

Network Routing

The Morgan Kaufmann Series in Networking

Series Editor, David Clark, M.I.T.

Computer Networks: A Systems Approach, 4e
Larry L. Peterson and Bruce S. Davie

Network Routing: Algorithms, Protocols, and Architectures
Deepankar Medhi and Karthikeyan Ramasamy

Deploying IP and MPLS QoS for Multiservice Networks:
Theory and Practice
John Evans and Clarence Filsfils

Traffic Engineering and QoS Optimization of Integrated Voice
and Data Networks
Gerald R. Ash

IPv6 Core Protocols Implementation
Qing Li, Tatuya Jinmei, and Keiichi Shima

Smart Phone and Next-Generation Mobile Computing
Pei Zheng and Lionel Ni

GMPLS: Architecture and Applications
Adrian Farrel and Igor Bryskin

Network Security: A Practical Approach
Jan L. Harrington

Content Networking: Architecture, Protocols, and Practice
Markus Hofmann and Leland R. Beaumont

Network Algorithmics: An Interdisciplinary Approach to
Designing Fast Networked Devices
George Varghese

Network Recovery: Protection and Restoration of Optical,
SONET-SDH, IP, and MPLS
Jean Philippe Vasseur, Mario Pickavet, and
Piet Demeester

Routing, Flow, and Capacity Design in Communication and
Computer Networks
Michał Pióro and Deepankar Medhi

Wireless Sensor Networks: An Information Processing
Approach
Feng Zhao and Leonidas Guibas

Communication Networking: An Analytical Approach
Anurag Kumar, D. Manjunath, and Joy Kuri

The Internet and Its Protocols: A Comparative Approach
Adrian Farrel

Modern Cable Television Technology: Video, Voice, and Data
Communications, 2e
Walter Ciciora, James Farmer, David Large, and Michael
Adams

Bluetooth Application Programming with the Java APIs
C. Bala Kumar, Paul J. Kline, and Timothy J. Thompson

Policy-Based Network Management: Solutions for the Next
Generation
John Strassner

Network Architecture, Analysis, and Design, 2e
James D. McCabe

MPLS Network Management: MIBs, Tools, and Techniques
Thomas D. Nadeau

Developing IP-Based Services: Solutions for Service Providers
and Vendors
Monique Morrow and Kateel Vijayananda

Telecommunications Law in the Internet Age
Sharon K. Black

Optical Networks: A Practical Perspective, 2e
Rajiv Ramaswami and Kumar N. Sivarajan

Internet QoS: Architectures and Mechanisms
Zheng Wang

TCP/IP Sockets in Java: Practical Guide for Programmers
Michael J. Donahoo and Kenneth L. Calvert

TCP/IP Sockets in C: Practical Guide for Programmers
Kenneth L. Calvert and Michael J. Donahoo

Multicast Communication: Protocols, Programming, and
Applications
Ralph Wittmann and Martina Zitterbart

MPLS: Technology and Applications
Bruce S. Davie and Yakov Rekhter

High-Performance Communication Networks, 2e
Jean Walrand and Pravin Varaiya

Internetworking Multimedia
Jon Crowcroft, Mark Handley, and Ian Wakeman

Understanding Networked Applications: A First Course
David G. Messerschmitt

Integrated Management of Networked Systems: Concepts,
Architectures, and their Operational Application
Heinz-Gerd Hegering, Sebastian Abeck, and Bernhard
Neumair

Virtual Private Networks: Making the Right Connection
Dennis Fowler

Networked Applications: A Guide to the New Computing
Infrastructure
David G. Messerschmitt

Wide Area Network Design: Concepts and Tools for
Optimization
Robert S. Cahn

For further information on these books and for a list of
forthcoming titles,
please visit our Web site at http://www.mkp.com.

Network Routing
Algorithms, Protocols, and Architectures

Deepankar Medhi

Karthikeyan Ramasamy

AMSTERDAM • BOSTON • HEIDELBERG • LONDON

NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Morgan Kaufmann is an imprint of Elsevier

Senior Acquisitions Editor Rick Adams
Acquisitions Editor Rachel Roumeliotis
Publishing Services Manager George Morrison
Senior Production Editor Dawnmarie Simpson
Cover Design Eric DeCicco/Yvo Riezebos Design
Cover Image Getty Images
Composition VTEX
Copyeditor SPi
Proofreader SPi
Indexer SPi
Interior printer The Maple-Vail Book Manufacturing Group
Cover printer Phoenix Color, Inc.

Morgan Kaufmann Publishers is an imprint of Elsevier.
500 Sansome Street, Suite 400, San Francisco, CA 94111

This book is printed on acid-free paper.

c©2007 by Elsevier Inc. All rights reserved.

Designations used by companies to distinguish their products are often claimed as trademarks or registered trademarks.
In all instances in which Morgan Kaufmann Publishers is aware of a claim, the product names appear in initial capital or
all capital letters. Readers, however, should contact the appropriate companies for more complete information regarding
trademarks and registration.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means—
electronic, mechanical, photocopying, scanning, or otherwise—without prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK: phone: (+44)
1865 843830, fax: (+44) 1865 853333, E-mail: permissions@elsevier.com. You may also complete your request online via the
Elsevier homepage (http://elsevier.com), by selecting
“Support & Contact” then “Copyright and Permission” and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data
Medhi, Deepankar.

Network routing : algorithms, protocols, and architectures / Deepankar Medhi, Karthikeyan Ramasamy.
p. cm.

Includes bibliographical references and index.
ISBN-13: 978-0-12-088588-6 (hardcover : alk. paper)
ISBN-10: 0-12-088588-3 (hardcover : alk. paper) 1. Computer networks. 2. Routers (Computer networks) 3. Computer
network architectures. I. Ramasamy, Karthikeyan, 1967- II. Title.
TK5105.5.M425 2007
004.6–dc22

2006028700

ISBN 13: 978-0-12-088588-6
ISBN 10: 0-12-088588-3

For information on all Morgan Kaufmann publications,
visit our Web site at www.mkp.com or www.books.elsevier.com

Printed in the United States of America
07 08 09 10 5 4 3 2 1

To Karen, Neiloy, and Robby: the core routers in our dynamic network where the distance
cost varies instantaneously and over time, and where alternate routing and looping occur . . .

Love,

Deep/Dad

To my parents, R. Chellammal and N. Ramasamy—backplane of my life.

Love and regards,

Karthik

This page intentionally left blank

Contents
Foreword xxiii
Preface xxv
About the Authors xxxi

Part I: Network Routing: Basics and Foundations 1

1 Networking and Network Routing: An Introduction 2
1.1 Addressing and Internet Service: An Overview 4
1.2 Network Routing: An Overview 5
1.3 IP Addressing 7

1.3.1 Classful Addressing Scheme 8
1.3.2 Subnetting/Netmask 9
1.3.3 Classless Interdomain Routing 10

1.4 On Architectures 11
1.5 Service Architecture 12
1.6 Protocol Stack Architecture 13

1.6.1 OSI Reference Model 13
1.6.2 IP Protocol Stack Architecture 14

1.7 Router Architecture 19
1.8 Network Topology Architecture 20
1.9 Network Management Architecture 21
1.10 Public Switched Telephone Network 21
1.11 Communication Technologies 22
1.12 Standards Committees 24

1.12.1 International Telecommunication Union 24
1.12.2 Internet Engineering Task Force 25
1.12.3 MFA Forum 25

1.13 Last Two Bits 25
1.13.1 Type-Length-Value 25
1.13.2 Network Protocol Analyzer 26

viii Contents

1.14 Summary 26
Further Lookup 27
Exercises 27

2 Routing Algorithms: Shortest Path and Widest Path 30
2.1 Background 31
2.2 Bellman–Ford Algorithm and the Distance Vector Approach 33

2.2.1 Centralized View: Bellman–Ford Algorithm 33
2.2.2 Distributed View: A Distance Vector Approach 36

2.3 Dijkstra’s Algorithm 38
2.3.1 Centralized Approach 38
2.3.2 Distributed Approach 40

2.4 Comparison of the Bellman–Ford Algorithm and Dijkstra’s Algorithm 42
2.5 Shortest Path Computation with Candidate Path Caching 43
2.6 Widest Path Computation with Candidate Path Caching 45
2.7 Widest Path Algorithm 47

2.7.1 Dijkstra-Based Approach 47
2.7.2 Bellman–Ford-Based Approach 49

2.8 k-Shortest Paths Algorithm 49
2.9 Summary 51

Further Lookup 53
Exercises 53

3 Routing Protocols: Framework and Principles 56
3.1 Routing Protocol, Routing Algorithm, and Routing Table 57
3.2 Routing Information Representation and Protocol Messages 59
3.3 Distance Vector Routing Protocol 60

3.3.1 Conceptual Framework and Illustration 60
3.3.2 Why Timers Matter 66
3.3.3 Solutions 70
3.3.4 Can We Avoid Loops? 74
3.3.5 Distance Vector Protocol Based on Diffusing Computation with

Coordinated Update 74
3.4 Link State Routing Protocol 82

3.4.1 Link State Protocol: In-Band Hop-by-Hop Disseminations 83
3.4.2 Link State Protocol: In-Band Based on End-to-End Session 91
3.4.3 Route Computation 92

3.5 Path Vector Routing Protocol 93
3.5.1 Basic Principle 93
3.5.2 Path Vector with Path Caching 97

3.6 Link Cost 102
3.6.1 ARPANET Routing Metrics 102
3.6.2 Other Metrics 103

Contents ix

3.7 Summary 104
Further Lookup 105
Exercises 105

4 Network Flow Modeling 108
4.1 Terminologies 109
4.2 Single-Commodity Network Flow 110

4.2.1 A Three-Node Illustration 110
4.2.2 Formal Description and Minimum Cost Routing Objective 111
4.2.3 Variation in Objective: Load Balancing 114
4.2.4 Variation in Objective: Average Delay 116
4.2.5 Summary and Applicability 117

4.3 Multicommodity Network Flow: Three-Node Example 118
4.3.1 Minimum Cost Routing Case 118
4.3.2 Load Balancing 123
4.3.3 Average Delay 125

4.4 Multicommodity Network Flow Problem: General Formulation 128
4.4.1 Background on Notation 129
4.4.2 Link-Path Formulation 130
4.4.3 Node-Link Formulation 135

4.5 Multicommodity Network Flow Problem: Non-Splittable Flow 137
4.6 Summary 138

Further Lookup 139
Exercises 139

Part II: Routing in IP Networks 141

5 IP Routing and Distance Vector Protocol Family 142
5.1 Routers, Networks, and Routing Information: Some Basics 143

5.1.1 Routing Table 143
5.1.2 Communication of Routing Information 146

5.2 Static Routes 146
5.3 Routing Information Protocol, Version 1 (RIPv1) 147

5.3.1 Communication and Message Format 147
5.3.2 General Operation 149
5.3.3 Is RIPv1 Good to Use? 150

5.4 Routing Information Protocol, Version 2 (RIPv2) 150
5.5 Interior Gateway Routing Protocol (IGRP) 153

5.5.1 Packet Format 153
5.5.2 Computing Composite Metric 154

5.6 Enhanced Interior Gateway Routing Protocol (EIGRP) 157
5.6.1 Packet Format 157

5.7 Route Redistribution 160
5.8 Summary 161

x Contents

Further Lookup 163
Exercises 164

6 OSPF and Integrated IS-IS 166
6.1 From a Protocol Family to an Instance of a Protocol 167
6.2 OSPF: Protocol Features 168

6.2.1 Network Hierarchy 168
6.2.2 Router Classification 168
6.2.3 Network Types 169
6.2.4 Flooding 170
6.2.5 Link State Advertisement Types 171
6.2.6 Subprotocols 171
6.2.7 Routing Computation and Equal-Cost Multipath 172
6.2.8 Additional Features 176

6.3 OSPF Packet Format 177
6.4 Examples of Router LSAs and Network LSAs 183
6.5 Integrated IS-IS 185

6.5.1 Key Features 186
6.6 Similarities and Differences Between IS-IS and OSPF 189
6.7 Summary 191

Further Lookup 191
Exercises 191

7 IP Traffic Engineering 194
7.1 Traffic, Stochasticity, Delay, and Utilization 195

7.1.1 What Is IP Network Traffic? 195
7.1.2 Traffic and Performance Measures 195
7.1.3 Characterizing Traffic 196
7.1.4 Average Delay in a Single Link System 197
7.1.5 Nonstationarity of Traffic 199

7.2 Applications’ View 200
7.2.1 TCP Throughput and Possible Bottlenecks 200
7.2.2 Bandwidth-Delay Product 201
7.2.3 Router Buffer Size 202

7.3 Traffic Engineering: An Architectural Framework 203
7.4 Traffic Engineering: A Four-Node Illustration 204

7.4.1 Network Flow Optimization 204
7.4.2 Shortest Path Routing and Network Flow 206

7.5 Link Weight Determination Problem: Preliminary Discussion 211
7.6 Duality of the MCNF Problem 213

7.6.1 Illustration of Duality Through a Three-Node Network 213
7.6.2 General Case: Minimum Cost Routing 215
7.6.3 Minimization of Maximum Link Utilization 219
7.6.4 A Composite Objective Function 221
7.6.5 Minimization of Average Delay 222

Contents xi

7.7 Illustration of Link Weight Determination Through Duality 226
7.7.1 Case Study: I 226
7.7.2 Case Study: II 231

7.8 Link Weight Determination: Large Networks 232
7.9 Summary 234

Further Lookup 235
Exercises 235

8 BGP 238
8.1 BGP: A Brief Overview 239
8.2 BGP: Basic Terminology 242
8.3 BGP Operations 243

8.3.1 Message Operations 243
8.3.2 BGP Timers 244

8.4 BGP Configuration Initialization 245
8.5 Two Faces of BGP: External BGP and Internal BGP 247
8.6 Path Attributes 250
8.7 BGP Decision Process 254

8.7.1 BGP Path Selection Process 254
8.7.2 Route Aggregation and Dissemination 256
8.7.3 Recap 257

8.8 Internal BGP Scalability 257
8.8.1 Route Reflection Approach 258
8.8.2 Confederation Approach 261

8.9 Route Flap Dampening 262
8.10 BGP Additional Features 265

8.10.1 Communities 265
8.10.2 Multiprotocol Extension 265

8.11 Finite State Machine of a BGP Connection 266
8.12 Protocol Message Format 270

8.12.1 Common Header 270
8.12.2 Message Type: OPEN 270
8.12.3 Message Type: UPDATE 272
8.12.4 Message Type: NOTIFICATION 274
8.12.5 Message Type: KEEPALIVE 274
8.12.6 Message Type: ROUTE–REFRESH 274
8.12.7 Path Attribute in UPDATE message 276

8.13 Summary 277
Further Lookup 278
Exercises 278

9 Internet Routing Architectures 280
9.1 Internet Routing Evolution 281
9.2 Addressing and Routing: Illustrations 283

9.2.1 Routing Packet: Scenario A 285

xii Contents

9.2.2 Routing Packet: Scenario B 286
9.2.3 Routing Packet: Scenario C 288

9.3 Current Architectural View of the Internet 290
9.3.1 Customers and Providers, Peering and Tiering, and Exchange Points 291
9.3.2 A Representative Architecture 294
9.3.3 Customer Traffic Routing: A Geographic Perspective 297
9.3.4 Size and Growth 298

9.4 Allocation of IP Prefixes and AS Number 301
9.5 Policy-Based Routing 304

9.5.1 BGP Wedgies 306
9.6 Point of Presence 307
9.7 Traffic Engineering Implications 309
9.8 Internet Routing Instability 311
9.9 Summary 312

Further Lookup 312
Exercises 313

Part III: Routing in the PSTN 315

10 Hierarchical and Dynamic Call Routing in the Telephone Network 316
10.1 Hierarchical Routing 317

10.1.1 Basic Idea 317
10.1.2 A Simple Illustration 318
10.1.3 Overall Hierarchical Routing Architecture 320
10.1.4 Telephone Service Providers and Telephone Network Architecture 321

10.2 The Road to Dynamic Routing 322
10.2.1 Limitation of Hierarchical Routing 322
10.2.2 Historical Perspective 323
10.2.3 Call Control and Crankback 325
10.2.4 Trunk Reservation 326
10.2.5 Where Does Dynamic Routing Fit with Hierarchical Routing? 326
10.2.6 Mixing of OCC and PCC 327
10.2.7 Summary 327

10.3 Dynamic Nonhierarchical Routing 328
10.4 Dynamically Controlled Routing 330
10.5 Dynamic Alternate Routing 333
10.6 Real-Time Network Routing 334
10.7 Classification of Dynamic Call Routing Schemes 336
10.8 Maximum Allowable Residual Capacity Routing 337
10.9 Dynamic Routing and Its Relation to Other Routing 339

10.9.1 Dynamic Routing and Link State Protocol 339
10.9.2 Path Selection in Dynamic Routing in Telephone Networks and IP

Routing 339
10.9.3 Relation to Constraint-Based Routing 340

Contents xiii

10.10 Recap 340
Further Lookup 341
Exercises 342

11 Traffic Engineering in the Voice Telephone Network 344
11.1 Why Traffic Engineering? 345
11.2 Traffic Load and Blocking 346

11.2.1 Computing Erlang-B Loss Formula 349
11.3 Grade-of-Service and Trunk Occupancy 350
11.4 Centi-Call Seconds and Determining Offered Load 352
11.5 Economic CCS Method 354
11.6 Network Controls for Traffic Engineering 356

11.6.1 Guidelines on Detection of Congestion 357
11.6.2 Examples of Controls 357
11.6.3 Communication of Congestion Control Information 361
11.6.4 Congestion Manifestation 361

11.7 State-Dependent Call Routing 362
11.8 Analysis of Dynamic Routing 363

11.8.1 Three-Node Network 364
11.8.2 N-Node Symmetric Network 366
11.8.3 N-Node Symmetric Network with Trunk Reservation 367
11.8.4 Illustration Without and with Trunk Reservation 369

11.9 Summary 371
Further Lookup 371
Exercises 372

12 SS7: Signaling Network for Telephony 374
12.1 Why SS7? 375
12.2 SS7 Network Topology 375

12.2.1 Node Types 376
12.2.2 SS7 Links 376

12.3 Routing in the SS7 Network 378
12.4 Point Codes: Addressing in SS7 380

12.4.1 North American Point Code 380
12.4.2 ITU Point Code 381

12.5 Point Code Usage 382
12.5.1 Address Assignment 382
12.5.2 Relationship Between a Telephone Switch and an SSP 382
12.5.3 Interworking of SS7 Networks with Different Addressing Schemes 383

12.6 SS7 Protocol Stack 384
12.6.1 Lower-Layer Protocols: MTP1, MTP2, and MTP3 384
12.6.2 Upper-Layer Protocols 388

12.7 SS7 Network Management 388
12.8 ISUP and Call Processing 389

12.8.1 Called/Calling Party Number Format 395

xiv Contents

12.9 ISUP Messages and Trunk Management 396
12.10 ISUP Messages and Dynamic Call Routing 396

12.10.1 Functionalities 397
12.10.2 Illustration 398

12.11 Transaction Services 400
12.11.1 SCCP: Signaling Connection Control Part 400
12.11.2 TCAP: Transaction Capabilities Application Part 401

12.12 SS7 Link Traffic Engineering 402
12.12.1 SS7 Network Performance Requirements 403

12.13 Summary 404
Further Lookup 404
Exercises 405

13 Public Switched Telephone Network: Architecture and Routing 406
13.1 Global Telephone Addressing 407

13.1.1 National Numbering Plan 409
13.1.2 Dialing Plan 412

13.2 Setting Up a Basic Telephone Call and Its Steps 415
13.3 Digit Analysis versus Translation 417
13.4 Routing Decision for a Dialed Call 417
13.5 Call Routing: Single National Provider Environment 417

13.5.1 Handling Dialed Numbers 418
13.5.2 Illustration of Call Routing 419
13.5.3 Some Observations 423

13.6 Call Routing: Multiple Long-Distance Provider Case 424
13.6.1 Illustration of Call Routing 427
13.6.2 Impact on Routing 430

13.7 Multiple-Provider Environment: Multiple Local Exchange Carriers 432
13.8 Routing Decision at an Intermediate TDM Switch 433
13.9 Number Portability 434

13.9.1 Introduction 434
13.9.2 Portability Classification 435

13.10 Nongeographic or Toll-Free Number Portability 436
13.10.1 800-Number Management Architecture 437
13.10.2 Message and Call Routing 438

13.11 Fixed/Mobile Number Portability 439
13.11.1 Portability Architecture 439
13.11.2 Routing Schemes 442
13.11.3 Comparison of Routing Schemes 446
13.11.4 Impact on IAM Message 446
13.11.5 Number Portability Implementation 448
13.11.6 Routing in the Presence of Transit Network 448

13.12 Multiple-Provider Environment with Local Number Portability 451

Contents xv

13.13 Summary 453
Further Lookup 454
Exercises 454

Part IV: Router Architectures 457

14 Router Architectures 458
14.1 Functions of a Router 459

14.1.1 Basic Forwarding Functions 460
14.1.2 Complex Forwarding Functions 460
14.1.3 Routing Process Functions 461
14.1.4 Routing Table versus Forwarding Table 462
14.1.5 Performance of Routers 463

14.2 Types of Routers 463
14.3 Elements of a Router 465
14.4 Packet Flow 468

14.4.1 Ingress Packet Processing 468
14.4.2 Egress Packet Processing 469

14.5 Packet Processing: Fast Path versus Slow Path 470
14.5.1 Fast Path Functions 471
14.5.2 Slow Path Operations 474

14.6 Router Architectures 475
14.6.1 Shared CPU Architectures 476
14.6.2 Shared Forwarding Engine Architectures 479
14.6.3 Shared Nothing Architectures 481
14.6.4 Clustered Architectures 484

14.7 Summary 485
Further Lookup 485
Exercises 486

15 IP Address Lookup Algorithms 488
15.1 Impact of Addressing on Lookup 489

15.1.1 Address Aggregation 490
15.2 Longest Prefix Matching 492

15.2.1 Trends, Observations, and Requirements 493
15.3 Naïve Algorithms 495
15.4 Binary Tries 495

15.4.1 Search and Update Operations 496
15.4.2 Path Compression 498

15.5 Multibit Tries 500
15.5.1 Prefix Transformations 500
15.5.2 Fixed Stride Multibit Trie 502
15.5.3 Search Algorithm 503
15.5.4 Update Algorithm 504

xvi Contents

15.5.5 Implementation 505
15.5.6 Choice of Strides 506
15.5.7 Variable Stride Multibit Trie 506

15.6 Compressing Multibit Tries 507
15.6.1 Level Compressed Tries 507
15.6.2 Lulea Compressed Tries 510
15.6.3 Tree Bitmap 514

15.7 Search by Length Algorithms 519
15.7.1 Linear Search on Prefix Lengths 520
15.7.2 Binary Search on Prefix Lengths 520

15.8 Search by Value Approaches 522
15.8.1 Prefix Range Search 522

15.9 Hardware Algorithms 525
15.9.1 RAM-Based Lookup 525
15.9.2 Ternary CAM-Based Lookup 526
15.9.3 Multibit Tries in Hardware 528

15.10 Comparing Different Approaches 530
15.11 Summary 531

Further Lookup 531
Exercises 532

16 IP Packet Filtering and Classification 534
16.1 Importance of Packet Classification 535
16.2 Packet Classification Problem 537

16.2.1 Expressing Rules 538
16.2.2 Performance Metrics 538

16.3 Packet Classification Algorithms 540
16.4 Naïve Solutions 540
16.5 Two-Dimensional Solutions 541

16.5.1 Hierarchical Tries: Trading Time for Space 541
16.5.2 Set Pruning Tries: Trading Space for Time 544
16.5.3 Grid-of-Tries: Optimizing Both Space and Time 545

16.6 Approaches for d Dimensions 548
16.6.1 Geometric View of Classification: Thinking Differently 549
16.6.2 Characteristics of Real-Life Classifiers: Thinking Practically 551

16.7 Extending Two-Dimensional Solutions 552
16.7.1 Naïve Extensions 552
16.7.2 Native Extensions 553

16.8 Divide and Conquer Approaches 555
16.8.1 Lucent Bit Vector 556
16.8.2 Aggregated Bit Vector 558
16.8.3 Cross-Producting 560
16.8.4 Recursive Flow Classification 562

16.9 Tuple Space Approaches 568

Contents xvii

16.9.1 Tuple Space Search 569
16.9.2 Tuple Space Pruning 570

16.10 Decision Tree Approaches 571
16.10.1 Hierarchical Intelligent Cuttings 572
16.10.2 HyperCuts 575

16.11 Hardware-Based Solutions 576
16.11.1 Ternary Content Addressable Memory (TCAM) 576

16.12 Lessons Learned 578
16.13 Summary 579

Further Lookup 579
Exercises 580

Part V: Toward Next Generation Routing 582

17 Quality of Service Routing 584
17.1 Background 585
17.2 QoS Attributes 589
17.3 Adapting Shortest Path and Widest Path Routing: A Basic Framework 590

17.3.1 Single Attribute 590
17.3.2 Multiple Attributes 591
17.3.3 Additional Consideration 592

17.4 Update Frequency, Information Inaccuracy, and Impact on Routing 593
17.5 Lessons from Dynamic Call Routing in the Telephone Network 595
17.6 Heterogeneous Service, Single-Link Case 596
17.7 A General Framework for Source-Based QoS Routing with Path Caching 599

17.7.1 Routing Computation Framework 600
17.7.2 Routing Computation 601
17.7.3 Routing Schemes 602
17.7.4 Results 603

17.8 Routing Protocols for QoS Routing 608
17.8.1 QOSPF: Extension to OSPF for QoS Routing 608
17.8.2 ATM PNNI 609

17.9 Summary 610
Further Lookup 611
Exercises 611

18 MPLS and GMPLS 612
18.1 Background 613
18.2 Traffic Engineering Extension to Routing Protocols 614
18.3 Multiprotocol Label Switching 614

18.3.1 Labeled Packets and LSP 616
18.3.2 Label Distribution 619
18.3.3 RSVP-TE for MPLS 619
18.3.4 Traffic Engineering Extensions to OSPF and IS-IS 625

xviii Contents

18.4 Generalized MPLS 626
18.4.1 GMPLS Labels 627
18.4.2 Label Stacking and Hierarchical LSPs: MPLS/GMPLS 628
18.4.3 RSVP-TE for GMPLS 629
18.4.4 Routing Protocols in GMPLS 630
18.4.5 Control and Data Path Separation and Link Management Protocol 632

18.5 MPLS Virtual Private Networks 634
18.5.1 BGP/MPLS IP VPN 635
18.5.2 Layer 2 VPN 639

18.6 Summary 640
Further Lookup 640
Exercises 641

19 Routing and Traffic Engineering with MPLS 642
19.1 Traffic Engineering of IP/MPLS Networks 643

19.1.1 A Brisk Walk Back in History 643
19.1.2 MPLS-Based Approach for Traffic Engineering 644

19.2 VPN Traffic Engineering 647
19.2.1 Problem Illustration: Layer 3 VPN 647
19.2.2 LSP Path Determination: Constrained Shortest Path Approach 650
19.2.3 LSP Path Determination: Network Flow Modeling Approach 652
19.2.4 Layer 2 VPN Traffic Engineering 656
19.2.5 Observations and General Modeling Framework 657

19.3 Routing/Traffic Engineering for Voice Over MPLS 657
19.4 Summary 660

Further Lookup 660
Exercises 660

20 VoIP Routing: Interoperability Through IP and PSTN 662
20.1 Background 663
20.2 PSTN Call Routing Using the Internet 664

20.2.1 Conceptual Requirement 664
20.2.2 VoIP Adapter Functionality 666
20.2.3 Addressing and Routing 666
20.2.4 Service Observations 670
20.2.5 Traffic Engineering 671
20.2.6 VoIP Adapter: An Alternative Scenario 673

20.3 PSTN Call Routing: Managed IP Approach 673
20.4 IP-PSTN Interworking for VoIP 675

20.4.1 Gateway Function 675
20.4.2 SIP Addressing Basics 676
20.4.3 SIP Phone to POTS Phone 677
20.4.4 POTS Phone to SIP Phone 680
20.4.5 PSTN-IP-PSTN 680
20.4.6 Traffic Engineering 683
20.4.7 Relation to Using MPLS 684

Contents xix

20.5 IP Multimedia Subsystem 684
20.5.1 IMS Architecture 685
20.5.2 Call Routing Scenarios 686

20.6 Multiple Heterogeneous Providers Environment 688
20.6.1 Via Routing 688
20.6.2 Carrier Selection Alternative 690

20.7 All-IP Environment of VoIP Services 690
20.8 Addressing Revisited 691
20.9 Summary 692

Further Lookup 693
Exercises 694

Appendix A: Notations, Conventions, and Symbols 696
A.1 On Notations and Conventions 697
A.2 Symbols 699

Appendix B: Miscellaneous Topics 700
B.1 Functions: Logarithm and Modulo 701
B.2 Fixed-Point Equation 701
B.3 Computational Complexity 702
B.4 Equivalence Classes 704
B.5 Using CPLEX 704
B.6 Exponential Weighted Moving Average 706
B.7 Nonlinear Regression Fit 707
B.8 Computing Probability of Path Blocking or Loss 708
B.9 Four Factors in Packet Delay 709
B.10 Exponential Distribution and Poisson Process 710
B.11 Self-Similarity and Heavy-Tailed Distributions 712
B.12 Markov Chain and Birth-and-Death Process 713

B.12.1 Birth-and-Death Process 714
B.12.2 M/M/1 System 715
B.12.3 Trunk Reservation Model 716

B.13 Average Network Delay 717
B.14 Packet Format: IPv4, IPv6, TCP, and UDP 717

Solutions to Selected Exercises 720

Bibliography 724

Index 768

Part VI: Advanced Topics (Bonus Material on CD-ROM) 1

21 Switching Packets 2
21.1 Generic Switch Architecture 3

xx Contents

21.2 Requirements and Metrics 4
21.3 Shared Backplanes 5

21.3.1 Shared Bus 5
21.4 Switched Backplanes 7
21.5 Shared Memory 7

21.5.1 Scaling Memory Bandwidth 9
21.6 Crossbar 10

21.6.1 Take-a-Ticket Scheduler 12
21.6.2 Factors That Limit Performance 14

21.7 Head-of-Line Blocking 15
21.8 Output Queueing 16
21.9 Virtual Output Queueing 19

21.9.1 Maximum Bipartite Matching 20
21.9.2 Parallel Iterative Matching 22
21.9.3 iSLIP Scheduling 27
21.9.4 Priorities and Multicast in iSLIP 30

21.10 Input and Output Blocking 32
21.11 Scaling Switches to a Large Number of Ports 33
21.12 Clos Networks 34

21.12.1 Complexity of Scheduling Algorithms 37
21.13 Torus Networks 39

21.13.1 Packaging Using Short Wires 42
21.14 Scaling Switches for High-Speed Links 43

21.14.1 Bit Slicing 44
21.14.2 Time Slicing 44
21.14.3 Distributed Scheduling 45

21.15 Conclusions 46
21.16 Summary 47

Further Lookup 47
Exercises 48

22 Packet Queueing and Scheduling 2
22.1 Packet Scheduling 3

22.1.1 First-In, First-Out Queueing 3
22.1.2 Priority Queueing 4
22.1.3 Round-Robin and Fair Queueing 5
22.1.4 Weighted Round-Robin and Weighted Fair Queueing 6
22.1.5 Deficit Round-Robin Queueing 8
22.1.6 Modified Deficit Round-Robin Queueing 11

22.2 TCP Congestion Control 11
22.2.1 Slow Start 12
22.2.2 Additive Increase, Multiplicative Decrease 13
22.2.3 Fast Retransmit and Fast Recovery 14

22.3 Implicit Feedback Schemes 15

Contents xxi

22.3.1 Drop Position 15
22.3.2 Proactive versus Reactive Dropping 17

22.4 Random Early Detection (RED) 18
22.4.1 Computing Average Length of Queue 20
22.4.2 Computing Drop Probability 20
22.4.3 Setting Qmin and Qmax 21

22.5 Variations of RED 22
22.5.1 Weighted Random Early Detection 22
22.5.2 Adaptive Random Early Detection 23

22.6 Explicit Feedback Schemes 26
22.6.1 Choke Packets 26
22.6.2 Explicit Congestion Notification 27

22.7 New Class of Algorithms 29
22.8 Analyzing System Behavior 29
22.9 Summary 30

Further Lookup 31
Exercises 31

23 Traffic Conditioning 2
23.1 Service Level Agreements 3
23.2 Traffic Conditioning Mechanisms 4
23.3 Traffic Shaping 5

23.3.1 Leaky Bucket 7
23.3.2 Token Bucket 8

23.4 Traffic Policing 12
23.4.1 Comparing Traffic Policing and Shaping 14

23.5 Packet Marking 14
23.5.1 Graded Profiles 16
23.5.2 Single-Rate Tricolor Marking 17
23.5.3 Two-Rate Tricolor Marking 18

23.6 Summary 19
Further Lookup 19
Exercises 20

24 Transport Network Routing 2
24.1 Why Transport Network/Service 3
24.2 Timing of Request and Transport Service Provisioning 5
24.3 Multi-Time Period Transport Network Routing Design 7
24.4 Transport Routing with Varied Protection Levels 14
24.5 Solution Approaches 16
24.6 Summary 17

Further Lookup 17
Exercises 17

xxii Contents

25 Optical Network Routing and Multilayer Routing 2
25.1 SONET/SDH Routing 3

25.1.1 SONET/SDH Overview 3
25.1.2 Routing in a SONET Ring 5
25.1.3 Routing in SONET/SDH Transport Cross-Connect Networks 7

25.2 WDM Routing 9
25.2.1 WDM Overview 9
25.2.2 Routing in WDM with Full Conversion: Transport Mode 11
25.2.3 No Conversion Case 11
25.2.4 Protection Routing 12
25.2.5 On-Demand, Instantaneous WDM services 12

25.3 Multilayer Networking 13
25.3.1 Overview 13
25.3.2 IP Over SONET: Combined Two-Layer Routing Design 16

25.4 Overlay Networks and Overlay Routing 19
25.5 Summary 20

Further Lookup 21
Exercises 22

Foreword
My involvement with computer networking started with TheoryNet (1977), an e-mail system
for theoretical computer scientists. Later (1981) I helped lead the computer science network
(CSNET) project, which eventually connected most academic and many industrial computer
research groups. In the early days, our efforts were primarily focused on providing connec-
tivity and being able to use applications such as e-mail, ftp, and telnet. However, even in the
simple (by today’s standards) environment of the 1970s and early 1980s (Arpanet, CSNET,
and other experimental Internet networks), getting routing “right” turned out to be quite
challenging.

I was fortunate to be part of the NSFNET regional/backbone model development. This
is when I began to fully understand the significance of routing in a large-scale multi-domain
network and, in particular, the central role of policy issues in such a decentralized environ-
ment. Over the past decade, as the Internet became ubiquitous and global in scale, routing
has become ever more important. Packets must be forwarded efficiently from one end of the
world to the other with minimal perception of delay. This has required tremendous efforts
on many fronts: how to evolve routing protocols for large-scale loosely-coupled networking
environments, how to engineer a network for efficient routing from an operational point of
view, how to do efficient packet processing at routers, and how to effectively take into ac-
count the complexity of policy issues in the determination of routes. And while there have
been many exciting advances over the past two decades, much work remains to be done.

In parallel, we have seen tremendous advances in traditional telephony. The underly-
ing telecommunication system has changed from analog to digital and has incorporated the
latest advances in optical technologies and, more recently, voice over IP. Throughout these
revolutionary changes, routing has continued to play a critical role.

We are now at a crossroad. Various efforts are underway to determine a framework for
next generation networks that allow seamless convergence of services and a platform to more
easily create new services. Among other things, this requires a fresh look at routing. To be
successful, it is important that we understand what has worked to date. To better understand
the issues and complexities, we should look at this broadly, considering a variety of different
network architectures, not just for the Internet. For each such network architecture, we can
benefit from understanding its principles, protocols, algorithms, and functions, with a focus
on routing. This will help give us perspective as we consider how to design routing for the
next-generation network.

In this regard, Deepankar Medhi and Karthikeyan Ramasamy’s book, Network Routing:
Algorithms, Protocols, and Architectures, is very timely. Departing from most other works, it

xxiv Foreword

is unique in providing an in-depth understanding of routing in a wide variety of types of
networks. It includes extensive coverage of the evolution of routing over time. Particularly
appealing is its in-depth coverage across a spectrum of algorithmic, technical, experiential,
and practical issues. In addition, the detailed coverage of routers and switches is particularly
valuable, as it helps the reader gain an understanding of why different approaches and com-
ponents are needed to address packet processing, especially for scalability. In this regard, it is
uniquely successful in drawing an important connection between routing and routers.

Medhi and Ramasamy’s presentation is clear and approachable, allowing a wide audi-
ence to understand and gain an appreciation of network routing. I believe that it will become
a core reference book on routing for router developers, network providers, students, and
researchers for both today’s practitioners and those who are interested in next-generation
routing.

LAWRENCE LANDWEBER

Past John P. Morgridge Chair and Past Department Chairman
Computer Science Department, University of Wisconsin–Madison

Fellow, Association for Computing Machinery and
Recipient of IEEE Award on International Communication

Former President and Chair of the Board of Trustees, Internet Society

Preface
In the span of a quarter-century, network routing in communication networks has evolved
tremendously. Just a quarter-century ago, the public switched telephone network (PSTN) was
running hierarchical routing, ARPANET routing was operational, and the telecommunication
infrastructure had fixed static transport routes. In the 1980s, we saw the first tremendous
growth in routing: Internet routing was deployed under the TCP/IP stack starting, first with
the RIP protocol; the telephone network started deploying dynamic call routing schemes; and
the telecommunication transport network deployed SONET transport mechanisms, which
could reroute in a ring topology in 40 millisec in the event of a failure. In the past fifteen years,
we have seen the need for policy routing because of multiprovider settings, and the need
to develop fast lookup algorithms for packet processing that enables efficient routing. We
have also seen interdependency between addressing and routing as first addressed through
classless interdomain routing (CIDR) and more recently, because of number portability in the
PSTN. More importantly, we saw how the way an addressing scheme is deployed can impact
routing and lookup algorithms.

Network routing can be broadly divided into three basic fundamental categories: packet
routing, circuit-switched routing, and transport routing; certainly, a combination is possible.
The evolution over the past quarter-century has brought to the foreground the need to un-
derstand and examine where and how different dimensions of routing, from algorithms to
protocols to architectures, can differ for different types of networks, and where they inter-
sect. Certainly, the goal is to learn from our past experiences and prepare ourselves for next
generation networks and routing.

While numerous papers have been written on the subject of network routing, and several
books are now available on routing for specific networks, the field still lacks a comprehensive
or systematic guide that encompasses various routing paradigms. Second, even in discus-
sions of a single routing type (for example, either the Internet or PSTN), the focus often ap-
pears to be either on protocols or algorithms without tying them together with analysis and
implementation; or, the work delves more into router command-line for router configuration;
or, being informational without explaining the whys. Furthermore, how the addressing mech-
anism can affect routing decisions is yet another important topic that is rarely discussed. For
efficient routing, how routers are architectured—and why—is yet another mystery. Finally,
the relation between traffic engineering and efficient routing is also another topic. In the end,
one needs to be somewhat of an “expert” in different routing paradigms to get a well-rounded
view.

xxvi Preface

Last, after investigating routing in different networks for a number of years, we have
come to the conclusion that network routing is like an economy. Similar to macroeconomics
and microeconomics, network routing also has macro- and micro-centric issues. In addition,
seemingly different and conflicting systems can and do co-exist. Not all of the issues are
purely technical; business relations and regulatory issues are also important to recognize and
consider. This book is an attempt to paint a broad picture that encompasses various aspects
of network routing in one place.

AUDIENCE

Our goal has been to create a book that can be used by a diverse set of audiences, with varied
levels of background. Specifically, we set out to create a book that can be used by profession-
als, as well as students and researchers. In general, this is intended as a self-study. We assume
that the reader already has some basic knowledge of networking. Among professionals, the
intent has been to cover two broad groups: router developers, including protocol designers
and router architects, and network designers and operators, with the overall goal to bring out
issues that one group might want to understand that the other group faces. For students, this
book is intended to help learn about routing in depth, along with the big picture and lessons
from operational and implementation experience. For researchers who want to know what
has been done so far and what critical issues to address for next-generation routing, this is
intended as a helpful reference. In general, this book has been intended as a one-stop treat for
all interested in network routing in different networks.

ORGANIZATION AND APPROACH

The book is organized into six parts. Each part starts with a chapter-level summary. We
present below a brief overview of each part:

• Part I (four chapters): We cover the basic foundations of routing from algorithms to pro-
tocols, along with network flow modeling.

• Part II (five chapters): This part is about IP network routing, from standardized protocols
for both intra- and inter-domain routing, to IP traffic engineering and Internet routing
architectures.

• Part III (four chapters): This part covers PSTN routing, from hierarchical routing to dy-
namic routing, and from addressing to traffic engineering, including the role of signaling
in routing, along with the impact of number portability in routing.

• Part IV (three chapters): In this part, we cover router architectures for different scale
routers for efficient packet processing, along with address lookup algorithms and packet
filtering and classification mechanisms.

• Part V (four chapters): As impetuses for next generation routing, we present quality-of-
service routing, multiprotocol label switching, generalized multiprotocol label switching,
and routing at the intersection of IP-PSTN for voice over IP.

• Part VI (five chapters): This bonus material (available on the CD-ROM) is made up of two
sub-parts: the first three chapters continue beyond Part IV by delving more into routers by

Preface xxvii

presenting efficient switching, packet queueing and scheduling, and traffic conditioning;
the remaining two chapters extend Part V by covering transport network routing, optical
network routing, and multi-layer routing.

At the beginning of each chapter, a reading guideline is provided. This gives a brief de-
scription on the background needed to read the chapter; it also discusses which other chapters
this chapter is connected to or has dependency on. In general, it is not necessary to read the
chapters in sequential order. Furthermore, the chapters are organized in a way so that the
reader who has familiarity with a particular topic can move on and read other chapters of
interest. Similarly, there are a few chapters on traffic engineering that require a certain level
of mathematical background. They can be read independently if the reader has the back-
ground, or can be skipped for later reading, without missing the broad picture. Regardless,
each chapter contains a Further Lookup section, which includes a brief discussion on addi-
tional reading; followed by a set of exercises that is meant for a wide audience. Notations,
conventions, and symbols used in the book are summarized in Appendix A. Miscellaneous
refresher topics that are helpful in understanding the material presented in this book are in-
cluded in Appendix B.

In general, we have given special attention to being concise about describing each topic,
while ensuring that the material is approachable for a wider audience. The book is still hefty
in size in order to cover routing in different networks. Despite our keen interest, we needed to
make the decision to leave out certain important topics instead of cutting corners on the top-
ics presented. The topics not covered in the book (except for cursory remarks) are: multicast
routing, routing in ATM networks, routing in cellular/wireless networks, routing in sensor
networks, and security vulnerabilities in routing. The router command-line–based configu-
ration of protocols is not included in this book, because there are many detailed books avail-
able on this aspect for various Internet routing protocols. Finally, there is a direct connection
between routing and capacity design and planning. For an in-depth treatment of capacity
design and planning, the reader is referred to the companion book [564].

BONUS MATERIALS AND ONLINE RESOURCES

The book, in its printed form, has 20 chapters. A CD-ROM is provided with the book that
contains an additional five chapters labeled “Advanced Topics.” Of these five chapters, three
chapters are related to router architectures: switching packets (Chapter 21), packet queueing
and scheduling (Chapter 22), and traffic conditioning (Chapter 23). The remaining two chap-
ters are related to transport and next-generation routing: transport network routing (Chap-
ter 24), and optical network routing and multilayer routing (Chapter 25).

Additional support materials (for example, instructional materials and additional ex-
ercises) will be available at http://www.mkp.com/?isbn=9780120885886 and http://www.
NetworkRouting.net. The latter site will also serve as a resource site and will provide links to
materials available on the web on network routing.

xxviii Preface

ACKNOWLEDGMENTS

To quote Jeff Doyle, “An author of a technical book is just a front man for a small army of
brilliant, dedicated people.” We could not have said it better.

Our official technical reviewers did a tremendous job of reading carefully and providing
detailed comments. We thank Jennifer Rexford (Princeton University), Ibrahim Matta (Boston
University), K. R. Krishnan (Telcordia Technologies), and Kannan Varadhan (Juniper Net-
works) for lending their expertise, time, and effort.

In addition, many afforded their expertise by reading one or more chapters and by pro-
viding valuable feedback; we gratefully acknowledge Amit Shukla (Microsoft), Arthi Ayyan-
gar (Nuova Systems), Caterina Scoglio (Kansas State University), Chelian Pandian (Juniper
Networks), Dana Blair (Cisco Systems), David Walden (BBN, retired), Debashis Talukdar
(Embarq), Dock Williams (Juniper Networks), Driss Benhaddou (University of Houston),
Hua Qin (Beijing University of Technology), Hui Zhang (Carnegie Mellon University), Jeff
Naughton (University of Wisconsin–Madison), Jignesh M. Patel (University of Michigan),
Johannes Gehrke (Cornell University), John Strand (AT&T Labs), Mario Baldi (Politecnico di
Torino), Prasad Deshpande (IBM), Prosper Chemouil (France Telecom R&D), Rahul Agrawal
(Juniper Networks), Ravi Chandra (Sonoa Systems), Raymond Reeves (Sprint), Saad Siddiqi
(Sprint), Shachi Sharma (Alcatel), Srinivas Seshadri (Kosmix), Steve Dispensa (Positive Net-
works), Vamsi Valluri (Cisco Systems), Venkatesh Iyengar (Sun Microsystems), and Vijay Ta-
lati (Juniper Networks).

The first author’s colleagues in the Networking group at the University of Missouri–
Kansas City, Appie van de Liefvoort, Baek-Young Choi, Cory Beard, Jerry Place, Ken Mitchell,
and Khosrow Sohraby, served as great resources. They read one or more chapters, were
around to have a quick discussion and to provide their theoretical as well as practical ex-
pertise when needed. Appie van de Liefvoort and Khosrow Sohraby, in their roles as admin-
istrators, provided a much-needed environment for the first author to carry out a project of
this magnitude without too many distractions. More than a decade ago, a former colleague,
Adrian Tang, was instrumental and believed in the importance of creating a separate course
on network routing; with his interest and the nod from Richard Hetherington (the then di-
rector), the first author developed and taught a course on network routing encompassing
different networks for the first time in fall 1995; he also benefited from the publication of
[667] in 1995 that helped jump-start this course. Since then, he has been teaching this course
every fall (except when he was on a sabbatical leave). The content has changed significantly
in this short span of time to keep up with what has been happening in the field, providing an
exciting challenge and opportunity. He gratefully acknowledges having a sabbatical in 2004
to plan for the initial preparation for this book.

The current and recent PhD students of the first author also read many chapters and pro-
vided valuable feedback. Many thanks to Amit Sinha, Balaji Krithikaivasan, Dijiang Huang,
Gaurav Agrawal, Haiyang Qian, Plarent Tirana, and Shekhar Srivastava.

Several students who took the course, Network Routing, from the first author, in the
fall of 2005, read the initial version of the first few chapters. When he taught it again in the
fall 2006 semester, the entire manuscript was ready in its draft form; the entire class helped
debug it by carefully reading various chapters and providing detailed feedback. For their
help, we would like to thank Aditya Walavalkar, Ajay Karanam, Amol Rege, Dong Yoo, Fran-
cisco Jose Landeras, Hafeez Razzaq, Haiyang Qian, Hui Chang, Jignesh K. Patel, Jin-Ho Lee,

Preface xxix

Jorge Rodriguez, Palani Ramalingam, Phaneesh Gururaj, Ravi Aute, Rehan Ishrat, Ron Mc-
Manaman, Satoru Yamashita, Sreeram Gudipudi, Swapnil Deshmukh, Shamanth Kengeri,
Shashank Manchireddy, Sundeep Udutha, Tongan Zhao, and Venkat Pagadala. Needless to
say, the first author greatly benefited from many questions and discussions from teaching
this course over the past decade that altogether attracted more than 300 students. The second
author also benefited from his many interactions with colleagues while working at Juniper
Networks. As a result, a range of interrelated topics is included in the book to give a broader
perspective of network routing.

Over the years, we have both benefited from informative and enlightening discussions on
routing in different domains and related topics from many individuals; many also answered
queries during the preparation of this book. We like to thank the following: Aekkachai Rat-
tanadilokochai (Cisco Systems), Åke Arvidsson (Ericsson), Amarnath Mukherjee (Clarifyre),
Ananth Nagarajan (Juniper Networks), André Girard (INRS-EMT), Bharani Chadalavada
(Juniper Networks), Brion Feinberg (Sereniti), Brunilde Sansò (University of Montréal),
David DeWitt (University of Wisconsin–Madison), David Tipper (University of Pittsburgh),
David Mills (University of Delaware), David Walden (BBN, retired), Debasis Mitra (Bell
Labs), Di Yuan (Linköping Institute of Technology), Fu Chang (Academia Sinica), Ger-
ald Ash (AT&T Labs), Gerald Combs (CACE Technologies, creator of Ethereal/Wireshark),
Geoff Huston (APNIC), Götz Gräfe (HP Labs), Hadriel Kaplan (Acme Packet), Indrajanti
(Yanti) Sukiman (Cisco Systems), Iraj Saniee (Bell Labs), Jean-François Labourdette (Verizon),
Jeff Naughton (University of Wisconsin–Madison), Jim Pearce (Sprint), John Strand (AT&T
Labs), Keith Ross (Polytechnic University), Larry Landweber (University of Wisconsin–
Madison), Lindsay Hiebert (Cisco Systems), Lorne Mason (McGill University), Michał
Pióro (Warsaw University of Technology and Lund University), Mikkel Thorup (AT&T
Labs–Research), Mostafa Ammar (Georgia Tech), Mukesh Kacker (NetApp), Nitin Bahadur
(Juniper Networks), Oscar González-Soto (ITU), Philip Smith (Cisco Systems), Pramod Srini-
vasan (Juniper Networks), Prosper Chemouil (France Telecom R&D), Rajat Monga (Attrib-
utor), Ravi Chandra (Sonoa Systems), Richard Harris (Massey University), Robert Dover-
spike (AT&T Labs–Research), Ron Skoog (Telcordia Technologies), Saad Siddiqi (Sprint),
Samir Shah (Cisco Systems), Saravan Rajendran (Cisco Systems), Sergio Beker (France Tele-
com R&D), Shankar Satyanarayanan (Cisco Systems), Srinivasa Thirumalasetty (Ciena Cor-
poration), Steve Dispensa (Positive Networks), Steve Robinson (University of Wisconsin–
Madison), Toshikane Oda (Nippon Ericsson), Ulka Ranadive (Cisco Systems), Vamsi Valluri
(Cisco Systems), Villy Bæk Iversen (Technical University of Denmark), Wayne Grover (TR-
Labs & University of Alberta), Wen-Jung Hsin (Park University), Wesam Alanqar (Sprint),
Yufei Wang (VPI Systems), and Zhi-Li Zhang (University of Minnesota). Furthermore, the
first author benefited from Karen Medhi’s insight and expertise in transport network routing
and design.

Folks at AS3390 often provided their perspective from the viewpoint of running a stub
AS by answering our questions. Our sincere thanks to the following individuals at AS3390:
David Johnston, George Koffler, Jim Schonemann, II, and Justin Malyn.

We thank David Clark (M.I.T.), Series Editor for the Morgan Kaufmann series in Network-
ing, for recognizing the importance of having a book that spans network routing in different
networks, and for greenlighting our book proposal. We are honored that Larry Landweber

xxx Preface

(University of Wisconsin–Madison) gladly accepted our request to write the Foreword for
this book.

The first author would like to thank the Defense Advanced Research Project Agency, the
National Science Foundation, the University of Missouri Research Board, and Sprint Corpo-
ration for supporting his networking research.

Two individuals deserve special note: (1) Jane Zupan took Network Routing from the
first author in 2000. She typed his scattered notes, which gave the initial idea for planning
this book. Then, at a conference in 2003, the three of us casually joked about doing this book,
and the plan finally started. Jane was an initial partner in this project but could not continue
to work on it because of time constraints. She, however, continued to provide much help,
even at the last stage, by reading and editing, despite her busy schedule. We sincerely thank
her for her great help. (2) Balaji Krithikaivasan, who completed a Ph.D. under the first author,
passionately read many chapters of the book and provided feedback despite his deteriorating
health. Unfortunately, he did not live long enough to see the final publication of the book.
Thank you, Bala, wherever you are.

It has been a pleasure to work with Rick Adams and Rachel Roumeliotis of Morgan Kauf-
mann Publishers/Elsevier. From the initial proposal of the book to final production, they pro-
vided guidance in many ways, not to mention the occasional reminder. We appreciate their
patience with us during the final stages of the manuscript preparation. Arline Keithe did a
nice job of copyediting. In the pre-production phase, we received help from Project Managers
Dawnmarie Simpson and Tracy Grace. Folks at VTEX did an excellent job of taking our LATEX
files and transforming them to production quality, and Judy Ahlers did great work on the
final proofread. We thank them all.

Our immediate family members suffered the most during our long hours of being glued
to our laptops. Throughout the entire duration, they provided all sorts of support, entertain-
ments, and distractions. And often they queried “Are you ever going to get this done?” Deep
would like to thank his wife, Karen, and their sons, Neiloy and Robby, for love and patience,
and for enduring this route (for the second time). He would also like to thank cc76batch—you
know who you are—for their friendship. Karthik would like to thank his wife, Monika, for
her love and patience. He would also like to acknowledge his family members, Sudarshan
Kumar and Swarn Durgia, Sonu and Rajat Monga, and Tina and Amit Babel for keeping him
motivated. In addition, he would like to thank his many friends for their support. Finally, we
like to thank our parents and our siblings for their support and encouragement.

DEEPANKAR (DEEP) MEDHI KARTHIKEYAN (KARTHIK) RAMASAMY

Kansas City, Missouri, USA Santa Clara, California, USA
dmedhi@umkc.edu karthik@cs.wisc.edu

About the Authors
Deepankar Medhi is Professor of Computer Networking in the Computer Science & Electri-
cal Engineering Department at the University of Missouri–Kansas City, USA. Prior to joining
UMKC in 1989, he was a member of the technical staff in the traffic network routing and
design department at the AT&T Bell Laboratories. He was an invited visiting professor at
Technical University of Denmark and a visiting research fellow at the Lund University, Swe-
den. He is currently a Fulbright Senior Specialist. He serves as a senior technical editor of the
Journal of Network & Systems Management, and is on the editorial board of Computer Networks,
Telecommunication Systems, and IEEE Communications Magazine. He has served on the techni-
cal program committees of numerous conferences including IEEE INFOCOM, IEEE NOMS,
IEEE IM, ITC, and DRCN. He received B.Sc. (Hons.) in Mathematics from Cotton College,
Gauhati University, India, an M.Sc. in Mathematics from the University of Delhi, India, and
an M.S. and a Ph.D. in Computer Sciences from the University of Wisconsin–Madison, USA.
He has published more than 70 papers, and is co-author of the book Routing, Flow, and Ca-
pacity Design in Communication and Computer Networks, also published by Morgan Kaufmann
(July 2004).

Karthikeyan Ramasamy has 15 years of software development experience, including work-
ing with companies such as Juniper Networks, Desana Systems, and NCR. His primary areas
of technical expertise are networking and database management. As a member of the tech-
nical staff at Juniper, he developed and delivered a multitude of features spanning a diverse
set of technologies including protocols, platforms, databases, and high availability solutions
for the JUNOS routing operating system. As a principal engineer at Desana Systems, he was
instrumental in developing and delivering many fundamental components of an L7 switch
for managing data centers. While pursuing his doctorate, he worked on a parallel object re-
lational database system, which was spun off as a company and later acquired by NCR. Sub-
sequently, he initiated a project in data warehousing which was adapted by NCR. As a con-
sulting software engineer at NCR, he assisted in the commercialization of these technologies.
Currently, he serves as an independent consultant. He received a B.E. in Computer Science
and Engineering with distinction from Anna University, India, an M.S. in Computer Science
from the University of Missouri–Kansas City, USA, and a Ph.D. in Computer Sciences from
the University of Wisconsin–Madison, USA. He has published papers in premier conferences
and holds 7 patents.

This page intentionally left blank

Part I: Network
Routing: Basics and
Foundations
We start with basics and foundations for network routing. It has four chapters.

In Chapter 1, we present a general overview of networking. In addition, we present a
broad view of how addressing and routing are tied together, and how different architectural
components are related to routing.

A critical basis for routing is routing algorithms. There are many routing algorithms ap-
plicable to a variety of networking paradigms. In Chapter 2, we present shortest and widest
path routing algorithms, without referring to any specific networking technology. The intent
here is to understand the fundamental basis of various routing algorithms, both from a cen-
tralized as well as a distributed point of view.

In Chapter 3, we consider routing protocols that play complementary roles to routing
algorithms. The important point to understand about routing protocols is the nature of its
operation in a distributed environment in which information are to be exchanged, and when
and what information to be exchanged. Fundamentally, there are two routing protocol con-
cepts: distance vector and link state. The path vector routing protocol extends the distance
vector approach by including path information; however, this results in an operational be-
havior that can be drastically different than a distance vector protocol. Thus, the scope of this
chapter is to present routing protocols in details, along with illustrations, however, without
any reference to a particular networking technology.

This part concludes by presenting background material that is important for traffic en-
gineering of networks. It may be noted that routing and traffic engineering are inter-twined.
Thus, a good understanding of the fundamentals of how network flow modeling and opti-
mization can be helpful in traffic engineering is important. Chapter 4 covers network flow
modeling and introduces a number of objectives that can be application for network traffic
engineering, and describes how different objectives can lead to different solutions.

1
Networking and
Network Routing:
An Introduction
Not all those who wander are lost.

J. R. R. Tolkien

C H A P T E R 1 Networking and Network Routing: An Introduction 3

It is often said that if anyone were to send a postcard with minimal address information such
as “Mahatma Gandhi, India” or “Albert Einstein, USA,” it would be routed to them due to
their fame; no listing of the street address or the city name would be necessary. The postal
system can do such routing to famous personalities usually on a case-by-case basis, relying
on the name alone.

In an electronic communication network, a similar phenomenon is possible to reach any
website or to contact any person by telephone anywhere in the world without knowing where
the site or the person is currently located. Not only that, it is possible to do so very efficiently,
within a matter of a few seconds.

How is this possible in a communication network, and how can it be done so quickly?
At the heart of the answer to this question lies network routing. Network routing refers to
the ability of an electronic communication network to send a unit of information from point
A to point B by determining a path through the network, and by doing so efficiently and
quickly. The determination of an efficient path depends on a number of factors, as we will be
discussing in detail throughout this book.

First, we start with a key and necessary factor, known as addressing. In a communication
network, addressing and how it is structured and used plays a critical role. In many ways,
addressing in a communication network has similarities to postal addressing in the postal
system. Thus, we will start with a brief discussion of the postal addressing system to provide
an analogy.

A typical postal address that we write on a postcard has several components—the name
of the person, followed by the street address with the house number (“house address”), fol-
lowed by the city, the state name, and the postal code. If we, on the other hand, take the
processing view to route the postcard to the right person, we essentially need to consider this
address in the reverse order of listing, i.e., start with the postal code, then the city or the state
name, then the house address, and finally the name of the person. You may notice that we
can reduce this information somewhat; that is, you can just use the postal code and leave out
the name of the city or the name of the state, since this is redundant information. This means
that the information needed in a postal address consists of three main parts: the postal code,
the street address (with the house number), and the name.

A basic routing problem in the postal network, then, is as follows: the postcard is first
routed to the city or the geographical region where the postal code is located. Once the card
reaches the postal code, the appropriate delivery post office for the address specified is iden-
tified and delivered to. Next, the postman or postwoman delivers the postcard at the address,
without giving much consideration to the name listed on the card. Rather, once the card ar-
rives at the destination address, the residents at this address take the responsibility of handing
it to the person addressed.

You may note that at a very high-level view, the routing process in the postal system is
broken down to three components: how to get the card to the specific postal code (and sub-
sequently the post office), how the card is delivered to the destination address, and finally,
how it is delivered to the actual person at the address. If we look at it in another way, the
place where the postcard originated in fact does not need to know the detailed information
of the street or the name to start with; the postal code is sufficient to determine to which
geographical area or city to send the card. Thus, we can see that postal routing uses address
hierarchy for routing decisions. An advantage of this approach is the decoupling of the rout-

4 1.1 Addressing and Internet Service: An Overview

ing decision to multiple levels such as the postal code at the top, then the street address,
and so on. An important requirement of this hierarchical view is that there must be a way
to divide the complete address into multiple distinguishable parts to help with the routing
decision.

Now consider an electronic communication network; for example, a critical communi-
cation network of the modern age is the Internet. Naturally, the first question that arises is:
how does addressing work for routing a unit of information from one point to another, and
is there any relation to the postal addressing hierarchy that we have just discussed? Second,
how is service delivery provided? In the next section, we address these questions.

1.1 Addressing and Internet Service: An Overview
In many ways, Internet addressing has similarities to the postal addressing system. The ad-
dressing in the Internet is referred to as Internet Protocol (IP) addressing. An IP address defines
two parts: one part that is similar to the postal code and the other part that is similar to the
house address; in Internet terminology, they are known as the netid and the hostid, to identify
a network and a host address, respectively. Thus, a host is the end point of communication
in the Internet and where a communication starts. A host is a generic term used for indicat-
ing many different entities; the most common ones are a web-server, an email server, and
certainly the desktop, laptop, or any computer we use for accessing t he Internet. A netid
identifies a contiguous block of addresses; more about IP Addressing later in Section 1.3.

Like any service delivery system, we also need a delivery model for the Internet. For
example, in the postal system, one can request guaranteed delivery for an additional fee.
The Internet’s conceptual framework, known as TCP/IP (Transmission Control Protocol/Internet
Protocol), relies on a delivery model in which TCP is in charge of the reliable delivery of
information, while IP is in charge of routing, using the IP addressing mechanism. IP, however,
does not worry about whether the information is reliably delivered to the address or is lost
during transit. This is somewhat similar to saying that the postal system will route a postcard
to the house address, while residents at this address (not the postal authority) are responsible
for ensuring that the person named on the card receives it. While this may seem odd at first,
this paradigm has been found to work well in practice, as the success of the Internet shows.

A key difference in the Internet as opposed to the postal system is that the sending host
first sends a beacon to the destination address (host) to see if it is reachable, and waits for
an acknowledgment before sending the actual message. Since the beacon also uses the same
transmission mechanism, i.e., IP, it is possible that it may not reach the destination. In order
to allow for this uncertainty to be factored in, another mechanism known as a timer is used.
That is, the sending host sends the beacon, then waits for a certain amount of time to see
if it receives any response. If it does not hear back, it tries to send the beacon a few more
times, waiting for a certain amount of time before each attempt, until it stops trying after
reaching the limit on the maximum number of attempts. The basic idea, then, requires that
the receiving host should also know the address of the sender so that it can acknowledge the
receipt of the beacon. As you can see, this means that when the sending host sends its beacon,
it must also include its source IP address.

Once the connectivity is established through the beacon process, the actual transmission
of the content transpires. This is where a good analogy is not available in the postal system;

C H A P T E R 1 Networking and Network Routing: An Introduction 5

rather, the road transportation network is a better fit to describe an analogy. If we imagine
a group of 100 friends wanting to go to a game, then we can easily see that not all can fit in
one car. If we consider that a car can hold five people, we will need twenty cars to transport
this entire group. The Internet transfer model also operates in this fashion. Suppose that a
document that we want to download from a host (web-server) is 2 MB. Actually, it cannot
be accommodated entirely into a single fundamental unit of IP, known as packet or datagram,
due to a limitation imposed by the underlying transmission system. This limitation is known
as the Maximum Transmission Unit (MTU). MTU is similar to the limitation on how many
people can fit into a single car. Thus, the document would need to be broken down into
smaller units that fit into packets. Each packet is then labeled with both the destination and
the source address, which is then routed through the Internet toward the destination. Since
the IP delivery mechanism is assumed to be unreliable, any such packet can possibly get
lost during transit, and thus would need to be retransmitted if the timer associated with this
packet expires. Thus another important component is that content that has been broken down
into smaller packets, once it arrives at the destination, needs to be reassembled in the proper
order before delivering the document.

We conclude this section by pointing out that the acknowledgment and retransmission
mechanism is used for most well-known applications on the Internet such as web or email.
A slightly different model is used for applications that do not require reliable delivery; this
will be discussed later in the chapter.

1.2 Network Routing: An Overview
In the previous section, we provided a broad overview of addressing and transfer mecha-
nisms for data in Internet communication services. Briefly, we can see that eventually packets
are to be routed from a source to a destination. Such packets may need to traverse many
cross-points, similar to traffic intersections in a road transportation network. Cross-points in
the Internet are known as routers. A router’s functions are to read the destination address
marked in an incoming IP packet, to consult its internal information to identify an outgoing
link to which the packet is to be forwarded, and then to forward the packet. Similar to the
number of lanes and the speed limit on a road, a network link that connects two routers is
limited by how much data it can transfer per unit of time, commonly referred to as the band-
width or capacity of a link; it is generally represented by a data rate, such as 1.54 megabits
per second (Mbps). A network then carries traffic on its links and through its routers to the
eventual destination; traffic in a network refers to packets generated by different applications,
such as web or email.

Suppose that traffic suddenly increases, for example, because of many users trying to
download from the same website; then, packets that are generated can possibly be queued
at routers or even dropped. Since a router maintains a finite amount of space, known as a
buffer, to temporarily store backlogged packets, it is possible to reach the buffer limit. Since
the basic principle of TCP/IP allows the possibility of an IP packet not being delivered or
being dropped enroute, the finite buffer at a router is not a problem. On the other hand,
from an efficient delivery point of view, it is desirable not to have any packet loss (or at least,
minimize it) during transit. This is because the reliable delivery notion works on the principle
of retransmission and acknowledgment and any drop would mean an increase in delay due

6 1.2 Network Routing: An Overview

to the need for retransmission. In addition, during transit, it is also possible that the content
enclosed in a data packet is possibly corrupted due to, for example, an electrical signaling
problem on a communication link. This then results in garbling of a packet. From an end-to-
end communication point of view, a garbled packet is the same as a lost packet.

Thus, for efficient delivery of packets, there are several key factors to consider: (1) routers
with a reasonable amount of buffer space, (2) links with adequate bandwidth, (3) actual
transmission with minimal error (to minimize packets being garbled), and (4) the routers’
efficiency in switching a packet to the appropriate outgoing link. We have already briefly dis-
cussed why the first two factors are important. The third factor, an important issue, is outside
the scope of this book since encoding or development of an error-free transmission system is
an enormous subject by itself; interested readers may consult books such as [666]. Thus, we
next move to the fourth factor.

Why is the fourth factor important? A packet is to be routed based on the IP address of the
destination host; however, much like street address information in a postal address, there are
far too many possible hosts; it is impossible and impractical to store all host addresses at any
router. For example, for a 32-bit address, theoretically a maximum of 232 hosts are possible—
a very large number (more about IP addressing in the next section). Rather, a router needs to
consider a coarser level of address information, i.e., the netid associated with a host, so that
an outgoing link can be identified quickly just by looking up the netid. Recall that a netid is
very much like a postal code. There is, however, a key difference—netids do not have any
geographical proximity association as with postal codes. For example, postal codes in the
United States are five digits long and are known as ZIP (Zonal Improvement Plan) codes.
Consider now Kansas City, Missouri, where a ZIP code starts with 64 such as 64101, 64102,
and so on. Thus, a postcard can be routed to Kansas City, MO (“64”) which in turn then can
take care of routing to the specific ZIP code. This idea is not possible with IP addressing since
netids do not have any geographical proximity. In fact, an IP netid address such 134.193.0.0
can be geographically far away from the immediately preceding IP netid address 134.192.0.0.
Thus, at the netid level, IP addressing is flat; there is no hierarchy.

You might be wondering why IP address numbering is not geographic. To give a short
answer, an advantage of a nongeographic address is that an organization that has been as-
signed an IP address block can keep its address block even if it moves to a different location
or if it wants to use a different provider for connectivity to the Internet. A geographically
based address system usually has limitations in regard to providing location-independent
flexibility.

In order to provide the flexibility that two netids that appear close in terms of their ac-
tual numbering can be geographically far away, core routers in the Internet need to main-
tain an explicit list of all valid netids along with an identified outgoing link so that when a
packet arrives the router knows which way to direct the packet. The list of valid netids is
quite large, currently at 196,000 entries. Thus, to minimize switching time at a router, efficient
mechanisms are needed that can look up an address, identify the appropriate outgoing link
(direction), and process the packet quickly so that the processing delay can be as minimal as
possible.

There is, however, another important phase that works in tandem with the lookup
process at a router. This is the updating of a table in the router, known as the routing table,
that contains the identifier for the next router, known as the next hop, for a given destination

C H A P T E R 1 Networking and Network Routing: An Introduction 7

netid. The routing table is in fact updated ahead of time. In order to update such a table, the
router would need to store all netids it has learned about so far; second, if a link downstream
is down or congested or a netid is not reachable for some reason, it needs to know so that
an alternate path can be determined as soon as possible. This means that a mechanism is re-
quired for communicating congestion or a failure of a link or nonreachability of a netid. This
mechanism is known as the routing protocol mechanism. The information learned through a
routing protocol is used for generating the routing table ahead of time.

If new information is learned about the status of links or nodes, or the reachability of a
netid through a routing protocol, a routing algorithm is then invoked at a router to determine
the best possible next hop for each destination netid in order to update the routing table. For
efficient packet processing, another table, known as the forwarding table, is derived from the
routing table that identifies the outgoing link interfaces. The forwarding table is also known
as the Forwarding Information Base (FIB). We will use the terms forwarding table and FIB
interchangeably.

It should be noted that a routing algorithm may need to take into account one or more
factors about a link, such as the delay incurred to traverse the link, or its available bandwidth,
in order to determine the best possible path among a number of possible paths. If a link along
a path does not have adequate bandwidth, congestion or delay might occur. To minimize
delay, an important function, called traffic engineering, is performed. Traffic engineering is
concerned with ways to improve the operational performance of a network and identifies
procedures or controls to be put in place ahead of time to obtain good network performance.

Finally, there is another important term associated with networking in general and net-
work routing in particular, labeled as architecture. There are two broad ways the term archi-
tecture from the architecture of a building is applicable here: (1) a floor inside a building
may be organized so that it can be partitioned efficiently for creating office spaces of different
sizes by putting in flexible partitions without having to tear down any concrete walls, (2) it
provides standardized interfaces, such as electrical sockets, so that equipment that requires
power can be easily connected using a standardized socket without requiring modification
to the building or the floor or the equipment. Similarly, there are several ways we use the
term architecting a network: for example, from the protocol point of view, various functions
are divided so that each function can be done separately, and one function can depend on
another through a well-defined relationship. From a router’s perspective, architecting a net-
work refers to how it is organized internally for a variety of functions, from routing protocol
handling to packet processing. From a network perspective, this means how the network
topology architecture should be organized, where routers are to be located and bandwidth of
links determined for efficient traffic engineering, and so on. Later, we will elaborate more on
architectures.

To summarize, we can say that the broad scope of network routing is to address routing
algorithms, routing protocols, and architectures, with architectures encompassing several dif-
ferent aspects for efficient routing. In this book, we will delve into these aspects in depth. With
the above overview, we now present IP addressing in detail.

1.3 IP Addressing
If one has to send data to any host in the Internet, there is a need to uniquely identify all the
hosts in the Internet. Thus, there is a need for a global addressing scheme in which no two

8 1.3 IP Addressing

hosts have the same address. Global uniqueness is the first property that should be provided
in an addressing scheme.

1.3.1 Classful Addressing Scheme
An IP address assigned to a host is 32 bits long and should be unique. This addressing, known
as IPv4 addressing, is written in the bit format, from left to right, where the left-most bit is
considered the most significant bit. The hierarchy in IP addressing, similar to the postal code
and the street address, is reflected through two parts, a network part and a host part referred
as the pair (netid, hostid). Thus, we can think of the Internet as the interconnection of networks
identified through netids where each netid has a collection of hosts. The network part (netid)
identifies the network to which the host is attached, and the host part (hostid) identifies a
host on that network. The network part is also referred as the IP prefix. All hosts attached to
the same network share the network part of their IP addresses but must have a unique host
part.

To support different sizes for the (netid, hostid) part, a good rule on how to partition
the total IP address space of 232 addresses was needed, i.e., how many network addresses
will be allowed and how many hosts each of them will support. Thus, the IP address space
was originally divided into three different classes, Class A, Class B, and Class C, as shown in
Figure 1.1 for networks and hosts. Each class was distinguished by the first few initial bits of
a 32-bit address.

For readability, IP addresses are expressed as four decimal numbers, with a dot between
them. This format is called the dotted decimal notation. The notation divides the 32-bit IP ad-
dress into 4 groups of 8 bits and specifies the value of each group independently as a decimal
number separated by dots. Because of 8-bit breakpoints, there can be at most 256 (= 28) dec-
imal values in each part. Since 0 is an assignable value, no decimal values can be more than
255. Thus, an example of an IP address is 10.5.21.90 consisting of the four decimal values,
separated by a dot or period.

F I G U R E 1.1 Classful IP addressing scheme.

C H A P T E R 1 Networking and Network Routing: An Introduction 9

Each Class A address has the first bit set to 0 and is followed by 7 bits for the network part,
resulting in a maximum of 128 (= 27) networks; this is then followed by a 24-bit host part.
Thus, Class A supports a maximum of 224 − 2 hosts per network. This calculation subtracts
2 because 0s and 1s in the host part of a Class A address may not be assigned to individual
hosts; rather, all 0s that follows a netid such as 10.0.0.0 identify the network, while all 1s that
follow a netid such as 10.255.255.255 are used as the broadcast address for this network. Each
Class B network address has the first two bits set to “10,” followed by a 14-bit network part,
which is then followed by a 16-bit host part. A maximum of 214 networks can be defined with
up to 216 − 2 hosts per network. Finally, a Class C network address has the first three bits
set as “110” and followed by a 21-bit network part, with the last 8 bits to identify the host
part. Class C provides support for a maximum of 221(= 2,097,152) networks with up to 254
(28 − 2) hosts. In each class, a set of network addresses is reserved for a variety of purposes;
see [319].

Three address classes discussed so far are used for unicasting in the Internet, that is,
for a host-to-host communication. There is another class of IP addresses, known as Class D
addressing, that is used for multicasting in the Internet; in this case, the first four bits of the
32-bit address are set to “1110” to indicate that it is a multicast address. A host can use a
multicast address as the destination address for a packet generated to indicate that the packet
is meant for any hosts on the Internet; in order for any hosts to avail this feature, they must
use another mechanism to tune into this address. Multicast address on the Internet can be
thought of as similar to a radio station frequency; a radio station transmits on a particular
frequency—any listener who wants to listen to this radio station must tune the radio dial to
this frequency.

The original rationale behind classes of different sizes was to provide the flexibility to
support different sized networks, with each network containing a different number of hosts.
Thus, the total address length can still be kept fixed at 32 bits, an advantage from the point
of view of efficient address processing at a router or a host. As the popularity of the Internet
grew, several disadvantages of the addressing scheme came to light. The major concerns were
the rate at which the IP address blocks that identify netids were being exhausted, especially
when it was necessary to start assigning Class C level netids. Recall from our earlier discus-
sion that IP netids are nongeographic; thus, all valid netids are required to be listed at the
core routers of the Internet along with the outgoing link, so that packets can be forwarded
properly. If we now imagine all Class C level netids being assigned, then there are over 2 mil-
lion entries that would need to be listed at a core router; no current routers can handle this
number of entries without severely slowing packet processing. This issue, first recognized
in the early 1990s, led to the development of the concept of classless addressing. In order to
understand this concept, we first need to understand subnetting/netmask.

1.3.2 Subnetting/Netmask

Consider the IP address 192.168.40.3 that is part of Class C network 192.168.40.0. A subnet
or sub-network is defined through a network mask boundary using the specified number
of significant bits as 1s. Since Class C defines networks with a 24-bit boundary, we can then
consider that the most significant 24 bits are 1s, and the lower 8 bits are 0s. This translates
to the dotted decimal notation 255.255.255.0, which is also compactly written as “/24” to

10 1.3 IP Addressing

indicate how many most significant bits are 1s. We can then do a bit-wise logical “AND”
operation between the host address and the netmask to obtain the Class C network address
as shown below:

11000000 10101000 00101000 00000011 → 192.168.40.3
AND 11111111 11111111 11111111 00000000 → netmask (/24)

11000000 10101000 00101000 00000000 → 192.168.40.0

As you can see, both the host address and the netmask have 1s in the first two positions from
the left; thus, the “AND” operation results in 1s for these two positions. For the third position
from left, the host has 0 while the netmask has 1; thus, the result of the “AND” operation
is zero; and so on. Note that for network addresses such as Class C address, the netmask
is implicit and it is on a /24 subnet boundary. Now consider that we want to change the
netmask explicitly to /21 to identify a network larger than a 24-bit subnet boundary. If we
now do the bit-wise operation

11000000 10101000 00101000 00000011 → 192.168.40.3
AND 11111111 11111111 11111000 00000000 → netmask (/21)

11000000 10101000 00101000 00000000 → 192.168.40.0

we note that the network address is again 192.168.40.0. However, in the latter case, the net-
work boundary is 21 bits. Thus, to be able to clearly distinguish between the first and the
second one, it is necessary to explicitly mention the netmask. This is commonly written for
the second example as 192.168.40.0/21, where the first part is the netid and the second part is
the mask boundary indicator. In this notation, we could write the original Class C address as
192.168.40.0/24 and thus, there is no ambiguity with 192.168.40.0/21.

1.3.3 Classless Interdomain Routing
Classless Interdomain Routing (CIDR) uses an explicit netmask with an IPv4 address block
to identify a network, such as 192.168.40.0/21. An advantage of explicit masking is that an
address block can be assigned at any bit boundaries, be it /15 or /20; most important, the as-
signment of Class C level addresses for networks that can show up in the global routing table
can be avoided or minimized. For example, a contiguous address block can be assigned at
the /21 boundary which can be thought of as an aggregation of subnets at the /24 boundary.
Because of this, the term supernetting or variable-length subnet masking (VLSM) is also used in
reference to the explicit announcement of the netmask.

Through such a process, and because of address block assignment at boundaries such as
/21, the routing table growth at core routers can be delayed. In the above example, only the
netid 192.168.40.0/21 needs to be listed in the routing table entry, instead of listing eight en-
tries from 192.168.40.0/24 to 192.168.47.0/24. Thus, you can see how the routing table growth
can be curtailed. CIDR was introduced around the mid-1990s; the current global routing ta-
ble size, as of this writing, is about 196,000 entries. The routing table growth over time, along
with projection, is shown later in Figure 9.10. In order for CIDR to take effect, any network
address reachability announcement that is communicated with a routing protocol such as the
Border Gateway Protocol must also carry the mask information explicitly. Its usage and applica-
bility will be discussed in more detail in Chapter 8 and Chapter 9. In Table 1.1, we show a set
of IP addresses reserved for a variety of purposes; see [319] for the complete list.

C H A P T E R 1 Networking and Network Routing: An Introduction 11

TA B L E 1.1 Examples of reserved IP address blocks.

Address Block Current Usage

0.0.0.0/8 Identifies source hosts in the current network
10.0.0.0/8 Private-use IP networks

127.0.0.0/8 Host loopback address
169.254.0.0/16 Link local for communication between links on a single link

172.16.0.0/12 Private-use IP networks
192.168.0.0/16 Private-use IP networks

240.0.0.0/4 Reserved for future use

1.4 On Architectures

Architectures cover many different aspects of networking environments. Network routing
must account for each of the following architectural components. Some aspects of the archi-
tectures listed below are critical to routing issues:

• Service Architecture: A service model gives the basic framework for the type of services a
network offers.

• Protocol Stack Architecture: A protocol stack architecture defines how service delivery may
require different functions to be divided along well-defined boundaries so that respon-
sibilities can be decoupled. It does not describe how actual resources might be used or
needed.

• Router Architecture: A router is a specialized computer that is equipped with hard-
ware/software for packet processing. It is also equipped for processing of routing pro-
tocols and can handle configuration requirements. A router is architected differently de-
pending on its role in a network, such as a core router or an edge router, although all
routers have a common set of requirements.

• Network Topology Architecture: For efficient operation as well as to provide acceptable ser-
vice to its users, a network is required to be organized based on a network topology ar-
chitecture that is scalable and allows growth. In order to address efficient services, there is
also a direct connection among the topology architecture, traffic engineering, and routing.

• Network Management Architecture: A network needs to provide several additional functions
in addition to carrying the user traffic from point A to point B; for clarity, the user data
traffic forwarding is considered as the data plane. For example, from an operational point
of view, a management plane handles the configuration responsibility of a network, and a
control plane addresses routing information exchanges.

In the following sections, we elaborate on the above architectural facets of networking.
To simplify matters, most of the following discussions will center around IP networks. Keep
in mind that these architectures are applicable to most communication networking environ-
ments as well.

12 1.5 Service Architecture

1.5 Service Architecture

An important aspect of a networking architecture is its service architecture. The service archi-
tecture depends partly also on the communication paradigm of its information units. Every
networking environment has a service architecture, much like the postal delivery system. In
the following, we focus on discussing three service models associated with IP networks.

BEST-EFFORT SERVICE ARCHITECTURE

Consider an IP network. The basic information unit of an IP network is a packet or a datagram
which is forwarded from one router to another towards the destination. To do that, the IP net-
work uses a switching concept, referred to as packet switching. This means that a router makes
decisions by identifying an outgoing link on a packet-by-packet basis instantaneously after
the packet arrives. At the conceptual level, it is assumed that no two packets are related, even
though they might arrive one after another and possibly for the same web-page downloaded.
Also, recall that at the IP level, the packet forwarding function is provided without worrying
about reliable delivery; in a sense, IP makes its best effort to deliver packets. Because of this,
the IP service paradigm is referred to as the best-effort service.

INTEGRATED SERVICES ARCHITECTURE

Initially, the best-effort service model was developed for the reliable delivery of data services,
since it was envisioned that services would be data-oriented services that can tolerate delay,
but not loss of packets. This model worked because the data rate provided during a session
can be adaptive.

The concept for integrated services (“int-serv”) architecture was developed in the early
1990s to allow functionalities for services that are real-time, interactive, and that can toler-
ate some loss, but require a bound on the delay. Furthermore, each session or connection
requires a well-defined bandwidth guarantee and a dedicated path. For example, interac-
tive voice and multimedia applications fall into this category. Note that the basic best-effort
IP framework works on the notion of statelessness; that is, two consecutive packets that be-
long to the same connection are to be treated independently by a router. Yet, for services in
the integrated services architecture that require a connection or a session for a certain du-
ration of time, it became necessary to provide a mechanism to indicate the longevity of the
session, and the ability for routers to know that resources are to be reserved for the entire
duration.

Since the basic IP architecture works on the notion of statelessness, and it was infeasible
to completely change the basic IP service architecture, a soft-state concept was introduced to
handle integrated-services. To do that, a session setup and maintenance protocol was also de-
veloped that can be used by each service—this protocol is known as the resource ReSerVation
Protocol (RSVP). The basic idea was that once a session is established, RSVP messages are pe-
riodically generated to indicate that the session is alive. The idea of integrated services was a
novel concept that relies on the soft-state approach. A basic problem is the scalability of han-
dling the number of RSVP messages generated for all sessions that might be simultaneously
active at a router or a link.

C H A P T E R 1 Networking and Network Routing: An Introduction 13

DIFFERENTIATED SERVICES ARCHITECTURE

The differentiated services (“diff-serv”) architecture was developed to provide prioritized
service mechanisms without requiring connection-level information to be maintained at
routers. Specifically, this approach gives priority to services by marking IP packets with diff-
serv code points located in the IP header. Routers along the way then check the diff-serv code
point and prioritize packet processing and forwarding for different classes of services. Sec-
ond, this model does not require the soft-state concept and thus avoids the connection-level
scalability issue faced with RSVP. Diff-serv code points are identified through a 6-bit field in
the IPv4 packet header; in the IPv6 packet header, the traffic class field is used for the same
purpose.

SUPPLEMENTING A SERVICE ARCHITECTURE

Earlier in this section, we introduced the best-effort service model. In a realistic sense, and
to provide acceptable quality of service performance, the basic concept can be supplemented
with additional mechanisms to provide an acceptable service architecture, while functionally
it may still remain as the best-effort service architecture. For example, although the basic
conceptual framework does not require it, a router can be designed to do efficient packet
processing for packets that belong to the same web-page requested by a user since they are
going to the same destination. That is, a sequence of packets that belongs to the same pair
of origination and destination IP addresses, to the same pair of source and destination port
numbers, and to the same transport protocol (either TCP or UDP) can be thought of as a single
entity and is identified as a microflow. Thus, packets belonging to a particular microflow can
be treated in the same manner by a router once a decision on forwarding is determined based
on the first packet for this microflow.

Another way to fine-tune the best-effort service architecture is through traffic engineer-
ing. That is, a network must have enough bandwidth so that delay or backlog can be minimal,
routers must have adequate buffer space, and so on, so that traffic moves efficiently through
the network. In fact, both packet processing at a router and traffic engineering work in tan-
dem for providing efficient services.

Similarly, for both integrated-services and differentiated-service architecture, packet han-
dling can be optimized at a router. Furthermore, traffic engineering can be geared for inte-
grated services or differentiated services architectures.

1.6 Protocol Stack Architecture
Another important facet of a networking environment is the protocol stack architecture. We
start with the OSI (Open Systems Interconnections) reference model and then discuss the IP
protocol stack architecture and its relation to the OSI reference model.

1.6.1 OSI Reference Model

The OSI reference model was developed in the 1980s to present a general reference model for
how a computer network architecture should be functionally divided. As part of OSI, many
protocols have also been developed. Here, we will present the basic reference model.

14 1.6 Protocol Stack Architecture

F I G U R E 1.2 The OSI reference model and the IP reference model.

The OSI reference model uses a layered hierarchy to separate functions, where the layer-
ing is strictly enforced. That is to say that an N-layer uses services provided by layer N − 1;
it cannot receive services directly from layer N − 2. In the OSI model, a seven-layer archi-
tecture is defined; this is shown in Figure 1.2. The seven layers are also referenced by layer
numbering counting from bottom up. From a functional point of view, layer 1 provides phys-
ical layer functions. Layer 2 provides the data link function between two directly connected
entities. Layer 3 is the network layer, where addressing and routing occurs. Layer 4 is the
transport layer that can provide either reliable or unreliable transport services, with or with-
out defining a connection (“connection-oriented” or “connection-less”). Layer 5 is the session
layer, addressing communication that may transcend multiple connections. Layer 6 is the
presentation layer that addresses structured information and data representation. Layer 7 is
where the application layer protocols are defined.

While not every computer networking environment strictly adheres to the OSI reference
model, it does provide an easy and simple way to check and compare what a particular net-
working environment might have to consider. Thus, this reference model is often quoted; in
fact, you will hear use of terms such as “layer 2” device or “layer 3” device in the technical
community quite often, assuming you know what they mean.

1.6.2 IP Protocol Stack Architecture

The IP architectural model can be classified into the following layers: the network interface,
the IP layer, the transport layer, and the application layer (see Figure 1.2). We can easily see
that it does not exactly map into the seven-layer OSI reference model. Actual applications are
considered on the top of the application layer, although the IP model does not strictly follow
layering boundaries as in the OSI reference model. For example, it allows an application to
be built without using a transport layer; ping is such an example. We have discussed earlier
that IP includes both the destination and the source address—this is accomplished through a
header part in the IP packet that also contains additional information. The IP model does not
explicitly declare how the layer below the IP layer needs to be; this part is simply referred to
as the network interface that can support IP and will be discussed later in the chapter.

C H A P T E R 1 Networking and Network Routing: An Introduction 15

NETWORK AND TRANSPORT LAYER

The IP addressing is defined at the IP layer, where the delivery mode is assumed to be un-
reliable. The transport layer that is above the IP layer provides transport services, which can
be either reliable or unreliable. More important, the transport layer provides another form
of addressing, commonly known as the port number. Port numbers are 16 bits long. Thus,
the unreliable transport layer protocol, known as the User Datagram Protocol (UDP), can be
thought of as allowing the extension of the address space by tagging a 16-bit port number to
the 32-bit IP address. However, the role of the port number is solely at the host while routing
is still done using the IP address. This is similar to the decoupling of the postal code and
the house address in the postal addressing system. The reliable transport counterpart of UDP
is known as the Transmission Control Protocol (TCP) which also uses a 16-bit port number,
but provides reliable transport layer service by using a retransmission and acknowledgment
mechanism. To be able to include the port number and other information, both TCP and UDP
have well-defined headers. Because of two-way communication, similar to an IP packet in-
cluding both the source and the destination address, TCP and UDP also include port numbers
both for the source and the destination side. Since both TCP and UDP are above IP, a field in
the IP header, known as the protocol type field, is used to be able to distinguish them. That is,
through five pieces of information consisting of the source and the destination IP addresses,
the source and the destination port numbers, and the transport protocol type, a connection in
the Internet can be uniquely defined. This is also known as a microflow.

There are two IP packet formats: IPv4 and IPv6 (see Figure 1.3). IPv4 uses the 32-bit
IP address and is the most widely deployed addressing scheme. IPv6 uses a longer 128-bit
address that was developed in the mid-1990s; initially, it was designed anticipating that IPv4
addresses would be running out soon. This did not happen as initially thought, partly because
of the proliferation of private IP address usage (see Table 1.1) that has been made possible by
mechanisms known as network address translation (NAT) devices, which can map and track
multiple private IP addresses to a single IP address. Packet formats for TCP and UDP are
shown in Figure 1.4. So far, we have already discussed several well-known fields in these
packets, such as IP source and destination addresses, source and destination port numbers,
the protocol type field, and the diff-serv code point; other key fields shown in packets formats
will be discussed later in Appendix B.14.

APPLICATION LAYER AND APPLICATIONS

Information structure at the transport layer is still at the byte level; there is no structured, se-
mantic information considered at this level. However, structural information is needed for a
particular application. For example, an email requires fields such as “From,” “To” before the
body of a message is added; this then helps the receiving end know how to process the struc-
tured information. In order to provide the structured information for different applications,
the IP architectural model allows the ability to define application layer protocols on the top of
the transport layer protocols. Application layer protocols use unique listening port numbers
from the transport layer level to distinguish one application from another. In other words, the
IP architectural model cleverly uses the transport layer port number to streamline different
application layer protocols, instead of defining yet another set of addresses at the application
layer protocol level. Examples of application layer protocols are Simple Mail Transfer Pro-
tocol (SMTP), and HyperText Transport Protocol (HTTP), which are used by email and web

16 1.6 Protocol Stack Architecture

F I G U R E 1.3 Packet formats: IPv4 and IPv6.

applications, respectively. However, the terminology is a bit confusing with some of the older
application layer protocols, since both the application layer protocol and its associated appli-
cation are described by the same name; for example, File Transfer Protocol (FTP), and telnet.
It may be noted that this set of application layer protocols (SMTP, HTTP, FTP, telnet) requires
reliable data delivery and, thus, uses TCP as the transport layer protocol.

There are other applications that do not require reliable data delivery. Voice over IP proto-
col, commonly referred to as VoIP, is one such application that can tolerate some packet loss
and thus, retransmission of lost packets is not necessary. Such an application can then use

C H A P T E R 1 Networking and Network Routing: An Introduction 17

F I G U R E 1.4 Packet formats: TCP and UDP.

UDP. Since UDP does not provide any structural boundaries, and because many real-time
communications, such as voice and video, require similar structural formats with the ability
to distinguish different encoding mechanisms, Real-time Transport Protocol (RTP) has been
defined above UDP. For example, a voice stream, with its coding based on G.711 PCM coding
standards, can use RTP, while a motion JPEG video can also use RTP; they are distinguished
through a payload-type field in RTP.

ROLE OF HEADERS

By now, it might have become apparent that each layer needs to add a header to provide
its functionality; and it then encapsulates the content received from the layer above. For ex-
ample, RTP adds a header so that the payload time, among other things, can be indicated.
How is then a message or a web page generated at an application level related to the lay-
ered data units, along with a header? To see this, consider transferring a web page. First, the

18 1.6 Protocol Stack Architecture

HTTP protocol adds its header to the entire content of the page. Suppose that the combina-
tion of this header and the content of the page comes to 50 kbytes. This content is then broken
into smaller units. If such a unit is to be of 1000 bytes each, for example, due to a limitation
imposed by the maximum transmission unit of a link, then we have to create 50 units of in-
formation. First, TCP will include its header which is 20 bytes in the default case, to make
each unit, commonly referred to as a segment, to be 1020 bytes. Then, IP will include its own
header, which is 20 bytes in the default mode. Thus, altogether each unit becomes a packet of
size 1040 bytes at the IP level.

WHERE DO ROUTING PROTOCOLS FIT IN?

We next discuss the exchange of information required for routing protocols. It is important
to note that such exchanges of information for routing protocols also use the same protocol
architectural framework. The information content of a routing protocol exchange has specific
semantic meaning so that two routers can exchange and understand this information using
these semantics. Interestingly, a router in the Internet is a also a host and is assigned an IP
address. Thus, any communication between two adjacent routers is similar to any commu-
nication between any two hosts. Since IP is the core network layer, this means that IP is also
used for this information exchange, much like using IP for communications related to the
web or email. This is where the protocol-type field in the IP header, and the port numbering
at the transport layer, can be used for distinguishing information exchanges related to differ-
ent routing protocols. Three well-known routing protocols that we will be discussing later in
the book are: Routing Information Protocol (RIP), Open Shortest Path First protocol (OSPF),
and Border Gateway Protocol (BGP). Each of these protocols uses a different approach and
exchanges different types of information. RIP is a protocol defined on top of UDP through a
well-known listening port number and the unreliable delivery provided by UDP is used. Al-
though not a transport layer protocol, OSPF is defined directly on top of IP by being assigned
a protocol-type field at the IP level. It has its own retransmission and acknowledgment mech-
anism since it requires reliable delivery mechanisms. BGP is defined on top of TCP through
a well-known listening port number, and BGP relies on TCP’s reliable service to transfer its
structured contents. An application, usually a command-line interface, is available with each
router so that specific commands can be issued for each of these routing protocols, which are
then translated into respective routing protocol exchange messages for communication with
its adjacent routers.

AUXILIARY APPLICATIONS

Besides applications for actual user data traffic and applications for providing routing in-
formation exchanges, the IP architecture also supports auxiliary applications needed for
a variety of functions. A well-known application is the name-to-address translation func-
tion provided through the Domain Name System (DNS), such that a domain name like
www.NetworkRouting.net can be mapped into a valid IP address. This function can be ei-
ther invoked indirectly when a user accesses a website or can be invoked directly by using
the command, nslookup. DNS is an application layer protocol that typically uses UDP for the
transport layer function, but it can use TCP if needed. This example also shows that it is pos-
sible to define end applications that may depend on more than one transport layer protocol.

C H A P T E R 1 Networking and Network Routing: An Introduction 19

F I G U R E 1.5 Protocol layering in IP architecture.

Another well-known utility application is ping, which is written on top of Internet Control
Message Protocol (ICMP), that is directly over IP.

In Figure 1.5, we summarize the protocol dependency of different applications in terms
of the application, transport, and network layer in the IP architecture.

1.7 Router Architecture

A router provides several important functions in order to ensure proper packet forwarding,
and to do so in an efficient manner. A router is a specialized computer that handles three
primary functions:

• Packet Forwarding: On receiving an incoming packet, a router checks whether the packet
is error free. After inspecting the header of a packet for destination address, it performs a
table lookup function to determine how to find the appropriate outgoing link.

• Routing Protocol Message Processing: A router also needs to handle routing protocol pack-
ets and determine if any changes are needed in the routing table by invoking a routing
algorithm, when and if needed.

• Specialized Services: In addition, a router is required to handle specialized services that can
aid in monitoring and managing a network.

A high-level functional view of a router is shown in Figure 1.6; it also shows how the
routing table and the forwarding table fit in the overall process. In Part IV of this book, we
will examine in detail router architectures, address lookup, packet processing, and so on.

20 1.8 Network Topology Architecture

F I G U R E 1.6 Router architecture: a functional view.

1.8 Network Topology Architecture
The network topology architecture encompasses how a network is to be architected in an
operational environment while accounting for future growth. What does topology mean? It
refers to the form a network will adopt, such as a star, ring, manhattan-street network, or
a fully mesh topology, or a combination of them. The topological architecture then covers
architecting a network topology that factors in economic issues, different technological capa-
bilities, and limitations of devices to carry a certain volume of expected traffic and types of
traffic, for an operational environment. Certainly, a network topology architecture also needs
to take into account routing capability, including any limitation or flexibility provided by a
routing protocol. It is up to a network provider, also referred to as a network operator or a
service provider, to determine the best topological architecture for the network.

It is important to note that the operational experience of an existing network can con-
tribute to the identification of additional features required from a routing protocol, or the
development of a new routing protocol, or the development of a new routing algorithm
or modification of an existing algorithm. We briefly discuss two examples: (1) when it was
recognized in the late 1980s that the Internet needed to move from being under one network
administrative domain to more flexible loosely connected networks managed by different
administrative domains, BGP was developed, (2) when it was felt in the late 1970s that the
telephone network needed to move away from a hierarchical architecture that provided lim-
ited routing capability to a more efficient network, dynamic call routing was developed and
deployed. This also required changes in the topological architecture.

It may be noted that the term network architecture is also fairly commonly used in place
of network topology architecture. One difficulty with the term network architecture is that it is
also used to refer to a protocol architecture. It is not hard to guess that network providers are
the ones who usually use the term network architecture to refer to a topological architecture.

C H A P T E R 1 Networking and Network Routing: An Introduction 21

1.9 Network Management Architecture
From the discussion in the previous sections, we can see that the routing information ex-
change uses the same framework as the user data traffic in the Internet. For an operational
network, it is important to have a network management architecture where various functions
can be divided into “planes.” Specifically, we consider three different planes: the management
plane, the control plane, and the data plane.

The management plane addresses router configuration and collection of various statistics,
such as packet throughput, on a link. Router configuration refers to configuration of a router
in a network by assigning an IP address, identifying links to its adjacent routers, invoking one
or more routing protocols for operational usage, and so on. Statistics collection may be done,
for example, through a protocol known as Simple Network Management Protocol (SNMP).
The management plane of a router is closely associated with network operations.

The control plane exchanges control information between routers for management of a
variety of functions, such as setting up a virtual link. The control plane is also involved in
identifying the path to be taken between the endpoints of this virtual link, which relies on the
routing information exchange.

Another clarification is important to point out. Since these functions are different, the
routing-related functions are in the control plane, and the data transfers, such as the web or
email, are in the data plane. These two planes, as well as the management plane, use IP for
communication, so at the IP layer, there is no distinction between these functional planes. As
we go through additional networking environments in this book, you will find that there are
environments in which the control plane and the management plane are completely parti-
tioned from the data plane.

It may be noted that for efficient traffic engineering of a network, certain information
is also required from different routers. Such information exchanges can be conducted either
through the control plane or through the management plane. In certain networking envi-
ronments, some functions can overlap across different planes. Thus, the three planes can be
thought of as interdependent. A schematic view is presented in Figure 1.7.

1.10 Public Switched Telephone Network
So far, our discussions have been primarily related to the Internet. In this section, we present
a brief overview of Public Switched Telephone Network (PSTN), another important commu-
nication network.

An information unit in the PSTN is a call. Many of the architectural aspects discussed
so far apply to the PSTN as well. The PSTN has a global addressing scheme to uniquely
identify an end device; an end device is commonly referred to as a telephone, while a more
generic term is customer premise equipment (CPE). The global addressing scheme is known
as E.164 addressing. It is a hierarchical addressing scheme that identifies the country code at
the top level followed by the city or area code, and finally the number assigned to a subscriber.
Nodes in the PSTN are called switches, which are connected by intermachine trunks (IMTs),
also known as trunkgroups.

From a protocol architecture point of view, and using the OSI reference model, PSTN can
be simply summed up as consisting of application layer, network layer, and physical layer.
The application layer enables the telephone service, the network layer handles addressing

22 1.11 Communication Technologies

F I G U R E 1.7 Network management architecture: data plane, control plane, and
management plane.

and routing, while the physical transmission system carries the actual signal for voice com-
munication. From a service architecture perspective, it provides the service model of blocked-
calls-cleared mode using circuit switching. Circuit switching means that for a call requesting
to be connected, a dedicated path is to be established instantaneously on demand from the
source to the destination. The dedicated path is in fact a dedicated circuit with a specific band-
width allocated—this value is 4 kilohertz (kHz) in an analog circuit and 64 kbps in a wireline
digital circuit. The bandwidth of the circuit cannot be used by any other calls as long as this
call is actively using it. Blocked-calls-cleared mode means that if the sequence of trunkgroups
on all possible paths attempted from the source to destination does not have a circuit avail-
able for this call, then the call request is blocked and cleared from the system (not queued).
Typically, a blocked call is indicated through a fast busy tone. Certainly, a user may retry.

More detail about routing in PSTN and its evolution will be covered later in Part III of
this book. Routing in the IP-PSTN interworking environment will be presented in Chapter 20.

1.11 Communication Technologies
Communication technologies are used for carrying network layer services, whether for the In-
ternet or PSTN. In this sense, communication technologies provide transport services for both
the Internet and PSTN. Note that the use of the term transport services is not to be confused
with the term transport layer of the OSI reference model. Unfortunately, the term transport
is used in several ways in networking; these are two such examples. To provide transport

C H A P T E R 1 Networking and Network Routing: An Introduction 23

TA B L E 1.2 Modular data rates.

Signal/data rate name Bit rate (Mbps)

DS0 (voice circuit) 0.064
T1 (DS-1) 1.54
E1 2.04
Ethernet 10.00
T3 (DS-3) 45.00
E3 34.36
STS-1 51.84
Fast Ethernet 100.00
OC-3/STS-3/STM-1 155.52
OC-12/STS-12/STM-4 622.08
Gigabit Ethernet 1,000.00
OC-48/STS-48/STM-16 2,488.32
OTU1 (Optical Transport Unit-1) 2,666.06
OC-192/STS-192/STM-64 9,953.28
OTU2 (Optical Transport Unit-2) 10,709.22
OC-768/STS-768/STM-256 39,813.12
OTU3 (Optical Transport Unit-3) 43,018.41

services, transport networks are deployed that may be based on one or more communication
technologies. At the real physical (duct) level though, fibers or coaxial cables are used for
wired transport services. Such cables are either buried underground or carried overground
on poles; submarine cabling is used for connecting different continents. Nowadays, subma-
rine cables are almost exclusively based on fiber cables; for a recent map of global submarine
cabling, see [693].

On top of cabling, a set of digital communication technologies can be provided; for exam-
ple, SONET, T1/E1, T3/E3, and so on with well-defined data rates. A summary of different
technologies and data rates is listed in Table 1.2, with all data rates listed using Mbps. A net-
work is formed at any technological level, for example, SONET can use different rates such
as OC-3 or OC-12. Similarly, a network can be formed at the T1 level or the T3 level. In partic-
ular, data rate multiplexing is also possible to go from one rate to another, such as from T1 to
T3. The telecommunication infrastructure uses a mix of technologies, and transport services
are provided either through networks at different levels, such as a network of T1s, a network
of T3s, a network of SONET rings, or a combination of them. Each such transport network
also needs to handle routing. For example, if a customer wants a T1 dedicated permanent
circuit from Los Angeles to New York, the routing path needs to be mapped out. Certainly,
the customer who wants the T1 transport service does not care how the T1 is routed in the
transport network. However, for the T1 provider, it is an important problem since for all its
T1 customers it needs to find efficient routing between different places.

In reference to the OSI terminology, the communication technologies reside mostly at
layer 1 and sometimes in layer 2. Thus, instead of thinking about routing “purely” at the
network layer (layer 3), routing problems also arise below layer 3 for transport network

24 1.12 Standards Committees

providers. In recent years, virtual private networking has become immensely popular. It
requires another form of routing that is above layer 2, but below layer 3, often dubbed as
layer 2.5. For example, MultiProtocol Label Switching (MPLS) and Asynchronous Transfer
Mode (ATM) fall into this category.

Essentially, to provide transport services using communication technologies, a variety of
transport network routing problems arises that need to take into account the capability of
a particular communication technology and the “routing” device. Second, multilayered net-
working and multilayered routing can also be envisioned going from layer 3 down to layer 1
due to transport network routing. Third, new technologies for transport networking are be-
ing continually developed with new capabilities, creating new opportunities in transport net-
work routing. Finally, traditionally, different transport networks had very little capability to
communicate with each other and thus relied on manual configurations. We are now starting
to see development of new capabilities that allow dynamic configuration and the ability to ex-
change information between networks at different layers so that dynamically reconfigurable
multilayer routing will be possible in the coming years. However, such multilayer routing
brings new challenges. In Part V and Part VI of this book, we will cover transport network
routing and multilayered routing, and the evolution of next-generation routing.

1.12 Standards Committees
It is important to note that for all technologies developed, standards play important roles. In
fact, standards have been defined from a specific technology, such as T1, to packet formats,
such as an IP packet. Standardization allows different vendors to develop products that can
talk to each other so that customers can choose products from multiple vendors; this helps
bring the price down. Furthermore, vendors look for innovative ways to implement specific
standards to reduce their costs and be competitive with other vendors, who are offering sim-
ilar products.

There are two types of standards: de jure and de facto. De jure standards are arrived at
through consensus by national or international standards bodies; for example, ITU-T and
IETF. De facto standards are usually the result of an effort by one or more vendors to stan-
dardize a technology by forming a consortium. Sometimes, an early effort for de facto stan-
dards eventually transitions to de jure standards. There are many standards bodies that ad-
dress issues related to networking and networking technologies. We briefly discuss some of
them below.

1.12.1 International Telecommunication Union

ITU (http://www.itu.int/) plays the role of standardizing international telecommunications;
it is a United Nations specialized agency. One of the key sections of ITU is known as ITU
Telecommunication Standardization Sector (ITU-T). ITU-T brings both the public and private
sectors together in an international forum. ITU-T is in charge of standardization of the in-
ternational telephone numbering system, such as E.164 addressing. It also defines signaling
protocol standards, and so on. Standards generated by ITU-T are called Recommendations.

You will see in the bibliography at the end of the book a number of ITU-T recommenda-
tions that we have referenced.

C H A P T E R 1 Networking and Network Routing: An Introduction 25

1.12.2 Internet Engineering Task Force

IETF (http://www.ietf.org/), as its web site says, “is a large, open international community
of network designers, operators, vendors, and researchers concerned with the evolution of
the Internet architecture and the smooth operation of the Internet. It is open to any interested
individual.” The IETF is structured around working groups, which then are grouped into
areas. Areas have Area Directors (ADs). The ADs are members of the Internet Engineering
Steering Group (IESG).

Standards generated by IETF are published as Requests for Comments (RFCs). This name
stuck since its original use. The intent was to request for comments from the networking com-
munity; over time, it has become the avenue for IETF to publish standards. It may be noted
that IETF also publishes informational documents as RFCs. Thus, each RFC is marked with
a category such as standards track or informational. RFCs are available online from many
web sites, for example, http://www.rfc-editor.org/. In the bibliography, we have referenced
many routing-related RFCs.

In relation to IETF, there are several associated bodies. For example, the Internet Ad-
visory Board (IAB) is chartered as a committee of IETF; it is also an advisory body of the
Internet Society (ISOC). IAB handles architectural oversight of IETF activities, Internet Stan-
dards Process oversight and appeal. The IAB is also responsible for the management of the
IETF protocol parameter registries.

Another important organization, the Internet Corporation for Assigned Names and
Numbers (ICANN) (http://www.icann.org/), is an internationally organized, nonprofit cor-
poration that now has responsibility for IP address space allocation, protocol identifier as-
signment, generic and country code top-level domain name system management, and root
server system management functions. These services were originally performed by the In-
ternet Assigned Numbers Authority (IANA) (http://www.iana.org/) and other entities.
ICANN now performs the IANA function. Any new protocol parameter values identified
by the IETF in a standard must be coordinated with the IANA to avoid any ambiguity.

1.12.3 MFA Forum

The MPLS and Frame Relay Alliance (MFA) Forum (http://www.mfaforum.org/) is an inter-
national, industry-wide forum consisting primarily of telecommunications and networking
companies. It is focused on the creation of specifications on how to build and deliver MPLS,
Frame Relay and ATM networks, and services. MFA also handles interoperability testing of
different vendors’ products.

1.13 Last Two Bits
In this section, we present two topics. The first, TLV, is a concept used in many protocols. The
second topic is the protocol analyzer.

1.13.1 Type-Length-Value

An important concept used in protocol messages is Type-Length-Value (TLV). This concept
is used in headers as well as the body of a packet, and by different layers of a networking

26 1.14 Summary

architecture. For simplicity, consider that the IP header includes 32-bit IP addresses, one for
the source and the other for the destination. First, for each receiving end to interpret properly,
the source and the destination address must be listed in the same order in the header. Second,
such information has a well-defined structure: it is of a certain type (IP address, in this case),
it is of certain length (32 bits in this case), and it contains a value (the actual IP address). When
such information is well-structured within a packet header and because of the well-known
nature of such information, it is not often necessary to explicitly indicate the type and the
length; just the allocation of the 32-bit space for an IP address in the header suffices. That is,
for well-structured information that has a well-defined position in a packet header, the type
and the length can be implicit.

In many instances, the length may vary, or the type is preferred to be left open for future
extensions of a protocol. To do that, the type and the length need to be explicitly declared
along with the value—this notion is what is known as TLV. As you go through this book, you
will see many examples of how the TLV notion is used. Briefly, when the type and the length
are to be explicit, then the length for each of these must be clearly defined, so that the value
can be allowed to be of variable length. For example, a byte may be assigned to indicate the
type (so that up to 256 different types can be defined), followed by two bytes for the length
(to indicate through its 16 bits the length of value, that is counted in bytes), such that the
value field can be up to 65,536 (=216) bytes. Because of the well-defined structure of TLV,
the information content can be processed and another TLV can follow. Furthermore, a nested
notion of TLV is also possible where the “V” part may include one or more TLV encoded sets
of data.

1.13.2 Network Protocol Analyzer

Packet formats for networking protocols are described in standards documents by respective
standards bodies. Many details about what a protocol can do lie in the header of a packet.
Yet, just by looking at a packet format and reading a standards document, it is still difficult
to grasp. Network protocol analyzers are used to capture packets from live networks. By
studying headers captured through such analyzers, it is often easier to understand a packet
header, and more important, a protocol.

In this book, we have presented sample headers (or relevant parts of headers) associated
with a few protocols to illustrate them. Sample header captures for many routing protocols
are available from the website of public-domain network protocol analyzers such as WIRE-
SHARK [743]. Additionally, packet headers of both request-and-response messages of a pro-
tocol can be studied from such captures—this is sometimes very helpful in understanding
a protocol. Sample captures using WIRESHARK for many protocols are found at [744]. We
strongly recommend studying sample captures from this site or similar sites for helping you
to understand protocols better.

1.14 Summary
In this introductory chapter, we have presented a brief overview of networking, and the scope
and goal of network routing. We have also presented architectural aspects of communication
networks that are useful in network routing.

C H A P T E R 1 Networking and Network Routing: An Introduction 27

All of these components have a history and a set of issues to address. The state of network
routing today is the result of theoretical progress, technological advances, and operational
experience. It is also impacted by economic and policy issues. From which angle should these
interconnected facets of network routing be viewed? In an email to the authors, Ibrahim Matta
wrote:

“To me, it would be invaluable to highlight concepts and techniques in routing that sur-
vived the various instances in different networks; for example, the concepts of scalability-
performance tradeoff (scalability techniques include area hierarchy, virtual paths, periodic
updates . . .), routing information propagation vs. forwarding, etc.”

The rest of the book will explore each aspect of network routing, with a nod toward the
historical part, due respect for the scalability-performance tradeoff, and lessons learned from
operational experience.

Further Lookup
Early works in the development of ARPANET have been instrumental in understanding to-
day’s computer communication network. ARPANET design decisions are discussed in [464].
Cerf and Kahn’s seminal paper [112] discusses the TCP/IP protocol communication. The de-
sign philosophy of the Internet is discussed, for example, in [143]. A comprehensive discus-
sion on architecture can be found in [142].

A comprehensive summary of the telecommunication network can be found in Bell Sys-
tem’s Engineering and Operations handbook, last published in 1984 [596]. While this book is
almost a quarter century old and out of print, it still serves as a good resource book on basic
telecommunication networking.

Naming, addressing, and routing are interrelated topics for a communication network. In
1978, Shoch [639] wrote “The name of a resource indicates what we seek, an address indicates
where it is, a route tells how to get there.” Shoch’s original work has a lot to do with how
we think about naming, addressing, and routing in the Internet, even today. Certainly we
can no longer say that an address is where it is. Also, the naming and addressing are now
blurry. For additional discussions on naming, addressing, and routing, see [285], [366], [497],
[618].

Finally, the focus of this book, as the title says, is network routing. You may consult books
such as [152], [386], [562], [668], [683], to improve your understanding of computer network-
ing in general; in fact, it might be handy to have one of them with you as you read through
this book. If you are interested in understanding in depth the OSI architecture and protocols
that were developed for OSI, you may consult books such as [567], [684]. For a comprehen-
sive discussion of protocols developed by IETF for the Internet, you may consult [211]. For a
summary of technology-specific standards, see [560].

Exercises
1.1 Review questions:

(a) Given the IP address of a host and the netmask, explain how the network address
is determined.

28 1.14 Exercises

(b) Identify the key differences between the differentiated services architecture and the
integrated services architecture.

(c) What is TLV?

1.2 Consider IP address 10.22.8.92 that is given to be part of a /14 address block. Determine
the IP prefix it belongs to in the CIDR notation.

1.3 Consider IP address 10.21.5.90 that is given to be part of a /17 address block. Determine
the IP prefix it belongs to in the CIDR notation.

1.4 From the TCP packet format, you will notice that it does not have a field that indicates
the length of a TCP packet. How can you determine the TCP payload length, i.e., the
length of the data carried in a TCP packet?

1.5 Why is it necessary to reserve some addresses from an address space rather than making
all of them available?

1.6 Consider an IPv4 packet going through a router.

(a) Determine which fields in the header are minimally changed before the packet is
forwarded.

(b) Which fields are also possibly changed at a router?

1.7 Are there any fields from the header of an IPv4 packet that are no longer maintained in
the header of an IPv6 packet?

1.8 Investigate why the header fields in an IPv6 packet are significantly different than the
header fields in an IPv4 packet.

1.9 Visit the IETF web-site (http://www.ietf.org/), and identify routing related working
groups. Familiarize yourself with the type of routing protocols issues currently being
addressed by these working groups.

1.10 Find out about other standards bodies, such as Institute of Electrical and Electronics En-
gineers (IEEE), American National Standards Institute (ANSI), Optical Internetworking
Forum (OIF), especially regarding networking standards they are actively involved in.

This page intentionally left blank

2
Routing
Algorithms:
Shortest Path and
Widest Path
“If everybody minded their own business,” the Duchess said in a hoarse
growl, “the world would go round a deal faster than it does.”

Lewis Carroll in Alice in Wonderland

Reading Guideline

Shortest path algorithms are applicable to IP networks and widest path algorithms
are useful for telephone network dynamic call routing and quality-of-service-based
routing. If you are primarily interested in learning about routing in IP networks, you
may read material on shortest path routing algorithms, and then come back to read
about widest path algorithms later. If you are interested in understanding routing
in a voice over IP (VoIP) environment or a Multiprotocol Label Switching (MPLS)
network, researching widest path routing is also recommended.

C H A P T E R 2 Routing Algorithms: Shortest Path and Widest Path 31

In this chapter, we will describe two classes of routing algorithms: shortest path routing and
widest path routing. They appear in network routing in many ways and have played crit-
ical roles in the development of routing protocols. The primary focus of this chapter is to
describe how they work, without discussing how they are used by a specific communication
network, or in the context of routing protocols. These aspects will be addressed throughout
this book.

2.1 Background
In general, a communication network is made up of nodes and links. Depending on the type
of the network, nodes have different names. For example, in an IP network, a node is called
a router while in the telephone network a node is either an end (central) office or a toll switch.
In an optical network, a node is an optical or electro-optical switch. A link connects two nodes;
a link connecting two routers in an IP network is sometimes called an IP trunk or simply
an IP link, while the end of a link outgoing from a router is called an interface. A link in
a telephone network is called a trunkgroup, or an intermachine trunk (IMT), and sometimes
simply a trunk.

We first briefly discuss a few general terms. A communication network carries traffic
where traffic flows from a start node to an end node; typically, we refer to the start node as the
source node (where traffic originates) and the end node as the destination node. Consider now
the network shown in Figure 2.1. Suppose that we have traffic that enters node 1 destined for
node 6; in this case, node 1 is the source node and node 6 is the destination node. We may
also have traffic from node 2 to node 5; for this case, the source node will be node 2 and the
destination node will be node 5; and so on.

An important requirement of a communication network is to flow or route traffic from
a source node to a destination node. To do that we need to determine a route, which is a
path from the source node to the destination node. A route can certainly be set up manually;
such a route is known as a static route. In general, however, it is desirable to use a routing
algorithm to determine a route. The goal of a routing algorithm is in general dictated by the
requirement of the communication network and the service it provides as well as any addi-
tional or specific goals a service provider wants to impose on itself (so that it can provide a

F I G U R E 2.1 A six-node network (the entry shown next to a link is the cost of the link).

32 2.1 Background

better service compared to another provider). While goals can be different for different types
of communication networks, they can usually be classified into two broad categories: user-
oriented and network-oriented. User-oriented means that a network needs to provide good
service to each user so that traffic can move from the source to the destination quickly for this
user. However, this should not be for a specific user at the expense of other users between
other source–destination nodes in the network. Thus, a network’s goal (“network-oriented”)
generally is to address how to provide an efficient and fair routing so that most users receive
good and acceptable service, instead of providing the “best” service to a specific user. Such
a view is partly required because there are a finite amount of resources in a network, e.g.,
network capacity.

We next consider two very important algorithms that have profound impact on data net-
works, in particular on Internet routing. These two algorithms, known as the Bellman–Ford
algorithm and Dijkstra’s algorithm, can be classified as falling under user-oriented in terms of
the above broad categories. They are both called shortest path routing algorithms, i.e., an al-
gorithm where the goal is to find the shortest path from a source node to a destination node.
A simple way to understand a shortest path is from road networks where shortest can be de-
fined in terms of distance, for example, as in what is the shortest distance between two cities,
which consists of the link distance between appropriate intermediate places between the end
cities. However, it is possible that notions other than the usual distance-based measure may
be applicable as well, for instance, time taken to travel between two cities. In other words, an
equally interesting question concerns the shortest route between two cities in terms of time.
This means that the notion of distance need not always be in terms of physical distance; it can
be in other measures such as time.

Instead of worrying about the unit of measurement, it is better to have an algorithm that
works independent of the measuring unit and considers a generic measure for distance for
each link in a network. In communication networks, a generic term to refer to a distance
measure without assigning any measure units is called cost, link cost, distance cost, or link
metric. Consider again Figure 2.1. We have assigned a value with each link, e.g., link 4-6 has
the value 15; we will say that the link cost, or distance cost, or link metric of link 4-6 is 15.
No measuring units are used; for example, in road networks, it could be in miles, kilometers,
or minutes. By simple inspection, it is not hard to see that the shortest path between nodes 1
and 6 is the path 1-4-3-6 with a total minimum cost of 3. It may be noted that the shortest
path in this case did not include the link 4-6, although from the viewpoint of the number of
nodes visited, it would look like the path 1-4-6 is the shortest path between nodes 1 and 6. In
fact, this would be the case if the link cost was measured in terms of nodes visited, or hops. In
other words, if the number of hops is important for measuring distance for a certain network,
we can then think about the network in Figure 2.1 by considering the link cost for each link to
be 1 instead of the number shown on each link in the figure. Regardless, having an algorithm
that works without needing to worry about how cost is assigned to each link is helpful; this
is where the Bellman–Ford and Dijkstra’s algorithms both fit in.

At this point, it is important to point out that in computing the shortest path, the ad-
ditive property is generally used for constructing the overall distance of a path by adding
a cost of a link to the cost of the next link along a path until all links for the path are
considered, as we have illustrated above. Thus, we will first start with this property for
shortest path routing in describing the Bellman–Ford and Dijkstra’s algorithms, and their

C H A P T E R 2 Routing Algorithms: Shortest Path and Widest Path 33

variants. You will see later that it is possible to define distance cost between two nodes
in terms of nonadditive concave properties to determine the widest path (for example, re-
fer to Section 2.7, 2.8, 10.9.2, 17.3, or 19.2.2). To avoid confusion, algorithms that use a
non-additive concave property will be generally referred to as widest path routing algo-
rithms.

We conclude this section by discussing the relation between a network and a graph. A net-
work can be expressed as a graph by mapping each node to a unique vertex in the graph
where links between network nodes are represented by edges connecting the corresponding
vertices. Each edge can carry one or more weights; such weights may depict cost, delay, band-
width, and so on. Figure 2.1 depicts a network consisting of a graph of six nodes and ten links
where each link is assigned a link cost/weight.

2.2 Bellman–Ford Algorithm and the Distance Vector Approach
The Bellman–Ford algorithm uses a simple idea to compute the shortest path between two
nodes in a centralized fashion. In a distributed environment, a distance vector approach is
taken to compute shortest paths. In this section, we will discuss both the centralized and the
distributed approaches.

2.2.1 Centralized View: Bellman–Ford Algorithm

To discuss the centralized version of the Bellman–Ford algorithm, we will use two generic
nodes, labeled as node i and node j, in a network of N nodes. They may be directly connected
as a link such as link 4-6 with end nodes 4 and 6 (see Figure 2.1). As can be seen from Fig-
ure 2.1, many nodes are not directly connected, for example, nodes 1 and 6; in this case, to
find the distance between these two nodes, we need to resort to using other nodes and links.
This brings us to an important point; we may have the notion of cost between two nodes,
irrespective of whether they are directly connected or not. Thus, we introduce two important
notations:

dij = Link cost between nodes i and j

Dij = Cost of the computed minimum cost path from node i to node j.

Since we are dealing with different algorithms, we will use overbars, underscores, and
hats in our notations to help distinguish the computation for different classes of algorithms.
For example, overbars are used for all distance computation related to the Bellman–Ford
algorithm and its variants. Note that these and other notations used throughout this chapter
are summarized later in Table 2.5.

If two nodes are directly connected, then the link cost dij takes a finite value. Consider
again Figure 2.1. Here, nodes 4 and 6 are directly connected with link cost 15; thus, we can
write d46 = 15. On the other hand, nodes 1 and 6 are not directly connected; thus, d16 = ∞.
What then is the difference between dij and the minimum cost Dij? From nodes 4 to 6, we see
that the minimum cost is actually 2, which takes path 4-3-6; that is, D46 = 2 while d46 = 15.
For nodes 1 and 6, we find that D16 = 3 while d16 = ∞. As can be seen, a minimum cost
path can be obtained between two nodes in a network regardless of whether they are directly

34 2.2 Bellman–Ford Algorithm and the Distance Vector Approach

F I G U R E 2.2 Centralized Bellman–Ford Algorithm (solid line denotes a direct link;
dashed line denotes distance).

connected or not, as long as one of the end nodes is not completely isolated from the rest of
the network.

The question now is how to compute the minimum cost between two nodes in a network.
This is where shortest path algorithms come in. To discuss such an algorithm, it is clear from
the six-node example that we also need to rely on intermediate nodes. For that, consider
a generic node k in the network that is directly connected to either of the end nodes; we
assume that k is directly connected to the destination node j, meaning dkj has a finite value.
The following equations, known as Bellman’s equations, must be satisfied by the shortest
path from node i to node j:

Dii = 0, for all i, (2.2.1a)

Dij = min
k�=j

{
Dik + dkj

}
, for i �= j. (2.2.1b)

Simply put, Eq. (2.2.1b) states that for a pair of nodes i and j, the minimum cost is de-
pendent on knowing the minimum cost from i to k and the direct link cost dkj for link k-j.
A visual is shown in Figure 2.2. Note that there can be multiple nodes k that can be directly
connected to the end node j (say they are marked k, k2, and so on; note that k = i is not ruled
out either); thus, we need to consider all such ks to ensure that we can compute the minimum
cost. It is important to note that technically, a node k that is not directly connected to j is also
considered; since for such k, we have dkj = ∞, the resulting minimum computation is not
impacted. On close examination, note that Eq. (2.2.1b) assumes that we know the minimum
cost, Dik, from node i to k first somehow! Thus, in an actual algorithmic operation, a slight
variation of Eq. (2.2.1b) is used where the minimum cost is accounted for by iterating through
the number of hops. Specifically, we define the term for the minimum cost in terms of number

C H A P T E R 2 Routing Algorithms: Shortest Path and Widest Path 35

of hops h as follows:

D
(h)

ij = cost of the minimum cost path from node i to node j when up to h
number of hops are considered.

The Bellman–Ford algorithm that iterates in terms of number of hops is given in Algo-
rithm 2.1. Note the use of (h) in the superscript in Eq. (2.2.2c); while the expression on the
right side is up to h hops, with the consideration of one more hop, the expression on the left
hand side is now given in h + 1 hops.

A L G O R I T H M 2.1 Bellman–Ford centralized algorithm.
Initialize for nodes i and j in the network:

D
(0)

ii = 0, for all i; D
(0)

ij = ∞, for i �= j. (2.2.2a)

For h = 0 to N − 1 do

D
(h+1)

ii = 0, for all i (2.2.2b)

D
(h+1)

ij = min
k�=j

{
D

(h)

ik + dkj

}
, for i �= j. (2.2.2c)

For the six-node network (Figure 2.1), the Bellman–Ford algorithm is illustrated in Ta-
ble 2.1. A nice way to understand the hop-iterated Bellman–Ford approach is to visualize
through an example. Consider finding the shortest path from node 1 to node 6 as the num-
ber of hops increases. When h = 1, it means considering a direct link path between 1 and 6;
since there is none, D(1)

16 = ∞. With h = 2, the path 1-4-6 is the only one possible since this
is a two-link path, i.e., it uses two hops, consisting of the links 1-4 and 4-6; in this case, the
hop-iterated minimum cost is 16 (= D(2)

16). At h = 3, we can write the Bellman–Ford step as
follows (shown only for k for which dk6 < ∞) since there are three possible paths that need
to be considered:

k = 3: D
(2)

13 + d36 = 2 + 1 = 3

k = 5: D
(2)

15 + d56 = 3 + 1 = 4

k = 4: D
(2)

14 + d46 = 1 + 15 = 16.

In this case, we pick the first one since the minimum cost is 3, i.e., D
(3)

16 = 3 with the short-
est path 1-4-3-6. It is important to note that the Bellman–Ford algorithm computes only the
minimum cost; it does not track the actual shortest path. We have included the shortest path
in Table 2.1 for ease of understanding how the algorithm works. For many networking en-
vironments, it is not necessary to know the entire path; just knowing the next node k for
which the cost is minimum is sufficient—this can be easily tracked with the min operation in
Eq. (2.2.2c).

36 2.2 Bellman–Ford Algorithm and the Distance Vector Approach

TA B L E 2.1 Minimum cost from node 1 to other nodes using Algorithm 2.1.

h D
(h)

12 Path D
(h)

13 Path D
(h)

14 Path D
(h)

15 Path D
(h)

16 Path

0 ∞ – ∞ – ∞ – ∞ – ∞ –
1 1 1-2 ∞ – 1 1-4 ∞ – ∞ –
2 1 1-2 2 1-4-3 1 1-4 3 1-4-5 16 1-4-6
3 1 1-2 2 1-4-3 1 1-4 3 1-4-5 3 1-4-3-6
4 1 1-2 2 1-4-3 1 1-4 3 1-4-5 3 1-4-3-6
5 1 1-2 2 1-4-3 1 1-4 3 1-4-5 3 1-4-3-6

2.2.2 Distributed View: A Distance Vector Approach
In a computer network, nodes need to work in a distributed fashion in determining the short-
est paths to a destination. If we look closely at the centralized version discussed above, we
note that a source node needs to know the cost of the shortest path to all nodes immediately

prior to the destination, i.e., D
(h)

ik , so that the minimum cost to the destination can be com-
puted; this is the essence of Eq. (2.2.2c), communicated through Figure 2.2. This view of the
centralized Bellman–Ford algorithm is not directly suitable for a distributed environment. On
the other hand, we can consider an important rearrangement in the minimum cost computa-
tion to change the view. That is, what if we change the order of consideration in Eq. (2.2.1b)
and instead use the minimum cost computation step as follows:

Dij = min
k�=i

{
dik + Dkj

}
, for i �= j. (2.2.3)

Note the subtle, yet distinctive difference between Eq. (2.2.1b) and Eq. (2.2.3); here, we first
look at the outgoing link out of node i to a directly connected node k with link cost dik, and
then consider the minimum cost Dkj from k to j without knowing how k determined this
value. The list of directly connected nodes of i, i.e., neighbors of i, will be denoted by Ni.
In essence, what we are saying is that if node i finds out from its neighbor the cost of the
minimum cost path to a destination, it can then use this information to determine cost to the
destination by adding the outgoing link cost dik; this notion is known as the distance vector ap-
proach, first applied to the original ARPANET routing. With this approach, the computational
step Eq. (2.2.3) has a nice advantage in that it helps in building a computational model for a
distributed environment.

We illustrate the change of order and its advantage for the distributed environment using
Figure 2.3. Suppose that node i periodically receives the minimum cost information Dkj from
its neighboring node k for node k’s minimum cost to node j; this variation can be addressed
by introducing the dependency on the time domain, t, using Dkj(t) for node k’s cost to j—this

will then be available to node i (compare this expression to hop-based D
(h)

kj). Now, imagine
for whatever reason that node k recomputes its cost to j and makes it available to another
source node, say i2, but not to node i as shown in Figure 2.3. In other words, from the view
of the source node i, the best we can say is that the minimum cost value from node k to node
j that is available to node i is as node i has been able to receive; that is, it is more appropriate

to use the term D
i
kj(t) than Dkj(t) to indicate that the minimum cost from node k to node j, as

C H A P T E R 2 Routing Algorithms: Shortest Path and Widest Path 37

F I G U R E 2.3 Distance vector view for computing the shortest path.

available to source node i at time t; to distinguish, the cost availability to i2 can be written as

D
i2
kj(t) since i2 may receive at a different time instant t. Furthermore, in a dynamic network,

the direct link cost dik from node i to k can also change with time t, for example, to reflect
change in network load/traffic. Thus, we can generalize the direct link cost to write as dik(t)
to indicate dependency on time t. With these changes, we present the distributed distance
vector approach in Algorithm 2.2.

A L G O R I T H M 2.2 Distance vector algorithm (computed at node i).
Initialize

Dii(t) = 0; Dij(t) = ∞, (for node j that node i is aware of). (2.2.4a)

For (nodes j that node i is aware of) do

Dij(t) = min
k directly connected to i

{
dik(t) + D

i
kj(t)

}
, for j �= i. (2.2.4b)

We will now illustrate the distributed variation. For simplicity, we will assume that node

k, which is directly connected to node i, is sending D
i
kj(t) at the same instant to other directly

connected nodes like i. Furthermore, we will assume that the direct link cost does not change
with time, i.e., dik(t) does not change with time.

Our illustration will consider the same six-node example by considering computing the
shortest path cost from node 1 to node 6 (see Table 2.2). This time, we will interpret the
hop-based cost computation in terms of discrete time windows; for example, t = 0 means
what node 4 sees about cost to node 6 when zero hops away, t = 1 means what node 4 sees
about cost to node 6 when information from one hop away is received, and so on. Note that

node 1 is directly connected to node 2 and node 4. Thus, node 1 will have D
1
26(t), the cost

between node 2 and node 6 from node 2, and D
1
46(t), the cost between node 4 and node 6

from node 4.
To summarize, in the distance vector approach, a node relies on its neighboring nodes’

known cost to a destination to determine its best path. To do so, it does periodic computa-
tion as and when it receives information from its neighbor. For this entire process to work,

38 2.3 Dijkstra’s Algorithm

TA B L E 2.2 Distance vector based distributed computation at time t from node 1 to
node 6.

Time, t D
1
46(t) D

1
26(t) Computation at node 1 D16(t)

min{d14(t) + D
1
46(t),d12(t) + D

1
26(t)}

0 ∞ ∞ min{1 + ∞,1 + ∞} ∞
1 15 ∞ min{1 + 15,1 + ∞} 16
2 2 3 min{1 + 2,1 + 3} 3

the key idea is that a node k needs to distribute its cost to j given by Dkj(t) to all its di-
rectly connected neighbor i—the dependency on i and t means that each node i may get
such information potentially at a different time instant t. The difference between this idea
and the centralized Bellman–Ford algorithm is subtle in that the order of computation along
with the link considered in computation leads to different views to computing the shortest
path.

2.3 Dijkstra’s Algorithm
Dijkstra’s algorithm is another well-known shortest path routing algorithm. The basic idea
behind Dijkstra’s algorithm is quite different from the Bellman–Ford algorithm or the dis-
tance vector approach. It works on the notion of a candidate neighboring node set as well as
the source’s own computation to identify the shortest path to a destination. Another interest-
ing property about Dijkstra’s algorithm is that it computes shortest paths to all destinations
from a source, instead of just for a specific pair of source and destination nodes at a time—
which is very useful, especially in a communication network, since a node wants to compute
the shortest path to all destinations.

2.3.1 Centralized Approach

Consider a generic node i in a network of N nodes from where we want to compute
shortest paths to all other nodes in the network. The list of N nodes will be denoted by
N = {1,2, . . . ,N}. A generic destination node will be denoted by j (j �= i). We will use the
following two terms:

dij = link cost between node i and node j

Dij = cost of the minimum cost path between node i and node j.

Note that to avoid confusing this with the computation related to the Bellman–Ford al-
gorithm or the distance vector approach, we will be using underscores with uppercase D, as
in Dij, for the cost of the path between nodes i and j in Dijkstra’s algorithm.

Dijkstra’s algorithm divides the list N of nodes into two lists: it starts with permanent
list S , which represents nodes already considered, and tentative list S ′, for nodes not consid-
ered yet. As the algorithm progresses, list S expands with new nodes included while list S ′
shrinks when nodes newly included in S are deleted from this list; the algorithm stops when

C H A P T E R 2 Routing Algorithms: Shortest Path and Widest Path 39

A L G O R I T H M 2.3 Dijkstra’s shortest path first algorithm (centralized approach).
1. Start with source node i in the permanent list of nodes considered, i.e., S = {i}; all the rest

of the nodes are put in the tentative list labeled as S ′. Initialize

Dij = dij, for all j ∈ S ′.

2. Identify a neighboring node (intermediary) k not in the current list S with the minimum
cost path from node i, i.e., find k ∈ S ′ such that Dik = minm∈S ′ Dim.

Add k to the permanent list S , i.e., S = S ∪ {k},
Drop k from the tentative list S ′, i.e., S ′ = S ′\{k}.
If S ′ is empty, stop.

3. Consider the list of neighboring nodes, Nk, of the intermediary k (but do not consider
nodes already in S) to check for improvement in the minimum cost path, i.e.,
for j ∈ Nk ∩ S ′

Dij = min{Dij,Dik + dkj}. (2.3.1)

Go to Step 2.

list S ′ becomes empty. Initially, we have S = {i} and S ′ = N \{i} (i.e., all nodes in N except
node i).

The core of the algorithm has two parts: (1) how to expand the list S , and (2) how to
compute the shortest path to nodes that are neighbors of nodes of list S (but nodes not in this
list yet). List S is expanded at each iteration by considering a neighboring node k of node
i with the least cost path from node i. At each iteration, the algorithm then considers the
neighboring nodes of k, which are not already in S, to see if the minimum cost changes from
the last iteration.

We will illustrate Dijkstra’s algorithm using the network given in Figure 2.1. Suppose
that node 1 wants to find shortest paths to all other nodes in the network. Then, initially,
S = {1}, and S ′ = {2,3,4,5,6}, and the shortest paths to all nodes that are direct neighbors of
node 1 can be readily found while for the rest, the cost remains at ∞, i.e.,

D12 = 1,D14 = 1, D13 = D15 = D16 = ∞.

For the next iteration, we note that node 1 has two directly connected neighbors: node 2
and node 4 with d12 = 1 and d14 = 1, respectively; all the other nodes are not directly con-
nected to node 1, and thus, the “direct” cost to these nodes remains at ∞. Since both nodes 2
and 4 are neighbors with the same minimum cost, we can pick either of them to break the tie.
For our illustration, we pick node 2, and this node becomes intermediary, k. Thus, we now
have S = {1,2}, and S ′ becomes the list {3,4,5,6}. Then, we ask node 2 for cost to its direct

40 2.3 Dijkstra’s Algorithm

F I G U R E 2.4 Iterative view of Dijkstra’s algorithm.

neighbors not already in set S . We can see from Figure 2.1 that node 2’s neighbors are node 3
and node 4. Thus, we compare and compute cost from node 1 for these two nodes, and see if
there is any improvement:

D13 = min{D13,D12 + d23} = min{∞,1 + 2} = 3

D14 = min{D14,D12 + d24} = min{1,1 + 1} = 1.

Note that there is no improvement in cost to node 4; thus, we keep the original shortest
path. For node 3, we now have a shortest path, 1-2-3. For the rest of the nodes, the cost remains
at ∞. This completes this iteration. We then move to the next iteration and find that the next
intermediary is k = 4, and the process is continued as before. In Table 2.3, we summarize all
the steps until all nodes are considered in list S , and in Figure 2.4, we give a visual illustration
to how the algorithm adds a new intermediary k to list S . The centralized version of Dijkstra’s
algorithm is formally presented in Algorithm 2.3.

2.3.2 Distributed Approach

The distributed variant of Dijkstra’s algorithm is very similar to the centralized version. The
main difference is that the link cost of a link received by one node could be different from
another node since this information is disseminated in an asynchronous manner. Thus, we

C H A P T E R 2 Routing Algorithms: Shortest Path and Widest Path 41

TA B L E 2.3 Iterative steps in Dijkstra’s algorithm.

Iteration List, S D12 Path D13 Path D14 Path D15 Path D16 Path
1 {1} 1 1-2 ∞ – 1 1-4 ∞ – ∞ –
2 {1,2} 1 1-2 3 1-2-3 1 1-4 ∞ – ∞ –
3 {1,2,4} 1 1-2 2 1-4-3 1 1-4 3 1-4-5 16 1-4-6
4 {1,2,4,3} 1 1-2 2 1-4-3 1 1-4 3 1-4-5 3 1-4-3-6
5 {1,2,4,3,5} 1 1-2 2 1-4-3 1 1-4 3 1-4-5 3 1-4-3-6
6 {1,2,4,3,5,6} 1 1-2 2 1-4-3 1 1-4 3 1-4-5 3 1-4-3-6

denote the cost of link k-m as received at node i at time t by di
km(t). Similarly, the minimum

distance from i to j is time-dependent and is denoted by Dij(t).
Dijkstra’s algorithm for the distributed environment is presented in Algorithm 2.4. The

steps are similar to the centralized version. Thus, in the distributed version, it is really the
communication of the link cost information in a distributed manner that is taken into account
by the algorithm. The steps are the same as in Table 2.3—this time we can think of the iterative

A L G O R I T H M 2.4 Dijkstra’s shortest path first algorithm (a distributed ap-
proach).

1. Discover nodes in the network, N , and cost of link k-m, di
km(t), as known to node i at the

time of computation, t.

2. Start with source node i in the permanent list of nodes considered, i.e., S = {i}; all the rest
of the nodes are put in the tentative list labeled as S ′. Initialize

Dij(t) = di
ij(t), for all j ∈ S ′.

3. Identify a neighboring node (intermediary) k not in the current list S with the minimum
cost path from node i, i.e., find k ∈ S ′ such that Dik(t) = minm∈S ′ Dim(t).

Add k to the permanent list S , i.e., S = S ∪ {k},
Drop k from the tentative list S ′, i.e., S ′ = S ′\{k}.
If S ′ is empty, stop.

4. Consider neighboring nodes Nk of the intermediary k (but do not consider nodes already
in S) to check for improvement in the minimum cost path, i.e.,
for j ∈ Nk ∩ S ′

Dij(t) = min{Dij(t),Dik(t) + di
kj(t)}. (2.3.2)

Go to Step 3.

42 2.4 Comparison of the Bellman–Ford Algorithm and Dijkstra’s Algorithm

A L G O R I T H M 2.5 Dijkstra’s shortest path first algorithm (with tracking of next hop).
0 // Computation at time t
1 S = {i} // permanent list; start with source node i
2 S ′ =N \ {i} // tentative list (of the rest of the nodes)
3 for (j in S ′) do
4 if (di

ij(t) < ∞) then // if i is directly connected to j

5 Dij(t) = di
ij(t)

6 Hij = j // set i’s next hop to be j
7 else
8 Dij(t) = ∞
9 Hij = −1 // next hop not set
10 endif
11 endfor
12 while (S ′ is not empty) do // while tentative list is not empty
13 Dtemp = ∞ // find minimum cost neighbor k
14 for (m in S ′) do
15 if (Dim(t) < Dtemp) then
16 Dtemp = Dim(t)
17 k = m
18 endif
19 endfor
20 S = S ∪ {k} // add to permanent list
21 S ′ = S ′\{k} // delete from tentative list
22 for (j in Nk ∩ S ′) do
23 if (Dij(t) > Dik(t) + di

kj(t)) then // if cost improvement via k

24 Dij(t) = Dik(t) + di
kj(t)

25 Hij = Hik // next hop for destination j; inherit from k
26 endif
27 endfor
28 endwhile

steps as the increment in time in terms of learning about different links and link costs in the
network.

Determination of the next hop is important in many networking environments; next hop
refers to the next directly connected node that the source node i should go to for reach-
ing a destination j; ideally, the next hop should be on the optimal path. In Algorithm 2.5,
we present a somewhat formal version of Dijkstra’s algorithm—the purpose is to highlight
the logic conditions for the benefit of the interested reader. In this algorithm, we have also
included another identifier Hij to track the next hop from i for destination j. Finally, in
many situations, the shortest path to a specific destination j, instead of being to all destina-
tions, is sufficient to compute. This can be easily incorporated in Algorithm 2.5 by insert-
ing the following operation between line 19 and line 20: “if (k is same as destination j),
then exit the while loop;” this means that we have found the shortest path to destina-
tion j.

2.4 Comparison of the Bellman–Ford Algorithm and Dijkstra’s
Algorithm
This is a good time to do a quick comparison between Dijksta’s algorithm (Algorithm 2.3)
and the Bellman–Ford algorithm (Algorithm 2.1). First, the Bellman–Ford algorithm com-

C H A P T E R 2 Routing Algorithms: Shortest Path and Widest Path 43

putes the shortest path to one destination at a time while Dijksta’s algorithm computes the
shortest paths to all destinations (sometimes called the shortest path tree). When we compare
the minimum cost computation for each algorithm, i.e., between Eq. (2.2.1b) and Eq. (2.3.1), it
may seem that they are similar. However, there are actually very important subtle differences.
In both of them, there is an intermediary node k; in the case of the Bellman–Ford algorithm,
node k is over all nodes to find the best next hop to node j, while in the case of Dijkstra’s
algorithm, node k is an intermediary first determined and fixed, and then the shortest path
computation is done to all j, not already covered. Table 2.1 and Table 2.3 are helpful in under-
standing this difference.

Since there are various operations in an algorithm, it is helpful to know the computa-
tional complexity (see Appendix B.3) so that a comparison of two or more algorithms can be
done in terms of computational complexity using the “big-O” notation. Given N as the total
number of nodes and L as the total number of links, the computational complexity of the
Bellman–Ford algorithm is O(L N). The complexity of Dijkstra’s algorithm is O(N2) but can
be improved to O(L + N log N) using a good data structure. Note that if a network is fully
connected, the number of bidirectional links is N(N − 1)/2; thus, for a fully connected net-
work, the complexity of the Bellman–Ford algorithm is O(N3) while for Dijkstra’s algorithm,
it is O(N2).

Two key routing protocol concepts, the distance vector protocol concept and the link-
state protocol concept, have fairly direct relation to the Bellman–Ford algorithm (or the
distance vector-based shortest path computation approach) and Dijkstra’s algorithm, re-
spectively. These two key routing protocol concepts will be discussed later in Sections 3.3
and 3.4.

2.5 Shortest Path Computation with Candidate Path Caching
We will next deviate somewhat from the Bellman–Ford algorithm and Dijkstra’s algorithm.
There are certain networking environments where a list of possible paths is known or deter-
mined ahead of time; such a path list will be referred to as the candidate path list. Path caching
refers to storing of a candidate path list at a node ahead of time. If through a distributed pro-
tocol mechanism the link cost is periodically updated, then the shortest path computation at
a node becomes very simple when the candidate path list is already known.

Consider again the six-node network shown in Figure 2.1. Suppose that node 1 somehow
knows that there are four paths available to node 6 as follows: 1-2-3-6, 1-4-3-6, 1-4-5-6, and
1-4-6; they are marked in Figure 2.5.

Using the link cost, we can then compute path cost for each path as shown in the table
in Figure 2.5. Now, if we look for the least cost path, we will find that path 1-4-3-6 is the
most preferred path due to its lowest end-to-end cost. Suppose now that in the next time
period, the link cost for link 4-3 changes from 1 to 5. If we know the list of candidate paths,
we can then recompute the path cost and find that path 1-4-3-6 is no longer the least cost;
instead, both 1-2-3-6 and 1-4-5-6 are now the shortest paths—either can be chosen based on a
tie-breaker rule.

44 2.5 Shortest Path Computation with Candidate Path Caching

Path Cost
1-2-3-6 d12 + d23 + d36 = 4
1-4-3-6 d14 + d43 + d36 = 3
1-4-5-6 d14 + d45 + d56 = 4
1-4-6 d14 + d46 = 16

F I G U R E 2.5 Paths identified from node 1 to node 6, along with associated path cost.

We will now write the shortest path calculation in the presence of path caching in a
generic way, considering that this calculation is done at time t. We consider a candidate path
p between nodes i and node j, and its cost at time t as

D̂ij/p(t) =
∑

link l-m in path p

di
lm(t), (2.5.1)

where di
lm(t) is the cost of link l-m at time t as known to node i, and the summation is over

all such links that are part of path p. The list of candidate paths for the pair i and j will be
denoted by Pij; the best path will be identified by p̂. The procedure to compute the shortest
path is given in Algorithm 2.6.

A L G O R I T H M 2.6 Shortest path computation when candidate paths are known.

At source node i, a list of candidate paths Pij to destination node j is available,
and link cost, di

lm(t), of link l-m at time t is known:
// Initialize the least cost:
D̂ij(t) = ∞
// Consider each candidate path in the list
for (p in Pij) do

D̂ij/p(t) = 0
for (link l-m in path p) do // add up cost of links for this path
D̂ij/p(t) = D̂ij/p(t) + di

lm(t) (2.5.2)
end for
if (D̂ij/p(t) < D̂ij(t)) then // if this is cheaper, note it

D̂ij(t) = D̂ij/p(t)
p̂ = p

end if
end do

It is important to note that the candidate path list is not required to include all possible
paths between node i and j, only a sublist of paths that are, for some reason, preferable to
consider for a particular networking environment. The way to think about this is to think of a

C H A P T E R 2 Routing Algorithms: Shortest Path and Widest Path 45

road network in a city where to go from your home to school/office, you are likely to use only
a selected set of paths. In a communication network, this approach of computing the shortest
path involves a trade-off between storage and time complexity. That is, by storing multiple
candidate paths ahead of time, the actual computation is simple when new link costs are
received. The set of candidate paths can be determined using, for example, the K-shortest
path algorithm (see Algorithm 2.10); since the interest in the case of path caching is obtain a
good working set, any reasonable link cost can be assumed; for example, we can set all link
costs to 1 (known also as hop count) and use Algorithm 2.10 to obtain a set of K candidate
paths.

It is worth noting that such a candidate path-based approach can potentially miss a good
path. For example, if a node is configured to keep only three candidate paths, it can poten-
tially miss including 1-4-3-6; thus, in the first cycle of computation before the link cost d43 for
link 4-3 was updated, this path would not be chosen at all.

2.6 Widest Path Computation with Candidate Path Caching
So far, we have assumed that the shortest path is determined based on the additive cost prop-
erty. There are many networking environments in which the additive cost property is not
applicable; for example, dynamic call routing in the voice telephone network (refer to Chap-
ter 10) and quality of service based routing (refer to Chapter 17). Thus, determining paths
when the cost is nonadditive is also an important problem in network routing; an important
class among the nonadditive cost properties is concave cost property that leads to widest path
routing. We will first start with the case in which path caching is used, so that it is easy to
transition and compare where and how the nonadditive concave case is different from the
additive case described in the previous section.

Suppose a network link has a certain bandwidth available, sometimes referred to as resid-
ual capacity; to avoid any confusion, we will denote the available bandwidth by blm for link
l-m, as opposed to dlm for the additive case. Note that blm = 0 then means that the link is not
feasible since there is no bandwidth; we can also set blm = 0 if there is no link between nodes
l and m (compare this with dlm = ∞ for the additive case). We start with a simple illustra-
tion. Consider a path between node 1 and node 2 consisting of three links: the first link has
10 units of bandwidth available, the second link has 5 units of bandwidth available, and the
third link has 7 units of bandwidth available. Now, if we say the cost of this path is additive,
i.e., 22(= 10 + 5 + 7), it is unlikely to make any sense. There is another way to think about it.
Suppose that we have new requests coming in, each requiring a unit of dedicated bandwidth
for a certain duration. What is the maximum number of requests this path can handle? It is
easy to see that this path would be able to handle a maximum of five additional requests
simultaneously since if it were more than five, the link in the middle in this case would not
be able to handle more than five requests. That is, we arrive at the availability of the path
by doing min{10,5,7} = 5. Thus the path “cost” is 5; certainly, this is a strange definition of
a path cost; it is easier to see this as the width of a path (see Figure 2.6). Formally, similar to
Eq. (2.5.1), for all links l-m that make up a path p, we can write the width of the path as

B̂ij/p(t) = min
link l-m in path p

{
bi

lm(t)
}

. (2.6.1)

46 2.6 Widest Path Computation with Candidate Path Caching

F I G U R E 2.6 Width of a path—a visual depiction.

Regardless, the important point to note is that this path cost is computed using a non-
additive cost property, in this case the minimum function. It may be noted that the minimum
function is not the only nonadditive cost property possible for defining cost of a path; there
are certainly other possible measures, such as the nonadditive multiplicative property given
by Eq. (B.8.1) discussed in Appendix B.8.

Now consider a list of candidate paths; how do we define the most preferable path? One
way to define it is to find the path with the largest amount of available bandwidth. This is
actually easy to do once the path “cost” for each path is determined since we can then take
the maximum of all such paths. Consider the topology shown in Figure 2.7 with available
bandwidth on each link as marked. Now consider three possible paths between node 1 and
node 5:

Path Cost
1-2-3-5 min{b12,b23,b35} = 10
1-4-3-5 min{b14,b43,b35} = 15
1-4-5 min{b14,b45} = 20

A L G O R I T H M 2.7 Widest path computation (non-additive, concave) when candidate
paths are known.

At source node i, a list of candidate paths Pij to destination node j is available,
and link bandwidth, bi

lm(t), of link l-m at time t is known:
// Initialize the least bandwidth:
B̂ij(t) = 0
for p in Pij do

B̂ij/p(t) = ∞
for (link l-m in path p) do // find bandwidth of the bottleneck link

B̂ij/p(t) = min
{

B̂ij/p(t),bi
lm(t)

}
(2.6.2)

end for
if (B̂ij/p(t) > B̂ij(t)) then // if this has more bandwidth, note it

B̂ij(t) = B̂ij/p(t)
p̂ = p

end if
end do

C H A P T E R 2 Routing Algorithms: Shortest Path and Widest Path 47

It is easy to see that the third path, 1-4-5, has the most bandwidth and is thus the preferred
path. This means that we need to do a maximum over all paths in the case of the nonadditive
property to find the widest path as opposed to the minimum over all paths when additive cost
property is used. A widest path so selected is sometimes referred to as the maximal residual
capacity path. The procedure is presented in detail in Algorithm 2.7. It is helpful to contrast
this algorithm with its counterpart, Algorithm 2.6, where the additive cost property was used;
for example, you can compare Eq. (2.6.2) with Eq. (2.5.2), especially the logical “if” condition
statements.

F I G U R E 2.7 Network example for widest path routing.

Remark 2.1. Relation between shortest path routing and widest path routing.
While the cost of a path is determined differently, by using the additive property in

Eq. (2.5.1), and by the nonadditive property in Eq. (2.6.1), there is a direct relation be-
tween shortest and widest. If we imagine the path cost to be the negative of the quan-
tity given in Eq. (2.6.1), then widest translates to being the minimum of this negative
cost. Thus, the widest path is the cheapest path in the sense of this negative representa-
tion. In other words, the widest path can be thought of as the nonadditive (concave) shortest
path. �

2.7 Widest Path Algorithm
We are coming back full circle to no path caching for widest path routing algorithms. We
present two approaches: first we show an extension of Dijkstra’s shortest path first algorithm;
next, we extend the Bellman–Ford algorithm.

2.7.1 Dijkstra-Based Approach
When there is no path caching, the algorithm is very similar to Dijkstra’s algorithm that is
adapted from [731], and is listed in Algorithm 2.8.

Consider the network topology shown in Figure 2.7 where each link is marked with an
available bandwidth. The algorithmic steps with Algorithm 2.8 are detailed in Table 2.4 for

48 2.7 Widest Path Algorithm

A L G O R I T H M 2.8 Widest path algorithm, computed at node i (Dijkstra-based).

1. Discover list of nodes in the network, N and available bandwidth of link k-m, bi
km(t), as

known to node i at the time of computation, t.

2. Initially, consider only source node i in the set of nodes considered, i.e., S = {i}; mark the
set with all the rest of the nodes as S ′. Initialize

Bij(t) = bi
ij(t).

3. Identify a neighboring node (intermediary) k not in the current list S with the maximum
bandwidth from node i, i.e., find k ∈ S ′ such that Bik(t) = maxm∈S ′ Bim(t)

Add k to the list S , i.e., S = S ∪ {k}
Drop k from S ′, i.e., S ′ = S ′\{k}.
If S ′ is empty, stop.

4. Consider nodes in S ′ to update maximum bandwidth path, i.e.,
for j ∈ S ′

Bij(t) = max{Bij(t),min{Bik,bi
kj(t)}}. (2.7.1)

Go to Step 3.

TA B L E 2.4 Iterative steps based on Algorithm 2.8.

Iteration List, S B12 Path B13 Path B14 Path B15 Path
1 {1} 30 1-2 0 – 20 1-4 0 –
2 {1,2} 30 1-2 10 1-2-3 20 1-4 0 –
3 {1,2,4} 30 1-2 15 1-4-3 20 1-4 20 1-4-5
4 {1,2,4,3} 30 1-2 15 1-4-3 20 1-4 20 1-4-5
5 {1,2,4,3,5} 30 1-2 15 1-4-3 20 1-4 20 1-4-5

the distributed time-dependent case from the point of view of node 1, i.e., suppose that node 1
wants to find the path with most available bandwidth to all other nodes in the network. Then,
initially, S = {1} and S ′ = {2,3,4,5}, and the widest paths to all nodes that are direct neighbors
of node 1 can be readily found while for the rest, the “cost” remains at 0, i.e.,

B12 = 30, B14 = 20, B13 = B15 = 0.

Since maxj∈S ′ B1j = 30 is attained for j = 2, we add node 2 to list S . Thus, we have the updated
lists: S = {1,2} and S ′ = {3,4,5}.

C H A P T E R 2 Routing Algorithms: Shortest Path and Widest Path 49

Now for j not in S , we update the available bandwidth to see if it is better than going via
node 2, as follows:

B13 = max{B13,min{B12,b23}} = max{0,min{30,10}} = 10 // use 1-2-3

B14 = max{B14,min{B12,b24}} = max{20,min{30,10}} = 20 // stay on 1-2

B15 = max{B15,min{B12,b25}} = max{0,min{30,0}} = 0 // no change

Now we are in the second pass of the algorithm. This time, maxj∈S ′ B1j =
max{B13,B14,B15} = 20. This is attained for j = 4. Thus, S becomes {1,2,4}. Updating the
available bandwidth to check via node 4 will be as follows:

B13 = max{B13,min{B14,b43}} = max{10,min{20,15}} = 15 // use 1-4-3

B15 = max{B15,min{B14,b45}} = max{0,min{20,40}} = 20 // use 1-4-5

This time, j = 3 will be included in S . Thus, S becomes {1,2,4,3}. There is no further
improvement in the final pass of the algorithm.

2.7.2 Bellman–Ford-Based Approach
The widest path algorithm that uses the Bellman–Ford-based approach is strikingly similar to
the Bellman–Ford shortest path routing algorithm given in Algorithm 2.2. For completeness,
this is listed in Algorithm 2.9.

A L G O R I T H M 2.9 Widest path algorithm, computed at node i (Bellman–Ford-based).
Initialize

Bii(t) = 0; Bij(t) = 0, (for node j that node i is aware of). (2.7.2a)

For (nodes j that node i is aware of) do

Bij(t) = max
k directly connected to i

min
{

bik(t),B
i
kj(t)

}
, for j �= i. (2.7.2b)

2.8 k-Shortest Paths Algorithm
We now go back to the class of shortest path algorithms to consider an additional case. In
many networking situations, it is desirable to determine the second shortest path, the third
shortest path, and so on, up to the k-th shortest path between a source and a destination.
Algorithms used for determining paths beyond just the shortest paths are generally referred
to as k-shortest paths algorithms.

A simple way to generate additional paths would be to start with, say Dijkstra’s shortest
path first algorithm, to determine the shortest path; then, by temporarily deleting each link on
the shortest path one at a time, we can consider the reduced graph where we can apply again

50 2.8 k-Shortest Paths Algorithm

A L G O R I T H M 2.10 k-shortest paths algorithm.
1. Initialize k := 1.

2. Find the shortest path P between source (i) and destination (j) in graph G, using Dijkstra’s
Algorithm.

Add P to permanent list K, i.e., K := {P}.
If K = 1, stop.

Add P to set X and pair (P, i) to set S , i.e., X := {P} and S := {(P, i)}.
3. Remove P from X , i.e., X := X \{P}.
4. Find the unique pair (P,w) ∈ S , and corresponding deviation node w associated with P .

5. For each node v, except j, on subpath of P from w to j (subP (w, j)):

Construct graph G′ by removing the following from graph G:

(a) All the vertices on subpath of P from i to v, except v.

(b) All the links incident on these deleted vertices.

(c) Links outgoing from v toward j for each P ′ ∈K∪{P}, such that subP (i,v) = subP ′(i,v).

Find the shortest path Q′ from v to j in graph G′ using Dijkstra’s Algorithm.

Concatenate subpath of P from i to v and path Q′, i.e., Q= subP (i,v) ⊕Q′.

Add Q to X and pair (Q,v) to S , i.e., X := X ∪ {Q} and S := S ∪ {(Q,v)}.
6. Find the shortest path P among the paths in X and add P to K, i.e., K := K ∪P .

7. Increment k by 1.

8. If k < K and X is not empty, go to Step 4, else stop.

Dijkstra’s shortest path first algorithm. This will then give us paths that are longer than the
shortest path. By identifying the cost of each of these paths, we can sort them in order of suc-
cessively longer paths. For example, consider finding k-shortest paths from node 1 to node 6
in Figure 2.1. Here, the shortest path is 1-4-3-6 with path cost 3. Through this procedure, we
can find longer paths such as 1-2-3-6 (path cost 4), 1-4-5-6 (path cost 4), and 1-4-3-5-6 (path
cost 4). It is easy to see that paths so determined may have one or more links in common.

Suppose that we want to find k-shortest link disjoint paths. In this case, we need to tem-
porarily delete all the links on the shortest path and run Dijkstra’s algorithm again on the
reduced graph—this will then give the next shortest link disjoint path; we can continue this
process until we find k-shortest link disjoint paths. Sometimes it might not be possible to find
two or more link disjoint paths, if the reduced graph is isolated into more than one network.
Consider again Figure 2.1. Here, the shortest path from node 1 to node 6 is 1-4-3-6 with path
cost 3. If we temporarily delete the links in this path, we find the next link-disjoint shortest

C H A P T E R 2 Routing Algorithms: Shortest Path and Widest Path 51

path to be 1-2-4-5-6 of path cost 5. If we now delete links in this path, node 1 becomes isolated
in the newly obtained reduced graph.

In Algorithm 2.10, we present a k-shortest path algorithm that is based on an idea, orig-
inally outlined in [756]; see also [454], [549] for additional references for this method. In this
algorithm, a fairly complicated process is applied beyond finding the shortest path. For ex-
ample, it uses an auxiliary list S in order to track/determine longer paths. This is meant
for die-hard readers, though. A description with each step is included in Algorithm 2.10 to
convey the basic idea behind this algorithm.

Finally, recall that we discussed widest path computations with candidate path caching;
such candidate paths to be cached can also be determined using a k-shortest paths algorithm.
Typically, in such situations, the link cost for all links can be set to 1 because usually hop-
length-based k-shortest paths are sufficient to determine candidate paths to cache.

2.9 Summary
We first start with notations. In discussing different shortest path algorithms, we have used a
set of notations. While the notations might look confusing at first, there is some structure to
the notations used here.

First, for a link i-k connecting node i and node k, the link cost for the additive case has
been denoted by dik, while the link cost for the nonadditive case was denoted by bik. From
a computational results point of view, we needed to track the minimum path cost between
node i and j for various algorithms that can be distinctly identifiable—they can be classified
as follows:

Algorithm Indicator Additive Nonadditive (Widest)

Bellman–Ford “overbar” Dij Bij

Dijkstra “underscore” Dij Bij

Path caching “hat” D̂ij B̂ij

A superscript is used when we discuss information as known to a node, especially node
i where the algorithmic computation is viewed from in the distributed environment. Thus,

we have used D
i
kj to denote the minimum additive path cost from node k to node j as known

to node i. Finally, the temporal aspect is incorporated by making an expression a function

of time t. Thus, we use D
i
kj(t) to indicate dependency on time t. While there are a few more

notations, such as path list, these notations basically capture the essence and distinction of
various algorithms. In any case, all notations are summarized in Table 2.5.

We have presented several shortest path and widest path routing algorithms that are
useful in communication network routing. We started with the centralized version of the
Bellman–Ford algorithm and then presented the distance vector approach, first used in the
ARPANET distributed environment. Similarly, we presented Dikstra’s algorithm, both the
centralized and its distributed variant. We then considered routing algorithms when a non
additive cost property (based on minimum function) is applicable; such algorithms can be
classified as widest path routing when nonadditive cost property is concave. It may be noted
that there may be several widest paths between two nodes, each with a different number of

52 2.9 Summary

TA B L E 2.5 Summary of notations used in this chapter

Notation Remark
i Source node
j Destination node
k Intermediate node
N List of nodes in a network
S Permanent list of nodes in the Dijkstra’s algorithm (considered

so far in the calculation)
S ′ Tentative list of nodes in the Dijkstra’s algorithm (yet to be

considered in calculation)
Nk List of neighboring nodes of node k
dij Link cost between nodes i and j
dij(t) Link cost between nodes i and j at time t
Dij Cost of the minimum cost path from node i to node j (Bellman–

Ford)
D

(h)

ij Cost of the minimum cost path from node i to node j when h hops
have been considered

Dij(t) Cost of the minimum cost path from node i to node j at time t

di
kj(t) Link cost between nodes k and j at time t as

known to node i
D

i
kj(t) Cost of the minimum cost path from node k to node j at time t as

known to node i
Dij Cost of the minimum cost path from node i to node j (Dijkstra)
D̂ij/p(t) Cost of path p from node i to node j (path caching)
Bij(t) Nonadditive cost (width) of the best path from node i to node j at

time t (Dijkstra)
B̂ij(t) Nonadditive cost (width) of the best path from node i to node j at

time t (path caching)
Pij The list of cached path at node i for destination j
Hij Next hop for source i for destination j

hops. It is sometimes useful to identify the shortest-widest path; if “shortest” is meant in terms
of the number of hops, then it can be more appropriately referred to as the least-hop-widest
path, i.e., the widest path that uses the least number of hops between two nodes. Another
consideration is the determination of the widest-shortest path, i.e., a feasible path with the
minimum cost, for example, in terms of hop count; if there are several such paths, one with
the maximum bandwidth is used. These will be discussed later in Chapter 17.

Note that in this chapter, we have presented our discussion using origin and destination
nodes. When a network structure is somewhat complicated, that is, when we have a backbone
network that is the carrier of traffic between access networks, we also use the term ingress
node to refer to a entry point in the core network and the term egress node to refer to an exit
point in the core network. It is important to keep this in mind.

C H A P T E R 2 Routing Algorithms: Shortest Path and Widest Path 53

Finally, it is worth noting that the Bellman–Ford algorithm can operate with negative link
cost while Dijkstra’s algorithm requires the link costs to be nonnegative; on the other hand,
Dijkstra’s algorithm can be modified to work with negative link cost as well. Communication
network routing protocols such as Open Shortest Path First (OSPF) and Intermediate System-
to-Intermediate System (IS-IS) (refer to Chapter 6) that are based on the link state protocol
concept do not allow negative weights. Thus, for all practical purposes, negative link cost
rarely plays a role in communication networking protocols. Thus, in this book, we primarily
consider the case when link costs are nonnegative. Certainly, from a graph theory point of
view, it is important to know whether a particular algorithm works with negative link cost;
interested readers may consult books such as [624].

Further Lookup
The Bellman–Ford shortest path algorithm for computing the shortest path in a centralized
manner was proposed by Ford [231] in 1956. Bellman [68] described a version independently
in 1958, by using a system of equations that has become known as Bellman’s equations. Moore
also independently presented an algorithm in 1957 that was published in 1959 [499]. Thus,
what is often known as the Belllman–Ford algorithm, especially in communications network-
ing, is also known as the Bellman–Ford–Moore algorithm in many circles.

The distance vector approach for the shortest path computation in a distributed environ-
ment is subtly as well as uniquely different from the centralized Bellman–Ford approach. The
distance vector approach is also known as the original or “old” ARPANET routing algorithm,
yet is sometimes attributed as the “distributed Bellman–Ford” algorithm. For a discussion on
how these different naming and attributions came to be known, refer to [725]. For a compre-
hensive summary of ARPANET design decisions in the early years, see [464].

