec. Thus, instead of taking a vertical view at a certain utilization, we take
the horizontal view at an acceptable average delay. If we do so, we see that to maintain the
average delay at or below 20 millisec, the non-Poisson traffic cannot go beyond 50% link
utilization.

In regard to traffic engineering, there are two important points to note from the above
discussion. First, there is a direct relation between delay and utilization; because of this, re-
quiring a network to maintain a certain delay can be recast as requiring the utilization to be
kept below an appropriate level. Second, since there is no simple formula to consider delay
for self-similar traffic, being conservative on the requirement on utilization can often be suf-
ficient for the purpose of traffic engineering. For example, in the above example, we observe
that keeping utilization at 50% would be more appropriate than letting it grow to 80%. Due
to the relation between traffic volume and capacity through utilization (o = //c), this means
that for a fixed link speed ¢, we need to keep the traffic volume at a lower level than would
otherwise be indicated for Poisson traffic in order to address traffic engineering needs.

Nonstationarity of Traffic

The analysis/discussion above is based on stationary traffic assuming that an average traffic
data rate is given. However, network traffic has been observed to be nonstationary and can be
time dependent. For example, consider a 24-hour network traffic profile on a link as shown
in Figure 7.2. We can see that the data rate is different depending on the time of the day; in
this specific instance, the traffic volume data rate range is from below 8 Mbps to as high as
30 Mbps. If, for the purpose of traffic engineering, we were to use traffic volume to be the
data rate, say at midnight (about 8 Mbps), and determine link capacity needed to be, say
15 Mbps (based on utilization being about 50%), then we will certainly be overlooking many

(15-minute average window)

48
Zy
40
)
£
: I
£
PR &
o
a \A/\\/J\NJ\
8 \M_\/‘/_\\J
0
6 AM 12 Noon 6 PM 12 Midnight
Time

FIGURE 7.2 Traffic data rate over a 24-hour period.

7.2

7.2.1

200 7.2 Applications’ View

time windows when the traffic volume will overflow this capacity. This tells us that it would
make more sense to consider the peak of the traffic data rate (or, say 90% of the peak traffic)
over the 24-hour window as the traffic volume needed for traffic engineering consideration.
In this example, the peak traffic volume rate is about 30 Mbps; thus, for an acceptable delay
or utilization, at least a 45 Mbps link would be desirable.

Remark 7.1. Traffic engineering and network dimensioning.

From the illustration above, it could be argued that a 45-Mbps link is not sufficient
since the utilization at the peak traffic rate would be over 60%. For example, 60 Mbps
would be minimally necessary considering 50% as acceptable utilization. However, the
determination of actual link speed to put in place or lease, especially in a backbone
network, also depends on the actual cost of establishing or leasing the link. The prob-
lem of determining the appropriately sized link, especially taking into consideration net-
work cost minimization, is often considered under network dimensioning rather than un-
der traffic engineering, while the distinction is sometimes blurry if you read the cur-
rent literature. We will assume that the goal of traffic engineering is to see if the net-
work can provide acceptable delay or utilization for offered traffic in a capacitated environ-
ment. ¢

Remark 7.2. Traffic engineering and traffic estimation.

From Figure 7.2, it is clear that the offered traffic should be chosen wisely and may de-
pend on the time of day. In fact, traffic estimation is itself a challenging problem; there has
been much recent work on understanding how to do it and how to do it as accurately as pos-
sible, especially for a large network. We assume that through some process, the offered traffic
is determined for use in traffic engineering. ¢

Applications’ View

In the previous section, we presented traffic as viewed from the network layer. Since appli-
cations are the ones that generate IP traffic, it is helpful to understand the requirements in
regard to applications. Since most commonly used applications such as web, email are TCP-
based, from an application point of view, not only should the delay perception be minimized,
but the throughput of data rate transfer is also an important consideration; this is neces-
sary since TCP uses an adaptive sliding window mechanism to regulate how much data to
be pumped based on perception of congestion (see Section 22.2). Thus, we discuss two im-
portant aspects: TCP throughput and bandwidth-delay product and how they need to be
accounted for in traffic engineering.

TCP Throughput and Possible Bottlenecks

It has been noted that TCP throughput depends primarily on three factors: the maximum
segment size (S), the round-trip time (R77), and the average packet loss probability (g).
A key result [224], [225], [450] on TCP throughput is the following:

1.228

TCP th hput = —————.
CP throughput RIT x Ja

(7.2.1)

7.2.2

CHAPTER 7 IP Traffic Engineering 201

An important question is: from the traffic engineering perspective, where and how does an
IP network fit in the three factors and the relation shown in Eq. (7.2.1)? First, we see that the
segment size should be as large as possible. However, note that the maximum segment size
is not entirely within the control of the network since it is negotiated by the end hosts; at the
same time, this tells us that the network link should be set for the maximum transmission
unit possible so that the network link itself does not become the bottleneck in reducing the
TCP throughput of end applications. Since end hosts are connected to Ethernet (where the
maximum transmission unit that can be handled is 1500 bytes), it is imperative that the core
network links have the ability to handle packets of at least this size to avoid any fragmenta-
tion of packets into multiple smaller packets.

The second factor that affects TCP throughput is the round-trip time. From Eq. (7.2.1),
we see that the round-trip time should be minimized, which means that one-way delay
must be minimized. While many factors, including processing at the end hosts can impact
delay, from the point of view of the network, it is important that the delay on a network
link be minimized. Since numerous TCP sessions traverse through a network for differ-
ent source destinations, delay minimization in an IP network is an important goal. Recall
our discussion earlier about the direct relationship between delay and utilization, which
tells us that utilization should be kept below a desirable value in lieu of considering de-
lay.

The third factor is the average packet loss probability. The average packet loss can de-
pend on many points along a TCP connection; the end hosts may drop a packet, the edge
network may drop a packet, there may be bit error rate, and so on. A core network can min-
imize its contribution to the packet loss probability by ensuring that the bit error is not a
dominant factor, which is a fair assumption in fiber-based transmission networks now com-
monly deployed in core networks. However, there is another factor that can contribute to the
increase in packet loss probability—that is, if the buffer size at a router is not sized prop-
erly. Since packets arrive at random time, it is quite possible that the queue builds up at a
router. If there is not enough buffer space, a router is forced to drop packets. If this hap-
pens, the affected TCP sessions are forced to reduce the data rate since a drop packet is
commonly understood by a TCP session to be an indication of congestion. That is, even
if a network link has enough bandwidth, it is quite possible that if a router buffer is not
sized properly, it may appear as congestion to TCP sessions; in other words, the router buffer
size has the potential to be another bottleneck in reducing TCP throughput. Thus, the router
buffer should be sized properly for the benefit of traffic engineering of a network. How do
we estimate router buffer size? To determine this, it is helpful to consider the bandwidth-delay
product.

Bandwidth-Delay Product

The term bandwidth-delay product means exactly what it says—that is, to take the product
of the bandwidth and the delay. In case of a network link, the bandwidth then refers to the
link speed and the delay refers to what the network would like to account for. For example,
if the link speed is given in Mbps and the round-trip time delay in seconds, then the product
will result in a quantity in Megabits. What does this quantity signify? This is none other than
the amount of data the network link needs to handle in-flights, often referred to as the window

7.2.3

202 7.2 Applications’ View

size. To put it formally, if ¢ is the data rate of a link (“bandwidth”) and R7 7 is the round-trip
time delay, then the bandwidth-delay product defines the window W given by

W=cxRTT. (7.2.2)

Router buffer size has a strong relation to the bandwidth-delay product, which will be ad-
dressed next.

Router Buffer Size

From the network’s point of view, the window determined by the bandwidth-delay product
is an important factor to consider without this becoming a bottleneck for end applications,
especially for synchronized TCP flows. In other words, this window allows the number of
packets that can be generated by end applications that are still outstanding, without being
acknowledged. Since such outstanding packets can arrive at a router in a short span of time
(and for many different TCP sessions), the router buffer needs to be sized to account for the
bandwidth-delay product so that it does not become a bottleneck. This rule of thumb for
sizing the router buffer based on the bandwidth-delay product has been around for some
time [335], [721].

For consideration of buffer size, we need to be careful about how we interpret delay.
The delay here is not the propagation delay of the immediate outgoing link; the delay is
rather an estimate of the round-trip delay for most applications that use this link. A com-
monly used value of round-trip delay for this purpose is 250 millisec. As an illustration,
consider a T3 network link that has a data rate of 45 Mbps; if we assume the delay to be
250 millisec, the window size is 11.25 Megabits, or approximately 1.4 Megabytes. Certainly,
this buffer size is a reasonable number for current hardware technology. Now, consider an
ultra-high-speed link such as OC-768 that has a data rate of 40 Gbps; for 250 millisec esti-
mate on round-trip time, the rule of thumb would result in 1.25 Gigabytes of buffer size—
a number difficult to implement in hardware technology. Thus, a fresh look at buffer sizing is
required.

Note that the rule of thumb is quite valid when bulk TCP microflows are synchronized.
However, due to the random arrival of TCP sessions, such synchronization may be unlikely.
In a series of recent studies, a number of new schemes for core router buffer sizing have
been proposed; for example, one proposal [25] suggests that if there are n simultaneous TCP
microflows, the buffer size can be set to the bandwidth-delay product divided by /n, while
another suggests a different view in that it should be proportional to the number of TCP
connections [177], and while another proposal [259] suggests that the buffer size in terms of
number of IP packets can be set to two times the number of links.

Whether the old rule of thumb is used, or any new rule is used, it is important that router
buffer sizing is done adequately for all types of applications that may traverse a network
link. Note, however, that the router buffer size is set by the router vendor when a router is
shipped. Typically, buffers are carved into different sizes based on the configured maximum
transmission unit of each interface. Thus, a network provider does not have the option to
change it, except to inquire about it.

The important lesson from the perspective of traffic engineering is that if the router buffer
is not sized properly, a network router has the potential to be a bottleneck leading to dropping

7.3

CHAPTER 7 IP Traffic Engineering 203

of packets, thereby reducing TCP throughput between end hosts. Thus, we will assume for
the rest of the chapter that buffer sizing is adequately addressed.

Traffic Engineering: An Architectural Framework

So far our discussion has centered primarily on a single-link system. What are the issues
in a network once we go beyond a single-link system? Since a network consists of a num-
ber of routers, it is important to estimate source-destination traffic volume rather than on a
link basis to obtain a traffic matrix that can be used for traffic engineering. Given the traf-
fic volume between different demand pairs and the capacity of network links, the primary
traffic engineering goal is to optimize a suitable objective function to obtain the optimal link
weight system while recognizing that the network uses shortest path routing for forwarding
traffic.

The above description requires a bit more clarity in light of OSPF and IS-IS protocols,
and where and how traffic engineering fits in. First and foremost, traffic engineering occurs
outside the actual network. This can be illustrated through an architectural framework of the
traffic engineering system as shown in Figure 7.3. From the actual network, traffic measure-
ments are collected to estimate the traffic matrix; furthermore, topology and configuration
are also obtained from the network. Based on topology and configuration, along with the
traffic matrix, a link weight determination process determines link weights keeping in mind
that OSPF/IS-IS uses shortest path routing. The computed link weight for each link is then
injected into the network; that is, each router receives metrics for its outgoing links through
this external process. Once a router receives these link metrics, it then disseminates through
flooding of link-state advertisements (LSAs) to other routers through the normal OSPF/IS-IS
flooding process. This would mean that if no new link weights are obtained from the traffic
engineering system when the age field of an LSA expires, the router will generate a new LSA
by continuing to use the link metric value it received last from the the traffic engineering
system. An obvious question then is: how often does the traffic engineering system update
the link weights? This is certainly up to each network provider. Currently, most network

\/ \m"

Traffic Measurement,
Traffic Matrix Link Weight
Determination Determination)

Topology
Conf:gurat:on

FIGURE 7.3 [P traffic engineering: an architectural framework.

7.4

7.4.1

204 7.4 Traffic Engineering: A Four-Node Illustration

providers use such an approach to update link weights either once a day or once a week,
partly to avoid short-term traffic fluctuations by changing link weights too often, and partly
since accurate traffic matrix determination from the measurements is a fairly complex and
time-consuming process. For additional discussion, see Section 7.8.

Traffic Engineering: A Four-Node Illustration

We will first discuss the traffic engineering problem in a network by considering a four-node
network. Assume that in this four-node network, there is traffic volume for only a single
demand pair; this is then a single-commodity problem. We first briefly revisit the single com-
modity network flow problem described earlier in Chapter 4, assuming that the reader is
already familiar with the material presented in Chapter 4. We will then indicate how this
problem changes when link weights are introduced.

Network Flow Optimization

We will consider traffic volume to exist for the demand pair 1:2; this pair will be identified as
demand identifier 1. We will denote the path from node 1 to 2 via 3 as path number 1, and
the path from 1 to 2 via node 4 as path number 2, and denote the flow variables as x1; and
X12, respectively (see Figure 7.4). Thus, to carry the traffic volume /1 for demand identifier 1,
i.e., from node 1 to node 2, the following must be satisfied:

X11+x12="hy. (7.4.1)
Certainly, we require that flow on each path is non-negative, i.e., x11 > 0, x12 > 0. Let the link
be identified as 1 for 1-3, 2 for 3-2, 3 for 1-4, and 4 for 4-2. Then, we can list the flows to satisfy
the capacity constraints as follows:

X11 =¢1, X11 < €2, X12 <3, X12 < C4. (7.4.2)
Note that we can combine constraints x1; < ¢1, and x1; < c; to a single constraint by consider-

ing whichever capacity is more stringent, i.e., as x1; < min{cy, cp}; this is similar for the other
two constraints. However, we will list them all since this is the general representation, un-

FIGURE 74 A four-node network example.

CHAPTER 7 IP Traffic Engineering 205

less we consider specific values of capacity. Suppose our goal is to minimize maximum link
utilization (see Sections 4.2.3 and 4.3.2). Then, we can write the optimization problem as

inini — XX X2 X1
minimizey) F=max [q e e c4,}

subject to X1 +x12=Mh (7.4.3)
X11 =¢1, X11 = C2, X12 = ¢3, X12 =¢4
x11 =0, x12=0.

As discussed earlier in Section 4.3.2, the above problem can be written as the following
equivalent linear programming (LP) problem:

minimizey y F=r

subject to X1 +x=mn (7.4.4)
X1 =cr, X1 <cr, X120 <c3r, X12 =¢4r o
x11 >0, x12 > 0.

We now consider two specific examples.

Example 7.1 All links of the same capacity (Figure 7.5).
Suppose all links are of same capacity, say 100 Mbps, and we are given that /1; = 60 Mbps.
Then, two constraints can be dropped, and the problem can be compactly formulated as

minimizey y F=r

subject to X11 +x12 =60
x11 <1007 (7.4.5)
x12 <1007
x11,x12 > 0.

Intuitively, it is optimal to split the demand evenly on both paths, i.e., x]; = x}, = 30. In
fact, this is the optimal solution we would get from solving Problem Eq. (7.4.4) if we use an
LP solver. Here, the optimal link utilization is r* = 30/100 = 0.3. A

\}QE‘ 1'00
60 mbps
—_—

e & —

1 / 2
v/ (77 4 0%
2 o
?éf-’s AR

FIGURE 7.5 A four-node network example with the same link capacity.

7.4.2

206 7.4 Traffic Engineering: A Four-Node Illustration

FIGURE 7.6 A four-node network example with different link capacity.

Example 7.2 Links with different capacity (Figure 7.6).

Suppose that the demand volume remains at 41 = 60, but capacities of links on path 1-
3-2 are 10 Mbps each while those of path 1-4-2 are still at 100 Mbps. Then, it makes sense
to send more traffic on path 1-4-2 than on path 1-3-2. How much to send depends on
the optimal balance. This can be obtained by noting that at the optimal solution, we must
have

le 60—xT1
10 100

This implies that path 1-3-2 will be assigned flow xj; = 60/11 and path 1-4-2 will
be assigned flow xj, = 600/11. In this case, r* = 6/11 ~ 0.5454. Again, the same opti-
mal solution can be obtained by using an LP solver. Note that while both paths have
the same utilization, path 1-4-2 is allocated approximately 90% of the traffic volume.

A

(7.4.6)

From the above examples, we can say that network flow optimization of a single-
commodity network flow problem results in proportional flow allocations at optimality. What
if we use shortest path routing? In the next section, we will discuss the connection between
shortest path routing and network flow optimization.

Shortest Path Routing and Network Flow

In an IP network based on the OSPF or IS-IS protocol, the shortest path is computed based
on the link weight (cost or metric) that is exchanged through flooding. It is important to
note that this computation does not consider the traffic volume or capacity of the network.
Thus, the general question is: how is shortest path routing related to network flow modeling?
To understand this problem, we consider the four-node problem again, first starting with
special cases of capacity illustrated above. We will denote the link weights by the notation
w; thus, wi is the link weight for link-id 1 (i.e., link 1-3) , w for link-id 2 (i.e., link 3-2), and
SO on.

Example 7.3 Optimal flow decision with shortest path routing.
Consider again the case in which all links have the same capacity, i.e., 100 Mbps. In this
case, the optimal decision from network flow optimization was to split the traffic volume

CHAPTER 7 IP Traffic Engineering 207

equally among the two paths. Recall that OSPF allows equal-cost multipath (ECMP) (see
Section 6.2.7); thus, if we can pick the link weight in such a way that an equal splitting of
traffic can be achieved, we achieve the same optimal flow as network flow optimization. This
can be realized if we pick the link weight to be 1 on each link (i.e., wi =wy = w3z =ws =1);
we then achieve this splitting since each path cost is 2 and with ECMP, the traffic volume will
be equally split. In other words, a hop-based metric will work in this case.

What if the links are of different size, i.e., 10 Mbps for links 1-3 and 3-2 and 100 Mbps for
links 1-4 and 4-2? If we still keep the link weight at 1 each, then of the total traffic volume
of 60 Mbps, half will try to use path 1-3-2 due to ECMP. However, the capacity limit on this
path is 10 Mbps; that is, a 30 Mbps data traffic on this path will cause massive overflow! This
means that we need to use some other link weights so that this does not happen. Essentially,
we want traffic flow to veer away from path 1-3-2 since the capacity of this path is much
smaller than the other path. A way to accomplish this would be to set the link weight as the
inverse of the link capacity, i.e.,

wi =wp =1/10,
W3 =Wy = 1/100.

This would imply that the path cost for path 1-3-2 is 2/10 while the path cost for path
1-4-2 is 2/100; thus, all of traffic volume, 60 Mbps, will be allocated to path 1-4-2 since 1-4-2
is the shortest path with this set of link weights. In fact, under shortest path routing this is
the best we can do, and the maximum link utilization is 60/100 = 0.6. In other words, it is not
possible to achieve the optimality that was achieved with pure network flow optimization
where the optimal flows were proportional flows. A

From the above illustration, we can see that link weights is really driving the flow. While
it seems that x1; is dependent only on link weights w1 and w;, the actual values of the other
link weights w3, ws do also matter in the allocation of flow to x1; this is similar for xi,.
That is, flows x11 and x1; are really dependent on all link weights w1, wo, w3, ws. If we use
w = (w1, w2, w3, ws) to denote the array of link weights for all links, then we can write the
dependency as x11 (w) and x12(w). Since the total flow needs to be equal to the traffic demand
volume, we can write

X11(W) + x12(W) = hy. (7.4.7)

Now compare Eq. (7.4.7) to Eq. (7.4.1); they are almost the same except for the dependency
on w. Similarly, the link-flow requirements can be written for dependent flow variables as

x11(w) <cy, x11(w) <2, x12(w) < c¢3, x12(w) < cy. (7.4.8)

Again compare Eq. (7.4.8) to Eq. (7.4.2), and note the difference due to dependency on w. In
regard to the link weight system w, there are some restrictions on what values a link metric
can take; for example, in OSPF, the range is from 1 to 216 _ 1 while in IS-IS the range is from 0
to 63. While in the above illustration we chose link metric also as the inverse of link speed, we
can use a normalization factor to change the link metrics to an acceptable range; for example,
if we multiply by 100, then the metric for a link with speed 10 Mbps would be 10 (=100/10)
while the metric for a link with speed 100 Mbps would be 1 (=100/100). For simplicity, we

208 7.4 Traffic Engineering: A Four-Node Illustration

denote the set of allowable values for link metrics as V. Thus, similar to Eq. (7.4.4), we can
write the following optimization problem:

minimizey, , F=r

subject to x11(w) +x12(W) =y
xyuw)<cr, xuw)<cr,
xpp(w) <czr, xpp(w) <cqr
x11(w) =0, x12(w) >0
Wi, W, W3, Wy € W.

(7.4.9)

We will refer to the above formulation as the single-commodity shortest path routing-based flow
(SCSPRF) problem, to distinguish it from the single-commodity network flow problem presented
in Eq. (7.4.4). As noted earlier for Eq. (7.4.4), capacity constraints x11(w) < cqr and x11(w) <
¢ r can be combined into a single constraint by considering the smaller of the link capacities
c1 and ¢ indicating the tighter constraint; this is similar for the other two capacity constraints.
It is important to note the following observations in regard to Eq. (7.4.4) and Eq. (7.4.9):

e InEq. (7.4.9), the main variables are link weights w and maximum link utilization, r; flow
variables x(w) are dependent variables while in Eq. (7.4.4), the main variables are x and r.

o If we denote the optimal objective cost for the network flow problem Eq. (7.4.4) by F}'_ 4.
and the optimal objective cost due to shortest path-based flow problem Eq. (7.4.9) by Fgpp,
then we can write

F iow < Fipr- (7.4.10)

n

Intuitively, we can see this relation since the restriction on flow variables due to the link
weight can be thought of as additional restrictions/constraints on the original network
flow problem; thus, any additional restrictions can/may increase the optimal cost of the
original network flow problem.

In addition, there is an important difference to note. While Eq. (7.4.4) is a linear program-
ming problem, Eq. (7.4.9) is not. In addition, Eq. (7.4.9) is not a standard nonlinear program-
ming problem due to implicit functional dependency of flows, x, on the link weight system w.
More importantly, Eq. (7.4.9) cannot be directly solved as we have already noticed. Note that
so far, we have used two simple rules for choosing link weights in illustrating Example 7.3.
We start by summarizing these two rules:

Rule-1: Choose the link weights to be based on hop count, to be referred to as a hop-based
metric
Rule-2: Choose the link weights to be based on the inverse of the link speed, to be referred

to as an inverse-of-the-link speed metric.

We digress a bit further with these two rules in relation to earlier examples by considering
certain variations.

CHAPTER 7 IP Traffic Engineering 209

Example 7.4 Changing the traffic volume in Example 7.3.

Consider reducing the traffic volume for pair 1:2 from 60 Mbps to 5 Mbps. In this case,
we note that even if we use Rule 1 on the link capacity as given in Figure 7.6, we do not face
the overflow problem discussed earlier in Example 7.3. This would cause the maximum link
utilization to be 0.25 since 2.5 Mbps of traffic volume would be allocated to path 1-3-2 with
the remaining 2.5 Mbps allocated to path 1-4-2 due to ECMP. If Rule 2 is used, then all traffic
would be allocated to path 1-4-2, and thus, the maximum link utilization in this case is 0.05.
With either rule, we can see that when traffic volume is low compared to network capacity,
the utilization remains low.

Now consider the topology with all links being 100 Mbps (Figure 7.5). In this case with
5 Mbps of network traffic, we will arrive at the same maximum link utilization (= 0.025) with
either rule for link weight. A

From the above illustration, it is easy to see that if all links in a network are of the same
speed, then the link weight based on the inverse-of-the-link speed is the same as the hop-
based metric. Thus, Rule 1 can be thought of as a special case of Rule 2. We next consider
an example where due to an anticipated increase in network traffic, a new link is added;
this actually falls under the network dimensioning problem. It should be noted that there
are systematic ways to address the network dimensioning problem in terms of where to add
capacity and if new links should be added; for a detailed discussion, see [564]. Here, we
present a simple illustration to address the impact on the link weight selection rules.

Example 7.5 Topology change in anticipation of increase in traffic volume.

Consider the network shown in Figure 7.7. Note that there is one key change from the
topology shown in Figure 7.5: a new direct link between node 1 and node 2 is added; we
will identify this link as link number 5, and the link weight as ws, while keeping the link
numbering for other links as before. Suppose that this link was added in anticipation of an
increase in traffic volume. Now we have one more path possible from node 1 to node 2; we
label this path as path number 3 with the flow variable labeled as x13. Formulation (7.4.9) will
now change to the following:

- 4,
0o o
\0.“ 2 U?bﬂv

FIGURE 7.7 A four-node network example with five links.

210 7.4 Traffic Engineering: A Four-Node Illustration

minimizepy , F=r
subject to x11(w) +x12(w) + x13(w) =60
x11(w) <1007
x12(w) <1007 (7.4.11)
x13(w) <1007
x11(w), x12(w), x13(w) > 0
W1, Wo, W3, Wy, W5 € W.

Note the difference between Eq. (7.4.9) and Eq. (7.4.11). In the latter, specific values of ca-
pacity and traffic volumes are shown along with the new path; furthermore, since the link
capacities are the same, only a single-capacity constraint is shown for path number 1 and
path number 2.

We can easily see that regardless of whether we use Rule 1 or Rule 2, all traffic will be
allocated to the direct link path on link number 5 with shortest path routing since the direct
link is the shortest path under either rule for the link weight. In this case, the maximum link
utilization is r = 60/100 = 0.6. A

From the above illustration, we note that Rule 2 does not always work well since in this
instance, by adding a new link, we have syphoned all traffic to take the new link, instead of
equally splitting flow allocation among the three paths. This means that we have increased
maximum link utilization, thereby increasing average network delay for a traffic volume of
60 Mbps by adding new link/capacity compared to when the direct link did not exist. This is
certainly counterintuitive. In road transportation networks, an analogous situation has long
been known; it states that under certain load conditions the travel cost can increase with the
addition of a new link (road), which is known as Braess” Paradox ([91], [280], [447]). A phenom-
enon similar to Braess” paradox can be induced in IP networks if link weights are not chosen
properly.

Going back to the network shown in Figure 7.7, an important question is: can we choose a
better set of link weights that will reduce maximum link utilization compared to when Rule 2
is used, i.e., a better solution to Eq. (7.4.11)? This is possible if we choose the link weights as
follows (see Figure 7.8):

wi=wy=w3=wg=1, ws=2.

This way, the path cost for all paths are 2; thus, due to ECMP, traffic volume will be
equally split among the three paths, thereby reducing maximum link utilization, r, to 0.2

%/3

FIGURE 7.8 A four-node network example with link weights.

\(f/

7.5

CHAPTER 7 IP Traffic Engineering 211

from 0.6. In fact, this set of link weights is optimal for the SCSPRF problem, Eq. (7.4.11).
It should be noted that the optimal link weights are not unique; for example, if we
choose
Wi=wr=w3=wg=2, ws=4,

it will result in the same optimal maximum link utilization value, r* =0.2.

While for Eq. (7.4.11), we have found an optimal set of link weights by inspecting the
data for the problem, this is not always easy, especially for a large network problem. In the
next sections, we discuss the general problem and possible solutions.

Link Weight Determination Problem: Preliminary Discussion

In the previous section, we emphasized the need to determine a good set of link weights by
considering a single-commodity problem. In an IP network, there can be traffic volume be-
tween any pair of routers that serves IP subnets; thus, the general problem is multicommodity
in nature. Our goal here is to determine link weights for given traffic volume demand and ca-
pacity limits where a certain objective is optimized. A good candidate for this objective/goal
is to minimize the maximum link utilization in the network; thus, we will start with this
objective; later, we will consider other objectives as well.

From the discussion in the previous section for the single-commodity example, you can
see the similarity between the multicommodity network flow (MCNF) problem discussed earlier
in Section 4.4 and the multicommodity shortest path-based routing flow (MCSPRF) problem we
face for IP network traffic engineering; the key difference is that the MCSPRF problem is re-
quired to have the link weight as the main variables. Thus, analogous to Formulation (4.4.10)
for the MCNF problem with minimizing maximum link utilization, we can state the MCSPRF
formulation with the same objective as follows:

minimizeg, n F=r
{w,r}

P
subjectto 3" xip(w) = . k=12...K
pK1 Py
>3 Spexipw) =yp, €=1,2,.., L
k=lp=1 (7.5.1)
ye<cer, ¢=1,2,....L
Wi, Wa,....wr, €W
Xigp(w) >0, p=12,...P,, k=1,2,..,K
ye >0, ¢=1,2,....L
r>0.

Notations for this problem and other related problems are summarized in Table 7.1. If
we relax the requirement on path flow being subject to link weights, then the corresponding
MCNEF problem can be written as

212 7.5 Link Weight Determination Problem: Preliminary Discussion

TABLE 7.1 Summary of notation used in MCNF and MCSPRF formulations.

Notation Explanation

K Number of demand pairs with positive demand volume

L Number of links

hy Demand volume of demand index k=1,2, ..., K

Ce Capacity of link ¢ =1,2, ..., L

Py Number of candidate paths for demand k, k=1,2, ..., K

Skpe Link-path indicator, set to 1 if path p for demand pair k uses the link ¢; 0,
otherwise

Exp Unit cost of flow on path p for demand &

& Unit cost of flow on link ¢

wy Link weight for link £ =1,2, ..., L

Xip(W) Flow amount on path p for demand k for given link weight system w

Xiep Flow amount on path p for demand k

Ve Link flow variable for link ¢
maximum link utilization variable

* Use as a superscript with a variable to indicate optimal solution, e.g., x} ,

minimizeyy) F=r
Py

subject to Xip = hy, k=1,2,...K
p=1
K Py
Skpe Xip =ye, £=1,2,...,L
g1p§1 kpt Tkp = Yt (7.5.2)
Ye=<cer, £=1,2,...,L
Xip >0, p=1,2,....P,, k=12,..,K
ye =0, ¢=1,2,....L
r>0.

If we denote the optimal objective cost for MCNF Formulation (7.5.2) by Fy;-\p, and the
optimal objective cost for MCSPRF Formulation (7.4.9) by Fyjcgprp, We can write

Fyenr < Fycserr- (7.5.3)

That is, this relation holds much like the single-commodity illustration given earlier.

Why is it important to consider the relaxed problem shown by Eq. (7.5.2)? It so happens
that the relaxed problem, which is an LP problem, has an equivalent LP problem called the
dual that allows us to obtain a set of link weights; not only that, commercial LP solvers can
be used on the network flow problem, without needing to develop a specialized algorithm,
to obtain link weights; at least, this is doable for networks of reasonable size. In other words,
we cannot completely rule out development of specialized algorithms for determining link
weights. In any case, link weights so obtained may not be from the allowable range; thus,
some transformation/scaling might be necessary. Once we have made this adjustment on
link weights, we can determine flows and compute the objective cost of Eq. (7.5.1) to see
how far this is from Eq. (7.5.2). It may be noted that flows so obtained based on dual-based

7.6

7.6.1

CHAPTER 7 IP Traffic Engineering 213

link weights may not necessarily match the flow directly obtained from solving the original
MCNEF problem since the optimal solution to the original problem Eq. (7.5.2) can result in pro-
portional flows. Furthermore, flow allocation based on a dual-based weight can be different
depending on whether the network has the ECMP feature activated. Finally, the dual-based
approach holds for any MCNF problem; that is, this result is not dependent on the specific
objective function discussed above as long as the objective function is linear. This will be clear
from the discussion in the next section.

Duality of the MCNF Problem

We will now consider the MCNF problem with different objective functions and the corre-
sponding dual problems for different objectives. We first start with minimum cost routing for
a three-node network to illustrate how dual problems are formulated.

While the minimum cost routing objective is not an appropriate objective for the IP traffic
engineering problem, it is a good one to help understand the dual problem; later, we will
consider objective functions that are appropriate for IP traffic engineering, discuss how the
dual changes, and the related impact on link weights.

Illustration of Duality Through a Three-Node Network

Consider minimum cost routing for the three-node MCNF problem discussed earlier in Sec-
tion 4.3.1 in its index-based formulation presented in Section 4.4. We reproduce Problem
(4.4.3) below:

minimizey) F=E&11x11 + &12x12 + &21x21 + &20x00 + E31X31 + E32X32

subject to
X1 +x2 = M
X1 +xp =
x31 +xn = h3 (7.6.1)
X11 + x22 +x32 =
X2 +x21 +x3 =
X12 + X2 +Xx31 < c3

X11, X12, X21, X22, X31, X332 > 0.

We assume that a unit cost of a path is the sum of the unit cost of the links of which this path
is made (.., &1 =&, En=6&+&, &1 =5, bn=§ + &, &1 =&, £ =4 +&). We can then
rewrite Problem (7.6.1) by first changing less-than-equal-to constraints to greater-than-equal-
to constraints, and associating a dual variable with each constraint (indicated on the right
side in parentheses), as

214 7.6 Duality of the MCNF Problem

minimizeyy F=E&x1 + (& +&)xin +Exor + €1 +E)xo + E3xzr + 61+ E)xn

subject to
(dual variables)
X1 +x2 = = (v1)
X1 +xp = (v2) (7.6.2)
X311 +xn = h3 (v3)
—X1 — X2 —Xx3 = - (1)
—X12 —X21 —X3 = - (r2)
—X12 —Xp —X31 > -3 (7r3)

X11, X12, X21, X22, X31, X32 > 0.

We now assign a dual variable with each constraint—an unrestricted variable if it is an equal-
ity constraint and a non-negative variable if it is a greater-than-or-equal-to constraint. Then,
the dual LP problem is:

maximizey) Fp =hivi +havy + h3vs — c1my — comy — €313

subject to)
V] —m = &
vy —m w3 < H+8
2 e = B (7.6.3)
%) —m -1 = & +8&
v3 -1 = &
V3 —m — < +&

V1, v, v3 unrestricted
my, mp, 73 > 0.

While it may not be obvious, there is a pattern to writing the dual. First, the cost coefficients
from the original problem go on the right-hand side of the constraints; thus, coefficients &
from Eq. (7.6.2) are on the right-hand side of constraints in Eq. (7.6.3). The right-hand side
constraints of the original problem, Eq. (7.6.2), become coefficients in the objective for the
dual, Eq. (7.6.3); that is, & and ¢ from Eq. (7.6.2) are coefficients in the objective in Eq. (7.6.3).
Finally, coefficients 1, 0, or —1, associated with rows on the left-hand side of a constraint for
Eq. (7.6.2), show up in columns on the left-hand side of constraints for the dual given by
Eq. (7.6.3); that is, this is a transposed view. Rewriting, we have

maximizeyy) Fp =hivi +havy + h3vs — c1my — comy — €313
subject to

v <& +m

v < (& +m) + (€3 +7m3)

V) = é‘z + m

v < (€1 +m1) + (€3 + 7m3)

%§%+m

v3 < G +m) + E+m)

V1, vy, v3 unrestricted

T, T, T3 = 0.

(7.6.4)

7.6.2

CHAPTER 7 IP Traffic Engineering 215

General Case: Minimum Cost Routing

Recall that minimum cost routing for the MCNF problem was discussed earlier in Sec-
tion 4.3.1 in its index-based formulation presented in Section 4.4. Notations for this and other
related problems are summarized in Table 7.1. Thus, we start with the general formulation
corresponding to Eq. (7.6.1):

K P
minimizeyyy, F=) Y EpXip
k=1p=1

Py
subject to Xip = hy, k=1,2,...K
J ,El P (7.6.5)
K Py
Z Z 8kpgxkp <cp, £=1,2,...,L
k=1p=1
Xip >0, p=12,...P,, k=1,2,...,K.

The above LP problem is then the network flow relaxation of the following MCSPRF problem:

K Py
minimizepyy F=) ExpXicp (W)
k=1p=1
P
subject to Y Xip(w) = hy, k=1,2,...K
p=1
X P (7.6.6)
DD SkpeXxip(W) <ce, £=1,2,.. L
k=1p=1
wi, wo, ..., wr €W
Xip(w) =0, p=12,..,P, k=1,2,...,K.

We consider the unit path flow cost &, to be the summation of the unit flow cost on links that
make up the path. Suppose we denote the unit link-flow cost to be & on link £(¢ =1,2, ..., L).
Then, &, for path p for demand k can be given by

L
Ep = Supeée. (7.6.7)

=1

To apply LP duality, we associate dual variables vy with demand k (k=1,2, ..., K), and dual
variables my with each link €. First, we rearrange the capacity constraints as greater-than-or-
equal-to constraints; due to LP duality theory, this then makes the associated dual variables
¢ non-negative. In a similar manner for equality constraints, LP duality theory says that dual
variables become unrestricted. Also note that all terms associated with a variable are written
on the left-hand side of the constraint while constants are written on the right-hand side of

216 7.6 Duality of the MCNF Problem

the constraints; this helps in properly identifying and writing the dual. Thus, we rewrite
Eq. (7.6.5) as

3 . . K Pk L P
minimizeyy, F= Y > (Y Sipee) Xip
k=1p=1 ¢=1

P
subject to Xk: Xip = hi, k=1,2,...K (Vi)

=1

P X P, (7.6.8)

=2 D SkpeXip = —cy, £=1,2,....L (e)

k=1p=1
Xip >0, p=12 .., P,
k=1,2,...K

You may compare this problem with the counterpart for the three-node network given in
Eq. (7.6.2). The original problem when discussed with its dual problem is referred to as the
primal problem; thus, we will refer to Eq. (7.6.8) as the primal problem. Then the dual LP
problem of primal problem Eq. (7.6.8) can be written as the following maximization prob-
lem:

K L
maximizery, ny Fp= Y hpvi— Y comy
k=1 =1

L L

subject to Ve— 2 Skpemte < Y Skpeke, p=1,2,.. Pk, k=1,2,...K (7.6.9)
(=1 (=1
Vi unrestricted, k=1,2,...K
70 >0, ¢=1,2,..., L.

This general formulation then corresponds to the dual formulation for the three-node net-
work example given in Eq. (7.6.3). Note that with duality, coefficients & from the original
problem show up on the right-hand side of the constraint in the dual problem and vice versa.
The information about coefficient in the constraints appears in transposed form in the dual.
By rearranging, we can write the dual as

K L
maximizery, xy Fp=) hipvik—) comy
k=1 =1
L R
subject to Vi < D Sipe(Ee + 7o), p=1,2,...P., k=12,...K (7.6.10)
(=1
v unrestricted, k=1,2,...K
e >0, £=1,2,..., L.

Note that this formulation is corresponding the model shown for the three-node network
example in Eq. (7.6.4).

CHAPTER 7 IP Traffic Engineering 217

There is an important relation between the objective function value of the primal and the
dual. Note that

K Py
F=3% > Z Skpﬁsf)xkp

k=1p=1 (=1
K Py

> Z > (g — Z SkpeTre)Xip

k=1p= 1 (=1

K (7.6.11)
Z Z Xkp — Z (Z Z SkpeXkp)Tre
k=1 =1 k=1p=1
K

> Y hpvg — Z CoTly
k=1 =1

=Fp.

That is, the primal objective is greater than or equal to the dual objective; in fact, this property
holds for any LP problem and is known as the weak duality theorem. In light of the MCSPRF
problem and its LP relaxation MCNF problem, and now to the above duality result, and by
denoting the objective function values as Fymcsprr, FMcoNF, and Fpual-of-MCNE, respectively,
we can write FpyaAL-oi-MCNF < FMcNF < Fmcsprr. Furthermore, at optimality, assuming that
the primal problem is feasible, the following holds:

FHuaL-ot-McNF = Fmenr = Fucspre- (7.6.12)

Since the dual is a maximization problem, this means that for any dual variable values that
satisfy the constraints in the dual problem, we can compute the objective function, which can
serve as a lower bound to the MCSPRF problem, and we can determine the gap by determin-
ing the difference.

We now go back to the general formulations: Eq. (7.6.8) and its dual Eq. (7.6.10). Why is
the dual important to consider? The optimality conditions for LP problems state that if x* is op-
timal for primal problem Eq. (7.6.8), and v* and n* are optimal for dual problem Eq. (7.6.10),
then the following must be satisfied:

1. Primal solutions x* must satisfy constraints in Eq. (7.6.8).
2. Dual solutions v*, t* must satisfy constraints in Eq. (7.6.10).

3. The following complementary slackness condition must be satisfied:

L ~
Xkp (Uk — Z 3]{1,[(& + 7'[@)) =0, p=1,2,..,.Pr, k=1,2,...,K. (7.6.13a)
(=1

(Z Z Skpe xkp> 0, ¢=1,2,...,L. (7.6.13b)

k=1p=1

218 7.6 Duality of the MCNF Problem

That is, the product of a primal (dual) constraint and its associated dual (primal) vari-
able is zero. Here, the first one is shown for primal variable x;, and its associated dual
constraint and the second one for dual variable 7y and its associated primal constraint.
Note that there is none listed for dual variables v since its associated primal constraints
are equality constraints (Zﬁi 1 Xkp = hy); thus, the product is zero and does not need to be
listed.

First note that due to the second condition, that is, satisfying dual constraints in
Eq. (7.6.10), we can say that the modified path cost, Zszl 5kp@(§(+ /), for each path for
demand k must be at least as large as the commodity cost reflected by dual variable v, for de-
mand k. Furthermore, condition (7.6.13a) indicates that if xj , for any path p for demand k is

positive, i.e., if a path for a demand has a positive flow, then the path cost, Zle Skpe (é/z +m)),
for this path must be equal to the commodity cost v;;. Note that &, defines which links are
using this optimal path; thus, ég + 714 is the modified link cost for link €. This modified link cost
then takes us back to the link weight, wy, for the original shortest path routing problem. To
summarize, we have the following important result [6]:

Result 7.1. For the MCNF problem given by Eq. (7.6.8) and its corresponding dual, Eq. (7.6.10), the
commodity cost, v}, is the shortest distance for demand k with respect to the link weight w, = Eo+),
and at optimality, every path for demand k that carries a positive flow must be a shortest path with
respect to the link cost system given by

we =& +7} (7.6.14)
fore=1,2,.., L.
Based on the above result, we make the following important remark:

Remark 7.3. Implications of Result 7.1.
We have the following observations:

1. If we can find the dual optimal solution 7, we then have a link weight system available,
given by wy = éz +n}, for€£=1,2,.., L for the MCSPRF problem.

2. Inmost LP solvers, it is in fact not necessary to transform Problem (7.6.8) to its dual. Prob-
lem Eq. (7.6.8) can be directly solved and the dual solution, 7, is readily available, which
can be used in turn to obtain wj.

3. If two paths for the same demand identifier k have positive flows, it does not mean that
they will be equal in the primal MCNF problem where optimal flows can be propor-
tional. On the other hand, if flow is allocated based on the solution of the dual problem,
this flow allocation will follow the MCSPRF problem, with ECMP being an added fea-
ture.

4. Multiple flows being positive for a demand k does not mean that the flows would be equal
since optimal MCNF can result in proportional flows; this is an important difference com-

7.6.3

CHAPTER 7 IP Traffic Engineering 219

pared to the MCSPRF problem since wy; would tell the MCSPRF problem to allocate flow
based on shortest path routing (along with ECMP). ¢

Minimization of Maximum Link Utilization

We next consider the objective to be minimization of maximum link utilization. How does the
link weight selection change for a different objective function? The MCNF problem presented
earlier Eq. (7.5.2) can be written in the following format where the dual variables are also
identified:

minimizey ,, F=r

Py
subject to Xip = hi, k=1,2,...K (v)
p=1
K Py
— 3 Y Skpexip+cer=0, €=1,2,..,L (7 (7.6.15)
k=1p=1
xkaO, p=172’-"7pk7
k=1,2,...,K.
r>0.

Note that in this case there are no coefficients associated with flow variables x in the objective,
which means that they are zero; thus, this will show up as zeros on the right-hand side in the
dual. There is, however, a coefficient with r in the objective, which is 1; this must be accounted
for in the dual. Note that the right-hand side with capacity constraints is zero; thus, this part
would not contribute to the objective function in the dual. Thus, the dual can be written as

K
maximizer, ny F =) hpvg

k=1
L
subject to Vk— D Skpeme <0, p=1,2,.., P, k=1,2,...K

=t (7.6.16)
Z cme <1
=1
Vi unrestricted, k=1,2,...K
e >0, £=1,2,...,L

If we move the term associated with 7, in the first set of constraints to the right-hand
side, we can re-write the dual as

K
maximizer, ny F=) hpvg

k=1
L
subject to Ve < D Skpemme, p=1,2,.., P, k=1,2,....K

L t=1 (7.6.17)
Z come <1
=1
v unrestricted, k=1,2,...,.K
e >0, £=1,2,....L

220 7.6 Duality of the MCNF Problem

If v* and n* are the optimal solutions to this problem, then by comparing this to our dis-
cussion about minimum cost routing, we can see that in this case the link weights would be
we=m;, £=1,2,.., L with the requirement that each 7, satisfies ZeLzl cemp < 1. In fact, at
optimality Zle cem) =1, i.e., this constraint is said to be a binding constraint at optimality.
This is easy to see from the complementary slackness condition at optimality. For Eq. (7.6.15),
the condition related to this constraint would take the following form:

L
r (Z com) — 1) =0. (7.6.18)
(=1

If Zle cemr;) < 1 at optimality, then this would mean that r* = 0 at optimality; this is not
possible since this would mean that the maximum link utilization is zero (rather, this is
theoretically possible only if traffic flow for every demand pair is on an infinite capacity
link).

Thus, if the objective is to minimize the maximum link utilization, we can summarize the
following result:

Result 7.2. For MCNF Formulation (7.6.15) and its corresponding dual given by Eq. (7.6.17), the
commodity cost, vy, is the shortest distance for demand k with respect to link weight we = mf, and at
optimality, every path for demand k that carries a positive flow must be a shortest path with respect to
the link cost system given by

we=m} (7.6.19)

L
for£=1,2,..., L where Zlcmg‘ =1
(=

Based on the above result, we make the following remark:

Remark 7.4. Comparison of dual-based link weights based on Eq. (7.6.8) and Eq. (7.6.15).
Comparing Result 7.2 to Result 7.1 from the previous section, we can see how the link
weight selection can change depending on the objective function used and the form of the
constraints. In either case, it is important to note that dual solution 7} takes non-negative
values. However, routing protocols such as OSPF and IS-IS allow non-negative integer val-
ues. Thus, some adjustments from the solution from the dual are required to obtain integer
weights. Furthermore, OSPF does not allow any link metric to be zero since its range starts
from 1, unlike IS-IS, which starts from 0. Yet zero is a possible link weight for a link if the
objective chosen is the minimization of maximum link utilization; thus, for this objective, an
additional adjustment would be needed to avoid a link being assigned metric zero by the
link weight determination procedure if the weight so determined were to be used in an OSPF
environment. ¢

Finally, in Problem (7.6.15), scaling can be directly addressed by changing the objective
function from just r to g r where g is a large positive number. This then changes the constraint

CHAPTER 7 IP Traffic Engineering

221

Zle cem) =1to ZeLﬂ cem) = p for the dual problem; thus, 7s need not be restricted to less

than 1 if scaling is addressed.

7.6.4 A Composite Objective Function

A composite objective function that combines minimum cost routing with minimization of
maximum link utilization can also be considered by allocating positive weights « and g,
respectively; such a composite objective is referred to as a utility function. The MCNF problem

with this composite objective can be written as

. . . K Pk L P
minimizey, F=a) > (D &bipe) Xip + Br

k=1p=1 (=1
Py
subject to > Xip = hy, k=1,2,..
p=1
K Py
- ZSkpgxkp+Cgr20, £=1,2,..
k=1p=1
xkpzoa p:1,2,...
r>0.

Then, the dual problem becomes

K
maximizep, ny F= Y hpvg

k=1
L L R
subject to Ve — D Skpemte <@ Y Skpebe, p=1,2, ...
(=1 (=1
L
Dcme <P
=1
Vi unrestricted, k=1,2,..
e >0, £=1,2, ...

On simplification, we can rewrite as

K
maximizepy, xy F=) hivg

k=1
L A
subject to Ve < Y Sipe(@ge + 1), p=1,2,..., Py,
(=1
L
Yocme < p
(=1
Vi unrestricted, k=1,2,..,K
e >0, ¢=1,2,...,L.

K ()

L (7¢)

JPr, k=1,2,...
K

, L.
k=1,2,...K

JPr, k=12, K.

(7.6.20)

(7.6.22)

This time, by inspecting and comparing previous results, we can easily see that the link
weight would be wy = a&y 4+ n/,£ =1,2..., L. Thus, we can summarize the following re-

sult:

7.6.5

222 7.6 Duality of the MCNF Problem

Result 7.3. For MCNF Formulation (7.6.20) and its corresponding dual, Eq. (7.6.22), the commodity
cost, vf, is the shortest distance for demand k with respect to link weight w, = Otéz +m), and at

optimality, every path for demand k that carries a positive flow must be a shortest path with respect to
the link cost system given by

we =k +) (7.6.23)

L
fore=1,2,.., L where) cym; = p.
=1

Minimization of Average Delay

The average delay in a network is another commonly considered objective for IP traffic en-
gineering. In Section 4.3.3, we presented the minimization of the average delay problem
through a three-node example; refer to Eq. (4.3.14). On generalizing, we can write the av-
erage delay minimization problem as

minimizey y, F= Z C@ ye

subject to Zxkpzhk, k=1,2,...K
p=1
K Py (7.6.24)
>3 Sipexip=ye, €=1,2,..,L
k=1p=1
Ye = cCy, ¢=1,2,...,.L
Xip >0, p=1,2,.. P, k=12 ..K

A known difficulty with this formulation, as discussed earlier in Section 4.3.3, is that the
objective function is nonlinear and is discontinuous at y, = c¢;. However, using a piecewise
linear approximation of the objective function, such a problem can be transformed to an LP
problem; see Section 4.3.3. We again take the same approach. Here, we will illustrate using a
piecewise linear convex function due to Fortz and Thorup [233], useful in the IGP link weight
determination problem. For a link load y and capacity c, the Fortz-Thorup (FT) function is
given by

y for05%<%
3y—%c for%§%<%
10y — ¢ forf<? <3
B30 = 1 70, _ 135, for 9 <2 <1 (7.6.25)

500y — 148 for1 <t <l

5000y — 16318 for U < ? < o0.

CHAPTER 7

IP Traffic Engineering 223

70 T

OF - -

W 'y o1}
< = =
T T T

Y1) and ly,1)

n
<
T

10k

0.4

1.2

FIGURE 7.9 The Fortz-Thorup function and the load latency function (when ¢ =1).

The load latency function for the M/M/1 queueing model is given by y/(c — y); the FT
function is a piecewise linear envelope of the load latency function, divided by c (see Fig-
ure 7.9 when ¢ = 1). For a network, the FT function is considered separately for each link

since ¢, would be different. Thus, by incorporating Eq. (7.6.25) and accounting for different

capacity ¢, for each link £, we can consider the following formulation in place of Eq. (7.6.24):

minimizey y, F=
Py

subject to

L
Pesce)

Zgl “
Z‘xkp:hka k:1,2,
p=1
K Py
> Y Skpexip=ye, €=1,2, ..
k=1p=1
xkp 20’ p=1, 2, een
ye =0, £=1,2, ...

(7.6.26)

It is important to note that Eq. (7.6.24) and Eq. (7.6.26) differ in the following way: since
Eq. (7.6.25) is defined beyond the capacity of the link, the capacity constraint, y, < ¢, is not
required to be included in Eq. (7.6.26).

224 7.6 Duality of the MCNF Problem

To convert Eq. (7.6.26), we introduce a variable z; for each link. Then, we can write
Eq. (7.6.26) as

L
minimizeyy; F=}
=1
Py
subject to > Xip = hy, k=1,2,...,.K
p=1
K Py
> Z8kplixkp =Yy, £=1,2,...,L
k=1p=1
202 Yes £=1,2,...,L
Z@>3yz—2Cg, £=1,2,...,L (7'6'27)
Zg>10yg——Cg, £=1,2,...,L
z¢ > 0y, — ey, ¢=1,2,...L
202500y, — 8¢, =12, L
zg>5000y4 163086y, €=1,2,...,L
kp =0, p=1,2,...P, k=1,2,...K
yeZO,ZzZO, ¢=1,2,..,L

To avoid cluttering, we will use a compact representation for the slopes and the intercept of
each segment of the FT function, i.e., a; =1, by = 0 for the first segment, a, =3, b, = % for the

second segment, and so on for a total of / = 6 segments. Then, we can write

minimizeyy s F=3 &
(=

Py
subject to > Xip = hy, k=1,2,...K
p=1
K I (7.6.28)
>N Skpexip=ye, €=1,2,..,L
k=1p=1
Z¢ > ajye — bjcy, i=1,2,...1,6=1,2,....L
Xip = 0, p=12,... P, k=12,.,K
y¢20,z,>0, ¢=1,2,.., L.

Due to minimization, the above problem remains the same if the second constraint is changed
to less-than-equal-to constraints. Again, transforming to a standard representation, we can

rewrite it as

CHAPTER 7 IP Traffic Engineering 225

L
minimizeyyz F=3 &
=1

subject to g Xip = hi, k=1,2,...K
ple Py
- kglpgl SkpeXip +ye =0, £=1,2,...,L (7.6.29)
—a;y¢ + z¢ = —bjcy, i=1,2,..,1,6=1,2,.... L
Xip >0, p=12,..,P, k=1,2,..,K
ye=0,z¢>0, ¢=1,2,...,.L

For each new constraint, z¢ > a;y, — b;c, we will associate the non-negative dual variable y;;.
The dual LP problem becomes

K L1
maximizep xyy Y. hgvi— Y D biceye
k=1

t=1i=1
L
subject to Vi < Z&ﬁpm, p=12,...Pr, k=12 ..K

=1
1
l; aiyei = 1y, ¢=1,2,...,L 7630)
I
Y vi< s e=1,2,..,L
i=1

Vi unrestricted

e, vei > 0.

While the relation between the primal and dual seems more complicated for the FT function
than the previous illustrations, there is in fact a nice observation between the link weights
and the slopes of the FT function, which is summarized below:

Result 7.4. For each link ¢ = 1,2,.., L, assume that constraint z; > a;y; — bjcy for Problem
Eq. (7.6.28) is binding for a unique i [denote by i'(€)] at optimality. Then an optimal link weight
system is given by

W? = T[;Zk =aj), tel. (7.6.31)

Uniqueness is, however, not always possible for every link; the general result then is as
follows:

Result 7.5. For each link £ =1,2, .., L, constraint zy > a;y; — bjcy for Problem Eq. (7.6.28) can be
binding for at most two consecutive i’s [denote by i’ (€) and i'(€) + 1]. Furthermore, an optimal link
weight system is given by

where v}y + Vo1 =1/t Vi Veiws1 =0

7.7

7.7.1

226 7.7 Illustration of Link Weight Determination Through Duality

The above results and proofs are described in [663], and are derived from complemen-
tary slackness conditions at optimality. Briefly, complementary slackness conditions lead to
the realization that Zle Yp; = 1/cq, i.e., the third constraint of dual problem Eq. (7.6.30) is
binding. Then, if just one y;; is positive for a link, then it must be equal to 1, which in turn
leads to the first result based on the second constraint of the dual. Furthermore, if more than
one yy; is positive for a link ¢, then it must be for two consecutive segments since slopes are
strictly increasing in nature from one segment to the next; this then leads to the second result.
An illustration of these results is presented later in Section 7.7.1.

From the above results, we make an interesting observation. If a piecewise linear func-
tion is used as the objective, the slopes of this function appear as the link weight di-
rectly or through convex combination of consecutive slopes; the actual values depend on
the load of traffic on the link; this will become clear through our illustration in the next
section. Furthermore, the above results hold for any piecewise linear increasing function
that is similar to the FT function. Thus, other similar functions including a slight mod-
ification of the FT function can be incorporated to obtain better link weights from the
slopes [663].

Illustration of Link Weight Determination Through Duality

In this section, we will present two case studies based on topologies discussed earlier—one
for a four-node, five-link network with all links of the same capacity and the other for a four-
node, four-link network (with the direct link removed).

Case Study: I

First, we consider determination of the link weight for the four-node network with five links
shown earlier in Figure 7.7. We will use the commercial LP solver, CPLEX, and show how
to obtain the dual solution. Note our earlier remark that a problem need not be written in
the dual form since by solving the original (primal) problem, dual solutions are readily avail-
able from such commercial solvers. However, it is important to write the original problem
carefully so that dual variables are easy to identify and signs of variables are easy to follow.

OBJECTIVE: MAXIMUM LINK UTILIZATION

If we drop the dependency on link weight w, then we can write the LP relaxation of
Eq. (7.4.11) by following the representation given in Eq. (7.6.15):

minimizey y, F=r
subject to x11 +x12 +x13 =60 (v1)
—x11 +100r>0 (forinkID 1) (1)
—x11 +100r>0 (for ink ID 2) (1)
—x12+100r>0 (for ink ID 3) (1) (7.7.1)
—x12 +100r >0 (forlinkID 4) ()
—x13+100r >0 (forlinkID 5) (1)
X11,X12,X13 >0
r>0.

CHAPTER 7 IP Traffic Engineering 227

There are two important points to note: (1) capacity constraints are represented in the greater-
than-or-equal-to format, and (2) although redundant, all capacity constraints are listed. This
is done so that the result from CPLEX is easily identifiable. CPLEX requires a name for each
constraint to be listed on the left side when a problem is specified; in fact, these constraint
identifiers are none other than the dual variable identifiers. Thus, we can represent the above
problem in CPLEX as

Minimize r

subject to
nu_1: x_11+x_12+x_13=60
pi_1: -x_11+100r>=0
pi_2: -x_11+100r>=0
pi_3: -x_12+100r>=0
pi_4: -x_12+100r>=0
pi_5: -x_13+100r>=0

Bounds
0<=x_11
0<=x_12
0<=x_13

End

On solving the above problem using the CPLEX command optimize, we obtain optimal
r* to be 0.2. Note that although we listed non-negativity of the variables through Bounds,
this is not necessary since by default CPLEX assumes the variables to be non-negative; thus,
in subsequent listing, this part will be omitted. From CPLEX, we can obtain dual solutions
(which CPLEX lists as dual price) as follows:

CPLEX> display solution dual -

Constraint Name Dual Price
nu_1 0.003333
pi_2 0.003333
pi_4 0.003333
pi_5 0.003333

All other dual prices in the range 1-6 are zero.

Recall from Result 7.2 that here wj = 7. This means that the link weights are as follows: w} =
0, w; =0.003333, wj = 0, w) = 0.00333, and wZ = 0.00333. Furthermore, v| gives the value of
the total path cost.

There are two important observations to note here: (1) link weights for some links are
zero, and (2) due to constraint Zle cem) =1in Eq. (7.6.17), weights are all smaller than one.
Nevertheless, the cost of each path based on these link weights is the same. If we now scale
the objective function from F =r to F' = pr using g = 1000, then the dual solution scales to
the following: 75 = 3.33, 7} = 3.33, 75 = 3.33, while the rest of the ns are zero. The cost of

228 7.7 Illustration of Link Weight Determination Through Duality

each path remains equal while we obtained weights that can be rounded off to obtain integer
weight value 3, with two of the s still zero. Thus, link weights so obtained are

* * * k k
leo, W2:3, W3:O, W4:3, WS :3

Thus, through scaling and rounding, integer weights can be obtained; however, this does not
rule out that some link weights are zero. This means that the overall link weight systems can
be used for IS-IS, but not for OSPF (unless other adjustments are done).

OBJECTIVE: COMPOSITE FUNCTION

We next consider the composite function as the objective. Assume here that & =1, ¢ =
1,2,3,4,5, and that « =1 and g = 1000. Thus, the problem in CPLEX would take the fol-
lowing form:

Minimize 2 x_11 +2x_12+x_13 + 1000 r
subject to
nu_1: x_11+x_12+x_13=60
pi_1: -x_11+100r>=0
pi_2: -x_11+100r>=0
pi_3: -x_12+100r>=0
pi_4: -x_12+100r>=0
pi_5: -x_183+100r>=0
End

On solving the above, we obtain dual solutions as follows:

CPLEX> display solution dual -

Constraint Name Dual Price
nu_1 5.000000
pi_2 3.000000
pi_4 3.000000
pi_5 4.000000

All other dual prices in the range 1-6 are zero.

From Result 7.3 for the composite objective, we note that w, = cxé‘g + 7. Since @ = 1 and
&=1,¢=1,2,..,5, and nys are already integers, we thus have

That is, in this case, no additional adjustment is necessary to obtain integer weights. Further-
more, we do get all paths to be of equal cost and thus the flow would be optimal in the sense
of the MCSPRF problem. This is not to say that this will always be the case when the com-
posite function is used. Rather, a good choice of & and 8 can make it easier to obtain integer
link weights. Second, as long as & is greater than or equal to 1, the link metric so obtained
would at least have the minimum value 1; thus, this satisfies the requirement of OSPF that the
link weights must have a minimum value of 1. An important comment about the use of the

CHAPTER 7 IP Traffic Engineering 229

composite function is that it does not directly address an objective that is of interest in IP traf-
fic engineering. Thus, in this case, after solving the problem, we calculate the maximum link
utilization and/or the average delay function to see whether these values are in an acceptable
range.

OBJECTIVE: PIECEWISE LINEAR APPROXIMATION OF AVERAGE DELAY

Recall from Result 7.4 and Result 7.5 that the dual solutions take values from the slopes of
the FT function. We illustrate this through the same example. Note that since all links have
the same capacity, we can ignore ¢, from the objective function given in Eq. (7.6.29), but not
from the constraints; as a consequence, we have Z{: 1vei<1,£=1,2, ..., Linstead in the dual
given by Eq. (7.6.30)—based on the discussion earlier, these constraints would be binding
at optimality for each link ¢. The original problem in CPLEX would then take the following
form:

Minimizez 1 +z_2+z 3+z 4+2.5

subject to
nu_1: x_11+x_12+x_13 =60
pi_1: -x 11+y 1>=0
pi_,2: -x_ 11+y 2>=0
pi_3: -x_12+y 3>=0
pi_4: -x 12+y 4>=0
pi_5: -x_13+y 5>=0
gamma_1_1:z_1-1y_1>=-0
gamma_1_2:z_1-3y_1>=-66.6667
gamma_1_3:z_1-10y_1>=-533.333
gamma_1_4:z_1-70y_1>=-5933.33
gamma_1_5:z_1-500y_1 >=-48933.3
gamma_1_6:z_1-5000y_1 >=- 543933
gamma_2_1:z 2-1y 2>=-0
gamma_2_2:z 2-3y_2>=-66.6667
gamma_2_3:z 2-10y_2 >=-533.333
gamma_2_4:z 2-70y_2>=-5933.33
gamma_2_5:z 2 -500y_2 >=- 48933.3
gamma_2_6:z_2-5000y_2 >= - 543933
gamma_3_1:z 3-1y_3>=-0
gamma_3_2:z_3-3y_3 >=-66.6667
gamma_3_3:z_3-10y_3 >=-533.333
gamma_3_4:z_3-70y_3 >=-5933.33
gamma_3_5:z_3-500y_3 >=- 48933.3
gamma_3_6:z_3 - 5000 y_3 >= - 543933
gamma_4_1:z 4-1y 4>=-0
gamma_4_2:z 4-3y_ 4 >=-66.6667
gamma_4_3:z_4-10y_4 >=-533.333
gamma_4_4:z_4-70y_4 >=-5933.33
gamma_4_5:z_4-500y_4 >=-48933.3
gamma_4_6:z_4 - 5000 y_4 >= - 543933
gamma_5_1:z. 5-1y 5>=-0
gamma_5_2:z 5-3y_5 >=-66.6667
gamma_5_3:z_5-10y_5>=-533.333
gamma_5_4:z 5-70y_5 >=-5933.33
gamma_5_5:z_5-500y_5 >= - 48933.3
gamma_5_6:z_5 - 5000 y_5 >= - 543933

End

230 7.7 Illustration of Link Weight Determination Through Duality

On solving, we obtain dual solutions as follows:

CPLEX> display solution dual -

Constraint Name Dual Price
nu_1 2.000000
pi_1 1.000000
pi_2 1.000000
pi_3 1.000000
pi_4 1.000000
pi_5 2.000000
gamma_1_1 1.000000
gamma_2_1 1.000000
gamma_3_1 1.000000
gamma_4_1 1.000000
gamma_5_1 0.500000
gamma_5_2 0.500000

All other dual prices in the range 1-36 are zero.

Here, for links 1, 2, 3, and 4, we can see that dual solutions take the unique slope value of 1
from the first segment of the FT function, as discussed in Result 7.4. Note that Z{:l i <1
is binding, and is, in fact, unique for these links. For link 5, the dual solution is a convex
combination of the slopes of the first and the second segment; the dual variables y associated
with the links give the weights to be given to the slope values (see Result 7.5). That is, we can
recalculate and check that

w5 =arysi +ays2 =1x05+3x05=2.

As a further illustration, consider the same problem, but this time with increased traffic
volume at 150 Mbps. This changes the first constraint to

nu_1: x_ 11 +x_12+x_13=150

On solving, we obtain the dual solutions as

CPLEX> display solution dual -

Constraint Name Dual Price
nu_1 6.000000
pi_1 3.000000
pi_2 3.000000
pi_3 3.000000
pi_4 3.000000
pi_5 6.000000
gamma_1_2 1.000000
gamma_2_2 1.000000
gamma_3_2 1.000000
gamma_4_2 1.000000
gamma_5_2 0.571429
gamma_5_3 0.428571

All other dual prices in the range 1-36 are zero.

7.7.2

CHAPTER 7 IP Traffic Engineering 231

Thus, we can see that the three paths are still of equal cost (6 this time) with link weights
as wi =wj =wj; =w} =3, and w; = 6. Here, we can see that the link weight for link 5 is the
convex combination of the slopes of the second and the third segment of the FT function:

nE = ayysy + azys3 =3 x 0.571429 + 10 x 0.428571 =6.

Case Study: 11

In this case, we consider the four-node network with the direct link removed; furthermore,
the capacity of links on path 1-3-2 is reduced to 10 Mbps. This is also another topology we
have discussed earlier in this chapter (see Figure 7.6).
We fist consider minimization of maximum link utilization. The associated network flow
problem (including scaling the objective function) can be stated in CPLEX as follows:
Minimize 1000 r
subject to
nu_1: x_ 11 +x_12 =60
pi_1: -x_11+10r>=0
pi_2: -x_11+10r>=0
pi_3: -x_12+100r>=0

pi_4: -x_12+100r>=0
End

For this problem, the optimal maximum link utilization is 0.5454, and MCNF produces
proportional flow at optimality, 10% of the traffic volume on path 1, and the rest 90% of the
traffic volume on path 2. At optimality, we obtain the following dual solutions:

CPLEX> display solution dual -

Constraint Name Dual Price
nu_1 9.090909
pi_1 9.090909
pi_3 9.090909

This implies that link weights would be w} =9.09, w} =0, w3 =9.09, and wj = 0. How-
ever, if we were to allocate flow based on shortest path routing with ECMP, both paths being
of equal cost, we will see that path 1 would overflow due to lack of capacity! This indicates
that link weights determined from duality may not always produce a good result. In fact,
if we were to use the piecewise linear objective approximation of the average delay as the
objective, we face the same problem (this is left as an exercise).

Now consider the composite objection function. An advantage of this function is that
it allows a user to play with providing weights in two ways: costly paths based on a priori
knowledge of link speed and weights between the minimum cost part and the maximum
link utilization part. Suppose we assign & =& =10, & = &4 =1, and weights o =1, § = 100.
Thus, we have the following problem

Minimize 20 x_11+ 2x_12+ 100 r
subject to
nu_1: x_11+x_12 =60
pi_1: -x_11+10r>=0
pi_2: -x_ 11+10r>=0
pi_3: -x_12+100r>=0

pi_4: -x_12+100r>=0
End

7.8

232 7.8 Link Weight Determination: Large Networks

On solving the above, we obtain the following dual solution:

CPLEX> display solution dual -

Constraint Name Dual Price
nu_1 3.000000
pi_4 1.000000

All other dual prices in the range 1-5 are zero.

Since, here, wy = a&; + 7, link weights would be wj =10, w; =10,w3 =1, and wj = 2.
Thus, path 2 is the shortest path where all flow can be allocated. Thus, we do not face the
overflow problem as we did with other objectives for this network.

Link Weight Determination: Large Networks

It is important to note that the dual-based approach is not the only approach to determine link
weights. This is an active area of research; many methods have been proposed. Nevertheless,
irrespective of deciding on an objective function, several performance measures are often of
interest to service providers. Consider the following measures:

1. Maximum Link Utilization (ML) captures the utilization of the link that is maximum
loaded in the entire network.

2. Fraction of Used Capacity (FU) captures the total used capacity in the final solution as a
fraction of the total capacity in the network.

3. Number of Overloaded Links (NOL) refers to the number of links that requires extra ca-
pacity to make the solution feasible. This metric is important only when the obtained
solution is infeasible.

4. Fraction of Required Extra Capacity (FE) captures the additional capacity required to
make the solution feasible as a fraction of the total capacity of the network. This is rel-
evant only when the solution is infeasible.

In addition, the FT Function in its normalized form that captures the total congestion cost
is also a good measure. The scaled (normalized) FT function cost (Zf:1 ¢¢/ @) is the ratio of
total cost of current allocation (3 ng1 ¢¢) for the given capacitated network as compared to the
cost in case the network was uncapacitated (¢). Observe that for an uncapacitated network
with convex link cost function, cost is minimal when flows are allocated to hop count-based
shortest paths.

In large problems, say a network consisting of at least 50 routers, using a commercial
general-purpose LP solver can be challenging since the time taken to compute results can be
quite high. Thus, an efficient method to obtain link weights through the dual-based approach
is required. Such an efficient approach that also incorporates the ECMP functionality uses an
iterative approach on the dual variables through a decomposition method [564], [664]; we re-
produce here results from [664] for randomly generated 100-router networks with a different
number of links in Table 7.2 and Table 7.3 for the minimize cost routing objective and the
composite objective function, respectively, along with the computing time. Studies show that
the composite objective function is good in capturing different performance measures. In case

CHAPTER 7 IP Traffic Engineering 233

of duality framework, an additional measure is important to consider is the solution gap or
the duality gap as highlighted earlier in Eq. (7.6.12); that is, the gap between the dual solu-
tion and the objective value based on the weights determined by the specialized algorithm
is a useful indicator of the quality of the solution. As we can see from the tables, these two
gap measures were less than a fraction of 1%. There are a few instances where the gaps were
about 6% when the maximum iteration count for the dual iteration is reached. Thus, in gen-
eral, the convergence property is found to be good and the method is efficient in determining
link weights that work with the ECMP principle within an acceptable tolerance.

In large IP networks, some aggregation of information is also possible and might be nec-
essary. For example, in a geographically distributed network, there are often many points of
presence (PoPs) where a provider locates several routers in each PoP (refer to Section 9.6).
Thus, an abstraction is possible where such PoP locations can be thought of as a super-
node [308]; this then reduces the size of the problem for the purpose of determining the link
weight since it is then sufficient to consider the PoP-to-PoP traffic matrix instead of the router-
to-router traffic matrix; once such weights are determined, then proper mapping back to the
actual network is required.

Suppose we consider the hypothetical situation in which traffic matrices can be fre-
quently determined due to, say, some new, efficient methodology. If we now determine link
weights with each such traffic matrix estimated in each time window, we might possibly
have frequent weight changes. In operational networks, it is desirable to minimize the num-
ber and frequency of change in link weights [595] since each link weight change (unless due
to a failure) can lead to flooding, and consequently, the packet loss or long delays during this
transition cannot be completely ruled out. There has been a recent effort to reduce transition
time. Another issue is that for a small change in the traffic matrix, the link weight should

TABLE 7.2 Results using the minimum cost routing objective for 100-node networks.

Nodal Degree
(Number of Links) | ML | FU | FT | Solution Gap | F/I(NOL, FE) | Computing Time
2(197) 0.79 | 0.25 | 1.22 0.6% F(-) 44 sec
3 (294) 0.68 | 0.24 | 1.15 0.5% F(-) 13 sec
4 (390) 0.48 | 0.18 | 1.04 0.6% F(-) 60 sec
5 (485) 0.50 | 0.19 | 1.04 0.2% F(-) 20 sec
6 (579) 0.49 | 0.17 | 1.02 0.4% F(-) 23 sec

TABLE 7.3 Results using the composite objective function for 100-node networks.