In 1959, Dijkstra presented his shortest path first algorithm for a centralized environment
[178]. The “new” ARPANET routing took the distributed view of Dijkstra’s algorithm along
with considerations for numerous practical issues in a distributed environment; for example,
see [368], [462], [463], [599].

Widest path routing with at most two links for a path has been known since the advent
of dynamic call routing in telephone networks in the early 1980s. In this context, it is often
known as maximum residual capacity routing or maximum available trunk routing; for example,
see [680]. The widest path algorithm based on Dijkstra’s framework given in Algorithm 2.8
and the distance vector framework given in Algorithm 2.9 are adapted from [731]. Widest
path routing and its variations are applicable in a quality-of-service routing framework.

The k-shortest paths algorithm and its many variants have been studied by numerous
researchers; see [202] for an extensive bibliography.

Exercises
2.1. Review questions:

(a) In what ways, are the Bellman–Ford algorithm (Algorithm 2.1) and the distance
vector algorithm (Algorithm 2.2) different?

(b) What are the main differences between shortest path routing and widest path rout-
ing?

54 2.9 Exercises

F I G U R E 2.8 A 5-node example.

(c) What is the difference between minimum hop routing and shortest path routing?

2.2. For the network example presented in Figure 2.1, compute the shortest paths from
node 2 to all other nodes using the centralized Bellman–Ford algorithm (Algorithm 2.1).

2.3. For the network example presented in Figure 2.1, use Dijkstra’s algorithm (Algo-
rithm 2.3) to compute the shortest paths from node 6 to the other nodes. Next, consider
that link 3-6 fails; recompute the shortest paths from node 6 to the other nodes.

2.4. Consider the network topology in Figure 2.1. Assume now that the links have the follow-
ing bandwidth: 1-2: 1, 1-4: 1, 2-3: 2, 2-4: 2, 3-4: 1, 3-5: 1, 3-6: 4-5: 2; 4-6: 3; 5-6: 2. Determine
the widest paths from node 6 to all the other nodes.

2.5. Consider the network topology in Figure 2.8. The number listed next to the links are link
costs.

(a) Determine the shortest path from node 1 to node 5 using Algorithm 2.2 and also
using Algorithm 2.3.

(b) Now suppose that the link cost for link 1-4 is changed to 45. Determine again the
shortest path from node 1 to node 5 using Algorithm 2.2 and also using Algo-
rithm 2.3. Also, generate an iterative view similar to Figure 2.4.

2.6. Consider the network topology in Figure 2.8. The number listed next to the links are
assumed to be bandwidth. Determine the widest path from node 2 to node 5 using Al-
gorithm 2.8.

2.7. Identify networking environments where path caching might be helpful that require
either the shortest path or the widest path computation.

2.8. Develop a specialized k-shortest paths algorithm, given that a path cannot consist of
more than two links.

2.9. Implement the k-shortest paths algorithm described in Algorithm 2.10.

This page intentionally left blank

3
Routing Protocols:
Framework and
Principles
There is nothing so annoying as to have two people talking when you’re
busy interrupting.

Mark Twain

Reading Guideline

This chapter is organized by topics for each routing protocol family. You may choose
to read each one separately while we do encourage reading both Section 3.1 and
Section 3.2 before doing so. For each routing protocol family, we include a general
discussion followed by a descriptive discussion. Specific details of a protocol are
listed as templates; thus, if you are interested in a general understanding, you may
skip the templates. However, you can study the specifics of a protocol by directly
going into its details in the template format. Certainly, you can get the most out
of a protocol by reading both the descriptive discussion as well as studying the
specifics given in the template format. Notations used in this chapter are closely
related to routing algorithms described in Chapter 2; in particular, you will be able to
see the connection between a protocol message and the mathematical representation
of information.

C H A P T E R 3 Routing Protocols: Framework and Principles 57

In this chapter, we consider three classes of routing protocols: distance vector, link state, and
path vector. We present the basic working of these classes of protocols along with how special
cases are handled, and types of problems a protocol might face in a distributed operating
environment. We also show how routing protocols are related to routing algorithms.

3.1 Routing Protocol, Routing Algorithm, and Routing Table
In Chapter 2, we presented two important classes of shortest path routing algorithms, the
Bellman–Ford algorithm and Dijkstra’s algorithm, including their distributed variants. The
role of a routing protocol arises only when we consider a distributed environment. From the
discussion of the distributed algorithms, we can see that for a node to compute the shortest
paths, certain information must be available at that node; the node needs to somehow get this
information from its neighbor or use the neighbor as a conduit to obtain information from
other nodes. At the same time, the node might need to let its neighbors know the information
it has. A major role of a routing protocol is to facilitate this exchange of information in a
standardized manner, sometimes also coupled with routing computation.

From the discussion of the distributed variant of both the Bellman–Ford algorithm and
Dijkstra’s algorithm, we can see that what a node needs to know is different from one algo-
rithm to another to compute the shortest paths. Thus, when we say standardization, we mean
the standardization of information that is applicable within an algorithmic framework where
all nodes conform to this framework. For example, all nodes that conform to computing the
shortest paths using the Bellman–Ford algorithm would need the same type of information;
thus, the exchange of information needs to be standardized around this requirement. Simi-
larly, this is the case for Dijkstra’s algorithm.

When the exchange of information is coupled to a particular algorithm such as the
Bellman–Ford algorithm, it can give the impression that a routing protocol is closely tied to
a specific shortest path route computation algorithm. While the concept of routing protocols
has direct connection to routing algorithms such as the Bellman–Ford algorithm or Dijkstra’s
algorithm, it is also important to distinguish and decouple the basic routing protocol concept
from a specific routing algorithm. Fundamentally, a routing protocol addresses what type of
information a node may need to receive from its neighbors and also may need to pass infor-
mation to its neighbor. In other words, a routing protocol need not necessary worry about
how a node uses this information to compute the shortest paths (or multiple paths), how
often it computes the shortest paths.

At the same time, historically, there has been a close tie between a shortest path algorithm
and a routing protocol, for example, between the Bellman–Ford algorithm and a distance
vector routing protocol, and between Dijkstra’s algorithm and a link state routing protocol.
That is, it is hard to sometimes distinguish and often this leads to confusion. Regardless, it
is best to think about a routing protocol separately from a routing computation algorithm.
As you go through the book, you will find out that there are link state routing protocols that
do not use Dijkstra’s shortest path first algorithm. Similarly, there are distance vector proto-
cols that do not use just the distributed Bellman–Ford algorithm for determining the shortest
paths; additional functionalities are needed. On the other hand, when a specific standardiza-
tion or implementation of a particular protocol concept is considered, an algorithm is often
closely tied to the protocol; for example, consider the Routing Information Protocol (RIP) (see

58 3.1 Routing Protocol, Routing Algorithm, and Routing Table

Section 5.3), which is based on a distance vector protocol concept and uses the distance vector
(“distributed Bellman–Ford”) algorithm for computing the shortest paths; similarly, consider
the Open Shortest Path First (OSPF) protocol (refer to Section 6.2), which is based on the link
state routing protocol concept and uses Dijkstra’s shortest path first routing algorithm. How-
ever, a networking environment enabled to use MPLS or GMPLS (refer to Chapter 18) also
uses OSPF/IS-IS as routing protocols, yet use of Dijkstra’s shortest path first algorithm is not
required. Consider another example, real-time network routing (RTNR), used for dynamic
call routing in the telephone network, RTNR uses a link state protocol while the actual routing
computation is quite different from Dijkstra’s algorithm (refer to Section 10.6). Finally, there
are routing environments where no information exchange is done in order to select/compute
routes; while this may seem odd, there are adaptive algorithms that work (and work well)
without the paradigm of information exchange (see Section 10.5).

ROUTING INFORMATION: PUSH OR PULL

We stated earlier that a routing protocol addresses what type of information a node needs
to receive from its neighbors and to pass information to its neighbors. This brings up an-
other important issue that can best be stated as information push and information pull. Push
refers to a node pushing information to other nodes (usually on a periodic basis), while pull
refers to a node contacting/requesting other nodes to obtain information needed usually for
routing computation, but information can be for other network controls as well (refer to Sec-
tion 11.6). Some routing protocols use the push mode while others use the pull mode, and
yet others use a hybrid push-pull mode. For various routing protocols discussed in this book,
we will identify which mode is used. A routing protocol is also required to handle special
cases, such as when a link or a node fails; in such cases, special messages might need to be
exchanged.

MODES OF COMMUNICATING ROUTING INFORMATION

We next discuss how the routing information exchange is accomplished in a particular net-
work. Essentially, there are two communication modes for exchanging routing information:
in-band and out-of-band. While these two terms are used in a variety of ways in communica-
tion networking, we first clarify the use of these terms as they relate to this book. Specifically,
in-band, in our context, means that the communication network that carries user traffic also
carries routing information exchange; that is, there are mechanisms that allow carrying these
two types of traffic in the same communication network. For example, an in-band mechanism
is used in the Internet since eventually all are IP packets; how this is done in specific instances
of routing protocols has been already discussed briefly in Chapter 1 and will be discussed
later in Part II of this book. Out-of-band, as we use here, means that a completely separate
network or mechanism is used for exchanging routing information from the communication
network where the user traffic is carried. For example, for the circuit-switched telephone net-
work, routing information exchanges are accomplished through an out-of-band mechanism.
A simple analogy might be helpful here. Consider the road network in a large metropolitan
area; here user traffic is motorists driving various automobiles. To indicate congestion, out-
of-band mechanisms are used such as a helicopter to monitor from the sky, reporting to radio
stations, which in turn use their radio frequency to transmit to motorists; thus, motorists, on
listening to a radio station, can make a decision to choose an alternate path. That is, from a

C H A P T E R 3 Routing Protocols: Framework and Principles 59

networking point of view, the control plane and data plane are completely separate in the
out-of-band mode.

ROUTING TABLE AND FORWARDING TABLE

Finally, there is another important component that goes with any routing environment.
It is called the routing table. A routing table at a node provides a lookup entry for each
destination by identifying an outgoing link/interface or a path. A routing table can be
set up with an entry that remains static forever—this is the case when static routing is
used. When dynamic routing is used, and based on exchange of information, a node per-
forms route computation to determine paths to each destination and then creates/updates
a routing table; this can be on a periodic basis or due to an extraordinary event such
as a link failure. Thus, it is important to decouple the need for the routing table from
whether the network employs static or dynamic routing—a routing table is needed in
a communication network whether the mechanism is accomplished statically or dynami-
cally. Typically, two forms of routing table entries are possible: (1) next hop–based or hop-
by-hop routing based, and (2) explicit route based or source routing based. In the case of
next hop–based, a node stores the pointer only to the next node(s) or hop(s) for desti-
nations it is aware of, while in the case of explicit route based, a node stores the en-
tire path to a destination; the second one is sometimes referred to as route pinning. The
originating node then tags the pinned route to a packet for traversal through the nodes
listed in the pinned route; however, this does not rule out the possibility of a node down-
stream replacing a pinned route with its own source route to destination. Next hop–
based routing toward a destination is commonly used in the Internet, although source
routing is an option possible within an intradomain routing protocol such as OSPF or
IS-IS. Routing in the telephone network with progressive call control is also based on
next hop routing, while routing is source-based if originating call control is used (see
Section 10.1).

There is another terminology, forwarding table, often used in place of a routing table. While
at the conceptual level there is no difference between these two terms, there are important dif-
ferences when it comes to implementation at a routing device such as a router; this will be
discussed later in Section 14.1.4. In this chapter, we will consistently use the term routing
table.

3.2 Routing Information Representation and Protocol Messages
Several routing information entities will be covered starting in the next section. For consis-
tency, we will follow notations that we have used earlier in Chapter 2. For example, dik refers
to the distance cost (link-cost) on the direct link between node i and node k. Dkj refers to
the computed cost between node k and j, whether on a direct link or through other nodes

in the network, and D
i
kj refers to the cost between node k and j, as known to node i. Recall

from Chapter 2 that an overbar over uppercase D, as in D, is used in the the Bellman–Ford
algorithm and the distance vector algorithm approach; for consistency, it will be used here
in the discussion of a distance vector routing protocol. A lowercase d with subscript, such
as dik, is used for link-cost from node i to node k in a link state protocol. For a path found
from node i to node j, the immediate next hop of node i will be denoted by Hij. The list of

60 3.3 Distance Vector Routing Protocol

neighbors of node i will be denoted by Ni. All protocols will be discussed from the point of view of
node i.

There are two types of link representation, bidirectional links and unidirectional links;
their usage depends on a routing protocol. A bidirectional link between nodes 1 and 2 will be
denoted by 1-2, while the unidirectional link from node 1 to node 2 will be denoted by 1→2.
Similarly, a bidirectional path between node 1 and node 3 where a link directly connects
node 1 and node 2 and another connects node 2 and node 3 will be denoted by 1-2-3; its
unidirectional counterpart from node 1 to node 3 will be denoted by 1→2→3. Finally, we will
use another notation for a path when referring to nodes that are in series without referring
to links connecting any two nodes. For example, path (1,2,3) connects node 1 to node 2 to
node 3 without saying anything about the links in between; in other words, this path notation
does not rule out the possibility that there may be multiple links between between node 1
and 2, or node 2 and 3. In general, we denote a list of paths between nodes i and j by Pij, and
between nodes k and j as known to node i by P i

kj; in the second case, we typically assume
that k is a neighbor of node i.

We will use a box around texts to indicate a protocol message such as this one:
Protocol Message . A protocol message will be partitioned by “|” between two different message

entities such as Message-1 | Message-2 | A general delimiter of information pieces within a
message will be marked by “,” while “;” will be used for special markers of separate infor-
mation within a message, for example, 2, 3; 3, 2, 1 | 3, 1; 1 .

These are the main representations to keep in mind. We will introduce other representa-
tions as we progress through the chapter.

3.3 Distance Vector Routing Protocol
In some ways, a distance vector protocol is the oldest routing protocol in practice. Thus, much
has been learned from and about distance vector protocols. In the following, we will start
with the basic concept of a distance vector protocol, followed by issues faced and how they
are addressed, leading to identifying factors in the design of recent distance vector protocols.
It is important to read the following with a general view of what a generic distance vector
protocol is and should/can be, rather than to tie in to a specific instance of a distance vector
protocol such as RIP (see Section 5.3). In other words, limitations of a specific instance of a
distance vector protocol should not be confused with limitations of the concept of a distance
vector protocol in general.

3.3.1 Conceptual Framework and Illustration

In Chapter 2, we presented the distance vector routing algorithm (see Algorithm 2.2). It tells
us that a node, say node i, needs to know the distance or cost from its neighbors to a desti-
nation, say node j, to determine the shortest path to node j. Since node i can have multiple
neighbors, it is preferable to know the distance from all its neighbors to node j so that node i
can compare and determine the shortest path. The basic information exchange aspect about
a distance vector protocol is that a node needs the distance cost information from each of its
neighbors for all destinations; this way, it can compare and determine the shortest paths to
all destinations. This means that our discussion about a distance vector protocol is strongly

C H A P T E R 3 Routing Protocols: Framework and Principles 61

tied to the distance vector routing algorithm (Algorithm 2.2), but keep in mind that it is not
necessary to do so in general.

The main operation of a distance vector protocol needs to address dissemination and
reception of information. Thus, we start with the basic operation of a distance vector protocol
from the point of view of a node as shown in Figure 3.1. We clarify a few aspects about the
protocol description:

• The protocol does not need to know ahead of time how many nodes are in the network; in
other words, through the information received periodically that may contain a new node
information, the receiving node can update the list of destination nodes.

• Actual numbering of a node can be done through some addressing scheme outside the
protocol (for example, IP addressing with RIP).

• For each destination j (from node i), the protocol maintains/updates the next hop, to be
denoted as Hij.

• With the arrival of a distance vector message from a neighbor k, the protocol updates the
cost to a destination if the currently stored next hop for this destination is also k.

• Steps indicated are not necessarily in any specific order (except for initialization).

• There is possibly a time wait between steps and within substeps of a step.

We will now illustrate the basic working of a distance vector protocol through the six-
node network discussed earlier in Chapter 2. We reproduce the topology (along with link
cost information) in Figure 3.2 for ease of reference. Since we do not consider time-dependent
distance cost, we will ignore time parameter t, i.e., we will use dik and Dij, instead of dik(t)
and Dij(t), respectively. Recall that dik refers to the link cost on the link i-k connecting node
i to node k, while Dij refers to the cost between node i and j. Consider that node 1 wants
to compute the shortest paths to all its destinations. It needs to receive cost information
from its neighbor nodes 2 and 4. Assuming for now that node 2 knows the best information
(somehow), it is easy to see that node 2 needs to transmit the following protocol message to
node 1:

D21 = 1 D22 = 0 D23 = 2 D24 = 1 D25 = 3 D26 = 3

Note that the first subscript with D is the node generating this distance vector infor-
mation (2 in this case), while the second subscript indicates the destination for which this
distance cost is provided. Since the first subscript is common, it can be ignored as long as the
receiving node knows who it is coming from. The second subscript is the most relevant iden-
tifier that indicates the destination. Obviously, a routing protocol exchange message cannot
understand or indicate a subscript as we can do with a notation in describing the protocol!
Thus, the message format, shown above, looks more like the following where the destination
j is identified first with a node number followed by the distance cost D, which is repeated for
every j:

j = 1,D = 1 j = 2,D = 0 j = 3,D = 2 j = 4,D = 1 j = 5,D = 3 j = 6,D = 3

62 3.3 Distance Vector Routing Protocol

Initialize:
– Node is configured with a unique node ID, say i
– Node i’s distance vector to itself is set to zero, i.e., Dii = 0
– Initialize module that determines the link cost to its directly connected neighbor (either manually or based

on measurements), i.e., dik for all neighbors k, and set the routing table entry to indicate the next hop for k
as k itself, i.e., Hik = k

Transmit mode:
– Transmit the most recently computed cost (distance) for all known destination nodes to all its neighbors k

on a periodic basis
Receive mode:
– Node i receives a distance vector from its neighbor k

a. If the distance vector contains a new destination node j′, then a new node entry in the routing table is
created and set Dij′ = ∞
b. The distance vector D

i
kj for each destination node j received from neighbor k at node i is temporarily

stored
c. If the currently stored next hop for a destination j is the same as k itself, then update the distance cost for
this destination, i.e.,

If (Hij = k) then // if next hop is k

Dij = dik + D
i
kj

Endif
– Route Computation

For each destination j: // shortest path computation
For all neighbors k (or, the last received neighbor k)

Compute temp = dik + D
i
kj

If (temp < Dij) then
Dij = temp // update the new cost
Hij = k // update next hop in the routing table

Endif
Special Cases:
– If for any neighbor k, link i-k goes down, then

Set dik = ∞
If Hij = k, then Dij = ∞
Broadcast a distance vector to each neighbor

Endif
– If for any neighbor k, link i-k is up again, then

Update dik (fixed or dynamic)
Broadcast a distance vector to each neighbor

Endif

F I G U R E 3.1 Distance vector protocol (node i’s view): basic framework.

Based on the above message information, we can also see that the term distance vector then
refers to the vector of distance or direction. This is communicated through the above message
to a neighbor so that the neighbor can determine its best distance to a destination.

While it looks odd to include information about cost to node 1 itself in such a message,
this is indeed the case in the basic or naïve distance vector protocol since node 2 does not dif-
ferentiate who its neighbors are when disseminating such information. Upon receiving this
information, node 1 will add its cost to this neighbor (1 in this case) for each destination sep-
arately to compare and determine the best cost to every destination. Assuming that until this
instant, node 1 does not know the cost to any destination (except itself), it will then compare
and update the cost (see Eq. (2.2.4b) in Chapter 2) really for itself resulting in no improve-

C H A P T E R 3 Routing Protocols: Framework and Principles 63

ment; it also computes cost to all other destinations based on the information received and
creates entries in its routing table, and tracks the outgoing link identifier. Thus, the routing
table at node 1 is as given in Table 3.1.

Now compare Table 3.1 and the topology given in Figure 3.2; it is clear that for node 4
as destination, the entry is not optimal. This means that at this point, to route to node 4,
node 1 will send to node 2 hoping that node 2 knows how to get to node 4. In fact, the
routing table will stay in the above form as long as node 1 does not hear updated distance
vector information from node 4 directly (to which it is also connected). In other words, a node
actually never knows if it has the optimal cost as well as the best outgoing link identified for
each destination (i.e., it is only the network administrator who can do optimal route analysis
based on measurements). A node assumes that its neighbor is giving the correct distance
vector information all the time. Furthermore, a node may or may not know if it has the view
of the entire list of active nodes.

Now suppose that sometime after the above update, node 1 receives a distance vector
from node 4 as given below:

j = 1,D = 1 j = 2,D = 1 j = 3,D = 1 j = 4,D = 0 j = 5,D = 2 j = 6,D = 2

F I G U R E 3.2 Six-node, ten-link network example (the entry shown next to a link is the
cost of the link).

TA B L E 3.1 Routing table information at
node 1 (after receiving distance vector from
node 2).

Destination Node Cost Outgoing Link

1 0 local
2 1 1-2
3 3 1-2
4 2 1-2
5 4 1-2
6 4 1-2

64 3.3 Distance Vector Routing Protocol

Upon receiving this information, node 1 performs an updated computation as shown in Ta-
ble 3.2. You may note that this computation, marked as action-6 in Figure 3.1, is the same
as Eq. (2.2.4b) in Algorithm 2.2; here, d14(t) = 1, and node 1 receives D4j(t), j = 1,2, . . . ,6 as
the distance vector message described above. The basic difference in the computation is that
while the Bellman–Ford algorithm does not explicitly state that the outgoing link should be
tracked, a distance vector routing protocol usually tracks this information for the purpose of
creating/updating the routing table.

While it may not be apparent from the discussion so far, we learn the following lessons
in regard to how timing (and timers) influences a routing protocol (see also Figure 3.3):

• The order of information as received matters: In the example discussed so far, we started by
assuming that node 1 receives a distance vector from node 2 first before receiving a distance
vector from node 4. Had node 1 received a distance vector from node 4 first, the entire
routing table in the first round would have been different.

• How often the distance vector information is disseminated matters: Assume for the sake of ar-
gument that a distance vector is disseminated by node 2 every minute while node 4 does
it every 10 min. Clearly, this would make a difference to node 1 in terms of how quickly it
would be able to arrive at the best routing table.

• The instant when a node broadcasts the distance vector (after an event) matters: It is important to
distinguish this item from the previous item. While the previous item discusses periodicity
of the update interval, this one refers to whether a node should trigger an immediate
update after a major event such as a failure of a link connected to it.

• The instant when a routing computation is performed matters: Suppose a node receives a dis-
tance vector from a neighbor every 2 min while it performs the route computation every
3 min. Certainly, these update cycles have an impact on obtaining the best route in a timely
manner.

TA B L E 3.2 Cost and routing able updating at node 1 (after receiving distance
vector from node 4).

Destination Current New Possible Updated Cost Update Outgoing
Node Cost Cost (Update?) Link (If Any)

1 0 1 + 1 0 (No) local
2 1 1 + 1 1 (No) 1-2
3 3 1 + 1 2 (Yes) 1-4
4 2 1 + 0 1 (Yes) 1-4
5 4 1 + 2 3 (Yes) 1-4
6 4 1 + 2 3 (Yes) 1-4

C H A P T E R 3 Routing Protocols: Framework and Principles 65

F I G U R E 3.3 Time line of different activities at two different nodes.

• The instant when the routing table is updated matters: Suppose a node waits another 30 sec af-
ter performing a route computation before updating the routing table. This would impact
the flow of user data.

An important corollary of the above discussion is that time (and timers) matter when it
comes to a routing protocol, and that a routing environment encounters a transient period
during which different nodes may have different views of the network; this is the root cause
of many undesirable problems, which are discussed next. While common sense indicates
that extended gaps between events as highlighted in Figure 3.3 are probably not necessary,
it is important to understand what can happen if they do exist. This is explored in the next
section.

66 3.3 Distance Vector Routing Protocol

3.3.2 Why Timers Matter

An important issue with any routing protocol is convergence; convergence refers to the same
view arrived at by all nodes in a network from an inconsistent view, which may have resulted
due to a failure or a cost change. Depending on how often the timers are activated, the con-
vergence of a distance vector routing protocol can be delayed. We will discuss several aspects
of this. There are some undesirable behaviors we will now highlight.

SLOW CONVERGENCE

Consider again Figure 3.2, but this time only with a partial view where we consider four
nodes being activated at the same time: node 1, node 2, node 3, and node 6 (see Figure 3.4).
We assume that nodes 4 and 5 are not activated yet; thus, nodes 1, 2, 3, and 6 form a linear
network with a link connecting the adjacent nodes in the given order; also note that the link
cost is 1 for every link in this linear network except for link 2-3 which has cost 2.

Suppose that at time t = 0 sec, when all four routers come alive simultaneously, they
broadcast their presence to their neighbors, and then wait for 60 sec before doing another dis-
tance vector message. We assume that immediately after receiving a distance vector message,
a node invokes the shortest path computation step and updates the routing table—for sim-
plicity, we assume that this step takes 1 sec. We show below routing tables at various nodes
as time passes (the destination node is labeled as D-node and the outgoing link is labeled as
O-link):

Time: t= 0 sec: Nodes 1, 2, 3, and 6 are activated and the initial distance vector broadcast is sent.
Time: t= 1 sec: Routing tables at different nodes:

Node 1:

D-node Cost O-link

1 0 local
2 1 1-2

Node 2:

D-node Cost O-link

1 1 2-1
2 0 local
3 2 2-3

Node 3:

D-node Cost O-link

2 2 3-2
3 0 local
6 1 3-6

Node 6:

D-node Cost O-link

3 1 6-3
6 0 local

Time: t= 60 sec: Distance vector broadcast.
Time: t= 61 sec: Routing tables at different nodes:

Node 1:

D-node Cost O-link

1 0 local
2 1 1-2
3 3 1-2

Node 2:

D-node Cost O-link

1 1 2-1
2 0 local
3 2 2-3
6 3 2-3

Node 3:

D-node Cost O-link

1 3 3-2
2 2 3-2
3 0 local
6 1 3-6

Node 6:

D-node Cost O-link

2 3 6-3
3 1 6-3
6 0 local

Time: t= 120 sec: Distance vector broadcast.
Time: t= 121 sec: Routing tables at different nodes:

Node 1:

D-node Cost O-link

1 0 local
2 1 1-2
3 3 1-2
6 4 1-2

Node 2:

D-node Cost O-link

1 1 2-1
2 0 local
3 2 2-3
6 3 2-3

Node 3:

D-node Cost O-link

1 3 3-2
2 2 3-2
3 0 local
6 1 3-6

Node 6:

D-node Cost O-link

1 4 6-3
2 3 6-3
3 1 6-3
6 0 local

C H A P T E R 3 Routing Protocols: Framework and Principles 67

F I G U R E 3.4 A four-node linear network.

From the above sequence of tables, we see that at different point of time, different nodes
have different views of the network, including partial views. It is easy to see that all routing
tables do not converge until t = 121 sec.

ROUTING LOOPS

A major problem with a distance vector protocol is that it can cause routing loops; this refers
to a scenario in which a node’s routing table points to the next hop, which in turn points to
another hop and so on, and eventually the last node points back to the original node. In this
situation, user traffic will go in a circular manner unless some mechanism is introduced to
halt it. Looping can occur, for example, when a link fails. To illustrate, we first assume that
the routing given in Figure 3.2 has fully converged. We first list below the sequence of events
that occurs as viewed at node 2 and node 3:

time, t0 —converged state; a routing computation performed for all destinations.
time, t1 —nodes 2 and 3 update their respective routing tables (based on the result of

routing computation at time t0).
time, t2 —link 3-6 fails.
time, t3 —node 3 updates its routing table entry for destination node 6 by listing cost

as ∞.
time, t4 —node 2 sends distance vector to node 3.
time, t5 —nodes 2 and 3 both perform a routing computation for all destinations.
time, t6 —nodes 2 and 3 update their respective routing tables.

We now elaborate what is happening at some of these time instances. At time t1, the
routing table entries at node 2 and node 3 for destination node 6 are as follows:

At node 2:

Destination Node Cost Outgoing Link

6 3 2-3

At node 3:

Destination Node Cost Outgoing Link

6 1 3-6

Then, at time t3, the routing table entry at node 3 for destination node 6 becomes:

Destination Node Cost Outgoing Link

6 ∞ 3-6

At time t4, node 3 receives the following distance vector message from node 2:

j = 1,D = 1 j = 2,D = 0 j = 3,D = 3 j = 4,D = 1 j = 5,D = 3 j = 6,D = 3

68 3.3 Distance Vector Routing Protocol

In particular, note that node 3 receives node 2’s cost to destination node 6 as 3. At time t5,
both node 2 and node 3 perform a routing computation. Since node 2 has not received any
distance vector, there is no change at node 2; thus, there is no change in the routing ta-
ble entry either. For clarity, we show the routing table at node 2 for destination nodes 3
and 6:

Destination Node Cost Outgoing Link

3 2 2-3

6 3 2-3

On the other hand, for node 3 the following update occurs:

Destination Current New Possible Updated Cost Update Outgoing
Node Cost Cost (update?) Link (if any)

6 ∞ 1 + 3 4 (yes) 3-2

This results in node 3 pointing to node 2 for destination node 6. Thus, if user traffic now
arrives at node 2 destined for node 6, node 2’s routing table will send the packet on the out-
going link 2-3; on receiving this packet, node 3 looks up the routing table entry for destination
node 6, and ships the user traffic on 3-2 to node 2! Thus, these data will keep looping back
and forth between nodes 2 and node 3 forever unless the network provides a way to stop this
through some other mechanism such as a time-to-live parameter. This looping effect is also
called the bouncing effect.

COUNTING TO INFINITY

Counting to infinity is another problem faced with a distance vector protocol. Consider again
Figure 3.2 and assume that routing tables have converged at all nodes. We will now consider
the consequence of two-link failures in term of the following time line:

time, t1 —node 4 sends distance vector to node 5.
time, t2 —links 3-6 and 5-6 both fail.
time, t3 —node 5 informs node 4 (and node 3) that its cost to node 6 is ∞.

—node 3 informs node 4 (and node 5) that its cost to node 6 is ∞.
time, t4 —node 4 performs a shortest path computation.
time, t5 —node 4 receives a distance vector from node 1 indicating that its cost to

node 6 is 3 (i.e., node 1 has not learned about the failures yet).
time, t6 —node 4 performs a shortest path computation again.
time, t7 —node 4 sends its distance vector to node 5 and node 3 (and others).
time, t8 —node 3 updates their routing tables based on information from node 4.

Now, we walk through the details at each time event. At time t1, node 4 has the following
routing table:

C H A P T E R 3 Routing Protocols: Framework and Principles 69

Destination Node Cost Outgoing Link

1 1 4-1

2 1 4-2
3 1 4-3
4 0 local
5 2 4-5

6 2 4-3

and broadcasts the following distance vector:

j = 1,D = 1 j = 2,D = 1 j = 3,D = 1 j = 4,D = 0 j = 5,D = 2 j = 6,D = 2

The link failures occur at time t2; thus, node 5 sets the cost to node 6 as ∞ since link 5-6 is the
outgoing link for this destination. At time t3, node 5 broadcasts the following distance vector
to node 4 (and node 3):

j = 1,D = 3 j = 2,D = 3 j = 3,D = 1 j = 4,D = 2 j = 5,D = 0 j = 6,D = ∞

while node 3 broadcasts the following distance vector to node 4 (and node 5):

j = 1,D = 2 j = 2,D = 2 j = 3,D = 0 j = 4,D = 1 j = 5,D = 1 j = 6,D = ∞

At time t4 and after receiving the above distance vectors from node 3 and node 5, node 4
performs a shortest path computation. In particular, consider the case of destination node 6;
since node 3 reports the cost to node 6 to be ∞ and node 3 happens to be the next hop for
node 4 in regard to destination node 6, node 4 updates its cost to ∞ for destination node 6 as
required by the protocol.

At node 4, a new distance vector from node 1 is received at time t5 that reports that the
best cost to destination node 6 is 3. At time t6, node 4 performs the shortest path computation
again; for destination 6, node 4 notices that

Destination Current New Possible Updated Cost Update Outgoing
Node Cost Cost (update?) Link (if any)

6 ∞ 1 + 3 4 (Yes) 4-1

and, thus, updates the routing table entry for destination node 6. This is, in fact, the start of
the main trouble. Next at time t7, node 4 send the following distance vector message to node 3
and node 5:

j = 1,D = 1 j = 2,D = 1 j = 3,D = 3 j = 4,D = 0 j = 5,D = 2 j = 6,D = 4

On receiving this message, node 3 notices node 6 is reachable via node 4 and the cost to be 4;
thus, node 3 updates its cost to 5(= 1 + 4). It then sends the distance vector to node 4 with
this cost. Thus, it will continue on in the following cycle (assuming cost to be x, to start with):

70 3.3 Distance Vector Routing Protocol

• Node 4 sends a distance vector to node 3 with cost for destination node 6 as x

• Node 3 computes the distance to node 6 as x + 1

• Node 3 sends a distance vector to node 4 with cost for destination node 6 as x + 1

• Node 4 updates its cost to node 6 as x + 2 = (1 + x + 1)

• Node 4 sends a distance vector to node 3 with cost for destination node 6 as x + 2

until at node 4, the cost to node 6 is more than 15 (which is the direct cost to node 6 on link
4-6). Incidentally, all this time, node 4 knew about the direct link with cost 15 but ignored it,
mistakenly assuming that there is a path through node 3 that is cheaper.

As you can see, due to periodic update, it will take several rounds before recognizing
about the high cost path. This phenomenon is known as counting to infinity.

3.3.3 Solutions
In this section, we discuss a set of solutions to the issues discussed above.

SPLIT HORIZON AND SPLIT HORIZON WITH POISONED REVERSE

We have seen from previous illustrations that when a node transmits a distance vector up-
date, it sends information about all nodes of which it is aware; it also includes information
about itself as well as about the node to which this distance vector is sent. We also saw that
this actually led to providing a false indication when a failure occurs, thus causing behavior
such as the count to infinity. Split horizon is a technique that can help speed up convergence
and can also solve the count to infinity problem in some instances. The basic idea of split
horizon is quite simple: when transmitting a distance vector update on an outgoing link,
send updates only for nodes for which this link is not on its routing table as the outgoing link.

To illustrate split horizon, consider node 4 in Figure 3.2. When fully converged, it will
have the following values about cost to various destinations and the entry of the outgoing
link in the routing table:

Destination Node Cost Outgoing Link

1 1 4-1

2 1 4-2
3 1 4-3
4 0 local
5 2 4-5
6 2 4-3

The basic distance vector protocol tells us to advertise the following:

j = 1,D = 1 j = 2,D = 1 j = 3,D = 1 j = 4,D = 0 j = 5,D = 2 j = 6,D = 2

With split horizon, node 4 will send the following distance vector to node 3

j = 1,D = 1 j = 2,D = 1 j = 4,D = 0 j = 5,D = 2

C H A P T E R 3 Routing Protocols: Framework and Principles 71

since nodes 3 and 6 have link 4-3 as the outgoing link for these nodes. However, node 4 will
send the following distance vector to node 5 instead:

j = 1,D = 1 j = 2,D = 1 j = 3,D = 1 j = 4,D = 0 j = 6,D = 2

From the above example, we note that a node may generate different distance vector updates
depending on the outgoing link.

It can also be argued that no news is not necessarily always good news. There is, however,
another variation of split horizon, called the split horizon with poisoned reverse, where news
about all nodes is provided. In this case, the ones accessible on the outgoing link are marked
as ∞. Thus, node 4 will send the following distance vector to node 3:

j = 1,D = 1 j = 2,D = 1 j = 3,D = ∞ j = 4,D = 0 j = 5,D = 2 j = 6,D = ∞

This essentially says that it is good to transmit bad news as well. Split horizon with poisoned re-
verse is more aggressive than split horizon and can stop looping between two adjacent nodes.
Consider Figure 3.2 again. Suppose that node 4 incorrectly believes that it can reach node 1
via node 2—this can happen, for example, due to corrupted information. For the case of split
horizon, node 3 would not indicate that it cannot reach node 1. On the other hand, for the
case of split horizon with poisoned inverse, node 3 would indicate to node 4 that node 1 is
unreachable—this then lets node 4 correct its misconception that there is a path to node 1 via
node 2, and can avoid looping back and forth.

TIMER ADJUSTMENT (JITTER)

In discussing various examples, we have deliberately injected a time gap between different
events in a distance vector protocol. Certainly, common sense would tell us that such time
gaps are not necessary; moreover, such gaps can cause unnecessary problems during a tran-
sient period. Thus, the following are good steps to take in a distance vector protocol:

• Once the shortest path is computed by a node, it immediately updates the routing table—
there is no reason to inject a time gap.

• When an outgoing link is found to be down, the routing table is immediately updated
with an infinite cost for the destinations that would have used this link as the outgoing
link, and a distance vector is generated to other outgoing links to communicate explicitly
about nodes that are not reachable.

• As part of normal operations, it is a good idea to periodically send a distance vector to
neighbors, even if the cost has not changed. This helps the neighbor to recognize/realize
that its neighbor is not down.

• If a routing environment uses an unreliable delivery mechanism for dissemination of the
distance vector information, then, besides the periodic update timer (“Keep-alive” timer),
an additional timer called a holddown timer is also used. Typically, the holddown timer has
a value several times the value of the periodic update timer. This way, even if a periodic
update is sent and a neighboring node does not hear it, for example, due to packet corrup-
tion or packet loss, the node would not immediately assume that the node is unreachable;

72 3.3 Distance Vector Routing Protocol

it would instead wait till the holddown timer expires before updating the routing table
(for more discussion, see Section 5.3 about Routing Information Protocol (RIP)—a proto-
col that uses unreliable delivery mechanism for routing information).

• If a routing environment uses a reliable delivery mechanism for dissemination of the dis-
tance vector information, the holddown timer does not appear to be necessary (in addition
to the periodic update timer). However, the holddown timer can still play a critical role,
for example, when a node’s CPU is busy and cannot generate the periodic update mes-
sages within its timer window. Instead of assuming that it did not receive the periodic
update because its neighbor is down, it can wait till the holddown timer expires. Thus, for
such situations, the holddown timer helps to avoid unnecessary destabilization.

• The count to infinity situation was aggravated partly because one of the critical links had
a much higher cost than the other links. Thus, in a routing environment running a dis-
tance vector protocol, it is often recommended that link costs be of comparable value and
certainly should not be different in orders of magnitude.

• From the illustrations, it is clear that while the periodic update is a good idea, certain up-
dates should be communicated as soon as possible; for example, when a node is activated,
when a link goes down, or when a link comes up. In general, if the cost of a link changes
significantly, it is a good idea to generate a distance vector update immediately, often re-
ferred to as the triggered update. This would then lead to faster convergence; furthermore,
the count to infinity problem can be minimized (although it cannot be completely ruled
out).

• If the cost on a link changes and then it changes back again very quickly, this would re-
sult in two triggered updates that can lead to other nodes updating their routing tables
and then reverting back to the old tables. This type of oscillatory behavior is not desir-
able. Thus, to avoid such frequent oscillations, it is often recommended that there be a
minimum time interval (holddown timer) between two consecutive updates. This certainly
stops it from updating new information as quickly as possible and dampens convergence;
but, at the same time, this also helps in stopping the spread of bad information too quickly.

• There is another effect possible with a distance vector protocol. Nodes are set up to send
distance vector updates on a periodic basis, as mentioned earlier. Now, consider a node
that is directly connected to 10 other nodes. Then, this node will be sending a distance
vector on 10 outgoing links and at the same time it will be receiving from all of them. This
situation can lead to congestion at the node including CPU overload. Thus, it is preferable
that periodic updates from different nodes in a network be asynchronous. To avoid syn-
chronous operations, instead of updating on expiration of an exact update time, a node
computes the update time as a random amount around a mean value. For example, sup-
pose that the average update time is 1 min; thus, an update time can be chosen randomly
from a uniform distribution with 1 min as the average ± 10 sec. This way, the likelihood
of advertising at the same time by different routers can be reduced.

The last item requires a bit of clarification. It is not hard to see that even if all the routers
are set to start at a random start time and are independent events, all nodes eventually can
synchronize in terms of update time, especially due to triggered update. This phenomenon

C H A P T E R 3 Routing Protocols: Framework and Principles 73

is known as the pendulum effect [228]—the name stems from physics where you can start
two independent pendulums physically close to each other with different swing cycles that
eventually have synchronized swing cycles. Injection of random timer adjustment on the
update time helps avoid the pendulum effect; however, the variation should be set to a large
value to avoid synchronization. Note that this randomization is used for any subsequent
update; certainly, if there is a failure, the triggered update still be generated.

From the illustrations and the above comments, it is also important to recognize that
while a routing protocol needs a variety of timers, the actual value of the timers should not
be rigidly defined as a part of the protocol description. In certain older routing protocols,
values of timers were rigidly defined (see Section 5.3). Since then, we have learned enough
to know that it is important to leave the rigid values out of the protocol; instead, include
threshold values and range, and let the operational environment determine what are good
values to use in practice. Needless to say, the timer values need to be chosen very carefully.
A similar comment is also applicable to the link cost update timers; we will discuss this later
in Section 3.6 and in subsequent chapters.

DISTANCE VECTOR MESSAGE CONTENT

The distance vector message discussed so far includes a distance cost for each destination
node; there are some variations as to the value of the cost and/or which node should or
should not be included in a distance vector broadcast, for example, to address for split hori-
zon. It is, however, important to realize that perhaps additional attributes should be included
with a distance vector message.

A simple first extension is to include next hop with a distance vector update for each
destination as follows:

Destination Node,

Next Hop,

Distance D

It may be noted that if the next hop information is included, a node on receiving a distance
vector from a neighbor has the ability to determine if the next hop for its neighbor goes
through itself. Thus, what we were trying to accomplish by split horizon can be essentially
accomplished by having this additional information. Note that this does not help solve the
looping problem; it only helps to identify a possible loop and to stop doing a mistaken short-
est path computation and avoid forwarding user traffic.

Another important aspect to consider is the type of event. If it is a link failure, or if the
link cost has changed significantly, this is an important event compared to a normal periodic
update. Thus, for example, for each distance, we may identify whether this is a normal pe-
riodic update, or a special update due to an event; this will then allow the receiving node a
differential, based on which it may take different actions. Furthermore, a sequence number
may be included that is incremented each time a new update is generated. Thus, a possible
format for each destination may be as follows:

74 3.3 Distance Vector Routing Protocol

Destination Node,

Distance Vector Sequence Number,
Normal Periodic Update or Special Event Indicator,
Next Hop,

Distance D

Note that we have added a new field: Normal periodic update or special event indicator.
It may be noted that if a distance cost is infinite, this may implicitly mean that an unusual
event has occurred. On the other hand, a node may explicitly request information from its
neighbor; for this case, it would be necessary to indicate this. Thus, the above format has
some additional benefit. As an example, a distance vector message will have the following
format:

j = 1, Sequence Number = 1, Update=normal, Next Hop = 7, D = 3

j = 2, Sequence Number = 1, Update=normal, Next Hop = 7, D = 2

· · ·

Alternately, the sequence number may be done at a level of the message boundary (instead
of for each distance direction), especially if the distance vector message is done for all nodes
instead of a partial list of nodes.

3.3.4 Can We Avoid Loops?
So far, we have discussed a distance vector protocol and ways to circumvent a variety of
issues faced in its operation. There is, however, one critical aspect that none of the mech-
anisms discussed so far can address adequately—the looping problem. In some ways, we
could say that looping is the most serious problem since user packets will bounce back and
forth between two (or more) nodes. Thus, an important question is: can looping be com-
pletely avoided in a distance vector protocol? To answer this question, we first need to un-
derstand the source of looping. On close scrutiny, you will note that the looping is induced by
the Bellman–Ford computation in a distributed environment and it occurs when a link fails.
In fact, looping can occur when the link cost increases also; incidentally, link failure can be
thought of as a special case of increases in link cost (when link cost is set to ∞). You might
wonder: what about a link cost decrease? This case is actually not a problem since Bellman–
Ford can be applied as before.

To address loop-free routing for the case in which a link fails or its link cost increases,
some extra work is required. Briefly, if the distance vector broadcast contains certain ad-
ditional information beyond just the distance, and additionally, route computation is per-
formed through inter-nodal coordination between a node and its neighbors, then looping can
be avoided; this is considered in the next section.

3.3.5 Distance Vector Protocol Based on Diffusing Computation with
Coordinated Update
The most well-known scheme that accomplishes loop-free routing in a distance vector proto-
col framework is the diffusing computation with coordinated update approach [244], [245],

C H A P T E R 3 Routing Protocols: Framework and Principles 75

that incorporates the concept of diffusing computation [179] and the coordinated update ap-
proach [336]; this approach has been implemented in Enhanced Interior Gateway Routing
Protocol (EIGRP) (see Section 5.6) and is known as the Diffusing Update Algorithm (DUAL).
To identify that this approach is still built on the notion of a distance vector protocol frame-
work, we will refer to this approach simply as the loop-free distance vector protocol, while we
will refer to the original distance vector protocol discussed earlier as the basic distance vector
protocol.

We start with three important assumptions for the loop-free approach: (1) within a finite
time, a node must be able to determine the existence of a new neighbor or if the connectivity to
a neighbor is lost, (2) distance vector updates are performed reliably, and (3) message events
are processed one at a time, be it an update or a link failure message or a message about new
neighbors being discovered.

It may be noted that the basic distance vector protocol does not explicitly address the
first assumption. This assumption helps to build adjacency with neighbors in a finite time
and is now a common feature in other, more recent routing protocols as well. The second as-
sumption was also not addressed in the basic distance vector protocol—we have noted earlier
that the lack of this functionality heavily affects convergence time and in the determination
of whether a link has gone down. The third assumption is specifically about workings of
diffusing computation with coordinated update.

The basic distance vector protocol has only a single message type, which is the dis-
tance vector update. However, the loop-free approach has multiple different message types:
(1) hello—used in neighbor discovery, (2) ack—acknowledgment of a hello message, (3) up-
date—for distance vector update, (4) query—for querying a neighbor for specific information,
and (5) reply—for response to a query. Given the first assumption, you can clearly see the
need for hello/ack messages. In the case of the loop-free distance vector (DV) protocol, up-
date messages are not periodic, unlike the basic distance vector protocol, and can contain
partial information. Query reply messages help in accomplishing loop-free routing and are
used for coordination. This is also a good time to bring up information push and informa-
tion pull in regard to protocol exchanges, as discussed earlier in Section 3.1. While the basic
distance vector protocol operates in an information push mode, the loop-free distance vector
protocol employs both the push mode for updates and the pull mode when hello or query are
generated.

To execute the loop-free distance vector protocol, each node i maintains the following
information:

• A list of neighboring/adjacent nodes, represented by Ni.

• A network node table that includes every node j in the network along with the following
information:

– Lowest feasible distance to node j (represented as Dij).

– A list of feasible next hops k—this means that a sublist (N ij) of neighbors, Ni, for which
the distance from such a neighbor (as known to i) is smaller than its own distance to j;

this means that D
i
kj < Dij.

– Feasible next hop’s advertised distance (i.e., D
i
kj for k ∈N ij).

76 3.3 Distance Vector Routing Protocol

F I G U R E 3.5 Six-node, nine-link network example.

– Distance through all feasible neighbors (“working distance”) determined as D̃ij = dik +
D

i
kj for k ∈N ij.

– Active or passive states (more discussion later).

• A routing table that contains the next hop, Hij, for which i has the lowest feasible distance
for node j. If there are multiple next hops that have the same lowest feasible distance, then
they are all entered in the routing table. There are two benefits to having suchentries in
the routing table: (1) user traffic can be distributed among equal cost paths, and (2) if one
link goes down, then there is a second one readily available to carry user traffic.

Given the information maintained by node i, it can generate a distance vector message
that has the following components:

Destination Node, Message Type, Next Hop, Distance

It is important to note that in loop-free distance vector protocol, distance vector updates
are not periodic and also need not contain the distance for all destinations; furthermore,
through message type, it can be indicated whether a message is an update message or other-
wise.

Example 3.1 Illustration of a network node table and message type.
Consider the six-node network that we have discussed earlier; this time with link 4-6

deleted; the new topology is shown in Figure 3.5.
Here, we will consider node 5’s view; thus, i = 5. It has three neighboring nodes 3, 4,

and 6. Thus, N5 = {3,4,6}. We will illustrate the node table and routing table for destination
node 6. The shortest distance for node 5 to reach node 6 is the direct link 5-6 with cost 1. Thus,
the lowest feasible distance is D56 = 1. Consider the distance cost of its other neighbors to

node 6; we see that D
5
36 = 1 and D

5
46 = 2, and that none is lower than its distance (D56 = 1) to

node 6, except node 6 itself. Thus, the only feasible next hop is node 6 itself; thus, N 56 = {6}.

C H A P T E R 3 Routing Protocols: Framework and Principles 77

It also stores feasible next hop’s advertised distance, i.e., D
5
66 = 0, and its current distance

through them, i.e., D̃56 = d56 +D
5
66 = 1. Certainly, there is no difference here between this and

the lowest feasible distance since there is only one feasible next hop for destination node 6.
The next hop in the routing table for destination node 6 has one entry: H56 = 6.

The node table and routing table for all destinations are summarized below:

Network node table at node i = 5

Destination Distance Feasible Next Hop Advertised Working Distance State:

j D5j k ∈ N 5j Distance, D
5
kj D̃5j = d5k + D

5
kj Active (1)/Passive (0)

1 3 4 1 3 0

2 3 3, 4 2, 1 3, 3 0
3 1 3 0 1 0
4 2 4, 3 0, 1 2, 2 0
5 0 5 0 0 0

6 1 6 0 1 0

Routing table at Node i = 5:

Destination, j Next Hop, Hij

1 3

2 3, 4
3 3
4 4, 3
5 0

6 6

A distance vector update message generated at node 5 in regard to destination node 6 will
be in the following form j = 6, Update, 6, 1 . For brevity, we will write this as 6, U, 6, 1 , where U
stands for update (similarly, Q stands for query, R for reply, and so on). �

Now consider the operation of the loop-free distance vector protocol. Recall that in the
case of the basic distance vector protocol, a node does route computation using distributed
Bellman–Ford and then updates the routing table. In the case of the loop-free distance vec-
tor protocol, route computation is a bit different depending on the situation; furthermore,
there are three additional aspects that need to be addressed: building of the neighbor table,
node discovery and creating entry in the network node table, and coordination activity when
link cost changes or link fails. Building of the neighbor table typically occurs when a node is
first activated; this is where hello messages are sent to neighbor—once an ack message is re-
ceived in response, the neighbor relationship is set up. It is important to note that hello is also
periodically transmitted to determine/maintain availability and connectivity to a neighbor-
ing node. Typically, node discovery occurs immediately after the initial hello message when
the neighboring node sends a distance vector update to the newly activated node. Since the
newly activated node may be connected to multiple nodes, it will do such an exchange with
each of the neighbors; furthermore, it will do its own route computation and send an update
message to its neighbors. For message exchange once a node is activated, there is a series of
exchanges involved (see Figure 3.6).

78 3.3 Distance Vector Routing Protocol

F I G U R E 3.6 Protocol message exchanges when a node is activated.

A node performs various tasks depending on an event; primarily, a node provides up-
dates under normal situations and coordinates activities when an event such as a link going
down occurs. To do that, a node is required to maintain two states: passive (0) and active (1).
When it is passive, it can receive or send normal distance vector updates. A node moves to an
active state for a specific destination when, for example, a link failure occurs. When it is in an
active state, node table entries are frozen. Note that when it is in an active state, a node gen-
erates the request message instead of the update message and keeps track of which requests
are outstanding; it moves to the passive state when responses to all outstanding requests are
received. It may be noted that a request may be forwarded if the receiving node does not have
an answer (in this case, a feasible next hop). In Figure 3.7, we show two different instances of
how request response messages are handled. Finally, in Figure 3.8, we present the loop-free
distance vector protocol in a compact manner.

It is possible that one or more events occur before the completion of exchanges during an
active state. For example, a link goes down; before the coordination phase is completely done,
the link comes back up again. While it is possible to handle multiple events and computations
through diffusing computation (for example, see [245]), it can be essentially restricted to just
one event handling at a time by enforcing a holddown timer; we have discussed the notion
of a holddown timer earlier in this chapter. That is, when a link cost changes or link failure
event occurs, a holddown timer is started; another link status change event for the same link
is not permitted to be communicated through the network until the first holddown timer
expires. If the duration of the holddown timer is chosen properly, the coordination phase for
a single event can be completed. In general, the holddown timer makes the state maintenance

C H A P T E R 3 Routing Protocols: Framework and Principles 79

F I G U R E 3.7 Request/response handling in a loop-free distance vector protocol.

mechanism much simpler compared to when multiple events are needed to be taken care of
simultaneously.

In the following, we illustrate how a link failure is handled by the loop-free distance
vector protocol.

80 3.3 Distance Vector Routing Protocol

Initialization:
– Node i initializes itself in a passive state with an infinite distance for all its known neighbors and zero

distance to itself
– Initiate hello protocol with neighbor k and update value dik
– Receive update message from all neighbors k, and update node and routing table

Node i in passive mode:
– Node i detects change in a link cost/status to neighbor k that changes Dij for some j

If (this is due to link failure) then dik = ∞, D
i
kj = ∞

– Check for a feasible next hop already in the node table (i.e., a neighbor k in the node table that satisfied
Dkj < Dij prior to the link status change)

– If (Node i finds one or more feasible next hops, k ∈N ij) then
// initiate local computation (much like D-BF)

If (there is a feasible k such that dik + Dkj < di,Hij
+ D

i
Hi,j,j, that is, cost through

this k is better than the current next hop Hij) then
Set k as the new next hop, i.e., Hij = k

If (Di
Hi,j,j < Dij) then Dij = D

i
Hi,j,j

Send update, D̃ij, to all its neighbors
Endif

– If (Node i cannot find a feasible next hop) then

Set Dij = D̃ij = dih + D
i
hj where h is the current next hop for node j

Set feasible distance to Di
hj

// initiate diffusing computation
Change state to node j to active state, freeze any change for destination j, and set action flag to 1
Send query to all neighbors k ∈ Ni

Endif
Node i in receiving mode:

Node i in passive mode:
Receive update message:

Update node table, determine new next hop, routing table, and update message
Receive Query:
If (feasible next hop exists) respond with D̃ij
If (Dij changes) send update to neighbors
If (no feasible next hop exists)

change to active mode, R = 1 and send query to other neighbors
Node i in active mode:

If (response received from neighbors k to all queries) then
Change to passive mode (R = 0)
Reset D̃ij
Update node table, determine new next hop, update routing table

Endif

F I G U R E 3.8 Loop-free distance vector protocol based on diffusing computation with
coordinated update (node i’s view).

Example 3.2 Link failure handling in the loop-free distance vector protocol.
We continue with Example 3.1 to illustrate the link failure case. Consider that the net-

work has converged as illustrated earlier in Example 3.1 and all nodes are in passive states.
We will consider only part of the information from the node table just for destination node 6:
specifically (D̃,D,passive/active status), i.e., distance, working distance, and state. This in-

C H A P T E R 3 Routing Protocols: Framework and Principles 81

F I G U R E 3.9 Coordination activities in the loop-free distance vector protocol.

formation is shown in Figure 3.9 at each node for destination node 6. For example, at node 5,
for destination node 6, we have (D̃,D,passive/active status) = (1,1,0).

Now suppose that link 5-6 goes down; it will be marked as the active state and node 5 will
change the entry in the node table for node 6 from (1, 1, 0) to (∞,∞,1). It will then generate
the query message 6, Q, –, ∞ to be sent to the other two outgoing links, 5-3 and 5-4. To keep
track of outstanding requests, the following will be set for requested tracking parameters:
R5

36 = 1 (i.e., node 5 querying node 3 in regard to node 6) and R5
46 = 1 (i.e., node 5 querying

node 4 in regard to node 6). On receiving the query message from node 5 at node 3, it will
check to see if it has a feasible next hop to node 6. In this case, it does. Thus, it will generate
the following response message 6, R, 6, 1 to node 5. Similarly, node 4 will generate a response
message to node 5 as follows: 6, R, 3, 2 . Note that node 5 has to receive response messages to
both its outstanding requests to move from the active state to the passive state. Once it does,
it performs a computation for the node table and generates a new shortest path to destination
node 6. �

As you can see, the loop-free distance vector protocol resolves the looping problem faced
due to a link-failure in the basic distance vector protocol. A general question (with any proto-
col): are there any limitations? Below, we discuss two possible problematic scenarios for the
loop-free distance vector approach:

• In some situations, the loop-free distance vector protocol requires quite a bit of coordi-
nation between neighboring nodes, thus creating a chatty mode. A general problem with

82 3.4 Link State Routing Protocol

such a chatty protocol is that it can consume a significant percentage of the bandwidth if
the link between two neighboring nodes is a low-speed link, thus affecting performance
for user traffic.

• Recall that a holddown timer is started in this protocol once a node moves to the active
state; before the holddown timer expires, the node is supposed to hear responses back
about a query. However, under an unrelated multi-event situation, it is possible that the
time expires before the situation is resolved; this is known as the stuck in active (SIA) con-
dition. For example, a node, say A, loses a link to a neighboring node B that happens
to isolate the network into two networks. Node A would not realize the isolation of the
overall network; it will query its other neighbors, say C and D, about determining a path
to node B. In turn, nodes C and D will inquire of its neighbors about any path to node B
and change to the active state. Now, assume that there is a congestion problem between
node D and its neighboring node E that delays getting a response back. In the meantime,
the timer at node A expires, thus resulting in the SIA condition at node A. In general, this
is a difficult problem to resolve.

To summarize, it is possible to use a distance vector protocol framework and extend it for
loop-free routing by using diffusing computation with coordinated update. Like any proto-
cols, it has limitations under certain conditions.

3.4 Link State Routing Protocol
The idea of a link state routing protocol has its roots in Dijkstra’s shortest path first algorithm
(see Section 2.3). An important aspect to understand about Dijkstra’s algorithm is that it re-
quires a node to have topological information to compute the shortest paths. By topological
information, we mean links in the network and the nodes to which they are connected, along
with the cost of each link; that is, just a node table as in the loop-free distance vector protocol
is not sufficient. A node in the network needs to store the cost of a link and record whether
this link is up or down—generally referred to as the state of the link. This then gives rise to the
name link state and the information about links a node needs to store as the link state database.
Thus, a link state protocol is a way to communicate information among the nodes so that all
nodes have the consistent link state database. While this basic idea is very simple, it is not so
easy to make this work in a distributed environment.

There are several important issues to consider. First, how does each node find out the link
state information of all links? Second, do all nodes have the exact same link state information?
What may cause one node to have different link state information than others? Finally, how
can we disseminate link state information? How can inconsistency be avoided or minimized?
And last, but not least, how does link state information affect the shortest path computation?

IN-BAND VERSUS OUT-OF-BAND

First, recall our brief discussion about in-band and out-of-band in Section 3.1. To address
issues discussed there, we need to first know whether a particular network uses in-band or
out-of-band mechanisms to communicate link state information, and whether this is accom-
plished through information push or information pull or a hybrid mechanism.

C H A P T E R 3 Routing Protocols: Framework and Principles 83

If a communication network uses an out-of-band mechanism for communicating the link
state information, then there are two possibilities: (1) any pair of nodes talk to each other
through this mechanism irrespective of their location, (2) all nodes communicate to a central
system through a dedicated channel, which then communicate back to all nodes. Both these
options have been applied for dynamic routing in the telephone network where either a sig-
naling network or dedicated circuits are used to accomplish the communication of link state
information. In the second case, it also typically means that the central system is used for
doing route computation and disseminating the computed result back to the nodes. For ex-
ample, dynamically controlled routing (see Section 10.4) uses dedicated circuits and a central
system for routing computation, while real-time network routing (see Section 10.6) uses a sig-
naling network with distributed route computation. In DCR, link state information is pushed
to the central system, yet the central system may pull information from the nodes if needed.
In the case of RTNR, no information push is done; a node pulls link state information from
another node when needed. In Chapter 10, we will cover these aspects in detail.

In-band communication about routing information can be divided into two categories:
in-band on a hop-by-hop basis and in-band on a connection/session basis. Why do we make
these distinctions? In a data network, a simple distinction on a packet type can be used for
communicating routing information on a hop-by-hop basis. On the other hand, a data net-
work also provides the functionality of a virtual reliable connection (such as a TCP-based
connection); thus, routing information can be exchanged using such a virtual connection be-
tween any two nodes. The rest of the discussion in this section mostly centers around ex-
change of routing information using in-band communication on a hop-by-hop basis. At the
end of this section, we will also discuss in-band communication on a session basis.

3.4.1 Link State Protocol: In-Band Hop-by-Hop Disseminations

First and foremost, in-band hop-by-hop basis is possible for link state information exchange
since packets can be marked either as user data packets or routing packets to communicate
link state information. How this is specifically done will be covered in detail for protocols
such as OSPF in later chapters. For now, our discussion will be limited to the basic idea of link
state protocol when in-band communication on a hop-by-hop basis is used for exchanging
link state routing information.

We start with two important points:

• The link state information about a particular link in one part of a network to another part
can traverse on a hop-by-hop communication basis to eventually spread it throughout the
network; this is often referred to as flooding.

• On receiving link state information that is forwarded through the hop-by-hop basis, a
node can do its own route computation in a distributed manner.

The second component is really related to performing route computation and can be de-
coupled from the protocol itself. The first part is an essential part of the link state routing
protocol.

84 3.4 Link State Routing Protocol

F I G U R E 3.10 Six-node, eight-link network example.

LINK STATE ADVERTISEMENT AND FLOODING

A link state message, often referred to as a link state advertisement (LSA), is generated by a
node for each of its outgoing links, and each LSA needs to contain at least

Source node, Link ID, Link Cost (3.4.1)

which is then forwarded throughout the network. Certainly, we need to ask the question:
is the flooding reliable or unreliable? That is, is the information flooded received intact by
each node in the network, or is it corrupted? From the discussion about a distance vector
protocol, we know that routing information exchange using unreliable delivery mechanisms
causes additional problems. Thus, since the early days of a distance vector protocol, we have
learned one important thing: reliable delivery of routing information is important. We already
saw its use in the loop-free distance vector protocol. You will find out that in fact almost
all routing protocols since the early days of the basic distance vector protocol use reliable
delivery of routing information. Henceforth, we will assume reliable flooding with the link
state protocol.

We first examine the LSA format as given in protocol message (3.4.1). Consider the link
that connects from node 1 to node 2 in Figure 3.10: this LSA will be generated by node 1;
however, the reverse direction, LSA for the same link from node 2 to node 1, will be generated
by node 2. In other words, links in a link state protocol are directional (while directionality is
not an issue for a distance vector protocol). To avoid any confusion between a bidirectional
and a unidirectional link, we will use 1-2 to denote the bidirectional link that connects node 1
and node 2 while 1→2 to denote the directional link from node 1 to node 2. In addition to
the directional aspect, there is a critical issue we need to understand in regard to hop-by-
hop traversal. Consider Figure 3.10, and the link cost d12 = 1 from node 1 to node 2, which
needs to be disseminated. Thus, the link state information about the link that originates at
node 1 and ends at node 2, that is for 1→2, would be generated at node 1 as the message
i = 1, Link=1→2, d12 = 1 , which can be written as 1, 1→2, 1 in short; this message is forwarded

to both nodes 2 and 4. These nodes can, in turn, forward (“flood”) on their outgoing links; for
example, from node 2 to both node 4 and node 3. We can immediately see that node 4 would
receive the same information in two different ways!

C H A P T E R 3 Routing Protocols: Framework and Principles 85

If the cost value of both the LSAs for the same link is the same, then it is not difficult to
resolve. However, if the value is different, then a receiving node needs to worry about which
LSA for a particular link was generated more recently. Consider the following illustration in
terms of times event:

time t0: LSA 1, 1→2, 1 is generated at node 1 and is sent to node 2 and node 4.
time t1: LSA 1, 1→2, 1 is forwarded by node 2 to node 4.
time t2: 1→2 fails; node 1 generates the new LSA 1, 1→2, ∞ to node 4.
time t3: LSA 1, 1→2, 1 is received at node 4 from node 2.

From the above illustration, node 4 would receive LSA for the same link with two differ-
ent cost values: ∞ first and then 1 next; however, the failure occurred afterward! We can see
that the LSA needs to carry at least another piece of information that helps to identify LSA
at a receiving node based on when it was generated. Thus, some way to time-stamp an LSA
would then avoid any ambiguity. Thus, instead of using (3.4.1), LSA should contain a time
stamp resulting in the format:

Source Node, Link ID, Link Cost, Time stamp (3.4.2)

The question is how to indicate a time stamp that works in a distributed networked envi-
ronment. There are two possibilities: either all nodes are clock-synchronized through some
geosynchronous timing system, or a clock-independent mechanism is used. While a geo-
synchronous timing system is a good idea, until recently this was not feasible; furthermore,
a separate mechanism independent of the protocol would be required. Most link state routing
protocols use a clock-independent mechanism called sequence number to indicate the notion
of a time stamp that can be defined within the context of the protocol. That is, a node, when it
generates an LSA for an outgoing link, stamps it with a sequence number and the LSA then
has the following modified format:

Source Node, Link ID, Link Cost, Sequence Number (3.4.3)

When the same node needs to generate a new LSA for the same outgoing link, it increments
the sequence number counter, inserts this new value in the LSA message, and sends out the
LSA packet. Going back to the previous example, if the sequence number for link 1→2 is 1
before failure, then the first LSA announcement would be 1, 1→2, 1, 1 . After failure at time
t2, the sequence number counter would be incremented to 2, and the new LSA would be
1, 1→2, ∞, 2 . Thus, when at time t3, node 4 receives LSAs for the same link from two different

directions, it can check the sequence number and discard the one with the older sequence
number, in this case, the one received from node 2 with sequence number 1.

It is important that each node maintains a different sequence number counter for each
outgoing link, and that other nodes maintain their own sequence number counters for their
outgoing links; in other words, there is no dependency among nodes, which is an advantage
of using the concept of a source-initiated, link-based sequence number. There is, however,
a key issue to consider: the size of the sequence number space. In any data network environ-
ment, usually a fixed length field is used for the sequence number space. Suppose that the
sequence number space is only 3 bits long; this would mean that it can take values 1 to 8,

86 3.4 Link State Routing Protocol

and after it reaches 7, it would need to wrap around and start at 1 again. Here is the first
problem we encounter due to wrapping of the sequence number. When a node receives two
LSAs for the same link ID from two different neighbors, one with sequence number 7 and
the other with sequence number 2, the receiving node has no way of knowing if the sequence
number 2 is after the number is wrapped or before; in other words, the receiving node has no
way of knowing which is more recent. This tells us that the size of the sequence number space
should not be small. Typically, the sequence number space is a 32-bit field; in most cases, this
would solve the problem. However, there is still some ambiguity, for example, when a node
goes down and then comes back up with the sequence number set to one, or when a network
is isolated into two separate networks. Essentially, what this means is that some additional
safeguard is required to ensure that a receiving node is not confused. A possible way to pro-
vide this safeguard is to use an additional field in LSA that tells the age of the LSA. Taking
this information into account, the LSA takes the form:

Source Node, Link ID, Link Cost, Sequence Number, Age (3.4.4)

Now we describe how to handle the age field at different nodes. The originating node sets the
starting age field at a maximum value; the receiving node decrements this counter periodi-
cally while storing the link state information in its memory. When the age field reaches zero
for a particular link, the link state information for this link is considered to be too old or stale.
The following is a classical example of what can happen if sequence number and age are not
addressed properly.

Example 3.3 ARPANET operational problem due to sequence number and age.
From an operational environment, we can learn a lot about what does or does not work

in practice. A case in point is the sequence and age field, as used and as observed through
its early use in ARPANET. This example is very nicely described in [559], and is reproduced
here.

ARPANET at that time used a 3-bit-long age field with 8 sec as the time unit. This means
that the starting maximum age was 56 sec (= 7 × 8), which was decremented every 8 sec.
To avoid the age becoming stale by the time an LSA reaches a downstream node, each node
needed to generate a new LSA for an outgoing link within 60 sec. When a node starts up
(either initial activation, or if rebooted), it needed to wait for 90 sec before generating the
first LSA. The idea was that this would allow any old LSA in the memory of the node to
decrement the age counter to 0; at the same time, it can receive new LSAs from neighboring
nodes.

ARPANET was found to be nonfunctional one night (these things always happen at
night!) with the queue at a router filled with multiple LSAs from a specific router, say Z,
where each of these LSAs had different sequence numbers a1,a2,a3 with a1 < a2 < a3 and
then wrap around to a1. Now, consider a router that has a stored LSA from Z with sequence
number a1, and it receives an LSA with sequence number a2; it would overwrite the one
in memory since a2 > a1 and, in addition, it will flood this “new” LSA to its neighbors
who in turn will update accordingly. This pattern of updating the sequence number was
repeated.

C H A P T E R 3 Routing Protocols: Framework and Principles 87

It was found that LSAs did not age out. The problem was in the inherent assumption
that the age counter will be decremented at a node every 8 sec. If a received LSA leaves a
particular node within this 8 sec, its age field would not get decremented. However, it was
originally envisioned that if a node receives an LSA and immediately sends it out, the age
counter would get decremented. This simple logic problem caused the network to become
nonfunctioning. �

In recent protocols, the sequence number space is large enough to avoid any such prob-
lems; for example, a 32-bit signed sequence number space is used. Furthermore, in many
protocol implementations, the sequence number space is considered as a lollypop sequence
number space; in this scheme, from the entire range of possible numbers, two are not used.
For example, consider a 32-bit signed sequence number space. The sequence number is var-
ied from the negative number −231 + 1 to the positive number 231 − 2 while the ends −231

and 231 − 1 are not used. The sequence number begins in the negative space and continues
to increment; once it reaches the positive space, it continues to the maximum value, but cy-
cles back to 0 instead of going back to negative; that is, it is linear in the negative space and
circular in the positive space giving the shape of a lollypop and thus the name. The lollypop
sequence number is helpful when a router, say R1, restarts after a failure. R1 announces the
sequence number −231 + 1 to its neighbor R2. The neighbor R2 immediately knows that R1
must have restarted and sends a message to R1 announcing where R1 left off as the last se-
quence number before the failure. On hearing this sequence number, R1 now increments the
counter and starts from the next sequence number in the next LSA. Note that not all protocols
use lollypop sequence numbering—the complete linear sequence number space that starts at
negative and continues to positive in a linear fashion is also used; if the maximum value is
reached, other mechanisms such as flushing of LSA are used when the maximum positive
value is reached.

LSA AND LSU

Along with LSA, there is another terminology commonly used: link state update (LSU). It
is important to understand and distinguish LSA from LSU. An LSA is an announcement
generated by a node for its outgoing links; a node receiving LSAs from multiple nodes may
combine them in an LSU message to forward to other nodes.

Example 3.4 LSA and LSU.
Consider Figure 3.10. Here, node 1 generates the link state for 1→4 as 1, 1→4, 1, 1, 60 using

the originating age counter as 60 and sends to node 4. Similarly, node 2 generates the link state
for 2→4: 2, 2→4, 1, 1, 60 and sends to node 4. Node 4 can combine these two LSAs along with
the link state for link 4→5, and assuming it takes one time unit to process, it decrements the
age counter by one for the received LSAs and sends out the link state update to node 5 as
1, 1→4, 1, 1, 59 2, 2→4, 1, 1, 59 4, 4→5, 2, 1, 60 .

�

88 3.4 Link State Routing Protocol

SPECIAL CASES

How does a link state protocol handle special cases? There are two scenarios we consider
here: a node going down and coming back up again, and a link going down and coming
back up again. The node failure has an immediate impact on the sequence number and the
age field since nodes are, after all, specialized computing devices. When a node is restarted,
the sequence number space may be reinitialized to 1 again; this again leaves a receiving node
wondering whether it has received a new or old LSA generated from the node that just recov-
ered from a failure. While in some cases such an exception can be handled through additional
attributes in an LSA, it is usually done through additional mini-protocol mechanisms along
with the proper logic control within the framework of the link state routing protocol. For ex-
ample, there are several aspects to address: (1) the clock rate for aging needs to be about the
same at all nodes, (2) receiving, storing, and forwarding rules for an LSA need to take into
account the age information, (3) the maximum-age field should be large enough (for exam-
ple, an hour), and (4) if the sequence number is the same for a specific link that is received
from two incoming links at a receiving node, then the age field should be checked to deter-
mine any anomaly. Thus, typically a link state routing protocol consists of three subprotocol
mechanisms:

• Hello protocol

• Resynchronization protocol

• Link state advertisement (normal).

The hello protocol is used for initialization when a node is first activated; this is somewhat
similar to the hello protocol used in the loop-free distance vector protocol. In this case, the
hello protocol is useful in letting neighbors know its presence as well as the links or neigh-
bors to which it is connected and to learn about the rest of the network from its neighbor so
that it can perform route computation and build a routing table. The hello protocol is also
periodically invoked to see if the link is operational to a neighbor. Thus, the hello proto-
col has both information push and information pull. The resynchronization protocol is used
after recovery from a link or a node failure. Since the link state may have been updated sev-
eral cycles during the failure, resynchronization is merely a robust mechanism to bring the
network to the most up-to-date state at the nodes involved so that LSA can be triggered.
The resynchronization step includes a link state database exchange between neighboring
nodes, and thus involves both information pull and push. The normal LSA by an originat-
ing node is information push. The entire logic control for a link state protocol is shown in
Figure 3.11.

We will illustrate the need for the resynchronization step in the following example. Note
that this step is also called “bringing up adjacencies.”

Example 3.5 Need for resynchronization.
We will use the same network as the one shown in Figure 3.10. We will start by assum-

ing that the network has converged with all links having sequence number 1. We will also
consider that the failure of link 4-5 occurred resulting in a new sequence number for each

C H A P T E R 3 Routing Protocols: Framework and Principles 89

Initialization:
– Use hello protocol to establish neighbor relation and learn about links from neighbors

Link State Advertisement (normal):
– Generate LSA periodically (before the expiration of the age counter), incrementing the sequence number

from the last time, and set the age field to the maximum value for this LSA; start the timer on the age
field

Receive (new):
– Receive LSA about a new link l→m from neighboring node k
– Update the link state database and send LSA for this link to all neighbors (except k)
– Start the timer for decrementing the age counter

Receive (normal):
– Receive LSA about known link l→m from neighboring node k
– Compare the sequence number to check if I have the most recent LSA for this link
– If yes, send LSA for this link back to neighboring node k
– If not, decrement the age counter, store the recent LSA for link l→m in the link state database, and

forward it on all other outgoing links to the rest of the neighbors (except for k)
– If it is the same sequence number and the age difference is small, do nothing; if the age difference is large,

store the most recent record
– Start the timer for decrementing the age counter

Compute:
– Perform route computation using the local copy of the link state database
– Update the routing table

Special Cases:
– Link failure: set the link cost to ∞ and send LSA immediately to neighbors
– Link recovery: perform link state database resynchronization
– Node recovery: perform link state database resynchronization; alternately, flush records and perform

hello protocol
– (Action mode when the age counter reaches 0 for a link ID):

(1) Do not consider this link in route computation
(2) Inform neighbors through advertisement stating that the age field is zero
(3) Delete this link entry from the database

– (Receive mode with age 0): accept this LSA. This would set the age to zero, and thus, perform ‘action
mode when age counter reaches 0.’ If the record is already deleted, ignore this advertisement.

F I G U R E 3.11 Link state protocol from the point of view of node i (with in-band
hop-by-hop communication for flooding).

direction with link cost set to ∞; this information has also converged. Our interest is in the
second failure, i.e., the failure of the second link, 2-3. We show the two network states, before
and after failure of link 2-3, in Figure 3.12.

Note that when 4-5 fails, both its end nodes (node 4 and node 5) will increment the se-
quence number count to 2 and generate the directional LSAs with cost set to ∞ to advertise
to their neighbors. This information will be flooded throughout the network, and all nodes
will eventually converge to having the link state database as shown in Table 3.3(a). When the
second link 2-3 fails, we can see that the network will be isolated into two separate smaller
networks. Node 2, on recognizing this failure, will increment the sequence number counter
to 2 and generate an LSA for the directional link 2→3 with cost set to ∞; this will be dis-
seminated which can reach only nodes 1 and 4. Similarly, node 3, on recognizing the same
failure, will increment the sequence number counter to 2 and generate LSA for the directional
link 3→2 with cost set to ∞; this will be disseminated, which can reach only nodes 5 and 6.
Thus, in the network on the left side consisting of the nodes 1, 2, and 4, the link state database

90 3.4 Link State Routing Protocol

F I G U R E 3.12 Six-node network: before and after failure of link 2-3 (assuming link 4-5
has already failed).

TA B L E 3.3 Link state database as viewed before and after failure of link 2-3.

(a)
Before Failure of Link 2-3
(as Seen by Every Node)

Link-ID Cost Seq #

1→2 1 1

2→1 1 1
1→4 1 1
4→1 1 1
2→4 1 1
4→2 1 1
2→3 2 1
3→2 2 1
4→5 ∞ 2
5→4 ∞ 2
3→6 1 1
6→3 1 1
3→5 1 1
5→3 1 1
5→6 1 1
6→5 1 1

(b)
After Failure of Link 2-3
(as Seen by Nodes 1, 2, 4)

Link-ID Cost Seq #

1→2 1 1

2→1 1 1
1→4 1 1
4→1 1 1
2→4 1 1
4→2 1 1
2→3 ∞ 2
3→2 2 1
4→5 ∞ 2
5→4 ∞ 2
3→6 1 1
6→3 1 1
3→5 1 1
5→3 1 1
5→6 1 1
6→5 1 1

(c)
After Failure of Link 2-3

(as Seen by 3, 5, 6)

Link-ID Cost Seq #

1→2 1 1

2→1 1 1
1→4 1 1
4→1 1 1
2→4 1 1
4→2 1 1
2→3 2 1
3→2 ∞ 2
4→5 ∞ 2
5→4 ∞ 2
3→6 1 1
6→3 1 1
3→5 1 1
5→3 1 1
5→6 1 1
6→5 1 1

will become as shown in Table 3.3(b), while for the network on the right side consisting of
nodes 3, 5, and 6, the link state database will become as shown in Table 3.3(c). Notice the
subtle difference in regard to the entry for directional links 2→3 and 3→2 since either side
would not find out about the directional entry after the failure.

So far we have not discussed the issue of age of the LSA. In fact, for now, we will ignore
it and will come back to it soon. Due to possible changes in cost values of links, each part of
the network will evolve over time, which means an increase in the sequence number counter
value for other links in the network, cost change, and so on. Now consider that the link 4-5

C H A P T E R 3 Routing Protocols: Framework and Principles 91

has recovered. On recognizing that the link has recovered, node 4 will generate LSA for 4→5
and node 5 will generate for 5→4 and flood to the rest of the network. However, with normal
flooding, node 4 or node 5 would not do anything in regard to link 2-3, although both have
different views! This is partly why resynchronization is important. When a failed link or a
node is recovered, the best thing to do is to exchange the entire list of link numbers along
with the current sequence number between the neighbor nodes through a database description
message. This allows the node on each side to determine where they differ, and then request
the cost information for the ones where they differ in terms of sequence number. It may seem
odd to request the database description first followed by the link cost update. There are two
reasons why this approach is beneficial: (1) usually a link state message contains much more
than just the link cost (especially if multiple metrics are allowed); thus, the message size
stays smaller if only the database description is exchanged; and (2) a different message type
for database description exchange avoids needing to invoke a full link state update between
these two neighbors. Certainly, once the end nodes (nodes 4 and 5 in this case) have done
resynchronization, each will generate a standard/normal link state update message to let the
rest of the nodes know about the changed entries.

Now we will bring age into the picture. If two parts have been isolated for a long time,
the age field of LSAs received from the other side will decrement all the way to zero. This will
then trigger exception advertisement on both sides for the appropriate set of links. Through
this process, links will be deleted from the local copy at the nodes. For example, nodes 1, 2,
and 4 from the left side will not have any information about links on the right side. In this
case, when link 4-5 recovers, nodes 4 and node 5 would do database description exchange
and find out about the existence of new links will be synchronized and then flooded to the
rest of the network through a normal link state update. �

3.4.2 Link State Protocol: In-Band Based on End-to-End Session

From the above discussion, it is clear that many of the problems, such as sequence number
and age, and safeguards needed to address them are primarily due to the flooding mecha-
nism, which is based on in-band communication on a hop-by-hop basis. The flooding mecha-
nism is used so that each node can build the link state database to perform route computation.
Traditionally, the flooding mechanism is considered an inherent part of the link state protocol;
as a result, it has become tightly coupled with a link state protocol.

We can, however, ask an opposing question: if the link state database is primarily what
a node needs, is in-band hop-by-hop flooding the only mechanism that can accomplish it?
The answer is clearly no. In fact, in a data network, since virtual connection functionality
is available, the link state information can be exchanged by setting up virtual connections
between any two nodes that are kept alive as long as both nodes are operational. This would
mean that in an N node network, each node would need to set up N − 1 virtual connection
sessions with the rest of the nodes. Through such a connection, a node can query another
node about the link state status of all its outgoing links so that it can update its link state
database, and vice versa. If a link fails, the node to which this link is connected can inform
the other nodes through the virtual connection about the change of status.

92 3.4 Link State Routing Protocol

With the classical link state protocol (based on flooding and LSA), there is no way for a
node to know if the node to which it is directly connected has failed; at most, it knows that
the link that connects these two nodes is not operational. It might be able to infer later through
much flooding and learning from other neighboring nodes that perhaps the node has actually
failed. However, for a link state protocol with an end-to-end session for link state exchange, a
node can immediately determine if another node has failed since the virtual connection will
die down.

There are, however, scalability issues with the notion of a virtual connection between
any two nodes. For example, if N is large, there are too many sessions a node is required to
keep activated simultaneously; this may not be desirable since a node is a specialized device
whose primary job is to route/forward user traffic by looking up the routing table. A pos-
sible alternative is to have a pair of primary and secondary specialized link state servers
in a network; this way, each node would need to have just two connections to this pair of
servers to retrieve all the link state information. This would mean that such servers would
have many connections to all the nodes—this is not too many when you consider a typ-
ical high-end web server that handles a large number of TCP connections to clients at a
time.

You may discover that the idea of virtual connection is not much different from the idea
of out-of-band communication used in circuit-switched routing, whether it is through a dedi-
cated channel or a signaling network. Furthermore, there are examples in the Internet as well
where the routing information exchange is done through virtual connections (through a TCP
session); Border Gateway Protocol (BGP) discussed later in Chapter 8 is such an example.
Certainly, BGP does not use a link state information exchange; however, reliable routing in-
formation communication is similar in need. In addition, in recent years, providers of large
intradomain networks have started using servers similar to the notion link state servers to
upload link state metrics to routers (see Chapter 7); thus, the entire concept of servers that
provide link state information is quite realistic, and are being currently considered for net-
works known as overlay networks.

3.4.3 Route Computation

When a node has constructed the link state database, even if information for some links is not
recent or not all links in the network are known to the node yet, it is ready to compute routes
to known destinations. If the goal is to compute the shortest path, Dijkstra’s algorithm can
be used as described earlier in Section 2.3.2; thus, we will not repeat illustrations described
there. In this section, we briefly discuss route computation as related to the protocol.

It is important to note that each node independently invokes Dijkstra’s shortest path com-
putation based on the most recent link state database available to the node; no centralized
processor is involved in this computation. Due to the availability of the link state database, a
node actually knows the entire route to any destination after the route computation, unlike a
distance vector protocol. Thus, a node can use source route with route pinning, if this func-
tion is used in the network. Alternately, it can still create a routing table entry by identifying
the next hop from the computed route. Because of the way Dijkstra’s shortest path compu-
tation works, looping can be completely avoided when all nodes have the same copy of the
link state database, even though the routing table entry at each node stores just the next hop

C H A P T E R 3 Routing Protocols: Framework and Principles 93

for each of the destination nodes. To ensure that all nodes have the same link state database
entries, flooding plays an important role along with link state database resynchronization to
quickly reach a consistent link state database throughout the network.

Finally, there are networking environments where the basic essence of the link state pro-
tocol is used, yet the routing computation is not based on Dijkstra’s algorithm; we will discuss
this later in regard to dynamic call routing in telephone networks (refer to Chapter 10) and
quality-of-service routing (refer to Chapter 17).

3.5 Path Vector Routing Protocol
A path vector routing protocol is a more recent concept compared to both a distance vector
protocol and the link state routing protocol. In fact, the entire idea about the path vector
protocol is often tightly coupled to BGP. In this section, we will present the general idea
behind the path vector protocol mechanism; thus, it is important to distinguish and decouple
the generic path vector protocol presented here from BGP4, a specific instance of a path vector
protocol; we will discuss BGP in detail later in Chapter 8.

First and foremost, a path vector protocol has its roots in a distance vector protocol. We
already know that there are several problems with the basic distance vector protocol; for
example, looping, count to infinity, unreliable information exchange, and so on. We have al-
ready discussed that both the loop-free distance vector protocol and the link state protocol
use reliable delivery for exchange of routing information; this itself takes care of certain un-
desirable behavior. In fact, you will find that all modern routing protocols now use a reliable
delivery mechanism for routing information exchange along with a hello protocol for ini-
tialization. Thus, we will start with the built-in assumption that a path vector protocol uses
reliable delivery mechanism for information exchange related to routing and a hello protocol
is used for initialization.

In a path vector protocol, a node does not just receive the distance vector for a particular
destination from it neighbor; instead, a node receives the distance as well as the entire path to
the destination from its neighbor. The path information is then helpful in detecting loops. For
example, consider the basic distance vector protocol: at time t, node i receives the distance

cost D
i
kj(t) from its neighbor k for all known destinations j, as known to node i. In the case

of a path vector protocol, node i receives both the distance and the entire path list from its

neighbor k for each of the known destination nodes, that is, both D
i
kj(t) and the list of nodes,

denoted by P i
kj(t), from k to j as known to node i. A node is thus required to maintain two

tables: the path table for storing the current path to a destination, and the routing table to
identify the next hop for a destination for user traffic forwarding.

3.5.1 Basic Principle
We first explain the basic principle behind a path vector protocol through a simple illustra-
tion.

A SIMPLE ILLUSTRATION

We start with a simple illustration using the topology and cost given in Figure 3.13 and will
ignore the time dependency on t. Consider node 2 (that is, i = 2) that is receiving a path vector

94 3.5 Path Vector Routing Protocol

F I G U R E 3.13 Network topology for illustration of the path vector protocol.

from node 3 (that is, k = 3), which is providing distance and path to the nodes of which it is
aware. Thus, node 3 will need to send the following information for destination nodes 3, 4,
5, and 6 where a path is identified using the representation (3,4), which means that the path
contains the nodes 3 and 4 in that order:

D33 = 0, P2
33 ≡ (3)

D34 = 1, P2
34 ≡ (3,4)

D35 = 1, P2
35 ≡ (3,5)

D36 = 1, P2
36 ≡ (3,6).

In a protocol message, the above information will need to be sent using the following for-
mat:

Destination Node, Cost, Number of Nodes in the Path; Node List of the Path | . . .

In particular, the information for the first entry (destination 3) will need to be embedded in
the protocol message format as

j = 3, D33 = 0, Number of Nodes = 1; P2
33 ≡ (3)

Without writing the identifiers explicitly, this and the rest can be written in the following path
vector message that node 3 will send to node 2:

3, 0, 1; 3 | 4, 1, 2; 3, 4 | 5, 1, 2; 3, 5 | 6, 1, 2; 3, 6

Assume that node 2 has received the above path vector for the first time from node 3. Fur-
thermore, we assume that node 2, through the hello protocol, has learned about neighbors
node 1 and node 4 and has already initialized paths to these neighbors. Thus, the initial path
table at node 2 is

Destination Cost Path

1 1 (2,1)

4 1 (2,4)

C H A P T E R 3 Routing Protocols: Framework and Principles 95

On receiving the path vector from node 3, node 2 will compare and find out that it already has
a path to node 4 that is cheaper than the new path, and thus, does not need to be changed,
and that it has learned about new nodes. Thus, the path table at node 2 will be updated
to

Destination Cost Path

1 1 (2,1)

3 2 (2,3)

4 1 (2,4)

5 3 (2,3,5)

6 3 (2,3,6)

We can see from the above table that it is possible to have parts of paths being common
for different destinations. Based on the above information, node 2 sends the following path
vector message to nodes 4, 3, and 1:

1, 1, 2; 2, 1 | 2, 0, 1; 2 | 3, 2, 2; 2, 3 | 4, 1, 2; 2, 4 | 5, 3, 3; 2, 3, 5 | 6, 3, 3; 2, 3, 6 (3.5.1)

It is important to realize from the above message that the path vector message can include
information for all known destinations since the entire path is included for each destination;
inclusion of the path vector allows a receiving node to catch any looping immediately; thus,
rules such as split horizon used in a distance vector protocol to resolve similar issues are not
always necessary.

On receiving the path vector message from node 2, the receiving nodes (nodes 1, 2, and 4,
in this case) can check for any looping problem based on the path list and discard any path
that can cause looping, and update their path table that has the least cost. It is important to
note that the path vector protocol inherently uses Bellman–Ford for computing the shortest
path.

Next, we consider how a link failure is handled by the nodes. To show this, we first
assume that the network has converged, and all nodes have built their path table for all des-
tination nodes. For our illustration, we show the path table entry at each source node, just for
the single destination node 6 (see Figure 3.14):

From Node To Destination Cost Path Table Entry

1 6 3 (1,4,3,6)

2 6 3 (2,3,6)

3 6 1 (3,6)

4 6 2 (4,3,6)

5 6 1 (5,6)

96 3.5 Path Vector Routing Protocol

F I G U R E 3.14 Path vector to destination node 6.

LINK FAILURE CASE

We will now consider the failure of the link between nodes 3 and 6. We know from the in-
formation presented above that this failure will affect routing for nodes 1, 2, and 4. However,
node 3 has no way of knowing who will be affected. Thus, node 3 will send an “unreachable”
message to its neighbors 2, 4, and 5 stating that path (3,6) is not available. On receiving this
message, node 2 will realize that its path to node 6 was through node 3, and will mark it
unavailable, and send an “unreachable” message upstream to nodes 4 and 1, in case they are
also using node 2 as the next hop for destination node 6. At about the same time, on receiv-
ing the “unreachable” message from node 3, node 4 will take the same action for destination
node 6. However, node 5, on receiving the “unreachable” message from node 3, will realize
that it can reach node 6, and thus will inform node 3 of its path vector to node 6. In turn,
node 3, on learning about the new path vector, will send a follow-up path vector message to
node 2 and node 4: 6, 2, 3; 3, 5, 6 . On receiving this message, node 2 will update its path table
to node 6 as follows:

Destination Cost Path Table Entry

6 4 (2,3,5,6)

and node 4 will update its path table to node 6 as follows:

Destination Cost Path Table Entry

6 3 (4,3,5,6)

If after the above updates, a path vector message is received at node 4 from node 5, the path
table will remain the same since the path cost does not decrease.

C H A P T E R 3 Routing Protocols: Framework and Principles 97

We can see that a path vector protocol requires more than the exchange of just path vector
messages; specifically, a path vector protocol needs to provide the ability to coordinate with
neighbors which is helpful in discovering a new route, especially after a failure.

3.5.2 Path Vector with Path Caching

There are additional aspects that may impact the actual working of a path vector protocol. To
see this, observe that an advantage of the path vector announcement is that a node may learn
about multiple nonlooping paths to a destination from its different neighbors. It may choose
to cache multiple path entries in its path table for each destination that it has learned from all
or some of its neighboring nodes, instead of caching just the best one; this is an advantageous
feature of a path vector protocol. Note, however, that while the path table may have multiple
entries for each destination, the routing table points only to the next hop for the best or single
preferred path for each destination unless there is a tie; in case of a tie, the routing table will
enter the next hop for both paths.

Thus, we will now illustrate a generalization of the basic concept of a path vector proto-
col where a node is allowed to cache multiple paths for every destination in the path table.
For simplicity, we assume that each node stores two best paths per destination that it has
learned from different neighbors. Thus, for destination node 6, each source node will have
the following path entries:

From Node To Destination Cost Path Table Entry

1 6 3 (1,4,3,6)

1 6 4 (1,2,3,6)

2 6 3 (2,3,6)

2 6 3 (2,4,3,6)

3 6 1 (3,6)

3 6 2 (3,5,6)

4 6 2 (4,3,6)

4 6 3 (4,5,6)

5 6 1 (5,6)

5 6 2 (5,3,6)

Consider again the failure of the link between node 3 and node 6. When node 3 recognizes
this link failure, it will realize that it has a second path to node 6, i.e., (3,5,6). Thus, it will
delete path (5,6), make route (3,5,6) the preferred route in the path table, make appropriate
adjustments in the routing table, and advertise path (3,5,6) with its cost to its neighbors 2, 4,
and 5 as 6, 2, 3; 3, 5, 6 .

We will first consider the situation at node 5. On receiving the above message, node 5 will
immediately detect that this will create a loop, and thus it will ignore this message. Node 2,

98 3.5 Path Vector Routing Protocol

on receiving the new path vector from node 3, will notice that it will need to update the first
path. This will make the second path cheaper, although the second path has an unreachable
path.

Node 4, on receiving the new path vector from node 3, will change its path via node 3 to
(4,3,5,6) and the cost to 3. Now, both paths for destination node 6 will be of cost 3. It will then
transmit a path vector message to nodes 2 and 1 about the new path vector to destination 6.

Node 1 will receive an updated path vector from node 2 in regard to destination node 6,
and update both its paths via node 2. Node 2 will receive another one from node 4 and will
update that path as well.

Eventually, different nodes will have new path entries to destination node 6 as follows
(invalid paths are marked with a strikethrough):

From Node To Destination Cost Path Table Entry

1 6 4 (1,4,3,5,6)

1 6 5 (1,2,3,5,6)

2 6 4 (2,3,5,6)

2 6 4 (2,4,3,5,6)

3 6 1 (—–3,6)

3 6 2 (3,5,6)

4 6 3 (4,3,5,6)

4 6 3 (4,5,6)

5 6 1 (5,6)

5 6 2 (——–5,3,6)

It may be noted that path caching can be helpful as it provides a node with additional
paths through its neighbors if the first one does not work because of a link failure. The basic
idea behind a path vector protocol with path caching is outlined in Figure 3.15. It usually con-
verges to a new solution quickly. Thus, it can give the impression that path caching is a good
idea. However, path caching is not always helpful; in fact, it can result in poor convergence
in case of a node failure, especially when the node is connected to multiple nodes. We will
describe this next.

NODE FAILURE CASE

To illustrate the node failure case, we consider a four-node fully connected network example
[594] shown in Figure 3.16; we assume that the distance cost between any two nodes is 1.
Preferred direct path and alternate cached paths are shown in the following table (top of the
next page) from nodes 1, 2, and 3 to destination node 0.

C H A P T E R 3 Routing Protocols: Framework and Principles 99

From Node To Destination Cost Path Table Entry

1 0 1 (1,0)

1 0 2 (1,2,0)

1 0 2 (1,3,0)

2 0 1 (2,0)

2 0 2 (2,1,0)

2 0 2 (2,3,0)

3 0 1 (3,0)

3 0 2 (3,1,0)

3 0 2 (3,2,0)

Initialization:
– Node i is activated and exchanges “hello” message with neighbors; table exchange updates are per-

formed to find paths for all known destination nodes j
Node i in the receiving mode:

Announcement/Advertisement Message:
– Receive a path vector P i

kj from neighbor k regarding destination node j

– If (destination node j is not previously in routing and path table)
create a new entry and continue

– If (for destination node j there is already an entry for the previously announced path from node k in the
path table)

Replace the old path by the new path P i
kj in the path table

– Update candidate path cost: D̃ij = dik + D
i
kj

If (D̃ij < Dij) then
Mark best path as i → P i

kj
Update the routing table entry for destination j

else
For destination j, identify neighbor k that results in minimum cost

over all neighbors, i.e., Dij = dik + D
i
kj = mink∈Ni

{dik + D
i
kj}

Mark the best path through this new neighbor as i → P i
kj

Update the routing table entry for destination j
Node i in sending mode: send the new best path to all its neighbors

Endif
Withdrawal Message:
– If (a withdrawal message is received from a neighbor for a particular destination j) then

Mark the corresponding entry as “unreachable”
If (there is a next best path in the path table for this destination)

Advertise this to the rest of the neighbors
Endif

Special Cases: (node i lost communication with neighbor k [“link failure”]):
– For those destinations j for which the best path was through k, mark the path as “unreachable” in the

path table (and also routing table)
– If (another path is available in cache for the same destination through another neighbor k′)

Advertise/announce this to all the remaining neighbors
– If (there is no other path available in cache for destination j)

Send a message to all neighbors that path to node j is “withdrawn”

F I G U R E 3.15 Path vector protocol with path caching (node i’s view).

100 3.5 Path Vector Routing Protocol

Consider now the failure of node 0. Immediately, all the other nodes lose their direct path
to node 0. All of them switch to their second path in the path table entry. For example, node 1
will switch from (1,0) to (1,2,0); furthermore, node 1 will send the following path vector
announcement to node 3 and node 2: 0, 2, 3; 1, 2, 0 . This announcement will be understood by
the receiving nodes as an implicit withdrawal, meaning its previous one does not work and
it is replaced by a new one. This would lead to a cascading of path changes; for example,
at node 2, first path (2,0) will be dropped and will be replaced by (2,1,0). On hearing from
node 1 that (1,0) is not reachable, it will then switch to (2,3,0). It will go through another
step to (2,1,3,0) before recognizing that no more paths are available, and noting then that a
path to destination node 0 is unavailable.

In this illustration, we assume that node 2 finds out about the connectivity being down
to node 0 before node 1 and node 3 have recognized that their connectivity to node 0 is down
as well; in other words, node 2 does not receive the first path withdrawal messages from
node 1 and node 3 before it sends out to them. The following sequence of steps will then take
place:

– Node 2 sees that path (2,0) is no longer available and crosses it off. By inspecting paths cached
in its routing table, it then switches to (2,1,0), which is least as the next preferred path.
Node 2 informs both node 1 and node 3 about withdrawal of path (2,0).

– Node 1 recognizes that path (1,0) is no longer available and crosses it off.
Node 1 switches to its next preferred path (1,2,0).
Node 1 receives withdrawal of path (2,0) from node 2, before it has time to inform others about
(1,0).
Node 1 switches to (1,3,0) and advertises this path to node 2.

– Node 2 receives the advertisement (1,3,0) from node 1 and recognizes that the preferred path of
node 1 to node 0 is no longer (1,0); thus, node 1 strikes off (2,1,0).
Node 2 compares the last path in its preferred list (2,3,0) to the newly advertised path (1,3,0)

received from node 1, i.e., compare (2,3,0) with (2,1,3,0), and switches to (2,3,0) since this is
preferred over (2,1,3,0).

– Node 3 recognizes that path (3,0) is no longer available and crosses it off.
Node 3 receives withdrawal of path (1,0) from node 1 and withdrawal of path (2,0) from node 2.
Node 3 thus realizes that (3,1,0) and (3,2,0) are no longer available and crosses them off.
Node 3 informs node 1 and node 2 that path (3,0) is no longer available.

– Upon receiving withdrawal of path (3,0) from node 3, node 2 realizes that path (2,3,0) is no
longer available, thus, it switches to (2,1,3,0), since this is the only path remaining in its table.

– Upon receiving withdrawal of path (3,0) from node 3, node 1 realizes that (1,3,0) is no longer
available and thus inform node 2 that path (1,3,0) is no longer available.

– Upon receiving withdrawal of path (1,3,0) from node 3, node 2 finally realizes that it no longer
has any path to node 0.

The key point about this illustration is that due to path exploration, convergence can take
quite a bit of time in case of a node failure when the failing node has multiple connectivity.
You may wonder why the node failure case is so important since the nodes are built to be
robust to start with. There are two reasons for this:

C H A P T E R 3 Routing Protocols: Framework and Principles 101

F I G U R E 3.16 Four-node fully connected network.

• From a theoretical point of view, it is important to understand how the entire protocol
works so that fail-safe mechanisms can be added, if needed.

• While the node failure case discussed above seems like an unlikely case, this is a fairly
common case in BGP since a node such as node 0 is a specialized node. Actually, such a node
is not a real node and in fact represents an address block (IP prefix) that is conceptually
represented as a specialized node in the above illustration; we will discuss this in detail
in Chapter 8. In this sense, the above illustration is really about how quickly the overall
network may learn about losing connectivity to an address block or a route and helps us
see the implication of a node failure.

Finally, an important comment here. A path vector protocol tries to avoid looping by not
accepting a path from a neighboring node if this path already contains itself. However, in the
presence of path caching, a node can switch to a secondary path, which can in fact lead to an
unusual oscillatory problem during the transient period; thus, an important problem in the
operation of a path vector protocol is the stable paths problem [265]. This says that instead of
determining the shortest path, a solution that reaches an equilibrium point is desirable where
each node has only a local minimum; note that it is possible to have multiple such solutions
at equilibrium.

IMPLICIT COST AND RELATION TO BGP

In our basic description of the path vector protocol with path caching, we have assumed that
the cost to destination is included; this is helpful when the cost between two neighboring
nodes is different. When the cost between two neighboring nodes is implicitly set to 1, it
means that the link cost is hop-based. In this case, it is not necessary to include the cost to
destination in the path vector message. Thus, a message format would be:

Destination Node, Number of Nodes in the Path; Node List of the Path | . . .

102 3.6 Link Cost

As for example, instead of using the protocol message given in (3.5.1), the following will be
transmitted:

1, 2; 2, 1 | 2, 1; 2 | 3, 2; 2, 3 | 4, 2; 2, 4 | 5, 3; 2, 3, 5 | 6, 3; 2, 3, 6

Certainly, this implicitly assumes that all costs are hop-based instead of link costs shown
in Figure 3.2. In fact, BGP uses the notion of implicit hop-based cost. BGP has another differ-
ence; the node as described here is a model of a supernode this is called an autonomous system
in the Internet. This also results in a difference, instead of the simplifying assumption we
have made that the node ID is what is contained in a path vector message. Furthermore, two
supernodes may be connected by multiple links where there may be a preference in regard
to selecting one link over another. Thus, BGP is quite a bit more complicated than what we
have described and illustrated here in regard to a path vector protocol; BGP will be discussed
in detail in Chapter 8.

3.6 Link Cost
In this chapter, you may note that the term link cost, sometimes referred to also as the distance
or the distance cost, is generically used to indicate the cost of a link in a network. Because
of the generic nature, the term metric is also used instead. In this chapter, we do not give
much indication on how the link cost is obtained or what factors need to be considered in
determining the link cost.

As a matter of fact, determination of the link cost is itself an interesting and important
problem. Common sense would tell us that since we want user traffic to move from one node
to another as quickly as possible in a packet-switched network, we need to ensure that delay,
and probably link speed, are somehow taken into account. In this regard, we briefly discuss
below metrics considered in ARPANET routing and the lessons learned.

3.6.1 ARPANET Routing Metrics

During its life time, ARPANET routing used both the distance vector protocol framework
(“old” ARPANET routing) and the link state protocol framework (“new” ARPANET routing).
The metrics considered also were very much along the line of the protocol framework.

In the “old” ARPANET routing from early 1970s, the link metric was determined based
on the queue length plus a fixed constant where the queue length was computed at the instant
the link cost is to be updated to its neighboring nodes. The intent was to capture the delay
cost based on the queue length, meaning preference was to be given in considering links
with shorter queues over longer queues in computing the shortest path in the distance vector
framework. However, the queue length can change significantly from one instant to the other
that led to (1) packets going from one short queue to another, instead of moving toward the
destination, and (2) routing oscillations; certainly, the fixed constant that was added helped
in relieving the oscillation problem, but not completely. There were also looping problems, as
you would guess from our discussions earlier with a distance vector protocol. Also, the link
cost did not consider link speed.

C H A P T E R 3 Routing Protocols: Framework and Principles 103

When ARPANET moved to the link state protocol framework in the late 1970s, the link
metric computation was also changed. Two link metrics were considered; in the first one,
the delay was measured directly by first timestamping each incoming packet when it arrives
and then recording the time when it leaves a node; thus, it captured both the queueing and
processing delay for every packet. Then, for each outgoing link, delay is first averaged over
the delay measurements for packets that arrived in the past 10 sec; this value is compared
to the last value similarly computed to see if there was any significant change. If the change
was significant, the link cost would take the new value and it is flooded. Note that if the link
cost has not changed significantly over five such time windows, i.e., 50 sec, the link cost is
reported anyway. For stability, the link cost was bounded below with a fixed value that was
determined based on the link speed; this means that an idle link can never report its cost to be
zero. This link metric was found to be more stable than the old metric. However, the difficulty
with this new metric was in the assumption that the measured link delay is a good indicator,
rather predictor, for efficient routing of traffic that will be arriving in the next 10 sec. It was
found that it was indeed a good indicator for lightly and moderately loaded links, but not for
highly loaded links. Note that the goal of each node was to find the best shortest path to all
destinations. While it is good to be able to give the best path to everyone, it was problematic
during heavy loads. Instead, during heavy loads, a better goal is to determine good paths to
most destinations rather than trying to give everyone the best path.

Thus, a revision was made to ARPANET routing metric in the late 1980s. The goal was
to resolve the problem faced with the new metric from the early 1980s so that the revised
metric works in a heavy load situation; this was accomplished by taking into account link
speed along with dampening any oscillation from one time window to another. First, the
delay was measured as before. But, this time, it was transformed to a link utilization value
using the simple M/M/1 queueing delay formula (refer to Appendix B.12.2) assuming the
average packet size to be 600 bits; that is, the average delay, τ , for utilization ρ, link speed C,
and average packet size of κ is given by:

τ = κ

C(1 − ρ)
. (3.6.1)

Rearranging, the average utilization, ρ, can be written as

ρ = 1 − κ

τ C
. (3.6.2)

Since link speed C is known for each link type, thus, using the average packet size (κ = 600
bits) and the measured delay τ , the average utilization can be computed. The utilization value
was then smoothed (see Appendix B.6) by averaging with the previous value to dampen any
oscillatory behavior from one time window to the next. The link metric is then chosen as a
linear function of the smoothed utilization, with limits put on how little and how much it
can change from the last reported value. This way of computing the link metric was found to
work well in heavy loads for ARPANET routing.

3.6.2 Other Metrics
We can see from the above discussion that ARPANET pursued dynamic link cost determina-
tion, starting from its early days. In the early 1980s, the first round of development of Routing

104 3.7 Summary

Information Protocol (RIP) for use in a TCP/IP environment took place; RIP is a distance vec-
tor protocol that we will cover in detail in Chapter 5. It may be noted that RIP uses just hop
count as the link cost. In Chapter 5, we will discuss how link cost is calculated in other dis-
tance vector routing protocols such as Interior Gateway Routing Protocol (IGRP). Later we
will discuss in the chapter on IP traffic engineering (see Chapter 7) how link cost can be deter-
mined through centralized coordination, especially for large networks, by taking into account
network goals.

3.7 Summary
In this chapter, we have presented three important classes of routing protocols: distance vec-
tor protocol, link state protocol, and path vector protocol. In presenting these classes of pro-
tocols, we focus primarily on the basic principles behind them and their strengths and weak-
nesses.

In this chapter, we have purposefully stayed with the general principles rather than how
a specific instance of a class of protocols works. There are two reasons for this: (1) to com-
municate that the basic idea is not always complicated, and (2) to be able to see how routing
protocols may evolve or a new routing protocol may be developed knowing the strength and
weakness from the basic framework and principles.

There are several important aspects about any routing protocol: (1) initialization of a pro-
tocol, for example, through a hello message, (2) ability to avoid looping, (3) what information
to communicate, (4) transient behavior and the rate of convergence, (5) how an exception is
handled, for example, when a link failure occurs, and (6) scalability. We have also commented
that exchange of routing information through some reliable means is important as well.

It is also important to understand that for most routing protocols, what information is
to be exchanged can depend on what action might have taken place. In fact, all nodes in a
network seem to live in a symbiotic relationship. If certain aspects do not work properly, a
large segment of a network can go into a tailspin (remember the ARPANET example). This
brings up another important aspect about routing protocols: routing protocols other than
the basic distance vector protocol are stateful protocols where the nodes have peer-to-peer
relationships. It is important to not confuse this statefulness (“in” the network) with whether
a node needs to maintain states for user traffic on a packet-by-packet basis. As an example,
IP in the TCP/IP protocol stack is stateless; however, OSPF, a link state routing protocol used
for routing information exchange, is a stateful protocol.

From the practical side, there is another important point to note that arises from protocol
information exchanges. Some routing protocols require a significant number of message ex-
changes, especially in the event of some problem. Thus, the volume of message exchanges can
be high enough to consume sizable bandwidth on a link; this then impacts how much is left
for the user traffic to use on a link. Typically, routing protocols are not designed to consider
how to take this bandwidth factor into account. Sometimes, an indirect mechanism is used
such as a node that is not supposed to generate a message to a neighboring node more than
once every x sec. The most sophisticated mechanism in practice is to introduce a dampening
factor (refer to Section 8.9). Nowadays, a mechanism outside the protocol is also possible in
which the data rate for different streams can be capped at specific values through a node’s
packet scheduling mechanism.

C H A P T E R 3 Routing Protocols: Framework and Principles 105

It is also important to note that a routing protocol is not just limited to serving network
layer traffic routing; a routing protocol can be developed for overlay networks—an overlay
network is conceived at a layer above the network layer where specialized hosts serve as
routing nodes for the overlay network; these hosts form a peering relation and exchange
routing information pertinent to the overlay network. Thus, basic principles discussed here
can be applied in overlay network routing with appropriate adjustments.

Finally, we have given several examples of vulnerabilities with protocols presented in
this chapter, mostly related to the issue of correct operation of a protocol. Besides the ones
discussed, there is another type of vulnerabilities that can affect a routing protocol: this type
can be referred to as security-related vulnerabilities. The question is: is a routing protocol
secure and robust to defray any attacks? This is an important question, and there are many
efforts currently being pursued to address this question for all routing protocols. In this book,
we make only cursory remarks on security-related vulnerabilities; this is not to say that this
problem is not important. Detailed discussion would require almost another book in its own
right.

Further Lookup
There have been extensive work on routing protocols in the past three decades. Much has
been learned from the early days of ARPANET routing protocols that started with a distance
vector framework and moved to a link state framework; for example, [461], [462], [463], [599],
[724]. A good summary of ARPANET routing metrics, including the revised metric and its
performance, can be found in [368]. Also, see [610] for an early work on routing performance
in packet-switched networks.

Topics such as how to avoid looping and how to provide stability in shortest path routing
have received considerable attention starting in the late 1970s; for example, see [78], [79],
[244], [336], [484], [627], [638].

Path vector protocols have received considerable attention in recent years in regard to
convergence and stability issues due to wide-scale deployment of BGP; for example, see [95],
[116], [265], [390], [434], [553], [554], [555], [728].

Exercises
3.1 Review questions:

(a) How is split horizon with poisoned reverse different from split horizon?

(b) What are the sub-protocols of a link state protocol?

(c) List three differences between a distance vector protocol and a link state protocol.

(d) Compare and contrast announcements used by a basic distance vector protocol and
the enhanced distance vector protocol based on the diffusing computation with co-
ordinated update.

3.2 Identify issues faced in a distance vector protocol that are addressed by a path vector
protocol.

106 3.7 Exercises

3.3 Consider a link state protocol. Now, consider the following scenario: a node must not
accept an LSA with age 0 if no LSA from the same node is already stored. Why is this
condition needed?

3.4 Study the ARPANET vulnerability discussed in RFC 789 [605].

3.5 Consider the network given in Figure 3.12. Write the link state database at different
nodes (similar to Table 3.3) before and after failure of link 4-5.

3.6 Consider a seven-node ring network.

(a) If a distance vector protocol is used, determine how long it will take for all nodes
to have the same routing information if updates are done every 10 sec.

(b) If a link state protocol is used, how long will it take before every node has the iden-
tical link-state database if flooding is done every 5 sec. Determine how many link-
state messages in total are flooded till the time when all nodes have the identical
database.

3.7 Solve Exercises 3.6, now for a fully-connected 7-node network.

3.8 Investigate how to resolve a stuck in active (SIA) situation that can occur in a distance
vector protocol that is based on the diffusing computation with coordinated update.

3.9 Consider a fully-mesh N node network that is running a link state protocol. Suppose one
of the nodes goes down. Estimate how many total link state messages will be generated.

3.10 Implement a distance vector protocol using socket programming where the different
“nodes” may be identified using port numbers. For this implementation project, define
your own protocol format and the fields it must constitute.

3.11 Implement a link state protocol using socket programming. You may do this imple-
mentation over TCP using different port numbers to identify different nodes. For this
implementation project, define your own protocol format and the fields it must consti-
tute.

This page intentionally left blank

4
Network Flow
Modeling
If the weak were to
Tide across the rapids of life
With your help,
What do you stand to lose?

Bhupen Hazarika (Based on a translation by Pradip Acharya)

Reading Guideline

This chapter is useful for understanding traffic engineering approaches. The chapter
is organized by considering first what traffic means for different communication net-
works. We then consider a single demand to show how the optimization plays a role
depending on a goal. We then discuss a multiple flow model, and then complete the
chapter with the general formalism to address a traffic engineering problem. We also
comment on solution space, which can be very helpful in obtaining insights about
what you might want to do in engineering a network. The background provided
here is useful in understanding material presented in several subsequent chapters
such as Chapters 7, 19, and 24.

C H A P T E R 4 Network Flow Modeling 109

A critical function of a communication network is to carry or flow the volume of user traffic.
The traffic volume or demand volumes can impact routing and routing decisions, which are
also influenced by the goal or objective of the network. So far in Chapter 2, we discussed rout-
ing algorithms for determining paths for flowing user traffic, and in Chapter 3, we discussed
mechanisms needed in a distributed network environment to accomplish routing.

In this chapter, we present the basic foundation of network flow models along with a
variety of objective functions that are applicable in different communication networks. Net-
work flow models are used for traffic engineering of networks and can help in determining
routing decisions. In later chapters, we will discuss how models presented in this chapter are
applicable to different networking environments.

4.1 Terminologies
To discuss network flow models, we start with a few key terminologies.

The volume of traffic or demand, to be referred to as traffic volume or demand volume, is
an important entity in a communication network that can impact routing. In general, traffic
volume will be associated with traffic networks while demand volume will be associated
with transport networks; for example, in regard to IP networks or the telephone network, we
will use the term traffic volume; However, for transport networks such as DS3-cross-connect,
SONET, or WDM networks where circuits are deployed on a longer term basis, we will use
the term demand volume. Similarly, routing in a traffic network is sometimes referred to as
traffic routing while in a transport network it is referred to as transport routing, circuit routing,
or demand routing.

The measurement units can also vary depending on the communication network of in-
terest. For example, in IP networks, traffic volume is measured often in terms of Megabits per
sec (Mbps) or Gigabits per sec (Gbps), while in the telephone network, it is measured in Erlangs.
When we consider telecommunications transport networks, the demand volume is measured
in terms of number of digital signals such as DS3, OC-3, and so on.

In this chapter, we will uniformly use the term demand volume, instead of switching be-
tween traffic volume and demand volume, without attaching a particular measurement unit
or a network type since our goal here is to present the basic concepts of network flow models.
For any demand volume between two nodes in a network, one or more paths may need to be
used to carry it. Any amount of demand volume that uses or is carried on a path is referred to
as flow; this is also referred to as path flow, or flowing demand volume on a path, or even routing
demand volume on a path. A path is one of the routes possible between two end nodes with or
without positive flows. Since a network consists of nodes and links, we will also use the term
link flow to refer to the amount of flow on a link regardless of which end nodes the demand
volume is for.

This is also a good time to point out that the term flow is used in many different ways in
communication networking. For example, as we discussed earlier in Chapter 1, a connection
in the TCP/IP environment is uniquely defined by a source/destination IP address pair, a
source/destination port number pair, and the transport protocol used—this is also referred to
as a flow in the networking literature; in this book, we use the term microflow to refer to such
a connection identifier, a term used in many Internet RFCs; this helps us in distinguishing
microflows from the use of the term flow in general for network flow modeling, and so on.

110 4.2 Single-Commodity Network Flow

A given network may not always be able to carry all its demand volume; this can be due
to limits on network capacity but also can be dictated by the stochastic nature of traffic. If the
network capacity is given, then we call such a network a capacitated network. Typically, traffic
engineering refers to the best way to flow the demand volume in a capacitated network—this
is where network flow models are helpful in determining routing or flow decisions.

A communication network can be represented as a directed network, or an undirected net-
work. A directed network is one in which the flow is directional from one node to another and
the links are considered as directional links. An undirected network is a network in which
there is no differentiation between the direction of flow; thus, it is common to refer to such
flows as bidirectional and links as bidirectional links. For example, an IP network that uses
OSPF protocol (refer to Chapter 6) is modeled as a directed network with directional links.
However, a telephone network is an undirected network in which a link is bidirectional and
where calls from either end can use the undirected link. In this chapter, we present network
flow models assuming networks to be undirected since this allows small models to be ex-
plained in a fairly simple way. For instance, for a three-node network we need to consider
only three links in an undirected network while six links are required to be considered in a
directed network. A pair of demand nodes will be referred to as a node pair or a demand pair.
A node pair in a network will be denoted by i:j where i and j are the end nodes for this pair;
if it is a directed network, the first node i should be understood as the origin or source while
the second node should be understood as the destination or sink. For an undirected network,
i and j are interchangeable while we will typically write the smaller numbered node first; for
example, the demand pair with end nodes 2 and 5 will be written as 2:5. A link directly con-
necting two nodes i and j in general will be denoted as i-j ; in case we need to illustrate a point
about a directional link, we will specifically use i → j to denote the directional link from node
i to node j. In fact, we have already used the notion of directed links and undirected links in
earlier chapters. This summary is presented here for the purpose of understanding network
flow models. Finally, we use the term unit cost of flow on a link or unit link cost of flow in regard
to carrying demand volume; this term should not be confused with link cost or distance cost of
a link used earlier in Chapter 2.

4.2 Single-Commodity Network Flow
We start with the single-commodity network flow problem. This means that only a node
pair has positive demand volume, thus, the name single-commodity where the term commodity
refers to a demand. For illustration of network flow models, we will use a three-node network
in this section.

4.2.1 A Three-Node Illustration
Consider a three-node network where 5 units of demand volume need to be carried between
node 1 and node 2 (see Figure 4.1); we assume that the demand volume is a deterministic
number. We are given that all links in the network are bidirectional and have a capacity of
10 units each. It is easy to see that the direct link 1-2 can easily accommodate the 5 units of
demand volume since there the direct link can handle up to 10 units of capacity; this remains
the case as long as the demand volume between node 1 and node 2 is 10 units or less. As soon
as the demand volume becomes more than 10 units, it is clear that the direct link path cannot

C H A P T E R 4 Network Flow Modeling 111

F I G U R E 4.1 Three-node network with single demand between node 1 and node 2.

carry all of the demand volume between node 1 and node 2. In other words, any demand in
excess of 10 units would need to be carried on the second path 1-3-2 .

This simple illustration illustrates that not all demand volume can always be carried on a
single path or the shortest, hop-based path; the capacity limit on a link along a path matters.
In addition, we have made an implicit assumption up to this point that the direct link path
1-2 is less costly per unit of demand flow than the two-link alternate path 1-3-2. However, in
many networks, this may not always be true. If we instead suppose that the per-unit cost of
the two-link path 1-3-2 is 1 while the per-unit cost on the direct link 1-2 is 2, then it would
be more natural or optimal to route demand volume first on the alternate path 1-3-2 for up
to the first 10 units of demand volume, and then route any demand volume above the first
10 units on the direct link path 1-2.

The above illustration helps us to see that the actual routing decision should depend on
the goal of routing, irrespective of the hop count. This means that we need a generic way to
represent the problem so that various situations can be addressed in a capacitated network
in order to find the best solution.

4.2.2 Formal Description and Minimum Cost Routing Objective
We are now ready to present the above discussion in a formal manner using unknowns or
variables. We assume here that the capacity of each link is the same and is given by c. Let the
demand volume for node pair 1:2 be denoted by h. For example, in the above illustration
capacity c was set to 10.

Since the demand volume for the node pair 1:2 can possibly be divided between the direct
link path 1-2 and the two-link path 1-3-2 , we can use two unknowns or variables to represent
this aspect. Let x12 be the amount of the total demand volume h to be routed on direct link
path 1-2 , and let x132 be any amount of the demand volume to be routed on the alternate
path 1-3-2 (see Figure 4.2). Note the use of subscripts so that it is easy to track a route with
flows. Since the total demand volume is required to be carried over these two paths, we can
write

x12 + x132 = h. (4.2.1a)

This requirement is known as the demand flow constraint, or simply the demand constraint. It is
clear that the variables cannot take negative values since a path may not carry any negative

112 4.2 Single-Commodity Network Flow

F I G U R E 4.2 Single-commodity network flow modeling: three-node network.

demand; this means the lowest value that can be taken is zero. Thus, we include the following
additional conditions on the variables:

x12 ≥ 0, x132 ≥ 0. (4.2.1b)

In addition, we need to address the capacity limit on each link. Certainly, any flow on a path
due to routing cannot exceed the capacity on any of the links that this path uses. An implicit
assumption here is that the flow and the capacity are using the same measurement units;
we will discuss deviations from this assumption in later chapters. Since we assume that the
capacity limit is the same on all links in this three-node network, we can write

x12 ≤ c, x132 ≤ c. (4.2.1c)

The first one addresses the flow on the direct link 1-2 being less than its capacity; flow x132

uses two links 1-3 and 2-3, and we can use only a single condition here since the capacity is
assumed to be the same on each link. Constraints (4.2.1c) are called capacity constraints.

From the above discussion, we can see that we need conditions (4.2.1a), (4.2.1b), and
(4.2.1c) to define the basic system. It is important to note that it is not a system of equations;
while the first one, i.e., (4.2.1a), is an equation, the second and the third ones, i.e., (4.2.1b)
and (4.2.1c), are inequalities. Together, the system of equations and inequalities given by
Eq. (4.2.1), which consists of conditions (4.2.1a), (4.2.1b), and (4.2.1c), is referred to as con-
straints of the problem. Even when all the constraints are known, our entire problem is not
complete since we have not yet identified the goal of the problem. In fact, without defining a
goal, system (4.2.1) has infinite numbers of solutions since an infinite combination of values
can be assigned to x12 and x132 that satisfies constraints (4.2.1a), (4.2.1b), and (4.2.1c).

As the first goal, we consider the cost of routing flows. To do that, we introduce a generic
nonnegative cost per unit of flow on each path: ξ12 (≥ 0) for direct path 1-2 and ξ132 (≥ 0) for
alternate path 1-3-2 . Thus, the total cost of the demand flow can be written as

Total cost = ξ12x12 + ξ132x132. (4.2.2)

C H A P T E R 4 Network Flow Modeling 113

The total cost is referred to as the objective function. In general, the objective function will be
denoted by F . If the goal is to minimize the total cost of routing, we can write the complete
problem as follows:

minimize{x12,x132} F = ξ12x12 + ξ132x132

subject to x12 + x132 = h
x12 ≤ c, x132 ≤ c
x12 ≥ 0, x132 ≥ 0.

(4.2.3)

The problem presented in Eq. (4.2.3) is a single-commodity network flow problem; it is also re-
ferred to as a linear programming problem since the requirements given by Eq. (4.2.1) are all lin-
ear, which are either equations or inequalities, and the goal given by Eq. (4.2.2) is also linear.
In general, a representation as given in Eq. (4.2.3) is referred to as the formulation of an opti-
mization problem. The system given by Eq. (4.2.1) is referred to as constraints. To avoid any
confusion, we will identify the variables in any formulation by marking them as subscripts
with minimize. Thus, in the above problem, we have noted that x12 and x132 are variables by
indicating so as subscripts with minimize. Often, the list of variables can become long; thus,
we will also use a short notation such as x in the subscript with minimize to indicate that all
xs are variables.

Because of the way the goal is described in Eq. (4.2.3), the problem is also known as
the minimum cost routing or minimum cost network flow problem. An optimal solution to an
optimization problem is a solution that satisfies the constraints of the problem, i.e., it is a
feasible solution and the objective function value attained is the lowest (if it is a minimization
problem) possible for any feasible solution. For clarity, the optimal solution to a problem such
as Eq. (4.2.3) will be denoted with asterisks in the superscript, for example, x∗

12 and x∗
132.

INSTANCE 1:

We now consider some specific cases discussed earlier in Section 4.2.1 to obtain solutions to
problem (4.2.1). First, we consider the capacity to be 10, i.e., c = 10.

If the unit cost is based on a unit flow per link, then we can clearly write cost components
as ξ12 = 1 (since it is a direct link path) and ξ132 = 2 (due to two links making a path). This
will then correspond to the first case discussed in Section 4.2.1. In this case, optimal flows can
be written as:

x∗
12 = 10, x∗

132 = 0 when 0 ≤ h ≤ 10
x∗

12 = 10, x∗
132 = h − 10 when h ≥ 10, and h ≤ 20.

(4.2.4)

If h > 20, it is clear that the network does not have enough capacity to carry all of the de-
mand volume—this is referred to as an infeasible situation and the problem is considered to
be infeasible.

INSTANCE 2:

Consider the alternate case where per unit cost on the alternate path is 1 while on the direct
path it is 2, i.e., ξ12 = 2 and ξ132 = 1. In this case, optimal flows can be written as:

x∗
12 = 0, x∗

132 = 10 when 0 ≤ h ≤ 10
x∗

12 = h − 10, x∗
132 = 10 when h ≥ 10, and h ≤ 20.

(4.2.5)

114 4.2 Single-Commodity Network Flow

ON SOLVING PROBLEM (4.2.3)

We now consider the general solution to Problem (4.2.3) when the demand volume is less
than the capacity of a link, i.e., h ≤ c. With two unknowns, problem (4.2.3) can be solved by
using substitutions, i.e., by setting x132 = h − x12 and using it back in the objective. Then, the
objective becomes

F = ξ12x12 + ξ132(h − x12) = (ξ12 − ξ132)x12 + ξ132h.

Note that the last term, ξ132h, remains constant for a specific problem instance. Thus, we need
to consider the minimization of the rest of the expression, i.e.,

minimize{x} (ξ12 − ξ132)x12

subject to appropriate constraints. We can easily see that if ξ12 < ξ132, then the problem is at
minimum when x∗

12 = h; however, if ξ12 > ξ132, then the minimum is observed when x∗
12 = 0.

When ξ12 = ξ132, then x12 can take any value in the range [0,h], that is, the problem has
multiple optimal solutions.

Consider now the case in which demand volume, h, is more then c but the problem is still
feasible, i.e., h > c, but h ≤ 2c. In this case, we need to take the bounds into account properly;
thus, if ξ12 < ξ132, then x∗

12 = min{h, c}; similarly, if ξ12 > ξ132, then the minimum is observed
when x∗

12 = max{0, h − c}.
Thus, for values of h ranging from 0 to 2c, we can see that optimal flows are as we have

already identified in (4.2.4) and (4.2.5), corresponding to ξ12 < ξ132 and ξ12 > ξ132, respectively.

4.2.3 Variation in Objective: Load Balancing

In model (4.2.3), we have considered the goal to be based on minimizing the routing cost
by incorporating the unit cost of a path. While this is applicable in some communication
networks, other goals or objectives are also applicable in other communication networks.

We now consider another goal—minimization of maximum link utilization. This goal is also
referred to as load balancing flows in the network. To illustrate this, we will again use con-
straints (4.2.1) discussed above. The link utilization is defined as the amount of flow on a link
divided by the capacity on that link. We know that the only flow using link 1-2 is x12 while
x132 uses both links 1-3 and 3-2 . Thus, the utilization on link 1-2 can be written as

x12

c

while utilization on either link 1-3 or 3-2 can be written as

x132

c
.

Then, the maximum utilization over all links means the maximum over these two expres-
sions, i.e.,

max
{

x12

c
,

x132

c

}
.

C H A P T E R 4 Network Flow Modeling 115

Note that x12 and x132 are variables that are constrained given by Eq. (4.2.1). Thus, for load
balancing, we want to pick the values of the variables in such a way that the maximum link
utilization is at a minimum. That is, the load balancing problem can be formally written as

minimize{x} F = max
{ x12

c ,
x132

c

}

subject to x12 + x132 = h
x12 ≤ c, x132 ≤ c
x12 ≥ 0, x132 ≥ 0.

(4.2.6)

To illustrate the meaning of maximum link utilization, consider c = 10 and h = 5. If all
of the demand volume is routed on the direct link path 1-2 , then x12 = 5 and x132 = 0; the
maximum of the link utilization is then max{5/10,0/10} = 1/2. However, if we were to route
one unit of demand volume on the alternate path, i.e., x132 = 1, while keeping the rest on
the direct link, i.e., x12 = 4, then the maximum link utilization is max{4/10,1/10} = 2/5; this
utilization value is lower than if all of the demand volume were routed on the direct link path.
The question is: can we do even better? The answer is yes, leading to the optimal solution for
the load balancing case.

In fact, we can discuss the optimal solution for the general formulation given by
Eq. (4.2.6) without needing to consider specific values of c or h. First note that the maxi-
mum in the objective is over only two terms; thus, the minimum can be achieved if they are
equal, i.e., at optimality, we must have

x∗
12

c
= x∗

132

c
.

Note that the unknowns are related by x∗
12 + x∗

132 = h. Thus, substituting x∗
132, we obtain

x∗
12

c
= h − x∗

12

c
.

Transposing and noting that the denominators are the same on both sides, we get

x∗
12 = h/2. (4.2.7)

Thus, we see that when the load balancing of flows is the main goal, the optimal solution for
Eq. (4.2.6) is to split the flows equally on both paths. Certainly, this result holds true as long as
the demand volume h is up to and including 2c; the problem becomes infeasible when h > 2c.

VARIATION IN CAPACITY

We now consider a simple variation in which the link capacities in the network are not the
same. To consider this case, we keep the capacity of link 1-2 at c but increase the capacity of
the other two links to 10 times that of 1-2 , i.e., to 10 c. Note that the utilization on links 1-3
and 3-2 are now x132/(10 c), and Formulation (4.2.6) changes to the following:

minimize{x} F = max
{ x12

c ,
x132
10 c

}

subject to x12 + x132 = h
x12 ≤ c, x132 ≤ 10 c
x12 ≥ 0, x132 ≥ 0.

(4.2.8)

116 4.2 Single-Commodity Network Flow

In this case, too, the optimal load balance is achieved when

x∗
12

c
= x∗

132

10 c
.

On simplification, we obtain

x∗
12 = h/11

and thus, x∗
132 = 10 h/11. This essentially says that load balancing on a network with non-

uniform capacity results in utilization being balanced, but not necessarily flows. A simple
way to visualize this is to consider the capacity of link 1-2 to be 10 Mbps, and the capacity
of other links to be 100 Mbps; it would be preferable to send more traffic to the fatter/higher
capacity link.

4.2.4 Variation in Objective: Average Delay

Another goal commonly defined, especially in data networks, is the minimization of the av-
erage packet delay. For this illustration, we consider again the three-node network with de-
mand volume h between node 1 and node 2; the capacity of all links is set to c. The average
delay in a network (see Appendix B.13 for details) with flow x12 on the direct link path and
x132 on the alternate path can be captured through the expression

x12

c − x12
+ 2x132

c − x132
.

Here again, the capacity is normalized so that the measurement units for flow and capacity
are the same. The goal of minimizing the average delay is to solve the following problem:

minimize{x} F = x12
c−x12

+ 2x132
c−x132

subject to x12 + x132 = h
x12 ≤ c, x132 ≤ c
x12 ≥ 0, x132 ≥ 0.

(4.2.9)

First, we want to point out that the objective function is not defined when x12 = c or x132 = c.
In fact, the problem is meaningful only when x12 < c and x132 < c. Thus, in reality, we want
to limit the bounds on the unknowns below c by a small positive amount, say, ε(> 0), i.e.,
x12 ≤ c − ε and x132 ≤ c − ε.

To solve Eq. (4.2.9), we have two nonnegative variables, x12 and x132, which are related by
x12 + x132 = h; thus, we can rewrite the objective function in terms of just a single unknown,
say in x12, as

F = x12

c − x12
+ 2(h − x12)

c − (h − x12)
.

This is a nonlinear function that we want to minimize. We can use calculus to solve this
problem. That is, we differentiate expression F with respect to x12 (i.e., dF

dx12
) and set the result

C H A P T E R 4 Network Flow Modeling 117

to zero, i.e., dF
dx12

= 0; then, we can solve this as an equation to find solution x12. You can do the
“second-derivative” test at this solution to verify that it is indeed minimum, not a maximum.
In our case, dF

dx12
= 0 translates to solving a quadratic equation; this means that we obtain

two solutions. However, only one solution, x12 = −h + 3 c − 2
√

2c + √
2h, is relevant since we

must have x12 ≥ 0; furthermore, we need to ensure that the resulting solution is never beyond
the demand volume h, i.e., x12 ≤ h. Thus, we can write the solution from differentiation by
incorporating the necessary bounds as follows:

x∗
12 = min{h, −h + 3 c − 2

√
2c + √

2h}. (4.2.10)

From the above result, we can see that if the demand volume is low, the optimal solution
is route all flow on the direct link path; but as the demand volume grows, it is optimal to flow
some of the value on of the second path.

4.2.5 Summary and Applicability
In this section, we have considered the single-commodity network flow problem for three
different goals: minimum cost routing, load balancing, and minimization of the average de-
lay. In Figure 4.3, we have plotted the optimal flow on the direct link path, x∗

12, given by
(4.2.4), (4.2.5), (4.2.7), and (4.2.10) for the three different objectives (including two cases for
minimum cost routing) for demand volume, h, ranging from 0 to 20. From the optimal solu-
tions obtained for these cases, it is clear that although the domain of each problem is the same,
that is, the constraint set is the same, the actual optimal solution is different depending on the
goal; furthermore, the actual values of h and c also matter.

While we have illustrated here solutions for only a three-node single-commodity case, the
general behavior is quite applicable in any size network. That is, it is important to note that

F I G U R E 4.3 Optimal flow on the direct link path with different objectives.

118 4.3 Multicommodity Network Flow: Three-Node Example

the optimal solution with different objective functions usually has minimal difference when
the demand volume is low compared to the capacity (“lowly-loaded case”), and also have
surprisingly minimal difference when the demand volume is closer to the capacity (“highly-
loaded case”); however, in the moderately-loaded region, the flow solution can vary signif-
icantly from one objective function to another. Thus, the important lesson here is that for a
particular communication networking and/or operational environment, we need to be care-
ful in choosing the primary goal and the load to capacity region considered matters. In other
words, we cannot choose one goal and then wonder why the optimal solution for this goal is
quite different from another goal.

4.3 Multicommodity Network Flow: Three-Node Example

In this section, we consider multiple commodities, that is, multiple demand pairs have pos-
itive demand volumes. As with the single-commodity case, we will consider again the three
different objectives. We will again use a three-node network to explain the multicommodity
network flow problem.

4.3.1 Minimum Cost Routing Case

For the multicommodity case in a three-node network, all three demand pairs can have pos-
itive demand volumes. For clarity, we will use a subscript with demand volume notation h
to identify different demands; thus, the demand volume between nodes 1 and 2 will be iden-
tified as h12, between 1 and 3 as h13, and between 2 and 3 as h23. For each demand pair, the
volume of demand can be accommodated using two paths: one is the direct link path and
the other is the alternate path through the third node. In Figure 4.4, we show all the possible
paths for each demand pair. The amount of flow on each path is the unknown that is to be
determined based on an objective; we denote the unknowns as x12 for path 1-2 for demand
pair 1:2, and x132 for path 1-3-2 , and so on.

F I G U R E 4.4 Three node example with all possible paths.

C H A P T E R 4 Network Flow Modeling 119

Much as shown earlier for the single-commodity flow problem, we can write that the
demand volume for a node pair must be carried over the two paths. Thus, for demand pair
1:2, we can write

x12 + x132 = h12. (4.3.1a)

Similarly, for demand pairs 1:3 and 2:3, we can write the following:

x13 + x123 = h13 (4.3.1b)

x23 + x213 = h23. (4.3.1c)

These unknown flow amounts, while satisfying the demand volume requirements, must also
satisfy capacity limits on any link. We denote capacities of links 1-2 , 1-3 , and 2-3 by c12, c13,
and c23, respectively.

By following the paths listed in Figure 4.4, we note that three different paths from three
different demand pairs use link 1-2; they are paths 1-2, 1-2-3, and 2-1-3 (see Figure 4.5). Since
the sum of the flow over these three paths cannot exceed the capacity, c12, of link 1-2 , we can
write the following inequality (constraint):

x12 + x123 + x213 ≤ c12. (4.3.2a)

Similarly, for the other two links 1-3 and 2-3, we can write

x13 + x132 + x213 ≤ c13 (4.3.2b)

x23 + x132 + x123 ≤ c23. (4.3.2c)

We next consider the objective function for minimum cost routing. If the unit costs of routing
on paths 1-2, 1-3-2, 1-3, 1-2-3, 2-3, and 2-1-3 are denoted by ξ12, ξ132, ξ13, ξ123, ξ23, and ξ213,
respectively, then the total routing cost can be written as

total cost = ξ12x12 + ξ132x132 + ξ13x13 + ξ123x123 + ξ23x23 + ξ213x213. (4.3.3)

F I G U R E 4.5 Link flow on link 1-2 for paths for different demand pairs.

120 4.3 Multicommodity Network Flow: Three-Node Example

Thus, the entire problem can be formulated as follows:

minimize{x} F = ξ12x12 + ξ132x132 + ξ13x13 + ξ123x123 + ξ23x23 + ξ213x213

subject to x12 + x132 = h12

x13 + x123 = h13

x23 + x213 = h23

x12 + x123 + x213 ≤ c12

x13 + x132 + x213 ≤ c13

x23 + x132 + x123 ≤ c23

x12 ≥ 0, x132 ≥ 0, x13 ≥ 0, x123 ≥ 0, x23 ≥ 0, x213 ≥ 0.

(4.3.4)

The above problem has six nonnegative variables, and six constraints.

Example 4.1 Illustration of solution for Eq. (4.3.4).
Consider demand volumes to be h12 = 5, h13 = 10, and h23 = 7, and capacities to be

c12 = 10, c13 = 10, c23 = 15 (see Figure 4.6). If the unit cost is based on the number of links
a flow traverses, that is, 1 for a single-link path and 2 for a two-link path, then we can write
ξ12 = ξ13 = ξ23 = 1, ξ132 = ξ123 = ξ213 = 2. Clearly, the optimal solution to Eq. (4.3.4) is to flow
demand volume for each demand pair on the respective direct link path, i.e., we set x∗

12 = 5,
x∗

13 = 10, x∗
23 = 7 with the other variables taking the value zero since all constraints are satis-

fied; here, the total cost at optimality is 22.
However, if the unit costs are different, such as a single link path costing twice that of a

two-link path, i.e., ξ12 = ξ13 = ξ23 = 2, ξ132 = ξ123 = ξ213 = 1, then the optimal solution that
satisfies all the constraints would be: x∗

12 = 1, x∗
132 = 4, x∗

13 = 3.5, x∗
123 = 6.5, x∗

23 = 4.5, x∗
213 =

2.5, with the total cost being 31. �

Unlike the ease with which we were able to determine the optimal solution for the single-
commodity network flow problem given by Eq. (4.2.3), it is not so easy to do so for the multi-
commodity network flow problem given by Eq. (4.3.4) since the latter problem has six vari-
ables and six constraints. Thus, we need to resort to an algorithmic approach to solving this
problem.

First, recall that problems such as Eq. (4.3.4) are classified as linear programming (LP) prob-
lems since all constraints as well as the objective function are linear. LP problems can be solved
using the well-known simplex method, and other methods such as the interior point method;
for example, see [164], [515], [711]. While these methods work well in practice, they are fairly
complicated algorithms, and their description is beyond the scope of this book. Fortunately,
there are many software packages for solving LP problems; for example, see [237] for a sur-
vey of LP solvers. Such a package allows a user to enter the problem almost in the way it is
described in Eq. (4.3.4).

Example 4.2 Solving Eq. (4.3.4) using CPLEX.
We will illustrate here how to solve Eq. (4.3.4) when the alternate path is cheaper than the

direct path, i.e., ξ12 = 2, ξ132 = 1, and so on. We will use CPLEX [158], a popular LP solver for
this illustration. In CPLEX, you can enter the data for the second case of Example 4.1 as given
below (see Appendix B.5 for additional information):

C H A P T E R 4 Network Flow Modeling 121

F I G U R E 4.6 Demand volume and capacity data for three-node network.

Minimize 2 x12 + x132 + 2 x13 + x123 + 2 x23 + x213
subject to

d12: x12 + x132 = 5
d13: x13 + x123 = 10
d23: x23 + x213 = 7
c12: x12 + x123 + x213 <= 10
c13: x132 + x13 + x213 <= 10
c23: x132 + x123 + x23 <= 15

Bounds
0 <= x12
0 <= x132
0 <= x13
0 <= x123
0 <= x23
0 <= x213

End

The above representation is very similar to Formulation (4.3.4). Problem data in CPLEX
are entered in the ASCII-based text format; thus, subscripts are directly tagged on to the
variables; similarly, note the use of <= instead of ≤.

Using CPLEX, we can find the optimal solution to Eq. (4.3.4). Solutions can be displayed
by giving the display command as follows:

CPLEX> display solution variables -
Variable Name Solution Value
x12 1.000000
x132 4.000000
x13 3.500000
x123 6.500000
x23 4.500000
x213 2.500000

Thus, we have x∗
12 = 1,x∗

132 = 4,x∗
13 = 3.5,x∗

123 = 6.5,x∗
23 = 4.5,x∗

213 = 2.5. �

It may be noted that the above solution gives fractional values, which is the case in gen-
eral for an LP problem. That is, the multicommodity flow model as given by Eq. (4.3.4) is
for variables taking values in the real number space. Sometimes we do have restrictions; for
example, some or all variables are allowed to take only integer values. If some of the vari-
ables take integral values, then such problems are labeled as mixed integer linear programming
(MILP) problems; if all variables take integral values, then such problems are referred to as
integer linear programming (ILP) problems. Many real-world communication network problems

122 4.3 Multicommodity Network Flow: Three-Node Example

are appropriately modeled as MILP or ILP problems; we will illustrate such real examples
later in this book.

If variables take only integral values, then this is in fact a form of constraints; thus, they
need to be explicitly stated as part of the problem definition. If we do in fact require Eq. (4.3.4)
to include the requirement that all variables take integral values, then we can rewrite it as
follows:

minimize{x} F = ξ12x12 + ξ132x132 + ξ13x13 + ξ123x123 + ξ23x23 + ξ213x213

subject to x12 + x132 = h12

x13 + x123 = h13

x23 + x213 = h23

x12 + x123 + x213 ≤ c12

x13 + x132 + x213 ≤ c13

x23 + x132 + x123 ≤ c23

x12 ≥ 0, x132 ≥ 0, x13 ≥ 0, x123 ≥ 0, x23 ≥ 0, x213 ≥ 0
all xs integer.

(4.3.5)

Example 4.3 Multicommodity network flow with integer solution.
Considering again demand volumes to be h12 = 5, h13 = 10, and h23 = 7, and capacities to

be c12 = 10, c13 = 10, c23 = 15, in CPLEX, we can enter the above ILP problem in the following
way where integrality of variables is explicitly listed:

Minimize 2 x12 + x132 + 2 x13 + x123 + 2 x23 + x213
subject to

d1: x12 + x132 = 5
d2: x13 + x123 = 10
d3: x23 + x213 = 7
c1: x12 + x123 + x213 <= 10
c2: x132 + x13 + x213 <= 10
c3: x132 + x123 + x23 <= 15

Bounds
0 <= x12 <= 10
0 <= x132 <= 10
0 <= x13 <= 10
0 <= x123 <= 10
0 <= x23 <= 10
0 <= x213 <= 10

Integer
x12 x132 x13 x123 x23 x213

End

An important point to note here is that when variables are explicitly declared as integers,
an upper bound for these variables is required to be specified since CPLEX assumes that the
default for the upper bound is 1. In the above case, we have artificially set the upper bound at
10 since from demand volume values we know that no variables will take more than 10 units
of flow at optimality. The optimal solution with integrality requirement is obtained as

x∗
12 = 1,x∗

132 = 4,x∗
13 = 4,x∗

123 = 6,x∗
23 = 5,x∗

213 = 2

and the total cost at optimality is 32. �

C H A P T E R 4 Network Flow Modeling 123

You may note that the optimal objective cost is higher when the variables take integral
values compared to the counterpart when variables are allowed to take real values. It is in-
deed true that for a minimization problem, the optimal cost for the integral-valued problem
is always higher than or equal to the counterpart problem when the variables take real val-
ues, i.e., when integrality is relaxed. Note that the integrality requirement can be thought of
as additional constraints to a problem; any time additional constraints are added to a base
problem, the optimal objective cost goes up as long as the objective is minimization based.
Finally, note that problems with integrality constraints are in general harder to solve, i.e.,
more time-consuming in general. Furthermore, a problem with integrality constraints cannot
be solved by the simplex method; instead, methods such as branch-and-bound and branch-
and-cut are used. Tools such as CPLEX support these methods in addition to the simplex
method; this is exactly what happened when we solved Eq. (4.3.5). For very large problems
(with many variables and constraints), sometimes commercial solvers are not effective; thus,
we resort to developing specialized algorithms by exploiting the structure of a problem; for
various approaches to solving large communication network optimization problems, refer
to [564].

4.3.2 Load Balancing

We now present the formulation for when maximum link utilization is minimized for the
multicommodity case. We first introduce a set of dependent variables for flow on each link. If
we denote the link flow on link 1-2 by y12, then based on our discussion earlier, we can write

y12 = x12 + x123 + x213. (4.3.6a)

Similarly, for the other two links, we introduce y13 and y23, and write

y13 = x13 + x132 + x213 (4.3.6b)

y23 = x23 + x132 + x123. (4.3.6c)

Given y12, y13, y23, we can write the link utilization as y12/c12, y13/c13, y23/c23 for links 1-2,
1-3, and 2-3, respectively. The maximum link utilization over these three links can be written
as

max
{

y12

c12
,

y13

c13
,

y23

c23

}
. (4.3.7)

Note that the actual maximum value is influenced by link flow variables, which are, in turn,
affected by how much flow is assigned to path flow variables. Recall that the goal of load
balancing is to minimize the maximum link utilization. We can write the entire formulation as

124 4.3 Multicommodity Network Flow: Three-Node Example

minimize{x,y} F = max
{

y12
c12

,
y13
c13

,
y23
c23

}

subject to x12 + x132 = h12

x13 + x123 = h13

x23 + x213 = h23

x12 + x123 + x213 = y12

x13 + x132 + x213 = y13

x23 + x132 + x123 = y23

y12 ≤ c12, y13 ≤ c13, y23 ≤ c23

x12 ≥ 0, x132 ≥ 0, x13 ≥ 0, x123 ≥ 0,x23 ≥ 0, x213 ≥ 0
y12 ≥ 0, y13 ≥ 0, y23 ≥ 0.

(4.3.8)

It is important to note that the maximum link utilization is a quantity that lies between 0 and
1 since link flow should be less then the capacity of the respective link for a feasible problem.
Note that problem (4.3.8) is, however, not an LP problem since the objective function (4.3.7) is
nonlinear; rather it is a piecewise linear function. That means that the standard LP approach
that we discussed earlier cannot be directly used. Fortunately, the maximum link utilization
function has a nice property. To discuss it, we first introduce the definition of a convex function.
A function f is convex if for any two points z1 and z2 in its domain, and for a parameter α in
0 ≤ α ≤ 1, the following holds:

f (αz1 + (1 − α)z2) ≤ αf (z1) + (1 − α)f (z2). (4.3.9)

This means that the convex combination of the line segment connecting the function values
at f (z1) and f (z2) will be grater than or equal to the function between the points z1 and z2.
A pictorial view is presented in Figure 4.7.

We now consider again the objective (4.3.7); it is easy to see that it is convex; also recall
that it is piecewise linear. Thus, if we write (4.3.7) as

r = max
{

y12

c12
,

y13

c13
,

y23

c23

}
, (4.3.10)

F I G U R E 4.7 Convex function.

C H A P T E R 4 Network Flow Modeling 125

then clearly r is greater than or equal to each of its components, i.e.,

r ≥ y12

c12
, r ≥ y13

c13
, r ≥ y23

c23
. (4.3.11)

Since the goal is to minimize Eq. (4.3.7), this is equivalent to minimizing r subject to con-
straints Eq. (4.3.11). Using this result and noting that r ≥ y12

c12
is the same as y12 ≤ c12 r, and

similarly for the other two links, we can write Eq. (4.3.8) as the following equivalent problem:

minimize{x,y,r} F = r
subject to x12 + x132 = h12

x13 + x123 = h13

x23 + x213 = h23

x12 + x123 + x213 = y12

x13 + x132 + x213 = y13

x23 + x132 + x123 = y23

y12 ≤ c12, y13 ≤ c13, y23 ≤ c23

y12 ≤ c12 r, y13 ≤ c13 r, y23 ≤ c23 r
x12 ≥ 0, x132 ≥ 0, x13 ≥ 0, x123 ≥ 0, x23 ≥ 0, x213 ≥ 0
y12 ≥ 0, y13 ≥ 0,y23 ≥ 0.

(4.3.12)

An advantage with the above formulation is that it is an LP problem and, thus, can be solved
using an LP solver such as CPLEX. Note that in transforming Eq. (4.3.8) to Eq. (4.3.12),
we have introduced an additional variable r and three additional constraints as given
by Eq. (4.3.11).

Example 4.4 Solution for the load balancing problem.
We again considering demand volumes to be h12 = 5, h13 = 10, and h23 = 7, and capacities

to be c12 = 10, c13 = 10, and c23 = 15. Using CPLEX on formulation (4.3.12), we obtain the
optimal solution as

x∗
12 = 5, x∗

13 = 7.5, x∗
123 = 2.5,x∗

23 = 7
and the maximum link utilization at optimality is r∗ = 0.75. �

Remark 4.1. Dropping capacity constraints from Eq. (4.3.8) and Eq. (4.3.12).
In formulations (4.3.8) and (4.3.12), constraints y12 ≤ c12, y13 ≤ c13, and y23 ≤ c23 can be

dropped from the formulation without changing the problem. If for the optimal solution the
maximum link utilization is found to be greater than 1, this automatically implies that the
network does not have enough capacity to carry all the demand volume. �

4.3.3 Average Delay
We now consider the problem of minimizing the average delay. To do so, we will use link
flow variables, y12, y13, and y23, that we have introduced in the previous section. The average
delay function (see Appendix B.13) is given by

f (y1,y2,y3) = 1
h12 + h13 + h23

(
y12

c12 − y12
+ y13

c13 − y13
+ y23

c23 − y23

)
. (4.3.13)

126 4.3 Multicommodity Network Flow: Three-Node Example

Since the total external offered load, h12 + h13 + h23, is a constant it can be ignored from the
objective function. Similar to Eq. (4.3.8), this time with the average delay function, we can
write the formulation as follows:

minimize{x,y} F = (y12
c12−y12

+ y13
c13−y13

+ y23
c23−y23

)

subject to x12 + x132 = h12

x13 + x123 = h13

x23 + x213 = h23

x12 + x123 + x213 = y12

x13 + x132 + x213 = y13

x23 + x132 + x123 = y23

y12 ≤ c12, y13 ≤ c13, y23 ≤ c23

x12 ≥ 0, x132 ≥ 0, x13 ≥ 0, x123 ≥ 0, x23 ≥ 0, x213 ≥ 0
y12 ≥ 0, y13 ≥ 0, y23 ≥ 0.

(4.3.14)

We note that the objective function is undefined whenever the link load for any of the links
equals the capacity of that link, a situation that certainly is not desirable when solving the
above problem. Thus, in developing an algorithm to solve this formulation, a slightly modi-
fied version is used where the link is restricted below the capacity by a small positive quan-
tity, say, ε; that is, a capacity constraint such as y12 ≤ c12 is replaced by y12 ≤ c12 − ε; this is
similar for the other two links. Note that we discussed this adjustment earlier for the single-
commodity network flow problem.

It is important to note that the objective function is convex when the link flow is less than
capacity. However, unlike the maximum link utilization case, this function is not piecewise
linear; rather, it is highly nonlinear as the load approaches the capacity. To solve this non-
linear optimization problem, approaches such as the flow deviation algorithm can be used;
for example, see [564, Chapter 5]. We will now describe another approach that considers a
piecewise linear approximation of the objective function.

First observe that the objective function includes the functional form

f (y) = y
c − y

, for 0 ≤ y/c < 1. (4.3.15)

This function, scaled by c, i.e., c f (y) can be approximated by the following piecewise linear
function by matching the function at several points on the curve such as y

c = 0, 1
3 , 2

3 , and so
on:

f̃ (y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3
2 y, for 0 ≤ y

c ≤ 1
3

9
2 y − c, for 1

3 ≤ y
c < 2

3

15 y − 8c, for 2
3 ≤ y

c < 4
5

50 y − 36c, for 4
5 ≤ y

c < 9
10

200 y − 171c, for 9
10 ≤ y

c < 19
20

4000 y − 3781c, for y
c ≥ 19

20 .

(4.3.16)

C H A P T E R 4 Network Flow Modeling 127

F I G U R E 4.8 Piecewise linear approximation function (4.3.16) of y/(c − y) (when c = 1).

In Figure 4.8, we have plotted both Eq. (4.3.15) and Eq. (4.3.16) when c = 1; it is easy to see
that the match is very close. Thus, we can say that c f (y) ≈ f̃ (y). The approximate function,
(4.3.16), can also be written as the maximum of each of the linear pieces as follows:

f̃ (y) = max
{ 3

2 y, 9
2 y − c, 15y − 8c, 50y − 36c, 200y − 171c,

4000y − 3781c
}
, for y ≥ 0.

(4.3.17)

Recall our approach to transform the minimization of max function given by Eq. (4.3.10) in
the previous section to an equivalent problem with constraints. We can do the same transfor-
mation here, and write the minimization of Eq. (4.3.17) in the following form:

minimize{r} r

subject to r ≥ 3
2 y

r ≥ 9
2 y − c

r ≥ 15 y − 8c

r ≥ 50 y − 36c

r ≥ 200 y − 171c

r ≥ 4000 y − 3781c

y ≥ 0.

(4.3.18)

Now consider again Formulation (4.3.14); the objective function has three parts, one for each
link, and each of the exact same form y/(c − y). Thus, for each part, we can use the piecewise
linear approximation as we have described above, and introduce variables r12, r13, and r23

and the related constraints. Using this approximation, and accounting for the scaling factor

128 4.4 Multicommodity Network Flow Problem: General Formulation

c12, c13, and c23 in the approximation, we can write an approximate equivalent problem of
Eq. (4.3.14) as follows:

minimize{x,y,r} F = 1
c12

r12 + 1
c13

r13 + 1
c23

r23

subject to x12 + x132 = h12

x13 + x123 = h13

x23 + x213 = h23

x12 + x123 + x213 = y12

x13 + x132 + x213 = y13

x23 + x132 + x123 = y23

rij ≥ 3
2 yij, (i, j) = (1,2), (1,3), (2,3)

rij ≥ 9
2 yij − cij, (i, j) = (1,2), (1,3), (2,3)

rij ≥ 15 yij − 8cij, (i, j) = (1,2), (1,3), (2,3)

rij ≥ 50 yij − 36cij, (i, j) = (1,2), (1,3), (2,3)

rij ≥ 200 yij − 171cij, (i, j) = (1,2), (1,3), (2,3)

rij ≥ 4000 yij − 3781cij, (i, j) = (1,2), (1,3), (2,3)

x12 ≥ 0, x132 ≥ 0, x13 ≥ 0
x123 ≥ 0,x23 ≥ 0, x213 ≥ 0
y12 ≥ 0, y13 ≥ 0, y23 ≥ 0
r12 ≥ 0, r13 ≥ 0, r23 ≥ 0.

(4.3.19)

The good news about the above formulation is that it is an LP problem; as such, we can use
tools such as CPLEX.

Example 4.5 Minimization based on a piecewise linear approximation for the delay function.
Again consider demand volumes to be h12 = 5, h13 = 10, and h23 = 7, and capacities to

be c12 = 10, c13 = 10, and c23 = 15. For Formulation (4.3.19) using CPLEX, we obtain optimal
flows as: x∗

12 = 5, x∗
13 = 8, x∗

123 = 2, and x∗
23 = 7. �

Remark 4.2. On Formulation (4.3.19).
First note that similar to the previous section, capacity constraints y12 ≤ c12, y13 ≤ c13,

and y23 ≤ c23 can be ignored from this formulation since a high value of rij would indicate
whether the capacity limit is exceeded. Second, due to piecewise linear approximation, we do
not need to worry about issues such as the discontinuity of the nonlinear function, (4.3.15), at
the capacity limit. �

4.4 Multicommodity Network Flow Problem: General Formulation

In previous sections, we considered a three-node network example, first for the single-
commodity network flow problem and then for the multicommodity network flow problem.
In this section, we generalize the multicommodity flow problem for an arbitrary size network.
First we establish a set of notations that works well for representing a general problem.

C H A P T E R 4 Network Flow Modeling 129

4.4.1 Background on Notation

Consider a network with N nodes that has L number of links. With N nodes in a network,
there are N(N − 1)/2 demand pairs possible when we consider bidirectional demands, or
N(N − 1) demand pairs possible when we consider unidirectional demands. In a practical
network, not all nodes in the network are sources or sinks for external traffic; there are of-
ten transit nodes used solely for the purpose of routing; thus, it makes sense to say that we
consider demand pairs that have positive demand volume. Thus, to avoid listing which node
pairs have demand and which do not, a simple way to list them is by using a separate index,
i.e., k = 1,2, . . . ,K, where K is the total number of demand pairs having positive demand
volumes. This means that from a pair of demand nodes i, j a mapping must be maintained to
index k, i.e., i : j → k.

We illustrate the new labeling/indexing though a three-node network example (see Fig-
ure 4.4). In this network (with nodes labeled 1, 2, 3) consider that there are positive demand
volumes for node pairs 1 and 2, and 2 and 3, but not between 1 and 3. We can index the
demand pairs as follows:

Pair Index

1:2 1
2:3 2

with K = 2. However, if all demand pairs have positive demand volume we can index the
demand pairs as follows:

Pair Index

1:2 1
1:3 2
2:3 3

with K = 3. In other words, actual demand pair mapping to index can be different depending
on the number of demands with positive demand volumes. Similarly, candidate paths can be
indexed p = 1,2, . . . ,Pk for each demand identifier k, where Pk is the total number of can-
didate paths for demand k. Consider the three-node network with all demand pairs having
positive demand volume. Each demand pair has two possible paths, one direct and the other
via the third node; thus, P1 = 2, P2 = 2, and P3 = 2. If we label the paths as p = 1 and p = 2 for
each pair, we can define flow variable (unknown) for demand k and path p using the generic
name xkp. In the case of the three-node network, we can write

x11 + x12 = h1

x21 + x22 = h2

x31 + x32 = h3.

(4.4.1)

Note that the above equations are the same as Eq. (4.3.1); only the subscripts are relabeled
with the new indexing scheme for demand pairs and paths.

130 4.4 Multicommodity Network Flow Problem: General Formulation

Now we consider indexing for the three links as follows:

Link Index

1-2 1
1-3 2
2-3 3

With this indexing, the direct path for demand index 1 (i.e., for demand pair 1:2), which is the
path index 1, uses link index 1; the alternate path for demand index 1, which is path index 2,
uses links 2 and 3. This is similar for the other demand. Thus, we can write the capacity
constraints as:

x11 + x22 + x32 ≤ c1

x21 + x12 + x32 ≤ c2

x31 + x12 + x22 ≤ c3.

(4.4.2)

Overall we can write the relationship between a link and a path by indicating which paths
take a specific link—such a link-path match-up is marked with a 1 (and 0, otherwise). This is
presented in Table 4.1.

Incidentally, the representation shown in Table 4.1 can be thought of as a matrix repre-
sentation and if it is multiplied on the right with a vector of all path variables xs in the order
listed, we arrive again at the left-hand side of Eq. (4.4.2); the matrix of information for the
left side is shown in Table 4.1. As an example, the minimum cost routing problem described
earlier in Eq. (4.3.4) can be rewritten with the new labels/indexes for demand pair, link, and
paths, as follows:

minimize{x} F = ξ11x11 + ξ12x12 + ξ21x21 + ξ22x22 + ξ31x31 + ξ32x32

subject to
x11 + x12 = h1

x21 + x22 = h2

x31 + x32 = h3

x11 + x22 + x32 ≤ c1

x12 + x21 + x32 ≤ c2

x12 + x22 + x31 ≤ c3
x11, x12, x21, x22, x31, x32 ≥ 0.

(4.4.3)

Because of representation of the relationship between links and paths, the above representa-
tion is known as the link-path representation or formulation.

4.4.2 Link-Path Formulation

We are ready to consider the general case. Consider an N-node network with K demand
pairs having positive demand volumes, each with Pk(k = 1,2, . . . ,K) candidate paths. Thus,
extending from two paths for the three-node network given in Eq. (4.4.1) to the number of
paths Pk, we can write

xk1 + xk2 + · · · + xkPk = hk, k = 1,2, . . . ,K. (4.4.4)

C H A P T E R 4 Network Flow Modeling 131

TA B L E 4.1 Link-path incidence information.

Link\Path k = 1,p = 1 k = 1,p = 2 k = 2,p = 1 k = 2,p = 2 k = 3,p = 1 k = 3,p = 2
1 1 0 0 1 0 1
2 0 1 1 0 0 1
3 0 1 0 1 1 0

Using summation notation, the above can be rewritten as

Pk∑

p=1

xkp = hk, k = 1,2, . . . ,K. (4.4.5)

For capacity constraints, we introduce a new notation, called the δ notation, which paral-
lels the information presented in Table 4.1. Define

δkp	 = 1 if path p for demand pair k uses the link 	; 0, otherwise.

Now consider again Table 4.1; the information that is reflected in the table is in fact nothing
but δkp	. For example, when k = 1, p = 1 and we consider link 	 = 1, then we are referring
to the direct link path for demand pair 1:2 and whether it uses the direct link 1-2 ; since it
does, δ111 = 1 as we can see from the table. On the other hand, this same path does not use
1-3 (link identifier 2), which means by definition of the δ notation that δ121 should be zero,
which is reflected also in Table 4.1. If we work though a few more examples like these two,
we can see that the δ notation allows us to reflect all capacity constraints, specifically the
left-hand side. In general, consider first a specific demand pair k; for a specific link 	, the
term

Pk∑

p=1

δkp	xkp

indicates that we are to add flows for only the paths that use link 	. Now, if we do summation
over all k = 1,2, . . . ,K, i.e.,

K∑

k=1

Pk∑

p=1

δkp	xkp,

then this term represents the summation of all paths for all demand pairs that use link 	,
which is then the link flow for link 	; the link flow will be denoted by the dependent vari-
ables y	 also, i.e.,

K∑

k=1

Pk∑

p=1

δkp	xkp = y	, 	 = 1,2, . . . ,L.

Since the link flow must be less than or equal to the capacity of the link, then we can
write

132 4.4 Multicommodity Network Flow Problem: General Formulation

TA B L E 4.2 Notation used in the link-path formulation.

Notation Explanation
Given:

K Number of demand pairs with positive demand volume
L Number of links
hk Demand volume of demand index k = 1,2, . . . ,K
c	 Capacity of link 	 = 1,2, . . . ,L
Pk Number of candidate paths for demand k, k = 1,2, . . . ,K
δkp	 Link-path indicator, set to 1 if path p for demand pair k uses the link 	; 0,

otherwise
ξkp Nonnegative unit cost of flow on path p for demand k

Variables:
xkp Flow amount on path p for demand k
y	 Link-flow variable for link 	

y	 =
K∑

k=1

Pk∑

p=1

δkp	xkp ≤ c	, 	 = 1,2, . . . ,L. (4.4.6)

It is easy to see that y	 is really a dependent variable, and is used here for convenience; it can
be dropped without affecting the overall model. Here we will discuss the general formulation
for the minimum cost routing problem. Thus, if ξkp is the unit cost of path p for demand pair
k, then we can write

Total cost =
K∑

k=1

Pk∑

p=1

ξkpxkp.

Thus, the general formulation for the minimum cost routing problem can be written
as

minimize{x} F =
K∑

k=1

Pk∑

p=1

ξkpxkp

subject to
Pk∑

p=1

xkp = hk, k = 1,2, . . . ,K

K∑

k=1

Pk∑

p=1

δkp	 xkp ≤ c	, 	 = 1,2, . . . ,L

xkp ≥ 0, p = 1,2, . . . ,Pk, k = 1,2, . . . ,K.

(4.4.7)

We now discuss the size of the problem. For an undirected network with N nodes, there
are N(N − 1)/2 demand pairs, which is also the number of demand constraints if all demand
pairs have positive demand volume; for L links, there are L capacity constraints. If on average
Pk candidate paths are considered for each demand pair k, then the number of flow variables

C H A P T E R 4 Network Flow Modeling 133

TA B L E 4.3 Size of minimum cost routing problem (undirected network).

N L Pk Variables Constraints
(average) Demand Capacity

5 7 4 40 10 7
10 30 7 315 45 30
50 200 10 12,250 1225 200

is N(N − 1)Pk/2. In Table 4.3, we list the size of Problem (4.4.7) for several values of N, L, and
Pk. It is clear that the problem size grows significantly as the network size grows. Still such a
formulation can be solved by tools such as CPLEX for problems of reasonable size. Certainly,
specialized algorithms can be used as well; for example, see [564] for a survey of different
specialized methods.

Remark 4.3. Generating candidate paths for Eq. (4.4.7).
It may be noted that any link-path formulation assumes that a set of candidate paths

for each demand pair is available as an input. For many networks, the network administra-
tors have a good sense about what candidate paths to consider–thus such paths are not too
difficult to determine. Certainly, a k-shortest path algorithm (refer Section 2.8) can be used to
generate a set of candidate paths, which can then be used as input to the above models. Since
the purpose of candidate paths is to serve as a feeder to the link-path formulation, the k-
shortest paths can be generated using such an algorithm by using just the hopcount to reflect
cost on a link. �

The above remark, however, does not indicate how many candidate paths to generate for
each demand pair. The following important result gives us a very good clue, instead.