Nodal Degree
(Number of ML | FU FT | Solution | F/I(NOL, FE) | Computing
Links) (o, B) Gap Time
2(197) (0.9, 32) 0.67 | 0.25 | 1.15 0.1% F(-) 5 sec
3 (294) (0.9,11585) | 0.66 | 0.24 | 1.15 4.4% F(-) 21 sec
4 (390) (0.9,2896) | 0.37 | 0.18 | 1.00 0.7% F(-) 19 sec
5 (485) (0.9,2896) | 0.36 | 0.19 | 1.00 0.5% F(-) 16 sec
6 (579) (0.9, 16) 0.39 | 0.17 | 1.00 0.1% F(-) 5 sec

7.9

234 7.9 Summary

not be sensitive. To circumvent this issue, a stable traffic matrix can be used as input to the
weight determination process. For example, for a 24-hour cycle, the maximum traffic load
can be used so that it accommodates traffic variation during the day. Note that such a de-
cision can vary depending on the size and traffic pattern of a particular service provider’s
network and should be arrived at by analyzing factors such as traffic fluctuations, and im-
pact of weight change on utilization, and so on. Later in Section 9.7, we will discuss traffic
engineering implications for large tier 1 ISPs.

Note that most link weight determination schemes (other than simple hop-based, or
inverse-of-the-link-speed weights) require that the traffic matrix is given. In IP networks,
estimating the traffic matrix based on measurements is itself a difficult, time-consuming, and
costly process. While large ISPs can use methodologies such as the ones described in [219] for
estimating traffic demand volume, many medium-scale and small-scale network providers
(for example, an enterprise network) may not have the resources to devise a full monitoring
system to determine the traffic demand volume/traffic matrix. In such an environment, if
link utilization can still be assessed periodically through tools such as MRTG [533], then such
information can be used to identify highly loaded links and such links can be given a high
link weight value so that traffic can be moved away from such links. This process is, however,
ad hoc and still requires a certain amount of fine-tuning, and no general link weight deter-
mination method is known that works in the absence of the availability of a traffic demand
volume.

An alternative option, again in the absence of a complete measurement system, is to use
enhanced OSPF or IS-IS, which allows functionalities to facilitate traffic engineering, espe-
cially useful in an integrated IP/MPLS environment. In this environment, the traffic engi-
neering enhanced capability may be used to query link bandwidth; this can be followed by
setting MPLS tunnels on the command line of a router to set up traffic engineering tunnels for
controlled traffic engineering, at least to a certain extent. This aspect and other related aspects
on IP/MPLS traffic engineering will be discussed later (see Section 18.3.4 and Section 19.1).

Summary

Traffic engineering of IP networks is an important problem in operational IP networks. While
protocols such as OSPF and IS-IS define how routers communicate among themselves to up-
date information such as link weights, they are silent on how to pick good link weights. Thus,
mechanisms are needed to determine good link weights. To do so, a critical component is to
recognize that this leads to first identifying how to estimate traffic in the network, as well as
what performance measures might be of interest in IP networks. Through our initial discus-
sion, we show that there is a direct relation between average delay and average utilization;
thus, the traffic engineering goal is to keep either one at a minimum by obtaining optimal
link weights. Certainly, there is a connection to the network dimensioning problem.

The framework for determining link weight when the routing is based on shortest paths
has an important relation to the MCNF problem. In this chapter, we show the connection
between shortest path routing, link weights, and the MCNF problem; furthermore, we have
indicated that the IP traffic engineering problem can be considered as the MCSPRF problem.
In addition, we show here how LP duality can be used to determine link weights. A nice
advantage of this approach is that commercial LP solvers can be used to find dual solutions;

CHAPTER 7 IP Traffic Engineering 235

this is especially attractive for network providers who do not want to develop any meta-
heuristic-based link weight determination algorithms.

Further Lookup

In general, determining good link weights through various methods including meta-
heuristics have been addressed by many researchers; this started in 2000 with independent
works by different researchers [69], [233], [242]. Other early works are [67], [235], [532], [574].
As a matter of fact, there have been numerous works in IP traffic engineering in the last sev-
eral years that consider different approaches to the link weight determination problem. That
is, we do not want to give the impression that the dual-based approach is the only approach
for the link weight determination problem.

Failure in a network, such as a link or a line card failure, is another important factor to
consider in determining link weights. The general question is: can we determine a robust link
weight system that works both under normal operating condition and also under a failure.
The benefit of such link weights is that the transient behavior after a failure can be minimized.
Recently, integrated models have been developed to consider such situations; for example,
see [470], [532], [564] for additional discussions.

Some network providers prefer to obtain link weights that result in unique shortest
paths for all demand pairs, the primary reason being the ability to easily troubleshoot
a network [698]. In light of Result 4.1 and Example 4.5 discussed earlier, it is important
to note that most demand pairs in large networks are likely to have flows taking sin-
gle paths at optimality. While several methods have been proposed [67], [69], [564], [663],
[698], obtaining link weights that lead to unique shortest paths (without significantly in-
creasing the total cost, average delay, or maximum link utilization) remains a difficult prob-
lem.

Note that while this chapter is primarily about IP traffic engineering, there is a connection
between flow control and traffic engineering; for example, see [289], [581] and Chapters 22
and 23. Later in Chapter 11, we will discuss the connection between control and traffic engi-
neering for voice engineering.

Exercises
7.1. Review questions:
(a) What is traffic engineering?
(b) What does the bandwidth-delay product signify?

(c) Whatis the difference between the multi-commodity network flow problem and the
multi-commodity shortest path routing problem.

(d) How does the buffer size of a router impact traffic engineering?

7.2. Refer to Exercise 4.3 in Chapter 4. Now, determine optimal link weights for the two
objectives described there.

7.3. Consider the nine-node network [261] shown in Figure 7.10 where the number next to a
link represents the capacity of the link, and the table shows the traffic volume for three

7.9 Exercises

2 3
15 a 15 a
6 15 Demand
Pair Volume
5 _6
& -
46 9
6 15 37 4
8 —9
15 @ 15 @

FIGURE 7.10 A nine-node network example.

7.4.

7.5.

7.6.

7.7.

different demand pairs. Determine best link weights using duality (i.e., using CPLEX
or any other LP solver) when the following objective options are considered: (1) mini-
mization of maximum link utilization, (2) minimum cost routing, (3) piece-wise linear
envelope, (4) a composite cost function. For the composite cost function, test for different
values of o and B to see how the link weights determined might change.

Consider the nine-node Manhattan street network shown in Figure 7.10.

(a) Assume that all links have 100 units of capacity, and the goal is to do load balancing
the network. Find the best link weights (i) if a single demand between node 1 and 9
with volume of 60 units is considered, (ii) if two demands, one between 1 and 9 and
another between 3 and 7, each of volume 60, are considered.

(b) Assume that all links have 100 units of capacity except for links 2-5, 4-5, 5-6, 5-8,
which have 60 units of capacity. The goal is to do load balancing the network. Find
the best link weights (i) if a single demand between node 1 and 9 with volume of
60 units is considered, (ii) if two demands, one each between 1 and 9 and another
between 3 and 7, each of volume 60, are considered.

Consider the same demand/capacity scenarios described in Exercise 7.4; find the best
link weights if minimum cost routing is the objective used instead (assume unit cost of
flow on each link).

Consider the same demand/capacity scenarios described in Exercise 7.4; find the best
link weights if a composite objective function that combines minimum cost routing with
load balancing is used. Determine how the solution changes as the parameters associ-
ated with the cost components of the composite object are varied.

In Chapter 4, you will find exercises that are similar to the above three exercises. Com-
pare your results and draw your conclusions.

This page intentionally left blank

BGP

All truths are easy to understand once they are discovered; the point is to
discover them.

Galileo Galilei

Reading Guideline

The chapter starts with the basic conceptual idea behind BGP. Several details are
then introduced one at a time. This chapter is helpful in reading Chapter 9. BGP
uses the path vector protocol approach. You may note that the concept of a path
vector protocol and its behavior has been discussed in depth in Section 3.5; thus, it
is helpful to refer to this discussion in parallel with this chapter.

8.1

CHAPTER 8 BGP 239

The Border Gateway Protocol (BGP) plays a critical role in making communication on the
Internet work. It facilitates exchange of information about networks, defined by IP address
blocks, between entities, known as autonomous systems (ASes), so that one part of the Internet
knows how to reach another part. BGP is thus an inter-AS routing protocol. It does, however,
allow intra-AS exchanges in certain situations as will be described later.

In this chapter, we describe BGP and its operational characteristics. The current BGP stan-
dard is known as version 4, with its most recent specification described in RFC 4271 [591]; we
will simply use BGP to refer to BGP4 since our entire discussion here about BGP is about
BGP4. In Chapter 9, we will cover the Internet routing architecture where we will show how
BGP is used. The evolutionary path to the development of BGP will also be described in that
chapter (refer to Section 9.1).

It is important to note that BGP is an excellent example of a work-in-progress protocol. In
the early 1990s, BGP went through multiple versions to arrive at version 4; yet many issues
were addressed as add-on features to version 4 by taking the operational experience of the
Internet into account. As we move through this chapter, we will point out a few of these
issues.

BGP: A Brief Overview

The BGP protocol is used to communicate information about networks currently residing (or
homed) in an autonomous system to other autonomous systems. The term network has a spe-
cific meaning in regard to BGP, which we will describe in the next section; in this section, we
will italicize it to avoid confusion with the general use of the term network. The exchange of
network information is done by setting up a communication session between bordering au-
tonomous systems. For reliable delivery of information, a TCP-based communication session
is set up between bordering autonomous systems using TCP listening port number 179. This
communication session is required to stay connected, which is used by both sides to period-
ically exchange and update information. When this TCP connection breaks for some reason,
each side is required to stop using information it has learned from the other side. In other
words, the TCP session serves as a virtual link between two neighboring autonomous systems,
and the lack of communication means that this virtual link is down. Certainly, this virtual link
will be over a physical link that connects the border routers between two autonomous sys-
tems; it is important to note that if a virtual link is broken, it does not necessarily mean that
the physical link is broken. Now imagine that each autonomous system is a virtual supernode;
then the entire Internet can be thought of as a graph connecting virtual supernodes by virtual
links.

Example 8.1 BGP topology illustration.

In Figure 8.1, we have shown six virtual supernodes (autonomous systems), AS1 to AS6,
connected by virtual links, i.e., TCP-based BGP sessions for communication between two ad-
jacent virtual supernodes. Each virtual supernode then contains one or more networks iden-
tified as N1, N2, N3 in AS1, and so on. From the figure, we can see that there is more than
one possible path between certain ASes. It is also possible to have a supernode at the edge of
the entire network such as AS6. Furthermore, multiple virtual links between two neighbor-

240 8.1 BGP: A Brief Overview

FIGURE 8.1 Internet: a conceptional graph view through clouds of autonomous systems
(virtual super-nodes) connected by BGP sessions (virtual links).

ing ASes are allowed /possible; for example, in this figure, we have shown that there are two
virtual links between AS2 and AS5. A

For the supernetwork of ASes that connects virtual supernodes through virtual links, we
need a mechanism for routing information updates about networks to be exchanged. Recall
from Chapter 3 that routing information in a network can be essentially disseminated in two
different ways: using a distance vector approach or using a link state approach. A difficulty
with a link state concept is that it is not scalable in its normal form when the number of nodes
grows, although a link state protocol can be made scalable through extended mechanisms—
ATM Private Network-to-Network Interface (PNNI) is such an example. However, a nice
property of a distance vector protocol is that a node does not need to maintain the entire
topology; the supernetwork (Internet) consisting of supernodes made of ASes is very large
and, thus, a distance vector approach is appealing. However, the difficulty with a distance
vector protocol is that looping can occur and unreliable delivery of routing information is
not desirable. BGP follows a path vector routing protocol approach that is roughly based on
a distance vector-type approach where looping is avoided through path tagging and where
reliable sessions for information exchange are used. The basic concept behind a path vector
protocol, without cluttering its description with BGP, was described earlier in Section 3.5 in
Chapter 3. While it is tempting to refer to BGP as the path vector protocol, it is more appro-
priate to refer to BGP as an instance of a path vector protocol family. As an example, in BGP,
the cost between two adjoining ASes is implicitly assumed to be just a hop; any local virtual
link selection decision can be specified if there are parallel links.

Since BGP uses a hop count metric as the distance between two adjoining ASes, the short-
est path from an AS to a distant AS is essentially counted in terms of the shortest number of
AS hops; note that it is not in terms of number of routers along this path. BGP also allows
parallel virtual links between adjoining ASes; thus, a mechanism is also provided for local
exchange of information to decide on a preferred link. Visits through ASes as information

CHAPTER 8 BGP 241

about networks is propagated is prepended using the BGP protocol. We provide a simple il-
lustration here.

Example 8.2 Prepending of AS Paths in BGP.

Consider again Figure 8.1. Here, we can clearly see that the shortest AS hop path from
AS1 to AS6 is AS1 to AS2 to AS5 to AS6. There are two parallel links between AS2 and AS5;
the choice of either link is a local decision and is immaterial to ASes outside this part such as
AS1 and ASe6.

As part of the BGP protocol, AS6 will let its neighboring AS, AS5, know that it is
home for N13 and N14 by broadcasting the AS identifier with the network identifier, i.e., as
(AS6) — N13 and (AS6) — N14. It is easy to see that instead of generating a separate mes-
sage for N13 and N14, a combined message would conserve the number of announcements
since both networks are served by AS6 with one outlet. Thus, a common way is to announce
a set of networks such as {N13, N14}; thus, we can write the prepended announcement as
(AS6) — {N13, N14}. Through a series of exchanges, AS1 will receive the prepended path in-
formation (AS2, AS5, AS6) — {N13, N14} from AS2 and (AS3, AS4, AS5, AS6) — {N13, N14}
from AS3. Thus, AS1 can decide that route (AS2, AS5, AS6) is the shortest AS hop-based path
to reach destinations N13 and N14. A

Remark 8.1. Explicit announcement of home AS with a network.

There is an important basic issue: if we know that N1 belongs to AS1, could we commu-
nicate the path information to AS5 simply as (AS2) — N1 instead of as (AS2, AS1) — N1?
That is, could we drop AS1 entirely from the path information as being the home of N1? The
answer is no. If we were to do that, it would implicitly suggest that N1 always belongs to AS1.
Instead, we want the flexibility of a network that can be homed off of another AS if the owner
of the address space chooses to do so in the future. Second, the ability to detect looping will be
lost. Thus, the explicit announcement of AS1 as the current home of N1 as in (AS2, AS1) — N1
automatically provides these flexibilities. ¢

Essentially, BGP chooses a path between two ASes in terms of the shortest number of AS
hops. However, BGP allows an AS number to be repeated during the announcement for the
benefit of inter-AS traffic engineering. This is illustrated below.

Example 8.3 Repetition of an AS number in AS paths for inter-AS traffic engineering.

Consider Figure 8.1 again. Suppose that AS1 would prefer that traffic be routed via AS3
instead of AS2 to its own networks. Thus, AS1 can send the announcement about N1, N2, N3
to AS2 with AS1 repeated three times as (AS1, AS1, AS1) — {N1, N2, N3}, but to AS3 once
as (AS1) — {N1, N2, N3}, after prepending, each of these announcements will then arrive at
AS4 as (AS2, AS1, AS1, AS1) — {N1,N2,N3} and as (AS3, AS1) — {N1, N2, N3}, respectively.
Thus, the route chosen by AS4 for destinations N1, N2, and N3 would be via AS3 since the
announcement indicates that this is the shortest number of AS-hops. Assuming no repeats are
done by other ASes, traffic originating in AS5 and AS6 would also go via AS3 to destinations
N1, N2, and N3.

8.2

242 8.2 BGP: Basic Terminology

The case for AS2 is interesting to note. AS4 would forward the announcement about net-
works in AS1 to AS2. Thus, AS2 will receive it as (AS4, AS3, AS1) — {N1, N2, N3}, while AS2
has already received it from AS1 as (AS1, AS1, AS1) — {N1, N2, N3}. Thus, for AS2, reaching
networks N1, N2, and N3 is the same length in terms of AS-hops. Here, additional tie-breaking
rules discussed later would be applied to determine the preferred route. A

The actual best path decision in BGP has far more details than the simple shortest-hop
idea described so far; this will be covered in detail later along will more information concern-
ing about BGP operations.

While we have so far given a fairly simplistic view of BGP, several important points have
been covered such as: (1) what types of information to communicate between neighboring
autonomous systems, and the format and types of messages, (2) how to ensure that the virtual
link connectivity is maintained, and (3) how to react if the virtual link breaks down; these are
important in maintaining relations among autonomous systems so that a packet can move
from an end host to a distant end host through the Internet.

BGP: Basic Terminology

We have so far described the basic notion of BGP using virtual supernodes and virtual links,
where each supernode contains one or more networks. It should be clear by now that the
virtual link functionality is provided by a BGP session and supernodes are referred to as
autonomous systems. That is, the Internet is composed of autonomous systems that connect to
one or more autonomous systems while an autonomous system contains one or more net-
works. The term network has a specific meaning; more accurately, it refers to an IP prefix—
defined network; for brevity, this notion of a network is referred to as an IP prefix, which we
described briefly in Chapter 1. Recall that an IP prefix is identified through the CIDR nota-
tion, A.B.C.D/n, where/n refers to the network mask. For example, an IP prefix is listed as
134.193.0.0/16 where the network mask is/16; this means that this address block identifies
a certain network. In BGP folklore, an IP prefix is often referred to simply as a network, or a
route, or an IP prefix, and sometimes all three are used interchangeably. For clarity, we will
use the term IP prefix henceforth. The term route has a specific meaning as defined in the BGP
specification; a route is a unit of information that associates an IP prefix destination or a set of
IP prefix destinations with the attributes of an AS-path that has been visited so far, as seen by
a receiving AS through an UPDATE message. For example, in Figure 8.1 from the viewpoint
of AS6, a route to the IP prefix destination N1 is (AS5, AS4, AS3, AS1) — N1.

In each AS, certain entities are designated as BGP agents for communication with neigh-
boring ASes. These agents are specially designated routers, commonly referred to as BGP
speakers. This means that the TCP-based BGP session is in fact set up between two adjoining
BGP speakers, and thus, each speaker is considered the peer of the other. Since the BGP pro-
tocol is meant for use in the global Internet, an identification number for each AS has been
defined and is tracked for determining a path between two ASes. This identifier is a unique
16-bit autonomous system number, assigned to each AS. Thus, each AS is assigned a globally
unique number in the range 1 to 64511; the rest, 64512 to 65535, are reserved as private AS
numbers. Originally, the private AS numbers were not defined; they first became necessary
when the AS confederation approach, discussed later in Section 8.8.2, was introduced.

8.3

8.3.1

CHAPTER 8 BGP 243

Finally, it is important to note that an AS is not the same as an ISP. An ISP can have
multiple ASes contained in it; conversely, an AS can be made up of multiple providers where
different IP prefixes are provided by each provider. We will consistently use the term AS and
discuss specifics in regard to an ISP as and when required.

BGP Operations

To facilitate learning about routes to reachable IP prefixes, a BGP speaker is engaged in ex-
change of network reachability information with its neighboring BGP speakers. During an ex-
change, a BGP session may go down; thus, the basic BGP operation needs to also address how
to handle such situations. To enable various BGP activities, the BGP protocol defines four key
message types: OPEN, UPDATE, KEEPALIVE, and NOTIFICATION, and an optional mes-
sage type ROUTE-REFRESH. Details on the message formats for these BGP messages will be
described later in Section 8.12. Here, we will concentrate on the BGP operational functions
for which these messages are used, and the operations require certain timers.

Message Operations

The OPEN message is the first message sent to establish a BGP session after the TCP connec-
tion has been established. This is started by the BGP speakers that act as designated agents
of autonomous systems to talk to other neighboring BGP speakers. Often in practice, each
BGP speaker is configured in advance with the IP address of the other BGP speaker so that
either end can initiate this TCP connection. It is quite possible that different BGP speakers
use different BGP version numbers; thus, the OPEN message contains the version number as
well as the AS number.

The UPDATE message, the key message in BGP operations, is sent between two BGP
speakers to exchange information regarding IP prefixes; this message type works in a push
mode, i.e., whenever a BGP speaker has new information regarding an IP prefix to communi-
cate to its peering BGP speaker, an UPDATE message is sent. In steady state, the BGP speak-
ers generate UPDATE messages whenever either end has determined a new best AS route for
any specific IP prefix. More importantly, if one end of the BGP session was the announcer of
a route to a particular IP prefix to its other end, it must generate a withdrawal if this speaker
can no longer reach this particular IP prefix. The reason for this withdrawal announcement is
that the path through the AS where the sending speaker is homed could be the best path for
the receiving speaker, yet the sending speaker has no way of knowing if it is otherwise.

Once a BGP session is up and running, the KEEPALIVE message is sent periodically
between two BGP speakers as a confirmation that the session is still alive. Each end learns
and agrees on a maximum acceptable time, known as the hold time, during the initial exchange
of OPEN messages. The KEEPALIVE messages are then generated approximately once every
third of the hold time, but no more than once every second. The KEEPALIVE messages should
not be generated if the hold time is agreed to be zero; this case assumes that somehow the
session is completely reliable.

The NOTIFICATION message is sent to close a BGP session; this is done when some
error occurs requiring closing down of the session. Thus, a virtual link between two BGP
speakers is considered to be unavailable (1) when the NOTIFICATION message sent by one

8.3.2

244 8.3 BGP Operations

end leads to a graceful close of a BGP session, or (2) when there is an absence of KEEPALIVE
or UPDATE messages within a hold time.

Besides the four mandatory message types, an additional optional message type,
ROUTE-REFRESH, has also been added [129]. For example, at any instant during a session,
one end can send ROUTE-REFRESH to its neighboring BGP speaker requesting to readver-
tise all its IP prefix entries in its routing table; thus, the ROUTE-REFRESH, can be thought
of as a pull request that is responded using an UPDATE message. Its usefulness will be dis-
cussed later in Section 8.7.

Since ROUTE-REFRESH is an optional type, how does a BGP speaker know whether its
neighboring BGP speaker supports this feature? To make such optional functionalities work,
BGP defines a parameter called Capabilities [113], [114] which is carried in the initial OPEN
message for capabilities negotiation. Thus, ROUTE-REFRESH is sent as an optional capabil-
ity to be negotiated in the initial OPEN message. If the receiving speaker does not support
the Capabilities option or ROUTE-REFRESH option, it sends a NOTIFICATION message
back to the sending BGP speaker to close the session. In this situation, the sending speaker
would need to send a new OPEN message without the Capabilities option so that normal es-
tablishment can be accomplished; the session would continue without the ROUTE-REFRESH
option.

BGP Timers

We have so far described the use of different message types. For proper functioning of BGP,
several timers are also defined. It is important to understand the need and the role of the
timers. For example, how long should a BGP speaker try to set up a connection with a neigh-
bor before giving up? How often should two neighbors exchange KEEPALIVE messages?
How often should routes to a particular IP prefix be announced or withdrawn? and so on.
Implicit in defining such timers is the need to limit link bandwidth consumption between
two BGP neighbors as well as to limit the processing of resources at the BGP speaker related
to BGP traffic. After all, for a link that connects two neighboring ASes through the border
BGP speakers, the main role is to push actual user traffic, not be consumed/dominated by
the BGP protocol-related traffic. To address these points, the BGP protocol has five required
timers and two optional timers; with each timer, a time parameter is assigned. We describe
them and their roles:

o ConnectRetryTimer: This timer defines the timeout interval before retrying a connection
request. While the recommended ConnectionRetryTime value is 120 sec, it can set to zero
for certain event conditions.

e HoldTimer: This timer indicates the maximum time (in seconds) that is allowed to elapse
without receiving an UPDATE or KEEPALIVE message from a peering BGP speaker be-
fore declaring that the peer is not reachable. That is, the expiration of HoldTimer indicates
that the virtual link between these two BGP speaker is down. The recommended value
for HoldTime is set to 90 sec while the minimum positive value must be 3 sec. The time is
allowed To be set to zero, which is used as the indicator that the session is never to expire.

o KeepAliveTimer: This timer relates to the frequency of generating KEEPALIVE messages;
the timer value is set to one-third of the value of HoldTime. For example, if HoldTime is

8.4

CHAPTER 8 BGP 245

agreed to be 90 sec through the exchange of OPEN messages at the beginning of a BGP
connection, then KeepAliveTime is set to 30 sec.

o MinRouteAdvertisementIntervalTimer: This timer refers to the minimum time that must ex-
pire before a BGP speaker can advertise and/or withdraw routes to a peering BGP speaker
in regard to a particular IP prefix destination. While the timer can be defined on a per—
IP prefix destination basis, the value is maintained on a per-BGP peer speaker basis. If it
is an intra-AS peer, then the recommended value is 5 sec; for an external peer, the value is
set at 30 sec.

e MinASOriginationIntervalTimer: this timer indicates the minimum time that must expire
before a BGP speaker can report changes in its own autonomous system through another
UPDATE message. The recommended value for MinASOriginationIntervalTime is 15 sec.

Note that a BGP speaker may be involved in setting up peering sessions with multiple
BGP peers. Thus, it is possible that certain timers expire at about the same time, causing a
spike in activity at a BGP speaker; second, even if they are originally set to expire at a dif-
ferent time, it is possible that some eventually synchronize; that is, the pendulum effect much
like RIP (refer to the discussion on timer adjustment Section 3.3.3) cannot be completely ruled
out. Thus, jitter is required to be implemented on the following four timers: ConnectRetry-
Timer, KeepAliveTimer, MinASOriginationIntervalTimer, and MinRouteAdvertisementInter-
valTimer. The recommended value is obtained by determining a random quantity that is uni-
formly distributed from the range 0.75 to 1.0 of the base value, and a new random quantity is
determined each time.

There are two additional optional timers: DelayOpenTimer and IdleHoldTimer. The De-
layOpenTimer may be used once a TCP connection is set up for a BGP session to indicate
wait time before the OPEN message is to be sent. The IdleHoldTimer is used to determine
how long to wait in the idle state of the BGP protocol by a BGP speaker before triggering
restart of a BGP session to a particular peer; this factor is used to dampen any oscillatory
behavior.

BGP Configuration Initialization

In this section, we discuss BGP initial configuration in some detail. To do this, we first con-
sider two commonly used approaches: one in which two ASes are connected directly through
their respective BGP speakers and one in which a border BGP speaker is connected to multi-
ple neighboring BGP speakers.

Consider two ASes with AS numbers 64516 and 64521 wanting to set up a BGP neigh-
boring relation (see Figure 8.2). In this case, a common approach is to set a direct physical
interface between two bordering BGP speakers, thus forming a point-to-point link; then, a
subnet address block (IP prefix) is defined where both interfaces have addresses from this
address block. For example, if we use the IP prefix 10.6.17.0/30 block to describe this sub-
net, then 10.6.17.1 can be assigned as the interface address (serial: s0) to the BGP speaker in
AS64516 and 10.6.17.2 as the interface address (serial: s1) to the BGP speaker in AS64521.
Once this is configured, the neighboring relation can be established, for example, by the
BGP speaker in AS64516 indicating that 10.5.21.2 is the IP address for the neighboring BGP

246 8.4 BGP Configuration Initialization

speaker in AS64617; similarly, the other end can issue the neighboring relation. This method
of configuration then avoids the chicken and egg problem of how each BGP speaker deter-
mines how to reach its neighboring BGP speaker so that they can exchange routing informa-
tion.

Now consider the case in which an AS has more than one neighboring ASes (see Fig-
ure 8.3); that is, AS number 64516 has two neighboring ASes, AS64521 and AS64822. One
possibility is to take the same approach as the first case, i.e., define separate subnet address
blocks for each neighboring relation such as address block 10.6.17.0/30 between AS64516 and
AS4521 and address block 10.6.17.4/30 between AS64516 and AS64822. In this case, the BGP
speakers in AS64521 and AS64822 will see the border BGP speaker in AS64516 with differ-
ent addresses. While this is workable, this is not preferable, since it can be hard to manage
the different address assignments and can be cumbersome when a BGP speaker has many
neighboring ASes.

The configuration just described raises the following question: can we configure in such
a way that each neighbor can use the same IP address for a particular border BGP speaker
in AS64516? In fact, this is possible. To do it, a loopback address, that is, a loopback interface-
based approach is taken. Consider again just two neighboring ASes, AS64516 and AS64521.

:’/ \ 10.6.17.1 10.6.17.2 A
AS64516 = =] AS64521
= s0 10.6.17.0/30 s1 77

AS64516

FIGURE 8.3 BGP session setup: direct interface between an autonomous system (AS)
and its two neighbors.

8.5

CHAPTER 8 BGP 247

lo

lo
10.6.17.1 10.6.17.2 = AS64521
\, AS64516 g‘ s0 10.6.17.0/30 s1 '?

: \M/

~--10.6.1.1 10.6.2.1 -~ '

FIGURE 84 BGP session setup: use loopback interface between two ASes.

As shown in Figure 8.4, at the BGP speaker 10.6.17.1 in AS64516, a loopback interface (lo) is
created with IP address 10.6.1.1 while at the BGP speaker 10.6.17.2 in AS64521, a loopback is
created with IP address 10.6.2.1. Now, BGP speaker 10.6.17.1 indicates 10.6.2.1 as the remote
end for AS64521 and then indicates that the route to 10.6.2.1 is to use the serial interface s0.
Thus, when a BGP packet is generated at the BGP speaker 10.6.17.1 for AS64521, the packet
will take interface sO to reach BGP speaker 10.6.17.2 where it will now loop back to feed to
the BGP session. Similarly, the other end is configured; that is, BGP speaker 10.6.17.2 indicates
10.6.1.1 as the remote end for AS64516, and then indicates that the route to 10.6.1.1 is to use
the serial interface s1. Similarly, a third neighbor of AS64516 can be connected without the
necessity of changing the IP address of the border BGP speaker 10.6.17.1.

There is also a third possible approach for the initial configuration; this approach is
used when two BGP speakers are not directly connected; this is often encountered in re-
gard to internal BGP, to be discussed in the next section. In this situation, an interior dy-
namic routing protocol can be used where one end learns about the other end dynami-
cally.

It should be noted that whether the direct interface-based or the loopback interface-based
approach is used, the time-to-live (TTL) field in the IP packet that contains BGP information
is set to 1 when loopback addressing is not used; when loopback addressing is used, the
TTL is set to 2, and for a multihop environment to 255. Limiting TTL then helps prevent
BGP packets from spreading beyond where they need to be contained, and serves as a basic
security mechanism [252].

Two Faces of BGP: External BGP and Internal BGP

Our discussion so far has exclusively concerned routing information exchanges between ASes
through BGP speakers. In fact, BGP is also used to set up peer (neighbor) connections between
two BGP speakers within an AS, known as internal BGP (IBGP) speakers. The question is why
such an arrangement is needed and in what scenarios. Before we delve into this, we clarify a
curiosity that remains: how does a BGP speaker find out whether it is communicating with
an external peer BGP speaker or an internal peer BGP speaker? This can be determined by
comparing the AS number communicated in the OPEN message by its peer BGP with that of
its own internal value; if it matches, then this neighbor is an IBGP speaker, and if it does not,
then it is an EBGP speaker.

To consider why IBGP is needed and for what types of scenarios, we begin with an illus-
tration consisting of four ASes as shown in Figure 8.5. Here, AS64777, AS64999, and AS65222
are referred to as stub ASes since they each of them has one BGP speaker as an outlet. We start
with AS64777. There are three IP prefixes in this AS: N1, N2, and N3. To route user traffic from

248 8.5 Two Faces of BGP: External BGP and Internal BGP

AS64777

. N10 (10.14.0.0/16)

2

S

3 R1 AS64999

N3 (10.12.0.0/16)

2

=

z L

g

R3
R8 R9

=

8 R2

E P ——————— —

2 N8 (172.17.0.0/16) N9 (172.20.0.0/16)
A
2, %
g
hy N5 (10.2.0.0/16) -
B> N11 (10.24.0.0/16)
AS64888
AS65222
R1
= ——
: 2
=]
) E
8 g
1 =l
2 5 o
R12 R13
N8 (172.32.0.0/16) N13 (172.48.0.0/16)

FIGURE 8.5 External BGP and internal BGP example.

one of them to another one within AS64777, an interior gateway protocol is sufficient to deter-
mine routing. Similarly, the internal routing scenario is handled within the other ASes as well.
We assume that AS64777 uses OSPF within its domain. What about inter-AS? For example,
how does R7 in AS64888 learn about network N1, and conversely, R1 in AS64777 learn about
network N7? Note that neither R1 nor R7 is a BGP speaker; they are interior routers within
their respective ASes. One possible way is that BGP speaker R2 learns about N5 from AS64888
and then communicates this information through OSPF protocol to routers R1 and R3. Thus,
R2 can learn about all external IP prefix networks from its neighboring AS and communi-
cate to R1 and R3 through OSPF. The difficulty is that this immediately creates a scalability
problem at routers R1 and R3 since they will need to maintain link state database entries for
such external IP prefixes and compute the shortest paths to all such IP prefixes. Furthermore,
if router R3 were to populate the external IP prefixes to each internal router, it defeats the
purpose of BGP. In any case, while theoretically possible, BGP speaker R2 in AS64777 does
not inform other interior routers within AS64777 about external IP prefixes about which it
has learned. Instead, BGP speaker R2 becomes the default gateway for all external IP prefixes;

CHAPTER 8 BGP 249

a common way to configure in a stub AS; routers R1 and R3 do not need to maintain routing
table entries for external IP prefixes, thus reducing the routing table size at R1 and R3 as well.

The above discussion gives the impression that the border BGP speaker such as R2 is the
stopping point for external IP prefixes it has learned from its neighboring AS, i.e., through
incoming BGP messages. This is, however, true only if the AS is a stub AS with only a single
BGP speaker to its neighboring AS; in fact, this is the case with R2. This situation, however, no
longer holds when we consider AS64888. If BGP speaker R4 were to stop distributing IP pre-
fixes N1 and N2 it has learned from BGP speaker R2, then the third AS, AS64999, would have
no way of knowing that N1 and N2 actually exist. Thus, a mechanism is needed so that an AS
that has connectivity to multiple ASs through multiple BGP speakers such as AS64999 can
communicate information about network reachability. This is where an internal BGP session
is required between two BGP speakers within an AS so that network reachability information
can be exchanged. In our example, such an internal BGP session is required between BGP
speakers R4 and R5 so that R4 can learn about IP prefixes N8, N9, and N10 while R5 can learn
about IP prefixes N1, N2, and N3. That is, an important BGP rule is as follows:

Rule 1: A BGP speaker can advertise IP prefixes it has learned from an EBGP speaker to a neigh-
boring IBGP speaker; similarly, a BGP speaker can advertise IP prefixes it has learned from an
IBGP speaker to an EBGP speaker.

Note that due to the second part of Rule 1, it is acceptable for R4 to advertise to R2 in AS64777
about IP prefix N7, which is part of AS64888.

While internal BGP works very much the same way as external BGP, there is an important
difference. Consider network N6 in AS64888; within this AS, BGP speaker R4 learns about it
internally through OSPF from internal router R6; similarly, BGP speaker R5 also learns about
N6 from Ré6. Should R4 and R5, both IBGP speakers, advertise N6 to each other through the
IBGP session? The answer is no. That is, a second important rule is as follows:

Rule 2: An IBGP speaker cannot advertise IP prefixes it has learned from an IBGP speaker to
another neighboring IBGP speaker.

The primary reason for this rule requires some explanation. The AS number is prepended
only when an advertised IP prefix crosses an AS boundary (Example 8.2). Recall that a BGP
speaker prevents looping by checking if its own AS number is on the path for any network
reachability received from another BGP speaker. When the communication is within an AS,
and since the AS number is not prepended in this scenario, looping is possible! This mandates
the need for Rule 2. Furthermore, the routers within an AS are supposed to handle internal
routing through the interior gateway protocol for all its internal IP prefixes; this is not the role
of an IBGP.