Result 4.1. If Eq. (4.4.7) is feasible, then at most K + L flow variables are required to be nonzero at
optimality.

To see the above result, consider just the demand and capacity constraints of Prob-
lem (4.4.7). Note that there are K demand constraints that are equations and L capacity con-
straints that are inequalities. For each capacity constraint, we add a nonnegative variable s	

(called the slack variable) to convert it to an equation. Thus, we can write the following system
of equations for demand and capacity constraints of Problem (4.4.7):

Pk∑

p=1

xkp = hk, k = 1,2, . . . ,K

K∑

k=1

Pk∑

p=1

δkp	 xkp + s	 = c	, 	 = 1,2, . . . ,L.

(4.4.8)

Linear programming theory (for example, see Section 1.2 in [397]) says that the number of
nonzero variables in any basic feasible solution, a requirement at optimality, is at most require
to be the number of equations. Here, we can easily see that there are K + L equations; thus,
at most K + L of the flow variables xkp are required to be nonzero at optimality. It should be
noted that Result 4.1 is true only when the objective function is linear.

134 4.4 Multicommodity Network Flow Problem: General Formulation

Example 4.6 Meaning of Result 4.1.
Consider the case of N = 50 nodes from Table 4.3. Since this network has 200 links and

all 1225 demand pairs are assumed to have positive demand volume, Result 4.1 implies that
at most 1425 out of 12,250 flow variables will need to be nonzero at optimality. More impor-
tantly, even if we were to increase the number of candidate paths for each pair from 10 to 20,
which increases the total number of flow variables to 24,450, the requirement for the number
of nonzero flows at optimality remains at 1425. Note that every demand pair must have at
least one nonzero flow due to demand constraints. This means that at most 200 demand pairs
will need to have two or more paths with nonzero flows and one path with nonzero flow for
at least the remaining 1025 (= 1225 − 200) demand pairs. �

Remark 4.4. Common sense on candidate path generation and relation to optimal solution.
A general observation from the above discussion is that for a large network, only a very

few paths for each demand pair will have nonzero flows at optimality, while most demand
pairs will have only a single path with nonzero flow at optimality. The difficulty ahead of
time is not knowing which demand pairs will have multiple paths with nonzero flows at
optimality; in other words, we do not know exactly which candidate paths to consider as
input to the model. Since for most communication networks in practice, network designers
and administrators have a reasonable idea on what paths are likely to be on the optimal
solution, the candidate path consideration can be tailored as needed. However, there is still
a possibility that for a specific network scenario a path that could have been in the optimal
solution was not even included in the set of candidate paths; thus, even after solving a model
such as Eq. (4.4.7), we might not have arrived at the “ultimate” optimality. This is where
we need to keep in mind another important aspect of real-world communication networks;
the demand volume used in a multicommodity flow formulation is often an estimate based
either on measurements and/or forecast; some error in the demand volume estimate cannot
be completely ruled out. Thus, any attempt to find “ultimate” optimality based on demand
volume information that has a certain error margin to begin with can be best construed as
defying common sense. Thus, a candidate path set with a reasonable number of paths per
demand pair suffices in practice. In our experience, we have found that for most moderate
to large networks, considering/generating 5–10 candidate paths per demand pair is often
sufficient. �

We next consider the multicommodity network flow problem where the goal is to mini-
mize the maximum link utilization, i.e., the load balancing case. We will write this using the
additional variable r along with dependent link-flow variables y	. Thus, similar to Eq. (4.3.11)
for the three-node case, we can write the constraints

y	 ≤ c	 r, 	 = 1,2, . . . ,L, (4.4.9)

which captures the maximum link utilization factor. Overall, we can write the generation
formulation for minimizing maximum link utilization as the following linear programming
problem:

C H A P T E R 4 Network Flow Modeling 135

minimize{x,y,r} F = r
subject to

Pk∑

p=1

xkp = hk, k = 1,2, . . . ,K

K∑

k=1

Pk∑

p=1

δkp	 xkp = y	, 	 = 1,2, . . . ,L

y	 ≤ c	 r, 	 = 1,2, . . . ,L
xkp ≥ 0, p = 1,2, . . . ,Pk, k = 1,2, . . . ,K
y	 ≥ 0, 	 = 1,2, . . . ,L
r ≥ 0.

(4.4.10)

Remark 4.5. Revisiting Result 4.1 for Eq. (4.4.10).
Note that Result 4.1 would come out somewhat different for Eq. (4.4.10). An important

point about Result 4.1 is that it is driven by the constraints of a problem, other than nonneg-
ative constraints. From Eq. (4.4.10), we can combine the first three sets of constraints into the
following two sets of constraints by eliminating ys:

Pk∑

p=1

xkp = hk, k = 1,2, . . . ,K

K∑

k=1

Pk∑

p=1

δkp	 xkp ≤ c	 r, 	 = 1,2, . . . ,L.

(4.4.11)

Thus, we still have K + L equations when we transform the second set to equality by adding
slack variables. In this case, at most K + L − 1 flow variables need to be nonzero at optimal-
ity since variable r must be positive at optimality; thus, together, they total K + L nonzero
variables. �

For the case of minimizing the average link delay, we can take a similar approach to
formulate the general model, especially when using the piecewise linear approximation of
the load-latency function as given earlier in Eq. (4.3.16). This formulation as well as how
many flows need to be nonzero at optimality is left as an exercise.

4.4.3 Node-Link Formulation

In this section, we present another approach for representing a multicommodity network
flow problem that is based on node-link representation. We will illustrate it for the minimiza-
tion of maximum link utilization problem; the new notation is summarized in Table 4.4.

The idea here is that instead of taking the notion of paths, the point of view is taken
from a node. For any demand volume for a demand pair, a node is either a source node
(that is the demand starting point) or a destination node (that is the demand termination
point), or an intermediary node where any flow that enters for this demand pair through
one link must go out through another link to maintain conservation of flows. While it may
not be apparent, the node-link formulation is inherently described for a directed network

136 4.4 Multicommodity Network Flow Problem: General Formulation

(with directed links). Somewhat similar to the δ notation for the link-path formulation, we
introduce a pair of (a,b) notation for node-link formulation (see Table 4.4).

Regarding variables, they are considered to be flow variables in terms of links (not paths)
for every demand pair. Thus, if we define z	k as the amount of flow on link 	 for demand pair
identifier k, then the flow conservation requirement for k (k = 1,2, . . . ,K) can be written as
follows:

L∑

	=1

av	z	k −
L∑

	=1

bv	z	k =
⎧
⎨

⎩

hk, if v = sk

0, if v �= sk, tk, v = 1,2, . . . ,N
−hk, if v = tk.

The relation between z	k and y	 can be stated as follows:

K∑

k=1

z	k = y	, 	 = 1,2, . . . ,K.

The minimization of the maximum link utilization problem can be represented in the node-
link representation by the following linear programming problem:

minimize{z,y,r} F = r
subject to

L∑

	=1

av	z	k −
L∑

	=1

bv	z	k =
⎧
⎨

⎩

hk, if v = sk

0, if v �= sk, tk, v = 1,2, . . . ,V
−hk, if v = tk,

k = 1,2, . . . ,K
K∑

k=1

z	k = y	, 	 = 1,2, . . . ,K

y	 ≤ c	 r, 	 = 1,2, . . . ,K
z	k ≥ 0, 	 = 1,2, . . . ,L, k = 1,2, . . . ,K
y	 ≥ 0, 	 = 1,2, . . . ,L
r ≥ 0.

(4.4.12)

Thus, the above formulation is the counterpart of the link-path formulation presented in
Eq. (4.4.10) for the minimization of maximum link utilization. An advantage of the node-link
formulation is that it is not constrained by the candidate path set being an input. Thus, from
a purely theoretical point of view, the node-link formulation is more general. However, once
a node-link formulation is solved, it is not easy to construct the optimal paths as well as the
flows (except for the single-commodity case). Knowing the paths that have positive flows is
often the requirement of many network designers and administrators since this information
allows them to see how the demand volume is flowing in the model and whether it is com-
parable to the observation from the actual network. Thus, the link-path formulation is more
practical than the node-link formulation and will be primarily used in the rest of the book. We
have presented here the node-link representation because this representation is often used in
many scientific publications.

C H A P T E R 4 Network Flow Modeling 137

TA B L E 4.4 Notation used in the node-link formulation.

Notation Explanation
Given:

N Number of nodes (indexed by v = 1,2, . . . ,N)
K Number of demand pairs with positive demand volume
L Number of links
hk Demand volume of demand identifier k = 1,2, . . . ,K
sk Source node of demand identifier k = 1,2, . . . ,K
tk Destination node of demand identifier k = 1,2, . . . ,K
c	 Capacity of link 	 = 1,2, . . . ,L
av	 Link-path indicator, set to 1 if path p for demand pair k uses the link 	; 0, other-

wise
bv	 Link-path indicator, set to 1 if path p for demand pair k uses the link 	; 0, other-

wise
Variables:

z	k Flow amount on link 	 for demand k
y	 Link-flow variable for link 	

r Maximum link utilization variable

4.5 Multicommodity Network Flow Problem: Nonsplittable Flow

In many instances, the demand volume between an origination-destination node pair is not
allowed be split into multiple paths. In this section, we consider the case when the demand
volume is nonsplittable. For ease of comparison and simplicity, we will consider the coun-
terpart of the minimum cost routing case given by Eq. (4.4.7) in the link-path representation
framework. A similar approach can be taken for other objectives.

From a modeling point of view, we need to pick only a single path out of a set of candidate
paths for a demand pair. In other words, the decision to choose a path is a binary decision,
however, with the additional requirement that only one of them per demand pair is to be
selected. Thus, if we assign a 0/1 decision variable, ukp, to path p for demand pair k, we
must have the requirement that

Pk∑

p=1

ukp = 1, k = 1,2, . . . ,K. (4.5.1)

You may compare this equation with Eq. (4.4.5) to note the differences. To determine the link
flow on a link, we need to first identify which candidate paths are using a particular link for
a particular demand pair k, i.e.,

∑Pk
p=1 δkp	ukp on link 	. To bring into account the demand

volume hk with this expression, we simply multiply it and obtain
∑Pk

p=1 δkp	hkukp. Since only
one path is selected, hk is counted only once for the path selected, although multiple candi-

138 4.6 Further Lookup

date paths for a demand pair are potentially likely to use a particular link. Now, summing
over all demand pair, and bringing the capacity constraint requirement, we can write

K∑

k=1

Pk∑

p=1

δkp	hkukp ≤ c	, 	 = 1,2, . . . ,L (4.5.2)

as the counterpart to Eq. (4.4.6). Then, the minimum cost routing problem with nonsplittable
multicommodity flow can be written as:

minimize{u} F =
K∑

k=1

Pk∑

p=1

ξkphkukp

subject to
Pk∑

p=1

ukp = 1, k = 1,2, . . . ,K

K∑

k=1

Pk∑

p=1

δkp	 hkukp ≤ c	, 	 = 1,2, . . . ,L

ukp = 0 or 1, p = 1,2, . . . ,Pk, k = 1,2, . . . ,K.

(4.5.3)

It is easy to see the similarity between this formulation and Formulation (4.4.7). The main dif-
ference is that the nonsplittable flow problem is an integer multicommodity flow model, with
the special requirement that only one path is be chosen for each demand pair. It is interesting
to note that if we relax the binary requirement on ukp in the above formulation and allow
ukps to also take fractional values between 0 and 1 instead, the relaxed problem is equivalent
to Formulation (4.4.7) since we can then write xkp = hkukp.

4.6 Summary
In this chapter, we introduce you to network flow modeling, especially to link-path formu-
lation of the single and multicommodity network flow problems along with consideration of
different objective functions. Such models are often used in traffic engineering of communi-
cation networks. Thus, the material here serves the purpose of introducing you to how to do
abstract representations of flows and paths, especially when it comes to network modeling.

It may be noted that we have presented Formulations (4.4.7) and (4.4.10) assuming that
flow variables take continuous values. In many communication networks problems, flow
variables are integer-valued only or the demand volume for a demand pair is nonsplittable
(refer to Formulation (4.5.3)). Similarly, objective functions other than the ones illustrated here
can be developed for appropriate problems. These variations will be introduced later in the
book as and when we discuss specific communication network routing problems.

Further Lookup
Kalaba and Juncosa [345] in 1956 were the first to address problems in communication net-
working using a multicommodity flow approach; incidently, their formulation can be consid-
ered the first node-link–based multicommodity flow representation in which the term message

C H A P T E R 4 Network Flow Modeling 139

is used to generically describe communication demand. A quote from this paper is interest-
ing: “In a system such as the Western Union System, which has some 15 regional switching
centers all connected to each other, an optimal problem of this type would have about 450 con-
ditions (constraints) and involve around 3000 variables.” By referencing the Kalaba–Juncosa
paper, Ford and Fulkerson [232] were perhaps the first to formulate the maximal flow mul-
ticommodity problem using the link-path representation; incidently, the origin of the “delta”
notation (i.e., δkp) can be attributed to this work.

While we have briefly discussed solution approaches to models presented here, this chap-
ter primarily focuses on problem formulation. We have, however, mentioned tools such as
CPLEX to solve such formulations. While such tools work well, they might not be the best
tools for all types and sizes of multicommodity network flow problems. A detailed discus-
sion of various algorithms that might be applicable is outside the scope of this book. Thus,
we direct you to the companion book [564] if you are interested in understanding the details
of algorithmic approaches and implementation for a variety of network flow models.

Finally, for additional discussion on network flow modeling, see books such as [6], [80].

Exercises

4.1 Consider a three-node network where the nodes are denoted by 1, 2, and 3. You’re given
the following information:

Pair Demand

1:2 5
1:3 9
2:3 –

Link Capacity

1-2 10
1-3 10
2-3 5

Assume that only direct routing is allowed for pair 1:2 demand, while the other pair is
allowed to split its demand volume.

(a) Formulate the minimum cost routing problem assuming that the cost of unit flow on
any link is one, except 2-3 where it is zero. Determine the optimal solution.

(b) Formulate the problem of optimal load balancing (min-max) flows in the network.
Determine the optimal solution.

4.2 Consider a four-node ring network where nodes are connected as follows: 1-2-3-4-1. As-
sume that demand volume between 1 and 3 is 25, between 2 and 4 is 30, and between 2
and 3 is 10. Capacity on each link is 50.

(a) Formulate an optimization problem in which the goal is to maximize free capacity
availability. Determine the optimal flow for this objective.

(b) Formulate an optimization problem in which the goal is to load balance the network.
Determine the optimal flow for this objective.

(c) What would happen when we consider either of the above objectives if the following
additional requirement is added: the demand volume for each demand pair must not
be split into two paths?

140 4.6 Exercises

F I G U R E 4.9 A nine-node Manhattan street network.

4.3 Consider a four-node network in which nodes are numbered 1, 2, 3, 4. All nodes are
directly connected to each other except that there is no link between nodes 1 and 2.

Link capacities are given as follows: 30 on link 1-3, 5 on link 1-4, 15 on link 2-3, 10 on link
2-4, and 10 on link 3-4.

Demand volumes are given to be 15 for pair 1:2, 20 for pair 1:3, and 10 for pair 2:3.

(a) Formulate the load balancing optimization problem, and determine the optimal so-
lution.

(b) Formulate the problem of minimizing average delay where the average delay is ap-
proximated using the piecewise linear function (4.3.16). Determine the optimal solu-
tion.

4.4 Consider the nine-node Manhattan street network in Figure 4.9.

(a) Assume that all links have 100 units of capacity, and the goal is to load balance the
network. Find optimal flows (1) if a single demand between node 1 and 9 with vol-
ume of 60 units is considered, (2) if two demands, one between 1 and 9 and another
between 3 and 7, each of volume 60, considered.

(b) Assume that all links have 100 units of capacity except for links 2-5, 4-5, 5-6, 5-8,
which have 60 units of capacity. The goal is to load balance the network. Find op-
timal flows (1) if single demand between node 1 and 9 with volume of 60 units is
considered, (2) if two demands, one each between 1 and 9 and another between 3
and 7, each of volume 60, are considered.

4.5 Consider the same demand/capacity scenarios described in Exercise 4.4. Find optimal
flows if minimum cost routing is the objective used instead (assume unit cost of flow on
each link).

4.6 Consider the same demand/capacity scenarios described in Exercise 4.4. Find optimal
flows if a composite objective function that combines minimum cost routing with load
balancing is used. Determine how the solution changes as the parameters associated with
the cost components of the composite object are varied.

Part II: Routing in IP
Networks
In this part, we focus on routing in IP networks. It is divided into five chapters.

In Chapter 5, we first present the basic background on IP routing in the presence of IP
addressing, and how the routing table is organized and used by routers for packet forward-
ing. We then present protocols for Internet that falls into the distance vector protocol family.
Specifically, we discuss three well-known protocols RIP, IGRP, and EIGRP. The connection
is also drawn between a protocol specification such as RIP and and the basic concept of a
distance vector protocol.

Chapter 6 covers OSPF and integrated IS-IS. In discussing OSPF, we point out why dif-
ferent types of link statement advertisements are required to cater to the needs in different
operational configuration scenarios. For the integrated IS-IS protocol, we show its similarities
and subtle differences with OSPF, although as of now there are no fundamental differences.

An important aspect of efficient routing in an operational network is proper traffic engi-
neering. In Chapter 7, we show how network flow modeling can be applied to determine link
weights for IP traffic engineering. In doing so, we also discuss how traffic demands are taken
into account in the traffic engineering decision process.

Next, we present Border Gateway Protocol (BGP) in Chapter 8. The role of BGP in the
Internet is critical as it allows exchange of reachable IP prefixes and in determinating AS-
paths. There are, however, several attributes to consider in the path selection process; more
importantly, policy constraints are also taken into account. Thus, many facets of BGP are
covered in this chapter.

Finally, in Chapter 9, we present Internet routing architectures. This brings together how
BGP is used, interaction between different domains either through public or private peering,
and how points of presence are architected. Furthermore, we discuss growth in routing table
entries.

5
IP Routing and
Distance Vector
Protocol Family
If I have seen further than others, it is by standing upon the shoulders of
giants.

Isaac Newton

Reading Guideline

This chapter is geared to provide you with details of distance vector protocols RIP,
IGRP, and EIGRP. Thus, each topic can be read separately. However, to understand
the context of the protocols, some basics are included at the beginning about routers
and networks, including addressing. A comparative summary of these protocols
including a discussion on configuration complexity is provided at the end in the
section titled Summary.

C H A P T E R 5 IP Routing and Distance Vector Protocol Family 143

In this chapter, we start with the basics of IP routing. Thus, this builds on our overview
discussion about IP addressing and routing, presented in Chapter 1. We then present IP dis-
tance vector routing protocol family: Routing Information Protocol (RIP), Interior Gateway
Routing Protocol (IGRP), and Enhanced Interior Gateway Routing Protocol (EIGRP). In sub-
sequent chapters, we will discuss Open Shortest Path First (OSPF) and Intermediate System
to Intermediate System (IS-IS)—two link state routing protocols, followed by Border Gateway
Protocol (BGP), the path vector protocol used in the Internet.

The primary goal here is to see how a specific protocol is described and its intrinsic fea-
tures, including any limitations. We also discuss any specific issues that need addressing to
go from the basic concept of a distance vector protocol to an actual protocol used in IP net-
works. To consider various protocols in an IP network, it is helpful to understand how IP
addressing and routing tables are related to a router-based IP network. Furthermore, since
communication of any routing information brings up the issue of whether this information is
reliably delivered, we also discuss how the TCP/IP protocol stack plays a role.

The protocols described here were all originally intended for IP intradomain networks
but are possible to use for interdomain routing interactions. In this regard, we also present a
short discussion on route redistribution.

5.1 Routers, Networks, and Routing Information: Some Basics
In this section, we will discuss a few important points in regard to an IP network and com-
munication of routing information. This is helpful in understanding and differentiating how
a real protocol’s applicability to a networking environment requires consideration of the ad-
dressing mechanism, and in considering unreliable or reliable delivery of routing informa-
tion, the functionalities provided in the TCP/IP protocol stack. It is important that you are
familiar with IPv4 addressing, subnetting, and CIDR, and the basics of the TCP/IP protocol
stack, described earlier in Chapter 1.

5.1.1 Routing Table

A communication network connects a set of nodes through links so that traffic can move from
an originating node to a destination node; for all the traffic to go to its destination, nodes in
the network must provide directions so that the traffic goes toward the destination. To do that,
each node in the network maintains a routing table so that user traffic can be forwarded by
looking up the routing table to the next hop. In Chapter 3, we indicated that nodes need
identifiers along with a link identifier so that those identified can be used in the routing table.

In an IP network, nodes are routers and links are often identified by interfaces at each
end of routers. However, user traffic originates from host computers and goes to other host
computers in the network; that is, the traffic does not originate or terminate at the router level
(except routing information traffic between routers). Thus, we first need to understand what
entries are listed in the routing table at an IP router if the traffic eventually terminates at a
host.

To understand this, we need to refer to IP addressing and its relation to routing table
entries. A routing table entry at a router can contain information at three levels: addressable
networks (or IP prefixes, or network numbers), subnets, or directly at the host level, which is

144 5.1 Routers, Networks, and Routing Information: Some Basics

conceptually possible because the IP addressing structure allows all three levels to be spec-
ified without any change in the addressing scheme. These three levels are often referred to
using the generic term routes. Furthermore, this also means that a router maintains entries for
IP destinations, not to the router itself. We will now illustrate the relationship between an IP
addressing and routing table through a three-node example shown in Figure 5.1. For simplic-
ity, we consider routing table entries for addressable networks at Class C address boundaries,
and thus, subnet masking is /24.

In Figure 5.1, the IP core network consists of three routers: “Alpha,” “Bravo,” and “Char-
lie;” they help movement of traffic between the following subnets: 192.168.4.0, 192.168.5.0,
192.168.6.0, and 192.168.7.0; as you can see, these are the networks attached to routers Al-
pha, Bravo, and Charlie, respectively. You will also notice that we use another set of IP ad-
dresses/subnets to provide interfacing between different routers; specifically, address block
192.168.1.0 between routers Alpha and Bravo, 192.168.2.0 between routers Alpha and Charlie,
and 192.168.3.0 between routers Bravo and Charlie. Furthermore, each interface that connects
to a router has a specific IP address; for example, IP address 192.168.1.2 is on an interface on
router Bravo that router Alpha sees while IP address 192.168.3.1 is on another interface that
router Charlie sees while 192.168.5.254 is on yet another interface that the addressable net-
work 192.168.5.0 sees. We have shown the routing table at each router for all different address
blocks in Table 5.1.

Now consider host “catch22” with IP address 192.168.4.22 in the network 192.168.4.0 that
has an IP packet to send to host “49ers” with IP address 192.168.5.49 in network 192.168.5.0.
This packet will arrive at router Alpha on the interface with IP address 192.168.4.254; through
routing table lookup, router Alpha realizes that the next hop is 192.168.1.2 for network
192.168.5.0 and will forward the packet to router Bravo. On receiving this packet, router Bravo
realizes that network 192.168.5.0 is directly connected and thus will send it out on interface
192.168.5.254. Now, consider an IP packet going in the reverse direction from 49ers to catch22.
The packet will arrive at the interface with IP address 192.168.5.254 at router Bravo. Imme-
diately, router Bravo realizes that for this packet, the next hop is 192.168.1.1 to forward to
router Alpha. On receiving this packet, router Alpha will recognize that network 192.168.4.0 is

F I G U R E 5.1 IP network illustration.

C H A P T E R 5 IP Routing and Distance Vector Protocol Family 145

TA B L E 5.1 Routing table at each router for the network shown in Figure 5.1.

Router: Alpha Router: Bravo Router: Charlie
Network/Mask Next Hop Network/Mask Next Hop Network/Mask Next Hop
192.168.1.0/24 direct 192.168.1.0/24 direct 192.168.1.0/24 192.168.2.1
192.168.2.0/24 direct 192.168.2.0/24 192.168.1.1 192.168.2.0/24 direct
192.168.3.0/24 192.168.1.2 192.168.3.0/24 direct 192.168.3.0/24 direct
192.168.4.0/24 direct 192.168.4.0/24 192.168.1.1 192.168.4.0/24 192.168.2.1
192.168.5.0/24 192.168.1.2 192.168.5.0/24 direct 192.168.5.0/24 192.168.3.1
192.168.6.0/24 192.168.2.2 192.168.6.0/24 192.168.3.2 192.168.6.0/24 direct
192.168.7.0/24 192.168.2.2 192.168.7.0/24 192.168.3.2 192.168.7.0/24 direct

directly connected and thus will forward it along the interface with IP address 192.168.4.254.
Now let us consider what catch22 and 49ers might see based on interface addresses:

192.168.4.22 (catch22) �−→ 192.168.4.254 (Alpha) �−→ 192.168.1.2 (Bravo) �−→ 192.168.5.49 (49ers)
192.168.5.49 (49ers) �−→ 192.168.5.254 (Bravo) �−→ 192.168.1.1 (Alpha) �−→ 192.168.4.22 (catch22)

Thus, catch22 sees Alpha as 192.168.4.254, while Bravo sees the same router as 192.168.1.1.
From an interface point of view, both are correct. How do we know that these two IP ad-
dresses “belong” to the same router? From a cursory look at IP interface addresses, there is
no simple way to know this since there is going to be an address for each interface, and a
router has to have at least two interfaces (otherwise, it is not routing/forwarding anything!).
To avoid any confusion, a router is assigned a router ID, which is either one of the interface
addresses or a different address altogether. For example, typically the interface address with
the highest IP address is assigned as the address of the router. For ease of human tracking, a
router with its different interfaces is typically associated with an easy to remember domain
name, say Alpha.NetworkRouting.net; then, interface addresses are assigned relevant do-
main names such as 4net.Alpha.NetworkRouting.net and 1net.Alpha.NetworkRouting.net,
so that the subnets can be easily identified and their association with a router is easy to fol-
low.

In the above illustration, we have used a Class C address block for addressable networks.
We can easily add a subnet in the routing table that is based on variable-length subnet mask-
ing (VLSM) where the subnet mask needs to be explicitly noted due to CIDR. Further more, a
host can have an entry in the routing table as well. Suppose a host with IP address 192.168.8.88
is directly connected to router Charlie through a point-to-point link (not shown in Figure 5.1).
If this is so, all routers will have an entry in the routing table for 192.168.8.88 (see Exercise 5.8).
Usually, direct connection of hosts to a router is not advisable since this can lead to significant
growth in the routing table, thus impacting packet processing and routing table lookup (see
Chapter 15).

From the above illustration, you may also notice that the term network is used in mul-
tiple ways. Consider the following statement: user traffic moves from a network to another
network that is routed through one or more routers in the IP network. Certainly, this is a con-
fusing statement. To translate this, the first two uses of network refer to a network identified
through an IP prefix where traffic originates or terminates at hosts, while the third use of net-
work refers to a network in the topological sense where routers are nodes connected by links.

146 5.2 Static Routes

The first two uses of network are also referred to as route. Since a routing table can have an en-
try directly for a specific host (at least in theory), the term route is a good term without being
explicit as to whether it is a network number or a host. For clarity and to avoid confusion,
a network identified using an IP prefix will be referred to as network number or addressable net-
work, or simply as IP prefix; we will also use the term route interchangeably. This then avoids
any confusion with the generic term network used throughout the book.

5.1.2 Communication of Routing Information

An important aspect of the TCP/IP protocol stack is that all types of communications must
take place within the same TCP/IP stack framework; that is, there are no separate networks
or channels or dedicated circuits for communicating control or routing messages separately
from user traffic. To accommodate different types of messages or information, the TCP/IP
stack provides functionalities at both the IP layer and the transport layer; this is done differ-
ently for different routing protocols. For example, in the case of the RIP protocol, messages
are communicated above the transport layer using a UDP-based port number; specifically,
port number 520 is used with UDP as the transport protocol. How about other routing pro-
tocols? BGP is assigned port number 179 along with TCP as the transport protocol. However,
for several routing protocols, identification is done directly above the IP layer using protocol
number field; for example, protocol number 9 for IDRP protocol, 88 for EIGRP, and 89 for
OSPF protocol. It may be noted that reliability of message transfer in BGP is inherently ad-
dressed since TCP is used; however, for OSPF and EIGRP, which require reliable delivery of
routing information, reliability cannot be inherently guaranteed since they are directly above
the IP layer; thus, for communication of routing information in OSPF, for example, through
flooding, it is required that the protocol implementation ensures that communication is re-
liable by using acknowledgment and retransmission (if needed). In any case, while it may
sound strange, all routing protocols act as applications in the TCP/IP framework where RIP
and BGP are application layer protocols while OSPF and IS-IS are protocols that sit just above
the IP layer. In other words, to get the routing information out for the IP layer to establish
routing/forwarding of user traffic, the network relies on a higher layer protocol.

5.2 Static Routes

While routing protocols are useful to determine routes dynamically, it is sometimes desirable
in an operational environment to indicate routes that remain static. These routes, referred to
as static routes, are required to be configured manually at routers. For example, sometimes a
network identified by an IP prefix is connected to only one router in another network; this
happens to be the only route out to the Internet. Such a network is called a stub network; in
such a case, a static route can be manually configured to a stub network. Static routes can also
be defined when two autonomous systems must exchange routing information.

It is important to set up any static routes carefully. For example, if not careful, it is possible
to get into open jaw routes. This terms means that there is a path defined from an origin to a
destination; however, the destination takes a different path in return that does not make it
back to the origin.

C H A P T E R 5 IP Routing and Distance Vector Protocol Family 147

5.3 Routing Information Protocol, Version 1 (RIPv1)
RIP is the first routing protocol used in the TCP/IP-based network in an intradomain envi-
ronment. While the RIP specification was first described in RFC 1058 in 1988 [290], it was
available when RIP was packaged with 4.3 Berkeley Software Distribution (BSD) as part of
“routed” daemon software in the early 1980s. The following passage from RFC 1058 is inter-
esting to note: “The Routing Information Protocol (RIP) described here is loosely based on the
program routed, distributed with the 4.3 Berkeley Software Distribution. However, there are
several other implementations of what is supposed to be the same protocol. Unfortunately,
these various implementations disagree in various details. The specifications here represent
a combination of features taken from various implementations.”

The name RIP can be deceiving since all routing protocols need to exchange “routing
information.” RIP should be understood as an instance of a distance vector protocol family,
regardless of its name. It was one of the few protocols for which an implementation was
available before a specification was officially complete. The original RIP is now referred to
as RIP version 1, or RIPv1 in short. It has since evolved to RIPv2, which is standardized in
RFC 2453 [442].

RIP remains one of the popular routing protocols for a small network environment. In
fact, most DSL/cable modem routers such as the ones from Linksys come bundled with RIP.
Thus, if you want to set up a private layer-3 IP network in your home or small office, you can
do so by using multiple routers where you can invoke RIP.

5.3.1 Communication and Message Format
Since distance vector information is obtained from a neighboring router, the communication
of routing information is always between two neighboring routers in the case of RIP. Further-
more, since RIP is UDP based, there is no guarantee that a routing information message is
received by a receiving router. Also, no session is set up; a routing packet is just encapsulated
and sent to the neighbor, normally through broadcast. Thus, we can envision a routing packet
in the TCP/IP stack as shown in Figure 5.2.

Next we consider the format of a RIPv1 message; this is shown in Figure 5.3. As
a commonly accepted convention in IP, the packet format for RIPv1 is shown in 32-bit
(4-byte) boundaries. A RIPv1 message has a common header of 4 bytes, followed by a 20-
byte message for each route for which the message is communicating, up to a maximum of
25 routes/addresses. Thus, the maximum size of a RIP message (including IP/UDP headers)

F I G U R E 5.2 RIP message structure, with IP and UDP header.

148 5.3 Routing Information Protocol, Version 1 (RIPv1)

F I G U R E 5.3 RIPv1 packet format.

is 20 + 8 + 4 + 25 × 20 = 532 bytes while the minimum is 20 + 8 + 4 + 20 = 52 bytes. It is
important to note that the message size does not limit the size of the network in terms of
the number of routers; rather it is in terms of the number of addressable networks or routes.
Consider again the three-router network shown in Figure 5.1 along with the routing table in
Table 5.1. We can see that there are seven different addressable networks while there are three
routers; thus, the routing table needs to have entries for all seven addressable networks, not
in terms of routers.

It is important to note that the message size does not limit the size of the addressing net-
works to 25 networks (certainly not to routers); if an IP network has more than 25 address-
able networks, say 40 of them, a neighbor can send distance vector information for 25 ad-
dressable networks in one message and the rest of the 15 addressable networks in another
message.

Let us now look at the various fields. A common practice in many protocols is to have
some spaces left out for future enhancement of the protocol; often, these spaces are marked
with Must Be Zero. As can be seen, there are many places where this occurs in the RIPv1
message format; soon, we will see how some of them are utilized in the RIPv2 message for-
mat. Thus, a RIPv1 message has the following five fields: command, version, address family
identifier, IP address, and metric. They are described below with command being discussed
last:

• Version (1 byte): This field indicates the RIP protocol version. This is set to 1 for RIPv1. If
this field happens to be zero, the message is to be ignored.

• Address family identifier (2 bytes): This field identifies the address family. This is set to 2
for the IP address family. Originally, the intent was to provide RIP for other address fam-

C H A P T E R 5 IP Routing and Distance Vector Protocol Family 149

ilies, although in practice this RIP packet format has not been used for any other address
family. There is a special use case when this field is set to zero; see command field be-
low.

• IP address (4 bytes): This is the destination network, identified by a subnet or a host.

• Metric (4 bytes): This is based on hop count; it is a number between 1 and 16 where 16
means unreachable or infinity.

• Command (1 byte): This field is used for different command sets in a RIPv1 message. While
there were five different commands originally defined, only two are used: request and re-
sponse; the others are obsolete. The request command can be used by a router to request a
neighboring router for distance vector information. If the entire routing table is desired, a
request message (referred to as “request-full”) is sent where the address family identifier
is set to 0 and the metric to infinity; the response, however, follows a split horizon (see
Section 3.3.3). However, if responses are sought for a set of address blocks (referred to
as “request-partial”), the request flag is set, the address family identifier is set to IP, and
the addresses are listed; the responding router sends a response to all addresses listed;
no split horizon is done in this case. This is with the understanding that such a special
request is not a normal request. It may be noted that the periodic distance vector update
message is also sent with command set to response mode. Since there is no identification
field in a RIPv1 message (unlike, say, a DNS message format), a receiving router has no
direct way to determine whether the response was a periodic response or a response to its
“request-full” or “request-partial.”

Due to the availability of the request message type, RIP can do information pull, instead
of completely relying on information push.

5.3.2 General Operation

The following are the primary operational considerations in regard to the RIP protocol:

• General packet handling: if any of the must-be-zero fields have nonzero values anywhere
or if the version field is zero, the packet is discarded.

• Initialization: when a router is activated and it determines that all the interfaces are alive,
and it broadcasts a request message that goes to all interfaces in the “request-full” mode.
The neighboring routers handle responses following the split horizon rule. Once the re-
sponses are received, the routing table is updated with new routes the router has learned
about.

• Normal routing updates: in the default case, this is done approximately every 30 sec
(“Autoupdate timer”) where updates are broadcasted with command fields set to the re-
sponse mode; as discussed earlier about timer adjustment in Section 3.3.3, a large variation
is added to avoid the pendulum effect.

• Normal response received: the routing table is updated by doing the distributed Bellman–
Ford step; only a single best route is stored for each destination.

150 5.4 Routing Information Protocol, Version 2 (RIPv2)

• Triggered updates: if the metric for an addressable network changes, an update message
is generated containing only the affected networks.

• Route expiration: if an addressable network has not been updated for 3 min (“expiration
timer”) in the default case, its metric is set to infinity and it is a candidate for deletion.
However, it is kept in the routing table for another 60 sec; this extra time window is re-
ferred to as garbage collection or flush timer.

5.3.3 Is RIPv1 Good to Use?
In some sense, RIP has gone through the growing pains of being one of the oldest routing pro-
tocols in practice, coupled with the fact that it is a distance vector protocol that has various
problems. Some key problems have been addressed through triggered update and avoid-
ing the pendulum effect. However, it cannot avoid the looping problem and slow conver-
gence.

In addition, RIP inherently imposes a few additional restrictions: the link cost is based
only on hop count, a destination cannot be longer than 15 hops (since infinity is defined to
be 16), and subnet masking is not provided. The last item deserves further elaboration. If
you look at the RIPv1 message format, you will notice that it has a field for the addressable
network, but no way to indicate anything specific about this network. This is partly because
RIPv1 is an old protocol from the days of IP classful addressing; that is, RIPv1 assumes that an
address included follows a Class A, Class B, Class C boundary implicitly. Subnet masking is
an issue only for an address block that is not directly connected to a router. We illustrate this
by considering the example network shown in Figure 5.1. Suppose that we want to connect
subnet address block 172.16.1.0 to router Alpha and subnet 172.16.2.0 to router Charlie. RIPv1,
however, implicitly assumes 172.16.0.0 to be a Class B address and thus cannot make the
distinction; this means subnet allocation to different routers would not be routable, especially
for traffic coming from a network attached to router Bravo.

From an actual operational point of view, RIPv1 is good to use in a small network envi-
ronment where links are not likely to fail; this means looping is unlikely to occur. It is also
good to use when link cost is not a factor, for example, a simple campus network or a small
home network or a simple topology (e.g., hub-and-spoke) where the traffic may be low com-
pared to the link speed. If a link or an interface card is likely to fail, RIPv1 faces serious
transient issues including possibly creating black hole routes.

5.4 Routing Information Protocol, Version 2 (RIPv2)
RIPv2 [442] extends RIPv1 in several ways. Most importantly, it allows explicit masking; also,
authentication is introduced. Authentication refers to using some mechanism to authenticate
the message and/or its contents when a router receives it in such a way that it knows that
the data can be trusted. To do that, changes were introduced in the RIP message format from
v1 while keeping the overall format similar by taking advantage of fields previously marked
as must be zero. This also shows why when designing a protocol, it is good to leave some
room for future improvement. Thus, we start with the basic packet format as shown in Fig-
ure 5.4.

We can see from Figure 5.4 that the common header part, i.e., the first 4 bytes, is the same
as in RIPv1; in this, case the version field is set to 2, and the must-be-zero field is labeled as

C H A P T E R 5 IP Routing and Distance Vector Protocol Family 151

F I G U R E 5.4 RIPv2 packet format.

unused while command can be either a request or a response. We now discuss the new ones
beyond RIPv1:

• Route Tag (2 bytes): this field is provided to differentiate internal routes within a RIP rout-
ing domain from external routes. For internal routes, this field is set to zero. If a route
is obtained from an external routing protocol, then an arbitrary value or preferably the
autonomous system number of the external route is included here to differentiate it from
internal routes.

• Subnet mask (4 bytes): this field allows routing based on subnet instead of doing classful
routing, thus eliminating a major limitation of RIPv1. In particular, variable-length subnet
masking (VLSM) may be used.

• Next hop (4 bytes): typically, an advertising router is the best next hop from its own view
point when it lets its neighbors know about a route; at least, this is the basic assumption.
However, in certain unusual circumstances, an advertising router might want to indicate
a next hop that is different from itself, such as when two routing domains are connected
on the same Ethernet network ([189], [441]).

Unlike RIPv1, RIPv2 allows a simple form of authentication. For the purpose of authen-
tication, a first entry block of 20 bytes can be allocated for authentication instead of being
a route entry. That is, when authentication is invoked, a RIPv2 message can contain only a
maximum of 24 routes since one route table entry is used up for authentication. The address
family identifier for the authentication part is tagged as 0xFFFF (i.e., all 1s, written in hexadec-

152 5.4 Routing Information Protocol, Version 2 (RIPv2)

F I G U R E 5.5 RIPv2 packet format with authentication.

imal notation), and the authentication type is set to 2 to indicate that it is a simple clear-text
password; then the remaining 16 bytes contain the clear-text password. The packet format
with authentication is shown in Figure 5.5. Certainly, a clear-text password is not a very good
form of authentication. Thus, in practice, this is not used much.

From an operational consideration, RIPv2 messages are multicast on 224.0.0.9 instead of
broadcast as was done in RIPv1. However, a network can be configured where routers can
be on a nonbroadcast network; an example of a nonbroadcast network is an ATM network.
Then, point-to-point unicast can be used for sending routing information. We also note that
the address family identifier can now take three values: 2 for normal IP addressing, all 1s for
authentication, which is done only in the first route entry after the common header, and 0
(coupled with metric set to 16) to a request message to obtain a full distance vector from a
neighbor. In the common header, the unused field means that they do not need to be all zeros
like RIPv1; that is, any information in this field will be ignored as opposed RIPv1’s handling
to discard the packet if this field contains nonzero entries.

RIPv2 has been extended for use with IPv6 addressing; this extension is known as RIPng
[443]. They are very similar otherwise; see Table 5.2 later in the chapter for a quick compari-
son.

C H A P T E R 5 IP Routing and Distance Vector Protocol Family 153

5.5 Interior Gateway Routing Protocol (IGRP)
IGRP was developed by Cisco primarily to overcome the hop count limit and hop count
metric of RIPv1. In general, IGRP differs from RIPv1 in the following ways:

• IGRP runs directly over IP with protocol type field set to 9.

• Autonomous system is part of the message fields.

• Distance vector updates include five different metrics for each route, although one is not
used in computing the composite metric.

• External routes can be advertised.

• It allows multiple paths for a route for the purpose of load balancing; this requires mod-
ification of the Bellman–Ford computation so that instead of a single best path to a desti-
nation, multiple “almost” equal cost paths can be stored.

IGRP’s normal routing update is sent every 90 sec on average with a variation of 10% to
avoid synchronization. It has an invalid timer to indicate nonreachability of a route; this is
set to three times the value of the update period. It is important to note that IGRP does not
support variable length subnet masking, much like RIPv1; this is an instance in which IGRP
differs from RIPv2.

5.5.1 Packet Format
IGRP packet is fairly compact consisting of 12-byte header fields followed by 14 bytes for
each route entry (see Figure 5.6). The header field consists of the following fields:

• Version (4 bits): This field is set to 1.

• Opcode (4 bits): This field is equivalent to the command code in RIP. 1 is a Request and 2 is
an Update. In case of a request, only the header is sent; there are no entries.

• Edition (1 byte): A counter that is incremented by the sender; this helps prevent a receiving
router from using an old update; it essentially plays the role of a timestamp.

• Autonomous system number (2 bytes): ID number of an IGRP process.

• Number of interior routes (2 bytes): A field to indicate the number of routing entries in an
update message that are subnets of a directly connected network.

• Number of system routes (2 bytes): This is a counterpart of the number of interior routes;
this field is used to indicate the number of route entries that are not directly connected.

• Number of exterior routes (2 bytes): The number of route entries that are default networks.
This and the previous two fields, the number of interior routes and the number of system
routes, together constitute the total number of 14-byte route entries.

• Checksum (2 bytes): This value is calculated on the entire IGRP packet (header + entries).

For each route entry, there are seven fields that occupy 14 bytes:

154 5.5 Interior Gateway Routing Protocol (IGRP)

F I G U R E 5.6 IGRP packet format.

• Destination (3 bytes): This is the destination network for which the distance vector is gen-
erated. It seems confusing to see that this field is only 3 bytes instead of the standard
4 bytes for IP addresses. However, for classful addresses, this is workable. If the update is
for a system route, the first 3 bytes of the address are included; for example, if IP address
of a route is 192.168.1.0, entry 192.168.1 is listed in this field. On the other hand, if it is an
interior route, the last 3 bytes are listed; for example, if the field lists 16.2.0 for an interior
route that is received on interface 172.16.1.254/24, it is meant for the subnet 172.16.2.0.

• Delay (3 bytes), bandwidth (3 bytes), reliability (1 byte), and load (1 byte): These fields are
explained in Section 5.5.2 while discussing how the composite metric is computed.

• Hop count (1 byte): A number between 0 and 255 used to indicate the number of hops to
the destination.

• MTU (2 bytes): The smallest MTU of any link along the route to the destination.

5.5.2 Computing Composite Metric

An interesting aspect of IGRP is the elaborate method it uses to compute the composite metric
to represent the link cost; this was included to provide the flexibility to compute better or
more accurate routes from a link cost rather than just using a hop count as a link cost as
in RIPv1 or RIPv2. The composite metric in IGRP is based on four factors: bandwidth (B),

C H A P T E R 5 IP Routing and Distance Vector Protocol Family 155

delay (D), reliability (R), and load (L), along with five nonnegative coefficients (K1, K2, K3,
K4, K5) for weighing these factors. The composite metric, C (“cost of a link”), is given as
follows:

C =
⎧
⎨

⎩

(
K1 × B + K2 × B

256−L + K3 × D
)×

(
K5

R+K4

)
, if K5 �= 0

K1 × B + K2 × B
256−L + K3 × D, if K5 = 0.

(5.5.1)

This composite cost metric is used in routing table computation. Here, the special case for
K5 = 0 means that the last part, K5/(R + K4), which considers the reliability of a link, is not
included; in other words, this means that if K5 = 0, all links have the same level of reliability.
In the default case, K1 = K3 = 1 and K2 = K4 = K5 = 0. Thus, the composite metric reduces
to

Cdefault = B + D. (5.5.2)

This shows that the default composite metric is the summation of bandwidth and delay.
Now, certainly this seems odd since bandwidth is typically given in mbps or kbps while
delay is given in time unit such as sec or, millisec; that is, how do you add apples and
oranges? IGRP uses a transformation process to map the raw parameters to a comparable
level.

First, the raw bandwidth (Braw) is expressed in kbps. Thus an Ethernet link with a data
rate of 10 mbps is given the raw value 10,000. The calculated bandwidth, B, is the inverse of
the raw bandwidth multiplied by the factor 107 to scale everything in terms of 10 gbps. That
is,

B = 107

Braw
. (5.5.3)

Thus, in the case of an Ethernet link, B = 107

104 = 1000, and for a Fast-Ethernet link, B = 100.
Essentially, this means that the faster the data rate of a link, the smaller the value of B is
capping with B = 1 for a 10 Gbps link. Since 24 bits are provided for the bandwidth field,
even for a 1 kbps link the value is within the range. Certainly, we do not expect any network
to have a 1-kbps link anymore! In any case, the intent behind making a higher bandwidth
data rate translate to a smaller value is that it takes less time to send a data packet—in other
words, inverting the raw data rate allows us to think in terms of time. In some sense, this is
no different than a road network in which you can drive to a place in much less time on a
road with a speed limit of 120 Kmph compared to a road with a speed limit of 70 kmph.

Bandwidth or raw bandwidth assumes that the road is clear and your packet is the only
packet traveling; it does not assume how much time the packet itself will take from the first
bit of the packet to the last bit of the packet. Thus, the delay parameter is meant to capture the
packet transmission delay on an interface, which is given in tens of μsec of raw delay, Draw.
That is,

D = Draw/10. (5.5.4)

Thus, if the raw delay is 1000 μsec, we have D = 100. Also, 24 bits are assigned for the delay
field. Thus, for an interface running Ethernet and a delay computed to be 1000 μsec, the

156 5.5 Interior Gateway Routing Protocol (IGRP)

default composite metric value, Cdefault, is 1000 + 100 = 1100. The default composite metric is
computing a link cost that essentially reflects delay due to path delay and packet transmission
delay.

Going beyond the default composite metric, consider the middle term with coefficient K2

in the generic composite metric given in Eq. (5.5.1). This term incorporates delay “cost” due
to load on a link, that is, due to traffic. For the load factor, an 8-bit field is used; thus, raw
load, Lraw, which is a fraction between 0 and 1, can be written as

Lraw = L
256

(5.5.5)

so that L can take a value between 0 and 255 (inclusive) to represent link load.
The delay cost term in the middle term in Eq. (5.5.1) essentially follows the queueing

delay formula modeled using an M/M/1 queue system (see Appendix B.12.2). If S is the av-
erage packet size and λ is the average arrival rate of packets, the average delay for an M/M/1
queueing system is given by

T = 1
Braw

S − λ
. (5.5.6)

By pulling Braw/S out of the expression in the denominator, we can rewrite it as

T = S
Braw

× 1

(1 − Sλ
Braw

)
.

However, Sλ/Braw = Lraw is the raw load. Thus, we arrive at

T = S
Braw

× 1
(1 − Lraw)

.

Multiplying the numerator and denominator by 256, we get

T = S
Braw

× 256
(256 − 256Lraw)

.

Using relations for B and L given in Eq. (5.5.3) and Eq. (5.5.5), respectively, we can then finally
write this expression as

T = S × B
107

× 256
(256 − L)

= S × 256
107

× B
(256 − L)

. (5.5.7)

Since the first term S × 256/107 is a constant, we can assign a coefficient, K2, including
accounting for any proportion compared to other terms—this is then the middle term in
Eq. (5.5.1).

We can see that IGRP provides an elaborate way to compute cost of a link. In practice,
the default composite metric given in Eq. (5.5.2) is often used. You might notice that if the
network has an interface of the same data rate, the value of the default composite metric will
be the same for all links; this essentially means that network routing is working as if a hop
count metric is in place much like RIP.

C H A P T E R 5 IP Routing and Distance Vector Protocol Family 157

Next, we consider the reliability term K5/(R+K4) in Eq. (5.5.1) and discuss possible ways
to set K4 and K5. First observe that if a link is not fully reliable, we want the cost of the link
to be higher than if it is reliable. It is given that the “base” reliability is 1 (when K5 = 0); thus,
for an unreliable link, we want

K5

R + K4
> 1.

This means

K5 > R + K4.

Since the largest value of R is 255, this implies that K5 and K4 should be chosen such that

K5 > K4 + 255. (5.5.8)

It is worth noting that the protocol message includes all the different metric components
rather than the composite metric; in other words, the composite metric is left to a router to
compute first, before doing the Bellman–Ford computation for the shortest path. This also
means that it is extremely important to ensure that each router is configured with the same
value of the coefficients K1,K2,K3,K4,K5. For example, if in one router K1 is set to 1 and
the rest to zero, while in another router K3 is set to 1 and the rest to zero, their view of the
shortest path would be different, thus potentially causing yet another problem.

5.6 Enhanced Interior Gateway Routing Protocol (EIGRP)
EIGRP is another routing protocol from Cisco; it is, however, more than a simple enhance-
ment of IGRP. The one thing in common between IGRP and EIGRP is the composite metric.
Although EIGRP is also from the distance vector protocol family, in many ways it is com-
pletely different from protocols such as RIP and IGRP. A major difference is that EIGRP pro-
vides loop-free routing; this is accomplished through diffusing computation discussed earlier
in Section 3.3.5; this also shows that not every distance vector protocol uses a straightforward
Bellman–Ford computation for shortest path routing. There is an active coordination phase
before routing computation when a link fails or link cost changes; to do that, additional infor-
mation is sought for which the diffusing update algorithm (DUAL) needs to maintain states.
DUAL allows EIGRP to attain faster convergence. In addition, EIGRP includes a hello proto-
col for neighbor discovery and recovery, and a reliable transfer mechanism for exchange of
distance vector data.

EIGRP is provided directly over IP using protocol number 88. Furthermore, all EIGRP
related message communication is multicast on the address 224.0.0.10; however, acknowl-
edgments are unicasted. Since EIGRP requires reliable delivery, and given that the protocol
is built directly over IP and multicast addressing is used, a reliable multicast mechanism is
used.

5.6.1 Packet Format
The EIGRP packet is divided into two parts: an EIGRP header part, which is 20 bytes long, fol-
lowed by various entities that are encoded using a variable-length TLV (Type-Length-Value)

158 5.6 Enhanced Interior Gateway Routing Protocol (EIGRP)

F I G U R E 5.7 EIGRP packet header.

format (refer to Section 1.13.1). In the EIGRP header, there are seven fields (see Figure 5.7),
which are described below:

• Version (1 byte): This field is set to 1.

• OpCode (1 byte): This field is used to specify the EIGRP packet type. There are four key
types for IP networks: update, query, reply, and hello. Note that the need for these fields
has been already discussed in Section 3.3.5.

• Checksum (2 bytes): Checksum is calculated over the entire EIGRP packet.

• Flags: If this value is 1, it indicates a new neighbor relationship. This value is set to 2 to
indicate a conditional receive bit for a propriety multicast algorithm Cisco implements for
reliable delivery using the multicast address 224.0.0.10.

• Sequence: This is a 32-bit sequence number used by the reliable delivery mechanism.

• ACK: This field lists the sequence number from the last heard from neighbor. For an initial
hello packet, this field is set to zero. A hello packet type with a nonzero ACK value is an
acknowledgment to an initial hello message. An important distinction is that acknowledg-
ment is sent as a unicast message; this ACK field is nonzero only for unicast.

• Autonomous system number: This identifies the EIGRP domain.

Beyond the header, different entities are separated using the TLV format in an EIGRP
packet (see Figure 5.8). Each TLV entity is of variable length where the type field is fixed
at 1 byte, the length field is fixed at 1 byte, while the value field is of variable length; the
length of the value field is indicated through the length field. Most importantly, through the
type field, the packet type is identified; this field is not to be confused with the OpCode in
the header field used for message type. Cisco has defined abilities to do different types such
as general information, or network-specific information, such as whether the packet is for
IP or other networks (e.g., IPX, developed by Novell NetWare, which many organizations
deployed).

In our discussion, we specifically consider two types that are relevant and important:
(1) EIGRP parameters and (2) IP internal routes. The type field is set with value 0x0001
for an EIGRP parameter description in which the information content includes coefficients
K1,K2,K3,K4, and K5, which are used in the calculation of the composite cost metric (see

C H A P T E R 5 IP Routing and Distance Vector Protocol Family 159

F I G U R E 5.8 Data encoding in EIGRP packet: Generic TLV format.

Figure 5.9). Thus, unlike IGRP, EIGRP allows coefficients used by a router to be communi-
cated to its neighboring routers. Despite that, a router has no way of knowing if the same or
all coefficient values are used by all routers internally in their computation and in determining
the shortest paths. Thus, inconsistency in computing the route, if different coefficient values
are used by different routers, cannot be completely ruled out.

For the distance vector packet type for internal routes for IP networks, the type field is set
to 0x0102; this type is for the route table entry having fields similar to the fields used in IGRP
(compare Figure 5.10 with Figure 5.6). Thus, let us consider only the key differences between
EIGRP and the other protocols. A next hop field is included in EIGRP much like RIPv2; this is
not done in IGRP. Delay and bandwidth fields are 4 bytes long in EIGRP instead of 3 bytes in

F I G U R E 5.9 EIGRP: TLV type for EIGRP parameters.

F I G U R E 5.10 EIGRP: TLV type for communicating distance vector of an internal route.

160 5.7 Route Redistribution

IGRP since EIGRP uses a 256 multiplier for a finer metric granularity than IGRP; thus, if the
composite metric as given in Eq. (5.5.1) for IGRP is denoted by CIGRP, the composite metric,
CEIGRP, for EIGRP can be written as follows:

CEIGRP = 256 × CIGRP. (5.6.1)

Through the combination of PrefixLength and Destination fields, variable-length subnet
masking is communicated. For example, if an addressable network is 10.1.0.0/16, Pre-
fixLength is 16 and Destination field will contain 10.1. If the addressable network is
167.168.1.128/25, PrefixLength will be 25 and the Destination field will be set to 167.168.1.128.

5.7 Route Redistribution
Often in practice, we face the situation of connecting two networks where each network
speaks a different routing protocol. Then the question is: how does one network learn about
the routes (IP prefixes) of the other network, and vice versa? The benefit is that when one
network learns about IP prefixes in the other network, it can forward any user traffic to ad-
dresses in the other network. An important way to learn about IP prefixes in other networks
is through Border Gateway Protocol (BGP)—this will be covered in detail in Chapter 8. How-
ever, BGP is not the only way to learn about routes. It is possible to learn about routes, for
example, if one network uses RIPv2 and the other network uses IGRP, without relying on
BGP.

To learn about routes (IP prefixes), a router at the boundary that is connected to both
networks is required to perform route redistribution; this means that this router redistributes
routes it has learned from the first network to the second network using the routing protocol
used by the second network, and vice versa. Suppose that one network is running IGRP and
the other is running RIPv2. Then the boundary router is configured to operate both IGRP
and RIPv2. To let one network know about routes learned from the other network, protocols
must provide functionalities to indicate routes so learned. Suppose that a boundary router
has learned about an IP prefix from its IGRP side; it can use the RouteTag field in RIPv2 to
tag that this route has been learned from another protocol/mechanism and let the routers in
the RIPv2 side know. Similarly, if a boundary router learns a route from RIPv2 and wants to
announce to the IGRP side, the number of external routes in the IGRP packet format must be
positive and the route would be announced. In IGRP, internal and system routes are listed
first; thus, it is easy to identify if a route is an external route. Note that route redistribution is
often used for static routes learned.

Besides the capability of a protocol to advertise external routes, an important issue is met-
ric compatibility. For example, RIPv2 uses a hop-based metric while IGRP uses a composite
metric, while a static route has no metric value. Thus, the boundary router is required to
somehow translate the metric value from one protocol to the other protocol. Since there is not
really a direct translation, an externally learnt route is assigned an administrative distance
instead; this is helpful if a route is learned from two different ways so that the most preferred
route can be selected. Such administrative distances can be based on how much you can trust
a routing protocol; for example, since EIGRP is a loop-free protocol, it is better to give a lower
administrative distance for a route from EIGRP (e.g., say 90) than learned through IGRP (e.g.,
say 100); similarly, a route learned from IGRP can be given a lower distance than from RIPv2

C H A P T E R 5 IP Routing and Distance Vector Protocol Family 161

F I G U R E 5.11 Route redistribution example with two routing protocols: RIPv2 and IGRP.

(e.g., say 120). Typically, static routes are given the lowest cost (e.g., 1) since it is assumed to
be directly connected.

It is important to note that administrative distances do help in preferring path selections
among different routing protocols; however, they cannot always solve problems that arise
due to route redistribution. For example, looping can still occur, and convergence can be a
problem. Consider Figure 5.11 in which we have two networks: one running RIPv2 among
routers R1, R2, and R5, and the other running IGRP among R2, R3, R4, and R5. In this case,
there are two boundary routers, R2 and R5, that are not directly connected to each other.
Addressable network 10.1.1.0/24 attached to R1 is announced to R2 and R5 through the
distance vector mechanism. Now for the IGRP side, R2, on learning route 10.1.1.0/24, an-
nounces to R3 about this external route, and so on. We can see that router R5 learns about
10.1.1.0/24 from R1 (RIPv2 side) and also from R4 (IGRP side). While from Figure 5.11, we
can see that it is clearly better to forward traffic from R5 to 10.1.1.0/24 via R1, it would not
do so if the administrative distance gives lower weight to a route learnt from IGRP over
RIPv2; that is, packets arriving at R5 destined for 10.1.1.0/24 would instead be forwarded
to R4 for further forwarding to R3, then to R2, and finally to R1. Note that if split horizon
is implemented on the RIPv2 side, a routing loop can be avoided. However, convergence
and looping can still occur if routers R3 and R4 fail and come back up again, i.e., during the
transient time. Fortunately, such problems can be avoided by introducing a simple policy: do
not announce routes originally received from a routing protocol back into the same routing
protocol.

Finally, route redistribution is not just limited to RIPv2 and IGRP; this is possible between
any combination of routing protocols, including protocols such as EIGRP and OSPF. An im-
portant point to note is that route redistribution requires careful handling, as we can see from
the above example.

5.8 Summary
We have described different protocols in the distance vector family for IP networks. A sum-
mary comparison is listed in Table 5.2. It is important to recognize that a distance vector
protocol can have a variety of manifestations. From a basic routing protocol point of view,
fast convergence is important as well as whether a routing protocol is loop-free. From the

162 5.8 Summary

TA B L E 5.2 Comparison of protocols in the distance vector protocol family.

Protocol RIPv1 RIPv2 IGRP EIGRP RIPng
Address
Family

IPv4 IPv4 IPv4 IPv4 IPv6

Metric Hop Hop Composite Composite Hop

Information Unreliable, unreliable, Unreliable, Reliable, Unreliable,
Communica- broadcast multicast multicast multicast multicast
tion

Routing
Computation

Bellman–
Ford

Bellman–
Ford

Bellman–
Ford

Diffusing
computation

Bellman–
Ford

VLSM/CIDR No Yes No Yes v6-based

Remark Slow conver-
gence; split
horizon

Slow conver-
gence; split
horizon

Slow conver-
gence; split
horizon

Fast, loop-
free conver-
gence; chatty
protocol

Slow con-
vergence;
split hori-
zon

perspective of the addressing and the operational usage requirement of running a protocol
in a network, some additional issues emerge: how the protocol handles the inherent need
of the addressing scheme of the network, whether a protocol provides support for external
protocols and routes, and whether the information is delivered reliably or not.

Often, we also learn much from operational experience. For example, triggered update
and split horizon with poison reverse are important timer-based issues to implement in a
distance vector family. Update synchronization, known as the pendulum effect, was a prob-
lem encountered in the early days of RIPv1 deployment; to overcome this problem, a large
delay variation between updates was recommended. Finally, to overcome the looping prob-
lem that is inherent in the basic distance vector concept, a loop-free distance vector protocol
based on diffusing computation emerged. While the loop-free distance vector protocol has
certain added complexities in terms of state management, the routing convergence is fast and
loop-free. From a network routing management point of view in an operational network, the
complexity of the protocol is not always a critical issue.

In an operational environment, issues are more centered around whether a routing pro-
tocol and its features are easy to configure and manage; these may be labeled as configuration
complexities. Here are a few to note:

• If at the command prompt level of a router, EIGRP can be configured as easily as RIPv1
or RIPv2, and knowing that EIGRP is loop-free, it will be natural for a network provider
to opt for EIGRP. Furthermore, EIGRP is much easier to configure than link state pro-
tocols such as OSPF. Note that EIGRP is a chatty protocol; if routers are connected by
low-bandwidth links, this factor can have an impact on inducing congestion in certain
situations.

• Route management at routers for internal and external routes is an important feature.

C H A P T E R 5 IP Routing and Distance Vector Protocol Family 163

• Scalability and growth of a network should be considered. For example, for a campus
network, the number of routers may remain fixed at a small number for a number of
years while for a regional or national ISP, the number of routers may rapidly increase
over the years, sometimes in months. Thus, for a campus network, it is best to deploy
EIGRP, especially since the link speed between routers now are at least at Fast-Ethernet
(100 mbps) data rate; thus, the chattiness of EIGRP is not a concern.

• Sometimes, a rich feature available with a protocol is not always used since it is poorly
understood; a case in point is the composite metric that can be used in IGRP and EIGRP.
Given different coefficients and factors, the composite metric for IGRP/EIGRP can be con-
fusing sometimes; thus, it is often found that in an operational environment, the simplest
case of coefficients known as “defaults” is used. In many small or campus networking en-
vironments, the simplest form of the composite metric is even desirable, especially when
the link speed between connecting routers is not a bottleneck.

In an operational environment, a common principle about deploying any routing proto-
col is to use routers from the same vendor with the same software release. Certainly, for busi-
ness reasons, it is desirable to use multiple vendors so that a provider does not get locked
in with one vendor. While RIP is a standardized specification and it should be possible to
use products from multiple vendors in the same network, it is usually not advisable. A mi-
nor difference in implementation can cause unnecessary problem. Similarly, having the same
software release on all routers from the same vendors in a network is also advisable. Fur-
thermore, the command sets to configure routers can conceivably be different for different
router vendors; thus, the network operational staff would need to be conversant with differ-
ent command sets, an additional requirement that should be avoided if possible. Note that
these are general guidelines, not cast in stone; a size of a network is also a critical factor in
regard to consideration of products from multiple vendors, and proper training is required
for operational personnel.

Finally, we note that configuration complexities are not the only issues in an operational
network; there are other issues such as security and reliability that need to be addressed. To
summarize, it is important to recognize that from a basic concept of a routing protocol, to
its specification, to its vendor implementation, and finally to its operational deployment, the
issues and needs can be quite different.

Further Lookup

RIPv1 is the oldest routing protocol in practice for intradomain routing in the Internet that
was designed and implemented in the early 1980s, although an RFC was not officially avail-
able until 1988 [290]. IGRP was developed by Cisco in the mid-1980s. RIPv2 was first de-
scribed in the early 1990s [442]. Cisco developed EIGRP at about the same time that imple-
mented a loop-free distance vector algorithm called the diffusing coordination with coordi-
nated update (see Section 3.3.5). Thus, it is not surprising that RIPv1 and IGRP are used for
classful IP addressing while RIPv2 and EIGRP allow variable length subnet masking. RIPng
was first described in 1997; for additional details, see RFC 2080 [443].

164 5.8 Exercises

There are many books that cover the entire family of IP distance vector routing proto-
cols; for example, see [301], [571]. For an excellent coverage of routing protocols along with
command line information on how to configure routers, see [189].

Exercises
5.1. Review questions:

(a) What are the main differences between RIPv1 and RIPv2?

(b) What are the three timers in RIPv1?

5.2. Under what conditions would RIPv2 and IGRP essentially behave the same way?

5.3. Consider adding a host with IP address 192.168.8.88 directly to router Charlie through a
point-to-point link in the network shown in Figure 5.1. List the routing tables entries in
each router for this route; include any additional consideration you need to address.

5.4. Consider the route redistribution example shown in Figure 5.11. Assume that networks
have converged. Now consider that routers R3 and R4 went down and came back up
again. Identify the sequence of steps during the transient time that will take place that
would lead to a routing loop (assuming no policy rule is in place).

5.5. Why do some routing protocols message identification at above the transport layer while
some other do so directly over the IP layer?

This page intentionally left blank

6
OSPF and
Integrated IS-IS
In protocol design, perfection has been reached not when there is nothing left
to add, but when there is nothing left to take away.

Ross Callon (RFC 1925)

Reading Guideline

This chapter provides specifics about OSPF, including its key features and protocol
formats. We have also highlighted integrated IS-IS. The basic concept of a link state
protocol discussed separately in Section 3.4 is recommended reading along with
this material to see the distinction between the link state routing protocol family
and instances of this protocol family. A basic knowledge of OSPF and/or IS-IS is
also helpful in understanding IP traffic engineering, discussed later in Chapter 7.

C H A P T E R 6 OSPF and Integrated IS-IS 167

In this chapter, we consider two important link state routing protocols: Open Shortest Path
First (OSPF) and Intermediate System-to-Intermediate System (IS-IS). The currently used ver-
sion of OSPF in IPv4 networks is known as OSPF, version 2 (OSPFv2); here, we will simply
refer to it as OSPF. While OSPF is exclusively designed for IP networks, IS-IS was designed
for the connection-less network protocol (CLNP) in the OSI reference model. For use in IP
networks, an integrated IS-IS or dual IS-IS protocol has been used to support both CLNP and
IP, thus allowing an OSI routing protocol in IP networks. Most of our discussion will focus
on the OSPF protocol; at the same time, we will highlight a few key features of integrated
IS-IS; however, as of now, there are no fundamental differences between OSPF and IS-IS. In
any case, we will highlight certain similarities and differences between OSPF and Integrated
IS-IS.

6.1 From a Protocol Family to an Instance of a Protocol
OSPF is an instance of a link state protocol based on hop-by-hop communication of routing
information, specifically designed for intradomain routing in an IP network. Recall from our
earlier discussion in Section 3.4.1 that such a routing protocol requires information about the
state (e.g., cost) of a link, and the ability to advertise this link state reliably through in-band
(in-network) communication. Furthermore, a link state protocol uses twosub protocols, one
to establish a neighborhood relationship through a hello protocol, and another for database
synchronization.

Going from a basic understanding of a protocol concept to an instance applicable in a
specific networking environment requires certain customization, including provision for flex-
ibility to handle various possible variations. Consider the following examples/scenarios:

• Flooding the link state advertisement (LSA) is not always necessary since a network may
have different types of transmission media. For example, if N routers in a network are,
say, in the same local area network (LAN), it unnecessarily creates N(N − 1) links while a
single-link definition is sufficient; furthermore, it also results in unnecessary shortest path
computation in each router without any gain. Thus, some summarization is desirable.

• Besides LAN, are there other types of networks for which any customization is needed?

• An intradomain network may consist of a large number of routers, possibly geograph-
ically spread out; thus, scalability is an important issue. Thus, from the point of view of
manageability and scalability, it is desirable to have the ability to cluster the entire domain
into several subdomains by introducing hierarchy. This, in turn, raises the possibility that
an entire LSA from one subdomain to another may not need to be distributed, especially
if two subdomains are connected by just a link; some form of summarization is sufficient
since all traffic would need to use this link after all. A major benefit of this hierarchy is
that the shortest path computation at a router needs to consider links only within its sub-
domain.

• How can flooding of a LSA be accomplished in an IP network?

From the above discussion, we can see that a protocol intended for use in practice
is required to address many functionalities and features. In the following section, we de-

168 6.2 OSPF: Protocol Features

scribe primary key features of OSPF, a commonly deployed link state protocol in IP net-
works.

6.2 OSPF: Protocol Features
OSPF provides many features. We will highlight the key features below. The packet format
for various OSPF packets and the key fields are described later in Section 6.3. For clarity, any
packet that carries OSPF routing information or is used for an OSPF protocol will be referred
to as an OSPF packet, to distinguish it from packets for user traffic.

6.2.1 Network Hierarchy

OSPF provides the functionality to divide an intradomain network (an autonomous system)
into subdomains, commonly referred to as areas. Every intradomain must have a core area,
referred to as a backbone area; this is identified with Area ID 0. Areas are identified through a
32-bit area field; thus Area ID 0 is the same as 0.0.0.0.

Usually, areas (other than the backbone) are sequentially numbered as Area 1 (i.e., 0.0.0.1),
Area 2, and so on. OSPF allows a hierarchical setup with the backbone area as the top level
while all other areas, connected to the backbone area, are referred to as low-level areas; this
also means that the backbone area is in charge of summarizing the topology of one area to
another area, and vice versa. In Figure 6.1, we illustrate network hierarchy using low-level
areas.

6.2.2 Router Classification

With the functionality provided to divide an OSPF network into areas, the routers are classi-
fied into four different types (Figure 6.1):

F I G U R E 6.1 OSPF backbone and low-level areas.

C H A P T E R 6 OSPF and Integrated IS-IS 169

• Area-Border Routers: These are the routers that sit on the border between the backbone
and the low-level areas. Each area-border router must have at least one interface to the
backbone; it also has at least one interface to each area to which it is connected.

• Internal Routers: These are the routers in each low-level area that have interfaces only to
other internal routers in the same area.

• Backbone Routers: These are the routers located in Area 0 with at least one interface to other
routers in the backbone. Area-border routers can also be considered as backbone routers.

• AS Boundary Routers: These routers are located in Area 0 with connectivity to other AS;
they must be able to handle more than one routing protocol. For example, to exchange
information with another AS, they must be able to speak BGP. These routers also have
internal interfaces for connectivity to other backbone routers.

The above terminologies, as described, are OSPF specific; however, it is also common to
use names such as backbone routers in general. You will see such usage throughout this book;
such usage should not be confused with Backbone Routers as used in the context of OSPF.

6.2.3 Network Types

OSPF is designed to address five different types of networks: (1) point-to-point networks,
(2) broadcast networks, (3) non–broadcast multiaccess (NBMA) networks, (4) point-to-multi-
point networks, and (5) virtual links.

Point-to-point networks refer to connecting a pair of routers directly by an interface/link
such as OC-3. A router may be connected to multiple different routers by such point-to-point
interfaces. Point-to-point links are typically used when an OSPF domain is spread out in a
geographically distributed region.

Broadcast networks refer to networks such as LANs connected by a technology such as
Ethernet. Broadcast networks, by nature, are multiaccess where all routers in a broadcast
network can receive a single transmitted packet. In such networks, a router is elected as a
Designated Router (DR) and another as a Backup Designated Router (BDR).

Non–broadcast multiaccess networks use technologies such as ATM or frame relay where
more than two routers may be connected without broadcast capability. Thus, an OSPF packet
is required to be explicitly transmitted to each router in the network. Such networks require
an extra configuration to emulate the operation of OSPF on a broadcast network. Like broad-
cast networks, NBMA networks elect a DR and a BDR.

Point-to-multipoint networks are also non–broadcast networks much like NBMA networks;
however, OSPF’s mode of operation is different and is in fact similar to point-to-point
links.

Virtual links are used to connect an area to the backbone using a nonbackbone (transit)
area. Virtual links are configured between two area-border routers. Virtual links can also be
used if a backbone is partitioned into two parts due to a link failure; in such a case, virtual
links are tunneled through a nonbackbone area. Consider again Figure 6.1. Here Area 3 is con-
nected to the backbone area using transit Area 2 through a virtual link that connects router 6
to router 7. Also note that if the link between router 2 and router 3 in the backbone area

170 6.2 OSPF: Protocol Features

goes down, Area 0 becomes partitioned; to avoid that, a virtual link between Area-Border
Routers 4 and 5 is established through Area 1.

Finally, an important point to understand about OSPF networks is that the neighborhood
relation is not based on routers or networks connected by physical links, but is based on
logical adjacencies established.

6.2.4 Flooding
OSPF uses in-network functionality to flood routing information such as LSAs. In-network
means OSPF packets are carried in the same network as user traffic. From the discussion
above, we note that there are different possible network types. Thus, transmission of OSPF
packets requires some tailoring.

First note that multiple LSAs can be combined into an OSPF link state update packet.
Flooding is required for link state update packets, as well as for LSA packets (for a discussion
about different packet types, see Section 6.3); the protocol type field in an IP packet header
is set to 89 for OSPF packets. Also note that flooding is selective in that a router forwards an
update only if it is not stale; for this, it relies on checking the age and the sequence number
field, discussed earlier in Section 3.4.1.

On point-to-point networks, updates use the IP multicast address 224.0.0.5, referred to as
AllSPFRouters. A router on receiving an update forwards it to other routers, if needed (after
checking the sequence number), again using the same multicast address.

On broadcast networks, all non-DR and non-BDR routers send link state update and
LSA packets using the IP multicast address 224.0.0.6, referred to as AllDRouters. Any OSPF
packets that originates from a DR or a BDR, however, use the IP multicast address 224.0.0.5.

In NBMA networks, LSAs are sent as unicast from non-DR/non-BDR routers to the DR
and the BDR. DR, in turn, sends a copy of the LSA as unicast to all adjacent neighbors. On
point-to-multipoint networks and virtual link networks, updates are sent as unicast using the
interface’s IP address of the adjacent neighbor.

Regardless of the network type, OSPF flooding must be reliable. Since OSPF sits directly
on top of IP in the TCP/IP stack, OSPF is required to provide its own reliable mechanism,
instead of being able to use a reliable transport protocol such as TCP. OSPF addresses reliable
delivery of packets through use of either implicit or explicit acknowledgment. An implicit
acknowledgment means that a duplicate of the LSA as an update is sent back to the router
from which it has received the update. An explicit acknowledgment means that the receiving
router sends a LSA packet on receiving a link state update. Since a router may not receive
acknowledgment from its neighbor to whom it has sent a link state update message, a router
is required to track a link state retransmission list of outstanding updates. An LSA is retrans-
mitted, always as unicast, on a periodic basis (based on the value RxmtInterval) until an
acknowledgment is received, or the adjacency is no longer available.

Finally, OSPF defines three global parameters in regard to flooding of LSAs. LSRefresh-
Time indicates the maximum acceptable time between generation of any particular LSA, re-
gardless of whether the content of the LSA such as the metric value has changed; this time
window is set to 30 min. MinLSInterval reflects the minimum time between generation of any
particular LSA; this is set to 5 sec. Finally, MinLSArrival is the minimum time between re-
ception of new LSAs during flooding, set to 1 sec; this parameter serves as the hold-down
timer.

C H A P T E R 6 OSPF and Integrated IS-IS 171

6.2.5 Link State Advertisement Types

From the discussion about network hierarchy and network types, it is clear that an OSPF
network requires different LSA types. The five most commonly known LSA types are:
Router LSA (type code = 1), Network LSA (type code = 2), Network Summary LSA (type
code = 3), AS Border Router (ASBR) Summary LSA (type code = 4), and AS External LSA
(type code = 5).

A Router LSA is the most basic or fundamental LSA that is generated for each interface.
Such LSAs are generated for point-to-point links. Router LSAs are recorded in the link state
database and are used by the routing computation module. Flooding of Router LSAs is re-
stricted to the area where they originate.

Network LSAs are applicable in multiaccess networks where they are generated by the
DR. All attached routers and the DR are listed in the Network LSA. Flooding of Network
LSAs is also restricted to the area where they originate.

Area-Border Routers generate Network Summary LSAs that are used for advertising destina-
tions outside an area. In other words, Network Summary LSAs allow advertising IP prefixes
between areas. Area Border Routers also generate ASBR Summary LSAs; in this case, they
advertise AS Border Routers external to an area.

AS External LSAs are generated by AS Border Routers. Destinations external to an OSPF
AS are advertised using AS external LSAs.

There are six additional LSA types; they are described later in Section 6.2.8.

6.2.6 Subprotocols

In our discussion of a link state protocol earlier in Section 3.4.1, we mentioned that subproto-
col mechanisms are also used for the operation of a link state protocol in addition to the main
function of LSA through flooding. Two key subprotocols are the hello protocol and the data-
base synchronization protocol. It should be noted that to accomplish these protocols, various
packet types such as the hello packet, database description packet, link state request packet,
and link state update packet have been defined as part of the OSPF protocol; these packet
types are outlined in detail later in Section 6.3.

HELLO PROTOCOL

While its name seems to imply that the hello protocol is just for initialization, it is actually
much more than that. Recall that the OSPF protocol is designed for several different types of
networks as discussed earlier in Section 6.2.3. First, during initialization/activation, the hello
protocol is used for neighbor discovery as well as to agree on several parameters before two
routers become neighbors; this means that using the hello protocol, logical adjacencies are
established; this is done for point-to-point, point-to-multipoint, and virtual link networks.
For broadcast and NBMA networks, not all routers become logically adjacent; here, the hello
protocol is used for electing DRs and BDRs. After initialization, for all network types, the
hello protocol is used to keep alive connectivity, which ensures bidirectional communication
between neighbors; this means, if the keep alive hello messages are not received within a cer-
tain time interval that was agreed upon during initialization, the link/connectivity between
the routers is assumed to be not available.

172 6.2 OSPF: Protocol Features

To accomplish various functions described above, a separate hello packet is defined for
OSPF; details about the field are described in Section 6.3.

DATABASE SYNCHRONIZATION PROCESS

Beyond basic initialization to discover neighbors, two adjacent routers need to build adja-
cencies. This is important more so after a failed link is recovered between two neighboring
routers. Since the link state database maintained by these two routers may become out of
sync during the time the link was down, it is necessary to synchronize them again. While a
complete LSA of all links in the database of each router can be exchanged, a special data-
base description process is used to optimize this step. For example, during database descrip-
tion, only headers of LSA are exchanged; headers serve as adequate information to check if
one side has the latest LSA. Since such a synchronization process may require exchange of
header information about many LSAs, the database synchronization process allows for such
exchanges to be split into multiple chunks. These chunks are communicated using database
description packets by indicating whether a chunk is an initial packet (using I-bit) or a con-
tinuation/more packet or last packet (using M-bit). Furthermore, one side needs to serve as
a master (MS-bit) while the other side serves as a slave—this negotiation is allowed as well;
typically, the neighbor with the lower router ID becomes the slave. It is not hard to see that
the database synchronization process is a stateful process.

In Figure 6.2, we illustrate the database synchronization process, starting with initial-
ization through the hello packet, adapted from [505]. After initialization, this process goes
through several states: from exchange start to exchange using database description packets
to synchronizing their respective databases by handling one outstanding database descrip-
tion packet at a time, followed by a loading state when the last step of synchronization is
done. After that, for link state request and update for the entire LSA for which either side
requires updated information, the communication takes place in the full state until there are
no more link state requests.

6.2.7 Routing Computation and Equal-Cost Multipath
First note that LSAs are flooded throughout an area; this allows every router in an area to
build link state databases with identical topological information. Shortest path computation
based on Dijkstra’s algorithm (see Section 2.3) is performed at each router for every known
destination based on the directional graph determined from the link state database; the cost
used for each link is the metric value advertised for the default type of service in the link LSA
packet; see Figure 6.11 presented later for the metric field. Originally, it was envisioned that
there be different types of services that might require different metrics. Thus, a type of service
(TOS) field was created. The default TOS is indicated by setting field, Number of TOS, to 0.
Metric field allows the value to be between 1 and 65,535, both inclusive. If additional types
of services are defined and supported by routers in an area, then for each type of service the
shortest path can be computed separately. While the default metric is dimensionless, addi-
tional types of services are identified based on attributes such as monetary cost, reliability,
throughput, and delay. At the same time, the default metric being dimensionless provides
the flexibility to not explicitly consider metrics for other types of services in an operational
environment since through IP traffic engineering the link metric/cost can be determined and

C H A P T E R 6 OSPF and Integrated IS-IS 173

F I G U R E 6.2 OSPF link state database synchronization process (based on [505]).

set just under the default TOS, which can still take into account diverse goals of a network
and the network provider; we will discuss link cost determination for IP intradomain traffic
engineering in Chapter 7.

A nice feature of Dijkstra’s algorithm computed at each router is that the entire shortest
path from a source to a destination (in fact, for all destinations) is available at the end. OSPF
allows a source routing option that can be used by user traffic on the path determined by Dijk-
stra’s algorithm. Certainly, OSPF allows the default next hop option commonly deployed in
IP networks; thus, once the path is computed, the next hop is also extracted from the shortest

174 6.2 OSPF: Protocol Features

path computation to update the routing table, and subsequently, the forwarding table. Note
that routing table entries are for destinations identified through hosts or subnets or simply
IP prefixes (with CIDR notation), not in terms of end routers. Thus, once the shortest path
first computation is performed from a router to other reachable routers, reachable addresses
from each destination router as learned through LSAs are identified, and the routing table en-
tries are accordingly created for all such addresses. Because of CIDR, multiple similar route
entries are possible. For example, there might be an entry for 10.1.64.0/24, and another for
10.1.64.0/18, where the difference is in the netmask. To select the route to be preferred by
an arriving packet, OSPF uses a best route selection process. According to this process, the
route(s) with the most specific match to the destination is to be selected, which is the one with
the longest match. As an example, 10.1.64.0/24 would be preferred over 10.1.64.0/18. In case
there are multiple paths available after this step, the second step selects the route where an
intra-area path is given preference over an interarea path, which, in turn, gives preference
over external paths for routers learned externally (refer to Section 6.2.8).

ECMP

An important feature of OSPF routing computation is the equal-cost multipath (ECMP) option;
that is, if two paths have the same lowest cost, then the outgoing link (next hop) for both
can be listed in the routing table so that traffic can be equally split. It may be noted the orig-
inal Dijkstra’s algorithm generates only one shortest path even if multiple shortest paths are
available. To capture multiple shortest paths, where available, Dijkstra’s algorithm is slightly
modified. In line 23 of Algorithm 2.5 in Chapter 2, if the greater than sign (>) is changed to
a greater than or equal to sign (≥), it is possible to capture multiple shortest paths by identi-
fying the next hops. In this case, line 25 is then updated to collect all next hops that meet the
minimum, instead of just one when the strictly greater than sign is used. Thus, more than one
outgoing link in the case of multiple shortest paths would need to be stored, instead of just
one.

It is important to note that ECMP is based on the number of outgoing interfaces (links)
involved on the shortest path at node level along the path, not at the source-destination
path level. Consider the six-router network shown in Figure 6.3. Suppose the paths between
router 1 and router 6 are of equal cost. Thus, for traffic from router 1 to router 6, it will be
equally split at router 1 along the two directional links 1→2 and 1→5; traffic from router 1
that arrived at router 2 will be equally split further along its two outgoing links 2→3 and
2→4. Thus, of the traffic from router 1 destined for router 6, 25% each will arrive at router 6
from links 3→6 and 4→6, while one-half will arrive from link 5→6. This illustrates the mean-
ing of equal-cost being node interface–based. Since OSPF routing is directional, the traffic
splitting for this example will be different for traffic going the other direction from router 6
to router 1. Since router 6 has three outgoing links, traffic will be split equally among the
links 6→3, 6→4, and 6→5. Note that the traffic sent on the first two links will be combined
at router 2; thus, two-thirds of the traffic from router 6 destined for router 1 will arrive at
router 6 from link 2→1, while one-third will arrive from link 5→1.

It may be noted that the OSPF specification does not say exactly how ECMP is to be
accomplished from an implementation point of view. In concept, packets that arrive for the
same destination router can be equally split among outgoing links of ECMP paths. However,
this is not desirable for several reasons. For example, for a single TCP session (microflow), if

C H A P T E R 6 OSPF and Integrated IS-IS 175

F I G U R E 6.3 OSPF equal-cost multipath (ECMP) example.

the packets are sent on different ECMP paths that might consist of links with different link
bandwidths, packets can arrive with different delays; this can then affect TCP throughput.
If packets for this session are alternated across each link, then packets can arrive out of or-
der. Thus, router software implementation handles ECMP path selection on a per-microflow
basis. Yet, implementation at a per-microflow choice level at a router can have an effect as
well. If every router in the network makes identical decisions because of the way flows are
processed by the router software, for example, due to prefix matching, then microflows that
arrive at router 1 destined for router 6 that are directed to link 1-2 would use only one of
the paths 2-3-6 or 2-4-6 (see Figure 6.3). Thus, sophisticated, yet fast, router software imple-
mentation addresses randomization of microflows to different ECMP outgoing links so that
such situations do not occur. In summary, ECMP is possible only as approximate split by ran-
domizing at a per-microflow level (or destination address level) from a practical point of
view.

The ECMP feature is helpful in load balancing traffic, but may not be helpful when trou-
bleshooting a network. Thus, some providers try to avoid using ECMP; that is, they seek the
single shortest paths, to the extent possible. This will be discussed further in relation to IP
traffic engineering in Chapter 7.

INTERAREA ROUTING COMPUTATION

It is important to note that Dijkstra-based shortest path computation using link state in-
formation is applied only within an area. For routing update between areas, information
from one area is summarized using Summary LSAs without providing detailed link infor-
mation; thus, interarea routing computation in OSPF is similar to the distance vector flavor.
Since OSPF employs only a two-level hierarchy, a looping problem typically known to oc-
cur with a distance vector approach is not conceptually possible. Yet, due to aggregation
and hierarchy, in certain situations, it is possible to create a scenario where looping can oc-
cur [589].

176 6.2 OSPF: Protocol Features

6.2.8 Additional Features
OSPF has the capability to authenticate packet exchanges between two routers. Such authen-
tication can be either simplex password-based or MD5-based. Furthermore, extensions to
OSPF, to add digital signature authentication to LSA data and to provide a certification mech-
anism for router data, have been addressed in RFC 2154 [514]. We will highlight here a few
additional features in OSPF.

STUB AREAS AND STUB NETWORKS

Recall that we discussed backbone and low-level areas earlier. OSPF provides additional
ways to define low-level areas. A low-level area is considered to be a regular area if all types
of LSAs are permitted into this area; thus, all routers in a regular area can determine the best
path to a destination. A stub area is an area where information about external routes, commu-
nicated through AS external LSAs, is not sent; the area border router on this stub area creates
a default external route for use by the stub area. Consider Figure 6.1 again; here, Area 3 is a
stub area.

A not-so-stubby area (NSSA) is a stub area that can import AS external routes—this means
that this stub area has an unusual connectivity to another AS. Since routes/networks from
this AS would need to be known to the rest of the Internet, this information needs to be
imported. To accomplish this, an additional LSA type called NSSA-LSA (type code = 7) is
defined so that routes from an AS connected to an NSSA can be imported to an area border
router where they can be converted to a type 5 LSA (AS-external-LSA) for flooding. For ex-
ample, if you imagine such an area connected to Area 3 in Figure 6.1 (not shown in figure)
that is outside the OSPF domain, then this area would be an NSSA. In addition, another area
type called a totally stubby area is being used in practice; this type of area is useful for a large
OSPF network since such an area can use default route for all destinations outside this area
(in addition to external routes), thereby saving on memory requirement of routers in the area.

There is another term, stub networks, that should not to be confused with stub areas.
A stub network is a network identified by an IP prefix that is connected to only one router
within an area.

ADDITIONAL LSA TYPES

In addition to the LSA types described earlier in Section 6.2.5 and the one described above,
there are five more LSA types have been defined so far. Group Membership LSA (type code
= 6) is used in multicast OSPF. External Attributes (type code = 8) has been deprecated; in its
place, three new LSA types, known as the Opaque LSA option, have been defined. The role
of opaque LSA is to carry information that is not used by SPF calculation, but can be useful
for other types of calculations. For example, traffic engineering extensions to OSPF utilize the
opaque LSA option; see Section 18.3.4. Three types of opaque LSA options have been defined
to indicate the scope of propagation of information, i.e., whether it is link-local, area-local, or
AS scope.

ROUTE REDISTRIBUTION

In Section 5.7, we discussed route redistribution, especially for distance vector protocols.
Route redistribution is similarly possible with OSPF (and IS-IS); for example, one side can

C H A P T E R 6 OSPF and Integrated IS-IS 177

be EIGRP while the other side is OSPF. For OSPF that learns a route from another proto-
col such as EIGRP, NSS External LSA (type = 7) can be used. To allow for route redistri-
bution and metric compatibility, NSSS External LSA has an E-bit field to indicate whether
to use cost that is the external cost plus the cost of the path to the AS border router (“E1
type external path”), or simply the external cost (“E2 type external path”), and External
Route Tag field for help in external route management. For the purpose of path selection
for external routes, an E1 type external path is given preference over an E2 type external
path.

6.3 OSPF Packet Format
In this section, we describe packet formats for several key OSPF packet types.

COMMON HEADER

The common header has the following key fields (Figure 6.4):

• Version: This field represents the OSPF version number; the current version is 2.

• Type: This field specifies the type of packet to follow. OSPF has five packet types: hello (1),
database description (2), link state request (3), link state update (4), and LSA (5).

• Packet Length: This indicates the length of the OSPF packet.

• Router ID: This field indicates the ID of the originating router. Since a router has multiple
interfaces, there is no definitive way to determine which interface IP address should be
the router ID. According to RFC 2328 [505], it could be either the largest or the smallest
IP address among all the interfaces. It may be noted that if a router is brought up with
no interface connected, then it has no ability to acquire a router ID. To avoid this sce-
nario, a loopback interface, being a virtual interface, can be used to acquire a router ID.
In general, a router ID that is based on a loopback interface provides much more flexi-
bility to network operators in terms of management than a physical interface–based ad-
dress.

• Area ID: This is the ID of the area where the OSPF packet originated. Value 0.0.0.0 is re-
served for the backbone area.

F I G U R E 6.4 OSPF packet common header.

178 6.3 OSPF Packet Format

• Checksum: This is the IP checksum over the entire OSPF packet.

• AuType and Authentication Field: AuType works with the Authentication field for authen-
tication. There are three authentication types:

AuType Meaning Authentication Field
0 No authentication Can be anything
1 Simple, clear text password-based authenti-

cation
An 8-byte password

2 Cryptographic MD5 checksum authentica-
tion

8-byte is divided as shown in
Figure 6.5

Note that when AuType is 2, it contains a KeyID, an Authentication Data Length, and a
Cryptographic Sequence Number. MD5 checksum is used to produce a 16-byte message
digest that is not part of the OSPF packet; rather, it is appended to the end of the OSPF
packet.

F I G U R E 6.5 OSPF AuType = 2.

HELLO PACKET

The primary purpose of the hello packet (Figure 6.6) is to establish and maintain adjacencies.
This means that it maintains a link with a neighbor that is operational. The hello packet is
also used in the election process of the DR and BDR in broadcast networks. The hello packet
is also used for negotiating optional capabilities.

• Network Mask: This is the address mask of the router interface from which this packet is
sent.

• Hello Interval: This field designates the time difference in seconds between any two hello
packets. The sending and the receiving routers are required to maintain the same value;
otherwise, a neighbor relationship between these two routers is not established. For point-
to-point and broadcast networks, the default value is 10 sec, while for non–broadcast net-
work the default value used is 30 sec.

• Options: Options field allows compatibility with a neighboring router to be checked.

• Priority: This field is used when electing the designated router and the backup designated
router.

C H A P T E R 6 OSPF and Integrated IS-IS 179

0 0 0 01 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7
Network Mask

(4 bytes)

Router Dead Interval
(4 bytes)

Designated Router
(4 bytes)

Backup Designated Router
(4 bytes)

Neighbors

Hello Interval
(2 bytes)

Options
(1 byte)

Priority
(1 byte)

Neighbors
(4 bytes each)

F I G U R E 6.6 OSPF hello packet (OSPF packet type = 1).

• Router Dead Interval: This is the length of time in which a router will declare a neighbor
to be dead if it does not receive a hello packet. This interval needs to be larger than the
hello interval. Also note that the neighbors need to agree on the value of this parameter;
this way, a routing packet that is received, which does not match this field on a receiv-
ing router’s interface, is dropped. The default value is typically four times the default
value for the hello interval; thus, in point-to-point networks and broadcast networks, the
default value used is 40 sec while in non–broadcast networks, the default value used is
120 sec.

• Designated Router (DR) (Backup Designated Router (BDR)): DR (BDR) field lists the IP ad-
dress of the interface of the DR (BDR) on the network, but not its router ID. If the DR
(BDR) field is 0.0.0.0, then this means there is no DR (BDR).

• Neighbor: This field is repeated for each router from which the originating router has re-
ceived a valid Hello recently, meaning in the past RouterDeadInterval.

DATABASE DESCRIPTION PACKET

The OSPF database description packet has the following key features (Figure 6.7):

• Interface Maximum Transmission Unit (MTU): This field indicates the size of the largest
transmission unit the interface can handle without fragmentation.

• Options: Options fields consist of several bit-level fields. The most critical one is the E-bit,
which is set when the attached area is capable of processing AS-external LSAs.

• I/M/MS bits: I-bit (initial-bit) is initialized to 1 for the initial packet that starts a database
description session; for other packets for the same session, this field is set to 0. M-bit (more-
bit) is used to indicate that this packet is not the last packet for the database description
session by setting it to 1; the last packet for this session is set to 0. MS-bit (master-slave

180 6.3 OSPF Packet Format

F I G U R E 6.7 OSPF database description packet (OSPF packet type = 2).

bit) is used to indicate that the originator is the master by setting this field to 1, while the
slave sets this field to 0. This was illustrated earlier in Figure 6.2.

• DD Sequence number: This field is used for incrementing the sequence numbers of packets
from the side of the master during a database description session; the master sets the initial
value for the sequence number.

• LSA Header: This field lists headers of the LSAs in the originator’s link state database; it
may list some or all of them.

LINK STATE REQUEST PACKET

The link state request packet is used for pulling information. For example, based on database
description received from a neighbor, a router might want to know link state information
from its neighbor. The link state request packet has the following fields, which are repeated
for each unique entry (Figure 6.8):

• Link State Type: This field identifies a link state type such as a router or network.

F I G U R E 6.8 OSPF link state request packet (OSPF packet type = 3).

C H A P T E R 6 OSPF and Integrated IS-IS 181

F I G U R E 6.9 OSPF link state update packet (OSPF packet type = 4).

• Link State ID: This field is dictated by the link state type.

• Advertising Router: This is the address of the router that has generated this LSA.

LINK STATE UPDATE PACKET

This packet (Figure 6.9) contains the first field to be the number of LSAs followed by informa-
tion on LSAs that follow the LSA packet format. Thus, a link state update packet can contain
one or more LSAs.

LINK STATE ACKNOWLEDGMENT PACKET

The LSA packet is used in acknowledging each link state advertisement received from a
neighboring router. This includes the LSA headers that follow the OSPF packet header where
the type field is set to 5.

OSPF LINK STATE ADVERTISEMENT

In some sense, this is the heart of the link state protocol concept. A LSA packet consists of
a header, followed by data for different link state types. Here, we will present packet for-
mats for Router LSA and Network LSA. First, the common LSA header has the following
fields:

• Age: This field reflects the time in seconds since the LSA was originated. The originating
router sets this value to 0. Through a global parameter, MaxAge, the maximum life of an
LSA is set to 1 hour. When the age field for an LSA reaches MaxAge, LSA is flooded again
regardless of change in the link state of this LSA.

• Options: This is used to identify optional capabilities supported by the OSPF routing do-
main.

• Type: This field indicates the LSA type: 1 for Router LSA, 2 for Network LSA, and so on.
This type field is not to be confused with the OSPF packet type discussed earlier.

• Link State ID: This field uniquely identifies an LSA.

• Advertising router: This is the OSPF router ID of the originating router.

182 6.3 OSPF Packet Format

• Sequence number: This field is incremented each time a new LSA is generated by the origi-
nating router.

• Checksum and Length: The checksum is over the entire packet except for the age field.
Length is counted in bytes for the enter LSA including header.

Router LSA:
A Router LSA consists of the LSA header (Figure 6.10) followed by the content of the

Router LSA (Figure 6.11). Every router generates a Router LSA that lists all the routers, outgo-
ing interfaces (links); for each interface, the state and cost of the link are included. In addition
to the LSA header, a Router LSA has the following fields:

• V/E/B-bits: V-bit indicates if it is a virtual link, E-bit indicates an AS boundary router, and
B-bit indicates an area border router.

• Number of Links: This field indicates the total number of router interfaces.

• Link ID, Link Data, and Link Type: Link ID and Link Data are better understood in the
context of Link Type ([189], [505]); this is summarized in Table 6.1.

• Metric: This is the cost of an interface/link. The value is in the range 1 to 65,535 (=216 − 1).
OSPF specification does not specify what values are to be used here. Rather, this is left to
the network service provider to decide. In Chapter 7, we will discuss how values might
be chosen for the purpose of traffic engineering of a network.

• Number of TOS, TOS, and TOS Metric: The Number of TOS field indicates the different
number of Type of Service; if this field is zero, then TOS and TOS Metric fields are not
applicable. If the Number of TOS is 2, then TOS and TOS Metric fields are repeated twice;
here TOS would then refer to a particular type such as normal service, maximize relia-
bility, or minimize delay, while the TOS Metric field would then include the cost for the
associated TOS field.

Network LSA:
Network LSAs are generated by DRs. In addition to the LSA header, a Network LSA has

the following fields (Figure 6.12):

F I G U R E 6.10 OSPF link state advertisement header.

C H A P T E R 6 OSPF and Integrated IS-IS 183

TA B L E 6.1 Router LSA: Link Type, Link ID, and Link Data.

LinkType Description Link ID Link Data
1 Point-to-point link Neighboring router’s

Router ID
Interface IP address of
originating router

2 Link to transit network Interface IP address of
Designated Router

Interface IP address of
originating router

3 Link to stub network IP network or subnet ad-
dress

Network’s IP address

4 Virtual link Neighboring router’s
Router ID

Interface IP address

F I G U R E 6.11 OSPF Router LSA content (LSA type = 1).

• Network Mask: This is the standard subnet mask information.

• Attached Router: This field is repeated once for each router that is fully adjacent to the DR.

6.4 Examples of Router LSAs and Network LSAs
In this section, we will illustrate router and network LSAs through an example, adapted from
[505]. We will use private IP address space in this illustration. In Figure 6.13, we show two
areas: Area 0 and Area 1. In Area 1, there are three stub networks: N1 identified by IP prefix
192.168.1.0, N2 by 192.168.2.0, and N3 by 192.168.3.0, which are off routers R1, R2, and R3,
respectively. The transit network N4 is identified by 192.168.4.0 with R4 as the DR, while
having IP interfaces to R1, R2, and R3, as noted. Both R3 and R4 area border routers are

184 6.4 Examples of Router LSAs and Network LSAs

F I G U R E 6.12 OSPF Network LSA content (LSA type = 2).

F I G U R E 6.13 OSPF network example.

connected to Area 0. In our discussion, we will identify the router ID of a router by the highest
IP address of all its interfaces. For example, router ID of R1 is 192.168.4.1 since this address is
higher than its other interface to network N1 (192.168.1.0). For simplicity, we will assume all
metric values to be 1.

Router R3 will generate two Router LSAs: one for Area 1 and the other for Area 0. For
Area 1, it is necessary to identify two Link IDs: one for the transit network identified by
DR 192.168.4.4 and the other for stub network 192.168.3.0. Now you can see how networks/IP
prefixes are communicated to other routers in the network. Thus, when a router computes
the shortest path tree, it first computes it for all the routers in its area. Then, any networks it
learns about from any of the Router LSAs of various routers, it can add a leaf for a route to
such networks. This means that once completed, a router’s routing table contains entries for
all other routers as well as for destination networks. The information content of Router LSA
for R3 for Area 1 is shown in Figure 6.14.

C H A P T E R 6 OSPF and Integrated IS-IS 185

// Router LSA of R3 for Area 1
LS age = 0 //always true on origination
Options = (E-bit)
LS type = 1 //indicates Router LSA
Link State ID = 192.168.4.3 //R3’s Router ID
Advertising Router = 192.168.4.3 //R3’s Router ID
bit E = 0 //not an AS boundary router
bit B = 1 //area border router
#links = 2

Link ID = 192.168.4.4 //IP address of Designated Router
Link Data = 192.168.4.3 //R3’s IP interface to net
Type = 2 //connects to transit network
TOS metrics = 0
metric = 1 // End of first Link ID info
Link ID = 192.168.3.0 //IP Network number
Link Data = 255.255.255.0 //Network mask
Type = 3 //connects to stub network
TOS metrics = 0
metric = 1 // End of Second Link ID info

F I G U R E 6.14 Router LSA of R3 in Area 1 for the network example in Figure 6.13.

// Network LSA for Network N4
LS age = 0 //always true on origination
Options = (E-bit)
LS type = 2 //indicates Network LSA
Link State ID = 192.168.4.4 //IP address of Designated Router
Advertising Router = 192.168.4.4 //R4’s Router ID
Network Mask = 255.255.255.0

Attached Router = 192.168.4.4 //Router ID
Attached Router = 192.168.4.1 //Router ID
Attached Router = 192.168.4.2 //Router ID
Attached Router = 192.168.4.3 //Router ID

F I G U R E 6.15 Network LSA for Network N4 for the network example in Figure 6.13.

Router LSAs within Area 1 generated by routers R1 and R2 will be similar. Since R4 is the
DR in Area 1, it will generate a network LSA for transit network N4 (Figure 6.15), which also
identifies all the attached routers.

Now consider Area 0. R3 is connected to router R6 by a point-to-point link in Area 0;
Router LSA for R3 would be different than when it sends to Area 1, as shown in Figure 6.16.
Router LSA for R4, which is connected to router R5, will be similar.

6.5 Integrated IS-IS
Integrated IS-IS for both CLNP and IP protocols is described in RFC 1195 [105] while the
original IS-IS protocol was described in [321], [537]. IS-IS comes with its own terminology
that is different from OSPF. For example, routers are referred to as intermediate systems; thus,
the name intermediate systems-to-intermediate systems means router-to-router. For consis-
tency, we will use the term routers instead of intermediate systems. LSAs are called link state

186 6.5 Integrated IS-IS

// R3’s Router LSA for Area 0
LS age = 0 //always true on origination
Options = (E-bit)
LS type = 1 //indicates Router LSA
Link State ID = 192.168.4.3 //R3’s router ID
Advertising Router = 192.168.4.3 //R3’s router ID
bit E = 0 //not an AS boundary router
bit B = 1 //area border router
#links = 1

Link ID = 192.168.6.1 //Neighbor’s Router ID
Link Data = 10.3.6.1 //MIB-II ifIndex of P-P link
Type = 1 //connects to router
TOS metrics = 0
metric = 1

F I G U R E 6.16 Router LSA for R3 in Area 0 for the network example in Figure 6.13.

protocol data units, or LSPs, in short. A broadcast network is referred to as a pseudonode; a
designated intermediate system is elected from all the ISs to represent a broadcast network. An
address to identify an intermediate system is called a network service access point (NSAP). IS-IS
runs directly over layer-2 protocols, unlike OSPF that runs over IP. Similar to OSPF, IS-IS has
also been extended to provide traffic engineering capabilities; this will be discussed later in
Section 18.3.4.

6.5.1 Key Features

We now highlight the main features of IS-IS protocols.

AREAS

IS-IS provides two-level network hierarchy using areas that are similar to OSPF. The routers
in the backbone area are called L2 routers; the internal routers in low-level areas are called L1
routers. A network that has any low-level (L1) areas must also have at least one L1/L2 router
that sits in the L1 area but is connected to the L2 (backbone) area by a link. Note that in IS-IS,
a router is entirely within an area, unlike OSPF, where a router can sit on the border between
two areas; connectivity between areas is only through a link.

ADDRESSING IN IS-IS

Addressing in IS-IS is based on OSI-NSAP addressing and is compatible with USA GOSIP
version 2.0 NSAP address format. GOSIP stands for Government Open Systems Interconnec-
tion Profile, the federal standard for network systems procurement that was standardized in
the early 1990s. The OSI-NSAP addressing has, key fields, as shown on the table on the next
page.

C H A P T E R 6 OSPF and Integrated IS-IS 187

Field Size Value
AFI (Authority and Format Identifier) 1 byte “47”
ICD (International Code Designator) 2 bytes “00 05”
DFI (Domain-Specific Path Format Identifier) 1 byte “xx”
AAI (Administrative Authority Identifier) 3 bytes “xx xx xx”
Reserved 2 bytes Must be “00 00”
RDI (Routing Domain identifier) 2 bytes Contains autonomous system

number
Area 2 bytes Assigned by the authorities re-

sponsible for the routing domain
to uniquely identify areas

System ID 6 bytes Use either (1) “02 00” prepended
to the 4-byte IP address of the
router, or (2) IEEE 802 48-bit MAC
address

N-Selector (upper layer identifier) 1 byte Set to zero

As you can see, several fields are used for setup in IP networks. The important ones are:
RDI, Area, and System ID. When the last byte, N-selector, is set to zero, there is no upper-layer
user, and the address is meant purely for routing; such routing-layer-only NSAP addresses
are called Network Entity Titles (NET). In effect, IS-IS for IP networks uses NET addressing. It
is important to note that NET is a router identifier, not an interface identifier.

PSEUDONODES AND NONPSEUDONODES

IS-IS allows handling of different network types. For example, a broadcast network is treated
as a pseudonode where one of the routers serves as the pseudonode, which is labeled the
designated intermediate system (DIS), with links to each attached router.

For links that are not for broadcast networks but are for point-to-point networks and stub
networks, a nonpseudonode is created. Essentially, a nonpseudonode is similar to a router
LSA in OSPF.

SHORTEST PATH CALCULATION

Shortest path calculation is based on Dijkstra’s algorithm. Once a router receives a new LSP, it
waits for 5 sec before running the shortest path calculation. There is a 10 sec hold-down timer
between two consecutive shortest-path calculations within the same area. However, L1/L2
routers that reside in L1 areas must run separate shortest path calculations, one for the L1
area and the other for the L2 area.

Link metric in IS-IS has been originally limited to 6 bits and, thus, the value ranges from
0 to 63 and the total path cost in an IS-IS domain can have a maximum value of 1023. This
6-bit metric is known as a narrow metric. A wide metric extension is now available through
traffic engineering extensions to IS-IS that permits a 24-bit metric, thus allowing a range of 0
to 16,777,215 (=224 − 1).

188 6.5 Integrated IS-IS

CATEGORIZATION OF PACKETS

IS-IS defines four categories of protocol packets, or protocol data units (PDUs): hello packet,
link state PDUs (LSP), complete sequence number PDUs (CSNP), and partial sequence num-
ber PDUs (PSNP).

The purpose of the hello packet is similar to the hello packet for OSPF. IS-IS defines three
types of hello packets; they are for (1) point-to-point interfaces, (2) L1 routers, and (3) L2
routers.

There are two types of LSPs—one for level 1 and the other for level 2. Each LSP contains
three key pieces of information: LSP ID (8 bytes), the sequence number (4 bytes), and the re-
maining lifetime (2 bytes). LSP ID is system ID (6 bytes) followed by pseudonode ID; if the
first byte of the pseudonode ID field is nonzero, then this LSP orginated from a DIS in a broad-
cast network; the last byte is used for identification in case the LSP needs to be fragmented
because it exceeds the maximum transmission unit of an interface. The remaining lifetime
field is the same as the age field in an OSPF LSA; the difference is that the lifetime field value
is set at the maximum age of 1200 sec (20 min) at the beginning and is then decreased unlike
OSPF where it is set to zero at the beginning and is then increased. In addition to this, an LSP
uses a Type-Length-Value (TLV) format to include information such as a list of connected IP
prefixes along with subnet masks. This makes it possible to determine destination networks
to which the domain is connected so that the routing table can properly list such destinations.

CSNPs are like database description packets in OSPF and are used for link state data-
base synchronization. A router creates CSNPs with all LSPs in its local link state database.
A PSNP is created when upon receiving a CSNP from a neighbor, it realizes that some parts
are missing; this means that this router has received certain other LSPs that are in its location
link state database but the neighbor’s CSNP did not include them. Thus, the receiving router
generates a PSNP to request newer copy of the missing LSPs. In essence, PSNPs are similar
to the link state request packet in OSPF.

PACKET FORMAT AND INFORMATION ENCODING THROUGH TLV

The first 8 bytes of IS-IS PDUs form the common header that includes fields such as version
number, header length, and PDU types. After the common header, PDU-specific fields are
included followed by variable-length fields. For example, PDU-specific fields in the hello
packet include fields equivalent to Router Dead Interval in OSPF hello packet. IS-IS Link
state PDUs are similar to OSPF LSAs. A subtle difference is that while OSPF LSAs start with
the age field set to zero and the counter is incremented until MaxAge to indicate the expiry
of time, IS-IS link state PDUs start with a remaining lifetime and the counter is decremented
until zero to indicate that the lifetime has expired. Since there are two types of routers in IS-IS,
L1 and L2, a field is included to indicate the originating router type.

The variable-length field that follows the header is encoded using TLV encoding where
1 byte is assigned for code type (T), 1 byte for length (L), and a variable-length value (V) field
not to exceed 255 bytes since one byte is assigned for the length field. A representative set of
well-known types is listed in Table 6.2; note that many types are as originally described in
ISO 10589 [321] while for IP environments several additional types were added in RFC 1195
[105] and in recent RFCs such as RFC 3784 [649]. An updated list is maintained at [316].

C H A P T E R 6 OSPF and Integrated IS-IS 189

TA B L E 6.2 TLV codes for Integrated IS-IS protocol.

Type TLV
1 Area Addresses (ISO 10589 [321])
2 IS Neighbors (LSPs) (ISO 10589 [321])
3 ES Neighbors (ISO 10589 [321])
4 Partition Designated level 2 IS (ISO 10589 [321])
5 Prefix Neighbors (ISO 10589 [321])
6 IS Neighbors (Hellos) (ISO 10589 [321])
8 Padding (ISO 10589 [321])
9 LSP Entries (ISO 10589 [321])

10 Authentication Information (ISO 10589 [321])
14 LSP Buffersize (ISO 10589 [321])
22 Extended IS reachability (RFC 3784 [649])

128 IP Internal Reachability Information (RFC 1195 [105])
129 Protocols Supported (RFC 1195 [105])
130 IP External Reachability Information (RFC 1195 [105])
131 Inter-Domain Routing Protocol Information (RFC 1195 [105])
132 IP Interface Address (RFC 1195 [105])
133 Authentication Information (RFC 1195 [105])
134 Traffic Engineering router ID TLV (RFC 3784 [649])
135 Extended IP reachability TLV (RFC 3784 [649])
138 Shared Risk Link Group (RFC 4205 [373])

6.6 Similarities and Differences Between IS-IS and OSPF
It is helpful to consider the similarities and differences between IS-IS and OSPF. First, it
should be noted that fundamentally there is little difference between OSPF and IS-IS. Thus,
the differences center more on how certain things are done, often stylistic differences.

SIMILARITIES

There are several similarities between IS-IS and OSPF:

• Both protocols provide network hierarchy through two-level areas.

• Both protocols use Hello packets to initially form adjacencies and then continue to main-
tain them.

• Both protocols have the ability to do address summarization between areas.

• Both protocols maintain a link state database, and shortest path computation performed
using Dijkstra’s algorithm.

• Both protocols have the provision to elect a designated router for representing a broadcast
network.

DIFFERENCES

While there are similarities as noted above, there are several differences:

190 6.6 Similarities and Differences Between IS-IS and OSPF

TA B L E 6.3 IS-IS and OSPF development/deployment timeline (adapted from [354]).

Year Note
1987 IS-IS (CLNP) chosen as the OSI intradomain protocol from DECnet proposal
1988 NSFnet deployed; routing protocol uses an early draft of IS-IS

Work on OSPF started
IP extensions to IS-IS defined

1989 OSPFv1 (RFC 1131) published
Proteon ships OSPF implementation
IS-IS becomes ISO proposed standard

1990 Integrated IS-IS (RFC 1195) published
1991 OSPF v2 (RFC 1247) published

Cisco ships its OSPF implementation
Cisco ships its OSI-only IS-IS implementation

1992 Cisco ships dual–IS-IS implementation
Many deployment of OSPF

1993 Novell publishes NLSP
1994 Cisco ships NLSP, rewriting IS-IS as well

IS-IS is recommended for large ISPs due to recent rewrite and OSPF field ex-
perience, and CLNP mandate by NSF

1995 ISPs begin deployment of IS-IS
1996–1998 IS-IS niche popularity continues to grow (some ISPs switch to it from OSPF)

IS-IS becomes barrier to entry for router vendors targeting large ISPs
Juniper and other vendors ship IS-IS–capable routers

1999–present Extensions continue for both protocols in parallel (e.g., Traffic Engineering)

• With OSPF, an area border router can sit on the boundary between the backbone area and
a low-level area with some interfaces in the area while other interfaces are in the other
area. In IS-IS, routers are entirely within one or the other area—the area borders are on
links, not on routers.

• While OSPF packets are encapsulated in IP datagrams, IS-IS packets are directly encapsu-
lated in link layer frames.

• The OSPF dimension-less link metric value is in the range 1 to 65,535, while IS-IS allows
the metric value to be in the range 0 to 63 (narrow metric), which has been extended to the
range 0 to 16,777,215 (wide metric).

• IS-IS being run directly over layer 2 is relatively safer than OSPF from spoofs or attacks.

• IS-IS keepalives can be used for MTU detection since they are MTU-sized TLVs that are
explicitly checksummed and need to be verified as such.

• IS-IS allows overload declaration through an overload bit by a router to other routers.
This is used, for example, by other routers to not consider an overloaded router in path
computation.

C H A P T E R 6 OSPF and Integrated IS-IS 191

Along with similarities and differences, it is helpful to also consider a timeline of evolu-
tion of OSPF and IS-IS as outlined in Table 6.3.

6.7 Summary
In this chapter, we have presented the OSPF protocol, discussing its main features at length.
We have also described packet formats for certain key packets in OSPF. Furthermore, we
have presented examples of LSAs for OSPF networks. We also presented the integrated IS-IS
protocol through a summary of its key features. It is important to note that OSPF and IS-IS are
stateful protocols. Note that both OSPF and IS-IS allow route redistribution capability (refer
to Section 5.7).

We also provided a brief summary on similarities and differences between the OSPF and
the IS-IS protocol. It may be noted that as of now there are no fundamental differences be-
tween OSPF and IS-IS. In retrospect, it can be said that market competition made both pro-
tocols as robust as possible. Thus, the choice of routing protocol for deployment in an ISP’s
network is based on issues such as configuration management, maintainability of large net-
works, in-house expertise, and so on. Typically, medium- to large-scale ISPs use either OSPF
or IS-IS protocol, while small providers or campus networks use routing protocols such as
EIGRP. Finally, while OSPF defines the concept of areas, many providers deploy their net-
works configured simply with a single area (Area 0); in many instances, a single area is found
to be easy to manage since all routers see the same view, which can be helpful in troubleshoot-
ing any routing problem.

Further Lookup
While the link state routing protocol goes back to ARPANET when the “new” ARPANET
routing was introduced [463], this approach gained significance during the early days of OSI
protocol development. IS-IS was introduced in 1987. Factors including NSFnet deployment
were key drivers in creating the first version of the OSPF protocol [503]. It was also recognized
in the late 1980s that the IS-IS protocol can be tweaked to work in an IP environment [105].

The current OSPF standard, known as version 2, is described in RFC 2328 [505]; also, see
[504] for a detailed discussion of OSPF. For a comparative discussion on OSPF and IS-IS, see
[354]. For additional discussions on the similarities and differences between OSPF and IS-IS,
see [83], [189], [211], [558]. For details on command line level configuration of OSPF and IS-IS,
there are several books available; for example, see [189] for an excellent coverage.

OSPF has been extended for use with IPv6 addressing; often, this version of OSPF is
referred to as OSPFv3; for details, see RFC 2740 [150].

Exercises
6.1. Review questions:

(a) What are the different OSPF packet types?

(b) What is the range of allowable metric values in OSPF and IS-IS?

(c) What is a database description packet?

192 6.7 Exercises

(d) What is a link state advertisement?

(e) What is a designated router?

(f) What is an network entity title?

6.2. Describe an usage of a not-so-stubby area.

6.3. Explore route redistribution between OSPF and EIGRP.

6.4. Identify the functionality in OSPF that allows a static route to be injected into an OSPF
domain.

6.5. Consider a five-router OSPF network. How many entries will be in the routing table at
each router?

6.6. Consider a fully-connected N-router OSPF network. Suppose one of the routers goes
down. Estimate how many total link state messages would be generated before the
network converges.

6.7. Why are different types of LSAs defined in OSPF?

6.8. How is the router ID determined in OSPF? How about IS-IS?

6.9. How is an OSPF area different from an IS-IS area?

6.10. Can you redistribute route learned from OSPF to IS-IS and vice-versa?

6.11. Refer to the discussion about the generic link state routing protocol framework in
Section 3.4. Present a comparative assessment between the basic framework and
OSPF/IS-IS.

This page intentionally left blank

7
IP Traffic
Engineering
As late as 1842 a train was started only when sufficient traffic was waiting
along the road to warrant the use of the engine.

John Moody

Reading Guideline

To get the most out of this chapter, we assume that you are already familiar with
network flow modeling (discussed in Chapter 4); some familiarity with IP routing
protocols such as OSPF and IS-IS (see Chapter 6) is necessary. By reading this chap-
ter, you will know how to determine link weights for IP traffic engineering for an
interior gateway protocol (IGP) such as OSPF or IS-IS.

C H A P T E R 7 IP Traffic Engineering 195

In this chapter, we discuss traffic engineering for IP intradomain networks. The role of traf-
fic engineering is to optimize an operational network so that performance requirements are
met, yet network resources are well utilized. Traffic engineering is an essential component of
IP intradomain operational networks, especially if the network is large. Traffic engineering
addresses medium-term goals of a network and overall behavior of operational networks;
typically, it does not cover adding new capacity, which falls under the network dimensioning
problem. Furthermore, traffic engineering does not address issues such as traffic surge that
last a few seconds to a few minutes, which may result in excessive delay for a very brief
period; this is important to keep in mind in order to understand the context of traffic engi-
neering.

7.1 Traffic, Stochasticity, Delay, and Utilization

7.1.1 What Is IP Network Traffic?
We start with a discussion about traffic in IP networks. To describe traffic, we first need to
consider sources that generate IP traffic.

An IP network provides many services such as web and email; there are also interactive
services such as telnet, ssh for terminal services. In current IP networks, the predominant
traffic is due to applications that use TCP for transport layer; it has been reported that on a
backbone link approximately 90% of traffic is TCP based [350]. A message content created
by applications is broken into smaller TCP pieces, called TCP segments, by including TCP
header information, which are then transmitted over the IP network after including IP header
information; the data entity at the IP level is IP datagrams, while packet is also a commonly
used term. Thus, traffic in an IP network is IP datagrams generated by various applications,
without wondering which among the applications it is for.

Thus, when we talk about traffic volume on an IP network link, we are interested in
knowing the number of IP packets flowing on a link in a certain unit of time. Usually, the
time unit is considered in seconds. Thus, traffic volume can be specified in terms of IP pack-
ets offered per second, or packets per sec (pps). On the other hand, there is another measure
of traffic volume that is often used—raw data rate units such as Megabits per sec (Mbps) or
Gigabits per sec (Gbps). Indeed, there is a relation between pps and Mbps (or Gbps). Sup-
pose we consider the average packet size to be K Megabits. Then pps is related to Mbps as
follows:

Traffic data rate (Mbps) = Packets per sec × Average packet size (Megabits). (7.1.1)

It is, however, not required that the average packet size be counted separately to obtain
the data rate. With the sophisticated network monitoring system in current IP networks, the
traffic data rate in Mbps (or Gbps) can be estimated based on measurements through either
an active or passive monitoring system.

7.1.2 Traffic and Performance Measures
In an IP network environment, delay is a critical performance parameter since we are inter-
esting in ensuring that a packet generated from one end reaches the other end as soon as

196 7.1 Traffic, Stochasticity, Delay, and Utilization

possible. Interestingly, there is an analogy between road transportation networks and IP net-
works. In road transportation networks, delay depends on the volume of traffic as well as
the number of street lanes (and speed limit) imposed by the system. Similarly, delay in an IP
network can depend on the amount of traffic as well as the capacity of the system; thus, the
following functional relation can be generally written:

Delay =F(Traffic volume data rate, Capacity). (7.1.2)

To be specific, the above relation is true only in a single-link system. When we consider a
network where routing is also a factor, then a more general functional relation is as follows:

Delay =F(Traffic volume data rate, Capacity, Routing). (7.1.3)

7.1.3 Characterizing Traffic
So far, we have not said much about traffic volume except for Eq. (7.1.1); that is, traffic volume
may be given through a single number, such as packets per second or Megabits per second.
How do we obtain a number like this one?

Consider the arrival of packets to a network link. If we consider just a single request for a
web page that is traversing the link, it may appear that the packets at the IP level are arriving
in a deterministic fashion; the page is generated by the web server, which is broken into TCP
segments that are wrapped with an IP header, and is then transmitted one after another; this
is certainly from the point of view of a single web session. However, in a network link, many
web sessions are active, each one being requested at a random start point by a user; this is
similar for other traffic due to applications such as email, and so on. Thus, from the point of
view of a network link, if we consider only the IP level, the link then sees random arrival of
packets. Thus, a number that may represent pps cannot be a fixed, deterministic number; it is
rather dictated by the randomness of traffic arrival. Thus, at most what we can say is average
pps or average Mbps in regard to random traffic arrival. The primary question is: can we say
anything about the characteristics of the random behavior?

Traditionally, it has been assumed that arrival of packets follows a well-known random
process called the Poisson process, and the average arrival rate is the average rate for this Pois-
son process. However, in the early to mid-1990s, there were a series of studies based on ac-
tual measurements of packet traffic that reported that packet arrival behavior is not Poisson;
rather traffic is self-similar in different time scales following heavy-tailed distributions, ex-
hibiting long-range dependency; for example, see [160], [404], [545], [551], [740], [741]. Not to
clutter the discussion here, definitions for Poisson process, self-similarity, long-range depen-
dency, and heavy-tailed distributions are provided in Appendix B.10 and in Appendix B.11.
The key point to note here is that self-similarity contradicts the Poisson assumption; further-
more, a self-similar process with a heavy-tailed distribution impacts the delay behavior much
worse than for a Poisson process. In a recent illuminating study [350] based on measurements
from a backbone network link at OC-48 speed, it was observed that it is indeed possible that
both Poisson behavior and self-similarity can co-exist; it is a matter of the time frame being
considered. Specifically, they reported that in a subsecond time scale, the behavior is Poisson
while in the scale of seconds long-range dependency is observed. We thus start with the as-
sumption of the Poisson model and discuss how self-similarity can be factored in indirectly
for the purpose of traffic engineering.

C H A P T E R 7 IP Traffic Engineering 197

7.1.4 Average Delay in a Single-Link System

First, we assume that packet arrival to a network link follows a Poisson process with the
average arrival rate as λ packets per sec. The average service rate of packets by the link
is assumed to be μ packets per sec. We consider here the case in which the average ar-
rival rate is lower than the average service rate, i.e., λ < μ; otherwise, we would have an
overflow situation. If we assume that the service time is exponentially distributed (see Appen-
dix B.10), in addition to packet arrival being Poissonian, then the average delay, τ , can be
given by the following formula, which is based on the M/M/1 queueing model (see Appen-
dix B.12.2):

τ = 1
μ − λ

. (7.1.4)

Now consider that the average packet size is κ Megabits, and that the packet size is
exponentially distributed. Then, there is a simple relation between the link speed c (in
Mbps), the average packet size κ , and the packet service rate μ, which can be written
as:

c = κμ. (7.1.5)

This is then essentially the relation discussed earlier in Eq. (7.1.1). Combining κ with the
packet arrival rate λ, we can consider the arrival rate, h, in Mbps as follows:

h = κλ. (7.1.6)

If we multiply the numerator and the denominator by κ , we can then transform Eq. (7.1.4) as
follows:

τ = κ

κ(μ − λ)
= κ

c − h
. (7.1.7)

This relation can be rewritten as:

τ

κ
= 1

c − h
. (7.1.8)

If we now compare Eq. (7.1.4) and Eq. (7.1.8), we see that the average packet delay can be
derived directly from the link speed and arrival rate given in a measure such as Mbps;
the only difference is the factor κ , the average packet size. Second, although it may sound
odd, the quantity, τ

κ
, can be thought of as the average “bit-level” delay on a network link

where the average traffic arrival rate is assumed to be h Mbps. In other words, if we track
the traffic volume in Mbps on a link and know the link data rate, we can get a pretty
good idea about the average delay. There are a couple of advantages to this observation:
first, we can use traffic volume, h, and link speed, c, in other units such as Gbps with-
out changing the basic behavior on delay given by 1/(c − h); second, it is not always nec-
essary to track the average packet size; third, if the delay is to be measured in millisec
instead of sec, then 1/(c − h) must be multiplied by the constant, 1000, without chang-
ing the basic structure of the formula. Finally, whether we consider measures in packets

198 7.1 Traffic, Stochasticity, Delay, and Utilization

per sec or Mbps (or Gbps), the link utilization parameter, ρ, that captures the ratio of
traffic volume over the link rate, remains the same regardless of the average packet size
since

ρ = h
c

= κλ

κμ
= λ

μ
. (7.1.9)

In essence, we can say that under the M/M/1 queueing assumption, the average delay,
t(= τ/κ), can be given in terms of the link speed c and the traffic rate h where h < c
as

t = 1
c − h

(7.1.10)

with utilization given by ρ = h/c. Incidentally, Eq. (7.1.10) then gives a functional rela-
tion mentioned earlier in Eq. (7.1.2). What happens if we were to consider self-similarity
of traffic? Unfortunately, there is no simple formula like the above when traffic is self-
similar. It has been reported that the delay behavior with heavy-tail traffic is worse than
that of the M/M/1 delay. Thus, we will create a fictitious delay function for self-similar
traffic and plot it along with the M/M/1 delay as shown in Figure 7.1; note that in this
figure the link speed c is kept fixed while the traffic rate h is increased—this is why the
x-axis is marked in terms of link utilization, ρ, given in percentage as ρ goes from 0 to
100%.

Figure 7.1 is, in fact, very helpful in letting us see a problem from the perspective of traffic
engineering. For instance, suppose that to provide acceptable perception to users, we want
to maintain the average delay at say 20 millisec. From the graph, we can see that with the
M/M/1 average delay formula, the link can handle an arrival traffic rate up to about 80% of
the link capacity while maintaining the acceptable average delay. However, if the traffic does
not follow the Poisson process, then the delay would be much worse at the same utilization

F I G U R E 7.1 The M/M/1 average delay curve along with a fictitious delay curve.

C H A P T E R 7 IP Traffic Engineering 199

value; for instance, in this fictitious graph of delay, we can see that the delay would be about
50 millisec instead. Certainly this is not desirable when the acceptable delay is required to
be below 20 millisec. Thus, instead of taking a vertical view at a certain utilization, we take
the horizontal view at an acceptable average delay. If we do so, we see that to maintain the
average delay at or below 20 millisec, the non-Poisson traffic cannot go beyond 50% link
utilization.

In regard to traffic engineering, there are two important points to note from the above
discussion. First, there is a direct relation between delay and utilization; because of this, re-
quiring a network to maintain a certain delay can be recast as requiring the utilization to be
kept below an appropriate level. Second, since there is no simple formula to consider delay
for self-similar traffic, being conservative on the requirement on utilization can often be suf-
ficient for the purpose of traffic engineering. For example, in the above example, we observe
that keeping utilization at 50% would be more appropriate than letting it grow to 80%. Due
to the relation between traffic volume and capacity through utilization (ρ = h/c), this means
that for a fixed link speed c, we need to keep the traffic volume at a lower level than would
otherwise be indicated for Poisson traffic in order to address traffic engineering needs.

7.1.5 Nonstationarity of Traffic

The analysis/discussion above is based on stationary traffic assuming that an average traffic
data rate is given. However, network traffic has been observed to be nonstationary and can be
time dependent. For example, consider a 24-hour network traffic profile on a link as shown
in Figure 7.2. We can see that the data rate is different depending on the time of the day; in
this specific instance, the traffic volume data rate range is from below 8 Mbps to as high as
30 Mbps. If, for the purpose of traffic engineering, we were to use traffic volume to be the
data rate, say at midnight (about 8 Mbps), and determine link capacity needed to be, say
15 Mbps (based on utilization being about 50%), then we will certainly be overlooking many

F I G U R E 7.2 Traffic data rate over a 24-hour period.

200 7.2 Applications’ View

time windows when the traffic volume will overflow this capacity. This tells us that it would
make more sense to consider the peak of the traffic data rate (or, say 90% of the peak traffic)
over the 24-hour window as the traffic volume needed for traffic engineering consideration.
In this example, the peak traffic volume rate is about 30 Mbps; thus, for an acceptable delay
or utilization, at least a 45 Mbps link would be desirable.

Remark 7.1. Traffic engineering and network dimensioning.
From the illustration above, it could be argued that a 45-Mbps link is not sufficient

since the utilization at the peak traffic rate would be over 60%. For example, 60 Mbps
would be minimally necessary considering 50% as acceptable utilization. However, the
determination of actual link speed to put in place or lease, especially in a backbone
network, also depends on the actual cost of establishing or leasing the link. The prob-
lem of determining the appropriately sized link, especially taking into consideration net-
work cost minimization, is often considered under network dimensioning rather than un-
der traffic engineering, while the distinction is sometimes blurry if you read the cur-
rent literature. We will assume that the goal of traffic engineering is to see if the net-
work can provide acceptable delay or utilization for offered traffic in a capacitated environ-
ment. �

Remark 7.2. Traffic engineering and traffic estimation.
From Figure 7.2, it is clear that the offered traffic should be chosen wisely and may de-

pend on the time of day. In fact, traffic estimation is itself a challenging problem; there has
been much recent work on understanding how to do it and how to do it as accurately as pos-
sible, especially for a large network. We assume that through some process, the offered traffic
is determined for use in traffic engineering. �

7.2 Applications’ View
In the previous section, we presented traffic as viewed from the network layer. Since appli-
cations are the ones that generate IP traffic, it is helpful to understand the requirements in
regard to applications. Since most commonly used applications such as web, email are TCP-
based, from an application point of view, not only should the delay perception be minimized,
but the throughput of data rate transfer is also an important consideration; this is neces-
sary since TCP uses an adaptive sliding window mechanism to regulate how much data to
be pumped based on perception of congestion (see Section 22.2). Thus, we discuss two im-
portant aspects: TCP throughput and bandwidth-delay product and how they need to be
accounted for in traffic engineering.

7.2.1 TCP Throughput and Possible Bottlenecks
It has been noted that TCP throughput depends primarily on three factors: the maximum
segment size (S), the round-trip time (RT T), and the average packet loss probability (q).
A key result [224], [225], [450] on TCP throughput is the following:

TCP throughput = 1.22 S
RT T × √

q
. (7.2.1)

C H A P T E R 7 IP Traffic Engineering 201

An important question is: from the traffic engineering perspective, where and how does an
IP network fit in the three factors and the relation shown in Eq. (7.2.1)? First, we see that the
segment size should be as large as possible. However, note that the maximum segment size
is not entirely within the control of the network since it is negotiated by the end hosts; at the
same time, this tells us that the network link should be set for the maximum transmission
unit possible so that the network link itself does not become the bottleneck in reducing the
TCP throughput of end applications. Since end hosts are connected to Ethernet (where the
maximum transmission unit that can be handled is 1500 bytes), it is imperative that the core
network links have the ability to handle packets of at least this size to avoid any fragmenta-
tion of packets into multiple smaller packets.

The second factor that affects TCP throughput is the round-trip time. From Eq. (7.2.1),
we see that the round-trip time should be minimized, which means that one-way delay
must be minimized. While many factors, including processing at the end hosts can impact
delay, from the point of view of the network, it is important that the delay on a network
link be minimized. Since numerous TCP sessions traverse through a network for differ-
ent source destinations, delay minimization in an IP network is an important goal. Recall
our discussion earlier about the direct relationship between delay and utilization, which
tells us that utilization should be kept below a desirable value in lieu of considering de-
lay.

The third factor is the average packet loss probability. The average packet loss can de-
pend on many points along a TCP connection; the end hosts may drop a packet, the edge
network may drop a packet, there may be bit error rate, and so on. A core network can min-
imize its contribution to the packet loss probability by ensuring that the bit error is not a
dominant factor, which is a fair assumption in fiber-based transmission networks now com-
monly deployed in core networks. However, there is another factor that can contribute to the
increase in packet loss probability—that is, if the buffer size at a router is not sized prop-
erly. Since packets arrive at random time, it is quite possible that the queue builds up at a
router. If there is not enough buffer space, a router is forced to drop packets. If this hap-
pens, the affected TCP sessions are forced to reduce the data rate since a drop packet is
commonly understood by a TCP session to be an indication of congestion. That is, even
if a network link has enough bandwidth, it is quite possible that if a router buffer is not
sized properly, it may appear as congestion to TCP sessions; in other words, the router buffer
size has the potential to be another bottleneck in reducing TCP throughput. Thus, the router
buffer should be sized properly for the benefit of traffic engineering of a network. How do
we estimate router buffer size? To determine this, it is helpful to consider the bandwidth-delay
product.

7.2.2 Bandwidth-Delay Product

The term bandwidth-delay product means exactly what it says—that is, to take the product
of the bandwidth and the delay. In case of a network link, the bandwidth then refers to the
link speed and the delay refers to what the network would like to account for. For example,
if the link speed is given in Mbps and the round-trip time delay in seconds, then the product
will result in a quantity in Megabits. What does this quantity signify? This is none other than
the amount of data the network link needs to handle in-flights, often referred to as the window

202 7.2 Applications’ View

size. To put it formally, if c is the data rate of a link (“bandwidth”) and RT T is the round-trip
time delay, then the bandwidth-delay product defines the window W given by

W = c ×RT T . (7.2.2)

Router buffer size has a strong relation to the bandwidth-delay product, which will be ad-
dressed next.

7.2.3 Router Buffer Size
From the network’s point of view, the window determined by the bandwidth-delay product
is an important factor to consider without this becoming a bottleneck for end applications,
especially for synchronized TCP flows. In other words, this window allows the number of
packets that can be generated by end applications that are still outstanding, without being
acknowledged. Since such outstanding packets can arrive at a router in a short span of time
(and for many different TCP sessions), the router buffer needs to be sized to account for the
bandwidth-delay product so that it does not become a bottleneck. This rule of thumb for
sizing the router buffer based on the bandwidth-delay product has been around for some
time [335], [721].

For consideration of buffer size, we need to be careful about how we interpret delay.
The delay here is not the propagation delay of the immediate outgoing link; the delay is
rather an estimate of the round-trip delay for most applications that use this link. A com-
monly used value of round-trip delay for this purpose is 250 millisec. As an illustration,
consider a T3 network link that has a data rate of 45 Mbps; if we assume the delay to be
250 millisec, the window size is 11.25 Megabits, or approximately 1.4 Megabytes. Certainly,
this buffer size is a reasonable number for current hardware technology. Now, consider an
ultra–high-speed link such as OC-768 that has a data rate of 40 Gbps; for 250 millisec esti-
mate on round-trip time, the rule of thumb would result in 1.25 Gigabytes of buffer size—
a number difficult to implement in hardware technology. Thus, a fresh look at buffer sizing is
required.

Note that the rule of thumb is quite valid when bulk TCP microflows are synchronized.
However, due to the random arrival of TCP sessions, such synchronization may be unlikely.
In a series of recent studies, a number of new schemes for core router buffer sizing have
been proposed; for example, one proposal [25] suggests that if there are n simultaneous TCP
microflows, the buffer size can be set to the bandwidth-delay product divided by

√
n, while

another suggests a different view in that it should be proportional to the number of TCP
connections [177], and while another proposal [259] suggests that the buffer size in terms of
number of IP packets can be set to two times the number of links.

Whether the old rule of thumb is used, or any new rule is used, it is important that router
buffer sizing is done adequately for all types of applications that may traverse a network
link. Note, however, that the router buffer size is set by the router vendor when a router is
shipped. Typically, buffers are carved into different sizes based on the configured maximum
transmission unit of each interface. Thus, a network provider does not have the option to
change it, except to inquire about it.

The important lesson from the perspective of traffic engineering is that if the router buffer
is not sized properly, a network router has the potential to be a bottleneck leading to dropping

C H A P T E R 7 IP Traffic Engineering 203

of packets, thereby reducing TCP throughput between end hosts. Thus, we will assume for
the rest of the chapter that buffer sizing is adequately addressed.

7.3 Traffic Engineering: An Architectural Framework
So far our discussion has centered primarily on a single-link system. What are the issues
in a network once we go beyond a single-link system? Since a network consists of a num-
ber of routers, it is important to estimate source-destination traffic volume rather than on a
link basis to obtain a traffic matrix that can be used for traffic engineering. Given the traf-
fic volume between different demand pairs and the capacity of network links, the primary
traffic engineering goal is to optimize a suitable objective function to obtain the optimal link
weight system while recognizing that the network uses shortest path routing for forwarding
traffic.

The above description requires a bit more clarity in light of OSPF and IS-IS protocols,
and where and how traffic engineering fits in. First and foremost, traffic engineering occurs
outside the actual network. This can be illustrated through an architectural framework of the
traffic engineering system as shown in Figure 7.3. From the actual network, traffic measure-
ments are collected to estimate the traffic matrix; furthermore, topology and configuration
are also obtained from the network. Based on topology and configuration, along with the
traffic matrix, a link weight determination process determines link weights keeping in mind
that OSPF/IS-IS uses shortest path routing. The computed link weight for each link is then
injected into the network; that is, each router receives metrics for its outgoing links through
this external process. Once a router receives these link metrics, it then disseminates through
flooding of link-state advertisements (LSAs) to other routers through the normal OSPF/IS-IS
flooding process. This would mean that if no new link weights are obtained from the traffic
engineering system when the age field of an LSA expires, the router will generate a new LSA
by continuing to use the link metric value it received last from the the traffic engineering
system. An obvious question then is: how often does the traffic engineering system update
the link weights? This is certainly up to each network provider. Currently, most network

F I G U R E 7.3 IP traffic engineering: an architectural framework.

204 7.4 Traffic Engineering: A Four-Node Illustration

providers use such an approach to update link weights either once a day or once a week,
partly to avoid short-term traffic fluctuations by changing link weights too often, and partly
since accurate traffic matrix determination from the measurements is a fairly complex and
time-consuming process. For additional discussion, see Section 7.8.

7.4 Traffic Engineering: A Four-Node Illustration

We will first discuss the traffic engineering problem in a network by considering a four-node
network. Assume that in this four-node network, there is traffic volume for only a single
demand pair; this is then a single-commodity problem. We first briefly revisit the single com-
modity network flow problem described earlier in Chapter 4, assuming that the reader is
already familiar with the material presented in Chapter 4. We will then indicate how this
problem changes when link weights are introduced.

7.4.1 Network Flow Optimization

We will consider traffic volume to exist for the demand pair 1:2; this pair will be identified as
demand identifier 1. We will denote the path from node 1 to 2 via 3 as path number 1, and
the path from 1 to 2 via node 4 as path number 2, and denote the flow variables as x11 and
x12, respectively (see Figure 7.4). Thus, to carry the traffic volume h1 for demand identifier 1,
i.e., from node 1 to node 2, the following must be satisfied:

x11 + x12 = h1. (7.4.1)

Certainly, we require that flow on each path is non-negative, i.e., x11 ≥ 0,x12 ≥ 0. Let the link
be identified as 1 for 1-3, 2 for 3-2, 3 for 1-4, and 4 for 4-2. Then, we can list the flows to satisfy
the capacity constraints as follows:

x11 ≤ c1, x11 ≤ c2, x12 ≤ c3, x12 ≤ c4. (7.4.2)

Note that we can combine constraints x11 ≤ c1, and x11 ≤ c2 to a single constraint by consider-
ing whichever capacity is more stringent, i.e., as x11 ≤ min{c1, c2}; this is similar for the other
two constraints. However, we will list them all since this is the general representation, un-

F I G U R E 7.4 A four-node network example.

C H A P T E R 7 IP Traffic Engineering 205

less we consider specific values of capacity. Suppose our goal is to minimize maximum link
utilization (see Sections 4.2.3 and 4.3.2). Then, we can write the optimization problem as

minimize{x} F = max
{

x11
c1

,
x11
c2

,
x12
c3

,
x12
c4

,
}

subject to x11 + x12 = h1

x11 ≤ c1, x11 ≤ c2, x12 ≤ c3, x12 ≤ c4

x11 ≥ 0, x12 ≥ 0.

(7.4.3)

As discussed earlier in Section 4.3.2, the above problem can be written as the following
equivalent linear programming (LP) problem:

minimize{x,r} F = r
subject to x11 + x12 = h1

x11 ≤ c1 r, x11 ≤ c2 r, x12 ≤ c3 r, x12 ≤ c4 r
x11 ≥ 0, x12 ≥ 0.

(7.4.4)

We now consider two specific examples.

Example 7.1 All links of the same capacity (Figure 7.5).
Suppose all links are of same capacity, say 100 Mbps, and we are given that h1 = 60 Mbps.

Then, two constraints can be dropped, and the problem can be compactly formulated as

minimize{x,r} F = r
subject to x11 + x12 = 60

x11 ≤ 100 r
x12 ≤ 100 r
x11,x12 ≥ 0.

(7.4.5)

Intuitively, it is optimal to split the demand evenly on both paths, i.e., x∗
11 = x∗

12 = 30. In
fact, this is the optimal solution we would get from solving Problem Eq. (7.4.4) if we use an
LP solver. Here, the optimal link utilization is r∗ = 30/100 = 0.3. �

F I G U R E 7.5 A four-node network example with the same link capacity.

206 7.4 Traffic Engineering: A Four-Node Illustration

F I G U R E 7.6 A four-node network example with different link capacity.

Example 7.2 Links with different capacity (Figure 7.6).
Suppose that the demand volume remains at h1 = 60, but capacities of links on path 1-

3-2 are 10 Mbps each while those of path 1-4-2 are still at 100 Mbps. Then, it makes sense
to send more traffic on path 1-4-2 than on path 1-3-2. How much to send depends on
the optimal balance. This can be obtained by noting that at the optimal solution, we must
have

x∗
11

10
= 60 − x∗

11

100
. (7.4.6)

This implies that path 1-3-2 will be assigned flow x∗
11 = 60/11 and path 1-4-2 will

be assigned flow x∗
12 = 600/11. In this case, r∗ = 6/11 ≈ 0.5454. Again, the same opti-

mal solution can be obtained by using an LP solver. Note that while both paths have
the same utilization, path 1-4-2 is allocated approximately 90% of the traffic volume.

�

From the above examples, we can say that network flow optimization of a single-
commodity network flow problem results in proportional flow allocations at optimality. What
if we use shortest path routing? In the next section, we will discuss the connection between
shortest path routing and network flow optimization.

7.4.2 Shortest Path Routing and Network Flow
In an IP network based on the OSPF or IS-IS protocol, the shortest path is computed based
on the link weight (cost or metric) that is exchanged through flooding. It is important to
note that this computation does not consider the traffic volume or capacity of the network.
Thus, the general question is: how is shortest path routing related to network flow modeling?
To understand this problem, we consider the four-node problem again, first starting with
special cases of capacity illustrated above. We will denote the link weights by the notation
w; thus, w1 is the link weight for link-id 1 (i.e., link 1-3) , w2 for link-id 2 (i.e., link 3-2), and
so on.

Example 7.3 Optimal flow decision with shortest path routing.
Consider again the case in which all links have the same capacity, i.e., 100 Mbps. In this

case, the optimal decision from network flow optimization was to split the traffic volume

C H A P T E R 7 IP Traffic Engineering 207

equally among the two paths. Recall that OSPF allows equal-cost multipath (ECMP) (see
Section 6.2.7); thus, if we can pick the link weight in such a way that an equal splitting of
traffic can be achieved, we achieve the same optimal flow as network flow optimization. This
can be realized if we pick the link weight to be 1 on each link (i.e., w1 = w2 = w3 = w4 = 1);
we then achieve this splitting since each path cost is 2 and with ECMP, the traffic volume will
be equally split. In other words, a hop-based metric will work in this case.

What if the links are of different size, i.e., 10 Mbps for links 1-3 and 3-2 and 100 Mbps for
links 1-4 and 4-2? If we still keep the link weight at 1 each, then of the total traffic volume
of 60 Mbps, half will try to use path 1-3-2 due to ECMP. However, the capacity limit on this
path is 10 Mbps; that is, a 30 Mbps data traffic on this path will cause massive overflow! This
means that we need to use some other link weights so that this does not happen. Essentially,
we want traffic flow to veer away from path 1-3-2 since the capacity of this path is much
smaller than the other path. A way to accomplish this would be to set the link weight as the
inverse of the link capacity, i.e.,

w1 = w2 = 1/10,

w3 = w4 = 1/100.
This would imply that the path cost for path 1-3-2 is 2/10 while the path cost for path

1-4-2 is 2/100; thus, all of traffic volume, 60 Mbps, will be allocated to path 1-4-2 since 1-4-2
is the shortest path with this set of link weights. In fact, under shortest path routing this is
the best we can do, and the maximum link utilization is 60/100 = 0.6. In other words, it is not
possible to achieve the optimality that was achieved with pure network flow optimization
where the optimal flows were proportional flows. �

From the above illustration, we can see that link weights is really driving the flow. While
it seems that x11 is dependent only on link weights w1 and w2, the actual values of the other
link weights w3, w4 do also matter in the allocation of flow to x11; this is similar for x12.
That is, flows x11 and x12 are really dependent on all link weights w1,w2,w3,w4. If we use
w = (w1,w2,w3,w4) to denote the array of link weights for all links, then we can write the
dependency as x11(w) and x12(w). Since the total flow needs to be equal to the traffic demand
volume, we can write

x11(w) + x12(w) = h1. (7.4.7)

Now compare Eq. (7.4.7) to Eq. (7.4.1); they are almost the same except for the dependency
on w. Similarly, the link-flow requirements can be written for dependent flow variables as

x11(w) ≤ c1, x11(w) ≤ c2, x12(w) ≤ c3, x12(w) ≤ c4. (7.4.8)

Again compare Eq. (7.4.8) to Eq. (7.4.2), and note the difference due to dependency on w. In
regard to the link weight system w, there are some restrictions on what values a link metric
can take; for example, in OSPF, the range is from 1 to 216 − 1 while in IS-IS the range is from 0
to 63. While in the above illustration we chose link metric also as the inverse of link speed, we
can use a normalization factor to change the link metrics to an acceptable range; for example,
if we multiply by 100, then the metric for a link with speed 10 Mbps would be 10 (=100/10)
while the metric for a link with speed 100 Mbps would be 1 (=100/100). For simplicity, we

208 7.4 Traffic Engineering: A Four-Node Illustration

denote the set of allowable values for link metrics as W . Thus, similar to Eq. (7.4.4), we can
write the following optimization problem:

minimize{w, r} F = r
subject to x11(w) + x12(w) = h1

x11(w) ≤ c1 r, x11(w) ≤ c2 r,
x12(w) ≤ c3 r, x12(w) ≤ c4 r
x11(w) ≥ 0, x12(w) ≥ 0
w1,w2,w3,w4 ∈ W .

(7.4.9)

We will refer to the above formulation as the single-commodity shortest path routing–based flow
(SCSPRF) problem, to distinguish it from the single-commodity network flow problem presented
in Eq. (7.4.4). As noted earlier for Eq. (7.4.4), capacity constraints x11(w) ≤ c1 r and x11(w) ≤
c2 r can be combined into a single constraint by considering the smaller of the link capacities
c1 and c2 indicating the tighter constraint; this is similar for the other two capacity constraints.
It is important to note the following observations in regard to Eq. (7.4.4) and Eq. (7.4.9):

• In Eq. (7.4.9), the main variables are link weights w and maximum link utilization, r; flow
variables x(w) are dependent variables while in Eq. (7.4.4), the main variables are x and r.

• If we denote the optimal objective cost for the network flow problem Eq. (7.4.4) by F∗
netflow,

and the optimal objective cost due to shortest path–based flow problem Eq. (7.4.9) by F∗
SPR,

then we can write

F∗
netflow ≤ F∗

SPR. (7.4.10)

Intuitively, we can see this relation since the restriction on flow variables due to the link
weight can be thought of as additional restrictions/constraints on the original network
flow problem; thus, any additional restrictions can/may increase the optimal cost of the
original network flow problem.

In addition, there is an important difference to note. While Eq. (7.4.4) is a linear program-
ming problem, Eq. (7.4.9) is not. In addition, Eq. (7.4.9) is not a standard nonlinear program-
ming problem due to implicit functional dependency of flows, x, on the link weight system w.
More importantly, Eq. (7.4.9) cannot be directly solved as we have already noticed. Note that
so far, we have used two simple rules for choosing link weights in illustrating Example 7.3.
We start by summarizing these two rules:

Rule-1: Choose the link weights to be based on hop count, to be referred to as a hop-based
metric

Rule-2: Choose the link weights to be based on the inverse of the link speed, to be referred
to as an inverse-of-the-link speed metric.

We digress a bit further with these two rules in relation to earlier examples by considering
certain variations.

C H A P T E R 7 IP Traffic Engineering 209

Example 7.4 Changing the traffic volume in Example 7.3.
Consider reducing the traffic volume for pair 1:2 from 60 Mbps to 5 Mbps. In this case,

we note that even if we use Rule 1 on the link capacity as given in Figure 7.6, we do not face
the overflow problem discussed earlier in Example 7.3. This would cause the maximum link
utilization to be 0.25 since 2.5 Mbps of traffic volume would be allocated to path 1-3-2 with
the remaining 2.5 Mbps allocated to path 1-4-2 due to ECMP. If Rule 2 is used, then all traffic
would be allocated to path 1-4-2, and thus, the maximum link utilization in this case is 0.05.
With either rule, we can see that when traffic volume is low compared to network capacity,
the utilization remains low.

Now consider the topology with all links being 100 Mbps (Figure 7.5). In this case with
5 Mbps of network traffic, we will arrive at the same maximum link utilization (= 0.025) with
either rule for link weight. �

From the above illustration, it is easy to see that if all links in a network are of the same
speed, then the link weight based on the inverse-of-the-link speed is the same as the hop-
based metric. Thus, Rule 1 can be thought of as a special case of Rule 2. We next consider
an example where due to an anticipated increase in network traffic, a new link is added;
this actually falls under the network dimensioning problem. It should be noted that there
are systematic ways to address the network dimensioning problem in terms of where to add
capacity and if new links should be added; for a detailed discussion, see [564]. Here, we
present a simple illustration to address the impact on the link weight selection rules.

Example 7.5 Topology change in anticipation of increase in traffic volume.
Consider the network shown in Figure 7.7. Note that there is one key change from the

topology shown in Figure 7.5: a new direct link between node 1 and node 2 is added; we
will identify this link as link number 5, and the link weight as w5, while keeping the link
numbering for other links as before. Suppose that this link was added in anticipation of an
increase in traffic volume. Now we have one more path possible from node 1 to node 2; we
label this path as path number 3 with the flow variable labeled as x13. Formulation (7.4.9) will
now change to the following:

F I G U R E 7.7 A four-node network example with five links.

210 7.4 Traffic Engineering: A Four-Node Illustration

minimize{w, r} F = r
subject to x11(w) + x12(w) + x13(w) = 60

x11(w) ≤ 100 r
x12(w) ≤ 100 r
x13(w) ≤ 100 r
x11(w),x12(w),x13(w) ≥ 0
w1,w2,w3,w4,w5 ∈W .

(7.4.11)

Note the difference between Eq. (7.4.9) and Eq. (7.4.11). In the latter, specific values of ca-
pacity and traffic volumes are shown along with the new path; furthermore, since the link
capacities are the same, only a single-capacity constraint is shown for path number 1 and
path number 2.

We can easily see that regardless of whether we use Rule 1 or Rule 2, all traffic will be
allocated to the direct link path on link number 5 with shortest path routing since the direct
link is the shortest path under either rule for the link weight. In this case, the maximum link
utilization is r = 60/100 = 0.6. �

From the above illustration, we note that Rule 2 does not always work well since in this
instance, by adding a new link, we have syphoned all traffic to take the new link, instead of
equally splitting flow allocation among the three paths. This means that we have increased
maximum link utilization, thereby increasing average network delay for a traffic volume of
60 Mbps by adding new link/capacity compared to when the direct link did not exist. This is
certainly counterintuitive. In road transportation networks, an analogous situation has long
been known; it states that under certain load conditions the travel cost can increase with the
addition of a new link (road), which is known as Braess’ Paradox ([91], [280], [447]). A phenom-
enon similar to Braess’ paradox can be induced in IP networks if link weights are not chosen
properly.

Going back to the network shown in Figure 7.7, an important question is: can we choose a
better set of link weights that will reduce maximum link utilization compared to when Rule 2
is used, i.e., a better solution to Eq. (7.4.11)? This is possible if we choose the link weights as
follows (see Figure 7.8):

w1 = w2 = w3 = w4 = 1, w5 = 2.

This way, the path cost for all paths are 2; thus, due to ECMP, traffic volume will be
equally split among the three paths, thereby reducing maximum link utilization, r, to 0.2

F I G U R E 7.8 A four-node network example with link weights.

C H A P T E R 7 IP Traffic Engineering 211

from 0.6. In fact, this set of link weights is optimal for the SCSPRF problem, Eq. (7.4.11).
It should be noted that the optimal link weights are not unique; for example, if we
choose

w1 = w2 = w3 = w4 = 2, w5 = 4,

it will result in the same optimal maximum link utilization value, r∗ = 0.2.
While for Eq. (7.4.11), we have found an optimal set of link weights by inspecting the

data for the problem, this is not always easy, especially for a large network problem. In the
next sections, we discuss the general problem and possible solutions.

7.5 Link Weight Determination Problem: Preliminary Discussion

In the previous section, we emphasized the need to determine a good set of link weights by
considering a single-commodity problem. In an IP network, there can be traffic volume be-
tween any pair of routers that serves IP subnets; thus, the general problem is multicommodity
in nature. Our goal here is to determine link weights for given traffic volume demand and ca-
pacity limits where a certain objective is optimized. A good candidate for this objective/goal
is to minimize the maximum link utilization in the network; thus, we will start with this
objective; later, we will consider other objectives as well.

From the discussion in the previous section for the single-commodity example, you can
see the similarity between the multicommodity network flow (MCNF) problem discussed earlier
in Section 4.4 and the multicommodity shortest path–based routing flow (MCSPRF) problem we
face for IP network traffic engineering; the key difference is that the MCSPRF problem is re-
quired to have the link weight as the main variables. Thus, analogous to Formulation (4.4.10)
for the MCNF problem with minimizing maximum link utilization, we can state the MCSPRF
formulation with the same objective as follows:

minimize{w,r} F = r

subject to
Pk∑

p=1
xkp(w) = hk, k = 1,2, ...,K

K∑

k=1

Pk∑

p=1
δkp	 xkp(w) = y	, 	 = 1,2, ...,L

y	 ≤ c	 r, 	 = 1,2, ...,L
w1,w2,,wL ∈W
xkp(w) ≥ 0, p = 1,2, ...,Pk, k = 1,2, ...,K
y	 ≥ 0, 	 = 1,2, ...,L
r ≥ 0.

(7.5.1)

Notations for this problem and other related problems are summarized in Table 7.1. If
we relax the requirement on path flow being subject to link weights, then the corresponding
MCNF problem can be written as

212 7.5 Link Weight Determination Problem: Preliminary Discussion

TA B L E 7.1 Summary of notation used in MCNF and MCSPRF formulations.

Notation Explanation
K Number of demand pairs with positive demand volume
L Number of links
hk Demand volume of demand index k = 1,2, ...,K
c	 Capacity of link 	 = 1,2, ...,L
Pk Number of candidate paths for demand k, k = 1,2, ...,K
δkp	 Link-path indicator, set to 1 if path p for demand pair k uses the link 	; 0,

otherwise
ξkp Unit cost of flow on path p for demand k
ξ̂	 Unit cost of flow on link 	

w	 Link weight for link 	 = 1,2, ...,L
xkp(w) Flow amount on path p for demand k for given link weight system w
xkp Flow amount on path p for demand k
y	 Link flow variable for link 	

r maximum link utilization variable
∗ Use as a superscript with a variable to indicate optimal solution, e.g., x∗

kp

minimize{x,y,r} F = r

subject to
Pk∑

p=1
xkp = hk, k = 1,2, ...,K

K∑

k=1

Pk∑

p=1
δkp	 xkp = y	, 	 = 1,2, ...,L

y	 ≤ c	 r, 	 = 1,2, ...,L
xkp ≥ 0, p = 1,2, ...,Pk, k = 1,2, ...,K
y	 ≥ 0, 	 = 1,2, ...,L
r ≥ 0.

(7.5.2)

If we denote the optimal objective cost for MCNF Formulation (7.5.2) by F∗
MCNF, and the

optimal objective cost for MCSPRF Formulation (7.4.9) by F∗
MCSPRF, we can write

F∗
MCNF ≤ F∗

MCSPRF. (7.5.3)

That is, this relation holds much like the single-commodity illustration given earlier.
Why is it important to consider the relaxed problem shown by Eq. (7.5.2)? It so happens

that the relaxed problem, which is an LP problem, has an equivalent LP problem called the
dual that allows us to obtain a set of link weights; not only that, commercial LP solvers can
be used on the network flow problem, without needing to develop a specialized algorithm,
to obtain link weights; at least, this is doable for networks of reasonable size. In other words,
we cannot completely rule out development of specialized algorithms for determining link
weights. In any case, link weights so obtained may not be from the allowable range; thus,
some transformation/scaling might be necessary. Once we have made this adjustment on
link weights, we can determine flows and compute the objective cost of Eq. (7.5.1) to see
how far this is from Eq. (7.5.2). It may be noted that flows so obtained based on dual-based

C H A P T E R 7 IP Traffic Engineering 213

link weights may not necessarily match the flow directly obtained from solving the original
MCNF problem since the optimal solution to the original problem Eq. (7.5.2) can result in pro-
portional flows. Furthermore, flow allocation based on a dual-based weight can be different
depending on whether the network has the ECMP feature activated. Finally, the dual-based
approach holds for any MCNF problem; that is, this result is not dependent on the specific
objective function discussed above as long as the objective function is linear. This will be clear
from the discussion in the next section.

7.6 Duality of the MCNF Problem

We will now consider the MCNF problem with different objective functions and the corre-
sponding dual problems for different objectives. We first start with minimum cost routing for
a three-node network to illustrate how dual problems are formulated.

While the minimum cost routing objective is not an appropriate objective for the IP traffic
engineering problem, it is a good one to help understand the dual problem; later, we will
consider objective functions that are appropriate for IP traffic engineering, discuss how the
dual changes, and the related impact on link weights.

7.6.1 Illustration of Duality Through a Three-Node Network

Consider minimum cost routing for the three-node MCNF problem discussed earlier in Sec-
tion 4.3.1 in its index-based formulation presented in Section 4.4. We reproduce Problem
(4.4.3) below:

minimize{x} F = ξ11x11 + ξ12x12 + ξ21x21 + ξ22x22 + ξ31x31 + ξ32x32

subject to
x11 + x12 = h1

x21 + x22 = h2

x31 + x32 = h3

x11 + x22 + x32 ≤ c1

x12 + x21 + x32 ≤ c2

x12 + x22 + x31 ≤ c3
x11, x12, x21, x22, x31, x32 ≥ 0.

(7.6.1)

We assume that a unit cost of a path is the sum of the unit cost of the links of which this path
is made (i.e., ξ11 = ξ̂1, ξ12 = ξ̂2 + ξ̂3, ξ21 = ξ̂2, ξ22 = ξ̂1 + ξ̂3, ξ31 = ξ̂3, ξ32 = ξ̂1 + ξ̂2). We can then
rewrite Problem (7.6.1) by first changing less-than-equal-to constraints to greater-than-equal-
to constraints, and associating a dual variable with each constraint (indicated on the right
side in parentheses), as

214 7.6 Duality of the MCNF Problem

minimize{x} F = ξ̂1x11 + (ξ̂2 + ξ̂3)x12 + ξ̂2x21 + (ξ̂1 + ξ̂3)x22 + ξ̂3x31 + (ξ̂1 + ξ̂3)x32

subject to
(dual variables)

x11 + x12 = h1 (ν1)

x21 + x22 = h2 (ν2)

x31 + x32 = h3 (ν3)

−x11 − x22 − x32 ≥ −c1 (π1)

−x12 − x21 − x32 ≥ −c2 (π2)

−x12 − x22 − x31 ≥ −c3 (π3)
x11, x12, x21, x22, x31, x32 ≥ 0.

(7.6.2)

We now assign a dual variable with each constraint—an unrestricted variable if it is an equal-
ity constraint and a non-negative variable if it is a greater-than-or-equal-to constraint. Then,
the dual LP problem is:

maximize{ν,π} FD = h1ν1 + h2ν2 + h3ν3 − c1π1 − c2π2 − c3π3

subject to
ν1 − π1 ≤ ξ̂1

ν1 − π2 −π3 ≤ ξ̂2 + ξ̂3

ν2 − π2 ≤ ξ̂2

ν2 − π1 − π3 ≤ ξ̂1 + ξ̂3

ν3 − π3 ≤ ξ̂3

ν3 − π1 − π2 ≤ ξ̂1 + ξ̂2
ν1, ν2, ν3 unrestricted
π1, π2, π3 ≥ 0.

(7.6.3)

While it may not be obvious, there is a pattern to writing the dual. First, the cost coefficients
from the original problem go on the right-hand side of the constraints; thus, coefficients ξ̂

from Eq. (7.6.2) are on the right-hand side of constraints in Eq. (7.6.3). The right-hand side
constraints of the original problem, Eq. (7.6.2), become coefficients in the objective for the
dual, Eq. (7.6.3); that is, h and c from Eq. (7.6.2) are coefficients in the objective in Eq. (7.6.3).
Finally, coefficients 1, 0, or −1, associated with rows on the left-hand side of a constraint for
Eq. (7.6.2), show up in columns on the left-hand side of constraints for the dual given by
Eq. (7.6.3); that is, this is a transposed view. Rewriting, we have

maximize{ν,π} FD = h1ν1 + h2ν2 + h3ν3 − c1π1 − c2π2 − c3π3

subject to
ν1 ≤ ξ̂1 + π1

ν1 ≤ (ξ̂2 + π2) + (ξ̂3 + π3)

ν2 ≤ ξ̂2 + π2

ν2 ≤ (ξ̂1 + π1) + (ξ̂3 + π3)

ν3 ≤ ξ̂3 + π3

ν3 ≤ (ξ̂1 + π1) + (ξ̂2 + π2)

ν1, ν2, ν3 unrestricted
π1, π2, π3 ≥ 0.

(7.6.4)

C H A P T E R 7 IP Traffic Engineering 215

7.6.2 General Case: Minimum Cost Routing
Recall that minimum cost routing for the MCNF problem was discussed earlier in Sec-
tion 4.3.1 in its index-based formulation presented in Section 4.4. Notations for this and other
related problems are summarized in Table 7.1. Thus, we start with the general formulation
corresponding to Eq. (7.6.1):

minimize{x} F =
K∑

k=1

Pk∑

p=1
ξkpxkp

subject to
Pk∑

p=1
xkp = hk, k = 1,2, ...,K

K∑

k=1

Pk∑

p=1
δkp	 xkp ≤ c	, 	 = 1,2, ...,L

xkp ≥ 0, p = 1,2, ...,Pk, k = 1,2, ...,K.

(7.6.5)

The above LP problem is then the network flow relaxation of the following MCSPRF problem:

minimize{w} F =
K∑

k=1

Pk∑

p=1
ξkpxkp(w)

subject to
Pk∑

p=1
xkp(w) = hk, k = 1,2, ...,K

K∑

k=1

Pk∑

p=1
δkp	 xkp(w) ≤ c	, 	 = 1,2, ...,L

w1,w2, ...,wL ∈ W
xkp(w) ≥ 0, p = 1,2, ...,Pk, k = 1,2, ...,K.

(7.6.6)

We consider the unit path flow cost ξkp to be the summation of the unit flow cost on links that
make up the path. Suppose we denote the unit link-flow cost to be ξ̂	 on link 	(= 1,2, ...,L).
Then, ξkp for path p for demand k can be given by

ξkp =
L∑

	=1

δkp	 ξ̂	. (7.6.7)

To apply LP duality, we associate dual variables νk with demand k (k = 1,2, ...,K), and dual
variables π	 with each link 	. First, we rearrange the capacity constraints as greater-than-or-
equal-to constraints; due to LP duality theory, this then makes the associated dual variables
π	 non-negative. In a similar manner for equality constraints, LP duality theory says that dual
variables become unrestricted. Also note that all terms associated with a variable are written
on the left-hand side of the constraint while constants are written on the right-hand side of

216 7.6 Duality of the MCNF Problem

the constraints; this helps in properly identifying and writing the dual. Thus, we rewrite
Eq. (7.6.5) as

minimize{x} F =
K∑

k=1

Pk∑

p=1
(

L∑

	=1
δkp	ξ̂)xkp

subject to
Pk∑

p=1
xkp = hk, k = 1,2, ...,K (νk)

−
K∑

k=1

Pk∑

p=1
δkp	 xkp ≥ −c	, 	 = 1,2, ...,L (π)

xkp ≥ 0, p = 1,2, ...,Pk,

k = 1,2, ...,K.