There is, however, an important implication of Rule 2 in regard to external IP prefixes
when there are more than two IBGP speakers in an AS. To understand this issue, consider
again AS64888. Due to Rule 1, BGP speaker R4 will learn about N1, N2, and N3 from EBGP
speaker R2 and let IBGP speaker R5 know so that R5 can communicate this information to
AS64999. Also, by Rule 1, BGP speaker R4 will also learn about N11, N12, N13 located in
AS65222 from IBGP speaker R6 and let AS64777 know about existence of N11, N12, and N13.

8.6

250 8.6 Path Attributes

However, due to Rule 2, R4 cannot inform IBGP speaker R5 about N11, N12, N13. How then
would AS64999 know about N11, N12, N13? As a consequence of Rule 2, AS64999 would not
know unless that is also an IBGP session between IBGP speakers R5 and R6. That is, if there
are more than two IBGP speakers in an AS, there must be an IBGP session between each pair
of IBGP speakers; thus, this leads to the case of full-mesh IBGP connectivity. This certainly
raises the scalability issue, which is discussed later in Section 8.8.

To summarize, IBGP is required whenever an AS has multiple EBGP speakers. Certainly,
a stub AS that has only a single BGP speaker does not need to consider IBGP. The basic mech-
anism for IBGP and EBGP is the same as long as the two rules discussed above are addressed
properly. Note that IBGP is a situation in which the third approach for initial configuration,
mentioned earlier in Section 8.4, is often used for connecting two IBGP speakers. IBGP speak-
ers are also configured using loopback addressing for ease of configuration manageability. In
this case, the interior gateway protocol is used for routing BGP-related data from one IBGP
speaker to reach the other IBGP speaker.

Path Attributes

A critical part of BGP operation is route advertisement; as a part of route advertisement,
specific information about a route to an IP prefix destination or a set of IP prefix destinations
is also distributed; this set of information, known as path attributes, is then used in the BGP
routing decision process. BGP path attributes are classified into the following four categories:

o Well-known mandatory: All BGP implementations must recognize such an attribute and it
must appear in an UPDATE message.

o Well-known discretionary: All BGP implementations must recognize such an attribute; how-
ever, it may not be included in an UPDATE message.

o Optional transitive: A BGP implementation might not support such an attribute, but it must
forward it to its BGP peers.

e Optional nontransitive: A BGP implementation might not support such an attribute; it
should not forward it to its BGP peers.

We now describe several key path attributes while identifying the category to which they
belong.

ORIGIN

This well-known mandatory attribute identifies the mechanism by which an IP prefix is first
announced into BGP, commonly referred to as injected into BGP. It can be specified as IGP,
EGP, or Incomplete. IGP means that the IP prefix was learned from an interior gateway pro-
tocol such as OSPF; EGP means that it is learned from an exterior gateway protocol such
as BGP; Incomplete refers to the case when the IP prefix is unknown, often the case for sta-
tic routes. The value assigned by the originating BGP speaker is not allowed to be changed
by any subsequent speaker, although, in practice, it can be. This, this attribute is not always
meaningful in practice.

CHAPTER 8 BGP 251

oné 10.5.0.0/16
504 — ¥ 2 ——
10. (65‘03'65101' /77/ . AS-PATH: (65102, 65101)/,, >~ ~—

AS65103 AS65102

AS65101
10.5.0.0/16

T

105,
AS-pary,, p 0.0/16 >

65106
65107) 651”5,

AS65106

10.5.0.0/16
AS-PATH: (65105, 65101)

FIGURE 8.6 BGP path Attribute: AS-PATH example.

AS-PATH

This well-known mandatory attribute stores a sequence of AS numbers that identifies the
ASes a route has visited so far. This is accomplished using the UPDATE message; whenever
an UPDATE message is communicated from one BGP speaker to another BGP speaker as it
crosses an AS boundary, its AS number must be prepended to the AS-PATH.

Consider Figure 8.6. Here, the IP prefix 10.5.0.0/16 originates in AS65101. Thus, the BGP
speaker on the border in AS65101 includes its AS number in the UPDATE message sent to
its BGP speakers located at neighboring ASes, AS65102 and AS65105. When the route for
10.5.0.0/16 is advertised to other ASes, the AS-PATH in the UPDATE message is prepended
with the AS number of the leaving AS. Thus, on receiving the UPDATE message in AS65107,
the BGP speaker at AS65107 will learn that 10.5.0.0/16 has originated in AS65101 and that it
has since passed through AS65105 and AS65106 by inspecting the AS-PATH attribute, while
recognizing that AS65106 is the most recent AS visited. An interesting feature is that the
bordering BGP speaker may prepend its own AS number more than once in the AS-PATH
attribute; this was illustrated earlier in Example 8.3.

NEXT-HOP

This well-known mandatory attribute identifies the IP address of the next hop router to the
IP prefix destination in the UPDATE message. Note that an IP prefix is advertised outside of
an AS so that others are aware of it; thus, for the rest, this IP prefix is the destination they
are now aware of and to which they want to send user traffic. Thus, when user traffic is
forwarded, the next hop router is the final router in the BGP domain, which knows how to
forward it to the IP prefix destination. Since the view is from the incoming direction, a name
such as last hop or final hop might have sounded more appropriate since next hop is also
commonly used to mean the next router for an outgoing direction.

The next hop router identified is dependent on from where it is advertised and whether
it is internal or external to the originating AS. We illustrate NEXT-HOP through three sce-
narios (see Figure 8.7). In scenario 1, IP prefix 10.12.0.0/16 homed in AS64777 is advertised to
AS64888 by EBGP speaker 10.6.17.1 to EBGP speaker 10.6.17.2; in this case, the NEXT-HOP
to IP prefix destination 10.12.0.0/16 is 10.6.17.1. This attribute value is advertised outside its
home AS. In scenario 2, the announcement is entirely within an AS between IBGP speak-
ers through a TCP-based BGP session that is set up between IBGP speakers 10.5.16.1 and

252 8.6 Path Attributes

10.15.0.0/16
(=~
-—

105161 &

AS64999

4 10.15.0.0/16
10.5.16.2| '\ NEXT-HOP =10.5.16.1

e — 10.12.0.0/16 .
/ NEXT-HOP = 10.6.17.1
\ AS64777

.................... ! J (== S5
(== > < 19216821 192.168.2.2 S

ww S 19216821 19216822

(a) Scenario 1 (b) Scenario 2
- 10.15.0.0/16

10120006 \ 10.12.0.0/16

\, ASear77 @FXT‘HQ‘T?.!?:@}?A o

(¥ 106171 EBGP 1D.6.17.3

10.5.16.1 ': AS64999

10.12.0.0/16

105162 | ™
________________ i

S192.168.2.1 192.168.2.2 S

(c) Scenario 3

FIGURE 8.7 BGP path attribute: NEXT-HOP examples.

192.168.2.2; note that this TCP is routed internally via the interior router 192.168.2.1. Since
IP prefix 10.15.0.0/16 is off the IBGP speaker 10.5.16.1 that is advertising it, the NEXT-HOP
to IP prefix destination 10.15.0.0/16 is 10.5.16.1, not 192.168.2.1. Finally in scenario 3, IP pre-
fix 10.12.0.0/16 is advertised by BGP speaker 10.6.17.1, which is passed on from AS64777
to AS64999; then, within, AS64999, the UPDATE message that contains this information is
forwarded from one IBGP speaker to another IBGP speaker. Since network 10.12.0.0/16 orig-
inated in AS64777 at BGP speaker 10.6.17.1, the NEXT-HOP value will remain at 10.6.17.1.

As you can see, NEXT-HOP in BGP can be somewhat confusing. NEXT-HOP in BGP
really needs to be defined because of the basic concept of IP routing that a destination network
address must have a next hop entry in a routing table. In an IGP environment, this is not a
problem since a router can compute the next hop based on the shortest path first algorithm.
Thus, NEXT-HOP in BGP can be thought of as a recursive idea; that is, it is listed for the
purpose of following the next hop notion with a pointer; when the actual traffic arrives, this
pointer would know how to route through IGP.

MULTI-EXIT-DISCRIMINATOR (MED)

This optional nontransitive attribute is a metric meant for use when there are multiple ex-
ternal links to a neighboring AS; in this case, the exit point with the lowest metric value
is preferred by the neighboring AS. The MED attribute is allowed to be sent to other IBGP
speakers in the same AS; it is, however, never propagated to other ASes beyond that. Thus,

CHAPTER 8 BGP 253

10.16.0.0/16
MED =10
(— ~ iy s @. :
AS64516 ? EBGP \ i
10.16.0.0/16 EBGP
@ ~g
..................... >
10.16.0.0/16
MED = 50

FIGURE 8.8 BGP path attribute: MED example.

\. AS64617
10.17.0.0/16

A AS64822 <

FIGURE 8.9 BGP path attribute: LOCAL-PREF example.

the border BGP speaker must have the ability to delete the MED attribute from a route before
passing the UPDATE message to its neighboring AS. MED is typically prevalent when the
multiple exit links are of a different bandwidth so that the link with a higher bandwidth can
be preferred by setting a lower metric value to this link, or to control the entry point into the
next AS, sometimes referred to as cold potato routing.

Consider Figure 8.8. Here, IP prefix 10.16.0.0/16 is advertised by AS64516 with different
MED values for each EBGP session to AS64617. Thus, when AS64617 sends user traffic to
AS64516, it will use the link where the MED value is smaller.

LOCAL-PREF

This well-known discretionary attribute is a metric used internally within an AS between
BGP speakers; this is also helpful in selecting an outgoing BGP speaker when an AS has
connectivity to multiple ASes or multiple BGP routes even with the same next hop AS.
Consider Figure 8.9. Here, IP prefix 10.17.0.0/16, originated from AS64617, is advertised
to AS64521 and AS64822. The intermediate ASes, AS64521 and AS64822, in turn, advertise
to AS64516, which arrives at BGP speakers R1 and R2, respectively. Now, AS64516 internally
wants to introduce a local preference for this route due to the preference to use AS64521 for
outgoing traffic. Thus, BGP speakers R1 and R2 are configured with local preference values
that are internally communicated to IBGP speaker R3. Thus, when user traffic arrives at R3

8.7

8.7.1

254 8.7 BGP Decision Process

destined for IP prefix 10.17.0.0/16, it will prefer to use the outgoing BGP speaker R1 since the
local preference metric value is higher for this router than the other one.

BGP Decision Process

The BGP decision process can be divided into two parts: (1) path selection and (2) aggregation
and dissemination. It may be noted that the BGP decision process is used interchangeably
with the path selection process in the common literature. We make a subtle distinction here
to separate out the role of aggregation and dissemination.

BGP Path Selection Process

The BGP path selection process has the responsibility of selecting routes to various IP prefix
destinations for use locally by a BGP speaker. The BGP path selection process is part of the
overall BGP decision process, which also handles route dissemination to its neighboring BGP
peer speakers; the route dissemination process will be discussed along with route aggregation
later in Section 8.7.2. To accomplish route selection, each BGP speaker maintains two routing
information bases (RIBs):

o Adjacent RIBs-In (Adj-RIBs-In) is the information base that stores AS-level routing informa-
tion for each IP prefix it has learned about from its neighbors through inbound UPDATE
messages. From its different neighbors, a BGP speaker may learn about more than one
AS path for a particular IP prefix; in most implementations of BGP, information learned
from different neighbors for a particular IP prefix destination is cached. While the BGP
specification does not require a BGP speaker to cache more than one path learned for a
particular IP prefix, most BGP implementations do cache paths so that it can use one of
the cached paths as the preferred path if the one currently used is no longer available.
Caching and impact on route selection in case of a failure are illustrated in detail in Sec-
tion 3.5.

e Loc-RIB is the information base that stores the routes that have been determined lo-
cally by its decision process, which is to be used for determining the forwarding ta-
ble.

The purpose of ROUTE-REFRESH becomes clear when we consider Adj-RIBs-In. Sup-
pose that a BGP speaker, while keeping a cached path, might have changed certain attribute
values in its memory compared to what it received from its neighbor, for example, due to a
configuration change by the network administrator; thus, to check/verify what values the
neighbor originally communicated, the network administrator can take advantage of the
ROUTE-REFRESH message to request the neighboring BGP to communicate its data again
using the UPDATE message.

It may be noted that each BGP speaker also maintains the following RIB:

o Adjacent RIBs-Out (Adj-RIBs-Out) is the information base that stores the routes for adver-
tisement to its neighboring BGP speakers through outbound UPDATE messages.

CHAPTER 8 BGP 255

This RIB is used in route dissemination and will be discussed later in Section 8.7.2. The

route selection process at a BGP speaker can be categorized into two phases:

1.

Import policy and filtering phase: When a BGP speaker receives an UPDATE message from
a peering BGP speaker, this phase is activated. Note that such an announcement can be
about a new route, a replacement route, or withdrawn routes. An import policy is main-
tained by the BGP speaker to filter out IP prefixes it does not want to support [260]; for
example, it may choose to filter out an IP prefix from nonallowable address space such as
a private IP address block or a route that contains a private AS number. Furthermore, for
each feasible route learned, the BGP speaker locally assesses a degree of preference. This
assessment can be based either on LOCAL-PREF if the announcement is received from
an IBGP speaker or any locally preconfigured decision rule. BGP specification leaves any
such preconfigured decision rule as a local matter.

Best route determination phase: This phase determines the best path for each distinct IP pre-
fix of which it is aware based on certain tie-breaking rules described later; the result is
then recorded in Loc-RIB. In this process, if the NEXT-HOP attribute is not found to be
resolvable for a particular IP prefix, such a route must be dropped during this decision
phase.

Note that the best route phase is started after the completion of the import policy and the

filtering phase. The routing decision criteria, which involve tie-breaking rules, are applied to
each IP prefix destination or a set of IP prefix destinations as received through the UPDATE
message. For clarity, we will present the description below in terms of determining the AS-
PATH to a specific IP prefix destination:

1.

If the IP prefix destination is unwanted due to import policy and filtering, discard the
route.

Apply the degree of preference with the highest LOCAL-PREF or preconfigured local
policy, if applicable.

If there is more than one route to the IP prefix destination, select the route that originated
locally at the BGP speaker.

If there is still more than one route to the destination IP prefix, select the one with the
smallest number of AS numbers listed in the AS-PATH attribute.

If there is still more than one route to the destination IP prefix, select the one with the
lowest ORIGIN attribute. Thus, this selection will follow the order: IGP, then EGP, then
Incomplete.

If there is still more than one route to the destination IP prefix, select the route with the
lowest MULTI-EXIT-DISCRIMINATOR.

If there is still more than one route to the destination IP prefix, select the route received
from EBGP over IBGP.

If there is still more than one route to the destination IP prefix, select the route with
minimum interior cost to the NEXT-HOP that is determined based on the metric value.

8.7.2

256 8.7 BGP Decision Process

9. If there is still more than one route to the destination IP prefix, select the route learned
from the EBGP neighbor with the lowest BGP identifier.

10. If there is still more than one route to the destination IP prefix, select the route from the
IBGP neighbor with the lowest BGP identifier.

Best AS paths to IP prefix destinations that result from the above process are then stored
in Loc-RIB, locally by each BGP speaker.

Route Aggregation and Dissemination

An important component of the BGP decision process is route dissemination. This phase,
which comes after completion of the route selection process, entails route aggregation along
with application of export policy.

We first start by discussing route aggregation at a BGP speaker; in fact, a critical ability of
BGP 4 is the handling of route aggregation that is made possible due to CIDR. The basic idea
is to combine IP address blocks for networks from two or more ASes through supernetting at
a downstream AS. In a sense, the newly announced supernetted address block is less specific
and it announces the AS number only of the AS where supernetting is done. To do that, two
path attributes, ATOMIC-AGGREGATE and AGGREGATOR, have been defined. ATOMIC-
AGGREGATE is a well-known discretionary attribute that is attached to a route out of the AS
where supernetting is done, and the BGP identifier of speaker where this aggregation is done
is indicated through the attribute AGGREGATOR, an optional transitive attribute.

Example 8.4 Route aggregation.

Consider Figure 8.10. Here AS64822 announces IP prefix 10.5.160.0/19 to AS64617;
AS64617, in turn, announces this one and IP prefix 10.5.224.0/19 that it hosts to AS64701. Note
that AS64701 also receives the announcement about 10.5.192.0/19 from AS64816. Further-
more, AS64701 houses 10.5.128.0/19. By inspecting these four IP prefixes, the BGP speaker
in AS64701 determines that these can be combined to go from a /19 address block to a /17
address block 10.5.128.0/17.

Thus, AS64701 announces downstream about 10.5.128.0/17 with itself as the AS host,
but indicating that ATOMIC-AGGREGATE is set and that the AGGREGATOR, the BGP
speaker where this aggregation is done, is identified through the BGP identifier of the router
as 192.168.4.18. Clearly, this information is less specific since 10.5.128.0/17 is advertised at the
/17 netmask; furthermore, this speaker lists its own AS number due to aggregation, to serve
the role of a proxy, instead of listing the AS number of one of the actual originating ASes. a

An important advantage of route aggregation is that it reduces the number of routing
table entries that need to be maintained in downstream ASes. For the example just consid-
ered, the immediate downstream AS needs to maintain a single entry about 10.5.128.0/17
with AS64701 as the home, instead of maintaining four routes identified at the /19 address
block along with the appropriate AS number entries. In essence, route aggregation addresses
scalability. There are certain exceptions when route aggregation should not be performed: for
example, when two routes have a different MED, when routes have different attribute values
for one of the attributes, and so on.

CHAPTER 8 BGP 257

, 5., 61
20 o v
~L L ey 105.128.0/17

AS-PATH: (64701)
AGGREGATOR = 64701, 192.168.4.18

10.5.192.0/19
AS-PATH: (64816) ~ .
AS64816 e i e sl S e Ll AS64701 =~ Seielieieleleleleiehbdedeleteleleidetededele >

w_/ > 1051280/19 =
\-V'f%cp Identifier

192.168.4.18

FIGURE 8.10 Route aggregation example using ATOMIC-AGGREGATE and
AGGREGATOR.

Along with route aggregation, a BGP speaker also applies export policy before propagating
routes to other BGP speakers. It may be noted that the export policy can contain separate
requirements for each neighboring BGP speaker. Thus, the output of this process is not the
same for every BGP speaker for which this BGP speaker is connected; thus, a separate Adj-
RIB-out is created for each such speaker in order to maintain different rule with different
speakers.

8.7.3 Recap

We now summarize the entire BGP decision process. It involves best route selection at a BGP
speaker by applying import policy to Adj-RIB-In and by applying routing decision criteria to
determine Loc-RIB; in turn, export policies and optionally route aggregation are applied, dif-
ferent for different peers, to determine Adj-RIB-Out separately for each peering BGP speaker.
This aspect is depicted in Figure 8.11.

In Table 8.1, we list samples of import and export policies at BGP speaker, AS64701 (Fig-
ure 8.10). Thus, when an update is received from BGP peer AS64617, the speaker at AS64701
will store it in Adj-RIB-In; this will be separate from the update received from another BGP
peer in AS64816. Now, AS64701 will compute best routes taking into account import poli-
cies and the criteria described earlier in Section 8.7.1. The output will be stored in Loc-RIB,
which then will be subject to the export policy for AS64999 (not shown in figure) to arrive at
different Adj-RIB-Out.

By this time, it should be apparent why routing in BGP is often referred to as policy-
based routing. In fact, import and export policies are critical components in the BGP routing
decision process, which are not seen in other routing protocols. Note that import and export
policies are placed at a BGP speaker by a network administrator due to business relations or
peering arrangement, i.e., external factors. Router vendors provide user interfaces to be able
to enter policy rules; also, Routing Policy Specification Language (RPSL) (RFC 2622 [8]) is
a generic platform to describe policies. Later in Section 9.5, we will delve more into policy-
based routing.

8.8 Internal BGP Scalability

Earlier in Section 8.5, we introduced the notion of IBGP. We mentioned that IBGP requires full
mess connectivity among IBGP speakers as a consequence of Rule 2. It is easy to see that this

258 8.8 Internal BGP Scalability

BGP BGP
Speaker (1) J. ',’Qpeaker (k+1

BGP

& Ad - \
- Ty ol 2, =
@) e T T - =77\ Speaker (k+2),
:

1.
1

;é:
2
= B

5

Speaker (k-2) A Speaker (k+3)
| imeor] (Exon] '
. RIB-In Export RIB-Or
BGP s BGP
Speaker (k-1) peaker (k+m,

FIGURE 811 BGP decision process.

TABLE 8.1 Examples of import and export policies at a BGP speaker.

Import Policy Export Policy
— Do not accept default 0.0.0.0/0 from — Do not propagate default route 0.0.0.0/0
AS64617. except to internal peers.
— Assign 192.168.1.0/24 coming from — Do not advertise 192.168.1.0/24 to
AS64617 preference to receiving it from AS64999.
AS564816. — Assign 172.22.8.0/24 a MED metric of 10
— Accept all other IP prefixes. when sent to AS64999.

raises a scalability problem. If there are n IBGP speakers, then n(n — 1)/2 total IBGP sessions
would be required with each speaker handling n — 1 sessions. If n is small, this is not an
issue. However, when n is large, an IBGP speaker is required to maintain a large number of
IBGP sessions. There are two well-known approaches to handle this scalability issue among
IBGP speakers: route reflection approach and AS confederation approach. They are described
below.

8.8.1 Route Reflection Approach

The concept of route reflector [59], [60], [62] has been developed to address the scalability
problem of full-mesh IBGP sessions. The idea is fairly simple: have one or more IBGP speak-
ers act as concentration routers, commonly known as route reflectors. Introduction of route re-
flectors then creates a hierarchy among the IBGP speakers by clustering a subset of IBGP
speakers with each route reflector. IBGP speakers associated with a route reflector in a cluster
are referred to as route reflector clients; IBGP speakers that are not clients are referred to as non-
clients. Note that a client is not aware that it is talking to a route reflector and assumes that it is
as if like a full-mesh configuration. In Figure 8.12, we show IBGP session connectivity under
full mesh and when there are one, two, or three route reflectors. For example, in Figure 8.12(c),

CHAPTER 8 BGP 259

[

AS64521
AS64617
.) / As64521
AS6a701 AS6is16_ -7 TN "= é AS64617
Sear01 ASeds16_ 7 FIN T T =

PO I S N %
] Sy Nt
~ \]
N~ - 1 A F
R1 L e E i Y A | - S %
Loy L (P T - ro .
[A [! \ ~ RZ/
\ 7 N

AS64730 AS64816

(a) Full mesh (b) With one RR (R6)

AS64521
AS64617
1
. i, AS64521
Y -
AS64701 -~ AS64516 = ~ ASSISTT
Yt = RR1
3 Y R2 y ;
7 AS64516 \
i \ ‘] o / AS64701 /
~ v B -
A

AS64730

AS64816

(c) With two RRs (d) With three RRs

FIGURE 8.12 IBGP route reflector example showing IBGP sessions (route reflectors are
identified by RR).

there are two clusters: one cluster is RR1 with R2 and R3, and another cluster is RR2 with R1
and R4. While we show here just one route reflector in each cluster, for redundancy, a cluster
may have multiple route reflectors. Each cluster is identified by a CLUSTER-ID. If there is
only one route reflector in a cluster, then CLUSTER-ID is the BGP identifier of the route re-
flector; otherwise, a common CLUSTER-ID can be defined for use by multiple route reflectors
within a cluster. Note that if there is only one route reflector (see Figure 8.12(b)), then it cre-
ates the hub-and-spoke connectivity where the route reflector connects to each route reflector
client (see Figure 8.12(b)). In this case, the lone route reflector is still required to maintain n —1
sessions with the other IBGP speakers; that is, for this route reflector the processing overhead
is no different than if it were under the full-mesh scenario. Thus, often, it is better to deploy
two or more route reflectors to form clusters so that each route reflector has a reasonable
number of IBGP sessions to handle.

260 8.8 Internal BGP Scalability

It is important to note that route reflectors must form full mesh among themselves and
each client peer with only its route reflector. Full mesh among route reflector is not apparent
until there are at least three route reflectors (see Figure 8.12(d)). There are certain rules to
follow in regard to announcements:

e If an announcement is received by a route reflector from another route reflector, then re-
flect/pass it to its clients. Consider Figure 8.12(c); if route reflector RR2 learns from route
reflector RR1, it will pass on to route reflector clients R1 and R4.

e Ifan announcement is received by a route reflector from a route reflector client, then reflect
it to another route reflector. Consider Figure 8.12(d); if route reflector RR3 learns from
client R1, it will pass on to route reflectors RR1 and RR2.

¢ If an announcement is received by a route reflector from an EBGP speaker, reflect it to all
other route reflectors and its clients. Consider Figure 8.12(d); if route reflector RR1 learns
about external IP prefixes from AS64521, it will pass on to route reflectors RR2 and RR3,
and route reflector client R2.

From the above discussion, you might realize that Rule 2 discussed earlier in Section 8.5
is relaxed since the route reflectors are now allowed to reflect IP prefixes they have learned
from an IBGP speaker to other IBGP speakers. The question then is: can we detect and avoid
routing loops? The answer is yes, but the solution requires two additional attributes as de-
scribed below:

e ORIGINATOR-ID: This attribute identifies a route reflector through its 4-byte router ID;
it is given type code 9 and is optional and nontransitive. This attribute is added only by
the originating route reflector. That is, when a route reflector learns about an IP prefix
from one of its clients, it adds the ORIGINATOR-ID attribute before reflecting to other
speakers. Note that a BGP speaker should not create an ORIGINATOR-ID if one is al-
ready created by another speaker. If a route reflector receives an announcement about
an IP prefix with the ORIGINATOR-ID that matches its router ID, it should ignore this
announcement. Consider Figure 8.12(d); if route reflector RR3 learns about an IP prefix
from R1 that is advertised by AS64701, it will add the ORIGINATOR-ID attribute with its
router ID and announce to route reflectors RR1 and RR2. If somehow RR3 learns about
the same IP prefix, it will check the ORIGINATOR-ID attribute and recognize that it is the
same value as its router ID; thus, it will not forward to client R1.

e CLUSTER-LIST: This list stores a sequence of 4-byte CLUSTER-ID values to indicate the
path of clusters that an advertised IP prefix has visited. The role of CLUSTER-ID is similar
to AS number; this is used to identify each cluster uniquely within an AS. Thus, when a
route reflector reflects an IP prefix, it is required to prepend the local CLUSTER-ID to
the CLUSTER-LIST; thus, CLUSTER-LIST is similar to the function of AS-PATH attribute
and is used for detecting and avoiding looping.

With the introduction of ORIGINATOR-ID and CLUSTER-LIST, the BGP route selection
process described in Section 8.7.1 requires the following modification:

8.8.2

CHAPTER 8 BGP 261

9’. Use ORIGINATOR-ID as the BGP IDENTIFIER.
9.1 Prefer a route with the shortest CLUSTER-LIST length.

That is, this new step 9’ replaces the previously described step 9 in Section 8.7.1 and step
9.1 is a new step inserted before step 10. Note that CLUSTER-LIST length is assumed to be
zero when a route does not include the CLUSTER-LIST attribute. A final comment is that the
ORIGINATOR-ID and CLUSTER-LIST are not advertised outside its AS.

Confederation Approach

In lieu of the route reflection method, another method known as the AS confederation ap-
proach [701], [702] can be used to address IBGP scalability. The basic idea is fairly simple: use
a divide-and-conquer approach to break the entire AS into multiple sub-ASes where IBGP
full mesh is maintained only within each sub-AS and sub-ASes connected by exterior IBGP
sessions. The entire AS is then known as a confederated AS. While the entire confederation
has a unique AS number, sub-ASes may have AS numbers obtained and assigned from the
public AS number space, or use AS numbers from private AS number space. Consider Fig-
ure 8.13 where AS64516 is divided into two sub-ASes, AS65161 and AS65162. Here, IBGP
speakers R1, R4, and R5 are fully meshed in sub-AS, AS65161, and IBGP speakers R2, R3,
and R6 are fully meshed in sub-AS, AS65162, and the two sub-ASes maintain a BGP session,
referred to as exterior IBGP session, between R5 and Ré6.

For the confederation concept to work within an AS without looping, two segments
types, AS-CONFED-SET and AS-CONFED-SEQUENCE, which parallel AS-SET and AS-
SEQUENCE, respectively, have been defined as part of the AS-PATH attribute. Then, each
sub-AS talks to another sub-AS within the same AS, somewhat similar to the way that two
EBGP speakers talk to each other across ASes; however, there are the following additional
requirements:

e LOCAL-PREF attribute for a route is allowed to be carried from one sub-AS to another
sub-AS. This is required since the LOCAL-PREF value for this route is meant for the entire
AS. Consider Figure 8.13; for a route learned from AS64701, BGP speaker R1 might set
LOCAL-PREEF; this information is to be carried when going from sub-AS AS65161 to sub-
AS AS65162. Recall that in regular EBGP, LOCAL-PREEF is ignored.

e NEXT-HOP attribute for a route set by the first BGP speaker in the entire AS is allowed
to be carried from one sub-AS to another sub-AS. Consider Figure 8.13 again; for a route
learned from AS64701, BGP speaker R1 sets the NEXT-HOP attribute; this information is
to be carried when going from sub-AS AS65161 to sub-AS AS65162.

e When advertising a route from one sub-AS to the next sub-AS, insert AS-CONFED-
SEQUENCE to the AS-PATH attribute along with the AS number of the sub-AS. This
then helps detect and prevent looping.

Note that before leaving a confederated AS, any AS-CONFED-SEQUENCE or AS-
CONFED-SET information is removed from the AS-PATH attribute and AS numbers of sub-
ASes are not advertised outside of the confederation.

262 8.9 Route Flap Dampening

AS64521

AS64617
AS64701

AS64516

AS64822

Ase AS64816

FIGURE 8.13 IBGP confederation example.

Similar to the route reflection approach, the confederation approach requires a slight
modification to the BGP route selection process described earlier in Section 8.7.1 as follows:

7'. 1f there is still more than one route to the IP prefix destination, select the route received
from EBGP over confederation EBGP, which in turn over IBGP.

That is, step 7’ replaces step 7 in the standard BGP route selection process.

It is easy to see that the confederations approach requires having an AS number due
to the creation of sub-ASes. This had the potential of using many AS numbers if multiple
providers choose to use this option. To alleviate the AS number exhaustion problem, a private
AS number was introduced so that private AS numbers can be used by a provider to number
their sub-ASes for the purpose of confederation.

Deployment of confederation requires a methodical hierarchical approach. If confedera-
tions are created in an unorganized manner, it can also create unnecessary message exchanges
affecting the performance of the network. For instance, imagine the scenario in which each
BGP speaker in an AS is designated as a separate sub-AS and one of them goes downs; it can
create long convergence problems.

8.9 Route Flap Dampening

In BGP, an UPDATE message is sent from a BGP speaker to its neighboring speaker when-
ever any change to a route of an IP prefix destination occurs. Furthermore, a speaker that
announces such a route to a neighboring BGP speaker is also responsible for reporting any
changes, including withdrawal, to the same neighboring BGP speaker subsequently, irrespec-
tive of where it has learned from. As you can imagine, it is quite possible for a BGP speaker to
announce a new route regarding an IP prefix destination, then almost immediately withdraw
it a few seconds later, and then announce it again, and so on. For example, such a situation
can occur if there is some problem maintaining the BGP session between two speakers; this is

CHAPTER 8 BGP 263

compounded by the fact that when a BGP session is initialized, full route exchange is typically
done between two BGP speakers.

The unpleasant situation regarding announcement and withdrawal of a route to an
IP prefix destination from a BGP speaker to its neighboring speaker is that there is a rip-
ple effect since the receiving BGP speaker, unless it is in a stub AS, announces this route
to its downstream BGP speaker in another AS, and this one in turn to its downstream BGP
speaker, and so on. Frequent changes of routes, commonly known as route flapping, can result
in creating a cascading storm of updates through ASes. A consequence is that it causes BGP
instability along with computational overhead incurred by the downstream BGP speakers as
well as additional bandwidth consumption to report changes. Suppose that a BGP speaker
in the core of the Internet handles 196,000 IP prefix destinations; if 1% of them are flapping
every couple of minutes, this speaker would have difficulty handling the CPU load.

It is important to recognize that such instability must be addressed at the granularity of
an IP prefix destination, not at the level of a BGP neighbor. Note the problem could be at
the origin when an IP prefix destination is first injected into the world of ASes, for example,
the change in NEXT-HOP attribute; thus, this change will ripple through ASes, while other
IP prefixes are not affected at all. Similarly, on a route to an IP prefix destination, there could
be a change in the AS path. Thus, for each IP prefix destination, any change due to either AS
change or NEXT-HOP change is minimally considered as a change.

To minimize the impact of possible instability caused by UPDATES messages in regard to
an IP prefix destination, a route flap dampening principle has been introduced in BGP [720]
to determine when next to advertise the announcement or withdrawal about this destination
to a BGP peer. A side effect of route flapping is an increase in convergence time. Thus, the
main objective of a route dampening approach is to reduce the route update load in such a
way that well-behaved and poorly behaved routes are treated with some fairness.

The basic principle is that at each BGP speaker, as it learns about an IP prefix destination
that has been announced, a default figure-of-merit penalty metric per IP prefix destination is
assigned. Whenever the announcing BGP peer sends a change or withdrawal, i.e., flaps in
regard to this IP prefix, the penalty is increased by a fixed amount from its current value.
The penalty then decays exponentially to half its value at the end of each half-life. There are
two additional conditions: (1) If the penalty crosses a specified upper threshold known as
the suppress or cutoff limit, the speaker suppresses the view of this IP prefix and its associ-
ated AS path, i.e,, it is not announced downstream; (2) the speaker frees this route from the
suppressed state when the penalty goes below the reuse limit, or when the time since the
last time of announcement exceeds a certain length of time such as four times that of the
half-life.

Consider that the route flap occurs at £y, t1, £, Then, given half-life quantity H, and the
penalty amount Pj,. per flap, the dynamic penalty assessment over time, ¢, can be expressed
as follows:

0, <
P(t) = { Pinc; g =1y tor
Pty xe™ 1, t>1, (8.9.1)

P(ti):P(ti)‘f‘Pinc, i=1,2,....

264 8.9 Route Flap Dampening

This says that until the first time announcement of an IP prefix destination received at
a BGP speaker, there is no penalty. At) when the first announcement arrives, the assigned
penalty is the penalty per flap, Piyc. Then the exponential decay starts with this penalty as
the starting value; it continues until the next flap at 71, when the penalty is increased by the
increment Pjc, and so on. You might wonder why there is a “log2” in the exponential decay
expression; this factor balances out the requirement that after passage of half-life since last
flap, the penalty should be half its value. To see it, note that half-life since last flap at #; means
t —t; = H. Then the main expression reduces to P(t; + H) = P(t;) e~ 1082; since e 1082 = %, we
thus have P(t; + H) = P(t;) /2.

In Figure 8.14, we show a simulated behavior of dynamic penalty given by Eq. (8.9.1) with
half-life (H) set to 7.5 min and the penalty per flap (Piyc) set to 1000; suppress limit of 2000
and reuse limit of 750 are also marked. Two plots are shown: one where flapping occurs every
2 min for five times and another where flapping occurs every 4 min for three times. Consider
the case when it flaps every 2 min. When the first announcement is received at a speaker at
2 min, a penalty of 1000 is assigned and it is accepted and is announced downstream; the
next flap at 4 min is also accepted and downstream since the value after adjustment is still
below 2000. At the next flap at 6 min, the penalty value now crosses 2000; thus, this update
is suppressed and so are the next two flaps. After no further update is received, the penalty
decays until it crosses the reuse limit around 27 min, when it is ready to advertise again.
For the second plot with flaps every 4 min, the third flap at 12 min is suppressed and is not
available for consideration until about 24 min.

From this illustration, we can see that there are two possible side effects of route damp-
ening: (1) a legitimate update on a route to an IP prefix destination that has been received is
not considered since this IP prefix is in the suppressed state; and (2) communication in regard
to a legitimate change is delayed to a neighboring speaker. Note that a receipt is still possi-
ble since the receiving speaker cannot control when it wants to receive from a sending BGP
speaker as long as the sending BGP speaker satisfies the MinRouteAdvertisementInterval-
Time requirement. A positive benefit of route flap dampening occurs when route aggregation

flap, every 2 min; max-flap=5
4000 | flap, every 4 min; max-flap=3 -------- E
suppress limit --------

3500 | reuse limit -~ 1

3000 1
2500 | 1

penalty

2000 |rereeseemseemsfereseeeenense: P N 1
1500 | 1
1000 F o \ . .
500 i ‘ R

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

time (minutes)

FIGURE 814 Route dampening figure-of-merit penalty.

8.10

8.10.1

8.10.2

CHAPTER 8 BGP 265

is done at a downstream speaker. The aggregated route is then like a new announcement; any
prior knowledge about flap is not carried over and is lost.

We briefly discuss why route dampening was introduced. When the Internet connected
different ASes between Internet service providers around the mid-1990s, it was often on low-
speed links such as 56 Kbps. Thus, when route flapping occurred, it consumed a significant
part of such low-bandwidth links. However, at that time, BGP had no knobs to control ex-
cessive BGP-related traffic. Thus, route dampening was introduced as an add-on feature to
provide a relief mechanism. In today’s environment, most ASes are connected by high-speed
links and, thus, it is not always necessary to invoke route flapping, since the proportion of
bandwidth required for BGP update is much less in a high-speed environment. Second, the
exact parameter values might need to be different than the ones set by vendors with their
BGP release; this requires some amount of fine-tuning to avoid any undesirable behavior.

BGP Additional Features

There are a variety of extensions proposed to BGP. Here we discuss two well-known features.

Communities

This feature [115] was developed to incorporate a desirable property observed from deploy-
ment of BGP. From a deployment perspective, BGP is heavily policy dependent; for example,
peering neighboring ASes might have a certain agreement that goes into the BGP decision
process. In the Internet, BGP is used by transit ISPs who provide transit services to other
ASes. In case some control is needed over distribution of routing information, it is based on
either any IP prefix destination allowed or not allowed, or the AS-PATH attribute. The com-
munities attribute was developed to simplify such control. For example, for a certain set of
IP prefix destinations, irrespective of their path attribute, a community can be defined so that
it is easier to handle/configure this group.

Three well-known communities values have been defined: (1) IP prefixes marked such
are not allowed to be advertised outside an AS (“no-export”), (2) IP prefixes marked such
are not to be advertised beyond the receiving BGP speaker to other BGP speakers (“no-
advertise”), and (3) IP prefixes marked such may be advertised by a receiving BGP speaker,
but not outside the current AS confederation (“no-export-subconfd”).

Multiprotocol Extension

Originally, BGP was defined assuming that it will be used only for the IPv4 address family.
An important question is how to extend BGP if it were to be used for other address families
such as IPv6, especially without changing the version number. For this purpose, the optional
parameter field in the OPEN message turned out to be helpful [113], [114]. Using this feature,
BGP multiprotocol extension has been developed [63], so that network layer reachability in-
formation (NLRI) field can be used for other address families such as IPv6, or IPv4-based
virtual private networks (VPNs) [602], and so on. Later, extensions presented in [602] for
virtual private networking will be discussed in Section 18.5.1.

8.11

266 8.11 Finite State Machine of a BGP Connection

Finite State Machine of a BGP Connection

When a BGP speaker sets up a BGP session with a peer BGP speaker, several different types
of messages are communicated during the session starting with the OPEN messages. How
to handle different types of messages depends on triggering a number of events and what
state to move to depends on the action—which is a stateful mechanism. Thus, a finite state
machine is used to describe the relation of a BGP speaker’s state to each of its BGP peers;
that is, a speaker needs to maintain a separate finite state machine with each of its BGP peer-
ing speakers. The basic states are classified into the following: Idle state, Connect state, Ac-
tive state, OpenSent state, OpenConfirm state, and Established state. BGP specification [591]
documents 28 different types of possible events: 16 of them are mandatory and the rest are
optional; they are listed in Table 8.2. In the following, we discuss each state and provide a
general overview about state transition. The finite state machine is shown in Figure 8.15; for
details, refer to RFC 4271 [591].

IDLE STATE

This is the initial state of a BGP speaker. In this state, the BGP speaker is not yet ready to
accept a BGP connection. At the occurrence of either a manual start (MEO1) or automatic start
(OE03) event, the BGP speaker initializes BGP resources, starts the ConnectRetryTimer, starts
a TCP connection to its BGP peer speaker, and also listens for any incoming BGP connection.
It then moves to the Connect state. However, if this BGP speaker were to take the passive role
in the sense of event OE04 or OEOQ5, the initialization is similar to when either MEO1 or ME02
occurs, except that it moves to the Active state instead of Connect state. If dampening of peer
oscillation is activated, then three additional events, OE06, OE07, and OE13, may occur; in
this situation, the local BGP speaker tries to prevent peer oscillations using the dampening
principle.

Keep alive update

OpenConfirm

Keep alive

FIGURE 8.15 Finite state machine of a BGP speaker for connection to a peer.

CHAPTER 8

BGP 267

TABLE 8.2 BGP events.

Event | Status Remark

MEO1 | Mandatory | Local BGP administrator manually starts the BGP connection to a peer
BGP speaker

MEO2 | Mandatory | Local BGP administrator stops the BGP connection to a peer BGP
speaker

OEO03 | Optional Local system automatically starts the BGP connection

OE04 | Optional A local BGP administrator is to manually start the BGP connection to
a peer BGP speaker, but it first listens to an incoming BGP connection
before starting the BGP connection

OEO5 | Optional Local system automatically starts the BGP connection, but it first lis-
tens to an incoming BGP connection before starting the BGP connec-
tion

OE06 | Optional Local system automatically starts the BGP connection with the damp-
ing of oscillation activated

OEOQ7 | Optional Local system automatically starts the BGP connection with the damp-
ing of oscillation activated and also first listens for an incoming BGP
connection

OEO08 | Optional Local system automatically stops the BGP connection

MEQ9 | Mandatory | Indication that the ConnectRetryTimer has just expired

ME10 | Mandatory | Indication that the HoldTimer has just expired

ME11 | Mandatory | Indication that the KeepAliveTimer has just expired

OE12 | Optional Indication that the DelayOpenTimer has just expired

OE13 | Optional Indication that the IdleHoldTimer has just expired

OE14 | Optional Indication that the local system has received a valid TCP connection

OE15 | Optional Indication that the local system has received a TCP connection for the
BGP session with either an invalid source IP address or port number,
or an invalid destination IP address or port number

ME16 | Mandatory | Indication that the local system has successfully set up a TCP connec-
tion to its remote BGP speaker that it initiated

ME17 | Mandatory | Indication that the local system has confirmed the TCP connection ini-
tiated by a remote BGP speaker

ME18 | Mandatory | Indication that the local system has received a notice about failure of
a TCP connection to a peer BGP speaker

ME19 | Mandatory | Indication that a valid OPEN message is received from the remote
BGP speaker

OE20 | Optional Indication that a valid OPEN message has been received, but is delay-
ing the sending of an OPEN message due to DelayOpenTimer running

ME21 | Mandatory | Indication that the header of a received BGP message is not valid

ME22 | Mandatory | Indication that there is some error with the OPEN message received

OE23 | Optional Indication of the detection of a connection collision during processing

of an incoming OPEN message and this connection is to be discon-
nected

268 8.11 Finite State Machine of a BGP Connection

TABLE 8.2 (Continued.)

Event | Status Remark

ME24 | Mandatory | Indication that a version error code has been received with a NOTIFI-
CATION message

ME25 | Mandatory | Indication that an error code other than version error code has been
received with a NOTIFICATION message

ME26 | Mandatory | Indication that a KEEPALIVE message has been received

ME27 | Mandatory | Indication that a valid UPDATE message has been received

ME28 | Mandatory | Indication that an invalid UPDATE message has been received

CONNECT STATE

In this state, the BGP speaker is now waiting for the TCP connection to be established. Several
different actions are possible depending on the triggering of events. If manual stoppage is in-
voked (event MEQ2), the connection is dropped, resources are released, and the BGP speaker
then moves to the Idle state. If ConnectRetryTimer expires (event MEQ9), the BGP speaker
drops the connection, restarts the ConnectRetryTimer, stops the DelayOpenTimer if this was
activated earlier, starts a new TCP connection while listening to a connection initiated by the
other side, and remains in the Connect state.

From a receiving point of view, if the TCP connection is valid (event OE14), it is processed
and it stays at the Connect state. If the TCP connection is successful (ME16 or ME17), then the
DelayOpen value is checked. If it is true, then timers are reset and it remains at the Connect
set; however, if DelayOpen is not set, then the local BGP speaker stops the ConnectRetry-
Timer, completes BGP initialization, sends an OPEN message to the remote BGP speaker, sets
the HoldTimer to a large value, and moves to the OpenSent state.

If the TCP connection request is invalid (OE15), it is rejected and stays at the Connect
state. However, if it is valid but the connection fails (ME18), the system checks if DelayOpen-
Timer is running. If so, the timers are reset, and it continues to listen to a connection from its
peer, and then moves to the Active state. If DelayOpenTimer is not running, the connection
is dropped, BGP resources are released, and it moves to the Idle state.

It is possible to receive an OPEN message while the DelayOpenTimer is still running
(OE20). If so, an OPEN message is sent in response and a KEEPALIVE message is also gen-
erated, and the state is changed to the OpenConfirm state. This also occurs when the au-
tonomous system number on the received OPEN message is checked to determine if the peer
is external or internal.

If there is any error while checking BGP header (ME21) or OPEN message (ME22), all
BGP resources are released and the connection is dropped.

In response to an OPEN message, it is possible to receive a NOTIFICATION message with
a version error (ME24); if so, BGP resources are released, the TCP connection is dropped, and
it changes to the Idle state. For the rest of the events, if any of them occurs, the same handling
procedure is used.

CHAPTER 8 BGP 269

ACTIVE STATE

The role of this state is to acquire a BGP peer. If manual stoppage occurs (ME02), the connec-
tion is dropped and the state is changed to the Idle state. If the ConnectRetryTimer expires,
a new TCP connection is initiated and, at the same time, listens to one, then moves its state
to the Connect state. If the DelayOpenTimer expires or delayed open is not set, an OPEN
message is sent to its BGP peer, and it moves to the OpenSent state. If, however, an OPEN
message is received and the delay open timer is running (OE20), an OPEN message is sent
and a KEEPALIVE message is sent.

If there is an error detected when checking the BGP message header or OPEN message,
the connection is dropped and the state changes to the Idle state. In case of a NOTIFICATION
message with version error (ME24), the handling is the same.

OPENSENT

Normally, the speaker arrives at the OpenSent state from the Active state; in this state, an
OPEN message is sent immediately or later depending on the DelayOpenTimer value and
at the same time it waits for an OPEN message from its BGP peer. If an OPEN message is
received and there is no error in the message (ME19), a KEEPALIVE message is sent, the
KeepAliveTimer is activated, and it moves to the OpenConfirm state. In all other events, the
connection is dropped while sending a NOTIFICATION message as applicable and the state
is changed to Idle, except if TCP connection fails (ME18); in this case, the state is changed to
the Active state.

Once the optional local DelayOpenTimer expires, the speaker sends the OPEN message
and waits to hear an OPEN message from its neighboring BGP speaker. If an OPEN message
is received, fields are checked; if errors occurs such as a bad version number or an unaccept-
able AS number, it sends a NOTIFICATION message and moves to the Idle state.

Note that if the BGP speaker supports the Capabilities option, it can advertise this infor-
mation when it sends the OPEN message and inquire, for example, if the ROUTE-REFRESH
capability is supported by the receiving speaker. If the other end responds using a NOTIFI-
CATION message stating that it does not support the ROUTE-REFRESH capability, a new
OPEN message is generated in which the optional capability is turned off.

OPENCONFIRM STATE

In this state, the speaker waits for either a KEEPALIVE or a NOTIFICATION message, or
generates a KEEPALIVE message. An important action here is when the HoldTimer expires;
in this case, a NOTIFICATION message is sent and the TCP connection is dropped. If the
KeepAliveTimer expires, a KEEPALIVE message is sent and a new KeepAliveTime value is
generated, and the state is changed to the Established state.

If a NOTIFICATION or a NOTIFICATION with a version error (ME24) is received, the
connection is dropped and the state changes to the Idle state. If an OPEN message is received
(ME19), a NOTIFICATION is sent and the connection is closed and moves to the Idle state.
Note that at this state, a NOTIFICATION message from its peer BGP speaker is also possible
if the peer does not support the ROUTE-REFRESH capability; this situation arises only if it
has included ROUTE-REFRESH capability in the optional capability parameter when it sent
out its OPEN message.

8.12

8.12.1

8.12.2

270 8.12 Protocol Message Format

ESTABLISHED STATE

In the established state, a BGP speaker normally exchanges UPDATE, NOTIFICATION, and
KEEPALIVE messages with a peering BGP speaker. If a stoppage event occurs (ME02, OE08),
a NOTIFICATION is sent, the connection is closed, and it moves to the Idle state.

If HoldTimer expires (ME10), a NOTIFICATION is sent, the TCP connection is dropped,
peer oscillation damping is performed, and the system changes to the Idle state. If the
KeepAliveTimer expires, a KEEPALIVE message is sent and a new KeepAliveTime value is
generated, and the state is changed to the Established state. Note that each time a KEEPALIVE
or UPDATE is received, the KeepAliveTimer is re-initialized with a new value.

Protocol Message Format

In this section, we provide detailed information about BGP message formats.

Common Header

BGP4 has a common header of 19 bytes that consists of 16 bytes of marker, followed by 2
bytes of length field, and 1 byte of type field (see Figure 8.16). The intent of the marker field is
to do synchronization, although it can also be used for the security option. For example, this
field contains all 1s when used for synchronization, especially when no security options are
used. The length of the entire BGP message, including header, is indicated through the length
field in byte count; although this field is 2 bytes long, any BGP message cannot be longer than
4096 bytes.

Message Type: OPEN

The message type, OPEN, follows the common header where the type field in the header in-
dicates that this is a message type with value 1 (Figure 8.17). The OPEN message is sent at the
start of a BGP session between two peering BGP speakers. The OPEN message has a required
field of 10 bytes followed by an optional parameter field; thus, including the common header,
the OPEN message is at least 29 bytes long. The main fields are as follows:

e Version (1 byte): This field indicates the BGP protocol version, currently set to version 4.

o Autonomous System Number (2 bytes): This field is used to declare the AS number to which
the sending BGP speaker belongs.

012 3 4567 012345670123 4567012345@67
Marker T
(16 bytes) 19
bytes
Length Type
(2 bytes) (1 byte)

FIGURE 8.16 BGP4 common header.

CHAPTER 8 BGP 271

01234567 0123454670123 45¢67 012345%67

BGP Common Header

BGP Common Header

Version
{1 byte)

Autonomous System Number Hold Time
(2 bytes) (2 bytes)

BGP Identifer
(4 bytes)

Optional Parameters

Length (1 byte
Optional Parameters

Optional Parameters

Optional Parameter Encoding:

01234567 01234567 0123454607 0123458467

Type Length
(1 byte) (1 byte)

Optional Parameters Data

Optional Parameters Data

FIGURE 8.17 BGP4 OPEN message.

Hold Time (2 bytes): The maximum time (in seconds) before a BGP speaker assumes that
its peering BGP speaker is down, the time before the virtual link is assumed down. Since
this value is advertised as part of the OPEN message by each side, the smaller of the two
values is agreed upon as the HoldTime for the rest of this BGP session. Hold Time must
be either zero or at least 3 sec, while the recommended value is 90 sec. The value zero is
meant to indicate that the BGP session is never to go down.

BGP Identifier (4 bytes): This is an identifier for the sending BGP speaker, serving as this
router’s ID. Usually, it is set to the highest value of all the sending BGP speaker’s inter-
faces.

Optional Parameter Length (1 byte): The parameter length is used to indicate optional pa-
rameters. When this field is set to zero, no optional parameter follows.

Optional Parameters: The optional parameter is expressed using the type-length-value
(TLV) format. Optional Parameter Type 1 (Authentication Information), originally defined
in RFC 1771, has now been deprecated in RFC 4271. If the parameter type is 2, then ca-

272 8.12 Protocol Message Format

pabilities such as the following have been defined so far: 1 for Multiprotocol Extension,
which allows for addresses to be other than IP addresses, 2 for indicating route refresh
capability, 4 for Multiple route to a destination capability, 64 for Graceful restart, 65 for
Support for 4-byte AS number capability, and so on; the updated list is maintained at
[314].

8.12.3 Message Type: UPDATE

Once a BGP session is established, the UPDATE message is sent to withdraw or announce
IP prefixes with their route information, as and when needed (Figure 8.18). The message type

01234567 0123458670123 4567012345¢%67

BGP Common Header

B oS T e el ST e
T = L JE—

BGP Common Header

ithdrawn Routes
Length (2 bytes)

Withdrawn Routes
Length

Withdrawn Routes

Withdrawn Routes

Path Attribute Length I
(2 bytes)

Path Attribute

Path Attribute

Network Layer Reachability Information

Network Layer Reachability Information

Withdrawn Routes (repeat pattern):

ST -

FIGURE 8.18 BGP4 UPDATE message.

Prefix Length
(2 bytes)

CHAPTER 8 BGP 273

value in the common header is set to 2 to indicate that this is an UPDATE message. This
message type has three subparts: withdrawal route part, path attribute part, and network
layer reachability information part. An UPDATE message may have content for any or all of
these subparts. The minimum size of an UPDATE message is 23 bytes consisting of 19 bytes
of the common header, 2 bytes for Withdrawn Routes Length, and 2 bytes for Total Path
Attribute Length.

An UPDATE message can contain just one IP prefix destination as advertisement along
with its path attributes, the exception being that it can include a set of IP prefix destinations
if they share the same path attributes. An update message can list multiple IP prefix des-
tinations that are to be withdrawn; however, both withdrawal and advertisement may be
combined in a single UPDATE message.

o Withdrawn Routes Length (2 bytes): This field indicates the total length of the Withdrawn
Routes field in bytes. When this field is set to zero, it means that there is no announcement
about withdrawal of routes in this particular UPDATE message.

e Withdrawn Routes (variable): This field is not present when Withdrawn Routes Length is
zero. Otherwise, this field has the format (prefix length, IP prefix). Here, the prefix length
is always 1 byte long and indicates the length in bits of the IP prefix address of a routable
network address while the IP prefix field is of variable length, which is required to carry
the IP prefix with the additional requirement that it must fit into a byte boundary; to do
so, trailing bits are added. For example, if the IP prefix to be withdrawn is 134.193.0.0/16,
the length field will have the value 16, followed by the IP prefix taking 16 bits, which
represents 134.193, i.e., 1000 0110 1100 0001 (in bits). However, if a BGP speaker were to
withdraw prefix 134.193.128.0/17, the length field would have the value 17, followed by
the IP prefix 134.193.128, taking 24-bit space instead of 17-bit space, i.e., 1000 0110 1100
0001 1000 0000 (in bits), to align with the byte boundary; note that only the first 17 bits are
important and the trailing bits beyond 17 bits would be ignored when reading this field at
the receiving BGP speaker. The (prefix length, IP prefix) pattern is repeated for all routes
withdrawn in an OPEN message while the total length in bytes (10t in number of routes)
is indicated through the Withdraw Routes Length.

o Path Attribute Length (2 bytes): This field indicates the total length of the Path Attributes
field in bytes. If this value is zero, this UPDATE message does not include the Path At-
tribute and the NLRI field.

e DPath Attributes (variable): The format for this field is described later in Section 8.12.7. Ear-
lier in Section 8.6, we described the role played by different attributes.

e Network Layer Reachability Information (variable): This field contains one or more IP prefix
destinations. Each IP prefix is encoded in the format of (prefix length, prefix) where prefix
length is 1 byte which indicates the length of the IP prefix in number of bits, and the prefix
is of variable length, which is derived from the number of bits in the length rounded up to
the byte boundary. The encoding is similar to the illustration shown above in Withdrawn
routes. There is no length field for NLRI; this is determined from the total length of the
UPDATE message by subtracting the length for Withdrawn Routes and the length for
Total Path Attributes.

8.12.4

8.12.5

8.12.6

274 8.12 Protocol Message Format

01234567 012345467 01234567 012345¢%67

BGP Common Header

BGP Common Header

Error Code
(1 byte)

Error Subcode

(1 byte) Data

W
el —— | —— ol

Data

FIGURE 8.19 BGP4 NOTIFICATION message.

Message Type: NOTIFICATION

The role of the NOTIFICATION message is to indicate if an error has occurred. The message
type value in the common header is set to 3 to indicate that this is a NOTIFICATION message.
The message format for NOTIFICATION has three parts: Error Code (1 byte), Error Subcode
(1 byte), and Data (variable), as shown in Figure 8.19. Error codes have been categorized into
six parts, where the first three categories have their own subcodes. The error codes/subcodes
are summarized in Table 8.3. The Data field is typically used to provide additional informa-
tion about an error; for example, the Data field includes the erroneous Length field value if
the error code is 1 and the error subcode is 2. It may be noted that if there is an error in the
NOTIFICATION message itself sent by a BGP speaker, the receiver speaker is not allowed to
respond with another NOTIFICATION message.

Message Type: KEEPALIVE

The role of the KEEPALIVE message is to indicate that the BGP session is active. To ensure
that the HoldTimer does not expire, a KEEPALIVE message is sent that is approximately one-
third the HoldTime value as long as it is not sent more than once per second. If, however, the
HoldTime is agreed to be zero, which is to mean that the BGP session is to remain alive, then
KEEPALIVE messages are not generated. A KEEPALIVE message does not have any data on
its own; the common message header is sent with the message type value set to 4.

Message Type: ROUTE-REFRESH

The ROUTE-REFRESH message is an optional BGP message that is generated only if this
capability is negotiated through the exchange of initial OPEN messages. Operationally, on
receiving a ROUTE-REFRESH message from a peer, a BGP speaker would need to send the
content of Adj-RIB-Out for this peer using an UPDATE message. The message type value

CHAPTER 8 BGP 275

TABLE 8.3 Error Codes/Subcodes with BGP NOTIFICATION message.

Code | Subcode | Remark

1 Error detected in the BGP message header
1 Marker field is not synchronized with all 1s
2 Message Length is not valid. This can happen if (1) the message

length is smaller than 19 bytes or larger than 4096 bytes, (2) the
Length field of the OPEN (UPDATE/KEEPALIVE/NOTIFICATION)
message does not meet the minimum length of an OPEN (UP-
DATE/KEEPALIVE/NOTIFICATION) message

3 The Message Type is not recognized

2 Error in the OPEN message content as specified through subcodes
Version number is not supported

AS number of the peer is not acceptable

The BGP Identifier is not a valid unicast IP address

The Optional Parameter is not supported. However, if the Optional Para-
meter is recognized, but is malformed, then the Subcode is set to 0
Deprecated

Unacceptable Hold Time; this occurs if the value is announced to be either
1 or 2 sec

7 Capability not supported (in response to Capabilities advertisements dis-
cussed in [113])

3 Error in the UPDATE Message

Attribute List is nonconforming

Well-known Attribute is not recognized

A mandatory Well-known Attribute is missing

Error with Attribute Flags

Error with Attribute Length

The value in ORIGIN Attribute is not valid

Deprecated

NEXT-HOP Attribute value is not valid

Error in Optional Attribute

The content in the NLRI field is not correct

AS-PATH is malformed

4 To indicate expiration of Hold Timer

Error in Finite State Machine for the BGP connection

6 This allows a BGP connection to close a session normally

B S R S R

AN

O 0 1 O Lt A W IN -

—_ =
_ O

a1

in the common header is set to 5 to indicate that this is a ROUTE-REFRESH message. The
message format for ROUTE-REFRESH has three parts: Address Family Identifier (2 bytes),
Reserved (1 byte), and Subsequent Address Family Identifier, as shown in Figure 8.20. The
information about address family identifier (AFI) is included since BGP is now extended with
multiprotocol capability [63]; thus, an address family can be properly identified. Note that the
AFI for the IPv4 address is 1; the list of AFls is regularly updated and is maintained at [313].

8.12.7

276 8.12 Protocol Message Format

01234567 0123456 7012345467 012345%67

BGP Common Header

BGP Common Header

Address Family
(1 byte)
Identifier Reserved SAFI
L (2 bytes) (1 byte) (1 byte)

FIGURE 820 BGP4 ROUTE-REFRESH message.

0123 4567 01234567 012345%67 012345¢%67
MBZ Attribute Code Attribute Length J

OQIT|PIE
[:
Attribute Data

Attribute Data

(4 bits) (1 byte) (1 or 2 bytes)

FIGURE 821 Path Attribute in UPDATE message.

Path Attribute in UPDATE message

Path Attribute appears in a BGP UPDATE message if an announcement or a change in regard
to an IP prefix destination or a set of IP prefix destinations is advertised. If the Path Attribute
Length field contains a nonzero value, a variable length Path Attributes field follows that has
the TLV format: (attribute type, attribute length, attribute value). The attribute type is 2 bytes
long and has two subparts: attribute flags (1 byte), and attribute type code (1 byte). Attribute
flags consists of four higher-order bits: O, Optional (0 for well-known or 1 for optional); T,
Transitive (0 for nontransitive or 1 for transitive); P, Partial (0 for complete or 1 for partial);
and E, Extended (0 for one byte 1 for two bytes); the lower 4 bits must be zero, denoted by
MBZ in Figure 8.21. W-bit indicates whether the attribute is well-known and is supported
by the receiving BGP speaker, or the attribute is optional and may not be supported by the
receiving BGP speaker. If E is set to 0, then the attribute length is 1 byte long; if E is set to 1,
then the attribute length is 2 bytes long.

The path attributes that are significant have already been discussed in Section 8.12.7 and
the ones related to the route reflector option have been discussed in Section 8.8.1. Note that for
a confederation approach in IBGP, only the AS-PATH attribute is extended with new types.
The communities attribute, discussed in Section 8.10.1, is optional transitive and is assigned
a type value of 8. Each community identifier is 4 bytes consisting of two parts: 2 bytes for AS
number, and 2 bytes for indicating communities such as the three described in Section 8.10.1.

8.13

CHAPTER 8 BGP 277

TABLE 8.4 BGP Path Attributes.

Type | Type Name OT-bits | Remark
Code
1 ORIGIN 01 Well-known mandatory; indicates IGP (0), EGP
(1), or INCOMPLETE (3); see REC 4271 [591]
2 AS-PATH 01 Well-known mandatory; indicates AS-SET (1),
AS-SEQUENCE (2), AS-CONFED-SET (3), AS-
CONFED-SEQUENCE (4); see RFC 4271 [591]
3 NEXT-HOP 01 Well-known mandatory; includes 4-byte IP ad-
dress; see RFC 4271 [591]
4 MED 10 Optional nontransitive; 4-byte MED identifier;
see RFC 4271 [591]
5 LOCAL-PREF 01 Well-known discretionary; 4-byte LOCAL-
PREF identifier; see REC 4271 [591]
6 ATOMIC-AGGREGATE | 01 Well-known discretionary; indicated when ag-
gregation is done at BGP speakers; see RFC 4271
[591]
7 AGGREGATOR 11 Optional transitive; AS number and the IP ad-
dress of the BGP speaker aggregator; see RFC
4271 [591]
8 COMMUNITIES 11 Optional transitive; 4-byte community identi-
fier; see RFC 1997 [115]
9 ORIGINATOR-ID 10 Optional nontransitive used for route reflector;
4-byte ID of originator; see RFC 4456 [62]
10 CLUSTER-LIST 10 Optional nontransitive used for route reflector;
variable length; see RFC 4456 [62]
16 Extended Communities | 11 Optional transitive; see RFC 4360 [621]

The Extended Communities Attribute [621] extends Communities Attribute by allowing
an extended range for covering a large number of different usages. The updated list of BGP
parameters such as Path Attribute types is maintained at [315].

Summary

BGP is like a glue that helps connect the Internet together. It is an interdomain routing proto-
col that is used between two autonomous systemes; it is also used in internal BGP mode when
an autonomous system has multiple BGP speakers talking to the outside of this autonomous
system. Between two BGP speakers, a TCP-based BGP session is set up. Using UPDATE mes-
sage type, at first complete BGP routes are exchanged; after that, only incremental changes
such as a new announcement, withdrawal, or change in path attributes, are exchanged.

BGP is a path vector protocol where granularity of information is at an IP prefix level,
served by autonomous systems. Each IP prefix is attached with its home AS number, which
is disseminated from one autonomous system to another by prepending path attributes; an

278 8.13 Exercises

exception is when route aggregation is done through supernetting when a set of IP prefixes
can be combined and the aggregated information is forwarded downstream where the point
of aggregation serves as the “care of” home for the supernetted address block.

BGP is used in two ways: external BGP and internal BGP. While the basic protocol mes-
saging is the same, there are certain restrictions/rules imposed on IBGP. For a large-scale
IBGP scenario, approaches such as route reflectors or confederations may be used.

Announcement and withdrawal of an IP prefix can lead to route flapping; to mini-
mize/avoid this flap, a route flap dampening approach can be used.

Finally, the finite state machine of a BGP speaker to a peer speaker is quite elaborate. Any
state transition is triggered through a well-defined set of events.

Further Lookup

The initial version of BGP was described in RFC 1105 [428]. BGP4, the current version of BGP,
was first described in RFC 1771 [590] and has been recently updated in RFC 4271 [591]; this
RFC includes a summary on changes compared to earlier versions of BGP. The fifth message
type, ROUTE-REFRESH, is described in RFC 2918 [129], which uses Capabilities advertise-
ments described in [114], which makes [113] obsolete.

The concept of route reflection for internal BGP was first described in RFC 1966 [59],
which was subsequently updated in RFC 2796 [60], and further updated in RFC 4456 [60].
A formal confederation approach was first proposed in RFC 975 [490] for circumventing cer-
tain restrictions of the Exterior Gateway Protocol; we will describe EGP briefly in Section 9.1.
The confederation concept for internal BGP was presented in RFC 1965 [701], which has been
updated in REC 3065 [702].

Currently, the AS number field is 2 bytes long. In anticipation of running out of AS num-
bers, a 4-byte AS number is being currently proposed. As of this writing, this proposal re-
mains as an Internet draft.

There are several books that treat BGP extensively [188], [282], [301], [546], [571], [669],
[709], [738], [764]. BGP routing table analysis reports are available at [303]. There are many
resources on the Internet about BGP; see excellent central resource sites such as [170] and
[704].

Like any protocol, BGP has vulnerabilities; see [513] for a discussion.

Exercises

8.1 Review questions:
(a) What are the different BGP timers?
(b) What are the different states in the BGP finite state machine?
(c) What are the different BGP message types?

8.2 How is looping avoided in BGP?

8.3 What would happen if an IBGP speaker does advertise IP prefixes it has learned from an
IBGP speaker to another IBGP speaker?

CHAPTER 8 BGP 279

8.4 Suppose an autonomous system is set up with a single route reflector. What would be
the consequence if the route reflector fails?

8.5 Analyze the route flap dampening concept by trying out different penalty values and
flap time intervals.

8.6 How is the route reflector approach different from the confederation approach? Explain.

9

Internet Routing
Architectures

Architecture is the will of an epoch translated into space.

Ludwig Mies van der Rohe

Reading Guideline

This chapter may be read without much dependence on other chapters. However,
knowledge of routing protocols such as BGP (refer to Chapter 8) and OSPF/IS-IS
(refer to Chapter 6) helps facilitate better understanding of the content presented in
this chapter.

9.1

CHAPTER 9 Internet Routing Architectures 281

Internet routing depends heavily on the Border Gateway Protocol (BGP) for inter-AS re-
lations. At the same time, because of business relations among Internet service providers,
Internet routing architectures have evolved to include public and private peering among
providers and transit issues. In addition, the growth of IP address space allocation and AS
number allocation constitutes additional factors to be understood in the context of Internet
routing architectures. In this chapter, we discuss these aspects in details.

Internet Routing Evolution

We first briefly discuss the evolution of Internet architecture from a historical perspective.
Note that we focus on Internet routing rather than the Internet as a whole; for an excellent
summary on Internet history, refer to [403].

Until the early 1980s, the ARPANET served the role of interconnecting various sites
with a rigid two-level hierarchy where the ARPANET nodes were at the top level. In 1983,
ARPANET was split, resulting in two networks: ARPANET and MILNET (see Figure 9.1);
this was the birth of the two separate networks talking to each other in case one host in one
network wants to communicate with another host in the other network, and vice versa. This
also resulted in the need to have a mechanism by which separate networks could talk to each
other. Here “separate networks” means that they are run by different entities.

CEDCD
SV

NSROCOA

. _

AEROD-AE

HARYLAND
N?U
@]

?_

fE

OGa1-7a])

D_.

BEN-RING . e ‘ie
EP) e

| [e o, I

FIGURE 9.1 ARPANET and MILNET, circa 1983 (courtesy [488]).

282 9.1 Internet Routing Evolution

Exterior Gateway Protocol (EGP), developed in 1982-1984 (refer to RFC 827 [600],
RFC 888 [623], RFC 904 [489]) describes how separate networks that are autonomous can
talk to each other. Along with EGP, the term autonomous system (AS) and the notion of a 16-bit
autonomous system number (ASN) were introduced in [600]. Briefly, EGP defined a two-level
strict hierarchy view with the top level labeled as the core backbone and the bottom level be-
ing the level at which the different networks, defined through ASes, were connected. NSFNET
deployed first in 1984 relied on EGP. The architecture of and experience with NSENET and
EGP have been documented in [94], [587].

It is important to note that in EGP, nonbackbone ASes were not allowed to be directly
connected; this is a direct consequence of the strict two-level hierarchy imposed by EGP.
Another consequence was that the structure allowed only a single provider at the top level,
i.e., the NSFNET. Furthermore, unlike BGP, EGP messages were sent directly over IP without
invoking any reliable transport protocol. Thus, if the exchange of information required a large
message to be generated, this needed to be handled by fragmentation and reassembly at the
application layer of the TCP/IP protocol stack.

In essence, while EGP provided a much needed transitional platform to go from the
ARPANET to the NSFNET, it had several restrictions not desirable for longer term growth.
For example, EGP did not allow ASes to be directly connected. Thus, a network that is located
in an AS would need to go through the top level, i.e., the NSFNET, to reach another network
in another AS. However, NSENET faced the situation that certain networks that belonged
to different ASes had backdoor connectivity. Thus, EGP’s strict requirement could not be di-
rectly applied or enforced in the NSFNET. It may be noted that to circumvent the limitation
of EGP, a formal confederation approach was suggested in RFC 975 [490]. An important les-
son learned from NSFNET in regard to the routing architecture is that no single entity would
be managing the global Internet. Each system that is a component of the global Internet will
have its own routing paradigm that can be driven by economics and other factors; each such
system would have its own interest to connect to other systems directly, instead of using a
global core such as the one suggested by EGP. As a corollary, global consensus from the de-
ployment point of view is hard to arrive at while mutual bilateral agreement is possible. Since
ASes use a common prefix address space (i.e., IPv4 address space), and an AS cannot control
what an upstream AS announces, it became necessary to take a policy-driven approach; for
example, how routing is done to handle packets from certain networks based on import pol-
icy of an AS. It is to be noted that some rudimentary policy-based routing was done so that
certain rule checking can be invoked in the NSFNET as noted in RFC 1092 [587] in order to
handle import and export policies.

EGP and, particularly, NSFNET experiences led to the recognition that any future routing
architecture must be able to handle policy-based routing (see RFC 1102 [144], RFC 1104 [93],
RFC 1124 [402]), and any newly developed exterior gateway protocol must have the ability
to handle policy decisions. That is, experience and realization served as the impetus to the
development of BGP, which was first introduced in 1989 through RFC 1105 [428]. To sum-
marize, BGP tried to address the following issues: (1) avoiding a strict two-level hierarchy
like EGP, (2) allowing multiple levels such that any AS has the option to connect to another
AS, (3) using TCP for reliable delivery of BGP data, and (4) making policy-based routing
possible.