(7.6.8)

You may compare this problem with the counterpart for the three-node network given in
Eq. (7.6.2). The original problem when discussed with its dual problem is referred to as the
primal problem; thus, we will refer to Eq. (7.6.8) as the primal problem. Then the dual LP
problem of primal problem Eq. (7.6.8) can be written as the following maximization prob-
lem:

maximize{ν,π} FD =
K∑

k=1
hkνk −

L∑

	=1
c	π	

subject to νk −
L∑

	=1
δkp	π	 ≤

L∑

	=1
δkp	ξ̂	, p = 1,2, ...,Pk, k = 1,2, ...,K

νk unrestricted, k = 1,2, ...,K
π	 ≥ 0, 	 = 1,2, ...,L.

(7.6.9)

This general formulation then corresponds to the dual formulation for the three-node net-
work example given in Eq. (7.6.3). Note that with duality, coefficients ξ̂ from the original
problem show up on the right-hand side of the constraint in the dual problem and vice versa.
The information about coefficient in the constraints appears in transposed form in the dual.
By rearranging, we can write the dual as

maximize{ν,π} FD =
K∑

k=1
hkνk −

L∑

	=1
c	π	

subject to νk ≤
L∑

	=1
δkp	(ξ̂	 + π), p = 1,2, ...,Pk, k = 1,2, ...,K

νk unrestricted, k = 1,2, ...,K
π	 ≥ 0, 	 = 1,2, ...,L.

(7.6.10)

Note that this formulation is corresponding the model shown for the three-node network
example in Eq. (7.6.4).

C H A P T E R 7 IP Traffic Engineering 217

There is an important relation between the objective function value of the primal and the
dual. Note that

F =
K∑

k=1

Pk∑

p=1
(

L∑

	=1
δkp	ξ̂)xkp

≥
K∑

k=1

Pk∑

p=1
(νk −

L∑

	=1
δkp	π)xkp

=
K∑

k=1
νk

Pk∑

p=1
xkp −

L∑

	=1
(

K∑

k=1

Pk∑

p=1
δkp	xkp)π	

≥
K∑

k=1
hkνk −

L∑

	=1
c	π	

= FD.

(7.6.11)

That is, the primal objective is greater than or equal to the dual objective; in fact, this property
holds for any LP problem and is known as the weak duality theorem. In light of the MCSPRF
problem and its LP relaxation MCNF problem, and now to the above duality result, and by
denoting the objective function values as FMCSPRF, FMCNF, and FDual-of-MCNF, respectively,
we can write FDUAL-of-MCNF ≤ FMCNF ≤ FMCSPRF. Furthermore, at optimality, assuming that
the primal problem is feasible, the following holds:

F∗
DUAL-of-MCNF = F∗

MCNF ≤ F∗
MCSPRF. (7.6.12)

Since the dual is a maximization problem, this means that for any dual variable values that
satisfy the constraints in the dual problem, we can compute the objective function, which can
serve as a lower bound to the MCSPRF problem, and we can determine the gap by determin-
ing the difference.

We now go back to the general formulations: Eq. (7.6.8) and its dual Eq. (7.6.10). Why is
the dual important to consider? The optimality conditions for LP problems state that if x∗ is op-
timal for primal problem Eq. (7.6.8), and ν∗ and π∗ are optimal for dual problem Eq. (7.6.10),
then the following must be satisfied:

1. Primal solutions x∗ must satisfy constraints in Eq. (7.6.8).

2. Dual solutions ν∗, π∗ must satisfy constraints in Eq. (7.6.10).

3. The following complementary slackness condition must be satisfied:

xkp

(

νk −
L∑

	=1
δkp	(ξ̂	 + π)

)

= 0, p = 1,2, ...,Pk, k = 1,2, ...,K. (7.6.13a)

π	

(

c	 −
K∑

k=1

Pk∑

p=1
δkp	 xkp

)

= 0, 	 = 1,2, ...,L. (7.6.13b)

218 7.6 Duality of the MCNF Problem

That is, the product of a primal (dual) constraint and its associated dual (primal) vari-
able is zero. Here, the first one is shown for primal variable xkp and its associated dual
constraint and the second one for dual variable π	 and its associated primal constraint.
Note that there is none listed for dual variables ν since its associated primal constraints
are equality constraints (

∑Pk
p=1 xkp = hk); thus, the product is zero and does not need to be

listed.

First note that due to the second condition, that is, satisfying dual constraints in
Eq. (7.6.10), we can say that the modified path cost,

∑L
	=1 δkp	(ξ̂	 + π∗

), for each path for
demand k must be at least as large as the commodity cost reflected by dual variable νk for de-
mand k. Furthermore, condition (7.6.13a) indicates that if x∗

kp for any path p for demand k is

positive, i.e., if a path for a demand has a positive flow, then the path cost,
∑L

	=1 δkp	(ξ̂	 +π∗
),

for this path must be equal to the commodity cost ν∗
k . Note that δkp	 defines which links are

using this optimal path; thus, ξ̂	 + π	 is the modified link cost for link 	. This modified link cost
then takes us back to the link weight, w	, for the original shortest path routing problem. To
summarize, we have the following important result [6]:

Result 7.1. For the MCNF problem given by Eq. (7.6.8) and its corresponding dual, Eq. (7.6.10), the
commodity cost, ν∗

k , is the shortest distance for demand k with respect to the link weight w	 = ξ̂	 +π∗
	 ,

and at optimality, every path for demand k that carries a positive flow must be a shortest path with
respect to the link cost system given by

w	 = ξ̂	 + π∗
	 (7.6.14)

for 	 = 1,2, ...,L.

Based on the above result, we make the following important remark:

Remark 7.3. Implications of Result 7.1.
We have the following observations:

1. If we can find the dual optimal solution π∗
	 , we then have a link weight system available,

given by w	 = ξ̂	 + π∗
	 , for 	 = 1,2, ...,L for the MCSPRF problem.

2. In most LP solvers, it is in fact not necessary to transform Problem (7.6.8) to its dual. Prob-
lem Eq. (7.6.8) can be directly solved and the dual solution, π∗

	 , is readily available, which
can be used in turn to obtain w∗

	 .

3. If two paths for the same demand identifier k have positive flows, it does not mean that
they will be equal in the primal MCNF problem where optimal flows can be propor-
tional. On the other hand, if flow is allocated based on the solution of the dual problem,
this flow allocation will follow the MCSPRF problem, with ECMP being an added fea-
ture.

4. Multiple flows being positive for a demand k does not mean that the flows would be equal
since optimal MCNF can result in proportional flows; this is an important difference com-

C H A P T E R 7 IP Traffic Engineering 219

pared to the MCSPRF problem since w	 would tell the MCSPRF problem to allocate flow
based on shortest path routing (along with ECMP). �

7.6.3 Minimization of Maximum Link Utilization

We next consider the objective to be minimization of maximum link utilization. How does the
link weight selection change for a different objective function? The MCNF problem presented
earlier Eq. (7.5.2) can be written in the following format where the dual variables are also
identified:

minimize{x,r} F = r

subject to
Pk∑

p=1
xkp = hk, k = 1,2, ...,K (νk)

−
K∑

k=1

Pk∑

p=1
δkp	 xkp + c	 r ≥ 0, 	 = 1,2, ...,L (π)

xkp ≥ 0, p = 1,2, ...,Pk,

k = 1,2, ...,K.

r ≥ 0.

(7.6.15)

Note that in this case there are no coefficients associated with flow variables x in the objective,
which means that they are zero; thus, this will show up as zeros on the right-hand side in the
dual. There is, however, a coefficient with r in the objective, which is 1; this must be accounted
for in the dual. Note that the right-hand side with capacity constraints is zero; thus, this part
would not contribute to the objective function in the dual. Thus, the dual can be written as

maximize{ν,π} F =
K∑

k=1
hkνk

subject to νk −
L∑

	=1
δkp	π	 ≤ 0, p = 1,2, ...,Pk, k = 1,2, ...,K

L∑

	=1
c	π	 ≤ 1

νk unrestricted, k = 1,2, ...,K
π	 ≥ 0, 	 = 1,2, ...,L.

(7.6.16)

If we move the term associated with π	 in the first set of constraints to the right-hand
side, we can re-write the dual as

maximize{ν,π} F =
K∑

k=1
hkνk

subject to νk ≤
L∑

	=1
δkp	π	, p = 1,2, ...,Pk, k = 1,2, ...,K

L∑

	=1
c	π	 ≤ 1

νk unrestricted, k = 1,2, ...,K
π	 ≥ 0, 	 = 1,2, ...,L.

(7.6.17)

220 7.6 Duality of the MCNF Problem

If ν∗ and π∗ are the optimal solutions to this problem, then by comparing this to our dis-
cussion about minimum cost routing, we can see that in this case the link weights would be
w	 = π∗

	 , 	 = 1,2, ...,L with the requirement that each π	 satisfies
∑L

	=1 c	π	 ≤ 1. In fact, at
optimality

∑L
	=1 c	π

∗
	 = 1, i.e., this constraint is said to be a binding constraint at optimality.

This is easy to see from the complementary slackness condition at optimality. For Eq. (7.6.15),
the condition related to this constraint would take the following form:

r∗
(L∑

	=1

c	π
∗
	 − 1

)
= 0. (7.6.18)

If
∑L

	=1 c	π
∗
	 < 1 at optimality, then this would mean that r∗ = 0 at optimality; this is not

possible since this would mean that the maximum link utilization is zero (rather, this is
theoretically possible only if traffic flow for every demand pair is on an infinite capacity
link).

Thus, if the objective is to minimize the maximum link utilization, we can summarize the
following result:

Result 7.2. For MCNF Formulation (7.6.15) and its corresponding dual given by Eq. (7.6.17), the
commodity cost, ν∗

k , is the shortest distance for demand k with respect to link weight w	 = π∗
	 , and at

optimality, every path for demand k that carries a positive flow must be a shortest path with respect to
the link cost system given by

w	 = π∗
	 (7.6.19)

for 	 = 1,2, ...,L where
L∑

	=1
c	π

∗
	 = 1.

Based on the above result, we make the following remark:

Remark 7.4. Comparison of dual-based link weights based on Eq. (7.6.8) and Eq. (7.6.15).
Comparing Result 7.2 to Result 7.1 from the previous section, we can see how the link

weight selection can change depending on the objective function used and the form of the
constraints. In either case, it is important to note that dual solution π∗

	 takes non-negative
values. However, routing protocols such as OSPF and IS-IS allow non-negative integer val-
ues. Thus, some adjustments from the solution from the dual are required to obtain integer
weights. Furthermore, OSPF does not allow any link metric to be zero since its range starts
from 1, unlike IS-IS, which starts from 0. Yet zero is a possible link weight for a link if the
objective chosen is the minimization of maximum link utilization; thus, for this objective, an
additional adjustment would be needed to avoid a link being assigned metric zero by the
link weight determination procedure if the weight so determined were to be used in an OSPF
environment. �

Finally, in Problem (7.6.15), scaling can be directly addressed by changing the objective
function from just r to β r where β is a large positive number. This then changes the constraint

C H A P T E R 7 IP Traffic Engineering 221

∑L
	=1 c	π

∗
	 = 1 to

∑L
	=1 c	π

∗
	 = β for the dual problem; thus, πs need not be restricted to less

than 1 if scaling is addressed.

7.6.4 A Composite Objective Function
A composite objective function that combines minimum cost routing with minimization of
maximum link utilization can also be considered by allocating positive weights α and β ,
respectively; such a composite objective is referred to as a utility function. The MCNF problem
with this composite objective can be written as

minimize{x,r} F = α
K∑

k=1

Pk∑

p=1
(

L∑

	=1
ξ̂	δkp)xkp + βr

subject to
Pk∑

p=1
xkp = hk, k = 1,2, ...,K (νk)

−
K∑

k=1

Pk∑

p=1
δkp	 xkp + c	 r ≥ 0, 	 = 1,2, ...,L (π)

xkp ≥ 0, p = 1,2, ...,Pk, k = 1,2, ...,K.

r ≥ 0.

(7.6.20)

Then, the dual problem becomes

maximize{ν,π} F =
K∑

k=1
hkνk

subject to νk −
L∑

	=1
δkp	π	 ≤ α

L∑

	=1
δkp	ξ̂	, p = 1,2, ...,Pk, k = 1,2, ...,K

L∑

	=1
c	π	 ≤ β

νk unrestricted, k = 1,2, ...,K

π	 ≥ 0, 	 = 1,2, ...,L.

(7.6.21)

On simplification, we can rewrite as

maximize{ν,π} F =
K∑

k=1
hkνk

subject to νk ≤
L∑

	=1
δkp	(αξ̂	 + π), p = 1,2, ...,Pk, k = 1,2, ...,K

L∑

	=1
c	π	 ≤ β

νk unrestricted, k = 1,2, ...,K

π	 ≥ 0, 	 = 1,2, ...,L.

(7.6.22)

This time, by inspecting and comparing previous results, we can easily see that the link
weight would be w	 = αξ̂	 + π∗

	 , 	 = 1,2...,L. Thus, we can summarize the following re-
sult:

222 7.6 Duality of the MCNF Problem

Result 7.3. For MCNF Formulation (7.6.20) and its corresponding dual, Eq. (7.6.22), the commodity
cost, ν∗

k , is the shortest distance for demand k with respect to link weight w	 = αξ̂	 + π∗
	 , and at

optimality, every path for demand k that carries a positive flow must be a shortest path with respect to
the link cost system given by

w	 = αξ̂	 + π∗
	 (7.6.23)

for 	 = 1,2, ...,L where
L∑

	=1
c	π

∗
	 = β .

7.6.5 Minimization of Average Delay
The average delay in a network is another commonly considered objective for IP traffic en-
gineering. In Section 4.3.3, we presented the minimization of the average delay problem
through a three-node example; refer to Eq. (4.3.14). On generalizing, we can write the av-
erage delay minimization problem as

minimize{x,y} F =
L∑

	=1

y	

c	−y	

subject to
Pk∑

p=1
xkp = hk, k = 1,2, ...,K

K∑

k=1

Pk∑

p=1
δkp	 xkp = y	, 	 = 1,2, ...,L

y	 ≤ c	, 	 = 1,2, ...,L

xkp ≥ 0, p = 1,2, ...,Pk, k = 1,2, ...,K

(7.6.24)

A known difficulty with this formulation, as discussed earlier in Section 4.3.3, is that the
objective function is nonlinear and is discontinuous at y	 = c	. However, using a piecewise
linear approximation of the objective function, such a problem can be transformed to an LP
problem; see Section 4.3.3. We again take the same approach. Here, we will illustrate using a
piecewise linear convex function due to Fortz and Thorup [233], useful in the IGP link weight
determination problem. For a link load y and capacity c, the Fortz–Thorup (FT) function is
given by

φ(y; c) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y for 0 ≤ y
c < 1

3

3y − 2
3 c for 1

3 ≤ y
c < 2

3

10y − 16
3 c for 2

3 ≤ y
c < 9

10

70y − 178
3 c for 9

10 ≤ y
c < 1

500y − 1468
3 c for 1 ≤ y

c < 11
10

5000y − 16318
3 c for 11

10 ≤ y
c < ∞.

(7.6.25)

C H A P T E R 7 IP Traffic Engineering 223

F I G U R E 7.9 The Fortz–Thorup function and the load latency function (when c = 1).

The load latency function for the M/M/1 queueing model is given by y/(c − y); the FT
function is a piecewise linear envelope of the load latency function, divided by c (see Fig-
ure 7.9 when c = 1). For a network, the FT function is considered separately for each link
since c	 would be different. Thus, by incorporating Eq. (7.6.25) and accounting for different
capacity c	 for each link 	, we can consider the following formulation in place of Eq. (7.6.24):

minimize{x,y} F =
L∑

	=1

φ(y	;c)
c	

subject to
Pk∑

p=1
xkp = hk, k = 1,2, ...,K

K∑

k=1

Pk∑

p=1
δkp	 xkp = y	, 	 = 1,2, ...,L

xkp ≥ 0, p = 1,2, ...,Pk, k = 1,2, ...,K
y	 ≥ 0, 	 = 1,2, ...,L.

(7.6.26)

It is important to note that Eq. (7.6.24) and Eq. (7.6.26) differ in the following way: since
Eq. (7.6.25) is defined beyond the capacity of the link, the capacity constraint, y	 ≤ c	, is not
required to be included in Eq. (7.6.26).

224 7.6 Duality of the MCNF Problem

To convert Eq. (7.6.26), we introduce a variable z	 for each link. Then, we can write

Eq. (7.6.26) as

minimize{x,y,z} F =
L∑

	=1

z	

c	

subject to
Pk∑

p=1
xkp = hk, k = 1,2, ...,K

K∑

k=1

Pk∑

p=1
δkp	 xkp = y	, 	 = 1,2, ...,L

z	 ≥ y	, 	 = 1,2, ...,L
z	 ≥ 3y	 − 2

3 c	, 	 = 1,2, ...,L

z	 ≥ 10y	 − 16
3 c	, 	 = 1,2, ...,L

z	 ≥ 70y	 − 178
3 c	, 	 = 1,2, ...,L

z	 ≥ 500y	 − 1468
3 c	, 	 = 1,2, ...,L

z	 ≥ 5000y	 − 16318
3 c	, 	 = 1,2, ...,L

xkp ≥ 0, p = 1,2, ...,Pk, k = 1,2, ...,K
y	 ≥ 0,z	 ≥ 0, 	 = 1,2, ...,L.

(7.6.27)

To avoid cluttering, we will use a compact representation for the slopes and the intercept of

each segment of the FT function, i.e., a1 = 1,b1 = 0 for the first segment, a2 = 3,b2 = 2
3 for the

second segment, and so on for a total of I = 6 segments. Then, we can write

minimize{x,y,z} F =
L∑

	=1

z	

c	

subject to
Pk∑

p=1
xkp = hk, k = 1,2, ...,K

K∑

k=1

Pk∑

p=1
δkp	 xkp = y	, 	 = 1,2, ...,L

z	 ≥ aiy	 − bic	, i = 1,2, ..., I, 	 = 1,2, ...,L
xkp ≥ 0, p = 1,2, ...,Pk, k = 1,2, ...,K
y	 ≥ 0,z	 ≥ 0, 	 = 1,2, ...,L.

(7.6.28)

Due to minimization, the above problem remains the same if the second constraint is changed

to less-than-equal-to constraints. Again, transforming to a standard representation, we can

rewrite it as

C H A P T E R 7 IP Traffic Engineering 225

minimize{x,y,z} F =
L∑

	=1

z	

c	

subject to
Pk∑

p=1
xkp = hk, k = 1,2, ...,K

−
K∑

k=1

Pk∑

p=1
δkp	 xkp + y	 ≥ 0, 	 = 1,2, ...,L

−aiy	 + z	 ≥ −bic	, i = 1,2, ..., I, 	 = 1,2, ...,L

xkp ≥ 0, p = 1,2, ...,Pk, k = 1,2, ...,K

y	 ≥ 0,z	 ≥ 0, 	 = 1,2, ...,L

(7.6.29)

For each new constraint, z	 ≥ aiy	 − bic	, we will associate the non-negative dual variable γ	i.
The dual LP problem becomes

maximize{ν,π,γ}
K∑

k=1
hkνk −

L∑

	=1

I∑

i=1
bic	γ	i

subject to νk ≤
L∑

	=1
δ	

kpπ	, p = 1,2, ...,Pk, k = 1,2, ...,K

I∑

i=1
aiγ	i ≥ π	, 	 = 1,2, ...,L

I∑

i=1
γ	i ≤ 1

c	
, 	 = 1,2, ...,L

νk unrestricted

π	, γ	i ≥ 0.

(7.6.30)

While the relation between the primal and dual seems more complicated for the FT function
than the previous illustrations, there is in fact a nice observation between the link weights
and the slopes of the FT function, which is summarized below:

Result 7.4. For each link 	 = 1,2, ..,L, assume that constraint z	 ≥ aiy	 − bic	 for Problem
Eq. (7.6.28) is binding for a unique i [denote by i′()] at optimality. Then an optimal link weight
system is given by

w∗
	 = π∗

	 = ai′(), 	 ∈ L. (7.6.31)

Uniqueness is, however, not always possible for every link; the general result then is as
follows:

Result 7.5. For each link 	 = 1,2, ..,L, constraint z	 ≥ aiy	 − bic	 for Problem Eq. (7.6.28) can be
binding for at most two consecutive i’s [denote by i′() and i′() + 1]. Furthermore, an optimal link
weight system is given by

w∗
	 = π∗

	 = ai′()γ
∗
	,i′() + ai′()+1γ

∗
	,i′()+1, 	 ∈ L, (7.6.32)

where γ ∗
	,i′() + γ ∗

	,i′()+1 = 1/c	, γ ∗
	,i′(), γ

∗
	,i′()+1 ≥ 0.

226 7.7 Illustration of Link Weight Determination Through Duality

The above results and proofs are described in [663], and are derived from complemen-
tary slackness conditions at optimality. Briefly, complementary slackness conditions lead to
the realization that

∑I
i=1 γ ∗

	i = 1/c	, i.e., the third constraint of dual problem Eq. (7.6.30) is
binding. Then, if just one γ	i is positive for a link, then it must be equal to 1, which in turn
leads to the first result based on the second constraint of the dual. Furthermore, if more than
one γ	i is positive for a link 	, then it must be for two consecutive segments since slopes are
strictly increasing in nature from one segment to the next; this then leads to the second result.
An illustration of these results is presented later in Section 7.7.1.

From the above results, we make an interesting observation. If a piecewise linear func-
tion is used as the objective, the slopes of this function appear as the link weight di-
rectly or through convex combination of consecutive slopes; the actual values depend on
the load of traffic on the link; this will become clear through our illustration in the next
section. Furthermore, the above results hold for any piecewise linear increasing function
that is similar to the FT function. Thus, other similar functions including a slight mod-
ification of the FT function can be incorporated to obtain better link weights from the
slopes [663].

7.7 Illustration of Link Weight Determination Through Duality
In this section, we will present two case studies based on topologies discussed earlier—one
for a four-node, five-link network with all links of the same capacity and the other for a four-
node, four-link network (with the direct link removed).

7.7.1 Case Study: I

First, we consider determination of the link weight for the four-node network with five links
shown earlier in Figure 7.7. We will use the commercial LP solver, CPLEX, and show how
to obtain the dual solution. Note our earlier remark that a problem need not be written in
the dual form since by solving the original (primal) problem, dual solutions are readily avail-
able from such commercial solvers. However, it is important to write the original problem
carefully so that dual variables are easy to identify and signs of variables are easy to follow.

OBJECTIVE: MAXIMUM LINK UTILIZATION

If we drop the dependency on link weight w, then we can write the LP relaxation of
Eq. (7.4.11) by following the representation given in Eq. (7.6.15):

minimize{x, r} F = r
subject to x11 + x12 + x13 = 60 (ν1)

−x11 + 100 r ≥ 0 (for link ID 1) (π1)

−x11 + 100 r ≥ 0 (for link ID 2) (π1)

−x12 + 100 r ≥ 0 (for link ID 3) (π1)

−x12 + 100 r ≥ 0 (for link ID 4) (π1)

−x13 + 100 r ≥ 0 (for link ID 5) (π1)

x11,x12,x13 ≥ 0
r ≥ 0.

(7.7.1)

C H A P T E R 7 IP Traffic Engineering 227

There are two important points to note: (1) capacity constraints are represented in the greater-
than-or-equal-to format, and (2) although redundant, all capacity constraints are listed. This
is done so that the result from CPLEX is easily identifiable. CPLEX requires a name for each
constraint to be listed on the left side when a problem is specified; in fact, these constraint
identifiers are none other than the dual variable identifiers. Thus, we can represent the above
problem in CPLEX as

Minimize r
subject to

nu_1: x_11 + x_12 + x_13 = 60
pi_1: - x_11 + 100 r >= 0
pi_2: - x_11 + 100 r >= 0
pi_3: - x_12 + 100 r >= 0
pi_4: - x_12 + 100 r >= 0
pi_5: - x_13 + 100 r >= 0

Bounds
0 <= x_11
0 <= x_12
0 <= x_13

End

On solving the above problem using the CPLEX command optimize, we obtain optimal
r∗ to be 0.2. Note that although we listed non-negativity of the variables through Bounds,
this is not necessary since by default CPLEX assumes the variables to be non-negative; thus,
in subsequent listing, this part will be omitted. From CPLEX, we can obtain dual solutions
(which CPLEX lists as dual price) as follows:

CPLEX> display solution dual -
Constraint Name Dual Price
nu_1 0.003333
pi_2 0.003333
pi_4 0.003333
pi_5 0.003333
All other dual prices in the range 1–6 are zero.

Recall from Result 7.2 that here w∗
	 = π∗

	 . This means that the link weights are as follows: w∗
1 =

0,w∗
2 = 0.003333,w∗

3 = 0,w∗
4 = 0.00333, and w∗

5 = 0.00333. Furthermore, ν1 gives the value of
the total path cost.

There are two important observations to note here: (1) link weights for some links are
zero, and (2) due to constraint

∑L
	=1 c	π

∗
	 = 1 in Eq. (7.6.17), weights are all smaller than one.

Nevertheless, the cost of each path based on these link weights is the same. If we now scale
the objective function from F = r to F = β r using β = 1000, then the dual solution scales to
the following: π∗

2 = 3.33,π∗
4 = 3.33,π∗

5 = 3.33, while the rest of the πs are zero. The cost of

228 7.7 Illustration of Link Weight Determination Through Duality

each path remains equal while we obtained weights that can be rounded off to obtain integer
weight value 3, with two of the πs still zero. Thus, link weights so obtained are

w∗
1 = 0, w∗

2 = 3, w∗
3 = 0, w∗

4 = 3, w∗
5 = 3.

Thus, through scaling and rounding, integer weights can be obtained; however, this does not
rule out that some link weights are zero. This means that the overall link weight systems can
be used for IS-IS, but not for OSPF (unless other adjustments are done).

OBJECTIVE: COMPOSITE FUNCTION

We next consider the composite function as the objective. Assume here that ξ̂	 = 1, 	 =
1,2,3,4,5, and that α = 1 and β = 1000. Thus, the problem in CPLEX would take the fol-
lowing form:

Minimize 2 x_11 + 2 x_12 + x_13 + 1000 r
subject to

nu_1: x_11 + x_12 + x_13 = 60
pi_1: - x_11 + 100 r >= 0
pi_2: - x_11 + 100 r >= 0
pi_3: - x_12 + 100 r >= 0
pi_4: - x_12 + 100 r >= 0
pi_5: - x_13 + 100 r >= 0

End

On solving the above, we obtain dual solutions as follows:

CPLEX> display solution dual -
Constraint Name Dual Price
nu_1 5.000000
pi_2 3.000000
pi_4 3.000000
pi_5 4.000000
All other dual prices in the range 1–6 are zero.

From Result 7.3 for the composite objective, we note that w	 = αξ̂	 + π	. Since α = 1 and
ξ	 = 1, 	 = 1,2, ...,5, and π	s are already integers, we thus have

w∗
1 = 1,w∗

2 = 4,w∗
3 = 1,w∗

4 = 4,w∗
5 = 5.

That is, in this case, no additional adjustment is necessary to obtain integer weights. Further-
more, we do get all paths to be of equal cost and thus the flow would be optimal in the sense
of the MCSPRF problem. This is not to say that this will always be the case when the com-
posite function is used. Rather, a good choice of α and β can make it easier to obtain integer
link weights. Second, as long as ξ̂	 is greater than or equal to 1, the link metric so obtained
would at least have the minimum value 1; thus, this satisfies the requirement of OSPF that the
link weights must have a minimum value of 1. An important comment about the use of the

C H A P T E R 7 IP Traffic Engineering 229

composite function is that it does not directly address an objective that is of interest in IP traf-
fic engineering. Thus, in this case, after solving the problem, we calculate the maximum link
utilization and/or the average delay function to see whether these values are in an acceptable
range.

OBJECTIVE: PIECEWISE LINEAR APPROXIMATION OF AVERAGE DELAY

Recall from Result 7.4 and Result 7.5 that the dual solutions take values from the slopes of
the FT function. We illustrate this through the same example. Note that since all links have
the same capacity, we can ignore c	 from the objective function given in Eq. (7.6.29), but not
from the constraints; as a consequence, we have

∑I
i=1 γ	i ≤ 1, 	 = 1,2, ...,L instead in the dual

given by Eq. (7.6.30)—based on the discussion earlier, these constraints would be binding
at optimality for each link 	. The original problem in CPLEX would then take the following
form:

Minimize z_1 + z_2 + z_3 + z_4 + z_5
subject to

nu_1: x_11 + x_12 + x_13 = 60
pi_1: - x_11 + y_1 >= 0
pi_2: - x_11 + y_2 >= 0
pi_3: - x_12 + y_3 >= 0
pi_4: - x_12 + y_4 >= 0
pi_5: - x_13 + y_5 >= 0
gamma_1_1: z_1 - 1 y_1 >= - 0
gamma_1_2: z_1 - 3 y_1 >= - 66.6667
gamma_1_3: z_1 - 10 y_1 >= - 533.333
gamma_1_4: z_1 - 70 y_1 >= - 5933.33
gamma_1_5: z_1 - 500 y_1 >= - 48933.3
gamma_1_6: z_1 - 5000 y_1 >= - 543933
gamma_2_1: z_2 - 1 y_2 >= - 0
gamma_2_2: z_2 - 3 y_2 >= - 66.6667
gamma_2_3: z_2 - 10 y_2 >= - 533.333
gamma_2_4: z_2 - 70 y_2 >= - 5933.33
gamma_2_5: z_2 - 500 y_2 >= - 48933.3
gamma_2_6: z_2 - 5000 y_2 >= - 543933
gamma_3_1: z_3 - 1 y_3 >= - 0
gamma_3_2: z_3 - 3 y_3 >= - 66.6667
gamma_3_3: z_3 - 10 y_3 >= - 533.333
gamma_3_4: z_3 - 70 y_3 >= - 5933.33
gamma_3_5: z_3 - 500 y_3 >= - 48933.3
gamma_3_6: z_3 - 5000 y_3 >= - 543933
gamma_4_1: z_4 - 1 y_4 >= - 0
gamma_4_2: z_4 - 3 y_4 >= - 66.6667
gamma_4_3: z_4 - 10 y_4 >= - 533.333
gamma_4_4: z_4 - 70 y_4 >= - 5933.33
gamma_4_5: z_4 - 500 y_4 >= - 48933.3
gamma_4_6: z_4 - 5000 y_4 >= - 543933
gamma_5_1: z_5 - 1 y_5 >= - 0
gamma_5_2: z_5 - 3 y_5 >= - 66.6667
gamma_5_3: z_5 - 10 y_5 >= - 533.333
gamma_5_4: z_5 - 70 y_5 >= - 5933.33
gamma_5_5: z_5 - 500 y_5 >= - 48933.3
gamma_5_6: z_5 - 5000 y_5 >= - 543933

End

230 7.7 Illustration of Link Weight Determination Through Duality

On solving, we obtain dual solutions as follows:

CPLEX> display solution dual -
Constraint Name Dual Price
nu_1 2.000000
pi_1 1.000000
pi_2 1.000000
pi_3 1.000000
pi_4 1.000000
pi_5 2.000000
gamma_1_1 1.000000
gamma_2_1 1.000000
gamma_3_1 1.000000
gamma_4_1 1.000000
gamma_5_1 0.500000
gamma_5_2 0.500000
All other dual prices in the range 1–36 are zero.

Here, for links 1, 2, 3, and 4, we can see that dual solutions take the unique slope value of 1
from the first segment of the FT function, as discussed in Result 7.4. Note that

∑I
i=1 γ	i ≤ 1

is binding, and is, in fact, unique for these links. For link 5, the dual solution is a convex
combination of the slopes of the first and the second segment; the dual variables γ associated
with the links give the weights to be given to the slope values (see Result 7.5). That is, we can
recalculate and check that

π∗
5 = a1γ51 + a2γ52 = 1 × 0.5 + 3 × 0.5 = 2.

As a further illustration, consider the same problem, but this time with increased traffic
volume at 150 Mbps. This changes the first constraint to

nu_1: x_11 + x_12 + x_13 = 150

On solving, we obtain the dual solutions as

CPLEX> display solution dual -
Constraint Name Dual Price
nu_1 6.000000
pi_1 3.000000
pi_2 3.000000
pi_3 3.000000
pi_4 3.000000
pi_5 6.000000
gamma_1_2 1.000000
gamma_2_2 1.000000
gamma_3_2 1.000000
gamma_4_2 1.000000
gamma_5_2 0.571429
gamma_5_3 0.428571

All other dual prices in the range 1–36 are zero.

C H A P T E R 7 IP Traffic Engineering 231

Thus, we can see that the three paths are still of equal cost (6 this time) with link weights
as w∗

1 = w∗
2 = w∗

3 = w∗
4 = 3, and w∗

5 = 6. Here, we can see that the link weight for link 5 is the
convex combination of the slopes of the second and the third segment of the FT function:

π∗
5 = a2γ52 + a3γ53 = 3 × 0.571429 + 10 × 0.428571 = 6.

7.7.2 Case Study: II
In this case, we consider the four-node network with the direct link removed; furthermore,
the capacity of links on path 1-3-2 is reduced to 10 Mbps. This is also another topology we
have discussed earlier in this chapter (see Figure 7.6).

We fist consider minimization of maximum link utilization. The associated network flow
problem (including scaling the objective function) can be stated in CPLEX as follows:

Minimize 1000 r
subject to

nu_1: x_11 + x_12 = 60
pi_1: - x_11 + 10 r >= 0
pi_2: - x_11 + 10 r >= 0
pi_3: - x_12 + 100 r >= 0
pi_4: - x_12 + 100 r >= 0

End

For this problem, the optimal maximum link utilization is 0.5454, and MCNF produces
proportional flow at optimality, 10% of the traffic volume on path 1, and the rest 90% of the
traffic volume on path 2. At optimality, we obtain the following dual solutions:

CPLEX> display solution dual -
Constraint Name Dual Price
nu_1 9.090909
pi_1 9.090909
pi_3 9.090909

This implies that link weights would be w∗
1 = 9.09,w∗

2 = 0,w∗
3 = 9.09, and w∗

4 = 0. How-
ever, if we were to allocate flow based on shortest path routing with ECMP, both paths being
of equal cost, we will see that path 1 would overflow due to lack of capacity! This indicates
that link weights determined from duality may not always produce a good result. In fact,
if we were to use the piecewise linear objective approximation of the average delay as the
objective, we face the same problem (this is left as an exercise).

Now consider the composite objection function. An advantage of this function is that
it allows a user to play with providing weights in two ways: costly paths based on a priori
knowledge of link speed and weights between the minimum cost part and the maximum
link utilization part. Suppose we assign ξ̂1 = ξ̂2 = 10, ξ̂3 = ξ̂4 = 1, and weights α = 1, β = 100.
Thus, we have the following problem

Minimize 20 x_11 + 2 x_12 + 100 r
subject to

nu_1: x_11 + x_12 = 60
pi_1: - x_11 + 10 r >= 0
pi_2: - x_11 + 10 r >= 0
pi_3: - x_12 + 100 r >= 0
pi_4: - x_12 + 100 r >= 0

End

232 7.8 Link Weight Determination: Large Networks

On solving the above, we obtain the following dual solution:

CPLEX> display solution dual -
Constraint Name Dual Price
nu_1 3.000000
pi_4 1.000000
All other dual prices in the range 1–5 are zero.

Since, here, w	 = αξ̂	 + π	, link weights would be w∗
1 = 10,w∗

2 = 10,w∗
3 = 1, and w∗

4 = 2.
Thus, path 2 is the shortest path where all flow can be allocated. Thus, we do not face the
overflow problem as we did with other objectives for this network.

7.8 Link Weight Determination: Large Networks
It is important to note that the dual-based approach is not the only approach to determine link
weights. This is an active area of research; many methods have been proposed. Nevertheless,
irrespective of deciding on an objective function, several performance measures are often of
interest to service providers. Consider the following measures:

1. Maximum Link Utilization (ML) captures the utilization of the link that is maximum
loaded in the entire network.

2. Fraction of Used Capacity (FU) captures the total used capacity in the final solution as a
fraction of the total capacity in the network.

3. Number of Overloaded Links (NOL) refers to the number of links that requires extra ca-
pacity to make the solution feasible. This metric is important only when the obtained
solution is infeasible.

4. Fraction of Required Extra Capacity (FE) captures the additional capacity required to
make the solution feasible as a fraction of the total capacity of the network. This is rel-
evant only when the solution is infeasible.

In addition, the FT Function in its normalized form that captures the total congestion cost
is also a good measure. The scaled (normalized) FT function cost (

∑L
	=1 φ	/ϕ) is the ratio of

total cost of current allocation (
∑L

	=1 φ) for the given capacitated network as compared to the
cost in case the network was uncapacitated (ϕ). Observe that for an uncapacitated network
with convex link cost function, cost is minimal when flows are allocated to hop count–based
shortest paths.

In large problems, say a network consisting of at least 50 routers, using a commercial
general-purpose LP solver can be challenging since the time taken to compute results can be
quite high. Thus, an efficient method to obtain link weights through the dual-based approach
is required. Such an efficient approach that also incorporates the ECMP functionality uses an
iterative approach on the dual variables through a decomposition method [564], [664]; we re-
produce here results from [664] for randomly generated 100-router networks with a different
number of links in Table 7.2 and Table 7.3 for the minimize cost routing objective and the
composite objective function, respectively, along with the computing time. Studies show that
the composite objective function is good in capturing different performance measures. In case

C H A P T E R 7 IP Traffic Engineering 233

of duality framework, an additional measure is important to consider is the solution gap or
the duality gap as highlighted earlier in Eq. (7.6.12); that is, the gap between the dual solu-
tion and the objective value based on the weights determined by the specialized algorithm
is a useful indicator of the quality of the solution. As we can see from the tables, these two
gap measures were less than a fraction of 1%. There are a few instances where the gaps were
about 6% when the maximum iteration count for the dual iteration is reached. Thus, in gen-
eral, the convergence property is found to be good and the method is efficient in determining
link weights that work with the ECMP principle within an acceptable tolerance.

In large IP networks, some aggregation of information is also possible and might be nec-
essary. For example, in a geographically distributed network, there are often many points of
presence (PoPs) where a provider locates several routers in each PoP (refer to Section 9.6).
Thus, an abstraction is possible where such PoP locations can be thought of as a super-
node [308]; this then reduces the size of the problem for the purpose of determining the link
weight since it is then sufficient to consider the PoP-to-PoP traffic matrix instead of the router-
to-router traffic matrix; once such weights are determined, then proper mapping back to the
actual network is required.

Suppose we consider the hypothetical situation in which traffic matrices can be fre-
quently determined due to, say, some new, efficient methodology. If we now determine link
weights with each such traffic matrix estimated in each time window, we might possibly
have frequent weight changes. In operational networks, it is desirable to minimize the num-
ber and frequency of change in link weights [595] since each link weight change (unless due
to a failure) can lead to flooding, and consequently, the packet loss or long delays during this
transition cannot be completely ruled out. There has been a recent effort to reduce transition
time. Another issue is that for a small change in the traffic matrix, the link weight should

TA B L E 7.2 Results using the minimum cost routing objective for 100-node networks.

Nodal Degree
(Number of Links) ML FU FT Solution Gap F/I(NOL, FE) Computing Time

2 (197) 0.79 0.25 1.22 0.6% F(-) 44 sec
3 (294) 0.68 0.24 1.15 0.5% F(-) 13 sec
4 (390) 0.48 0.18 1.04 0.6% F(-) 60 sec
5 (485) 0.50 0.19 1.04 0.2% F(-) 20 sec
6 (579) 0.49 0.17 1.02 0.4% F(-) 23 sec

TA B L E 7.3 Results using the composite objective function for 100-node networks.

Nodal Degree
(Number of ML FU FT Solution F/I(NOL, FE) Computing

Links) (α, β) Gap Time
2 (197) (0.9, 32) 0.67 0.25 1.15 0.1% F(-) 5 sec
3 (294) (0.9, 11585) 0.66 0.24 1.15 4.4% F(-) 21 sec
4 (390) (0.9, 2896) 0.37 0.18 1.00 0.7% F(-) 19 sec
5 (485) (0.9, 2896) 0.36 0.19 1.00 0.5% F(-) 16 sec
6 (579) (0.9, 16) 0.39 0.17 1.00 0.1% F(-) 5 sec

234 7.9 Summary

not be sensitive. To circumvent this issue, a stable traffic matrix can be used as input to the
weight determination process. For example, for a 24-hour cycle, the maximum traffic load
can be used so that it accommodates traffic variation during the day. Note that such a de-
cision can vary depending on the size and traffic pattern of a particular service provider’s
network and should be arrived at by analyzing factors such as traffic fluctuations, and im-
pact of weight change on utilization, and so on. Later in Section 9.7, we will discuss traffic
engineering implications for large tier 1 ISPs.

Note that most link weight determination schemes (other than simple hop-based, or
inverse-of-the-link-speed weights) require that the traffic matrix is given. In IP networks,
estimating the traffic matrix based on measurements is itself a difficult, time-consuming, and
costly process. While large ISPs can use methodologies such as the ones described in [219] for
estimating traffic demand volume, many medium-scale and small-scale network providers
(for example, an enterprise network) may not have the resources to devise a full monitoring
system to determine the traffic demand volume/traffic matrix. In such an environment, if
link utilization can still be assessed periodically through tools such as MRTG [533], then such
information can be used to identify highly loaded links and such links can be given a high
link weight value so that traffic can be moved away from such links. This process is, however,
ad hoc and still requires a certain amount of fine-tuning, and no general link weight deter-
mination method is known that works in the absence of the availability of a traffic demand
volume.

An alternative option, again in the absence of a complete measurement system, is to use
enhanced OSPF or IS-IS, which allows functionalities to facilitate traffic engineering, espe-
cially useful in an integrated IP/MPLS environment. In this environment, the traffic engi-
neering enhanced capability may be used to query link bandwidth; this can be followed by
setting MPLS tunnels on the command line of a router to set up traffic engineering tunnels for
controlled traffic engineering, at least to a certain extent. This aspect and other related aspects
on IP/MPLS traffic engineering will be discussed later (see Section 18.3.4 and Section 19.1).

7.9 Summary
Traffic engineering of IP networks is an important problem in operational IP networks. While
protocols such as OSPF and IS-IS define how routers communicate among themselves to up-
date information such as link weights, they are silent on how to pick good link weights. Thus,
mechanisms are needed to determine good link weights. To do so, a critical component is to
recognize that this leads to first identifying how to estimate traffic in the network, as well as
what performance measures might be of interest in IP networks. Through our initial discus-
sion, we show that there is a direct relation between average delay and average utilization;
thus, the traffic engineering goal is to keep either one at a minimum by obtaining optimal
link weights. Certainly, there is a connection to the network dimensioning problem.

The framework for determining link weight when the routing is based on shortest paths
has an important relation to the MCNF problem. In this chapter, we show the connection
between shortest path routing, link weights, and the MCNF problem; furthermore, we have
indicated that the IP traffic engineering problem can be considered as the MCSPRF problem.
In addition, we show here how LP duality can be used to determine link weights. A nice
advantage of this approach is that commercial LP solvers can be used to find dual solutions;

C H A P T E R 7 IP Traffic Engineering 235

this is especially attractive for network providers who do not want to develop any meta-
heuristic-based link weight determination algorithms.

Further Lookup
In general, determining good link weights through various methods including meta-
heuristics have been addressed by many researchers; this started in 2000 with independent
works by different researchers [69], [233], [242]. Other early works are [67], [235], [532], [574].
As a matter of fact, there have been numerous works in IP traffic engineering in the last sev-
eral years that consider different approaches to the link weight determination problem. That
is, we do not want to give the impression that the dual-based approach is the only approach
for the link weight determination problem.

Failure in a network, such as a link or a line card failure, is another important factor to
consider in determining link weights. The general question is: can we determine a robust link
weight system that works both under normal operating condition and also under a failure.
The benefit of such link weights is that the transient behavior after a failure can be minimized.
Recently, integrated models have been developed to consider such situations; for example,
see [470], [532], [564] for additional discussions.

Some network providers prefer to obtain link weights that result in unique shortest
paths for all demand pairs, the primary reason being the ability to easily troubleshoot
a network [698]. In light of Result 4.1 and Example 4.5 discussed earlier, it is important
to note that most demand pairs in large networks are likely to have flows taking sin-
gle paths at optimality. While several methods have been proposed [67], [69], [564], [663],
[698], obtaining link weights that lead to unique shortest paths (without significantly in-
creasing the total cost, average delay, or maximum link utilization) remains a difficult prob-
lem.

Note that while this chapter is primarily about IP traffic engineering, there is a connection
between flow control and traffic engineering; for example, see [289], [581] and Chapters 22
and 23. Later in Chapter 11, we will discuss the connection between control and traffic engi-
neering for voice engineering.

Exercises
7.1. Review questions:

(a) What is traffic engineering?

(b) What does the bandwidth-delay product signify?

(c) What is the difference between the multi-commodity network flow problem and the
multi-commodity shortest path routing problem.

(d) How does the buffer size of a router impact traffic engineering?

7.2. Refer to Exercise 4.3 in Chapter 4. Now, determine optimal link weights for the two
objectives described there.

7.3. Consider the nine-node network [261] shown in Figure 7.10 where the number next to a
link represents the capacity of the link, and the table shows the traffic volume for three

236 7.9 Exercises

F I G U R E 7.10 A nine-node network example.

different demand pairs. Determine best link weights using duality (i.e., using CPLEX
or any other LP solver) when the following objective options are considered: (1) mini-
mization of maximum link utilization, (2) minimum cost routing, (3) piece-wise linear
envelope, (4) a composite cost function. For the composite cost function, test for different
values of α and β to see how the link weights determined might change.

7.4. Consider the nine-node Manhattan street network shown in Figure 7.10.

(a) Assume that all links have 100 units of capacity, and the goal is to do load balancing
the network. Find the best link weights (i) if a single demand between node 1 and 9
with volume of 60 units is considered, (ii) if two demands, one between 1 and 9 and
another between 3 and 7, each of volume 60, are considered.

(b) Assume that all links have 100 units of capacity except for links 2-5, 4-5, 5-6, 5-8,
which have 60 units of capacity. The goal is to do load balancing the network. Find
the best link weights (i) if a single demand between node 1 and 9 with volume of
60 units is considered, (ii) if two demands, one each between 1 and 9 and another
between 3 and 7, each of volume 60, are considered.

7.5. Consider the same demand/capacity scenarios described in Exercise 7.4; find the best
link weights if minimum cost routing is the objective used instead (assume unit cost of
flow on each link).

7.6. Consider the same demand/capacity scenarios described in Exercise 7.4; find the best
link weights if a composite objective function that combines minimum cost routing with
load balancing is used. Determine how the solution changes as the parameters associ-
ated with the cost components of the composite object are varied.

7.7. In Chapter 4, you will find exercises that are similar to the above three exercises. Com-
pare your results and draw your conclusions.

This page intentionally left blank

8
BGP
All truths are easy to understand once they are discovered; the point is to
discover them.

Galileo Galilei

Reading Guideline

The chapter starts with the basic conceptual idea behind BGP. Several details are
then introduced one at a time. This chapter is helpful in reading Chapter 9. BGP
uses the path vector protocol approach. You may note that the concept of a path
vector protocol and its behavior has been discussed in depth in Section 3.5; thus, it
is helpful to refer to this discussion in parallel with this chapter.

C H A P T E R 8 BGP 239

The Border Gateway Protocol (BGP) plays a critical role in making communication on the
Internet work. It facilitates exchange of information about networks, defined by IP address
blocks, between entities, known as autonomous systems (ASes), so that one part of the Internet
knows how to reach another part. BGP is thus an inter-AS routing protocol. It does, however,
allow intra-AS exchanges in certain situations as will be described later.

In this chapter, we describe BGP and its operational characteristics. The current BGP stan-
dard is known as version 4, with its most recent specification described in RFC 4271 [591]; we
will simply use BGP to refer to BGP4 since our entire discussion here about BGP is about
BGP4. In Chapter 9, we will cover the Internet routing architecture where we will show how
BGP is used. The evolutionary path to the development of BGP will also be described in that
chapter (refer to Section 9.1).

It is important to note that BGP is an excellent example of a work-in-progress protocol. In
the early 1990s, BGP went through multiple versions to arrive at version 4; yet many issues
were addressed as add-on features to version 4 by taking the operational experience of the
Internet into account. As we move through this chapter, we will point out a few of these
issues.

8.1 BGP: A Brief Overview
The BGP protocol is used to communicate information about networks currently residing (or
homed) in an autonomous system to other autonomous systems. The term network has a spe-
cific meaning in regard to BGP, which we will describe in the next section; in this section, we
will italicize it to avoid confusion with the general use of the term network. The exchange of
network information is done by setting up a communication session between bordering au-
tonomous systems. For reliable delivery of information, a TCP-based communication session
is set up between bordering autonomous systems using TCP listening port number 179. This
communication session is required to stay connected, which is used by both sides to period-
ically exchange and update information. When this TCP connection breaks for some reason,
each side is required to stop using information it has learned from the other side. In other
words, the TCP session serves as a virtual link between two neighboring autonomous systems,
and the lack of communication means that this virtual link is down. Certainly, this virtual link
will be over a physical link that connects the border routers between two autonomous sys-
tems; it is important to note that if a virtual link is broken, it does not necessarily mean that
the physical link is broken. Now imagine that each autonomous system is a virtual supernode;
then the entire Internet can be thought of as a graph connecting virtual supernodes by virtual
links.

Example 8.1 BGP topology illustration.
In Figure 8.1, we have shown six virtual supernodes (autonomous systems), AS1 to AS6,

connected by virtual links, i.e., TCP-based BGP sessions for communication between two ad-
jacent virtual supernodes. Each virtual supernode then contains one or more networks iden-
tified as N1, N2, N3 in AS1, and so on. From the figure, we can see that there is more than
one possible path between certain ASes. It is also possible to have a supernode at the edge of
the entire network such as AS6. Furthermore, multiple virtual links between two neighbor-

240 8.1 BGP: A Brief Overview

F I G U R E 8.1 Internet: a conceptional graph view through clouds of autonomous systems
(virtual super-nodes) connected by BGP sessions (virtual links).

ing ASes are allowed/possible; for example, in this figure, we have shown that there are two
virtual links between AS2 and AS5. �

For the supernetwork of ASes that connects virtual supernodes through virtual links, we
need a mechanism for routing information updates about networks to be exchanged. Recall
from Chapter 3 that routing information in a network can be essentially disseminated in two
different ways: using a distance vector approach or using a link state approach. A difficulty
with a link state concept is that it is not scalable in its normal form when the number of nodes
grows, although a link state protocol can be made scalable through extended mechanisms—
ATM Private Network-to-Network Interface (PNNI) is such an example. However, a nice
property of a distance vector protocol is that a node does not need to maintain the entire
topology; the supernetwork (Internet) consisting of supernodes made of ASes is very large
and, thus, a distance vector approach is appealing. However, the difficulty with a distance
vector protocol is that looping can occur and unreliable delivery of routing information is
not desirable. BGP follows a path vector routing protocol approach that is roughly based on
a distance vector–type approach where looping is avoided through path tagging and where
reliable sessions for information exchange are used. The basic concept behind a path vector
protocol, without cluttering its description with BGP, was described earlier in Section 3.5 in
Chapter 3. While it is tempting to refer to BGP as the path vector protocol, it is more appro-
priate to refer to BGP as an instance of a path vector protocol family. As an example, in BGP,
the cost between two adjoining ASes is implicitly assumed to be just a hop; any local virtual
link selection decision can be specified if there are parallel links.

Since BGP uses a hop count metric as the distance between two adjoining ASes, the short-
est path from an AS to a distant AS is essentially counted in terms of the shortest number of
AS hops; note that it is not in terms of number of routers along this path. BGP also allows
parallel virtual links between adjoining ASes; thus, a mechanism is also provided for local
exchange of information to decide on a preferred link. Visits through ASes as information

C H A P T E R 8 BGP 241

about networks is propagated is prepended using the BGP protocol. We provide a simple il-
lustration here.

Example 8.2 Prepending of AS Paths in BGP.
Consider again Figure 8.1. Here, we can clearly see that the shortest AS hop path from

AS1 to AS6 is AS1 to AS2 to AS5 to AS6. There are two parallel links between AS2 and AS5;
the choice of either link is a local decision and is immaterial to ASes outside this part such as
AS1 and AS6.

As part of the BGP protocol, AS6 will let its neighboring AS, AS5, know that it is
home for N13 and N14 by broadcasting the AS identifier with the network identifier, i.e., as
(AS6) �→ N13 and (AS6) �→ N14. It is easy to see that instead of generating a separate mes-
sage for N13 and N14, a combined message would conserve the number of announcements
since both networks are served by AS6 with one outlet. Thus, a common way is to announce
a set of networks such as {N13, N14}; thus, we can write the prepended announcement as
(AS6) �→ {N13, N14}. Through a series of exchanges, AS1 will receive the prepended path in-
formation (AS2, AS5, AS6) �→ {N13, N14} from AS2 and (AS3, AS4, AS5, AS6) �→ {N13, N14}
from AS3. Thus, AS1 can decide that route (AS2, AS5, AS6) is the shortest AS hop-based path
to reach destinations N13 and N14. �

Remark 8.1. Explicit announcement of home AS with a network.
There is an important basic issue: if we know that N1 belongs to AS1, could we commu-

nicate the path information to AS5 simply as (AS2) �→ N1 instead of as (AS2, AS1) �→ N1?
That is, could we drop AS1 entirely from the path information as being the home of N1? The
answer is no. If we were to do that, it would implicitly suggest that N1 always belongs to AS1.
Instead, we want the flexibility of a network that can be homed off of another AS if the owner
of the address space chooses to do so in the future. Second, the ability to detect looping will be
lost. Thus, the explicit announcement of AS1 as the current home of N1 as in (AS2, AS1) �→ N1
automatically provides these flexibilities. �

Essentially, BGP chooses a path between two ASes in terms of the shortest number of AS
hops. However, BGP allows an AS number to be repeated during the announcement for the
benefit of inter-AS traffic engineering. This is illustrated below.

Example 8.3 Repetition of an AS number in AS paths for inter-AS traffic engineering.
Consider Figure 8.1 again. Suppose that AS1 would prefer that traffic be routed via AS3

instead of AS2 to its own networks. Thus, AS1 can send the announcement about N1, N2, N3
to AS2 with AS1 repeated three times as (AS1, AS1, AS1) �→ {N1, N2, N3}, but to AS3 once
as (AS1) �→ {N1, N2, N3}; after prepending, each of these announcements will then arrive at
AS4 as (AS2, AS1, AS1, AS1) �→ {N1, N2, N3} and as (AS3, AS1) �→ {N1, N2, N3}, respectively.
Thus, the route chosen by AS4 for destinations N1, N2, and N3 would be via AS3 since the
announcement indicates that this is the shortest number of AS-hops. Assuming no repeats are
done by other ASes, traffic originating in AS5 and AS6 would also go via AS3 to destinations
N1, N2, and N3.

242 8.2 BGP: Basic Terminology

The case for AS2 is interesting to note. AS4 would forward the announcement about net-
works in AS1 to AS2. Thus, AS2 will receive it as (AS4, AS3, AS1) �→ {N1, N2, N3}, while AS2
has already received it from AS1 as (AS1, AS1, AS1) �→ {N1, N2, N3}. Thus, for AS2, reaching
networks N1, N2, and N3 is the same length in terms of AS-hops. Here, additional tie-breaking
rules discussed later would be applied to determine the preferred route. �

The actual best path decision in BGP has far more details than the simple shortest-hop
idea described so far; this will be covered in detail later along will more information concern-
ing about BGP operations.

While we have so far given a fairly simplistic view of BGP, several important points have
been covered such as: (1) what types of information to communicate between neighboring
autonomous systems, and the format and types of messages, (2) how to ensure that the virtual
link connectivity is maintained, and (3) how to react if the virtual link breaks down; these are
important in maintaining relations among autonomous systems so that a packet can move
from an end host to a distant end host through the Internet.

8.2 BGP: Basic Terminology
We have so far described the basic notion of BGP using virtual supernodes and virtual links,
where each supernode contains one or more networks. It should be clear by now that the
virtual link functionality is provided by a BGP session and supernodes are referred to as
autonomous systems. That is, the Internet is composed of autonomous systems that connect to
one or more autonomous systems while an autonomous system contains one or more net-
works. The term network has a specific meaning; more accurately, it refers to an IP prefix–
defined network; for brevity, this notion of a network is referred to as an IP prefix, which we
described briefly in Chapter 1. Recall that an IP prefix is identified through the CIDR nota-
tion, A.B.C.D/n, where/n refers to the network mask. For example, an IP prefix is listed as
134.193.0.0/16 where the network mask is/16; this means that this address block identifies
a certain network. In BGP folklore, an IP prefix is often referred to simply as a network, or a
route, or an IP prefix, and sometimes all three are used interchangeably. For clarity, we will
use the term IP prefix henceforth. The term route has a specific meaning as defined in the BGP
specification; a route is a unit of information that associates an IP prefix destination or a set of
IP prefix destinations with the attributes of an AS-path that has been visited so far, as seen by
a receiving AS through an UPDATE message. For example, in Figure 8.1 from the viewpoint
of AS6, a route to the IP prefix destination N1 is (AS5, AS4, AS3, AS1) �→ N1.

In each AS, certain entities are designated as BGP agents for communication with neigh-
boring ASes. These agents are specially designated routers, commonly referred to as BGP
speakers. This means that the TCP-based BGP session is in fact set up between two adjoining
BGP speakers, and thus, each speaker is considered the peer of the other. Since the BGP pro-
tocol is meant for use in the global Internet, an identification number for each AS has been
defined and is tracked for determining a path between two ASes. This identifier is a unique
16-bit autonomous system number, assigned to each AS. Thus, each AS is assigned a globally
unique number in the range 1 to 64511; the rest, 64512 to 65535, are reserved as private AS
numbers. Originally, the private AS numbers were not defined; they first became necessary
when the AS confederation approach, discussed later in Section 8.8.2, was introduced.

C H A P T E R 8 BGP 243

Finally, it is important to note that an AS is not the same as an ISP. An ISP can have
multiple ASes contained in it; conversely, an AS can be made up of multiple providers where
different IP prefixes are provided by each provider. We will consistently use the term AS and
discuss specifics in regard to an ISP as and when required.

8.3 BGP Operations
To facilitate learning about routes to reachable IP prefixes, a BGP speaker is engaged in ex-
change of network reachability information with its neighboring BGP speakers. During an ex-
change, a BGP session may go down; thus, the basic BGP operation needs to also address how
to handle such situations. To enable various BGP activities, the BGP protocol defines four key
message types: OPEN, UPDATE, KEEPALIVE, and NOTIFICATION, and an optional mes-
sage type ROUTE–REFRESH. Details on the message formats for these BGP messages will be
described later in Section 8.12. Here, we will concentrate on the BGP operational functions
for which these messages are used, and the operations require certain timers.

8.3.1 Message Operations

The OPEN message is the first message sent to establish a BGP session after the TCP connec-
tion has been established. This is started by the BGP speakers that act as designated agents
of autonomous systems to talk to other neighboring BGP speakers. Often in practice, each
BGP speaker is configured in advance with the IP address of the other BGP speaker so that
either end can initiate this TCP connection. It is quite possible that different BGP speakers
use different BGP version numbers; thus, the OPEN message contains the version number as
well as the AS number.

The UPDATE message, the key message in BGP operations, is sent between two BGP
speakers to exchange information regarding IP prefixes; this message type works in a push
mode, i.e., whenever a BGP speaker has new information regarding an IP prefix to communi-
cate to its peering BGP speaker, an UPDATE message is sent. In steady state, the BGP speak-
ers generate UPDATE messages whenever either end has determined a new best AS route for
any specific IP prefix. More importantly, if one end of the BGP session was the announcer of
a route to a particular IP prefix to its other end, it must generate a withdrawal if this speaker
can no longer reach this particular IP prefix. The reason for this withdrawal announcement is
that the path through the AS where the sending speaker is homed could be the best path for
the receiving speaker, yet the sending speaker has no way of knowing if it is otherwise.

Once a BGP session is up and running, the KEEPALIVE message is sent periodically
between two BGP speakers as a confirmation that the session is still alive. Each end learns
and agrees on a maximum acceptable time, known as the hold time, during the initial exchange
of OPEN messages. The KEEPALIVE messages are then generated approximately once every
third of the hold time, but no more than once every second. The KEEPALIVE messages should
not be generated if the hold time is agreed to be zero; this case assumes that somehow the
session is completely reliable.

The NOTIFICATION message is sent to close a BGP session; this is done when some
error occurs requiring closing down of the session. Thus, a virtual link between two BGP
speakers is considered to be unavailable (1) when the NOTIFICATION message sent by one

244 8.3 BGP Operations

end leads to a graceful close of a BGP session, or (2) when there is an absence of KEEPALIVE
or UPDATE messages within a hold time.

Besides the four mandatory message types, an additional optional message type,
ROUTE–REFRESH, has also been added [129]. For example, at any instant during a session,
one end can send ROUTE–REFRESH to its neighboring BGP speaker requesting to readver-
tise all its IP prefix entries in its routing table; thus, the ROUTE–REFRESH, can be thought
of as a pull request that is responded using an UPDATE message. Its usefulness will be dis-
cussed later in Section 8.7.

Since ROUTE–REFRESH is an optional type, how does a BGP speaker know whether its
neighboring BGP speaker supports this feature? To make such optional functionalities work,
BGP defines a parameter called Capabilities [113], [114] which is carried in the initial OPEN
message for capabilities negotiation. Thus, ROUTE–REFRESH is sent as an optional capabil-
ity to be negotiated in the initial OPEN message. If the receiving speaker does not support
the Capabilities option or ROUTE–REFRESH option, it sends a NOTIFICATION message
back to the sending BGP speaker to close the session. In this situation, the sending speaker
would need to send a new OPEN message without the Capabilities option so that normal es-
tablishment can be accomplished; the session would continue without the ROUTE–REFRESH
option.

8.3.2 BGP Timers
We have so far described the use of different message types. For proper functioning of BGP,
several timers are also defined. It is important to understand the need and the role of the
timers. For example, how long should a BGP speaker try to set up a connection with a neigh-
bor before giving up? How often should two neighbors exchange KEEPALIVE messages?
How often should routes to a particular IP prefix be announced or withdrawn? and so on.
Implicit in defining such timers is the need to limit link bandwidth consumption between
two BGP neighbors as well as to limit the processing of resources at the BGP speaker related
to BGP traffic. After all, for a link that connects two neighboring ASes through the border
BGP speakers, the main role is to push actual user traffic, not be consumed/dominated by
the BGP protocol-related traffic. To address these points, the BGP protocol has five required
timers and two optional timers; with each timer, a time parameter is assigned. We describe
them and their roles:

• ConnectRetryTimer: This timer defines the timeout interval before retrying a connection
request. While the recommended ConnectionRetryTime value is 120 sec, it can set to zero
for certain event conditions.

• HoldTimer: This timer indicates the maximum time (in seconds) that is allowed to elapse
without receiving an UPDATE or KEEPALIVE message from a peering BGP speaker be-
fore declaring that the peer is not reachable. That is, the expiration of HoldTimer indicates
that the virtual link between these two BGP speaker is down. The recommended value
for HoldTime is set to 90 sec while the minimum positive value must be 3 sec. The time is
allowed To be set to zero, which is used as the indicator that the session is never to expire.

• KeepAliveTimer: This timer relates to the frequency of generating KEEPALIVE messages;
the timer value is set to one-third of the value of HoldTime. For example, if HoldTime is

C H A P T E R 8 BGP 245

agreed to be 90 sec through the exchange of OPEN messages at the beginning of a BGP
connection, then KeepAliveTime is set to 30 sec.

• MinRouteAdvertisementIntervalTimer: This timer refers to the minimum time that must ex-
pire before a BGP speaker can advertise and/or withdraw routes to a peering BGP speaker
in regard to a particular IP prefix destination. While the timer can be defined on a per–
IP prefix destination basis, the value is maintained on a per–BGP peer speaker basis. If it
is an intra-AS peer, then the recommended value is 5 sec; for an external peer, the value is
set at 30 sec.

• MinASOriginationIntervalTimer: this timer indicates the minimum time that must expire
before a BGP speaker can report changes in its own autonomous system through another
UPDATE message. The recommended value for MinASOriginationIntervalTime is 15 sec.

Note that a BGP speaker may be involved in setting up peering sessions with multiple
BGP peers. Thus, it is possible that certain timers expire at about the same time, causing a
spike in activity at a BGP speaker; second, even if they are originally set to expire at a dif-
ferent time, it is possible that some eventually synchronize; that is, the pendulum effect much
like RIP (refer to the discussion on timer adjustment Section 3.3.3) cannot be completely ruled
out. Thus, jitter is required to be implemented on the following four timers: ConnectRetry-
Timer, KeepAliveTimer, MinASOriginationIntervalTimer, and MinRouteAdvertisementInter-
valTimer. The recommended value is obtained by determining a random quantity that is uni-
formly distributed from the range 0.75 to 1.0 of the base value, and a new random quantity is
determined each time.

There are two additional optional timers: DelayOpenTimer and IdleHoldTimer. The De-
layOpenTimer may be used once a TCP connection is set up for a BGP session to indicate
wait time before the OPEN message is to be sent. The IdleHoldTimer is used to determine
how long to wait in the idle state of the BGP protocol by a BGP speaker before triggering
restart of a BGP session to a particular peer; this factor is used to dampen any oscillatory
behavior.

8.4 BGP Configuration Initialization
In this section, we discuss BGP initial configuration in some detail. To do this, we first con-
sider two commonly used approaches: one in which two ASes are connected directly through
their respective BGP speakers and one in which a border BGP speaker is connected to multi-
ple neighboring BGP speakers.

Consider two ASes with AS numbers 64516 and 64521 wanting to set up a BGP neigh-
boring relation (see Figure 8.2). In this case, a common approach is to set a direct physical
interface between two bordering BGP speakers, thus forming a point-to-point link; then, a
subnet address block (IP prefix) is defined where both interfaces have addresses from this
address block. For example, if we use the IP prefix 10.6.17.0/30 block to describe this sub-
net, then 10.6.17.1 can be assigned as the interface address (serial: s0) to the BGP speaker in
AS64516 and 10.6.17.2 as the interface address (serial: s1) to the BGP speaker in AS64521.
Once this is configured, the neighboring relation can be established, for example, by the
BGP speaker in AS64516 indicating that 10.5.21.2 is the IP address for the neighboring BGP

246 8.4 BGP Configuration Initialization

speaker in AS64617; similarly, the other end can issue the neighboring relation. This method
of configuration then avoids the chicken and egg problem of how each BGP speaker deter-
mines how to reach its neighboring BGP speaker so that they can exchange routing informa-
tion.

Now consider the case in which an AS has more than one neighboring ASes (see Fig-
ure 8.3); that is, AS number 64516 has two neighboring ASes, AS64521 and AS64822. One
possibility is to take the same approach as the first case, i.e., define separate subnet address
blocks for each neighboring relation such as address block 10.6.17.0/30 between AS64516 and
AS4521 and address block 10.6.17.4/30 between AS64516 and AS64822. In this case, the BGP
speakers in AS64521 and AS64822 will see the border BGP speaker in AS64516 with differ-
ent addresses. While this is workable, this is not preferable, since it can be hard to manage
the different address assignments and can be cumbersome when a BGP speaker has many
neighboring ASes.

The configuration just described raises the following question: can we configure in such
a way that each neighbor can use the same IP address for a particular border BGP speaker
in AS64516? In fact, this is possible. To do it, a loopback address, that is, a loopback interface-
based approach is taken. Consider again just two neighboring ASes, AS64516 and AS64521.

F I G U R E 8.2 BGP session setup: direct interface between two ASes.

F I G U R E 8.3 BGP session setup: direct interface between an autonomous system (AS)
and its two neighbors.

C H A P T E R 8 BGP 247

F I G U R E 8.4 BGP session setup: use loopback interface between two ASes.

As shown in Figure 8.4, at the BGP speaker 10.6.17.1 in AS64516, a loopback interface (lo) is
created with IP address 10.6.1.1 while at the BGP speaker 10.6.17.2 in AS64521, a loopback is
created with IP address 10.6.2.1. Now, BGP speaker 10.6.17.1 indicates 10.6.2.1 as the remote
end for AS64521 and then indicates that the route to 10.6.2.1 is to use the serial interface s0.
Thus, when a BGP packet is generated at the BGP speaker 10.6.17.1 for AS64521, the packet
will take interface s0 to reach BGP speaker 10.6.17.2 where it will now loop back to feed to
the BGP session. Similarly, the other end is configured; that is, BGP speaker 10.6.17.2 indicates
10.6.1.1 as the remote end for AS64516, and then indicates that the route to 10.6.1.1 is to use
the serial interface s1. Similarly, a third neighbor of AS64516 can be connected without the
necessity of changing the IP address of the border BGP speaker 10.6.17.1.

There is also a third possible approach for the initial configuration; this approach is
used when two BGP speakers are not directly connected; this is often encountered in re-
gard to internal BGP, to be discussed in the next section. In this situation, an interior dy-
namic routing protocol can be used where one end learns about the other end dynami-
cally.

It should be noted that whether the direct interface-based or the loopback interface–based
approach is used, the time-to-live (TTL) field in the IP packet that contains BGP information
is set to 1 when loopback addressing is not used; when loopback addressing is used, the
TTL is set to 2, and for a multihop environment to 255. Limiting TTL then helps prevent
BGP packets from spreading beyond where they need to be contained, and serves as a basic
security mechanism [252].

8.5 Two Faces of BGP: External BGP and Internal BGP
Our discussion so far has exclusively concerned routing information exchanges between ASes
through BGP speakers. In fact, BGP is also used to set up peer (neighbor) connections between
two BGP speakers within an AS, known as internal BGP (IBGP) speakers. The question is why
such an arrangement is needed and in what scenarios. Before we delve into this, we clarify a
curiosity that remains: how does a BGP speaker find out whether it is communicating with
an external peer BGP speaker or an internal peer BGP speaker? This can be determined by
comparing the AS number communicated in the OPEN message by its peer BGP with that of
its own internal value; if it matches, then this neighbor is an IBGP speaker, and if it does not,
then it is an EBGP speaker.

To consider why IBGP is needed and for what types of scenarios, we begin with an illus-
tration consisting of four ASes as shown in Figure 8.5. Here, AS64777, AS64999, and AS65222
are referred to as stub ASes since they each of them has one BGP speaker as an outlet. We start
with AS64777. There are three IP prefixes in this AS: N1, N2, and N3. To route user traffic from

248 8.5 Two Faces of BGP: External BGP and Internal BGP

F I G U R E 8.5 External BGP and internal BGP example.

one of them to another one within AS64777, an interior gateway protocol is sufficient to deter-
mine routing. Similarly, the internal routing scenario is handled within the other ASes as well.
We assume that AS64777 uses OSPF within its domain. What about inter-AS? For example,
how does R7 in AS64888 learn about network N1, and conversely, R1 in AS64777 learn about
network N7? Note that neither R1 nor R7 is a BGP speaker; they are interior routers within
their respective ASes. One possible way is that BGP speaker R2 learns about N5 from AS64888
and then communicates this information through OSPF protocol to routers R1 and R3. Thus,
R2 can learn about all external IP prefix networks from its neighboring AS and communi-
cate to R1 and R3 through OSPF. The difficulty is that this immediately creates a scalability
problem at routers R1 and R3 since they will need to maintain link state database entries for
such external IP prefixes and compute the shortest paths to all such IP prefixes. Furthermore,
if router R3 were to populate the external IP prefixes to each internal router, it defeats the
purpose of BGP. In any case, while theoretically possible, BGP speaker R2 in AS64777 does
not inform other interior routers within AS64777 about external IP prefixes about which it
has learned. Instead, BGP speaker R2 becomes the default gateway for all external IP prefixes;

C H A P T E R 8 BGP 249

a common way to configure in a stub AS; routers R1 and R3 do not need to maintain routing
table entries for external IP prefixes, thus reducing the routing table size at R1 and R3 as well.

The above discussion gives the impression that the border BGP speaker such as R2 is the
stopping point for external IP prefixes it has learned from its neighboring AS, i.e., through
incoming BGP messages. This is, however, true only if the AS is a stub AS with only a single
BGP speaker to its neighboring AS; in fact, this is the case with R2. This situation, however, no
longer holds when we consider AS64888. If BGP speaker R4 were to stop distributing IP pre-
fixes N1 and N2 it has learned from BGP speaker R2, then the third AS, AS64999, would have
no way of knowing that N1 and N2 actually exist. Thus, a mechanism is needed so that an AS
that has connectivity to multiple ASs through multiple BGP speakers such as AS64999 can
communicate information about network reachability. This is where an internal BGP session
is required between two BGP speakers within an AS so that network reachability information
can be exchanged. In our example, such an internal BGP session is required between BGP
speakers R4 and R5 so that R4 can learn about IP prefixes N8, N9, and N10 while R5 can learn
about IP prefixes N1, N2, and N3. That is, an important BGP rule is as follows:

Rule 1: A BGP speaker can advertise IP prefixes it has learned from an EBGP speaker to a neigh-
boring IBGP speaker; similarly, a BGP speaker can advertise IP prefixes it has learned from an
IBGP speaker to an EBGP speaker.

Note that due to the second part of Rule 1, it is acceptable for R4 to advertise to R2 in AS64777
about IP prefix N7, which is part of AS64888.

While internal BGP works very much the same way as external BGP, there is an important
difference. Consider network N6 in AS64888; within this AS, BGP speaker R4 learns about it
internally through OSPF from internal router R6; similarly, BGP speaker R5 also learns about
N6 from R6. Should R4 and R5, both IBGP speakers, advertise N6 to each other through the
IBGP session? The answer is no. That is, a second important rule is as follows:

Rule 2: An IBGP speaker cannot advertise IP prefixes it has learned from an IBGP speaker to
another neighboring IBGP speaker.

The primary reason for this rule requires some explanation. The AS number is prepended
only when an advertised IP prefix crosses an AS boundary (Example 8.2). Recall that a BGP
speaker prevents looping by checking if its own AS number is on the path for any network
reachability received from another BGP speaker. When the communication is within an AS,
and since the AS number is not prepended in this scenario, looping is possible! This mandates
the need for Rule 2. Furthermore, the routers within an AS are supposed to handle internal
routing through the interior gateway protocol for all its internal IP prefixes; this is not the role
of an IBGP.

There is, however, an important implication of Rule 2 in regard to external IP prefixes
when there are more than two IBGP speakers in an AS. To understand this issue, consider
again AS64888. Due to Rule 1, BGP speaker R4 will learn about N1, N2, and N3 from EBGP
speaker R2 and let IBGP speaker R5 know so that R5 can communicate this information to
AS64999. Also, by Rule 1, BGP speaker R4 will also learn about N11, N12, N13 located in
AS65222 from IBGP speaker R6 and let AS64777 know about existence of N11, N12, and N13.

250 8.6 Path Attributes

However, due to Rule 2, R4 cannot inform IBGP speaker R5 about N11, N12, N13. How then
would AS64999 know about N11, N12, N13? As a consequence of Rule 2, AS64999 would not
know unless that is also an IBGP session between IBGP speakers R5 and R6. That is, if there
are more than two IBGP speakers in an AS, there must be an IBGP session between each pair
of IBGP speakers; thus, this leads to the case of full-mesh IBGP connectivity. This certainly
raises the scalability issue, which is discussed later in Section 8.8.

To summarize, IBGP is required whenever an AS has multiple EBGP speakers. Certainly,
a stub AS that has only a single BGP speaker does not need to consider IBGP. The basic mech-
anism for IBGP and EBGP is the same as long as the two rules discussed above are addressed
properly. Note that IBGP is a situation in which the third approach for initial configuration,
mentioned earlier in Section 8.4, is often used for connecting two IBGP speakers. IBGP speak-
ers are also configured using loopback addressing for ease of configuration manageability. In
this case, the interior gateway protocol is used for routing BGP-related data from one IBGP
speaker to reach the other IBGP speaker.

8.6 Path Attributes
A critical part of BGP operation is route advertisement; as a part of route advertisement,
specific information about a route to an IP prefix destination or a set of IP prefix destinations
is also distributed; this set of information, known as path attributes, is then used in the BGP
routing decision process. BGP path attributes are classified into the following four categories:

• Well-known mandatory: All BGP implementations must recognize such an attribute and it
must appear in an UPDATE message.

• Well-known discretionary: All BGP implementations must recognize such an attribute; how-
ever, it may not be included in an UPDATE message.

• Optional transitive: A BGP implementation might not support such an attribute, but it must
forward it to its BGP peers.

• Optional nontransitive: A BGP implementation might not support such an attribute; it
should not forward it to its BGP peers.

We now describe several key path attributes while identifying the category to which they
belong.

ORIGIN

This well-known mandatory attribute identifies the mechanism by which an IP prefix is first
announced into BGP, commonly referred to as injected into BGP. It can be specified as IGP,
EGP, or Incomplete. IGP means that the IP prefix was learned from an interior gateway pro-
tocol such as OSPF; EGP means that it is learned from an exterior gateway protocol such
as BGP; Incomplete refers to the case when the IP prefix is unknown, often the case for sta-
tic routes. The value assigned by the originating BGP speaker is not allowed to be changed
by any subsequent speaker, although, in practice, it can be. This, this attribute is not always
meaningful in practice.

C H A P T E R 8 BGP 251

F I G U R E 8.6 BGP path Attribute: AS–PATH example.

AS–PATH

This well-known mandatory attribute stores a sequence of AS numbers that identifies the
ASes a route has visited so far. This is accomplished using the UPDATE message; whenever
an UPDATE message is communicated from one BGP speaker to another BGP speaker as it
crosses an AS boundary, its AS number must be prepended to the AS–PATH.

Consider Figure 8.6. Here, the IP prefix 10.5.0.0/16 originates in AS65101. Thus, the BGP
speaker on the border in AS65101 includes its AS number in the UPDATE message sent to
its BGP speakers located at neighboring ASes, AS65102 and AS65105. When the route for
10.5.0.0/16 is advertised to other ASes, the AS–PATH in the UPDATE message is prepended
with the AS number of the leaving AS. Thus, on receiving the UPDATE message in AS65107,
the BGP speaker at AS65107 will learn that 10.5.0.0/16 has originated in AS65101 and that it
has since passed through AS65105 and AS65106 by inspecting the AS–PATH attribute, while
recognizing that AS65106 is the most recent AS visited. An interesting feature is that the
bordering BGP speaker may prepend its own AS number more than once in the AS–PATH
attribute; this was illustrated earlier in Example 8.3.

NEXT–HOP

This well-known mandatory attribute identifies the IP address of the next hop router to the
IP prefix destination in the UPDATE message. Note that an IP prefix is advertised outside of
an AS so that others are aware of it; thus, for the rest, this IP prefix is the destination they
are now aware of and to which they want to send user traffic. Thus, when user traffic is
forwarded, the next hop router is the final router in the BGP domain, which knows how to
forward it to the IP prefix destination. Since the view is from the incoming direction, a name
such as last hop or final hop might have sounded more appropriate since next hop is also
commonly used to mean the next router for an outgoing direction.

The next hop router identified is dependent on from where it is advertised and whether
it is internal or external to the originating AS. We illustrate NEXT–HOP through three sce-
narios (see Figure 8.7). In scenario 1, IP prefix 10.12.0.0/16 homed in AS64777 is advertised to
AS64888 by EBGP speaker 10.6.17.1 to EBGP speaker 10.6.17.2; in this case, the NEXT–HOP
to IP prefix destination 10.12.0.0/16 is 10.6.17.1. This attribute value is advertised outside its
home AS. In scenario 2, the announcement is entirely within an AS between IBGP speak-
ers through a TCP-based BGP session that is set up between IBGP speakers 10.5.16.1 and

252 8.6 Path Attributes

(a) Scenario 1 (b) Scenario 2

(c) Scenario 3

F I G U R E 8.7 BGP path attribute: NEXT–HOP examples.

192.168.2.2; note that this TCP is routed internally via the interior router 192.168.2.1. Since
IP prefix 10.15.0.0/16 is off the IBGP speaker 10.5.16.1 that is advertising it, the NEXT–HOP
to IP prefix destination 10.15.0.0/16 is 10.5.16.1, not 192.168.2.1. Finally in scenario 3, IP pre-
fix 10.12.0.0/16 is advertised by BGP speaker 10.6.17.1, which is passed on from AS64777
to AS64999; then, within, AS64999, the UPDATE message that contains this information is
forwarded from one IBGP speaker to another IBGP speaker. Since network 10.12.0.0/16 orig-
inated in AS64777 at BGP speaker 10.6.17.1, the NEXT–HOP value will remain at 10.6.17.1.

As you can see, NEXT–HOP in BGP can be somewhat confusing. NEXT–HOP in BGP
really needs to be defined because of the basic concept of IP routing that a destination network
address must have a next hop entry in a routing table. In an IGP environment, this is not a
problem since a router can compute the next hop based on the shortest path first algorithm.
Thus, NEXT–HOP in BGP can be thought of as a recursive idea; that is, it is listed for the
purpose of following the next hop notion with a pointer; when the actual traffic arrives, this
pointer would know how to route through IGP.

MULTI–EXIT–DISCRIMINATOR (MED)

This optional nontransitive attribute is a metric meant for use when there are multiple ex-
ternal links to a neighboring AS; in this case, the exit point with the lowest metric value
is preferred by the neighboring AS. The MED attribute is allowed to be sent to other IBGP
speakers in the same AS; it is, however, never propagated to other ASes beyond that. Thus,

C H A P T E R 8 BGP 253

F I G U R E 8.8 BGP path attribute: MED example.

F I G U R E 8.9 BGP path attribute: LOCAL–PREF example.

the border BGP speaker must have the ability to delete the MED attribute from a route before
passing the UPDATE message to its neighboring AS. MED is typically prevalent when the
multiple exit links are of a different bandwidth so that the link with a higher bandwidth can
be preferred by setting a lower metric value to this link, or to control the entry point into the
next AS, sometimes referred to as cold potato routing.

Consider Figure 8.8. Here, IP prefix 10.16.0.0/16 is advertised by AS64516 with different
MED values for each EBGP session to AS64617. Thus, when AS64617 sends user traffic to
AS64516, it will use the link where the MED value is smaller.

LOCAL–PREF

This well-known discretionary attribute is a metric used internally within an AS between
BGP speakers; this is also helpful in selecting an outgoing BGP speaker when an AS has
connectivity to multiple ASes or multiple BGP routes even with the same next hop AS.

Consider Figure 8.9. Here, IP prefix 10.17.0.0/16, originated from AS64617, is advertised
to AS64521 and AS64822. The intermediate ASes, AS64521 and AS64822, in turn, advertise
to AS64516, which arrives at BGP speakers R1 and R2, respectively. Now, AS64516 internally
wants to introduce a local preference for this route due to the preference to use AS64521 for
outgoing traffic. Thus, BGP speakers R1 and R2 are configured with local preference values
that are internally communicated to IBGP speaker R3. Thus, when user traffic arrives at R3

254 8.7 BGP Decision Process

destined for IP prefix 10.17.0.0/16, it will prefer to use the outgoing BGP speaker R1 since the
local preference metric value is higher for this router than the other one.

8.7 BGP Decision Process

The BGP decision process can be divided into two parts: (1) path selection and (2) aggregation
and dissemination. It may be noted that the BGP decision process is used interchangeably
with the path selection process in the common literature. We make a subtle distinction here
to separate out the role of aggregation and dissemination.

8.7.1 BGP Path Selection Process

The BGP path selection process has the responsibility of selecting routes to various IP prefix
destinations for use locally by a BGP speaker. The BGP path selection process is part of the
overall BGP decision process, which also handles route dissemination to its neighboring BGP
peer speakers; the route dissemination process will be discussed along with route aggregation
later in Section 8.7.2. To accomplish route selection, each BGP speaker maintains two routing
information bases (RIBs):

• Adjacent RIBs-In (Adj-RIBs-In) is the information base that stores AS-level routing informa-
tion for each IP prefix it has learned about from its neighbors through inbound UPDATE
messages. From its different neighbors, a BGP speaker may learn about more than one
AS path for a particular IP prefix; in most implementations of BGP, information learned
from different neighbors for a particular IP prefix destination is cached. While the BGP
specification does not require a BGP speaker to cache more than one path learned for a
particular IP prefix, most BGP implementations do cache paths so that it can use one of
the cached paths as the preferred path if the one currently used is no longer available.
Caching and impact on route selection in case of a failure are illustrated in detail in Sec-
tion 3.5.

• Loc-RIB is the information base that stores the routes that have been determined lo-
cally by its decision process, which is to be used for determining the forwarding ta-
ble.

The purpose of ROUTE–REFRESH becomes clear when we consider Adj-RIBs-In. Sup-
pose that a BGP speaker, while keeping a cached path, might have changed certain attribute
values in its memory compared to what it received from its neighbor, for example, due to a
configuration change by the network administrator; thus, to check/verify what values the
neighbor originally communicated, the network administrator can take advantage of the
ROUTE–REFRESH message to request the neighboring BGP to communicate its data again
using the UPDATE message.

It may be noted that each BGP speaker also maintains the following RIB:

• Adjacent RIBs-Out (Adj-RIBs-Out) is the information base that stores the routes for adver-
tisement to its neighboring BGP speakers through outbound UPDATE messages.

C H A P T E R 8 BGP 255

This RIB is used in route dissemination and will be discussed later in Section 8.7.2. The
route selection process at a BGP speaker can be categorized into two phases:

1. Import policy and filtering phase: When a BGP speaker receives an UPDATE message from
a peering BGP speaker, this phase is activated. Note that such an announcement can be
about a new route, a replacement route, or withdrawn routes. An import policy is main-
tained by the BGP speaker to filter out IP prefixes it does not want to support [260]; for
example, it may choose to filter out an IP prefix from nonallowable address space such as
a private IP address block or a route that contains a private AS number. Furthermore, for
each feasible route learned, the BGP speaker locally assesses a degree of preference. This
assessment can be based either on LOCAL–PREF if the announcement is received from
an IBGP speaker or any locally preconfigured decision rule. BGP specification leaves any
such preconfigured decision rule as a local matter.

2. Best route determination phase: This phase determines the best path for each distinct IP pre-
fix of which it is aware based on certain tie-breaking rules described later; the result is
then recorded in Loc-RIB. In this process, if the NEXT–HOP attribute is not found to be
resolvable for a particular IP prefix, such a route must be dropped during this decision
phase.

Note that the best route phase is started after the completion of the import policy and the
filtering phase. The routing decision criteria, which involve tie-breaking rules, are applied to
each IP prefix destination or a set of IP prefix destinations as received through the UPDATE
message. For clarity, we will present the description below in terms of determining the AS–
PATH to a specific IP prefix destination:

1. If the IP prefix destination is unwanted due to import policy and filtering, discard the
route.

2. Apply the degree of preference with the highest LOCAL–PREF or preconfigured local
policy, if applicable.

3. If there is more than one route to the IP prefix destination, select the route that originated
locally at the BGP speaker.

4. If there is still more than one route to the destination IP prefix, select the one with the
smallest number of AS numbers listed in the AS–PATH attribute.

5. If there is still more than one route to the destination IP prefix, select the one with the
lowest ORIGIN attribute. Thus, this selection will follow the order: IGP, then EGP, then
Incomplete.

6. If there is still more than one route to the destination IP prefix, select the route with the
lowest MULTI–EXIT–DISCRIMINATOR.

7. If there is still more than one route to the destination IP prefix, select the route received
from EBGP over IBGP.

8. If there is still more than one route to the destination IP prefix, select the route with
minimum interior cost to the NEXT–HOP that is determined based on the metric value.

256 8.7 BGP Decision Process

9. If there is still more than one route to the destination IP prefix, select the route learned
from the EBGP neighbor with the lowest BGP identifier.

10. If there is still more than one route to the destination IP prefix, select the route from the
IBGP neighbor with the lowest BGP identifier.

Best AS paths to IP prefix destinations that result from the above process are then stored
in Loc-RIB, locally by each BGP speaker.

8.7.2 Route Aggregation and Dissemination
An important component of the BGP decision process is route dissemination. This phase,
which comes after completion of the route selection process, entails route aggregation along
with application of export policy.

We first start by discussing route aggregation at a BGP speaker; in fact, a critical ability of
BGP 4 is the handling of route aggregation that is made possible due to CIDR. The basic idea
is to combine IP address blocks for networks from two or more ASes through supernetting at
a downstream AS. In a sense, the newly announced supernetted address block is less specific
and it announces the AS number only of the AS where supernetting is done. To do that, two
path attributes, ATOMIC–AGGREGATE and AGGREGATOR, have been defined. ATOMIC–
AGGREGATE is a well-known discretionary attribute that is attached to a route out of the AS
where supernetting is done, and the BGP identifier of speaker where this aggregation is done
is indicated through the attribute AGGREGATOR, an optional transitive attribute.

Example 8.4 Route aggregation.
Consider Figure 8.10. Here AS64822 announces IP prefix 10.5.160.0/19 to AS64617;

AS64617, in turn, announces this one and IP prefix 10.5.224.0/19 that it hosts to AS64701. Note
that AS64701 also receives the announcement about 10.5.192.0/19 from AS64816. Further-
more, AS64701 houses 10.5.128.0/19. By inspecting these four IP prefixes, the BGP speaker
in AS64701 determines that these can be combined to go from a /19 address block to a /17
address block 10.5.128.0/17.

Thus, AS64701 announces downstream about 10.5.128.0/17 with itself as the AS host,
but indicating that ATOMIC–AGGREGATE is set and that the AGGREGATOR, the BGP
speaker where this aggregation is done, is identified through the BGP identifier of the router
as 192.168.4.18. Clearly, this information is less specific since 10.5.128.0/17 is advertised at the
/17 netmask; furthermore, this speaker lists its own AS number due to aggregation, to serve
the role of a proxy, instead of listing the AS number of one of the actual originating ASes. �

An important advantage of route aggregation is that it reduces the number of routing
table entries that need to be maintained in downstream ASes. For the example just consid-
ered, the immediate downstream AS needs to maintain a single entry about 10.5.128.0/17
with AS64701 as the home, instead of maintaining four routes identified at the /19 address
block along with the appropriate AS number entries. In essence, route aggregation addresses
scalability. There are certain exceptions when route aggregation should not be performed: for
example, when two routes have a different MED, when routes have different attribute values
for one of the attributes, and so on.

C H A P T E R 8 BGP 257

F I G U R E 8.10 Route aggregation example using ATOMIC–AGGREGATE and
AGGREGATOR.

Along with route aggregation, a BGP speaker also applies export policy before propagating
routes to other BGP speakers. It may be noted that the export policy can contain separate
requirements for each neighboring BGP speaker. Thus, the output of this process is not the
same for every BGP speaker for which this BGP speaker is connected; thus, a separate Adj-
RIB-out is created for each such speaker in order to maintain different rule with different
speakers.

8.7.3 Recap
We now summarize the entire BGP decision process. It involves best route selection at a BGP
speaker by applying import policy to Adj-RIB-In and by applying routing decision criteria to
determine Loc-RIB; in turn, export policies and optionally route aggregation are applied, dif-
ferent for different peers, to determine Adj-RIB-Out separately for each peering BGP speaker.
This aspect is depicted in Figure 8.11.

In Table 8.1, we list samples of import and export policies at BGP speaker, AS64701 (Fig-
ure 8.10). Thus, when an update is received from BGP peer AS64617, the speaker at AS64701
will store it in Adj-RIB-In; this will be separate from the update received from another BGP
peer in AS64816. Now, AS64701 will compute best routes taking into account import poli-
cies and the criteria described earlier in Section 8.7.1. The output will be stored in Loc-RIB,
which then will be subject to the export policy for AS64999 (not shown in figure) to arrive at
different Adj-RIB-Out.

By this time, it should be apparent why routing in BGP is often referred to as policy-
based routing. In fact, import and export policies are critical components in the BGP routing
decision process, which are not seen in other routing protocols. Note that import and export
policies are placed at a BGP speaker by a network administrator due to business relations or
peering arrangement, i.e., external factors. Router vendors provide user interfaces to be able
to enter policy rules; also, Routing Policy Specification Language (RPSL) (RFC 2622 [8]) is
a generic platform to describe policies. Later in Section 9.5, we will delve more into policy-
based routing.

8.8 Internal BGP Scalability
Earlier in Section 8.5, we introduced the notion of IBGP. We mentioned that IBGP requires full
mess connectivity among IBGP speakers as a consequence of Rule 2. It is easy to see that this

258 8.8 Internal BGP Scalability

F I G U R E 8.11 BGP decision process.

TA B L E 8.1 Examples of import and export policies at a BGP speaker.

Import Policy Export Policy

− Do not accept default 0.0.0.0/0 from
AS64617.

− Assign 192.168.1.0/24 coming from
AS64617 preference to receiving it from
AS64816.

− Accept all other IP prefixes.

− Do not propagate default route 0.0.0.0/0
except to internal peers.

− Do not advertise 192.168.1.0/24 to
AS64999.

− Assign 172.22.8.0/24 a MED metric of 10
when sent to AS64999.

raises a scalability problem. If there are n IBGP speakers, then n(n − 1)/2 total IBGP sessions
would be required with each speaker handling n − 1 sessions. If n is small, this is not an
issue. However, when n is large, an IBGP speaker is required to maintain a large number of
IBGP sessions. There are two well-known approaches to handle this scalability issue among
IBGP speakers: route reflection approach and AS confederation approach. They are described
below.

8.8.1 Route Reflection Approach

The concept of route reflector [59], [60], [62] has been developed to address the scalability
problem of full-mesh IBGP sessions. The idea is fairly simple: have one or more IBGP speak-
ers act as concentration routers, commonly known as route reflectors. Introduction of route re-
flectors then creates a hierarchy among the IBGP speakers by clustering a subset of IBGP
speakers with each route reflector. IBGP speakers associated with a route reflector in a cluster
are referred to as route reflector clients; IBGP speakers that are not clients are referred to as non-
clients. Note that a client is not aware that it is talking to a route reflector and assumes that it is
as if like a full-mesh configuration. In Figure 8.12, we show IBGP session connectivity under
full mesh and when there are one, two, or three route reflectors. For example, in Figure 8.12(c),

C H A P T E R 8 BGP 259

F I G U R E 8.12 IBGP route reflector example showing IBGP sessions (route reflectors are
identified by RR).

there are two clusters: one cluster is RR1 with R2 and R3, and another cluster is RR2 with R1
and R4. While we show here just one route reflector in each cluster, for redundancy, a cluster
may have multiple route reflectors. Each cluster is identified by a CLUSTER–ID. If there is
only one route reflector in a cluster, then CLUSTER–ID is the BGP identifier of the route re-
flector; otherwise, a common CLUSTER–ID can be defined for use by multiple route reflectors
within a cluster. Note that if there is only one route reflector (see Figure 8.12(b)), then it cre-
ates the hub-and-spoke connectivity where the route reflector connects to each route reflector
client (see Figure 8.12(b)). In this case, the lone route reflector is still required to maintain n−1
sessions with the other IBGP speakers; that is, for this route reflector the processing overhead
is no different than if it were under the full-mesh scenario. Thus, often, it is better to deploy
two or more route reflectors to form clusters so that each route reflector has a reasonable
number of IBGP sessions to handle.

260 8.8 Internal BGP Scalability

It is important to note that route reflectors must form full mesh among themselves and
each client peer with only its route reflector. Full mesh among route reflector is not apparent
until there are at least three route reflectors (see Figure 8.12(d)). There are certain rules to
follow in regard to announcements:

• If an announcement is received by a route reflector from another route reflector, then re-
flect/pass it to its clients. Consider Figure 8.12(c); if route reflector RR2 learns from route
reflector RR1, it will pass on to route reflector clients R1 and R4.

• If an announcement is received by a route reflector from a route reflector client, then reflect
it to another route reflector. Consider Figure 8.12(d); if route reflector RR3 learns from
client R1, it will pass on to route reflectors RR1 and RR2.

• If an announcement is received by a route reflector from an EBGP speaker, reflect it to all
other route reflectors and its clients. Consider Figure 8.12(d); if route reflector RR1 learns
about external IP prefixes from AS64521, it will pass on to route reflectors RR2 and RR3,
and route reflector client R2.

From the above discussion, you might realize that Rule 2 discussed earlier in Section 8.5
is relaxed since the route reflectors are now allowed to reflect IP prefixes they have learned
from an IBGP speaker to other IBGP speakers. The question then is: can we detect and avoid
routing loops? The answer is yes, but the solution requires two additional attributes as de-
scribed below:

• ORIGINATOR–ID: This attribute identifies a route reflector through its 4-byte router ID;
it is given type code 9 and is optional and nontransitive. This attribute is added only by
the originating route reflector. That is, when a route reflector learns about an IP prefix
from one of its clients, it adds the ORIGINATOR–ID attribute before reflecting to other
speakers. Note that a BGP speaker should not create an ORIGINATOR–ID if one is al-
ready created by another speaker. If a route reflector receives an announcement about
an IP prefix with the ORIGINATOR–ID that matches its router ID, it should ignore this
announcement. Consider Figure 8.12(d); if route reflector RR3 learns about an IP prefix
from R1 that is advertised by AS64701, it will add the ORIGINATOR–ID attribute with its
router ID and announce to route reflectors RR1 and RR2. If somehow RR3 learns about
the same IP prefix, it will check the ORIGINATOR–ID attribute and recognize that it is the
same value as its router ID; thus, it will not forward to client R1.

• CLUSTER–LIST: This list stores a sequence of 4-byte CLUSTER–ID values to indicate the
path of clusters that an advertised IP prefix has visited. The role of CLUSTER–ID is similar
to AS number; this is used to identify each cluster uniquely within an AS. Thus, when a
route reflector reflects an IP prefix, it is required to prepend the local CLUSTER–ID to
the CLUSTER–LIST; thus, CLUSTER–LIST is similar to the function of AS–PATH attribute
and is used for detecting and avoiding looping.

With the introduction of ORIGINATOR–ID and CLUSTER–LIST, the BGP route selection
process described in Section 8.7.1 requires the following modification:

C H A P T E R 8 BGP 261

9′. Use ORIGINATOR–ID as the BGP IDENTIFIER.

9.1 Prefer a route with the shortest CLUSTER–LIST length.

That is, this new step 9′ replaces the previously described step 9 in Section 8.7.1 and step
9.1 is a new step inserted before step 10. Note that CLUSTER–LIST length is assumed to be
zero when a route does not include the CLUSTER–LIST attribute. A final comment is that the
ORIGINATOR–ID and CLUSTER–LIST are not advertised outside its AS.

8.8.2 Confederation Approach
In lieu of the route reflection method, another method known as the AS confederation ap-
proach [701], [702] can be used to address IBGP scalability. The basic idea is fairly simple: use
a divide-and-conquer approach to break the entire AS into multiple sub-ASes where IBGP
full mesh is maintained only within each sub-AS and sub-ASes connected by exterior IBGP
sessions. The entire AS is then known as a confederated AS. While the entire confederation
has a unique AS number, sub-ASes may have AS numbers obtained and assigned from the
public AS number space, or use AS numbers from private AS number space. Consider Fig-
ure 8.13 where AS64516 is divided into two sub-ASes, AS65161 and AS65162. Here, IBGP
speakers R1, R4, and R5 are fully meshed in sub-AS, AS65161, and IBGP speakers R2, R3,
and R6 are fully meshed in sub-AS, AS65162, and the two sub-ASes maintain a BGP session,
referred to as exterior IBGP session, between R5 and R6.

For the confederation concept to work within an AS without looping, two segments
types, AS–CONFED–SET and AS–CONFED–SEQUENCE, which parallel AS–SET and AS–
SEQUENCE, respectively, have been defined as part of the AS–PATH attribute. Then, each
sub-AS talks to another sub-AS within the same AS, somewhat similar to the way that two
EBGP speakers talk to each other across ASes; however, there are the following additional
requirements:

• LOCAL–PREF attribute for a route is allowed to be carried from one sub-AS to another
sub-AS. This is required since the LOCAL–PREF value for this route is meant for the entire
AS. Consider Figure 8.13; for a route learned from AS64701, BGP speaker R1 might set
LOCAL–PREF; this information is to be carried when going from sub-AS AS65161 to sub-
AS AS65162. Recall that in regular EBGP, LOCAL–PREF is ignored.

• NEXT–HOP attribute for a route set by the first BGP speaker in the entire AS is allowed
to be carried from one sub-AS to another sub-AS. Consider Figure 8.13 again; for a route
learned from AS64701, BGP speaker R1 sets the NEXT–HOP attribute; this information is
to be carried when going from sub-AS AS65161 to sub-AS AS65162.

• When advertising a route from one sub-AS to the next sub-AS, insert AS–CONFED–
SEQUENCE to the AS–PATH attribute along with the AS number of the sub-AS. This
then helps detect and prevent looping.

Note that before leaving a confederated AS, any AS–CONFED–SEQUENCE or AS–
CONFED–SET information is removed from the AS–PATH attribute and AS numbers of sub-
ASes are not advertised outside of the confederation.

262 8.9 Route Flap Dampening

F I G U R E 8.13 IBGP confederation example.

Similar to the route reflection approach, the confederation approach requires a slight
modification to the BGP route selection process described earlier in Section 8.7.1 as follows:

7′. If there is still more than one route to the IP prefix destination, select the route received
from EBGP over confederation EBGP, which in turn over IBGP.

That is, step 7′ replaces step 7 in the standard BGP route selection process.
It is easy to see that the confederations approach requires having an AS number due

to the creation of sub-ASes. This had the potential of using many AS numbers if multiple
providers choose to use this option. To alleviate the AS number exhaustion problem, a private
AS number was introduced so that private AS numbers can be used by a provider to number
their sub-ASes for the purpose of confederation.

Deployment of confederation requires a methodical hierarchical approach. If confedera-
tions are created in an unorganized manner, it can also create unnecessary message exchanges
affecting the performance of the network. For instance, imagine the scenario in which each
BGP speaker in an AS is designated as a separate sub-AS and one of them goes downs; it can
create long convergence problems.

8.9 Route Flap Dampening

In BGP, an UPDATE message is sent from a BGP speaker to its neighboring speaker when-
ever any change to a route of an IP prefix destination occurs. Furthermore, a speaker that
announces such a route to a neighboring BGP speaker is also responsible for reporting any
changes, including withdrawal, to the same neighboring BGP speaker subsequently, irrespec-
tive of where it has learned from. As you can imagine, it is quite possible for a BGP speaker to
announce a new route regarding an IP prefix destination, then almost immediately withdraw
it a few seconds later, and then announce it again, and so on. For example, such a situation
can occur if there is some problem maintaining the BGP session between two speakers; this is

C H A P T E R 8 BGP 263

compounded by the fact that when a BGP session is initialized, full route exchange is typically
done between two BGP speakers.

The unpleasant situation regarding announcement and withdrawal of a route to an
IP prefix destination from a BGP speaker to its neighboring speaker is that there is a rip-
ple effect since the receiving BGP speaker, unless it is in a stub AS, announces this route
to its downstream BGP speaker in another AS, and this one in turn to its downstream BGP
speaker, and so on. Frequent changes of routes, commonly known as route flapping, can result
in creating a cascading storm of updates through ASes. A consequence is that it causes BGP
instability along with computational overhead incurred by the downstream BGP speakers as
well as additional bandwidth consumption to report changes. Suppose that a BGP speaker
in the core of the Internet handles 196,000 IP prefix destinations; if 1% of them are flapping
every couple of minutes, this speaker would have difficulty handling the CPU load.

It is important to recognize that such instability must be addressed at the granularity of
an IP prefix destination, not at the level of a BGP neighbor. Note the problem could be at
the origin when an IP prefix destination is first injected into the world of ASes, for example,
the change in NEXT–HOP attribute; thus, this change will ripple through ASes, while other
IP prefixes are not affected at all. Similarly, on a route to an IP prefix destination, there could
be a change in the AS path. Thus, for each IP prefix destination, any change due to either AS
change or NEXT–HOP change is minimally considered as a change.

To minimize the impact of possible instability caused by UPDATES messages in regard to
an IP prefix destination, a route flap dampening principle has been introduced in BGP [720]
to determine when next to advertise the announcement or withdrawal about this destination
to a BGP peer. A side effect of route flapping is an increase in convergence time. Thus, the
main objective of a route dampening approach is to reduce the route update load in such a
way that well-behaved and poorly behaved routes are treated with some fairness.

The basic principle is that at each BGP speaker, as it learns about an IP prefix destination
that has been announced, a default figure-of-merit penalty metric per IP prefix destination is
assigned. Whenever the announcing BGP peer sends a change or withdrawal, i.e., flaps in
regard to this IP prefix, the penalty is increased by a fixed amount from its current value.
The penalty then decays exponentially to half its value at the end of each half-life. There are
two additional conditions: (1) If the penalty crosses a specified upper threshold known as
the suppress or cutoff limit, the speaker suppresses the view of this IP prefix and its associ-
ated AS path, i.e., it is not announced downstream; (2) the speaker frees this route from the
suppressed state when the penalty goes below the reuse limit, or when the time since the
last time of announcement exceeds a certain length of time such as four times that of the
half-life.

Consider that the route flap occurs at t0, t1, t2, Then, given half-life quantity H, and the
penalty amount Pinc per flap, the dynamic penalty assessment over time, t, can be expressed
as follows:

P(t) =
⎧
⎨

⎩

0, t < t0
Pinc, t = t0
P(ti) × e

−(t−ti) log 2
H , t > t0,

P(ti) = P(ti) + Pinc, i = 1,2,

(8.9.1)

264 8.9 Route Flap Dampening

This says that until the first time announcement of an IP prefix destination received at
a BGP speaker, there is no penalty. At t0 when the first announcement arrives, the assigned
penalty is the penalty per flap, Pinc. Then the exponential decay starts with this penalty as
the starting value; it continues until the next flap at t1, when the penalty is increased by the
increment Pinc, and so on. You might wonder why there is a “log 2” in the exponential decay
expression; this factor balances out the requirement that after passage of half-life since last
flap, the penalty should be half its value. To see it, note that half-life since last flap at ti means
t − ti = H. Then the main expression reduces to P(ti + H) = P(ti)e− log 2; since e− log 2 = 1

2 , we
thus have P(ti + H) = P(ti)/2.

In Figure 8.14, we show a simulated behavior of dynamic penalty given by Eq. (8.9.1) with
half-life (H) set to 7.5 min and the penalty per flap (Pinc) set to 1000; suppress limit of 2000
and reuse limit of 750 are also marked. Two plots are shown: one where flapping occurs every
2 min for five times and another where flapping occurs every 4 min for three times. Consider
the case when it flaps every 2 min. When the first announcement is received at a speaker at
2 min, a penalty of 1000 is assigned and it is accepted and is announced downstream; the
next flap at 4 min is also accepted and downstream since the value after adjustment is still
below 2000. At the next flap at 6 min, the penalty value now crosses 2000; thus, this update
is suppressed and so are the next two flaps. After no further update is received, the penalty
decays until it crosses the reuse limit around 27 min, when it is ready to advertise again.
For the second plot with flaps every 4 min, the third flap at 12 min is suppressed and is not
available for consideration until about 24 min.

From this illustration, we can see that there are two possible side effects of route damp-
ening: (1) a legitimate update on a route to an IP prefix destination that has been received is
not considered since this IP prefix is in the suppressed state; and (2) communication in regard
to a legitimate change is delayed to a neighboring speaker. Note that a receipt is still possi-
ble since the receiving speaker cannot control when it wants to receive from a sending BGP
speaker as long as the sending BGP speaker satisfies the MinRouteAdvertisementInterval-
Time requirement. A positive benefit of route flap dampening occurs when route aggregation

F I G U R E 8.14 Route dampening figure-of-merit penalty.

C H A P T E R 8 BGP 265

is done at a downstream speaker. The aggregated route is then like a new announcement; any
prior knowledge about flap is not carried over and is lost.

We briefly discuss why route dampening was introduced. When the Internet connected
different ASes between Internet service providers around the mid-1990s, it was often on low-
speed links such as 56 Kbps. Thus, when route flapping occurred, it consumed a significant
part of such low-bandwidth links. However, at that time, BGP had no knobs to control ex-
cessive BGP-related traffic. Thus, route dampening was introduced as an add-on feature to
provide a relief mechanism. In today’s environment, most ASes are connected by high-speed
links and, thus, it is not always necessary to invoke route flapping, since the proportion of
bandwidth required for BGP update is much less in a high-speed environment. Second, the
exact parameter values might need to be different than the ones set by vendors with their
BGP release; this requires some amount of fine-tuning to avoid any undesirable behavior.

8.10 BGP Additional Features

There are a variety of extensions proposed to BGP. Here we discuss two well-known features.

8.10.1 Communities

This feature [115] was developed to incorporate a desirable property observed from deploy-
ment of BGP. From a deployment perspective, BGP is heavily policy dependent; for example,
peering neighboring ASes might have a certain agreement that goes into the BGP decision
process. In the Internet, BGP is used by transit ISPs who provide transit services to other
ASes. In case some control is needed over distribution of routing information, it is based on
either any IP prefix destination allowed or not allowed, or the AS–PATH attribute. The com-
munities attribute was developed to simplify such control. For example, for a certain set of
IP prefix destinations, irrespective of their path attribute, a community can be defined so that
it is easier to handle/configure this group.

Three well-known communities values have been defined: (1) IP prefixes marked such
are not allowed to be advertised outside an AS (“no-export”), (2) IP prefixes marked such
are not to be advertised beyond the receiving BGP speaker to other BGP speakers (“no-
advertise”), and (3) IP prefixes marked such may be advertised by a receiving BGP speaker,
but not outside the current AS confederation (“no-export-subconfd”).

8.10.2 Multiprotocol Extension

Originally, BGP was defined assuming that it will be used only for the IPv4 address family.
An important question is how to extend BGP if it were to be used for other address families
such as IPv6, especially without changing the version number. For this purpose, the optional
parameter field in the OPEN message turned out to be helpful [113], [114]. Using this feature,
BGP multiprotocol extension has been developed [63], so that network layer reachability in-
formation (NLRI) field can be used for other address families such as IPv6, or IPv4-based
virtual private networks (VPNs) [602], and so on. Later, extensions presented in [602] for
virtual private networking will be discussed in Section 18.5.1.

266 8.11 Finite State Machine of a BGP Connection

8.11 Finite State Machine of a BGP Connection

When a BGP speaker sets up a BGP session with a peer BGP speaker, several different types
of messages are communicated during the session starting with the OPEN messages. How
to handle different types of messages depends on triggering a number of events and what
state to move to depends on the action—which is a stateful mechanism. Thus, a finite state
machine is used to describe the relation of a BGP speaker’s state to each of its BGP peers;
that is, a speaker needs to maintain a separate finite state machine with each of its BGP peer-
ing speakers. The basic states are classified into the following: Idle state, Connect state, Ac-
tive state, OpenSent state, OpenConfirm state, and Established state. BGP specification [591]
documents 28 different types of possible events: 16 of them are mandatory and the rest are
optional; they are listed in Table 8.2. In the following, we discuss each state and provide a
general overview about state transition. The finite state machine is shown in Figure 8.15; for
details, refer to RFC 4271 [591].

IDLE STATE

This is the initial state of a BGP speaker. In this state, the BGP speaker is not yet ready to
accept a BGP connection. At the occurrence of either a manual start (ME01) or automatic start
(OE03) event, the BGP speaker initializes BGP resources, starts the ConnectRetryTimer, starts
a TCP connection to its BGP peer speaker, and also listens for any incoming BGP connection.
It then moves to the Connect state. However, if this BGP speaker were to take the passive role
in the sense of event OE04 or OE05, the initialization is similar to when either ME01 or ME02
occurs, except that it moves to the Active state instead of Connect state. If dampening of peer
oscillation is activated, then three additional events, OE06, OE07, and OE13, may occur; in
this situation, the local BGP speaker tries to prevent peer oscillations using the dampening
principle.

F I G U R E 8.15 Finite state machine of a BGP speaker for connection to a peer.

C H A P T E R 8 BGP 267

TA B L E 8.2 BGP events.

Event Status Remark

ME01 Mandatory Local BGP administrator manually starts the BGP connection to a peer
BGP speaker

ME02 Mandatory Local BGP administrator stops the BGP connection to a peer BGP
speaker

OE03 Optional Local system automatically starts the BGP connection
OE04 Optional A local BGP administrator is to manually start the BGP connection to

a peer BGP speaker, but it first listens to an incoming BGP connection
before starting the BGP connection

OE05 Optional Local system automatically starts the BGP connection, but it first lis-
tens to an incoming BGP connection before starting the BGP connec-
tion

OE06 Optional Local system automatically starts the BGP connection with the damp-
ing of oscillation activated

OE07 Optional Local system automatically starts the BGP connection with the damp-
ing of oscillation activated and also first listens for an incoming BGP
connection

OE08 Optional Local system automatically stops the BGP connection
ME09 Mandatory Indication that the ConnectRetryTimer has just expired
ME10 Mandatory Indication that the HoldTimer has just expired
ME11 Mandatory Indication that the KeepAliveTimer has just expired
OE12 Optional Indication that the DelayOpenTimer has just expired
OE13 Optional Indication that the IdleHoldTimer has just expired
OE14 Optional Indication that the local system has received a valid TCP connection
OE15 Optional Indication that the local system has received a TCP connection for the

BGP session with either an invalid source IP address or port number,
or an invalid destination IP address or port number

ME16 Mandatory Indication that the local system has successfully set up a TCP connec-
tion to its remote BGP speaker that it initiated

ME17 Mandatory Indication that the local system has confirmed the TCP connection ini-
tiated by a remote BGP speaker

ME18 Mandatory Indication that the local system has received a notice about failure of
a TCP connection to a peer BGP speaker

ME19 Mandatory Indication that a valid OPEN message is received from the remote
BGP speaker

OE20 Optional Indication that a valid OPEN message has been received, but is delay-
ing the sending of an OPEN message due to DelayOpenTimer running

ME21 Mandatory Indication that the header of a received BGP message is not valid
ME22 Mandatory Indication that there is some error with the OPEN message received
OE23 Optional Indication of the detection of a connection collision during processing

of an incoming OPEN message and this connection is to be discon-
nected

268 8.11 Finite State Machine of a BGP Connection

TA B L E 8.2 (Continued.)

Event Status Remark

ME24 Mandatory Indication that a version error code has been received with a NOTIFI-
CATION message

ME25 Mandatory Indication that an error code other than version error code has been
received with a NOTIFICATION message

ME26 Mandatory Indication that a KEEPALIVE message has been received
ME27 Mandatory Indication that a valid UPDATE message has been received
ME28 Mandatory Indication that an invalid UPDATE message has been received

CONNECT STATE

In this state, the BGP speaker is now waiting for the TCP connection to be established. Several
different actions are possible depending on the triggering of events. If manual stoppage is in-
voked (event ME02), the connection is dropped, resources are released, and the BGP speaker
then moves to the Idle state. If ConnectRetryTimer expires (event ME09), the BGP speaker
drops the connection, restarts the ConnectRetryTimer, stops the DelayOpenTimer if this was
activated earlier, starts a new TCP connection while listening to a connection initiated by the
other side, and remains in the Connect state.

From a receiving point of view, if the TCP connection is valid (event OE14), it is processed
and it stays at the Connect state. If the TCP connection is successful (ME16 or ME17), then the
DelayOpen value is checked. If it is true, then timers are reset and it remains at the Connect
set; however, if DelayOpen is not set, then the local BGP speaker stops the ConnectRetry-
Timer, completes BGP initialization, sends an OPEN message to the remote BGP speaker, sets
the HoldTimer to a large value, and moves to the OpenSent state.

If the TCP connection request is invalid (OE15), it is rejected and stays at the Connect
state. However, if it is valid but the connection fails (ME18), the system checks if DelayOpen-
Timer is running. If so, the timers are reset, and it continues to listen to a connection from its
peer, and then moves to the Active state. If DelayOpenTimer is not running, the connection
is dropped, BGP resources are released, and it moves to the Idle state.

It is possible to receive an OPEN message while the DelayOpenTimer is still running
(OE20). If so, an OPEN message is sent in response and a KEEPALIVE message is also gen-
erated, and the state is changed to the OpenConfirm state. This also occurs when the au-
tonomous system number on the received OPEN message is checked to determine if the peer
is external or internal.

If there is any error while checking BGP header (ME21) or OPEN message (ME22), all
BGP resources are released and the connection is dropped.

In response to an OPEN message, it is possible to receive a NOTIFICATION message with
a version error (ME24); if so, BGP resources are released, the TCP connection is dropped, and
it changes to the Idle state. For the rest of the events, if any of them occurs, the same handling
procedure is used.

C H A P T E R 8 BGP 269

ACTIVE STATE

The role of this state is to acquire a BGP peer. If manual stoppage occurs (ME02), the connec-
tion is dropped and the state is changed to the Idle state. If the ConnectRetryTimer expires,
a new TCP connection is initiated and, at the same time, listens to one, then moves its state
to the Connect state. If the DelayOpenTimer expires or delayed open is not set, an OPEN
message is sent to its BGP peer, and it moves to the OpenSent state. If, however, an OPEN
message is received and the delay open timer is running (OE20), an OPEN message is sent
and a KEEPALIVE message is sent.

If there is an error detected when checking the BGP message header or OPEN message,
the connection is dropped and the state changes to the Idle state. In case of a NOTIFICATION
message with version error (ME24), the handling is the same.

OPENSENT

Normally, the speaker arrives at the OpenSent state from the Active state; in this state, an
OPEN message is sent immediately or later depending on the DelayOpenTimer value and
at the same time it waits for an OPEN message from its BGP peer. If an OPEN message is
received and there is no error in the message (ME19), a KEEPALIVE message is sent, the
KeepAliveTimer is activated, and it moves to the OpenConfirm state. In all other events, the
connection is dropped while sending a NOTIFICATION message as applicable and the state
is changed to Idle, except if TCP connection fails (ME18); in this case, the state is changed to
the Active state.

Once the optional local DelayOpenTimer expires, the speaker sends the OPEN message
and waits to hear an OPEN message from its neighboring BGP speaker. If an OPEN message
is received, fields are checked; if errors occurs such as a bad version number or an unaccept-
able AS number, it sends a NOTIFICATION message and moves to the Idle state.

Note that if the BGP speaker supports the Capabilities option, it can advertise this infor-
mation when it sends the OPEN message and inquire, for example, if the ROUTE–REFRESH
capability is supported by the receiving speaker. If the other end responds using a NOTIFI-
CATION message stating that it does not support the ROUTE–REFRESH capability, a new
OPEN message is generated in which the optional capability is turned off.

OPENCONFIRM STATE

In this state, the speaker waits for either a KEEPALIVE or a NOTIFICATION message, or
generates a KEEPALIVE message. An important action here is when the HoldTimer expires;
in this case, a NOTIFICATION message is sent and the TCP connection is dropped. If the
KeepAliveTimer expires, a KEEPALIVE message is sent and a new KeepAliveTime value is
generated, and the state is changed to the Established state.

If a NOTIFICATION or a NOTIFICATION with a version error (ME24) is received, the
connection is dropped and the state changes to the Idle state. If an OPEN message is received
(ME19), a NOTIFICATION is sent and the connection is closed and moves to the Idle state.
Note that at this state, a NOTIFICATION message from its peer BGP speaker is also possible
if the peer does not support the ROUTE–REFRESH capability; this situation arises only if it
has included ROUTE–REFRESH capability in the optional capability parameter when it sent
out its OPEN message.

270 8.12 Protocol Message Format

ESTABLISHED STATE

In the established state, a BGP speaker normally exchanges UPDATE, NOTIFICATION, and
KEEPALIVE messages with a peering BGP speaker. If a stoppage event occurs (ME02, OE08),
a NOTIFICATION is sent, the connection is closed, and it moves to the Idle state.

If HoldTimer expires (ME10), a NOTIFICATION is sent, the TCP connection is dropped,
peer oscillation damping is performed, and the system changes to the Idle state. If the
KeepAliveTimer expires, a KEEPALIVE message is sent and a new KeepAliveTime value is
generated, and the state is changed to the Established state. Note that each time a KEEPALIVE
or UPDATE is received, the KeepAliveTimer is re-initialized with a new value.

8.12 Protocol Message Format
In this section, we provide detailed information about BGP message formats.

8.12.1 Common Header

BGP4 has a common header of 19 bytes that consists of 16 bytes of marker, followed by 2
bytes of length field, and 1 byte of type field (see Figure 8.16). The intent of the marker field is
to do synchronization, although it can also be used for the security option. For example, this
field contains all 1s when used for synchronization, especially when no security options are
used. The length of the entire BGP message, including header, is indicated through the length
field in byte count; although this field is 2 bytes long, any BGP message cannot be longer than
4096 bytes.

8.12.2 Message Type: OPEN

The message type, OPEN, follows the common header where the type field in the header in-
dicates that this is a message type with value 1 (Figure 8.17). The OPEN message is sent at the
start of a BGP session between two peering BGP speakers. The OPEN message has a required
field of 10 bytes followed by an optional parameter field; thus, including the common header,
the OPEN message is at least 29 bytes long. The main fields are as follows:

• Version (1 byte): This field indicates the BGP protocol version, currently set to version 4.

• Autonomous System Number (2 bytes): This field is used to declare the AS number to which
the sending BGP speaker belongs.

F I G U R E 8.16 BGP4 common header.

C H A P T E R 8 BGP 271

F I G U R E 8.17 BGP4 OPEN message.

• Hold Time (2 bytes): The maximum time (in seconds) before a BGP speaker assumes that
its peering BGP speaker is down, the time before the virtual link is assumed down. Since
this value is advertised as part of the OPEN message by each side, the smaller of the two
values is agreed upon as the HoldTime for the rest of this BGP session. Hold Time must
be either zero or at least 3 sec, while the recommended value is 90 sec. The value zero is
meant to indicate that the BGP session is never to go down.

• BGP Identifier (4 bytes): This is an identifier for the sending BGP speaker, serving as this
router’s ID. Usually, it is set to the highest value of all the sending BGP speaker’s inter-
faces.

• Optional Parameter Length (1 byte): The parameter length is used to indicate optional pa-
rameters. When this field is set to zero, no optional parameter follows.

• Optional Parameters: The optional parameter is expressed using the type-length-value
(TLV) format. Optional Parameter Type 1 (Authentication Information), originally defined
in RFC 1771, has now been deprecated in RFC 4271. If the parameter type is 2, then ca-

272 8.12 Protocol Message Format

pabilities such as the following have been defined so far: 1 for Multiprotocol Extension,
which allows for addresses to be other than IP addresses, 2 for indicating route refresh
capability, 4 for Multiple route to a destination capability, 64 for Graceful restart, 65 for
Support for 4-byte AS number capability, and so on; the updated list is maintained at
[314].

8.12.3 Message Type: UPDATE

Once a BGP session is established, the UPDATE message is sent to withdraw or announce
IP prefixes with their route information, as and when needed (Figure 8.18). The message type

F I G U R E 8.18 BGP4 UPDATE message.

C H A P T E R 8 BGP 273

value in the common header is set to 2 to indicate that this is an UPDATE message. This
message type has three subparts: withdrawal route part, path attribute part, and network
layer reachability information part. An UPDATE message may have content for any or all of
these subparts. The minimum size of an UPDATE message is 23 bytes consisting of 19 bytes
of the common header, 2 bytes for Withdrawn Routes Length, and 2 bytes for Total Path
Attribute Length.

An UPDATE message can contain just one IP prefix destination as advertisement along
with its path attributes, the exception being that it can include a set of IP prefix destinations
if they share the same path attributes. An update message can list multiple IP prefix des-
tinations that are to be withdrawn; however, both withdrawal and advertisement may be
combined in a single UPDATE message.

• Withdrawn Routes Length (2 bytes): This field indicates the total length of the Withdrawn
Routes field in bytes. When this field is set to zero, it means that there is no announcement
about withdrawal of routes in this particular UPDATE message.

• Withdrawn Routes (variable): This field is not present when Withdrawn Routes Length is
zero. Otherwise, this field has the format 〈prefix length, IP prefix〉. Here, the prefix length
is always 1 byte long and indicates the length in bits of the IP prefix address of a routable
network address while the IP prefix field is of variable length, which is required to carry
the IP prefix with the additional requirement that it must fit into a byte boundary; to do
so, trailing bits are added. For example, if the IP prefix to be withdrawn is 134.193.0.0/16,
the length field will have the value 16, followed by the IP prefix taking 16 bits, which
represents 134.193, i.e., 1000 0110 1100 0001 (in bits). However, if a BGP speaker were to
withdraw prefix 134.193.128.0/17, the length field would have the value 17, followed by
the IP prefix 134.193.128, taking 24-bit space instead of 17-bit space, i.e., 1000 0110 1100
0001 1000 0000 (in bits), to align with the byte boundary; note that only the first 17 bits are
important and the trailing bits beyond 17 bits would be ignored when reading this field at
the receiving BGP speaker. The 〈prefix length, IP prefix〉 pattern is repeated for all routes
withdrawn in an OPEN message while the total length in bytes (not in number of routes)
is indicated through the Withdraw Routes Length.

• Path Attribute Length (2 bytes): This field indicates the total length of the Path Attributes
field in bytes. If this value is zero, this UPDATE message does not include the Path At-
tribute and the NLRI field.

• Path Attributes (variable): The format for this field is described later in Section 8.12.7. Ear-
lier in Section 8.6, we described the role played by different attributes.

• Network Layer Reachability Information (variable): This field contains one or more IP prefix
destinations. Each IP prefix is encoded in the format of 〈prefix length, prefix〉 where prefix
length is 1 byte which indicates the length of the IP prefix in number of bits, and the prefix
is of variable length, which is derived from the number of bits in the length rounded up to
the byte boundary. The encoding is similar to the illustration shown above in Withdrawn
routes. There is no length field for NLRI; this is determined from the total length of the
UPDATE message by subtracting the length for Withdrawn Routes and the length for
Total Path Attributes.

274 8.12 Protocol Message Format

F I G U R E 8.19 BGP4 NOTIFICATION message.

8.12.4 Message Type: NOTIFICATION
The role of the NOTIFICATION message is to indicate if an error has occurred. The message
type value in the common header is set to 3 to indicate that this is a NOTIFICATION message.
The message format for NOTIFICATION has three parts: Error Code (1 byte), Error Subcode
(1 byte), and Data (variable), as shown in Figure 8.19. Error codes have been categorized into
six parts, where the first three categories have their own subcodes. The error codes/subcodes
are summarized in Table 8.3. The Data field is typically used to provide additional informa-
tion about an error; for example, the Data field includes the erroneous Length field value if
the error code is 1 and the error subcode is 2. It may be noted that if there is an error in the
NOTIFICATION message itself sent by a BGP speaker, the receiver speaker is not allowed to
respond with another NOTIFICATION message.

8.12.5 Message Type: KEEPALIVE
The role of the KEEPALIVE message is to indicate that the BGP session is active. To ensure
that the HoldTimer does not expire, a KEEPALIVE message is sent that is approximately one-
third the HoldTime value as long as it is not sent more than once per second. If, however, the
HoldTime is agreed to be zero, which is to mean that the BGP session is to remain alive, then
KEEPALIVE messages are not generated. A KEEPALIVE message does not have any data on
its own; the common message header is sent with the message type value set to 4.

8.12.6 Message Type: ROUTE–REFRESH
The ROUTE–REFRESH message is an optional BGP message that is generated only if this
capability is negotiated through the exchange of initial OPEN messages. Operationally, on
receiving a ROUTE–REFRESH message from a peer, a BGP speaker would need to send the
content of Adj-RIB-Out for this peer using an UPDATE message. The message type value

C H A P T E R 8 BGP 275

TA B L E 8.3 Error Codes/Subcodes with BGP NOTIFICATION message.

Code Subcode Remark
1 Error detected in the BGP message header

1 Marker field is not synchronized with all 1s
2 Message Length is not valid. This can happen if (1) the message

length is smaller than 19 bytes or larger than 4096 bytes, (2) the
Length field of the OPEN (UPDATE/KEEPALIVE/NOTIFICATION)
message does not meet the minimum length of an OPEN (UP-
DATE/KEEPALIVE/NOTIFICATION) message

3 The Message Type is not recognized
2 Error in the OPEN message content as specified through subcodes

1 Version number is not supported
2 AS number of the peer is not acceptable
3 The BGP Identifier is not a valid unicast IP address
4 The Optional Parameter is not supported. However, if the Optional Para-

meter is recognized, but is malformed, then the Subcode is set to 0
5 Deprecated
6 Unacceptable Hold Time; this occurs if the value is announced to be either

1 or 2 sec
7 Capability not supported (in response to Capabilities advertisements dis-

cussed in [113])
3 Error in the UPDATE Message

1 Attribute List is nonconforming
2 Well-known Attribute is not recognized
3 A mandatory Well-known Attribute is missing
4 Error with Attribute Flags
5 Error with Attribute Length
6 The value in ORIGIN Attribute is not valid
7 Deprecated
8 NEXT–HOP Attribute value is not valid
9 Error in Optional Attribute

10 The content in the NLRI field is not correct
11 AS–PATH is malformed

4 To indicate expiration of Hold Timer
5 Error in Finite State Machine for the BGP connection
6 This allows a BGP connection to close a session normally

in the common header is set to 5 to indicate that this is a ROUTE–REFRESH message. The
message format for ROUTE–REFRESH has three parts: Address Family Identifier (2 bytes),
Reserved (1 byte), and Subsequent Address Family Identifier, as shown in Figure 8.20. The
information about address family identifier (AFI) is included since BGP is now extended with
multiprotocol capability [63]; thus, an address family can be properly identified. Note that the
AFI for the IPv4 address is 1; the list of AFIs is regularly updated and is maintained at [313].

276 8.12 Protocol Message Format

F I G U R E 8.20 BGP4 ROUTE–REFRESH message.

F I G U R E 8.21 Path Attribute in UPDATE message.

8.12.7 Path Attribute in UPDATE message

Path Attribute appears in a BGP UPDATE message if an announcement or a change in regard
to an IP prefix destination or a set of IP prefix destinations is advertised. If the Path Attribute
Length field contains a nonzero value, a variable length Path Attributes field follows that has
the TLV format: 〈attribute type, attribute length, attribute value〉. The attribute type is 2 bytes
long and has two subparts: attribute flags (1 byte), and attribute type code (1 byte). Attribute
flags consists of four higher-order bits: O, Optional (0 for well-known or 1 for optional); T,
Transitive (0 for nontransitive or 1 for transitive); P, Partial (0 for complete or 1 for partial);
and E, Extended (0 for one byte 1 for two bytes); the lower 4 bits must be zero, denoted by
MBZ in Figure 8.21. W-bit indicates whether the attribute is well-known and is supported
by the receiving BGP speaker, or the attribute is optional and may not be supported by the
receiving BGP speaker. If E is set to 0, then the attribute length is 1 byte long; if E is set to 1,
then the attribute length is 2 bytes long.

The path attributes that are significant have already been discussed in Section 8.12.7 and
the ones related to the route reflector option have been discussed in Section 8.8.1. Note that for
a confederation approach in IBGP, only the AS–PATH attribute is extended with new types.
The communities attribute, discussed in Section 8.10.1, is optional transitive and is assigned
a type value of 8. Each community identifier is 4 bytes consisting of two parts: 2 bytes for AS
number, and 2 bytes for indicating communities such as the three described in Section 8.10.1.

C H A P T E R 8 BGP 277

TA B L E 8.4 BGP Path Attributes.

Type Type Name OT-bits Remark
Code

1 ORIGIN 01 Well-known mandatory; indicates IGP (0), EGP
(1), or INCOMPLETE (3); see RFC 4271 [591]

2 AS–PATH 01 Well-known mandatory; indicates AS–SET (1),
AS–SEQUENCE (2), AS–CONFED–SET (3), AS–
CONFED–SEQUENCE (4); see RFC 4271 [591]

3 NEXT–HOP 01 Well-known mandatory; includes 4-byte IP ad-
dress; see RFC 4271 [591]

4 MED 10 Optional nontransitive; 4-byte MED identifier;
see RFC 4271 [591]

5 LOCAL–PREF 01 Well-known discretionary; 4-byte LOCAL–
PREF identifier; see RFC 4271 [591]

6 ATOMIC–AGGREGATE 01 Well-known discretionary; indicated when ag-
gregation is done at BGP speakers; see RFC 4271
[591]

7 AGGREGATOR 11 Optional transitive; AS number and the IP ad-
dress of the BGP speaker aggregator; see RFC
4271 [591]

8 COMMUNITIES 11 Optional transitive; 4-byte community identi-
fier; see RFC 1997 [115]

9 ORIGINATOR–ID 10 Optional nontransitive used for route reflector;
4-byte ID of originator; see RFC 4456 [62]

10 CLUSTER–LIST 10 Optional nontransitive used for route reflector;
variable length; see RFC 4456 [62]

16 Extended Communities 11 Optional transitive; see RFC 4360 [621]

The Extended Communities Attribute [621] extends Communities Attribute by allowing
an extended range for covering a large number of different usages. The updated list of BGP
parameters such as Path Attribute types is maintained at [315].

8.13 Summary
BGP is like a glue that helps connect the Internet together. It is an interdomain routing proto-
col that is used between two autonomous systems; it is also used in internal BGP mode when
an autonomous system has multiple BGP speakers talking to the outside of this autonomous
system. Between two BGP speakers, a TCP-based BGP session is set up. Using UPDATE mes-
sage type, at first complete BGP routes are exchanged; after that, only incremental changes
such as a new announcement, withdrawal, or change in path attributes, are exchanged.

BGP is a path vector protocol where granularity of information is at an IP prefix level,
served by autonomous systems. Each IP prefix is attached with its home AS number, which
is disseminated from one autonomous system to another by prepending path attributes; an

278 8.13 Exercises

exception is when route aggregation is done through supernetting when a set of IP prefixes
can be combined and the aggregated information is forwarded downstream where the point
of aggregation serves as the “care of” home for the supernetted address block.

BGP is used in two ways: external BGP and internal BGP. While the basic protocol mes-
saging is the same, there are certain restrictions/rules imposed on IBGP. For a large-scale
IBGP scenario, approaches such as route reflectors or confederations may be used.

Announcement and withdrawal of an IP prefix can lead to route flapping; to mini-
mize/avoid this flap, a route flap dampening approach can be used.

Finally, the finite state machine of a BGP speaker to a peer speaker is quite elaborate. Any
state transition is triggered through a well-defined set of events.

Further Lookup
The initial version of BGP was described in RFC 1105 [428]. BGP4, the current version of BGP,
was first described in RFC 1771 [590] and has been recently updated in RFC 4271 [591]; this
RFC includes a summary on changes compared to earlier versions of BGP. The fifth message
type, ROUTE–REFRESH, is described in RFC 2918 [129], which uses Capabilities advertise-
ments described in [114], which makes [113] obsolete.

The concept of route reflection for internal BGP was first described in RFC 1966 [59],
which was subsequently updated in RFC 2796 [60], and further updated in RFC 4456 [60].
A formal confederation approach was first proposed in RFC 975 [490] for circumventing cer-
tain restrictions of the Exterior Gateway Protocol; we will describe EGP briefly in Section 9.1.
The confederation concept for internal BGP was presented in RFC 1965 [701], which has been
updated in RFC 3065 [702].

Currently, the AS number field is 2 bytes long. In anticipation of running out of AS num-
bers, a 4-byte AS number is being currently proposed. As of this writing, this proposal re-
mains as an Internet draft.

There are several books that treat BGP extensively [188], [282], [301], [546], [571], [669],
[709], [738], [764]. BGP routing table analysis reports are available at [303]. There are many
resources on the Internet about BGP; see excellent central resource sites such as [170] and
[704].

Like any protocol, BGP has vulnerabilities; see [513] for a discussion.

Exercises
8.1 Review questions:

(a) What are the different BGP timers?

(b) What are the different states in the BGP finite state machine?

(c) What are the different BGP message types?

8.2 How is looping avoided in BGP?

8.3 What would happen if an IBGP speaker does advertise IP prefixes it has learned from an
IBGP speaker to another IBGP speaker?

C H A P T E R 8 BGP 279

8.4 Suppose an autonomous system is set up with a single route reflector. What would be
the consequence if the route reflector fails?

8.5 Analyze the route flap dampening concept by trying out different penalty values and
flap time intervals.

8.6 How is the route reflector approach different from the confederation approach? Explain.

9
Internet Routing
Architectures
Architecture is the will of an epoch translated into space.

Ludwig Mies van der Rohe

Reading Guideline

This chapter may be read without much dependence on other chapters. However,
knowledge of routing protocols such as BGP (refer to Chapter 8) and OSPF/IS-IS
(refer to Chapter 6) helps facilitate better understanding of the content presented in
this chapter.

C H A P T E R 9 Internet Routing Architectures 281

Internet routing depends heavily on the Border Gateway Protocol (BGP) for inter-AS re-
lations. At the same time, because of business relations among Internet service providers,
Internet routing architectures have evolved to include public and private peering among
providers and transit issues. In addition, the growth of IP address space allocation and AS
number allocation constitutes additional factors to be understood in the context of Internet
routing architectures. In this chapter, we discuss these aspects in details.

9.1 Internet Routing Evolution
We first briefly discuss the evolution of Internet architecture from a historical perspective.
Note that we focus on Internet routing rather than the Internet as a whole; for an excellent
summary on Internet history, refer to [403].

Until the early 1980s, the ARPANET served the role of interconnecting various sites
with a rigid two-level hierarchy where the ARPANET nodes were at the top level. In 1983,
ARPANET was split, resulting in two networks: ARPANET and MILNET (see Figure 9.1);
this was the birth of the two separate networks talking to each other in case one host in one
network wants to communicate with another host in the other network, and vice versa. This
also resulted in the need to have a mechanism by which separate networks could talk to each
other. Here “separate networks” means that they are run by different entities.

F I G U R E 9.1 ARPANET and MILNET, circa 1983 (courtesy [488]).

282 9.1 Internet Routing Evolution

Exterior Gateway Protocol (EGP), developed in 1982–1984 (refer to RFC 827 [600],
RFC 888 [623], RFC 904 [489]) describes how separate networks that are autonomous can
talk to each other. Along with EGP, the term autonomous system (AS) and the notion of a 16-bit
autonomous system number (ASN) were introduced in [600]. Briefly, EGP defined a two-level
strict hierarchy view with the top level labeled as the core backbone and the bottom level be-
ing the level at which the different networks, defined through ASes, were connected. NSFNET
deployed first in 1984 relied on EGP. The architecture of and experience with NSFNET and
EGP have been documented in [94], [587].

It is important to note that in EGP, nonbackbone ASes were not allowed to be directly
connected; this is a direct consequence of the strict two-level hierarchy imposed by EGP.
Another consequence was that the structure allowed only a single provider at the top level,
i.e., the NSFNET. Furthermore, unlike BGP, EGP messages were sent directly over IP without
invoking any reliable transport protocol. Thus, if the exchange of information required a large
message to be generated, this needed to be handled by fragmentation and reassembly at the
application layer of the TCP/IP protocol stack.

In essence, while EGP provided a much needed transitional platform to go from the
ARPANET to the NSFNET, it had several restrictions not desirable for longer term growth.
For example, EGP did not allow ASes to be directly connected. Thus, a network that is located
in an AS would need to go through the top level, i.e., the NSFNET, to reach another network
in another AS. However, NSFNET faced the situation that certain networks that belonged
to different ASes had backdoor connectivity. Thus, EGP’s strict requirement could not be di-
rectly applied or enforced in the NSFNET. It may be noted that to circumvent the limitation
of EGP, a formal confederation approach was suggested in RFC 975 [490]. An important les-
son learned from NSFNET in regard to the routing architecture is that no single entity would
be managing the global Internet. Each system that is a component of the global Internet will
have its own routing paradigm that can be driven by economics and other factors; each such
system would have its own interest to connect to other systems directly, instead of using a
global core such as the one suggested by EGP. As a corollary, global consensus from the de-
ployment point of view is hard to arrive at while mutual bilateral agreement is possible. Since
ASes use a common prefix address space (i.e., IPv4 address space), and an AS cannot control
what an upstream AS announces, it became necessary to take a policy-driven approach; for
example, how routing is done to handle packets from certain networks based on import pol-
icy of an AS. It is to be noted that some rudimentary policy-based routing was done so that
certain rule checking can be invoked in the NSFNET as noted in RFC 1092 [587] in order to
handle import and export policies.

EGP and, particularly, NSFNET experiences led to the recognition that any future routing
architecture must be able to handle policy-based routing (see RFC 1102 [144], RFC 1104 [93],
RFC 1124 [402]), and any newly developed exterior gateway protocol must have the ability
to handle policy decisions. That is, experience and realization served as the impetus to the
development of BGP, which was first introduced in 1989 through RFC 1105 [428]. To sum-
marize, BGP tried to address the following issues: (1) avoiding a strict two-level hierarchy
like EGP, (2) allowing multiple levels such that any AS has the option to connect to another
AS, (3) using TCP for reliable delivery of BGP data, and (4) making policy-based routing
possible.

C H A P T E R 9 Internet Routing Architectures 283

By 1991, BGP was expanded to BGP, version 3 (see RFC 1267 [429]). At about the same
time, it was recognized the implicit address block classification of an IP address under
Class A, Class B, and especially Class C, i.e., classful addressing, would cause a signifi-
cant growth in the routing table entries at core backbone routers; thus, some mechanisms
to avoid/minimize assigning address block straight at Class C were needed. This has led
to consider address aggregation through supernetting [240], which subsequently led to the
development of classless interdomain routing (CIDR).

While BGP, version 4 (BGP4) has resulted in several improvements over BGP, version 3,
it is clear that use of CIDR was one of the most significant changes that required communi-
cating netmask information to be advertised along with an IP address block during a BGP
announcement; that is, the addressing structure played a critical role in routing. Before we
further discuss Internet routing architecture, we present a brief background discussion on IP
addressing and routing.

Finally, it is worth noting that the notion of dividing a network into hierarchical structure
of intradomain and interdomain and allowing each intradomain to define its own routing
can be traced backed to the OSI routing model developed in the 1980s; see [567] for further
details.

9.2 Addressing and Routing: Illustrations
Routing in the Internet is fundamentally impacted by IP addressing. A unique feature of the
Internet is that the end hosts and routers alike share from the same addressing family, and this
has a profound impact on routing. The address family is known as the IPv4 address family,
and its recent version is known as IPv6. We will focus our discussion here specifically on IPv4
addressing.

The IPv4 address family is a 32-bit address that is typically written in dotted decimal for-
mat, A.B.C.D, where each part represents the decimal value for 8 bits. Routing benefits form
an important requirement in regard to address space allocation; that is, the address space
is compacted through subnet masking, and addresses are assigned in contiguous blocks for
a specific network. For example, contiguous addresses 192.168.1.0 to 192.168.1.255 would be
assigned to a network (or subnet); similarly, contiguous addresses 192.168.2.0 to 192.168.2.255
would be assigned to another network, and so on. To reiterate, address block contiguity to de-
fine a network is a fundamental requirement in IP that impacts routing. For example, because
of this contiguity, a routing table at a router needs only one entry for an address block such
as 192.168.1.0 to 192.168.1.255, instead of 256 separate address entries for each of these IP ad-
dresses from this range. If each router were required to keep an entry for all 232 IP addresses,
this would simply not scale! There is, however, an important trade-off, due to contiguous
address blocks—not all addresses can be assigned to end hosts. For example, if we consider
the address block from 192.168.1.0 to 192.168.1.255 to identify a subnet, then two addresses at
the extreme ends are reserved to identify the network and for the broadcast purpose, respec-
tively; specifically, the “0” address, i.e., 192.168.1.0, will be reserved to identify the subnet and
and the “255” address, i.e., 192.168.1.255, will be reserved as the broadcast address.

We, however, need a simple mechanism to define contiguous address blocks that may fall
at a different bit boundary level. Originally, IPv4 unicast addressing was allocated through
implicit bit boundaries for network block addresses at an 8-bit, 16-bit, and 24-bit boundary,

284 9.2 Addressing and Routing: Illustrations

known as Class A, Class B, Class C addresses, respectively. The difficulty with implicit bound-
ary, at least for routing purpose, is that at the 24-bit level boundary, the number of address
blocks is too huge to handle if all were advertised! This is mainly because of another im-
portant imposition on IPv4 addressing; that is, a network address block follows a simple flat
addressing principle. This means that if we want to route a packet from network 134.193.0.0
to network 134.194.0.0, we cannot count on the most significant 8 bits, i.e., 134, as some hi-
erarchical indicator to make a local/hierarchical routing decision; instead, we need to keep
both entries 134.193.0.0 and 134.194.0.0—this is known as flat addressing. Similarly, if all 24-bit
network address blocks are to be considered, then we need 224 entries for a routing decision
due to flat addressing. Instead of the implicit network boundaries at an 8-bit, 16-bit, and 24-
bit level, the explicit network boundaries through network masking, referred to as classless
inter-domain routing (CIDR), were found to be more flexible in reducing the need to assign IP
address blocks for networks at a 24-bit boundary or the other implicit boundaries at 8-bit and
16-bit level.

The basic idea behind CIDR is that along with the address of a specific host, an explicit
net masking is also applied that defines the network where this host resides. For example, if
the host that we want to reach is 192.168.40.49, and if the address block is netmasked at the
21-bit boundary level, all a router needs to know is that 192.168.40.49 is identified as being
on a network defined on the 21-bit boundary. Typically, this is indicated through the CIDR
notation 192.168.40.0/21 where /21 indicates the network address block netmask. How do
we arrive at 192.168.40.0/21 from 192.168.40.49? It is easy to understand when we look at
the bit level information. Note that /21 means that the first 21 most significant bits in a 32-bit
address are 1s and the rest are 0s, i.e., 11111111 11111111 11111000 00000000; this 32-bit netmask
can also be written in the dotted decimal IP address format as 255.255.248.0. That is, a netmask
written in CIDR notation /21 and its IP address notation, 255.255.248.0, are interchangeable.
As a convention, the CIDR netmask is used in identifying IP prefix-level networks, while the
format such as 255.255.248.0 is used in a subnet mask on a computer when comparisons are
required for packet forwarding in a subnet.

When we consider 192.168.40.49 with /21 in the CIDR notation, we can perform a bitwise
“AND” operation as shown below:

11000000 10101000 00101000 00110001 → 192.168.40.49
AND 11111111 11111111 11111000 00000000 → netmask (/21)

11000000 10101000 00101000 00000000 → 192.168.40.0

That is, the bitwise AND operations result in obtaining the net address 192.168.40.0, which is
tied with /21 so that the network boundary is understood.

Thus, when a host in another network that has the IP address, say, 10.6.17.14 wants to
send a packet to, say, 192.168.40.76, it needs to send to network 192.168.40.0/21, hoping that
once it reaches this destination network, i.e., 192.168.40.0/21, it knows how to handle the
delivery to the final host. This is analogous to the postal system; it is similar to sending a
letter that needs to reach a postal code, and hoping that once it reaches that postal code, it can
be delivered to the actual house address.

A question is how does the originating host know how to get the packet out of its own
network so that it can then traverse the global Internet toward its destination. Second, is it
different and/or where is it different if the packet had a destination that happens to be in the

C H A P T E R 9 Internet Routing Architectures 285

same network, for example, if 192.168.40.49 were to send a packet to 192.168.40.76, or beyond
that. We will consider routing a packet under three different scenarios.

9.2.1 Routing Packet: Scenario A

The first scenario we consider is a subnet defined by an IP address block through a standard
subnet masking. That is, consider sending a packet from a host with IP address 192.168.40.49
(“49ers”) to another host with IP address 192.168.40.76 (“76ers”). The first requirement is that
each host along with its IP address must have a subnet mask associated with it. In this example, we
assume the subnet mask for this subnet is 255.255.255.0 which is indicated in the configura-
tion profile of these two hosts. The sending host first determines its own subnet by comparing
the subnet mask and the IP address of the destination (192.168.40.76) with its stored subnet
mask 255.255.255.0 through the bitwise AND operation as shown below:

11000000 10101000 00101000 00110001 → 192.168.40.49 (“49ers”)
AND 11111111 11111111 11111111 00000000 → subnet mask (255.255.255.0)

11000000 10101000 00101000 00000000 → 192.168.40.0 (/24)

11000000 10101000 00101000 01001100 → 192.168.40.76 (“76ers”)
AND 11111111 11111111 11111111 00000000 → subnet mask (255.255.255.0)

11000000 10101000 00101000 00000000 → 192.168.40.0 (/24)

Thus, Host “49ers” realizes that the destination host, Host “76ers,” belongs to the same sub-
net. Assume that subnet 192.168.40.0 is served by an Ethernet LAN (see Figure 9.2). Thus,
to send a packet, the host with address 192.168.40.49 is required to rely on the Ethernet in-
terface for packet delivery; for that, a protocol called the Address Resolution Protocol (ARP),
which does the function of mapping the IP address to the Ethernet address, is first invoked.
Through this process, Host “49ers” finds the Ethernet address of the destination IP address
192.168.40.76. Once the Ethernet address of the destination is determined, the packet is sent
as an Ethernet frame with the destination address set to this Ethernet address. In a sense, we
can say that in the same Ethernet LAN, “routing” a packet does not really involve routing.

F I G U R E 9.2 Host “49ers” (192.168.40.49) and Host “76ers” (192.168.40.76) on an
Ethernet subnet with mask 255.255.255.0.

286 9.2 Addressing and Routing: Illustrations

F I G U R E 9.3 Network 192.168.40.0/21 with subnets and routers.

9.2.2 Routing Packet: Scenario B

The second scenario is where communication is not limited to the same subnet, but it is in
the same network in the sense that it is provided by the same provider, such as a campus or
an enterprise network. We identify this network as 192.168.40.0/21, which covers the address
range 192.168.40.0–192.168.47.255. We assume that it consists of Ethernet segments where
subnets are allocated and that all Ethernet-based subnets use subnet mask 255.255.255.0. Se-
rial links are used between three of the four routers where subnet mask 255.255.255.252 is
used. The topology of network 192.168.40.0/21 with all its subnets is shown in Figure 9.3.
We assume that this intradomain network uses the OSPF protocol among its routers. For il-
lustration, consider sending a packet again from Host “49ers,” with IP address 192.168.40.49
and subnet mask 255.255.255.0, to a third host with IP address 192.168.41.22 (“catch22”). Note
that Host “49ers” does not know about the subnet mask of Host “catch22.” Based on its own
subnet mask, Host “49ers” compares and determines that Host “catch22” is on a different
subnet, 192.168.41.0, as shown below:

11000000 10101000 00101000 00110001 → 192.168.40.49 (“49ers”)
AND 11111111 11111111 11111111 00000000 → subnet mask (255.255.255.0)

11000000 10101000 00101000 00000000 → 192.168.40.0 (/24)

11000000 10101000 00101001 00010110 → 192.168.41.22 (“catch22”)
AND 11111111 11111111 11111111 00000000 → subnet mask (255.255.255.0)

11000000 10101000 00101001 00000000 → 192.168.41.0 (/24)

C H A P T E R 9 Internet Routing Architectures 287

R1:

Net Mask NextHop Interface

192.168.40.0 255.255.255.0 direct en0
192.168.41.0 255.255.255.0 direct en1
192.168.42.0 255.255.255.0 192.168.47.249 sl2
192.168.43.0 255.255.255.0 192.168.47.242 sl1
192.168.44.0 255.255.255.0 192.168.47.242 sl1
192.168.45.0 255.255.255.0 192.168.47.242 sl1
192.168.47.240 255.255.255.252 direct sl1
192.168.47.248 255.255.255.252 direct sl2
0.0.0.0 0.0.0.0 192.168.47.242 sl1

R2:

Net Mask NextHop Interface

192.168.40.0 255.255.255.0 192.168.47.241 sl1
192.168.41.0 255.255.255.0 192.168.47.241 sl1
192.168.42.0 255.255.255.0 192.168.47.246 sl0
192.168.43.0 255.255.255.0 direct en2
192.168.44.0 255.255.255.0 direct en0
192.168.45.0 255.255.255.0 direct en1
192.168.47.240 255.255.255.252 direct sl1
192.168.47.244 255.255.255.252 direct sl1
0.0.0.0 0.0.0.0 192.168.43.254 en2

R3:

Net Mask NextHop Interface

192.168.40.0 255.255.255.0 192.168.47.250 sl0
192.168.41.0 255.255.255.0 192.168.47.250 sl0
192.168.42.0 255.255.255.0 direct en0
192.168.43.0 255.255.255.0 192.168.47.254 sl2
192.168.44.0 255.255.255.0 192.168.47.245 sl1
192.168.45.0 255.255.255.0 192.168.47.245 sl1
192.168.47.244 255.255.255.252 direct sl0
192.168.47.248 255.255.255.252 direct sl1
192.168.47.252 255.255.255.252 direct sl2
0.0.0.0 0.0.0.0 192.168.47.254 sl2

R4:

Net Mask NextHop Interface

192.168.40.0 255.255.255.0 192.168.43.253 en0
192.168.41.0 255.255.255.0 192.168.43.253 en0
192.168.42.0 255.255.255.0 192.168.47.253 sl0
192.168.43.0 255.255.255.0 direct en0
192.168.44.0 255.255.255.0 192.168.43.253 en0
192.168.45.0 255.255.255.0 192.168.43.253 en0
192.168.47.252 255.255.255.252 direct sl0
0.0.0.0 0.0.0.0 10.1.2.3 sl1

F I G U R E 9.4 Routing tables (with interfaces) at routers in Network 192.168.40.0/21 (see
Figure 9.3).

Now Host “49ers” has a decision to make since it realizes that Host “catch22” is not on the
same subnet. To make this decision, Host “49ers” must be equipped with a mechanism for
handling such packet arrival; this mechanism is provided through a default gateway address.
This means that if a packet’s destination is not on the same subnet, the default gateway will
be the agent that will be the recipient of this packet, which, in turn, hopefully knows how to
handle it. The knowledge of this default gateway is known to the sending host either by static
configuration or through the Dynamic Host Configuration Protocol (DHCP). In general, the
following must hold for a host to communicate on the Internet:

Either through static configuration or through DHCP, a host must have three key pieces of informa-
tion: its host IP address, the subnet mask, and the default gateway. Note that the default gateway is
not needed for scenario A; however, since a host must reside in an interconnected environment where
it will invariably want to send a packet to a destination such as an email server or a web server that
is outside its subnet, the default gateway information becomes a necessity. For a host to use Internet
services, it is also required to have information about the IP address of at least a DNS server so that
this server can be queried to find the actual IP address of a specific domain name. Thus, a host typ-
ically requires four pieces of information: its host IP address, the subnet mask, the default gateway,
and a DNS server’s IP address.

Now going back to our example, the IP address of the default gateway must fall on the
same subnet as the host. Here, the default gateway for Host “49ers” is assigned the address
192.168.40.254, and this happens to be an interface to a router that has an interface to subnet

288 9.2 Addressing and Routing: Illustrations

192.168.41.0, and also to other subnets; see Figure 9.3, where this is depicted with the router
marked as R1.

With the availability of the default gateway information at Host “49ers,” and on recog-
nizing that this packet is to be sent to the gateway, it would do an ARP request to find the
Ethernet interface address for 192.168.40.254, so that the packet can be sent as an Ethernet
frame to router R1.

Once the packet arrives at router R1, the router is now required to make a decision on
which interface to send it out since it has multiple interfaces. Based on the destination net-
works it has learned about, a router would maintain a routing table so it knows how to handle
an arriving packet. Furthermore, based on the routing table, the forwarding table information
is derived to determine which interface is to be used for packet forwarding. In Figure 9.4, we
show a routing table view with interface information for router R1. From the table for R1, we
can see that the packet that originated at Host “49ers” will be sent on the interface with IP
address 192.168.41.254 for delivery to Host “catch22” on the Ethernet segment.

We next consider the case in which Host “49ers” has a packet to send to Host “221bBak-
erStreet” (with IP address 192.168.44.221). This packet will first arrive at router R1 since by
inspecting the address of Host “221bBakerStreet”, Host “49ers” would realize that the host
does not belong to this subnet. At router R1, by inspecting the routing table, the packet would
be forwarded to router R2, whereupon it will be sent on the Ethernet interface with IP address
192.168.44.254.

We can thus see that for any packet that is meant for a host within network
192.168.40.0/21, routers would be required to have next-hop information for different subnet
segments. The process of learning about different subnets within this domain can be accom-
plished using OSPF flooding. For instance, each router can learn about different subnets from
a link state advertisement (LSA) that would contain subnet information with mask by using
the network link-type LSA (refer to Chapter 6). Once announcements about various subnets
are received, each router can use shortest path routing to determine the appropriate next hop
to reach different subnets; the tables at each router are shown in Figure 9.4. You may note that
the table at router R1 does not show an entry for the serial link subnet 192.168.42.0/30; the
assumption here is that serial link subnets are not to be advertised in the LSA; this is similar
for other tables. Furthermore, note that each table contains a 0.0.0.0/0 entry, which is referred
to as the default route. The default route is similar to the default gateway maintained by each
host; this entry points to a next-hop for forwarding a packet that lists a destination not listed
in the routing table.

In essence, through scenario B, we have illustrated how to route a packet from a host to
another host in a different subnet but within an administrative domain. Typically, such an
administrative domain is defined by an AS, or a provider.

9.2.3 Routing Packet: Scenario C

In this scenario, we consider routing a packet that is generated at Host “49ers” meant for a
host outside of network 192.168.40.0/21 to, say, host 10.5.16.60 where each network is served
by a different AS. By using the next hop for the default route at each router, the packet gen-
erated at Host “49ers” would be forwarded from R1 to R2 to R4. Note that R4 is the border
router in this domain that can speak OSPF to interior routers, but can also speak BGP to its

C H A P T E R 9 Internet Routing Architectures 289

F I G U R E 9.5 AS routing path of a packet from 192.168.40.0/21 to 10.5.0.0/16 through
intermediate ASes.

peering EBG speaker. If R4 were to maintain a default route entry in its routing table, the
packet that originated at Host “49ers” will be forwarded outside network 192.168.40.0/21 on
the external link.

In Figure 9.5, we show connectivity from network 192.168.40.0/21 to network 10.5.0.0/16
that requires traversing through intermediate ASes. Suppose that each AS maintains an en-
try for default route to the next AS. Then the packet from 192.168.40.49 will be routed from
AS64617, its home AS, to its neighboring AS, AS64701. The border router at AS64701, on re-
ceiving this packet, will check if it is meant for an address block that is internal to it, and
will realize that it does not; thus, it will forward it to its other border router through inter-
nal routers. Assume that this border router in AS64701 has set up the default route to be to
AS64730. Thus, the packet will eventually arrive at the border router in AS64516, the home
to network 10.5.0.0/16. The border router will recognize that it supports this network and
would then use interior routing protocol to deliver to the final destination host.

Note that we have assumed that everyone uses the default route concept. There are, how-
ever, certain problems with every AS using the default route to send a packet out if its AS.
For example, if the destination host is from an IP address block that has not yet been allocated
by the Internet registry, the packet would keep hopping from one AS to another until the age
field (also known as the time-to-live field) in the IP packet header expires. This indicates that
there are two possibilities: (1) at least one of the intermediate ASes maintains all default-free
entries, that is, every valid IP prefix is explicitly listed, meaning there is no default route en-
try, 0.0.0.0/0, or (2) the originating AS at its border router maintains the list of every valid
IP prefix assigned thus far so that it can filter this packet (refer to Chapter 16) and drop it,
preventing from going into the next AS.

We first discuss the first possibility. An intermediate AS such as AS64730, shown in Fig-
ure 9.5, is known as a transit AS. Note that there is no such thing as the core transit AS; in fact,
that would be restrictive, like EGP, which we discussed earlier. BGP provides the flexibility
that there can be different transit ASes that serve as peers to each other. Since different stub
ASes can be connected to different transit ASes, any transit ASes at the core need to exchange
the entire routing table information about IP prefixes with other peering ASes using the BGP

290 9.3 Current Architectural View of the Internet

protocol. Thus, typically the core backbone Internet service providers (ISPs) maintain default-
free routing tables for all valid IP prefixes so learned.

Consider Figure 9.5 again. Here network 172.17.0.0/16 homed in AS64822 would become
known to transit AS, AS64731, which in turn would share this information with transit AS,
AS64730. This way, BGP routers at transit ASes can build a complete default-free routing
table. Now if Host “49ers” in network 192.168.40.0/21 in AS64617 generates a packet to an
IP destination that is from an IP address that is not valid, then the border router in AS64701
would note this and drop this packet. In other words, a default-free routing table allows an
IP packet with a destination in nonallocated address blocks from being forwarded further by
dropping it. Transit ASes commonly employ a default-free routing table for such reasons.

We next discuss the second possibility. This option is possible since the BGP protocol
announces IP prefixes through UPDATE messages that would traverse through and reach
every edge or stub AS, such as AS64617 and AS64516. Typically, most stub ASes use the default
route entry, i.e., they do not store all IP prefix entries, partly because they usually have single
outlets to the rest of the Internet, and because it puts more than the required work on its
border router, which may not be able to handle the load if it is not a powerful router with
required memory. That is, it is not necessary to maintain a full default-free table at the border
router of a stub AS. However, more and more stub ASes now maintain a full IP prefix table at
their border routers. This can be driven by local needs in a stub AS, for example, to perform
unicast reverse-path-forwarding (uRPF) checks as a measure for IP address spoofing. Thus,
while from a BGP perspective, a stub AS is not required to maintain a default-free routing
table, it has essentially become a necessity because of issues such as spoofing attacks.

To summarize, routing a packet that has originated in a network (IP prefix) in a stub AS
with destination in another network (IP prefix) in another stub AS, would hop through at
least a transit AS. Any path selection decision at a BGP speaker when there is connectivity
from one AS to the next at multiple border BGP speakers, or from one AS to multiple ASes,
would be based on the BGP path selection algorithm described in Section 8.7.1 in Chapter 8.
Certainly, before route selection can be invoked about an IP prefix , the BGP UPDATE mes-
sage would be used to announce this IP prefix ; the AS number is prepended as necessary
when the information about this IP prefix crosses from one AS to another.

Before concluding this section, we discuss another term in regard to ASes. So far, we have
mentioned two types of ASes: stub AS and transit AS. An AS can also be multihomed. Briefly,
a multihomed AS connects to two or more transit ASes. As an example, consider Figure 9.5
again. Here, AS64617 is a stub AS; AS64701 is a transit AS that is also multihomed while
AS64516 is a stub AS that is multihomed. Thus, ASes can be classified into three categories:
stub singlehomed, stub multihomed, and transit multihomed.

9.3 Current Architectural View of the Internet

In the previous sections, we discussed packet routing in an IP addressing structure for a set
of scenarios and also allocation of IP addresses. In doing that, we also discussed the role of
ASes and BGP in routing. We next consider how ASes are related to ISPs and the role of IP
address space in the context of Internet routing architecture.

C H A P T E R 9 Internet Routing Architectures 291

9.3.1 Customers and Providers, Peering and Tiering, and Exchange Points
In the world of Internet routing connectivity, the term customer typically refers to an orga-
nization that has an IP address block; it relies on a provider for Internet connectivity; note
that owning an AS number is not necessary since you can have an address block and be
a part of an existing AS number. For ease of discussion here, we will restrict to those cus-
tomers that have their own AS numbers. The customer/provider relation is hierarchical and
is sometimes described also as downstream ISP/upstream ISP relation. At the top of the hi-
erarchy is tier 1 Internet service providers (tier 1 ISPs). Each tier 1 ISP has its own AS num-
ber. It is certainly possible to have more than one AS number belong to an ISP, for exam-
ple, due to the merger of companies. For simplicity, we will assume that each ISP has its
own unique AS number. A tier 1 ISP provides a large network spanning a geographic re-
gion such as the entire country, and sometimes across countries; such networks are often
referred to as Internet backbone networks where link speeds can be in the order of 10 Gbps
with the most advanced routers deployed. All tier 1 ISPs are at the same peering level.
Typically, tier 1 ISPs peer privately with each other at one or more points. It used to be
the case that tier 1 ISPs meet at network access points (NAPs) to exchange traffic from one
network to another. In Figure 9.6, we show a generic example with four tier 1 ISPs meet-
ing at an NAP; note that this is not common any more, it is shown here for illustration
only. It may be noted that NAPs are also known as Internet exchange points (XP, or, EP in
short), or Metropolitan Area Exchanges (MAEs). Furthermore, such arrangements are known
as public peering since they are neutral meeting points. First, it should be noted that ex-
change points are operated by neutral entities that play the role of providers for traffic ex-
change services to tier 1 ISP customers. During transition from the NSFNET, the notion
of NAPs was conceived when it became clear that one core network would not be the
carrier for all Internet traffic. Initially, there were four NAPs that were connected to the
NSFNET during 1994–1995. Currently, there are more than 175 exchange points around the
world.

There is also private peering between two tier n ISPs where they connect directly to each
other and agree to exchange traffic with each other; this then can serve as a bypass from
congested exchange points, which some ISPs prefer. In Figure 9.6, we show that two tier n

F I G U R E 9.6 ISP connectivity through public peering at an exchange point and through
private peering (left: used to be more common among tier 1 ISPs; right: now seen more
commonly at other tiering (“tier-N”) levels).

292 9.3 Current Architectural View of the Internet

ISPs are directly connected to each other through private peering while they are also part
of the common exchange points with two other ISPs. For example, this would be a scenario
where two tier n ISPs that have private peering as well as public peering would use the
AS-path count to choose the private peering as the better path since they can use the exchange
point as another AS in the path length between them. It may be noted that private network
exchange points are also possible.

Exchange points provide physical connectivity to customers using technologies such as
Gigabit Ethernet, ATM, and SONET, where customers’ routers for connectivity are collocated
in the same physical facility. Mostly, exchange point provides a meeting place for layer 2 con-
nectivity. Layer 2 connectivity can give the impression that a simple Ethernet environment
with every ISP’s router attached to this Ethernet facility is probably sufficient. The difficulty
is that the sheer volume of traffic each ISP generates is so high that such a simple environ-
ment is not possible in practice. Thus, you see a combination of sophisticated technologies
with functionalities for peer management at most of the exchange points. In any case, at an
exchange point, each ISP’s BGP speaker can set up a BGP session to all other ISPs that have
a BGP speaker collocated. In recent years, some exchange points have become popular for
content delivery network providers since they can be directly connected to various major
ISPs.