9.2

CHAPTER 9 Internet Routing Architectures 283

By 1991, BGP was expanded to BGP, version 3 (see RFC 1267 [429]). At about the same
time, it was recognized the implicit address block classification of an IP address under
Class A, Class B, and especially Class C, i.e., classful addressing, would cause a signifi-
cant growth in the routing table entries at core backbone routers; thus, some mechanisms
to avoid/minimize assigning address block straight at Class C were needed. This has led
to consider address aggregation through supernetting [240], which subsequently led to the
development of classless interdomain routing (CIDR).

While BGP, version 4 (BGP4) has resulted in several improvements over BGP, version 3,
it is clear that use of CIDR was one of the most significant changes that required communi-
cating netmask information to be advertised along with an IP address block during a BGP
announcement; that is, the addressing structure played a critical role in routing. Before we
further discuss Internet routing architecture, we present a brief background discussion on IP
addressing and routing.

Finally, it is worth noting that the notion of dividing a network into hierarchical structure
of intradomain and interdomain and allowing each intradomain to define its own routing
can be traced backed to the OSI routing model developed in the 1980s; see [567] for further
details.

Addressing and Routing: Illustrations

Routing in the Internet is fundamentally impacted by IP addressing. A unique feature of the
Internet is that the end hosts and routers alike share from the same addressing family, and this
has a profound impact on routing. The address family is known as the IPv4 address family,
and its recent version is known as IPv6. We will focus our discussion here specifically on IPv4
addressing.

The IPv4 address family is a 32-bit address that is typically written in dotted decimal for-
mat, A.B.C.D, where each part represents the decimal value for 8 bits. Routing benefits form
an important requirement in regard to address space allocation; that is, the address space
is compacted through subnet masking, and addresses are assigned in contiguous blocks for
a specific network. For example, contiguous addresses 192.168.1.0 to 192.168.1.255 would be
assigned to a network (or subnet); similarly, contiguous addresses 192.168.2.0 to 192.168.2.255
would be assigned to another network, and so on. To reiterate, address block contiguity to de-
fine a network is a fundamental requirement in IP that impacts routing. For example, because
of this contiguity, a routing table at a router needs only one entry for an address block such
as 192.168.1.0 to 192.168.1.255, instead of 256 separate address entries for each of these IP ad-
dresses from this range. If each router were required to keep an entry for all 23? TP addresses,
this would simply not scale! There is, however, an important trade-off, due to contiguous
address blocks—not all addresses can be assigned to end hosts. For example, if we consider
the address block from 192.168.1.0 to 192.168.1.255 to identify a subnet, then two addresses at
the extreme ends are reserved to identify the network and for the broadcast purpose, respec-
tively; specifically, the “0” address, i.e., 192.168.1.0, will be reserved to identify the subnet and
and the “255” address, i.e., 192.168.1.255, will be reserved as the broadcast address.

We, however, need a simple mechanism to define contiguous address blocks that may fall
at a different bit boundary level. Originally, IPv4 unicast addressing was allocated through
implicit bit boundaries for network block addresses at an 8-bit, 16-bit, and 24-bit boundary,

284 9.2 Addressing and Routing: Illustrations

known as Class A, Class B, Class C addresses, respectively. The difficulty with implicit bound-
ary, at least for routing purpose, is that at the 24-bit level boundary, the number of address
blocks is too huge to handle if all were advertised! This is mainly because of another im-
portant imposition on IPv4 addressing; that is, a network address block follows a simple flat
addressing principle. This means that if we want to route a packet from network 134.193.0.0
to network 134.194.0.0, we cannot count on the most significant 8 bits, i.e., 134, as some hi-
erarchical indicator to make a local/hierarchical routing decision; instead, we need to keep
both entries 134.193.0.0 and 134.194.0.0—this is known as flat addressing. Similarly, if all 24-bit
network address blocks are to be considered, then we need 2?* entries for a routing decision
due to flat addressing. Instead of the implicit network boundaries at an 8-bit, 16-bit, and 24-
bit level, the explicit network boundaries through network masking, referred to as classless
inter-domain routing (CIDR), were found to be more flexible in reducing the need to assign IP
address blocks for networks at a 24-bit boundary or the other implicit boundaries at 8-bit and
16-bit level.

The basic idea behind CIDR is that along with the address of a specific host, an explicit
net masking is also applied that defines the network where this host resides. For example, if
the host that we want to reach is 192.168.40.49, and if the address block is netmasked at the
21-bit boundary level, all a router needs to know is that 192.168.40.49 is identified as being
on a network defined on the 21-bit boundary. Typically, this is indicated through the CIDR
notation 192.168.40.0/21 where /21 indicates the network address block netmask. How do
we arrive at 192.168.40.0/21 from 192.168.40.49? It is easy to understand when we look at
the bit level information. Note that /21 means that the first 21 most significant bits in a 32-bit
address are 1s and the rest are Os, i.e., 11111111 11111111 11111000 00000000; this 32-bit netmask
can also be written in the dotted decimal IP address format as 255.255.248.0. That is, a netmask
written in CIDR notation /21 and its IP address notation, 255.255.248.0, are interchangeable.
As a convention, the CIDR netmask is used in identifying IP prefix-level networks, while the
format such as 255.255.248.0 is used in a subnet mask on a computer when comparisons are
required for packet forwarding in a subnet.

When we consider 192.168.40.49 with /21 in the CIDR notation, we can perform a bitwise
“AND” operation as shown below:

11000000 10101000 00101000 00110001 — 192.168.40.49

AND 11111111 11111111 11111000 00000000 — netmask (/21)
11000000 10101000 00101000 00000000 — 192.168.40.0

That is, the bitwise AND operations result in obtaining the net address 192.168.40.0, which is
tied with /21 so that the network boundary is understood.

Thus, when a host in another network that has the IP address, say, 10.6.17.14 wants to
send a packet to, say, 192.168.40.76, it needs to send to network 192.168.40.0/21, hoping that
once it reaches this destination network, i.e., 192.168.40.0/21, it knows how to handle the
delivery to the final host. This is analogous to the postal system; it is similar to sending a
letter that needs to reach a postal code, and hoping that once it reaches that postal code, it can
be delivered to the actual house address.

A question is how does the originating host know how to get the packet out of its own
network so that it can then traverse the global Internet toward its destination. Second, is it
different and/or where is it different if the packet had a destination that happens to be in the

9.2.1

CHAPTER 9 Internet Routing Architectures 285

same network, for example, if 192.168.40.49 were to send a packet to 192.168.40.76, or beyond
that. We will consider routing a packet under three different scenarios.

Routing Packet: Scenario A

The first scenario we consider is a subnet defined by an IP address block through a standard
subnet masking. That is, consider sending a packet from a host with IP address 192.168.40.49
(“49ers”) to another host with IP address 192.168.40.76 (“76ers”). The first requirement is that
each host along with its IP address must have a subnet mask associated with it. In this example, we
assume the subnet mask for this subnet is 255.255.255.0 which is indicated in the configura-
tion profile of these two hosts. The sending host first determines its own subnet by comparing
the subnet mask and the IP address of the destination (192.168.40.76) with its stored subnet
mask 255.255.255.0 through the bitwise AND operation as shown below:

11000000 10101000 00101000 00110001 — 192.168.40.49 (“49ers”)
AND 11111111 11111111 11111111 00000000 — subnet mask (255.255.255.0)
11000000 10101000 00101000 00000000 — 192.168.40.0 (/24)

11000000 10101000 00101000 01001100 — 192.168.40.76 (“76ers”)
AND 11111111 11111111 11111111 00000000 — subnet mask (255.255.255.0)
11000000 10101000 00101000 00000000 — 192.168.40.0 (/24)

Thus, Host “49ers” realizes that the destination host, Host “76ers,” belongs to the same sub-
net. Assume that subnet 192.168.40.0 is served by an Ethernet LAN (see Figure 9.2). Thus,
to send a packet, the host with address 192.168.40.49 is required to rely on the Ethernet in-
terface for packet delivery; for that, a protocol called the Address Resolution Protocol (ARP),
which does the function of mapping the IP address to the Ethernet address, is first invoked.
Through this process, Host “49ers” finds the Ethernet address of the destination IP address
192.168.40.76. Once the Ethernet address of the destination is determined, the packet is sent
as an Ethernet frame with the destination address set to this Ethernet address. In a sense, we
can say that in the same Ethernet LAN, “routing” a packet does not really involve routing.

76ers
192.168.40.76

2 : 2

192.168.40.0
|-! |-!
49ers ;)

192.168.40.49

FIGURE 9.2 Host “49ers” (192.168.40.49) and Host “76ers” (192.168.40.76) on an
Ethernet subnet with mask 255.255.255.0.

286 9.2 Addressing and Routing: Illustrations

192.168.40.0/21 192.168.42.254 R
3

Network it e
.168.47.253 192.168.47.254

192.168.43.254
catch22
192.168.41.22

192.168.41.254)

192.168.40.49 g g 192.168.40.76 g 192.168.45.1 192.168.44.221 |
s e OnelnfiniteLoop 221bBakerS

FIGURE 9.3 Network 192.168.40.0/21 with subnets and routers.

9.2.2 Routing Packet: Scenario B

The second scenario is where communication is not limited to the same subnet, but it is in
the same network in the sense that it is provided by the same provider, such as a campus or
an enterprise network. We identify this network as 192.168.40.0/21, which covers the address
range 192.168.40.0-192.168.47.255. We assume that it consists of Ethernet segments where
subnets are allocated and that all Ethernet-based subnets use subnet mask 255.255.255.0. Se-
rial links are used between three of the four routers where subnet mask 255.255.255.252 is
used. The topology of network 192.168.40.0/21 with all its subnets is shown in Figure 9.3.
We assume that this intradomain network uses the OSPF protocol among its routers. For il-
lustration, consider sending a packet again from Host “49ers,” with IP address 192.168.40.49
and subnet mask 255.255.255.0, to a third host with IP address 192.168.41.22 (“catch22”). Note
that Host “49ers” does not know about the subnet mask of Host “catch22.” Based on its own
subnet mask, Host “49ers” compares and determines that Host “catch22” is on a different
subnet, 192.168.41.0, as shown below:
11000000 10101000 00101000 00110001 — 192.168.40.49 (“49ers”)

AND 11111111 11111111 11111111 00000000 — subnet mask (255.255.255.0)
11000000 10101000 00101000 00000000 — 192.168.40.0 (/24)

11000000 10101000 00101001 00010110 — 192.168.41.22 (“catch22”)
AND 11111111 11111111 11111111 00000000 — subnet mask (255.255.255.0)
11000000 10101000 00101001 00000000 — 192.168.41.0 (/24)

CHAPTER 9 Internet Routing Architectures 287

R1: R2:
Net Mask NextHop Interface Net Mask NextHop Interface
192.168.40.0 255.255.255.0 direct en0 192.168.40.0 255.255.255.0 192.168.47.241 sl1
192.168.41.0 255.255.255.0 direct enl 192.168.41.0 255.255.255.0 192.168.47.241 sl1
192.168.42.0 255.255.255.0 192.168.47.249 sl2 192.168.42.0 255.255.255.0 192.168.47.246 sl0
192.168.43.0 255.255.255.0 192.168.47.242 sl1 192.168.43.0 255.255.255.0 direct en2
192.168.44.0 255.255.255.0 192.168.47.242 sll 192.168.44.0 255.255.255.0 direct en0
192.168.45.0 255.255.255.0 192.168.47.242 sl1 192.168.45.0 255.255.255.0 direct enl
192.168.47.240 255.255.255.252 direct sl1 192.168.47.240 255.255.255.252 direct sll
192.168.47.248 255.255.255.252 direct sl2 192.168.47.244 255.255.255.252 direct sl1
0.0.0.0 0.0.0.0 192.168.47.242 sl1 0.0.0.0 0.0.0.0 192.168.43.254 en2
R3:

R4:
Net Mask NextHop Interface

Net Mask NextHop Interface
192.168.40.0 255.255.255.0 192.168.47.250 sl0
192.168.41.0 255.255.255.0 192.168.47.250 sl0 192.168.40.0 255.255.255.0 192.168.43.253 en0
192.168.42.0 255.255.255.0 direct en0 192.168.41.0 255.255.255.0 192.168.43.253 en0
192.168.43.0 255.255.255.0 192.168.47.254 sl2 192.168.42.0 255.255.255.0 192.168.47.253 sl0
192.168.44.0 255.255.255.0 192.168.47.245 sl1 192.168.43.0 255.255.255.0 direct en0
192.168.45.0 255.255.255.0 192.168.47.245 sl1 192.168.44.0 255.255.255.0 192.168.43.253 en0
192.168.47.244 255.255.255.252 direct sl0 192.168.45.0 255.255.255.0 192.168.43.253 en0
192.168.47.248 255.255.255.252 direct sl1 192.168.47.252 255.255.255.252 direct sl0
192.168.47.252 255.255.255.252 direct sl2 0.0.0.0 0.0.0.0 10.1.2.3 sll
0.0.0.0 0.0.0.0 192.168.47.254 sl2

FIGURE 9.4 Routing tables (with interfaces) at routers in Network 192.168.40.0/21 (see
Figure 9.3).

Now Host “49ers” has a decision to make since it realizes that Host “catch22” is not on the
same subnet. To make this decision, Host “49ers” must be equipped with a mechanism for
handling such packet arrival; this mechanism is provided through a default gateway address.
This means that if a packet’s destination is not on the same subnet, the default gateway will
be the agent that will be the recipient of this packet, which, in turn, hopefully knows how to
handle it. The knowledge of this default gateway is known to the sending host either by static
configuration or through the Dynamic Host Configuration Protocol (DHCP). In general, the
following must hold for a host to communicate on the Internet:

Either through static configuration or through DHCP, a host must have three key pieces of informa-
tion: its host IP address, the subnet mask, and the default gateway. Note that the default gateway is
not needed for scenario A; however, since a host must reside in an interconnected environment where
it will invariably want to send a packet to a destination such as an email server or a web server that
is outside its subnet, the default gateway information becomes a necessity. For a host to use Internet
services, it is also required to have information about the IP address of at least a DNS server so that
this server can be queried to find the actual IP address of a specific domain name. Thus, a host typ-
ically requires four pieces of information: its host IP address, the subnet mask, the default gateway,
and a DNS server’s IP address.

Now going back to our example, the IP address of the default gateway must fall on the
same subnet as the host. Here, the default gateway for Host “49ers” is assigned the address
192.168.40.254, and this happens to be an interface to a router that has an interface to subnet

9.2.3

288 9.2 Addressing and Routing: Illustrations

192.168.41.0, and also to other subnets; see Figure 9.3, where this is depicted with the router
marked as R1.

With the availability of the default gateway information at Host “49ers,” and on recog-
nizing that this packet is to be sent to the gateway, it would do an ARP request to find the
Ethernet interface address for 192.168.40.254, so that the packet can be sent as an Ethernet
frame to router R1.

Once the packet arrives at router R1, the router is now required to make a decision on
which interface to send it out since it has multiple interfaces. Based on the destination net-
works it has learned about, a router would maintain a routing table so it knows how to handle
an arriving packet. Furthermore, based on the routing table, the forwarding table information
is derived to determine which interface is to be used for packet forwarding. In Figure 9.4, we
show a routing table view with interface information for router R1. From the table for R1, we
can see that the packet that originated at Host “49ers” will be sent on the interface with IP
address 192.168.41.254 for delivery to Host “catch22” on the Ethernet segment.

We next consider the case in which Host “49ers” has a packet to send to Host “221bBak-
erStreet” (with IP address 192.168.44.221). This packet will first arrive at router R1 since by
inspecting the address of Host “221bBakerStreet”, Host “49ers” would realize that the host
does not belong to this subnet. At router R1, by inspecting the routing table, the packet would
be forwarded to router R2, whereupon it will be sent on the Ethernet interface with IP address
192.168.44.254.

We can thus see that for any packet that is meant for a host within network
192.168.40.0/21, routers would be required to have next-hop information for different subnet
segments. The process of learning about different subnets within this domain can be accom-
plished using OSPF flooding. For instance, each router can learn about different subnets from
a link state advertisement (LSA) that would contain subnet information with mask by using
the network link-type LSA (refer to Chapter 6). Once announcements about various subnets
are received, each router can use shortest path routing to determine the appropriate next hop
to reach different subnets; the tables at each router are shown in Figure 9.4. You may note that
the table at router R1 does not show an entry for the serial link subnet 192.168.42.0/30; the
assumption here is that serial link subnets are not to be advertised in the LSA; this is similar
for other tables. Furthermore, note that each table contains a 0.0.0.0/0 entry, which is referred
to as the default route. The default route is similar to the default gateway maintained by each
host; this entry points to a next-hop for forwarding a packet that lists a destination not listed
in the routing table.

In essence, through scenario B, we have illustrated how to route a packet from a host to
another host in a different subnet but within an administrative domain. Typically, such an
administrative domain is defined by an AS, or a provider.

Routing Packet: Scenario C

In this scenario, we consider routing a packet that is generated at Host “49ers” meant for a
host outside of network 192.168.40.0/21 to, say, host 10.5.16.60 where each network is served
by a different AS. By using the next hop for the default route at each router, the packet gen-
erated at Host “49ers” would be forwarded from R1 to R2 to R4. Note that R4 is the border
router in this domain that can speak OSPF to interior routers, but can also speak BGP to its

CHAPTER 9 Internet Routing Architectures 289

{ AS64617
> 192.168.40.0/21

AS64516
10.5.0.0/16

AS64822 4

FIGURE 9.5 AS routing path of a packet from 192.168.40.0/21 to 10.5.0.0/16 through
intermediate ASes.

peering EBG speaker. If R4 were to maintain a default route entry in its routing table, the
packet that originated at Host “49ers” will be forwarded outside network 192.168.40.0/21 on
the external link.

In Figure 9.5, we show connectivity from network 192.168.40.0/21 to network 10.5.0.0/16
that requires traversing through intermediate ASes. Suppose that each AS maintains an en-
try for default route to the next AS. Then the packet from 192.168.40.49 will be routed from
AS64617, its home AS, to its neighboring AS, AS64701. The border router at AS64701, on re-
ceiving this packet, will check if it is meant for an address block that is internal to it, and
will realize that it does not; thus, it will forward it to its other border router through inter-
nal routers. Assume that this border router in AS64701 has set up the default route to be to
AS64730. Thus, the packet will eventually arrive at the border router in AS64516, the home
to network 10.5.0.0/16. The border router will recognize that it supports this network and
would then use interior routing protocol to deliver to the final destination host.

Note that we have assumed that everyone uses the default route concept. There are, how-
ever, certain problems with every AS using the default route to send a packet out if its AS.
For example, if the destination host is from an IP address block that has not yet been allocated
by the Internet registry, the packet would keep hopping from one AS to another until the age
field (also known as the time-to-live field) in the IP packet header expires. This indicates that
there are two possibilities: (1) at least one of the intermediate ASes maintains all default-free
entries, that is, every valid IP prefix is explicitly listed, meaning there is 70 default route en-
try, 0.0.0.0/0, or (2) the originating AS at its border router maintains the list of every valid
IP prefix assigned thus far so that it can filter this packet (refer to Chapter 16) and drop it,
preventing from going into the next AS.

We first discuss the first possibility. An intermediate AS such as AS64730, shown in Fig-
ure 9.5, is known as a transit AS. Note that there is no such thing as the core transit AS; in fact,
that would be restrictive, like EGP, which we discussed earlier. BGP provides the flexibility
that there can be different transit ASes that serve as peers to each other. Since different stub
ASes can be connected to different transit ASes, any transit ASes at the core need to exchange
the entire routing table information about IP prefixes with other peering ASes using the BGP

9.3

290 9.3 Current Architectural View of the Internet

protocol. Thus, typically the core backbone Internet service providers (ISPs) maintain default-
free routing tables for all valid IP prefixes so learned.

Consider Figure 9.5 again. Here network 172.17.0.0/16 homed in AS64822 would become
known to transit AS, AS64731, which in turn would share this information with transit AS,
AS64730. This way, BGP routers at transit ASes can build a complete default-free routing
table. Now if Host “49ers” in network 192.168.40.0/21 in AS64617 generates a packet to an
IP destination that is from an IP address that is not valid, then the border router in AS64701
would note this and drop this packet. In other words, a default-free routing table allows an
IP packet with a destination in nonallocated address blocks from being forwarded further by
dropping it. Transit ASes commonly employ a default-free routing table for such reasons.

We next discuss the second possibility. This option is possible since the BGP protocol
announces IP prefixes through UPDATE messages that would traverse through and reach
every edge or stub AS, such as AS64617 and AS64516. Typically, most stub ASes use the default
route entry, i.e., they do not store all IP prefix entries, partly because they usually have single
outlets to the rest of the Internet, and because it puts more than the required work on its
border router, which may not be able to handle the load if it is not a powerful router with
required memory. That is, it is not necessary to maintain a full default-free table at the border
router of a stub AS. However, more and more stub ASes now maintain a full IP prefix table at
their border routers. This can be driven by local needs in a stub AS, for example, to perform
unicast reverse-path-forwarding (uRPF) checks as a measure for IP address spoofing. Thus,
while from a BGP perspective, a stub AS is not required to maintain a default-free routing
table, it has essentially become a necessity because of issues such as spoofing attacks.

To summarize, routing a packet that has originated in a network (IP prefix) in a stub AS
with destination in another network (IP prefix) in another stub AS, would hop through at
least a transit AS. Any path selection decision at a BGP speaker when there is connectivity
from one AS to the next at multiple border BGP speakers, or from one AS to multiple ASes,
would be based on the BGP path selection algorithm described in Section 8.7.1 in Chapter 8.
Certainly, before route selection can be invoked about an IP prefix , the BGP UPDATE mes-
sage would be used to announce this IP prefix ; the AS number is prepended as necessary
when the information about this IP prefix crosses from one AS to another.

Before concluding this section, we discuss another term in regard to ASes. So far, we have
mentioned two types of ASes: stub AS and transit AS. An AS can also be multihomed. Briefly,
a multihomed AS connects to two or more transit ASes. As an example, consider Figure 9.5
again. Here, AS64617 is a stub AS; AS64701 is a transit AS that is also multihomed while
AS64516 is a stub AS that is multihomed. Thus, ASes can be classified into three categories:
stub singlehomed, stub multihomed, and transit multihomed.

Current Architectural View of the Internet

In the previous sections, we discussed packet routing in an IP addressing structure for a set
of scenarios and also allocation of IP addresses. In doing that, we also discussed the role of
ASes and BGP in routing. We next consider how ASes are related to ISPs and the role of IP
address space in the context of Internet routing architecture.

9.3.1

CHAPTER 9 Internet Routing Architectures 291

Customers and Providers, Peering and Tiering, and Exchange Points

In the world of Internet routing connectivity, the term customer typically refers to an orga-
nization that has an IP address block; it relies on a provider for Internet connectivity; note
that owning an AS number is not necessary since you can have an address block and be
a part of an existing AS number. For ease of discussion here, we will restrict to those cus-
tomers that have their own AS numbers. The customer/provider relation is hierarchical and
is sometimes described also as downstream ISP/upstream ISP relation. At the top of the hi-
erarchy is tier 1 Internet service providers (tier 1 ISPs). Each tier 1 ISP has its own AS num-
ber. It is certainly possible to have more than one AS number belong to an ISP, for exam-
ple, due to the merger of companies. For simplicity, we will assume that each ISP has its
own unique AS number. A tier 1 ISP provides a large network spanning a geographic re-
gion such as the entire country, and sometimes across countries; such networks are often
referred to as Internet backbone networks where link speeds can be in the order of 10 Gbps
with the most advanced routers deployed. All tier 1 ISPs are at the same peering level.
Typically, tier 1 ISPs peer privately with each other at one or more points. It used to be
the case that tier 1 ISPs meet at network access points (NAPs) to exchange traffic from one
network to another. In Figure 9.6, we show a generic example with four tier 1 ISPs meet-
ing at an NAP; note that this is not common any more, it is shown here for illustration
only. It may be noted that NAPs are also known as Internet exchange points (XP, or, EP in
short), or Metropolitan Area Exchanges (MAEs). Furthermore, such arrangements are known
as public peering since they are neutral meeting points. First, it should be noted that ex-
change points are operated by neutral entities that play the role of providers for traffic ex-
change services to tier 1 ISP customers. During transition from the NSFNET, the notion
of NAPs was conceived when it became clear that one core network would not be the
carrier for all Internet traffic. Initially, there were four NAPs that were connected to the
NSFENET during 1994-1995. Currently, there are more than 175 exchange points around the
world.

There is also private peering between two tier n ISPs where they connect directly to each
other and agree to exchange traffic with each other; this then can serve as a bypass from
congested exchange points, which some ISPs prefer. In Figure 9.6, we show that two tier n

Network Adress Point
(Publi ng)

Tier

-

4
A

FIGURE 9.6 ISP connectivity through public peering at an exchange point and through
private peering (left: used to be more common among tier 1 ISPs; right: now seen more
commonly at other tiering (“tier-N”) levels).

292 9.3 Current Architectural View of the Internet

ISPs are directly connected to each other through private peering while they are also part
of the common exchange points with two other ISPs. For example, this would be a scenario
where two tier n ISPs that have private peering as well as public peering would use the
AS-path count to choose the private peering as the better path since they can use the exchange
point as another AS in the path length between them. It may be noted that private network
exchange points are also possible.

Exchange points provide physical connectivity to customers using technologies such as
Gigabit Ethernet, ATM, and SONET, where customers’ routers for connectivity are collocated
in the same physical facility. Mostly, exchange point provides a meeting place for layer 2 con-
nectivity. Layer 2 connectivity can give the impression that a simple Ethernet environment
with every ISP’s router attached to this Ethernet facility is probably sufficient. The difficulty
is that the sheer volume of traffic each ISP generates is so high that such a simple environ-
ment is not possible in practice. Thus, you see a combination of sophisticated technologies
with functionalities for peer management at most of the exchange points. In any case, at an
exchange point, each ISP’s BGP speaker can set up a BGP session to all other ISPs that have
a BGP speaker collocated. In recent years, some exchange points have become popular for
content delivery network providers since they can be directly connected to various major
ISPs.

It is important to note that exchanges points have fairly well-defined policies while such
policies can vary from one exchange point to another and certainly can evolve over time.
Some examples of policies are: (1) an ISP must have its own AS number and use BGP to
become a member of a exchange point, (2) the exchange point cannot be used for transit,
(3) the exchange point policy requires full peering among all parties, or, each ISP can choose
a different policy from a set of acceptable policies. Depending on policy, some large ISPs
might or might not want to joint an exchange point; for example, if some large ISPs do not
want to peer with smaller ISPs, they might not join an exchange point that stipulates that they
must peer with all parties. In some instances, ISPs of different tiers, including tier 1 ISPs, do
meet at large exchange points that may not require that all parties must peer with everyone.
In such cases, each ISP has the option of not peering with everyone that is a member of
this exchange point. Currently, Amsterdam Internet Exchange (AMS-IX) [14], considered the
largest exchange point, has a flexible policy; it lets providers of different size to connect to
its exchange point allowing each provider to set their own peering restrictions, including
allowing private interconnects between two members.

In essence, an exchange is a giant traffic switching point. Some of the large exchange
points push traffic in the order of 135 Gbps. It is not hard to imagine that such a high data
push requirement can be taxing even with the top of the line inter-connecting hardware; in
fact, this is no longer possible to do on a single hardware device. Thus, such exchange points
must set up their own internal topology in such a way that multiple hardware devices are
used for efficient traffic flow.

Now we move to consider multiple tiers. Tier 1 ISPs, in turn, provide connectivity to tier 2
ISPs; thus, in this case tier 2 ISPs are the customers and tier 1 ISPs are the providers. Tier 2
ISPs use tier 1 ISPs for transit service, but may peer with other tier 2 ISPs as well, for example,
either through regional exchange points or private peering. Typically, tier 2 ISPs do not have
international coverage—they are either at regional or national levels. It may be noted that a
tier 1 ISP provides transit service to many tier 2 providers at certain meeting points; these

CHAPTER 9 Internet Routing Architectures 293

meeting points are commonly referred to as Points of Presences (PoPs). We will discuss PoPs
more later in Section 9.6.

Tier 3 ISPs are the ones that seek transit service only from either tier 2 or tier 1 providers;
they are typically not involved in public peering, although they may do some private peering.
At the same time, tier 3 providers usually do not provide direct internet connectivity to users.

Beyond tier 3 ISPs, it becomes a bit murky in regard to the role of lower tiers or how many
more tiers there are. To limit our discussion, we will stop at tier 4 ISPs by assuming that they
provide local access to the Internet for institutions, enterprises, and residential users. Note
that tier 4 ISPs require transit connectivity from tier 3 providers.

Although we have discussed various tier levels, there is no clear rule that indicates who
is or is not a certain tier provider. Certainly, this is more clear in the case of a tier 1 ISP.
However, consider content delivery providers who want to be located close to tier 1 ISPs’
peering points. They usually have two options: (1) have their web servers hosted directly on
one of the tier 1 ISPs; in this case, no AS number is necessary, or (2) have their series of web
servers connected through routers to form a network with their own AS number, and then
have peering with every major provider at major peering points or through private peering.
If they choose option 2, they do not exactly fall into one of the tiering providers—we label
them as content delivery service (CDS) ISPs. Examples of CDS ISPs are Google, Yahoo!, and
Akamai.

There is also some difference in peering arrangements which varies from one country
to another. For example, private peering at tier 1 level is now common in US, while public
peering in other countries often includes some tier 1 providers. The largest public peering
point now is considered to be Amsterdam Internet Exchange, AMS-IX [14]. As of this writing,
AMS-IX has about 250 members which includes some large tier 1 ISPs as well; the peak rate
is 150 Gbps. London Internet exchange, LINX [419] has over 200 members with peak traffic
of 130 Gbps and Japan Internet exchange, JPIX [338] has 100 members with the peak rate at
approximately 65 Gbps.

Since the Internet is made up of many providers with different relations and tiers, the
obvious question is: what possible traffic exchange and payment relation do ISPs agree on?
Here are a representative set of possible options [692]:

e Multilateral agreement: Several ISPs build/use shared facilities and share cost; for ex-
ample, this agreement can be possible with public exchange points or private exchange
points.

e Bilateral agreement: Two providers agree to exchange traffic if traffic is almost symmetric,
or agree on a price, taking into account the imbalance in traffic swapped; for example, in
a private peering setting.

e Unilateral agreement for transit: A customer pays its provider an “access” charge for car-
rying traffic; for example, a tier 4 ISP would pay a charge to tier 3 ISP.

e Sender Keeps All (SKA): ISPs do not track or charge for traffic exchange; this is possible
in private peering and in some public peering.

Along with agreements, especially the ones that involve payment, it is common to also
write up service level agreements (SLAs). SLAs refer to an agreement on performance that is

9.3.2

294 9.3 Current Architectural View of the Internet

to be met on a course time scale; for example, the average delay between entry and exit
points not to exceed 20 millisec, when averaged over a certain time period such as a week or
a month. Typically, SLAs do not include performance requirement on a short time window
such as in seconds. Thus, SLAs can be thought of more as a coarse grain quality-of-service
requirement than a fine grain quality-of-service requirement. Furthermore, SLAs may also
cover issues such as demarcation points; this refers to the line that indicates who manages
what on a day-to-day basis. When a customer connects to a provider, there are three points
involved: the routers at each end (one for the customer and the other for the provider), and
the physical connectivity that connects them, such as a physical wire or a layer-2 connectivity.
In some cases, the demarcation point is where the customer connects to a layer-2 switch in the
physical connectivity part; in other cases, the customer’s router is completely located at the
provider’s site; and yet in other cases, the provider’s access router may be physically at the
customer’s site. Sometimes suitability of a demarcation point can be a factor for a customer
in deciding which one to choose as a provider.

A Representative Architecture

In Figure 9.7, we show a representative view of connecting ISPs of different tiers, including
CDS ISPs; routers shown are all BGP speakers in each ISP and only one exchange point is

Tier 11SP

FIGURE 9.7 Interconnection of ISPs of different tiers: a representative view.

CHAPTER 9 Internet Routing Architectures 295

shown; peering at different tiers are also indicated. Note that private AS numbers are used to
illustrate this example. In some cases, ISPs of different tiers are specifically identified using
an AS number for ease of discussion.

We will illustrate three representative sessions using this architecture; these three sessions
are shown in Figure 9.8: (1) from user Ul to server S1, (2) from user U2 to server S2, and
(3) from user U3 to server S2 where the actual flow paths are shown. As you can see from
the the original topology that there are multiple paths for each of these sessions. In regard to
path selection, we note the following:

e For the session from Ul to S1, there are two AS-paths. In this case, the AS-path with the
shorter AS length is chosen since there is private peering between respective pier-2 ISPs.

e For the session from U2 to S2 located at CDS ISP AS64516, there also appears to be two
AS-paths. However, the one through Tier 1 ISPs would be taken that is based on the policy
in place at the Tier-2 ISP upstream from U2.

e For the session from U3 to S2, there appears to be a second path from AS64552 to AS64600
to AS64560 to AS64699 to AS64617 to AS64516. However, this path would not be adver-
tised at all. Note that AS64560 is a tier 4 ISP. While it will learn about AS64516 from
AS64699, this would not be advertised to tier 3 provider AS64600, due to the stub rule
described earlier. Thus, AS54552 (and AS64600) would not know about this connectivity.

In addition, the following observations are worth noting;:

e In the case of server S2 located in the CDP ISP (AS64516), we have noted that it is multi-
connected to tier 1 ISP AS64617. From the perspective of the tier 1 ISP, it has multiple
egress points to the CDP ISP, AS64516. How does AS64617 choose one egress point over
the other for the sessions U3 — S2 and U2 — S2. Typically, this depends on a rule called
the early-exit routing rule within AS64617; this will be discussed further in Section 9.3.3.
An important consequence is that intra-domain routing optimization in AS64617 would
need to address this issue; this will be discussed later in Section 9.7.

e U2is a user in a tier 4 ISP (AS64822), which is a stub AS. AS64822 is dual-homed from
a single BGP speaker to two different tier 3 ISPs, AS64777 and AS64561. The tier 4 ISP,
AS64822, has a couple of different options to prefer accessing one tier 3 ISP over the other:
(1) set the local pre-configured priority values to access, say, AS64777, as opposed to the
other, since this factor is given higher priority in the BGP route selection process, or (2) in-
sert its AS number, AS64822, more than once when advertising IP prefixes it houses to the
ISP with the less preferred route, i.e., to AS64561.

e From the topology, it gives the appearance that the tier 4 ISP that houses U2, AS564822,
might be able to provide transit service to tier 3 ISPs to which it is connected. This is
where we need to make an important point about a stub AS such as AS64822. While a
stub AS learns about outside IP prefixes from BGP UPDATE messages it receives from
both its tier 3 providers, AS64777 and AS64561, it should not advertise what it learns
from one to the other. Note that usually tier 4 ISPs would connect to their providers on
a low data rate link such as T1. Thus, advertising what it has learned from one to the

296 9.3 Current Architectural View of the Internet

Tier 1 ISP

AS64516

Q)

FIGURE 9.8 Three session flows in the architecture presented in Figure 9.7.

9.3.3

CHAPTER 9 Internet Routing Architectures 297

other would open up the possibility of being the best path to some IP prefix destinations;
as a result, its access links can clog up with unnecessary traffic routing! this behavior is
known as blackholing and should be avoided by carefully programming a BGP speaker
with appropriate policies when it is multihomed to multiple providers; see Section 9.5 for
policy examples.

e An ISP that has multiple BGP speakers would set up IBGP sessions among themselves so
that routes can be exchanged internally.

Customer Traffic Routing: A Geographic Perspective

Customer traffic routing leads to interesting scenarios when observed from the geographic
perspective as it depends on how and where customers are connected to tier 1 ISPs. In this
section, we will illustrate two cases using Figure 9.9 in which we list three customers off of
two different tier 1 ISPs in three different locations: San Francisco, New York, and Amster-
dam. Note that these customers can be transit providers to other customers; for our illus-
tration, this relation suffices. In addition, there is a fourth customer of CDS type that has
connectivity to a tier 1 ISP at all three locations.

Clearly, traffic from Customer 1 would transfer at San Francisco through the tier 1 ISPs
if it is meant for Customer 3. This also illustrates why tier 1 ISPs peer at multiple geographic

New York I'. J ' Amsterdam
Peering H

FIGURE 9.9 Customer traffic routing from a geographic perspective.