It is important to note that exchanges points have fairly well-defined policies while such
policies can vary from one exchange point to another and certainly can evolve over time.
Some examples of policies are: (1) an ISP must have its own AS number and use BGP to
become a member of a exchange point, (2) the exchange point cannot be used for transit,
(3) the exchange point policy requires full peering among all parties, or, each ISP can choose
a different policy from a set of acceptable policies. Depending on policy, some large ISPs
might or might not want to joint an exchange point; for example, if some large ISPs do not
want to peer with smaller ISPs, they might not join an exchange point that stipulates that they
must peer with all parties. In some instances, ISPs of different tiers, including tier 1 ISPs, do
meet at large exchange points that may not require that all parties must peer with everyone.
In such cases, each ISP has the option of not peering with everyone that is a member of
this exchange point. Currently, Amsterdam Internet Exchange (AMS-IX) [14], considered the
largest exchange point, has a flexible policy; it lets providers of different size to connect to
its exchange point allowing each provider to set their own peering restrictions, including
allowing private interconnects between two members.

In essence, an exchange is a giant traffic switching point. Some of the large exchange
points push traffic in the order of 135 Gbps. It is not hard to imagine that such a high data
push requirement can be taxing even with the top of the line inter-connecting hardware; in
fact, this is no longer possible to do on a single hardware device. Thus, such exchange points
must set up their own internal topology in such a way that multiple hardware devices are
used for efficient traffic flow.

Now we move to consider multiple tiers. Tier 1 ISPs, in turn, provide connectivity to tier 2
ISPs; thus, in this case tier 2 ISPs are the customers and tier 1 ISPs are the providers. Tier 2
ISPs use tier 1 ISPs for transit service, but may peer with other tier 2 ISPs as well, for example,
either through regional exchange points or private peering. Typically, tier 2 ISPs do not have
international coverage—they are either at regional or national levels. It may be noted that a
tier 1 ISP provides transit service to many tier 2 providers at certain meeting points; these

C H A P T E R 9 Internet Routing Architectures 293

meeting points are commonly referred to as Points of Presences (PoPs). We will discuss PoPs
more later in Section 9.6.

Tier 3 ISPs are the ones that seek transit service only from either tier 2 or tier 1 providers;
they are typically not involved in public peering, although they may do some private peering.
At the same time, tier 3 providers usually do not provide direct internet connectivity to users.

Beyond tier 3 ISPs, it becomes a bit murky in regard to the role of lower tiers or how many
more tiers there are. To limit our discussion, we will stop at tier 4 ISPs by assuming that they
provide local access to the Internet for institutions, enterprises, and residential users. Note
that tier 4 ISPs require transit connectivity from tier 3 providers.

Although we have discussed various tier levels, there is no clear rule that indicates who
is or is not a certain tier provider. Certainly, this is more clear in the case of a tier 1 ISP.
However, consider content delivery providers who want to be located close to tier 1 ISPs’
peering points. They usually have two options: (1) have their web servers hosted directly on
one of the tier 1 ISPs; in this case, no AS number is necessary, or (2) have their series of web
servers connected through routers to form a network with their own AS number, and then
have peering with every major provider at major peering points or through private peering.
If they choose option 2, they do not exactly fall into one of the tiering providers—we label
them as content delivery service (CDS) ISPs. Examples of CDS ISPs are Google, Yahoo!, and
Akamai.

There is also some difference in peering arrangements which varies from one country
to another. For example, private peering at tier 1 level is now common in US, while public
peering in other countries often includes some tier 1 providers. The largest public peering
point now is considered to be Amsterdam Internet Exchange, AMS-IX [14]. As of this writing,
AMS-IX has about 250 members which includes some large tier 1 ISPs as well; the peak rate
is 150 Gbps. London Internet exchange, LINX [419] has over 200 members with peak traffic
of 130 Gbps and Japan Internet exchange, JPIX [338] has 100 members with the peak rate at
approximately 65 Gbps.

Since the Internet is made up of many providers with different relations and tiers, the
obvious question is: what possible traffic exchange and payment relation do ISPs agree on?
Here are a representative set of possible options [692]:

• Multilateral agreement: Several ISPs build/use shared facilities and share cost; for ex-
ample, this agreement can be possible with public exchange points or private exchange
points.

• Bilateral agreement: Two providers agree to exchange traffic if traffic is almost symmetric,
or agree on a price, taking into account the imbalance in traffic swapped; for example, in
a private peering setting.

• Unilateral agreement for transit: A customer pays its provider an “access” charge for car-
rying traffic; for example, a tier 4 ISP would pay a charge to tier 3 ISP.

• Sender Keeps All (SKA): ISPs do not track or charge for traffic exchange; this is possible
in private peering and in some public peering.

Along with agreements, especially the ones that involve payment, it is common to also
write up service level agreements (SLAs). SLAs refer to an agreement on performance that is

294 9.3 Current Architectural View of the Internet

to be met on a course time scale; for example, the average delay between entry and exit
points not to exceed 20 millisec, when averaged over a certain time period such as a week or
a month. Typically, SLAs do not include performance requirement on a short time window
such as in seconds. Thus, SLAs can be thought of more as a coarse grain quality-of-service
requirement than a fine grain quality-of-service requirement. Furthermore, SLAs may also
cover issues such as demarcation points; this refers to the line that indicates who manages
what on a day-to-day basis. When a customer connects to a provider, there are three points
involved: the routers at each end (one for the customer and the other for the provider), and
the physical connectivity that connects them, such as a physical wire or a layer-2 connectivity.
In some cases, the demarcation point is where the customer connects to a layer-2 switch in the
physical connectivity part; in other cases, the customer’s router is completely located at the
provider’s site; and yet in other cases, the provider’s access router may be physically at the
customer’s site. Sometimes suitability of a demarcation point can be a factor for a customer
in deciding which one to choose as a provider.

9.3.2 A Representative Architecture
In Figure 9.7, we show a representative view of connecting ISPs of different tiers, including
CDS ISPs; routers shown are all BGP speakers in each ISP and only one exchange point is

F I G U R E 9.7 Interconnection of ISPs of different tiers: a representative view.

C H A P T E R 9 Internet Routing Architectures 295

shown; peering at different tiers are also indicated. Note that private AS numbers are used to
illustrate this example. In some cases, ISPs of different tiers are specifically identified using
an AS number for ease of discussion.

We will illustrate three representative sessions using this architecture; these three sessions
are shown in Figure 9.8: (1) from user U1 to server S1, (2) from user U2 to server S2, and
(3) from user U3 to server S2 where the actual flow paths are shown. As you can see from
the the original topology that there are multiple paths for each of these sessions. In regard to
path selection, we note the following:

• For the session from U1 to S1, there are two AS-paths. In this case, the AS-path with the
shorter AS length is chosen since there is private peering between respective pier-2 ISPs.

• For the session from U2 to S2 located at CDS ISP AS64516, there also appears to be two
AS-paths. However, the one through Tier 1 ISPs would be taken that is based on the policy
in place at the Tier-2 ISP upstream from U2.

• For the session from U3 to S2, there appears to be a second path from AS64552 to AS64600
to AS64560 to AS64699 to AS64617 to AS64516. However, this path would not be adver-
tised at all. Note that AS64560 is a tier 4 ISP. While it will learn about AS64516 from
AS64699, this would not be advertised to tier 3 provider AS64600, due to the stub rule
described earlier. Thus, AS54552 (and AS64600) would not know about this connectivity.

In addition, the following observations are worth noting:

• In the case of server S2 located in the CDP ISP (AS64516), we have noted that it is multi-
connected to tier 1 ISP AS64617. From the perspective of the tier 1 ISP, it has multiple
egress points to the CDP ISP, AS64516. How does AS64617 choose one egress point over
the other for the sessions U3 → S2 and U2 → S2. Typically, this depends on a rule called
the early-exit routing rule within AS64617; this will be discussed further in Section 9.3.3.
An important consequence is that intra-domain routing optimization in AS64617 would
need to address this issue; this will be discussed later in Section 9.7.

• U2 is a user in a tier 4 ISP (AS64822), which is a stub AS. AS64822 is dual-homed from
a single BGP speaker to two different tier 3 ISPs, AS64777 and AS64561. The tier 4 ISP,
AS64822, has a couple of different options to prefer accessing one tier 3 ISP over the other:
(1) set the local pre-configured priority values to access, say, AS64777, as opposed to the
other, since this factor is given higher priority in the BGP route selection process, or (2) in-
sert its AS number, AS64822, more than once when advertising IP prefixes it houses to the
ISP with the less preferred route, i.e., to AS64561.

• From the topology, it gives the appearance that the tier 4 ISP that houses U2, AS64822,
might be able to provide transit service to tier 3 ISPs to which it is connected. This is
where we need to make an important point about a stub AS such as AS64822. While a
stub AS learns about outside IP prefixes from BGP UPDATE messages it receives from
both its tier 3 providers, AS64777 and AS64561, it should not advertise what it learns
from one to the other. Note that usually tier 4 ISPs would connect to their providers on
a low data rate link such as T1. Thus, advertising what it has learned from one to the

296 9.3 Current Architectural View of the Internet

F I G U R E 9.8 Three session flows in the architecture presented in Figure 9.7.

C H A P T E R 9 Internet Routing Architectures 297

other would open up the possibility of being the best path to some IP prefix destinations;
as a result, its access links can clog up with unnecessary traffic routing! this behavior is
known as blackholing and should be avoided by carefully programming a BGP speaker
with appropriate policies when it is multihomed to multiple providers; see Section 9.5 for
policy examples.

• An ISP that has multiple BGP speakers would set up IBGP sessions among themselves so
that routes can be exchanged internally.

9.3.3 Customer Traffic Routing: A Geographic Perspective
Customer traffic routing leads to interesting scenarios when observed from the geographic
perspective as it depends on how and where customers are connected to tier 1 ISPs. In this
section, we will illustrate two cases using Figure 9.9 in which we list three customers off of
two different tier 1 ISPs in three different locations: San Francisco, New York, and Amster-
dam. Note that these customers can be transit providers to other customers; for our illus-
tration, this relation suffices. In addition, there is a fourth customer of CDS type that has
connectivity to a tier 1 ISP at all three locations.

Clearly, traffic from Customer 1 would transfer at San Francisco through the tier 1 ISPs
if it is meant for Customer 3. This also illustrates why tier 1 ISPs peer at multiple geographic

F I G U R E 9.9 Customer traffic routing from a geographic perspective.

298 9.3 Current Architectural View of the Internet

locations. In this example, if the tier 1 ISPs were not have peering at San Francisco, the traffic
between Customer 1 and Customer 3 would transfer in New York. This means that each
tier 1 ISPs would need to carry the traffic cross-continent unnecessarily to bring it back to
customers located off of San Francisco.

Now consider traffic between Customer 2 and Customer 3. It is easy to see that the
tier 1 provider for Customer 2 would let the traffic transfer at Amsterdam to the other tier 1
provider so that the second tier 1 provider would need to carry this traffic through its own
network all the way to San Francisco; this is known an early-exit routing. Similarly, for the
other direction, for traffic received from Customer 3, its tier 1 provider would transfer the
traffic to the other tier 1 provider at San Francisco so that the second tier 1 provider would
need to carry the traffic in its network all the way to Amsterdam to deliver to Customer 2.
Thus, it is easy to see that because of early-exit routing, traffic flows can be on asymmetric
paths. Note that early-exit routing is not necessarily a problem if both the tier 1 providers
have an agreement in place (such as Sender Keeps All) because their overall transfer from
one network to the other and vice versa is somewhat comparable.

Finally, we consider the case of traffic being routed to the CDS customer who is connected
to a tier 1 ISP in all three locations where they have mirror sites so that a user’s request can
be handled by the nearest site. That is, requests from users in Customer 1 and Customer 2’s
network would be directly handled off to the CDS customer in San Francisco, while requests
from users in Customer 2’s network would be handed off to the CDS customer in Amsterdam.
It may be noted that the network of CDS is shown to be connected among all three locations.
While a CDS customer may not own a facility, it can use an IP virtual private network (VPN)
to transfer high-volume data between its data centers in different cities, rather than using the
public Internet; more discussion about IP VPNs can be found in Section 18.5.

9.3.4 Size and Growth

In this section, we portray the current size and growth of the Internet in terms of AS numbers
and IP prefixes. There are currently more than 23,000 active ASes with about 195,000 IPv4
prefixes advertised externally. A sample summary is shown in Table 9.1, drawn from a web
site that reports BGP routing table analysis [303]; this site reports an external BGP view of
certain ASes obtained using Route Views [707]. Briefly, Route Views is a special-purpose AS
(AS6447) that uses multihop BGP sessions to peer with several BGP speakers at well-known
ASes. While it learns about IP prefixes from each of these ASes, it does not forward them
to others—that is, it serves an important role as a sink for BGP information, thus helping
to understand BGP growth. Table 9.1 also lists information for Telstra-i (AS1221) and Route
Views itself (AS6447); there is an explanation for why the IP prefix counts for these two ASes
are significantly different from others [302]. Telstra-i includes an internal view, including a
significant number of more specific prefixes that are yet to be aggregated before being an-
nounced for the external view. AS6447, being the sink, receives different information from its
peer ASes, some feeding only external views and others feeding local specific information—
the number for AS6447 reflects the sum of unique ones learned from all sources. Also, there
are currently over 850 IPv6 routes [303].

From Table 9.1, we can see that of the total number of active ASes, about 70% are
originating-only (stub) ASes; a significant portion of them are originating ASes with only

C
H

A
P

T
E

R
9

InternetR
outing

A
rchitectures

299

TA B L E 9.1 IPv4 Route and AS Data, as of September 30, 2006 (courtesy [303]).

Name AS Number IP Prefixes AS Count Originating AS Originating AS Transit Only Mixed ASes
with Single Prefix

Telstra-i
(Australia)

AS1221 266,837 23,123 16,251 70.28% 9,707 41.98% 78 0.34% 6,794 29.38%

Telstra-e
(Australia)

AS1221 195,322 23,081 16,228 70.31% 9,684 41.96% 79 0.34% 6,774 29.35%

Sprint (USA) AS1239 192,925 22,975 16,329 71.07% 9,675 42.11% 73 0.32% 6,573 28.61%
RIPE
(Europe)

AS3333 197,323 23,172 15,954 68.85% 9,684 41.79% 74 0.32% 7,144 30.83%

Reach Net-
work

AS4637 196,319 23,125 16,240 70.23% 9,709 41.98% 79 0.34% 6,806 29.43%

Oregon Route
Views

AS6447 212,368 23,423 15,747 67.23% 9,687 41.36% 66 0.28% 7,610 32.49%

AT&T World-
net

AS7018 192,708 23,055 16,229 70.39% 9,678 41.98% 79 0.34% 6,747 29.26%

TA B L E 9.2 Prefix Length Distribution of the Top Five Prefix Lengths at AS4637 (September 30, 2006).

Prefix boundary Number Percentage
Prefix /24 105,987 53.99
Prefix /23 16,817 8.57
Prefix /22 15,407 7.85
Prefix /20 13,870 7.07
Prefix /19 12,275 6.25

Total 196,319 100

300 9.3 Current Architectural View of the Internet

F I G U R E 9.10 BGP routing table growth at AS4637 and regression fit.

a single prefix advertised. Most of the remaining 30% are mixed ASes; i.e., they originate
and also provide transit services. The remainder (less than 0.5%) are “pure” transit ASes.
Reportedly, as of 2004, about 60% of stub ASes are multihomed [381]; however, this is a dif-
ficult number to compute since there is no field in the BGP protocol to indicate if an AS is
multihomed; thus, extensive study/assessment is required to identify the proportion of ASes
that are currently multihomed. You may note that the numbers on routes and ASes polled at
different ASes do not match; this is certainly possible since at the time of polling each such
AS may have a slightly different view to announcements and withdrawals, while including
counts for some internal IP prefixes as well.

In Figure 9.10, we present the growth in the number of advertised IP prefixes since 1989
as obtained for AS4637. The current value of more than 195,000 IP prefixes serves as a gauge
of lookup size that a BGP speaker faces when a packet arrives and requires forwarding. By
considering growth data since the beginning of 2002, we have performed a nonlinear regres-
sion analysis. If we denote Y for year (where Y ≥ 2002) and N for the number of IP pre-
fixes, their relation can be roughly estimated by the following regression fit (see Appen-
dix B.7):

N = 105625 + 920.608 (4 Y − 8007)1.52894, Y ≥ 2002. (9.3.1)

Using this relation and if no other aggregation is assumed, it can be estimated that N will
grow to about 232,000 by the beginning of 2008. It has been found that many ASes do not
aggregate routes before announcing outside; such an aggregation could significantly reduce
the BGP routing table entry. The recent assessment is that it can reduce the size from 195,000
to 127,000 entries, a 35% potential reduction [304]. In Table 9.2, we show the prefix length
distribution of the top five prefix lengths in terms of counts for AS4637. Note that almost
54% of the total of more than 196,000 are at /24 prefixes. In regard to AS hop distances,
about 77% of addresses can be reached in within two AS hop distances, and 99% of all

C H A P T E R 9 Internet Routing Architectures 301

addresses can be reached within four AS hop distances. We include a picture of AS-level
connectivity, created by CAIDA, to provide some idea about the connectivity view (Fig-
ure 9.11).

An important reason to understand growth in IP prefixes and ASes is the impact on mem-
ory requirement at a BGP speaker. The following are the main factors that impact memory
requirement at a BGP speaker:

N = Number of IP prefixes
M = Average AS distance (in terms of number of AS hops)
A = Total number of unique ASes
P = Average number of BGP peers per BGP speaker.
Then, the memory growth complexity can be given by ([485], [593], [703]):

Memory Growth Complexity = O((N + M A)P). (9.3.2)

Note that M has a slow growth and N is more dominant than A. Thus, the complexity growth
can be approximated as O(N P), that is, the memory growth can be estimated as the product
of the number of IP prefixes and the average number of BGP peers per BGP speaker.

9.4 Allocation of IP Prefixes and AS Number
So far, we have discussed AS numbering, IP addressing, customer and provider relationships,
and so on. An important question remains: how does an organization obtain an IP address
block? In this section, we answer this question.

Internet Corporation for Assigned Names and Numbers (ICANN) is the organization
that handles global coordination of unique identifiers used in the Internet. Through agree-
ments, IP address block assignments have been distributed to five different Regional Internet
Registries (RIRs). The five RIRs are geographically organized as follows:

• American Registry for Internet Numbers (ARIN) (http://www.arin.net/) to serve the
North American region

• RIPE (Réseaux IP Européens) Network Coordination Centre (http://www.ripe.net/) to
serve the European and the West Asian region

• Asia Pacific Network Information Centre (APNIC) (http://www.apnic.net/) to serve the
South/East Asian and the Pacific region

• Latin American and Caribbean Internet Address Registry (LACNIC) (http://www.lacnic.
net/) to serve the Latin and South American region

• African Network Information Center (AfriNIC) (http://www.afrinic.net/) to serve the
African region.

Each registry has its own rules and pricing in regard to IP address block allocation; this
allocation depends on allocation size as well, as indicated through netmask boundary such
as /19. For example, ARIN’s current policy is that the minimum allocation size is a /20,
while for multihomed organizations, the minimum allocation size is a /22. This means that if
an organization needs only a /24 allocation, it cannot obtain it directly from ARIN; instead, it

302
9.4

A
llocation

ofIP
P

refixes
and

A
S

N
um

ber

F I G U R E 9.11 AS-based Internet “Skitter” graph generated by Cooperative Association for Internet Data Analysis (CAIDA),
2005. (Copyright c© 2005. The Regents of the University of California. All Rights Reserved. Used by permission.)

C H A P T E R 9 Internet Routing Architectures 303

must obtain it from an upstream ISP (provider) who has been already allocated at least a /20
address block by ARIN. Similarly, registries put restrictions on allocation of an AS number.
For example, currently ARIN would allocate an AS number to an organization only if it plans
to do multihomed connectivity to two ISPs or can justify that it has a unique routing policy
requirement. Note that allocation polices, both for IP prefix and AS number, do change from
time to time. For recent polices, you may check the web site of the respective registries.

Suppose that an organization obtains an IP address block along with an AS number from
ARIN. It would then need to establish multihomed connectivity to two upstream ISPs who
would have their respective AS numbers. Once the physical connectivity is set up, the BGP
speaker at the organization establishes a BGP session with the BGP speakers of its upstream
ISPs to announce its address blocks. This information is then propagated throughout the
Internet so that the rest of the Internet would know how to reach a host in this address block.
Note that the organization may have separate BGP speakers, one each for connecting to its
upstream ISPs; in this case, the organization would need to run IBGP between its two BGP
speakers in order to establish rules on how to handle routing of outgoing traffic.

Now suppose that an organization obtains an IP prefix from one of the regional Inter-
net registries but does not obtain an AS number. In this case, at first it would then need to
set up an agreement with an ISP that has an AS number; this ISP would then serve as the
“home” AS for this address block. Once connectivity and agreements are put in place, this
ISP would then announce this IP prefix along with other IP prefixes that are in its AS to its
upstream provider(s). Once this announcement is propagated throughout the Internet, the
newly announced IP prefix becomes known to the rest of the Internet. We discuss below two
possibilities of how the connectivity between an organization (customer) and its provider can
be set up when a customer does not own a public AS number:

• The ISP may set up private AS numbering to divide its customers into different ASes.
Thus, each customer (organization) has the flexibility to choose a routing protocol of its
choice internally and then use a BGP session to talk to the provider’s BGP and announce
its IP prefixes.

• If the provider uses OSPF protocol, then it can use Not-so-stubby Areas (NSSA) LSA (refer
to Section 6.2.8) to allow external routes from its customer to be advertised into the OSPF
autonomous system, while the customer may run its own routing protocol.

Choosing one over another or using any other mechanisms depends on the size of an ISP,
as well as its internal network management philosophy and policy, and its business strategy.
Furthermore, note that route redistribution (refer to Section 5.7) is a common mechanism to
exchange prefixes among different administrative organizations that fall within an AS num-
ber.

It may be noted that a customer who obtains an IP address block from a provider may
choose to switch to a different provider after some time. Suppose that a provider has the
address block 192.168.40.0/24, and it has allocated 192.168.45.0/24 to a customer. Initially,
through route aggregation the provider will announce 192.168.40.0/21 with its AS number.
Now the customer wants to move to a different provider keeping the address block. Thus,
the address block, 192.168.45.0/24, would now need to be announced with the AS number of
the new provider. This then creates a situation, known as a hole since the more-specific prefix

304 9.5 Policy-Based Routing

(192.168.45.0/24) creates a hole in the aggregated prefix (192.168.40.0/21). However, both the
aggregated prefix and the more-specific prefix would need to reside in the global routing table
at a BGP speaker; this is so that packets can be forwarded properly to the right destination.
This means that the IP address lookup process at a router needs to work very efficiently
for handling holes as well. Details on IP address lookup algorithms will be covered later in
Chapter 15.

9.5 Policy-Based Routing
Earlier in Section 8.7, we presented the BGP routing decision process; therein, we indicated
why policy-based routing is needed in an interdomain environment. By now, you proba-
bly have realized that policy-based routing is an extremely critical component used at the
BGP speakers for handling inbound and outbound traffic. For example, in Section 9.3.2, we
highlighted examples to show why import and export policies must be maintained at a BGP
speaker. We also noted earlier that NSFNET necessitated the need for policy-based routing. In
this section, we briefly explore why policy-based routing is needed, and how it may impact
customer provisioning.

Policy-based routing emerged because in an interdomain environment, announcements
received from a neighboring AS through an exterior routing protocol may contain IP prefixes
that the receiving AS may not want to handle or forward. Note that the receiving AS has no
control over what IP prefixes it receives from its neighbor, but it can control which ones it
does not want to handle/forward. Furthermore, due to the business agreement with a certain
neighboring AS, the receiving AS might want to give preference to a particular IP prefix
received from this neighbor compared to other neighbors.

It is important to realize that policy-based routing has three phases: (1) determine the list
of policies and load them to a BGP speaker; (2) when BGP messages arrive, apply policies to
update Routing Information Base (RIB) and Forwarding Information Base (FIB); and (3) when
an actual user packet arrives that affects a certain policy, take action as per policy in real-time
through FIB.

To determine and specify policies, it is imperative to have a generic routing policy lan-
guage that can work in a vendor-independent environment; then, from this format, a vendor-
specific format can be generated. Routing Policy Specification Language (RPSL), described
in RFC 2622 [8], is a language for declaring routing policy of an AS in public registry in or-
der to provide a common interface mechanism that others can easily verify. RPSL serves the
purpose of a vendor-independent language to describe policies. Usually, most providers use
vendor-dependent policy tools provided by a router vendor in its software platform. We use
RPSL for the purpose of illustration.

Here, we will illustrate a few examples adapted from [486]. Consider four ASes, AS65001,
AS65200, AS65201, and AS65202, as shown in Figure 9.12. Here, AS65201 and AS65202 are
customers of AS65200, while AS65001 is a transit provider for AS65200. Here, AS65200 will
accept any announcement from AS65201 if it has originated at AS65201, since AS65201 is
a stub AS; this rule also protects from any misannouncement by AS65201 or AS65202 such
as the blackholing scenario discussed earlier. Thus, AS65200 can set up a policy as shown
below:

C H A P T E R 9 Internet Routing Architectures 305

F I G U R E 9.12 AS topology example for policy specification.

import: from AS65001 accept ANY
import: from AS65201 accept <^AS65201+$>
import: from AS65202 accept <^AS65202+$>
export: to AS65201 announce ANY
export: to AS65202 announce ANY
export: to AS65001 announce AS65200 AS65201 AS65202

This means that AS65200 accepts any announcements from AS65001, the transit provider,
and, in turn, will export these announcements to AS65201 and AS65202. However, it will
import from AS65201 only paths made with AS65201 as the first member of the path; “+”
means that AS65201 may appear more than once, and “$” means that any AS listed after
AS65201 will not be considered. The same principle is applied to AS65202. In turn, AS65200
will export to transit provider AS65001 by announcing routes that originated in itself and the
ones from its customers’ ASes, AS65201 and AS65202.

If AS65200 has many customers similar to AS65201 and AS65202, a compact represen-
tation can be done instead of creating an entry for each one; this helps in minimizing er-
rors as well as in letting AS65001 know its consistent export policy. To do so, “as-set” and
“members” can be used as shown below:

as-set: AS65200:AS-CUSTOMERS
members: AS65201 AS65202

import: from AS65001 accept ANY
import: from AS65200:AS-CUSTOMERS accept <^AS65200:AS-CUSTOMERS+$>
export: to AS65200:AS-CUSTOMERS announce ANY
export: to AS65001 announce AS65200 AS65200:AS-CUSTOMERS

This then requires just updating the member list, as needed.
We next consider the case where AS65200 wants to specifically allow the IP address space

assigned to, say, AS65201. If AS65001 is assigned the space 10.10.0.0/16, then AS65200 can
include a more specific rule as follows:

306 9.5 Policy-Based Routing

import: from AS65201 accept { 10.10.0.0/16^16-19 }

This means that AS65200 will accept announcements from AS65201 if the netmask starts at
/16 but not longer than /19. However, if it would receive any address block except for, say
10.20.0.0/16, then this can be stated as:

import: from AS65201 accept ANY AND NOT {10.20.0.0/16}

We have shown some simple rules to illustrate how import and export policies can be
enabled in policy-based routing using RPSL. RPSL provides a rich set of commands to create
fairly complex rules. Later in Chapter 16, we will discuss packet classification handling by
a router when an actual packet arrives; we will then present algorithms implemented in a
router for efficient packet processing due to such rules.

It is important to note that policy-based routing is quite complex, not as simple as the
example rules listed above. Since different ASes have different policies, it is also possible to
have oscillatory behavior, unintended behavior, loss of reachability, and so on. As an example,
we discuss BGP wedgies below to show how unintended behavior is possible.

9.5.1 BGP Wedgies
An undesirable consequence of BGP policy-based routing is that it can lead to stable but
unintended routing, known as BGP Wedgies [264] . We will illustrate through an example (see
Figure 9.13(a)). Consider an ISP with AS number 65101; its primary provider is AS65301, but
it also has a backup provider, AS65201. In turn, AS65201 uses AS65302 as a provider who has
a peering relation with AS65301.

The primary/backup relation can be implemented in two ways: one way is to prepend
AS65101 twice (instead of the normal one time) in the announcement to the backup provider,
and just once to the primary provider. In this way, the path through the backup provider
is intended to be longer than the path through the primary provider in terms of AS hops.
However, this may not be fully guaranteed if its primary provider, AS65301, also does extra
AS hop prepending to any upstream backup provider. Thus, it is still possible that traffic
originating beyond such an upstream provider may still traverse via AS65201, rather than
taking the path via AS65301.

In order to be not affected by the decision of providers further upstream, a second alterna-
tive is possible. This option uses BGP communities (refer to Section 8.10.1). In this approach,
a provider announces community values to its neighbors; thus, customer AS65101 can se-
lect the provider’s local preference setting. There is another reason for preferring this option
over the AS-path prepending option. This is since, in BGP path calculation, local preference
is given higher priority over AS-path (refer to Section 8.7.1). Note that the community values
marked by the customer must be understood and supported by both the providers.

Through this process, intended routing is that any traffic takes the primary path through
AS65301 to destination AS65101, including from AS65201 via AS65302, AS65301 to AS65101
(see Figure 9.13(b)). In order to achieve the intended routing, AS65101 needs to announce
its routes on the primary path AS65301 before announcing its backup routes to AS65201.
However, the intended outcome may not work if after path priorities are established, the
BGP session between AS65101 and AS65301 fails. This would result in AS65301 generating a

C H A P T E R 9 Internet Routing Architectures 307

F I G U R E 9.13 BGP Wedgies: (a) connectivity setup, (b) intended routing, (c) unintended
routing.

withdrawal message indicating nonavailability of routes in AS65101; this message will reach
AS65302, which, in turn, will announce to AS65201. Now the BGP speaker at AS65201 will
look up its cached AS-paths in Adj-RIBs-in and will find that there is a path available from
AS65201 to AS65101. Thus, AS65201 will advertise the availability of this backup path to
AS65302, which in turn will inform AS65301. Now all traffic to AS65101 will take the backup
path via AS65201.

The problem is that once the BGP session between AS65101 and AS65301 is again back
in service, the original path is not restored. This is because AS65302 would enforce the pol-
icy that it prefers customer-advertised routes (i.e., from AS65201) over routes learned from
peer ASes (in this case, from AS65301). Thus, the untended routing, shown in Figure 9.13(c),
occurs. The only way to revert to the primary path is to intentionally bring down the BGP
session between AS65101 and AS65201.

The above BGP Wedgie example is known as “3/4” wedgie. For additional examples,
see [264].

9.6 Point of Presence

Earlier in Section 9.3.2, we briefly discussed demarcation points. In this section, we discuss
the general architecture of access points to large ISPs such as tier 1 ISPs where the demarca-

308 9.6 Point of Presence

F I G U R E 9.14 Tier 1 ISP’s Point of Presence (PoP) connectivity architecture.

tion point between customers and providers lies. The meeting point at which many customers
connect to a large ISP is often known as a point of presence (PoP).

In Figure 9.14, we show the topological architecture of a PoP, found to be common with
tier 1 ISPs [308]. Typically, customers have their own AS numbers and routers. For redun-
dancy, it is common for a customer to connect to multiple routers in the provider’s network;
this, however, depends on how much a customer is willing to pay for redundancy. The PoP
architecture of a provider’s network has two sets of routers: core routers that connect to other
PoPs and access routers that serve as the ingress points for connectivity to customers’ routers.
Again, access routers are dual-homed to core routers for redundancy. It is important to note
that the access routers in the tier 1 ISP’s network serve as BGP speakers; they talk to the border
routers at customers’ networks, which serve as BGP speakers for the respective customers’
networks.

The allocation of customers to an access router is a critical network design problem for a
tier 1 ISP. Customers can have varied requirements: single connectivity, connectivity to two
access routers, multiple routers to multiple access routers, as well as different access data rate
requirements. From the perspective of the tier 1 ISP, they need to consider the number of
physical ports of different access routers, not overloading any access router with too many
connections to all their customers’ routers since each such connection also results in a BGP
session and the agreed upon maximum data rate to control traffic flow is to be taken into
account. Thus, given various constraints, the general goal of the provider is to load balance
access routers, keeping in mind future growth. Furthermore, the situation becomes even more
complicated since there are also layer 2 technologies to manage for physical connectivity. To

C H A P T E R 9 Internet Routing Architectures 309

solve these types of access network design problems, optimization models such as the ones
presented in [564, Chapter 6] would need to be customized/adapted.

An important issue to consider is whether the architecture can be simplified. The PoP
architecture originally emerged because traditionally routers were not always reliable; thus,
it provides reliability through redundancy. However, the loss of an access router, say AR2,
rather than just the route controller hardware/software failure alone, would result in loss of
all BGP sessions to associated customers’ routers. Thus, customers’ routers will delete routes
to IP prefixes learned from failed routers; this will result in other peers withdrawing routes,
which can lead to route flap with a network-wide effect (refer to Section 8.9). Traditionally
a router can take 3–10 minutes to restore service for a router controller failure [347]. Due to
recent router technologies such as nonstop routing, a peer would not know of a failure since
the TCP connection for the BGP session would not be lost, thus avoiding BGP flapping. This
has another benefit in that customers’ routers need not connect to two access routers; this can
reduce configuration complexity and cost, the impact of a protocol, and the number of access
routers required.

There is another issue to consider from the perspective of traffic engineering and
OSPF/IS-IS routing. This will be discussed in the next section.

9.7 Traffic Engineering Implications
In Chapter 7, we presented intradomain IP traffic engineering. While the methodologies dis-
cussed there work in general, there are certain issues to specifically consider in the presence
of BGP interactions with neighbors and the size of the overall topology, especially for large
tier 1 ISPs or transit ISPs.

Typically, large ISPs deploy IS-IS or OSPF as routing protocols within their networks.
This requires computation of the shortest path by a router. From Figure 9.14, we can see that
a tier 1 ISP has many routers in a PoP (we have shown six in the figure). If a tier 1 ISP has k
routers at a PoP and there are m PoPs in its network, then there are k × m routers in the entire
network. At least in theory, each router would then need to do shortest path computation on
a k × m-router network. In practice, this can be avoided for certain routers; for example, an
access router such as AR1 has a designated primary and a designated secondary connectivity
to core routers; in addition, they never connect outside the PoP. Thus, for these routers, link
weights can be set up by setting a lower value to one link, say AR1 to CR1, which is meant as
the primary link than the other link; use of the static route option is also advisable here. For
core routers, it is clear that the primary intent is to route traffic to another router at another
PoP, not to another intra-PoP core router; such intra-PoP connectivity is for redundancy in the
event of a failure. Thus, typically, the link weights between intracore links at a PoP should
have very high link weights so that such links can be avoided for intra-PoP traffic, unless
there is a link failure. In essence, what it means is that the traffic demand can be abstracted on
an inter-PoP pair basis, not at a per-router pair basis. A desirable consequence is that the link
weight determination traffic engineering problem need not be considered for the k × m-node
problem; instead, each PoP can be abstracted as a single node leading to an m-node traffic
engineering problem, a much smaller optimization problem to solve than the k × m-node
problem.

In addition to using traffic engineering models presented in Chapter 7, certain variations
are necessary to address practical issues. From the discussion above, we see that many core

310 9.7 Traffic Engineering Implications

providers have multiple egress points for early-exit routing to its customers; we illustrated
this aspect in Section 9.3.3. This requires some tweaking to the link-weight setting problem
from the point of view of modeling. Refer to Table 7.1 in Chapter 7, in which we summarized
the notation for the IP traffic engineering problem. Specifically, we have defined K as the
number of demand pairs with positive demand volume for ingress-egress node pairs, and hk

as the demand volume of demand index k = 1,2, . . . ,K. In light of early-exit routing, several
extensions are required [218], [595], [688]:

• Offered traffic from ingress to IP prefix destinations: This means that traffic demand be repre-
sented more accurately at the IP prefix destination level rather than for egress router.

• Egress links connecting to neighboring domains: External links to routers in neighboring ASes
should be considered explicitly in the modeling framework, and objective function should
consider the load on this link as well.

• Set of egress links for each IP prefix destination: This set can be modeled as a logical node
in the formulation, but without considering them in the objective function for traffic load
utilization.

• Selection of the closest egress point: Based on link weights, the closest egress point can be
identified for each ingress point.

These extensions can be modeled in the framework presented in Chapter 7 since K is an
abstract notion for the number of demand pairs; instead here, K needs to consider the above
variations along with the creation of new link entities in the overall problem formulation.
That is, the rest of the modeling framework described in Chapter 7 remains the same; in this
sense, the framework presented there is powerful in addressing such variations.

There are, however, additional important considerations. Typically, any traffic matrix–
based approach considers only a single traffic demand matrix. Since the actual traffic varies
from one time instant to another within a 24-hour cyclical pattern, this variation is important
to consider. There are typically two ways to consider this time-dependent variation factor:
(1) consider the peak demand during the day, factor in any day-to-day fluctuations, and use
this traffic demand matrix in the link weight determination problem, (2) take multiple snap-
shots of traffic demands during the day, and solve the link-weight determination problem
independently for each such demand matrix, and compare any differences in link weights ob-
tained for each snapshot—if they are comparable with an acceptable tolerance, then a robust
set of link weights can serve any traffic variation during the day. Whether one works better
than the other requires computing and analyzing link weights, customizing/tailoring for a
particular service provider’s network. Another important consideration is equipment/line-
card failures. The question then is how does traffic rerouting impact the overall performance.
To avoid link weight re-optimization in the event of a failure, an integrated link weight can
be determined with failure restoration also as a goal; for example, see [308], [470], [532], [564],
for additional details.

It may be noted that many large ISPs use IP with Multiprotocol Label Switching (MPLS).
MPLS allows flexible options for traffic engineering controls in order to route customers’
traffic. We will present MPLS in Section 18.3 and discuss MPLS traffic engineering in Sec-
tion 19.1.2.

C H A P T E R 9 Internet Routing Architectures 311

We conclude this section by briefly discussing interdomain traffic engineering. While each
ISP is motivated by its own interest in optimizing its intradomain network, the need for in-
terdomain traffic engineering, especially among neighboring ASes, is motivated by issues
such as managing inbound traffic, managing outbound traffic, and selecting peering points
optimally rather than relying on early-exit routing for a sub-optimal solution [217], [439].
In general, interdomain traffic engineering may involve a contractual peering agreement. In
general, interdomain traffic engineering is an emerging area that requires further research.

9.8 Internet Routing Instability
Routing instability in the global Internet is caused by a variety of factors. A series of studies
based on actual measurements in the mid-1990s first pointed out routing instability on the
global Internet ([389], [391]). We start with an example from this series of work. Suppose that
the CPU at a BGP speaker is overloaded. Then, it is possible that KEEPALIVE messages are
not communicated on a timely basis; this can make the BGP speaker on one end think that
the other end is not available any more, much as if the link between the routers has gone
down. Each router can then generate a series of messages to indicate nonreachability, which
can cascade from one AS to another one, thus causing a network storm effect. A second related
problem is when the CPU overload subsides and both the routers determine that they can talk
to each other again (that means the link is up again); this can cause another storm of activities
in regard to re-updating reachability information, thus causing unstable behavior. Since that
time, router vendors have made significant progress on how to handle KEEPALIVE messages
during CPU overload, for example, by giving priority to such messages over regular traffic.
Furthermore, route flap dampening (refer to Section 8.9) has been added to the BGP protocol
to minimize any storm effect that can be created.

For a more recent example of CPU overload, we consider the impact of a virus on the rout-
ing infrastructure. Routers usually cache forwarding path for commonly routed IP addresses
to provide fast lookup and fast packet forwarding. During the Code Red-II and Nimda virus
attack [156], [157], [728], instances of the virus started random IP address scanning; this re-
sulted in cache misses as well as generation of router error messages through ICMP error
messages, leading to extensive CPU overload in routers, thus causing further storm like in-
stabilities.

The CPU overload problem provides an example of what types of routing instability
can/might occur. There are multiple sources of problems that can lead to instability; for ex-
ample, (1) layer 2 data link failure or layer 2 timer device failure, (2) virus attacks, (3) soft-
ware bugs, and (4) router configuration error. Note that not all of these can be labeled as
failures. Some of the incidents can cause the entire BGP session to be disconnected for a
long time, while others may result in intermittent problems where the session goes down
and comes back up again. Because of the BGP protocol’s reachability concept, withdrawals
and announcements are generated. If the entire architecture was built on the notion of single
homing with just transits for connectivity to other ASes, this would not be a major concern.
However, in light of multihoming AS, and a transit AS being connected to multiple ASes due
to either public or private peering, the effect can be magnified. Due to the path vector pro-
tocol nature of the BGP protocol and to avoid a route looping problem, finding another path
through other ASes can take a long time, and in fact, can require many exchange of messages;

312 9.9 Further Lookup

we have illustrated such a behavior earlier in Section 3.5 when we illustrated an example in
which a multihomed AS loses connectivity to its multiple providers (ASes).

Another effect of a BGP session drop/restart is that it can lead to duplicate announce-
ments due to the operation of the timers. This can be addressed by BGP speakers maintaining
partial state information about announcements to its peers.

A recent study has looked into the BGP storm issue and also tried to understand if it
affects the data plane, i.e., does a control plane problem cause a data plane problem? This
study observed that it may or may not. While during Code Red and Nimda viruses, the BGP
update storm was prevalent, it did not necessarily affect the data plane, while during another
virus, known as Slammer virus, did affect the data plane performance. For additional detail,
see [607].

Finally, a general concern is that some small unknown problems in one part of the In-
ternet routing architecture could cause significant instability to the overall system; such an
effect is often referred to as the butterfly effect [424]. We have already seen some examples that
can be labeled the butterfly effect. Certainly, there have already been many checks and bal-
ances introduced to the routing system to avoid/minimize such behavior; however, butterfly
effects in the routing system in the future due to yet unknown factors cannot be completely
ruled out. In general, understanding Internet routing instability and finding good solutions
continue to be an active research area.

9.9 Summary
In this chapter, we present Internet routing architecture, starting with its initial evolution.
Clearly, Internet routing architecture has experienced tremendous growth and changes in the
past decade since the introduction of NAPs. Business agreements have played critical roles in
public and private peering in order to provide efficient traffic movement through the Internet.
In parallel, we have seen the emergence of the role of policy-based routing.

Traffic engineering objectives are also somewhat different for certain ISPs due to the ser-
vice they provide to their customers. Thus, appropriate adjustments are needed. Furthermore,
global Internet routing instability remains a concern in light of conflicting goals and unknown
factors.

A general question remains about viability/scalability of BGP as Internet continues to
grow; thus, the exploration of new routing paradigms for large, loosely connected networks
is an important research direction.

Further Lookup
There are many foundational problems associated with interdomain routing as the Internet
grows [216]. They can be classified broadly into two categories: (1) policy-induced prob-
lems, and (2) scalability-induced problems. Examples of policy-induced problems are pol-
icy disputes between ASes, policy enforcement, and secure route advertisement. Examples of
scalability-induced problems are nonvisibility of paths when route reflection does not distrib-
ute all routes, IBGP/EBGP interactions causing loops and oscillations, difficulty to determine
the cause of update triggers, and a BGP speaker’s ability to handle routes as the number of
routes grows. This is an interesting class of problem domains that requires further inquiry.

C H A P T E R 9 Internet Routing Architectures 313

Another problem of importance is whether the current Internet architecture provides struc-
tural incentive for competitive providers at the access network level for interdomain routing
so that multiple choices are available instead of a single way out. This area also has received
attention recently; for example, see [753], [754].

For traffic engineering in the presence of inter-domain issues and to address restoration
of the tier 1 backbone, see [217], [308], [439], [595]. For provisioning of BGP customers, see
[260]. Understanding the AS-level topology is an active area of research; for example, see
[438], [506].

Policy-based routing is an important topic that has emerged as a result of experience with
the NSFNET. Early discussions on policy-based routing can be found in [93], [144]. The BGP
convergence issue in the presence of policy-based routing has raised significant interest in
recent years, for example, in regard to the stable paths problem and inter-domain routing
[243], [265], [388], [728].

Many providers maintain web sites that announce their policies on peering; for examples
of current peering policies by large ISPs, see [20], [40], [656], [718]. It is, however, not always
easy to determine who peers with whom, and whether through public or private peering;
nonetheless, some information on peering relations can be found at [552]. Settlements on
payment between customers and providers were described in [692]; for a recent discussion,
see [305].

For other general issues related to the Internet, see [636] for routing stability, [168], [182]
for interdomain routing history and requirements, [445] for routing design, [550] for end-to-
end routing behavior, and [256], [749] for a detailed discussion on network neutrality.

Exercises
9.1. Review questions:

(a) What is the relation between an AS and an ISP?

(b) Is policy routing checked on the inbound or the outbound interface of a BGP
speaker?

9.2. Suppose that you manage an ISP that has its own AS number and your domain serves
as a stub AS. Occasionally, your AS receives traffic that does not belong to your AS.
Identify possible cause(s) for this behavior.

9.3. For a given IP address, how would you find out its home AS number?

9.4. Why would a stub AS use uRPF at its border router? Explain.

9.5. While inspecting your BGP speaker, you found that an AS number shows up more than
once for certain destination IP prefixes. Why is this possible?

9.6. Consider policy-based routing. Investigate possible scenarios in which oscillator behav-
ior and/or loss of reachability might occur.

This page intentionally left blank

Part III: Routing in
the PSTN
In this part, we present routing in the PSTN.

In Chapter 10, we start with a discussion of hierarchical call routing. We then delve into
a number of dynamic call routing schemes, and present a qualitative discussion on their sim-
ilarities and differences.

The notion of traffic in the telephone network is presented in Chapter 11. A set of control
schemes that works in tandem with routing is discussed. In this framework, we then describe
voice traffic engineering and present performance behavior of dynamic routing schemes by
considering traffic load and capacity.

To facility call routing in PSTN, the SS7 network and its services play important roles.
Thus, in Chapter 12, we present SS7 networking and discuss how the service functionality
it provides through ISUP is used in call set up and control. We also discuss the SS7 protocol
stack architecture, as well as message routing in the SS7 network.

Finally, in Chapter 13, we present PSTN routing taking into account E.164 addressing.
Our treatment gradually changes from a nation-wide single provider environment to multi-
provider scenarios, while introducing how SS7 messaging facilitate call routing decision in a
multi-provider environment. We also discuss number portability and its impact on changes
in call routing decision.

10
Hierarchical and
Dynamic Call
Routing in the
Telephone
Network
A good hockey player plays where the puck is. A great hockey player plays
where the puck is going to be.

Wayne Gretzky

Reading Guideline

Understanding hierarchical routing gives you an idea about the issues involved in
doing loop-free routing in an information-less setting. The section on dynamic rout-
ing can be read independently, although reading about hierarchical routing first pro-
vides a better perspective. Related traffic engineering problems will be discussed in
Chapter 11. The discussion on dynamic call routing is also helpful in understanding
quality of service routing presented later in Chapter 17.

C H A P T E R 1 0 Hierarchical and Dynamic Call Routing 317

Routing is a critical function in the global switched telephone network. The routing archi-
tecture in the switched telephone network is based on the notion of hierarchical routing that
was originally designed a half a century ago, and the hierarchical concept as it was thought
of is still in place in the overall global switched telephone network architecture. In addition,
dynamic call routing schemes have been introduced in the past 25 years that can function in
this hierarchical architecture.

In this chapter, we will present both hierarchical routing and dynamic routing. The reader
might want to note that the term dynamic routing used in this chapter refers to dynamic call
routing in the telephone network; it should not be confused with dynamic routing in IP net-
works.

We start with a few definitions. Circuit switching is used for call routing in the telephone
network. Circuit switching refers to the mechanism of communication in which a dedicated
path with allocated bandwidth is set up in an on-demand basis before the actual communi-
cation can take place. On-demand means that the path is set up quickly when the request
is made. The dedicated path is released immediately when the communication is over. The
most well-known application of circuit switching is telephone network calls. The call band-
width for a wire-line telephone circuit is 4 kilohertz in the analog mode or 64 Kbps in the
digital mode. That is, a voice connection in the wired telephone network takes up a voice
circuit established through circuit switching, requiring 64 Kbps of bandwidth. When a circuit
is considered on a link, it is also referred to as a trunk. Thus, the terms circuit and trunk will
be used interchangeably. The term trunkgroup refers to a group of circuits or trunks on a link
between two directly connected switches; a trunkgroup is also referred as an inter-machine
trunk (IMT) while considered in the context of connecting two switches. A switch in digital
telephony is a time-division–multiplexed (TDM) switch. In this chapter, we will use node,
switch, and TDM switch interchangeably.

10.1 Hierarchical Routing
We first start by describing hierarchical routing in a telephone network.

10.1.1 Basic Idea

Telephone networks have been around for over a century. However, the need for any form of
routing did not arise until the 1930s. Until then, essentially point-to-point direct links (trunk-
groups) were set up to connect calls between different places; there was no routing involved.
The need for routing arose for two primary reasons: (1) point-to-point links lead to the N2

problem, i.e., if there are N nodes in a network, we need N(N − 1)/2 directly connected links;
thus, as more and more cities (with multiple switches) offer telephone services, this problem
grows significantly, and (2) it was recognized that some trunkgroups were less utilized com-
pared to others; thus, if there were any way to take advantage of this by routing calls through
less utilized trunkgroups, capacity expansion could be avoided. Capacity expansion used to
be very costly and still is in many cases. There is another impetus to arriving at some form of
routing: as the switching technology started to move from old mechanical switches to electro-
mechanical switches, the possibility of switching being capitalized to perform some form of
routing became more than a thought.

318 10.1 Hierarchical Routing

This is where we need to understand something important. Unlike routers for the Inter-
net (as discussed elsewhere in this book) that have the ability to compute and store routing
tables, telephone switches did not have this ability in the early years. Thus, routing was to be
performed in an age when neither information storage nor information exchange was possi-
ble. When you think about it, this is a complicated problem. This problem becomes more pro-
nounced when you add an important requirement of routing: looping must be avoided. There
is another important point to note here. With the technology available at that time, the call
setup was accomplished through progressive call control (PCC) by forwarding setup signaling
from one switch to the next; this is to be done in an information-less setting—that is, nodes
did not have any ability to exchange any status information. Thus, a call control cannot get
back to a switch from where it started; there was no way to look backward. The question is:
how can looping be avoided and yet provide some form of routing by forwarding a call from
one trunkgroup to another as the call goes from one switch to another in such an information-
less setting? The Bell System came up with an innovate idea for routing without looping. The
basic idea was to introduce hierarchy among network nodes and still use PCC. To describe it,
we start with a simple illustration.

10.1.2 A Simple Illustration

We start with a four-node illustration (Figure 10.1). In this example, switches are divided into
two levels: switches 1 and 4 are at the lower level and switches 2 and 3 are at a higher level;
furthermore, switches 1 and 2 are in the same ladder of the hierarchy, while 4 and 3 are on
another ladder.

First consider Figure 10.1(a). A call from switch 1 to switch 4 can take the direct link (if
it exists). However, if the direct link 1-4 is busy, the call overflows and is attempted on link
1-3. The important thing is that the control of the call is forwarded on this link with the call
attempt. Once the call reaches switch 3, the call can only go toward its destination, which
means taking link 3-4. If capacity is available on link 3-4, the call is carried through on link
3-4. However, if there is no capacity available on link 3-4 when the call arrives at node 3, the
call is considered lost, and the network cannot retry through another path; because of PCC.
A lost call means that users hear a fast busy signal, and the user has to hang up and redial
the number. It is, however, important to recognize that the scheme still provides alternate
routing. If the call cannot find an available circuit on the outgoing link 1-3, the call can be
attempted on link 1-2 as the final trunkgroup, where switch 2 is the switch above switch 1

F I G U R E 10.1 Hierarchical routing example.

C H A P T E R 1 0 Hierarchical and Dynamic Call Routing 319

in its direct hierarchy. Thus, the trunkgroups in hierarchical routing networks are classified
into two groups: high-usage (HU) trunkgroups and final trunkgroups. So, which ones are HU
groups? In this example, trunkgroups 1-4, 1-3, and 2-4 are HU groups since they are not
necessary but are installed because of the high volume of traffic between those end nodes
connecting such trunkgroups. A final trunkgroup means that there is no other trunkgroup to
overflow to if a call does not find a circuit on a final trunkgroup. Thus, for a call from switch 1
to switch 4 (for Figure 10.1(a)), route attempt options are in the following fixed order: 1 → 4,
1 → 3 → 4, and 1 → 2 → 4. Usually, such usage of switches 2 and 3 is called tandem switches,
which create the opportunity to provide alternate routing paths as transiting nodes.

Now consider Figure 10.1(b) where trunkgroup 2-3 is now added, compared to Fig-
ure 10.1(a). Since this is a two-level hierarchy example where there are no switches above
switches 2 and 3, trunkgroup 2-3 is also a final trunkgroup. In this network, a call from switch
1 to switch 4 has the following fixed order for attempting to route a call: 1 → 4, 1 → 3 → 4,
1 → 2 → 4, and 1 → 2 → 3 → 4. In this network, a call can originate at either switch 2 or 3 as
long as it has a lower layer interface for call origination; thus, in the figure a dark circle (indi-
cating a switch at the lowest level) is embedded into the second-level switch. Now, for a call
from switch 2 to switch 4, there are two routes in the following order: 2 → 4 and 2 → 3 → 4;
the first route is allowed since the HU group 2-4 is the destination switch. For a call from
switch 2 to switch 3, there is only one route: 2 → 3.

How does the hierarchy of nodes help? Consider a call originating at switch 2 for either
3 or 4. It is not allowed to go down toward its immediate lower-level switch for routing; for
example, 2 → 1 → 3 and 2 → 4 → 3 are not valid routes for calls from switch 2 to 3. Otherwise,
in a PCC environment, a looping can take place since a call originating at switch 1 will go to
switch 2, which will send it back to switch 1!

In summary, the main rules for routing (while avoiding looping) in a hierarchical routing
environment can be summarized as follows:

• A switch in a higher level must have the switching function of the lower level in a nested
manner. This is known as the multiple switching function rule. In Figure 10.1(b), switches 2
and 3 internally have switching functionalities of the lower-level switches.

• Calls must be routed through the direct switch hierarchy, both at the originating switch
and the destination switch. This is known as the two-ladder limit rule. In Figure 10.1(b), the
direct switches hierarchically above switch 1 and switch 4 at the next level are switch 2
and switch 3, respectively. Now, imagine a fifth switch (switch 5) at the same level as
switches 2 and 3 in Figure 10.1(b), and a HU trunkgroup between 1 and 5, and also another
HU trunkgroup between 4 and 5. A call from switch 1 to 4 is not allowed to take the route
1 → 5 → 3 → 4 or the route 1 → 5 → 4, since switch 5 is not in an originating or destination
switching hierarchy of switch 4.

• For a call from one area to another, a HU trunkgroup from a switch in the originating area
to a switch at the next higher level in the destination area is a preferred selection over
the final trunkgroup to the switch at a level directly above it. This is known as the ordered
routing rule. In other words, the route order of attempts is predefined and consistent when
multiple routes exist and is based on the level and location of switches in different areas.

320 10.1 Hierarchical Routing

Thus, in Figure 10.1(b), for a call from switch 1 to 4, the route 1 → 3 → 4 is preferred over
route 1 → 2 → 4. Using the same rule, for a call from switch 4 to 1, route 4 → 2 → 1 is
preferred over 4 → 3 → 1.

10.1.3 Overall Hierarchical Routing Architecture

In the previous section, we discussed hierarchical routing using switches at two levels. In a
national network, there are actually five levels defined in the hierarchy. At the bottom are
the end office switches; as we move up, we go from toll switching centers to primary switch-
ing centers to secondary switching centers to regional switching centers. The five levels of
switching hierarchy are shown in Figure 10.2.

From a geographic perspective, there is another way to view the network that takes a
planar view. This is shown in Figure 10.3. We can see that the part of the network that is under
a regional switching center is essentially a tree-based network except for any HU trunkgroups
(marked by a dashed line) that connect a switch under one regional switch to another switch
in the same region or a different regional switch. The network at the regional switching center
level (or the highest level if all five levels are not used) is fully connected.

To summarize, through the introduction of a hierarchy of switching nodes, several issues
were addressed simultaneously:

• The scalability issue of full connectivity or N2 growth in number of links in a network at
the end-office level is addressed. Full connectively is needed only for a handful of switches
at the highest level of the hierarchy. To obtain some perspective [697, § 4.1.5], by 1981
(before the breakup of the Bell System), there were 20,000 end offices in the United states;

F I G U R E 10.2 Switching hierarchy in hierarchical routing.

C H A P T E R 1 0 Hierarchical and Dynamic Call Routing 321

F I G U R E 10.3 Geographical perspective.

imagine trying to link all of them directly in a fully connected network! However, there
were only 10 regional switching centers needed.

• Multiple alternate paths were available in many cases between end offices where the call
was attempted in a predefined order. An important point is that routing was accomplished
without requiring any information exchange between switches, that is, in an information-
less environment.

• Looping was avoided by defining carefully rules for switching hierarchy and forwarding
of calls.

A final note is how to address routing of international calls from one country to another.
In the hierarchical routing structure, another switching level is defined above the regional
switching center to connect trunkgroups from one country to another country.

Thus, hierarchical routing can be briefly summarized in the following way: switches in
the network are placed at different levels; a call can move up a trunkgroup from a lower-level
switch to a higher-level switch unless the call is going from a higher-level switch directly to
the final destination switch; a call can go from one switch to another in the same level if the
second switch is in the “destination region.”

10.1.4 Telephone Service Providers and Telephone Network Architecture

Until the divestiture of the Bell System in 1983, the entire hierarchy of the telephone network
was provided by the same telephone service provider (TSP) in the United States. In fact, in
most nations across the world, the telephone network is still provided by the same provider.
With the breakup of the Bell System in the United States, different TSPs play different roles
in carrying a call. A call originates in an access TSP, a “local exchange carrier (LEC),” where
the call starts from the end office. If the call is destined for another user in the same LEC, the

322 10.2 The Road to Dynamic Routing

F I G U R E 10.4 LEC/IXC architecture.

call is routed within its network. When a call starts from one LEC and is destined to termi-
nate in another LEC, the call typically goes through an inter-exchange carrier (IXC) before
entering the destination LEC. The relation between LEC and IXC is shown in Figure 10.4.
From a routing hierarchy point of view, IXC enters at the level of the primary switching cen-
ters.

In most cases, LECs use a two-level fixed hierarchical routing architecture with call over-
flow from the lower level to the upper level (see Figure 10.1(a)). An IXC can deploy either a
fixed hierarchical routing or dynamic routing. Unless a call terminates in a different country,
there is usually at most one IXC involved between the access LECs. For a call going from
one country to another country, the call may go through the second country’s interexchange
provider or equivalent before reaching the destination address in another access carrier. In
many countries, both the access service and the interexchange/long-distance service are pro-
vided by the same provider; regardless, a fixed hierarchical routing is commonly deployed in
access LECs.

10.2 The Road to Dynamic Routing

Now that we have learned about hierarchical routing, we are almost ready to discuss dynamic
routing. Before we go from hierarchical routing to dynamic routing, we need to note and
understand a few critical issues.

10.2.1 Limitation of Hierarchical Routing

The need for dynamic routing is better understood if we understand the limitations of hierar-
chical routing. Recall that while hierarchical routing avoided the looping problem by clever
use of nodes at different levels along with a set of rules, it also led to situations in which some
trunkgroups could not be used for routing even though capacity was available.

Consider Figure 10.5, where switches 1 and 4 are at a lower level and switches 2 and 3
are at a higher level. We can see from the figure that a call originating in switch 1 destined
for switch 4 can use the HU trunkgroup 1-4 or overflow the call to routes 1-3-4, or 1-2-4 or
finally to 1-2-3-4. However, a call from switch 2 to switch 3 can only use the final trunkgroup
2-3; it cannot use a path such as 2-1-3 or 2-4-3, although at the time of the arrival of the call
there might be plenty of trunks available on links 2-1, 1-3, 2-4, and 4-3. Thus, you can see the
inefficiency in how hierarchical routing works.

C H A P T E R 1 0 Hierarchical and Dynamic Call Routing 323

F I G U R E 10.5 Limitation due to hierarchical routing.

10.2.2 Historical Perspective

In the 1970s, the idea of being able to have some flexibility in routing that can use unused
capacity, rather than the limitation imposed by hierarchical routing, was explored. One im-
portant issue that needed to be addressed was the looping problem—that is, it could not be
done within the framework of the hierarchical routing since a major reason for using hierar-
chy was to avoid the looping problem. In the 1970s, some important developments took place
in parallel: the first was the ability to use stored program control (SPC) in a switch, and the
second was the development of common channel interoffice signaling (CCIS). SPC provided
the software functionality for switching control. CCIS provided the ability to exchange con-
trol information such as call setup and tear-down through out-of-band signaling instead of
using in-trunk signaling for such functions, which was becoming noticeably slower when a
call needed to go over multiple trunkgroups in serial to its destination; this out-of-band com-
munication was a data communication service, meaning that information was exchanged as
data packet services. Through evolution, CCIS, which used to be referred to as CCIS6, became
CCS and eventually SS7; see Chapter 12 for further details.

In addition, there was another important observation, especially in the continental United
States. Due to different time zones in the country, there were times when certain trunkgroups
were idle or had very little utilization, but again, due to hierarchical routing, these trunk-
groups could not be used. An example involves calls between New York and Atlanta, which
are located in the Eastern time zone, at 8:00 AM. If the trunkgroup between New York and
Atlanta is fully occupied at that time, a newly arrived call between these two cities could be
alternately routed via Los Angeles, located in the Pacific time zone, which is 3 hours behind
the Eastern time zone. It is then 5:00 AM in Los Angeles and it is less likely that there will be
many calls between New York and Los Angeles or between Atlanta and Los Angeles at that
time. This means the new call can conceivably use New York–Los Angeles and Los Angeles–
Atlanta trunkgroups to route this call. While this is an extreme example, it suggests that at
least the set of routes a call between two switches can attempt can possibly be different de-
pending on the time of the day, that is, the routing can be time-dependent rather than having
the same or a fixed order at all times of the day. In essence, we can start to see that some form
of dynamic routing that is at least time-dependent can be of benefit to the network in terms
of carrying more calls. Actually, the potential benefit of dynamic routing is often credited to
Nakagome and Mori [519], who first discussed the benefits of flexible routing.

As you can see, in the above illustration, all the routes are of a maximum of two links
(trunkgroups). We want to clarify that these two links are only in the core of the network. The

324 10.2 The Road to Dynamic Routing

actual call dialed by a user arrives at an end office from which the call is forwarded to the
ingress switch in the core network. Similarly, from the egress switch, the call goes to the end
office at the other end before reaching the actual receiving user. Thus, the maximum two-links
part is addressed only between the ingress and the egress switch in the core network. Obvi-
ously, more than two links in this part can be possible. However, there are three important
drivers that led to all dynamic routing methods to limit calls to a maximum of two links:

• An issue was how to handle the looping problem. It is easy to see that the looping problem
can be easily handled with a maximum of two links for a call: a call can be going directly
from the ingress switch to the egress switch on a direct link; if this link is busy, the call can
try another route going from the ingress switch to an intermediate switch. The intermedi-
ate switch on receiving the call knows that the call needs to be sent directly to the egress
switch, not another intermediate switch, due to the limit on the number of links. This then
automatically avoids any looping problem.

• A second issue was the complexity of software implementation of the dynamic routing
function. Note that the concept of dynamic routing arose toward the end of the 1970s
and early 1980s when software for telephone switches was still in its nascent stage, not
to mention the high cost of implementing a complex function. The goal was to keep the
complexity down, for example, if the looping problem could be addressed easily without
introducing software complexity.

• There is minimal incremental gain from allowing more than two links. Common sense
indicates that if more than two links are allowed, a network will certainly have more
paths to the destination, and thus would have the ability to complete more calls. However,
a telephone network is required to maintain an acceptable grade-of-service (GoS); in the
United States, this was mandated by the Federal Communication Commission (FCC). An
acceptable level of GoS was to maintain average call blocking at 1% or lower; an additional
discussion of call blocking is presented later in Chapter 11. What we need to understand
is that if a network is provisioned with a bandwidth to meet 1% call blocking GoS in
the presence of dynamic routing where a call is limited to a maximum of two links, how
much incremental gain can we gain if we were to have dynamic routing with more than
two links? It was reported in [30] that this gain was not significant, i.e., the blocking would
go down from 1% to about 0.96%.

Now, from the first two items, we can see that the software complexity can be minimized
if a route is limited to a maximum of two-link paths. From the third item, when considered
along with the software complexity issue, we can see that the gain in reduction in blocking
can come at a very heavy price in terms of increased software complexity. Rather, if keeping
GoS low is an important goal, it can be achieved by other means, for example, adding more
capacity to the network. At the same time, it is easy to recognize that if we can provide many
alternate paths between two switches, we have the opportunity to reduce call blocking. In a
network with a maximum of two links for a path, the simplest way to achieve this is to make
the topology of the network fully connected or nearly fully connected. For example, in a fully
connected network with N switches, there are N − 2 two-link paths in addition to the direct
link path.

C H A P T E R 1 0 Hierarchical and Dynamic Call Routing 325

10.2.3 Call Control and Crankback

Hierarchical routing uses a progressive call control (PCC) mechanism. This means that the
call control is forwarded from one switch to another until it reaches its destination unless the
call cannot find any outgoing trunk at an intermediate trunk; in this case, the call is lost. In
other words, the control of the call is not returned to the originating switch to try another
possible path.

Suppose we could return the control of a call from an intermediate switch to the originat-
ing switch. This would mean that the network is providing originating call control (OCC); the
functionality of returning a call to the originating switch and trying another route is called
crankback. With the advent of the dynamic call routing, the question of whether the network
should provide PCC or OCC and whether it should provide crankback also arises.

Figure 10.6 illustrates how crankback works and its relation to OCC and PCC. Consider
a call arriving at switch 1 destined for switch 2. It can try the direct link path 1-2. Suppose
there is no bandwidth available on link 1-2 when the call arrives. The call will then attempt
to use the next route in the routing table 1-3-2. If link 1-3 has no available capacity, the call
will attempt the next route in the routing table 1-4-2; this overflow attempt is, however, not
a crankback. So what is a crankback? Consider a slightly different situation. Suppose when
the call attempted the second route 1-3-2, it found bandwidth on the first link 1-3 and thus
the control of the call is forwarded to node 3; however, on arriving at node 3 it was discov-
ered that there is no bandwidth available on link 3-2 for this call. There are two possibilities:
either send the control of the call back to the originating switch 1 and let the originating
switch decide what to do next (for example, try another route such as 1-4-2), or drop the call.
The control of the call can be sent back to the originating switch 1 if the network has OCC,
the process of reverting back to switch 1 and trying another route is called crankback. If the
network does not have OCC, it must act as PCC. Thus, drop the call means that the call on
arriving at node 3 is lost due to nonavailability of capacity on link 3-2; this occurs due to PCC,
the call control cannot be returned to switch 1. As you will see later, some dynamic routing
schemes provide OCC while others do not.

F I G U R E 10.6 Illustration of crankback.

326 10.2 The Road to Dynamic Routing

10.2.4 Trunk Reservation

Trunk reservation, also known as state protection, refers to logical reservation of a part of a
capacity on a link for its own direct traffic. Note that trunk reservation does not mean phys-
ical reservation of a trunk. In this sense, this is a misnomer, and state protection is a better
name. We have decided to retain the term trunk reservation because of its historical use and
the prevalence of the use of this term in a large body of literature over the years.

Trunk reservation refers to a threshold on a trunkgroup; if a trunkgroup is not filled with
calls before this threshold is reached, a call between other origin-destination pairs can still
use a trunk from this trunkgroup. Consider trunkgroup 	 connecting switching nodes i and
j with capacity cij, which is given in a number of circuits. Suppose the trunk reservation
parameter is given by rij, also given in number of circuits. If rij = 0, then no trunk is reserved.
However, if rij = cij, trunkgroup i-j does not allow any alternate routing; certainly, in real
networks this condition is never used. Typically, rij is close to zero; it should not be too low or

too high. A rule of thumb is that rij ≈
√cij

2 ; later, in Section 11.8, we will illustrate the impact
on performance for different values of trunk reservation.

Another interpretation of trunk reservation is that a call that connects the ends of trunk-
group i-j is given access to all capacity cij, while a call for another origin-destination pair
that is using link i-j can have access to effective capacity, cij − rij. You may wonder why we
need to do this. While dynamic routing provides flexibility to use multilink paths for routing,
under certain loads it may not be desirable to route calls on multilink paths for the benefit
of the network. Consider a path made up of two links; it can route a call for the end nodes
of this path, or, from the point of view of the network, each link can be used to carry a call
for the end nodes of each link. Thus, a network carrying two calls, one call each on direct
link paths instead of one call carrying on the two-link path made up of the same two direct
links, has more call-carrying capacity. To illustrate this, consider a three-node network where
links between each node have one unit of capacity each. We number the nodes as 1, 2, and 3.
Here, the maximum call carrying capacity is three—one each for each pair of nodes on the
corresponding direct link, that is, 1-2, 1-3, and 2-3. However, if we allow a pair of nodes to
use the alternate path, say for pair 1:2 we allow a call to take the route 1-3-2, then the network
would have only two call-carrying capacity—one on the direct path for pair 1:2, another on
the alternate path 1-3-2, and none for other pairs.

It so happens that in the absence of trunk reservation, dynamic routing can exhibit bista-
bility in certain load conditions (refer to Section 11.8). That is, a network can have different
blocking levels for the same offered load, sometimes staying in one for a certain amount of
time and then moving to another due to fluctuation in load. This is also referred to as metasta-
bility (or bistability). By using trunk reservation, this metastable behavior can be minimized
and often avoided. A formal definition of offered load will be presented later in Chapter 11;
furthermore, in Section 11.8.4, we will discuss the implication of no trunk reservation and
metastable behavior.

10.2.5 Where Does Dynamic Routing Fit with Hierarchical Routing?

When a hierarchical routing architecture already exists, the question of where to fit in dy-
namic routing arises. When dynamic routing is introduced as the routing scheme within an

C H A P T E R 1 0 Hierarchical and Dynamic Call Routing 327

IXC’s network, the switching level of switches in the dynamic routing network can be thought
of as if it is at the primary switching center level. In other words, toll switches and end-office
switches are considered to be in a level below the switch level of dynamic routing switches.
This is illustrated in Figure 10.7.

It may be noted that both an end-office switch or a toll switch may be connected by a
trunkgroup to a switch in the dynamic routing network. Consider end-office switch 9, which
is connected to the dynamic routing core via toll switch 8. However, end-office switches 6
and 7 are directly connected to the dynamic routing core. Furthermore, we can now see that
a call from one end office to another end office can traverse at least three trunkgroups (for
example, 6-1, then 1-3, and finally 3-7), or it can possibly be five trunkgroups where at most
two trunkgroups are in the dynamic routing core (for example, 9-8-5-4-3-7).

10.2.6 Mixing of OCC and PCC

It is possible to mix OCC and PCC from the perspective of an end office to another end office.
The edge networks, where a call starts and ends, have PCC while the dynamic routing core
has OCC. Consider again Figure 10.7. A call originating in end-office switch 9 and destined
for switch 7 uses PCC to forward the call to switch 8, which forwards it to switch 5. Then
switch 5, being the originating node in the dynamic routing core, may hold the control of the
call and try alternate routes within the dynamic routing network until the path is established
to switch 3, the destination node within the dynamic routing core for this call. Once the call
is established within the dynamic routing core to switch 3, the call control is forwarded from
switch 5 to switch 3 so that progressive call control can be used for completing the call to
end-office switch 7.

10.2.7 Recap

We now summarize a few key points about dynamic routing. All dynamic routing schemes
for the telephone networks allow at most two links for a call. Often, the network is fully-

F I G U R E 10.7 Dynamic call routing in conjunction with hierarchical routing.

328 10.3 Dynamic Nonhierarchical Routing

interconnected, or nearly fully-interconnected. Also, all schemes include trunk reservation.
They all differ in the following areas:

• Progressive or originating call control, and crankback.

• Time-dependent, or adaptive.

• Off-line computation, or near on-line computation.

• Routing calculation.

• Link information used and how it is used.

10.3 Dynamic Nonhierarchical Routing

Dynamic Nonhierarchical Routing (DNHR) is the first implemented dynamic routing
scheme. It was first deployed in AT&T’s long-distance telephone network in 1984 and was re-
tired in 1991. We discuss it here primarily for its historical context and its evolution to RTNR,
which is discussed later in Section 10.6.

DNHR is a time-dependent routing. This means that the set of routes available (and their
order) at different times of the day is different. In the case of DNHR, the 24-hour time period
spanning a 7-day week was divided into 15 load set periods: 10 for the weekdays and 5 for
weekends. The different number of load set periods was determined based on understanding
traffic patterns. For example, the same routing pattern can be used from midnight to 8 AM
due to low traffic volume.

For each load set period, based on traffic projection, a set of routes is computed ahead of
time. Typically, traffic projection and routing computation were computed off-line 1 week in
advance and the routing table is then uploaded to each switch in the network. The routes so
computed ahead of time are referred to as engineered paths. When an actual call arrives at a
switch, the switch first determines the correct routing table based on the time of arrival and
tries the various paths in the order shown in the routing table. Certainly, the actual traffic
would be different than the projected traffic demand volume. Thus, the routes computed and
the order of routing provided from off-line computation may not be optimal at the actual
time. One way for the network to obtain some flexibility in such a situation is to allow the
crankback option. For example, if there are three engineered paths between a source and a
destination, a call can first attempt the first path (which is often the direct link path). If no
bandwidth is available on the first path, the call tries the second path, and so on, as described
earlier in Section 10.2.3.

While engineered paths can provide an acceptable GoS under normal operating condi-
tions, they may not always be well suited if a traffic overload occurs; this is partly because
the engineered paths are computed based on traffic projection. To circumvent this situa-
tion, DNHR allows additional paths to be considered almost on a real-time basis that are
appended to the list of engineered paths; these additional paths are referred to as real-time
paths.

If the blocking between a pair of switching nodes goes beyond an acceptable threshold,
a new estimation of traffic over every 5-min window is invoked; based on this 5-min short-

C H A P T E R 1 0 Hierarchical and Dynamic Call Routing 329

Time Period Routing Sequence

Morning 7 3 6 4 2 1

Afternoon 7 6 3 4 2 1

Evening 7 4 6 3 2 1

Weekend 6 4 7 3 2 1

F I G U R E 10.8 Engineered and real-time paths in DNHR between New York (switch 5)
and Los Angeles (switch 7). Engineered and real-time paths are partitioned using a vertical
line, whereas real-time paths are listed in italics in the routing table; note: switch 7 in the
routing table indicates a direct link path. (Adapted from [27].)

time traffic snapshot, a centralized computation at the network management center seeks
trunkgroups that have available capacity to determine real-time paths. These newly com-
puted paths are then loaded into the network switches. The use of engineering and real-time
paths is illustrated in Figure 10.8.

We now need to understand how many alternate paths we can store (cache) for such en-
gineered and real-time paths. Note that for an N-node network that is fully connected, a pair
of switches has (N − 1) possible paths that are made of a maximum of two links. For exam-
ple, for a 100-node network, there are 99 possible paths. Now, if we consider that an ordered
routing list for each of the 15 load set periods is needed and that a switch needs to keep such
routes for every destination switch, the list of paths that need to be loaded in a switch can be
quite large. This is a major issue that the designers of DNHR faced, especially given that this
development was done in the early 1980s when processors were not as fast as today’s proces-
sors and memory was very expensive as well. The solution that was arrived at was to allow
each source destination switch pair to have a maximum of 15 routes in the routing list per
load set period per switch pair; of these, a maximum of 10 could be for engineered paths and
the other 5 for real-time paths. In practice, it was often found that three to four engineered
paths were enough.

To summarize, DNHR allows at most two links for a call within its network, as do the
other dynamic routing schemes. DNHR is based on OCC, and it allows crankback. DNHR
employs trunk reservation. It is a time-dependent routing scheme in which some routes (“en-
gineered paths”) are computed off-line ahead of time, while other routes (“real-time paths”)
can be computed and appended on a near real-time basis when congestion occurs.

330 10.4 Dynamically Controlled Routing

10.4 Dynamically Controlled Routing

Dynamically Controlled Routing (DCR) was originally developed by Bell-Northern Research
(which became Nortel Networks) [66], [680]. DCR is an adaptive routing scheme that can
be updated frequently (usually every 10 sec) based on the status of the network links. The
computation of routes to be cached has been done through a centralized route processor (Fig-
ure 10.9). Routes take at most two links to complete a call, and crankback is not implemented
in this scheme. Thus, with PCC, if a call is blocked on the second leg of a two-link call, the call
is lost; this means that the user has to try again. DCR has two fall-back mechanisms: (1) in a
situation in which the route processor is down or cannot compute routes in a timely manner,
or does not communicate back to the switched nodes in a timely manner, DCR continues to
operate using the last known routing table, and (2) if a switch loses dynamic routing func-
tionality for some unknown reason, the network can still operate as a two-level hierarchical
routing system in which certain nodes are labeled ahead of time as nodes in the second level
of the hierarchy.

To understand DCR, consider Figure 10.10 where we have indicated that the centralized
route processor is where the link state information is updated regularly. We want to update
the routing list for traffic between nodes i and j; in addition, Consider two possible intermedi-
ate nodes, k1 and k2, are to be considered for alternate routes. Periodically, the switching node
reports its available capacity to the centralized route processor; we will denote dependency
on time using the parameter t. To determine this we need to consider capacity, currently used
capacity, and trunk reservation at time t shown below:

Link ID Capacity Currently Used Trunk Reservation
i-j cij(t) uij(t) rij(t)
i-k1 ci k1(t) ui k1(t) ri k1(t)
i-k2 ci k2(t) ui k2(t) ri k2(t)
k1-j ck1j(t) uk1j(t) rk1j(t)
k2-j ck2j(t) uk2j(t) rk2j(t)

F I G U R E 10.9 DCR architecture.

C H A P T E R 1 0 Hierarchical and Dynamic Call Routing 331

F I G U R E 10.10 DCR: available capacity on links.

If we denote the effective residual capacity on any link l-m at time t by Rlm(t), it is clear
that

Rlm(t) = max{clm(t) − ulm(t) − rlm(t),0}. (10.4.1)

Since an alternate path is made up of two links, the availability of capacity on a path
would be the minimum of the effective residual capacity on each link of the path. Thus, the
available capacity on path i-k1-j and i-k2-j can be written as follows:

Path Available Capacity

i-k1-j R
k1
ij (t) = min{Ri k1(t),Rk1j(t)}

i-k2-j R
k2
ij (t) = min{Ri k2(t),Rk2j(t)}

DCR uses the availability information to compute the probability of choosing an alternate
path. If a path has zero availability, there is no reason to consider this path as a possible alter-
nate path (at this time instant). Thus, choice of path is considered only for a path’s positive

availability, i.e., in this case, if R
k1
ij (t) > 0 and R

k2
ij (t) > 0. Then, the probability of selecting

each path is computed as follows:

pk1
ij = R

k1
ij (t)

R
k1
ij (t) + R

k2
ij (t)

, pk2
ij = R

k2
ij (t)

R
k1
ij (t) + R

k2
ij (t)

. (10.4.2)

Note that this is shown for two paths for node pair i and j. In a fully connected network,
a node pair has up to N −2 two-link alternate paths. Thus, the general expression for choosing
a path via node k is given by

pk
ij = R

k
ij (t)

∑
{m�=i,j and R

m
ij >0} R

m
ij (t)

. (10.4.3)

332 10.4 Dynamically Controlled Routing

There are two important points to note: (1) the above expression should be considered
only for paths with positive availability capacity, and (2) the same probability calculation is
performed for all demand pairs in the network, which means that no capacity is specifically
curved out for a particular demand pair in this probability calculation. The second point
implies that the residual capacity of a link i-k, Ri k(t), can be used by a demand pair connecting
node i and m where k is also a possible intermediate node. Finally, note that the computation
of route probabilities is performed based on the information available at t. At every �t unit of
time, the switching nodes update the centralized route processor with the new status of link
information for use in computing updated routes. In practice, �t is set to be 10 sec. Thus, the
routing in DCR is very adaptive to short-term link status fluctuations.

The actual call routing in DCR uses the routing probability computation for selecting
alternate paths. For each probability value computed for a path with intermediate node k, it
imagines the probability range to be divided as follows for a set of alternate paths identified
by the intermediate node identifier k:

(
0,p1

ij

]
,
(
p1

ij,p1
ij + p2

ij

]
, . . . ,

(
k−1∑

m=1

pm
ij ,

k∑

m=1

pm
ij

]

, . . . ,

(
K−1∑

m=1

pm
ij ,1

]

.

When a call arrives at node i destined for node j, the call first tries the direct link i-j. If there is
no capacity available in the direct link path at that instant, the call then generates a uniform
random number between 0 and 1. Depending on where this number falls, the appropriate
alternate path is chosen to try the call. For example, if the probability value is between 0 and
p1

ij, an alternate path with intermediate node identifier 1 is attempted. Similarly, if the random

number falls between p1
ij and p1

ij + p2
ij, an alternate path with intermediate node identifier 2 is

attempted, and so on.

Example 10.1 Illustration of DCR path computation.
We will now illustrate DCR by using a four-node example. For simplicity, we show the

residual capacity of each link in Figure 10.11. For demand pair 1:2, there are two alternate
routes: 1-3-2, and 1-4-2. Here, the availability for each path is as follows:

Path Available Capacity

1-3-2 R
3
12(t) = min{10,7} = 7

1-4-2 R
4
12(t) = min{3,4} = 3

Then the probability of choosing each path is

p3
12 = 7

7 + 3
= 0.7, p4

12 = 3
7 + 3

= 0.3.

The probability range for call selection is then set up as (0,0.7] and (0.7,1.0] for paths
1-3-2 and 1-4-2, respectively. For example, if an arriving call (after trying the direct link path)
randomly picks the value 0.3 from a uniform random number distribution, the call will be
attempted on path 1-3-2; if the random pick is 0.8, the call will attempt 1-4-2. �

C H A P T E R 1 0 Hierarchical and Dynamic Call Routing 333

F I G U R E 10.11 DCR example.

It is important to note that an arriving call may not find an alternate path despite the
probability of choosing a positive path as computed above. There are a few reasons for this.
First, the probability computation is based on a snapshot taken every �t sec; when a new call
arrives, the network state may have changed since the last computation was done. Second,
a link is also a candidate for alternate paths for other demand pairs in addition to being the
direct path for a call that is between the two end nodes of the link.

Consider again the four-node network of Figure 10.11, this time for calls between nodes 2
and 3. Its two alternate paths 2-1-3 and 2-4-3 have probability 0.875 (= 7

8) and 0.125 (= 1
8),

respectively. Thus, if there is a sudden surge of calls (before the next update) between nodes 2
and 3 requiring alternate routing, they are more likely to take path 2-1-3, thus using up the
available capacity on each leg of this path, that is, on links 2-1 and 1-3, quickly before calls
for nodes 1 and 2 have a chance to use the residual capacity on link 1-3 for its alternate route
1-3-2.

To summarize, DCR allows at most two links for a call within its network. DCR is based
on PCC and does not allow crankback. DCR employs trunk reservation. It is an adaptive
routing scheme in which the probability of selecting alternate routes is computed at a cen-
tralized route processor every 10 sec based on the state of the network links obtained by the
centralized system. This scheme has been deployed in the following networks: Stentor, MCI,
and Sprint.

10.5 Dynamic Alternate Routing
Dynamic Alternate Routing (DAR) [251] was a project initiated by British Telecom. This is a
distributed, adaptive routing scheme. Like other dynamic routing schemes, DAR is limited to
maximum two-link routing and employs trunk reservation. DAR has no crankback and PCC
is used.

For each destination switch j, the originating switch i maintains an alternate path k in its
cache. A newly arrived call first attempts the direct link i-j. If there is no capacity available on
the direct link, it tries the alternate path in its cache. If the call succeeds on this alternate path,
this alternate path remains in the cache. However, if the call cannot set up a call through the
alternate path due to nonavailability of capacity, the call is lost, meaning the user has to retry
it. In addition, the originating node i picks an intermediate node randomly and sticks this in

334 10.6 Real-Time Network Routing

the cache for the next call to use. This means an alternate path remains in the cache as long as
any calls using this alternate path are successfully connected; a new alternate path is picked
randomly the instant the current alternate route cannot connect a call using this path.

The elegance of this routing scheme lies in its simplicity. How could such an algorithm
work well in practice? To see why this algorithm works, think of calls arriving over a window
of time: an alternate path that is successful remains in the cache; if an alternate path is not
successful, it is probably because the links in this path are already congested. Thus, over
time, a least-loaded alternate route is likely to stay in the cache for a higher percentage of
time. Since network traffic can change over time, the routing automatically adapts to another
least-loaded alternate path.

There is another important observation about this routing scheme: it does not require
any network link status to be updated for computing routes. Such approaches are sometimes
referred to as learning automata [520], [521], [657]. Sometimes, a routing scheme such as DAR
is referred to as event driven routing.

10.6 Real-Time Network Routing
Real-Time Network Routing (RTNR) [34] is the successor to DNHR and was deployed in
the AT&T long-distance network in 1991. It is still in use today. Unlike DNHR, RTNR is an
adaptive routing scheme. The routing table for alternate routes can be updated almost on
a per call basis. Consider an RTNR network with N nodes. When a call arrives at node i
and is destined for node j at time t, node i queries node j seeking information about the
status of outgoing links from node j to a switching node k other than node i, i.e., the status
of link j-k. Note that node i knows the status of all its outgoing links i-k. Because a path is
limited to a maximum of two links and circuit-switched links being bidirectional, node i can
then determine the status of all two-link paths i-k-j to destination j by combining information
for link i-k and link j-k. Now, knowing this information, i can decide on choosing an alternate
route for this call.

Now we discuss the type of information sought from node j. In case of RTNR, node i
requests (in its simplest form) the status of availability of all outgoing links as binary status: 1
if the link is available, 0 if it is not available. In essence, RTNR does not quite care about how
much is available on outgoing links from node j as long as there is available capacity. That
is, if the effective residual capacity Rjk as given in Eq. (10.4.1), which takes into account any
trunk reservation, is positive, link j-k is available. Thus, availability of outgoing links j-k is

Ijk =
{

1, if Rjk ≥ R̂

0, otherwise

for k = 1,2, . . . ,N, k �= i, k �= j, where R̂ is a predefined positive integer. While R̂ = 1 would
be the lowest value for which this relation works, for practical purposes, it would be safer to
use a higher value. In other words, R̂ = 1 would mean the link is almost congested; thus, it
may not be preferable. Thus, R̂ in RTNR defines the threshold for indicating where a link is
heavily loaded (utilized) or lightly loaded. Similarly, node i can determine the status of all its
outgoing links, i.e.,

Iik =
{

1, if Rik ≥ R̂

0, otherwise

C H A P T E R 1 0 Hierarchical and Dynamic Call Routing 335

F I G U R E 10.12 RTNR example.

for k = 1,2, . . . ,N,k �= i,k �= j. Once node i receives the availability information from node j,
it performs the boolean “AND” (∧) operation for all intermediate nodes k, i.e.,

Iik ∧ Ijk, k = 1,2, . . . ,N, k �= i, k �= j

to determine the availability of alternate paths. For the subset of paths for which the result
is 1, i.e, the path is available, node i selects one of the paths at random as the alternate route
for this call. In reality, RTNR also does an additional “AND” operation to check preference
on availability of switches, referred to as node availability, since a switch’s CPU can be over-
loaded (“switch congestion”) or a switch might not be preferred due to maintenance, before
identifying usable paths.

We now illustrate RTNR through a simple example, where node availability is also incor-
porated (Figure 10.12). Consider a call arriving at node 1 destined to node 2, and suppose that
the network consists of 6 nodes. Then, the status of the availability of node 1 for its outgoing
links and of node 2 for its outgoing links is shown in Table 10.1.

In this example, we see that paths 1-4-2 and 1-6-2 are both usable; node 1 can then ran-
domly choose one of them. It is important to note that if the direct link exists, the call attempts

TA B L E 10.1 RTNR route availability computation.

Node k 1 2 3 4 5 6
Outgoing from node 1 I1k — — 0 1 1 1
Outgoing from node 2 I2k — — 0 1 0 1

Path availability 1-k-2 — — 0 1 0 1
Node availability I2k — — 1 1 0 1

Usable paths 1-k-2 — — 0 1 0 1

336 10.7 Classification of Dynamic Call Routing Schemes

the direct link route first before attempting the alternate route decided by the above mecha-
nism.

From the basic operation of the above method, we can see that crankback is not essential
since the information about availability is fresh since switch i is making this decision based
on querying after the arrival of the call. However, an important issue in circuit-switched voice
networks is to keep the call setup time to a minimum. We can see that if a query is generated
after the arrival of the call, the call has to wait for a response from the destination node and
computation of path availability before the call can attempt an alternate route; this time adds
up to the call setup time, i.e., post-dial delay. In general, it is desirable to avoid this delay.
In practice, RTNR uses a slight variation. To choose an alternate path, an arriving call uses
the query and path availability result already obtained for the last call for the same source–
destination pair; it still generates a query to its destination node for this call, which is meant
for use by a future call arriving for the same source–destination pair. This process reduces the
impact on the call setup delay. However, this “one-call-old” notion introduces the possibility
that a path randomly chosen from the set of available paths so obtained can possibly be stale
for a new arriving call. Thus, in this case, having the crankback function allows a call to try
another path from it availability list (for last call) if the first one is not available any more. In
the worst case, if none of the paths from the one-call-old list works, then a call can wait for the
result for its own query to see if a better path is available. However, a word of caution: such
a crankback from one to the next can also induce an additional delay on call setup time; thus,
this should be used only for a certain number of attempts on alternate paths for a specific call.

RTNR also allows for a network status map query at different congestion levels. Path
selection for different levels is done similar to what we discussed above, except that differ-
ent availability maps are generated based on a different congestion threshold values. In all
cases, the query and query exchange for such information are done using the out-of-band
SS7 network (see Section 12.10 in Chapter 12). Finally, RTNR can handle calls with differ-
ent bandwidth requirements (“multi-rate”) and thus provide different classes of services; the
multi-rate, multi-service case is discussed later in Chapter 17.

10.7 Classification of Dynamic Call Routing Schemes
While there are other dynamic routing schemes (see Section 10.8 and Section 11.7), the above
four schemes give us a good sense about different ways to classify dynamic routing. That is,
in general, dynamic routing schemes can be classified in the following ways:

• Centralized vs. Distributed: In the centralized system, routing computation is performed
at a centralized processor. For example, DNHR and DCR fall into this category. While
DNHR is done on a weekly basis based on traffic projection, DCR is done on a 10-sec
interval. In the case of distributed routing, the switch itself does the routing computation,
presumably relying on status obtained or observed about the network. Both RTNR and
DAR are distributed routing schemes.

• Time-Dependent vs. Adaptive: Time-dependent routing refers to updating of the routing ta-
ble at a certain time (once a day or once a week) for a preplanned set of routes a call
can attempt while the set of routes may vary from one time period to another. Adaptive

C H A P T E R 1 0 Hierarchical and Dynamic Call Routing 337

routing refers to frequent update (in min or sec) of the routing table based on traffic mea-
surements or on events. DNHR falls under time-dependent routing, while DCR, RTNR,
and DAR can all be considered adaptive routing.

• Periodic vs. On-demand: Within adaptive routing, the routing table update can be per-
formed on a periodic basic, or on-demand. DCR is an example of routing that is updated
every 10 sec. Both RTNR and DAR fall under on-demand since in the case of RTNR, the
routing table update can be on a call-by-call basis (whether current or one-call-old), while
in the case of DAR, a routing table update is performed whenever the current alternate
route blocks a call.

• State-Dependent vs. Event-Dependent: State-dependent refers to considering the state of a
network in determining a routing decision; typically, state here refers to the state of a link
such as available capacity or just availability, or some notion of a cost. DCR and RTNR fall
into this category. Event-dependent refers to selection of a new alternate route if a certain
event occurs; DAR falls into this category.

• OCC vs. PCC: DNHR and RTNR are based on OCC, while DAR and DCR are based on
PCC. An intertwined feature with OCC and PCC is crankback.

Despite the above classification, all dynamic routing schemes have two things in com-
mon: (1) all routing schemes allow at most two links for routing a call, and (2) they all pro-
vide trunk reservation. If the network is fully connected, a call tries the direct link route first,
although DNHR or RTNR does not require it; if it is not fully connected, a preferred two-link
route is usually determined as the first attempt path for the demand pair that does not have
a direct link. However, the actual computation of alternate routes and how many alternate
routes to keep in the routing table differs from one scheme to another.

10.8 Maximum Allowable Residual Capacity Routing

From the discussion of the above routing schemes, it is apparent that other routing schemes
can be designed; the most obvious one is maximum allowable residual capacity (MARC)
[680]. Recall that MARC is a form of widest-path routing discussed earlier in Chapter 2. To
describe MARC routing, we will use the notation described earlier in Section 10.4 and repeat
some common descriptions. To be consistent with the previous routing schemes, we consider
a network where at most two-link paths are allowed, and that is almost fully connected.
Consider a pair of nodes i and j. Suppose that at time t, we have the following link information
regarding two possible alternate routing nodes k1 and k2 for the pair of nodes i and j:

Link ID Capacity Currently Used Trunk Reservation
i-j cij(t) uij(t) rij(t)
i-k1 ci k1(t) ui k1(t) ri k1(t)
i-k2 ci k2(t) ui k2(t) ri k2(t)
k1-j ck1j(t) uk1j(t) rk1j(t)
k2-j ck2j(t) uk2j(t) rk2j(t)

338 10.8 Maximum Allowable Residual Capacity Routing

Then allowable residual capacity of any generic link l-m is given by

Rlm(t) = max
{
clm(t) − ulm(t) − rlm,0

}
. (10.8.1)

Knowing the above quantity for different links, the available capacity via node k1 and k2

can be given as follows:

Path Path Available Capacity

i-k1-j R
k1
ij (t) = min{Ri k1(t),Rk1j(t)}

i-k2-j R
k2
ij (t) = min{Ri k2(t),Rk2j(t)}

Now, instead of choosing the probability of selecting an alternate path as done in DCR,
another rule can be applied in which the path with MARC is chosen. As for the example with

the two alternate paths considered above, via node k1 would be chosen if R
k1
ij (t) is larger than

R
k2
ij (t); otherwise, k2 will be chosen.

The same argument can be applied if more than two alternate paths are considered. When
you look carefully, you notice that this scheme uses the shortest-widest path computation
described earlier in Section 2.6. The major difference is that the direct link between the source
and the destination node is always tried first, before trying the most preferred alternate path
based on MARC. It is important to note that the direct path is the attempted path even if it
has less available capacity than the alternate path with MARC at that time instant. You might
wonder why we need to give priority to routing a call first on the direct link; this again goes
back to the bandwidth used by a call. If a call is alternate routed, this will use up two units of
capacity, one from each leg, as opposed to one unit of capacity for a direct link call. Because
of this, the network can also show bistable behavior if naively the path with the maximum
available capacity is chosen regardless of whether this is a direct or an alternate path. In other
words, attempting a call on the direct link path first is important.

To compute the most preferred alternate path, a network may choose to do periodic up-
date of allowable residual capacity either in a centralized manner similar to DCR or a distrib-
uted manner similar to RTNR. If a periodic update/computation window, say �t sec, is used,
there is a change in available capacity between the updates due to newly arrived calls and
also due to calls that have been completed. Thus, a preferred alternate route at a particular
instant of time may not be preferred after the next computation. Thus, MARC routing has the
potential of oscillating the preferred alternate route from one time window to another. Thus,
to avoid the impact of sudden short-term fluctuations, the exponential weighted moving average
method (see Appendix B.6) can be employed to obtain a smoothed allowable residual capacity
that can be used instead of Eq. (10.8.1).

Finally, it is important to note that MARC seems to indicate that an alternate route is
preferable if it was the least busy. This, however, brings up whether load matters; in the case
of MARC, it implies allowable residual capacity. However, a least-loaded path, instead of a
least-busy path, can be considered where the traffic load is directly taken into account; a state-
dependent dynamic routing scheme based on this least-loaded concept is described later in
Section 11.7.

C H A P T E R 1 0 Hierarchical and Dynamic Call Routing 339

10.9 Dynamic Routing and Its Relation to Other Routing
We will now discuss how dynamic routing for telephone networks is related to other routing
covered in this book.

10.9.1 Dynamic Routing and Link State Protocol

When we consider a dynamic routing scheme that is based on the state of the network, be it
centralized or distributed, the routing decision can be based on the state of the link such as
availability capacity, or load of the link. Such routing schemes are in essence then based on
some link state routing protocol that allows exchange of information about “cost” of links.
An obvious question that comes to mind is how dynamic routing is similar or different from
the link state protocol-based routing discussed earlier in general (see Section 3.4 in Chap-
ter 3).

For link state protocol-based routing for IP networks, the cost of a link is the unit of
information that is used in routing computation using shortest-path routing. Dynamic state-
dependent routing also uses the “cost” of the link in its routing decision while this cost may
be dependent on available capacity (as in DCR), availability (as in RTNR), or load on link.
In the case of link state protocol-based routing for IP networks, the link state advertisement
is accomplished through a flooding mechanism on an in-band hop-by-hop basis (see Sec-
tion 3.4.1). For dynamic state-dependent routing (whether centralized or distributed), the
link information is exchanged through an out-of-band network; typically, this is done either
through dedicated data circuits or through an SS7 network. Finally, note that RTNR also uses
node availability; thus, RTNR employs an extended link state concept that includes node-
state information. Current IP routing protocols do not have the ability to communicate the
state of a router, e.g., if it is highly congested due to, say CPU overload; this would need to
be manifested through link cost by factoring in queueing delay in some manner.

10.9.2 Path Selection in Dynamic Routing in Telephone Networks and IP
Routing

If we observe the state-dependent routing schemes, we can see that they all have a preference
for alternate routes that indicate least or low load in some sense. Consider, for example, DCR.
In this routing scheme, path availability is determined based on the probability of available
bandwidth (subject to trunk reservation) of each link. In the case of RTNR, path availability
is defined based on doing an “AND” operation of lightly loaded links.

In the case of link state routing for IP networks, the link cost information is used to com-
pute shortest-path routing using Dijkstra’s algorithm (see Section 2.3), where path cost is
computed using an additive property. However, for dynamic state-dependent routing, the
link state is used to compute one or more alternate paths while a pre-assigned direct path is
usually assumed; also, none of the schemes uses Dijkstra’s algorithm. More importantly, path
determination is often done in a nonadditive manner, e.g., as in DCR. This then takes us back
to the notion of nonadditive routing, such as maximum free capacity or shortest-widest path
routing discussed earlier in Section 2.6 and Section 2.7. However, we must point out that
in schemes such as DCR and RTNR, the path “cost” computation is different from “plain”

340 10.10 Summary

TA B L E 10.2 Comparison between intradomain link state–based routing in IP networks
and dynamic routing in telephone networks.

Link State Protocol for IP Net-
works

Dynamic State-Dependent
Routing for Telephone Net-
works

Link state advertisement Through flooding Via dedicated data circuits or
SS7 network

Link “cost” Link cost used for shortest
path routing

Link state (e.g., available ca-
pacity) used for computing al-
ternate routes

Route computation al-
gorithm

Dijkstra’s algorithm Variety of algorithms

Additive/Nonadditive Additive property of link cost
used

Nonadditive property of link
“cost” used

shortest-widest path computation, while accounting for trunk reservation is also a critical is-
sue to consider for network stability. In Table 10.2, we summarize the differences between
link state protocol-based routing in IP networks (used in intradomain) and for telephone net-
works (used in an IXC environment).

In essence, there are important lessons to learn when we start comparing and contrasting
dynamic state-dependent routing and shortest-path routing in IP networks. For example, use
of a link state protocol concept does not necessarily mean that the path selection is to be
solely based on additive link cost property; furthermore, that flooding is not the only way to
communicate link state information. We have discussed this earlier in Section 3.4.2.

10.9.3 Relation to Constraint-Based Routing

Later, we will discuss constraint-based routing for quality-of-service routing (see Chapter 17)
and for MPLS networks (see Chapter 19). In fact, dynamic routing in telephone networks is a
form of constraint-based routing.

In the case of dynamic routing in the telephone network, the critical constraint is that the
path must have at least one unit of bandwidth available to be able to route a call. This is really
the idea of a constraint. Furthermore, we can also argue that trunk reservation is a form of
constraint since it is preferable to have it to maintain the stability of the network. As discussed
in RTNR, sometimes it is not preferable to have certain switches on the routing path. Thus, in
essence, alternate route selection in dynamic routing requires taking into consideration con-
straints such as availability of bandwidth on a path, any restriction due to trunk reservation,
switch preference, and so on.

10.10 Summary

In this chapter, we have presented routing in the telephone network while taking an evolu-
tionary view starting with hierarchical routing to various forms of dynamic routing.

C H A P T E R 1 0 Hierarchical and Dynamic Call Routing 341

There are several important aspects to understand from this chapter:

• It is possible to have routing functionalities in a network without introducing loops even
in the absence of any information exchange as long as nodes are labeled differently; this is
the case with hierarchical routing; in a sense, this is a remarkable achievement.

• Most dynamic call routing schemes for the telephone network require exchange of link
state information—such information exchange does not use flooding; instead separate
dedicated channels or a signaling network are used.

• The route computation is primarily based on bandwidth availability while the exact com-
putation is different for different routing. There is, however, at least one dynamic routing
scheme (DAR) that does not require any information exchange to do route computation.

• While routing can address certain congestion issues in a network, it cannot by itself take
care of all types of congestion; rather, a good network requires proper control schemes in
addition to routing schemes for efficient workings.

We have not discussed how traffic load is taken into account in the routing decision or
how a network is traffic engineered; these aspects are covered in Chapter 11.

Further Lookup
The classical book [596] gives a broad overview of a telephone network under the old Bell
System, including hierarchical routing. There are many rules for hierarchical routing but only
the main ones are discussed here; the interested reader is referred to [27] for all the different
rules.

The set of studies on routing goes back to the work of J. H. Weber in the 1960s [735],
[736]; he is often credited with identifying the concept and need for trunk reservation. The
notion of flexible dynamic routing and its benefit was first articulated by Nakagomi and
Mori in the early 1970s [519]. Since then, with the advent of switching technology, dynamic
routing research gained momentum, leading to different approaches to dynamic routing; for
example, DNHR ([30], [36]), DCR ([680]), DAR ([251]), and RTNR ([34]). Another dynamic
routing scheme, called state-dependent routing [539], [763], is discussed later in Section 11.7
in Chapter 11, since this scheme depends on understanding load and blocking in a telephone
network, which are also covered in Chapter 11. Dynamic call routing based on learning au-
tomata [520] has also been proposed; for example, see [521], [657]. Note that dynamic alter-
nate routing (DAR) can also be classified as a learning automata-based routing scheme. There
have been numerous studies about dynamic routing, including early work, such as [7], [128],
[197], [385].

To learn more about dynamic routing in the telephone network, the reader is directed to
the books by Ash [27] and by Girard [253]. A 20-year overview of dynamic routing has been
recently presented in [33].

For all about telephone switching systems and its many details, see the book by Thomp-
son [697].

342 10.10 Exercises

Exercises
10.1 Review questions:

(a) Explain how hierarchical routing works.

(b) Explain how real-time network routing (RTNR) works.

(c) What is crankback?

(d) What is trunk reservation?

10.2 What are the primary differences between telephone routing and Internet routing?

TA B L E 10.3 Network Data for a 5-node network.
Link ID Capacity Currently Used Trunk Reservation
1-2 34 30 1
1-3 116 93 5
1-4 25 20 1
1-5 41 27 2
2-3 61 61 3
2-4 76 43 4
2-5 33 30 3
3-4 97 81 5
3-5 141 118 7
4-5 110 102 5

10.3 Compare DCR and DAR, and determine their similarities and differences.

10.4 When is crankback helpful? When would it be not beneficial?

10.5 Dynamic routing schemes discussed in this chapter allow at most two links for a path.
Discuss whether the schemes presented here can be extended to the multilink path case.

10.6 Consider a 5-node fully-connected network, with current network data as given in
Table 10.3.

(a) Assume DCR is used. For each demand pair, compute the probability of selection
of all possible paths subject to trunk reservation.

(b) Assume RTNR is used in which it was decided that if a link has five or less units of
capacity are available, these will be marked as no-available links (i.e., as 0), and the
rest are available links (i.e., as 1). For each demand pair, determine the valid paths
chosen by RTNR.

(c) Identify the demand pairs that would not allow any alternate routing through its
direct link.

This page intentionally left blank

11
Traffic Engineering
in the Voice
Telephone
Network
There are no traffic jams when you go the extra mile.

Anonymous

Reading Guideline

Understanding voice traffic engineering gives you an idea on how traffic load, call
blocking, and routing are related. The first part of this chapter can be read inde-
pendently of Chapter 10; this material is also helpful for quality-of-service routing
(Chapter 17) and VoIP routing (Chapter 20). Detailed analytical modeling for dy-
namic call routing is presented in the second half of the chapter; this assumes some
knowledge of the fixed-point equation and the queueing theory. Regardless, illus-
trations such as in Section 11.8.4 can be read independently and are helpful in un-
derstanding routing dynamics and performance.

C H A P T E R 1 1 Traffic Engineering in the Voice Telephone Network 345

In Chapter 10, we presented hierarchical and dynamic routing in the telephone network. In
this chapter, we introduce the notion of traffic load in a telephone and discuss how it plays
an integral part in routing from a traffic engineering perspective.

11.1 Why Traffic Engineering?

The goal of traffic engineering for the telephone network is to attain optimal performance of the network
in an operational environment. We decouple traffic engineering from medium to long-term net-
work planning when capacity can be added to the network. Note that if there is not enough
capacity in the network to provide an acceptable performance guarantee, there is not much
that traffic engineering mechanisms can do. Thus, with regard to traffic engineering, there is
an implicit assumption that the network is engineered with enough capacity to provide an
acceptable performance under normal operating conditions; to understand and learn more
about capacity planning and design, you may refer to [564].

This brings up an important question: why do we need to consider any traffic engineer-
ing issues if the network has enough capacity to begin with? There are multiple reasons for
this. For network planning, projected traffic is considered as input and the design methods
used for estimating capacity usually use coarse-grain approximations; such approximations
may not necessarily be a good way to do fine-grain evaluation of network performance on a
near-term basis. In addition, we need to consider the fact that from the time network plan-
ning is done (that is, the capacity was last adjusted), traffic as seen in the network might be
quite different than what it was projected to be. Furthermore, there is short-term traffic fluc-
tuation/overload (either network wide or in a focused area) that cannot be avoided; in such
cases, we need to determine whether the network is performing properly and/or if there are
some short-term measures that can help the network perform at its best. This is where routing
plays an important role. Thus, we need to understand the performance of a network due to
various routing schemes. Furthermore, there are various control mechanisms that are needed,
often to address overload situations.

In a telephone network, there are two high-level parameters that impact the performance
of a network: traffic load and capacity. Since capacity is assumed to be given for the purpose
of traffic engineering, the key parameter is traffic load. The main performance metric for the
telephone network is call blocking. It is important to note that traffic load is not the only pa-
rameter; routing as well as various controls play roles in performance. The functional relation
between these various components can be summarized as follows:

Call blocking =F(traffic load, capacity, routing, controls). (11.1.1)

To understand the above relation, it is important to define traffic load. Obviously, traffic load
is dependent on traffic measurements as observed from a network. We will, however, not
go into the details of traffic measurement issues. However, traffic load (especially projected
traffic load) can be influenced by business decisions as well. Thus, we need to have a general
notion of traffic load for the telephone network that can be usable from traffic measurements
as well as for projected load. In the next section, we discuss traffic load and then tie it to call
blocking.

346 11.2 Traffic Load and Blocking

11.2 Traffic Load and Blocking
We will first start with the simple case of a single network link (ignoring routing and control),
i.e., to understand the following functional relation:

Call blocking =F(traffic load, capacity). (11.2.1)

Voice telephone networks operate on the following basic principle: there is a finite amount of
capacity (bandwidth) and each arriving call must be allocated dedicated bandwidth for the
duration of the call; if bandwidth for this call is not available, the call must be blocked. Thus,
the user is required to retry when blocking occurs. Such systems are also referred to as loss
systems.

The relationship between call arrival and blocking and capacity is an important traffic
engineering issue in the voice telephone network. A key result in this regard is attributed to
A. K. Erlang for his seminal work on how to compute blocking, almost a century ago. We
need to explain a few things before we are ready to present his results.

For the purpose of this discussion, we will consider a network link in which calls are
arriving on either end of the link destined for the other end of the link; this also reflects the
fact that call bandwidth in the voice telephone network is bidirectional.

Call arrivals in the telephone network are random. However, to make it simple, we will
assume temporarily that calls arrive in a deterministic fashion and that we are considering
only a single voice circuit. First, suppose that calls arrive in a deterministic fashion at the start
of an hour and the user talks for exactly an hour. Thus, one user occupies the circuit for an
hour and no one else can use it. Now suppose the user talks for only 10 min and then hangs
up. The circuit is free for others to use for the rest of the hour. In fact, if another user arrives at
that instant and occupies the circuit for, say an additional 10 min, then a third user can start
using the circuits 20 min into the hour. Thus, if we slice the length of the calls to fixed 10-min
windows, the system can accommodate six calls; that is, this looks like the system can handle
six arrivals per hour (each of 10 minutes’ duration) as opposed to one arrival per user (using
the entire hour for talking), while in either case just one circuit was considered! Simply put,
this intuitively says that an increase in the call arrival rate does not necessarily mean that we
need more circuits (or in general bandwidth) since the call duration is also a critical factor.

From the above illustration, it is clear that we need to consider call arrival as well as call
duration to understand the notion of traffic. However, note that both call arrival as well as
call duration are actually random, not deterministic as we have used in the simple illustra-
tion above. In Table 11.1, we have listed the call arrival time, duration, and end time of seven
randomly arriving calls; in Figure 11.1, we have plotted this information in terms of num-
ber of busy circuits; note that the number of busy circuits also accordingly has a nonuniform
behavior. In analysis, however, we use the average call arrival rate and the average duration.
However, to account for any random event, we need to see what type of statistical distri-
bution is appropriate. It has been found that interarrival time between calls is exponentially
distributed, which is equivalent to saying that the call arrival follows the Poisson process (see
Appendix B.10); thus, we sometimes loosely refer to call traffic as Poisson traffic. Further-
more, the call duration time is found to follow the exponential distribution. Given the av-
erage call arrival rate and the average duration of a call, a good way to capture the traffic
demand volume for telephone traffic is to consider the product of these two terms. If λ is the

C H A P T E R 1 1 Traffic Engineering in the Voice Telephone Network 347

TA B L E 11.1 Call information.
Call Start Time Duration End Time

Number (in sec) (in sec) (in sec)
1 2.3 145.3 147.6
2 6.7 128.8 135.5
3 45.2 18.4 63.6
4 62.2 512.5 574.7
5 73.2 96.2 169.4
6 94.1 1045.7 1139.8
7 196.6 15.2 211.8

F I G U R E 11.1 Number of busy circuits (trunks) as calls arrive and leave over time
(shown up to 200 sec) for calls listed in Table 11.1.

average call arrival rate, and τ is the average duration of a call, the traffic demand, referred
to as offered load or offered traffic, is given by

a = λτ. (11.2.2)

This dimensionless quantity is given the unit name Erlang (or Erl), in honor of A. K. Erlang.
This quantity is hard to visualize since it is a product of two terms. However, there is a nice
physical interpretation: this quantity refers to the average number of ongoing (busy) calls
offered to a network link if we were to assume the link to have infinite capacity. In practice, we
do not have infinite capacity; thus, there is always a chance that (some) calls will be blocked.
This also means that we need to consider another entity called carried load or carried traffic to
refer to traffic that is carried (not blocked) due to finiteness of capacity. It is easy to see that in
the case of infinite capacity, carried load is the same as the offered load.

A. K. Erlang’s work is profound in that he determined how to compute call blocking
probability when average offered load and capacity are given. If c is the capacity of a link
in terms of number of voice circuits, then call blocking for offered load a is given by the
following Erlang-B loss formula:

348 11.2 Traffic Load and Blocking

F I G U R E 11.2 Call sequence and circuit occupancy for calls listed in Table 11.1.

B(a, c) =
ac

c!
∑c

k=0
ak

k!
. (11.2.3)

This then is the relationship we noted in a generic way in Eq. (11.2.1). Several different
aspects can be learned from the above formula. We present two illustrations.

Example 11.1 Erlang blocking illustration.
Consider a T1-link (1.54 Mbps) where calls are offered. Since each digitized voice circuit

requires 64 Kilobits per second (Kbps) (= K), the bandwidth in terms of call units is c = C/K
where C is the raw data rate of the link; in the case of a T1-link, we have c = 24(≈ 1.54/.064)

voice circuits. Suppose that a load of 20 Erl is offered to this link. Then, the call blocking
probability obtained using Eq. (11.2.3) is 6.6%.

We note the following important aspects: (1) it is possible to offer a load higher than 24 Erl
to a link of capacity 24 since this is a loss system, and there is still a chance that some calls
will go through; in fact, the call blocking probability for an offered load of 24 Erl to a capacity
of 24 units, is 14.6%; and (2) blocking also benefits from scaling due to nonlinearity of the
blocking formula; for example, if we increase the capacity 10 times to 240 circuits and the
load 10 times to 240 Erl, the blocking drops to 4.9% (from 14.6%). �

It is also important to understand what happens to load and blocking when the average
call duration is changed. The following example illustrates that.

Example 11.2 Change in average holding time and impact on blocking.
Recall that offered load is a combination of two parameters: average call arrival rate and

average call duration. Suppose that the offered load is 15 Erl; this load offered to a link with
24 units of bandwidth results in 0.8% call blocking. If the average call duration is 3 min, the
average call arrival rate is 5/min. Suppose in a network the average call arrival rate stays the
same (at 5/min), and the average call duration increases from 3 to 6 min; we can then see that
the newly determined offered load is 30 Erl (= 5 × 6); then, call blocking for 30 Erl offered to
a link of 24 voice circuits is 27.1%! That is, without any increase in the call arrival rate, the
offered load increases if the average call duration increases, thus impacting the call blocking
rate. �

C H A P T E R 1 1 Traffic Engineering in the Voice Telephone Network 349

So far, we have talked about traffic, but we have not talked about directional traffic while
telephone trunks are most often bidirectional. In the following, we illustrate what it means to
be directional traffic in terms of blocking.

Example 11.3 Bidirectional trunks, directional traffic, and blocking.
Consider the simple case of a network link where traffic arrives on either end destined

for the other end; thus, whenever a circuit is found free, either side can grab it. The question
then is: what is the blocking observed by each side?

Let us consider this problem with some numbers. Let the number of circuits on a link
be 100 between two nodes 1 and 2 connected directly by a bidirectional trunk group. Let the
offered load from node 1 to node 2 be 85 Erl and let the offered load from node 2 to node 1
be 5 Erl. You might be misled to think that node 1 to node 2 should face more blocking since
it has more traffic than the other direction (in fact, 17 times more). Actually, both sides will
face the same blocking. Due to Poisson arrival of traffic and since either side can grab a circuit
as long as there is one available without any preferential treatment, the sum traffic remains
Poisson (see Appendix B.10) and we can sum up the loads. Thus, this situation is equivalent
to the case of a total of 90 Erl being offered to a link with 100 circuits; the call blocking from
Erlang-B loss formula is then found to be 2.69%.

In fact, if 45 Erl is offered from one side and another 45 Erl from the other side, the block-
ing value will remain the same since the total offered load is still 90 Erl. �

Remark 11.1. Blocking with multiple traffic classes.
The scenario for two traffic classes follows the same principle described in the above

example. That is, if there are two different traffic classes using the same link, both classes will
observe the same blocking value regardless of each one’s specific load as long as the per-call
bandwidth for both classes is the same. If the per-call bandwidth is different for different
traffic classes, the situation changes; in fact, the Erlang-B formula is not applicable any more.
This situation will be discussed later in Section 17.6. �

In the examples discussed so far, we have computed results using the Erlang-B loss for-
mula (11.2.3); a closer look reveals that it includes both factorial (c!) and exponential (ac)
terms, which can cause numerical difficulty for large numbers. Below, we describe a simple
way to compute this formula.

11.2.1 Computing Erlang-B Loss Formula
It may be noted that the Erlang-B loss formula given in Eq. (11.2.3) can also be expressed
through the following recurrence relation:

B(a, c) = aB(a, c − 1)

c + aB(a, c − 1)
(11.2.4)

with the initial condition B(a,0) = 1.

350 11.3 Grade-of-Service and Trunk Occupancy

If we write B(a, c) = 1/d(a, c), then we can rewrite the above recurrence relation as fol-
lows:

d(a, c) = c d(a, c − 1)/a + 1.

Using this result, we can develop an iterative algorithm, as given in Algorithm 11.1, for
computing call blocking when the offered load and the number of circuits are given.
While this is the basic idea of the algorithm, in an actual implementation, some nu-
merical round-off issues should also be addressed for extreme cases of load and capac-
ity.

A L G O R I T H M 11.1 Computing blocking using Erlang-B loss formula

procedure erlangb (a,c)
if (a ≤ 0 or c < 0) return ’input not valid’
d = 1
for i = 1, . . . , c do

d = i ∗ d/a + 1
endfor
b = 1/d
return(b)
end procedure

11.3 Grade-of-Service and Trunk Occupancy
An important measure in a telephone network is the grade-of-service (GoS) provided by the
network. GoS is a form of quality-of-service (QoS) where the quality perceived by users is in
terms of average call blocking probability below a threshold. Usually, such acceptable block-
ing is 1% or less, while sometimes 0.1% or less is preferable.

For a network link, the question is how to determine the number of circuits needed if
the offered load, a, and GoS, b, are given. By considering Erlang-B loss formula (11.2.3), this
would mean that we need to determine the smallest integer c such that

B(a, c) ≤ b. (11.3.1)

This is equivalent to saying that we want to find an inversion function B−1(a,b) of the
Erlang-B loss formula to obtain c. However, Erlang-B loss formula is not invertible analyt-
ically. Thus, we can take an algorithmic approach to determine the minimum integer c for
which Eq. (11.3.1) is satisfied; such an approach is presented in Algorithm 11.2. Note that you
can choose the starting cguess to be 1, and the algorithm still works; however, the convergence
would be long. Thus, a good starting point cguess is preferable. For example, if a is less than
1500 Erls, and GoS is smaller than 0.02, then we can use starting cguess to be �a�, i.e., the largest
integer smaller than or equal to a. It may be noted that Algorithm 11.2 determines the number
of circuits as an integer quantity; if the number of circuits needs to be a modular value such

C H A P T E R 1 1 Traffic Engineering in the Voice Telephone Network 351

as a multiple of 24 circuits (for a T1-link), then proper rounding off to a multiple of 24 must
be addressed.

Using Algorithm 11.2, we have plotted the minimum number of circuits required for two
GoS values, 0.01 and 0.001, as the offered load changes from 1 to 100 in Figure 11.3(a). This
figure should help you obtain some perspective on the difference in the number of circuits
required for different GoS values.

A L G O R I T H M 11.2 Determining the minimum number of circuits, given a and
GoS

procedure DetermineCircuits (a, GoS)
if (a ≤ 0 or GoS < 0.0 or GoS > 1.0) return ’input not valid’
Pick a starting cguess

btemp = erlangb(a, cguess)
if (btemp ≥ GoS) then

while (btemp ≥ GoS) do
cguess = cguess + 1
btemp = erlangb(a, cguess)

end do
else

while (btemp ≤ GoS) do
cguess = cguess − 1
btemp = erlangb(a, cguess)

end do
cguess = cguess + 1

endif
return(cguess)
end procedure

F I G U R E 11.3 (a) Number of circuits needed, (b) trunk occupancy.

352 11.4 Centi-Call Seconds and Determining Offered Load

There is also another measure besides GoS that is of importance in telephone networking;
it is called trunk occupancy. In essence, this represents trunk utilization for traffic that is carried
by the trunkgroup. Carried traffic is, however, not the same as offered traffic. The offered load,
a, and the carried load, â, are related as follows:

â = a(1 −B(a, c)). (11.3.2)

That is, an offered load that is not blocked is the carried load. We have stated earlier that a
physical interpretation of offered load is the average number of ongoing calls if we were to
have infinite capacity. This can be seen as follows: at infinite capacity, there is no blocking,
i.e., B(a,∞) = 0; thus, we have â = a. This also means that another way to understand carried
load is the average number of ongoing calls if there is finite capacity, i.e., the average number
of busy trunks. Now trunk occupancy is the ratio, the average number of busy trunks divided
by the number of trunks in the trunkgroup, i.e.,

η = a(1 −B(a, c))
c

. (11.3.3)

It is helpful to understand trunk occupancy as the traffic load changes while trying to
maintain a particular GoS. In Figure 11.3(b), we have plotted trunk occupancy as the offered
load changes from 1 to 100 for two different GoS values, 0.01 and 0.001, corresponding to the
respective capacity determined, shown in Figure 11.3(a). We note that for small trunkgroup
(i.e., a trunkgroup with a small number of trunks), the trunk occupancy is quite low; for ex-
ample, for a T1 trunkgroup that supports 24 voice circuits, the trunk occupancy is about 68%
for 0.01 GoS while for a trunk group with 96 circuits together, the trunk occupancy increases
to 87% at the same GoS. This shows that there is a multiplexing gain with a larger trunkgroup.

11.4 Centi-Call Seconds and Determining Offered Load
Traditionally, it was not possible to measure offered load directly, only whether a circuit is
busy can be checked. Thus, the question is how to determine the offered load from such
measurements.

If we can measure the number of busy trunks over a period of time, we can then estimate
the average number of busy trunks. We have already indicated above that the average num-
ber of busy trunks is none other than the carried load. Traditionally, voice circuits busy/idle
status was checked every 100 sec resulting in the measure called centi-call second (CCS). Thus,
in an hour, measurements are done 36 times. Suppose that we obtain a measure of 540 CCSes
by checking 24 voice circuits over an hour. Then, the average number of busy trunks (circuits)
is 540/36 = 15. Since we noted earlier that the average number of busy trunks is the same as
the carried load, we can equate this quantity, 15, to 15 Erl of carried load. Given a carried
load of 15 Erl for 24 voice circuits, it is not obvious how we can compute offered load using
Eq. (11.3.2); in this case, â and c are given while offered load, a, is the unknown. Since the
Erlang-B loss formula cannot be analytically inverted, an algorithmic approach can be used,
much like what we discussed in the last section. To do that, we note that Eq. (11.3.2) can be
rewritten as follows:

a = â + aB(a, c). (11.4.1)

C H A P T E R 1 1 Traffic Engineering in the Voice Telephone Network 353

Since â and c are known, it then takes the fixed-point equation form (see Appendix B.2):

a =F(a).

Thus, a fixed-point–based algorithm, as described in Algorithm 11.3, can be used for comput-
ing offered load. An important point to note is that since the average number of busy trunks
can never be larger than the number of trunks, the following must hold: â < c. This means
that for bad inputs that do not follow this requirement, it must be specially taken care of. For
our illustration of 15 Erls of carried load on a trunkgroup with 24 trunks, we can find that the
offered load is 15.138 Erls.

A L G O R I T H M 11.3 Computing offered load from carried load

procedure OfferedLoadFromCarriedLoad (â, c)
if (â ≥ c) return ’input not valid’
Initialize anew = â
Set aold �= anew

while (|anew − aold| > ε) do
aold = anew

anew = â + aoldB(aold, c)
endwhile
return(anew)
end procedure

There is also a direct connection between the units in Erls and CCS. Recall that the offered
load in Erl reflects the average number of busy trunks if there were infinite capacity. Thus,
if a trunk is always busy every time the trunk is checked for busy/idle status, we arrive at
36 CCSes in an hour. Thus, we can see that an Erl and CCS are related as follows:

1 Erl = 36 CCS. (11.4.2)

With modern switching equipment, the actual number of accepted calls as well as the
time length of all calls can be measured; this is in fact used for billing later. A simple measure
from the network perspective that is often collected is called the Minutes of Usage (MoU),
which is computed over a period of an hour; it refers to the total amount of time all trunks
in a group are occupied for the calls accepted by the system. Thus, it is easy to see that the
average number of busy trunks during the duration, i.e., â, can be obtained from MoU as
follows:

â = MoU
60

. (11.4.3)

From our earlier discussion, we know that the average number of busy trunks is the carried
load; thus, this gives us the carried load in Erls. With such a measurement system, during
an hour’s worth of measurement, the number of calls accepted by the system, sometimes

354 11.5 Economic CCS Method

also referred to as call (or trunk) seizure, denoted by s, is also available. Then, the average call
duration, τ , in seconds can be computed as follows:

τ = MoU × 60
s

sec. (11.4.4)

MoU is also sometimes obtained in different time windows such as on a daily, weekly,
or monthly basis to obtain a sense of network usage and revenue generated. In such cases,
the value would need to be divided by the appropriate time window to obtain the number of
busy trunks/carried load for this time window.

In summary, we have shown here the relationship among carried load, offered load, CCS,
and minutes of usage.

11.5 Economic CCS Method

So far, we have discussed a single-link network case to understand traffic offered load, capac-
ity and blocking. Now, we will introduce the concept of an alternate path and its implication
through a classical method called the Economic CCS (ECCS) method.

This method allows you to determine the number of circuits on the direct link when there
is an alternate shared path. In this method, it is not important to exactly know how many
circuits are in the shared alternate path; instead, the notion of trunk occupancy, defined in
Section 11.3, is used.

Recall that trunk occupancy reflects both utilization and acceptable grade of service; cer-
tainly, the average value can be dependent on the total number of trunks due to non-linearity
of the Erlang-B loss function, which was illustrated earlier in Figure 11.3(b). When the ECCS
method uses the notion of an alternate shared path, it typically refers to a large group of cir-
cuits that serves as an alternate path for many different pairs. Thus, a trunk occupancy value
of at least around 0.85 is more useful for such a calculation. In our discussion of the method
below, we will use the generic notation, η, to refer to trunk occupancy.

We assume that the unit cost of circuits on the direct and the alternate paths is given as
ξD and ξA, respectively. Also, we are given that a Erls of load is offered to the direct link. Our
unknown here is the number of circuits needed on the direct link path, denoted by xD.

With a Erls of offered load to the direct link with xD circuits, the blocking will be B(a,xD);
consequently, aB(a,xD) of load will overflow from the direct link to the alternate shared path.
If a trunk occupancy of u is maintained for the alternate path, this would mean aB(a,xD)/u
units of circuits would be occupied on the alternate path on average. Now, given the unit cost
of the direct and alternate path for circuits, the total cost can be written as

C(xD) = ξDxD + ξA
aB(a,xD)

η
. (11.5.1)

We now want to determine xD for which this total cost is minimum. Since xD takes an integer
value, this means at optimality we want to determine the smallest x∗

D that satisfies

C(x∗
D) < C(x∗

D + 1). (11.5.2)

C H A P T E R 1 1 Traffic Engineering in the Voice Telephone Network 355

A L G O R I T H M 11.4 Algorithm for ECCS method

procedure ECCS (a, η, R)
set xD = 0
H = η/R
dl = a ∗ erlangb(a,xD); dr = a ∗ erlangb(a,xD + 1)

while (dl − dr ≥ H) do
xD = xD + 1
dl = dr

dr = a ∗ erlangb(a,xD + 1)

end while
return(xD)
end procedure

Using Eq. (11.5.1), we can write this condition as

ξDx∗
D + ξA

aB(a,x∗
D)

η
< ξD(x∗

D + 1) + ξA
aB(a,x∗

D + 1)

η
. (11.5.3)

On simplification, this implies that

a(B(a,x∗
D) −B(a,x∗

D + 1)) < η
ξD

ξA
. (11.5.4)

Observe from the right-hand side that instead of requiring a separate unit cost for direct and
alternate paths, the ratio, R, of alternate path to direct path cost (i.e., R = ξA

ξD
), along with the

trunk occupancy threshold, η, is sufficient to check for optimality. Thus, in order to satisfy
Eq. (11.5.4), we can start with xD = 0 as the starting point until the smallest value of xD that
satisfies Eq. (11.5.4) is reached; this is described in Algorithm 11.4. It may be noted that for
most real networks, R > 1 and η is 0.75 or above.

Example 11.4 Illustration of ECCS.
We consider three values of offered load a (= 20,30,40) and three values of η (=

0.65,0.8,0.85). We then vary the cost ratio, R, from 1 to 5 to determine x∗
D; this is shown

in Figure 11.4.
For a given offered load, we note that the change in trunk occupancy, η, is not necessarily

a dominant factor; the dominant factor happens to be the change in the cost ratio, R. �

The ECCS method is commonly used in determining circuits needed on a direct link
when a shared alternate path is available. We have presented the method using integer values
of circuits. However, network link capacity comes in modular units such as T1s (= 24 circuits),
and T3s (= 28×24 = 672 circuits). This is where the illustration above is helpful. For example,
we can see that for an offered load of 20 Erls, a T1 link capacity can be installed to usually meet
the requirement; similarly, for an offered load of 40 Erls, two T1 link capacity units must be
installed. However, for an offered load of 30 Erls, a T1 capacity module would not be enough

356 11.6 Network Controls for Traffic Engineering

F I G U R E 11.4 Determination of the optimal number of circuits using the ECCS method.

while two T1 capacity is more than enough; thus, in this case, installing two T1s would be
necessary.

While the ECCS method is fairly simple to understand, it reveals only how the availability
of alternate routes as well as a high usage link can impact a system in terms of capacity and
blocking.

11.6 Network Controls for Traffic Engineering
Network controls play an important role in traffic engineering of the telephone network.
While this book is about network routing, we do not want you to think that routing can
take care of all problems. Traffic engineering of a telephone network requires more than just
routing; there are many other measures or controls that need to be in place in the network
for effective traffic engineering, especially to handle congestion. Weber, in his seminal work
done in the early 1960s [735], [736], observed that (1) when a network with alternate routing
capabilities becomes overloaded, the throughput can decrease if alternate routing is not re-
duced, and (2) trunk reservation is an effective control in an overload situation to maintain
throughput. Note that trunk reservation has been described earlier in Section 10.2.4. Some-
what related to these observations, the bistability issue in a dynamic routing network was
analyzed in the early 1980s [7], [385]. Bistability refers to the condition in a network when
for a particular load offered to a capacitated network, the blocking observed takes two dif-
ferent values, i.e., it is not unique. That is, at a certain load, it is possible that the dynamic
routing can show poor performance leading to bistability behavior unless appropriate trunk
reservation control is introduced to alleviate this problem.

Any measures for network control to handle congestion have two distinct parts: detection
and action. First, there must be ways to detect that the network is congested or affected, and
second, appropriate action (controls) is then invoked. The telephone switching system has

C H A P T E R 1 1 Traffic Engineering in the Voice Telephone Network 357

extensive pattern methodologies to detect congestion and what controls or a combination of
controls to invoke; for example, see [283]. In the following, we will present a few highlights
to provide an idea about detection and controls based on patterns.

11.6.1 Guidelines on Detection of Congestion

To detect congestion, it is important to recognize that there are two places where congestion
in a telephone network can occur [27], [279], [596], [700]: trunkgroup (trunk congestion) and
switch (switch congestion).

Detection of trunk congestion can be based on data collected on the following: (1) attempts
per circuit per hour (ACH), and (2) connections per circuit per hour (CCH); here connection refers
to the ability to find an outgoing trunk free, not whether it made it all the way to the destina-
tion, i.e., this is local information. Such data are typically collected every 5 min and a proper
statistical measure on the reliability of the measured data is important. For example, if CCH is
significantly low compared to ACH, this means that the call completion rate is low. If ACH is
higher than normally expected, but CCH is at a normal level, this would mean that the load is
heavy while call completion is still at an acceptable level. However, another pattern emerges
if CCH is combined with trunk holding time; for example, if CCH on a trunk is higher than
the normal threshold value, and if the trunk holding time is short, then call connections are
not being effective. This can happen, for example, if the switch downstream is congested, or
trunks outgoing from the downstream switch are congested; this means as a precautionary
measure, some controls may need to be invoked.

To discuss switch congestion, it is helpful to first differentiate it based on the location of a
switch in the network, i.e., whether a switch is a central office switch or a tandem/toll switch.
If the switch is a central office switch where a call originates or terminates, this is the only
switch in the network that needs to provide dial-tone service. For such switches, dial-tone
delay is a critical indicator about switch congestion on the originating side; if users cannot
get a dial-tone immediately, it signifies that the switch is congested. Dial-tone delay usually
signifies full switch-level congestion. Besides dial-tone delay, it is also important to monitor
the call completion rate to a code, either at the central office level (i.e., at NPA-NXX level in
the North American numbering plan; see Section 13.1.1) or at the destination number level
(i.e., at the NPA-NXX-XXXX level in the North American Numbering Plan); monitoring of
such completion rates leads to recognizing hard-to-reach (HTR) codes.

11.6.2 Examples of Controls

There are several possible controls that can be invoked when a congestion is detected. In gen-
eral, controls can be classified as (1) trunk reservation, (2) dynamic overload control, (3) code
control and HTR capability, (4) reroute control, (5) directionalization of a link (trunkgroup),
and (6) selective dynamic overload control. Since we have already discussed trunk reserva-
tion, we will not discuss it any further here. We do need to point out that in general controls
are of two types: restrictive and expansive. Restrictive limits traffic from reaching congested lo-
cation(s); expansive means allowing new paths to explore to avoid congestion. Of the above
classifications, only reroute control falls under expansive while the rest are restrictive con-
trols.

358 11.6 Network Controls for Traffic Engineering

DYNAMIC OVERLOAD CONTROL

Dynamic overload control (DOC) is used for sensing switch congestion (Figure 11.5). When
a switch is congested, it makes sense to reduce traffic being directed to this switch by other
switches. So that the other switches can reduce traffic, the congested switch would need to
inform other switches by sending a “machine congestion” message. Once this message is
received by other switches, these switches reduce the amount of traffic directed to the con-
gested switch; usually, alternate-routed traffic is controlled first. When the congestion in a
switch goes below a congestion threshold, it sends another message to other switches to in-
form them about the new states so that the other switches can send alternate-routed traffic
again at a normal level.

F I G U R E 11.5 Illustration of dynamic overload control, from detection to action.

CODE CONTROL AND HARD-TO-REACH CAPABILITY

This is another control related to congestion that takes a different perspective. In this case,
instead of looking at the view of congestion from the perspective of a switch, the view
is taken at the destination code level. Destination codes can be at the central-office level
and/or at the actual destination number level; for example, in the North American num-
bering plan, this means either at the NPA-NXX or at the NPA-NXX-XXXX level, respec-
tively (see Section 13.1.1 for a discussion on numbering plans). For a variety of reasons,
a destination code may suddenly become popular for a short duration of time. The need
for code control can be better understood from the following real-world example from the
mid-1980s [700]. The concert tickets for well-known rock singer Bruce Springsteen went on
sale on July 19, 1985, and interested buyers could call a specific telephone number to order
tickets. The central office switch that served the ticket office received 10 million attempts
over a 24-hour period while normal call volume for this switch was around 500,000. Cer-
tainly, there were not enough tickets or ticket agents to handle even a small fraction of these
calls. On top of that, such an overload can overwhelm the destination switch, thus affect-
ing accessibility to other telephone numbers served by that switch. Furthermore, incoming
trunkgroups to this switch also became clogged; then, through a domino effect, this event

C H A P T E R 1 1 Traffic Engineering in the Voice Telephone Network 359

can affect other switches downstream, thus partially affecting/paralyzing the overall net-
work.

It is clear from this example that any code control information to such a destination code
needs to be pushed to where calls have originated; this way, a call to such a destination code
does not even enter the network since the hope of completion of such a call is very small,
that is, pushing such information on code control to originating switches throughout the
network helps in this regard. The receiving switch must be able to track call completion rates
to different codes in order to provide the HTR capability. Once the switch realizes that the
completion rate to a particular code has dropped below a threshold value, it can generate
a HTR signaling message and inform other switches. Code control and HTR capability are
illustrated in Figure 11.6.

F I G U R E 11.6 Code control and hard-to-reach (HTR) capability, from detection to action.

When a switch in a network receives a HTR code from another switch, it employs code
control. There are two forms of code control: call gapping and code blocking. Call gapping means
that calls made to a particular destination are gapped every �t sec; that is, only one call is al-
lowed to pass through every �t sec. Code blocking allows calls to go through on a percentage
basis. While conceptually they sound similar, the difference is that with code blocking, two
or more back-to-back calls may still be allowed to go through since probability is used; in a
congested situation, this may not be desirable. However, with call gapping, allowed calls are
paced evenly.

REROUTE CONTROL

This is an expansive control that is used for overflowing traffic to a new route/trunkgroup.
It may be noted that traffic in the network is not uniformly loaded; thus, it is not unusual to
find underloaded trunkgroups in the network. Through the reroute control, traffic is routed
through such trunkgroups as long as the hierarchical routing rule allows it. Note that reroute
controls can be activated in a code-specific basis as well. In dynamic routing networks, call-
routing logic handles all reroute controls; thus, the traditional reroute controls are not used
separately in dynamic routing networks.

360 11.6 Network Controls for Traffic Engineering

DIRECTIONALIZATION OF A LINK

Recall that links or trunkgroups in a circuit-switched telephone network are bidirectional.
As we have illustrated earlier in Example 11.3, the call blocking depends on the total offered
load, regardless of the amount from each direction. Now imagine a focused overload situation
where traffic from one end is excessive compared to the other. To take the previous example
a bit further, consider that the offered load from node 1 to node 2 increases excessively from
85 Erls to 195 Erls while the other direction remains at 5 Erls. Now, we have a total of 200 Erl
offered to a link with 100 circuits; the Erlang-B loss formula tells us that the blocking increases
to 50.48%.

We can say that it is unfair that the other side with only 5 Erl of offered traffic has to
face over 50% blocking. Furthermore, we can argue that it is important to keep blocking not
high on the low-traffic side. Let us consider a real-world situation. Suppose the low-traffic
side is in a natural disaster-struck area. In this case, the high-traffic side is where almost
everyone wants to call their friends and families who live or are visiting the disaster-struck
area; many may not get through partly due to high load and also partly due to any call
gapping being invoked at originating nodes based on destination codes being affected in
the disaster-struck area. Thus, it is desirable to let some calls out from the disaster-struck area
so that affected people can let their friends and families know on the other side that they are
doing fine.

Thus, the question is: how do we let the lower-traffic end have lower blocking? First, it
is important to understand that call gapping can only help in terms of reducing traffic from
entering in one direction, but it cannot solve the trunk congestion problem. Thus, we need
a measure to reduce trunk congestion. This measure, called directional trunk reservation, is
invoked from the high-traffic side to the low-traffic side, but no trunk reservation from the
low-traffic side to the high-traffic side; the process is illustrated in Figure 11.7. Another way
to say this is that from the high-traffic side a newly attempted call is not allowed to enter
the link if the link has r units of free trunks left, where r is a parameter value that can be
appropriately set; calls are allowed from the other side as long as a free circuit is available.
This preferential treatment is helpful in lowering blocking for the low-traffic end; this will
certainly increase blocking for the high-traffic end since it has access to less capacity.

F I G U R E 11.7 Directionalization of a trunkgroup, from detection to action.

C H A P T E R 1 1 Traffic Engineering in the Voice Telephone Network 361

SELECTIVE DYNAMIC OVERLOAD CONTROL

Dynamic overload control, described earlier in this section, acts at a generic level; that is,
it cannot distinguish between codes with high-completion probability and codes with low-
completion probability. Selective DOC (SDOC) is a merger of DOC and code blocking; thus,
traffic cancellation can be activated for HTR codes.

11.6.3 Communication of Congestion Control Information
In the previous section, we discussed several control schemes; some are for switch conges-
tion, while others are for trunk congestion. Clearly, information that a congestion is detected
must be communicated to other switching nodes so that they can take proper action. How-
ever, note that telephone circuits are primarily for voice communication; such information
communication, which is really data communication, is not possible through trunk circuits as
is.

Such communication is accomplished using a separate data network that connects the
switching node. This specialized network is called the signaling system 7 (SS7) network;
we will discuss SS7 networking in Chapter 12 where different message types will be de-
scribed; in particular, the SS7 message type, REL, that is used to release a call, is used
with certain embedded code values to indicate congestion. In the absence of an SS7 net-
work, dedicated circuits can be set up between switches to communicate such informa-
tion; however, this is less common these days with extensive deployment of SS7 net-
works.

Finally, when we combine routing update information, especially in dynamic routing net-
works, and network controls, it is clear that an SS7 network carries two types of information
for the purpose of traffic engineering: routing update information and network control in-
formation. As discussed earlier in Section 10.9.1, for routing, typically link state information
is required. For network control, however, it needs to contain not only link-level informa-
tion (trunk congestion), but also switch load–level information, thus requiring the use of the
extended link state concept. Since switch congestion information is communicated, a switch
can make a temporarily taboo list of congested switches in a routing decision; at least this is
possible in dynamic routing networks.

11.6.4 Congestion Manifestation
While most congestion in the network is legitimate congestion, congestion can be manifested
in a telephone network, partly due to the involvement of the SS7 network, the signaling net-
work that supports the telephone network (SS7 networking is described in Chapter 12). First,
the signaling network is also a network; it has its own issues about its links being congested
when too many routing and control messages are generated. Thus, such an SS7 network needs
to be properly engineered as well so that it can induce congestion on the telephone network.

Despite traffic engineering of the SS7 network, manifestations of congestion in the tele-
phone network are still possible through failure propagation. In the following, we will discuss
a real-world incident that occurred in AT&T’s long-distance telephone network in 1990 [298];
this serves as an example of lessons we can learn about control principles from an operational
environment.

362 11.7 State-Dependent Call Routing

The problem started with a switch (say, “Switch-A”) in the dynamic routing network tak-
ing itself out of service due to a trunk interface issue. Thus, it informed the other switches
through network management messages using the SS7 network. After Switch-A recovered,
it started processing calls again; this resulted in generating call setup messages to another
switch, say Switch-B. Unfortunately, there was a software flaw that occurred only if two call
setup messages were generated within 0.01 sec to the same switch, such as Switch-B; the
processor in Switch-B tried to execute an illegal instruction that resulted in telling the switch
that the processor was faulty. Thus, Switch-B took itself out of service and informed the other
switches through the SS7 network. When Switch-B recovered, it did what Switch-A did ear-
lier, i.e., try to do call setup messages within 0.01 sec to another switch. Thus, this started a
chain reaction of out-of-service for all switches.

Also, when a switch was isolated from “failure,” its home signal transfer point (STP)
would return a network management message for every message to this switch. Thus,
STPs in the SS7 network become heavily loaded with network management and routing
retry/crankback messages.

This entire cascade of events resulted in 98% of the switches being out of service in the
first 30 min; the network continued to have over 50% call blocking for 9 hours! Note that
during this entire period the trunk capacity was there to carry the call volume; instead the
switches going out of service along with the SS7 network being congested caused this high
blocking.

It is important to note that telephone switching systems operate on two basic principles
[1], [283]: (1) minimize human intervention, and (2) people do know best. The first one says
that the system should be automated, including controls for overload and routing, while the
second one says that the system should be built with the provision that human oversight and
altering normal actions are possible. This second principle means that the capability to deacti-
vate certain network management/control logics is provided; furthermore, such deactivation
should be possible to do in a layered structure, i.e., not all controls needed to be turned off at
the same time.

After learning from the incident described above, an additional principle was added
[298]: every network element must have adequate overload control so that it can still function
if network management controls are deactivated.

11.7 State-Dependent Call Routing

Recall that we have discussed several dynamic routing schemes in Chapter 10; there is yet
another dynamic routing scheme that uses the knowledge from the Erlang-B loss formula
(11.2.3). This is commonly known as the state-dependent routing scheme [539]. To under-
stand this scheme, we start by considering a generic link i-j with call capacity cij where the
offered load is Aij. Suppose at a particular instant in time, we know the actual number of
busy trunks, which is denoted by nij. Now, consider a new definition of a link cost given by
the ratio

dij = B(Aij, cij)

B(Aij,nij)
. (11.7.1)

C H A P T E R 1 1 Traffic Engineering in the Voice Telephone Network 363

First, note that nij ≤ cij. If nij = cij, then clearly dij = 1. Consider when nij < cij; in this case,
Erlang-B loss formula tells us that B(Aij, cij) < B(Aij,nij) since fewer circuits means more
blocking—thus, dij < 1. Also, note that when nij = 0, i.e., no circuits are busy, the quantity dij

is smallest for a given Aij and cij. Thus, the notion of cost given by this ratio indicates that if
all circuits are busy, then the cost is 1, while if no circuits are currently being used, the cost is
closest to 0.

Now consider routing a call between switches i and j, and a two-link path through switch
k consisting of links i-k and k-j. The capacity on each link i-k and k-j, in terms of number of
voice circuits, is denoted by cik and ckj, respectively. We assume that we know the offered load
to each link is Aik and Akj, respectively. Note that such an offered load can be computed from
the carried load as described earlier in Algorithm 11.3. Furthermore, suppose at a particular
instant of time, the actual number of busy circuits is obtained from measurements and is
denoted by nik and nkj for links i-k and k-j, respectively. Based on the above discussion, we
can then compute the link cost of each leg i-k and k-j as

dik = B(Aik, cik)

B(Aik,nik)
, dkj = B(Akj, ckj)

B(Akj,nkj)
. (11.7.2)

In state-dependent routing, the cost of path i-k-j via node k for pair i:j is given by dij +dkj.
Since this quantity is dependent on the number of calls on each link, the actual call routing
decision would be based on using the count on the number of calls at the instant the new call
arrived followed by computing the link cost as described above. Thus, in the state-dependent
routing (with at most two-link routing), a call is routed on the path with the least cost among
all the alternate paths and the direct link path.

There are two important points to note: (1) unlike the routing schemes described in Chap-
ter 10, this routing is based on the additive cost property; and (2) the link cost determination
requires computing the Erlang-B loss formula; this is an expensive function to do on a per-
call basis. In practice, to avoid Erlang-B loss computation on a per call basis, the link cost dij

can be computed on a periodic basis, say every 5 min. Furthermore, the exponential moving
average method (see Appendix B.6) can be employed for smoothing, instead of using the av-
erage over the previous 5 min. Certainly, the cost value would not be as accurate at the time
of making a decision on a call; such smoothing, however, avoids route fluctuation, somewhat
similar to ARPAnet routing metric discussed earlier in Section 3.6.1. Finally, based on the cost
estimate for each link, multiple paths may be computed and stored, and crankback may be
employed to try another alternate path if the first alternate tried is no longer available.

A final important point to note is that trunk reservation need not be explicitly engaged
in this routing scheme. If trunkgroup i-j has only a few circuits left, nij ≈ cij; from Eq. (11.7.1),
this means that link cost dij ≈ 1; due to additive cost of a path, such links will be less preferred
in path selection over links that have link cost closer to zero (meaning more capacity available
on such links).

11.8 Analysis of Dynamic Routing
In Chapter 10, we discussed dynamic routing. In this section, we will discuss how to analyze
maximum two-link dynamic routing in general.

364 11.8 Analysis of Dynamic Routing

11.8.1 Three-Node Network
We will start with a three-node fully-connected network where offered load between two
nodes i and j is given by aij. Since traffic is bidirectional, we need to consider three offered
loads, a12,a13, and a23. Assume that the capacity of a link i-j is given by cij circuits. It is
important to distinguish the difference in traffic between a pair of nodes and the capacity
on a link. For example, consider nodes 1 and 2; the traffic between nodes 1 and 2 can use
the direct link 1-2 or overflow to the alternate path 1-3-2 if there is no capacity on the direct
link. At the same time, the direct link 1-2 can carry alternate routed traffic (however small)
between node pairs 1 and 3, and also between node pairs 2 and 3, since link 1-2 is on the
alternate path for both these pairs.

Each link has a link blocking b12, b13, and b23; this is, however, not pairwise blocking.
We will soon define what pairwise blocking would be. But first we need to go through a few
steps. The first one we need to determine is path blocking. Consider the direct link path 1-2;
obviously, in this case, path blocking is the same as link blocking, i.e., b12. Now consider the
alternate two-link path 1-3-2. If we assume that link blocking is independent of one another,
then the path blocking (see Appendix B.8) for path, P132, is given by

P132 = 1 − (1 − b13)(1 − b23). (11.8.1)

Intuitively, this can be seen as not blocked on link 1-3 and not blocked on link 2-3 would not
be blocked on path 1-3-2, which is (1 − b13)(1 − b23).

Now consider the pairwise offered load a12 between node 1 and node 2. On the direct link
path 1-2, the amount of blocked traffic would be a12b12; this blocked traffic will then overflow
and try the two-link path 1-3-2. As a result, the blocked traffic after attempting either path
would be a12b12P132. Thus, the pairwise blocking for node pair 1:2 is defined as

z12 = b12P132 = b12 (1 − (1 − b13)(1 − b23)) . (11.8.2)

Similarly, for other pairs, we can write path blocking and pairwise blocking as:

P123 = 1 − (1 − b12)(1 − b23). (11.8.3)

P213 = 1 − (1 − b12)(1 − b13). (11.8.4)

z13 = b13P123 = b13 (1 − (1 − b12)(1 − b23)) . (11.8.5)

z23 = b23P213 = b23 (1 − (1 − b12)(1 − b13)) . (11.8.6)

To differentiate from pairwise offered load a12, we denote the total offered load on link
1-2 by A12. It is important to note that A12 �= a12, which will be clear soon. There are two ways
to determine carried load on link 1-2 to be denoted by Â12. One way is to consider offered
load, A12, and link blocking, b12; then, we have

Â12 = A12(1 − b12). (11.8.7)

Another way to consider this is to see what is being carried due to traffic from direct and
alternate routing. Certainly, due to blocking being b12, link 1-2 will carry the load a12(1 − b12)

C H A P T E R 1 1 Traffic Engineering in the Voice Telephone Network 365

for offered load a12 between nodes 1 and 2 due to direct link routing. In addition, link 1-
2 will also attempt to carry any traffic that is alternate routed from node pair 1 and 3 and
node pair 2 and 3. Offered traffic alternate routed for pairs 1:3 and 2:3 would be a13b13 and
a23b23, respectively; however, these paths (1-2-3 and 2-1-3) have path blocking P123 and P213,
respectively. This means that any alternate routed traffic would be carried that is not blocked.
Thus, we can write

Â12 = a12(1 − b12)︸ ︷︷ ︸
carried direct traffic

+ a13b13(1 −P123)︸ ︷︷ ︸
carried load for overflow traffic for 1:3

+ a23b23(1 −P213)︸ ︷︷ ︸
carried load for overflow traffic for 2:3

(11.8.8)

Since Eq. (11.8.7) and Eq. (11.8.8) are the same, we can write

A12(1 − b12) = a12(1 − b12) + a13b13(1 −P123) + a23b23(1 −P213). (11.8.9)

Now using path probabilities given by Eq. (11.8.3) and Eq. (11.8.4), we can rewrite the above
as

A12(1 − b12) = a12(1 − b12) + a13b13(1 − b12)(1 − b23) + a23b23(1 − b12)(1 − b13). (11.8.10)

Now, dividing each side by the common term (1 − b12), we get

A12 = a12 + a13b13(1 − b23) + a23b23(1 − b13). (11.8.11)

This shows then that the link offered load, A12, on link 1-2 is more than the pairwise load
offered to node pair 1:2; this is correct since there is some alternate routed traffic offered that
needs to be accounted for. Observing the pattern, we can write the link offered loads for links
1-3 and 2-3 as follows:

A13 = a13 + a12b12(1 − b23) + a23b23(1 − b12), (11.8.12)

A23 = a23 + a12b12(1 − b13) + a13b13(1 − b23). (11.8.13)

Now, from the Erlang-B loss formula, we know that for an offered load on a link to a given
capacity is the link blocking, i.e.,

b12 = B(A12, c12)

b13 = B(A13, c13)

b23 = B(A23, c23).

(11.8.14)

Since we have derived the quantity for link-offered load, we can then write

b12 = B(a12 + a13b13(1 − b23) + a23b23(1 − b13), c12)

b13 = B(a13 + a12b12(1 − b23) + a23b23(1 − b12), c13)

b23 = B(a23 + a12b12(1 − b13) + a13b13(1 − b23), c23).

(11.8.15)

Thus, we can see that for a given offered load and capacity, the link blocking is iteratively
related through a set of three nonlinear equations in three unknowns b12,b13,b23; this is a

366 11.8 Analysis of Dynamic Routing

fixed-point equation system; see Appendix B.2 for a short tour of the fixed-point equation
problem and how to solve it. In the above system, there are three unknowns with three equa-
tions. Due to the need to use the Erlang loss formula, the system is often referred to as the
Erlang fixed-point equation.

Example 11.5 Symmetric three-node network.
To make it easier to see, consider that the three-node network is symmetric in traffic as

well as capacity, i.e., a12 = a13 = a23(= a), and c12 = c13 = c23(= c). It is not hard to recognize
that link blocking will be symmetric as well, i.e., b12 = b13 = b23(= b). Thus, link offered load
as given in Eq. (11.8.11), Eq. (11.8.12), and Eq. (11.8.13) reduces to just the following single
expression:

A = a + 2ab(1 − b). (11.8.16)

Similarly, the set of equations given in Eq. (11.8.15) will reduce to just the following one:

b = B (a + 2ab(1 − b), c) . (11.8.17)

Now, this is an Erlang fixed-point equation with just one unknown, b. This can be solved
using the fixed-point iteration described in Algorithm B.1 in Appendix B.2. The basic proce-
dure is to begin with a starting b, for which A is computed; this, in turn, is used in Eq. (11.8.17)
to obtain a new b; the process is continued until the difference between two successive b’s is
within a specified tolerance.

Note that, for the three-node symmetric case, pairwise blocking, (11.8.2), reduces to

z = b
(
1 − (1 − b)2). (11.8.18)

Thus, once we solve the fixed-point equation (11.8.17), we can compute the pairwise
blocking using Eq. (11.8.18). �

11.8.2 N-Node Symmetric Network

In this section, we will generalize the three-node symmetric network case to N-node sym-
metric networks. We assume that the network is fully connected and that alternate paths are
limited to at most two links.

Let a denote the pairwise offered load, while A denotes the link offered load. As we
know from the three-node symmetric example, they are different. We will show below the
connection between them. To do that, consider the number of circuits on a link to be c.

We define b as the link-blocking probability. For brevity, we will use q = 1 − b as the
probability of not being blocked on a link. Then, the probability of not being blocking on a
two-link path is q2. This, in turn, means that the probability of being blocked on a two-link
path is 1 − q2.

Assume that we consider M independent two-link paths for a node pair. Then the prob-
ability of being blocked on M independent paths is (1 − q2)M . Since any calls blocked on the

C H A P T E R 1 1 Traffic Engineering in the Voice Telephone Network 367

direct link path are alternate routed to the M two-link paths, the pairwise blocking, z, for a
node pair is

z = b(1 − q2)M. (11.8.19)

The total carried load on a link for two-link paths is 2a(b − z) while for direct traffic it is
a(1 − b). Thus, we can equate

A(1 − b) = a(1 − b) + 2a(b − z).

This implies that

A = a + 2a(b − z)

1 − b
= a + 2ab[1 − (1 − q2)M]

q
. (11.8.20)

Note that when M = 1 this is then equivalent to a three-node network, and Eq. (11.8.20) re-
duces to Eq. (11.8.16). From the Erlang-B loss formula, we know that b = B(A, c). Replacing
A, we have the following fixed-point equation

b = B
(

a + 2ab[1 − (1 − q2)M]
q

, c

)

. (11.8.21)

Pairwise blocking z is derivable once we know b due to Eq. (11.8.19). Note that Eq. (11.8.21)
reduces to Eq. (11.8.17) for the three-node symmetric network case since the number of alter-
nate routes M = 1. This approach is summarized in Algorithm 11.5.

A L G O R I T H M 11.5 Computing Network Blocking for Symmetric Networks

procedure ComputeNetworkBlocking (a,c,M)
Initialize bnew

Set bold �= bnew

while (|bnew − bold| > ε) do
bold = bnew

q = 1 − bold

z = bold(1 − q2)M

A = a + 2a(bold − z)/q
bnew = B(A, c)

endwhile
return(z)
end procedure

11.8.3 N-Node Symmetric Network with Trunk Reservation
In Section 10.2.4, we discussed the role of trunk reservation in dynamic routing. Here, we
will consider how to incorporate trunk reservation in analysis. To do this analysis, we need

368 11.8 Analysis of Dynamic Routing

to consider the general form of blocking on a link for two different states (compared to “pure”
link blocking through the Erlang-B loss formula used in Section 11.8.2). The derivation is
shown in Appendix B.12.3.

When we have a link with c circuits, and r (r < c) as the circuits reserved for trunk reser-
vation, then how the call arrival is handled can be divided into two categories: (1) if the call is
a direct link call, it can be attempted as long as there is a circuit left out of the total capacity c,
and (2) if the call is an alternate call, then it is allowed to be routed if fewer than c − r circuits
are busy; in other words, if r or fewer circuits are free, an alternate routed call is not allowed
on this link.

To be consistent with the previous section, let a be the pairwise offered load. We use A
to denote the load offered to the link subject to trunk reservation r. The probability, pj, that j
circuits are busy (subject to trunk reservation parameter r) is given by

pj =
⎧
⎨

⎩

Aj

j! p0, for j = 0, . . . , c − r − 1

Aj

j!
(

a
A

)j−(c−r)
p0, for j = c − r, . . . , c,

(11.8.22a)

where

p0 =
⎡

⎣
c−r−1∑

k=0

Ak

k! + Ac−r
c∑

k=c−r

ak−(c−r)

k!

⎤

⎦

−1

. (11.8.22b)

If we denoted the link blocking by b, then b = pc, and we can write

b = Ac−r

c! arp0. (11.8.23)

If q̂ denotes the probability that no more than (c − r − 1) circuits are busy, then q̂ can be
obtained from Eq. (11.8.22a) by summing over states 0 to c − r − 1; i.e., it is given by

q̂ =
c−r−1∑

j=0

Aj

j! p0. (11.8.24)

In this case, the total carried load on a link is a(1 − b) + (A − a)q̂. Similar to the case
without trunk reservation, this carried load can also be expressed as a(1 − b) + 2a(b − z),
where z is the pairwise blocking. Equating them and simplifying, we get

A = a
[

1 + 2(b − z)

q̂

]
. (11.8.25)

This time we have two unknowns, b and q̂; thus, we have the set of Erlang fixed-point equa-
tions over two variables connected by the relations Eq. (11.8.23) and Eq. (11.8.24), where A is
given by Eq. (11.8.25). Solving the Erlang fixed-point equation, we can obtain pairwise block-
ing as described in Algorithm 11.6.

C H A P T E R 1 1 Traffic Engineering in the Voice Telephone Network 369

A L G O R I T H M 11.6 Computing Pairwise Blocking for Symmetric Networks with
Trunk Reservation.

procedure ComputeNetworkBlockingW-TR (a,c,M,r)
Initialize bnew, q̂new

Set bold �= bnew; q̂old �= q̂new;d = 1.0
while (d > ε) do

bold = bnew

q̂old = q̂new

z = bold(1 − q̂2
old)M

A = a + 2a(bold − z)/q̂old

bnew = Ac−r

c! arp0

q̂new =∑c−r−1
j=0

Aj

j! p0

d = max{|bold − bnew|, |q̂old − q̂new|}
endwhile
return(z)
end procedure

Finally, it is worth comparing this analysis to the case when there is no trunk reservation.
Note that when there is no trunk reservation, r = 0, then q̂ becomes q = 1−b and Eq. (11.8.23)
becomes Eq. (11.8.21).

11.8.4 Illustration Without and with Trunk Reservation
In the previous two sections, we explained how to determine call blocking in a symmetric
network without and with trunk reservation [385]. For this illustration, we consider a sym-
metric network with 100 units of capacity in each link. The offered load is varied from 70 Erls
to 100 Erls for each pair of nodes.

First, consider the case of no trunk reservation. We have computed carried load for dif-
ferent load values using Algorithm 11.5; the results for a different number of alternate routes
considered are shown in Figure 11.8. Note that M = 0 means no alternate routing allowed,
which can be obtained directly from the Erlang-loss formula; M = 1 means the three-node
network discussed earlier. We can easily see that as the load increases, there are multiple car-
ried load values for the same offered load showing bistable behavior; the difference is more
pronounced when the number of alternate paths increases. This indicates that in an over-
loaded situation, it is not a good idea to allow too many alternate routes since they compete
with other traffic pair paths, thus almost nullifying any benefit of alternate routing.

We next consider trunk reservation, turned on with different values. The results are
shown separately for different numbers of alternate paths considered, M = 1,2,4,8. These
results are obtained using Algorithm 11.6 and are shown in Figure 11.9.

We can see that with trunk reservation, the drop in carried load for a high offered load
is not as severe as without trunk reservation; in fact in certain cases, the carried load contin-
ues to increase, even for a large number of alternate paths. It is, however, important to note
that trunk reservation cannot always avoid bistability; the actual trunk reservation parameter
value matters. With an appropriate value, bistability can be avoided and carried load drop

370 11.8 Analysis of Dynamic Routing

F I G U R E 11.8 Symmetric network, no trunk reservation.

F I G U R E 11.9 Symmetric network, with trunk reservation, for different number of
alternate paths (M).

is avoided as well; the rule of thumb mentioned earlier as
√

c/2 appears to be a good one.
Second, by comparing performance for different values of M, we can see that under heavy

C H A P T E R 1 1 Traffic Engineering in the Voice Telephone Network 371

load, even with trunk reservation, it is beneficial to limit to a small number of alternate paths
than many alternate paths.

There is an important point to note: different values of capacity and offered load with
the ratio being the same as discussed above would provide similar behavior, but not exact
behavior due to the nonlinear property of blocking.

The above result is for a generic call routing scheme. Obtaining analytical formulas for
different routing schemes is not easy. In most cases, different routing schemes are evaluated
using call-by-call routing simulation. A general observation from simulation of different rout-
ing schemes is that performance can vary depending on the load, and capacity, especially for
the asymmetric case, with some looking better under one condition but so under another
condition. Second, manageability of a routing scheme and impact on signaling are also im-
portant factors to consider. Later in Section 17.7.4, we will present results for different call
routing schemes in which we also consider several extensions including multiservice envi-
ronments.

11.9 Summary
In this chapter, we have introduced voice traffic engineering basics. We explained several
key concepts and presented analytical models for analyzing dynamic call routing along with
numerical results to understand the bistability issue.

We also discussed various network controls for traffic engineering. In fact, various con-
trols are an integral part of an effective routing system. Thus, for good traffic engineering of
a network, it is important to understand performance impact of routing along with differ-
ent controls. Often, such an analysis requires simulation modeling to capture details of each
routing scheme and control mechanisms.

Further Lookup
A. K. Erlang’s seminal work almost a century ago established the basic foundation for voice
traffic engineering. In [204], Erlang showed that voice traffic follows the Poisson process,
while in [205] he derived the Erlang-B loss formula along with several other key results.

In his seminal work done in the early 1960s, Weber [735], [736] considered understanding
alternate routing and observed that (1) when a network with alternate routing capabilities
becomes overloaded, the throughput can decrease if alternate routing is not reduced, and
(2) trunk reservation is an effective control in an overload situation to maintain throughput.
In essence, the notion of trunk reservation can be attributed to Weber.

Engineering and Operations in the Bell System [596] is one of the most comprehensive books
on how the entire telecommunication infrastructure works. After almost a quarter century
of publication, it still remains a valuable reference guide, even though many things have
changed since then. Network management controls for the telephone network were compre-
hensively presented in the seminal paper [279], while an updated summary can be found
in [700]. Manifestation of congestion from the signal network to the telephone is well docu-
mented in [298], along with additional measures to consider.

With interest in dynamic call routing starting in the late 1970s, various analyses have
been done over the years in regard to dynamic routing and control. Bistability analysis for

372 11.9 Exercises

symmetric dynamic routing networks and the issue of stabilization can be found in [385];
analytical modeling for the general case of hierarchical and nonhierarchical routing can be
found in [7]. Other analyses, including simulation, of different routing schemes can be found
in works such as [30], [36], [250], [251], [357], [358], [360], [382], [496], [539], [763]. For exten-
sive models and results on dynamic call routing, the reader is referred to the books by Girard
[253], Ash [27], and Conte [153].

Exercises
11.1 Review questions:

(a) What is 1 Erlang of offered load?

(b) What is ECCS?

(c) What is the relation between offered load in Erlangs and CCS?

(d) What is the relation between offered load in Erlangs and minutes of usage (MoU)?

(e) List factors that impact call blocking.

(f) What is grade-of-service?

(g) What is trunk reservation?

(h) In what situation(s), is a hard-to-reach code invoked?

11.2. Why is the arrival rate for telephone calls not sufficient to capture the traffic load?

11.3. Consider the symmetric case with and without trunk reservation (see Section 11.8.4).
Determine how the bistability behavior changes for different number of alternate paths
and trunk reservation values, if the capacity is changed to 50 and the offered load is
proportionately varied. Do the same exercise also when the capacity is changed to 200.
Compare the results and tabulate your observations.

11.4. Explain the role of different controls with dynamic call routing in improving network
performance.

11.5. Calculate call blocking when 40 Erls is offered to a link with 50 circuits. Now change the
number circuits to 100 circuits and recalculate blocking. How does the result change?

11.6. Consider a three-node network numbered 1, 2, and 3. Suppose that that the voice circuit
capacity of the links and the pair-wise offered load are given as follows:

Link ID Capacity
1-2 50
1-3 40
2-3 60

Pair ID Offered load
1:2 40
1:3 20
2:3 60

(a) Determine link call blocking probability and pair-wise call blocking probability. In-
vestigate if this system has the bi-stability problem.

(b) For this load and capacity, does the network need to invoke any of the control
schemes?

C H A P T E R 1 1 Traffic Engineering in the Voice Telephone Network 373

11.7. What are the pros and cons of state-dependent call routing? Is this scheme similar to
any of the dynamic call routing schemes discussed in Chapter 10.

11.8. Implement a call-by-call routing simulator that takes Erlang offered load for different
node-pairs and capacity for different links as input, and also allows to select a trunk
reservation parameter value and any of the dynamic call routing schemes. Refer to Ap-
pendix B.10 for a discussion on how to generate Poisson call arrival and exponential call
duration time.

11.9. Identify a network situation in which more than one of the controls described Sec-
tion 11.6 might be invoked.

12
SS7: Signaling
Network for
Telephony
A doctor can bury his mistakes, but an architect can only advise his client to
plant vines.