9.3.4

298 9.3 Current Architectural View of the Internet

locations. In this example, if the tier 1 ISPs were not have peering at San Francisco, the traffic
between Customer 1 and Customer 3 would transfer in New York. This means that each
tier 1 ISPs would need to carry the traffic cross-continent unnecessarily to bring it back to
customers located off of San Francisco.

Now consider traffic between Customer 2 and Customer 3. It is easy to see that the
tier 1 provider for Customer 2 would let the traffic transfer at Amsterdam to the other tier 1
provider so that the second tier 1 provider would need to carry this traffic through its own
network all the way to San Francisco; this is known an early-exit routing. Similarly, for the
other direction, for traffic received from Customer 3, its tier 1 provider would transfer the
traffic to the other tier 1 provider at San Francisco so that the second tier 1 provider would
need to carry the traffic in its network all the way to Amsterdam to deliver to Customer 2.
Thus, it is easy to see that because of early-exit routing, traffic flows can be on asymmetric
paths. Note that early-exit routing is not necessarily a problem if both the tier 1 providers
have an agreement in place (such as Sender Keeps All) because their overall transfer from
one network to the other and vice versa is somewhat comparable.

Finally, we consider the case of traffic being routed to the CDS customer who is connected
to a tier 1 ISP in all three locations where they have mirror sites so that a user’s request can
be handled by the nearest site. That is, requests from users in Customer 1 and Customer 2’s
network would be directly handled off to the CDS customer in San Francisco, while requests
from users in Customer 2’s network would be handed off to the CDS customer in Amsterdam.
It may be noted that the network of CDS is shown to be connected among all three locations.
While a CDS customer may not own a facility, it can use an IP virtual private network (VPN)
to transfer high-volume data between its data centers in different cities, rather than using the
public Internet; more discussion about IP VPNs can be found in Section 18.5.

Size and Growth

In this section, we portray the current size and growth of the Internet in terms of AS numbers
and IP prefixes. There are currently more than 23,000 active ASes with about 195,000 IPv4
prefixes advertised externally. A sample summary is shown in Table 9.1, drawn from a web
site that reports BGP routing table analysis [303]; this site reports an external BGP view of
certain ASes obtained using Route Views [707]. Briefly, Route Views is a special-purpose AS
(AS6447) that uses multihop BGP sessions to peer with several BGP speakers at well-known
ASes. While it learns about IP prefixes from each of these ASes, it does not forward them
to others—that is, it serves an important role as a sink for BGP information, thus helping
to understand BGP growth. Table 9.1 also lists information for Telstra-i (AS1221) and Route
Views itself (AS6447); there is an explanation for why the IP prefix counts for these two ASes
are significantly different from others [302]. Telstra-i includes an internal view, including a
significant number of more specific prefixes that are yet to be aggregated before being an-
nounced for the external view. AS6447, being the sink, receives different information from its
peer ASes, some feeding only external views and others feeding local specific information—
the number for AS6447 reflects the sum of unique ones learned from all sources. Also, there
are currently over 850 IPv6 routes [303].

From Table 9.1, we can see that of the total number of active ASes, about 70% are
originating-only (stub) ASes; a significant portion of them are originating ASes with only

TABLE 9.1 IPv4 Route and AS Data, as of September 30, 2006 (courtesy [303]).

Name AS Number| IP Prefixes| ASCount| Originating AS Originating AS Transit Only Mixed ASes
with Single Prefix

Telstra-i AS1221 266,837 23,123| 16,251 70.28%| 9,707 41.98%| 78 0.34%| 6,794 29.38%

(Australia)

Telstra-e AS1221 195,322 23,081 16,228 70.31%| 9,684 41.96%| 79 0.34%| 6,774 29.35%

(Australia)

Sprint (USA) AS1239 192,925 22,975 16,329 71.07%| 9,675 42.11%| 73 0.32%| 6,573 28.61%

RIPE AS3333 197,323 23,172| 15954| 68.85%| 9,684 41.79%| 74 0.32%| 7,144 30.83%

(Europe)

Reach Net- AS4637 196,319 23,125| 16,240f 70.23%| 9,709 41.98%| 79 0.34%| 6,806 29.43%

work

Oregon Route AS6447 212,368 23,423| 15,747 67.23%| 9,687 41.36%| 66 0.28%| 7,610 32.49%

Views

AT&T World- AS7018 192,708 23,055| 16,229 70.39%| 9,678 41.98%| 79 0.34%| 6,747| 29.26%

net

TABLE 9.2 Prefix Length Distribution of the Top Five Prefix Lengths at AS4637 (September 30, 2006).

Prefix boundary Number Percentage
Prefix /24 105,987 53.99
Prefix /23 16,817 8.57
Prefix /22 15,407 7.85
Prefix /20 13,870 7.07
Prefix /19 12,275 6.25
Total 196,319 100

6 YHALJIVHD

SAANFOIFYILY SULNOY FoULIFUT

66¢

300 9.3 Current Architectural View of the Internet

220,000 T T T T .
AS4637 ———
200,000 Regression fit 7

180,000 i
160,000 7
140,000 //
120,000 .
100,000 y i WW

80,000
Iy

60,000 M g
40,000
d
20,008 //w
1988 1990 1992 1994 1996 1998 2000 2002 2004 2006
Year

Active BGP entries

FIGURE 9.10 BGP routing table growth at AS4637 and regression fit.

a single prefix advertised. Most of the remaining 30% are mixed ASes; i.e., they originate
and also provide transit services. The remainder (less than 0.5%) are “pure” transit ASes.
Reportedly, as of 2004, about 60% of stub ASes are multihomed [381]; however, this is a dif-
ficult number to compute since there is no field in the BGP protocol to indicate if an AS is
multihomed; thus, extensive study/assessment is required to identify the proportion of ASes
that are currently multihomed. You may note that the numbers on routes and ASes polled at
different ASes do not match; this is certainly possible since at the time of polling each such
AS may have a slightly different view to announcements and withdrawals, while including
counts for some internal IP prefixes as well.

In Figure 9.10, we present the growth in the number of advertised IP prefixes since 1989
as obtained for AS54637. The current value of more than 195,000 IP prefixes serves as a gauge
of lookup size that a BGP speaker faces when a packet arrives and requires forwarding. By
considering growth data since the beginning of 2002, we have performed a nonlinear regres-
sion analysis. If we denote Y for year (where Y > 2002) and N for the number of IP pre-
fixes, their relation can be roughly estimated by the following regression fit (see Appen-
dix B.7):

N = 105625 + 920.608 (4 Y — 8007)128% v > 2002. 9.3.1)

Using this relation and if no other aggregation is assumed, it can be estimated that N will
grow to about 232,000 by the beginning of 2008. It has been found that many ASes do not
aggregate routes before announcing outside; such an aggregation could significantly reduce
the BGP routing table entry. The recent assessment is that it can reduce the size from 195,000
to 127,000 entries, a 35% potential reduction [304]. In Table 9.2, we show the prefix length
distribution of the top five prefix lengths in terms of counts for AS4637. Note that almost
54% of the total of more than 196,000 are at /24 prefixes. In regard to AS hop distances,
about 77% of addresses can be reached in within two AS hop distances, and 99% of all

9.4

CHAPTER 9 Internet Routing Architectures 301

addresses can be reached within four AS hop distances. We include a picture of AS-level
connectivity, created by CAIDA, to provide some idea about the connectivity view (Fig-
ure 9.11).

An important reason to understand growth in IP prefixes and ASes is the impact on mem-
ory requirement at a BGP speaker. The following are the main factors that impact memory
requirement at a BGP speaker:

N = Number of IP prefixes

M = Average AS distance (in terms of number of AS hops)

A = Total number of unique ASes

P = Average number of BGP peers per BGP speaker.

Then, the memory growth complexity can be given by ([485], [593], [703]):

Memory Growth Complexity = O((N + M A) P). 9.3.2)

Note that M has a slow growth and N is more dominant than A. Thus, the complexity growth
can be approximated as O(N P), that is, the memory growth can be estimated as the product
of the number of IP prefixes and the average number of BGP peers per BGP speaker.

Allocation of IP Prefixes and AS Number

So far, we have discussed AS numbering, IP addressing, customer and provider relationships,
and so on. An important question remains: how does an organization obtain an IP address
block? In this section, we answer this question.

Internet Corporation for Assigned Names and Numbers (ICANN) is the organization
that handles global coordination of unique identifiers used in the Internet. Through agree-
ments, IP address block assignments have been distributed to five different Regional Internet
Registries (RIRs). The five RIRs are geographically organized as follows:

e American Registry for Internet Numbers (ARIN) (http://www.arin.net/) to serve the
North American region

e RIPE (Réseaux IP Européens) Network Coordination Centre (http://www.ripe.net/) to
serve the European and the West Asian region

e Asia Pacific Network Information Centre (APNIC) (http://www.apnic.net/) to serve the
South/East Asian and the Pacific region

e Latin American and Caribbean Internet Address Registry (LACNIC) (http:/ /www.lacnic.
net/) to serve the Latin and South American region

e African Network Information Center (AfriNIC) (http://www.afrinic.net/) to serve the
African region.

Each registry has its own rules and pricing in regard to IP address block allocation; this
allocation depends on allocation size as well, as indicated through netmask boundary such
as /19. For example, ARIN’s current policy is that the minimum allocation size is a /20,
while for multihomed organizations, the minimum allocation size is a /22. This means that if
an organization needs only a /24 allocation, it cannot obtain it directly from ARIN; instead, it

copyright @2005 UC Regents. all rights reserved.
=

0¢

IPv4 INTERNET
TOPOLOGY MAP
AS-level INTERNET Gru\brvm

Peering:
OutDegree
— 1659
— 1451
1244
1037

830

622

207

L2qUINN S puv Saxyaid dJ Jo uovdolly %6

|
sn 'ﬂ'ﬁlll’.‘;f

FIGURE 9.11 AS-based Internet “Skitter” graph generated by Cooperative Association for Internet Data Analysis (CAIDA),
2005. (Copyright © 2005. The Regents of the University of California. All Rights Reserved. Used by permission.)

CHAPTER 9 Internet Routing Architectures 303

must obtain it from an upstream ISP (provider) who has been already allocated at least a /20
address block by ARIN. Similarly, registries put restrictions on allocation of an AS number.
For example, currently ARIN would allocate an AS number to an organization only if it plans
to do multihomed connectivity to two ISPs or can justify that it has a unique routing policy
requirement. Note that allocation polices, both for IP prefix and AS number, do change from
time to time. For recent polices, you may check the web site of the respective registries.

Suppose that an organization obtains an IP address block along with an AS number from
ARIN. It would then need to establish multihomed connectivity to two upstream ISPs who
would have their respective AS numbers. Once the physical connectivity is set up, the BGP
speaker at the organization establishes a BGP session with the BGP speakers of its upstream
ISPs to announce its address blocks. This information is then propagated throughout the
Internet so that the rest of the Internet would know how to reach a host in this address block.
Note that the organization may have separate BGP speakers, one each for connecting to its
upstream ISPs; in this case, the organization would need to run IBGP between its two BGP
speakers in order to establish rules on how to handle routing of outgoing traffic.

Now suppose that an organization obtains an IP prefix from one of the regional Inter-
net registries but does not obtain an AS number. In this case, at first it would then need to
set up an agreement with an ISP that has an AS number; this ISP would then serve as the
“home” AS for this address block. Once connectivity and agreements are put in place, this
ISP would then announce this IP prefix along with other IP prefixes that are in its AS to its
upstream provider(s). Once this announcement is propagated throughout the Internet, the
newly announced IP prefix becomes known to the rest of the Internet. We discuss below two
possibilities of how the connectivity between an organization (customer) and its provider can
be set up when a customer does not own a public AS number:

e The ISP may set up private AS numbering to divide its customers into different ASes.
Thus, each customer (organization) has the flexibility to choose a routing protocol of its
choice internally and then use a BGP session to talk to the provider’s BGP and announce
its IP prefixes.

e If the provider uses OSPF protocol, then it can use Not-so-stubby Areas (NSSA) LSA (refer
to Section 6.2.8) to allow external routes from its customer to be advertised into the OSPF
autonomous system, while the customer may run its own routing protocol.

Choosing one over another or using any other mechanisms depends on the size of an ISP,
as well as its internal network management philosophy and policy, and its business strategy.
Furthermore, note that route redistribution (refer to Section 5.7) is a common mechanism to
exchange prefixes among different administrative organizations that fall within an AS num-
ber.

It may be noted that a customer who obtains an IP address block from a provider may
choose to switch to a different provider after some time. Suppose that a provider has the
address block 192.168.40.0/24, and it has allocated 192.168.45.0/24 to a customer. Initially,
through route aggregation the provider will announce 192.168.40.0/21 with its AS number.
Now the customer wants to move to a different provider keeping the address block. Thus,
the address block, 192.168.45.0/24, would now need to be announced with the AS number of
the new provider. This then creates a situation, known as a hole since the more-specific prefix

9.5

304 9.5 Policy-Based Routing

(192.168.45.0/24) creates a hole in the aggregated prefix (192.168.40.0/21). However, both the
aggregated prefix and the more-specific prefix would need to reside in the global routing table
at a BGP speaker; this is so that packets can be forwarded properly to the right destination.
This means that the IP address lookup process at a router needs to work very efficiently
for handling holes as well. Details on IP address lookup algorithms will be covered later in
Chapter 15.

Policy-Based Routing

Earlier in Section 8.7, we presented the BGP routing decision process; therein, we indicated
why policy-based routing is needed in an interdomain environment. By now, you proba-
bly have realized that policy-based routing is an extremely critical component used at the
BGP speakers for handling inbound and outbound traffic. For example, in Section 9.3.2, we
highlighted examples to show why import and export policies must be maintained at a BGP
speaker. We also noted earlier that NSFNET necessitated the need for policy-based routing. In
this section, we briefly explore why policy-based routing is needed, and how it may impact
customer provisioning.

Policy-based routing emerged because in an interdomain environment, announcements
received from a neighboring AS through an exterior routing protocol may contain IP prefixes
that the receiving AS may not want to handle or forward. Note that the receiving AS has no
control over what IP prefixes it receives from its neighbor, but it can control which ones it
does not want to handle/forward. Furthermore, due to the business agreement with a certain
neighboring AS, the receiving AS might want to give preference to a particular IP prefix
received from this neighbor compared to other neighbors.

It is important to realize that policy-based routing has three phases: (1) determine the list
of policies and load them to a BGP speaker; (2) when BGP messages arrive, apply policies to
update Routing Information Base (RIB) and Forwarding Information Base (FIB); and (3) when
an actual user packet arrives that affects a certain policy, take action as per policy in real-time
through FIB.

To determine and specify policies, it is imperative to have a generic routing policy lan-
guage that can work in a vendor-independent environment; then, from this format, a vendor-
specific format can be generated. Routing Policy Specification Language (RPSL), described
in RFC 2622 [8], is a language for declaring routing policy of an AS in public registry in or-
der to provide a common interface mechanism that others can easily verify. RPSL serves the
purpose of a vendor-independent language to describe policies. Usually, most providers use
vendor-dependent policy tools provided by a router vendor in its software platform. We use
RPSL for the purpose of illustration.

Here, we will illustrate a few examples adapted from [486]. Consider four ASes, AS65001,
AS65200, AS65201, and AS65202, as shown in Figure 9.12. Here, AS65201 and AS65202 are
customers of AS65200, while AS65001 is a transit provider for AS65200. Here, AS65200 will
accept any announcement from AS65201 if it has originated at AS65201, since AS65201 is
a stub AS; this rule also protects from any misannouncement by AS65201 or AS65202 such
as the blackholing scenario discussed earlier. Thus, AS565200 can set up a policy as shown
below:

CHAPTER 9 Internet Routing Architectures 305

b/

\g AS65001 -
N AS6200 =4
\a AS65201 < > AS65202 £

FIGURE 9.12 AS topology example for policy specification.

import: from AS65001 accept ANY

import: from AS65201 accept <*"AS65201+$>

import: from AS65202 accept <*AS65202+$>

export: to AS65201 announce ANY

export: to AS65202 announce ANY

export: to AS65001 announce AS65200 AS65201 AS65202

This means that AS65200 accepts any announcements from AS65001, the transit provider,
and, in turn, will export these announcements to AS65201 and AS65202. However, it will
import from AS65201 only paths made with AS65201 as the first member of the path; “+”
means that AS65201 may appear more than once, and “$” means that any AS listed after
AS65201 will not be considered. The same principle is applied to AS65202. In turn, AS65200
will export to transit provider AS65001 by announcing routes that originated in itself and the
ones from its customers’ ASes, AS65201 and AS65202.

If AS65200 has many customers similar to AS65201 and AS65202, a compact represen-
tation can be done instead of creating an entry for each one; this helps in minimizing er-
rors as well as in letting AS65001 know its consistent export policy. To do so, “as-set” and
“members” can be used as shown below:

as-set: AS65200:AS-CUSTOMERS
members: AS65201 AS65202

import: from AS65001 accept ANY

import: from AS65200:AS-CUSTOMERS accept <*AS65200:AS-CUSTOMERS+$>
export: to AS65200:AS-CUSTOMERS announce ANY

export: to AS65001 announce AS65200 AS65200:AS-CUSTOMERS

This then requires just updating the member list, as needed.

We next consider the case where AS65200 wants to specifically allow the IP address space
assigned to, say, AS65201. If AS65001 is assigned the space 10.10.0.0/16, then AS65200 can
include a more specific rule as follows:

9.5.1

306 9.5 Policy-Based Routing

import: from AS65201 accept { 10.10.0.0/16/16-19 }

This means that AS65200 will accept announcements from AS65201 if the netmask starts at
/16 but not longer than /19. However, if it would receive any address block except for, say
10.20.0.0/16, then this can be stated as:

import: from AS65201 accept ANY AND NOT {10.20.0.0/16}

We have shown some simple rules to illustrate how import and export policies can be
enabled in policy-based routing using RPSL. RPSL provides a rich set of commands to create
fairly complex rules. Later in Chapter 16, we will discuss packet classification handling by
a router when an actual packet arrives; we will then present algorithms implemented in a
router for efficient packet processing due to such rules.

It is important to note that policy-based routing is quite complex, not as simple as the
example rules listed above. Since different ASes have different policies, it is also possible to
have oscillatory behavior, unintended behavior, loss of reachability, and so on. As an example,
we discuss BGP wedgies below to show how unintended behavior is possible.

BGP Wedgies

An undesirable consequence of BGP policy-based routing is that it can lead to stable but
unintended routing, known as BGP Wedgies [264] . We will illustrate through an example (see
Figure 9.13(a)). Consider an ISP with AS number 65101; its primary provider is AS65301, but
it also has a backup provider, AS65201. In turn, AS65201 uses AS65302 as a provider who has
a peering relation with AS65301.

The primary/backup relation can be implemented in two ways: one way is to prepend
AS65101 twice (instead of the normal one time) in the announcement to the backup provider,
and just once to the primary provider. In this way, the path through the backup provider
is intended to be longer than the path through the primary provider in terms of AS hops.
However, this may not be fully guaranteed if its primary provider, AS65301, also does extra
AS hop prepending to any upstream backup provider. Thus, it is still possible that traffic
originating beyond such an upstream provider may still traverse via AS65201, rather than
taking the path via AS65301.

In order to be not affected by the decision of providers further upstream, a second alterna-
tive is possible. This option uses BGP communities (refer to Section 8.10.1). In this approach,
a provider announces community values to its neighbors; thus, customer AS65101 can se-
lect the provider’s local preference setting. There is another reason for preferring this option
over the AS-path prepending option. This is since, in BGP path calculation, local preference
is given higher priority over AS-path (refer to Section 8.7.1). Note that the community values
marked by the customer must be understood and supported by both the providers.

Through this process, intended routing is that any traffic takes the primary path through
AS65301 to destination AS65101, including from AS65201 via AS65302, AS65301 to AS65101
(see Figure 9.13(b)). In order to achieve the intended routing, AS65101 needs to announce
its routes on the primary path AS65301 before announcing its backup routes to AS65201.
However, the intended outcome may not work if after path priorities are established, the
BGP session between AS65101 and AS65301 fails. This would result in AS65301 generating a

CHAPTER 9 Internet Routing Architectures 307

Customer

< Backup Link

(b) ©

FIGURE 9.13 BGP Wedgies: (a) connectivity setup, (b) intended routing, (c) unintended
routing.

withdrawal message indicating nonavailability of routes in AS65101; this message will reach
AS65302, which, in turn, will announce to AS65201. Now the BGP speaker at AS65201 will
look up its cached AS-paths in Adj-RIBs-in and will find that there is a path available from
AS65201 to AS65101. Thus, AS65201 will advertise the availability of this backup path to
AS65302, which in turn will inform AS65301. Now all traffic to AS65101 will take the backup
path via AS65201.

The problem is that once the BGP session between AS65101 and AS65301 is again back
in service, the original path is not restored. This is because AS65302 would enforce the pol-
icy that it prefers customer-advertised routes (i.e., from AS65201) over routes learned from
peer ASes (in this case, from AS65301). Thus, the untended routing, shown in Figure 9.13(c),
occurs. The only way to revert to the primary path is to intentionally bring down the BGP
session between AS65101 and AS65201.

The above BGP Wedgie example is known as “3/4” wedgie. For additional examples,
see [264].

9.6 Point of Presence

Earlier in Section 9.3.2, we briefly discussed demarcation points. In this section, we discuss
the general architecture of access points to large ISPs such as tier 1 ISPs where the demarca-

308 9.6 Point of Presence

To other PoPs

Access Router \
(AR1) P

\ 2

/

.» Customer 1 @ { o R Z

Access Router
(AR2) ——

e]

% Customer3 j w

FIGURE 9.14 Tier 1 ISP’s Point of Presence (PoP) connectivity architecture.

-

f} Customer2 <

tion point between customers and providers lies. The meeting point at which many customers
connect to a large ISP is often known as a point of presence (PoP).

In Figure 9.14, we show the topological architecture of a PoP, found to be common with
tier 1 ISPs [308]. Typically, customers have their own AS numbers and routers. For redun-
dancy, it is common for a customer to connect to multiple routers in the provider’s network;
this, however, depends on how much a customer is willing to pay for redundancy. The PoP
architecture of a provider’s network has two sets of routers: core routers that connect to other
PoPs and access routers that serve as the ingress points for connectivity to customers’ routers.
Again, access routers are dual-homed to core routers for redundancy. It is important to note
that the access routers in the tier 1 ISP’s network serve as BGP speakers; they talk to the border
routers at customers’ networks, which serve as BGP speakers for the respective customers’
networks.

The allocation of customers to an access router is a critical network design problem for a
tier 1 ISP. Customers can have varied requirements: single connectivity, connectivity to two
access routers, multiple routers to multiple access routers, as well as different access data rate
requirements. From the perspective of the tier 1 ISP, they need to consider the number of
physical ports of different access routers, not overloading any access router with too many
connections to all their customers’ routers since each such connection also results in a BGP
session and the agreed upon maximum data rate to control traffic flow is to be taken into
account. Thus, given various constraints, the general goal of the provider is to load balance
access routers, keeping in mind future growth. Furthermore, the situation becomes even more
complicated since there are also layer 2 technologies to manage for physical connectivity. To

9.7

CHAPTER 9 Internet Routing Architectures 309

solve these types of access network design problems, optimization models such as the ones
presented in [564, Chapter 6] would need to be customized /adapted.

An important issue to consider is whether the architecture can be simplified. The PoP
architecture originally emerged because traditionally routers were not always reliable; thus,
it provides reliability through redundancy. However, the loss of an access router, say AR2,
rather than just the route controller hardware/software failure alone, would result in loss of
all BGP sessions to associated customers’ routers. Thus, customers’ routers will delete routes
to IP prefixes learned from failed routers; this will result in other peers withdrawing routes,
which can lead to route flap with a network-wide effect (refer to Section 8.9). Traditionally
a router can take 3-10 minutes to restore service for a router controller failure [347]. Due to
recent router technologies such as nonstop routing, a peer would not know of a failure since
the TCP connection for the BGP session would not be lost, thus avoiding BGP flapping. This
has another benefit in that customers’ routers need not connect to two access routers; this can
reduce configuration complexity and cost, the impact of a protocol, and the number of access
routers required.

There is another issue to consider from the perspective of traffic engineering and
OSPF/IS-IS routing. This will be discussed in the next section.

Traffic Engineering Implications

In Chapter 7, we presented intradomain IP traffic engineering. While the methodologies dis-
cussed there work in general, there are certain issues to specifically consider in the presence
of BGP interactions with neighbors and the size of the overall topology, especially for large
tier 1 ISPs or transit ISPs.

Typically, large ISPs deploy IS-IS or OSPF as routing protocols within their networks.
This requires computation of the shortest path by a router. From Figure 9.14, we can see that
a tier 1 ISP has many routers in a PoP (we have shown six in the figure). If a tier 1 ISP has k
routers at a PoP and there are m PoPs in its network, then there are k x m routers in the entire
network. At least in theory, each router would then need to do shortest path computation on
a k x m-router network. In practice, this can be avoided for certain routers; for example, an
access router such as AR1 has a designated primary and a designated secondary connectivity
to core routers; in addition, they never connect outside the PoP. Thus, for these routers, link
weights can be set up by setting a lower value to one link, say AR1 to CR1, which is meant as
the primary link than the other link; use of the static route option is also advisable here. For
core routers, it is clear that the primary intent is to route traffic to another router at another
PoP, not to another intra-PoP core router; such intra-PoP connectivity is for redundancy in the
event of a failure. Thus, typically, the link weights between intracore links at a PoP should
have very high link weights so that such links can be avoided for intra-PoP traffic, unless
there is a link failure. In essence, what it means is that the traffic demand can be abstracted on
an inter-PoP pair basis, not at a per-router pair basis. A desirable consequence is that the link
weight determination traffic engineering problem need not be considered for the k x m-node
problem; instead, each PoP can be abstracted as a single node leading to an m-node traffic
engineering problem, a much smaller optimization problem to solve than the k x m-node
problem.

In addition to using traffic engineering models presented in Chapter 7, certain variations
are necessary to address practical issues. From the discussion above, we see that many core

310 9.7 Traffic Engineering Implications

providers have multiple egress points for early-exit routing to its customers; we illustrated
this aspect in Section 9.3.3. This requires some tweaking to the link-weight setting problem
from the point of view of modeling. Refer to Table 7.1 in Chapter 7, in which we summarized
the notation for the IP traffic engineering problem. Specifically, we have defined K as the
number of demand pairs with positive demand volume for ingress-egress node pairs, and /
as the demand volume of demand index k=1, 2, ..., K. In light of early-exit routing, several
extensions are required [218], [595], [688]:

o Offered traffic from ingress to IP prefix destinations: This means that traffic demand be repre-
sented more accurately at the IP prefix destination level rather than for egress router.

e Egress links connecting to neighboring domains: External links to routers in neighboring ASes
should be considered explicitly in the modeling framework, and objective function should
consider the load on this link as well.

e Set of egress links for each IP prefix destination: This set can be modeled as a logical node
in the formulation, but without considering them in the objective function for traffic load
utilization.

e Selection of the closest egress point: Based on link weights, the closest egress point can be
identified for each ingress point.

These extensions can be modeled in the framework presented in Chapter 7 since K is an
abstract notion for the number of demand pairs; instead here, K needs to consider the above
variations along with the creation of new link entities in the overall problem formulation.
That is, the rest of the modeling framework described in Chapter 7 remains the same; in this
sense, the framework presented there is powerful in addressing such variations.

There are, however, additional important considerations. Typically, any traffic matrix—
based approach considers only a single traffic demand matrix. Since the actual traffic varies
from one time instant to another within a 24-hour cyclical pattern, this variation is important
to consider. There are typically two ways to consider this time-dependent variation factor:
(1) consider the peak demand during the day, factor in any day-to-day fluctuations, and use
this traffic demand matrix in the link weight determination problem, (2) take multiple snap-
shots of traffic demands during the day, and solve the link-weight determination problem
independently for each such demand matrix, and compare any differences in link weights ob-
tained for each snapshot—if they are comparable with an acceptable tolerance, then a robust
set of link weights can serve any traffic variation during the day. Whether one works better
than the other requires computing and analyzing link weights, customizing/tailoring for a
particular service provider’s network. Another important consideration is equipment/line-
card failures. The question then is how does traffic rerouting impact the overall performance.
To avoid link weight re-optimization in the event of a failure, an integrated link weight can
be determined with failure restoration also as a goal; for example, see [308], [470], [532], [564],
for additional details.

It may be noted that many large ISPs use IP with Multiprotocol Label Switching (MPLS).
MPLS allows flexible options for traffic engineering controls in order to route customers’
traffic. We will present MPLS in Section 18.3 and discuss MPLS traffic engineering in Sec-
tion 19.1.2.

9.8

CHAPTER 9 Internet Routing Architectures 311

We conclude this section by briefly discussing interdomain traffic engineering. While each
ISP is motivated by its own interest in optimizing its intradomain network, the need for in-
terdomain traffic engineering, especially among neighboring ASes, is motivated by issues
such as managing inbound traffic, managing outbound traffic, and selecting peering points
optimally rather than relying on early-exit routing for a sub-optimal solution [217], [439].
In general, interdomain traffic engineering may involve a contractual peering agreement. In
general, interdomain traffic engineering is an emerging area that requires further research.

Internet Routing Instability

Routing instability in the global Internet is caused by a variety of factors. A series of studies
based on actual measurements in the mid-1990s first pointed out routing instability on the
global Internet ([389], [391]). We start with an example from this series of work. Suppose that
the CPU at a BGP speaker is overloaded. Then, it is possible that KEEPALIVE messages are
not communicated on a timely basis; this can make the BGP speaker on one end think that
the other end is not available any more, much as if the link between the routers has gone
down. Each router can then generate a series of messages to indicate nonreachability, which
can cascade from one AS to another one, thus causing a network storm effect. A second related
problem is when the CPU overload subsides and both the routers determine that they can talk
to each other again (that means the link is up again); this can cause another storm of activities
in regard to re-updating reachability information, thus causing unstable behavior. Since that
time, router vendors have made significant progress on how to handle KEEPALIVE messages
during CPU overload, for example, by giving priority to such messages over regular traffic.
Furthermore, route flap dampening (refer to Section 8.9) has been added to the BGP protocol
to minimize any storm effect that can be created.

For a more recent example of CPU overload, we consider the impact of a virus on the rout-
ing infrastructure. Routers usually cache forwarding path for commonly routed IP addresses
to provide fast lookup and fast packet forwarding. During the Code Red-II and Nimda virus
attack [156], [157], [728], instances of the virus started random IP address scanning; this re-
sulted in cache misses as well as generation of router error messages through ICMP error
messages, leading to extensive CPU overload in routers, thus causing further storm like in-
stabilities.

The CPU overload problem provides an example of what types of routing instability
can/might occur. There are multiple sources of problems that can lead to instability; for ex-
ample, (1) layer 2 data link failure or layer 2 timer device failure, (2) virus attacks, (3) soft-
ware bugs, and (4) router configuration error. Note that not all of these can be labeled as
failures. Some of the incidents can cause the entire BGP session to be disconnected for a
long time, while others may result in intermittent problems where the session goes down
and comes back up again. Because of the BGP protocol’s reachability concept, withdrawals
and announcements are generated. If the entire architecture was built on the notion of single
homing with just transits for connectivity to other ASes, this would not be a major concern.
However, in light of multihoming AS, and a transit AS being connected to multiple ASes due
to either public or private peering, the effect can be magnified. Due to the path vector pro-
tocol nature of the BGP protocol and to avoid a route looping problem, finding another path
through other ASes can take a long time, and in fact, can require many exchange of messages;

9.9

312 9.9 Further Lookup

we have illustrated such a behavior earlier in Section 3.5 when we illustrated an example in
which a multihomed AS loses connectivity to its multiple providers (ASes).

Another effect of a BGP session drop/restart is that it can lead to duplicate announce-
ments due to the operation of the timers. This can be addressed by BGP speakers maintaining
partial state information about announcements to its peers.

A recent study has looked into the BGP storm issue and also tried to understand if it
affects the data plane, i.e., does a control plane problem cause a data plane problem? This
study observed that it may or may not. While during Code Red and Nimda viruses, the BGP
update storm was prevalent, it did not necessarily affect the data plane, while during another
virus, known as Slammer virus, did affect the data plane performance. For additional detail,
see [607].

Finally, a general concern is that some small unknown problems in one part of the In-
ternet routing architecture could cause significant instability to the overall system; such an
effect is often referred to as the butterfly effect [424]. We have already seen some examples that
can be labeled the butterfly effect. Certainly, there have already been many checks and bal-
ances introduced to the routing system to avoid/minimize such behavior; however, butterfly
effects in the routing system in the future due to yet unknown factors cannot be completely
ruled out. In general, understanding Internet routing instability and finding good solutions
continue to be an active research area.

Summary

In this chapter, we present Internet routing architecture, starting with its initial evolution.
Clearly, Internet routing architecture has experienced tremendous growth and changes in the
past decade since the introduction of NAPs. Business agreements have played critical roles in
public and private peering in order to provide efficient traffic movement through the Internet.
In parallel, we have seen the emergence of the role of policy-based routing.

Traffic engineering objectives are also somewhat different for certain ISPs due to the ser-
vice they provide to their customers. Thus, appropriate adjustments are needed. Furthermore,
global Internet routing instability remains a concern in light of conflicting goals and unknown
factors.

A general question remains about viability/scalability of BGP as Internet continues to
grow; thus, the exploration of new routing paradigms for large, loosely connected networks
is an important research direction.

Further Lookup

There are many foundational problems associated with interdomain routing as the Internet
grows [216]. They can be classified broadly into two categories: (1) policy-induced prob-
lems, and (2) scalability-induced problems. Examples of policy-induced problems are pol-
icy disputes between ASes, policy enforcement, and secure route advertisement. Examples of
scalability-induced problems are nonvisibility of paths when route reflection does not distrib-
ute all routes, IBGP /EBGP interactions causing loops and oscillations, difficulty to determine
the cause of update triggers, and a BGP speaker’s ability to handle routes as the number of
routes grows. This is an interesting class of problem domains that requires further inquiry.

CHAPTER 9 Internet Routing Architectures

W
—_
(O8]

Another problem of importance is whether the current Internet architecture provides struc-
tural incentive for competitive providers at the access network level for interdomain routing
so that multiple choices are available instead of a single way out. This area also has received
attention recently; for example, see [753], [754].

For traffic engineering in the presence of inter-domain issues and to address restoration
of the tier 1 backbone, see [217], [308], [439], [595]. For provisioning of BGP customers, see
[260]. Understanding the AS-level topology is an active area of research; for example, see
[438], [506].

Policy-based routing is an important topic that has emerged as a result of experience with
the NSENET. Early discussions on policy-based routing can be found in [93], [144]. The BGP
convergence issue in the presence of policy-based routing has raised significant interest in
recent years, for example, in regard to the stable paths problem and inter-domain routing
[243], [265], [388], [728].

Many providers maintain web sites that announce their policies on peering; for examples
of current peering policies by large ISPs, see [20], [40], [656], [718]. It is, however, not always
easy to determine who peers with whom, and whether through public or private peering;
nonetheless, some information on peering relations can be found at [552]. Settlements on
payment between customers and providers were described in [692]; for a recent discussion,
see [305].

For other general issues related to the Internet, see [636] for routing stability, [168], [182]
for interdomain routing history and requirements, [445] for routing design, [550] for end-to-
end routing behavior, and [256], [749] for a detailed discussion on network neutrality.

Exercises
9.1. Review questions:
(a) What is the relation between an AS and an ISP?

(b) Is policy routing checked on the inbound or the outbound interface of a BGP
speaker?

9.2. Suppose that you manage an ISP that has its own AS number and your domain serves
as a stub AS. Occasionally, your AS receives traffic that does not belong to your AS.
Identify possible cause(s) for this behavior.

9.3. For a given IP address, how would you find out its home AS number?
9.4. Why would a stub AS use uRPF at its border router? Explain.

9.5. While inspecting your BGP speaker, you found that an AS number shows up more than
once for certain destination IP prefixes. Why is this possible?