Frank Lloyd Wright

Reading Guideline

Understanding SS7 provides you with an idea about how call control function is
accomplished in the telephone network. This chapter can be read independently.
The material is organized so that the basic idea about how an SS7 network works is
presented first, and then the chapter delves into issues such as SS7 point code ad-
dressing and the protocol stack. Several topics presented in this chapter are helpful
in understanding Chapter 13 and Chapter 20.

C H A P T E R 1 2 SS7: Signaling Network for Telephony 375

SS7 can be thought of as the nerve behind the workings of the telephone network. It can also
be thought of as a shadow network since it shadows the telephone network for functions
such as call setup and call tear-down. More specifically, SS7 is an independent data network
that is strongly tied to the telephone network. For example, intelligent network services such
as 1-800-number translation uses SS7. While SS7 networks have been deployed worldwide,
the standards vary in different parts of the world, including the addressing scheme, known
as the point codes.

Keeping with the theme of this book, we present SS7 networking here primarily from a
routing perspective. We also discuss key concepts behind SS7 networking that are helpful in
understanding call routing in the presence of SS7. Its usage in call routing by the telephone
network is discussed later in Chapter 13.

12.1 Why SS7?

Until the early 1970s, all signaling related to setting up a telephone call was done within the
voice circuit of a telephone network in which the call is placed—this is known as in-band
signaling. This in-band signaling, however, produces noticeable delay in setting up a call
after the numbers are dialed; this delay is known as the postdial delay or the call setup time.
From hierarchical routing discussed earlier in Chapter 10, we know that due to switching
hierarchy a call can take up to nine consecutive circuits in the worst case (refer to Figure 10.2
in Chapter 10). In such a situation, the time it takes to set up a call can be significantly high
if in-band signaling is used. It was recognized that the postdial delay was noticeable that a
user, after dialing a number, would think that the call is not connected, although the call set
up is still in progress due to transfer of signals through a series of switches; that is, such a
delay should be bounded to a threshold value acceptable to user perception.

With the advances in data communication, it was realized that a separate data signaling
mechanism can be used outside the voice network by sending short data messages for call set
up and call tear-down. This process was found to be much faster than sending such signals
in analog mode directly on a voice circuit. Such observations have led to the development
of early versions of separate signaling mechanisms, which eventually led to common-channel
interoffice signaling (CCIS), with the well-known version named CCIS No. 6. This then evolved
to common-channel signaling 7, or CCS7, and finally to signaling system 7, or SS7.

Besides call setup and call tear-down, SS7-based services have been found to be useful for
the toll-free 1-800-number lookup in the United States leading to intelligent network services,
and more recently, local number portability. Features such as Caller ID, Call Waiting, and
3-Way Calling are all available as a result of SS7. Furthermore, the SS7 network has been
used to exchange information for dynamic call routing techniques such as real-time network
routing (RTNR), described earlier in Section 10.6 of Chapter 10.

12.2 SS7 Network Topology

We start by describing the elements of an SS7 network topology. Like any network, it has
nodes and links; the nodes and links have specific roles in an SS7 network. This is described
next.

376 12.2 SS7 Network Topology

12.2.1 Node Types

There are three types of nodes in the SS7 architecture:

• Service Switching Point (SSP): This node type is associated with a switch in a telephone
network. Recall from Section 10.1 in Chapter 10 that a telephone network is hierarchical
with several different levels of switches. Thus, an SSP can be associated with a switch at
any level as long as the switch supports SS7 functionality. Thus, a switch that supports SS7
functionality can be thought of as having two interfaces; on one side is the connectivity for
voice functionality and on the other side is the connectivity for SS7 data functionality. For
simplicity, switches are thus synonymous with SSPs. That is, an SSP converts signaling
for a voice call into SS7 signaling messages. The primary responsibilities of an SSP are call
processing, call management, and helping route calls to their proper destination.

• Service Control Point (SCP): This type of node provides database access services to the tele-
phone network. Using appropriate upper-layer SS7 protocols, to be discussed later, data-
base services are accessed. Example of services provided by an SCP are 1-800 (toll-free)
number translation services in the United States and local number portability (LNP); such
services are often also clubbed under intelligent network (IN) and advanced intelligent
network (AIN) services. It should be noted that an SCP acts as the interface to computers
that store databases.

• Signal Transfer Point (STP): These nodes are the routers in an SS7 network. Their function is
to route messages between two SSPs, or between an SSP and an SCP. It is important to note
that it is not always necessary to have an STP for two SSPs to talk to each other; however, a
message from an SSP is required to go through an STP to reach an SCP, especially in North
America; outside North America, the STP function is often integrated with an SSP. For
redundancy, STPs are deployed in mated pairs—thus, mated STPs are sometimes referred
to as 2STPs.

In general, an SS7 network can be thought of as providing either a client-server service
when an SSP talks to an SCP, or a client-to-client communication service when two SSPs talk
to each other; STPs are used to route messages for such communication. Usually, there are
two different types of SSPs: national and international. It is possible that an SSP can serve
both national and international functions, thus providing hybrid services.

12.2.2 SS7 Links

Six different types of links have been defined for SS7 networking. They are as described be-
low:

• A-link (Access link): A-links connect SSPs to STPs, or SCPs to STPs, or sometimes SSPs
directly to SCPs.

• B-link (Bridge link): B-links connect nonmated STPs; these links are usually needed if an
SS7 network is large enough to route messages to go through more than a pair of mated
STPs.

C H A P T E R 1 2 SS7: Signaling Network for Telephony 377

• C-link (Cross link): C-links connect mated STPs. These links are useful, for example, in
rerouting call setup-related signaling messages.

• D-link (Diagonal link): D-links are used to connect local mated STPs to regional mated
STPs.

• E-link (Extended link): E-links can be used to connect an SSP directly to an STP that is not
in its home STP.

• F-link (Fully associated link): F-links are used to connect two SSPs directly, thus not ne-
cessitating going through an STP to send signaling messages.

There can be multiple links between any two nodes; because of that, such a set of links is
referred to as a linkset. For example, there can be up to 16 parallel links in a linkset between
an SSP and an STP. Thus, from an SSP to its mated STP pairs, there can be up to a maximum
of 32 links. These links are then identified through a signaling link code (SLC).

It should be noted that a link’s naming such as A-link, B-link, and so on, is mainly for the
purpose of understanding connectivity between different types of nodes; it does not have any
other significance. At the same time, this naming is helpful in describing SS7 routing. Note
that it is not necessary to deploy all different link types in a specific network. For example, a
network can be deployed with just F-links that connect each pair of switching nodes directly.

A sample SS7 network topology with all types of representative links and nodes is shown
in Figure 12.1. Recall that STPs are deployed in mated pairs; this does not imply that an SS7
network needs twice the number of telephone switching nodes. Instead, multiple telephone
switches can be served by just a pair of mated STPs as we can see from Figure 12.1.

F I G U R E 12.1 A sample SS7 network topology where all link and node types are shown.

378 12.3 Routing in the SS7 Network

12.3 Routing in the SS7 Network
Routing of signaling messages in an SS7 network is hop-by-hop and is based on a set of rules.
In fact, link naming described in the previous section is helpful in describing these rules.
Furthermore, for the purpose of routing, of the two mated STP pairs, one STP is assigned as
the primary home STP for a set of SSPs. The routing rules are listed below:

• A message generated by an SSP to a directly connected SSP must take the F-link first, if it
exists between them, and if the directly connected SSP is the destination for this message.

• If an F-link does not exist, a message generated from an SSP to another SSP takes the
A-link for routing to the originating SSP’s primary home STP; the A-link to the secondary
STP is taken if the A-link to the primary STP has failed or is congested, or the primary STP
has failed or is congested.

• A message from an SSP to another SSP that is served by a different pair of mated STPs
is routed on the A-link by the originating SSP to its primary home STP for forwarding
further.

• A message that has already arrived at an STP for a destination SSP served by this STP
takes the A-link; alternately, the message takes the C-link to its mated STP if the direct
A-link to destination SSP has failed or is congested.

• A message that has already arrived at an STP destined for an SSP that is served by different
mated STP pairs takes the E-link directly to the destination SSP if it exists; alternately, the
message is routed to the primary home STP of the destination SSP using the B-link. The
third alternate option is to use the B-link to the secondary home STP of the destination SSP.
The fourth alternate option is to take the C-link to its mated STP for further forwarding of
the message.

• A message from an SSP destined for an SCP takes the F-link if it exists. Otherwise, the
message is routed to its primary home STP on the A-link for forwarding to the SCP.

Based on the above rules and given the topological redundancy shown in Figure 12.1, we
can see that an SS7 network has built-in redundancy to allow multiple paths between two
SS7 nodes. This is in fact important due to the critical role SS7 plays in the workings of the
telephone network.

A route in an SS7 network is a sequence of linksets that defines a path from a source
SSP to a destination SSP. Similar to a linkset, a routeset is defined as a collection of routes.
A routeset must consist of at least two routes: a primary route and a secondary route; this can
be ensured by providing appropriate alternate next-hop options at each node.

C H A P T E R 1 2 SS7: Signaling Network for Telephony 379

TA B L E 12.1 Routesets for two source-destination pairs.

Source:Destination Routeset
3:4 3-4; 3-9-4; 3-10-4; 3-9-10-4
2:9 2-9-5; 2-9-11-5; 2-10-11-5

Example 12.1 Illustration of SS7 routing.
To illustrate SS7 routing, we consider again Figure 12.1. Suppose that a signaling message

is to be sent from SSP 3 to SSP 4. Since these two nodes are directly connected by an F-link,
it will take the direct link 3-4 as its first route. For this pair of SSPs, the alternate path would
be 3-9-4 where node 9 is the primary home STP for SSP 3; this path, thus, consists of just two
consecutive A-links. A third diverse path for the same pair of nodes is 3-9-10-4 consisting of
an A-link followed by a C-link followed by an A-link.

Now consider sending a signaling message from SSP 2 to SSP 5; the first path would
be 2-9-5 consisting of an A-link followed by an E-link. The second path is 2-9-11-5, and the
third path is 2-10-11-5. Note that a link can appear in multiple paths. Routesets for these two
source-destination pairs are summarized in Table 12.1. �

Example 12.2 Illustration of a routing table.
In the above example, we have given the path view through routesets. To accomplish

such routesets, the routing table at a node must keep entries for the next hop for each des-
tination. Rather, to provide redundancy and diverse paths, two different next-hops for each
destination are usually maintained in the routing table.

To have a routeset from SSP 3 to SSP 4, the routing table at node 3 (SSP) and the routing
table at node 9 (STP) are shown in Table 12.2, under the assumption that node 9 is the primary
home STP for SSP 2 and SSP 3. �

TA B L E 12.2 Routing Table entries for different destinations at node 3 and node 9.

View at Node 3: View at Node 9:

Destination Next Hop Next Hop Destination Next Hop Next Hop
(Primary) (Secondary) (Primary) (Secondary)

1 9 10 1 1 10
2 9 10 2 2 10
3 — — 3 3 10
4 4 9 4 4 10
5 9 10 5 5 11
6 9 10 6 11 12
7 9 10 7 11 12
8 9 10 8 8 10

380 12.4 Point Codes: Addressing in SS7

12.4 Point Codes: Addressing in SS7
Since an SS7 network is similar to other data networks, its various nodes must have addresses
so that messages can be forwarded properly. So far in our discussion, we have used generic
node numbering to describe an SS7 network. Node addresses in SS7 are called point codes;
they are logical addresses and they do not identify the physical location of an SS7 node. In
the SS7 protocol stack, this addressing is considered in layer 3.

When a user dials a number to reach a destination, the originating SSP generates a call
setup message. The point code associated with the originating SSP is often referred to as
the Originating Point Code (OPC), and the point code associated withe the destination SSP is
referred to as the Destination Point Code (DPC). Note that the DPC need not be the ultimate
destination of the dialed call; we will illustrate this later in Example 12.4. A message going
from an originating SSP to a destination SSP might need to be routed via an STP; the point
code for this STP is referred to as the Adjacent Point Code (APC).

There are mainly two point code formats currently used around the world: one is known
as the North American format defined by the American National Standards Institute (ANSI)
and the other is known as the ITU format defined by the International Telecommunication Union
(ITU).

12.4.1 North American Point Code
ANSI has standardized the North American point code format to be 24 bits in length parti-
tioned into three 8-bit bytes. Thus, each byte range is from 0 to 255. In dotted-decimal nota-
tion, a point code can be written in a manner similar to an IP address; the difference is that
since this is a 24-bit address, it has just three parts; for example, a point code would look like
5.7.15 in the dotted-decimal notation. There is no consistent notation for writing a point code.
For instance, point codes are sometimes written in dashed-decimal notation, i.e., as in 5-7-15;
at other times, point codes are written in a nine-digit format where the first three digits iden-
tify the first byte, the second three digits identify the second byte, and the third three digits
identify the third byte without any marker in between, i.e., as in 005007015. In this book, we
will use the dotted-decimal convention for point codes to be consistent with the convention
used for writing IP addresses.

We now discuss the structure of the SS7 point code addressing scheme. The first byte
identifies an SS7 network provider (or network number), the second byte identifies a cluster
or a region, and the third byte identifies a member within a cluster. Member identifier 0 is
usually reserved for STPs. Thus, for the address 5.7.15, the SS7 provider identifier is 5, the
cluster identifier is 7, and the member identifier is 15; such an address very likely identifies
an SSP. However, 5.7.0 is usually assigned to an STP that serves the SSP node 5.7.15 as its
primary home STP. Based on this information, we can summarize the point code format as
follows:

Point Code (North American): network number (8 bits) | cluster (8 bits) | member (8 bits)

It is important to note that the first byte identifies an SS7 network provider, not a carrier
that provides telephone services. In other words, it is possible that a local telephone ser-
vice provider might use an SS7 network provider for SS7 functionality. In this case, the SS7

C H A P T E R 1 2 SS7: Signaling Network for Telephony 381

provider is likely to either assign a cluster group to this telephone service provider and then
the member code for each SSP that the provider has, or directly assign a member identifier
for all its SSPs.

12.4.2 ITU Point Code
Point codes in the ITU format are only 14 bits long. An ITU point code also has three parts:
the first part consisting of 3 bits identifies a world zone, the second part consisting of 8 bits
identifies a network, while the third part consisting of 3 bits is the signaling point identifier
(SPID). The entire address then identifies a node in an SS7 network.

The world zone identifiers are listed in Table 12.3; as of now, 0 and 1 are not assigned
as zone identifiers. The network identifier is typically assigned at the country level, while
a particular country can be assigned multiple network identifiers. Note that network ID is
8 bits long; thus, it is restricted to the range 0 to 255. The general format can be written as:

Point Code (ITU): zone identifier (3 bits) | network identifier (8 bits) | SSP ID (3 bits)

The network identifier together with the zone identifier is referred to as a Signaling
Area/Network Code (SANC) designation. We will again use the dotted-decimal notation to
write SANC designations and the complete point codes for the ITU format as well. How-
ever, keep in mind that the first part can take a value up to 7. For example, 4.164 is the SANC
designation for Uzbekistan where 4 identifies the world zone, and 164 is the network ID for
Uzbekistan. Indonesia, for example, has been assigned three SANC designations: 5.020, 5.021,
and 5.022. Thus, an SSP in 5.020 can be identified as 5.020.1 where the third part is the SPID.
In recent years, SANC codes have been assigned to countries that do not follow the original
world zone designations; this is a result of the growth in SS7 deployment and unavailability
of SANC codes in certain zones. For example, the United Kingdom falls under world zone 2.
Thus, 2.068, a SANC code conforming to this rule, has been assigned to the United King-
dom. Since 2.x address space is already fully assigned, 4.253 has also been assigned to the
United Kingdom, although 4.x is in world zone 4 (parts of Asia). A list of assigned SANC
designations can be found at [322].

Note that not all countries follow the ITU format. As already discussed, North America
has its own point code format that is based on ANSI. China also uses a 24-bit format, some-
what similar to the ANSI point code, while Japan uses its own point code format that is based
on 16 bits.

TA B L E 12.3 World Zone IDs for ITU Point Code Format.
Zone Identifier Geographic Region
2 Europe
3 North American, Mexico, the Caribbean, Greenland
4 Middle East, North and East Asia
5 South Asia, Australia, New Zealand
6 Africa
7 South America

382 12.5 Point Code Usage

12.5 Point Code Usage
In this section, we discuss how point codes are used for routing table aggregation, its rela-
tion to telephone switches, and on interworking between different SS7 networks. Certainly,
a telephone service provider can be its own SS7 provider, which is often true for large to
medium-sized providers in North America. In such cases, the telephone service provider is
assigned its own unique SS7 provider identifier.

12.5.1 Address Assignment

Actual assignment of point codes to nodes is usually done in a systematic manner so that the
routing table size can be minimized; this can be done by assigning the member level entry
for the primary home STP to zero. For example, consider Figure 12.2; the primary home STP
for the SSPs on the left side on this figure is assigned the point code 1.4.0 while the SSPs are
numbered 1.4.2, 1.4.3, 1.4.4, and 1.4.5; this is similar for the right-hand side. At the SSP with
point code 1.4.2, the routing table entries for destination SSPs with point codes 1.5.2, 1.5.3, and
1.5.4 can be minimized by creating a single entry as 1.5.0 for the primary home STP for SSPs
1.5.2, 1.5.3, and 1.5.4; if a message from 1.4.2 reaches STP 1.5.0, it is this STP’s responsibility
to deliver it to the appropriate destination SSP.

12.5.2 Relationship Between a Telephone Switch and an SSP

If a telephone network provider uses SS7 for signaling, all its switches must have an SSP
interface with a point code associated with it; this point code is then at the level of member
(third byte) in the SS7 addressing scheme in the North American point code format and at
the level of SPID in the ITU format. In this way, a telephone switch is synonymous with an
SSP.

F I G U R E 12.2 An SS7 network example with point codes identified.

C H A P T E R 1 2 SS7: Signaling Network for Telephony 383

To see their relation, consider Figure 12.3 where two switches, Switch A and Switch B, are
directly connected by a voice trunkgroup. Here, Switch A’s SS7 interface, the service switch-
ing point, is shown with a half-circle marker. As a general convention, we will use this mixed
node picture to denote a switch with an SS7 interface whenever two switches are required
to be shown along with their SS7 connectivity. Here, Switch A’s interface SSP is identified by
point code 1.4.4 while Switch B’s SS7 interface SSP is identified by point code 1.4.5; they are
connected by SS7 signaling links. This linkset is logically completely separate from the bearer
circuits used for the voice service; it forms the F-link in this case.

F I G U R E 12.3 Switch–SS7 interface.

12.5.3 Interworking of SS7 Networks with Different Addressing Schemes
Recall that there are primarily two point code formats: North American and ITU. How does
it work when a message is to be routed from a network with one type of point code format
to another network with another type of point code format? First, each country must have
at least one SSP (“a hybrid SSP”) that acts as an international gateway for routing messages
from its national network to other nations’ networks. In countries where multiple providers
are allowed to have international call handling capability, each such provider would have
a separate international gateway. Thus, if an SS7 network uses the North American address
format and it needs to communicate a signaling message to another SS7 network that uses
the ITU format, the hybrid SSP changes the address format from one to the other format be-
fore forwarding the message. There is also the concept of an international SSP that serves as
an exchange point between several national networks; this then avoids the need for a bilat-
eral arrangement between every two countries. Such an international SSP essentially requires
functionality similar to an STP since its responsibility is to forward messages to different gate-
way SSPs, albeit by also taking care of address conversion.

Consider Figure 12.4 where we have shown the SS7 network connectivity spanning four
countries. Assume that Country A uses North American point codes for its SS7; for transfer of
signaling messages to another country, the gateway SSP (hybrid SSP) in Country A is required
to have an ITU-based address that can be understood by SS7 nodes in other countries; this
node has 1.6.1 as its point code in the North American format for the internal network and
3.021.1 as its point code in the ITU format where the address block, i.e., the SANC code,
3.021, is assigned to the United States under the ITU-based point code addressing. All SS7
SSPs in the rest of the countries use ITU-based point codes; thus, communication is now
possible. Certainly, this gateway node needs to regenerate every message going from one
network to the other by replacing North American–based point codes by ITU-based point

384 12.6 SS7 Protocol Stack

F I G U R E 12.4 Interworking of SS7 networks with different point code systems.

codes; this is similar for a message going in the other direction. Note that we have also shown
an international SSP with point code 3.020.1; this node serves as the exchange point between
different countries.

12.6 SS7 Protocol Stack
So far, we have described SS7 network topology and addressing. Being a data network, SS7
also has a protocol stack; this protocol stack, however, predates TCP/IP. A schematic diagram
of the protocol stack with certain key protocols identified is presented in Figure 12.5, along
with a comparison to the OSI reference model.

12.6.1 Lower-Layer Protocols: MTP1, MTP2, and MTP3
The lower three layers of the SS7 protocol stack are labeled Message Transfer Part-Level 1
(MTP1), Message Transfer Part-Level 2 (MTP2), and Message Transfer Part-Level 3 (MTP3), corre-
sponding to physical, data link, and network layers of the OSI reference model, respectively.

MTP1 defines the physical and electrical interfaces of the SS7 protocol stack. The fol-
lowing interfaces are defined: DS0A (56 Kbps), DS0 (64 Kbps), DS1 (1.544 Mbps), and E1
(2.048 Mbps), with DS0A as the mostly commonly deployed one due to historical rea-
sons.

MTP2 takes care of typical data link layer issues such as error detection, bit stuffing, flow
control, and so on. There are two key signaling units primarily for MTP2: (1) the fill-in signal-
ing unit (FISU)—this message is sent continuously whenever there are no other messages to
send, and (2) the link status signaling unit (LSSU)—this message is sent to provide the status
of links connected to STPs. The FISU is 6 bytes long while an LSSU can be either 7 or 8 bytes

C H A P T E R 1 2 SS7: Signaling Network for Telephony 385

F I G U R E 12.5 SS7 protocol stack.

long. FISU is sent as filler for idle time. The most important field in FISU is the frame check
sequence (FCS) field. By monitoring FISU and observing any errors based on FCS, the MTP
can assess the health of a link and take it out of service, if needed. LSSU is not normally sent;
it is sent to indicate status such as out of service, link alignment problem, or busy.

MTP3, which is the equivalent of the network layer in OSI, provides addressing and
routing. As described earlier, addressing is based on 24-bit point codes in the North American
format and 14-bit point codes in the ITU format; routing rules are defined by labeling different
link types in the network so that communication between one and another SSP, and between
an SSP and an SCP can take place using STPs for routing. The basic messaging unit for MTP3
is called the message signaling unit (MSU); it is of variable length not to exceed 278 bytes.

We will discuss the MSU here in detail due to its role in call processing and routing, and
because the FISU and the LSSU can be thought of as subsets of the MSU. The basic format of
an MSU message is shown in Figure 12.6. The format for the FISU in MTP2 is similar to an
MSU except that service information octet (SIO) and service information field (SIF) are not
included and the length indicator (LI) is set to zero. The format for an LSSU is also similar to
an MSU except that instead of the SIO and SIF, the link status indicator (LSI) field is included
in their place; this field indicates the status of the link. The LI field is set to either 1 or 2 to
indicate 1- or 2-byte lengths of the link status indicator field. For an MSU, the link indicator
field is set to 3 or more to indicate the length of SIF in bytes. Since the LI is 6 bits long, this
value is limited to 63; this means that even if SIF is more than 63 bytes, the value is still set
to 63. It may be noted that all signaling units have the following fields in common: Flag,
Backward Information Bit (BIB), Backward Sequence Number (BSN), Forward Information
Bit (FIB), Forward Sequence Number (FSN), Spare bits, Length Indicator (LI), and Frame
Check Sequence (FCS) (see Figure 12.6). The Flag field at the beginning of a signaling message
indicates the start of the packet; its binary value is 0111 1110; thus, any time the remaining data
in a signaling unit have more than five 1s, bit stuffing is used to avoid confusion with the Flag
field. The frame check sequence is appended as the trailer for error detection. It should now
be apparent that the left byte (Flag) shown in the MSU in Figure 12.6 is the first byte sent
while FCS is the last part of the message. Within each byte, we use the convention that the
leftmost bit is marked as the most significant bit.

386 12.6 SS7 Protocol Stack

F I G U R E 12.6 FISU, LSSU, and MSU in SS7 (BI, short for BIB; FI, short for FIB).

In the MTP2 header part, FSN is used as the sequence number of a signaling unit;
this field is incremented by the sender each time a new MSU is generated. BSN is used
as the acknowledgment by the receiving side by indicating the FSN received for a new
MSU. In case the FCS is incorrect, the receiving end sets the BIB field to 1 so that the
sending end knows which FSN to retransmit. When the sender sides retransmit a par-
ticular FSN, it sets the FIB field so that the receiving end knows that it is a retransmit-
ted packet. In other words, for normal transmission and acknowledgment, FIB and BIB
bits are always set to zero. Note that for the FISU and LSSUs, FSN is not incremented;
the FSN for the last MSU is kept the same on the FISU or LSSUs that are generated

C H A P T E R 1 2 SS7: Signaling Network for Telephony 387

TA B L E 12.4 Sample Values in Service Information Octet (SIO) in an MSU.

Bit Position Bit Position
87 Value 4321 Value
00 International network 0000 Network management message
01 Reserved (for international use) 0011 SCCP
10 National network 0100 TUP
11 Reserved (for national use) 0101 ISUP

before another MSU is generated; note that neither the FISU nor LSSUs are retransmit-
ted.

The SIO field in an MSU is further divided into two subfields: 4 bits for indicating the
network type, although the two most significant bits are often used in practice, and the other
4 bits for indicating the service type. Sample values are shown in Table 12.4.

The SIF in MTP3 is the critical field where detailed information needed for a service
such as call processing is encapsulated, where the SIO subfield described above provides the
indicator for the transport protocol. However, the beginning part of the SIF field in MTP3
includes two pieces of information that are needed for the network layer: destination point
code (DPC) and originating point code (OPC). The DPC and OPC fields are followed by the
signaling link selection (SLS) field. In ANSI-based networks, the SLS field is used in selecting
an outgoing link from a linkset when coupled with the DPC field; in ITU-based systems, the
SLS field is used to identify the signaling link code that is influenced by the upper layer pro-
tocol. The three fields, DPC, OPC, and SLS, are collectively known as the routing label in SS7
networks. We have already described the point code structure for the North American and
the ITU format. Taking the point code structure into account, the routing label in SIF has the
following form:

Routing Label (North American): DPC (24 bits) | OPC (24 bits) | SLS (8 bits)

Routing Label (ITU): DPC (14 bits) | OPC (14 bits) | SLS (4 bits)

Thus, the routing label in the North American format requires 7 bytes while in the ITU format
it requires just 4 bytes. The SIO field along with the routing label can be thought of as the core
of the network layer header; the routing label identifies source and destination SSPs, which
are similar to the source and destination IP addresses in an IP datagram header, and part of
the SIO field identifies the upper layer protocol, similar to the protocol type field in an IP
datagram header.

From Figure 12.6, we can see that the SIF field can be up to 272 bytes. The routing la-
bel is the first entity in this field and occupies only a small part of this length. The space
provided by the remaining bytes is left for use by upper-layer protocols as and where
needed.

388 12.7 SS7 Network Management

12.6.2 Upper-Layer Protocols

Immediately above MTP3 in the protocol stack there are three well-known protocols, espe-
cially as related to call routing: Telephone User Part (TUP), Integrated Services Digital Network
(ISDN) User Part (ISUP), and Signaling Connection Control Part (SCCP). From Figure 12.5, you
can see that part of ISUP is also shown to be above SCCP—this is because ISUP can be imple-
mented above SCCP while it is most commonly done directly over MTP3. In this section, we
briefly describe TUP; ISUP and SCCP are discussed in subsequent sections.

TUP: TELEPHONE USER PART

TUP is a legacy protocol used for voice call control. Although it is no longer widely used,
many countries around the world still use it. TUP is used to control only analog voice cir-
cuits. TUP provides the basic functions of call control such as call setup and tear-down; it
also allows identification of the voice circuit to be used for a call using a field called Circuit
Identification Code. To avoid confusion with Carrier Identification Code, to be discussed later in
Chapter 13, we will refer to Circuit Identification Code as Trunk Circuit Identification Code, or
TCIC. That is, the TCIC of a call is the code that identifies the logical circuit number used for
voice transmission on a trunkgroup. It may be noted that TUP uses the TCIC in the routing
label in MTP3 in place of the SLS code.

The initial setup message, known as the Initial Address Message (IAM), is generated by
the original switch through its SS7 interface SSP identifying the destination SSP based on
the leading digits dialed. For simplicity, consider again Figure 12.3, where we have shown a
direct trunkgroup between an originating switch and a destination switch along with its SS7
interfaces. When the originating switch identifies which idle voice circuit is to be used from
the trunkgroup that connects to the destination switch, it is translated to the TCIC code. Thus,
in the IAM message, this TCIC code is included to inform the destination switch of the voice
circuit chosen along with the OPC and DPC of the originating and destination switches.

If the circuit is successfully set up, the destination switch then generates an Address Com-
plete Message (ACM) that is sent to the originating switch, again using the SS7 interface. Basic
usage of IAM and ACM is similar to ISUP call processing described later in Section 12.8.

TUP is compatible with ISUP, while ISUP provides an extended set of parameters. Due to
compatibility, an IAM message generated in an SS7 network that supports only TUP can be
forwarded to an SS7 network that supports ISUP; certainly, the gateway SS7 node is required
to reformat the message before forwarding it to the other network.

12.7 SS7 Network Management
Management of an SS7 network is also a critical function the SS7 protocol stack is required
to provide. In fact, the SIO subfield can be used to indicate network management messages
for the SS7 network (see Table 12.4). Once it is indicated that the message is a network man-
agement message through this field, the SIF field is used to provide further guidance on the
details of the network management message types.

Network management messages are used primarily for routing management in the SS7
network. For example, if a certain linkset is congested in an SS7 network, a network man-
agement message can be generated to inform the associated SS7 nodes that it is temporarily

C H A P T E R 1 2 SS7: Signaling Network for Telephony 389

unavailable so that rerouting of signaling messages can be performed. To illustrate this us-
age, consider again Figure 12.2. Suppose that the A-link between the STP with PC 1.5.0 and
the SSP with PC 1.5.3 is unavailable due to congestion; the STP with PC 1.5.0 will generate a
transfer-prohibited (TFP) message identifying the unavailability of 1.5.3 and send on B-links
to inform STPs with PCs 1.4.0 and 1.4.3. This way, a new call setup message generated the
next time at PC 1.4.3 destined for PC 1.5.3 can take the alternate route, 1.4.3 to 1.4.0 to 1.5.1
to 1.5.3. When the A-link between the STP with PC 1.5.0 and the SSP with PC 1.5.3 becomes
available again, the STP with PC 1.5.0 can generate a transfer-allowed (TFA) message along
the B-links, so that the downstream nodes can now perform normal routing of signaling mes-
sages.

Due to the cluster concept discussed earlier, a cluster level congestion message, known
as the transfer cluster-prohibited (TCP) message, can also be generated. Consider again Fig-
ure 12.2. Suppose that the primary home STP 1.5.0 is not able to access SSPs 1.5.2, 1.5.3, and
1.5.4. Then STP 1.5.0 can generate a TCP message to inform distant STPs 1.4.0 and 1.4.1 that
SSPs in cluster 1.5.0 are not accessible through 1.5.0. Similar to TFA, the network manage-
ment message type, transfer cluster-allowed (TCA), is generated when this cluster becomes
available again.

There are many other messages defined for the purpose of SS7 network management and
testing. We have discussed only a few critical ones to show their need and how their usage
can be helpful in routing management of the SS7 network. Finally, it is important to note
that these messages are meant to manage the SS7 network, not the telephone network trunks.
Management of telephone network trunkgroups is often done using an ISUP message; this is
discussed later in Section 12.9.

12.8 ISUP and Call Processing
While TUP has certainly provided key functionalities for setting up a call using the SS7 net-
work, it was still a basic protocol. ISUP was designed to overcome limitations of TUP; an
important aspect of ISUP is that it is an extensible protocol—thus, it can be customized for lo-
cal need within a country. ISUP is now extensively used around the world for call processing
in the PSTN, although it was originally defined for ISDN services.

ISUP defines about 100 different message types. We have summarized several key mes-
sages types such as Initial Address Message (IAM), Address Complete Message (ACM), and
so on, in Table 12.5. Similar to TUP, the routing label and the TCIC code are included in all
ISUP messages; the major difference here is that in the case of an ISUP message, the routing
label consists of the DPC, the OPC, and the SLS fields while the TCIC code is included in a
separate field following the routing label. Furthermore, in ISUP, IAM is generated only after
all the dialed digits are entered by the user, while in TUP, IAM can be generated based on
leading digits dialed.

The IAM message is the central message and carries much information; in fact, it has 39
different fields, of which 6 fields are mandatory fields. Table 12.6 lists key fields in the IAM
message, including the mandatory fields. The IAM message carries all the critical information
in regard to setting up a call; it includes information such as the TCIC field, and the Called
Party Number and Calling Party Number. It is important to note that Calling Party Number
is not a mandatory field. This means that the starting OPC is not required to include this field

390 12.8 ISUP and Call Processing

TA B L E 12.5 Sample ISUP messages.

Message Type Full Name Usage
IAM Initial Address Message Used for establishing a call
ACM Address Complete Message Indicates that the other end is processing

the call
CPG Call Progress Call in progress message used for alert-

ing, etc.
ANM Answer Message Indicates that the called party has an-

swered the call
EXM Exit Message Indicates that the IAM message has been

passed to another network when inter-
networking is required to establish a call

REL Release Indicates that the call is being terminated
RLC Release Complete Indicates that the REL message has been

received and the voice circuit can be re-
leased

INR Information Request Used for requesting additional informa-
tion about a call in progress

INF Information Used as a response to the INR message to
provide information requested

BLO Blocking Blocking on a circuit by a switch so that
other end does not use this circuit

BLA Blocking Acknowledgment Acknowledgment of a BLO message
UBL Unblocking Unblocking a circuit previously blocked

using BLO
UBA Unblocking Acknowledg-

ment
Acknowledgment of a UBL message

CGB Circuit Group Blocking For blocking a range of circuits
CGBA Circuit Group Blocking

Acknowledgment
Acknowledgment of a CGB message

CGU Circuit Group Unlocking For unblocking of a range of circuits
blocked earlier using CGB

CGBA Circuit Group Unlocking
Acknowledgment

Acknowledgment of a CGU message

when an IAM message is generated. An advantage of not including the Calling Party Number
is avoiding automatic number identification by the receiving party; however, a difficulty is
that if an error code is to be generated along a call path by an intermediate SSP, it would
not know what calling party it is for—certainly, it is debatable whether the intermediate SSP
needs to know this information. Thus, leaving it as an optional field was probably the best
solution.

In an IAM message, the Calling Party’s Category field is used to indicate the type of
subscriber originating the call. This field is used to indicate whether the originator is an or-
dinary calling subscriber, a call from a pay phone, or a call from a special-language operator.

C H A P T E R 1 2 SS7: Signaling Network for Telephony 391

TA B L E 12.6 ISUP Initial Address Message (IAM) and Release Message (REL): Key fields
(Mandatory fields are marked with ∗).

INITIAL ADDRESS MESSAGE (IAM):
Routing Label∗
Trunk Circuit Identification Code (TCIC)∗
Message Type (IAM)∗
Nature of Connection Indicator∗
Forward Call Indicator∗
Calling Party’s Category∗
User Service Information∗
Called Party Number∗
...
Call Reference
...
Calling Party Number
...
Carrier Identification Code
...
Generic Address
...

RELEASE MESSAGE (REL):
Routing Label∗
Trunk Circuit Identification Code (TCIC)∗
Message Type (REL)∗
Cause Indicator∗
...
Call Reference
...

The User Service Information field is usually not needed for a regular telephone call. It is
used when the subscriber is requesting data transmission such as ISDN that does not use a
modem. The Called Party Number contains the number that the originating user dials, ex-
cluding any leading digits used to indicate whether it is a long distance, or an international,
or an operator-assisted call. Since the number can be for a variety of services, we will discuss
it further after a discussion of numbering plans in Chapter 13. Call Reference is an optional
field in an IAM message. This is assigned to a call for the purpose of identification of the call;
this is not a global value and is used primarily for tracking. The Carrier Identification Code
field identifies the network carrier; its use will be discussed in Chapter 13. Furthermore, the
role of the fields, Forward Call Indicator and Generic Address, will be discussed later in Sec-
tion 13.11.4, when we introduce number portability.

An ISUP REL message is an important message that is often associated with an IAM
message. Key fields for an ISUP REL message, including 4 mandatory fields, are listed in
Table 12.6. In the normal mode, this message is used to indicate the release of a call. How-
ever, REL is used for much more than that. It includes a cause indicator field; for a normal call
release, cause identifier 16 is used. If a call is not accepted during setup due to lack of an avail-
able voice circuit, a REL message is generated by specifying this cause in the cause indicator
field. Automatic congestion level is also indicated using the cause indicator field in the REL
message. Two levels of congestion are used, which depends on the threshold value specified;
on receiving the level of congestion information, a source switch may choose to active hard-
to-reach code (refer to Section 11.6.2). In fact, the REL message type is used in numerous ways
[331]; for example, for indicating if the receiving user’s line is busy (cause identifier 17), or if
the number at the receiving end is an unallocated/unassigned number (cause identifier 1), or
if no circuits are available (cause identifier 34), or if switching equipment is congested (cause
identifier 42).

392 12.8 ISUP and Call Processing

There are some differences between the ISUP messages in the ANSI format and the ITU
format; for example, the TCIC field in the ANSI-based IAM message is 14 bits long while it is
12 bits long in the ITU-based IAM message. Similarly, values for certain types or identifiers
can be different.

Example 12.3 Call setup and tear-down process using ISUP messages.
We first present a simple illustration of the call setup process using ISUP messages. Con-

sider a call from a switch with point code 1.4.4 to a destination switch with point code 1.4.5
(see Figure 12.7). Assume that by checking idle voice circuits, it has identified the TCIC code
of the idle voice circuit as 51.

A call process starts with the IAM message from PC 1.4.4 to PC 1.4.5. At this point, the
voice circuit number 51 is tagged for use by this call, but not fully reserved yet. If the user
on the receiving side is available, PC 1.4.5 generates an ACM message to the PC 1.4.4 of the
originating switch, and the ring is started while voice circuit number 51 is fully reserved for
the call. On receiving the ACM message at the originating switch, user B starts hearing the
ring. The destination switch generates the CPG message periodically until the user on the
receiving side picks up the phone. Once the user picks up the phone, the ANM message is
generated.

F I G U R E 12.7 ISUP call setup message exchanges.

C H A P T E R 1 2 SS7: Signaling Network for Telephony 393

F I G U R E 12.8 ISUP call tear-down message exchanges.

Assume that the call originator is the one who hangs up the phone at the end of the
conversation (see Figure 12.8). A REL message is then generated at this end for the other end
with cause identifier 16 for normal call clearing [331]; this REL message is then responded to
using an RLC message to indicate complete call tear-down. �

We make the following important remarks:

• Before the trunkgroup is initialized between two adjacent telephone switches, they must
agree on the logical voice circuit numbering that is to be viewed consistently from both
sides so that there is no ambiguity in the TCIC code included in the initial IAM message.
That is, if TCIC is set to 51, the receiving switch knows which voice circuit it is, so that it
does a tagging on this circuit and does not assign this same TCIC code to a newly arrived
call at this switch going in the other direction. This is important since voice circuits are
often bidirectional. There is a general rule about how to assign the TCIC code. Usually,
two telephone switches are connected by T1 (with 24 voice circuits) or E1 (with 30 voice
circuits) circuit groups; multiple circuit groups can make up the entire trunkgroup. Each
T1/E1 circuit group is first numbered from 0 to a maximum of 127; instead of using 24
or 30, the circuit bundle for each link unit is often set to 32 following an ITU convention.
Thus,

TCIC code = circuit_group_number × 32 + circuit_id.

Suppose that the circuit group to be used is numbered 20 and the circuit number assigned
within this circuit group is 15. The TCIC code for this circuit will then be 655. With this

394 12.8 ISUP and Call Processing

rule, the maximum value possible is 4096, which is also the maximum value allowed in
an ITU IAM packet due to 12 bits assigned to the TCIC field. Although the TCIC field
in ANSI IAM is 14 bits long, i.e., the TCIC field can take a value up to 16,384, such a
high value is rarely required if we consider the traffic demand factor. Using the Erlang-B
loss formula given by Eq. (11.2.3), we can see that 3000 Erlangs of offered load at 1% call
blocking requires 3023 trunks, which can be easily accommodated in the TCIC code range.
Not only that, it is extremely rare that two adjacent switches have more than 3000 Erlangs
of offered load.

• There are many functions that can occur as soon as the ACM message is received by the
originating switch. As an example, we show the initiation of the call detail record (CDR) for
this specific call at the originating switch; this record is closed when the REL message is
generated at the completion of the call. CDRs are used for the purpose of billing as well
as for other usage. Note that not every CDR entry results in a billable entry; for example,
a call may not be answered by the receiving side; a CDR is generated for this call but it is
not a billable call.

ISUP currently uses the pass-along method for sending signaling messages from an origi-
nating telephone switch to the ultimate destination telephone switch; that is, signaling mes-
sages are handed on a hop-by-hop basis from one telephone switch to the next telephone
switch until the ultimate destination is reached; this is consistent with progressive call con-
trol (PCC) discussed earlier (refer to Section 10.1 in Chapter 10). This is not to be confused
with actual routing of such messages within the SS7 network.

Example 12.4 Call routing and SS7 ISUP IAM message routing.
To understand the above discussion about the pass-along method/progress call control,

consider Figure 12.9. We assume here that the telephone switch associated with point code
1.4.2 for which the call originates (“O-switch”) and the telephone switch associated with point
code 1.4.3 for which the call is destined (“D-switch”) are not directly connected by a direct
trunkgroup. A call between them is required to use the tandem switch identified by point

F I G U R E 12.9 Call routing and SS7 message routing illustration.

C H A P T E R 1 2 SS7: Signaling Network for Telephony 395

code 1.4.6 (“T-Switch”). That is, there is a trunkgroup between the O-Switch and T-Switch,
and also a trunkgroup between the T-Switch and D-Switch—these are marked by bold lines.
We assume that when a call arrives at an O-switch, there are circuits available between the
O-Switch and T-Switch, and between the T-Switch and D-Switch.

From an SS7 network perspective, assume that there is no direct F-link between SSPs
1.4.2 and 1.4.6, and between SSPs 1.4.6 and 1.4.3. All of them use STP with PC 1.4.0 to route
signaling messages; for simplicity, we show only one STP instead of a mated pair of STPs.

Now consider a user associated with an O-Switch who dials a number to another user as-
sociated with a D-Switch. The IAM message (not shown in the figure) will first be generated
at PC 1.4.2 with OPC as 1.4.2 and DPC as 1.4.6 while including called and calling party num-
ber information; the TCIC code of the voice circuit assigned on the trunkgroup between the
O-Switch and T-Switch is, say, 22. This IAM message will be routed from SSP with PC 1.4.2
to STP with PC 1.4.0 to SSP with PC 1.4.6. On receiving this IAM message by PC 1.4.6, it will
realize that the call is not terminating at this switch by inspecting the called party number.
Thus, PC 1.4.6 will regenerate an IAM message for this call keeping the called and calling
party information but changing OPC to 1.4.6 and DPC to 1.4.3; this IAM message will be
routed from the SSP with PC 1.4.6 to the STP with PC 1.4.0 to the SSP with PC 1.4.3. The TCIC
code of the voice circuit assigned on the trunkgroup between the T-Switch and D-Switch is,
say, 89 and is not related to the TCIC code on the first leg. �

12.8.1 Called/Calling Party Number Format
So far, we have not discussed actually referencing to any specific Called or Calling Party
Number format. This requires familiarity with E.164 numbering, which will be discussed
later in Chapter 13, where we will again bring back SS7 call processing for a complete under-
standing of call routing in the public switched telephone network. Here, we present a brief
description of the format and a simple illustration.

The Called Party Number parameter contains two main subfields, one to indicate the
nature of the address, and then the called number. The first subfield, Nature of Address In-
dicator, is encoded to indicate if it is a national number or an international number, whether
an operator is requested, and which numbering plan is used. Certainly, the most common
numbering plan is E.164. Once the numbering plan is indicated, then the called party num-
ber is encoded using four bits for each digit while all 1s in the four bits indicates the end of
the number. The nature of address indicator can be used to indicate if the called number is a
ported number; this will be discussed later in Section 13.11.4. We illustrate below Called and
Calling Party Number as used, for example, in an IAM message.

Routing Label: OPC=1.4.4 DPC=1.4.5
TCIC: 55
Message Type: IAM
CalledPartyNumber:

NatureofAddressIndicator: National
NumberingPlan: E.164
Digit: 816-344-2525

CallingPartyNumber:
NatureofAddressIndicator: National
NumberingPlan: E.164
Digits: 816-328-2208

396 12.10 ISUP Messages and Dynamic Call Routing

It may be noted that ISUP messages use bit/byte–level encoding for different informa-
tion. The above is listed in a textual mode for ease of understanding.

12.9 ISUP Messages and Trunk Management

ISUP messages are also used for trunk management. If you look at Table 12.5, you will notice
that it contains several message types that have little to do with either call setup or call tear-
down. We have listed several of them for illustration such as BLO, BLA, CGB, and CGBA.

The message type BLO can be used to block a particular bidirectional voice circuit on
the direct trunkgroup connecting two telephone switches when the telephone switch on one
end invokes it so that the telephone switch on the other end cannot use the same circuit
for a call. In this case, the TCIC field indicates the specific circuit to be blocked. When this
message is sent, the other end responds by sending the BLA message to acknowledge the
BLO message. The originating switch can unblock this circuit later by sending message type
UBL; certainly, the TCIC field on this message would need to match what was announced
earlier. The receiving end then acknowledges by sending a UBA message.

The functions of message types CGB, CGBA, CGU, and CGUA are similar to BLO, BLA,
UBL, and UBA, respectively. The main difference is that these are used in regard to a range
of circuits on a trunkgroup instead of just a single circuit. That is, to block a range of circuits
by one end, the message type CGB can be used; in this case, the payload part of the message
will include the range of circuits to be blocked from this trunkgroup. The other end acknowl-
edges it by responding with the message CGBA. The message type CGU is sent later by the
originating switch to deactivate one directional blocking of the range of circuits; the receiving
end then acknowledges by responding with the message CGUA.

These functions are useful for maintenance of a voice circuit or a range of circuits; for
example, a circuit failure can be indicated by using the BLO message.

12.10 ISUP Messages and Dynamic Call Routing

Earlier in Chapter 10 we presented several different dynamic call routing schemes that have
been deployed in operational networks. Some of them use SS7 messaging for status related to
call routing while others use dedicated circuits. Specifically, dynamic nonhierarchical routing
(DNHR) and real-time network routing (RTNR) use SS7 ISUP messages for dynamic routing
controls. Note that such messages are not standardized messages. We discuss them here to
show how ISUP can be useful for the exchange of control messages for dynamic call routing.

Recall from Section 10.2.3 that telephone call control is usually based on progress call
control (PCC). However, DNHR implemented originating call control (OCC) within its net-
work. Thus, it requires a certain functionality to do OCC. Furthermore, crankback also plays
a role in this regard. Also recall that the dynamic call routing network discussed in Chap-
ter 10 is limited to using at most two links for call routing within its routing domain, where
it is often the middle network connecting a local exchange carrier (LEC) to another local ex-
change carrier (see Figure 12.10). For example, a call that originates at switch 6 in a LEC’s
network that is destined for switch 7 in another LEC’s network uses the dynamic call rout-
ing network as the middle network. Thus, within the dynamic call routing domain, we can

C H A P T E R 1 2 SS7: Signaling Network for Telephony 397

F I G U R E 12.10 Dynamic call routing along with hierarchical routing.

say that Switch 1 is the originating switch and Switch 3 is the destination switch. For alter-
nate routing, we need to keep this in mind while considering the functionalities discussed
below.

12.10.1 Functionalities

To set up a call in a dynamic call routing network, four types of messages are help-
ful [27]:

• Traveling class mark—to control the selection of the route at a switch within the dynamic
call routing network.

• Crankback—to return control of the call to the originating switch.

• Status Query—to request link status (trunkgroup status) from a switch.

• Status Response—to respond to a link status query that contains link status information.

The first two message types can be used during the call setup phase within the domain
of the dynamic call routing network. The last two message types are not required to be tied
up directly to the call setup phase.

TRAVELING CLASS MARK

This message type can be used to control routing choices at different switches and is typically
implemented as part of the ISUP IAM message by including this information in the optional
part of the payload. Thus, when the originating switch within the dynamic call routing net-
work receives its call control from the access network that is based on hierarchical routing,
it needs to decide by consulting the routing table whether to route the call on the direct link
path or on a two-link path to the destination switch within its network. Within its network,

398 12.10 ISUP Messages and Dynamic Call Routing

there are three traveling class mark (TCM) tags, EXIT1, VIA1, and EXIT2, required for call
handling in an IAM message. In essence, an IAM message is extended with additional infor-
mation for the purpose of controlling routing choices.

CRANKBACK

Recall that we discussed crankback and call control in Section 10.2.3 in Chapter 10. To accom-
plish crankback, a new ISUP message type for crankback is used. Its role comes within the
dynamic call routing network at an intermediate switch. When the intermediate switch can-
not find an available trunk to the destination switch, it has to return the control of the call to
the originating switch within the dynamic routing network, for example, in a DNHR-based
routing environment where originating call control is used. The returning control of the call
is accomplished by sending an ISUP crankback message to the originating switch.

STATUS QUERY

A Status Query message can be generated depending on the actual implementation of the
dynamic call routing schemes. In case of RTNR (refer to Section 10.6), the originating switch
within the dynamic call routing network can initiate a status query to the destination switch
to inquire about the link status of all outgoing trunksgroups from the destination switch that
are within its routing domain. For RTNR, the query is about the availability of trunkgroups
based on a certain load threshold value.

A Status Query message can be used in other dynamic call routing frameworks as well
whenever the status of a trunkgroup is needed. For example, the query can be about available
bandwidth, in a periodic or aperiodic manner, to a neighboring switch.

STATUS RESPONSE

A Status Response message is generated as a response to a Status Query message. For
RTNR, the terminating switch responds with the link state status of outgoing trunkgroups.
While for RTNR this information concerns availability at a certain threshold, the status can
be about available bandwidth in the case of an appropriate dynamic call routing frame-
work.

In general, a status response would be generated as a response to a status query. However,
a status response can also be generated by a switch to inform its neighbor about a change in
trunk availability status based on an increase or decrease in call traffic. Either way, the status
response message provides the functionality of the link state routing concept in a dynamic
call routing environment.

12.10.2 Illustration
We now illustrate usage of the above messages in a dynamic call routing environment. Con-
sider Figure 12.10 again; suppose the call originated in the access network at Switch 6 and is
destined for Switch 7 in another access network. Switch 6, on recognizing that this call needs
to go through another network, consults its translation table to determine that the call must be
forwarded to Switch 1. Although the figure shows only the telephone switches, imagine that
there is a parallel SS7 network that shadows the switched network. We consider the following
possible scenarios:

C H A P T E R 1 2 SS7: Signaling Network for Telephony 399

1. If Switch 1 can route on the direct trunkgroup to Switch 3 due to availability of a circuit,
then its IAM message includes the TCM tag EXIT1 so that Switch 3 knows that it is the
destination switch within its network.

2. Suppose that Switch 1 needs to use the alternate route 1-2-3 to Switch 3 due to non-
availability circuits on the direct trunkgroup 1-3. In this case, the IAM message is gen-
erated by Switch 1 where the TCM tag is set to VIA1. On receiving this switch, Switch 2
recognizes that it is the intermediate switch within the dynamic routing network. By in-
specting the called party number in this IAM message, Switch 2 determines that the des-
tination switch is Switch 3 and finds an available circuit on the 2-3 link; Switch 2 then
generates a new IAM message for this call with the TCM tag set to EXIT2, which is sent to
Switch 3. On receiving this IAM message by Switch 3, it recognizes that it is the destination
of the call by inspecting the tag field of the IAM message.

3. When Switch 2 receives an IAM message with the TCM tag set to VIA1, it is possible that
there are no trunks available on the trunkgroup from Switch 2 to Switch 3 (subject to trunk
reservation) for this call. Two situations are possible:

(a) If the dynamic routing network has crankback capability, Switch 2 will generate a
crankback message to Switch 1 identifying the handling of the call and also specifying
that the TCIC code of the circuit on link 1-2 identified through the IAM message is no
longer needed. On receiving this crankback message at Switch 1, Switch 1 may try
another alternate path such as 1-4-2 if this path is listed as the next route in its call
routing table.

(b) If the dynamic routing network does not have crankback capability, Switch 2 will gen-
erate an ISUP network trunk congestion (NTC) message to Switch 1 so that Switch 1
in turn can indicate to the originating switch (Switch 6) that the call cannot be com-
pleted.

4. On arrival of a call within the dynamic routing core, Switch 1 (the ingress switch) may
request Switch 3 (the egress switch) provide a status report for all outgoing trunkgroups
by sending a Status Query message; on receiving such a message, Switch 3 may respond
by sending a Status Response message that reports the availability status of all outgoing
links.

It is easy to see that all dynamic call routing schemes that allow at most two-link call
routing within its network can invoke step 1 and step 3. Any scheme that has crankback
functionality can invoke step 3(a); otherwise, step 3(b) is invoked. A scheme such as the RTNR
scheme would invoke step 4, which essentially enables the link state routing concept for
dynamic call routing networks. Finally, a Status Response message can be generated by any
switch to update information about its outgoing links to others, either periodically or based
on load-based triggers; this functionality also applies to link state routing where each switch
upon receiving such information may decide to update its routing.

400 12.11 Transaction Services

12.11 Transaction Services
Transaction services that use SS7 networks require access to SCPs. The SCP nodes in an SS7
network provide an interface to database services. Message routing for such services does not
follow the pass-along method (progressive call control) that is used for ISUP messages over
MTP3. Instead, message routing for transaction services uses a different transport protocol,
the Signaling Connection Control Part (SCCP). Transaction-based applications then use SCCP
as the transport layer protocol. TCAP and SCCP information is embedded in the SIF field
along with the routing label (see Figure 12.11).

F I G U R E 12.11 SCCP and TCAP in Service Information Field of MSU.

12.11.1 SCCP: Signaling Connection Control Part

SCCP provides both connectionless and connection-oriented network services. Connection-
less services are divided into two categories: basic connectionless service and sequenced con-
nectionless service. The basic connectionless service serves as the transport for TCAP mes-
sages that fit within a single message. If a particular transaction requires more than one mes-
sage, the sequenced connectionless service is used. Connection-oriented services are rarely
supported in the current deployment of SS7. In fact, the connectionless service is the only one
used/deployed in the North American networks.

To indicate that a packet is an SCCP packet at an MTP3 level, the SIO subfield is used
(refer to Table 12.4). SCCP information is carried in the SIF field as shown in Figure 12.11.
There are different SCCP message types due to different services provided by SCCP. The
most commonly used message type among SCCP messages is an SCCP unitdata message; its
schematic format is shown in Figure 12.12.

Here, we will describe several critical fields of this message. Two important fields in SCCP
unitdata messages are Called Party Address and Calling Party Address; in fact, they both include
further detailed information. For example, the first byte of called/calling party address con-
tains the following information: routing indicator (2 bits), global title indicator (4 bits), sub-
system indicator (1 bit), and point code indicator (1 bit). Routing indicator indicates whether
to use national or international networks and whether to route using global title or point
code/subsystem number. If the global title bit in the routing indicator is turned on, the global
title indicator field is used to provide further information about the transaction type, num-
bering plan, and so on. The global title is used, for example, in 1-800-number translation. The
subsystem indicator is used to indicate if the called/calling party address contains the sub-
system number; if so, the next byte indicates the subsystem number. Finally, the point code

C H A P T E R 1 2 SS7: Signaling Network for Telephony 401

F I G U R E 12.12 SCCP Unitdata message.

indicator is used to indicate if the called/calling Party Address contains the point code; if so,
the point code is included after the subsystem number field.

It is important to keep in mind that understanding the SCCP fields described above re-
quires some knowledge of a telephone numbering plan, the role of certain numbers in a num-
bering plan, and their usage. This will be discussed further in Chapter 13.

12.11.2 TCAP: Transaction Capabilities Application Part

TCAP uses SCCP as the transport layer for a variety of applications such as 1-800-number
lookup (for global title translation), calling card validation, roaming functionality for wireless
services, and so on. For example, for global title translation, the routing indicator field in
SCCP is set to zero. We will discuss global title translation in further details in Chapter 13
after we introduce the E.164 numbering plan.

A TCAP message has two key parts, the transaction portion and the component portion,
and may include an optional part, the dialog portion. The transaction portion contains infor-
mation about a specific transaction, such as a transaction identifier and the packet type, that
can be used by an STP to route to the proper destination. The component portion contains
the data received from the application. The optional dialog portion is used, for example, for
encryption information.

There are several TCAP message types that can be identified in the transaction por-
tion: (1) Unidirectional—sent in one direction without expecting a reply; (2) Query with
Permission/Query without Permission—sent when accessing information stored in a data-
base; also to separately indicate whether it is to be done with permission or without
permission; (3) Response—used in responding to a query; (4) Conversation with Permis-
sion/Conversation without Permission—generated as a follow-up to a query; again, with or
without permission can be indicated; and (5) Abort—sent when an originating entity wants
to end a transaction. As an example, an 1-800-number query with permission will result in a
response that contains the routing number(s) associated with the 800-number. We will discuss
this further and illustrate its usage in Chapter 13 after discussing numbering plans.

402 12.12 SS7 Link Traffic Engineering

12.12 SS7 Link Traffic Engineering
It is extremely important that a message generated at an SSP destined for another SSP reaches
there quickly. In SS7 networks, this is governed by a simple rule of thumb: the utilization on
any link of a date rate of 56 Kbps should not exceed 40%. Recall that between two adjacent
nodes in an SS7 network, we have a linkset consisting of up to a maximum of 16 links. Here
the rule of thumb refers to a link, not the linkset.

What does 40% utilization threshold on a 56-Kbps link mean? To understand that, we
need to understand the signaling message arrival process. Note that call arrivals in the tele-
phone network trigger the generation of associated ISUP IAM messages. Since call arrival
is assumed to follow the Poisson process (Appendix B.10), we can assume that ISUP IAM
message arrivals also follow the Poisson process. Indeed, there are other SS7 messages that
can traverse an SS7 link in addition to ISUP IAM messages. For simplicity, we assume that
all SS7 message arrivals to a link follow the Poisson process. We consider the 40% utilization
as the rule of thumb for all such arrivals. To see the impact on delay, we will use the M/M/1
queueing result discussed earlier in the context of IP traffic engineering (see Section 7.1.4 in
Chapter 7). Let the Poisson arrival of SS7 messages be denoted by λ, and the message service
rate of a 56-Kbps link by μ. Then the utilization for a 56-Kbps link, ρ, is given by

ρ = λ

μ
.

Since ρ = 0.4, thus, we have λ = 0.4μ. The service rate of messages is related to the link speed,
c, and is given by the following relation:

c = κμ

where κ is the average message size (in bits). In SS7 networks, the average message size is
around 40 bytes for most ISUP messages. For a link speed of 56 Kbps, we can determine the
average message service rate of a 56-Kbps link as

μ = c/κ = 56,000/(40 × 8) = 175 messages/sec.

Thus, the average message arrival rate at 40% utilization is then

λ = 0.4μ = 70 messages/sec.

Using the M/M/1 queueing delay formula, given by Eq. (7.1.4), we can find that the average
queueing delay, τ , on a 56-Kbps link at 70 messages/sec average arrival rate is

τ = 1
μ − λ

= 1
175 − 70

= 1
105

≈ 9.5 millisec.

Now let us examine how this impacts the end-to-end delay in an SS7 network. Note that
the delay on a link also depends on the propagation, the transmission delay, and the node
processing delay (refer to Appendix B.9). We assume here that the node processing delay for
an SS7 packet is comparatively negligible compared to the other three factors. For a 56-Kbps
link traversing 300 km in length, the delay due to the propagation and the transmission delay

C H A P T E R 1 2 SS7: Signaling Network for Telephony 403

is about 7.2 millisec for a 40-byte packet. Thus, we can consider the delay on a link to be not
more than 17 millisec when we also include the queueing delay factor.

Consider now Figure 12.2. Sending a message from an SSP to another SSP in this network
can take up to three links under the normal routing rule: an A-link followed by a B-link fol-
lowed again by an A-link if the SSPs are served by different mated home STPs. For simplicity,
we will assume that all links are 300 km long. Thus, to traverse these three links, the total
delay, based on 40% utilization on a 56-Kbps link speed for each leg, will be 51 millisec.

When a call goes over multiple network providers, say three network providers, the call
setup message will be transferred from one provider’s SS7 network to the next and so on.
Assume this time that the message must go over two SS7 links in each provider’s network;
then, the end-to-end delay for a message would be about 102 millisec (= 17 × 2 × 3) under the
40% utilization rule on 56-Kbps link speed. This illustrates two important aspects: (1) why it
is good to keep link utilization low, and (2) why the number of links in SS7 networks should
be kept to a minimum to contain the end-to-end delay at an acceptable level since this counts
toward postdial delay.

We now briefly comment on why 40% utilization is a good rule on an SS7 link of low
speed such as 56 Kbps. Note that an SS7 is subject to two additional functionalities at the
MTP2 level: (1) frame check sequencing catches any transmission error through checksum
check, and (2) if a packet is garbled when recognized through checksum, retransmission
needs to be indicated. Thus, the sending node is required to keep an MSU in its retrans-
mission buffer until an acknowledgment is received from the other end. If there is nothing
new to send, the FISU is transmitted. In addition, SS7 message size in general has minimal
variability. Due to these factors, the message processing behavior is much more complicated
than the exponential service distribution assumed above. Even with Poisson packet arrival
behavior, such systems, known as the M/G/1 system in queueing theory due to such a gen-
eral service process, have a more complicated queueing delay behavior. Rather the system
can potentially become unstable at utilization over 50% if there are any transmission errors;
as a result of this instability, the delay curve rises steeply near 50% utilization; for a detailed
analysis, the reader is referred to [646]. Thus, the 40% utilization rule is a good rule of thumb
for low-speed links such as a 56-Kbps link.

An SS7 network can now allow higher link speeds such as 1.544 Mbps. It is easy to see
that due to multiplexing gain on such a higher speed link, with 40% utilization, the queue-
ing delay will be much less. Note that the service rate of a 1.544-Mbps link with an average
message size of 40 bytes is 4825 messages/sec (= 1,544,000/(40 × 8)); at 40% utilization, the
allowable arrival rate will be up to 1930 messages/sec; again using the M/M/1 queuing de-
lay formula given by Eq. (7.1.4), we can find that the average delay will now be less than
1 millisec. Thus, through higher speed links, the end-to-end delay can be reduced signifi-
cantly if 40% utilization threshold is still used as the rule of thumb. Alternately, a somewhat
higher link utilization threshold can be permissible on a 1.544-Mbps SS7 link while the delay
is still predictably bounded.

12.12.1 SS7 Network Performance Requirements
For operational environments, performance parameters for specifying signaling delays are
specified in terms of a hypothetical signaling reference connection (HSRC). The aim is to con-
tain the postdial delay incurred during SS7 message transmission, i.e., signaling delays in

404 12.13 Further Lookup

TA B L E 12.7 Hypothetical signaling reference connection for 95% of signaling
connections: delay requirement and nodes in a path.

Network Type Time (in millisec) Number of
Simple (complex) messages Nodes

National Component (large) 520 (800) 8
National Component (average) 390 (600) 6
International Component (large to large) 410 (620) 7
International Component (large to average) 540 (820) 9
International Component (average to average) 690 (1040) 12

regard to the time taken for the transfer of SS7 messages from the originating SSP to the des-
tination SSP in the HSRC. The reference value is given for 95% of the signaling connections in
terms of large or small networks, and whether it is for national or international networks, in-
cluding recommendation for the maximum number of nodes on an SS7 path [85] (Table 12.7).

12.13 Summary
SS7 networking is critical to the workings of the public switched telephone network. It has
two key dimensions: its network topological architecture and its protocol stack. We have indi-
cated how routing works in an SS7 network given its topological architecture. The topological
architecture is built in such a way that there is enough redundancy so that a message has mul-
tiple paths to reach its destination. SS7 protocol stack provides several application functions
such as call processing and service lookup that are used by the telephone networks. We dis-
cussed in detail ISUP messaging that can be used for call processing, trunk management, and
in a dynamic call routing environment. We presented the difference between call routing and
SS7 message routing. Finally, we covered SS7 link traffic engineering.

An important point to note about SS7 is that many message types have been defined for
call setup, maintenance, and call release using ISDN user part (ISUP). Note that while ISUP
was originally defined for ISDN, it is now commonly used for regular telephone call manage-
ment. Furthermore, some message types are used for trunk management, while others can be
used for congestion management.

Further Lookup
The best source of material on SS7 is actual specifications such as [327], [329], [331], [689]; for
example, for a complete list of cause identifiers with an ISUP REL message, refer to [331].
There are several books and web-sites that provide significant details about SS7 networking;
for example, see [102], [183], [190], [194, Chapter 2], [311], [556], [557], [613].

To further understand the use of signaling messages in dynamic call routing, see
[27, §16.4]. For SS7 network engineering and performance analysis, the reader may refer to
[297], [516], [612], [646]. For performance requirements of SS7 networks, see [85], [325], [326],
[634]. Like any other network, SS7 also is found to have security issues; for example, see
[425], [431], [500], [522] for a discussion. In recent years, there have been efforts in the IETF
community to standardize SS7 over IP [247], [501], [642].

C H A P T E R 1 2 SS7: Signaling Network for Telephony 405

Exercises
12.1. Review questions:

(a) What are the three key components of an SS7 network?

(b) Describe all the different types of links possible in an SS7 network.

(c) Identify the common fields in FISU, LSSU, and MSU.

(d) Describe the various components of the North-American point code addressing.

12.2. Why are 2STPs associated with each SSP in an SS7 network?

12.3. Compare the SS7 protocol stack to the TCP/IP protocol stack, and identify similarities
and differences.

12.4. Ignoring regional STPs, determine the minimum and maximum number of hops from
an SSP to another SSP.

12.5. Investigate point code formats used in China and Japan, and compare them to the
North American and the ITU formats.

12.6. Why is it necessary to have an F-link?

12.7. Explain all the valid routing rules in the SS7 network.

13
Public Switched
Telephone
Network:
Architecture and
Routing
Watson come here, I want you!

Alexander Graham Bell

Reading Guideline

The first part of this chapter can be read independently. Knowledge of SS7 (Chap-
ter 12) and call routing (Chapter 10) is necessary for understanding various sce-
narios discussed as we progress through this chapter. In turn, this chapter helps in
understanding IP-PSTN routing presented later in Chapter 20.

C H A P T E R 1 3 Public Switched Telephone Network 407

In this chapter, we introduce E.164, the telephone number addressing scheme used world-
wide. Within this plan, each country can determine its own numbering scheme. The Public
Switched Telephone Network (PSTN) architecture relies on this numbering scheme along
with routing hierarchy to properly deliver calls from one part of the world to another. With
the advent of SS7 messaging, the SS7 network takes an important role in call routing, espe-
cially due to the numbering plan, while maintaining the hierarchical structure. While there
are still parts of the world that do not use SS7, we still assume prevalence of SS7 as the basis
for discussing call routing. The absence of SS7 in call routing reverts back to the hierarchy
rule as described earlier in Chapter 10 and is not discussed here.

After introducing the number plans and the dialing plans, we then progressively con-
sider call routing in the presence of the numbering plan, as we move from a single nation-
wide network, to the multiple long-distance service provider environment, to the multiple
local exchange provider environment, and, finally, to the scenario of number portability. In
most cases, we use the North American numbering plan for illustration; the basic ideas are
applicable in other numbering plans as well. As appropriate, we present variations due to
differences in the numbering scheme.

Finally, as you read through this chapter, an important point to keep in mind is that
the overall architecture should be efficient so that postdial delay/call setup time is kept to a
minimum without customers noticing this factor.

13.1 Global Telephone Addressing
While telephone services have been around for more than 100 years, a global telephone ad-
dressing architecture is only about 40 years old. The telephone numbering format currently
used is known as E.164 [323]; it has evolved from E.29 to E.161/Q.11 to E.163 to its current
form E.164. The E.164 addressing scheme E.164 has the following general format:

Country Code | National Destination Code | Subscriber Number (13.1.1)

A country code can be one to three digits and a national destination code is generally two to
four digits; the total number of digits is of variable length with a maximum limit of 15 digits.
In practice at present, the entire number, including the country code, is not longer than 13 dig-
its, while lengths of 10 and 11 digits are the most common. To avoid confusion between coun-
try and national destination codes, and to give global significance, the complete telephone
address is now listed starting with “+” sign followed by the country codes to help quickly
identify the country codes and then the rest. The national destination code is also referred to
as the area code in countries such as the United States and Canada, and city codes in other
countries. Usually, for the purpose of human processing, country/city/subscriber numbers
are either separated by space and/or a dash or a dot or parentheses. For example, for country
code 1 used in North America, area code 816, and subscriber number 328-9999, it can be listed
as: +1 816 328-9999 or +1 (816) 328-9999, or +1.816.328.9999, all meaning the same. Note a con-
vention for human understanding. In fact, only the actual number sequence matters; dashes
or periods are not entered. The call processing module in the originating time-division multi-
plexed (TDM) switch would understand and handle only the dialed numbers. For simplicity
and consistency, we will use the dash convention in this book, as in +1-816-555-1212, which
is then an 11-digit number in E.164 format.

408 13.1 Global Telephone Addressing

TA B L E 13.1 World zone for the first digit of country codes, based on E.164 addressing.

World zone Regions/Countries
1 North America, Caribbean Countries, and US territories
2 Africa
3 and 4 Europe
5 South/Latin America
6 Oceania, South East Asia, South Pacific
7 Russia and Kazakhstan (originally assigned to former Soviet Union)
8 East Asia and Special Services
9 Middle East, West Asia, South Asia

We will start with a brief history of the world telephone numbering scheme. In the mid-
1960s, the CCITT Blue Book (also known as Recommendation E.29) first presented the ini-
tial partitioning of the world into several code zones and described the initial set of coun-
try codes. Zones are the single number to identify large geographic regions. While much
has remained the same as was assigned in the beginning, some adjustments have been
made since then. The current breakdown of the zones can be best described as shown in
Table 13.1.

Essentially, a zone signifies the first digit of a country code; a country code often starts in
the world zone in which the country is geographically located and has a maximum of three
digits. While in most cases the country code of a country is located in the geographic zone,
this is not always the case; for example, Mexico is allocated a country code +52 from World
Zone 5, not from World Zone 1; Greenland is allocated country code +299, not from World
Zone 3 or 4. There are other exceptions as well. Some countries do have the world zone as the
country code; furthermore, a country code can be shared by different countries. For example,
the United States and Canada share country code “1,” while Russia and Kazakhstan share
country code “7.” It may be noted that the former Soviet Union was allocated zone 7; all of
the rest of the countries that were part of the former Soviet Union have moved since then to
either zone 3 or zone 9. Another exception, particularly in World Zone 1, is that the Caribbean
countries do not really have country codes; these countries are assigned area codes under the
North American Zone; for example, Jamaica has the country identifier +1-876, Barbados has
the identifier +1-246, and so on. Note that a zone can be defined to start with “0;” thus, a
country code may start with “0.” However, as of now, no country codes starting with “0”
have been assigned. In Table 13.2, the country codes for a representative set is listed.

There is an important point to note about the assignment of country codes; the entire
addressing scheme must have no ambiguity from the point of view of dialing and, thus, for
processing of dialed numbers at a TDM switch. From Table 13.2, we can see that there are
country codes that are two digits long, and there are others that are three digits long, yet
there is a special pattern to it. Consider, for example, the country code for India; it is +91. Can
we then have a country country code +913? The answer is no. Since India is already assigned
+91, the third number after 9 and 1 would indicate the first number of a city code in India
that starts with 3. This also means that, besides two regions with one-digit country codes, not
many countries should be assigned a two-digit country code so that all countries in the world
can be covered with a maximum of three digits. Sometimes, there are interesting extensions to

C H A P T E R 1 3 Public Switched Telephone Network 409

TA B L E 13.2 Examples of country codes from different zones.

Country Country
Code

Zone 1
USA & Canada +1
Jamaica +1-876
Trinidad & Tobago +1-868
Zone 2
Egypt +20
Nigeria +234
Kenya +254
South Africa +27
Zone 3
Greece +30
France +33
Iceland +354
Lithuania +370
Italy +39
Zone 4
Romania +40
Switzerland +41
Czech Republic +420

Country Country
Code

Slovak Republic +421
United Kingdom +44
Poland +48
Germany +49
Zone 5
Nicaragua +505
Costa Rica +506
Peru +51
Mexico +52
Brazil +55
Ecuador +593
Zone 6
Malaysia +60
Australia +61
Indonesia +62
New Zealand +64
Thailand +66
Kirbati +686
Marshall Islands +692

Country Country
Code

Zone 7
Russia and Kazakhstan +7
Zone 8
International Freephone +800
Japan +81
South Korea +82
Hong Kong +852
China +86
Bengladesh +880
Taiwan +886
Zone 9
Turkey +90
India +91
Pakistan +92
Lebanon +961
Palestine +970
Israel +972
Iran +98
Uzbekistan +998

three-digit country codes from a two-digit country code. For example, Czechoslovakia was
originally assigned country code +42. After the breakup of Czechoslovakia into two coun-
tries, country code +42 is no longer valid; instead, the Czech Republic has been assigned
country code +420 and the Slovak Republic has been assigned country code +421.

Finally, +388 is a virtual country code space that can be used by a group of countries.
Within this address space, +388-3 has been assigned to European Telephone Numbering
Space (ETNS), intended for services Europe-wide [207], [526].

13.1.1 National Numbering Plan
Beyond the country code, each country must have a numbering plan so that the number
dialed by users can be of variable length, yet there is no ambiguity. Below, we will discuss
briefly three different national numbering plans. It is important to note that the dialing plan
is adapted from the numbering plan; the dialing plan need not be exactly as specified in the
numbering plan and should not be confused with the numbering plan; this will become clear
when we discuss dialing examples later.

NORTH AMERICAN NUMBERING PLAN

The North American Numbering Plan (NANP) that spans the United States, Canada, and
Caribbean countries follows a fixed 10-digit format for a normal phone number, while allow-

410 13.1 Global Telephone Addressing

ing certain exceptions for special purposes such as 911 for emergency services and 411 for
directory services. Recall that they are in World zone 1 with country code designation +1.
The NANP is often referred to as the NPA–NXX–XXXX format, where NPA is a three-digit
numbering plan area, also commonly referred to as the area code; NXX is a three-digit num-
bering for local exchange; and XXXX is a four-digit station code that identifies a subscriber.
For example, for telephone number 816-235-2006, 816 is the NPA, 235 is the NXX, and 2006 is
the station code.

Specifics of which combination of three digits is allowed to be in an NPA or an NXX have
evolved over time. For example, until a decade ago, the middle digit in NPA could only be
0 or 1; this is no longer the case (as of 1995). In the current form, the first digit N, however,
cannot be 0 or 1, i.e., it can take 2 to 9, regardless of whether the first digit is the numbering
plan area or the exchange code, while all the other positions can be any digits from 0 to 9,
which is often indicated by X. Thus, the current format can be best described as NXX–NXX–
XXXX, although we will refer to it as NPA–NXX–XXXX so that it is easy for us to distinguish
between the numbering plan area code and the local exchange code. Within the numbering
format, N11 is saved for special services such as 911, and, thus, cannot be used as area codes or
an exchange code. The reason why no NPA or NXX starts with 1 or 0 is that 1 as the first digit
dialed is reserved to recognize that it is a toll call, i.e., the subscriber pays, usually on a per-call
basis. Thus, the first dialed digit being 1 is referred to as the national direct dialing (NDD)
prefix and 0 as the first digit followed by any digits other than 1 is reserved for operator-
assisted calls, while 0 followed by 11 is used for international direct dialing (IDD) prefix.
There are also special purpose area codes 800, 888, 877, and 866 that are allocated for toll-free
(freephone) services; for simplicity, the numbers in this group will be referred to as 1-800-
numbers or toll-free numbers. The area code or exchange code 555 is reserved for informational
purpose. The area codes N9X are known as expansion/reserved codes; they are slated for
use when the current 10-digit NANP format would need to be expanded. Furthermore, area
codes 37X and 96X are set aside in case it is desirable to have 10 contiguous address blocks
for any unanticipated need.

In the NANP, there is no special numbering plan for mobile/cellular services. Mobile
numbers are also of NPA–NXX–XXXX format. While specific NXX’s within a particular NPA
has been assigned to mobile providers, such assignments are no longer necessary with local
number portability (refer to Section 13.9).

The NANP is currently administered by the North American Numbering Plan Adminis-
tration (NANPA) [531]. NANPA follows the NPA Allocation Plan and Assignment Guidelines
as prepared by the Industry Numbering Committee (INC) of Alliance for Telecommunica-
tions Industry Solution (ATIS) [309], [310]. The Canadian Steering Committee on Numbering
(CSCN) is in charge of allocation within Canada [109].

NUMBERING PLAN IN INDIA

In April 2003, India (country code +91) did its most recent and extensive revision of the na-
tional numbering plan, with the expectation that this plan will serve the country for another
30 years [491].

The numbering plan in India now conforms uniformly to 10 digits where the national
destination code and subscriber numbers can be of different lengths as long as they add up
to 10 digits; thus, in E.164 format, the total length is 12 digits including two digits for the

C H A P T E R 1 3 Public Switched Telephone Network 411

country code. The national destination code in India is referred to as the trunk code or area
code that identifies a short-distance charging area (SDCA); it can be of two, three, or four
digits in length, which means that the subscriber numbers in corresponding cases are of 8, 7,
or 6 digits, respectively. For example, the SDCA for Delhi/New Delhi is 11 (just two digits);
thus, all subscriber numbers are of eight digits. The first two digits of trunk codes range from
11 to 89, while the trunk codes can be of two to four digits in length. In other words, no trunk
codes can start with 0 or 9. Note that the NDD prefix in India is 0, and the IDD prefix is 00.
If a trunk code were to start with 0 as the first digit, then there would have been a conflict
while trying to dial such a number with NDD prefix 0 since IDD is 00. A trunk code that starts
with 9 is primarily reserved for mobile services with certain exceptions (see below for further
details).

Codes 100, 101, and 102 are assigned for police, fire, and ambulance services, respectively.
Thus, no subscriber number can start with these as the first three digits. Subscriber numbers
can start in the range of 2 to 6; currently, only 2 is used in practice as the first digit for a sub-
scriber number. Digits 0, 1, 7, 8, and 9 cannot be used as the first digit for telephone exchange
codes in basic services. In fact, the new guidelines say that a number that starts with 1 is for
special services; there are many special services defined beyond police, fire, and ambulance
services. An amusing pair of numbers is 116 for wakeup call registration and 117 for wakeup
call cancellation; see [491] for a detailed list. A number that starts with 1 such as 116 might
seem contradictory since the SDCA code for Delhi is 11 and a subscriber number can possibly
start with 6. Note that while the SDCA code for Delhi is 11, a telephone number in Delhi is
dialed without 11 when dialed within the Delhi SDCA area, i.e., just the subscriber number
is dialed, which starts in the range 2 to 6. From outside Delhi but within the rest of India, a
telephone number located in Delhi is dialed with 0 as the prefix and then the SDCA code 11,
i.e., as 011, which is then followed by the actual subscriber number. From outside India, a
number in Delhi will have the dialing format +91-11. Note that the special services numbers
that are dialed starting with 1, such as 116 and 117, cannot be dialed or accessed from outside
India; thus, there is no ambiguity.

It may be noted that the notion of the national destination code/subscriber number is
for the basic PSTN service, that is, for the landline number. Mobile services in India use a
three-part format keeping the total number of digits also at 10. A mobile number has the
following structure: a two-digit Public Land Mobile Network (PLMN) number, a three-digit
Mobile Switching Center (MSC) code, followed by a five-digit subscriber number. The range of
numbers for two-digit PLMN starts with 9, except that 90, 95 and 96 are reserved for other
purposes, mainly due to historical reasons. Thus, valid PLMN numbers are 91, 92, 93, 94,
97, 98, and 99. As an example, a valid 10-digit mobile number is of the format 98-965-827XX
where PLMN is 98, MSC is 965, and the subscriber number is 827XX. In “+” notation, this can
be written as +91-98-965-827XX.

NUMBERING PLAN IN CHINA

The numbering plan in China (+86) has certain similarity to the numbering plan in India.
Landline numbers, excluding country code, can be of 10 or 11 digits in total while mobile
numbers are always of 11 digits. The national destination code in China is referred to as the
area code; it can be of two, three, or four digits in length while subscriber numbers are either
eight digits or at minimum seven digits. Area code allocation is divided by geographic areas:

412 13.1 Global Telephone Addressing

Area 1 is Beijing with area code 10; Area 2 is for large Chinese cities that are given two-digit
area codes such as Shanghai – 21, Tianjin – 22, Chongqing – 23, and Nanjing – 25. Area 3 is for
the Hebei, Shanxi, and Henan area codes, and so on. Thus, an example of a number in Beijing
in E.164 notation is +86-10-8230-XXXX. It may be noted that mobile services nationwide start
with code 13. An example of a mobile phone number with “+” notation would be: +86-13-
81782-XXXX.

Codes 110, 119, and 120 are assigned to police, fire, and ambulance services, respectively.
The national direct dialing prefix in China is 0, while 00 is the international direct dialing
prefix, similar to India and most countries.

13.1.2 Dialing Plan

The E.164 plan shown in Format (13.1.1) describes the full format of international telephone
addressing. For historic reasons, the full format is not required for dialing unless a call is
made to an international location. Most countries allow essentially four forms of dialing:
a call to a local number within a city or geographic proximity, a local call for special ser-
vices such as for police, a call to another city/region outside the local dialing region, and
a call to an international location; except for the first and the second cases, prefixes are re-
quired to be prepended to a number such as the NDD prefix that is used for within a country
and the IDD prefix that is used for international calls. Mobile phones have somewhat differ-
ent dialing plans than residential landline phones. Even with this variety, there must be no
ambiguity in dialing. We will illustrate two examples for dialing from residential landline
phones.

Example 13.1 Dialing from a residential landline phone in the United States.
Consider a user making a call from the landline1 number +1-816-328-9999, shown in E.164

format; note that it is located in area code 816 (Kansas City area). For emergency service calls
to 911, the user simply dials 911. A local call to a number in the same area code, say, +1-816-
235-2006, is dialed simply as 235-2006. Consider now calling two different numbers, +1-913-
235-2006 and +1-351-235-2006, in two different area codes. The first number, +1-913-235-2006,
is also considered a local number in the Kansas City area, although it has a different area
code; thus, the user can simply dial this number as 913-235-2006 without prepending 1 for
the NDD prefix; note that there is no ambiguity in dialing 913-235-2006 compared to dialing
just 235-2006 since the second one means that the number is already in area code 816 where
the call origination is also from a number with 816 as the area code. The other number, +1-
351-235-2006, is a number in area code 351, which is assigned to the state of Massachusetts,
i.e., in a different geographic region; thus, the user is required to dial 1-351-235-2006; here, the
first digit “1” indicates that it is a long-distance call, i.e., “1” is the NDD prefix. There are also
area codes that are used for a variety of services; the best known is the toll-free 1-800-number
calls; for example, the user would dial such a number as 1-800-213-XXXX; this number is then
routed to a routable number, i.e., a valid line number for actual call routing.

1At present, central office codes such as 816-328 and 816-367 have not been assigned, according to NANPA
[531]; we are using them here for illustration assuming that they are associated with landline TDM switches.

C H A P T E R 1 3 Public Switched Telephone Network 413

TA B L E 13.3 Numbers as dialed from +1-816-328-9999: the originating TDM switch’s
view.

911
2352006
9132352006
13512352006
1800213XXXX
011911162345678
011919896582779
011861381782XXXX

Now consider that the user wants to make a call to the following international number:
+91-11-623-45678; this number would be located in India (country code: +91), in Delhi (cite
code: 11), and the local subscriber number is 623-45678. In this case, the user in Kansas City
dials 011-91-11-623-45678, where “011” indicates the international access code, i.e., the IDD
prefix. Similarly, to dial a mobile number in India, for example, +91-98-965-82779, the user
would need to dial 011-91-98-965-82779. To dial a mobile number in China such as of the
form +86-13-81782-XXXX, the user would need to dial 011-86-13-81782-XXXX.

We can see that although dialing a telephone number is of variable length, there is
no ambiguity in dialing so that the originating TDM switch can properly process the di-
aled numbers. From the originating TDM switch’s perspective in regard to the example
numbers discussed so far, it receives the digits as shown in Table 13.3. We can see from
this table that the originating TDM switch, based on the first few digits and/or the num-
ber of digits dialed, would need to know how to handle/route a call without ambigu-
ity.

To summarize, the first number is handled for emergency services based on the numbers
dialed. The next two are based on the number of digits dialed, with the first three digits in-
dicating that it is not a call for a special service. The fourth one is handled for long-distance,
based on the first digit being 1; the last three are handled for an international connection
based on the first three digits being 011. �

Example 13.2 Dialing from a residential landline phone in India.
Consider a user making calls from the residential landline2 number +91-11-623-45678; this

number is located in the city code 11 (Delhi). Thus, a local call to another number within the
same city code, say, to +91-11-676-54321, can be dialed simply as 676-54321. Now consider
calling a number within India to a different city code, say, dialing +91-361-673-0710, which
would be located in city code 361 (Guwahati), or dialing to +91-452-667-1203, which would be
located in city code 452 (Madurai); these are long-distance (or trunk) calls and, thus, the user
is required to dial 0-361-673-0710 and 0-452-667-1203, respectively. Here, the first “0” followed
by a digit other than 0 indicates that it is a long-distance (trunk) call since the NDD prefix in
India is “0.” Now consider that the user wants to dial a call to the following international

2This is valid, but is not an assigned number yet; all subscriber numbers in Delhi currently start with 2 while
the new numbering plan allows that the first digit of a subscriber number can be in the range of 2 to 6 [491].

414 13.1 Global Telephone Addressing

TA B L E 13.4 Numbers as dialed from +91-11-623-45678: the originating TDM switch’s
view.

67654321
03616730710
04526671203
09896582779
0018163289999
009221585XXXX
00861381782XXXX

number: +1-816-328-9999, located in the United States, in city code 816. In this case, the user
in Delhi would dial 00-1-816-328-9999, where “00” indicates the international access code, i.e.,
the IDD prefix in India, followed by “1” for the country code for the United States or Canada,
and then the rest of the digits. Similarly, to reach the international number, +92-21-585-XXXX,
which is located in Pakistan, the user would dial 00-92-21-585-XXXX, or to reach the mobile
number +86-13-81782-XXXX in China, the user would dial 00-86-13-81782-XXXX.

A mobile number in India can be a bit confusing, partly because the number does not
appear to indicate locality based on the initial few digits. Consider the number +91-98-965-
82779. If it were a local number in Delhi, the user in Delhi would dial 98-965-82779, while if it
is a number from another geographic area, then the user in Delhi would need to dial 0-98-965-
82779 to indicate that it is a long-distance call. A common user may not know that the mobile
switching center code part 965 is not located in Delhi. In this specific example, it is indeed a
long-distance call from Delhi and the landline user is required to dial 0-98-965-82779.

We can again see that there is no ambiguity in dialing. The originating TDM switch in
Delhi based on the first few digits and/or number of digits dialed knows how to handle a
call. From the perspective of the TDM switch, the TDM switch receives the digits as shown
in Table 13.4. Here, the first one is based on the number of digits dialed; the next three are
handled for long-distance based on the first digit being 0; the last two are handled for an
international connection based on the first two digits dialed being 00. �

Dialing from a phone other than a residential landline phone varies. For example, from
a corporate environment, it is common to include the prefix 9 to dial outside and then dial
the digits as shown in earlier illustration with residential landline numbers. In the case of
mobile phones, it is often not necessary to dial the NDD prefix; for example, in North Amer-
ican, most wireless network providers allow the user to dial a number without the NDD
prefix.

Later, we will discuss how routing is accomplished based on a dialed number, especially
dialing of leading digits, i.e., the first few digits dialed, at the originating TDM switch. The
need for determining routing at the originating switch based on leading digits partly arises
from the the fact that the numbers dialed can be of variable length, thus, not knowing when
it ends, and also since there is not really a concept of an “enter” button on telephone dialing,
although the # key on telephones sometimes serves as the enter button. That is, preprocessing
of dialed digits is required before deciding on routing.

C H A P T E R 1 3 Public Switched Telephone Network 415

13.2 Setting Up a Basic Telephone Call and Its Steps

We will illustrate a basic telephone call; this process helps in understanding how digits dialed
leads to a routing decision. While there have been many different types of switches over the
years, we will assume in this illustration that the switches have the ability to store and process
dialed digits without any out-of-band signaling functionality; that is, call routing that requires
SS7 signaling will be discussed later.

Consider a telephone call from user A to user B who are located in the same local area,
requiring local dialing. In this illustration, we will start with the assumption that both num-
bers are served by the same service providers. For this illustration, we will use the telephone
numbering system in North America. Consider user A’s number to be (816) 328-9999 and user
B’s number to be (816) 235-2006. In this case, the called party number is (816) 235-2006 and
the calling party number is (816) 328-9999. Note that both numbers are located in the same
city served by the area code 816, but served by different central office codes; thus, user A is
required to dial only 235-2006.

User A picks up the receiver:

1. User A first lifts the receiver; this off-hook status lets the central office/exchange 328 know
that user A requires the phone service, based on the presence of direct current in sub-
scriber line interface (known as DC signaling).

2. Central office/exchange 328 determines whether it has the originating register to store dig-
its dialed.

3. Once central office/exchange 328 verifies the availability of the originating register, it then
provides dial tone functionality to user A.

User A dials a number:

1. Once user A hears the dial tone, she starts dialing user B’s number 235-2006.

2. As soon as user A dials the first digit, the dial tone is disconnected, and the exchange
starts storing the digits dialed.

3. By examining the leading digits dialed, 235 in this case, the exchange realizes that it is a
local interoffice call.

4. The originating exchange does a lookup process, known as translation, to determine the
trunkgroup identifier that connects exchange 328 to exchange 235, and starts scanning for
an idle trunk on this trunkgroup.

5. If an idle trunk is found, then this trunk is seized and is marked as unavailable to other
calls originating at the same exchange; furthermore, this seizure also causes the incoming
register to be seized at exchange 235.

6. Once the incoming register at exchange 235 indicates readiness to receive dialed informa-
tion to exchange 328, outpulsing of digits dialed by user A begins.

416 13.2 Setting Up a Basic Telephone Call and Its Steps

F I G U R E 13.1 A local call from (816) 328-9999 to (816) 235-2006.

7. Before sending the last digit, the originating exchange checks if user A is still off-hook
since otherwise there is no reason to connect the call. Assuming user A is still off-hook,
incoming digits are then stored at the terminating exchange.

8. The terminating exchange then determines if user B’s phone is on or off-hook. If it is idle,
then the ringing register at the terminating exchange is seized, releasing the incoming
register; the audible ring is then returned to the originating exchange, while it also starts
ringing user B’s telephone.

This, thus, completes the call establishment.
There is an important point to note here. Suppose after translation, and scanning the

trunkgroup to the terminating exchange, it was found that all trunks in this trunkgroup are
busy. In this case, the originating exchange will identify the local tandem office and look for an
idle trunk to this switch. If this trunkgroup is busy, then a fast busy tone would be generated
and the call will be cleared from the system. If an idle trunk is found on this trunkgroup, then
this trunk is seized, and the incoming register is seized at the local tandem office. The dialed
digits are pulsed to the local tandem office, and the control of the call is forwarded to the local
tandem office; the local tandem office then seeks to find an idle trunk on the trunkgroup that
connects the local tandem office to the destination exchange (see Figure 13.1); the rest of the
process is the same as the attempt on the direct trunkgroup described above.

To summarize, as soon as the user starts dialing, the originating exchange’s immediate
responsibility is to identify the appropriate outgoing trunkgroup. In general, an originating
exchange have many outgoing trunkgroups to cater for connecting to different providers
and services. Starting with Section 13.5, we will take this aspect into account as well as out-
of-band signaling through SS7 in determining call routing. To concentrate on these aspects,
functions such as having an originating register for holding dialed digits will be implicitly
assumed from now on.

C H A P T E R 1 3 Public Switched Telephone Network 417

13.3 Digit Analysis versus Translation
In a digital switched network, digits dialed by a user are analyzed for the purpose of routing.
There are two terminologies that require clarification in this regard.

Digit Analysis usually refers to inspection of leading digits dialed at the originating TDM
switch to identify the type of dialed call, e.g., national, international, emergency, mobile call.
Typically, digit analysis is done first on the three to six digits. This process is first executed in
order to determine the next step to perform.

Translation usually refers to the set of steps necessary to perform to route a call. Steps
may include, for example, lookup tables inside a switch as well as lookup in a service con-
trol point (SCP) database from a dialed number such as a 1-800-number. However, the term
translation, as in global title translation, is also used when referring just to the lookup from the
SCP database for a 1-800 number to determine a routable number.

13.4 Routing Decision for a Dialed Call
From Example 13.1 and Example 13.2 discussed earlier, we can see that there are several
types of calls possible based on the numbers dialed. Regardless of where in the world a call
originates with a residential phone, it can be essentially classified into the following basic
categories:

• Local calls

• Long-distance (trunk) calls

• International calls.

We also note that in certain parts of the world the following two additional categories of calls
are also prevalent:

• Special services calls

• Toll-free calls.

While the leading digits dialed provide some indication on how to handle a dialed num-
ber, this is not enough information for a routing decision at the originating TDM switch in
a multiprovider setting, or with number portability (discussed later). Thus, before we go
further, we first consider the simplest case in which the phone service within the national
network is provided by a single provider, and for international calls, a handoff is done. Devi-
ations from this scenario are discussed in subsequent sections.

13.5 Call Routing: Single National Provider Environment
The single national provider environment is still prevalent in many parts of the world. In
fact, in many national networks, for both local and nationwide long-distance calls, the phone
service is provided by the post and telecommunication department of the country. Note that
for international calls, the national network forwards the call to a gateway TDM switch for
international connectivity. We assume here that an SS7 network to support call routing is in
place.

418 13.5 Call Routing: Single National Provider Environment

13.5.1 Handling Dialed Numbers
Based on the leading digits dialed, the originating TDM switch is required to identify the
appropriate outing trunkgroup, which is often the case in the absence of SS7 signaling, or
pre-SS7 days. When we take SS7 into account, especially ISUP messaging, the steps work
somewhat differently. We assume that the reader is already familiar with SS7 terminology,
especially point code (PC) addressing, SSPs, and ISUP messaging (refer to Chapter 12).

DIALED NUMBER IS A SUBSCRIBER NUMBER

We first consider the case in which the dialed number is a subscriber number. Under ISUP
call processing, the originating TDM switch waits until all the digits are dialed (within an
allowable time limit). Based on the dialed number, it parses and identifies the destination
point code of the SS7 node to which the call is to be handed off. It is important to note
that the destination point code (DPC) is not necessarily the final destination TDM switch
of the call; it only signifies the SS7 node to which the call processing message is to be for-
warded.

1. User dials a number.

2. The originating TDM switch performs digit analysis to determine how to handle the call. If
it is an intraswitch call, it rings the subscriber’s number; otherwise, it identifies the directly
connected DPC of the TDM switch to which this call should be forwarded. Based on the
identified DPC, it performs lookup of a destination point code to trunkgroup ID. This part
can be, however, vendor implementation specific; in some switch implementation, from
dialed digits, trunkgroup ID is first extracted and then the DPC is found. For uniformity
in the rest of the discussion, we will assume that DPC is identified first and then the
trunkgroup ID is identified.

3. For the trunkgroup ID, it seeks to identify an idle trunk (circuit) if it is available. It tags
the identified available circuit for this call without fully reserving it, determines the trunk
circuit identification code (TCIC) for this circuit, and generates an ISUP initial address
message (IAM) that contains the TCIC code and the called number; this IAM is then sent
to the DPC. It starts a timer and waits to hear either a response back such as an address
completion message (ACM) or a release (REL) message.

The TDM switch that receives this IAM message performs the following functions:

• To process the IAM message to identify the called number and to determine if it is itself
the final destination TDM switch for this call.

– If this TDM switch is the final destination, then it rings the called number and gen-
erates an ACM message to send back to the SSP from which it has received the IAM
message.

– If this TDM switch is NOT the destination, then it performs a lookup service
based on the called number to consult the routing table to determine the next
TDM switch’s DPC, and identifies an idle outgoing circuit to this switch and its
TCIC code (refer to Section 12.8). It starts a call state for this call (along with a

C H A P T E R 1 3 Public Switched Telephone Network 419

timer), and regenerates an IAM message with itself as the originating point code
(OPC) and the newly determined TDM switch as the destination code along with
the new TCIC value just determined; certainly the original called number remains
unchanged. This newly generated IAM message is forwarded to the DPC identi-
fied.

If a TDM switch, on receiving an IAM message, cannot find an available circuit to any
of the TDM switches that are listed in the routing table, then it returns a REL message to the
OPC from which it received this IAM message; in this REL response message, the cause is
also included. According to ITU-T Recommendation Q.850 [331], the cause indicator for no
circuit/channel availability is 34. In fact, there are numerous cause indicators specified for the
REL message [331]. For example, a normal call is released when either party of a call decides
to end the conversation; in this case, the REL message is generated with cause indicator field
set to 16.

There are many functions that can occur as soon as the ACM message is received by the
originating TDM switch. As an example, the call detail record (CDR) for this specific call at the
originating switch is opened; this record is closed when the REL message is generated at the
completion of the call. The CDR entry for a call stores information such as the called number,
the calling number, the time the call started, and the time the call ended. In the rest of the
discussion, we assume that a CDR is created for a call without explicitly mentioning it for
every case.

DIALED NUMBER REQUIRING TRANSLATION TO A ROUTABLE NUMBER

This situation arises when the user dials, for example, a 1-800 toll-free number that is avail-
able; similar services are now available in many countries around the world. Such a number
does not indicate where the destination number is. Thus, a lookup service using the 1-800-
number database is required.

In a single-provider setting, we assume that the point code of the SCP node in the SS7
network that holds the 1-800-number translation database is known to the originating TDM
switch. For the lookup service, the originating TDM switches recognizes that the dialed num-
ber requires title translation; thus, it creates a TCAP message and routes this message using
the SS7 network to the SCP to request a routable number that should be used in place of
the 1-800-number. Once the SCP responds with a routable number, which then becomes the
called number, the originating TDM switch performs the same steps as the ones described
above when the dialed number is a subscriber number. That is, dialed numbers such as 1-800
numbers require an extra phase before the normal call processing is done.

13.5.2 Illustration of Call Routing

We will illustrate the above concept through the use of the NANP, dialing from a residential
phone. While this scenario is not applicable in practice in the United States, we use it purely
for illustration and also for further discussion in the multiprovider environment later.

420 13.5 Call Routing: Single National Provider Environment

F I G U R E 13.2 Call and message routing for calls dialed from 816-328-9999.

First, it is important to note that this is a conceptual logical view of the steps taking place
inside a TDM switch while noting that different switch vendors may implement the entire
call processing steps/logics somewhat differently. This illustration builds upon Example 13.1
for dialing from a residential phone in the United States. Recall that the call has originated
from the number +1-816-328-9999. The user dials basic categories of calls such as local calls
235-2006, 913-235-2006, long-distance calls 1-351-235-2006, and international calls 011-91-11-
623-45678, in addition, to special service calls 911, and toll-free calls—1-800-212-XXXX.

The network architecture as viewed from the originating TDM switch, taking into ac-
count SS7 networking and point code addressing, is presented in Figure 13.2. For simplicity,
only one signal transfer point (STP) is shown to be connected to each SSP; that is, the mated
STP is not shown. Assume that the point code for the originating SSP is 251.1.3. When the
user (i.e., +1-816-328-9999) dials a telephone number for processing at the originating TDM
switch (PC 251.1.3), it must follow the routing rule for call routing that is based on hierar-
chical routing; that is, first do direct trunkgroup routing if there is a high usage trunkgroup
and the overflow to an alternate routing. For a local call, the final trunkgroup is the trunk-
group to the local tandem switch for alternate routing; for calls outside its region, the final
trunkgroup is the trunkgroup to an appropriate toll switch. For convenience, this view of hi-
erarchical routing is shown in Figure 13.4 using the routing rule and node notations discussed
earlier in Section 10.1 in Chapter 10. To mimic this behavior in an SS7-enabled environment,
the originating TDM switch maintains a lookup table for leading digits dialed to immediate
next-hop SSP, along with an alternate SSP for overflow routing. In our example, SSP 251.1.4
is a local tandem switch for overflow routing for local traffic. In Figure 13.3, we present the
example tables maintained at the originating TDM switch for call processing; their usage will
be discussed below through a set of scenarios.

C H A P T E R 1 3 Public Switched Telephone Network 421

F I G U R E 13.3 Call routing decision: conceptual view through table lookup.

F I G U R E 13.4 Hierarchical routing view at the TDM switch level.

DIALING 235-2006

Consider first that the user dials 235-2006. Then, the originating TDM switch identifies the
next-hop SSP to be 251.1.2 using Figure 13.3(a); it then uses Figure 13.3(b) to identify the
trunkgroup ID as 1 and checks if an idle circuit is available. We assume that there is a cir-
cuit available so that direct routing can be performed. The TCIC code for this circuit is then
generated; the IAM message originating at SSP 251.1.3 includes this TCIC; in addition, this
IAM message contains considerable information, most critical of which is that it includes the
called number 816-235-2006. The prepared IAM message is sent to SSP 251.1.2. From Fig-

422 13.5 Call Routing: Single National Provider Environment

ure 13.2, note that these two SSPs are shown to be connected by an F-link in the SS7 network;
thus, this IAM message is routed on this link. On receiving this message at SSP 251.1.2, it
checks the content of the message and determines that this is the termination TDM switch for
this call.

DIALING 913-235-2006

Now consider dialing 913-235-2006, a local number within geographic proximity of the origi-
nating number. First, assume that the call would be directly connected like the call to 816-235-
2006. In this case, the destination SSP is identified as 251.2.6, and thus, the originating TDM
switch will identify the trunk group identifier as 3 and check if there are circuits available on
trunkgroup identifier 3. One difference, however, is that there is no F-link in the SS7 network
between SSP 251.1.3 and SSP 252.2.6. Thus, the IAM message on the SS7 network would be
forwarded to the STP 251.1.0, for further forwarding to SSP 252.2.6.

We now consider the next possible scenario for the call to 913-235-2006, i.e., if there are no
circuits available on the high-usage, direct trunkgroup (identifier 3) from the originating TDM
switch to the destination TDM switch. Based on the routing rule and lookup (see Figure 13.3),
the originating TDM switch would try the trunkgroup to the tandem switch with PC 251.1.4
to see if there are any available circuits. We assume that a circuit is available on the trunk-
group to the tandem switch. Then, due to the progressive call control (PCC) functionality,
the control of the call would need to be forwarded to SSP 251.1.4. This can be accomplished
using the IAM pass along method, i.e., the IAM message is sent to SSP 251.1.4 indicating in
its content that the called number is 913-235-2006 with OPC as 251.1.3 and DPC as 251.1.4. On
receiving this IAM message, SSP 251.1.4 would check if it is meant for itself; based on its own
routing table, it would know that the call setup message must be forwarded to the final des-
tination, SSP 252.2.6. Thus, SSP 251.1.4 will create a new IAM message indicating itself as the
OPC and setting the DPC as 252.2.6; this message will contain the newly determined TCIC
code for the available circuit on the trunkgroup between SSP 252.1.4 and SSP 252.2.6 and will
also contain the same called number 913-235-2006. Furthermore, SSP 251.1.4 will maintain in
its memory a connectivity/mapping state table between the IAM message received from SSP
251.1.3 and the one sent to SSP 252.2.6.

When SSP 252.2.6 receives the IAM message from SSP 251.1.4, it determines that it is
indeed terminating at this node, and it then sends an indication to telephone 913-235-2006
about ringing, and returns an ACM message to 251.1.4 with OPC 252.2.6 and DPC 251.1.4.
When SSP 251.1.4 receives this ACM message, it checks its connectivty/mapping state table;
thus, SSP 251.1.4 will in turn generate an ACM message with OPC 251.1.4 and DPC as 251.1.3.
When the originating TDM switch 251.1.3 receives this ACM message, it knows that the call
is connected.

From the above discussion, we see that IAM/ACM message content in regard to OPC and
DPC changes at the intermediate TDM switch; this is essential due to hierarchical call routing
with PCC and to avoid any confusion at the destination TDM switch. For instance, suppose
that SSP 251.1.4 did not change the OPC field but changed only the DPC field to 252.2.6 in the
IAM message sent to 251.1.6. Then SSP 252.2.6, on receiving this message, would see the OPC
as 251.1.3 and would think that the TCIC value is on the trunkgroup between the originating
SSP 251.1.3 and itself, which is certainly not the case.

C H A P T E R 1 3 Public Switched Telephone Network 423

DIALING EMERGENCY SERVICE NUMBER 911

Next, we consider dialing 911. In this case, we assume that the 911 operator trunks are con-
nected off the local tandem switch with PC 251.1.4. Thus, in this case, the IAM message would
need to be routed through STP 251.1.0 to SSP 251.1.4 since there is no direct F-link between
SSP 251.1.3 and SSP 251.1.4. Once the IAM message arrives at SSP 251.1.4, it determines that
the call is to be put on the trunkgroup to the 911 operator center, known as the Public Service
Access Point (PSAP).

DIALING 1-351-235-2006 AND 011-...

Next we consider dialing a long-distance or an international number. By inspecting Fig-
ure 13.3, we see that for both cases the toll switch with SSP 251.3.8 is the next TDM switch,
and the call will be attempted on the final trunkgroup to this switch (there is no high-usage
trunkgroup in this case). The originating switch (SSP) will create an IAM message with OPC
as 251.1.3 and DPC as 251.3.8. Since there is no F-link between these to SSPs, this IAM will be
forwarded to STP 251.1.0, for further forwarding to 251.3.8.

DIALING 1-800 NUMBER

Finally, consider the case where the user dials an 1-800 number. From Figure 13.3(a), the
originating switch would know that the next-hop SSP is 251.1.7. By consulting Figure 13.3(b),
the switch would know that it is required to generate an SCCP message to SCP node 251.1.7
to obtain title translation for the 1-800 number. This SCCP message will be forwarded to
STP 251.1.0, which will in turn be forwarded to PC 251.1.7 (see Figure 13.2). In the response
message to SSP 251.1.3, SCP 251.1.7 will indicate that the mapping for this 1-800 number
is 1-557-433-XXXX. On receiving this message, the originating TDM switch again consults
Figure 13.3(a) and finds out that the SSP is 252.3.8 (same as the number that starts with +1-
351). It will then handle the call in the same way as it would handle to call to 1-351-235-2005
described earlier.

Today’s 800 number handling is much more sophisticated than what is described so far.
This will be discussed later in Section 13.10.

13.5.3 Some Observations

From the above discussions and the illustration, we make several observations.
First, there is no direct relation between the telephone numbering plan, that is, how the

end device (phone) is numbered, and the TDM switch number; the TDM switch number is
based on the SS7 point code addressing. This is unlike IP networks where the end device
numbering and the router numbering come from the same scheme.

Second, because telephone call routing is based on the TDM switching hierarchy with
PCC, message routing in the SS7 network must follow this requirement by sending a message
from an SSP to another SSP, sort of on a hop-by-hop basis in the TDM switched network.
Consequently, it is important to properly take care of changes in OPC and DPC values at
each SSP as well as TCIC value computation and change; from a performance point of view,
this requires that an SS7 SSP does fast packet header change processing before forwarding.
Routing between two SSPs in the SS7 network follows SS7 network routing rules.

424 13.6 Call Routing: Multiple Long-Distance Provider Case

Third, the originating TDM switch must maintain appropriate lookup tables to map from
a dialed number to an SSP node, and then from an SSP node to a trunkgroup. Beyond that, a
trunk-hunting algorithm is required to identify an available circuit, which in turn is used for
generating the TCIC code; this TCIC code is then included in the ISUP IAM message. Beyond
determining the TCIC code of a circuit, the actual physical circuit must be identified for actual
routing of a call.

Finally, there is a subtle difference between a dialed number and the called number en-
coded in an IAM message. For example, for a local call from +1-816-328-9999 to +1-816-235-
2006, the user simply dials 235-2006. When the IAM message is generated, the called number
can be filled up based on several addressing rules, one of which is based on E.164; thus, if
E.164 is used, then the called number field in the IAM message will contain all of 18162352006
instead of just the dial digits 2352006.

13.6 Call Routing: Multiple Long-Distance Provider Case
From the single network provider (SNP) environment discussed above, the first restric-
tion we relax is to allow multiple providers to coexist and operate long-distance ser-
vices (including international calls) while each region has only one specific local/access
provider. If the call starts from one region to another region that falls under the long-
distance dialing, the destination region can be served by another local/access provider.
Thus, in the simplest form, there are two types of providers: local exchange carriers (LEC),
which provide the local/access telephone service, and interexchange carriers (IXC), which
carry the long-distance part of a call. There are multiple IXCs that operate in the long-
distance part. A subscriber can choose any of the IXCs as their main carrier for long-
distance calls, but can change to another IXC later by requesting a change; the general
assumption is that such change is not very frequent, perhaps only a few times every
year by each subscriber. Regardless, the subscriber must be given the opportunity to use
another IXC on a per-call basis by entering an access code. In the rest of the discus-
sion, we will use the terms interexchange carrier and long-distance provider interchange-
ably; similarly, we will use the terms local exchange carrier and access provider interchange-
ably.

Example 13.3 Call Traversal through LECs and IXCs.
First we illustrate an important effect on how a call traverses from one LEC to another

LEC through an IXC. The conceptual picture is shown in Figure 13.5 with two LECs, LEC-
A and LEC-B, and two IXCs, IXC-1 and IXC-2. Suppose that the number +1-816-328-9999
is served by LEC-A and the number +1-351-235-2006 is served by LEC-B. A subscriber can
choose any one of the IXCs for the long-distance service. Suppose that, at a particular instant
of time, the subscriber with the number +1-816-328-9999 is registered with IXC-1 as its long-
distance carrier, while the subscriber with the number +1-351-235-2006 is registered with IXC-
2 as its long-distance carrier.

If the user with the number +1-816-328-9999 calls the user with the number +1-351-235-
2006, then the call would start at the originating TDM switch in LEC-A, and is handed off to
the toll switch at the border of LEC-A to IXC-1 since user +1-816-328-9999 uses IXC-1 as the
long-distance carrier. The hand-off point between a LEC and an IXC is often referred to as

C H A P T E R 1 3 Public Switched Telephone Network 425

F I G U R E 13.5 Calling between +1-816-328-9999 and +1-351-235-2006 through LEC/IXC
networks.

the Point of Presence (PoP). From the PoP, IXC-1 routes the call through its network using its
own method; for example, dynamic call routing methods discussed earlier in Chapter 10 can
be used in the IXC’s network. The call is then handed off at the TDM switch on the border of
IXC-1 and LEC-B. From there, LEC-B routes the call to user +1-351-235-2006. Overall, we can
see that this call goes from LEC-A to IXC-1 to LEC-B.

Now consider the call originating at the other end: the user with number +1-351-235-2006
calls the other user with number +1-816-328-9999. Note that user +1-351-235-2006 uses IXC-2
as it long-distance carrier. Thus, LEC-B will route the call to the toll switch at the border
between LEC-B and IXC-2. In turn, IXC-2 would decide its own routing method for routing
this call all the way to the border of IXC-2 and LEC-A, where it will hand off to LEC-A. From
there, LEC-A routes the call to user +1-816-328-9999. This time, the call traverses from LEC-B
to IXC-2 to LEC-A.

Thus, we can see that depending on who initiates the call, the call path can traverse
through different carriers or providers. �

An important question is: for a particular subscriber, how would LEC-A or LEC-B know
which IXC to use for long-distance call forwarding, especially since each subscriber can use
a different IXC? A follow-up question is: how would the subscriber still access an alternate
IXC on a per-call basis if he or she wants to?

To address both these issues, a basic requirement is to assign a network number to each
IXC; this number is known as the Carrier Identification Code, or CIC in short. The CIC number
is a four-digit code that any provider who wants to provide the interexchange long-distance
service must have. The four-digit CIC code can consist of any of the digits 0 to 9; but, X411
and 411X, where X represents 0 to 9, are not assigned as CIC codes. Furthermore, the range
9000–9199 is set aside for intranetwork CICs. As an analogy, a CIC code can be thought of
as similar to an autonomous system (AS) number in the Internet, except that CIC codes are
restricted within a particular numbering administration while AS numbers are worldwide.
Similar to private AS numbers (between 64512 and 65535), a certain set of CICs is set aside
for intranetwork purposes. An additional point of clarification is that CIC numbers for us-
age by IXCs are also referred to as Feature Group-D (FG-D) CIC numbers since a protocol

426 13.6 Call Routing: Multiple Long-Distance Provider Case

known as FG-D protocol is used to describe interconnection rules between a LEC and an
IXC.

Now, to address the question about how each subscriber is associated with a CIC number,
a database lookup table is required to be maintained that maps each valid subscriber number
to a CIC number. In North America, this table is maintained as part of the Line Information
Database (LIDB). This database also includes other information about the subscriber and the
subscriber number such as whether the subscriber has signed up for features such as call
forwarding or call waiting and whether the number is a residential or a business subscriber.
LIDB is a network database that is not directly attached to the originating TDM switch. It
is usually connected via the SS7 network off an SCP node that is in close proximity to the
originating switch. Thus, whenever a user makes a long-distance call, the originating TDM
switch sends a TCAP message on the SS7 network to the LIDB database to look up the CIC
number. A subscriber can bypass the current IXC it subscribes to by first dialing an access
code; this access code has the format 101XXXX where XXXX is the CIC number of the long-
distance provider the subscriber wants to use for this specific call; this addresses the second
question posed above. From a digit analysis point of view at the originating TDM switch, this
access code does not cause any ambiguity since 1 followed by any digits other than 0 or 1
would signify a long-distance call. In other words, 1 followed by 0, i.e., the first two dialed
digits being 10, is distinct enough to avoid any ambiguity. Originally, such alternate access
functionality to IXCs did indeed require 10 followed by a three-digit CIC number. This was
later extended to the start code being 101 followed by the four-digit CIC number. As of now,
the first two dialed digits being 11 is not used for any service and is left for future extensions.

Thus, for a dialed long-distance call, the originating switch first needs to determine the
CIC number by consulting the LIDB database; it then needs to determine the appropriate
trunkgroup associated with the long-distance provider that owns this CIC number. Since a
call setup message is to be routed on the SS7 network, the next step is to identify the SSP
associated with this CIC number; the SSP in turn identifies the appropriate trunkgroup ID.
These are then the steps needed for eventually identifying an available circuit to route a long-
distance call.

An important point to note is that along with the demarcation of a LEC and an IXC
for the trunk network, demarcation/handoff for SS7 is also required. That is, each provider
has its own SS7 network and connects to another provider in accordance with the rule of
local/interexchange connectivity. This has an important implication in regard to the 1-800
number that is homed off a particular IXC. Recall that the 1-800 number translation request
is first generated as a TCAP message by the originating TDM switch (SSP) to send to the SCP
that handles 1-800 number translation. Suppose that the IXC does not want to divulge the
point code of the SCP for the 1-800 number database, or might want the flexibility of moving
the 1-800 number from one point code to another point code without having to notify the
access provider. To address this issue, the IXC is allowed to provide only the point code of the
PoP (border) STP of its SS7 network to the LEC for 1-800 number translation, not necessarily
the point code of the actual SCP. In fact, this works within the SS7 protocol stack through
global title translation (refer to Section 12.11). Certainly, the IXC would need to maintain a
routing table entry at the PoP (border) STP for forwarding such TCAP messages properly to
the appropriate SCP.

C H A P T E R 1 3 Public Switched Telephone Network 427

13.6.1 Illustration of Call Routing
We will now illustrate the multiple IXC environment by extending the illustration presented
earlier in Section 13.5.2. First, we note that local calls still stay within a LEC’s network; thus,
the call routing remains the same as discussed earlier in Section 13.5.2 and is not discussed
further. We now make an important clarification about calling long-distance numbers. An
LEC is, in fact, allowed to provide long-distance services within a certain geographic prox-
imity referred to as local access and transport area (LATA). LATA is the area in which a LEC
is allowed to operate fully; such intra-LATA long-distance calls will be dialed starting with
1 and are handled for routing as described previously in the single-provider case. That is,
the originating TDM switch must still function according to the old rules for local calls and
intra-LATA long-distance calls; this can be handled through digit analysis by inspecting the
leading digits and is based on the same logic as described for the single-provider case earlier.
Thus, in the rest of this section, we discuss primarily the impact of a long-distance call that
requires using an IXC; furthermore, when we say a long-distance call, we mean a call that
requires using an IXC.

Here, we list two subscribers with numbers +1-816-328-9999 and +1-816-328-0001 that
are connected to the TDM switch point code 251.1.3 that use different IXCs as their default
long-distance providers. The view from switching hierarchy is shown in Figure 13.6, which
extends the case for the single provider shown earlier in Figure 13.4. The network architec-
ture from the view of the originating TDM switch for handling both local and long-distance
calls through IXCs for these two subscribers is shown in Figure 13.7; this extends the single-
provider architectures shown earlier in Figure 13.2. First note that each IXC would have dif-
ferent PoPs to serve as IXC access tandem switches; thus a trunkgroup is required from the
originating TDM to each IXC PoP. Here, trunkgroup ID 6 is the IXC with CIC number 3773
and trunkgroup ID 7 is the IXC with CIC number 7337. In Figure 13.7, two IXCs are shown.
Each PoP has its point code for its SSP interface. A regional STP is shown for routing SS7
messages to each IXC SSP.

The changes required at the originating TDM switch are fairly significant. The initial
logic for how to handle a call would start with determining the type of operation based on
whether it is a local call or a long-distance call. Thus, instead of the simple table shown in

F I G U R E 13.6 Hierarchical routing view at the TDM switch level in a LEC/IXC
environment.

428 13.6 Call Routing: Multiple Long-Distance Provider Case

F I G U R E 13.7 Call and message routing for calls dialed from SSP 251.1.3 in a LEC/IXC
environment.

Figure 13.3(a), an additional column is needed for the corresponding table as shown in Fig-
ure 13.8(a). Note that local calls still require accessing two table lookups as before. However,
by inspecting Figure 13.8, for the long-distance call that uses an IXC, we can see that it requires
up to four table lookup operations. It may be noted that in Figure 13.8(c), the lookup infor-
mation obtained from the LIDB database located at the SCP node 251.1.16 (see Figure 13.7) is
shown; this is not done internally at the originating switch.

Now consider that the subscriber with number +1-816-328-9999 is signed up with an IXC
with CIC number 3773, and the subscriber with number +1-816-328-0001 has signed up with
another IXC with CIC number 7337. If the subscriber with number +1-816-328-0001 wants
to access the other IXC to make a long-distance call, then it would first need to dial 1013773
before dialing +1-351-235-2006. From Figure 13.8, we can see how the originating switch can
handle this request going from (a) to (d) to (b). However, if it has direct dialed +1-351-235-
2006, then the originating switch would need to request a LIDB lookup to obtain the CIC
number for this subscriber; this one uses (a) to (c) to (d) to (b).

How about the SS7 network? It typically requires a regional STP for routing messages
from the LEC’s SS7 network to the IXC’s SS7 network—see STP 249.2.0 in regard to the IXC
with CIC number 3773 and STP 248.1.0 in regard to the IXC with CIC number 7337 (see
Figure 13.7 and Figure 13.8(d)).

CALLING A 1-800 NUMBER

Calls to a 1-800 number require some explanation. This is somewhat different than a long-
distance call to an IXC. Like a regular number subscriber, there is also a subscriber with

C H A P T E R 1 3 Public Switched Telephone Network 429

F I G U R E 13.8 Table lookup phases in a LEC/IXC environment.

every valid/activated 1-800 number; these subscribers are usually companies, organizations,
or even a person. So as not to confuse with regular telephone subscribers, we will refer to
this group of subscribers as entities. An entity can choose who is going to be the provider
for delivery of calls to its premise: it can be any of the IXCs or the LEC itself. This means
that any routable number for a 1-800 number can be homed off either the LEC or any of the
IXCs. Thus, when a user dials a particular 1-800 number, the originating TDM switch needs
to consider yet another lookup function to find out who the provider for this 1-800 number
is. To identify the provider, an ISUP TCAP message is sent to the 800-number SCP in the SS7
network that stores the lookup information.

On receiving this message at the 800-number SCP, it is mapped to a routable number
and the CIC number of the provider who is to handle delivery of the call to the routable
number. On receiving this response from the SCP, the originating TDM switch identifies the
appropriate trunkgroup to PoP switch of the service provider based on the CIC number (and
the associated TCIC code for the circuit) if it is other than the LEC itself; if the LEC itself is
supposed to be the provider in this case, then the call is routed to the routable number as it
would route any intra-LEC call. Now the originating TDM switch generates an ISUP IAM
message with the called number being the routable number obtained from the 800-number
SCP.

In Figure 13.9 we show the message flow and translation along with call routing. Here,
once a regular subscriber dials the number 1-800-213-XX01, the originating TDM switch with
PC 251.1.3 would send a TCAP message to the 800-number SCP with PC 242.3.4. The SCP will

430 13.6 Call Routing: Multiple Long-Distance Provider Case

F I G U R E 13.9 Lookup up for 1-800 number routing.

return the information that the routable number is 557-433-XXXX and that the CIC number
is 3773. The originating switch will then determine the appropriate SSP by doing a CIC to
SSP lookup (PC 249.2.1 is assumed in this case); then the SSP to trunkgroup ID mapping will
be done (not shown in the figure) to further calculate TCIC for the circuit ID. The ISUP IAM
message will be routed to this SSP for further handling by the provider to complete the call
setup process.

Finally, note that in Figure 13.9 we show only one routable number per 800-number. With
intelligent network capability, the mapping and lookup is much more sophisticated than this
simplistic view; this will be discussed later along with number portability in Section 13.10.

13.6.2 Impact on Routing
With multiple IXC environments, end customers/users are given the opportunity to select
any IXC as their long-distance service provider. From an economic point of view, this defi-
nitely opens up the market and competition. From a technical point of view, this adds addi-
tional complexity to the system as we can see going from Figure 13.3 and Figure 13.8. How-
ever, this complexity should not be considered in isolation. That is, added complexity to a
system does not necessary imply that the efficiency is always impacted. Since the opening of
the IXC market, there has been significant research and progress in understanding software
process control and implementation, hardware architecture, and network engineering so that
even services such as 1-800 lookup are possible without users perceiving any delay.

C H A P T E R 1 3 Public Switched Telephone Network 431

F I G U R E 13.10 LEC/IXC access topology scenarios: (a) full connectivity requires N × M
trunkgroups, (b) access-tandem based connectivity requiring N + M trunkgroups
(“hub-and-spoke topology”).

From a network topology point of view, a LEC would be required to connect as many
IXCs that have requested connectivity. If there were only a few IXCs, then the number of
trunkgroups to such IXCs would remain limited. If, however, the number of IXCs increases
significantly, then the LEC faces a critical network engineering problem that impacts routing
as well. Consider that a LEC has N central offices, and there are M IXCs to which the LEC
needs to connect. An option is that each central office has connectivity to each IXC’s PoP for
long-distance call forwarding; this connectivity would result in N × M trunkgroups for long-
distance services to all carriers. Clearly, this does not scale well from a network configuration
management point of view. Furthermore, there may not be enough offered load to justify a
direct trunkgroup from each central office to each IXC; this is where the ECCS method3 can
be applicable in considering the trade-off on a per-trunkgroup basis between the LEC and
an IXC, leading us to consider an access tandem through which all central offices can con-
nect from the point at which traffic is forwarded to IXCs. If a single tandem office is used for
all IXC traffic from the central offices, then this network architecture requires just N trunk-
groups from the central offices to the tandem office, and M from this tandem office to the IXC
PoPs, resulting in a hub-and-spoke topology (also known as star topology). This then leads
to only N + M trunkgroups, which is a much better option than the scalability issue faced
with the fully connected case, which requires N × M trunkgroups; note that this is from the
point of view of the LEC. From each IXC’s point of view, both scenarios require the same N
trunkgroups to the LEC (Figure 13.10). Certainly, the N +M solution considers that the access
tandem is assumed to be at the middle of the switching hierarchy between the central office
level and the toll-switch/PoP level; this access tandem switch must maintain proper routing
tables for call forwarding in either direction. Note that the access switch would require a total
of N + M trunkgroups.

Eventually, there are two factors that can impact the actual layout decision: (1) the optimal
economic access network design that considers the ECCS method or other similar methods,
and (2) any bi-lateral business agreement between a LEC and each IXC.

3Refer to Section 11.5 for the ECCS method.

432 13.7 Multiple-Provider Environment: Multiple Local Exchange Carriers

13.7 Multiple-Provider Environment: Multiple Local Exchange
Carriers
Multiple LECs are currently allowed to operate for landline local phone services in a geo-
graphic region. Traditionally, there has been only a single LEC in each geographic region; in
the United States, this LEC is often referred to as the incumbent LEC (ILEC), and any new
entrants into the same geographic region as competitive LECs (CLECs). For simplicity, we will
refer to all local providers simply as LECs, such as LEC A, LEC B. We first assume that each
LEC in a particular geographic region is allocated separate local exchange codes (this as-
sumption will be relaxed in a subsequent section). This then requires handling of routing and
handoff between LECs properly. Thus, we start with the inter-LEC routing scenario by using
the NANP.

Example 13.4 Inter-LEC routing illustration.
To understand the impact of multiple LECs, we start with a simple illustration. Consider

exchange codes 816-328 and 913-235 that belong to a LEC (“LEC-A”), while in the same ge-
ographic area exchange codes 816-334 and 913-237 are allocated to another LEC (“LEC-B”).
Then, the central office TDM switch that serves 816-328 would need to recognize that 816-
334 is not an intranetwork call and it must know the SSP point code of this local exchange
to which the call setup message should be forwarded. Instead of directly connecting local
exchange switches between two LECS, these LECs might decide to share an inter-LEC PoP
tandem switch. This interconnection concept is shown in Figure 13.11.

The routing table entry at the switch that is home to 816-328-9999 is shown in Fig-
ure 13.12 for local calls. When a user with the number 816-328-9999 dials 334-1990, the orig-
inating TDM switch will recognize that it is an inter-LEC call by inspecting the central of-
fice code 334 and would identify that the inter-LEC SSP (PoP switch) has the point code
247.3.1. By inspecting the SSP to trunkgroup ID table, the trunkgroup ID will be identified
and TCIC will be determined; this information will be inserted in the IAM message to SSP

F I G U R E 13.11 Inter-LEC connectivity through a PoP tandem switch.

C H A P T E R 1 3 Public Switched Telephone Network 433

F I G U R E 13.12 Tables at a central office switch in LEC A serving 816-328 (entries shown
for local calls only).

247.3.1. When the inter-LEC PoP switch receives this message, it will route to the destina-
tion SSP. �

Note that the introduction of multiple LECs in a geographic area does not affect or change
the depiction of connectivity and routing from these LECs to multiple IXCs, nor the need for
change in LIDB to look up the CIC number for IXC, from the description in the previous
section. That is, outgoing call routing architecture calls entering an IXC remain the same as
in the previous section. However, an incoming call from an IXC to any of the LECs requires
proper handling. The last switch on the call path in an IXC’s network needs to determine to
which LEC to send the call. To do that, this TDM switch must maintain a lookup table based
on the local exchange code to determine the appropriate destination LEC and, consequently,
the egress trunkgroup to this LEC’s access tandem switch.

13.8 Routing Decision at an Intermediate TDM Switch

So far our discussion on call routing has been from the point of view of the originating switch.
A routing decision at an intermediate switch along the call path is somewhat similar. A switch
through its SSP interface first receives the ISUP IAM message and proceeds to check the
Called Party Number field (refer to Section 12.8.1). First it checks to identify the nature of the
address field in the Called Party Number field to determine if it is a national number or an
international number; this information then instructs the switch to process the digits included
in the rest of the Called Party Number field. For a national number, the high-order digits in
the Called Party Number field indicate the destination switch for the call, for example, the
NPA–NXX part in the NANP. Thus, it can now do a routing table lookup to determine which
next switch to use and then identify the associated trunkgroup. Certainly, anytime a switch
receives an IAM message from an upstream switch, by inspecting the Called Party Number
field it first checks to see if this is the destination for this call. If so, it rings the user and
generates an ACM message and sends it upstream.

Number portability is presented in the next section. This results in changes to the IAM
message that will be discussed later in Section 13.11.4.

434 13.9 Number Portability

13.9 Number Portability

Number portability is perhaps the most significant factor that is dramatically changing net-
work routing in the public switched telephone network. In this section, we start with an intro-
ductory discussion followed by portability classification. In subsequent sections, we discuss
the impact of number portability on architecture and routing in detail.

13.9.1 Introduction

Number portability often refers to a subscriber’s ability to change a network service provider
while retaining the same number. Before proceeding, we introduce two term: nonported num-
ber and ported number. A nonported number indicates that a subscriber number has remained
with the original network provider; a ported number indicates a number that is no longer
with the original network provider.

Keeping with the main theme of this book, we will consider the implications for net-
work routing due to number portability; yet, it is important to understand the key driver for
number portability. Historically, telephone services, especially fixed/landline services, have
been provided in a monopolistic environment; so that consumers will not suffer bad service,
appropriate regulatory agencies have mandated maintaining a certain grade of service, such
as designing networks for 1% call blocking probability, and also ensuring that the pricing is
reasonable. The key driver for mandating number portability is to allow competition in pro-
viding telephone services in order to provide flexible choice and benefit to consumers. For
example, each time a consumer changes the service provider, no number change is required.

From another perspective, number portability means that network service providers do
not have ownership of large blocks of contiguous numbers allocated to them; at most, each
service provider has the privilege of hosting a number until the subscriber of the number
decides to move on and sign up with another provider; that is, the ownership of the number
moves from the network service provider to the consumer or user. A critical implication for
number portability is that we are moving from an ownership-based environment to a hosting-
based environment. A simple analogy from the Internet is helpful here. Consider the domain
name system in the Internet; you can own a domain name, but might choose to change your
web-hosting providers over time.

To move from an ownership-based environment to a hosting-based environment, there
is a significant cost that would need to be incurred up front by a network service provider,
along with the impact on the overall architecture. In this regard, it is sensible to introduce
number portability in a phased manner so that smaller providers have a longer time win-
dow in which to introduce number portability. That is, any number portability environment
must coexist with the possibility that some exchange codes may not be ported and/or that
some countries may not have introduced number portability such that the telephone call flow
remains seamless to the ordinary user across the world.

We now start with an illustration to show the implication of number portability in re-
gard to a landline number in a LEC environment, which is often referred to as local number
portability (LNP).

C H A P T E R 1 3 Public Switched Telephone Network 435

Example 13.5 Illustration of local number portability using the North American numbering plan.
Consider two subscriber numbers 816-328-9999 and 816-328-0001, both served originally

by LEC A from the the central office/exchange code 816-328. With LNP, the user with the
number 816-328-0001 now decides to change the LEC to LEC B. Thus, 816-328-9999 remains
a nonported number, while 816-328-0001 is now a ported number. If the user with the num-
ber 816-328-9999 calls the user with the number 816-328-0001, it is no longer an intraswitch
call! �

Thus, a significant impact of LNP is that the implicit assumption that the central office
code part of a subscriber number is the home central office code is not always true anymore.
Another impact is how to handle call routing when a distant user tries to reach a ported
number, say, 816-328-0001. That is, consider the user with the number +1-351-235-2006 from
another geographic region or an international caller wanting to reach +1-816-328-0001; how
should this call be handled for routing to the correct subscriber? Thus, LNP has two sig-
nificant impacts: (1) the need to handle calls to ported numbers at a switch that used to be
intra-switch calls for these ported numbers, and (2) the need to route a call from another
region to the correct local exchange carrier that serves a ported number. Furthermore, an-
other requirement must be satisfied: a user with a ported number might choose to move to
a third LEC, or move back to the original carrier sometime after. How should such a change
be structured and portability be communicated in a timely manner? These are some of the
key questions that arise with number portability. These will be considered in the next sec-
tion.

13.9.2 Portability Classification

There are three types of numbers that are of interest as far as number portability is con-
cerned: landline telephone numbers, mobile telephone numbers, and nongeographic toll-free
numbers. Implicit in number portability is a subscriber’s ability to change a network service
provider while retaining the same number; thus, all number portability can be broadly de-
scribed as service provider number portability (SPNP), or operator portability. Similarly, implicit
in a fixed/landline or mobile telephone number is that fixed number service is provided by
a fixed network service provider (operator) such as a local exchange carrier, while a mobile
number service is provided by a mobile or wireless carrier; however, there is no such im-
plicit understanding when referring to nongeographic toll-free numbers such as 1-800 num-
bers.

We start with fixed/mobile number portability. Within the broad definition of service
provider number portability, several situations are possible:

1. Local fixed-to-fixed porting—a subscriber retains the number moving from a fixed-
number operator to another fixed-number operator within a local/geographic area.

2. Fixed-to-fixed porting across geographic regions—a subscriber retains the number mov-
ing from one geographic area to another geographic area, often changing the operator as
well.

436 13.10 Nongeographic or Toll-Free Number Portability

3. Mobile-to-mobile porting—a subscriber retains the number when moving from a wireless
carrier to another wireless carrier.

4. Fixed-to-mobile porting—a subscriber retains the number moving from a fixed LEC to a
wireless carrier.

5. Mobile-to-fixed porting—a subscriber retains the number moving from a wireless carrier
to a fixed LEC.

Collectively, the above five situations will be referred to as regular subscriber number porta-
bility, to distinguish them from nongeographic toll-free number portability. There are also
three additional terms associated with number portability: (1) local number portability, (2) lo-
cation portability, and (3) service portability. Typically, local number portability (LNP) refers
to local fixed-to-fixed porting, and location portability refers to fixed-to-fixed porting across
geographic regions; however, local number portability can also be fixed-to-mobile or mobile-
to-fixed; this will be discussed later. In addition, mobile number portability refers to mobile-to-
mobile porting. Service portability refers to changing a service, for example, from plain old
telephone service (POTS) to ISDN services; this, however, may or may not result in changing
an operator. Service portability is still not well understood and will not be considered in the
rest of our discussion.

It is helpful to quickly revisit E.164 numbering. Note that E.164 numbering has a well-
defined format; however, once the country code is allocated, it is left up to each country to
decide on the numbering plan within this framework. Earlier in Section 13.1.1, we have given
examples of numbering plans that differ from one country to another. Of particular interest
is how fixed and mobile number space is allocated in different countries. For instance, in the
NANP, fixed and mobile numbers have the same NPA–NXX–XXXX format; however, in coun-
tries such as India and China, mobile numbers are allocated in an address space that has spe-
cific starting digit strings such as the ones in India that start with 9 (with certain exceptions)
while all mobile numbers in China start with 13. In either type of numbering plan, number
portability can potentially lead to consumer confusion of varying degrees, at least initially, de-
pending on the type of portability. Certainly, local fixed-to-fixed and mobile-to-mobile porta-
bility situations are the least confusing ones, regardless of the numbering scheme. However,
fixed-to-mobile and mobile-to-fixed portability are perhaps the most confusing one to con-
sumers in countries where different numbering formats for land and mobile numbers are
used, besides possible implications on charging. These issues as well as regulatory issues are
important under the umbrella of number portability; they can potentially play a role in the
eventual routing architecture; we believe it is important for the reader to be aware of these
issues since the primary focus in the rest of the discussion is from a technical perspective.
That is, because of the numbering plan and to avoid confusion, some countries may or may
not allow fixed-to-mobile porting or mobile-to-fixed porting.

13.10 Nongeographic or Toll-Free Number Portability
To understand nongeographic or toll-free number portability, we first need to understand
what a subscriber means in regard to a nongeographic/toll-free number. Like a regular fixed
or mobile telephone number subscriber, there is also a subscriber associated with every

C H A P T E R 1 3 Public Switched Telephone Network 437

valid/activated toll-free number; these subscribers are usually companies, organizations, or
even a person. Not to confuse them with regular telephone subscribers, we will refer to these
types of subscribers as entities. An entity can choose who is going to be the provider for de-
livery of calls to its premise. In a number portability environment, it is further desirable that
while maintaining the same toll-free number, an entity might want to have multiple providers
handle its call delivery based on percentage traffic allocation and/or time of the day.

Our illustration here for nongeographic number portability is based on the North Amer-
ican environment. A similar concept can be deployed in other countries. First recall from the
earlier discussion about 1-800 number routing that the 800-number SCP is involved in looking
up a routable number. Thus, first we need to understand the process of an entity requesting
change in number portability, which is eventually communicated to the 800-number SCP.
That is, there are two distinct phases in regard to number portability: the first is the process
in regard to requesting a change and how this is communicated to the 800-number SCP, and
the second is the actual routing when a regular subscriber dials an 1-800 number.

13.10.1 800-Number Management Architecture
An independent administration for 800-number maintenance, to be referred to as an 800-
Service Management System (SMS/800) Administration Center is responsible for maintaining the
most up-to-date record in regard to 800-number translation. A responsible organization, or
RespOrg in short, that has been certified is allowed access to the SMS/800 database located at
the SMS/800 administration center. A RespOrg can request a change for an entity for chang-
ing service provider or allocation. Once this information is recorded at the SMS/800 database

F I G U R E 13.13 Service Management System/800-number architecture: process and
communication to SCPs.

438 13.10 Nongeographic or Toll-Free Number Portability

and tested, a copy of the current information in the SMS/800 is downloaded to Service Con-
trol Points (SCPs). There are currently approximately 20 mated pairs of 800-number SCPs
across North America. The basic architecture is shown in Figure 13.13.

13.10.2 Message and Call Routing
A LEC accesses the closest 800-number SCP pair using the SS7 network. Thus, when a regular
subscriber dials a 1-800 number, the originating TDM switch (SSP) generates a TCAP query
that is routed to the 800-number SCP using the SS7 network. The 800-number SCP looks
up the entry applicable at that instant for the dialed 800-number and returns the CIC number
along with a routable number or the dialed toll-free number. If the CIC number happens to be
for the LEC itself, then the originating switch identifies the SSP for the switch (either tandem
or terminating switch) to which the ISUP IAM message is to be sent that contains the TCIC
code. If the CIC number happens to belong to an IXC, then the originating switch identifies
IXC’s PoP SSP and determines the trunkgroup ID and TCIC to be used for this call; an ISUP
IAM message is then generated that includes the TCIC information; the called number field
is the routable number obtained from the 800-number SCP and this message is sent to the
PoP SSP. Note that the ISUP IAM message can include the dialed 800-number as the called
number if the 800-number SCP returns this number; in this case, the carrier that receives this
message does further translation internally for ISUP IAM message routing and call routing;
this phase is completely transparent to the originating TDM switch.

For illustration, we first note that the basis architecture for call routing remains the same
as shown earlier in Figure 13.9. Thus, we concentrate here on the message routing part of
the call setup phase from the point of view of the originating TDM switch as shown in Fig-
ure 13.14. At the 800-number SCP database, we show the conceptual view of information ac-

F I G U R E 13.14 800-number portability, lookup, and ISUP message routing: 1—call
initiated by user; 2, 3—TCAP messages; 4—IAM message.

C H A P T E R 1 3 Public Switched Telephone Network 439

cessed in regard to the dialed 800-number, which can be mapped to multiple routable numbers
with percentage allocation; the allocation may be based either on different service providers
or multiple numbers for the same service provider. It should be noted that in actuality more
than two routable numbers can be listed and the time granularity for a routable entry is not
fixed; here, for brevity, we show a maximum of two entries for each 800-number and change
in entries on an hourly basis. This is time-of-the-day routing. There is another important point
to note; it is possible that at a particular time instant, calls arriving at central offices in differ-
ent geographic locations that are destined for a particular 800-number are routed to different
routable numbers or different providers. In other words, the entry need not be unique nation-
wide at a particular point of time.

13.11 Fixed/Mobile Number Portability
In Section 13.9.2, we identified five different situations in regard to fixed/mobile number
portability. While some countries are limiting number portability to only mobile number
portability, other countries are exploring all five situations. In this section, we present the
number portability architecture and discuss various possible routing schemes.

13.11.1 Portability Architecture
A key aspect of number portability is the process architecture that allows porting of a number
from one network service provider to another network service provider.

Prior to regular subscriber number portability, there are several possible operator scenar-
ios depending on how the telephone service is provided in a country: (1) local landline tele-
phone service is provided by a single network service provider in the entire country, (2) local
landline telephone service is provided by different network service providers in different
parts of a country but a single provider in each region, (3) local landline telephone service
within a local calling region is provided by multiple different network service providers, or
(4) mobile telephone service is provided by different network service providers regardless
of any geographic region in a country. Regardless of these scenarios, each provider, whether
fixed or mobile, is assigned telephone numbers in blocks, typically at the exchange code level,
by the numbering administration that has jurisdiction over it. This is then the ownership-
based model for telephone numbering.

With number portability, a subscriber can decide to take his or her number and request
service from another provider. The network provider that originally owned this number
as part of a numbering block assignment is referred to as the donor network. The network
provider that the subscriber approaches to host its number is called the recipient network. Note
that the subscriber might want to switch service provider again after some time. Thus, the re-
cipient network can change over time, as often as a subscriber changes the provider; however,
the donor network is always considered to be the original network that owned the address
block from which this subscriber number came. For example, if a provider was originally as-
signed the exchange code +1-816-328, then this provider is called the donor network in the
number portability architecture. If the subscriber with the number +1-816-328-5001 chooses
to move to another provider, then this provider is referred to as the recipient network. If the
subscriber moves again to a third provider, the donor network remains the same but the third
provider is now the recipient network.

440 13.11 Fixed/Mobile Number Portability

In the number portability architecture, a third party organization called the network porta-
bility administration center (NPAC) is in charge of coordinating the number portability. The
NPAC is given jurisdiction depending on the scope of the portability. That is, this jurisdiction
is typically dependent on whether the portability is local number portability or location porta-
bility. If it is local number portability (fixed-to-fixed, or fixed-to-mobile, or mobile-to-fixed, or
mobile-to-mobile), then there is a certain geographic region within which the portability is al-
lowed, for example, within a city or local number calling area; in this case, the NPAC would
need to cover all network providers that serve this area. A much clearer way to understand
NPAC jurisdiction is to consider the portability at the telephone number address code level.
For example, if subscriber +1-816-328-5001 is allowed to port the number to a provider only
in the local calling region, then an NPAC’s jurisdiction is more regional based. If however,
the subscriber with the number +1-816-328-5001 is allowed to take the number to another ge-
ographic region (“location portability”), then the NPAC must have the ability to coordinate
over this geographic area, too. Regardless of the reachability of number portability from a
geographic perspective, the three basic components—the donor network, the recipient net-
work, and the NPAC—remain valid.

An important requirement as far as impact on routing is concerned is that with num-
ber portability a call cannot be routed based solely on the called number. Note that prior to
number portability, the called number indicates the destination of the call; specifically the
destination TDM switch can be identified from the first few digits of the called number, such
as the NPA–NXX part of the called number in the NANP. Such identification based on the
called number is no longer possible with number portability if a number is ported. Thus, for
each number ported, we need a way to identify where this call is going to be routed to, that
is the address of the destination TDM switch that currently hosts the ported number. Thus, for
number portability to be possible, each destination TDM switch (or point of interconnection)
requires an address, which address is referred to as the location routing number (LRN) or the
network routing number (NRN).

In the NANP, an LRN is a 10-digit number taking the form NPA–NXX–XXXX, where the
last four digits are typically set to zeros. It is a unique number that identifies either a local-
exchange TDM switch or a point of interconnection (POI) in each LATA. Usually, the first six
digits of an LRN of a TDM switch is the original LEC of the switch. Since some carriers may
not have implemented number portability yet, the local exchange switches in that carrier’s
network are still required to have an LRN, but they are marked as nonported LRNs. The
benefit of switches so marked will be discussed later Section 13.11.2.

To port a number then requires several steps that involve the recipient network, the donor
network, and the NPAC. From the point of view of each network provider, any portability
request must be handled appropriately, which also includes, for example, a billing operations
support system. The schematic diagram of the process flow architecture for the first-time move
from a donor network to a recipient network is shown in Figure 13.15; the steps are described
below:

1. The Point of Sale sends the order request to the Operations Support System (OSS) for
billing of the recipient network.

2. The recipient network’s billing OSS sends a message to the donor network’s billing OSS
to indicate the order request.

C H A P T E R 1 3 Public Switched Telephone Network 441

F I G U R E 13.15 Number portability architecture: initial porting from a donor network to
a recipient network.

3. The donor network’s billing OSS responds with approval for this request if everything is
in order. For example, if there are any billing issues, the donor network’s billing OSS can
request a delay in transfer to the recipient network. Until this request is processed with
approval, the recipient network cannot move forward with porting the number.

4. The recipient network’s OSS sends the porting request information to the Local Service
Order Administration (LSOA) in its network. This request includes information such as
the subscriber number, location routing number (LRN) of the donor network, and the
date/time the number is to be ported to the recipient network.

5. The recipient network’s LSOA sends the porting request to the SOA at the NPAC.

6. The SOA at the NPAC records this request and forwards it to the LSOA of the donor
network.

7. On receipt of this request, the LSOA of the donor network informs its billing OSS when
to stop billing and receives confirmation.

8. The LSOA of the donor network now confirms the SOA at the NPAC that it has agreed
to the porting request along with confirmation on the date and time of the actual change.

9. The SOA at the NPAC sends a confirmation to the LSOA at the recipient network in
regard to the porting.

442 13.11 Fixed/Mobile Number Portability

10. The SOA at the NPAC now communicates the porting information to its service man-
agement system (SMS) in regard to the number, the LRN, and the effective time/date of
change.

11. The SMS at the NPAC is now responsible to inform local service management systems
(LSMSs) at the recipient network, donor network, and any other networks under its ju-
risdiction about the new routing information for the ported number.

12. The LSMS in each network communicates the ported number along with routing infor-
mation to its number portability database (NPDB) SCP. This then completes the portabil-
ity.

Note that it is left to each network provider to decide whether it wants to maintain a
separate NPDB SCP for each originating TDM switch, or to have just one combined NPDB
SCP for all its originating TDM switches.

If the subscriber moves from its current network provider (“current recipient network”)
to a new network provider, then the new provider becomes the recipient network. In this case,
the process flow will involve the new recipient network, the old recipient network (especially
for billing purposes), and the original donor network.

We now comment on the portability architecture if the portability is for location portabil-
ity. The basic concept as described above remains the same. However, the NPAC would need
to be a larger area, such as the entire nation. Certainly, in this case, for scalability, a recipi-
ent network can send the portability request to a regional NPAC, which in turn coordinates
with a centralized NPAC—this option also has the advantage when the proportion of location
portability request is small compared to local number portability request.

13.11.2 Routing Schemes

Once a number is ported as described above, we consider how to route a call to the ported
number. This is where the LRN for a ported number is needed for proper delivery of a call.
There are essentially four different schemes that can be invoked in regard to routing de-
cision of a call to a ported number; all of these address how and when to determine the
LRN, each in its own way. To consider these schemes, we assume that once a number is
ported, a central NPDB stores the mapping information that maps a ported number to a lo-
cation routing number. In addition, we assume that a donor network has an internal data-
base that stores the mapping from a ported number to an LRN; this can be only for the
number for which the donor network used to be owner before number portability was in-
troduced.

To discuss the four schemes, we consider an environment in which a caller calls a sub-
scriber (“callee”). The network that receives the call from the caller will be referred to as the
originating network. For this discussion, we assume that there is no intermediate or transit
network between the call originating network and the recipient network, or between the call
originating network and the donor network.

C H A P T E R 1 3 Public Switched Telephone Network 443

(a) Onward routing (OR) (b) Query on release (QoR)

(c) Call dropback/Return to pivot (CD/RtP) (d) All call query (ACQ)

F I G U R E 13.16 Call routing schemes, with number portability.

ONWARD ROUTING (OR)

In this scheme, a call from the originating network is routed based on dialed digits. This then
implicitly assumes that the call is sent to the donor network, i.e., as if the porting has not
occurred yet. This scheme has the following steps (see Figure 13.16(a)):

1. On receiving a call from the caller, the originating network routes the call to the donor
network like a regular call, i.e., circuits are allocated.

2. The donor network’s terminating switch recognizes that the number is ported; it holds the
call in memory and queries the internal NPDB to learn about the recipient network.

3. The internal NPDB does a called-number-to-location routing number lookup and returns
the location routing number to the donor network.

444 13.11 Fixed/Mobile Number Portability

4. Using the location routing number, the donor network routes the call to the recipient net-
work.

It is easy to see that the onward routing scheme can be thought of as call forwarding.

QUERY ON RELEASE (QOR)

This procedure initially starts with the assumption that the porting has not occurred, and
thus, call routing involves the donor network. This scheme has the following steps (see Fig-
ure 13.16(b)):

1. On receiving a call from the caller, the originating network routes the call to the donor
network like a regular call, i.e., circuits are allocated.

2. The donor network’s terminating switch recognizes that the number is ported and informs
the originating network that the number is ported. Note that the donor network does not
track where the number is ported.

3. On learning from the donor network that the number is ported, the originating network
queries the centralized NPDB.

4. The centralized NBDB does a called-number-to-location routing number lookup and re-
turns the location routing number to the originating network.

5. The originating network identifies the recipient network based on the location routing
number and routes the call accordingly.

Note that QoR does not need to use the internal NPDB at the donor network.

CALL DROPBACK OR RETURN TO PIVOT (CD/RTP)

Call dropback, also known as Return to Pivot, is somewhat of a hybrid between the onward
routing scheme and the QoR scheme. Unlike onward routing, the call dropback scheme al-
lows the call control to be cranked back to the originating network that is now in charge of
handling routing to the recipient network. Similar to the QoR scheme, the originating net-
work routes the call to the recipient while each finds out about porting differently: QoR relies
on the centralized NPDB, while CD/RtP depends on the donor network to query its internal
NPDB. This scheme has the following steps (see Figure 13.16(c)):

1. On receiving a call from the caller, the originating network routes the call to the donor
network like a regular call, i.e., circuits are allocated.

2. The donor network’s terminating switch recognizes that the number is ported; it holds
the call in memory temporarily and queries the internal NPDB to learn about the recipient
network.

3. The internal NBDB does a called-number-to-location routing number lookup and returns
the location routing number to the donor network.

4. The donor network releases the call to the originating network and includes the location
routing number.

C H A P T E R 1 3 Public Switched Telephone Network 445

5. On receiving the release message from the donor network with the location routing num-
ber, it releases the circuits already assigned to the donor network, and now routes the
recipient network.

Note that the dropback feature is similar to the crankback feature discussed earlier with dy-
namic routing (refer to Section 10.2.3). Fundamentally, this means that dropback feature is
like an originating call control feature, instead of a progressive call control feature.

ALL CALL QUERY (ACQ)

In this scheme, a query is generated for every call, regardless of whether the called number
is ported or not. This scheme has the following steps (see Figure 13.16(d)):

1. On receiving a call from the subscriber, the originating networks sends a query to the
centralized NBDB.

2. The centralized NBDB returns the location routing number to the originating network.

3. The originating network identifies the recipient network based on the location routing
number and routes the call accordingly.

Note that the donor network (and its internal NPDB) is not involved at all in the routing
decision.

DISCUSSION

We have presented the above four schemes using the notion of networks and databases in a
somewhat simplistic manner without providing several details. We now provide some more
details to show where the circuit is actually set up and the ISUP message types involved in
different segments.

Consider onward routing. In this case, the call is routed assuming no number portability.
Assuming SS7 is used for call setup messages, the ISUP IAM message will be routed from the
originating TDM switch (SSP) in the originating network, through a series of SSPs, includ-
ing the PoP switch between the originating and the donor network, to the destination TDM
switch that is supposed to serve the called number; the trunk circuit is assigned/reserved
along the path so far. The destination switch will be the one that will now do the query to
the internal database to determine the location routing number and will further create an
ISUP IAM message to send to the recipient network to set up a series of circuits to the ac-
tual terminating switch. Once the eventual destination accepts the call, the ISUP ACM will
be generated, which will then hop through the switches, including the donor network all the
way back to the originating TDM switch. Thus, referring back to Figure 13.16(a), segments
1 and 4 involve both SS7 messaging and call circuits, while segments 3 and 4 involve ISUP
TCAP message query and responses to internal NPDB.

Now consider QoR. In this case, the originating network routes the ISAM IAM message
and circuits are allocated along the path to the donor network’s destination switch, much like
onward routing. The destination TDM switch in the donor’s network will check its internal
table to recognize that the number has been ported; thus, it will return an ISAM REL message.
This message will hop through back to the originating switch, releasing the circuit that was

446 13.11 Fixed/Mobile Number Portability

reserved along the way. Now, the originating TDM switch will query the centralized NPDB to
determine the location routing number for the called number. It will then create a new ISUP
IAM message that will be sent toward the actual termination switch that has this LRN. Once
accepted, the ACM message will be generated by the termination switch that has this LRN.
In this case, referring to Figure 13.16(b), for segment 1, both SS7 IAM messaging and circuit
setup are completed; in segment 2, anSS7 REL message is communicated and the circuit is
released; segments 3 and 4 involve TCAP message exchanges; finally, segment 5 involves
both ISAM IAM messaging (ACM in return) as well as circuit setup for the actual call.

Call dropback is somewhat similar to QoR. The main difference is that it is the donor net-
work that initiates the called-number-to-location routing number query. In this case, referring
to Figure 13.16(c), for segment 1, both SS7 IAM messaging and circuit setup are completed;
segments 2 and 3 involve TCAP message exchanges; in segment 4, an SS7 REL message is
communicated that includes the LRN information and the circuit is released; finally, segment
5 involves both ISAM IAM messaging (ACM in return), as well as circuit setup for the actual
call.

All call query starts with the TCAP message sent to the centralized database and a re-
sponse obtained with the LRN information. Then, the call IAM message and circuit setup
are completed to the recipient network. In this case, referring to Figure 13.16(d), segments 1
and 2 involve TCAP message exchanges, and segment 3 involves both ISAM IAM messaging
(ACM in return) as well as circuit setup for the actual call. There is another slight variation in
the use of ACQ. In the second case, the originating switch first checks an internal table to see
if the called number falls in the range of the ported number; this then saves sending a query
to the NPDB if the number happens to be from a range that is not ported.

13.11.3 Comparison of Routing Schemes

From the discussion above, we can compare benefits and drawback of each routing scheme.
This is summarized in Table 13.5. The main comment we would like to add is that number
portability comes at the price of the setup cost for the portability architecture and the database
needed; this setup cost can vary depending on the scheme. In addition, circuits tied up for a
call (and thus cost) is also impacted, for example with the onward routing scheme.

It is important to keep in mind that even with number portability, it is unlikely that all
or most subscribers will move out of the donor network. That is, in practice, the percentage
of portability can vary considerably from one country to another. Keeping all these factors in
mind, it is safe to say that there is no a single “best” solution. In any case, it is important to
keep in mind that the postdial delay incurred due to any number portability scheme must be
as small as possible; otherwise, customer experience is likely to suffer. The postdial delay can
be minimized by effective traffic engineering of the signaling network, including minimizing
the number of SS7 links and nodes traversed, as well as ensuring that the transaction rate of
the NPDB is high.

13.11.4 Impact on IAM Message

Recall that in a standard IAM message, the caller party number contains the actual destina-
tion telephone number (“directory number”) of the call. The call party number is used by a

C H A P T E R 1 3 Public Switched Telephone Network 447

TA B L E 13.5 Comparison of routing schemes for number portability.

Method Benefits Drawbacks
Onward Routing
(OR)

1. No centralized database needed
2. Internal NPDB can be stand-alone
and contains only the ported num-
ber from the donor network
3. Good solution for short term, or
if a small percentage of subscribers
chooses to do number portability

1. Completely relies on the
donor network during call
setup
2. Requires setting up two
physical call segments

Query on Release
(QoR)

1. Centralized number portability
database used for call routing deci-
sion

1. Involves the donor network
during call set-up
2. Circuits are reserved tem-
porarily to the donor network

Call dropback/
Return to Pivot
(CD/RtP)

1. Centralized number portability
database not needed
2. Internal NPDB can be stand-alone
and contains only ported numbers
from the donor network

1. Involves the donor network
during call setup
2. Circuits are reserved tem-
porarily to the donor network

All Call Query
(ACQ)

1. Centralized number portability
database used for call routing deci-
sion
2. Does not involve the donor net-
work
3. Efficient in usage of switch ports
and circuits
4. Good long-term solution, espe-
cially when most subscribers choose
number portability

1. Relatively high portability
setup cost
2. High ISUP TCAP traffic
to NPDB from originating
switches

switch to determine routing toward the destination switch; for example, in the North Amer-
ican format, this means that the NPA–NXX part of the called number is used for routing a
call. With number portability, the NPA–NXX part of the called party parameter no longer
indicates the destination switch. To accommodate routing properly, several fields (and sub-
fields) in the IAM message have been modified to indicate that it is a ported number. The
changes are as follows:

• In the Forward Call Indicator parameter, a subfield called the Ported Number Translation
bit (PNTI) is set.

• The Nature of Address subfield in the Called Party Number field is set to be a ported
number.

• The Called Party Number parameter now contains the LRN, and the actual destination
telephone number is moved to the Generic Address field.

448 13.11 Fixed/Mobile Number Portability

Note that while an exchange code is classified as ported, not all numbers in its address
block would be ported; this is because some, in fact most, customers remain with the original
LEC. Thus, if a user dials a directory number that is not ported, then this must be handled
properly as well. In this case, the NPDB query will return the directory number itself, not the
LRN. The IAM message generated will still set the PNTI bit; however, the Nature of Address
subfield in the Called Party Number field is set to the normal mode, and then the called party
parameter contains the directory number and the Generic Address field is not used.

The change in IAM is somewhat different in some European countries. For example, some
countries do not use the Generic Address field in the IAM message if the dialed directory
number is a ported number. Instead, a routing prefix is added with the directory number in
the Called Party Number parameter itself, while the Nature of Address subfield indicates that
the routing prefix is related to porting. For example, the United Kingdom uses a six-digit rout-
ing prefix that has the format 5XXXXX. The routing number (prefix) can be either at the level
of identifying the recipient network, or the TDM switch within the recipient network that
hosts the ported number. The benefit of the first option is that it allows a network provider to
block the internal view of its network to the outside world; however, it is necessary to do an
additional within-its-network lookup once a call arrives at its point of presence.

The main message to learn from this section is that there are multiple ways to extend the
IAM message to address number portability. This is partly possible because IAM has been
designed to be extensible, and also because the Called Party Number field is a variable-length
field (refer to Section 12.8.1) that is not limited to the allowable length of E.164 addressing;
see [236], [330] for additional details.

13.11.5 Number Portability Implementation
Decisions on number portability are country specific where regulatory bodies as well as the
telecommunication industries are involved in agreeing on a workable scheme. In Table 13.6,
we show a representative set of countries where number portability has been deployed. Keep
in mind that the list is current at present; many countries are still in the investigative stage.

13.11.6 Routing in the Presence of Transit Network
Finally, we comment on the change in role for the network from which the call originates if
there is at least a transit network between where the call originates and the recipient/donor
network. This raises the following question: which network will trigger an NPDB query? Re-
call that in the case of OR routing, the donor network is responsible for the NPDB query; thus,
there is no change in this case. Thus, the question is really for the CD/RtP, QoR, and ACQ
schemes. In the United States, the ACQ scheme is used and there is an industry agreed-upon
(N −1) querying policy protocol to handle the NPDB query issue if there are transit networks
along the call path. This means that the (N − 1) network, or the network before the destina-
tion network, on the path of a call from the actual origination to the destination, is required
do to the NPDB query. Note that network here means call network, not the SS7 network. The-
oretically, it is possible that the same SS7 network provider handles call signaling messaging
routing for both the (N − 1) network and the donor network.

The (N − 1) policy is considered to be a good policy as it does not place the responsibility
on the donor network when the ACQ scheme is used since the (N − 1) network does all

C H A P T E R 1 3 Public Switched Telephone Network 449

TA B L E 13.6 Routing methods for number portability currently used in various countries
(adapted from [236], [679], [691]).

Country Scheme Remark
Austria OR Routing prefix: 86XX where XX specifies recipient network
Belgium ACQ Routing prefix: CXXXX where XXXX specifies the destination

TDM switch in the recipient network; use C00XX to specify the
recipient network

Denmark ACQ Routing number is not communicated between providers; Na-
ture of Address indicator is set; QoR possible through bilateral
agreements

Finland ACQ Routing prefix: 1DXXY where XX specifies the recipient net-
work, Y specifies service type

France OR Routing prefix: Z0XXX where XXX specifies the destination
TDM switch in the recipient network

Germany ACQ Deutsche Telekom uses ACQ while other providers can select
another scheme

Italy OR Routing prefix: C600XXXXXX where XXXXXX specifies the
destination TDM switch in the recipient network

Japan OR The donor network performs SS7/IN lookup to obtain routing
number

Netherlands QoR/ACQ Operators decide
Norway OR, ACQ OR is short-term, ACQ is long-term; QoR is optional; Nature

of Address field used as indicator along with routing prefix
Spain ACQ QoR used internally by Telefonica; Routing prefix: XXYYZZ

that specifies the recipient network along with Nature of Ad-
dress field indicator

UK OR Routing prefix: 5XXXXX where XXXXX specifies the destina-
tion TDM switch in the recipient network; in parts of the net-
work, British Telecom also uses dropback scheme

US ACQ PNTI bit set in Forward Call indicator; location routing num-
ber takes the place of Called Party Number field; the directory
number is placed in Generic Address Parameter

the NPDB queries. Furthermore, the entire world numbering plan and routing architecture
can still work globally without requiring fundamental changes to the current architecture.
We describe the possible scenarios below assuming the donor network is marked as a local
exchange carrier, LEC-Z.

• A geographic local call: Consider a call that is local where LEC-Z operates that originates
from a local exchange carrier, LEC-A. In this, the (N − 1) network is LEC-A where the call
originates and there is no transit network. Thus, LEC-A itself is required to do the NPDB
query.

• A long-distance call that involves an IXC: Consider a call from a geographic area originat-
ing from a local exchange carrier, LEC-B, to a ported number where the donor network

450 13.11 Fixed/Mobile Number Portability

(“LEC-Z”) is in another geographic area where the call must traverse through an IXC. That
is, the call path (before number portability) is LEC-B to IXC to LEC-Z. In this case, IXC is
considered the (N − 1) network and is required to do the NPDB query.

• An international call from outside the United States to the donor network, LEC-Z: The
provider outside the United States would not be able to know which LEC is ported and
which is not. In this case, the call is handed over from the other nation’s network provider
to the IXC that provides service within the United States. If this carrier is the same carrier
for long-distance service before reaching LEC-Z, then this carrier is required to do the
NPDB query.

In all cases, since multiple switches are involved along the call path, a mechanism is
still needed to ensure that a downstream switch does not perform an NPDB lookup if it has
already been performed by an upstream switch. Thus, if a TDM switch performs an NPDB
lookup to obtain an LRN, the ensuing IAM message that is sent out of this switch for this
call is modified. This modification includes setting the PNTI bit in the Forward Call Indicator
parameter in the IAM message; furthermore, the LRN code is placed in the Called Party
Number parameter, and the called number is included in the Generic Address Parameter
field. By inspecting the PNTI bit, a downstream TDM switch knows that the NPDB is already
performed. This feature is also helpful in case (N − 1) network fails to perform the NPDB
query, for instance, due to a technical failure. Thus, the call setup IAM message without this
modification will be routed all the way to the donor network’s supposed terminating switch;
that is, this will look like the onward routing case where it is left to the switch that would have
been the terminating switch prior to number portability deployment to perform the NPDB
query. Such default-routed calls are then the burden of the donor network to perform the
query. Incidentally, in the United States, the Federal Communication Commission’s policy
allows the donor network to charge the (N − 1) network for this extra work and even allows
it to “block default-routed calls, but only in special circumstances when failure to do so is
likely to impair network reliability” [417].

In the case of the long-distance and international call scenarios above, there is another
decision the IXC, the (N − 1) network, is required to address. For instance, the call in the
IXC’s part of the network usually traverses through multiple TDM switches. For instance, if
dynamic call routing is used in the IXC’s network, there can be at most three TDM switches
involved, the ingress switch, an intermediate (via) switch, and the egress switch. The decision
partly depends on whether portability is local number portability or location portability. If
it is local number portability, then the LRN will be adjacent to the donor network for the
ported number that has been dialed; thus, in this, the egress switch in the IXC’s network
is the appropriate switch to do the NPDB query and then identify the PoP for the network
that serves this LRN. However, if it is for location portability, then we need to consider the
possibility that the ported number might have moved anywhere in the entire country; thus,
it would be more appropriate to do the NPDB query at the ingress switch, especially to avoid
any crankback. Furthermore, with location portability, for an intracountry call, it might be
more appropriate to do all call query (ACQ) at the originating LEC. We note that the idea of
location portability is still in its infancy; further development is required to understand all its
possible implications.

C H A P T E R 1 3 Public Switched Telephone Network 451

13.12 Multiple-Provider Environment with Local Number Portability
We will illustrate the entire call routing scenario in a local number portability environment.
Our illustration primarily focuses on a geographically contained area where local number
dialing is sufficient. We assume that the ACQ scheme is used with the variation that the
originating switch first checks an internal table to see if it is still host to the dialed number;
such numbers will referred to as native numbers. Thus, when a user calls a number that
used to be homed off this switch, then the originating TDM would first check internally to
determine if it is a native number. If it is native, then it will do intraswitch routing as it used
to do prior to LNP implementation. If the dialed number is not a native number, then the
switch sends a TCAP message to the NPDB that is connected to the SS7 network in order
to determine the LRN. Once LRN is determined, the trunkgroup ID and the TCIC on the
appropriate outgoing trunkgroup for this call must be identified.

We will now illustrate the above scenario using Figure 13.17. Here, we consider three
LECs—LEC A, LEC B, and LEC C; each can be the donor network for the number range orig-
inally assigned to them. We assume that originally the exchange code 816-328 belonged to
LEC A. The user with the number 816-328-0001 decided to migrate to LEC B for local tele-
phone services and is homed to the TDM switch with LRN 816-342-0000, and the user with
the number 816-328-0002 to LEC C homed to the TDM switch with LRN 816-367-0000. Thus,
LEC A is the donor network in both cases, and LEC B is the recipient network in the first case,
while LEC C is the recipient network in the second case. Thus, when the user with the num-
ber 816-328-9999 who has remained with LEC A calls the number 328-0001, the originating
TDM switch with LRN 816-328-0000 checks if the number dialed is in its dialed number in-
ventory to see if it is a native or a ported number. It will recognize that it is a ported number,
thus as shown Figure 13.17, it will identify the LRN for the ported number using the central-
ized NPDB, and in turn, SSP and the trunkgroup ID for ISUP IAM message routing and call
routing, respectively.

For the above scenario, the network topology architecture encompassing all three LECs
with both TDM switching and SS7 nodes is shown in Figure 13.18. For simplicity, in each
LEC, only a single TDM switch is shown with connectivity between switches to different
LECs; SS7 STP nodes are similarly kept simple. Consider now a call from the user with the
number 816-367-2525 homed off LRN 816-367-0000 in LEC-B to the user with the number
816-328-0002. From Figure 13.18, we can see that this is really an intraswitch call. However,

F I G U R E 13.17 Lookup for ported local numbers for ISUP message and call routing.

452 13.12 Multiple-Provider Environment with Local Number Portability

F I G U R E 13.18 Multiple LECs in a geographic region: architecture and call routing for
ported numbers.

it is important to avoid this call being first routed to LRN 816-328-0000 and then routed back
to LRN 816-367-0000 (which can lead to looping). With ACQ, the query to the centralized
database will be performed to find out that it is itself indeed the host of this number. It might
be advisable for each switch to maintain entries for ported numbers for which it is now the
home switch to avoid this lookup; this should be done cautiously and in proper coordination
with the operations support system that talks to the local service order administration and
local service management system since this user might choose to move out of this switch
(provider) to another provider over time. If local marking inside the switch is done for the
numbers it hosts now, then when 816-367-2525 calls 328-0002, the originating TDM switch
(with LRN 816-367-0000) immediately recognizes that this is an intraswitch call.

We now make an important comment about the topology architecture shown in Fig-
ure 13.18. It is easy to see that as the number of LEC grows, inter-LEC connectivity grows
quadratically; certainly, this is not a scalable solution. Thus, topology aggregation can possi-
bly be achieved by introducing inter-LEC PoP tandem switches for call transfer; that is, this
is analogous to the multiple LECs with the common interconnect point described earlier in
Figure 13.11. Such topology aggregation would certainly require appropriate call routing ta-
ble changes at the originating TDM switches in each LEC. Similarly, the number of STPs can
be reduced if an inter-LEC exchange point STP is introduced to serve as a point of presence
for SS7 message forwarding.

C H A P T E R 1 3 Public Switched Telephone Network 453

if (dialed number is not N11 call and dial number is NOT 1-8XX number) then
if (dialed number is a local number) then

if (an intra-switch call) then
Complete the call

else // not interswitch call
if (NPA-NXX is not ported) then

// handle as before pre-LNP days
Determine hand-off SSP/PoP for this CIC based on routing/forwarding
table
Determine TrunkGroup ID to this SSP and available circuit TCIC
Generate standard ISUP IAM message with this SSP as DPC and TCIC
value

else // NPA-NXX is ported
Query NPDB/SCP with NPA-NXX to obtain LRN
Determine SSP for this LRN
Determine trunkgroup ID for this SSP
Generate modified ISUP IAM message with this SSP as DPC and TCIC

value, with PNTI set, Nature of Address field indicated,
Called Party Number field containing
LRN, and the dialed number in generic address field

endif
endif

else
// dialed number is a long-distance/international number
// no NPDB lookup required
Query LIDB database and determine CIC for this subscriber
Determine hand-off SSP/PoP for this CIC based on routing/forwarding rule
Determine TrunkGroup ID to this SSP and available circuit TCIC
Generate standard ISUP IAM message with this SSP as DPC and TCIC value

endif
endif

F I G U R E 13.19 Call processing logic at the originating switch with number portability: a
conceptual view.

Now, suppose that a call originates from another geographic area to 816-328-0001 that
requires traversing through an IXC’s network. In this case, (N − 1) policy is used; this means
that the IXC is required to do NPDB lookup; thus, in this case, IXC’s process will be similar
to LEC-A’s process.

We conclude this section by providing the call processing logic at the originating switch
that incorporates number portability. This is shown in Figure 13.19.

13.13 Summary
In this chapter, we presented PSTN architecture and routing. We have started with numbering
plan E.164 and discussed how a dialing plan is different from a numbering plan; because of
this, the originating TDM switch has the responsibility for digit analysis so that a call can be
routed properly.

Originally, there was a direct connection between call routing and addressing with the
one provider per nation scenario, where outgoing trunkgroups from a TDM switch were
identified based on the numbers dialed. In the past two decades, there has been significant

454 13.13 Exercises

impact on call routing decisions as new requirements have been placed such as allowing
multiple long-distance providers. We have illustrated how such additional requirements can
be addressed by introducing new functionalities such as the CIC code in order to properly
route a call. After multiprovider environments, we presented call routing and its impact on
the underlying system due to number portability.

It is important to note that while originally addressing and routing were directly related,
in a multiprovider environment with number portability, the role of E.164 addressing has
changed to being a universal identifier, rather than remaining as a physical locator for routing.
That is, number portability thus has necessitated a number to be mapped to a routable entity
through a lookup process; this is an important consequence of number portability. Later in
Chapter 20, we will present routing for voice over IP, and additional issues will be discussed.

Another important point to note is the regulatory factor and how it can impact changes
in protocol, architectural functions, and routing. For example, if a nation has a single body
running the network nationwide, then clearly a field such as the CIC code is not needed in the
ISUP IAM message. In a multiprovider environment, the CIC code is needed and it plays a
critical role in routing decision. Number portability has also necessitated additional changes
in the ISUP IAM message. Furthermore, the need for a neutral party to do certain centralized
coordination in a multiprovider setting is important to note.

Further Lookup
ITU-T recommendation covers call routing, ISUP messaging, and so on; see [328], [324] for
details. WTNG [746] maintains an up-to-date website for numbering plans for different coun-
tries around the world. For an international dialing sequence between any two countries, see
[312]. North American numbering plan adminstration maintains an informative website that
contains NPA–NXX availability, CIC number, and so on; see [531]. Note that 555 numbers
such as 555-1212 require special handling; you may consult [10] for a detailed discussion
about 555 handling. For the new numbering plan in India (as of April 2003), see [491].

For additional material on number portability, refer to [236], [679], [690], [691], [716], [717].
The local number portability working group [416] maintains a website that discusses (N − 1)

carrier architecture [417]. Furthermore, best practices for number portability have been tab-
ulated [418]. The 1-800 toll-free service was first introduced in 1967; for a comprehensive
historical background on 800-service, see [652]. The emergency 911 service is currently ad-
dressing enhanced services [523]. An analysis of call routing using SS7 data can be found
in [100].

Exercises
13.1. Review questions:

(a) What is number translation?

(b) What is Carrier Identification Code?

(c) What is local number portability?

13.2. Why does the subscriber’s telephone number not need an SS7 point code address?

C H A P T E R 1 3 Public Switched Telephone Network 455

13.3. Explore the numbering plan deployed in various countries (for example, select five
different countries, other than the three already mentioned in this chapter). Compare
their similarities and differences.

13.4. In Section 13.12, we illustrated local number portability. Introduce multiple long-
distance providers and discuss how call routing will be handled.

13.5. Suppose that we want to architect worldwide number portability. Investigate what
types of functions and architectural components would be needed, and the impact
these factors would place on call routing.

13.6. Explain how dialed number, point code, CIC code, LRN, and trunkgroup ID are re-
lated for each of the following scenarios: (i) single national provider, (ii) multiple local
exchange providers, (iii) local number portability.

This page intentionally left blank

Part IV: Router
Architectures
An important component of routing is routers. A router’s job is to do efficient packet process-
ing of any incoming packet and to track information due to exchange of routing protocol
messages; it also must support network management functions. However, how a router is
architected can strongly impact overall packet processing. In this part, we present three chap-
ters that encompasses routers.

In Chapter 14, we present a general overview of different needs and requirements of a
router. This is then followed by a classification of different routing architectures. In general,
this chapter serves as a road map.

An important function of a router is to do IP address lookup. Due to classless inter-
domain routing (CIDR), the lookup function must take netmask into consideration. Not only
that, if a subset of address blocks from a contiguous address block plans to move to be pro-
vided by a different provider, the router must have the ability to handle processing of such
exceptions efficiently. In Chapter 15, we present a variety of IP lookup algorithms along with
a discussion of their strengths and limitations.

Another important function of a router is packet filtering and classification. This means
that beyond address lookup, a router is often required to handle packets differently depend-
ing on customer requirements. These additional constraints must be handled efficiently by a
router. In Chapter 16, we present a variety of algorithms for packet filtering and classification.
As with lookup algorithms, their strengths and limitations are also highlighted.

Finally, a router does much more than lookup and classification. For this the switching
backplane inside the router must be efficient, the packet queueing and scheduling must ad-
dress a variety of requirements, and often some traffic conditioning is required due to service
level agreements. These topics are covered later in Part VI.

14
Router
Architectures
Architecture starts when you carefully put two bricks together. There it
begins.

Ludwig Mies van der Rohe

Reading Guideline

This chapter serves as the platform for understanding the basics of routers and
types of routers, and as the background material to understand more details about
a router’s critical functions, such as address lookup and packet class classification,
which are discussed in subsequent chapters.

C H A P T E R 1 4 Router Architectures 459

In Part II of this book, we presented IP network routing, focusing primarily on routing proto-
cols and their usage, with only cursory remarks about routers. In this chapter, we present an
overview of routers and how they are architected for the purpose of packet forwarding and
handling routing protocols.

Traditionally, routers have been implemented purely with software running on a gen-
eral purpose personal computer (PC) with a number of interfaces. Such a device can receive
packets on one of its interfaces, perform routing functions, and send packets out on another
of its interfaces. As the Internet grew over the years, the type and size of routers changed,
since routers based on general-purpose PC architectures are limited by the performance of
the central processor and memory. Fortunately, advances in silicon technology have made it
possible to build hardware-based routers capable of handling high data rates.

In this chapter, we describe various IP router architectures and highlight their advantages
and disadvantages. In addition, we examine the performance trade-offs imposed by the ar-
chitectural constraints of these routers. We start our discussion with a high-level overview of
the routing process and describe the functions a router should implement.

14.1 Functions of a Router
Broadly speaking, a router must perform two fundamental tasks: routing and packet forward-
ing, as shown in Figure 14.1. Based on the information exchanged between neighboring
routers using routing protocols, the routing process constructs a view of the network topol-
ogy and computes the best paths. The network topology reflects network destinations that
can be reached as identified through IP prefix-based network address blocks. The best paths
are stored in a data structure called a forwarding table. The packet forwarding process moves
a packet from an input interface (“ingress”) of a router to the appropriate output interface
(“egress”) based on the information contained in the forwarding table. Since each packet
arriving at the router needs to be forwarded, the performance of the forwarding process de-
termines the overall performance of the router.

F I G U R E 14.1 Routing and packet forwarding process.

460 14.1 Functions of a Router

The functions of the packet forwarding process can be categorized into two subgroups:
basic forwarding and complex forwarding. Basic forwarding defines the minimal set of func-
tions a router should implement in order to transfer packets between interfaces. Complex
forwarding functions represent the additional processing required by the routers, depending
on their deployment environments and their usage.

14.1.1 Basic Forwarding Functions
For forwarding an IP packet from an incoming interface to an outgoing interface, a router
needs to implement the following basic forwarding functions [46], [50], [98]:

• IP Header Validation: Every IP packet arriving at a router needs to be validated. Such a test
ensures that only well-formed packets are processed further while the rest are discarded.
This test also ensures that the version number of the protocol is correct, the header length
of the packet is valid, and the computed header checksum of the packet is same as the
value of the checksum field in the packet header.

• Packet Lifetime Control: Routers must decrement the time-to-live (TTL) field in the IP packet
header to prevent packets from getting caught in the routing loops forever. If the TTL
value is zero or negative, the packet is discarded; an ICMP message is generated and sent
to the original sender.

• Checksum Recalculation: Since the value of the TTL is modified, the header checksum needs
to be updated. Instead of computing the entire header checksum again, it is more efficient
to compute it incrementally [444]; after all, the TTL value is always decremented by 1.

• Route Lookup: The destination address of the packet is used to search the forwarding table
for determining the output port. The result of this search will indicate whether the packet
is destined for the router or to an output port (unicast) or to a set of multiple output ports
(multicast).

• Fragmentation: It is possible that the maximum transmission unit (MTU) of the outgoing
link is smaller than the size of the packet that needs to be transmitted. This means that the
packet would need to be split into multiple fragments before transmission.

• Handling IP Options: The presence of the IP options field indicates that there are special
processing needs for the packet at the router. While such packets might arrive infrequently,
a router nonetheless needs to support those processing needs.

When there are routing or packet errors, routers use ICMP messages to communicate the
information.

14.1.2 Complex Forwarding Functions
Besides the basic functions, the marketplace has necessitated the need for additional, com-
plex functions. That is, with the popularity of the Internet, complex issues such as security,
different user requirements, and service guarantees based on different service level agree-
ments have become paramount and need to be addressed. These issues translate to addi-
tional processing when forwarding a packet, without essentially increasing overall packet

C H A P T E R 1 4 Router Architectures 461

processing time at a router. To cite an example of service differentiation, consider a scenario
where customers are interested in watching a high-definition movie streaming directly over
the Internet. Such a streaming requires not only high bandwidth but timely delivery of the
data. The router needs to distinguish such packets so that it can forward them earlier. This
results in the notion of differentiated services, and consequently requires that routers support
a variety of mechanisms such as the following:

• Packet Classification: For distinguishing packets, a router might need to examine not only
the destination IP address but also other fields such as source address, destination port,
and source port. The process of differentiating the packets and applying the necessary
actions according to certain rules is known as packet classification.

• Packet Translation: As the public IPv4 address space is being exhausted, there is a need to
map several hosts to a single public address. Thus, a router that acts as a gateway to a net-
work needs to support network address translation (NAT). NAT maps a public IP address
into a set of private IP addresses and vice versa. This requires a router to maintain a list
of connected hosts and their local addresses and to translate the incoming and outgoing
packets.

• Traffic Prioritization: A router might need to guarantee a certain quality of service to
meet service level agreements. This involves applying different priorities to different cus-
tomers or data flows and providing a level of performance in accordance with the pre-
determined service agreements. For example, the agreement might specify that a fixed
number of packets must be delivered at a constant rate, which is necessary for real-time
streaming multimedia applications such as IPTV, or real-time interactive applications such
as VoIP.

14.1.3 Routing Process Functions

Besides packet forwarding, i.e., the data plane function, a router needs to ensure that the
contents of the forwarding table reflect the current network topology. For this, a router also
needs to provide control plane and management plane functions. In particular, a router needs
to handle:

• Routing Protocols: Routers need to implement different routing protocols, such as OSPF,
BGP, and RIP for maintaining peer relationships by sending and receiving route updates
from adjacent routers. These route updates are sent and received as normal IP packets.
But the key difference between these packets and the packets that transit through the
router is the destination address, which is the router itself for route update packets. Once
the updates are received, the forwarding table is modified so that subsequent packets are
forwarded to the correct outgoing links.

• System Configuration: Network operators need to configure various administrative tasks
such as configuring of interfaces, routing protocol keep alives, rules for classifying
packets. Hence, a router needs to implement various functions for adding, modifying,

462 14.1 Functions of a Router

and deleting these configuration data, as well as persistently storing them for retrieval
later.

• Router Management: In addition to the configuration tasks, the router needs to be moni-
tored for continuous operation. These functions include supporting various management
functions that are implemented using protocols such as simple network management pro-
tocol (SNMP).

14.1.4 Routing Table versus Forwarding Table

As described earlier, the packet forwarding function directs an incoming packet to the ap-
propriate output interface based on the results of looking up a forwarding table. The routing
function builds a routing table that is used in the construction of forwarding tables. Often,
in the literature, the terms routing table and forwarding table are used interchangeably to re-
fer to the data structures in a router for forwarding packets. In this section, we highlight the
differences between those tables.

The routing table is constructed by the routing algorithms based on the information ex-
changed between neighboring routers by the routing protocols. Each entry in the routing
table maps an IP prefix to a next hop. The forwarding table, on the other hand, is consulted
by the router to determine the output interface an incoming packet needs to be forwarded.
Thus, each entry in the forwarding table maps an IP prefix to an outgoing interface. Depend-
ing on the implementation, the entries might contain additional information such as the MAC
address for the next hop and statistics about the number of packets forwarded through using
the interface.

While a single table for routing and forwarding is possible, most implementations tend
to keep these two separate for the following reasons. First, the forwarding table is optimized
for searching a destination IP address against a set of IP prefixes, while the routing table is
optimized for calculating changes in the topology. Second, as every packet needs to examine
the forwarding table, it is implemented in a specialized hardware for high-speed routers.
However, the routing tables are usually implemented in software. An instance of a routing
table and forwarding table is shown in Table 14.1. The routing table in the figure indicates
the next-hop IP address for a destination IP prefix. The forwarding table tells us a packet
bound to the network identified by the IP prefix should be forwarded to interface eth0 with
the appropriate MAC address.

TA B L E 14.1 Routing table and forwarding table.

(a) Routing table (b) Forwarding table

IP prefix Next hop IP prefix Interface MAC address
10.5.0.0/16 192.168.5.254 10.5.0.0/16 eth0 00:0F:1F:CC:F3:06

C H A P T E R 1 4 Router Architectures 463

14.1.5 Performance of Routers
The performance of a router is stated in terms of throughput expressed in bits per second.
The throughput characterizes how much data the router can transfer per second from input
network interfaces to an output network interfaces. A router throughput T is calculated as

T = P × R, (14.1.1)

where P represents the number of ports or interfaces feeding the router and R represents the
line rate of each port. For instance, a router containing 16 ports with each port running at a
line rate of 40 Gbps has a throughput of 640 Gbps. However, the throughput is not a measure
of the real capability of the router. As routers forward packets, it is more important to know
how many packets they are capable of forwarding in a second, which is referred to as packets
per second (pps). For instance, a router throughput of 640 Gbps could mean packets of size
40 bytes forwarded at 2 billion pps or packets of size 80 bytes forwarded at 1 billion pps.
Obviously, a router capable of handling more packets per second for the same packet size is
considered better from performance perspective.

Now let us try to express the router throughput in terms of packet size and packets per
second. If S is the packet size and Ps represents packets per second, then the line rate R can
be expressed as

R = S × Ps. (14.1.2)

Substituting for R in Eq. (14.1.1), the throughput can be reformulated as

T = P × S × Ps. (14.1.3)

The next logical question is: what should be the packet size used for this assessment?
In a decade-old study, the average packet size was found to be 300 bytes [696]. In recent
observations, commonly seen packet sizes are 40 bytes (due to TCP acknowledgments),
576 bytes (due to RFC 879, which is now outdated), 1500 bytes (due to Ethernet MTU size),
and 1300 bytes (due to VPN software). If a router is designed with any of these sizes other
than the smallest size, it might not be able to sustain a long sequence of shorter packets. Thus,
most router designers use the minimum of 40 bytes as the standard packet size for such as-
sessment.

14.2 Types of Routers
Routers can be of different complexity based on where in the network they are deployed and
how much traffic they need to sustain. Naturally, this means that routers can be of differ-
ent types. In this section, we describe three types of routers: core routers, edge routers, and
enterprise routers and outline their requirements [367].

CORE ROUTERS

Core routers are used by service providers for interconnecting a few thousand small networks
so that the cost of moving traffic is shared among a large customer base. Since the traffic arriv-
ing at the core router is highly aggregated, it should be capable of handling large amounts of

464 14.2 Types of Routers

traffic. Hence, the primary requirements for a core router are high speed and reliability. While
it is important to keep the cost of a core router to be reasonable, the cost is a secondary issue.

The speed at which a core router can forward packets is mostly limited by the time spent
to look up a route in the forwarding table. On receiving a packet from an ingress interface,
the forwarding table entries need to be searched to locate the longest prefix match. The prefix
represents the target IP network the packet is destined for. The matching prefix determines
the egress interface. With the increase in the number of systems connected to the Internet
and the associated surge in traffic growth, demand is placed on core routers to forward more
packets per second. Hence, specialized algorithms implemented in hardware are required for
fast and efficient lookups. These algorithms are the focus of Chapter 15.

Since core routers form the critical nodes in the network, it is essential that these routers
do not fail under any conditions. The reliability of a router depends on the reliability of phys-
ical elements such as the line cards, switch fabric, and route control processor cards. The
reliability of these physical elements is achieved by full redundancy—dual power supplies,
standby switch fabric, and duplicate line cards and route control processor cards. Moreover,
the software is enhanced so that when one of the elements fails, the packet forwarding and
the routing protocols continue to function.

EDGE ROUTERS

Edge routers, also known as access routers, are deployed at the edge of the service provider
networks for providing connectivity to customers from home and small businesses. The first
generation of edge routers were really remote access servers attached to terminal concentra-
tors that aggregated large number of slow-speed dial-up customers. However, this is not the
case anymore. First, the need for more bandwidth has led to the introduction of a variety of
access technologies such as high-speed modems, DSL, and cable modems. Hence the edge
routers need to support an aggregation of customers using different access technologies. Sec-
ond, in addition to legacy remote access protocols, these routers need to implement newer
protocols such as point-to-point tunneling protocol (PPTP), point-to-point protocol over Eth-
ernet (PPPoE), and IPsec that support VPNs. These protocol implementations should also
scale as they need to be run on every port. Finally, these routers should be capable of han-
dling a large amount of traffic. This is necessary as many customers are migrating from dial-
up access to high-speed modems. These trends suggest that the edge routers support a large
number of ports capable of different access technologies and many protocols operating at
each port.

ENTERPRISE ROUTERS

Enterprise networks interconnect end systems located in companies, universities, and so on.
The primary requirement of routers in these networks is to provide connectivity at a very low
cost to a large number of end systems. In addition, a desirable requirement is to allow service
differentiation to provide quality of service (QoS) guarantees for different departments of an
enterprise.

A typical enterprise network is built using many Ethernet segments interconnected by
hubs, bridges, and switches. These devices are inexpensive and can be easily installed with
limited configuration effort. A network built using such inexpensive devices tend to degrade
in performance as the size of the network increases. Hence, using routers in these networks

C H A P T E R 1 4 Router Architectures 465

to divide the end systems into hierarchical IP subnetworks is desirable. Moreover, it scales
the network better.

In addition to providing the basic connectivity, there are several additional design re-
quirements for the enterprise routers. First, these routers require efficient support for multi-
cast and broadcast traffic as applications such as video broadcasting are more predominantly
used in the enterprise. Second, these routers need to implement many legacy technologies
that are still in use in the enterprises. The third requirement is the extensive support for se-
curity firewalls, filters, and VLANs. Finally, as these routers must connect many LANs, they
are required to support large number of ports.

For enterprises, the network is considered as an operational expense and the goal is to
minimize this expense. Hence, the routers targeted for enterprise deployment are required
to have low cost per port, a large number of ports, and the ease of maintenance. Hence, it is
challenging to design an enterprise router that satisfies these requirements for every port and
still keep the cost low per port.

14.3 Elements of a Router
So far, we have discussed the functions and types of a router; we next discuss the elements
needed in a router to provide these functions. For this purpose, a router can be viewed from
two different perspectives. From a functional perspective, it can be logically viewed as a col-
lection of modules where each module implements a set of related functions to achieve the
overall goal of forwarding packets. From an architectural perspective, a router can be consid-
ered as an interconnection of different types of cards running specialized software. We discuss
the functional perspective before examining the architectural perspective.

A router can be divided into several modules from a functional point of view. These com-
ponents implement the various requirements of a router described in the previous sections.
A generic router consists of six major functional modules: network interfaces, a forwarding
engine, a queue manager, a traffic manager, a backplane, and a route control processor. These
functional modules are shown in Figure 14.2.

• Network Interfaces: A network interface contains many ports that provide the connectiv-
ity to physical network links. A port terminates a physical link at the router and serves as
the entry and exit point for incoming and outgoing packets, respectively. A port is specific
to a particular type of network physical medium. For instance, a port can be an Ethernet
port or a SONET interface. In addition, a network interface provides several functions.
First, it understands various data link protocols so that when the packet arrives it can de-
capsulate the incoming packets by stripping the Layer 2 (L2) headers. Second, it extracts
the IP headers, i.e., the Layer 3 (L3) headers, and sends them to the forwarding engine for
route lookup while the entire packet is stored in memory. Collectively, this processing is
referred to as L2/L3 processing. Further, it provides the functionality of encapsulating L2
headers before the packet is send out on the link.

• Forwarding Engines: These are responsible for deciding to which network interface
the incoming packet should be forwarded. When a port receives a new packet, it de-
encapsulates L2 headers and sends the entire IP packet, or just the packet header, to the
forwarding engine. The forwarding engine consults a table, i.e., engages in a route lookup
function, and determines to which network interface the packet should be forwarded. This

466 14.3 Elements of a Router

F I G U R E 14.2 Components of a router.

table is called the forwarding information base or simply the forwarding table. Algorithms for
route lookup can be implemented in custom hardware or software running on a commod-
ity hardware. Depending on the architecture, the lookups can occur in the custom hard-
ware or in a local route cache in the line card. Futhermore, to provide QoS guarantees,
forwarding engines may need to classify packets into predefined service classes.

• Queue Manager: This component provides buffers for temporary storage of packets when
an outgoing link from a router is overbooked. When these buffer queues overflow due to
congestion in the network, the queue manager selectively drops packets. Thus, the re-
sponsibility of this component is to manage the occupancy of the queue and implement
policies about which packets to drop when the queues are about to be fully occupied.

• Traffic Manager: This component is responsible for prioritizing and regulating the out-
going traffic, depending on the desired level of service. This is necessary as routers carry
traffic from different subscribers and it is important to ensure that they get the level of ser-
vice for which they pay. The traffic manager shapes the outgoing traffic to the subscriber
according to the service level agreement. Similarly, when a router receives traffic from a
subscriber, the traffic manager ensures that it does not accept more than what is specified
in the contract. Sometimes the functionality of the queue manager and the traffic manager
are merged into a single component.

• Backplane: This component provides connectivity for the network interfaces so that pack-
ets from an incoming network interface can be transferred to the outgoing network inter-
face card. The backplane can be either shared, where only two interfaces can communicate
at any instant, or switched, where multiple interfaces can communicate simultaneously.
The aggregate bandwidth of all the attached network interfaces defines the bandwidth
required for the backplane.

C H A P T E R 1 4 Router Architectures 467

• Route Control Processor: The control processor is responsible for implementing and ex-
ecuting routing protocols. It maintains a routing table that is updated whenever a route
change occurs. Based on the contents of the routing table, the forwarding table is com-
puted and updated. In addition, it also runs the software to configure and manage the
router. A route control processor also performs complex packet-by-packet operations like
errors during packet processing. For example, it handles any packet whose destination ad-
dress cannot be found in the forwarding table in the line card by sending an ICMP packet
to its source of origin indicating the error. These functionalities are typically implemented
in software running on a general-purpose microprocessor.

We next consider the architectural perspective and how the functional modules are im-
plemented in practice. Figure 14.2 shows the various architectural components of a router
and the functional modules each implements. They are:

• Port Cards: A port card implements the network interfaces. Each port card is capable of
handling only a specific medium. For instance, a port card will support only Ethernet
while the other can handle only SONET. The port cards contain L2 processing logic that
understands the L2 packet format specific for that medium. In addition, the port cards per-
form accounting about the incoming and outgoing packets. Such cards are given different
names by different vendors; for example, Juniper networks refers to them as Physical In-
terface Cards (PICs), whereas Cisco refers to them as Physical Layer Interface modules
(PLIMs) in CRS-1 routers.

• Line Cards: A line card implements a majority of the functional components, forwarding
engine, queue manager, and traffic manager. It parses the IP payload and uses the con-
tents of the header to make decisions about forwarding, queueing, and discarding during
periods of link congestion. It also contains memory buffers for storing the packet during
processing and queueing. The line card houses port cards and connects to the backplane
and ultimately to another line card. Sometimes, the line cards include the ports specific to
certain media rather than using port cards.

• Switch Fabric Cards: While a line card implements the packet processing functions, a
switch fabric card serves as the backplane for transferring packets from the ingress line
card to the egress line card. In high-end routers, multiple switch fabric cards are used for
increased throughput and redundancy.

• Route Processor Cards: These cards implement the functionality of the route control
processor. The routing protocols and the management software run on these cards. In
high-end routers, these cards use general-purpose processors with a large amount of
memory running a commodity operating system.

From the discussion of the above two perspectives, we can see that there is a relationship
between them. Many functional modules are directly mapped to physical components (such
as cards, other hardware, and software). Note that there can be numerous ways to map func-
tional modules to physical components, which leads to different router architectures. Before
delving into different router architectures, let us understand how a packet is processed in a
generic router.

468 14.4 Packet Flow

14.4 Packet Flow
The packet flow in a generic router is shown in Figure 14.3. The processing steps can be
broadly grouped into ingress packet processing and egress packet processing.

14.4.1 Ingress Packet Processing

When an IP packet arrives from the network, it first enters the network interface. For the sake
of discussion, let us assume that the packet is received on an Ethernet port. The network in-
terface interprets the Ethernet header, detects frame boundaries, and identifies the starting
point of the payload and the IP packet in the frame. The L2 processing logic in the card re-
moves the L2 header and constructs a packet context. A packet context is a data structure that
essentially serves as a scratch pad for carrying information between different stages of packet
processing inside the router. The L2 processing logic appends to the packet context informa-
tion about L2 headers, for instance, in the case of Ethernet, the source and destination MAC
address. In addition to L2 information, the packet context can carry additional information
as shown in Figure 14.4. Use of other fields in the packet context will be revealed later in the
discussion.

Now the L2 processing logic peels off the payload, which is an IP packet, and along with
the packet context sends it to the L3 processing logic. The L3 processing logic locates the IP
header and checks its validity. It extracts the relevant IP header information and stores it in
the packet context. The header information includes the destination address, source address,
protocol type, DSCP bits (for differentiated services), and if the IP packet is carrying TCP or
UDP payload, the destination and the source ports as well.

At this point, the packet context contains enough information for route lookup and clas-
sification of the packet. Next, the entire packet context is sent to the forwarding engine in the
line card. The forwarding engine searches a table (the forwarding table) to determine the next
hop. The next-hop information contains the egress line card and the outgoing port the packet
needs to be transferred. This information is populated in the packet context.

F I G U R E 14.3 Packet flow in a router.

C H A P T E R 1 4 Router Architectures 469

F I G U R E 14.4 Typical fields of a packet context.

While the forwarding engine is determining the next hop using the packet context, the L3
processing logic sends the IP packet to be stored in the buffer memory temporarily. When the
forwarding engine completes, the packet context is appended with the address of the packet
in memory and is sent to the backplane interface.

From the packet context, the backplane interface knows to which line card the packet
needs to be transferred. It then schedules the packet for transmission along with the packet
context over the backplane. Note that the priority of the packet is taken into account while
transmitting on the backplane: higher-priority packets need to be scheduled ahead of lower-
priority packets.

14.4.2 Egress Packet Processing

When the packet reaches the egress line card, the backplane interface on the egress line card
receives the packet and stores it in the line card memory. Meanwhile, the received packet con-
text is updated with the new address of the memory location and sent to the queue manager.
The queue manager examines the packet context to determine the packet priority. Recall that
the priority was determined by the forwarding engine in the ingress line card during packet
classification. Next the queue manager inserts the context of the packet in the appropriate
queue.

As different queues, depending on the priority, consume different amounts of band-
width on the same output link, the queue manager implements a scheduling algorithm.

470 14.5 Packet Processing: Fast Path versus Slow Path

The scheduling algorithm chooses the next packet to be transmitted according to the band-
width configured for each queue. In some instances, the queues could be full because of con-
gestion in the network. In order to handle such cases, the queue manager implements packet
dropping behavior to proactively drop packets when the router experiences congestion.

Once the packet is scheduled to be transmitted, the traffic manager examines its context
to identify the customer and if there are any transmit rate limitations that need to be enforced
according to the service contract. Such a mechanism is referred to as traffic shaping. If the
traffic exceeds any rate limitations, the traffic manager delays or drops the packet in order to
comply with the agreed rate.

Finally, the packet arrives at the network interface where L3 processing logic updates its
TTL and updates the checksum. The L2 processing logic adds the appropriate L2 headers and
the packet is transmitted.

14.5 Packet Processing: Fast Path versus Slow Path
The tasks performed by a router can be categorized into time-critical and non–time-critical op-
erations depending on their frequency; they are referred to as fast path and slow path, respec-
tively. The time-critical operations are those that affect the majority of the packets and need to
be highly optimized in order to achieve gigabit forwarding rates. The time-critical tasks can
be broadly grouped into header processing and forwarding. The header processing functions in-
clude packet validation, packet lifetime control, and checksum calculation, while forwarding
functions include destination address lookup, packet classification for service differentiation,
packet buffering, and scheduling. Since these tasks need to be executed for every packet in
real time, a high performance router implements these fast path functions in hardware.

Non–time-critical tasks are typically performed on packets destined to a router for main-
tenance, management, and error handling. Such tasks include, but are not limited to:

• Processing of data packets that lead to errors in the fast path and and generation of ICMP
packets to inform the originating source of the packets

• Processing of routing protocol keep-alive messages from adjacent neighbors and sending
of these messages to the neighboring routers

• Processing of incoming packets that carry route table updates and sending messages to
neighboring routers when network topology changes

• Processing of packets pertaining to management protocols, such as SNMP, and the asso-
ciated replies

These slow-path tasks are integrated so that they do not interfere with the fast-path mecha-
nism. In other words, time-critical operations must have the highest priority under any cir-
cumstances. The fast path and slow path are identified in Figure 14.5. As shown in the figure,
a packet using the fast path is processed only by the modules in the line cards as it traverses
the router. On the other hand, a packet on the slow path is forwarded to the CPU, as many of
the slow path tasks are implemented by the software running on it. Such an implementation
is advantageous, as there is a clear separation between fast path and slow path. Consequently,
there is no interference with the performance of packets on the fast path.

C H A P T E R 1 4 Router Architectures 471

F I G U R E 14.5 Router components.

In the figure, the route processor card is directly attached to the backplane, as are the
line cards. The packets on the slow path from line cards are forwarded through this link to
the CPU in the router processor card. The CPU dispatches them to the appropriate protocol
handlers for processing. Similarly, the protocols running on the CPU can generate IP packets
to be transmitted to the network. These are forwarded to the appropriate line card, as if they
were from another line card. For these packets, the CPU needs to perform the route lookup;
otherwise, it cannot deduce to which line card the packet needs to be forwarded. Therefore,
the CPU needs to maintain its own routing table. Alternatively, instead of using a separate
routing table, it can consult the master routing table of the router that it maintains.

Having delineated the distinction between fast path and slow path, the next logical ques-
tion is: which router functions need to be implemented in the slow path, and which need to be
implemented on the fast path? Many of the forwarding functions are typically implemented
in the fast path, while the routing protocol and management functions are implemented in
the slow path. However, for certain functions, it is not obvious how they should be imple-
mented. In the following two sections, we will study in detail some of the fast path and slow
path functions.

14.5.1 Fast Path Functions

In the fast path, the packets are processed and transferred from the ingress line card to the
egress line card through the backplane. To achieve high speeds, the fast path functions are
implemented in custom hardware, such as ASICs. While such custom implementations are
less flexible, the increasing need for more packet processing at the router, and the relatively
small changes in IP packet format, makes the custom hardware implementation attractive.
Now let us examine some of the fast path operations in detail.

472 14.5 Packet Processing: Fast Path versus Slow Path

IP HEADER PROCESSING

As soon as an IP packet enters a router, it is subjected to a set of validity checks to ensure that
the packet is properly formed and the header is meaningful. Only well-formed packets can
be further processed; otherwise the packet is discarded.

The processing begins with a verification of the protocol version, as routers can support
either IPv4 or both IPv4 and IPv6. If the version number does not match, then the packet
could be malformed. The second step is for the router to check whether the length of packet
reported by the MAC or the link layer is at least the minimum legal length of an IP packet.
This test ensures that the IP header is not truncated by the MAC layer and filters packets less
than the minimum intended length. Next, for IPv4, the value of the IP header checksum must
equal the calculated header checksum computed by the router.

The routers must decrement the TTL field in the IP header to prevent packets from getting
caught in routing loops forever and consuming network resources. A packet destined for the
local address of the router will be accepted by the router if it has zero or a positive value of
TTL. On the other hand, the packets that are being forwarded by the router should have their
TTL value decremented and checked whether the TTL value is positive, zero or negative.
A positive value of TTL indicates that the packets have more life left and such packets are
actually forwarded. The remaining packets that have a TTL value equal to or less than zero
are discarded and an ICMP error message is sent to the original sender.

Since the TTL field has been modified, the IP header checksum must be recalculated.
A naive approach is to compute the checksum over the entire IP packet again, which could
be computationally expensive. An efficient method to compute the Internet checksum on the
entire packet is described in RFC 1071 [89]. However, as the checksum algorithms exhibit the
nice properties of being commutative and associative, it is possible to compute the checksum
in an incremental fashion. Such an approach is attractive and computationally less intensive,
which is vital because routers have to change the TTL field of every packet that they for-
ward. A fast approach to incrementally update the checksum is described in RFC 1141 [444]
(assuming the only change to the IP header is TTL).

PACKET FORWARDING

The function of packet forwarding is to determine on which network interface a packet needs
to be transmitted out of the router. The forwarding engine module controls this function
using a forwarding table. The forwarding table is a summary of the routing table created by
the route control processor. The router extracts the destination IP address from an incoming
packet and performs a lookup in the forwarding table to determine the next-hop IP address
for the packet. This procedure also decides which output port and network interface should
be used to send the packet. The result of the lookup could lead to three possibilities:

• Local: If the IP packet is destined for the router’s local IP addresses, it is delivered to the
route control processor. For example, the destination for the packets carrying routing pro-
tocol keep alives and route updates is the router itself.

C H A P T E R 1 4 Router Architectures 473

• Unicast: The packet needs to be delivered to a single output port on a network interface,
either to a next-hop router or to the ultimate destination. In the latter case, the router is
directly connected to the destination network.

• Multicast: The IP packet is delivered to a set of output ports on the same or different net-
work interfaces, based on multicast group membership, which is maintained by the router.

As the volume of data traffic grows, routers are expected to forward more packets per
second. Hence, the budget of time allowed per lookup gets reduced, and fast, efficient algo-
rithms are required. Such algorithms are discussed in detail in Chapter 15.

PACKET CLASSIFICATION

In addition to forwarding packets, the routers need to isolate different classes, or types, of IP
traffic, based on information carried in the packet. Subsequently, depending on the the type
of IP traffic, an appropriate action is applied. This process of selectively identifying packets
and applying the necessary actions according to certain rules is known as packet classification.
A set of such rules is referred to as a classifier. A router should be capable of discriminating
packets not only with the destination address, but also with the source address, source port,
destination port, and protocol flags, commonly referred to as a 5-tuple. The source and desti-
nation addresses identify the participating endpoints, the protocol flags identify the type of
payload, and the source and destination ports identify the application (assuming the payload
is TCP or UDP).

The packet classification function should be fast enough to keep up with the line rate.
Hence, the algorithms for classification need to be fast and efficient. A detailed discussion of
these algorithms and their complexities can be found in Chapter 16.

PACKET QUEUEING AND SCHEDULING

As routers keep forwarding packets, there can be an instance where multiple packets arriving
on different ingress network interfaces need to be forwarded to the same egress network
interface simultaneously. Such burstiness in the Internet traffic requires buffers which serve
as a temporary waiting area for packets to queue up before transmission. The order in which
they are transmitted is determined by various factors such as the service class the packet, the
service guarantees associated with the class, etc.

Therefore, routers not only provide buffers but also require sophisticated scheduling
function. The scheduling function prioritizes the traffic based on the bandwidth requirements
and tolerable amount of delay by choosing the appropriate packet from these buffers. Without
such options, packets simply line up and are transmitted in the order in which they are re-
ceived (FIFO). Many data applications like file transfers and web browsing can tolerate some
delay. However, for delay-sensitive applications such as VoIP, FIFO behavior is not clearly
desirable. Chapter 22 discusses in detail various scheduling algorithms and their advantages
and disadvantages.

When a network is congested, traffic arriving at the router could fill up its buffers, thereby
dropping subsequent packets. If congestion could be detected before it actually occurs, proac-
tive measures can be taken for prevention. Some of these measures include packet dropping
when the occupancy of buffers reaches a predefined threshold. As the packet dropping func-

474 14.5 Packet Processing: Fast Path versus Slow Path

tion needs to determine whether a packet needs to be dropped, it is considered as a fast path
function. Such congestion control mechanism are described in detail in Chapter 22.

14.5.2 Slow Path Operations
The packets following the slow path are partially processed by the ingress line card before
forwarded to the CPU for further processing. Once the CPU completes processing, it directly
sends those packet to the egress line card. Some of the slow path functions are highlighted
below.

ADDRESS RESOLUTION PROTOCOL PROCESSING

When a packet needs to be sent on an egress interface, the router needs to determine the data
link or the MAC address for the destination IP address or the next-hop IP address. This is
because the network interface hardware on the router to which the packet needs to be for-
warded understands only the addressing scheme of that physical network. Hence, a mecha-
nism is needed to translate the IP address to a link-level address (for Ethernet, it is 48-bit MAC
address). Once the link-level address is determined, the IP packet can be encapsulated in a
frame that contains the link-level address and transmitted either to the ultimate destination
or to the next-hop router.

A router that forwards IP packets to the destination address must either maintain these
link-level addresses or dynamically discover them. The mechanism for discovering dynami-
cally requires the use of address resolution protocol (ARP). ARP assumes that the underlying
network supports link-level broadcasts and sends a query ARP request containing the IP ad-
dress. When the ARP reply comes in from the host with the link-level address, it is maintained
as a part of the forwarding table in the router. These entries are timed out periodically and
removed and rediscovered again since the mappings change over time (possibly, the media
card could have been changed).

When a packet needs to be forwarded, these link-level addresses are obtained as a result
of the address lookup operation on the forwarding table along with the outgoing interface.
Hence a router designer might choose to implement ARP processing in the fast path for two
reasons: performance and the need for direct access to the physical network. Other designers
might choose to implement ARP in the slow path, since it does not occur very frequently.
When implemented in the slow path, an IP packet arriving in the router whose link-level
address is not known is forwarded to the central CPU. The CPU initiates an ARP request
and once the ARP reply arrives, the IP packet is forwarded. The CPU updates the forwarding
tables in the line cards with the link-address for future packets.

Another variation of a slow path implementation is to initiate a link-level address request
notification to the CPU from the line card. The CPU issues an ARP request and upon the
arrival of the ARP reply, the CPU updates the forwarding table in the line cards with the
link-level address for future packets. Meanwhile, the IP packet that triggered the notification
is discarded.

FRAGMENTATION AND REASSEMBLY

Since a router connects disparate physical networks, there can be scenarios in which the mes-
sage transfer unit (MTU) of one physical network is different from the other. When this hap-
pens, an incoming IP packet can be fragmented into small packets by the router if the output

C H A P T E R 1 4 Router Architectures 475

port is incapable of carrying the packet with its original length, that is, the MTU of the output
port is less than that of the input port. Thus fragmentation enables transparent connectivity
even across physical networks with different MTU sizes. However, the downside of fragmen-
tation is that it adds more complexity in the design of the router and reduces the overall data
throughput since the entire IP packet needs to retransmitted, even if a fragment is lost.

As the fast path is implemented in hardware in high-speed routers, adding support for
fragmentation in hardware could be complex and expensive. The need to fragment packets is
often an exceptional condition. When path MTU discovery is used, meaning that the smallest
MTU size in a path is discovered before packet transmission, the need for fragmentation is
very rare. Therefore, fragmentation is usually implemented in the slow path.

For further efficiency, fragmented packets transiting through a router are not reassem-
bled, even if the output port is capable of supporting a higher MTU. The rationale is that it
makes the design of the router complex, especially in the fast path, and the end system will be
capable of reassembling it anyway. Implementing reassembly in the fast path requires han-
dling of packets arriving out of order, detecting lost fragments and discarding the remaining
fragments in the buffers. Such tasks are complex to implement in hardware. However, pack-
ets destined for the router should be reassembled and usually it is implemented in software.
Fragment reassembly can consume substantial amounts of both CPU and memory resources.
The percentage of packets sent to the router is normally quite low relative to the packets tran-
siting through the router, which is another argument for fragmentation to be implemented in
the slow path.

ADVANCED IP PROCESSING

Some of the advanced IP options include source routing, route recording, time stamping, and
ICMP error generation. Source routing allows the sender of a packet to specify the route it
should take to reach the destination. The main argument for implementing these functions
in the slow path is that the packets requiring these functions are rare and can be handled as
exceptional conditions. Hence, these packets can be processed in the control processor in the
slow path.

For reporting errors about IP packets with invalid headers, the control processor can
instruct the ingress network interface to discard the packet. Another alternative is to discard
the packet in the fast path and send a notification to the control processor that generates an
ICMP message. Some designers consider that it is more efficient to store templates of various
errors in the forwarding engine, and then combine them with the IP header of the invalid
packet to generate a valid ICMP message immediately.

14.6 Router Architectures
Many discussions in the literature about router architectures provide a historical perspective
[365], [459], and [712]. Based on this, router architectures were classified as first generation,
second generation, and so on. However, such a classification does not capture any informa-
tion about commonalities, differences, and functionalities of different routers.

We present a new classification of router architectures that differs from the traditional
classification. Our classification scheme is based on how the packet forwarding function is

476 14.6 Router Architectures

implemented from the view point of a line card. This classification was inspired by a similar
scheme described in [176] and [672] in the context of parallel database systems. In the new
scheme, the router architectures are broadly classified into the following:

• Shared CPU architectures

• Shared forwarding engine architectures

• Shared nothing architectures

• Clustered architectures.

Furthermore, each of these architecture as can be considered as an instance of mapping var-
ious routing functional modules to architectural components. In the next few sections, we
examine each of these architectures in detail.

14.6.1 Shared CPU Architectures

This architecture is built around a conventional computer architecture; a CPU with memory
and multiple line cards are connected by a shared backplane. Each line card implements a
network interface to provide connectivity to the external links. The CPU runs a commodity
real-time operating system and implements the functional modules, including the forwarding
engine, the queue manager, the traffic manager, and some parts of the network interface,
especially L2/L3 processing logic in software. In addition, the same CPU also incorporates
the functionality of the route control processor that implements the routing protocols, route
table maintenance, and router management functions. All the line cards share the CPU for
their forwarding function; hence, the name shared CPU architecture.

An instance of this architecture is illustrated in Figure 14.6. Note that the figure also cap-
tures the flow of a packet and each step is indicated by a number enclosed in a circle. When a
packet arrives at the line card, it raises an interrupt to the CPU. The interrupt service routine
schedules a transfer of the packet to the buffer memory through the shared backplane. Once
the transfer is complete, the CPU extracts the headers of the packet and uses the forward-
ing table to determine the egress line card and the outgoing port. The packet is subsequently
prioritized by the queue manager and shaped by traffic manager. Finally, the packet is trans-
ferred from the memory to the appropriate output port in the egress line card. As one can see,
each packet is transferred twice over the shared backplane—once from the ingress line card
to the shared CPU and once from the shared CPU to the egress line card.

While most cycles of the CPU are used for packet forwarding, it spares some of its cycles
running the routing protocols. It periodically exchanges protocol keep alive messages with
the neighbor routers; whenever a route change occurs it incrementally updates the routing
table and the forwarding table. In addition, the CPU also executes management functions for
configuring and administering the router. A significant design issue, in this architecture, is
how the CPU divides its execution cycles between control path and data path software.

The main advantages of this architecture are the simplicity and the flexibility of imple-
mentation. However, the following bottlenecks present in the system limit the performance
of this architecture.

C H A P T E R 1 4 Router Architectures 477

F I G U R E 14.6 Shared CPU architecture.

• Each packet entering the system has to traverse the CPU; thus, the limited number of CPU
cycles results in a processing bottleneck.

• The packet forwarding functions, such as forwarding table lookup, buffering and retrieval
of the packet involve accessing memory. Due to mismatch in speed between memory and
CPU, access to memory contributes to a larger amount of overhead. The memory access
speeds have increased little over the last few years.

• The shared backplane becomes a severe limiting factor as each packet has to traverse the
backplane twice. This effectively reduces the throughput by a factor of two.

To summarize, the performance of this architecture depends heavily on the throughput
of the shared backplane, the speed of the shared CPU, and the cost of memory access. Hence,
this architecture does not scale well to meet increasing throughput requirements. However,
for lowend access and enterprise routers, where the throughput requirements are less than
1 Gbps, this architecture is still used.

Assuming the CPU speed and the cost of memory access remain the same, the throughput
of shared CPU architecture can be increased if the packet traverses the shared backplane
once instead of twice. If the functionality of the forwarding engine can be offloaded to the
line cards, the packets need to be transferred through the backplane only once (just to the
egress line card). Such an architecture is shown in Figure 14.7. The basic idea is that caching
the results of the route lookup in the line card allows many of the incoming packets to be
transferred directly to the egress line card; thus increasing the throughput.

478 14.6 Router Architectures

F I G U R E 14.7 Shared CPU architecture with route caches.

As shown in the figure, this architecture also consists of a CPU with buffer memory and
line cards connected to a shared backplane. Unlike the previous architecture, more intelli-
gence is added to the line cards, with processor, memory and forwarding caches. The CPU
maintains the central forwarding table and the line cards cache a subset of the master for-
warding table based on recently used routes. When a first packet from a new destination
arrives in the line card, it is sent to the shared CPU, which looks up its route using the central
forwarding table. The result of the lookup is then added to the forwarding cache in the ingress
line card. This allows subsequent packet flows to the same destination match the cached route
entry, and the packet is directly transferred to the egress line card.

Figure 14.7 identifies the flow of two different packets. The first, indicated by steps 1
through 11, shows the case when the destination address of the incoming packet is found
in the forwarding cache. The second identifies the case when the search for the destination
address fails in the forwarding cache and the central forwarding table in the CPU needs to
be consulted, which is indicated by steps 12 through 27. Since cache memory is limited, the
entries are discarded based on LRU (least recently used) or FIFO (first-in first-out) to make

C H A P T E R 1 4 Router Architectures 479

space for new entries. The cache entries are periodically aged out to keep the forwarding
cache current and, in the case of a route change, immediately invalidated.

The advantage of this architecture is the increased throughput because the forwarding
cache of frequently seen addresses in the line card allows to process packets locally most
of the time. However, the throughput is, in fact, highly dependent on the incoming traf-
fic. The traffic arriving at a core router is an aggregation of traffic from various users and
hence it exhibits little cache locality. As a result, most of the packets have to be sent to the
shared CPU for route lookup. Hence, there might be little increase in throughput compared
to the shared CPU architecture without forwarding caches. The performance of this archi-
tecture can be improved by increasing the memory for storing forwarding cache to include
the entire forwarding table. This is feasible as the cost of memory has substantially reduced.
However, the shared backplane still presents a bottleneck. Due to these drawbacks, this ar-
chitecture can neither scale to high-capacity links nor provide traffic pattern-independent
throughput.

14.6.2 Shared Forwarding Engine Architectures

In the shared CPU architecture, we identified that the shared CPU is one of the major bottle-
necks, as it is in the path of every packet flow. The shared forwarding engine architecture is an
attempt to mitigate the bottleneck by offloading the functionality of the forwarding engine
to a dedicated card called forwarding engine cards. Each forwarding engine card contains a
dedicated processor executing the software for route lookup and memory for storing the for-
warding table. With multiple such cards, many packets can be processed in parallel, which
considerably scales the packet forwarding speed. The shared forwarding engine architectures
were used in [38], [547] to build routers capable of forwarding gigabits per second.

In this architecture, multiple line cards are connected through a shared backplane
through which the packets are transferred from one line card to another. Line cards and for-
warding engine cards are connected through a separate shared backplane called forwarding
backplane. The rationale behind using two different backplanes is to separate the data traffic
from the traffic generated for the forwarding engine cards, thereby improving throughput.
This architecture is shown in Figure 14.8, which also illustrates the packet flow. In the figure,
the numbers enclosed in circles indicate the steps of packet processing in order.

When the ingress line card receives packets, the IP header is stripped and augmented
with the packet context containing a identifying tag. The packet context and the IP header
are sent to a forwarding engine through the forwarding backplane for IP header validation
and route lookup. Since the forwarding engine is responsible for route lookup, sending only
IP headers eliminates the unnecessary overhead of transferring the packet payload over the
forwarding backplane.

While the forwarding engine is performing the lookup, the packet payload is buffered
in the memory of the ingress line card. The result of route lookup determines the egress
line card and the interface where the packet needs to be transmitted. This information is
stored in the packet context which is followed by decrementing the TTL and updating the
checksum in the IP header. The updated header along with the packet context containing the
tag is sent to the ingress line card. Upon examining the packet context, the ingress line card
transfers the packet from its buffer memory through the shared backplane to the egress line

480 14.6 Router Architectures

F I G U R E 14.8 Shared forwarding engine architecture using two shared backplanes.

card. Subsequently, it is queued in the buffer memory of the egress line card until the queue
manager and traffic manager decide to transmit on the outgoing link.

The route control processor maintains the routing table by exchanging route update mes-
sages and computes the forwarding table. The forwarding table is propagated to all the for-
warding engines when a new route is added or an existing route is updated or deleted. Since
the forwarding table at the forwarding engines has the same contents, their consistency needs
to be maintained.

Since there are multiple forwarding engines, multiple IP headers can be processed in
parallel. This could lead to the situation where packets that arrived later might finish their
route lookup earlier than the packets that entered the router earlier. Subsequently, these pack-
ets will depart from the router earlier, causing packet reordering. The routers need to main-
tain packet ordering as sequencing of packets in a TCP connection needs to be maintained,
which otherwise can trigger retransmits and degrade the performance of the overall net-
work.

C H A P T E R 1 4 Router Architectures 481

The L2/L3 packet processing logic in the ingress line card removes the IP headers and
assigns these headers to forwarding engines in a round robin fashion. To ensure packet order-
ing, the packet processing logic in egress interface also goes round robin, guaranteeing that
packets are sent out in the order in which it is received.

The time required to process each packet depends on the actual load of the forwarding
engine. Hence, instead of round robin, a better load-balancing algorithm that assigns each
header to the lightly loaded forwarding engine can be used. To maintain packet ordering in
a TCP connection, the load-balancing algorithm should assign individual TCP connections
to forwarding engines rather than packets. All the packets belonging to the connection need
to use the same forwarding engine. But there are scenarios in which, once a connection is
assigned to a forwarding engine, the load could increase as it is hard to predict the packet ar-
rivals for other connections after the load-balancing decision. This could lead to more packets
being queued at the forwarding engine and cause delay. However, such scenarios could be
minimized by increasing the number of forwarding engine cards, which increases the prob-
ability there will be a free forwarding engine when a new connection arrives. But this might
not be cost effective. Furthermore, from design perspective, the line card should have the
capability to recognize the packets that signal the start and end of a TCP connection and
also needs to maintain state about which forwarding engine the connection has been as-
signed.

The main advantage of this architecture is the ability to scale to higher forwarding speeds.
Another advantage of this architecture is that it provides flexibility; the forwarding engine
cards can be added whenever needed so that the necessary forwarding speed can be achieved
for high-speed core routers.

A key drawback is the use of a shared backplane that does not provide sufficient band-
width for transmitting packets between line cards and limits the router throughput. Hence,
in order to remove this bandwidth limitation, the shared backplane is replaced by a switched
backplane. As a switched backplane has higher bandwidth, a separate forward backplane is
not required. Instead, both the line cards and forwarding engine cards are directly connected
to the switched backplane, thus providing a communication path in which each line card can
reach any forwarding engine. The control processor is also attached to a switched backplane,
which provides a path for updating the forwarding tables in the forwarding engine cards. It
is shown in Figure 14.9. Such an architecture is used in the building of a multigigabit router
described in [547].

14.6.3 Shared Nothing Architectures
With increasing link speeds, the architectures described so far are stretched to their limits.
First, in the shared forwarding engine architecture, forwarding a packet requires traversing
the backplane twice, irrespective of using two shared backplanes or a single switched back-
plane as shown in Figures 14.8 and 14.9. This reduces the available backplane bandwidth for
forwarding packets. Second, the use of general-purpose processors in the forwarding engine
cards further limits the number of packets that can be processed.

A closer look at the shared forwarding engine architecture indicates that the extra hop
through the backplane can be eliminated if the forwarding engine is incorporated into the
line card. As routers are dedicated systems not running any specific application tasks, off-
loading processing to line cards can increase the overall router performance. Further, more

482 14.6 Router Architectures

F I G U R E 14.9 Shared forwarding engine architecture using a switched backplane.

processing power can be added by implementing each functional module in hardware such as
high speed FPGA (field-programmable gate arrays) or ASICs (application-specific integrated
circuits). To achieve high performance, these hardware components are interconnected by
high-speed links embedded in the line card.

A shared nothing router architecture offloads all the packet forwarding functions to the
line cards. The line cards implement these functions using custom hardware for high per-
formance and do not share any of these components with other line cards. Hence, this ar-
chitecture is named as shared nothing. Now since the line cards are capable of handling large
number of packets, the backplane should be fast enough to handle aggregate input from all
the line cards. Hence, this architecture employs switched backplanes, which makes this setup
capable of multiple transfers simultaneously. An instance of this architecture is illustrated in
Figure 14.10, which also depicts the packet flow.

As you can see from Figure 14.10, all the line cards are connected to a high-speed switched
backplane. A packet enters the router through the network interface in the line card. It is
subjected to L2/L3 processing logic, which peels off L2 header and creates a packet context.
The L2/L3 processing logic appends L2 information such as source MAC and destination
MAC to the packet context. In addition, the packet context is appended with the IP header of

C H A P T E R 1 4 Router Architectures 483

F I G U R E 14.10 Shared nothing architecture.

the packet. The L2/L3 processing module deposits the packet payload to buffer memory and
in parallel sends the packet context along with the header to the forwarding engine.

The forwarding engine consults the forwarding table for route lookup and determines the
outgoing port and egress line card. In addition to route lookup, the forwarding engine classi-
fies the packet into a service class based on the contents of the packet header. This service class
information is stored in the packet context. Depending on the result of the route lookup, the
packet is extracted from the buffer memory and transmitted to the egress line card through
the switched backplane. The packet is received by the queue manager in the egress line card,
which stores it in the buffer memory. Depending on the priority of the packet, it is scheduled
for transmission to traffic manager. The traffic manager, based on the agreed rate of trans-
mission, might delay the packet further or transmit it immediately on the appropriate egress
interface.

The route control processer is implemented on a separate card using a general-purpose
processor. In some of the architectures, this card is attached to the switched backplane for
communicating to the line cards. In other architectures, a separate path for communicating
to the line cards is implemented. The processor runs routing protocols and when a route

484 14.6 Router Architectures

update occurs, the forwarding table is computed and propagated to the forwarding tables
maintained in the line cards.

Many high-end routers from router vendors use this architecture. These routers have
been demonstrated to achieve throughputs greater than 640 Gbps.

14.6.4 Clustered Architectures
One of the major limitation of routers using shared nothing architecture is the number of
line cards that can be supported in a single chassis. Two factors affect this limitation. First,
such routers are used in the core and at higher layers of aggregation where the number of
links required is small but the bandwidth per link increases. Second, the packaging density
possible within the racks used in central offices is limited to 19 inches (NEBS standards). In
addition, a spacing of 1 inch is needed between line cards for air flow that limits the number
of line cards to 16, assuming the line cards are being arranged vertically.

With the advent of dense wave-division multiplexing (DWDM) technology, each fiber
can now contain many independent channels. The data rate on each channel can be as high
as OC-48 (2.4 Gbps). These channels are separated and terminated by the router with one
port per channel. Hence, support for a large number of ports is required. With each line card
carrying only a fixed number of ports, a router needs to support large number of line cards.

For increasing the number of line cards and the aggregate system throughput, major ven-
dors use a clustering approach. This approach uses multiple chassis–containing line cards
connected to central switch core, as shown in Figure 14.11. A variation of this approach is the
use of multiple independent routers connected to a central switch core but function as a sin-
gle router. In these architectures, the chassis-containing line cards are connected to the switch

F I G U R E 14.11 Clustered router architecture with a central switch core (adapted from
[569]).

C H A P T E R 1 4 Router Architectures 485

core using very-high-speed optical links. A packet entering a network interface in a line card,
depending on the result of route lookup, can be destined to a line card in the same chassis
or a line card in a different chassis. In the latter case, the packet has to be forwarded through
the switch core that sends it to the correct chassis. Once the packet reaches the chassis, it is
forwarded through the appropriate egress line card.

The advantage of this architecture is the ability to incrementally add the line card chassis
depending on the need. A disadvantage of this architecture is that the switch core is a sin-
gle point of failure. Hence, for high-availability routers, a second switch core is needed that
increases the cost.

14.7 Summary
In this chapter, we presented an overview of router architectures. We have pointed out the
critical functions of a router. Certainly, the main function is to forward packets as efficiently
as possible. In addition, a router must be able to support different routing protocols and must
provide interface for network administrators to configure a number of tasks including which
routing protocol(s) to invoke.

For different network sizes deployed and depending on whether deployed by an access
provider, transit provider, or core Internet provider, routers are designed to be of different
sizes and handling capability in terms of address lookup. As you can see, a single, general-
purpose architecture does not fit all requirements. Broadly, we can classify routers into four
categories, which we discussed in this chapter.

In subsequent chapters, we will be delving into more details about various components
and functions of a routers, and the types of operations they are required to handle.

It is important to point out that discussions presented in this chapter have been for “pure”
IP routers. Routers designed for multiprotocol label switching (MPLS), often referred to as
MPLS routers, do require additional functionalities for tracking and management of labels, in
addition to the typical functions already discussed; we will present MPLS router architecture
later, when we cover MPLS (refer to Chapter 18).

Further Lookup
In the past two decades, router architectures have seen tremendous changes, dictated by the
exponential growth of the Internet. A good introduction to routing can be found in the white-
paper from Juniper Networks [629]. The survey papers [46], [98] provide a detailed introduc-
tion to various router architectures. The requirements for different types of routers are de-
scribed in [367]. A shorter introduction to the historical perspective of router and switch archi-
tectures can be found in [121], [459], and [712]. The tutorial on router architectures [294] pro-
vides an elegant introduction and discusses the advantages and disadvantages. Experiences
about building a multibit gigabit router using shared forwarding engine architectures can be
found in [547]. The best way to understand different types of routers (and their architectures)
is to read products developed by various vendors. In this regard, we recommend that reader
explore the web-sites of router vendors such as Cisco Systems (http://www.cisco.com/),
Juniper Networks (http://www.juniper.net/), and Avici Systems (http://www.avici.com/).

We refer you to the chapters that follow (and the Further Lookup section in these chap-
ters) for details about various elements and functions of routers.

486 14.7 Exercises

Exercises
14.1. Review questions:

(a) What are the basic functions of a router?

(b) What fields in an IP packet header are typically changed for every incoming packet
before it is being forwarded?

(c) Why is it important to distinguish between basic forwarding functions and com-
plex forwarding functions

(d) What are the key elements of a router?

(e) What is packet context? Why is it necessary?

(f) What is the difference between a shared and switched backplane?

14.2. Discuss the strengths and weaknesses of various router architectures presented in this
chapter.

14.3. Give an argument why ARP processing should be in the fast path and not in the slow
path.

14.4. How is shared nothing architecture different from shared forwarding engine architec-
ture?

14.5. Investigate various router products from different vendors, and determine which of
them fall into the four router architecture classifications presented in this chapter.

14.6. Refer to Exercise 14.5. Do you find any routers that do not fall into the classification
presented in this chapter? Why do you think they do not fall into any of these classifi-
cations?

This page intentionally left blank

15
IP Address
Lookup
Algorithms
I’m so fast that last night I turned off the light switch in my hotel room and
was in bed before the room was dark.

Muhammad Ali

Reading Guideline

Address lookup is an important function of a router. At first, the need for address
lookup is presented followed by why this function needs to be efficient. We then
present a series of different approaches for address lookup; they are organized to
capture different needs that must be addressed as the routing table size grows. This
material assumes that the reader has some familiarity with data structures, notion
of computational complexity, and hardware architecture.

C H A P T E R 1 5 IP Address Lookup Algorithms 489

The primary function of routers is to forward packets toward their final destination. To ac-
complish this, a router must decide for each incoming packet where to send it next. To be
precise, the forwarding decision consists of two components: (1) finding the address of the
next-hop router to forward the packet to, and (2) determining the egress interface through
which the packet should be sent. This forwarding information, referred to as next-hop infor-
mation, is stored in a forwarding table populated by information gathered from the routing
protocols. This forwarding table is consulted using the packet’s destination address as the
key. Such an operation is called an address lookup. Once the next-hop information is retrieved,
the router can transfer the packet from the ingress interface to the egress interface.

There are four key factors that affect a routing system: link speeds, router data through-
put, packet forwarding rates, and quick adaptation to routing changes. The link speeds and
router data throughput have kept pace with the increase in traffic demands because of ad-
vances in fiber-optic cables and fast switching technology. However, the major challenge has
been to increase the packet forwarding rates to keep up with the increased data rates. Even
though the packet forwarding operation consists of other chores, such as updating time-to-
live (TTL) fields, these are computationally inexpensive compared to the address lookup op-
eration. The challenge, therefore, is to develop algorithms that can perform millions of ad-
dress lookup operations per second. In this chapter, we look at such algorithms in detail.

15.1 Impact of Addressing on Lookup

The addressing architecture is of fundamental importance to the routing architecture and
tracing its evolution will make it clear how it impacts the complexity of the lookup mecha-
nism. As discussed earlier in Section 1.1, in the early days the Internet used a classful address-
ing scheme, known as Class A, Class B, and Class C addresses.

With the classful addressing scheme, the forwarding of packets is straightforward.
Routers need to examine only the network part of the destination address to forward it to
the destination. Thus, the forwarding table needs to store a single entry (the network part)
for routing the packets destined to all the hosts attached to a given network. Such a technique
is called address aggregation and uses prefixes to represent a group of addresses. As described
earlier in Section 14.1.4, a forwarding table entry consists of a prefix, the next-hop address,
and the outgoing interface. Finding the forwarding information requires searching the pre-
fixes in the forwarding table for the one that matches the same set of bits in the destination
address.

The lookup operation in a classful addressing scheme proceeds as shown in Figure 15.1.
The forwarding table is organized into three separate tables: one for each of the three allowed
lengths: 7 bits, 14 bits, and 21 bits for classes A, B and C, respectively. As shown in Figure 15.1,
first the address class is determined from the first few bits of the destination address. Based on
this information, one of the three tables is chosen to search. Meanwhile, the network part of
the destination is extracted based on the class. Then the chosen table is searched for an exact
match between the network part and the prefixes present in the table. The search for an exact
match can be performed using well-known algorithms such as binary search or hashing.

The class-based addressing scheme worked well in the early years of the Internet. How-
ever, as the Internet started growing, this scheme presented two problems:

490 15.1 Impact of Addressing on Lookup

F I G U R E 15.1 Lookup operation in a classful IP addressing scheme (adapted from [273]).

• Depletion of IP Address Space: With only three different network sizes to choose from, the IP
address space was not used efficiently and it was being exhausted very rapidly, since only
a fraction of the addresses allocated was actually in use (approximately 1%). For example,
a class B netid (good for 216 hosts) had to be allocated to any organization with more than
254 hosts.

• Exponential Growth of Routing Tables: The route information stored in the forwarding tables
of core IP routers grew in proportion to the number of networks. As a result, routing tables
were growing exponentially. This led to higher lookup times on the processor and higher
memory requirements in the routers.

In an attempt to allow more efficient use of IP address space and to slow down the ex-
ponential growth of forwarding tables in routers, a new scheme called classless interdomain
routing (CIDR) was introduced [239]; see Section 1.3.3 for an introduction about CIDR.

15.1.1 Address Aggregation
Because of CIDR, address aggregation is possible so that a router can maintain one entry
instead of its constituents before aggregation; however, sometimes it is not possible if an
address block is missing. To understand aggregation and exception in aggregation, consider
the following example.

Example 15.1 Address aggregation and exception in address aggregation.
First, we consider address aggregation. Assume that ISP1, a service provider, connects

three customers—C1, C2, and C3—with the rest of the Internet; see Figure 15.2(a). ISP1 is,
in turn, connected to some backbone provider through router R1. The backbone can also
connect other service providers like ISP2. Assume that ISP1 owns IP prefix block 10.2.0.0/22
and partitions it among its customers. Let us say that prefix 10.2.1.0/24 has been allocated to
C1, 10.2.2.0/24 to C2, and 10.2.3.0/24 to C3. Now the router in the backbone R1 needs to keep
only a single forwarding table entry for IP prefix 10.2.0.0/22 that directs the traffic bound

C H A P T E R 1 5 IP Address Lookup Algorithms 491

(a)

(b)

F I G U R E 15.2 Examples of (a) address aggregation, (b) exception in address aggregation.

492 15.2 Longest Prefix Matching

to C1, C2, and C3 through router R3. As you can see, the hierarchical allocation of prefixes
obviates the need for separate routing table entries for C1, C2, and C3 at router R1. In other
words, the backbone routes the traffic bound for ISP1 to R3 and it is the responsibility of the
routers within ISP1 to distinguish the traffic between C1, C2, and C3.

Next, assume that customer C2 would like to change its service provider from ISP1
to ISP2, but does not want to renumber its network. This is depicted in Figure 15.2(b).
Now all the traffic in the backbone bound to prefix 10.2.0.0/22 would need to be directed
to ISP1 except for prefix 10.2.2.0/24. We cannot perform aggregation as before at router
R1 since there is a “hole” in the address space. This is called exception to address aggrega-
tion. �

Example 15.1 demonstrates how route aggregation leads to a reduction in the size of
backbone routing tables. A great deal of aggregation can be achieved if addresses are care-
fully assigned. However, in some situations, a few networks can interfere with the process of
aggregation as we illustrated above. The question is: how can we accommodate such a hole?
A straightforward solution is to deaggregate and increase the number of entries in the back-
bone router R1 to three, one for each of the customers. This is not desirable since the number
of entries in the backbone will increase dramatically.

Can we come up with a solution that preserves the benefits of aggregation and still ac-
commodates such exceptions? Yes, using the following. Keep the existing prefix 10.2.0.0/22
and add the exception prefix 10.2.2.0/24 to the forwarding table in router R1. The next-hop
information for exception prefix will direct the traffic to router R2. This will result in only
two entries in the forwarding table. Note, however, that some addresses will match both the
entries because the prefixes overlap. To make the correct forwarding decision, routers must
do more than look for an exact prefix match. Since exceptions in the aggregations may exist,
it needs to find the most specific match that is the longest matching prefix. Now we are ready
to define the longest prefix matching problem and describe why it is difficult.

15.2 Longest Prefix Matching
The problem of identifying the forwarding entry containing the longest prefix among all the
prefixes matching the destination address of an incoming packet is defined as the longest
matching prefix problem. This longest prefix is called the longest matching prefix. It is also
referred to as the best matching prefix.

Example 15.2 Identifying the longest matching prefix.
Consider the forwarding table at a router, as shown in Table 15.1. Each entry contains

the prefix and the name of the outgoing interface. Entry 1 indicates that the packet matching

TA B L E 15.1 A forwarding table.

Entry Number Prefix Next-Hop
1 98.1.1.1/24 eth3
2 171.1.0.0/16 so6
3 171.1.1.0/24 fe5

C H A P T E R 1 5 IP Address Lookup Algorithms 493

TA B L E 15.2 Prefix table example.

Prefix label Prefix
P1 0∗
P2 00001∗
P3 001∗
P4 1∗
P5 1000∗
P6 1001∗
P7 1010∗
P8 1011∗
P9 111∗

prefix 98.1.1.1/24 will go out on interface eth3. If the destination address of the incoming
packet is 171.1.1.2, then it will match prefix 171.1.0.0/16 in entry 2 as well as 171.1.1.0/24 in
entry 3. Since prefix 171.1.1.0/24 is the longest matching prefix, the packet will be forwarded
on the outgoing interface fe5. �

The difficulty of the longest prefix matching arises because of the following reasons. First,
a destination IP address does not explicitly carry the netmask information when a packet tra-
verses through. Second, the prefixes in the forwarding table against which the destination ad-
dress needs to be matched can be of arbitrary lengths; this could be as a result of an arbitrary
number of network aggregations. Thus, the search for the longest prefix not only requires de-
termining the length of the longest matching prefix, but also involves finding the forwarding
table entry containing the prefix of this length. To conclude, the adaptation of CIDR has made
route lookups more complex than they were when the classful addressing scheme was used.

Throughout the rest of the chapter, we will be using the following two parameters:

N = Number of prefixes in a forwarding table

W = Maximum length of the prefixes in bits

Unless otherwise specified, we use the prefixes shown in Table 15.2 as a running example for
various algorithms discussed in later sections. For ease of reading, this table is subsequently
shown next to each figure that is associated with a specific lookup algorithm.

15.2.1 Trends, Observations, and Requirements

It is imperative for any algorithm designer to understand the requirements of the problem
and how these requirements are expected to evolve. The basic requirements for the longest
prefix matching include the following:

• Lookup Speed: Internet traffic measurements [696] show that roughly 50% of the pack-
ets that arrive at a router are TCP-acknowledgment packets, which are typically 40-byte
packets. As a result, a router can be expected to receive a steady stream of such mini-
mum size packets. Thus, the prefix lookup has to happen in the time it takes to forward
a minimum-size packet (40 bytes), known as wire speed forwarding. At wire speed for-

494 15.2 Longest Prefix Matching

warding, the amount of time that it takes for a lookup should not exceed 320 nanosec at
1 Gbps (= 109 bps), which is computed as follows:

40 bytes × 8 bits/byte
1 × 109 bps

= 320 nanosec.

Similarly, the lookup cannot exceed the budget time of 32 nanosec at 10 Gbps and
8 nanosec at 40 Gbps. The main bottleneck in achieving such high lookup speed is the
cost of memory access. Thus, the lookup speed is measured in terms of the number of
memory accesses.

• Memory Usage: The amount of memory consumed by the data structures of the algorithm is
also important. Ideally, it should occupy as little memory as possible. A memory-efficient
algorithm can effectively use the fast but small cache memory if implemented in software.
On the other hand, hardware implementations allow the use of fast but expensive on-chip
SRAM needed to achieve high speeds.

• Scalability: The algorithms are expected to scale both in speed and memory as the size of
the forwarding table increases. While core routers presently contain as many as 200,000
prefixes, it is expected to increase to 500,000 to 1 million prefixes with the possible use
of host routes and multicast routes. When routers are deployed in the real network, the
service providers expect them to provide consistent and predictable performance despite
the increase in routing table size. This is expected since a router needs to have a useful
lifetime of at least five years to recuperate the return on investment.

• Updatability: It has been observed in practice that the route changes occur fairly frequently.
Studies [387] show that core routers may receive bursts of these changes at rates varying
from a few prefixes per second to a few hundred prefixes per second. Thus, the route
changes require updating the forwarding table data structure, in the order of millisec-
onds or less. These requirements are still several orders of magnitude less than the lookup
speed requirements. Nonetheless, it is important for an algorithm to support incremental
updates.

To summarize, the important requirements of a lookup algorithm are speed, storage, up-
date time, and scalability. We ideally require algorithms to perform well in the worst case.
However, exploiting some of the following practical observations to improve the expected
case is desirable.

• Most of the prefixes are 24 bits or less in core routers, while more than half are 24 bits (see
Table 9.2).

• There are not very many prefixes that are prefixes of other prefixes. Practical observations
show that the number of prefixes of a given prefix is at most seven.

These practical observations can be further exploited to come up with efficient schemes.

C H A P T E R 1 5 IP Address Lookup Algorithms 495

15.3 Naïve Algorithms
The simplest algorithm for finding the best matching prefix is a linear search of prefixes. It
uses an array in which the prefixes are stored in an unordered fashion. The search iterates
through each prefix and compares it with the destination address. If a match occurs, it is
remembered as the best match and the search continues. The best match is updated as the
search walks through each prefix in the array. When the search terminates the last prefix re-
membered is the best matching prefix. The time complexity for such a search is O(N). Linear
search might be useful if there are very few prefixes to search; however, the search time de-
grades as N becomes large.

Some researchers proposed the idea of route caching in conjunction with linear search
to speed up the lookup time. A cache is a fast buffer for storing recently accessed data. The
main use of the cache is to speed up subsequent access to the same data if there is a sufficient
amount of locality in data access requests. The average time to access data is significantly re-
duced since access to cache takes significantly less time than access to SRAM or other storage
media [293].

For lookup the cache stores the recently seen 32-bit destination addresses and the asso-
ciated next-hop information. When a packet arrives at the router, the destination address is
extracted and the route cache is consulted. If an entry exists in the cache, then the lookup op-
eration is completed. Otherwise, the linear search discussed above is invoked and the result
is cached, possibly replacing an existing entry. Such a caching scheme is effective only when
there is locality in a stream of packets, i.e., a packet arrival implies another packet with the
same destination address will arrive with high probability in the near future.

However, locality exhibited by flows in the backbone has been observed to be very poor
[527]. This leads to a much lower cache hit ratio and degenerates to a linear search for every
lookup. In summary, caching can be useful when used in conjunction with other algorithms,
but that precludes the need for fast prefix lookups.

15.4 Binary Tries
The binary trie is the simplest of a class of algorithms that is tree-like. The term trie comes
from “retrieval” and is pronounced “tree.” However, most often to verbally distinguish a trie
from a general tree, it is pronounced as “try.” The trie data structure was first proposed in the
context of file searching [169], [238].

A binary trie is a tree structure that allows a natural way to organize IP prefixes and uses
the bits of prefixes to direct the branching. Each internal node in the tree can have zero, one,
or two descendants. The left branch of a node is labeled 0 and the right branch is labeled 1.
For instance, the binary trie for the prefixes in Table 15.2 is shown in Figure 15.3.

In a binary trie, a node l represents a prefix formed by concatenating the labels of all
the branches in the path from the root node to l. For example, the concatenated label along
the path to node P2 is 00001, which is the same as prefix P2. Note that some of the nodes
are shaded in gray while the remaining nodes are not. The gray-shaded nodes correspond
to actual prefixes. These nodes contain the next-hop information or a pointer to it. As can be
seen, prefixes can be either in the internal nodes or at the leaf nodes. Such a situation arises if
there are exception prefixes in the prefix aggregation. For instance, in Figure 15.3, the prefixes
P2 and P3 represent exceptions to prefix P1.

496 15.4 Binary Tries

F I G U R E 15.3 Binary trie data structure for the prefixes of Table 15.2.

Let us try to understand this better. A complete binary trie represents all the 5-bit address
space. Each leaf represents one possible address. We can see that the address space covered
by P1 overlaps the addresses of P2 and P3. Thus, prefixes P2 and P3 represent exceptions
to prefix P1 and refer to specific subintervals of the address space of prefix P1. Is it possible
to identify such exception prefixes by simply looking at the trie in Figure 15.3? Indeed, yes.
Exception prefixes are always descendants of an aggregation prefix. In Figure 15.3, P2 and P3

are exceptions of prefix P1 since they are its descendants.

15.4.1 Search and Update Operations

We have seen so far how the prefixes are organized in a trie. The next question is given a
destination address, how do the search/insert/delete operations work? The search in the trie
is guided by the bits of the destination address starting from the root node of the trie. At each
node, the left or right branch is taken depending upon the inspection of the appropriate bit.
While traversing the trie, we may come across gray-shaded nodes that contain the prefix
information. The search needs to remember this prefix information since it is the longest
match found so far. Finally, the search terminates when there are no more branches to be
taken and the best matching prefix will be the last prefix remembered.

Example 15.3 Searching for the best matching prefix in a binary trie.
Consider searching the binary trie shown in Figure 15.3 for an address that begins with

001. The search starts at the root node of the trie and the first bit is examined. Since it is a
0, the search proceeds toward the left branch and encounters the node with the prefix P1.
We remember P1 as the best matching prefix found so far. Then, we move left as the second
address bit is another 0; the node encountered this time does not have a prefix, so P1 remains
the best matching prefix so far. Next, we examine the third bit, which is a 1, and leads to prefix
P3. Since P3 is a better matching prefix than P1, it is remembered. Now, P3 is a leaf node and,
thus, the search terminates and the prefix P3 is declared the best matching prefix. �

C H A P T E R 1 5 IP Address Lookup Algorithms 497

The insert and delete operations are also straightforward to implement in binary tries.
The insert operation proceeds by using the same bit-by-bit search. Once the search arrives at
a node with no further branch to proceed, the necessary nodes are created to represent the
prefix.

Example 15.4 Inserting prefixes in a binary trie.
Consider inserting prefixes 110 and 0110, referred to as P10 and P11, respectively, in the

binary trie shown in Figure 15.3. Figure 15.4 illustrates the insertion of both the prefixes.
Since the first bit of P10 is 1, the search moves to the right and reaches the gray node P4.
Now the second bit is examined, which again guides the search right. As the third bit is 0,
there is no left branch to take and, thus, a new node P10 is created and attached. The next-hop
information for this prefix is stored in the node itself. Now consider inserting prefix P11. After
inspecting the bits, we find that there is no right branch to take on the node with prefix P1.
Thus, new nodes are added that create the path to prefix node P11. �

Similar to the insert operation, the deletion of a prefix starts by a search to locate the
prefix to be deleted. Once the node containing the prefix is found, different operations are
performed depending on the node type. If it is an internal node (gray node), then the node is
unmarked, indicating there is no more prefix information on it. For example, to delete prefix
P1, simply unmark it, which is equivalent to removing the next-hop information or nullifying
it. If the node to be deleted is a leaf node, all the one-child nodes leading to the leaf node might
have to be deleted as well.

A binary trie is implemented using two entries per node: one entry for bit 0 and the other
for bit 1. Each entry contains two fields, nhop that stores the next-hop information and ptr
that stores the pointer to the subtrie. If next-hop information is not present, the field is set to
null and, similarly, if the subtrie is not present the ptr field is set to null. Note that the prefix
information itself is not stored in each node. This is because it can be derived based on the
current bit position being examined in the address that is being looked up. The implemen-

F I G U R E 15.4 Inserting new prefixes in a binary trie.

498 15.4 Binary Tries

F I G U R E 15.5 Implementation of the binary trie shown in Figure 15.3.

tation of the binary trie in Figure 15.3 is shown in Figure 15.5, in which prefixes indicate the
presence of next-hop information and the arrows indicate the presence of pointers to subtries.

Binary tries, in the worst case, during a search must traverse a number of trie nodes equal
to the length of addresses; thus, the search complexity is O(W). Inserting a prefix to a binary
trie might require adding a sequence of W nodes, and the worst case update complexity is
O(W). Similarly, for deletion the worst-case time complexity is O(W). In terms of memory
consumption, the complexity is O(NW) since each prefix at most can have W nodes. Note
that some of the nodes are shared along the prefix paths and, thus, the upper bound might
not be tight.

15.4.2 Path Compression

A binary trie can represent arbitrary-length prefixes but it has the characteristic that long
sequences of one-child nodes may exist. Such long sequences are undesirable since the bits
corresponding to those nodes would need to be examined even though no actual branching
decision is made. This increases the search time more than necessary in some cases. Also,
one-child nodes consume additional memory.

Now, assume the objective is to reduce the search time and reduce the memory space;
what can we do about it? One possibility is not to involve any of the bits corresponding to one-
child nodes during inspection. If they do not need to be inspected, then we can eliminate them
as well. This is exactly the idea behind path compression. By collapsing the one-way branch
nodes, path compression improves search time and consumes less memory space. However,
additional information needs to be maintained in other nodes so that a search operation can
be performed correctly. Path compression is derived from a scheme called PATRICIA [502];
PATRICIA was meant primarily for storing strings of characters and it did not support longest
prefix matching. It was later adapted for longest prefix matching [645].

C H A P T E R 1 5 IP Address Lookup Algorithms 499

F I G U R E 15.6 Path compressed trie data structure for the prefixes of Table 15.2.

Path compression applied to the binary trie in Figure 15.3 is shown in Figure 15.6. Ob-
serve that the nodes with prefixes P2 and P3 have moved up as immediate descendants of
node P1. The two nodes preceding P2 in the binary trie have been removed since they are
one-child nodes and redundant. Note that the node P2, which was originally in the right
branch of its parent, has moved as the left branch of P1. This is because it is the only prefix
in the entire left subtrie of node P1. Note that prefix P3, which was in the left branch of P1

in the binary trie, has shifted to the right. The immediate descendant of P1 in the binary trie
can be eliminated and the decision of branching can be made at node P1 itself. However, it
requires extra information to be stored at node P1—the bit number to be examined next in
the prefix. Because one-child nodes are now removed, it is possible to jump directly to the
bit where a significant decision needs to be made, thereby bypassing the inspection of some
intermediate bits. In Figure 15.6, the bit numbers (or positions) that need to be examined are
shown adjacent to the node enclosed in squares. Since one–child nodes are being removed,
what will happen to the prefixes originally present in those nodes? They are simply moved
to their nearest descendants. Hence, a list of prefixes needs to be maintained in some of the
nodes.

A search in a path compressed trie proceeds in a manner similar to that in a binary trie
by descending the tree under the guidance of the address bits. However, the search inspects
only the bit positions indicated by the bit number in the nodes traversed. As a gray node
(node with a prefix) is encountered, comparisons are performed with the actual prefix. These
comparisons are necessary since the search can potentially skip some bits. If a match is found,
the best matching prefix is remembered and the search proceeds further. The search ends
when a leaf node has been reached or a mismatch is found.

Example 15.5 Search for the best matching prefix in a path compressed trie.
Consider the search for an address beginning with 001010 in the path compressed trie

shown in Figure 15.6. The search starts with the root node. The node specifies that the bit
number 1 needs to be examined. Since the first bit is 0, the search goes left and reaches the

500 15.5 Multibit Tries

prefix P1 node. Now, we compare the prefix P1 with the corresponding part of the address 0.
Since they match, prefix P1 is saved as the best matching prefix encountered so far. Now the
bit number in node P1 indicates that the third bit needs to be inspected, which guides the
search to the right. Again, we check whether the prefix P3 (001∗) matches the corresponding
part of the address (001010). Since they match and a leaf node is encountered, the search
terminates and P3 is the best matching prefix. �

A path compressed trie has a search complexity of O(W) in the worst case. Remember
path compression is effective on a sparse binary trie. In the case of prefix distribution that
results in a dense binary trie, height reduction is less effective. Using similar arguments, we
can infer that the update complexity in the worst case is O(W). Since path compressed tries
are full binary tries, the total amount of memory required will be at most 2N − 1, with N for
the leaf nodes and N − 1 for the internal nodes. Hence the space complexity is O(N). Thus,
path compressed tries reduce the space requirements, but not the search complexity.

15.5 Multibit Tries
While binary tries can handle prefixes of arbitrary length easily, the search can be very slow
since we examine one bit at a time. In the worst case, it requires 32 memory accesses for the
32-bit IPv4 address. If the cost of a memory access is 10 nanosec, the lookup will consume
320 nanosec. This translates to a maximum forwarding speed of 3.125 million packets per
second (1/320 nanosec). At 40 bytes per packet, this can support an aggregate link speed of
at most 1 Gbps. However, the increase in Internet traffic requires supporting aggregate link
speeds as high as 40 Gbps. Clearly, sustaining such a high rate is not feasible with binary
trie–based structures.

After closely examining the binary trie, we can ask: why restrict ourselves to only one bit
at a time? Instead, examine multiple bits so that we can speed up the search by reducing the
number of memory access. For instance, if we inspect 4 bits at a time, the search will finish in
8 memory accesses as compared to 32 memory accesses in a binary trie. This is the basic idea
behind the multibit trie [661]. The number of bits to be inspected per step is called a stride.
Strides can be either fixed-size or variable-size. A multibit trie is a trie structure that allows
the inspection of bits in strides of several bits. Each node in the multibit trie has 2k children
where k is the stride. If all the nodes at the same level have the same stride size, we call it a
fixed stride; otherwise, it is a variable stride.

As one can see, since multibit tries allow the data structure to be traversed in strides of
several bits at a time, they cannot support prefixes of arbitrary lengths. To use a given multibit
trie, a prefix must be transformed into an equivalent prefix of longer length to conform with
the prefix lengths allowed by the structure. In the next section, we discuss some useful prefix
transformation techniques that expand a prefix into an equivalent set of prefixes of longer
lengths followed by a detailed discussion of various types of multibit tries.

15.5.1 Prefix Transformations

An IP prefix associated with the next-hop information can be expressed as an equivalent set of
prefixes with the same next-hop information after a series of transformations. Various types

C H A P T E R 1 5 IP Address Lookup Algorithms 501

TA B L E 15.3 Expansion of prefixes.

Prefix Value Expanded Prefixes
P1 0∗ 000∗, 010∗, 011∗
P2 00001∗ 00001∗
P3 001∗ 001∗
P4 1∗ 100∗, 101∗, 110∗
P5 1000∗ 10000∗, 10001∗
P6 1001∗ 10010∗, 10011∗
P7 1010∗ 10100∗, 10101∗
P8 1011∗ 10110∗, 10111∗
P9 111∗ 111∗

of transformation are possible but we restrict the discussion to the commonly used ones: prefix
expansion and disjoint prefixes.

PREFIX EXPANSION

One of the most common prefix transformation techniques is prefix expansion. A prefix is said
to be expanded if it is converted into several longer and more specific prefixes that cover the
same range of addresses. For instance, consider the prefix 0∗. The range of addresses covered
by 0∗ can be also specified with the two prefixes 00∗ and 01∗, or with the four prefixes 000∗,
001∗, 010∗, and 011∗.

Now the basic question is, how is this useful? If we do prefix expansion appropriately,
a given set of prefixes of different lengths can be transformed into a set of prefixes that has
fewer different lengths. Consider the set of prefixes in Table 15.3, which is the same set of
prefixes shown in Table 15.2. These sets of prefixes have lengths ranging from 1 to 5 and
have 4 distinct lengths. Now we want to transform these prefixes into an equivalent set with
prefixes of lengths 3 and 2—two distinct lengths.

Prefix P1 of length 1 cannot remain unchanged since the closest choice of length is 3.
Hence we need to expand it into four equivalent prefixes of length 3. For the prefix 0∗, some
of the addresses will start with 000, 001, 010, and the rest will start with 011. Thus, the prefix
0∗ is equivalent to the union of four prefixes 000∗, 001∗, 010∗, and 011∗. Both of these prefixes
will inherit the same next-hop information as the original prefix P1. Similarly, we can expand
prefix P5 into two prefixes of length 5: 10000∗ and 10001∗. Thus we can easily expand a prefix
into multiple prefixes that are greater in length.

Now, by the same principle, if prefix P4 is expanded into four prefixes 100∗, 101∗, 110∗,
and 111∗, we find that prefix 111∗ already exists as prefix P9. Since multiple copies of the
same prefix are not desirable, we must break the tie somehow. In such cases, according to
the longest matching rule, prefix P9 is the correct choice during a search. In general, when
a smaller length prefix is expanded in length and one of its expansions “collides” with an
existing prefix, then we say the existing prefix captures the expansion prefix. In such cases,
we simply get rid of the expansion prefix. In the example, we remove the expansion prefix
111∗ corresponding to P4, since it has already been captured by the existing prefix P9. The
complete expanded prefixes are shown in the last column of Table 15.3.

502 15.5 Multibit Tries

F I G U R E 15.7 Disjoint prefix (leaf pushed) binary trie.

DISJOINT PREFIXES

As we have seen earlier, prefixes can overlap with each other. Furthermore, prefixes represent
intervals of contiguous addresses. When two prefixes overlap, it means that one interval of
addresses contains another interval of addresses. That is why an address lookup can match
several prefixes. The longest prefix matching rule breaks the tie by choosing the prefix that
matches as many bits as possible. Is it possible to avoid the longest prefix matching rule and
still find the longest matching prefix? Indeed, it is.

The trick is to transform a given set of prefixes into a set of disjoint prefixes. In a disjoint
set of prefixes, one prefix does not overlap with another. A trie used to represent disjoint
prefixes will have prefixes at the leaf nodes and not at the internal nodes. Now, given a set
of prefixes, how can you transform them into a set of disjoint prefixes? Construct a binary
trie with the given set of prefixes. Now add leaf nodes to nodes that have only one child.
These new leaf nodes represent new prefixes and they inherit forwarding information from
the closest ancestor marked as a prefix. Then unmark the internal nodes containing the prefix.

The disjoint-prefix binary trie for the binary trie in Figure 15.3 is shown in Figure 15.7.
Observe that new prefixes P1a, P1b, and P1c have been added. They inherit the next-hop
information from the original prefix P1. Similarly, prefix P4a inherits the next-hop information
from prefix P4. If an address lookup in the original binary trie ends up with prefix P1 being
the best match, then in the disjoint-prefix binary trie it will match P1a, P1b, or P1c. Consider
an example of looking up the prefix 01∗. In the original binary trie, the best matching prefix is
P1. In the disjoint-prefix binary trie, the search will end with P1c. Since P1c has the same next-
hop information as prefix P1, the result will be equivalent. Since this transformation pushes
all the prefixes in the internal nodes to the leaves, it is also known as leaf pushing.

15.5.2 Fixed Stride Multibit Trie

If all the nodes at the same level have the same stride size, then the multibit trie is called a fixed
stride multibit trie. The fixed stride multibit trie, corresponding to the prefixes in Table 15.2, is

C H A P T E R 1 5 IP Address Lookup Algorithms 503

F I G U R E 15.8 Fixed stride multibit trie data structure for the prefixes of Table 15.2.

shown in Figure 15.8. The example multibit trie uses a stride of 3 bits and 2 bits for all nodes
in level 1 and level 2, respectively.

As noted earlier, some of the prefixes might have to be expanded to the lengths supported
by the trie structure. Here prefixes of lengths other than 3 and 5 should be transformed into
prefixes of lengths 3 and 5. Applying prefix expansion, prefix P1 is expanded into four pre-
fixes 000∗, 001∗, 010∗, and 011∗ of length 3. One of the expanded prefixes 001* is the same as
prefix P3. What do we do about it? According to the prefix capture in Section 15.5.1, prefix
P3 captures the expanded prefix 001∗ of P1 since it is more specific. In such cases, we have
to retain the forwarding information of the existing prefix according to the longest matching
rule. Now prefix P5 of length 4 is expanded to two prefixes 10000∗ and 10001∗ of length 5.
Similarly, prefixes P6, P7, and P8 are expanded.

15.5.3 Search Algorithm

The search proceeds by breaking up the destination address into chunks that correspond to
the strides at each level. Then these chunks are used to follow a path through the trie until
there are no more branches to take. Each time a prefix is found at a node, it is remembered
as the new best matching prefix seen so far. At the end, the last best matching prefix found is
the correct one for the given address.

Example 15.6 Search for the best matching prefix in a fixed stride trie.
Consider searching for the best matching prefix for the address 100111 in the fixed stride

trie shown in Figure 15.8. First, the address is divided into multiple chunks: a chunk made of
the first 3 bits, 100, corresponds to level 1 of the trie; another chunk made of the next two bits,
11, corresponds to level 2 of the trie, and the last incomplete chunk consists of the remaining
bits. Using the first chunk 100 at the root node leads to the prefix P4 that is noted as the best
matching prefix. Next, using the second chunk of 11 leads to the prefix P6, which is updated
to be the best matching prefix so far. Since the search cannot proceed further, the final answer
is P6. It can be seen that the number of memory accesses required is 2 as compared to 5 when
using a binary trie for the same search. �

504 15.5 Multibit Tries

Since a multibit trie is traversed in strides of k bits, the search time is bounded by O(W/k).

15.5.4 Update Algorithm

Before examining how updates work, let us examine the concept of a local best matching pre-
fix in multibit tries. A multibit trie can be viewed as a tree of one-level subtries. For instance,
in Figure 15.8, there is one subtrie at the first level and three subtries at the second level. The
prefix expansion in a subtrie is nothing but actually computing the local best matching pre-
fix for each node. The best matching prefix is local because it is computed from a subset of
prefixes of the entire prefix set.

Consider again the example in Figure 15.8. In the subtrie at the first level we are interested
in finding the best matching prefix among prefixes P1, P3, P4, and P9. For the leftmost subtrie
at the second level the best matching prefix will be selected from only prefix P2. Similarly, in
the second subtrie at the second level, the best matching prefix is selected from the prefix set
P5 and P6 while for the rightmost subtrie it is selected from prefixes P7 and P8. Thus, multibit
tries divide the problem of finding a best matching prefix into smaller subproblems in which
the local best matching prefixes are selected from among a subset of prefixes. This works out
to the advantage of prefix updates as illustrated by the following example.

Example 15.7 Inserting prefixes to a fixed stride trie.
Assume that we need to insert two prefixes, 1100∗ and 10111∗, to the fixed stride shown in

Figure 15.8. These prefixes are referred to as P10 and P11, respectively. Figure 15.9 illustrates
the insertion of both prefixes P10 and P11. Let us start with the insertion of prefix P10 by
dividing it into chunks 110 and 0∗. We look up the root node using chunk 110, which leads to
node P4. Now we have the incomplete chunk 0∗ that needs to be expanded to 00∗ and 01∗ as
the prefix length is 2 in the second level. Since P4 does not have any children, we create four
nodes as required for the second level and all of them are linked to P4. The two nodes 00 and
01 are augmented with the prefix information P10 while the other two are not used. Note that
only the subtrie rooted at P4 has been affected, in this case creating the subtrie itself.

F I G U R E 15.9 Inserting new prefixes in fixed stride multibit trie.

C H A P T E R 1 5 IP Address Lookup Algorithms 505

The insertion of prefix P11 proceeds by dividing P11 into chunks 101 and 11∗. The search
using these chunks leads to node P8. Recall that prefix P8 has been expanded to two prefixes,
10110∗ and 10111∗. Now we compare the expanded prefix of P8 and the new prefix P11. We
find that the best match is the new prefix P11, which is of longer length. In other words, prefix
P11 captures prefix P8. Hence we update the node with the new prefix and new prefix length.
To distinguish such cases, the length of the original prefixes needs to be stored in every node.
Again note that the update is restricted to only a single subtrie rooted at P4. �

Since inserting new prefixes might require prefix expansion, deletion becomes more com-
plex. Deletion involves removing expanded prefixes and, more importantly, updating the en-
tries with the next best matching prefix. The problem is that original prefixes are not actually
stored in the trie. Suppose we insert prefixes 100∗, 101∗, and 110∗ into the trie in Figure 15.8.
This will overwrite the expanded prefixes for P4 and the original prefix P4 will not exist.
Later if the prefix 110∗ gets deleted, the old best matching prefix of P4 needs to be restored.
Hence these operations require maintaining an additional structure for the original prefixes.
Typically, these structures are maintained in the route control processor.

These examples show that the operation of inserting or deleting a prefix involves only
an update of one of the subtries, since the best matching prefixes computed for each subtrie
are independent of the other subtries. In other words, prefix update is completely local. The
stride of a subtrie determines an upper bound on the time in which the actual updates will
occur. If the stride of the subtrie has l bits, then at most 2l−1 nodes need to be modified. To
illustrate this, consider the case of a prefix that has the last incomplete chunk of either 1∗
or 0∗. If the stride on that subtrie is l bits, then half of the nodes will start with 0 and the
other half will start with 1. Hence the prefix and the next-hop information corresponding to
the incomplete chunk have to be inserted in half of the nodes.

The complexity of insertion and deletion includes the time for search, which is O(W/k)

where k is the size of the stride and the time to modify a maximum of 2k−1 entries. Thus, the
update complexity is O(W/k + 2k). From the perspective of storage, a prefix might require
the entire path of length W/k, and paths consists of one-level subtries of size 2k. Hence, the
memory complexity is O(2kNW/k) and increases exponentially with k.

15.5.5 Implementation

A fixed stride trie is typically implemented using arrays for each trie node and linking them
using pointers. The trie nodes at different levels will have different array sizes as determined
by the stride at that level. If the stride at a level is k, then the size of the array required will
be 2k. Each entry in the array consists of two fields: the field nhop contains the next-hop
information and the field ptr contains the pointer to the subtrie, if any. The implementation
of a fixed stride trie in Figure 15.8 is shown in Figure 15.10.

Since the stride at the first level is 3, we use an array containing 23 = 8 elements for the
first level. For the second level subtries we use arrays of size 22 = 4 elements as the stride
is 2. The prefix used to index into the array is shown adjacent to each element and note that
this information is not stored. The presence of prefix information in an element indicates that
the field nhop is not empty and stores the next-hop information associated with that prefix.
The arrows indicate that the field ptr is not empty and point to the subtrie. Note the waste

506 15.5 Multibit Tries

F I G U R E 15.10 Implementation of the fixed stride multibit trie shown in Figure 15.8.

of space in the leftmost array in the second level that contains only prefix P2; the rest of the
three elements do not contain any information.

15.5.6 Choice of Strides

As we have seen earlier in the search algorithm, the number of memory accesses required, in
the worst case, is bounded by the number of levels (alternatively referred to as the height) of
the trie. The number of levels, in turn, is dependent on the size of the strides for each level.
With large strides, the number of levels will be smaller as more bits are examined at each
level. As a result, the number of memory accesses will be smaller. But at the same time, the
amount of memory consumed will be larger. Hence the choice of strides represents a tradeoff
between search speed and memory consumption. In the extreme case, using a single stride of
size 32 bits, the search can be accomplished in one memory access, but the amount of memory
consumed is rather large.

Generally, the number of levels of the trie is chosen depending on the desired lookup
speed by the designer. For example, if the allowed budget time for a lookup is 30 nanosec and
the speed of memory access is 10 nanosec, then the number of levels can be at most 3. It is
clearly desirable that this constraint be satisfied with the least amount of memory possible. In
other words, it is necessary to choose an optimal trie T that has at most three levels for a given
prefix set but still occupies minimum storage. A space-optimized trie is heavily dependent
on the size of the strides and, thus, choosing an optimal set of strides is important; see [658]
for a dynamic programming-based approach.

15.5.7 Variable Stride Multibit Trie

If the nodes at the same level have different stride size, then the multibit trie is called a variable
stride multibit trie. An example of a variable stride multibit trie is shown in Figure 15.11. We
can see that the subtrie at level 1 has a stride of 2 bits. Some subtries at level 2 have strides
of 2 bits and the rest 1 bit. As in a fixed stride multibit trie, each node will have the same
information in addition to the stride length. This is needed since the search algorithms need
to know at every subtrie how many bits need to be examined. Algorithms for search and
incremental updates are very similar to a fixed stride multibit trie.

C H A P T E R 1 5 IP Address Lookup Algorithms 507

F I G U R E 15.11 Variable stride multibit trie.

15.6 Compressing Multibit Tries
The aggressive use of prefix expansion in multibit tries introduces several new prefixes. These
new prefixes inherit the same next-hop information as that of the original prefix. Furthermore,
the use of large strides creates a greater number of contiguous nodes that have the same best
matching prefix. For instance, take a look at the implementation of the fixed stride trie in
Figure 15.10. It shows, for example, that the prefixes P1 and P4 in the first level are repli-
cated, which means their next-hop information is repeated. Such redundant information can
be compressed, saving memory and at the same time making the search faster because of the
smaller height of the trie. After compression, the entire data structure can even fit into an L1
cache, which further speeds up the search as the access times are an order of magnitude faster
than SRAM. In the next few sections, we discuss various compression schemes for multibit
tries using bitmaps and compressed arrays.

15.6.1 Level Compressed Tries
Multibit tries, as we saw earlier, use prefix expansion to reduce the number of levels in a trie;
however, this is at the expense of increased storage space. This can be viewed alternatively
as compressing the levels of the trie, which sometimes is referred to as level compression.
A closer examination of multibit tries shows that space is especially wasted in the sparsely
populated regions of the trie. For instance, consider the binary trie in Figure 15.3. The trie
region containing the prefix P2 is sparse as no other prefixes are nearby. Now examine the
fixed stride multibit trie variant of the binary trie in Figure 15.8. The leftmost subtrie contains
only one prefix (P2) and the rest of the the three locations are not used. Such sparse regions of
a binary trie that contain long sequences of one-child nodes can be compressed by the tech-
nique called path compression discussed in Section 15.4.2. There is another trie-based scheme
called level-compressed tries (LC-tries) that combines both path and level compression [529].
The main motivation behind this scheme is to reduce storage by ensuring that the resulting
trie nodes do not contain empty locations.

The scheme starts with a binary trie and transforms it into an LC-trie in multiple steps. We
illustrate this transformation using the binary trie shown in Figure 15.3. First, path compres-

508 15.6 Compressing Multibit Tries

F I G U R E 15.12 Identifying the paths to be compressed in the binary trie shown in
Figure 15.3.

F I G U R E 15.13 Identifying the levels to be compressed in the trie shown in Figure 15.12.

sion is applied as described in Section 15.4.2. This removes the sequences of internal nodes
having one child. However, we need to keep track of the missing nodes somehow. A simple
solution is to store a number called the skip value (s) in each node that indicates how many
bits need to be skipped on the path. In Figure 15.12, we show that the sequences of nodes
leading to P2 and P9 have only one child and hence are candidates for path compression. The
path compressed trie is shown in Figure 15.13.

After path compression, level compression is used for compressing the parts of the binary
trie that are densely populated. Instead of a node having two children, as in a binary trie,
each internal node in a multibit trie is allowed to have 2k children, where k is called the

C H A P T E R 1 5 IP Address Lookup Algorithms 509

F I G U R E 15.14 Level compressed trie resulting from the trie shown in Figure 15.13.

branching factor. The level compression is applied as follows. Every node n that is the root of
a complete subtrie of maximum depth d is replaced by a corresponding one-level multibit
subtrie. This process is repeated recursively on the children of the multibit trie thus obtained.
Again, referring to Figure 15.13, we find that the trie rooted at the left child of node P4 is
a complete subtrie of depth 2. This trie can be replaced by a single-level multibit trie with
four nodes as shown in Figure 15.14. The branching factor for the left child of node P4 is 2,
indicated by the number enclosed in a circle adjacent to the node. The rest of the internal
nodes have a default branching factor of 1 and are not shown in Figure 15.13(a). The leaf
nodes have a branching factor of 0.

Since at each step we replace several levels with a single-level multibit trie, this process
can be viewed as the compression of levels of the original binary trie. Hence, the resultant
trie is termed an LC-trie or simply an LC-trie. The main drawback of the scheme is that the
structure of the binary trie determines the choice of strides at any given level without any
regard for the height of the resulting multibit trie. This is because a subtrie of depth d can be
substituted only if it contains all the 2d leaves (a full binary subtrie). Hence, a few missing
nodes might have a considerable negative influence on the efficacy of the level compression.

A simple optimization is to use a relaxed criterion where nearly complete binary tries
are replaced with a multibit subtrie. In other words, if the nearly complete binary subtrie
has a sufficient fraction of the 2d tries at level d, then it is replaced with a multibit subtrie
of stride d pointing to 2d nodes. The parameter that controls the fraction is referred to as
the fill factor x,0 < x ≤ 1. Such a relaxed criterion will decrease the depth of the trie but will
introduce empty nodes into the trie. However, in practice, this scheme results in substantial
time improvements with only a moderate increase in space.

For optimizing storage, LC-tries do not the use the standard implementation technique
that uses a set of child pointers at each internal node. Instead, an LC-trie is represented using a
single array, and each trie node is an element in the array. An interested reader is encouraged
to refer [529] for further details.

510 15.6 Compressing Multibit Tries

The LC-trie can be considered a special case of a variable stride trie. The algorithm for a
variable stride trie using dynamic programming would indeed result in an LC-trie if it were
the optimal solution for a given set of prefixes [658]. The worst-case time complexity for an
LC-trie is O(W/k) and the space complexity is O(2kNW/k), which are very similar to multibit
tries.

15.6.2 Lulea Compressed Tries
Variable stride multibit tries and LC-tries attempt to reduce the height of the multibit tries
by varying the stride. However, both schemes have problems. While variable stride multibit
tries can be tuned for a shorter height to speed up the search, it is possible only at the ex-
pense of wasted memory due to the presence of empty locations in intermediate trie nodes.
On the other hand, LC-tries choose strides such that the array locations in the trie node are
completely filled without wasting any memory. However, it loses the flexibility to tune the
height and consequently increases the height of the trie thereby making the search slower.
The Lulea algorithm [173] uses fixed stride trie nodes of larger stride and employs bitmap
compression to minimize storage. Using large strides in fixed stride multibit tries results in
a greater number of contiguous nodes with the same best matching prefix and next-hop in-
formation. The Lulea algorithm takes advantage of this fact and compresses the redundant
information using bitmaps, thereby reducing storage and still not incurring a high penalty
in the search time. Before discussing the details of the algorithm, let us understand bitmap
compression, using a simple example.

Example 15.8 Compressing a prefix sequence.
Consider the prefix sequence of A1A1A1A1A2A2A3A3A3A1A1A1A1A4A4A4. This can be

represented using the bitmap 1000101001000100, where bit 1 indicates the start of a new prefix
in the sequence and 0 indicates repetition. This bitmap is referred to as a bitarr. This bitmap
alone is not sufficient to get back the original sequence since it does not capture any prefix
information. Hence, a compressed sequence A1A2A3A1A4 of the original sequence called
valarr needs to accompany bitarr. �

To illustrate the concepts behind the Lulea algorithm, consider the fixed stride multibit
trie in Figure 15.8 and its implementation in Figure 15.10. This trie has a stride of 3 for the
first level and a stride of 2 for the second level. The implementation shows that some of the
entries contain a prefix as well as a pointer to a subtrie. For instance, consider the first entry
with prefix P1. It contains the prefix information for P1 and a pointer to the subtrie containing
the prefix P2. To minimize storage and make compression easier, each entry is allowed to
contain either a prefix or a pointer but not both. Hence the prefixes in the intermediate nodes
are pushed down to the trie leaves. The leaf nodes instead of a pointer store the next-hop
information while the internal nodes just store pointers to children. Such a trie is referred to
as a leaf pushed fixed stride multibit trie.

A leaf pushed fixed stride multibit trie for the trie shown in Figure 15.10 can be created
as follows: prefix P1 stored in the entry for 000 is pushed down to all the entries for 00, 10,
and 11 in the subtrie while prefix P2 in entry 01 is left intact. Prefix P4 in entries 100 and 101

C H A P T E R 1 5 IP Address Lookup Algorithms 511

F I G U R E 15.15 Implementation of leaf pushed fixed stride multibit trie for the trie in
Figure 15.8.

F I G U R E 15.16 Lulea compressed trie data structure for the prefixes in Table 15.2.

are redundant and, thus, is eliminated. After these operations, each entry in a node contains
either a stored prefix or a pointer, but not both. The final leaf pushed fixed stride multibit trie
is shown in Figure 15.15.

Now let us look at how the bitmap compression can be applied to a leaf pushed trie. Con-
sider the root node that has the sequence of (ptr(000),P3,P1,P1,ptr(100),ptr(101),P4,P9),
where ptr(xxx) represents the pointer stored in the entry xxx. Once the repeated values are
replaced by the first value, we get the new sequence (ptr(000),P3,P1,−,ptr(100),ptr(101),
P4,P9). The resulting bitarr is 11101111, which indicates the repeated value positions by 0 and
the valarr contains the sequence (ptr(000),P3,P1,ptr(100),ptr(101),P4,P9). The same process
is repeated for all the subtries and the final compressed trie is shown in Figure 15.16, which
shows both the bitarr and valarr for each node.

What is the maximum number of entries that can be in valarr? Assume that a trie node
contains N prefixes. Each prefix represents a range of addresses. These N prefixes partition
the entire address space into no more than 2N + 1 disjoint subranges. Since each subrange

512 15.6 Compressing Multibit Tries

can be represented by at most one compressed entry, there can be at most 2N + 1 entries in
the valarr.

To analyze the space savings, assume that in a trie node array there are M elements,
each of size W bits. Out of these M elements, if only S of them are distinct, then the total
memory required is M + SW bits. Directly storing the M elements will require MW bits. Now
let us calculate the space savings between the leaf pushed trie and the Lulea compressed trie
assuming the size of a prefix information and a pointer to the child is 32 bits each. Then the
size of the root node of the leaf pushed trie in Figure 15.15 will be 256 bits (8 × 32) and each
child will be 128 bits (= 4×32) long. Hence, the entire trie will require 640 bits (= 256+3×128)
of storage space.

Now let us consider the Lulea compressed trie in Figure 15.16. The root node will need
8 bits for bitarr and 224 bits (= 7 × 32) for valarr. All the child nodes will need 4 bits each
for their bitarr. The leftmost child node will require 96 bits (= 3 × 32) for valarr and the
other two child nodes will need 64 bits (= 2 × 32) each for their valarr. Hence the total
space required is 468 bits (= 8 + 224 + 4 × 3 + 96 + 2 × 64), which represents a space sav-
ings of 172 bits. This space savings can be quite significant when very large strides are
used.

SEARCH ALGORITHM

The search algorithm starts with the root node and uses the same number of bits as the stride
at the first level to index into its bitarr. As the root trie node is compressed, the same index
cannot be used to obtain the corresponding entry in valarr. Instead, the index to the uncom-
pressed bitarr should be mapped to a different index in the compressed valarr. This mapping
requires counting the number of 1 bits occurring in bitarr up to the indexed bit position. Then
the count is used as the index into valarr to fetch the corresponding entry. If the entry is a
pointer, the search fetches and follows it. This process is repeated for each subsequent level
until either a leaf or a null pointer is reached. Let us walk through an example to understand
this clearly.

Example 15.9 Searching in a Lulea compressed trie.
Consider searching for an address starting with 10011 (Figure 15.16). If the root node had

not been compressed as in Figure 15.15, then using the first 3 bits (because the stride is 3 at
the first level), the search would have directly fetched the pointer ptr(100), which could have
taken into the second level. However, since the node is compressed, the first 3 bits 100 are
used to index into bitarr(R) of the root node. To access the corresponding pointer entry, the
number of 1 bits in bitarr(R) needs to be counted up to the indexed position 100. As the count
is 4, the fourth element in valarr(R) of the root node containing the pointer ptr(100) needs to
be fetched.

Using this pointer, the search proceeds to the second level. The stride at this level is 2 and
hence the remaining two bits 11 of the address are used to index into bitarr(Y). Since the bit at
this position is zero, the search terminates, meaning that it has reached a leaf node containing
the best matching prefix. However, to access it, the search needs to find the position where
the prefix occurs in valarr(Y). Hence the algorithm needs to count the number of 1 bits up to
the bit position indexed by 11 in bitarr(Y) and use the count to index into valarr(Y) to find

C H A P T E R 1 5 IP Address Lookup Algorithms 513

the best matching prefix. The number of 1 bits is 2 and hence the second element in valarr(Y)

gives the correct result, P6. �

As can be seen, both steps require counting the number of 1 bits in bitarr until a given posi-
tion. In the following section, we discuss how to efficiently count the number of 1 bits in a
large bitmap.

COUNTING THE NUMBER OF 1 BITS

The original Lulea algorithm outlined in [173] used a fixed stride multibit trie of size 16, 8,
and 8 for the first level, second level, and third level, respectively. As a result, for the first
level, the algorithm requires a bitmap of size 64K. Obviously, naïve counting of such a large
bitmap will be inefficient. Instead, the entire bitmap is divided into chunks of size 64 bits
each and for each chunk the number of 1 bits is precomputed during trie construction. These
precomputed counts are kept in a separate table called a summary table. An entry at position k
in the summary table includes the cumulative count of 1 bits of the bit sequence up to chunk
k − 1.

The size of the summary table is small compared to the actual bitmap size. For a rough
idea of the space savings, we need to know the maximum value of the count that needs to
be stored in an entry in the summary table. This occurs when all the bits in the bitmap are
set to 1 and this needs to be stored in the last entry of the summary table. For a bitmap of
size 64K divided into chunks of size 64 bits, the maximum value of the count will be 65472
(= 64 × 1024 − 64). This will require 16 bits of storage for each entry and hence a total of 16K
bits (= 16 × 1024) is required, which is 25% of the memory used by the bitmap itself.

Now counting the number of bits up to a given position i in the bitmap consists of two
steps. First, the chunk j into which i falls is computed as j = �i/64�. Second, the entry at
position j is accessed in the summary table. This gives the cumulative count of 1 bits in all
chunks until j − 1. Finally, the bitmap chunk j itself is retrieved and the number of 1 bits is
counted up to position i − j × 64. The sum of the two values gives the final count.

Example 15.10 Counting the number of 1 bits in a bitmap.
Let us try to count the number of 1 bits up to position P, which is the fourth bit located

in chunk X as illustrated in Figure 15.17. For illustration, we use 8-bit chunks as opposed to

F I G U R E 15.17 Counting the number of 1 bits up to position P.

514 15.6 Compressing Multibit Tries

the 64-bit chunks used in the algorithm. In Figure 15.17, the bitmap is laid out on top while
the summary table is at the bottom. The first entry in the summary table is zero, the second
entry has a count of 4 (because the bitmap in the first entry is 10010011, which has 4 bits set),
and the third entry contains a count of 7 (the bitmap in the second entry 01010001 has 3-bit
sets and this is added to the previous count of 4 for a cumulative count of 7). Note that the
first entry is always zero.

To count the number of 1 bits up to position P, first the entry corresponding to chunk X in
the summary table is accessed to retrieve the count of the number of 1 bits up to chunk X − 1.
For the sake of discussion, let us assume that this value is Count[X − 1]. Then we retrieve the
actual chunk X containing the bit sequence 01111000. Now the number of bits up to position
4 is counted. Since the first four bits of the sequence is 0111, the count is 3. Thus, the overall
bit count until the desired position P is given by Count[X − 1] + 3. �

The choice of the chunk size presents a tradeoff between memory and speed. If the chunk
size is the entire bitmap, then the bits have to be counted every time. This could incur sub-
stantial CPU cost that decreases the lookup speed. However, if the chunk size is 1 bit then
a simple retrieval of the count from the summary table gives the intended result. However,
the downside is that the summary table will be much larger than the original bitmap. With a
bitmap of 64K entries, the summary table will require 1M bits (= 64 × 1024 × 16).

Using the summary table during search requires at least three memory references: one
for retrieving the appropriate entry from the summary table, another access for retrieving the
actual chunk (depending on the chunk size and memory word size, it can be more than 1
memory accesses), and the final access for retrieving the element from valarr.

The Lulea algorithm applies the same optimization for next hops as well since the next-
hops belonging to shorter prefixes will be at several consecutive locations. Because of such
optimizations, the storage required by the Lulea algorithm is very compact. On a routing table
with 38,816 prefixes, the compressed database size is 160 KB, which represents 4.2 bytes per
prefix. Such compact storage can easily fit in the L1 cache of a conventional general-purpose
processor or in an on-chip SRAM, a necessity for providing wire speed lookup at 40-Gbit
speeds.

However, the optimizations made by the Lulea algorithm do introduce a few disadvan-
tages. The counting of bits requires an additional memory access per node. The benefits of
the optimization are heavily dependent on the structure of the forwarding table. Hence, pre-
dicting the worst-case storage requirements of the data structure as a function of prefixes is
difficult. The implicit use of leaf pushing makes insertion inherently slow in the Lulea scheme.
For instance, consider the insertion of a prefix to the root node entry that points to a subtrie
containing thousands of leaf nodes. The next-hop information associated with the new prefix
has to be pushed to thousands of leaf nodes and, furthermore, many entries in the summary
table need to be updated, which could be slow. In the next section, we outline an algorithm
that is as space efficient as Lulea but overcomes the incremental update problem by avoiding
leaf pushing.

15.6.3 Tree Bitmap
The tree bitmap outlined in [198] is a fixed stride multibit trie algorithm that allows fast
searches and uses storage comparable to the Lulea algorithm. However, the tree bitmap dif-

C H A P T E R 1 5 IP Address Lookup Algorithms 515

fers in one main aspect—the ability to allow fast insertions/updates. While fast lookups are
needed for wire speed forwarding, from a commercial router perspective, fast insertions and
modifications are clearly desirable. This is needed since the route updates/changes must
modify a few hundred prefixes a second.

As observed in the previous section, inserting and deleting prefixes in the Lulea scheme
require rebuilding the entire data structure. This is because the prefixes are expanded and
pushed to trie leaves. If the packets are to be forwarded nonstop (which is now a requisite
for a commercial router), we need to maintain two copies: one that is being used for lookups
and the other for building the new data structure for prefix insertions and updating. This
potentially doubles the memory requirements increasing the storage cost. In the case of im-
plementations using a fixed size on-chip SRAM that stores the entire prefix database, the
number of prefixes that can be stored is halved. The key to avoiding two copies and still al-
lowing fast insertions and deletions is to eliminate leaf pushing. The tree bitmap algorithm
achieves this by storing two bitmaps: one for pointers to the child and the other for prefixes.
The next section outlines the principles and optimizations used in the design of a tree bitmap.

DESIGN RATIONALE

The tree bitmap algorithm design considers that a multibit trie node is intended to serve two
purposes—one to direct the search to its child nodes and the other to retrieve the forward-
ing information corresponding to the best matching prefix that exists in the node. It further
emphasizes that these functions are distinct from each other. The design of the data structure
reflects this observation by using two bitmaps per trie node instead of a single bitmap as in
the Lulea algorithm. One bitmap used for storing internal prefixes belonging to that node is
referred to as a prefix bitmap and the other bitmap used for storing the pointers to children is
referred to as a pointer bitmap. Such a use of two bitmaps obviates leaf pushing, allowing fast
insertions and updates.

Furthermore, the tree bitmap attempts to reduce the number of child node pointers by
storing all the child nodes of a given trie node contiguously. As a result, only one pointer that
points to the beginning of this child node block needs to be stored in the trie node. Such an
optimization potentially reduces the number of required pointers by a factor of two compared
to standard multibit tries. An additional advantage is that it reduces the size of the trie nodes.
In such a scheme, the address for any child node can be computed efficiently using simple
arithmetic, assuming a fixed size for each child node.

The tree bitmap algorithm attempts to keep the trie nodes as small as possible to reduce
the size of a memory access for a given stride. A tree bitmap trie node is expected to contain
the pointer bitmap, the prefix bitmap, the base pointer to the child block, and the next-hop
information associated with the prefixes in the node. If the next-hop information is stored
along with the trie node, it would make the size of the trie node much larger. Instead, the
next-hop information is stored separately in an array associated with this node and a pointer
to the first element is stored in the trie node. Would storing next-hop information in a separate
array require two memory accesses per trie node: one for accessing the trie node and the other
to fetch the next-hop information? The algorithm gets around the problem by a simple lazy
evaluation strategy. It does not fetch the resulting next-hop information until the search is
terminated. Once the search ends, the desired node is fetched. This node carries the next-hop

516 15.6 Compressing Multibit Tries

information corresponding to a valid prefix present in the last trie node encountered in the
path.

Finally, a tree bitmap uses only one memory access per node. With burst-based memory
technologies, the size of a single random access can be large as 32 bytes. If the entire trie node
has to be accessed in a single memory access, it cannot be larger than the optimal memory
burst sizes. The size of the trie node greatly depends on the stride size. Consider a stride size
of 8 bits. The pointer bitmap will require 256 bits (28). The prefix bitmap will require 511 bits
(29 − 1) since there are 29 − 1 possible prefixes of length 8 or less. In addition, we need an-
other 4 bytes for storing the base pointers to the child and next-hop information. Hence the
size of the trie node is approximately 100 bytes ((= 256 + 511 + 4 × 8)/8), which requires
more than one memory access even with burst-based memory technologies. By using smaller
strides, say 4 bits, the tree bitmap makes the bitmaps small enough that the entire node can
be accessed in a single wide memory access. Use of small strides also keeps the update times
bounded. Accessing the entire node includes both the bitmaps and the base pointers for the
child and next-hop information. Since the bitmaps are smaller, special circuitry using com-
binatorial logic can be used to count the bits efficiently. This is unlike the Lulea algorithm,
which requires at least two memory accesses because of large strides of 8 or 16 bits. Such
large strides require a bitmap of larger size and necessitate the use of a separate summary
table for counting, which must be accessed separately.

DATA STRUCTURE

Consider the root node of the fixed stride multibit trie implementation shown in Figure 15.10.
The corresponding tree bitmap node is shown in Figure 15.18. As discussed earlier, a tree

F I G U R E 15.18 Structure of tree bitmap node corresponding to root node of trie in
Figure 15.10.

C H A P T E R 1 5 IP Address Lookup Algorithms 517

bitmap node consists of two bitmaps. The first bitmap shown vertically is the pointer bitmap,
which indicates the position where child pointers exist. In Figure 15.18, this bitmap is referred
to as ptrbitarr. It shows that pointers exist for entries 000, 100, and 101. These pointers corre-
spond to three subtries rooted at the entries 000, 100, and 101 in Figure 15.10. Now instead
of storing explicit child pointers in a separate array as in the Lulea scheme, the tree bitmap
node stores a pointer to the first child trie node as one of the fields in ptrblk.

The second bitmap shown horizontally is the prefix bitmap. It stores a list of all the pre-
fixes within the first 3 bits that belong to the node. This bitmap is different from the Lulea
scheme because it has a bit assigned for all possible prefixes of 3 bits or less. The bitmap
positions are assigned to the prefixes in the order of 1-bit prefixes followed by 2-bit prefixes
and so on. A bit in the prefix bitmap is set if that prefix occurs within the trie node. As you
can see in Figure 15.10, the the root node contains the prefixes P1, P3, P4 and P9. Hence, the
bit positions corresponding to prefixes 0∗, 001∗, 1∗, and 111∗ are set in the prefix bitmap.
The entire tree bitmap data structure for the fixed multibit trie in Figure 15.10 is shown in
Figure 15.19.

SEARCH ALGORITHM

The search starts from the root trie node and using the same number of bits as the stride for
the first level indexes into the pointer bitmap. Let us call this position P. If the bit in position
P is set, it implies that there is a valid child pointer that points to a subtrie. To obtain the value
of the child pointer, the number of 1 bits in the pointer bitmap is counted up to the indexed
position P. Assuming the count is C and the base address to the child block in root trie node
is A, the expression A + (C − 1) × S gives the value of the child pointer, where S refers to the
size of each child trie node.

Before following the child pointer to the next level, the search examines the prefix bitmap
to determine if one or more prefixes match. The bits used to match these prefixes are the
same set of bits used to index the pointer bitmap. For the sake of discussion, let us assume
that these bits are 111. First, the bit corresponding to prefix 111∗ is examined at position 15.
The bit is set, which indicates that it is the best matching prefix. If the bit had not been set,
the last bit would be dropped and the prefix bitmap would be again searched for prefix 11∗.
If there is no 11∗ prefix, the algorithm continues and checks for prefix 1∗. The reader might
note that the search algorithm has to perform multiple iterations proportional to the number
of bits in the prefix. If all these iterations have to be performed in O(1) time, they need to
be executed in parallel. In custom ASICs (application-specific integrated circuits), this can be
accomplished using dedicated combinatorial logic circuits and a priority encoder that returns
the longest matching prefix. This could easily scale even for bitmaps as large as 256 or 512
bits.

If a matched prefix is found in the prefix bitmap, the next-hop information correspond-
ing to the prefix is not fetched immediately. Instead, the matched prefix position and pointer
to the trie node are remembered and the search continues to descend using the computed
child pointer. As the search advances to lower levels, if better matched prefixes are found,
the remembered matching prefix position and the pointer to the trie node are updated. The
search terminates when it encounters a bit that is zero in the child pointer bitmap, meaning
there are no children to continue further. At this point, the pointer to the next-hop informa-
tion corresponding to the last remembered best matching prefix is computed using its trie

518 15.6 Compressing Multibit Tries

F I G U R E 15.19 Tree bitmap data structure for the prefixes in Table 15.2.

node. This yields the desired result. For a better understanding of the search, let us look at an
example.

Example 15.11 Searching in a tree bitmap.
Consider the search for the address beginning with 10011 in the tree bitmap data structure

shown in Figure 15.19. The search first examines the pointer bitmap ptrbitarr(R) of the root
node using the first three bits 100. Since the bit is set, the search needs to examine the child
subtrie. In the pointer bitmap, as it is the second bit set, the child pointer is computed as
ptr + (2 − 1) × S = ptr + S where ptr is the base address and S is the size of the trie node.
Before continuing the search to the child subtrie, the prefix bitmap pfxbitarr(R) is examined
for matching prefixes. First, the entry corresponding to the first three bits of the address 100

C H A P T E R 1 5 IP Address Lookup Algorithms 519

is examined. Since the bit is not set, there is no matching prefix, the search then drops the
last bit and examines the entry 10. This indicates there is no match and the search continues
to the entry 1. Since the bit is set, a prefix match has been found, the pointer to the next-
hop information is computed (similar to the computation of child pointer). This next-hop
information is not fetched and instead remembered as the best matching prefix so far.

Now the computed child pointer is used to fetch the child node Y . Using the last two bits
of the address 11, the child bitmap ptrbitarr(Y) is examined. Since the bit corresponding to
entry 11 is not set, there is no more child subtrie to examine. The prefix bitmap pfxbitarr(Y)

is examined for the entry 11. As the bit is not set, there is no matching prefix and the search
continues to entry 1. The bit is set indicating the presence of matching prefix P6. This prefix is
updated as the best matching prefix; the pointer to its next-hop information is computed and
fetched, terminating the search. �

The algorithms for inserting and updating in a tree bitmap are very similar to the same
set of operations in a multibit trie without leaf pushing. Inserting a prefix could change the
entire trie node. In such cases, a new node is created and the original contents are copied, after
which the necessary modifications are made and then atomically linked to the original trie.
Since child nodes have to be contiguous, the entire child block may have to be copied even
though only one child might require modifications. Performance results [198] show that the
tree bitmap scheme is comparable to the Lulea scheme in terms of the size of the data structure
and speed of lookup, but also provides the advantage of fast insertions. The algorithm lends
itself to implementations ranging from software to architectures using an on-chip SRAM.

15.7 Search by Length Algorithms

A closer look at the algorithms discussed so far indicates that the main difficulty in finding
the longest matching prefix is due to the presence of dual dimensions: prefix length and value;
for instance, Table 15.2 lists several prefixes of different lengths and values. These dimensions
present alternatives for designers in their effort to develop new speedy algorithms that con-
sume less memory. Based on these dimensions, the search for the longest matching prefix can
be based on either values or lengths of the prefixes.

The search using the length dimension can be either linear or binary. To facilitate the
search, the prefixes can be organized in two different ways on the length dimension. As we
have seen earlier, one approach is to arrange the prefixes in a trie. Searching of the trie can be
viewed as a sequential search on length. Examining the binary trie discussed in Section 15.4
indicates that first it searches prefixes of length 1, then on prefixes of length 2, and so on.
Furthermore, the prefixes are organized in such a way that the search space is reduced as the
trie is descended. Another possible approach for organizing the prefixes is to use a hash table
for each distinct length and employ either a linear search or binary search on these tables to
locate the best matching prefix. To simplify the discussion, let L represent a sorted array in
the increasing order of distinct prefix lengths. Each entry contains the length of the prefixes
it represents and a pointer to the hash table that contains the actual prefixes. In the next few
sections, we describe the linear and the binary search on L.

520 15.7 Search by Length Algorithms

15.7.1 Linear Search on Prefix Lengths
Since we need to look for the longest matching prefix, the search begins with the table con-
taining the longest prefixes. If the destination address is D and the longest prefix is l, the
search extracts the first l bits and initiates a search in the hash table for length l entries. If an
entry matches, then the search terminates since it is the best matching prefix. If not, the search
moves to the first length smaller than l, say l′, such that L[l′] is nonempty. Thus the search
continues by examining the tables of decreasing prefix lengths until it either finds a match
or runs out of lengths. In the worst case, this scheme needs to do a linear search among all
distinct prefix lengths. Hence, it requires O(W) time, where W is the address length in bits.
Assuming the hash function is perfect, then an IPv4 lookup will require as much as 32 mem-
ory accesses while an IPv6 lookup will require as much as 128 memory accesses. If the hash
function is not perfect, which usually is the case in practice, each hash probe for the matching
prefix might require more than a single memory access. In such cases, an IPv4 lookup could
cost more than 32 memory accesses.

15.7.2 Binary Search on Prefix Lengths
While a linear search requires O(W) in the worst case, a better search strategy is to employ
a binary search on the array L, which is described in [727]. The binary search starts at the
median prefix length and divides the search space (in this case, prefix lengths) in each step
by half. At every step, the hash table associated with that length is searched. Based on the
results of searching the hash table, the choice of the half on which to continue the search is
determined. The result can be one of the values: found or not found. If a match occurred at
length l, then the search is directed to the half in which the lengths are strictly greater than l
for a longer match. If no match was found at length l, then the search is continued on the half
in which the lengths are strictly less than l.

F I G U R E 15.20 Prefix length tables.

F I G U R E 15.21 Prefix length tables with markers.

C H A P T E R 1 5 IP Address Lookup Algorithms 521

Let us try to develop the concepts behind the algorithm by considering an example. Con-
sider the set of prefixes P1 = 1∗, P2 = 00∗, and P3 = 111∗ shown in Figure 15.20. For the
address that begins with 111, the search starts with the hash table of length 2. As can be seen,
the hash will not match and the search will continue to length 1. However, there is a longer
matching prefix P3 in the length 3 table. To direct the search toward the right half, a marker
needs to be introduced if there is a potential longer match. Hence, the marker 11∗ is added
to the length 2 table as shown in Figure 15.21. Note that the marker is shown in italics as
M(11∗). Now revisiting the search for the address starting with 111, the marker in the length
2 table will indicate a match and the search will move to the length 3 table and find the correct
prefix P3. While markers direct the search toward tables greater than the median length for
specific matches, they also ensure that the probe failures at the median length table rule out
the need to examine tables of length greater than the median.

How do we know where these markers need to be added and, even if we did, how do
we know how many of them will be needed? For any prefix P, the marker needs to be added
at all lengths where the binary search makes a decision about the half on which to continue
the search. Since at most log2 W length tables will be traversed on any search, the number of
markers needed for any prefix P will be a maximum of log2 W.

The algorithm described so far is still not correct. This is because sometimes the markers
can cause the search to follow false leads that may fail. Using the previous example, consider
searching for an address starting with 110. The search starts at the length 2 table, which con-
tains the prefix P2 and the marker 11∗. Since the marker matches the address, the search is
directed toward the length 3 table. However, the search fails in this table since the prefix P3

does not match. But the correct best matching prefix is in the length 1 table, prefix P1. In this
case, the marker 11∗ that was needed to find P3 misleads the search. Hence, the search has to
backtrack and examine the entire left half, resulting in a linear search.

To ensure the search is still logarithmic, each marker M in addition to its value is aug-
mented to contain its best matching prefix, denoted by bmp(M). This can be precomputed
and stored during the time of the insertion of marker M into its hash table. When the algo-
rithm uses marker M to continue the search for longer prefix lengths, it remembers bmp(M).
If the search on longer prefix lengths fails to produce anything interesting, then bmp(M) is
the answer, since it summarizes the results of backtracking. For the previous example, marker
11∗ is augmented with its bmp information as 1∗, which is nothing but P1. When the algo-
rithm searches for the address starting with 110, it matches marker 11∗ in the length 2 table
and remembers its bmp. Once the search fails in the length 3 table, the algorithm simply re-

F I G U R E 15.22 Prefix length tables with markers and precomputed best matching prefix.

522 15.8 Search by Value Approaches

turns the bmp of the last matched marker, in this case, P1. The final set of prefix length tables
is shown in Figure 15.22. Here bmp(11∗) is shown as bmp adjacent to marker M(11∗).

The binary search requires O(log2 W) time in the worst case. This assumes that the probes
in a hash table for a given prefix consume only O(1) time. Hence, an IPv4 address requires
five hash lookups in the worst case. However, in practice, it is expected to take only two
memory accesses since the majority of the prefixes are either 16 or 24 bits. For IPv6 addresses
that are 128 bits long, seven hash lookups will be required. The use of markers makes the
update more complex. The complexity arises from precomputing the best matching prefix for
each marker, which itself is a function of the prefixes of the marker. The addition or deletion
of a prefix may change the best matching prefix for many of the markers that are longer than
the prefix entry being added or deleted. Since the added or deleted prefix can potentially be
a prefix of N − 1 longer entries, each of their log2 W markers needs to be updated and hence
the complexity is O(N log2 W). The memory consumption is O(N log2 W) as each prefix might
need log2 W markers.

The entire search data structure can be built using a simple algorithm. The algorithm
takes as input a set of prefixes of different lengths and first determines the distinct prefix
lengths. Using these distinct prefix lengths, the algorithm determines the sequence of length
tables that the search needs to examine. Next, each prefix P is added into the corresponding
table of length length(P). While adding the prefix P, appropriate markers are also added into
the tables of length L < length(P) that the search will visit. Using a separate binary trie, the
best matching prefix for each marker M is determined and stored along with it.

15.8 Search by Value Approaches
Sequentially searching all the prefixes is the simplest method to find the best matching pre-
fix as outlined in Section 15.3. While this approach is not scalable as N becomes large, the
exhaustive search does get rid of the length dimension. Alternatively, it is possible to use a
binary search on the prefix values that could perform better than an exhaustive search. In the
next section, we outline an algorithm described in [395] that uses a binary search on prefix
values encoded as ranges.

15.8.1 Prefix Range Search
To find the longest matching prefix using a search on values requires the elimination of the
length dimension. Since prefixes can be arbitrary lengths, one possible approach is to expand
them such that all of them have a unique length. The addresses can be as long as 32 bits in
the case of IPv4 and hence all the prefixes can be transformed into 32-bit length addresses.
After transformation, the addresses are stored in a table in sorted order and a binary search
on this table will find the longest prefix match. While this approach is simplistic, it requires a
huge amount of memory as the number of entries in the table can be as much as 232. Fortu-
nately, it is not necessary to store every address of a prefix since a great deal of information is
redundant. Let us see how.

A prefix, as we have seen earlier, represents a well-defined contiguous range or interval
of addresses. For example, the prefix 11* of a 5-bit length address represents the range of
addresses in the interval [11000, 11111]. Hence, we can simply encode the prefix using the start
and end of its interval. So the obvious question is why not just store these interval endpoints

C H A P T E R 1 5 IP Address Lookup Algorithms 523

F I G U R E 15.23 Prefix intervals identified by three prefixes 0*, 00001* and 001*.

instead of every single address in the table? After all, the best matching prefix is the same
for all the addresses in the interval. Now the problem of finding the best matching prefix
is reduced to locating the endpoints of the interval containing the destination address. In
other words, this requires identifying the greatest starting endpoint smaller than or equal to
a given address. For example, if we consider the three intervals [00100, 00111], [10000, 10001],
and [11100, 11111], the address 00101 belongs to the interval [00100, 00111] since the endpoint
00100 is the greatest endpoint that is smaller than the address.

Unfortunately, the aforementioned approach will not work since one prefix interval
might include other prefix intervals. For instance, consider only the prefixes P1, P2, and P3

of the running example from Table 15.2. The interval corresponding to prefix P1 is [00000,
01111], P2 is [00001, 00001], and P3 is [00100, 00111]. Prefix P1 contains the intervals of pre-
fix P2 and P3. For the address 01000, the greatest starting endpoint that is closer is 00100
and this endpoint belongs to interval [00100, 00111] of prefix P3. However, as you can see,
it is not the best matching prefix. The appropriate best matching prefix for address 01000 is
associated with endpoint 00000 which belongs to interval [00000, 01111] of prefix P1. The so-
lution is to avoid overlapping intervals by partitioning the space of addresses into disjoint
intervals between consecutive endpoints. For N prefixes, there will be a maximum of 2N + 1
disjoint intervals, referred to as basic intervals. All the addresses that fall in a basic interval
have the same best matching prefix. The basic intervals for prefixes P1, P2, and P3 and their
best matching prefixes are shown in Figure 15.23.

Using the endpoints of the basic intervals, the best matching prefix can be determined.
However, a few of the basic intervals in Figure 15.23 do not have explicit endpoints (e.g.,
I2 and I4). This is due to the partitioning of a larger interval of a short prefix by smaller
subintervals of longer prefixes. In such cases, the basic interval is associated with the closest
endpoint to its left. Hence some endpoints are associated with two basic intervals, and thus
endpoints are required to maintain two best matching prefixes denoted by > and =: one for
the interval they belong to and the other for the potential next basic interval.

The algorithm starts with the endpoints of the given prefixes, sorts them in ascending
order, and builds a search table. Each entry in the table stores the endpoint and the next-hop
information for the two best matching prefixes > and =. The best matching prefixes for each
entry are precomputed and stored in the table. The > entry is used for addresses that are
strictly greater than the endpoint and strictly less than the next endpoint in the sorted order.
The = entry is used for addresses that are exactly equal to the endpoint. The search table for

524 15.8 Search by Value Approaches

F I G U R E 15.24 Prefix range search table.

prefixes P1, P2, and P3 and the ranges covered by the prefixes are shown in Figure 15.24,
which actually shows the best matching prefixes instead of their next-hop information.

Consider the table entry for the endpoint 00001. This entry is associated with the basic
intervals I1 and I2. This is because I2 does not have an endpoint and hence it is associated
with the endpoint to its left, i.e., 00001. For addresses strictly greater than 00001 but less than
the next endpoint 00100, the best matching prefix is P1, and hence it is stored in the > pointer.
On the other hand, for addresses strictly equal to 00001, the best matching prefix is P2, which
is stored in the = pointer.

Now take a look at the entry for endpoint 00100. Unlike endpoint 00001, this entry is
associated with a single basic interval I3. Hence, for addresses strictly greater than 00100 but
less than the next endpoint, the best matching prefix is P3. Similarly, for addresses exactly
equal to 00100, the best matching prefix is still P3. Hence the pointers for > and = both contain
prefix P3.

Example 15.12 Searching for the best matching prefix using prefix ranges.
Let us try to find the best matching prefix for the address 00101 using the table shown in

Figure 15.24. A binary search on the table for 00101 will terminate at the endpoint 00100 and
since the address is greater than the endpoint 00100 and less than the next endpoint 00111, the
> pointer will be used and hence the best matching prefix is P3. However, if we were to find a
matching prefix for the address 00111, the binary search will end at the endpoint 00111. Since
the address is equal to the endpoint, the = pointer will be used to retrieve the best matching
prefix P3. �

The number of entries in the table can be at most 2N since each of the N prefixes can
insert two endpoints. The table can be searched in log2(2N) since at every step the binary
search reduces the search space by half.

Another implementation can use a binary tree where each node contains the endpoint
it represents and the next-hop information for the two best matching prefixes < and =. Of

C H A P T E R 1 5 IP Address Lookup Algorithms 525

course, as in a binary tree, it needs to store pointers to the left subtree and right subtree
as well. Again in this case, the worst-case time required is log2(2N). A further reduction in
search time is possible with the use of a multiway search tree of higher radix such as B-trees
used in fast retrieval of records in a large database [151]. Such trees reduce the height of the
tree and make the search faster. In some sense, this is analogous to multibit tries as compared
to binary tries. In a multiway tree, if the radix is k, each internal node will contain k − 1 keys
and k branches. An astute reader will observe that a search within a node is required for
the appropriate branch to follow. If the entire node requires multiple memory access, then it
could be potentially expensive. However, if the size of the entire node is such that it can fit
in an L1 cache, then the search time might be negligible. Alternatively, use of wider memory
can fetch the entire node in a single access.

Since the algorithm precomputes the best matching prefix for each basic interval, insert-
ing or deleting a single prefix might result in having to update the best matching prefix for
many basic intervals. The shorter the prefix, the higher the number of best matching prefixes
that will require recomputation because it spans multiple basic intervals. In the worst case,
we might have to update the best matching prefixes for N basic intervals. This is the case
when all 2N endpoints are different and one prefix contains all the other prefixes.

Compared with trie-based algorithms, a binary search on prefix values is slower than
the multibit tries. Further, the amount of storage it requires is higher than the multibit trie
variants that employ compression. The hardware implementations of this scheme typically
uses wider memory access and pipelining to make it faster.

15.9 Hardware Algorithms
The primary motivation for implementing lookups in hardware comes from the need for
higher packet processing capacity driven by high Internet traffic growth. Such a growth leads
to the development of faster interfaces that can support OC-192 and OC-768 speeds. At such
high speeds, a software-based implementation using random access memory (RAM) is not
fast enough. While the software implementations have the flexibility for later modifications,
the need for such modifications is minimal. Since IPv4 is used so widely, disruptive modifi-
cations to addressing schemes or the best matching prefix mechanism seem unlikely in the
near future.

15.9.1 RAM-Based Lookup
All the algorithms discussed in the previous sections use some form of RAM to store and
retrieve their data structures. RAM supports the two major operations: writing a data item
into a specific address and reading a data item from a given address. RAM can be used to
perform the lookup in a single memory access if the destination address is used as a direct
index (RAM address) into the memory. The data item stored in that address will be the next-
hop information. For example, the IP address 172.12.180.20 can be directly used as an address
to retrieve its next-hop information as shown in Figure 15.25.

Now the issue is, how large a memory will we need? The size of the RAM is determined
by the number of bits in the destination address. In the case of IPv4, since the address contains
32 bits, 4 Gbytes (232 − 1) of RAM is needed. The number of prefixes and their corresponding
next-hop information do not have an effect on the required size of the RAM. Even if there are

526 15.9 Hardware Algorithms

F I G U R E 15.25 RAM based lookup.

fewer prefixes for IPv4, we need the entire 4 Gbytes. The size of the RAM grows exponentially
with the number of bits in the address, when used as a direct index. For IPv6, which uses 128
bits for the destination address, the size of the memory required becomes impractical.

Another problem in using RAM is that updates require modifying half of the memory in
the worst case. Consider the deletion of prefix 0∗ in IPv4 lookup. It requires modifying 231

memory locations with new next-hop information. Because of such large updates, schemes
based on RAM-based lookup are not used in practice.

15.9.2 Ternary CAM-Based Lookup
Content-addressable memories (CAMs) provide a performance advantage over conventional
RAM-based memory search algorithms by comparing the desired information against the
prestored entries simultaneously. This results in an order of magnitude reduction in search
time. Since CAMs are an outgrowth of RAM technology, they employ conventional memory
(usually SRAM) with the additional circuitry for comparisons that enable search operations
to complete in a single clock cycle.

In RAM, data are stored at a particular location called address. A user supplies the ad-
dress in order to retrieve the data. With CAM, the user supplies the data and gets the address
back. The CAM searches through the memory in one clock cycle and returns the address
where the data are found. An obvious question is, how to store the data in the first place?
Data can be transferred to or from a CAM without knowing the memory address. Binary
data are automatically written to the next free location.

With CAMs, a longest prefix matching operation on a 32-bit IP address can be performed
using exact match search in 32 separate CAMs. The incoming IP address is given as input to
all the CAMs. The output of the CAMs indicating the results of the match is fed through a
priority encoder, which picks the CAM that has the longest matching prefix. Such a solution
is expensive both in terms of cost and complexity.

Hence, a more flexible type of CAM that enables comparisons of the input key with vari-
able length elements is desirable. Ternary CAMs were introduced to address this need. While
a binary CAM stores one of two states 0 and 1 for each bit in a memory location, a ternary
CAM (TCAM) stores one of the three states 0, 1, and X (don’t care) for each bit in a memory
location. The don’t care state permits search operations beyond the exact match.

C H A P T E R 1 5 IP Address Lookup Algorithms 527

F I G U R E 15.26 Storing the prefixes of Table 15.2 in TCAM.

A TCAM stores an element as a pair: a value and a bitmask, where each of them is the
same length. The value field stores the actual value of the prefix, and the bitmask field is used
to denote the length of the prefix. Let us see how this works. If a prefix is Y bits long, the
most significant Y bits of the value field are assigned the same value as that of the prefix,
and the remaining bits are set 0 or 1 or X . The most significant Y bits of the bitmask field
are set to 1 and the remaining bits are set to 0. Thus, the bitmask indicate which bits in the
value field are relevant. For example, a prefix of 110∗ will be stored as (110XXX,111000)

assuming the elements are 6 bits long. The prefixes in Table 15.2 are stored in TCAM as shown
in Figure 15.26. Note that the prefixes are stored in descending order of their lengths. An
incoming key matches a stored element, if the bits of the value field for which the bitmask is
1 are identical to those in the incoming key.

Figure 15.27 illustrates how TCAM is used for longest prefix matching. The TCAM mem-
ory array stores the prefixes as value and bitmask pairs in decreasing order of prefix lengths.
In Figure 15.27, Pi represent the prefixes of length i. The memory array matches the input
key with all the elements in parallel. An element consisting of value and bitmask matches the
key if and only if it is a prefix of that key. The memory array indicates the matched elements
by setting the corresponding bits in a bit vector (in Figure 15.27, it is matched_bitvector). The
length of the bit vector is equal to the number of TCAM memory locations. This bit vector is
input to a priority encoder that outputs the location of the lowest bit that is 1 in the bit vector.
This location corresponds to the longest matching prefix and can be used as an index or as an
address to access the SRAM containing the next-hop information.

528 15.9 Hardware Algorithms

F I G U R E 15.27 Ternary CAM-based lookup (adapted from [273]).

Having seen how TCAM can achieve high packet lookup throughput, it is logical to won-
der what prevents their wide spread usage in high-end routers. The main disadvantages are
as follows:

• High Cost and Density: Each bit of storage in TCAM requires two bits: one for the value
and the other for the bitmask. In addition, extra circuitry is required for handling the logic
of “don’t cares.” Hence the number of transistors required is two or three times higher
than the regular SRAM. As a consequence, the number of bits stored in a given chip area
is lower for TCAM, thus leading to lower density.

• Power Efficiency: Since all the elements are searched in parallel for an incoming key, the
circuitry corresponding to each row that stores an unmatched element draws the same
amount of electric current as the one that contains the matching key. An incoming address
matches at most one prefix for each distinct prefix length. Since this is a small percentage
of the number of entries stored, a TCAM consumes a lot of power even for a normal
operation. However, an SRAM in a normal operation requires electric current only for the
element being accessed by the address.

Because of these disadvantages, TCAM is not extensively used. While TCAM provides
fast lookup in a single memory cycle, the next section outlines an algorithm that uses
SRAM/DRAM memory but bounds each lookup to a maximum of two memory cycles.

15.9.3 Multibit Tries in Hardware

The basic scheme proposed in [274] is motivated by the need for a fast lookup solution in
inexpensive pipelined hardware. It uses a two-level multibit trie with fixed strides for each
level. The first level uses a stride of 24 bits while the second level uses a stride of 8 bits. This
scheme is based on the following two key observations:

C H A P T E R 1 5 IP Address Lookup Algorithms 529

F I G U R E 15.28 Implementation of multibit tries in hardware.

• Most of the prefix entries in routing tables in core routers are 24 bits or less. This is at-
tributed to the aggressive route aggregation at intermediate routers.

• The cost of memory continues to decline while the density of memory doubles every year.
As a result of these diverging trends, a large amount of memory is available at low cost.
This observation leads to a situation in which large amounts of memory are traded off for
lookup speed.

Based on the first observation, if a first stride of 24 bits is used, then for most cases the best
matching lookups can be found in one memory access. For prefixes longer than 24 bits, they
are expanded to the second level consisting of 32 bits using the prefix expansion described in
Section 15.5.1.

This scheme is very similar to the fixed stride multibit trie with two levels: the first level
with a stride of 24 and the second level with a stride of 8. However, internal nodes are not
allowed to store prefixes. Hence, if a prefix corresponds to an internal node, it will be ex-
panded to the second level. In other words, the internal prefixes are pushed to the leaves.
This is similar to the leaf pushed fixed stride multibit trie outlined in Section 15.6.2.

The scheme, as realized in hardware, uses two tables as shown in Figure 15.28. The first
level of the multibit trie is implemented using table T1 and stores all the route prefixes that
are 24 bits long or less. This table has a total of 224 entries, addressed from 0 to 224 − 1. An
entry in this table can be either of two types: one contains the next-hop information and the
other contains a pointer to the corresponding subtrie at the second level. Each entry is 2 bytes
wide and hence the table needs a memory of 32 Mbytes. The first bit is used to determine
whether the entry stores the next-hop information or a pointer to the second level subtrie.
Hence, only 15 bits are used for storing a pointer or next-hop information.

Table T2 implements the second level of the multibit trie and stores all the route prefixes
longer than 24 bits. The amount of memory required for table T2 depends on the number of
such prefixes. In the worst case, each of these prefixes will need a subtrie at the second level.
Since the stride for the second level is 8 bits, each subtrie will occupy as many as 28 = 256

530 15.10 Comparing Different Approaches

entries in table T2. These entries store only the next-hop information. If the number of next-
hop routers does not exceed 255, then the size of each entry just needs to be a byte. If table T2

contains 220 entries of 1 byte each (1 Mbyte in total), then a total of 220/256 = 4096 subtries at
the second level can be supported.

Given an arbitrary prefix P, first it is examined to determine if it less than or equal to 24
bits long. If P is less than 24 bits, it is expanded into multiple prefixes of 24 bits each. For each
entry in table T1, addressed by these expanded prefixes, the first bit is set to zero to indicate
that the rest of the bits contain the forwarding information. For example, prefix 172.25.0.0/16
will be expanded to a total of 224−16 = 256 prefixes ranging from 172.25.0.0 to 172.25.255.0. If
P is longer than 24 bits, it is expanded to prefixes of size 32 bits. The first bit of the entry in
table T1 addressed by the first 24 bits is set to one to indicate that it contains a pointer. The
pointer gives the start offset into table T2 where the next-hop information is stored.

Now let us see how a route lookup occurs for an incoming packet. The first 24 bits of the
destination address are used to index into table T1 and read the corresponding entry. If the
first bit in the entry equals zero, the remaining bits describe the forwarding information. If the
first bit is set to one, the pointer stored in the remaining bits is multiplied by 256 and the result
is added to the last 8 bits of the incoming destination address. This value is used to index
into table T2 to retrieve the next-hop information. These operations can be implemented in
hardware using concatenation and shifting of bits.

The major advantage of this scheme is speed. It requires a maximum of two memory
accesses. Since the implementation is in hardware, the memory accesses can be pipelined
or paralleled. As a result, the lookup operation on average takes one memory access time.
Updates can be time consuming. This algorithm is in contrast to most of the other algorithms
that seek to minimize the storage requirements of the data structure.

15.10 Comparing Different Approaches
Now that we have covered many algorithms, it will be useful to gain some insights about how
these algorithms compare with each other. While the worst-case algorithmic complexities of
the various schemes are known, an understanding of how they perform in real-life conditions
will be useful.

Simple binary tries and path compressed tries are primarily used for software imple-
mentations. For example, BSD and Linux implementations use these algorithms for routing
packets that originate from the application. Since these implementations are typically used in
servers and desktop machines where the number of packets to be routed and the number of
prefixes are very small, the need for fast lookups is not felt.

An LC-trie is a compacted version of a path compressed trie in which complete subtries
are level compressed from the top down. It uses an array-based storage and hence incremen-
tal updates are expensive. Since the internal nodes do not contain any next-hop information,
a failed search at the leaf requires examination of separate tables, which is inefficient.

The Lulea scheme use multibit tries, but the wasted space in the trie nodes is compressed
using bitmaps. Because of compression, the forwarding data structure is very compact, which
fits the entire data structure in a cache, and hence lookup times are fast. But the updates
are very slow due to compression and leaf pushing. However, the tree bitmap algorithm,
by avoiding leaf pushing, provides guaranteed fast update times. Furthermore, the lookup

C H A P T E R 1 5 IP Address Lookup Algorithms 531

speed and the size of the compressed forwarding data structure are still comparable to Lulea.
Also the tree bitmap scheme provides sufficient flexibility for adapting the implementation
to various memory architectures. Because of such attractive features, it is implemented by
commercial router vendors.

The binary search on prefix lengths scales very well to IPv6 addresses that are 128 bits
long. However, the main disadvantage is the use of hashing, which introduces nondetermin-
ism, and hence there is no guarantee on worst case lookup times. Further implementing hash
tables in hardware is tricky. Hence, it is better suited to implementation in software, and a
few vendors have already done so. Incremental updates can be slow as they are more com-
plex due to the use of markers.

The binary search on prefix ranges provides reasonably fast lookup performance and
consumes only a reasonable amount of storage. Further improvement in lookup times can be
made through the use of multiway branches, wider memory, and pipelined implementation.
As the best matching prefixes are precomputed a priori for each interval, updates can be slow.
In the worst case, the best matching prefix needs to be computed for all the intervals. How-
ever, the major advantage is that this algorithm is patent free and can be used without any
encumbrance.

15.11 Summary
With the explosive growth of Internet traffic, routers, particularly in the core of the Internet,
need to be efficient in the address lookup operation so that many packets they see can be
handled extremely quickly. The forwarding capacity of a router is highly dependent on how
quickly it can determine to which egress interface to transfer the packet, also known as address
lookup. In this chapter, we presented various algorithms for fast IP address lookup. We first
examined the requirements of these algorithms: lookup speed, memory usage, scalability, and
updatability.

We started with naïve algorithms such as linear search and caching followed by trie-
based algorithms with an emphasis on binary tries and multibit tries. We then studied dif-
ferent variants of multibit tries and their advantages and disadvantages. We briefly touched
upon the taxonomy of IP lookup algorithms based on length and value dimensions. Based on
this taxonomy, we described two algorithms that are variants of the binary search. We also
looked in detail some of the hardware algorithms. Ultimately, the choice of the algorithm for
fast lookup depends on the performance and cost constraints. Finally, note that essentially
all algorithms discussed in this chapter are applicable to either IPv4 or IPv6 addressing; cer-
tainly, because of CIDR, many are tuned specifically for IPv4 addressing. Furthermore, some
of the hardware-based approaches are bit specific and thus are typically designed for IPv4 ad-
dressing. Nevertheless, various impacts due to 32-bit or 128-bit addressing have been pointed
out throughout the chapter.

Further Lookup
An excellent introduction to the IP address lookup problem can be found in [273], [658]. Var-
ious requirements and the metrics used to evaluate the algorithms are discussed in length in
[273]. A detailed survey of the lookup algorithms and a comparative study of their perfor-
mance in terms of lookup speed, scalability, and updatability can be found in [611]. Varghese

532 15.11 Exercises

[712, Chapter 11] provides an excellent coverage of various algorithms and implementation
insights.

The Patricia trie scheme [502] implemented in BSD unix is described in [645]. A dynamic
prefix trie data structure, a variant of Patricia tries, that simplifies deletion and avoids recur-
sive backtracking can be found in [180]. A lookup scheme based on the idea of caching is
proposed in [133]. It uses a software scheme and integrates the lookup cache with the proces-
sor cache resulting in high speeds.

The idea of multi-ary tries has been discussed in [370] and [624] in a general context.
However, detailed exposition of multi-ary tries under the context of prefixes and routing can
be found in [661], who also describe the dynamic programming algorithms for fixed stride
tries and variable stride tries that compute the optimal sequence of strides given a set of pre-
fixes and the number of levels desired. Faster algorithms for the same purpose are proposed
in [616] and [617] for fixed stride multibit tries and variable stride multibit tries, respectively.
An algorithm that exploits the hierarchical structure of the memory in a system to speed
up route lookups is described in [131]. Level-compressed tries that combine path compres-
sion and level compression were introduced in [529]. A modified version of an LC-trie that
stores the internal node prefixes in the array storage representation is discussed in [586]. The
Lulea algorithm, which attempts to minimize the storage requirements for the lookup data
structure, is proposed in [173]. The tree bitmap algorithm is described in detail [198]. It also
proposes quite a few optimizations that allows the memory access width of the algorithm
at the cost of memory references. Another lookup algorithm that uses run length encoding
instead of bitmap to efficiently compress the routing table is described in [159].

A binary search on prefix lengths is presented in [727] and various refinements to the ba-
sic scheme are proposed in [726]. In addition, [726] also presents algorithms that precompute
the route lookup data structures used for searching. A binary search on intervals represented
by prefixes is proposed in [395]. Several fast routing table lookup solutions based on binary
and ternary CAMs are examined in detail [453]. Novel ideas for reducing power consump-
tion in TCAMs are discussed in [760]. Hardware implementation of multibit tries that trades
memory for fast lookups is described in [274].

Exercises

15.1. Review questions:

(a) What are the main differences between classful addressing scheme and CIDR?
(b) Explain why longest prefix match is important and define, in your words, the

longest prefix matching problem.
(c) What are the primary metrics of performance for evaluating a longest prefix

matching algorithm?
(d) What is the main difference between a binary trie and multibit trie?
(e) What is prefix expansion and why is it required?

15.2. What is the maximum time allowed for a lookup in a router to sustain a data rate of
20 Gbps with an average packet size of 100 bytes? Assume that the router requires
15 ns per packet for other operations in the packet.

C H A P T E R 1 5 IP Address Lookup Algorithms 533

TA B L E 15.4 Prefix table.

Prefix Label Prefix
P1 0*
P2 10*
P3 111*
P4 10001*
P5 1*
P6 1001*
P7 101000*
P8 1010000*

15.3. For the prefixes in Table 15.4, construct a binary trie. Assuming each node in the binary
trie requires a memory access, how many memory accesses will be required in the
worst case during the search?

15.4. For the prefixes in Table 15.4, construct a path compressed trie. In this trie, how many
memory accesses will be needed for looking up the 8-bit addresses 10011000 and
10100011? Do you see any improvement compared with the binary trie?

15.5. Draw a fixed stride multibit trie using the prefixes shown in Table 15.4. How many
memory accesses will be required for the 8-bit addresses 10011000 and 10100011?

15.6. For the fixed stride multibit trie shown in Exercise 15.5, how much memory will be
required to implement? Assume that the next hop and pointer require 4 bytes each.

15.7. Can you draw the implementation of leaf pushed fixed stride multibit trie for the trie
in Exercise 15.5? Assuming that the next-hop and pointer require 4 bytes each, how
much memory will it require? Does it require any extra information?

15.8. For the prefixes in Table 15.4, construct a Lulea compressed trie clearly indicating the
valarr and bitarr for each node. Use a stride of 3 at the first level, and a stride of 2 for
the second and the third levels.

15.9. Construct a tree bitmap for the prefixes shown in Table 15.4. Use a stride of 2 for the
first level, a stride of 3 for the second level, and a stride of 2 for the third level.

15.10. Can you outline an efficient approach for counting the number of 1 bits in a bitmap
of size 8? Can you extend it to bitmap of sizes 16, 24, 32, and so on? Can you observe
what is the tradeoff?

16
IP Packet Filtering
and Classification
Logic will get you from A to B. Imagination will take you everywhere.

Albert Einstein

Reading Guideline

A critical need in packet filtering and classification is consideration of algorithms
that are efficient. However, different algorithms are appropriate for different sce-
narios. This chapter discusses algorithms of various complexity, pointing out their
pros and cons, and explaining why certain algorithms may be more appropriate
for one situation compared to another. The efficiency of an algorithm comes from
trading off time, space, and sometimes data structures considered for implementa-
tion. Thus, some prior knowledge of computational complexity and data structure
is helpful in understanding some of the details. The material starts with a discus-
sion of naïve approaches, with increasingly complex approaches presented as the
chapter progresses.

C H A P T E R 1 6 IP Packet Filtering and Classification 535

Because of the cost benefits of the Internet, it has been put to use for mission-critical func-
tions executed by business organizations. Such users do not want their critical activities to be
affected either by higher traffic sent by other organizations or by malicious intruders. As a
result, some are willing to pay a premium price in return for better service from the network.
At the same time, to differentiate themselves and maximize their revenue, commercial Inter-
net service providers (ISPs) are looking for ways to share their IP network infrastructure to
provide different levels of service, based on user requirements, at different prices.

To provide such differentiated services, service providers need mechanisms to iden-
tify and isolate packets from specific customers that provide customizable performance and
bandwidth in accordance with customer requirements and pricing. Further, service providers
must be able to route a packet not only based on the destination address or the shortest path
to it, but also based on service level agreements (SLAs) between service providers or between
a service provider and a customer. For a brief description of SLAs, see Section 23.10.

The forwarding engine needs to examine packet fields other than the destination ad-
dress to identify the context of the packets and perform additional processing or actions for
satisfying user requirements. Such actions might include dropping of the unauthorized pack-
ets, encrypting highly secure packets, prioritizing by special queueing, and scheduling. This
process of differentiating packets is called packet classification and sometimes packet filtering.
In this chapter, we focus on the algorithms for efficient packet classification.

16.1 Importance of Packet Classification
To illustrate the importance of packet classification, let us consider a few examples of how
it can be used by an ISP to provide differential services. Consider the network shown in
Figure 16.1. It shows an ISP (ISP1) serving three business customers, C1, C2, and C3, and
another ISP (ISP2) that in turn serves the business customer C4 and a residential customer
C5. Some of the following services provided by ISP1 require support for packet classification:

• Providing preferential treatment for different types of traffic: To provide different service guar-
antees for different types of traffic, an ISP might maintain different paths through the
network for the same source and destination addresses, say, one for high-speed and real-
time traffic and the other for the data traffic. For instance, all the video conference traffic
originating from C2 and destined for C3 can be routed through a path that supports real-
time traffic so that jitter is minimized. Hence, router R2 needs to distinguish video traffic
from other types of traffic from C2.

• Flexibility in accounting and billing: An ISP needs flexible accounting and billing based on
the traffic type so that different traffic can be charged at different prices. Voice over IP
(VoIP) traffic is typically charged a higher price as compared to regular data traffic because
of the delay and jitter guarantees required in delivering it. Such pricing models must dis-
tinguish one traffic type from the other as a basic primitive. For instance, in router R2, ISP1
needs to identify the VoIP traffic packets from C2 and collect packet and byte statistics so
that customer C2 can be charged appropriately.

• Managing customer expectations: Consider an example in which ISP2 might be expanding
its network to new residential areas. Initially, since the network is new and underloaded,

536 16.1 Importance of Packet Classification

F I G U R E 16.1 ISP1 and ISP2 networks connecting five customers C1, C2, C3, C4, and C5.

the customers in those areas could frequently obtain better bandwidth than the guaran-
teed minimum. As the spare capacity shrinks, the customer might receive a bandwidth
closer to the guaranteed minimum, which could lead to the perception that the quality of
the network has degraded. Hence, the ISP may wish to limit the maximum rate at which a
customer can receive packets through the network to manage the expectations. By defin-
ing a specific rule at router R6 that distinguishes the traffic of one customer from another,
ISP2 can ensure that no more than 2.5 Mbps of web traffic is delivered to residential cus-
tomer C5.