9.6. Consider policy-based routing. Investigate possible scenarios in which oscillator behav-
ior and/or loss of reachability might occur.

This page intentionally left blank

Part III: Routing in
the PSTN

In this part, we present routing in the PSTN.

In Chapter 10, we start with a discussion of hierarchical call routing. We then delve into
a number of dynamic call routing schemes, and present a qualitative discussion on their sim-
ilarities and differences.

The notion of traffic in the telephone network is presented in Chapter 11. A set of control
schemes that works in tandem with routing is discussed. In this framework, we then describe
voice traffic engineering and present performance behavior of dynamic routing schemes by
considering traffic load and capacity.

To facility call routing in PSTN, the SS7 network and its services play important roles.
Thus, in Chapter 12, we present SS7 networking and discuss how the service functionality
it provides through ISUP is used in call set up and control. We also discuss the SS7 protocol
stack architecture, as well as message routing in the SS7 network.

Finally, in Chapter 13, we present PSTN routing taking into account E.164 addressing.
Our treatment gradually changes from a nation-wide single provider environment to multi-
provider scenarios, while introducing how SS7 messaging facilitate call routing decision in a
multi-provider environment. We also discuss number portability and its impact on changes
in call routing decision.

10

Hierarchical and
Dynamic Call
Routing in the
Telephone
Network

A good hockey player plays where the puck is. A great hockey player plays
where the puck is going to be.

Wayne Gretzky

Reading Guideline

Understanding hierarchical routing gives you an idea about the issues involved in
doing loop-free routing in an information-less setting. The section on dynamic rout-
ing can be read independently, although reading about hierarchical routing first pro-
vides a better perspective. Related traffic engineering problems will be discussed in
Chapter 11. The discussion on dynamic call routing is also helpful in understanding
quality of service routing presented later in Chapter 17.

10.1

10.1.1

CHAPTER 10 Hierarchical and Dynamic Call Routing 317

Routing is a critical function in the global switched telephone network. The routing archi-
tecture in the switched telephone network is based on the notion of hierarchical routing that
was originally designed a half a century ago, and the hierarchical concept as it was thought
of is still in place in the overall global switched telephone network architecture. In addition,
dynamic call routing schemes have been introduced in the past 25 years that can function in
this hierarchical architecture.

In this chapter, we will present both hierarchical routing and dynamic routing. The reader
might want to note that the term dynamic routing used in this chapter refers to dynamic call
routing in the telephone network; it should not be confused with dynamic routing in IP net-
works.

We start with a few definitions. Circuit switching is used for call routing in the telephone
network. Circuit switching refers to the mechanism of communication in which a dedicated
path with allocated bandwidth is set up in an on-demand basis before the actual communi-
cation can take place. On-demand means that the path is set up quickly when the request
is made. The dedicated path is released immediately when the communication is over. The
most well-known application of circuit switching is telephone network calls. The call band-
width for a wire-line telephone circuit is 4 kilohertz in the analog mode or 64 Kbps in the
digital mode. That is, a voice connection in the wired telephone network takes up a voice
circuit established through circuit switching, requiring 64 Kbps of bandwidth. When a circuit
is considered on a link, it is also referred to as a trunk. Thus, the terms circuit and trunk will
be used interchangeably. The term trunkgroup refers to a group of circuits or trunks on a link
between two directly connected switches; a trunkgroup is also referred as an inter-machine
trunk (IMT) while considered in the context of connecting two switches. A switch in digital
telephony is a time-division-multiplexed (TDM) switch. In this chapter, we will use node,
switch, and TDM switch interchangeably.

Hierarchical Routing

We first start by describing hierarchical routing in a telephone network.

Basic Idea

Telephone networks have been around for over a century. However, the need for any form of
routing did not arise until the 1930s. Until then, essentially point-to-point direct links (trunk-
groups) were set up to connect calls between different places; there was no routing involved.
The need for routing arose for two primary reasons: (1) point-to-point links lead to the N?
problem, i.e., if there are NV nodes in a network, we need N(N — 1)/2 directly connected links;
thus, as more and more cities (with multiple switches) offer telephone services, this problem
grows significantly, and (2) it was recognized that some trunkgroups were less utilized com-
pared to others; thus, if there were any way to take advantage of this by routing calls through
less utilized trunkgroups, capacity expansion could be avoided. Capacity expansion used to
be very costly and still is in many cases. There is another impetus to arriving at some form of
routing: as the switching technology started to move from old mechanical switches to electro-
mechanical switches, the possibility of switching being capitalized to perform some form of
routing became more than a thought.

10.1.2

318 10.1 Hierarchical Routing

This is where we need to understand something important. Unlike routers for the Inter-
net (as discussed elsewhere in this book) that have the ability to compute and store routing
tables, telephone switches did not have this ability in the early years. Thus, routing was to be
performed in an age when neither information storage nor information exchange was possi-
ble. When you think about it, this is a complicated problem. This problem becomes more pro-
nounced when you add an important requirement of routing: looping must be avoided. There
is another important point to note here. With the technology available at that time, the call
setup was accomplished through progressive call control (PCC) by forwarding setup signaling
from one switch to the next; this is to be done in an information-less setting—that is, nodes
did not have any ability to exchange any status information. Thus, a call control cannot get
back to a switch from where it started; there was no way to look backward. The question is:
how can looping be avoided and yet provide some form of routing by forwarding a call from
one trunkgroup to another as the call goes from one switch to another in such an information-
less setting? The Bell System came up with an innovate idea for routing without looping. The
basic idea was to introduce hierarchy among network nodes and still use PCC. To describe it,
we start with a simple illustration.

A Simple Illustration

We start with a four-node illustration (Figure 10.1). In this example, switches are divided into
two levels: switches 1 and 4 are at the lower level and switches 2 and 3 are at a higher level;
furthermore, switches 1 and 2 are in the same ladder of the hierarchy, while 4 and 3 are on
another ladder.

First consider Figure 10.1(a). A call from switch 1 to switch 4 can take the direct link (if
it exists). However, if the direct link 1-4 is busy, the call overflows and is attempted on link
1-3. The important thing is that the control of the call is forwarded on this link with the call
attempt. Once the call reaches switch 3, the call can only go toward its destination, which
means taking link 3-4. If capacity is available on link 3-4, the call is carried through on link
3-4. However, if there is no capacity available on link 3-4 when the call arrives at node 3, the
call is considered lost, and the network cannot retry through another path; because of PCC.
A lost call means that users hear a fast busy signal, and the user has to hang up and redial
the number. It is, however, important to recognize that the scheme still provides alternate
routing. If the call cannot find an available circuit on the outgoing link 1-3, the call can be
attempted on link 1-2 as the final trunkgroup, where switch 2 is the switch above switch 1

— — — High Usage

—— Final

(2) ®)

FIGURE 10.1 Hierarchical routing example.

CHAPTER 10 Hierarchical and Dynamic Call Routing 319

in its direct hierarchy. Thus, the trunkgroups in hierarchical routing networks are classified
into two groups: high-usage (HU) trunkgroups and final trunkgroups. So, which ones are HU
groups? In this example, trunkgroups 1-4, 1-3, and 2-4 are HU groups since they are not
necessary but are installed because of the high volume of traffic between those end nodes
connecting such trunkgroups. A final trunkgroup means that there is no other trunkgroup to
overflow to if a call does not find a circuit on a final trunkgroup. Thus, for a call from switch 1
to switch 4 (for Figure 10.1(a)), route attempt options are in the following fixed order: 1 — 4,
1—3—4,and 1 — 2 — 4. Usually, such usage of switches 2 and 3 is called tandem switches,
which create the opportunity to provide alternate routing paths as transiting nodes.

Now consider Figure 10.1(b) where trunkgroup 2-3 is now added, compared to Fig-
ure 10.1(a). Since this is a two-level hierarchy example where there are no switches above
switches 2 and 3, trunkgroup 2-3 is also a final trunkgroup. In this network, a call from switch
1 to switch 4 has the following fixed order for attempting to route a call: 1 - 4,1 — 3 — 4,
1—-2—4,and 1 - 2 — 3 — 4. In this network, a call can originate at either switch 2 or 3 as
long as it has a lower layer interface for call origination; thus, in the figure a dark circle (indi-
cating a switch at the lowest level) is embedded into the second-level switch. Now, for a call
from switch 2 to switch 4, there are two routes in the following order: 2 - 4 and 2 — 3 — 4;
the first route is allowed since the HU group 2-4 is the destination switch. For a call from
switch 2 to switch 3, there is only one route: 2 — 3.

How does the hierarchy of nodes help? Consider a call originating at switch 2 for either
3 or 4. It is not allowed to go down toward its immediate lower-level switch for routing; for
example, 2 - 1 — 3 and 2 — 4 — 3 are not valid routes for calls from switch 2 to 3. Otherwise,
in a PCC environment, a looping can take place since a call originating at switch 1 will go to
switch 2, which will send it back to switch 1!

In summary, the main rules for routing (while avoiding looping) in a hierarchical routing
environment can be summarized as follows:

o A switch in a higher level must have the switching function of the lower level in a nested
manner. This is known as the multiple switching function rule. In Figure 10.1(b), switches 2
and 3 internally have switching functionalities of the lower-level switches.

o Calls must be routed through the direct switch hierarchy, both at the originating switch
and the destination switch. This is known as the two-ladder limit rule. In Figure 10.1(b), the
direct switches hierarchically above switch 1 and switch 4 at the next level are switch 2
and switch 3, respectively. Now, imagine a fifth switch (switch 5) at the same level as
switches 2 and 3 in Figure 10.1(b), and a HU trunkgroup between 1 and 5, and also another
HU trunkgroup between 4 and 5. A call from switch 1 to 4 is not allowed to take the route
1—5— 3 — 4ortheroute 1 - 5 — 4, since switch 5 is not in an originating or destination
switching hierarchy of switch 4.

e For a call from one area to another, a HU trunkgroup from a switch in the originating area
to a switch at the next higher level in the destination area is a preferred selection over
the final trunkgroup to the switch at a level directly above it. This is known as the ordered
routing rule. In other words, the route order of attempts is predefined and consistent when
multiple routes exist and is based on the level and location of switches in different areas.

10.1.3

320 10.1 Hierarchical Routing

Thus, in Figure 10.1(b), for a call from switch 1 to 4, the route 1 — 3 — 4 is preferred over
route 1 — 2 — 4. Using the same rule, for a call from switch 4 to 1, route 4 - 2 — 1 is
preferred over 4 — 3 — 1.

Overall Hierarchical Routing Architecture

In the previous section, we discussed hierarchical routing using switches at two levels. In a
national network, there are actually five levels defined in the hierarchy. At the bottom are
the end office switches; as we move up, we go from toll switching centers to primary switch-
ing centers to secondary switching centers to regional switching centers. The five levels of
switching hierarchy are shown in Figure 10.2.

From a geographic perspective, there is another way to view the network that takes a
planar view. This is shown in Figure 10.3. We can see that the part of the network that is under
a regional switching center is essentially a tree-based network except for any HU trunkgroups
(marked by a dashed line) that connect a switch under one regional switch to another switch
in the same region or a different regional switch. The network at the regional switching center
level (or the highest level if all five levels are not used) is fully connected.

To summarize, through the introduction of a hierarchy of switching nodes, several issues
were addressed simultaneously:

e The scalability issue of full connectivity or N> growth in number of links in a network at
the end-office level is addressed. Full connectively is needed only for a handful of switches
at the highest level of the hierarchy. To obtain some perspective [697, §4.1.5], by 1981
(before the breakup of the Bell System), there were 20,000 end offices in the United states;

] [] regona

T A

= = = High Usage

Final

- Q

@ __________ @ Tol
0 ‘) End Office

FIGURE 10.2 Switching hierarchy in hierarchical routing.

10.1.4

CHAPTER 10 Hierarchical and Dynamic Call Routing 321

) .
./ Qg7 T

)
> B S
) DA
®) / .A. £ I8)
X R

FIGURE 10.3 Geographical perspective.

imagine trying to link all of them directly in a fully connected network! However, there
were only 10 regional switching centers needed.

e Multiple alternate paths were available in many cases between end offices where the call
was attempted in a predefined order. An important point is that routing was accomplished
without requiring any information exchange between switches, that is, in an information-
less environment.

e Looping was avoided by defining carefully rules for switching hierarchy and forwarding
of calls.

A final note is how to address routing of international calls from one country to another.
In the hierarchical routing structure, another switching level is defined above the regional
switching center to connect trunkgroups from one country to another country.

Thus, hierarchical routing can be briefly summarized in the following way: switches in
the network are placed at different levels; a call can move up a trunkgroup from a lower-level
switch to a higher-level switch unless the call is going from a higher-level switch directly to
the final destination switch; a call can go from one switch to another in the same level if the
second switch is in the “destination region.”

Telephone Service Providers and Telephone Network Architecture

Until the divestiture of the Bell System in 1983, the entire hierarchy of the telephone network
was provided by the same telephone service provider (TSP) in the United States. In fact, in
most nations across the world, the telephone network is still provided by the same provider.
With the breakup of the Bell System in the United States, different TSPs play different roles
in carrying a call. A call originates in an access TSP, a “local exchange carrier (LEC),” where
the call starts from the end office. If the call is destined for another user in the same LEC, the

10.2

10.2.1

322 10.2 The Road to Dynamic Routing

Pt \
Inter Exchange Carrier 4

(IXC)
{

e —

Local Exchange { } Imalﬁxd;nge 4

\i"i“fi’-/ e’

FIGURE 10.4 LEC/IXC architecture.

/

call is routed within its network. When a call starts from one LEC and is destined to termi-
nate in another LEC, the call typically goes through an inter-exchange carrier (IXC) before
entering the destination LEC. The relation between LEC and IXC is shown in Figure 10.4.
From a routing hierarchy point of view, IXC enters at the level of the primary switching cen-
ters.

In most cases, LECs use a two-level fixed hierarchical routing architecture with call over-
flow from the lower level to the upper level (see Figure 10.1(a)). An IXC can deploy either a
fixed hierarchical routing or dynamic routing. Unless a call terminates in a different country,
there is usually at most one IXC involved between the access LECs. For a call going from
one country to another country, the call may go through the second country’s interexchange
provider or equivalent before reaching the destination address in another access carrier. In
many countries, both the access service and the interexchange /long-distance service are pro-
vided by the same provider; regardless, a fixed hierarchical routing is commonly deployed in
access LECs.

The Road to Dynamic Routing

Now that we have learned about hierarchical routing, we are almost ready to discuss dynamic
routing. Before we go from hierarchical routing to dynamic routing, we need to note and
understand a few critical issues.

Limitation of Hierarchical Routing

The need for dynamic routing is better understood if we understand the limitations of hierar-
chical routing. Recall that while hierarchical routing avoided the looping problem by clever
use of nodes at different levels along with a set of rules, it also led to situations in which some
trunkgroups could not be used for routing even though capacity was available.

Consider Figure 10.5, where switches 1 and 4 are at a lower level and switches 2 and 3
are at a higher level. We can see from the figure that a call originating in switch 1 destined
for switch 4 can use the HU trunkgroup 1-4 or overflow the call to routes 1-3-4, or 1-2-4 or
finally to 1-2-3-4. However, a call from switch 2 to switch 3 can only use the final trunkgroup
2-3; it cannot use a path such as 2-1-3 or 2-4-3, although at the time of the arrival of the call
there might be plenty of trunks available on links 2-1, 1-3, 2-4, and 4-3. Thus, you can see the
inefficiency in how hierarchical routing works.

10.2.2

W
N
(6})

CHAPTER 10 Hierarchical and Dynamic Call Routing

— — — High Usage

Final

FIGURE 10.5 Limitation due to hierarchical routing.

Historical Perspective

In the 1970s, the idea of being able to have some flexibility in routing that can use unused
capacity, rather than the limitation imposed by hierarchical routing, was explored. One im-
portant issue that needed to be addressed was the looping problem—that is, it could not be
done within the framework of the hierarchical routing since a major reason for using hierar-
chy was to avoid the looping problem. In the 1970s, some important developments took place
in parallel: the first was the ability to use stored program control (SPC) in a switch, and the
second was the development of common channel interoffice signaling (CCIS). SPC provided
the software functionality for switching control. CCIS provided the ability to exchange con-
trol information such as call setup and tear-down through out-of-band signaling instead of
using in-trunk signaling for such functions, which was becoming noticeably slower when a
call needed to go over multiple trunkgroups in serial to its destination; this out-of-band com-
munication was a data communication service, meaning that information was exchanged as
data packet services. Through evolution, CCIS, which used to be referred to as CCIS6, became
CCS and eventually SS7; see Chapter 12 for further details.

In addition, there was another important observation, especially in the continental United
States. Due to different time zones in the country, there were times when certain trunkgroups
were idle or had very little utilization, but again, due to hierarchical routing, these trunk-
groups could not be used. An example involves calls between New York and Atlanta, which
are located in the Eastern time zone, at 8:00 AM. If the trunkgroup between New York and
Atlanta is fully occupied at that time, a newly arrived call between these two cities could be
alternately routed via Los Angeles, located in the Pacific time zone, which is 3 hours behind
the Eastern time zone. It is then 5:00 AM in Los Angeles and it is less likely that there will be
many calls between New York and Los Angeles or between Atlanta and Los Angeles at that
time. This means the new call can conceivably use New York-Los Angeles and Los Angeles—
Atlanta trunkgroups to route this call. While this is an extreme example, it suggests that at
least the set of routes a call between two switches can attempt can possibly be different de-
pending on the time of the day, that is, the routing can be time-dependent rather than having
the same or a fixed order at all times of the day. In essence, we can start to see that some form
of dynamic routing that is at least time-dependent can be of benefit to the network in terms
of carrying more calls. Actually, the potential benefit of dynamic routing is often credited to
Nakagome and Mori [519], who first discussed the benefits of flexible routing.

As you can see, in the above illustration, all the routes are of a maximum of two links
(trunkgroups). We want to clarify that these two links are only in the core of the network. The

324 10.2 The Road to Dynamic Routing

actual call dialed by a user arrives at an end office from which the call is forwarded to the
ingress switch in the core network. Similarly, from the egress switch, the call goes to the end
office at the other end before reaching the actual receiving user. Thus, the maximum two-links
part is addressed only between the ingress and the egress switch in the core network. Obvi-
ously, more than two links in this part can be possible. However, there are three important
drivers that led to all dynamic routing methods to limit calls to a maximum of two links:

e Anissue was how to handle the looping problem. It is easy to see that the looping problem
can be easily handled with a maximum of two links for a call: a call can be going directly
from the ingress switch to the egress switch on a direct link; if this link is busy, the call can
try another route going from the ingress switch to an intermediate switch. The intermedi-
ate switch on receiving the call knows that the call needs to be sent directly to the egress
switch, not another intermediate switch, due to the limit on the number of links. This then
automatically avoids any looping problem.

e A second issue was the complexity of software implementation of the dynamic routing
function. Note that the concept of dynamic routing arose toward the end of the 1970s
and early 1980s when software for telephone switches was still in its nascent stage, not
to mention the high cost of implementing a complex function. The goal was to keep the
complexity down, for example, if the looping problem could be addressed easily without
introducing software complexity.

o There is minimal incremental gain from allowing more than two links. Common sense
indicates that if more than two links are allowed, a network will certainly have more
paths to the destination, and thus would have the ability to complete more calls. However,
a telephone network is required to maintain an acceptable grade-of-service (GoS); in the
United States, this was mandated by the Federal Communication Commission (FCC). An
acceptable level of GoS was to maintain average call blocking at 1% or lower; an additional
discussion of call blocking is presented later in Chapter 11. What we need to understand
is that if a network is provisioned with a bandwidth to meet 1% call blocking GoS in
the presence of dynamic routing where a call is limited to a maximum of two links, how
much incremental gain can we gain if we were to have dynamic routing with more than
two links? It was reported in [30] that this gain was not significant, i.e., the blocking would
go down from 1% to about 0.96%.

Now, from the first two items, we can see that the software complexity can be minimized
if a route is limited to a maximum of two-link paths. From the third item, when considered
along with the software complexity issue, we can see that the gain in reduction in blocking
can come at a very heavy price in terms of increased software complexity. Rather, if keeping
GoS low is an important goal, it can be achieved by other means, for example, adding more
capacity to the network. At the same time, it is easy to recognize that if we can provide many
alternate paths between two switches, we have the opportunity to reduce call blocking. In a
network with a maximum of two links for a path, the simplest way to achieve this is to make
the topology of the network fully connected or nearly fully connected. For example, in a fully
connected network with N switches, there are N — 2 two-link paths in addition to the direct
link path.

CHAPTER 10 Hierarchical and Dynamic Call Routing 325

10.2.3 Call Control and Crankback

Hierarchical routing uses a progressive call control (PCC) mechanism. This means that the
call control is forwarded from one switch to another until it reaches its destination unless the
call cannot find any outgoing trunk at an intermediate trunk; in this case, the call is lost. In
other words, the control of the call is not returned to the originating switch to try another
possible path.

Suppose we could return the control of a call from an intermediate switch to the originat-
ing switch. This would mean that the network is providing originating call control (OCC); the
functionality of returning a call to the originating switch and trying another route is called
crankback. With the advent of the dynamic call routing, the question of whether the network
should provide PCC or OCC and whether it should provide crankback also arises.

Figure 10.6 illustrates how crankback works and its relation to OCC and PCC. Consider
a call arriving at switch 1 destined for switch 2. It can try the direct link path 1-2. Suppose
there is no bandwidth available on link 1-2 when the call arrives. The call will then attempt
to use the next route in the routing table 1-3-2. If link 1-3 has no available capacity, the call
will attempt the next route in the routing table 1-4-2; this overflow attempt is, however, not
a crankback. So what is a crankback? Consider a slightly different situation. Suppose when
the call attempted the second route 1-3-2, it found bandwidth on the first link 1-3 and thus
the control of the call is forwarded to node 3; however, on arriving at node 3 it was discov-
ered that there is no bandwidth available on link 3-2 for this call. There are two possibilities:
either send the control of the call back to the originating switch 1 and let the originating
switch decide what to do next (for example, try another route such as 1-4-2), or drop the call.
The control of the call can be sent back to the originating switch 1 if the network has OCC,
the process of reverting back to switch 1 and trying another route is called crankback. If the
network does not have OCC, it must act as PCC. Thus, drop the call means that the call on
arriving at node 3 is lost due to nonavailability of capacity on link 3-2; this occurs due to PCC,
the call control cannot be returned to switch 1. As you will see later, some dynamic routing
schemes provide OCC while others do not.

FIGURE 10.6 Ilustration of crankback.

10.2.4

10.2.5

326 10.2 The Road to Dynamic Routing

Trunk Reservation

Trunk reservation, also known as state protection, refers to logical reservation of a part of a
capacity on a link for its own direct traffic. Note that trunk reservation does not mean phys-
ical reservation of a trunk. In this sense, this is a misnomer, and state protection is a better
name. We have decided to retain the term trunk reservation because of its historical use and
the prevalence of the use of this term in a large body of literature over the years.

Trunk reservation refers to a threshold on a trunkgroup; if a trunkgroup is not filled with
calls before this threshold is reached, a call between other origin-destination pairs can still
use a trunk from this trunkgroup. Consider trunkgroup ¢ connecting switching nodes i and
Jj with capacity ¢;;, which is given in a number of circuits. Suppose the trunk reservation
parameter is given by r;;, also given in number of circuits. If r;; = 0, then no trunk is reserved.
However, if r;; = ¢;;, trunkgroup i-j does not allow any alternate routing; certainly, in real
networks this condition is never used. Typically, r;; is close to zero; it should not be too low or

too high. A rule of thumb is that r; ~ @ ; later, in Section 11.8, we will illustrate the impact
on performance for different values of trunk reservation.

Another interpretation of trunk reservation is that a call that connects the ends of trunk-
group i-j is given access to all capacity c¢;;, while a call for another origin-destination pair
that is using link i-j can have access to effective capacity, c;; — r;;. You may wonder why we
need to do this. While dynamic routing provides flexibility to use multilink paths for routing,
under certain loads it may not be desirable to route calls on multilink paths for the benefit
of the network. Consider a path made up of two links; it can route a call for the end nodes
of this path, or, from the point of view of the network, each link can be used to carry a call
for the end nodes of each link. Thus, a network carrying two calls, one call each on direct
link paths instead of one call carrying on the two-link path made up of the same two direct
links, has more call-carrying capacity. To illustrate this, consider a three-node network where
links between each node have one unit of capacity each. We number the nodes as 1, 2, and 3.
Here, the maximum call carrying capacity is three—one each for each pair of nodes on the
corresponding direct link, that is, 1-2, 1-3, and 2-3. However, if we allow a pair of nodes to
use the alternate path, say for pair 1:2 we allow a call to take the route 1-3-2, then the network
would have only two call-carrying capacity—one on the direct path for pair 1:2, another on
the alternate path 1-3-2, and none for other pairs.

It so happens that in the absence of trunk reservation, dynamic routing can exhibit bista-
bility in certain load conditions (refer to Section 11.8). That is, a network can have different
blocking levels for the same offered load, sometimes staying in one for a certain amount of
time and then moving to another due to fluctuation in load. This is also referred to as metasta-
bility (or bistability). By using trunk reservation, this metastable behavior can be minimized
and often avoided. A formal definition of offered load will be presented later in Chapter 11;
furthermore, in Section 11.8.4, we will discuss the implication of no trunk reservation and
metastable behavior.

Where Does Dynamic Routing Fit with Hierarchical Routing?

When a hierarchical routing architecture already exists, the question of where to fit in dy-
namic routing arises. When dynamic routing is introduced as the routing scheme within an

CHAPTER 10 Hierarchical and Dynamic Call Routing 327

IXC’s network, the switching level of switches in the dynamic routing network can be thought
of as if it is at the primary switching center level. In other words, toll switches and end-office
switches are considered to be in a level below the switch level of dynamic routing switches.
This is illustrated in Figure 10.7.

It may be noted that both an end-office switch or a toll switch may be connected by a
trunkgroup to a switch in the dynamic routing network. Consider end-office switch 9, which
is connected to the dynamic routing core via toll switch 8. However, end-office switches 6
and 7 are directly connected to the dynamic routing core. Furthermore, we can now see that
a call from one end office to another end office can traverse at least three trunkgroups (for
example, 6-1, then 1-3, and finally 3-7), or it can possibly be five trunkgroups where at most
two trunkgroups are in the dynamic routing core (for example, 9-8-5-4-3-7).

10.2.6 Mixing of OCC and PCC

It is possible to mix OCC and PCC from the perspective of an end office to another end office.
The edge networks, where a call starts and ends, have PCC while the dynamic routing core
has OCC. Consider again Figure 10.7. A call originating in end-office switch 9 and destined
for switch 7 uses PCC to forward the call to switch 8, which forwards it to switch 5. Then
switch 5, being the originating node in the dynamic routing core, may hold the control of the
call and try alternate routes within the dynamic routing network until the path is established
to switch 3, the destination node within the dynamic routing core for this call. Once the call
is established within the dynamic routing core to switch 3, the call control is forwarded from
switch 5 to switch 3 so that progressive call control can be used for completing the call to
end-office switch 7.

10.2.7 Recap

We now summarize a few key points about dynamic routing. All dynamic routing schemes
for the telephone networks allow at most two links for a call. Often, the network is fully-

FIGURE 10.7 Dynamic call routing in conjunction with hierarchical routing.

10.3

328 10.3 Dynamic Nonhierarchical Routing

interconnected, or nearly fully-interconnected. Also, all schemes include trunk reservation.
They all differ in the following areas:

e Progressive or originating call control, and crankback.
e Time-dependent, or adaptive.

e Off-line computation, or near on-line computation.

e Routing calculation.

o Link information used and how it is used.

Dynamic Nonhierarchical Routing

Dynamic Nonhierarchical Routing (DNHR) is the first implemented dynamic routing
scheme. It was first deployed in AT&T’s long-distance telephone network in 1984 and was re-
tired in 1991. We discuss it here primarily for its historical context and its evolution to RTNR,
which is discussed later in Section 10.6.

DNHR is a time-dependent routing. This means that the set of routes available (and their
order) at different times of the day is different. In the case of DNHR, the 24-hour time period
spanning a 7-day week was divided into 15 load set periods: 10 for the weekdays and 5 for
weekends. The different number of load set periods was determined based on understanding
traffic patterns. For example, the same routing pattern can be used from midnight to 8 AM
due to low traffic volume.

For each load set period, based on traffic projection, a set of routes is computed ahead of
time. Typically, traffic projection and routing computation were computed off-line 1 week in
advance and the routing table is then uploaded to each switch in the network. The routes so
computed ahead of time are referred to as engineered paths. When an actual call arrives at a
switch, the switch first determines the correct routing table based on the time of arrival and
tries the various paths in the order shown in the routing table. Certainly, the actual traffic
would be different than the projected traffic demand volume. Thus, the routes computed and
the order of routing provided from off-line computation may not be optimal at the actual
time. One way for the network to obtain some flexibility in such a situation is to allow the
crankback option. For example, if there are three engineered paths between a source and a
destination, a call can first attempt the first path (which is often the direct link path). If no
bandwidth is available on the first path, the call tries the second path, and so on, as described
earlier in Section 10.2.3.

While engineered paths can provide an acceptable GoS under normal operating condi-
tions, they may not always be well suited if a traffic overload occurs; this is partly because
the engineered paths are computed based on traffic projection. To circumvent this situa-
tion, DNHR allows additional paths to be considered almost on a real-time basis that are
appended to the list of engineered paths; these additional paths are referred to as real-time
paths.

If the blocking between a pair of switching nodes goes beyond an acceptable threshold,
a new estimation of traffic over every 5-min window is invoked; based on this 5-min short-

CHAPTER 10 Hierarchical and Dynamic Call Routing 329

Time Period Routing Sequence

Morning 7 3 6 4 | 2 1
Afternoon |7 6 | 3 4 2 1
Evening 7 4 6 | 3 2 1
Weekend |6 4 | 7 3 2 1

New York

San Francisco

Washington, D.C

Los Angeles

Dallas

FIGURE 10.8 Engineered and real-time paths in DNHR between New York (switch 5)
and Los Angeles (switch 7). Engineered and real-time paths are partitioned using a vertical
line, whereas real-time paths are listed in italics in the routing table; note: switch 7 in the
routing table indicates a direct link path. (Adapted from [27].)

time traffic snapshot, a centralized computation at the network management center seeks
trunkgroups that have available capacity to determine real-time paths. These newly com-
puted paths are then loaded into the network switches. The use of engineering and real-time
paths is illustrated in Figure 10.8.

We now need to understand how many alternate paths we can store (cache) for such en-
gineered and real-time paths. Note that for an N-node network that is fully connected, a pair
of switches has (N — 1) possible paths that are made of a maximum of two links. For exam-
ple, for a 100-node network, there are 99 possible paths. Now, if we consider that an ordered
routing list for each of the 15 load set periods is needed and that a switch needs to keep such
routes for every destination switch, the list of paths that need to be loaded in a switch can be
quite large. This is a major issue that the designers of DNHR faced, especially given that this
development was done in the early 1980s when processors were not as fast as today’s proces-
sors and memory was very expensive as well. The solution that was arrived at was to allow
each source destination switch pair to have a maximum of 15 routes in the routing list per
load set period per switch pair; of these, a maximum of 10 could be for engineered paths and
the other 5 for real-time paths. In practice, it was often found that three to four engineered
paths were enough.

To summarize, DNHR allows at most two links for a call within its network, as do the
other dynamic routing schemes. DNHR is based on OCC, and it allows crankback. DNHR
employs trunk reservation. It is a time-dependent routing scheme in which some routes (“en-
gineered paths”) are computed off-line ahead of time, while other routes (“real-time paths”)
can be computed and appended on a near real-time basis when congestion occurs.

10.4

330 10.4 Dynamically Controlled Routing

Dynamically Controlled Routing

Dynamically Controlled Routing (DCR) was originally developed by Bell-Northern Research
(which became Nortel Networks) [66], [680]. DCR is an adaptive routing scheme that can
be updated frequently (usually every 10 sec) based on the status of the network links. The
computation of routes to be cached has been done through a centralized route processor (Fig-
ure 10.9). Routes take at most two links to complete a call, and crankback is not implemented
in this scheme. Thus, with PCC, if a call is blocked on the second leg of a two-link call, the call
is lost; this means that the user has to try again. DCR has two fall-back mechanisms: (1) in a
situation in which the route processor is down or cannot compute routes in a timely manner,
or does not communicate back to the switched nodes in a timely manner, DCR continues to
operate using the last known routing table, and (2) if a switch loses dynamic routing func-
tionality for some unknown reason, the network can still operate as a two-level hierarchical
routing system in which certain nodes are labeled ahead of time as nodes in the second level
of the hierarchy.

To understand DCR, consider Figure 10.10 where we have indicated that the centralized
route processor is where the link state information is updated regularly. We want to update
the routing list for traffic between nodes i and j; in addition, Consider two possible intermedi-
ate nodes, k1 and k», are to be considered for alternate routes. Periodically, the switching node
reports its available capacity to the centralized route processor; we will denote dependency
on time using the parameter ¢. To determine this we need to consider capacity, currently used
capacity, and trunk reservation at time ¢ shown below:

Link ID | Capacity | Currently Used | Trunk Reservation
I-j cij(t) ugi (1) rij(t)

i-kq Ciky (D) Ui, () Fik, ()

i~k Ciky (1) Uik, (1) Fik, (1)

ki-j Chyj(0) e, j (1) Fieyj ()

ka-j Chyj (D) Uy (1) Fieyj (£)

FIGURE 10.9 DCR architecture.

W
(O8]
—_

CHAPTER 10 Hierarchical and Dynamic Call Routing

FIGURE 10.10 DCR: available capacity on links.
If we denote the effective residual capacity on any link /-m at time ¢ by R, (1), it is clear
that
Ry (t) = max{cpy () — wip () — rym(0), 0} (10.4.1)
Since an alternate path is made up of two links, the availability of capacity on a path

would be the minimum of the effective residual capacity on each link of the path. Thus, the
available capacity on path i-k1-j and i-k;-j can be written as follows:

Path | Available Capacity

. .| sk .

i-ki-j | Ry (t) = min{R;, (1), Ri, (1)}
. .| w5k .

iky-j | Ry’ (t) = min{R;k, (1), Ry (1)}

DCR uses the availability information to compute the probability of choosing an alternate
path. If a path has zero availability, there is no reason to consider this path as a possible alter-
nate path (at this time instant). Thus, choice of path is considered only for a path’s positive
availability, i.e., in this case, if F!;l () > 0 and F,-?z (#) > 0. Then, the probability of selecting
each path is computed as follows:

—k —ky
R0 R0
k k
P = ’ pif . (10.4.2)

k. = e
R; (0 + R (1) R () + R (1)
Note that this is shown for two paths for node pair i and j. In a fully connected network,
anode pair has up to N —2 two-link alternate paths. Thus, the general expression for choosing
a path via node k is given by

—k
R
i (10.4.3)

pi=
[/ —m,
Z{m;éi,j and R;'>0} Ri/' ®

332 10.4 Dynamically Controlled Routing

There are two important points to note: (1) the above expression should be considered
only for paths with positive availability capacity, and (2) the same probability calculation is
performed for all demand pairs in the network, which means that no capacity is specifically
curved out for a particular demand pair in this probability calculation. The second point
implies that the residual capacity of a link i-k, R;x(t), can be used by a demand pair connecting
node i and m where k is also a possible intermediate node. Finally, note that the computation
of route probabilities is performed based on the information available at t. At every At unit of
time, the switching nodes update the centralized route processor with the new status of link
information for use in computing updated routes. In practice, At is set to be 10 sec. Thus, the
routing in DCR is very adaptive to short-term link status fluctuations.

The actual call routing in DCR uses the routing probability computation for selecting
alternate paths. For each probability value computed for a path with intermediate node k, it
imagines the probability range to be divided as follows for a set of alternate paths identified
by the intermediate node identifier :

k—1 k K-1
O Gl) (S 30 | (S|
m=1 m=1 m=1

When a call arrives at node i destined for node j, the call first tries the direct link i-j. If there is
no capacity available in the direct link path at that instant, the call then generates a uniform
random number