• Preventing malicious attacks: Since malicious users can congest or overload the network
affecting other customers, ISPs need to protect their network. Protective measures require
the ability to identity malicious packets and drop them at the point of entry. Similar to the
aforementioned examples, the ISP1 at router R3 needs to drop ICMP packets injected by
C3, if they exceed the rate of 1 Kbps.

Based on the above examples, we can see that an ISP faces a variety of decision problems
in regard to handling of traffic to provide differentiated services. A common requirement of
all the above examples, from an ISP perspective, is the need for routers to have the ability
to classify packets by examining the values of the header fields. Also, the routers should be
capable of the additional processing needed to handle the packet, i.e., dropping it, encrypting
it, making a copy, and so on.

The criteria for classification are often expressed in terms of rules or policies using the
header fields of the packets. A collection of such rules or policies is called a rule or policy

C H A P T E R 1 6 IP Packet Filtering and Classification 537

database or a flow classifier or simply a classifier. Each rule specifies a flow to which a packet
may belong based on the conditions expressed in the rule. As a part of the rule definition,
an action is specified for additional processing to be applied to the packet. An example of a
policy is to encrypt the packets from a source address starting with prefix bits 1101∗, where
“∗” refers to wildcard, bound to destination address 151.18.19.21 with a destination port of
80. Having seen the importance of packet classification, let us proceed to the next section,
where we formally define the packet classification problem.

16.2 Packet Classification Problem
Consider a packet with d distinct header fields, denoted by H1,H2, . . . ,Hd, where each field
is a sequence of bits. Such header fields for an IPv4 packet could represent, for example, the
source address, destination address, source port, destination port, protocol field, and proto-
col flags. A packet from destination address 192.171.110.23, source address 192.142.55.45, a
destination port of 80, a source port of 1800, and protocol field of TCP can be expressed by
the combination (192.142.55.45,192.171.110.23,80,1800,TCP). Valid header fields need not
be restricted to the above set. They can even include layer 2 fields such as destination and
source MAC addresses and application layer fields such as URL.

A classifier of a router consists of a set of rules denoted by R1,R2, . . . ,RN . These rules are
defined in a certain sequence, the importance of which will be examined at the end of this
section. Each rule is a combination of d values, one for each header field. Each field in a rule
is allowed four types of matches:

• Exact match: The exact match requires that the values on the rule field and the header field
of the packet be identical. Such exact matches are useful for protocol and protocol flag
fields.

• Prefix match: For a prefix match, the rule field should be a prefix of the header field; this
could be useful for collecting statistics about packets originating from a subnetwork.

• Range match: In a range match, the packet header values should lie in the range specified
by the rule; this is useful for specifying port number ranges.

• Regular expression match: In a regular expression match, the header field should match the
string expression specified in the rule. Such regular expressions are useful for matching
URLs for deep packet classification.

The use of wildcard ∗ in a field with preceding values represents a prefix match. On the other
hand, the standalone occurrence of ∗ indicates that any arbitrary value can match.

In this chapter, we restrict ourselves to exact, prefix, and range matches. Each rule Ri (0 <

i ≤ N) has an associated directive or action acti that specifies how to process the packet that
matched this rule. This action represents the additional processing required for the packet—
whether the packet should be discarded, encrypted, decrypted, and so forth.

A packet P matches a rule R if each field of P matches the corresponding field of rule R.
The type of match for each field is implicit in its specification. Note a packet may match more
than one rule in the classifier. Now let us consider an example of how a packet is classified.

538 16.2 Packet Classification Problem

Example 16.1 Finding the matching rules for packets.
Consider a classifier that has two rules specifying the four fields of an IP packet header:

destination address, source address, destination port, source port, and protocol. Let the rules
be R1 = (110∗,1∗,< 1024,∗,TCP) and R2 = (11∗,10∗,< 1024,> 2048,TCP). A packet with
header (111111 . . . ,10010 . . . ,80,3500,TCP) matches rule R2 but not rule R1. If R2 has an
action act = discard associated with it, then the packet will be dropped. However, a packet
with header (110011 . . . ,10010 . . . ,80,2500,TCP) matches both rules R1 and R2. Of course,
now the question is which rule’s action needs to be executed? Hence, a mechanism is needed
to break the tie. �

Since a packet may match more than one rule in the classifier, we associate a cost cost(Ri)

for each rule Ri to determine an unambiguous match. The goal is to find the rule with the
least cost that matches a packet’s header. However, what does this cost mean and how it is
used? The cost is a measure that breaks the tie among multiple matching rules and it could
represent almost anything—cost of the path the packet is going to take, cost of processing the
packet, etc. The cost function is an attempt to generalize the ordering of rules in decreasing
importance, which is often used in practice to choose between multiple matching rules. In a
router, the rules are placed in a specific order such that a rule occurring earlier takes prece-
dence over a rule occurring later. Thus, the goal of packet classification is to find the earliest
matching rule. This is equivalent to assigning a cost(Ri) equal to the position number of Ri in
the classifier. The first rule assigned a cost of 1, the second rule assigned a cost of 2, and so
on.

16.2.1 Expressing Rules
Now the obvious question is how these rules are specified in a router. Each router vendor
provides different syntax for expressing rules, but the underlying primitives are pretty much
the same. In this section, we focus on these basic primitives. Since rules contain fields of
different types, each field is specified in a different fashion.

Source and destination address fields are expressed in prefix notation as described in
Chapter 15. The prefix notation allows the expression of both exact and prefix matches. Source
and destination port numbers can be either an exact specification or range specification or a
wild card. Exact specifications are expressed by the clause “=.” For example, an exact port
specification of “= 1023” indicates that the port number field should be equal to 1023. The
range specifications are indicated by various clauses “range,” “>,” “<,” “≥,” and “≤.” The
clause “> 1023” specifies any port number greater than 1023. Protocols are specified by an
exact value or a wild card. Some valid protocol values are UDP, TCP, IGMP, and IGRP.

Typical actions specified are “Permit,” “Deny,” and “Count.” However, much more so-
phisticated actions such as “Encrypt,” “Decrypt,” and “Rewrite” are possible, if the router
supports the underlying functionality. A sample classifier that illustrates how the rules are
specified is shown in Table 16.1.

16.2.2 Performance Metrics
Many algorithms exist for packet classification due to its importance and complexity. For
comparison, we need some sort of metrics to analyze the strengths and deficiencies of each

C H A P T E R 1 6 IP Packet Filtering and Classification 539

TA B L E 16.1 Expressing rules in a classifier.

Rule Destination Source Destination Protocol Action
Address/Mask Address/Mask Port

1 201.15.17.21/32 201.15.75.4/32 < 1024 ∗ Deny
2 201.18.20.25/24 201.15.100.10/32 = 80 TCP Encrypt
3 201.15.20.25/24 201.15.100.10/32 < 1024 UDP Permit
4 201.21.12.1/16 201.75.75.75/16 > 1023 TCP Decrypt
5 201.21.12.1/24 201.75.75.75/24 ∗ UDP Deny
6 ∗ * * ∗ Permit

of these algorithms. Similar to address lookup algorithms discussed in Chapter 15, the two
widely used metrics for packet classification are the speed of search and the memory stor-
age space occupied by the data structures of the algorithm. There are other metrics that are
equally important as well. These are summarized below:

• Speed: As physical links are getting faster, the need for faster classification is greater than
ever. This translates for every packet into making a classification decision in the time for
handling a minimum-sized packet. This issue is far more pronounced for very-high-speed
links. For example, at OC-768 rates (i.e., 40 Gbps) with a minimum packet size of 40 bytes,
we need to handle 125 million packets per sec (= 40 × 109/(8 × 40)). Hence, a decision
must be made in 8 nanosec (= 8 × 40/(40 × 109)). Speed is usually measured in terms of
the number of memory accesses required. This is because memory accesses are expensive
and constitute a dominant factor in worst-case execution time.

• Memory space: The smaller the amount of memory consumed by an algorithm, the greater
the chances of using fast memory technologies like static random access memory (SRAM).
On-chip SRAMs provide the fastest access time (around 1 nanosec) and they can be used
as on-chip cache for software-based algorithm implementation. Hardware-based imple-
mentations embed SRAM on chips for faster access.

• Faster updates: As the classifier changes, because of the addition of new rules, deletion of
existing rules, and changes in existing rules, the data structures maintained by an algo-
rithm needs to be updated. The data structures can be categorized into those updated
incrementally and those that need to be rebuilt from scratch each time the rule database
changes. Such updates are generally not an issue for core routers where the rules are
changed infrequently. However, edge routers that support dynamic stateful filtering or
intrusion detection need to identify certain flows to be tracked; thus, faster updates are
required.

• Number of fields: An ideal algorithm should be able to handle any number of header fields
for classification.

• Implementation flexibility: For operation at wire speed, the algorithm should lend itself to
hardware implementation. This does not mean that the software implementation is not
desirable. An algorithm is attractive if it is implementable both in hardware and software.

540 16.4 Naïve Solutions

16.3 Packet Classification Algorithms
In general, a packet classification algorithm consists of two stages: a preprocessing stage and a
classification stage. The purpose of the preprocessing stage is to extract representative informa-
tion from rules and build optimized data structures that capture the dependency among the
rules. This data structure is consulted to find the least-cost matching rule for every incoming
packet. The preprocessing stage is invoked only when new rules are added or deleted and
existing rules are modified. Since these operations are infrequent, the preprocessing stage
executes in the central CPU of the router.

In the classification stage, the actual packets are parsed and the headers are extracted.
Using the values of the headers, the data structure built during the preprocessing stage is
traversed to find the best matching rule. Since the classification stage runs in the data path,
speed of classification is very important.

For the rest of chapter, let N be the number of rules in a classifier, W be the maximum
length of each field in bits, and d be the number of dimensions or fields in the classifier. We
will assume throughout this chapter that rules do not carry an explicit cost field as described
in Section 16.2, and that the matching rule closest to the top of the list of rules in the classifier is
the best matching rule. To illustrate various algorithms in the rest of the chapter, we will refer
to the example classifier composed of eight rules as shown in Table 16.2, unless otherwise
stated.

16.4 Naïve Solutions
The simplest algorithm is to store the rules in a linked list in the order of increasing cost.
A packet is compared with each rule sequentially until a rule that matches all relevant fields
is found. This approach is storage efficient since it requires only O(N) memory locations.
However, the time to classify a packet grows linearly with the number of rules N. If the num-
ber of rules is 10, we could require 10 memory accesses and if the number of rules increases
to 100, the memory accesses also increase in proportion to 100. Thus, it has poor scaling prop-
erties.

Another approach to speed up classification is to use a cache in conjunction with an al-
gorithm like linear search. The cache achieves low-latency classification requests by remem-
bering previous classification results and searching these results first on the arrival of new

TA B L E 16.2 An example classifier with eight rules.

Rule F1 F2

R1 00∗ 00∗
R2 0∗ 01∗
R3 0∗ 0∗
R4 10∗ 10∗
R5 11∗ 10∗
R6 11∗ 1∗
R7 0∗ 10∗
R8 ∗ 11∗

C H A P T E R 1 6 IP Packet Filtering and Classification 541

packets. When the result of a past classification request does not exist, a full classification is
started using the associated algorithm and the result is cached.

For packet classification, the result of a full lookup using a header is cached along with
the entire IP header. When a subsequent packet with the same header arrives, the results in
the cache are directly used. Since cache access requires only a single access as compared to a
full lookup, which requires several memory accesses in RAM, the lookup time is significantly
reduced.

The efficiency of a caching scheme largely depends on the temporal locality of the traffic,
which means the arrival of a packet implies a high probability of the arrival of another packet
with the same IP header. Such a behavior can be explained by the fact that a file transfer or a
web page is broken into a number of packets with the same IP header for transit. Hence, if we
have saved a recently used classification result, there is a high probability that an incoming
packet will hit the cache and will be classified without the need for a full lookup. Even though
caching schemes might be attractive, they suffer from various problems. A significant issue is
the requirement of more high-speed memory for caching full IP headers to achieve a hit rate
of 80–90% (when compared to caching schemes for IP address lookup). However, caching is
a general technique that can be combined with some of the fast algorithms discussed in later
sections to improve the average case performance.

16.5 Two-Dimensional Solutions
Two-dimensional packet classification is a simpler version of the general packet classification
problem. Studying it in detail could provide additional insights into developing solutions for
the general case. Furthermore, two-dimensional classification is important on its own because
of the variety of applications that use it. For example, applications like flow aggregation for
MPLS and VPNs require handling of a larger number of rules that use source and destination
network prefixes. Another use of two-dimensional classification is in firewalls where many
rules contain distinct protocol ranges. Hence, it is possible to break up the classifier on more
than two fields into multiple independent classifiers each with two fields and applying two-
dimensional classification for each of them.

Since two-dimensional rules are the simplest generalization of the one-dimensional IP
lookup problem, it is natural to think about extending those schemes for two-dimensional
classification. In this section, we extend the binary trie–based schemes discussed in Chap-
ter 15 to handle two fields.

16.5.1 Hierarchical Tries: Trading Time for Space

A binary trie, as described in detail in Section 15.4, organizes IP prefixes in a treelike fashion
to identify the longest matching prefix. The internal nodes can be considered as decision
points and the leaves represent the actual prefix. At each internal node, when the appropriate
bit is examined, a 0 means the left branch needs to be traversed, while a 1 indicates that
the right branch needs to be traversed. The path from the root to a leaf node gives the bit
sequence of the prefix represented by the leaf node. Since IP prefixes can be represented as a
range of addresses in a single dimension, the binary trie scheme is viewed as a solution for
one-dimensional packet classification (also known as packet classification for a single field).

542 16.5 Two-Dimensional Solutions

F I G U R E 16.2 Constructing the F1 trie needed for a hierarchical trie.

F I G U R E 16.3 Constructing the F2 tries needed for a hierarchical trie.

A hierarchical trie is a simple extension of the binary trie except that these tries can ac-
commodate two fields. Let us illustrate hierarchical tries using the example classifier in Ta-
ble 16.2 consisting of two fields, F1 and F2. First, construct a binary trie using the distinct
prefixes of field F1. This trie is shown in Figure 16.2 and is referred to as the F1 trie. For the
sake of clarity, the Figure 16.2 shows the nodes shaded if the prefix represented by each node
appears in field F1 of any one of the rules. Also, the rules containing the prefix of each node
are indicated next to the node.

Now for each unique prefix in field F1, construct a binary trie using the corresponding
prefixes of field F2. Consider the F1 prefix 0∗. It occurs in rules R2, R3, and R7 and their F2

prefixes are 01∗, 0∗, and 10∗, respectively. We build a binary trie using these prefixes. Such
a trie is called an F2 trie. Each of the five distinct F1 prefixes requires an F2 trie and they
are all shown separately in Figure 16.3. In Figure 16.3, above each trie, the corresponding F1

prefixes are shown in boldface. As in the F1 trie, the nodes corresponding to prefixes found
in the rules are shaded.

The next logical problem is how to establish the relationship between the F1 trie and the
F2 tries according to the rules in the classifier. An additional pointer is stored in each node of
the F1 trie that relates an F1 prefix to its F2 trie. This pointer, called the next-trie pointer, stores
the pointer to the root of the F2 trie corresponding to its F1 prefix. The entire trie, known
as the hierarchical trie, is shown in Figure 16.4 where the next-trie pointers are indicated by
dashed arrows linking the F1 trie to the F2 tries. To briefly describe this, a hierarchical trie is

C H A P T E R 1 6 IP Packet Filtering and Classification 543

F I G U R E 16.4 Combining the F1 and F2 tries for building a hierarchical trie.

constructed by first building a trie for all the F1 prefixes, and for each F1 prefix P an F2 trie is
associated that stores the rules whose F1 prefix is exactly the same as P.

Once the hierarchical trie is constructed, the search proceeds as follows. Let us assume,
for the sake of discussion, that the header fields F1 and F2 are extracted from the packet
and denoted by F̀1 and F̀2, respectively. The search starts by traversing the F1 trie to find
the longest matching prefix for F̀1. The algorithm then searches the corresponding F2 trie
for the prefixes matching F̀2 and updates the best matching rule. The search then backtracks
on the F1 trie and traverses all the F2 tries associated with all the ancestors of F̀1. During the
traversal, it continues to keep updating the best matching rule, if an appropriate one is found.
The algorithm terminates once the search backtracks to the root node and its corresponding
F2 tries are examined. The last recorded best matching rule during the search provides the
final solution. To better understand this, let us go through an example of search.

Example 16.2 Searching the hierarchical trie.
Consider the classification of an incoming packet with fields F1 = 000 and F2 = 000 using

the hierarchical trie shown in Figure 16.4. The search proceeds from the root of the F1 trie to
identify the longest prefix match for 000 and reaches the node corresponding to the prefix
00∗. The algorithm immediately fetches the next-trie pointer at this node and traverses its F2

trie using 000. This leads to the matching rule R1 and is recorded as the best matched rule
so far. Now the search backtracks and moves up to the node with the prefix 0∗ in the F1 trie
and proceeds to its F2 trie. During the traversal, the search encounters R3, which matches the
packet fields. Immediately, R3 is compared with the best rule matched so far, R1. According
to our criteria, since rule R1 occurs earlier in order in the classifier than R3, R1 is retained
as the best matching rule. The search again backtracks on the F1 trie reaching the root node.
The next-trie pointer of the root node is fetched and its F2 trie is traversed. It finds that none
of the rules matches. Subsequently, the search terminates since there are no more nodes to
backtrack and R1 is declared to be the best matched rule. �

544 16.5 Two-Dimensional Solutions

Why does the search need to backtrack? The reason that the search backtracks even after
locating the first matching rule is to find the best matching rule. For example, assume the
order of rules in the classifier is changed such that rule R3 becomes the first entry and rule
R1 is moved to the third entry. In this case, the best matching rule for the same search in
Example 16.2 will be R3 since it occurs earlier than R1 in the classifier. If the search has not
backtracked, the best matching rule R3 would be missed. Hence, the search algorithm needs
to traverse all the F2 tries in the path as it backtracks on the F1 trie.

The lookup cost of this scheme is O(W2) for two fields. It follows from the observation
that in the worst case, it is possible to end up searching W F2 tries, one for each bit of the
longest matching F1 prefix. The cost of searching each F2 trie is O(W) and hence the overall
search cost is O(W2). The amount of memory consumed is O(NW). Observe that each prefix
in field F1 requires W nodes for the F1 trie in the worst case. If all the N rules contain distinct
F1 prefixes, the worst-case memory required for F1 trie is O(NW). Each F2 prefix also requires
W nodes in the worst case, and hence the memory required for storing all the F2 tries is
O(NW). Therefore, the overall memory required is O(NW) + O(NW) = O(2NW), which is
still O(NW).

16.5.2 Set Pruning Tries: Trading Space for Time
Recall that hierarchical tries require traversals of many F2 tries as the search backtracks on
the F1 trie. Can we do better by avoiding these traversals? The answer is yes. By replicating
the rules of the prefixes of an F1 prefix in its F2 trie, such traversals can be eliminated. The
resulting data structure is called a set pruning trie [171].

Constructing a set pruning trie is very similar to constructing a hierarchical trie. First, we
build a trie using unique F1 prefixes in the classifier. Each prefix in the F1 trie points to an F2

trie. Now the question is: which F2 prefixes need to be stored? This is where the set pruning
tries differ from hierarchical pruning tries.

For instance, consider the F1 prefix of 00∗. Rule R1 has this prefix and hence we need to
store the corresponding F2 prefix 00∗, as in hierarchical tries. However, if we need to elim-
inate the traversal of the F2 trie at the prefix node 0∗ when the search backtracks on the F1

trie, storing this rule alone is not sufficient. Since rules R2, R3, and R7 also match whatever
the prefix 00∗ matches, they also need to be included. Furthermore, the wildcard prefix ∗ of
R8 also matches whatever the prefix 00∗ matches. Thus, the F2 trie for the prefix 00∗ contains
the rules R1,R2,R3,R7, and R8. The set pruning trie for the example classifier is illustrated
in Figure 16.5. In other words, the F2 trie for any prefix P should contain all the rules corre-
sponding to the prefixes of P.

The search algorithm first matches the field F1 of the incoming packet header in the F1

trie. This yields the longest match on the F1 prefix. Then the associated F2 trie is traversed
to find the longest match. As the search proceeds in the F2 trie, we keep track of the best
matching rule encountered so far. Since all the rules that have a matching F1 prefix are stored
in the F2 trie, we are guaranteed to find the best matching rule.

Example 16.3 Searching the set pruning trie.
Consider searching for the best matching rule for a packet whose field F1 value starts

with 001 and F2 value starts with 011 (Figure 16.5). The search begins by finding the longest

C H A P T E R 1 6 IP Packet Filtering and Classification 545

F I G U R E 16.5 Set pruning trie data structure containing replicated rules.

matching prefix in the F1 trie for 001. This yields the F1 prefix 00∗ and using the next-trie
pointer fetches the F2 trie. This trie is traversed for the longest prefix matching 011. The search
descends the F2 trie and encounters rule R3, which is remembered as the best matching rule.
The search continues further and finds another rule R2. After comparing this with R3, the
best matching rule so far is updated with R2 since it occurs earlier in the classifier. Since the
search cannot continue any further, R2 is declared as the best matching rule. �

Unfortunately, set pruning trees have a memory blowup problem. The problem arises
because an F2 prefix can occur in multiple tries. For instance, in Figure 16.5, the F2 prefixes
0∗, 01∗, and 10∗ appear in trie associated with prefixes 00∗ and 0∗. Hence, in the worst case
for two fields, the set pruning trie consumes O(N2) memory. Since the algorithm attempts to
find the longest matching prefix in the F1 trie, followed by the F2 trie, the number of memory
accesses required is 2W, which is O(W).

To avoid the memory blowup, many optimizations have been presented [171], [572], and
[734]. For instance, when two F2 tries are identical, containing the same set of rules, only one
copy is maintained. The corresponding F1 next-trie pointers are updated to point to this single
F2 trie. This optimization greatly reduces the storage required and makes the set pruning trie
attractive for implementing small classifiers in software.

16.5.3 Grid-of-Tries: Optimizing Both Space and Time

We saw from previous sections that hierarchical tries are on one end of the design spectrum
and require large amounts of time while utilizing storage proportional to the number of rules
and number of bits in the prefixes. On the other end of the design spectrum are the set pruning
tries, which consume a large amount of storage but provide a time complexity proportional
to the number of bits in the prefixes. Now the obvious question is, can we do the best of both?
The grid-of-tries data structure, described in [662], is an attempt in this direction; it reduces
the storage space by storing a rule only once as in hierarchical tries and still achieves the same
time complexity as set pruning tries, i.e., O(W).

546 16.5 Two-Dimensional Solutions

A closer observation of the search algorithm for hierarchical tries indicates attempts to
backtrack several times that are not necessary. To understand this better, let us revisit the
search on hierarchical tries shown in Figure 16.4 with the following example.

Example 16.4 Backtracking in hierarchical tries.
Let us start the search using a packet header with values F1 = 000 and F2 = 110 (see

Figure 16.4). We start by looking this up in the F1 trie, which gives 00 as the best match.
Using the next-trie pointer, we start the search for the matching F2 prefix in the associated
trie, containing the rule R1. However, the search fails in the first bit 1. Hence, the search
would have to back up on the F1 trie and restart in the F2 trie of 0∗, which is the parent of
00∗. �

Such a backup in search is an attempt to find a matching rule that is shorter in the F1 prefix, in
this case 0∗, and it should include all the bits in F2 examined so far, including the failed bit. If
the search algorithm could anticipate a priori such a sequence of bits, it could jump directly to
the parent of R7 from the failed point, the root of the F2 trie associated with the F1 prefix 00.

The grid-of-tries approach uses the key ideas of precomputation and switch pointers to
speed up the search by jumping from the failed F2 trie to another F2 trie. The preprocessing
algorithm that builds the trie identifies all the failure points in the F2 tries and precomputes
a switch pointer that allows the search to jump directly to the next possible ancestor F2 trie
that contains a matching rule. The jump occurs at the lowest point in the ancestor F2 trie that
has at least as good an F2 prefix match as the current node. Furthermore, such a jump allows
skipping over all rules in the next ancestor F2 trie with shorter prefixes in the F2 field.

A grid-of-tries data structure for the example classifier is shown in Figure 16.6. The switch
pointers are illustrated by dashed arrows. Notice that the F2 trie corresponding to F1 prefix
00 contains two switch pointers: one from node A to node C and the other from node B to the

F I G U R E 16.6 Using switch pointers to speed up search in grid-of-tries data structure.

C H A P T E R 1 6 IP Packet Filtering and Classification 547

node representing rule R2. Note that node C and the node representing rule R2 are in the F2

trie corresponding to the F1 prefix 0. Similarly, there is a switch pointer connecting node C to
the node representing rule R8, which is on the F2 trie for the F1 prefix ∗. The failed search for
bit 1 in the F2 trie containing rule R4 is continued by introducing a switch pointer from node
D to the node representing rule R8.

Example 16.5 Classifying a packet using grid-of-tries.
Let us continue with the aforementioned example of classifying a packet with the header

values F1 = 000 and F2 = 110 (Figure 16.6). The search when it fails while examining the first
bit of F2 uses the switch pointer to jump directly to node C in the F2 trie containing rules
R2, R3, and R7. Similarly, when the search on the next bit fails again, we jump to the node
containing rule R8 in the F2 trie associated with the F1 prefix ∗. Hence the best matching rule
for the packet is R8. �

As can be seen, the switch pointer eliminates the need for backtracking in a hierarchical trie
without the storage of a set pruning trie. Essentially, it allows us to increase the length of the
matching F2 prefix without having to restart the search from the root of the next ancestor F2

trie.
Now we can formally define a switch pointer as follows. Look at Figure 16.7. Let v be a

node in the F1 trie that represents an F1 prefix, P(v). The lowest ancestor of P(v) is the longest
prefix match for P(v) in the F1 trie. Let u denote the node corresponding to the lowest an-
cestor of P(v) in the F1 trie. Let T(u) and T(v) be the F2 tries associated with nodes u and v,
respectively. Assume that x is a node in trie T(v) that represents the prefix s and there is no
node representing the prefix s0, i.e., the search fails on a 0 bit at node x. If the F2 trie corre-

F I G U R E 16.7 Formal definition of switch pointers in grid-of-tries (based on [273]).

548 16.6 Approaches for d Dimensions

sponding to the lowest ancestor T(u) contains a node y that represents the prefix s0, then a
switch pointer is placed at node x that points to y.

While the use of switch pointers speeds up the search, it has the disadvantage of some-
times missing best matches rules. We will give an example that illustrates this.

Example 16.6 Missing the best matching rules in grid-of-tries.
Consider classifying a packet with the header values of F1 = 000 and F2 = 010 (Fig-

ure 16.6). The search for 000 in the F1 trie results in 00∗ as the best match. Using its next-trie
pointer, the search continues on the F2 trie for 010. However, it fails in the second bit 1 at
node B. Hence, the switch pointer at node B is used to jump to the node representing rule
R2. The search terminates as it has reached the leaf node and R2 is declared the best matching
rule. Observe that the search has completely missed rule R3, which also matches the packet
header. While rule R2 is the correct answer as it is lower in cost than rule R3, according to our
definition, in general the missed rule could have lower cost. �

To avoid missing the best matching least-cost rules, each node in the F2 trie maintains an
additional variable called storedRule. For a better explanation about what needs to be stored
in the variable, let us consider a node x in the F2 trie corresponding to the F1 prefix P and the
F2 prefix Q. The variable storedRule in node x, denoted by storedRule(x), is assigned the best
matching rule whose F1 prefix is a prefix of P and F2 prefix is a prefix of Q. For instance, in
the node representing rule R2 this variable will store rule R3 if rule R3 is lower in cost than
rule R2.

Now let us analyze the worst-case time complexity and space complexity for the grid-
of-tries. In the worst case, the number of memory accesses required is 2W, which can be
calculated as follows. First, traversing the F1 trie to find the longest prefix match will con-
sume at most W accesses. Next, the traversal of F2 tries will consume at most W accesses.
This is because in the F2 tries we either traverse further down in the same trie or follow the
switch pointer to jump to another trie. The maximum length of the F2 field is also W bits, and
hence the number of memory accesses required is bounded by W. Hence the total number of
accesses is W + W = 2W, which is O(W). To calculate the space complexity, observe that each
rule is stored only once and each rule requires O(W) of space. Hence, the amount of storage
required is O(NW).

16.6 Approaches for d Dimensions
In the previous sections, we examined various solutions for classifying packets with just two-
dimensional classifiers. This section focuses on the different viewpoints and additional in-
sights used by algorithms in subsequent sections. Section 16.6.1 takes a detailed look at the
geometric view of the classification. Based on this view, the general packet classification prob-
lem is mapped onto a computational geometry problem. This mapping allows us to identify
the theoretical lower bounds that illustrate the fundamental difficulty of the problem. Since
a generalized solution is not practically feasible, Section 16.6.2 outlines many characteristics
exhibited by real-life classifiers. These characteristics are effectively exploited by algorithms
that work well in practice.

C H A P T E R 1 6 IP Packet Filtering and Classification 549

16.6.1 Geometric View of Classification: Thinking Differently

Recall from Chapter 15 that a prefix represents a contiguous interval on the number line.
Similarly, a two-dimensional rule represents a rectangle in two-dimensional space, a three-
dimensional rule represents a cube in three-dimensional space, and so on. A rule in d dimen-
sions represents a d-dimensional hyper-rectangle in d-dimensional space. Therefore, a classi-
fier can be viewed as a collection of hyper-rectangles, each labeled with a priority. A packet
represents a point in this d-dimensional space with coordinates equal to the values of the
header fields.

Given this geometric representation, classification of an arriving packet is based on find-
ing the highest-priority rectangle among all the rectangles that encloses the point represent-
ing the packet. If higher-priority rectangles are drawn on top of lower-priority rectangles,
classifying a packet is equivalent to finding the topmost visible rectangle containing a given
point.

Consider the example classifier in Table 16.2 and its geometric representation in Fig-
ure 16.8. Field F1 is represented as the x-axis and F2 as the y-axis. In Figure 16.8, some
prefix ranges are indicated by lines with ending arrows adjacent to each axis. The x-axis is
divided into the three ranges, 00∗, 01∗, and 1∗, while y-axis is divided into the four ranges,
00∗, 01∗, 10∗, and 11∗. Consider representing the rule R1. Extend the range lines of the pre-
fix 00∗ from the x-axis and similarly the range 00∗ from the y-axis. They form a box on
the two-dimensional space marked R1. Similarly, other rules can be represented in this two-
dimensional space as indicated in Figure 16.8. Note that rule R8 is overlapped by R6. Now
consider packet P with header fields 110 and 111. As can be seen from Figure 16.8, it is repre-
sented by the point P and overlapped by the regions representing the rules R6 and R8. Since
the rectangle covered by R6 is topmost, it is the best matching rule for packet P.

F I G U R E 16.8 Geometric representation of rules. Each rule is shown as a shaded region.

550 16.6 Approaches for d Dimensions

F I G U R E 16.9 Possible arrangements of 3 rules in two dimensions (adapted from [273]).

The advantages of taking a geometric view of packet classification are twofold. First,
the packet classification problem can be viewed as a point location problem in a multidi-
mensional space, a problem for which several algorithms have been reported [126], [127]
and [145]. Mapping to the point location problem establishes lower bounds for space and
time for packet classification. In the general case, for d > 3, the best bounds considering time
or space are either an O(logd−1 N) time complexity with O(N) space or O(log N) time com-
plexity with O(Nd) space. These algorithms are not practical for use in a high-speed router as
illustrated in the following example.

Example 16.7 Illustrating that lower-bound algorithms are not practical.
Suppose a high-speed router needs to classify a packet within a time budget of 1 μsec,

processing 1000 rules in five dimensions. Using an algorithm with time complexity of
O(log4 N) and space complexity of O(N) will require 10,000 memory accesses. Even if we
use the fastest memory with an access time of 10 nanosec, it will take 100 μsec for the classi-
fication operation to complete. Alternatively, using an algorithm of space complexity O(Nd)

and time complexity O(log N) will require 1000 Gbytes, which is prohibitively large. �

The second advantage is that the geometric view provides more insight into the structure
of a classifier by examining the number of distinct regions created by its rules. For a concrete
understanding about distinct regions, let us walk through an example.

Example 16.8 Number of distinct regions created by three two-dimensional rules.
Consider a two-dimensional classifier with three rules. Figure 16.9 represents these rules

geometrically as three rectangles in two-dimensional space and shows three possible arrange-
ment of these rules. The leftmost figure illustrates one possible arrangement of these rules
with four distinct regions. The three shaded regions represent the explicitly defined rules, and
the fourth region corresponds to the default rule (implicitly defined) represented by white
background. The figure in the middle shows the same rules with a different arrangement
containing five distinct regions. Finally, the rightmost figure shows another arrangement with
seven distinct regions. �

C H A P T E R 1 6 IP Packet Filtering and Classification 551

As seen from the example, the number of distinct regions does not need be the same as
the number of rules in the classifier since overlaps are possible. These distinct regions need
to be kept track by any classification algorithm so that it can determine the region to which
a newly arriving packet belongs. If the number of such regions in a classifier is large it will
require more memory to represent the rules and as a result require a longer time to classify a
packet.

Many classifiers containing the same number of rules can have different numbers of such
distinct regions. If the number of regions is large, the classification algorithm needs to do
more work to distinguish among these regions. It can be shown that the number of distinct
regions created by N rules in d dimensions can be O(Nd). Henceforth, these disjoint regions
are referred to as classification regions. For our example classifier shown in Figure 16.8, there
are nine classification regions.

16.6.2 Characteristics of Real-Life Classifiers: Thinking Practically

For packet classification, the algorithms must complete within a specified amount of time
for N rules, which could range from a few thousands to tens of thousands. As described
in the previous section, even algorithms with those lower bounds are not practical for use
in a high-speed router. Fortunately, classifiers in real life exhibit many characteristics and
a large amount of structures that can be taken advantage of when designing classification
algorithms. These algorithms perform quite well on classifiers that satisfy one or more of
these characteristics. However, in the worst case they perform very badly.

In this section, we outline many such characteristics identified by several independent
analyses [47], [48], [275], and [687]. Even though we list many of the characteristics, not all
of them are used by the algorithms described in subsequent sections. However, we believe
that this will be beneficial for any designer of algorithms interested in coming up with new
algorithms or adapting an existing algorithm for specific scenarios.

• Number of fields: While a typical implementation supports rules with eight fields, more
than 50% of rules occurring in practice have only four fields specified.

• Small set of values in a protocol field: In most classifiers, the protocol field in the rules contains
TCP or UDP or wildcard (∗) specifications. Some of the other specifications that do not
occur often include ICMP, GRE, IGMP, (E)IGRP, and IP-in-IP.

• Port field specifications are mostly ranges: Many rules (approximately 10%) contain range
specifications in destination and source port fields. These ranges are either the wild-
card range (i.e., ∗) or the port ranges that distinguishe server ports (< 1024) from
client ports (≥ 1024). Conversion of the range (≥ 1024) into prefixes requires splitting it
into six intervals: [1024,2047], [2048,4095], [4096,8191], [8192,16383], [16384,32767], and
[32768,65535]. As a consequence, any algorithm that converts ranges into prefix should
have the ability to handle large numbers of rules in the classifier.

• The number of disjoint classification regions is small: This observation uses the geometric view
described in Section 16.6.1 where rules form a number of distinct and possibly overlap-
ping regions in d-dimensional space. While the number of such regions can be as much

552 16.7 Extending Two-Dimensional Solutions

as O(Nd) in the worst case, a survey of real-life classifiers indicates that such regions are
linear in the number of rules N.

• Source-destination matching: Analysis of traffic traces with real-life classifiers indicates that
most of the packets match at most five distinct source and destination address value com-
binations in the classifier. In the worst case, no packet matched more than 20 distinct
source and destination address combinations.

• Sharing of same field values: It is common for different rules in the same classifier to share
a number of the same field values. Such a sharing occurs when a network administrator
wants to block every host in one group of IP addresses from communicating with any
host in another group of IP addresses. A separate rule must be written for each pair of
hosts in the two groups since the prefix notation is not sophisticated enough to allow such
specifications in a single rule. Such a repetition of rules leads to sharing of source and
destination address field values.

• Redundant rules: Observations indicate that about 15% of the rules are redundant. Some of
the rules are backward redundant while others are forward redundant. A rule R is said
to be backward redundant if there exists a rule T appearing earlier than R in the classifier
and R is a subset of T. Hence, no packet will ever match R. For instance, if rule R3 occurs
earlier than R2 in the example classifier shown in Table 16.2, then none of the packets will
match R2 since it is a subset of R3. However, a rule is forward redundant if there exists a
rule T that occurs after R in the classifier such that R is a subset of T, R and T have the
same actions, and for each rule V occurring between R and T in the classifier either V is
disjoint from R or V has the same action as R. Such forward redundancy rules can also be
eliminated. A packet matching R will now match T yielding the same action.

16.7 Extending Two-Dimensional Solutions
When searching for a solution to a new problem, the natural tendency is to adapt or extend
an existing solution to solve the problem. We extended the trie-based IP address lookup al-
gorithms to classify rules in two dimensions. Similarly, can we extend the two-dimensional
solutions to handle rules with d dimensions? In this section, we investigate such extensions
by categorizing them into naïve extensions and native extensions.

16.7.1 Naïve Extensions
A naïve extension, as mentioned in [47], uses any efficient two-dimensional scheme and in-
stead of a single rule at the leaf, a set of rules is stored. Even though the choice of the dimen-
sions can be any two fields in the classifier, typically source and destination address fields
are chosen. The primary motivation behind these choices is based on the source–destination
matching observation outlined in Section 16.6.2. Recall that this observation indicates that
when considering only the source and destination fields, almost all packets match at most
five rules and no packet matches more than 20 rules. This will reduce the number of rules
searched at the leaf between 5 and 20. A linear search on this reduced set of 20 rules will
definitely perform better than the naïve linear search of the entire classifier, assuming the
classifier contains more than 20 rules.

C H A P T E R 1 6 IP Packet Filtering and Classification 553

F I G U R E 16.10 Extending a two-dimensional scheme for classification on arbitrary
number of fields (adapted from [47]).

The naïve extension is illustrated in Figure 16.10. It uses an efficient two-dimensional
scheme to find all distinct source–destination pairs (S1,D1), (S2,D2), . . . , (Sn,Dn) that match
a packet header. Each distinct pair (Si,Di) is associated with a list of rules that contains (Si,Di)

in source and destination fields. All the fields in the rule need not be stored in the list. Instead,
only the fields other than the source and destination address need to be stored. The search
first traverses all the rules associated with (S1,D1), then (S2,D2), and so on.

Use of such a data structure provides a few advantages. First, each rule is represented
only once and hence the memory required is linear in the number of rules. However, some-
times replication of rules might be needed to reduce the number of source–destination pairs
traversed during the search. Second, since only source and destination address fields are used
for the search structure, the blowup of rules because of translating port range to prefixes is
eliminated.

The grid-of-tries approach discussed in Section 16.5.3 is an efficient two-dimensional
scheme for classifying address prefix pairs and it can be used as the two-dimensional scheme
in Figure 16.10. However, this scheme cannot be generalized for d > 2. A solution proposed
in [47] called extended grid of tries (EGT) uses the standard grid-of-tries scheme for two fields
and extends the traversals to find all the matching rules.

16.7.2 Native Extensions
While naïve extensions use any two-dimensional scheme with a list of rules stored at the
leaf, native extensions augment these schemes with additional levels of tries to accommodate
multiple dimensions or fields. The general scheme is illustrated in Figure 16.11. In this section,
we describe such extensions to hierarchical tries and set pruning tries.

Hierarchical tries for two fields can be extended recursively for rules with d dimensions
as follows:

554 16.7 Extending Two-Dimensional Solutions

F I G U R E 16.11 Extending a two-dimensional scheme natively for classification on
arbitrary number of fields.

• If d = 1, the hierarchical trie is just a binary trie.

• If d > 1, first construct a binary trie corresponding to a field, say F1, called the F1 trie.
This F1 trie contains the distinct prefixes Ri that belong to field F1 of all the rules in the
classifier.

• For each prefix P in the F1 trie, construct recursively a (d − 1) hierarchical trie, say TP,
using the rules that specify P in the field F1. The node representing the prefix P in the F1

trie is linked to trie TP using a pointer called the next-trie pointer.

A packet classification on an incoming packet header (H1,H2, . . . ,Hd) proceeds recur-
sively as follows. First, the F1 trie is traversed based on the bits in H1 and finds the node cor-
responding to the longest matching prefix of H1. The next-trie pointer of the node is fetched
and if it is not null, the search continues recursively on the (d − 1) hierarchical trie. As the
search proceeds, it keeps track of the best matching rule encountered so far. Once the search
terminates on this (d − 1) hierarchical trie, it backtracks on the F1 trie. For each F1 trie node
encountered during backtracking, the search follows the next-trie pointer, if it is not null.
Then it recursively traverses the (d − 1) hierarchical trie stored at that node and updates the
best matched rule, as more rules are encountered, if needed. This search algorithm is some-
times referred to as the backtracking search algorithms due to its recursive nature. It is left as
an exercise to the reader to infer that the time complexity for d dimensions is O(Wd).

Similar to hierarchical tries, set pruning tries can be extended to accommodate d di-
mensions. Let us start with a d-dimensional hierarchical trie consisting of an F1 trie and
its (d − 1)-dimensional hierarchical tries associated with the nodes. Now consider the set
of nodes that represents prefixes shorter than a prefix P in the F1 trie. Call this set of nodes T.
In a d-dimensional set pruning trie, the rules in the (d − 1) tries linked to all nodes in T are
replicated to the (d − 1)-trie linked to prefix P. The replication of prefixes is carried out in a
recursive fashion for the (d − 2)-tries and so on.

C H A P T E R 1 6 IP Packet Filtering and Classification 555

The search algorithm for a packet with the header (H1,H2, . . . ,Hd) needs to traverse the
F1 trie only once to find the longest matching prefix node for H1. If its next-trie pointer is not
null, the search follows the F2 trie and finds the longest matching prefix for H2. The search
continues in this fashion for F3 tries and so on for all d-fields. Since the rules are replicated in
a set pruning trie, the search algorithm ensures that all the matching rules will be encountered
in its path. For d-fields, it can be shown that the memory required is O(dWNd). You can now
see how the memory grows exponentially with the addition of each field. However, the time
complexity for search is O(dW), which is linear in the number of fields, unlike hierarchical
tries.

16.8 Divide and Conquer Approaches
The main idea behind the divide and conquer approach is to partition the problem into mul-
tiple smaller subproblems and efficiently combine the results of these subproblems into the
final answer. Recall that in Chapter 15 we outlined many efficient single-field search tech-
niques under the context of longest prefix matching for IP address lookup. Hence, it is natural
to consider whether these approaches can be effectively used; after all, the packet classifica-
tion problem is nothing but a search on multiple fields.

A common theme of these divide and conquer algorithms is to decompose the packet
classification problem into many longest prefix matching problems, one for each field, and
combine the results of these longest prefix matches1. For decomposition, the classifier is sliced
into multiple columns with the ith column containing all distinct prefixes of field i. Such
columns are referred to as field sets and the field sets for the example classifier are shown in
Figure 16.12. For each incoming packet, the longest prefix matching is determined separately
for each of the fields. Now the key challenge is how efficiently the results of these prefix
matches can be aggregated. The algorithms described in the next few sections differ mainly
in two aspects:

• How the results are returned from the individual longest prefix matches, and

• How the individual results from these prefix matches are combined.

Dividing or decomposing the packet classification problem into many instances of single-
field search problems offers several advantages. First, the search for each field can proceed in-
dependently, enabling the use of parallelism offered by modern hardware. Second, the search
can be optimized by choosing different search strategies for each type of field. For example,
source and destination address prefixes can employ longest prefix matches, while source and
destination port ranges can use efficient range-matching schemes.

While there are compelling advantages, decomposing a multifield search problem raises
subtle issues. Of course, the primary challenge is how to combine the result of the individual
searches. Furthermore, it is not sufficient for a single-field search to return the longest match-
ing prefix for a given field in the rule. This is because the best matching rule may contain a
field that is not necessarily the longest matching prefix relative to other rules. Additionally,

1Note that ranges for source or destination ports can be converted into prefixes.

556 16.8 Divide and Conquer Approaches

F I G U R E 16.12 Field sets for the example classifier in Table 16.2.

the result of these single-field searches should be able to return more than one rule because
packets may match more than one. In the next few sections, we discuss several algorithms
that use the divide and conquer approach. We begin with the Lucent bit vector scheme.

16.8.1 Lucent Bit Vector

The Lucent bit vector scheme uses the divide and conquer approach [392]. It uses bit-level
parallelism for accelerating the classification operation in any practical implementation. The
basic idea is to first search for the matching rules of each relevant field F of a packet header
and represent the result of each search as a bitmap. The final set of rules that matches the full
packet header can be found by intersecting the bitmaps for all relevant fields F . Although
this scheme is still linear in the number of rules, in practice searching through the bitmap is
faster as a large number of bits can be accessed in a single memory access. While the original
algorithm takes a geometric view and projects the rules to the corresponding dimensions, we
describe a variant that uses tries.

The algorithm first partitions the classification problem in d-fields into d longest prefix
matching problems, one for each field. Next, the unique prefixes for each field are identified
and using these unique prefixes a separate data structure is constructed for finding the longest
matching prefix. A bit vector of length N is associated with each prefix in the data structure
and bit j in the bit vector is set if the prefix or its prefixes match rule Rj in the corresponding
field of the classifier. In the bit vector, bit 1 refers to rule R1, bit 2 refers to rule R2, and so
on. This process is repeated until all the bit vectors for each unique prefix of each field are
constructed. Intuitively, bit vectors represent the matching rules corresponding to the prefix
they represent.

The question now is what kind of data structures can be used and how they should be
organized? Ideally, any data structure described in Chapter 15 can be used. However, for
the sake of discussion, let us assume binary tries. We illustrate the construction of the data
structure for the simple two-field classifier shown in Table 16.2. First, we identify the unique
prefixes for fields F1 and F2, which are shown in Figure 16.12. Using these unique prefixes,
we build two binary tries, one for field F1 (F1 trie) and the other for field F2 (F2 trie). Each

C H A P T E R 1 6 IP Packet Filtering and Classification 557

F I G U R E 16.13 The F1 and F2 tries with bit vectors for Lucent scheme.

node containing a valid prefix is associated with a bit vector of size 8. The size of the bit
vector, as noted earlier, is the same as the number of rules in the classifier.

The bit vector for each prefix is constructed by setting bit j if the prefix corresponding to
rule Rj in the classifier matches the prefix corresponding to the node and its prefixes. Notice
that in our example, the prefix 00∗ in field F1 matches 00∗ and its prefixes 0∗ and ∗. These
correspond to rules R1, R2, R3, R7, and R8. Hence, the bit vector for the trie node correspond-
ing to 00∗ has a value of 11100011 where the bits are numbered as 1 through 8 in increasing
order from left to right. Similarly, the bit vector for each prefix is constructed. The binary tries
for F1 and F2 along with the unique prefixes are shown in Figure 16.13.

Now, when a packet arrives with the header fields H1, . . . ,Hk, the relevant headers that
correspond to the fields in the classifier are extracted. Then for each field i, the corresponding
trie is probed for the longest prefix match and the resulting bit vector Bi is read. Then the
intersection of Bi is performed for all i using a bitwise AND operation. The resultant bit
vector BR contains all ones in bit positions that correspond to rules that matched. Since the
rules are arranged in the order of cost, the position of the first bit set in bit vector BR is the
position of the rule in the classifier that best matches the packet header.

Example 16.9 Classifying a packet using bit vectors.
Let us determine how a packet with fields F1 = 001 and F2 = 010 gets classified (Fig-

ure 16.13). First, perform a longest prefix lookup in the F1 trie that provides the bit vector
11100011 corresponding to prefix 00∗. Next, probe the F2 trie for the longest prefix match re-
sulting in the bit vector 01100000 for the prefix 01∗. Then, perform a bitwise AND operation
that yields the result bit vector 01100000. Since the lowest bit position in the result bit vector
is two, the best matching rule is R2. �

Now that we know how the algorithm works, let us turn our attention to analyzing the
memory access times and space requirements. Since the bit vectors are N bits in length, com-
puting the bitwise AND requires O(N) operations. It might be argued that in spite of using
bitmaps the time complexity is still O(N). If so, why is this approach any better than a lin-
ear search on the rules? This is because of the constant factor improvement possible using
bitmaps. Since a group of bits is manipulated together in a single operation, constants are
much lower compared to a naïve linear search. The size of this group is typically determined
by the word size of the memory used. If w is the size of a word in memory, the total number

558 16.8 Divide and Conquer Approaches

of memory accesses required for these bit operations is �(N × d)/w� in the worst case. Notice
that this worst case occurs when a packet does not match any rule in the classifier.

If commodity memory of 32 bits is used, the memory access is brought down by a factor
of 32. A customized chip using wide memories, w > 1000, can even do better. As an example,
consider a classifier containing 5000 rules with five dimensions and using a memory of w =
500 for classification. The number of memory accesses required is 5000 × 5/500 = 50. If the
access time for the memory is 10 nanosec, the time to classify a packet is 500 nanosec. This
implies that we can look up 2 million packets per sec, which is not achievable using naïve
linear search.

Storage requirements can be calculated by observing that each field can have at most N
distinct prefixes. As a consequence, each trie contains N bit vectors of size N bits each. Since
there are d tries, one for each field, the total amount of memory required is N × N × d bits,
which translates to �N2 × d/w� memory locations.

To conclude, while the cost of memory accesses is linear in the number of rules, i.e., O(N),
the constant factor of word size of the memory scales it down substantially. If the word size is
1000, the constant factor improvement could be a big gain in practice. However, the scheme
suffers from the drawback of memory not being utilized efficiently. Practical observations
indicate that the set bits in the bit vector are very sparse. Considerable savings in memory
access could be achieved if we can selectively access portions of bit vectors that contain the set
bits. In the next section, we outline an algorithm that uses aggregated bit vectors to identify
the portions of actual bit vectors that need to be accessed.

16.8.2 Aggregated Bit Vector
The main motivation behind aggregated bit vector (ABV), described in [48], is to improve
the performance of the Lucent bit vector scheme by leveraging the statistical properties of
classifiers that occur in practice. In the Lucent bit vector scheme, in the case where the number
of rules is large, the bit vector can be wider than the memory data bus. As a result, retrieving
a bit vector requires several sequential memory accesses. To reduce the number of memory
accesses, ABV takes advantage of the following observations: (1) the set bits in the bit vector
are sparse, and (2) an incoming packet matches only a few rules. For example, in a 50,000 rule
classifier, if only 6 bits are set in a bit vector of size 50,000, it is a waste to read the rest of the
bits as a substantial number of memory accesses will be incurred. The algorithm uses two
key ideas that takes advantage of these observations: rule aggregation and rule rearrangement.

The idea behind rule aggregation is to use a reduced-size bit vector that captures partial
information from the original bit vector. This allows us to guess about the matching rules
without comparing the bits in the original bit vectors. The reduced-size bit vector is called
the aggregate bit vector.

For efficiently constructing an aggregated bit vector, an aggregation size A is selected. The
original bit vectors are then partitioned into k blocks, each of size A bits, where k = �N/A�.
If any of the bits in a block are set to 1, the corresponding bit in the aggregate bit vector is set
to 1; otherwise, it remains 0. In other words, each group of A bits in the original bit vector
is simply aggregated to a single bit in the aggregate bit vector. The aggregate size A can be
tuned to optimize the performance of the entire scheme. A natural choice for A is the word
size of the memory that makes it possible to fetch an aggregate bit vector in a single memory
access.

C H A P T E R 1 6 IP Packet Filtering and Classification 559

F I G U R E 16.14 The F1 and F2 tries with original and aggregated bit vectors.

Conceptually, ABV uses the same data structures and bit vectors of size N constructed
in the same manner as the Lucent bit vector scheme. In addition, each bit vector is associated
with an aggregate bit vector that is built as described above. Figure 16.14 illustrates the ABV
scheme using a trie along with the original bit vectors and aggregate bit vectors. The aggre-
gate bit vectors are constructed from the original bit vectors using an aggregation size A of
4 bits. These aggregated bit vectors are shown below their original bit vector in the figure.
Note that the original bit vector is stored in blocks of 4 bits so that each of them can be re-
trieved independently. For example, the original bit vector for the F1 prefix 11∗ is 00001101.
All the first four bits are 0 and hence the first aggregated bit is set to 0. The second aggregated
bit is set to 1, since among the next four bits three are set to 1. The resulting aggregated vector
is 01, which is shown below the original bit vector in the figure. Also the original bit vector is
stored as two blocks, the first block containing the bits 0000 and the second block containing
the bits 1101.

Now the search algorithm proceeds as follows. First, an independent search on d packet
fields is performed to find the longest matching prefix on their respective tries. This search
ends in returning the A bit aggregate bit vector associated with the longest matching prefix.
Next, d aggregate bit vectors are intersected using a bitwise AND operation. For each bit set
to 1 in the result aggregate bit vector, the corresponding d blocks of the original bit vectors are
retrieved from memory and again a bit-wise AND operation is performed. In the resulting
bit vector, the matching rules correspond to the bits set to 1.

Example 16.10 Classifying a packet using ABV.

Assume that we need to classify the same packet as in Example 16.9 with fields F1 = 001
and F2 = 010 (Figure 16.14). The search for the longest prefix match on the respective tries
yields the prefix 00∗ for F1 and 01∗ for F2. The aggregate bit vectors 11 and 10 associated
with these prefixes are retrieved. A bitwise AND operation on these aggregate bit vectors
results in 10. This indicates that the first block of the original bit vectors for the matching
prefix of F1 and F2 needs to be retrieved and intersected. The first block for the matching F1

prefix is 1110 and for the F2 prefix is 0110. The intersection of these two partial bit vectors
results in 0110. The first bit set to 1 indicates the best matching rule, which is R2. Hence, the
number of memory accesses required for intersection of original bit vectors is two, assuming
the word size is 4 bits. This presents a savings of 50% when compared with the the Lucent

560 16.8 Divide and Conquer Approaches

scheme, which requires four memory accesses. This is because the Lucent scheme requires
accessing the second blocks of the original bit vectors for two fields. �

While aggregation reduces the memory accesses in most cases, it also leads to false matches
or false positives. This is due to the lack of information about which bit or bits in the original bit
vector have led to a 1 in the aggregated bit vector. The worst case occurs when a false-positive
occurs for every aggregated bit. For instance, consider the aggregate bit vectors correspond-
ing to the F1 prefix 00∗ and the F2 prefix 10∗. A bitwise AND of these aggregate bit vectors
results in the bit vector 11. Hence, we need to retrieve both blocks of the original vectors and
intersect them. The intersection of the first block (1110 for F1 and 0001 for F2) yields 0000,
which might be a surprise even though the corresponding aggregate bit was a 1. This is what
we call a false positive in which the intersection of an aggregate bit returns a 1 but there are
no valid matching rules in the block identified by the aggregate. Hence, the packets contain-
ing the F1 prefix 00∗ and the F2 prefix 10∗ will incur extra memory access. To reduce the
probability of false matches, a method for rearranging the rules in the classifier is proposed
so that rules matching a specific prefix are placed close to each other. The details can be found
in [48].

16.8.3 Cross-Producting
The cross-producting scheme outlined in [662] is motivated by the observation that the num-
ber of distinct prefixes for each field is significantly less than the number of rules in the clas-
sifier. For instance, our example classifier shown in Table 16.2 contains eight rules, but the
number of distinct prefixes for both F1 and F2 is five, which is less than eight. While this
reduction might not be much, in large classifiers it can be significant. This scheme, like any
other divide and conquer approach, uses independent field searches and the results are com-
bined to find the best matching rule.

Before examining the main idea, let us define what a crossproduct means. A crossproduct
is defined as a d-tuple formed by drawing one distinct prefix from each field. For our example
classifier, the crossproduct [0∗,11∗] is formed by selecting the distinct prefixes 0∗ and 11∗
from fields F1 and F2, respectively. All the distinct prefixes for the example classifier are
shown in Figure 16.12. Since F1 and F2 have five distinct prefixes each, a total of 5 × 5 = 25
crossproducts can be formed. The main idea behind utilizing crossproducts to find the best
matching rule is based on the following proposition:

Proposition 16.1. Given a packet P, if we do the longest matching prefix operation for each field P[i]
and concatenate the results to form a crossproduct C, then the best matching rule for P is identical to
the best matching rule for C.

Proof. Let us prove this key observation by contradiction. Assume that the claim is not true.
Since each field in C is a prefix of the corresponding field in P, every rule that matches C
also matches P. Now the case in which P has a different matching rule implies that there is
some other rule R that matches P but not C. This is possible only if there is some field i such
that R[i] is a prefix of P[i] but not of C[i] where C[i] denotes the field i in crossproduct C.
But since C[i] is a prefix of P[i], this can happen only if R[i] is longer than C[i]. However, this
contradicts our assumption that C[i] is the longest matching prefix in field i. �

C H A P T E R 1 6 IP Packet Filtering and Classification 561

F I G U R E 16.15 Generation of crossproduct table for the rules of Table 16.2.

Thus the cross-producting algorithm begins by constructing independent data structures
for d field sets, one for each field. These are used for the longest prefix matching operation
of the corresponding packet field. To resolve the best matching rule, a table CT is built con-
sisting of all crossproducts. For each crossproduct in CT , we precompute and store the best
matching rule. The field sets and the crossproduct table for the example classifier are shown
in Figure 16.15. For now let us not worry about how table CT is organized as we will examine
that later in the section.

For any incoming packet, the crossproduct C is constructed by performing a longest
matching prefix on individual fields. Using C as a key, crossproduct table CT is probed to
locate the best matching rule. Hence, classifying a given packet header involves d longest
matching prefix operations plus a probe of CT for the best matching rule. These d prefix
lookups can be carried out independently, thus lending to a parallel implementation in hard-
ware.

Example 16.11 Finding the best matching rule using cross-producting.
Consider classifying the incoming packet, with values of F1 = 000 and F2 = 100 (Fig-

ure 16.15). Probing the independent data structures for the fields yields the longest pre-
fix match for F1 as 00 and for F2 as 10. These prefixes yield the crossproduct (00,10). The
crossproduct is probed into table CT which yields the best matching rule as R7. �

There are various ways in which the crossproduct table CT can be organized. The sim-
plest is the use of a direct lookup table such as an array. Using such a scheme requires la-
beling each prefix in the field set and that this label be returned as a result of longest prefix
matching for each field. For example, the field sets of F1 and F2 can be labeled separately as
1,2,3,4,5 since there are five distinct prefixes. Continuing with Example 16.11, the longest
prefix matches for F1 and F2 will yield labels 2 and 4, respectively. From these labels, the in-
dex in the array can be determined as 2×4 = 8, which gives the best matching rule in a single
memory access.

Use of a direct index table will require a large amount of memory. Can we reduce the
memory consumption? A closer examination of the crossproducts shows that among the

562 16.8 Divide and Conquer Approaches

25 entries, only 8 entries contain the original rules, which we call original crossproducts.
The remaining ones are generated due to the crossproduct operation. Among the generated
crossproducts some of them correspond to the original rule. To be precise, a match of the
crossproduct implies a match for one or more of the original rules. For instance, the match for
the crossproduct [00∗,0∗] implies a match of the original rules R1 and R2. Such crossproducts
are referred to as pseudo-crossproducts. Finally, some of the crossproducts do not map to any
original rule such as [11∗,00∗], which we call empty crossproducts.

Since there can be many empty crossproducts for classifiers containing hundreds and
thousands of rules, the problem is mitigated by using a hash table instead of a direct
lookup table. Using a hash table could save memory since it needs to store only the origi-
nal crossproducts and the pseudo-crossproducts.

In spite of such optimizations, the naïve cross-producting algorithms suffer from expo-
nential memory requirements. In the worst case, the number of entries in the crossproduct
table can be as many as Nd. Even for smaller values, say, N = 50 and d = 5, the table size can
reach as much as 505 entries! Assuming each entry requires 16 bits, the table needs 596 Mbytes
of memory, which is prohibitively large. To reduce the memory, [662] suggest the use of on-
demand cross-producting.

ON-DEMAND CROSS-PRODUCTING

The on-demand cross-producting scheme places a limit on the size of the crossproduct ta-
ble and builds it on a need basis. Instead of building the entire crossproduct table a priori,
the entries in the table are incrementally added. For each incoming packet, the longest prefix
matching operations are performed on the individual fields and the crossproduct C is com-
puted as in the naïve cross-producting scheme. Then the crossproduct table is probed using C.
If the crossproduct table contains an entry for C, then the associated rule is returned. How-
ever, if no entry forC exists, the best matching rule for C is computed on the fly and an entry
is inserted into the crossproduct table. Thus, it is expected that the first packet that adds such
an entry will experience more latency. But subsequent packets with the same crossproduct C
will benefit from fast lookups.

Thus, on-demand cross-producting can improve the building time of the data structure
and the storage cost. In fact, the crossproduct table can be treated as a cache. To start with, the
table will be empty. As entries are added with the arrival of packets, the table starts filling up.
The subsequent addition of new entries may require the eviction of existing entries. Thus, a
cache replacement policy that removes entries not recently used has to be implemented.

Since caching packet headers for classification is not considered effective, what suggests
that caching based on cross-producting can be any better? It is because a single crossproduct
can represent multiple headers. Hence the hit rates for the crossproduct cache can be expected
to be much better than standard packet header caches.

16.8.4 Recursive Flow Classification
Recursive flow classification (RFC) attempts to reduce the memory requirements of the naïve
cross-producting scheme by first creating smaller crossproducts and combining them in mul-
tiple steps to form larger crossproducts. Like the cross-producting scheme, RFC also per-
forms independent parallel searches on the fields of the packet header. The results of these

C H A P T E R 1 6 IP Packet Filtering and Classification 563

field searches are combined in multiple steps, unlike naïve cross-producting, which uses a
single step. To do this efficiently, RFC uses two techniques:

• It uses equivalence classes (see Appendix B.4) for identifying the set of matched rules
at each step. These equivalence classes represent concisely the rules matched by various
header fields.

• For merging the results from different fields, RFC uses crossproduct tables to store the
precomputed results.

In the next few sections, we develop these concepts by first examining packet classifi-
cation in one dimension, followed by two dimensions, and then finally extending it to an
arbitrary number of dimensions.

USE OF EQUIVALENCE CLASSES

Consider the example classifier shown in Table 16.2. To start with, let us consider only one
field, say F1, for classification. We can project the two-dimensional rules along the F1 dimen-
sion that represents the domain of possible values for field F1. This is shown in Figure 16.16.
This dimension can be partitioned into intervals at the endpoints of each rule, and within
each interval, a particular set of rules is matched. As can be seen from the Figure 16.16, there
are four intervals [000,001], [010,011], [010,101], and [110,111] for F1. Using these intervals,
we partition the set of possible values 000–111 for this field into equivalence classes, where
all values in a set match exactly the same rules. For example, F1 values of 000 and 001 match
rules R1, R2, R7, and R8 and hence they belong to the same equivalence class. In total, we can

F I G U R E 16.16 Geometric representation for identifying equivalence classes.

564 16.8 Divide and Conquer Approaches

F I G U R E 16.17 Equivalence classes and lookup table for field F1.

F I G U R E 16.18 Equivalence classes and lookup table for field F2.

identify four such equivalence classes, corresponding to each interval. While in this example
each interval corresponds to an equivalence class, in general this need not be the case.

Note that two points in the same interval always belong to the same equivalence class.
Two intervals are in the same equivalence class if exactly the same rules project onto them. To
find the best matching rule, we precompute two tables: one that maps each possible F1 value
to its equivalence class and the other that maps the equivalence class to the matched rules.
The equivalence classes and the lookup tables for the F1 dimension are shown in Figure 16.17.
Similarly, we compute the equivalence classes for dimension F2 and its lookup table, which
are shown in Figure 16.18.

Even though symbols are used for equivalence classes in the figures, the actual imple-
mentation uses integers so that they can be used to index into another table. Hence they are
sometimes referred to as equivalence class identifiers or simply eqIDs. Additionally, the equiv-
alence class table does not store the rules explicitly as depicted in the figures. Instead, a bit
vector as outlined in the Lucent bit vector scheme, is stored. The bit vector represents the
matching rules by setting the appropriate bit position to 1. Now let us see an example of how
a packet classification occurs in a single field.

C H A P T E R 1 6 IP Packet Filtering and Classification 565

Example 16.12 Classifying a packet on a single field.
Suppose we want to find the matching rules of a packet whose F1 value is 001. Indexing

into the F1 lookup table using 001 shown in Figure 16.17 yields the equivalence class EF1-0.
Next, a lookup in the equivalence class table for EF1-0 indicates the matched rules as R1, R2,
R7, and R8. The rule R1 is then declared the best matching rule since it occurs first in the
order. �

Of course, for the above one-dimensional classification example, there is no need for
a separate equivalence class table. Instead of storing the eqID in the lookup table, the best
matching rules can be directly stored, avoiding the lookup into equivalence class table. How-
ever, as we shall see later, the equivalence class tables provide a compact representation for
intermediate results for classification on multiple fields.

USE OF CROSS-PRODUCT TABLES

Now let us extend the concept of equivalence classes to two-dimensional lookups involving
fields F1 and F2. A packet’s F1 value can be used to lookup its one-dimensional tables in Fig-
ure 16.17 to obtain the eqID. This indicates the set of rules matched by F1. Similarly, the F2

value is used to lookup its one-dimensional tables in Figure 16.18. The resultant eqID repre-
sents the set of rules matched by F2. However, what we are really interested in is the set of
rules matched by both fields F1 and F2.

The intersection of the set of rules matched by F1 and those matched by F2 will provide
the needed solution. However, computing such an intersection on the fly can be too expen-
sive, especially if there are many rules (if there are N rules, an N-bitwise AND operation will
be required, as we saw in the Lucent bit vector scheme). Hence, we compute the results of
these intersections a priori and store them in a two-dimensional lookup table D, referred to
as the crossproduct table.

Each entry in this two-dimensional crossproduct table D represents a set of rules matched
by both fields F1 and F2. One dimension of the table D is indexed by the eqIDs of F1 and the
other by the eqIDs of F2. Since the same set of matched rules may occur more than once in
D, we assign a new set of eqIDs that represents these classes so that the table entries of D
contain only eqIDs. If the matched rules by fields F1 and F2 are denoted by eqIDs m and n,
respectively, then the entry D[m][n] contains the eqID that represents the intersection of rules
matched by both F1 and F2. Alternatively, these new equivalence classes represent distinct
regions in the two-dimensional space of F1 and F2. Referring to Figure 16.16, it can be seen
that there are nine distinct regions, each corresponding to an equivalence class.

Now let us see how we can precompute each entry in the two-dimensional crossproduct
table. For the sake of discussion, let a represent the eqID for dimension F1 and b for F2. First,
look up the set of rules matched by equivalence classes a and b. Second, compute the intersec-
tion of both the sets and identify the equivalence class to which the result belongs. Then store
it as the entry for D[a][b]. The new equivalence classes and the resulting two-dimensional
crossproduct table are shown in Figure 16.19. In Figure 16.19, the entry D[EF1-0][EF2-0] con-
tains the eqID EC-1. The entry corresponding to EC-1 in the equivalence class table indicates
the rules matched for eqIDs EF1-0 from F1 and EF2-0 from F2. Note that the crossproduct ta-
ble D is conceptually similar to the crossproduct table in the naïve cross-producting scheme

566 16.8 Divide and Conquer Approaches

F I G U R E 16.19 Equivalence classes and the final crossproduct table.

outlined in Section 16.8.3, except that they are organized differently from an implementation
perspective.

To perform classification, we need the one-dimensional lookup tables for field F1 and F2

and the two-dimensional crossproduct table and the final equivalence class table that maps
the final result eqID to the matched rules. Now let us walk through an example of classify-
ing a packet involving two fields using the tables shown in Figure 16.17, Figure 16.18, and
Figure 16.19.

Example 16.13 Classifying a packet on two fields.
Consider classifying the packet with field values F1 = 000 and F2 = 010. We first search

the F1 lookup table for 000, which gives the result EF1-0 (Figure 16.17). Next we search the
F2 lookup table for 010, which results in EF2-1 (Figure 16.18). Using these eqIDs, EF1-0 and
EF2-1, we index the two-dimensional crossproduct table to find the rules matched by both
F1 and F2, which gives us EC2. Finally, using the equivalence class table in Figure 16.19,
we find that the rule R2 matches the incoming packet, which is declared the best matching
rule. �

The final step can be eliminated by storing only the best matching rule directly in the
crossproduct table. For instance, instead of storing EC2, the rule R2 could be stored.
A pipelined implementation for classifying packets using two fields is shown in Figure 16.20.

EXTENDING TO d-DIMENSIONS

As we saw earlier, classification in two dimensions requires finding a pair of equivalence class
identifiers and precomputing a two-dimensional crossproduct table to map those eqIDs to a
single eqID. Extending it to three dimensions requires finding three equivalence class identi-
fiers, say x, y, and z, one for each field, that indicate the matched rules by the corresponding
field. Identifying rules that match all three dimensions requires computing the intersection of
these three sets of rules.

C H A P T E R 1 6 IP Packet Filtering and Classification 567

F I G U R E 16.20 Packet flow in recursive flow classification.

A straightforward approach is to use a three-dimensional crossproduct table where each
entry D[x][y][z] is precomputed by finding the intersection of the sets of rules matched in
equivalence classes x, y, and z. This is similar to naïve cross-producting and, as we have seen
earlier, does not scale very well because of large memory requirements.

An alternate approach is to use multiple two-dimensional crossproduct tables. To classify
a packet in three dimensions, we can use two such two-dimensional crossproduct tables:
one that merges the eqID x and eqID y to produce a single eqID, say a, which identifies the
matching rules for both x and y; and the other that combines the eqID z and eqID a to another
single eqID, say b, which identifies the intersection of the rules matched by a and z. The eqID b
corresponds to the set of rules matched by all three header fields.

This idea can be extended to handle d dimensions using d − 1 separate two-dimensional
tables. The purpose of each table is to merge two eqIDs into one eqID. Hence, with d − 1 two-
dimensional crossproduct tables, d eqIDs can be reduced to just one. The order in which these
eqIDs are combined will influence the contents of the tables that need to be precomputed.

A structure called a reduction tree is used to represent the order in which the eqIDs are
merged. Each node in the tree represents a crossproduct table and the children represent the
source of eqIDs used to index into the table. Note that many reduction trees are possible when
the number of stages is greater than two. In such cases, RFC chooses the one that requires
minimum memory.

In terms of performance, assuming the lookup proceeds from one stage to another in a
sequential fashion, the number of memory accesses required is O(P), where P is the number
of stages. For a pipelined implementation, it will be O(1). From a memory perspective, com-
bining a pair of fields might require as much as N2 memory since each field can have at most
N distinct values and hence for d dimensions, the worst case is Nd. This corresponds to Nd

classification regions, as we saw in Section 16.6.1. However, the real-life classifiers, as noted
in [275], have only O(N) regions instead of the worst case Nd, which requires O(Nd) memory
for both RFC and naïve cross-producting.

The simplicity and performance of RFC come at the cost of memory inefficiency. Mem-
ory usage for less than 1000 rules can range anywhere from a few hundred Kbytes to over
1 Gbytes of memory depending on the number of stages. The crossproduct tables used for

568 16.9 Tuple Space Approaches

aggregation also require significant precomputation for the proper assignment of an equiv-
alence class identifier for the combination of the eqIDs of the previous steps. Such extensive
precomputation precludes dynamic updates at high rates.

16.9 Tuple Space Approaches

Another unique approach to packet classification on multiple fields uses the notion of tuple
space, which narrows the scope of a search by partitioning the rules using tuples. Before taking
a look at the informal definition of a tuple, it is necessary to define a prefix length. Recall from
Chapter 15, the number of bits specified in a prefix is referred to as the prefix length. A tuple
represents a unique combination of prefix lengths of each field specified in the rules. There
can be many tuples for a given classifier since the prefix lengths can be different for each rule
and for each field. Such a resulting set of tuples defines the tuple space.

The main motivation behind this approach is that although classifiers contain many pre-
fixes in the rules, the number of distinct prefix lengths tends to be small. As a result, the
number of unique tuples is much less than the number of rules in the classifier. Hence, a lin-
ear search on the tuples might be more efficient than a linear search on the rules. In the worst
case, the number of tuples can be as many as N, the number of rules in the classifier, which
occurs rarely in practice.

For a concrete understanding of tuples, consider the example classifier shown in Ta-
ble 16.2. The distinct prefix lengths for field F1 are 0, 1, and 2. Similarly, the distinct prefix
lengths for field F2 are 1 and 2. Hence, the tuple space consists of {(0,1), (0,2), (1,1), (1,2),
(2,1), (2,2)} for a total of six tuples, one for each combination of prefix lengths from F1 and
F2. Notice that this is less than the number of rules in the classifier, which is eight.

Formally, a tuple T is defined as a vector of d lengths, one for each field in the classifier.
A rule in the classifier maps to tuple T, if for all i, the length of the prefix specified in field Fi

consists of exactly T[i] bits. For example, rule R7 in the example classifier maps to tuple (1,2)

F I G U R E 16.21 Mapping of rules in Table 16.2 to tuples.

C H A P T E R 1 6 IP Packet Filtering and Classification 569

since its prefix length for F1 is 1 bit and for F2 is 2 bits. Figure 16.21 shows the mapping of
the example classifier rules to the tuples.

16.9.1 Tuple Space Search
The basic tuple space search approach performs an exhaustive search of the tuple space. Re-
call that a tuple specifies the valid bits of its constituent rules. Hence, we can probe the tuples
for matching rules using a fast exact match technique such as hashing. For each tuple T, we
associate a hash table H(T) that contains all the rules mapped to T. To map a rule, we first
identify the tuple T it belongs to, using the prefix lengths of its fields. Then we construct a
key by concatenating the prefix bits of the rule specified by the tuple. Using this key, the rule
is inserted into H(T). For instance, the rule R7 belongs to tuple (1,2) since its prefix lengths
for fields F1 and F2 are 1 and 2, respectively. Now the key “010,” generated by concatenating
the prefix bits specified in the rule, is used to insert rule R7 in the hash table for tuple (1,2).
Figure 16.22 shows the contents of the hash table for each tuple.

The search algorithm decomposes a packet classification request into a number of exact
match lookups into tuple hash tables. When a packet arrives, a search key is formed by con-
catenating the required number of bits from the packet header fields as specified by the first
tuple T. Using this key, the hash table H(T) is probed for an exact match. If there is a match
for a rule, it is recorded as Rbest, the best matching rule so far. The process is repeated for each
T and if there is a match, say R, then it is compared with Rbest and Rbest is updated, if needed.
After all the tuples have been examined, Rbest contains the best matching rule.

Example 16.14 Finding the best matching rule using tuple space search.
Consider classifying a packet with the values of 101 and 100 for fields F1 and F2, respec-

tively. The search starts with the tuple (0,2) using the key “10,” generated from the first two
bits of field F2 in the packet. Note that tuple (0,2) does not involve any bits from field F1.
This key “10” is used to probe the hash table for tuple (0,2) and we find that rule R8 matches.
Now R8 is kept track of as Rbest. For the next tuple (1,1), the key “11” is generated, which
does not match any rule, and the search moves to the next tuple (1,2). Again, the generated
key 110 does not match any rule, leaving R8 still the best matching rule. Finally, tuple (2,2) is
examined. The key “1010” matches rule R4. Since R4 is a better matching rule than R8, Rbest

is updated with R4. There are no more tuples to be examined and, therefore, R4 is declared
to be the best matching rule. �

F I G U R E 16.22 Contents of tuple hash tables.

570 16.9 Tuple Space Approaches

While the search strategy might be straightforward, the search cost is proportional to the
number of distinct tuples M. In practice, M tends to be much smaller than the number of rules
N in the classifier. Hence, a linear search through the tuple set is likely to outperform the lin-
ear search of rules in the classifier. The algorithm lends itself to parallel implementation since
the probes into separate tuples can be performed independently. However, the challenge lies
in providing guaranteed worst-case lookup performance due to the unpredictability of the
number of rules mapping to a single tuple.

Reference [660] indicates that using this scheme on a modest set of real-life classifiers
reduces the number of searches by a factor of four to seven relative to an exhaustive search
of all the rules in the classifier. The amount of storage required is O(N) since each rule is
stored only once in one of the hash tables. The main drawback of this algorithm is the use of
hashing, which makes the time complexity of searches and updates nondeterministic.

16.9.2 Tuple Space Pruning

The key idea behind a pruned tuple space search [660] is to reduce the scope of an exhaustive
search of tuples by performing independent searches on each field of the rules to find a subset
of candidate tuples. It accomplishes this by first searching for an individual longest prefix
match in each field and then probing only the tuples that are compatible with these individual
matches.

The motivation behind tuple space pruning is that, in practice, classifiers seem to have
very few prefixes for a given IPv4 address irrespective of whether it is a source or destination.
Studies in [658] have shown that any IPv4 address in backbone routing tables has no more
than six matching prefixes. In such cases, a naïve tuple search may require searching as many
as 32 × 32 = 1024 tuples since each IPv4 address can be as long as 32 bits. However, using the
observation as a heuristic, we might have to examine a total of only 6 × 6 = 36 tuples. This
represents a cost savings of having to probe 1024 − 36 = 988 tuples.

Let us illustrate tuple pruning using the example classifier in Table 16.2. We begin by
constructing individual tries for both F1 and F2 prefixes as shown in Figure 16.23. Nodes
that contain valid prefixes of rules store a list of tuples. These tuples contain the rules in
the associated hash table that specify the prefix. In Figure 16.23, the shaded nodes represent
the prefixes and the tuples they belong to are indicated adjacent to each node. Note that
some nodes can have more than one tuple. A search on data structure begins by performing
independent searches of F1 and F2 tries. The result of each search provides a list of candidate
tuples for each field that corresponds to the longest prefix match. The final candidate list of
tuples is constructed by the intersection of the tuple lists returned by the individual search.

Example 16.15 Classifying a packet using tuple space pruning.
Consider the classification of a packet with values F1 = 010 and F2 = 100 (Figure 16.23).

Examining the F1 trie, we find that the longest prefix matching 0∗ and the corresponding
tuples are (1,1) and (1,2). Similarly, examining the F2 trie provides the tuples (1,2) and
(2,2). After intersecting these results, we get the tuple (1,2). Hence the hash table associated
with tuple (1,2) is examined and we find that the best matching rule is R7. �

C H A P T E R 1 6 IP Packet Filtering and Classification 571

F I G U R E 16.23 The F1 and F2 tries with tuples for rules in Table 16.2.

An attentive reader might notice that this approach is very similar to the parallel bit
vector discussed in Section 16.8.1. While both schemes use independent matches in each field,
the Lucent bit vector scheme searches through rules as opposed to tuples. Since the number
of tuples grows much slower than the number of rules, the tuple pruning should scale better
than the Lucent bit vector scheme.

16.10 Decision Tree Approaches

So far we have discussed two high-level approaches to packet classification on multiple fields.
Our last approach examines the use of decision trees for multifield packet classification. A de-
cision tree stores a single rule or a small list of possible matching rules at each leaf. The internal
nodes contain enough information to guide the classification to a leaf node. During classifi-
cation, a search key is constructed from the packet header fields. The tree is traversed using
either individual bits or a subset of bits from the search key to make branching decisions at
each node of the tree until a leaf node is reached. If the leaf node contains a single rule, then
it is declared to be the best matching rule. In the other case, where a list of rules is stored in
the leaf node, a linear search is required to identify the best matching rule.

A decision tree can be generalized by different parameters or degrees of freedom, as dis-
cussed below. Each degree of freedom offers a choice of various values from which to choose.
A specific combination of choices for each degree of freedom generates a class of decision
trees. Clearly, many such classes of decision trees are possible. Hence, it is worth taking a
detailed look at these degrees of freedom to sharpen our understanding before delving into
the details of the algorithms based on decision trees.

• Sequential vs. interleaved search of the fields: In trie-based schemes, described in Section 16.5,
we saw that the search works only one field at a time. In these schemes, all the bits of
field F1 are tested before the search moves on to the bits of the next field F2. Another
interesting choice is to interleave the bit tests for all fields. For instance, in the root node,
the fifth bit of a destination address field can be examined and if it is 0, the nineteenth bit
in the source address field of the child node should be examined. Such interleaving allows
the flexibility to locally optimize decisions at each node by choosing the next bit to test.

572 16.10 Decision Tree Approaches

• Bit test vs. range test for branching: During search, at each node either a single bit or multiple
bits in the search key can be examined to choose the next branch to follow. The use of
a single bit limits the number of branches to two, while multiple bits can have many
branches. Multiple branches have a tendency to reduce the height of the tree, which in
turn could reduce the number of memory accesses. Multiple bits employ range checks
such as 35 < S < 48 for a given source address S. Range checks are slightly more general
than bit tests.

• Single rule vs. multiple rules in leaf nodes: This degree of freedom allows the choice of either
storing a single rule or multiple rules in the leaf nodes. Storing multiple rules in the leaf
node reduces the overall storage required. However, a linear search will be needed when
the search reaches the leaf node. As an example, consider a decision tree with 5000 leaves,
each consisting of three rules. If we were to store only one rule per leaf node by increasing
the height of the decision tree, this could require as much as 3 × 5000 = 15,000 extra nodes
of storage. Hence, to balance storage with time, it might be advantageous to allow a small
amount of linear searching at the end of tree search.

Based on these degrees of freedom, we can infer that trie-based schemes represent a class
of decision trees with the choices of sequential search of fields, bit test for branching, and
single rule in leaf node. In the next few sections, we examine a few decision tree algorithms
based on geometrical cutting [276], [745]. Some of the decision tree approaches outlined are
reminiscent of multi-attribute indexing methods in relational database systems such as grid
file [528] and spatial indexing methods in geographic information systems such as R-tree
[278], R∗-tree [65], R+-tree [628], and quad-tree [619].

16.10.1 Hierarchical Intelligent Cuttings
Hierarchical intelligent cuttings (HiCuts) [276] is another important approach. The notion of
“cutting” comes from viewing the packet classification problem geometrically. Recall from
Section 16.6.1 that each rule defines a d-dimensional rectangle in d-dimensional space. This
d-dimensional space is cut or partitioned into equal-sized regions based on certain decision
criteria. HiCuts uses heuristics that exploit the characteristics and structure of the classifier
to arrive at the criteria of picking the dimension to partition and determining the number of
cuts needed.

HiCuts preprocesses the classifier and builds a decision tree. The root node of the deci-
sion tree covers the entire d-dimensional space, which is partitioned into smaller geometric
subspaces by cutting across one of the d dimensions. These smaller geometric subspaces are
represented by child nodes. Each subspace is recursively subdivided until no subspace has
more than binth (bin threshold) number of rules.

On receiving an incoming packet, its header fields are used to traverse a decision tree.
The internal nodes contain information to guide the classification to a leaf node. The rules
in the leaf node are then sequentially searched to determine the best matching rule. The tree
is constructed such that the total number of rules stored in a leaf node is bounded by binth
threshold. The characteristics of the decision tree such as its depth, degree of each node, and
the local search decision to be made at each node are chosen during the preprocessing of the
classifier.

C H A P T E R 1 6 IP Packet Filtering and Classification 573

Since the decision tree does not preclude an internal node containing more than two
pointers, a fast mechanism is needed to access the correct child pointer. By using simple array
indexing, we can choose the appropriate child pointer in one memory access regardless of
the number of children at a node. To understand how the array indexing works, consider
a single dimension. Now imagine a 5-bit address space that is partitioned into four equally
spaced ranges [0,7], [8,15], [16,23], and [24,31]. Each range can be associated with a pointer
that is stored as four consecutive elements in an array. To retrieve the pointer corresponding
to a point, say 25, we can compute the quotient of 25 divided by the range width, which is 8.
Since the quotient is 3, it retrieves the fourth element, assuming that the array indices start at
0. Hence the root node and internal nodes store a one-dimensional array the size of which is
determined by the number of cuts, with each element containing a pointer to a child node.

A HiCuts partitioning of two-dimensional space for the example classifier is shown in
Figure 16.24 and its decision tree is shown in Figure 16.25. In this example, we set the thresh-
olds such that each leaf node contains at most two rules and an internal node may contain at
most four children. As mentioned earlier, the root node represents the entire two-dimensional
space. To keep the discussions simple, this two-dimensional space is divided into four equal
partitions using the cuts A, B, and C along the F1 dimension. These cuts yield the child nodes
S, T, U, and V of the root node in the decision tree. The root node stores the pointers to these
nodes in an array since the cuts yield equal-sized regions. The region of node U contains the
rule R4 and similarly node V contains the rules R5 and R6. If node S were to be a leaf node,
then it should contain the four rules R1, R2, R7, and R8, which is not allowed by the thresh-
old. Hence we need to further subdivide this partition across dimension F2 into two equal
partitions using cut D as shown in Figure 16.25. The new nodes W and X contain two rules
each, which is allowed by the threshold, and hence there is no need for further partitioning.
Similarly, node T is further subdivided to contain the leaf nodes Y and Z.

F I G U R E 16.24 Geometric representation of HiCuts.

574 16.10 Decision Tree Approaches

F I G U R E 16.25 HiCuts decision tree for rules in Table 16.2.

Example 16.16 Packet classification using HiCuts decision tree.
An incoming packet with values for F1 = 000 and F2 = 010 is classified by first examining

the root node (Figure 16.25). Based on the number of cuts across the F1 dimension, we find
that the value of F1 = 000 falls on the range covered by the child stored at an array index of
0 and the search descends down to node S. At node S, the cut is across dimension F2. We
find that the F2 = 010 value falls in the range of the child located at an array index of 0. It
leads to node W and the rules R1 and R2. Each of these rules is examined one at a time and
finally R2 is declared to be the best matching rule. The classification of the packet required
two memory accesses to reach the leaf node and another two memory accesses to linearly
traverse the rules. �

As can be seen, HiCuts decision trees are a class of generalized decision trees character-
ized by an interleaved search of fields, range test for branching, and storing of multiple rules
in the leaf node. The algorithm uses various heuristics to select the decision criteria at each
node that minimize the height of the tree while controlling the amount of memory used.

• Choice of number of cuts: The number of cuts to be made is determined by a binary search
algorithm suggested in [276]. The algorithm keeps doubling the number of cuts C until
the storage space estimate for C becomes more than the predefined threshold. The storage
cost for C cuts is computed by the sum of the rules assigned to each of the C cuts.

• Choice of field: Several approaches for selecting the field to cut have been suggested in
[276]. One approach is to select a dimension that leads to the most uniform distribution
of rules across nodes to create a balanced decision tree. Another simpler approach is to
choose the field that has the largest number of distinct values. Hence the heuristic will
select field F2.

• Maximize the reuse of child nodes: With real-life classifiers, it is possible that many child
nodes have identical sets of rules. In such cases storing each child separately leads to an
increase in storage. Instead, a single child for each identical set is used, and the other child
nodes with the same set of rules can point to this node.

C H A P T E R 1 6 IP Packet Filtering and Classification 575

The preprocessing algorithm uses the first two heuristics at every node in a repeated fashion
until all the leaves have no more than binth rules. Due to the considerable preprocessing
required, this scheme does not readily support incremental updates.

16.10.2 HyperCuts
In HiCuts, each internal node in the decision tree represents only the cuts in one dimension, ir-
respective of how many cuts are made in that dimension. Of course, the next logical question
is why we cannot introduce cuts across multiple dimensions rather than a single dimension
at each node. Intuitively, this can reduce the height of the decision tree, thereby reducing the
number of memory accesses. A variant of HiCuts, called HyperCuts, outlined in [643], is a de-
cision tree algorithm that takes advantage of this observation by introducing multiple cuts
across multiple dimensions simultaneously. By forcing the cuts to create uniform regions,
HyperCuts allows the efficient retrieval of pointers using array indexing.

Let us illustrate the HyperCuts algorithm using the example classifier in Table 16.2. For
simplicity of discussion, consider the same set of cuts described in HiCuts and indicated in
Figure 16.25, except that cut D is further extended along the F1 dimension. The main differ-
ence is that cuts A, B, C, and D are applied simultaneously. This results in the new decision
tree shown in Figure 16.26. As can be seen, the height of this tree is just one as compared to a
height of three for the decision tree of HiCuts. However, the number of pointers from the root
node has increased to six.

To speed up the search on an internal node, we can choose the same array indexing
scheme as described in HiCuts except that it is extended to multiple dimensions as long as
the width of the cuts is fixed in each dimension. In our example classifier, the root node is
represented as a two-dimensional array of size 4 × 2 = 8 since the cuts across dimension F1

divide it into four equal regions, and similarly a single cut across dimension F2 divides it into
two equal regions. However, only six of the pointers are used since two regions do not have
any rules mapped.

Each internal node in the decision tree is associated with the information about the num-
ber of cuts across each dimension and the array of pointers for child nodes. Each time a packet
arrives, the decision tree is traversed based on the information in the packet header to find a
leaf node. Each leaf node stores a set of matching rules that is linearly traversed as in HiCuts
to find the best matching rule that matches the packet.

A main drawback is that combining cuts in several dimensions can increase storage. For
example, consider a HiCuts decision tree in which the root node has a single cut of F1, which

F I G U R E 16.26 HyperCuts decision tree for rules in Table 16.2.

576 16.11 Hardware-Based Solutions

leads to two nodes A and B. Assume that A uses another five cuts on F2 and B uses three
cuts on F2. The total amount of storage required for pointers is 2 + 6 + 4 = 12. In HyperCuts,
if we were to combine all the fields in a single node, the amount of storage required will be
2 × 6 × 4 = 48 pointers. This is four times what is required for HiCuts.

In general, the decision tree approach provides a general framework characterized by
various degrees of freedom. Using various choices for these degrees of freedom, there can be
many potentially different algorithms with different performance characteristics and applica-
bility in practice.

Performance experiments show that these decision tree approaches work well in practice
except on classifiers that contain a large number of wildcards in one or more fields. Both
HiCuts and HyperCuts do well for classifiers on edge routers since they have a simple structure
using rules on source destination pairs. On classifiers in core routers, HyperCuts outperform
HiCuts by a factor of 2 or 3 while utilizing an order of magnitude less memory than HiCuts.

16.11 Hardware-Based Solutions
So far, most of the solutions that we have discussed are algorithmic approaches. Due to the
fast growth in Internet traffic, algorithms that can scale to millions of classification searches
per second, millions of rules are needed. In the past few years, the industry has been increas-
ingly employing TCAMs for performing packet classification since the searches can proceed
in parallel irrespective of the number of rules. Unlike algorithmic approaches whose per-
formance is highly dependent on the structure of the rules and classifiers, TCAMs perform
an exhaustive search of rules in a memory cycle. The following section describes the use of
TCAM in detail.

16.11.1 Ternary Content Addressable Memory (TCAM)
TCAM devices allow a parallel search over all rules in the classifiers. TCAMs differ from
standard SRAM in their ability to store a “Don’t Care” state in addition to a binary digit.
Input keys are compared against every TCAM entry, thereby enabling them to retain single
clock cycle lookups for arbitrary bit mask matches.

A TCAM stores each W-bit field as a (value,bitmask) pair where value and bitmask are
each W-bit numbers. For example, if W = 4, a prefix 01∗ is stored as the pair (0100,1100). An
element matches a given input key k by checking if those bits of value for which the bitmask
bit is 1 match those in the key k. To be precise, a key k matches a stored (value,bitmask) pair
if k & bitmask = value & bitmask, where & denotes a bitwise AND.

As we saw in Chapter 15, such a matching paradigm works well for prefix matching of IP
addresses but is not well-suited to matching fields with ranges (e.g., port number range). The
usual way to handle such a range specification is to replace each rule with several rules, each
covering a portion of the desired range. This requires splitting the range into smaller ranges
that can be expressed as (value, bitmask) pairs. For example, the range 2–10 can be partitioned
into a set of prefixes 001∗, 01∗, 100∗, and 1010.

Use of TCAMs for classifying packets is similar to the use of TCAMs for address lookup,
which is shown in Figure 15.27. A single TCAM stores all the rules. How can a single entry in
the TCAM array store a rule consisting of multiple fields? Actually, a simple partitioning of
the bits of TCAM entries can accommodate both fields. For instance, when TCAM entries are

C H A P T E R 1 6 IP Packet Filtering and Classification 577

F I G U R E 16.27 Representing the rules of Table 16.2 in TCAM.

8 bits wide, we can assign the first 4 bits for field F1 and the remaining 4 bits for field F2. For
storing rule R5, the F1 prefix and the F2 prefix are expanded to 10XX and 11XX, respectively,
and their concatenation 11XX10XX is stored as the value field. Similarly, the bitmask for the F1

prefix (1100) and the F2 prefix (1100) are concatenated and stored as 11001100 in the bitmask
field. The TCAM entries for all the rules of Table 16.2 are shown in Figure 16.27.

The order in which the prefixes are stored in TCAM corresponds to the priority ordering
of rules. For an incoming packet, the interesting field values are extracted and passed as keys
into the appropriate TCAM array. Each TCAM array compares the input key against every
element in the array in parallel and outputs an N-bit bit vector. The N-bit bit vector indicates
which rules match the input key and is passed through an N-bit priority encoder. The priority
encoder indicates the address of the highest priority rule that matched. This address can be
used to index into the RAM to find the action associated with the rule.

TCAMs are increasingly being deployed because of their simplicity and speed. They
are becoming available in configurations with up to 18 Mbits, roughly half the size of the
largest SRAMs. An 18-Mbit TCAM offers enough storage for up to 128K IPv4 rules, which
is large enough to meet most near-term needs for general packet classification. Both faster
and denser TCAMs can be expected in the near future. There are, however, some disadvan-
tages to TCAMs—high cost per bit and high power consumption, as discussed earlier in Sec-
tion 15.9.2. When used for packet classification, TCAMs have another disadvantage, storage
inefficiency.

The storage inefficiency occurs due to the presence of ranges in some of the fields of the
rules. These arbitrary ranges need to be converted into prefixes. In the worst case, a range
covering a w-bit field may require 2(w − 1) prefixes. If a rule contains two fields with range

578 16.12 Lessons Learned

specifications, it would require as many as 2(w − 1)2 prefixes. Analysis of real-life classifiers
indicates that the amount of TCAM storage required, in the worst case, is seven times the size
of the classifier. Recent studies [181], [393], [654] and [760] seems to mitigate these issues.

16.12 Lessons Learned

In this chapter, so far, we have studied in detail algorithmic approaches and hardware-based
approaches to packet classification. While theoretical worst-case complexities of these algo-
rithms in terms of speed and memory consumption can be derived analytically, insights about
how these algorithms perform in practice will be useful.

For the simpler case of classifying packets in two dimensions, trie-based approaches
seem to work well. Among the trie-based approaches, the grid-of-tries approach provides
fast search and scalable while consuming less memory.

As expected, the RFC algorithm outperforms other algorithmic approaches in search
speed by effectively exploiting the characteristics of real-life classifiers, however, at the ex-
pense of memory. It does not support easy dynamic updates and its preprocessing time seems
unpredictable. Hence, it might be better suited to applications in which memory is not an is-
sue, dynamic changes are infrequent, and the search speed is more important.

The Lucent bit vector scheme provides comparable performance for medium-sized classi-
fiers containing a few thousand rules and it consumes much less memory compared to RFC.
Since it employs bitwise AND on all the bits representing the rules for identifying the match-
ing ones, it does not scale well for larger classifiers. The aggregated bit vector scheme at-
tempts to mitigate this by using summary bits; however, it suffers from false positives, lead-
ing to unpredictable average case search times. The dynamic updates for the Lucent bit vector
scheme are slow as many bit vectors need to be reconstructed and typically the entire data
structure is rebuilt.

For larger classifiers, the decision tree approaches seem to be attractive and provide a
better trade-off between speed and memory. These approaches work well in practice with
the exception of databases that contain large numbers of wildcards in one or more fields.
However, the performance of decision tree approaches is governed by various parameters
that are not characterized.

In general, the search time in the average case achieved by algorithmic approaches is
based on exploiting certain assumptions and characteristics of the classifiers in practice. It is
not clear whether these assumptions will continue to hold true in the future unless they are
extensively validated. Hence, the worst-case performance of these algorithmic approaches
might be much worse in reality.

However, solutions based on TCAM are independent of such assumptions because of an
exhaustive search of the rules and at the same time provide the fastest search speed. Even
though TCAMs have their own disadvantages of high power consumption and rule blowup
due to port ranges, recent research in this direction seems to mitigate some of these issues.

Although this chapter discussed some of the principles employed in devising solutions
for the packet classification algorithm, this is not the end. The reader is encouraged to think
about other creative approaches that could lead to better algorithms.

C H A P T E R 1 6 IP Packet Filtering and Classification 579

16.13 Summary
The problem of packet classification is significant since it provides a way to discriminate
packets and enables many differentiated services. We identified the key performance require-
ments of a packet classification algorithm as the number of memory accesses it needs and the
amount of storage it occupies.

We started our discussion with naïve algorithms. We then studied algorithms for the sim-
pler case of classifying packets using two fields. These algorithms are extensions of trie-based
algorithms used for IP address lookup. After the discussion of these algorithms, we outlined
various approaches for classifying a packet in arbitrary number of dimensions—divide and
conquer, cross-producting, tuple space, and decision tree. We then described algorithms us-
ing each approach. Finally, we concluded the chapter with a discussion of hardware solutions
using TCAMs.

Further Lookup
The survey papers by [277] and [686] provide a comprehensive coverage of the various algo-
rithms for packet classification. In addition, two doctoral dissertations [273] and [658] sum-
marize different classes of algorithms, and identify their asymptotic complexities and their
pros and cons. Furthermore, an excellent overview of the various packet classification algo-
rithms with sufficient insights about their performance and implementation can be found in
[712, Chapter 12].

A study of the NSFNET backbone [141] indicates the possible use of caching to improve
route lookup performance. Other studies [99], [455], [696] show that sufficient locality is
present in the Internet traffic that can benefit by caching classification results. Li et al. [407]
study how the caching architectures can be tuned, given limited silicon resources, to perform
fast classifications. Use of approximate caches for packet classification using bloom filters is
described in [120].

Set pruning tries and many optimizations to reduce its space occupancy are presented
in [171], [572] and [734]. An FIS-tree data structure for packet classification in two fields
is proposed in [220]. Another two-dimensional scheme that extends the quadtree for spatial
data representation for packet classification is described in [101]. The grid-of-tries is described
in [662].

There are a number of divide and conquer approaches; for example, the Lucent bit vector
scheme [392], and the aggregate bit vector scheme [48]. A variation of the aggregation bit
vector scheme that reduces the false positives while still keeping the benefit of bit vector
aggregation is outlined in [406]. Cross-producting scheme is described in [662]. Gupta et al.
[275] presented the RFC scheme that constructs partial crossproducts and combines them into
the final crossproduct in multiple stages. Spitznagel [655] study a compressed representation
for the tables used in RFC that trades memory accesses for space. Taylor et al. [687] presented
the Distributed Cross-Producting of Field Labels that transforms the problem of aggregating the
results from independent field searches into a distributed set membership query.

The tuple space approaches were presented in [660]. A detailed discussion about basic
tuple search and pruned tuple search and an analysis of their performance relative to other
approaches can be found in [658]. Srinivasan et al. [659] presented an Entry-Pruned Tuple
Search algorithm that optimizes tuple space pruning by not maintaining separate lookup data

580 16.13 Exercises

structures for each field. Instead, the pruning information is maintained as a bitmap of tuples,
which is then associated with the matches in the tuples.

The use of decision tree approaches for packet classification was described in [276], [745].
Hypercuts, presented in [643], allows the cuts to be on multiple dimensions and, in addition,
proposes several storage-related optimizations.

TCAMs are used for packet classification. Spitznagel et al. [654] proposed the use of parti-
tioned TCAMs to reduce power consumption and extension for storing arbitrary port ranges
in TCAMs and also suggested how to partition TCAMs to dramatically reduce power con-
sumption and propose extensions that eliminate the storage inefficiency for an arbitrary range
of filters.

Exercises
16.1. Review questions:

(a) In your own words, define the packet classification problem.

(b) What are the different type of matches allowed in packet classification rules?

(c) Why is backtracking required in hierarchical tries?

(d) What is the main disadvantage of a set pruning trie?

(e) What is time complexity for classifying a packet in grid-of-tries?

(f) What is space complexity of grid-of-tries? Compare it with set pruning tries.

(g) How do the Lucent bit vector scheme and aggregated bit vector scheme differ?

(h) Can you explain the disadvantage of the cross-producting scheme?

(i) What are the disadvantages of using TCAM?

16.2. A router performs a route lookup followed by classification. If the route lookup oper-
ation takes 15 nanosec, how much time is available for packet classification to sustain
a data rate of 40 Gbps with an average packet size of 100 bytes?

16.3. Can you give an example of a three-field classifier that shows the failure of grid-of-
tries in finding the best matching rule?

TA B L E 16.3 A two-field classifier.

Rule F1 F2

R1 0* 10*
R2 0* 01*
R3 0* 1*
R4 00* 1*
R5 00* 11*
R6 10* 1*
R7 11* 00*
R8 * 00*

C H A P T E R 1 6 IP Packet Filtering and Classification 581

16.4. For the rules shown in Table 16.3, construct a hierarchical trie. What is the best match-
ing rule for a packet with F1 = 0011 and F2 = 0011? How many memory accesses are
required?

16.5. Draw a set pruning trie for the rules shown in Table 16.3. How many memory accesses
are required to classify a packet with F1 = 0011 and F2 = 0011? Compare it with the
hierarchical trie.

16.6. In the set pruning trie of Exercise 16.5, what is the maximum number of accesses
required to classify a packet?

16.7. Construct a grid-of-tries using the rules in Table 16.3. Describe the steps involved in
classifying the packet with F1 = 0011 and F2 = 0011?

16.8. Construct a Lucent bit vector data structure for the rules in Table 16.3. Use a bitmap
of size 8 bits for representing the rules. For classifying a packet with F1 = 0011 and
F2 = 1111, identify how many memory accesses will be required.

16.9. Calculate the overall memory required for the Lucent bit vector data structure in Ex-
ercise 16.8. Assume a size of 4 bytes for a trie pointer and 8 bits for each bitmap.

16.10. Construct a crossproduct table for the rules shown in Table 16.3.

16.11. Construct a table that maps rules to tuples, followed by a tuple space hash table for
the rules shown in Table 16.3.

16.12. Draw the geometric view of the rules in Table 16.3 and identify the number of distinct
regions.

16.13. Construct a HiCuts decision tree for the rules shown in Table 16.3.

16.14. Given an 8-bit wide TCAM, represent the rules specified in Table 16.3.

This page intentionally left blank

Part V: Toward Next
Generation Routing
In this part, we bring together three routing paradigms: packet switching, circuit switching,
and transport routing. Transport routing addresses the paradigm of routing in which a high-
bandwidth entity such as OC-3 can be set up on a semi-permanent basis that can possibly
have a considerable lag time for set up; with the new generation of switching equipment, it
would be possible to set up transport routing and provisioning very quickly. In general, in
the next generation routing, all three paradigms are likely to be juxtaposed together where
all three operate on different time scales.

In Chapter 17, we first start with a discussion on request arrivals, quality of service, and
the time unit on decision on routing for different service needs to show where different rout-
ing paradigms fit in. We then present quality of service routing for service classes with one or
more attributes. We show the relation between QoS routing, dynamic call routing in PSTN,
and widest path routing.

We present MPLS and GMPLS in Chapter 18. In both cases, the connection set up is
typically for a virtual path that would serve as a bearer link to service networks (such as IP
or PSTN) that requires such services. Along with this chapter, the reader may want to read
Chapter 24 to understand the basic premise of transport routing as a general framework.

In Chapter 19, we discuss traffic engineering for MPLS networks. It may be noted that
MPLS can be bearer for IP services where the unit of information is at the packet level; how-
ever, it is also possible for MPLS to be a bearer for virtual private networking, in which paths
may be on a semi-permanent basis. Based on the deployment mode of an MPLS network,
path set up and configuration can also be done on a short notice using RSVP-TE signaling.

In Chapter 20, we present VoIP routing in the IP-PSTN environment. This chapter brings
different issues from packet and call routing into one place; in doing so, addressing issues
from IP addressing, E.164 addressing, and SS7 addressing are considered together along with
ISUP and SIP signaling issues and interworking.

17
Quality of Service
Routing
The more precisely the position is determined, the less precisely the
momentum is known in this instant, and vice versa.

Werner Heisenberg

Reading Guideline

Quality of Service routing includes aspects from both the circuit-switched world and
the packet-switched world. Thus, some knowledge of circuit switching is helpful. In
addition, understanding the material on dynamic call routing in the telephone net-
work (Chapter 10) and its traffic engineering (Chapter 11), along with the link state
routing protocol (Chapter 3) and the shortest and widest path routing algorithms
(Chapter 2), is helpful in getting the most out of this chapter.

C H A P T E R 1 7 Quality of Service Routing 585

Quality of Service (QoS) is an important issue in any communication network; typically, this
can be viewed from the perception of service quality. Eventually any service perception needs
to be mapped to network routing, especially since QoS guarantee is required for a particular
service class.

In this chapter, we discuss what QoS routing means and how different routing algorithms
covered in this book may be extended to fit the QoS routing framework. Finally, we present
a representative set of numerical studies with which we can understand the implications of
different routing schemes and roles played by different network controls.

17.1 Background
We start with a brief background on QoS and QoS routing.

QUALITY OF SERVICE

To discuss Quality of Service routing, we first need to understand what Quality of Service means.
Consider a generic request arrival to a network; if this request has certain resource require-
ments that it explicitly announces to the network at the time of arrival, then QoS refers to the
network’s ability to meet the resource guarantees for this request.

To understand QoS, we will first consider a network link; no routing is considered at this
point. Assume that a request arrives at this network link for a 1-Mbps constant data rate.
If the network link had bandwidth available that is more than 1 Mbps, then it can certainly
accommodate this request. Thus, the arriving request received the specified QoS. Implicit in
this is that the QoS will be continually met as long as this request is active; in other words,
for the duration of the request, the QoS is met.

Suppose that the network link at the instant of the request arrival has less available band-
width than the requested bandwidth. In this case, the request cannot be served. When there
are many arriving requests requiring resource guarantees and the network link cannot ac-
commodate them, another aspect related to QoS emerges. This aspect of QoS considers that
arriving requests usually receive the service guarantee requested with an acceptable prob-
ability of not being turned away; in other words, blocking should not be high. That is, the
blocking probability of arriving requests is another important consideration in regard to QoS.
When we consider from this viewpoint, it is easy to see that traffic engineering and capacity
expansion also play crucial parts in regard to QoS since if the network is not engineered
with a reasonable capacity level, the likelihood of a request facing blocking would be high.
Thus, blocking probability is an important factor in the perception of QoS and is traditionally
known as grade of service (GoS).

In general, the term QoS is used much more broadly than its use in this chapter in the
context of QoS routing. For example, “a network meets QoS” can be interpreted as meeting
delay requirements through a network, not necessarily for a specific request.

QOS ROUTING

Consider now a network instead of just a link. Then for an arriving request that requires
guaranteed resources, the network would need to decide what resources it has in its differ-
ent links and paths so that the request can be accommodated. Thus, QoS routing refers to a
network’s ability to accommodate a QoS request by determining a path through the network

586 17.1 Background

that meets the QoS guarantee. Furthermore, an implicit understanding is that the network’s
performance is also optimized. In this sense, QoS routing cannot be completely decoupled
from traffic engineering.

QOS ROUTING CLASSIFICATION

What are the types of resource guarantees an arriving request might be interested in? Typi-
cally, they are bandwidth guarantee, delay bound, delay jitter bound, and acceptable packet
loss. We have already described a bandwidth guarantee. Delay bound refers to end-to-end de-
lay being bounded. Jitter requires a bit of explanation. In a packet-based network, packets
that are generated at equal spacing from one end may not arrive at the destination with the
same spacing; this is because of factors such as delay due to scheduling and packet processing
at intermediate routers, interaction of many flows, and so on. In real-time interactive applica-
tions such as voice or video, the interpacket arrival times for a call are equally spaced when
generated, but may arrive at the destination at uneven time spacing; thus, interpacket delay
is known as jitter. Packet loss refers to the probability of a packet being lost along the path
from origin to destination.

Consideration of these four factors would, however, depend on whether the network is
a circuit-based network or a packet-based network. To discuss this aspect and the critical
elements related to QoS routing, we also need to consider time granularity in regard to an
arriving request. By considering three time-related factors, arrival frequency, lead time for
set up, and the duration of a session/connection, we broadly classify requests into three
types as listed in Table 17.1. There are very specific outcomes of these classifications. In
Type A, the network technology is either packet-switched or circuit-switched where circuit-
switched networks require bandwidth guarantee while packet-switched networks may have
one or all of the requirements: bandwidth guarantee, delay bound, jitter bound, and accept-
able packet loss. However, Type B is generally circuit-oriented where a permanent or semi-
permanent bandwidth guarantee is the primary requirement; there is very little about on-
demand switching. Routing for the Type B classification is traditionally referred to as circuit
routing (for example, see [596, p. 136]); in recent literature, circuit routing is commonly known
as transport network routing (covered in Chapter 24). Between Type A and Type B, there is an-
other form of routing where some overlap of time granularity is possible. We classify this
type that has overlapping regions as Type C; for example, routing for this type of service can
be accomplished in MPLS networks and will be discussed later in Chapter 19.

Of these classifications, QoS routing arises for a Type A classification. It is thus helpful
to consider a taxonomy for QoS routing to understand the relationship between network-
ing paradigms and QoS factors (see Figure 17.1). In figure, we have included an identifier

TA B L E 17.1 Service request type classification.

Type Average arrival frequency Lead time for setup Duration of session

Type A Subsecond/seconds time frame A few seconds Minutes

Type B Day/week time frame Weeks Months to years

Type C Multiple times a day Minutes Minutes to hours

C H A P T E R 1 7 Quality of Service Routing 587

F I G U R E 17.1 QoS routing taxonomy.

in parentheses for ease of illustration. First note that classification Q.1.a refers to routing in
the current circuit-switched telephone network. You may note that we have already covered
hierarchical and dynamic call routing in a telephone network in Chapter 10. An important
point to note is that both hierarchical and all variations of dynamic call routing fall under
Q.1.a in terms of meeting QoS. It may be noted that old hierarchical call routing meets the
bandwidth guarantee of a new request if admitted; however, hierarchical call routing is not
as flexible as dynamic call routing schemes and requires more bandwidth to provide the same
level of service. This then helps in seeing that traffic engineering efficiency is an implicit re-
quirement of QoS routing, a primary reason why dynamic call routing was pursued in the
telephone network. A broader point is that QoS routing can be accomplished by different
routing schemes—the drivers for QoS routing are developing routing schemes that address
issues such as performance benefit, cost, routing stability, management, and so on. Thus, in
general, dynamic or adaptive routing is preferred over fixed routing. Classification Q.1.a is
a very important area in network routing. Besides circuit-switched voice, many problems in
optical routing also fall under classification Q.1.a; this will be discussed later in Chapter 25.

Classification Q.1.b is an extension of Q.1.a. Multirate, multiservice circuit-switched QoS
routing refers to the case in which there are more than one service classes and an arriving re-
quest for each service class has a different bandwidth requirement as opposed to Q.1.a, where
all arriving requests have the same bandwidth requirement, for example, the current wired
telephone network where per-request bandwidth is 64 Kbps. In case of Q.1.b, service classes
are rigid and the bandwidth requirement of a request in each class is an integral multiple of
the base bandwidth rate. If the base bandwidth rate in the circuit-switched voice network is
64 Kbps, then a switched video service can be defined as, say, 384 Kbps, which is then six
times the base bandwidth rate. It may be noted that among the dynamic call routing schemes
discussed earlier in Chapter 10, real-time network routing (RTNR), discussed in Section 10.6,
has been deployed to handle multiple classes of services.

588 17.1 Background

For the packet-switched branch of QoS routing, there are two aspects to consider: single
attribute or multiple attributes. By single attribute, we mean only a single criterion, such
as the bandwidth requirement, is used as a metric for a request that is considered for QoS
routing. By multiple attributes, we mean that more than one factor, such as bandwidth and
delay, is being considered for QoS routing. Note that we do not distinguish here by rates
as we have done with Q.1.a and Q.1.b, although theoretically it is possible to discuss single
rate and multiple rate. The reason this is grouped together is that packet-switched networks
are usually not designed with a single bandwidth rate in mind—any arbitrary bandwidth
rate is generally usable due to the packet switching nature. It is, however, indeed possible to
deploy a private packet network, for example, a private voice over IP (VoIP) packet network,
where all voice calls have the same data rate. Thus, Q.2.a has some aspects of Q.1.b, with
the additional flexibility of arbitrary data rate of a request. For classification Q.2.b, multiple
criteria are required to handle the decision-making process for an arriving request. This will
be discussed in detail later in this chapter.

For both Q.2.a and Q.2.b, there are two possibilities in terms of path consideration: either
a single path is considered, or paths are cached for alternate paths consideration. Note that
for Q.1.a and Q.1.b, it has been common to consider path caching; in fact, a single path is
rarely considered and is not shown in this classification.

DEFINING A REQUEST AND ITS REQUIREMENT

You may note that so far we have not defined a request. Typically, in a circuit-switching con-
text, a request is labeled as a call; in a packet-switching context, especially in IP networking, a
QoS request is labeled as a flow, while terms such as SIP call or VoIP call are also often used.1

For a discussion on SIP, refer to Chapter 20. Note that the usage of the term flow here is not to
be confused with network flow or link flow described earlier in Chapter 4.

When a call request arrives, there is a call setup phase that can typically perform functions
such as route determination, signaling along the path to the destination, and QoS checking
before the call is setup; in essence, a call request must always face a call setup time delay
before it can be connected—this is also known as postdial delay; certainly, this should be
minimized. For the services that require a QoS guarantee, the call setup phase needs to ensure
that the QoS guarantee can be provided for the entire duration of the call; otherwise, the call
request is denied by the network.

GENERAL OBSERVATIONS

It is quite possible that a network may not have the functionality to guarantee that it can meet
QoS for an arriving request, but yet has the resources to meet the request. An IP network
without integrated services functionality falls into this category. For example, a VoIP call can
receive QoS in an IP network without the network explicitly having the ability to provide a
guarantee at the time of request arrival. This can be possible, for example, if the network is
engineered properly, or overprovisioned. In general, overprovisioning is not desirable since,
after all, a network does cost real money in terms of capacity cost, switching cost, and so on.

1There is yet another terminology in the networking literature: call flows. This term refers to the flow or sequence
diagram of messages in regard to establishing or tearing down a call over an SS7 network or in a SIP environment
or when translation is required at a gateway going from SS7 to SIP, or vice versa.

C H A P T E R 1 7 Quality of Service Routing 589

Finally, much like best-effort traffic services, QoS routing can also have two components:
intradomain and interdomain. Most of this chapter is focused on intradomain QoS routing.
We will briefly discuss interdomain QoS routing at the end.

17.2 QoS Attributes
In the previous section, we mentioned the following factors in terms of attributes: residual
bandwidth, delay, jitter, and packet loss. Note that any of these attributes are applicable under
classification Q.2, while bandwidth is the only one applicable for classification Q.1. We will
now discuss how to classify these attributes in terms of metrics.

Suppose that an arriving request has requirements for bandwidth, delay, jitter, and packet
loss identified by b, τ , ζ , and L, respectively. The important question is how are measures for
these factors accumulated along a path in terms of satisfying the guaranteed requirement of
an arriving call? To understand this, we will consider a path that is made up of three links
numbered 1, 2, and 3, and current residual bandwidth, delay, jitter, and packet loss measures
for link i as bi, τi, ζi, and Li (i = 1,2,3), respectively. We can then list the path measures as
follows:

Type Path measure Requirement

Bandwidth min{b1,b2,b3} ≥ b

Delay τ1 + τ2 + τ3 ≤ τ

Jitter ζ1 + ζ2 + ζ3 ≤ ζ

Packet loss 1 − (1 − L1)(1 − L2)(1 − L3) ≤ L

You can see that the packet loss measure is a nonadditive multiplicative measure; however, it
can be looked at from another angle. If Li (i = 1,2,3) is very close to zero, which is typically
the case for packet loss, again due to traffic engineering requirements, the expression for path
measure can be approximated as follows (see Appendix B.8):

1 − (1 − L1)(1 − L2)(1 − L3) ≈ L1 + L2 + L3. (17.2.1)

Thus, the packet loss measure becomes an additive measure. We can then classify the different
attributes into two groups in terms of metric properties:

Additive: Delay, jitter, packet loss
Nonadditive (concave): Bandwidth

Broadly, this means that from a routing computation point of view, delay, jitter, and packet
loss metrics can be classified under shortest path routing while the bandwidth requirement
metric falls under widest path routing. It may be noted that a buffer requirement at routers
along a path for an arriving request requiring a QoS guarantee is another possible metric
that falls under the nonadditive concave property; however, unlike the rest of the metrics
discussed so far, a buffer requirement is checked as the call setup signaling message is propa-
gated along the path chosen, rather than being communicated through a link state advertise-
ment.

To summarize, for classification Q.2, both additive and nonadditive concave metrics are
possible, while for classification Q.1 only nonadditive concave is appropriate. In the next
section, we will discuss adaptations of shortest path routing and widest path routing for a
request requiring a QoS guarantee.

590 17.3 Adapting Shortest Path and Widest Path Routing: A Basic Framework

17.3 Adapting Shortest Path and Widest Path Routing: A Basic
Framework
Out of different attributes classified into two categories, we will use one metric each from
additive and nonadditive (concave) metric properties for our discussion here. Specifically,
we will use delay for the additive property and bandwidth requirement for the nonadditive
property. We assume here the reader is familiar with shortest path routing and widest path
routing described earlier in Chapter 2. You may note that the discussion in this section is
applicable only to classification Q.2.

From our discussion in Part I of this book, we know that applicability of a particular
routing algorithm for a packet-switched network depends on whether the network is run-
ning a distance vector protocol or a link state protocol. While the basic idea of shortest path
or widest path routing would work under both these protocol concepts, we will assume here
that a link state protocol framework is used since most well-known intradomain routing pro-
tocol frameworks are link state based.

17.3.1 Single Attribute
We first consider that requests have a single additive metric requirement in terms of delay
attribute. A simple way to adapt the shortest path routing algorithm paradigm here is by
using delay as the link cost metric. Suppose a request arrives with the delay requirement no
greater than τ .

For an arriving request requiring a guaranteed delay requirement of τ , do the following:
Compute the shortest delay using the shortest path first algorithm (Algorithm 2.4);
if the result is less than τ , then admit the request; otherwise, deny the request.

Note that the request arrives for a particular destination. Thus, unlike the standard short-
est path first (SPF) algorithm, here the shortest path computation must be computed only for
the specific destination of a request. Consider again Algorithm 2.4 in Chapter 2; in step 3, once
a new node k is identified with the minimum cost path, it can be checked whether this k is the
destination of the request; if so, the algorithm can stop. At this point, this delay cost is then
compared against the arriving request’s delay requirement; if met, the request is accepted,
otherwise it is denied.

What if the single metric is in terms of the bandwidth requirement of a request? This sce-
nario is similar to the delay-based scenario. Suppose that an arriving request has a bandwidth
requirement of b. Then, we can use the following rule:

For an arriving request with a guaranteed bandwidth requirement of b, do the following:
Compute the widest path using Algorithm 2.8 for the specific destination; if this
value is higher than b, then admit the request; otherwise, deny the request.

In many instances, it is desirable to obtain the widest path with the least number of hops
for the path. Although this is sometimes referred to as the shortest-widest path, it is not a good
name since shortest does not indicate the context in which this is meant. Thus, we will refer
to it as the least-hop-widest path. How do we find the widest path with the least number of

C H A P T E R 1 7 Quality of Service Routing 591

hops? Consider again Algorithm 2.8; In step 3 of this algorithm, k in S ′ with the maximum
residual bandwidth is determined. Instead of storing just one k, the list of nodes where the
maximum residual bandwidth is attained is determined. If this list happens to have more
than one element, then k is chosen so that it is the least number of hops from source node
i. In essence, this means that if there are multiple paths with maximum residual bandwidth,
choose the one with the least number of hops; if there are still such multiple paths, one is
randomly selected. In the same manner, a least-hop-minimum delay path can be determined
when a delay metric is used.

17.3.2 Multiple Attributes
In this case, consider an arriving request specifying that both the delay as well as the band-
width requirement must be satisfied. This can be addressed from the point of view of which
factor is to be considered the dominant factor: delay or bandwidth; this, however, depends on
which is found: a bandwidth feasible path while the delay is minimized, or a delay feasible
path while maximizing available bandwidth.

Again, we can adapt the widest path and shortest path routing framework. To determine
the minimum delay path that satisfies the bandwidth requirement of a request, we can initial-
ize any link that does not meet the bandwidth requirement temporarily as a link with infinite
delay; this method of considering a nonadditive metric requirement with an additive shortest
path computation is generally known as constrained shortest path routing. Instead, if we were
to determine a maximum residual bandwidth, i.e., the widest path while meeting the delay
requirement, we can initialize any link that does not meet the delay requirement by temporar-
ily setting the residual link bandwidth to zero; this form can be classified as constrained widest
path routing. Note that for a constrained shortest path, the constraint is on bandwidth, while
for a constrained widest path, the constraint is on delay. For source node i and destination
node v, we present both routing algorithms in Algorithm 17.1 and Algorithm 17.2 for com-
pleteness. The notations are summarized in Table 17.2. Chapter 2 may also be consulted for
comparison.

TA B L E 17.2 Notation for QoS routing.

Notation Remark

i Source node

v Destination node
N List of all nodes
Nk List of neighboring nodes of k
S List of nodes considered so far
S ′ List of nodes yet to be considered
τij Link delay on link i-j (set to ∞ if the link does exist, or not to be considered)
Tij Delay from node i to node j
bij Residual bandwidth on link i-j (set to 0 if the link does exist, or not to be

considered)

Bij Bandwidth available from node i to node j

592 17.3 Adapting Shortest Path and Widest Path Routing: A Basic Framework

A L G O R I T H M 17.1 QoS minimum delay path with bandwidth feasibility
S = {i} // permanent list; start with source node i
S ′ = N \ {i} // tentative list (of the rest of the nodes)
for (j in S ′) do

// check if i-j directly connected and link has required bandwidth b
if (τij < ∞ and bij ≥ b) then

Tij = τij // note the delay cost
else

τij = ∞; Tij = ∞ // mark temporarily as unavailable
endif

endfor
while (S ′ is not empty) do // while tentative list is not empty

Ttemp = ∞ // find minimum-delay neighbor k
for (m in S ′) do

if (Tim < Ttemp) then
Ttemp = Tim; k = m

endif
endfor
if (Tik > τ) then // if minimum delay is higher than delay tolerance

’No feasible path exists; request denied’
exit

endif
if (k == v) then exit // destination v found, done
S = S ∪ {k} // add to permanent list
S ′ = S ′\{k} // delete from tentative list
for (j in Nk ∩ S ′) do

if (Tij > Tik + τkj and bkj > b) then // if delay is less via k
Tij = Tik + τkj

endif
endfor

endwhile
if (Tiv ≤ τ) then // final check, if the path meets delay requirement

’Request accepted’
else

’No feasible path exists; Request denied’
endif

17.3.3 Additional Consideration

We next consider a general question: can we provide QoS routing in a packet environment
where buffer guarantee at routers is also required? For this, assume that the packet network
is an integrated services environment. For a request requiring bandwidth guarantee on de-
mand, we need to consider also whether the router’s scheduling algorithm can guarantee
requests in terms of buffering, in addition to bandwidth guarantee on links. This brings in
the issue of scheduling with routing. It has been shown that this combined problem can be
addressed with a polynomial time algorithm that factors in capacity and constrained shortest
path [766].

C H A P T E R 1 7 Quality of Service Routing 593

A L G O R I T H M 17.2 QoS widest path with delay feasibility
S = {i} // permanent list; start with source node i
S ′ =N \ {i} // tentative list (of the rest of the nodes)
for (j in S ′) do

// if i-j directly connected and link has required bandwidth b
if (bij > b and τij < ∞) then

Bij = bij; Tij = τij
else

bij = 0; Bij = 0; τij = ∞; Tij = ∞ // mark temporarily as unavailable
endif

endfor
while (S ′ is not empty) do // while tentative list is not empty

Btemp = 0 // find neighbor k with maximum bandwidth
for (m in S ′) do

if (Bim > Btemp) then
Btemp = Bim; k = m

endif
endfor
if (Bik < b) then // bandwidth is higher than the request tolerance

No feasible bandwidth path exists; request denied
exit

endif
if (k == v) then exit // destination v is found; done
S = S ∪ {k} // add to permanent list
S ′ = S ′\{k} // drop from tentative list
for (j in Nk ∩S ′) do // path has higher bandwidth

if (Bij < min{Bik,bkj}) then
Bij = min{Bik,bkj}
Tij = Tik + τkj

endif
endfor

endwhile
if (Biv ≥ b) then // final check; if path meets bandwidth requirement

’Request accepted’
else

’No feasible path exists; Request denied’
endif
end procedure

17.4 Update Frequency, Information Inaccuracy, and Impact on
Routing
In the previous section, we have provided the computational framework for QoS routing for
classification Q.2 by considering single or multiple attributes. What is missing is how often
attribute information is obtained and/or when the computation is performed. To discuss
these important aspects, we will again assume that a link state framework is used.

Ideally, it appears that if a node knows the state of each link in terms of the applicable
attributes (either single or multiple) instantaneously, it can then invoke routing computation.
There are, however, practical limitations on this utopian view:

• First, an instantaneous update is almost impossible in a real network; very frequent up-
dates can lead to excessive information exchange, which can overload a network. In fact,

594 17.4 Update Frequency, Information Inaccuracy, and Impact on Routing

it has now become a common practice in many routing protocols to include a hold-down
time to assert that no updating of information is allowed that is more frequent than the
hold-down time. Also note that if a particular link state is advertised too frequently due
to a legitimate change in the link state status, some form of dampening is still applied
by a receiving node to avoid having an undesirable performance consequence, and be-
fore flooding to its neighboring node; as an example of a similar situation, see Section 8.9
addressed for the border gateway protocol (BGP).

• Second, there are two possibilities in regard to routing computation: (1) perform the com-
putation periodically, or (2) perform it on demand for every arriving request. The second
option is usually avoided since an important requirement in QoS routing services is that
the call setup time, also known as postdial delay, for an arriving request is as small as pos-
sible. There is an important lesson to be learned here from RTNR (refer to Section 10.6).
In an almost fully mesh network environment with a separate signaling (SS7) network for
link state message exchanges, RTNR was initially intended to be deployed with per call
computation in mind; in actuality, the computation is based on the information queried
for the previous call in order to avoid increasing postdial delay to an undesirable level. For
a general packet network, performing routing computation on demand for each arriving
request can be taxing on the CPU load of the node—thus, this is also not desirable.

• Finally, it is not hard to realize that if the link state information obtained at a node is de-
layed due to periodic/asynchronous update or dampening, i.e., the link state information
is somewhat stale or inaccurate. Due to such inaccurate information, it is questionable if
it is worth doing a per-call routing computation.

To summarize, for QoS routing, it is more appropriate to perform a routing computation
periodically than on a per-call basis and build a routing table. Taking this entire scenario into
account, the arrival of link state information and the timing of the routing computation are
depicted in Figure 17.2. It may be noted that due to the periodic computation framework,
instead of executing a constrained shortest path or constrained widest path on a per-pair
basis, it can be performed on a source to all destination basis, albeit with the option that for
a specific pair the computation can be triggered if needed. In any case, it is important to note
that if there is a network link failure, usually link state flooding and routing computation are
triggered immediately so that changes can be accommodated by each node.

There is, however, an important consequence of periodic/update and periodic routing
table computation. Suppose that the routing is hop-by-hop and each node has only one entry
for each destination identified by the next hop. When an actual request arrives, there may not
be enough resources along the path (dictated by the routing table) to establish the call. Thus,
this request is denied entry, which then affects the overall call-blocking probability. Note that
just being locked into one path during two consecutive routing computations does not nec-
essarily mean that all arrivals will be blocked during this window; it is important to note
that during this time window, some exiting calls might be overreleasing resources that can
be used by newly arrived calls (for example, refer to Figure 11.1). In any case, to maintain the
GoS aspect of QoS, there are two possibilities: (1) updates must be done frequently enough so
that the newly obtained path does not block too many calls, or (2) the network is engineered
with enough capacity/resources so that the overall blocking effect is maintained at an accept-

C H A P T E R 1 7 Quality of Service Routing 595

F I G U R E 17.2 Time of link state advertisement and routing computing for QoS routing.

able level. The first option belongs to traffic engineering while the second option belongs to
capacity expansion. Note that it is also important to maintain the GoS aspect of QoS to avoid
excessive user-level retry in case calls are blocked.

Since an important goal of QoS routing is to provide good traffic engineering, we may ask
the following question: can we consider more than one path from a source to a destination?
This will partly depend on whether the network is capable of providing hop-by-hop routing
and/or source routing. In the case of hop-by-hop routing, the only option for multiple paths
is if there are two paths of equal cost, i.e., equal-cost multipath (ECMP). It is difficult to find
multiple equal-cost paths in a constrained-based routing environment. In a source routing
environment, multiple paths can be cached ahead of time, which then leads to the possibility
of alternate routing options.

17.5 Lessons from Dynamic Call Routing in the Telephone Network
There has been extensive experience with alternate routing for dynamic call routing for the
telephone network; see Chapter 10 for details and also Section 11.6. First, we summarize the
typical network environment for dynamic call routing in telephone networks:

• The network is fully mesh, or nearly fully mesh.

• Calls attempt a direct link path first (if available); then an alternate path is attempted;
alternate paths are made of at most two links.

• The path cost is nonadditive, concave.

• The alternate paths to be considered and the number of such paths to be cached depend
on specific routing schemes.

• Call setup can be based on progress call control or originating call control.

• In the presence of originating call control, a call crankback can be performed to try another
path, if such a path is listed in the routing table.

• Routing schemes use a link state framework.

596 17.6 Heterogeneous Service, Single-Link Case

• Link state update, setup messages, and crankback messages are carried through out-of-
band signaling, for example, using an SS7 network.

• The main performance measure is minimization of call-blocking probability, which can
dictate the choice of a routing scheme. However, factors such as messages generated due
to call setup, crankback, and link state updates can also be deciding factors.

There are key lessons learned from such a dynamic call routing environment:

• In general, a dynamic call routing scheme increases throughput, but has a metastability
problem beyond a certain load to capacity ratio in the network.

• A trunk reservation feature is used to protect a direct link from being excessively used by
alternate routed calls to avoid metastable behavior. In essence, trunk reservation works as
a link-level admission control. An important consequence that sounds counterintuitive is
that a network may not accept a call even if it has capacity under certain conditions.

• For effective traffic engineering, especially under overload conditions, several control
measures such as dynamic overload control, call gapping, and hard to reach may need
to be invoked.

To reiterate, dynamic call routing in a telephone network is operating for single-rate ho-
mogeneous service—all are voice calls requiring the same amount of bandwidth for the du-
ration of the call. The first question then is what changes in regard to a heterogeneous service
environment where arriving calls require differing bandwidth. This is discussed in the next
section.

17.6 Heterogeneous Service, Single-Link Case
To understand an important difference going from a single-rate service case to a multiple-
rate service case, we illustrate a performance scenario that has important implications for
QoS routing. Note that this analysis requires some understanding of offered load in Erlangs
(Erls) and call blocking, discussed earlier in Section 11.2 using just a single link without the
presence of routing. The results discussed below are summarized in Table 17.3.

Consider a service that requires 1 Mbps of bandwidth during the duration of the call.
Assume that the link capacity is 50 Mbps; thus, this link can accommodate at most 50 such
calls simultaneously, that is, the effective capacity of the link is 50. Assume that the call arrival
pattern is Poisson with an average call arrival rate at 0.38 per second, and that the average
duration of a call is 100 seconds. Using Eq. (11.2.2), we can determine that the offered load
is 0.38 × 100 = 38 Erls. Furthermore, using the Erlang-B loss formula Eq. (11.2.3), we can
find that 38 Erls offered to a link with 50 units of capacity results in a call-blocking probabil-
ity of 1%. Since most networking environments would like to maintain a QoS performance
requirement for call blocking below 1% probability, we can see that users will receive accept-
able QoS in this case. Note that to meet QoS, there are two issues that need to be addressed:
(1) each call must receive a bandwidth guarantee of 1 Mbps, if admitted, and (2) the call ac-
ceptance probability is below 1% so that users perceive that they are almost always going to
get a connection whenever they try.

C H A P T E R 1 7 Quality of Service Routing 597

TA B L E 17.3 Call blocking for different services under various scenarios.

Link capacity alow ahigh mlow mhigh Reservation Blow Bhigh Wcomposite

(Mbps) (Erls) (Erls) (Mbps) (Mbps) (Yes/No)

50 38.0 — 1 — 1.03% — 1.03%

50 19.0 1.9 1 10 No 0.21% 25.11% 12.66%

85 19.0 1.9 1 10 No 0.05% 0.98% 0.52%

85 22.8 1.9 1 10 No 0.08% 1.56% 0.75%

85 22.8 1.9 1 10 Yes 1.41% 0.94% 1.20%

85 22.8 1.9 1 10 Yes, Prob = 0.27 1.11% 1.10% 1.11%

Next, consider the situation where we allow a new 10-Mbps traffic stream on the same 50-
Mbps link to be shared with the basic 1-Mbps traffic stream. We start by splitting the 38 Erls
of offered load equally, i.e., 19 Erls to the 1-Mbps traffic class and 19 Erls to the 10-Mbps traf-
fic class. However, note that each 10-Mbps call requires 10 times the bandwidth of a 1-Mbps
call. Thus, a more appropriate equitable load for a 10-Mbps traffic stream would be 1.9 Erls
(= 19/10) when we consider traffic load level by accounting for per-call bandwidth impact.
The calculation of blocking with different traffic streams and different bandwidth require-
ments is much more complicated than the Erlang-B loss formula; this is because the Erlang-B
formula is for traffic streams where all requests have the same bandwidth requirement. The
method to calculate blocking in the presence of two streams with differing bandwidth is
known as the Kaufman–Roberts formula [356], [597]. Using this formula, we can find that the
blocking probability for a 1-Mbps traffic class will be 0.21%, while for a 10-Mbps traffic class
it is 25.11%.

We can see that for the same amount of load exerted, the higher-bandwidth traffic class
suffers much higher call blocking than the lower-bandwidth service in a shared environment;
not only that, the lower-bandwidth service in fact has much lower blocking than the accept-
able 1% blocking. If we still want to keep the blocking below 1%, then there is no other op-
tion than to increase the capacity of the link to a higher-capacity link (unless the network is
completely partitioned for each different service). After some testing with different numbers,
we find that if the link capacity is 85 Mbps, then with 19 Erls load of 1-Mbps traffic class and
1.9 Erls load of 10-Mbps traffic class, the call blocking would be 0.05% and 0.98%, respectively.
The important point to note here is that with the introduction of the higher-bandwidth traffic
class, to maintain a 1% call-blocking probability for each class, the link capacity is required to
be 70% (= (85 − 50)/50) more than the base capacity.

Now, consider a sudden overload scenario for the 1-Mbps traffic class in the shared envi-
ronment while keeping the overall capacity at the new value: 85 Mbps. Increasing the 1-Mbps
traffic class by a 20% load while keeping the higher bandwidth (10 Mbps) traffic class at the
same offered load of 1.9 Erls, we find that the blocking changes to 0.08% and 1.56%, respec-
tively. What is interesting to note is that although the traffic for the lower-bandwidth call has
increased, its overall blocking is still below 1%, while that of the higher-bandwidth call has
increased beyond the acceptable threshold level; yet there has been no increase in traffic load
for this class. These are sometimes known as mice and elephants phenomena. Here mice are the
lower-bandwidth service calls, while elephants are the higher-bandwidth service calls. How-

598 17.6 Heterogeneous Service, Single-Link Case

ever, unlike IP-based TCP flows (see [272]), the situation is quite different in a QoS-based
environment—it is the mice that get through while elephants get unfair treatment.

This suggests that some form of admission control is needed so that higher-bandwidth
services are not treated unfairly. One possibility is to extend the idea of trunk reservation to
service class reservation so that some amount of the link bandwidth is logically reserved for
the higher-bandwidth service class. Taking this into account, assume that out of 85 Mbps of
capacity, 10 Mbps of capacity is reserved for the elephant (10-Mbps) service class; this means
that any time the available bandwidth drops below 10 Mbps, no mice (1 Mbps) traffic calls
are allowed to enter. With this change in policy, with 20% overload for mice traffic from 19
Erls, while elephant traffic class remains at 1.9 Erls, we find that the call blocking for mice traf-
fic would be 1.41% and 0.94%, respectively—that is, the elephant traffic class is not affected
much; this is then good news since through such a service class–based reservation concept,
certain traffic classes may be protected from not getting their share of the resources. Now,
if an equitable blocking is still desirable for both service classes, even though only the low-
bandwidth stream is overloaded, then some mechanisms are needed to increase the blocking
for the elephant service class. A way to accomplish this is to consider a probabilistic admis-
sion control; this rule can be expressed as follows:

• An amount of bandwidth threshold may be reserved for higher-bandwidth calls, which is activated
when the available bandwidth of the link falls below this threshold. As a broad mechanism, even
when this threshold is invoked, lower-bandwidth calls may be admitted based on meeting the ac-
ceptable probabilistic admission value.

To compute blocking for each traffic class with differing bandwidth and a probabilistic
admission control and reservation, an approach presented in [480] is used. In Table 17.3 we
list the probabilistic admission control case along with reservation and no reservation for the
higher-bandwidth traffic class; you can see that equity in call blocking can be achieved when,
with reservation, 27% of the time low-bandwidth calls are still permitted to be admitted.

We now consider the other extreme when only high-bandwidth 10-Mbps calls, still with
38 Erls of traffic, are offered. To keep call-blocking probability at 1%, with 38 Erls of offered
load, a link would still need 50 units of high-bandwidth call-carrying capacity; this then trans-
lates to a raw bandwidth of 50 × 10 Mbps = 500 Mbps. Thus, we can see that depending on
whether a network link faces low-bandwidth calls, or a mixture of low- and high-bandwidth
calls, or just (or mostly) high-bandwidth calls, for the same offered load exerted, the link
requires vastly different raw link bandwidth to maintain a QoS performance guarantee.

Finally, while we discuss call blocking for each individual traffic class, it is also good to
have a network-wide performance objective in terms of bandwidth measure. Suppose that
alow is the offered load for the low-bandwidth traffic class that requires mlow bandwidth per
call; similarly, ahigh is the offered load for high-bandwidth traffic, and mhigh is the bandwidth
requirement per call of high-bandwidth calls, then a bandwidth blocking measure is given
by

Wcomposite = mlowalowBlow + mhighahighBhigh

mlowalow + mhighahigh
. (17.6.1)

C H A P T E R 1 7 Quality of Service Routing 599

These composite performance measure values for the cases considered above are also
listed in Table 17.3. We can see that while this composite measure is a good overall indicator,
it can miss unfair treatment to high-bandwidth calls.

Generalizing from two service classes to the environment where each arriving call i has
an arbitrary bandwidth requirement mi, the composite bandwidth blocking measure, known
as Bandwidth Denial Ratio (BDR), is given by

Wcomposite =
∑

i∈Blocked Calls mi∑
i∈Attempted Calls mi

. (17.6.2)

However, we have learned an important point from our illustration of low- and high-
bandwidth traffic classes that higher-bandwidth classes may suffer higher blocking. We can
still consider a simple generalization determine if a similar occurrence is noticed when each
call has a differing bandwidth. Based on profiles of calls received, they may be classified
into two or more groups/buckets in terms of their per-call bandwidth requirements, and
then apply the above measure to each such group. For example, suppose that a network
receives calls varying from a 64-Kbps requirement to a 10-Mbps requirement; calls may be
put into, say, three buckets: 0 to 3 Mbps, 3 Mbps to 7 Mbps, and higher than 7 Mbps. If
higher-bandwidth groups have a significantly higher-bandwidth blocking rate than the aver-
age bandwidth blocking rate for all calls, then this is an indicator that some form of admission
control policy is needed so that the higher-bandwidth call groups do not necessarily have a
significantly higher-bandwidth blocking rate.

17.7 A General Framework for Source-Based QoS Routing with Path
Caching
We now consider a general alternate call-routing framework where calls are heterogeneous.
To consider a general framework, we first summarize several goals of QoS routing:

• Reduce the impact on the call setup time by keeping it as low as possible.

• Minimize user-level retry attempts, i.e., it is preferable to do retry internally to the network
as long as the call setup time is not drastically affected. It is important to note that user-
level retry attempts cannot be completely avoided, at least in a heavily loaded network,
i.e., a network where the ratio of traffic to network bandwidth is at a level beyond the
normally acceptable tolerance for service guarantee.

• Allow the capability for the source node to select a path from a number of possible routes
very quickly for each arriving request. Also, allow crankback capability as an optional fea-
ture.

• Allow a call admission control feature that can be invoked.

To keep call setup time minimal and the need to minimize user-level retry along with the
recognition that on-demand route determination can be taxing suggests that having multiple
path choices can be beneficial in a QoS routing environment; this is often referred to as alter-
nate path routing. Since path caching is necessary to be able to do alternate path routing, we

600 17.7 A General Framework for Source-Based QoS Routing with Path Caching

refer to it as the path caching option. With multiple path choices, knowing that due to inaccu-
rate/stale information blocking on a path selected cannot be completely ruled out, crankback
is a nice optional feature to try another path quickly, thus avoiding user-level retry.

Finally, a framework should allow the ability to incorporate a number of routing schemes
so that network providers can choose the appropriate one depending on their performance
and systems configuration goal.

17.7.1 Routing Computation Framework

The basic idea behind this framework addresses the following: how is the selection of paths
done, when are they selected, and how are they used by newly arrived requests? For calls re-
quiring bandwidth guarantees, another important component that can complicate the matter
is the definition of the cost of a path based on possibly both additive and nonadditive prop-
erties. Later, we will consider our framework using an extended link state protocol concept.
Before we discuss this aspect, we describe a three-phase framework [469]: (1) Preliminary
Path Caching (PPC) phase, (2) Updated Path Ordering (UPO) phase, and (3) Actual Route
Attempt (ARA). Each of these phases operates at different time scales.

The first phase, PPC, does a preliminary determination of a set of possible paths from
a source to destination node, and their storage (caching). A simple case for this phase is to
determine this set at the time of major topological changes. PPC, in the simplest form, can be
thought of as topology dependent, i.e., if there is a change in the major topological connec-
tivity, then the PPC phase may be invoked. This can be accomplished by a topology update
message sent across the network in a periodic manner. This process can be somewhat intelli-
gent, i.e., if a link availability is expected to be less than a certain threshold for a prolonged
duration or if the link is scheduled for some maintenance work, then PPC can also be used
for pruning the link and a new topology update, thus letting nodes determine a new set of
cached paths. Essentially, PPC uses a coarse-grain view of the network and determines a set
of candidate paths to be cached. A simple mechanism to determine the set of paths for each
source node to each destination node may be based on hop count or some administrative
weight as the cost metric using the k-shortest paths algorithm (refer to Section 2.8). Thus,
for this phase, we assume the link cost metric for determining a set of candidate paths to be
additive.

The second phase, UPO, narrows the number of QoS acceptable paths; this module uses
the most recent status of all links as available to each source node. Since the PPC phase has
already cached a set of possible paths, this operation is more of a compare or filter to provide
a set of QoS acceptable paths. Furthermore, for a specific service type or class, this phase may
also order the routes from most acceptable to least acceptable (e.g., based on path residual
bandwidth), and will, in general, have a subset of the routes “active” from the list obtained
from the PPC phase. In this phase, the cost metric can be either additive, e.g., delay require-
ment, or nonadditive, i.e., bandwidth requirement, or a combination, where one is more dom-
inant than the other. Another important factor to note about the UPO phase is that the value
of the link state update interval may vary, with each node being able to select the interval
value; for simplicity, we will refer to this as the routing link state update interval (RUI). This
phase should be more traffic dependent (rather than on-demand per call) with a minimum
and maximum time window on the frequency of invocation.

C H A P T E R 1 7 Quality of Service Routing 601

The third phase is ARA. From the UPO phase, we already have a reasonably good set of
paths. The ARS phase selects a specific route on which to attempt a newly arrived flow. The
exact rule for selecting the route is dependent on a specific route selection procedure. The
main goal in this phase is to select the actual route as quickly as possible based on the pruned
available paths from the UPO phase.

There are several advantages of the three-phase framework:

• Different routing schemes can be cast in this framework.

• It avoids on-demand routing computation; this reduces the impact on the call setup time
significantly since paths are readily available; i.e., there is no “cost” incurred from needing
to compute routes from scratch after a new flow arrives.

• The framework can be implemented using a link state routing protocol with some exten-
sion. For the PPC phase, some topology information, for example, needs to be exchanged
at coarse-grain time windows. During the UPO phase, periodic update on the status of
link usage is needed at a finer grain time window. Since different information about links
is needed at different time granularity for use by the PPC and the UPO phase, we refer to
this as the extended link state protocol concept.

• Each of the three phases can operate independently without affecting the other ones. For
example, in the PPC phase, the k-shortest paths can be computed either based on pure
hop count or other costs such as link speed–based interface cost. In some schemes the
UPO phase may not be necessary.

A possible drawback of the framework is that path caching will typically require more
memory at the routers to store multiple paths; this will certainly also depend on how many
paths are stored. However, with the drop in memory price, a path caching concept is more
viable than ever before. Additionally, there is some computational overhead due to k-shortest
path computation on a coarse-scale time window. Our experience has been that k-shortest
path computation takes only a few seconds to generate 5 to 10 paths in a 50-node network on
an off-the-shelf computer. Thus, this overhead is not remarkable since it is done in the PPC
phase. If needed, a router architecture can be designed to include a separate processor to do
this type of computational work periodically.

17.7.2 Routing Computation
Consider the source destination node pair [i, j]. The set of cached paths for this pair deter-
mined at time t (the PPC phase time window) is denoted by P[i,j](t) and the total number of
paths given by #(P[i,j](t)). For path p ∈ P[i,j](t), let Lp

[i,j](t) denote the set of links used by this
path.

Let b	(t) be the available capacity of link 	 at time t (obtained using the link state proto-
col for the UPO phase). Then, from a bandwidth availability perspective, the cost of path p
for [i, j] is determined by the nonadditive concave property of the available capacity on the
bottleneck link along the path:

zp
[i,j](t) = min

	∈Lp
[i,j](t)

{b	(t)} . (17.7.1)

602 17.7 A General Framework for Source-Based QoS Routing with Path Caching

Since the path is known from the PPC phase, this filter operation is quite simple. If the
index p is now renumbered in order of the most available bandwidth to the least available
bandwidth at time t, that is, from the widest path, the next widest path, and so on, then we
have

z1
[i,j](t) ≥ z2

[i,j](t) ≥ · · · ≥ z
#(P[i,j](t))
[i,j] (t). (17.7.2)

Similar to node i, all other source nodes can use the same principle to determine their own
ordered path sets.

How is the available capacity of various links known to nodes i? This can be determined
by receiving used capacity of various links through a link state protocol, either in a periodic
or an asynchronous manner. Note the availability of the bandwidth on a link is dependent on
whether trunk reservation is activated. Suppose the capacity of link 	 is C	, and the currently
occupied bandwidth as known at time t (based on link state update) is u	(t). In the absence
of trunk reservation, the available bandwidth on link 	 is given by

b	(t) = C	 − u	(t). (17.7.3)

If, however, a part of the link bandwidth r	(t) for link 	 is kept for trunk reservation at time t,
then

a	(t) = C	 − u	(t) − r	(t). (17.7.4)

The former is sometimes also referred to as the residual bandwidth and the second as the
available or allowable bandwidth.

There are two important observations to note. First, if the last update value of u	(t)
changes dramatically, it can affect the decision process. Thus, in practice, an exponential
weighted moving average value u	(t) is more appropriate to use than the exact value from
the most recently obtained measurement; a discussion on how the exponential weight mov-
ing average can be computed is given in Appendix B.6. Second, the reservation allocation for
different service classes may be different; thus, it may be beneficial to keep different sets of
alternate paths to consider for different service classes. This means that each service class is
essentially sliced into a virtual topology.

17.7.3 Routing Schemes

The computation described above can be used in a number of ways. An obvious one is the
maximum available capacity-based scheme (widest path); furthermore, the availability can be
proportioned to different paths to select a weighted path, similar to dynamically controlled
routing (DCR) (see Section 10.4).

The decision on computation routes may depend on whether the information is periodi-
cally updated. Finally, the crankback feature availability is a factor to consider; here we will
assume that the crankback is activated only at the source node. This means that during the
call setup phase, an intermediate node does not try to seek an alternate path; instead, it re-
turns the call control to the originating node when the call does not find enough resources on
the outgoing link for its destination.

C H A P T E R 1 7 Quality of Service Routing 603

Recall that a fundamental component of the QoS routing framework used here is path
caching. With this, in the PPC phase, a k-shortest paths algorithm (refer to Section 2.8) is used
to generate a set of paths, which is cached. At this phase, the cost metric used is additive.
For the routing schemes, an extended link state protocol is used to disseminate the status
of the link (different information) at the PPC phase and the UPO phase. Since paths are al-
ready cached, the UPO phase can use a simple filtering mechanism to order paths based on
available bandwidth (for services that require bandwidth guarantee for QoS). If there are ser-
vices that have other QoS requirements such as path delay, these requirements can be easily
incorporated in the UPO phase as additional filters.

Recall that an important goal of reducing the impact on flow setup time is addressed by
the framework through the notion of path caching. Due to the three-phase framework, the
newly arrived flow attempts one of the paths already pruned by the UPO phase—so there
is no on-demand route computation delay in this phase. Depending on the periodicity of
the UPO phase and the arrival of the link state advertisement, the pruned path set can have
outdated information. Thus, some newly arrived flows can be assigned to a path that may
not have any available bandwidth at this instant. This cannot be completely avoided unless
the frequency of the update interval is reduced; if this is done, then more frequent link state
advertisement would be necessary, which leads to an increase in network traffic.

17.7.4 Results
For performance studies, we consider maximum available capacity routing with periodic
update and crankback (MACRPC), as well as for no crankback (MACRPNC). Note that
MACRPC uses the shortest widest path on residual bandwidth, but with trunk reservation
turned on, and the computation is periodic. For comparison, the utopian scheme, maximum
available capacity routing with instantaneous computation (MACRIC), is also considered.
This is possible since we have used a simulation environment where the instantaneous fea-
ture can be invoked. Also, we consider a sticky random routing scheme that extends the
dynamic alternate routing scheme (see Section 10.5) to the multiservice case, which is labeled
as cached sticky random adaptive routing (CaSRAR). Results presented here are based on
call-by-call routing simulation for randomly arriving calls that follow the Poisson process.

REVISIT HOMOGENEOUS TRAFFIC CASE

We first start with results on call blocking for the homogeneous service case as the number
of cached paths K changes from 2 to 15 (for a 10-node fully connected network); this is re-
ported in Figure 17.3 for both the case of no reservation and with trunk reservation set at
40%; while a very high trunk reservation value such as 40% is rarely used in an operational
network, the intent here is to show how results are influenced, with and without trunk reser-
vation. It is interesting to note that for the no reservation case, the increase of cached paths
does not necessarily result in improvement in performance for all routing schemes. We see
improvement only for MACRPNC. However, with trunk reservation activated, performance
can improve with the increase in K for all routing schemes. This substantiates the claim on
performance degradation in the absence of trunk reservation as reported in [385]. Further-
more, our result shows that this behavior is not necessarily consistent for all routing schemes.
For the utopian scheme, MACRIC, the performance degrades drastically as K increases when

604 17.7 A General Framework for Source-Based QoS Routing with Path Caching

F I G U R E 17.3 Homogeneous service fully-connected network (with and without trunk
reservation).

there is no trunk reservation. Although this may sound surprising, this is possibly caused
by overuse of multiple-link paths through instantaneous checking, which leads to local op-
timization and bistability. We observe the same problem with MACRPC when there is no
trunk reservation. Overall, CaSRAR and MACRPNC are more robust in the absence of trunk
reservation. However, in the presence of high trunk reservation, as K increases we found that
MACRIC and MACRPC had better performances than CaSRAR and MACRPNC. Overall,
these results show that path caching is indeed helpful; however, the actual routing schemes
and factors such as trunk reservation do matter.

SERVICE CLASS PERFORMANCE

Next we discuss the case of heterogeneous services where three different service classes with
differing bandwidth requirements for each service class are offered. We consider two cases:
the network capacity in the first one is dimensioned2 for low BDR (less than 1%) while the
second one is dimensioned for moderately high BDR (over 5%). From the scenario where the
network is dimensioned for low BDR (Figure 17.4(a)), we found that in the presence of trunk
reservation, as K increases the BDR decreases for all schemes (similar to the homogeneous
case). However, this is not true when the network is dimensioned for moderate BDR (Fig-
ure 17.4(b)), even in the presence of moderate trunk reservation. The pattern is somewhat
closer to the homogeneous case with no trunk reservation. What we can infer is that even in

2Dimensioning or sizing refers to determining the capacity needed in a network to carry a given traffic offered
load at a prespecified level of performance guarantee.

C H A P T E R 1 7 Quality of Service Routing 605

F I G U R E 17.4 Performance of different routing schemes (and update periods),
(a) low-load, sparsely connected case, (b) higher-load case.

the presence of trunk reservation, the ability to hunt over multiple paths through crankback
is beneficial in a network designed for low BDR, but crankback can be detrimental when
the network is designed for moderately high BDR as it impacts network performance (and
also can lead to higher flow setup time due to frequent path hunting). See [695] for more
details.

Now we discuss briefly the role of the UPO phase. Recall that different routing update in-
terval (RUI) parameter values can be used for the UPO phase. As one would guess, with more
frequent updates (i.e., for a smaller value of RUI), the inaccuracy in link state information de-
creases. It is observed that both schemes MACRPC and MACRPNC give better performance
with more frequent updates as would be intuitively guessed. However, it appears that in-
accuracy in link state information can be well compensated by the availability of crankback
in a network designed for low BDR. Specifically, we note that MACRPC with an RUI of 360
seconds has much lower BDR than MACRPNC with an RUI of 120 seconds (Figure 17.4(a)).
However, the reverse relation holds when the load is moderately high (Figure 17.4(b)). We
also saw in an earlier example (through MACRIC) that instantaneous information update is
not always beneficial in terms of network performance (as well as negatively affecting flow
setup time considerably). Overall, we can infer that inaccuracy in link state information is not

606 17.7 A General Framework for Source-Based QoS Routing with Path Caching

necessarily bad, and in fact, can be well compensated through path caching; in any case, the
specifics of the routing scheme do play a role here.

So far we have discussed performance using the network-wide indicator bandwidth
blocking rate. We are next interested in understanding the effect on each service class. For
this, we have considered three service classes in increasing order of bandwidth requirement,
i.e., the first service (s1) class has the lowest bandwidth requirement per flow, while the
third service class (s3) has the highest bandwidth requirement per flow. For a network di-
mensioned for low BDR, we found that with a moderate to large number of path caching,
CaSRAR and MACRPNC tend to give poorer performances to the higher bandwidth service
class (s3), whether the network is fully or sparsely connected (Figure 17.4(a) is shown here
for the sparsely connected case). Furthermore, the inaccuracy of routing information due to
the update interval of the UPO phase does not seem to affect MACRPC for different service
classes but can noticeably affect MACRPNC (Figure 17.4(a)). To check whether the same be-
havior holds, we increased the load uniformly for all service classes. We made some interest-
ing observations (Figure 17.4(b)): the lowest bandwidth service (s1) has uniformly low flow
blocking for all routing schemes; however, the highest bandwidth service class (s3) is affected
worst under MACRPC at the expense of the lower bandwidth classes; i.e., MACRPC is more
unfair to higher-bandwidth services as the network load uniformly increases. In general, we
found that CaSRAR works better than the other schemes in providing smaller variation in
performance differences seen by different service classes.

CALL ADMISSION CONTROL

While it is known that higher-bandwidth, reservation-based services experience worse per-
formance than lower-bandwidth, reservation-based services in a single-link system [380],
these results indicate that this behavior holds as well in a network with dynamic routing
and trunk reservation. In other words, routing and trunk reservation cannot completely elim-
inate this unfairness. Thus, in a network, if fairness in terms of GoS to different service classes
is desirable, then additional mechanisms are needed. In this context, a concept called service
reservation beyond traditional trunk reservation has been proposed [471]. This concept can
be manifested, for example, through source-based admission control at the time of flow ar-
rival. While a good source-based admission control scheme for a general topology network
in the presence of QoS routing operating in a link state protocol environment and trunk reser-
vation remains a research problem, a probabilistic source-based admission control scheme
for fully connected networks in the presence of routing and for two services case has been
presented [471]. The ability to provide service fairness in terms of fair GoS using this source-
based admission control scheme in the presence of routing and trunk reservation is shown in
Figure 17.5. This is shown for three different values of network load with two service class
scenarios (shown for normal load “lf-1.0,” 5% s2 overload “lf-s2,” and 5% network-wide over-
load “lf-1.05,” all for MACRPC). The right-most entries (corresponding to p = 1) denote the
no source-based admission control case. As we can see, with the increase in load, the higher-
bandwidth service suffers the most in the absence of source-based admission control. As the
admission control parameter is tuned (by changing p toward 0.8) to invoke different levels of
source-based admission control, it can be seen that service-level fairness in terms of GoS can
be achieved.

C H A P T E R 1 7 Quality of Service Routing 607

F I G U R E 17.5 Performance impact in the presence of source-based admission control.

DYNAMIC TRAFFIC

Finally, we discuss network performance impact due to network traffic dynamics. To show
this we consider a homogeneous service, fully connected network where one source-
destination node pair has dynamic traffic while the rest of the traffic pairs have stationary
traffic (no source-based admission control is included here). For our study, the dynamic traf-
fic has been represented through a time-dependent, stationary process that follows a sinu-
soidal traffic pattern. For the case with no trunk reservation, we have found that MACRPC
has much worse performance than both CaSRAR and MACRIC as traffic changes for the
dynamic traffic class (pair); CaSRAR adapts very well with traffic changes, although it has
no UPO phase. It is interesting to note that just the presence of dynamic traffic between a
source-destination node pair can cause the rest of the (stationary) traffic to show dynamic
performance behavior (Figure 17.6).

We also considered the case in which trunk reservation is imposed; purposefully, we
set the reservation at an unusually high value of 40% to understand the performance
implication—the result is shown in Figure 17.7; from this figure, we note two phenomena:
(1) MACRPC performs better than CaSRAR for dynamic traffic, and (2) the imposition of
dynamic performance on the stationary traffic (from the dynamic traffic class) is no longer
there. Also, we found that the overall performance improves in the presence of trunk reser-
vation in a dynamic traffic scenario (similar to the stationary traffic case). From these results
an important question, although not directly within the purview of routing, arises: should a
network allow a dynamic traffic stream/class to impose its behavior on a stationary traffic
stream? In other words, should a stationary traffic stream suffer higher flow blocking just
because the load for the dynamic traffic stream is increasing? This cannot be addressed alone

608 17.8 Routing Protocols for QoS Routing

F I G U R E 17.6 Dynamic performance behavior of stationary traffic due to the influence of
dynamic traffic (no trunk reservation).

through the three-phase QoS routing framework or any other QoS routing framework. How-
ever, the impact can be controlled through the use of trunk reservation and under controls;
this is where lessons on controls discussed earlier in Section 11.6 in Chapter 11 may be taken
into consideration.

17.8 Routing Protocols for QoS Routing

17.8.1 QOSPF: Extension to OSPF for QoS Routing
The OSPF extension for QoS routing mechanisms, described in RFC 2676 [23], is commonly
referred to as QOSPF. Earlier in Section 6.3, we discussed OSPF packet formats. You may note
that every hello, database description, and LSA contains an options field that is 1 byte long.
One of the bits in the options field, originally known as the T-bit to indicate if a originat-
ing router is capable of supporting Type of Service (TOS), was later removed [505]. Instead,
the QOSPF specification proposed to reclaim this bit and renamed it as the Q-bit to indicate
that the originating router is QoS routing capable. When this bit is set, two attributes are
announced with a link state: bandwidth and delay.

An important aspect about the QOSPF protocol is that it specifies the path computation
mechanism, which is divided into the pre-computed option and the on-demand option. For
the pre-computed path option, a widest path version of the Bellman–Ford approach based on
bandwidth was proposed (refer to Section 2.7.2 for a similar discussion). For the on-demand
computation, a widest shortest path version of Dijkstra’s algorithm that considered band-

C H A P T E R 1 7 Quality of Service Routing 609

F I G U R E 17.7 Performance of dynamic and stationary traffic (with trunk reservation).

width and hop count was proposed; this is essentially least-hop-widest path routing dis-
cussed earlier in this chapter.

Note that in QOSPF, as part of the protocol, both the path computation algorithm and the
attributes to be exchanged were specified. It is important to distinguish this approach from
traffic engineering extensions of OSPF (refer to Chapter 18) in which the extension on ex-
change of information has been standardized, while the actual path computation mechanism
is left for the provider to decide.

17.8.2 ATM PNNI
Asynchronous Transfer Mode (ATM) technology is a packet-mode networking technology
with its own protocol stack architecture and addressing. In ATM, all packets are of fixed
53-byte size, known as cells. The Private Network–Network Interface (PNNI) protocol [39],
originally defined around the mid 1990s, is the standards for QoS routing in ATM Networks.
PNNI is based on a link state routing protocol framework; it has the basic elements of a link
state routing protocol such as the hello protocol, database synchronization, and flooding.
However, PNNI is a topology state protocol since besides the status of links, the status of nodes
can also be flooded; accordingly, the PNNI topology state element (PTSE) is equivalent of the
link state advertisement.

Parameters associated with a topology state are divided into two categories: metrics and
attributes; the main distinction is whether information is considered on an entire path basis
(“metric”), or an individual node or link basis (“attribute”). Examples of metrics are: cell
delay variation and maximum cell transfer delay. Attributes are either performance-related

610 17.9 Summary

such as the cell loss ratio, the maximum cell rate, and the available cell rate, or policy-related
such as the restricted transit. Since packet sizes are fixed, cells as units is used instead of the
raw bandwidth rate; thus, effectively, the maximum cell rate refers to the total bandwidth
of a link, and the available cell rate refers to the available bandwidth, both counted in cells
as units. Although all information required for computing paths is provided, PNNI did not
prescribe any specific way to do path computation; in this sense, PNNI is a visionary protocol
and is one of the early routing protocols to decouple the routing information exchange part
from the routing algorithm computation.

PNNI allows crankback and alternate routing, much like DNHR and RTNR for dynamic
call routing in the telephone network. Crankback can be local; that is, the control for a con-
nection need not be sent back to the ingress switch for performing crankback. By using ad-
dressing hierarchy, PNNI also handles scalability on information dissemination and storage.
That is, through addressing hierarchy, aggregation of information about a group of nodes and
links that are at the same hierarchy is performed—such a group is identified as a peer group;
the aggregated information about a peer group is disseminated, instead of announcing the
PTSE for each element within the group. Thus, a peer group can be thought of as a domain;
in this sense, PNNI has both intra- and inter-domain flavors in the same protocol. Although
PNNI routing is considered to be source-routing based, this is only true only within a peer
group; to reach an address that is in a different group, a designated transit list is created that
identifies the peer groups the connection control message is to visit during the connection set
up; once such a request reaches a group identified in the designated transit list, the group is
responsible for actual source route within its group to the appropriate egress node, which,
then, hands off to the next peer group for further processing. For additional details, see [39].

17.9 Summary
In this chapter, we have discussed QoS routing. We started by discussing what QoS means,
and the scope of QoS routing and its inherent relation to traffic engineering. Based on arrival
and service frequency, we have also identified how different services may be classified into
three types of classifications; this is summarized in Table 17.1. We have indicated that QoS
routing falls under the Type A classification.

We then presented a taxonomy for QoS routing and showed how QoS routing can be
divided based on different types of networks, and whether one or more attributes are to be
considered in the QoS routing decision, especially for packet-switched networks.

We then discussed extendability of widest and shortest path routing to QoS routing. An
important issue to consider here is that periodic updating of information induces inaccuracy
on link state information—thus, to properly address service performance, a path caching
mechanism that allows alternate path routing can be helpful; this is presented as a three-
phase framework. Performance results are presented to understand the interrelation in the
presence of heterogeneous guaranteed services, update frequency, traffic dynamism, and so
on.

The importance of QoS routing goes beyond the telephone network. It is also applicable
to MPLS, optical, and wavelength routing when service requests with guaranteed resource
requirements are to be connected on demand and quickly. In subsequent chapters, the specific
applicability of QoS routing will be discussed.

C H A P T E R 1 7 Quality of Service Routing 611

Before we conclude, we briefly comment on QoS guarantee in a generic best-effort net-
work such as the Internet. This QoS guarantee issue should not be confused with QoS routing.
In an intradomain environment running a best-effort model, QoS guarantee for services are
quite possible if the network is engineered to meet QoS guarantee—this might require over-
provisioning. A better environment is a differentiated services environment, where priority
to certain packets can be given by using a router’s scheduling algorithm (refer to Chapter 22)
for services that require certain guarantee—in this case, the overprovisioning can be mod-
erate since the routers have mechanisms to discriminate packets that require guarantee and
those that do not. MPLS is also a mechanism to enable QoS quarantee [750], [751]. In an in-
terdomain environment, it is much more difficult since each provider on a path for a request
that requires QoS guarantee would need to have the proper mechanisms—this is difficult in
practice since it might not be possible to enforce every provider to provide the same QoS guar-
antee. However, instead of stringent QoS guarantee, it is possible to provide certain quality
through broad service-level agreements (SLAs) (see Section 23.1 for examples of SLAs). SLAs
are possible to among different providers through which traffic may flow. Thus, meeting SLA
agreements can be thought of as meeting “soft” QoS guarantee.

Further Lookup
QoS routing has been investigated by many researchers over the years, spanning a variety
of issues. We have identified the key issues in this chapter. For further reading, you may
consult works such as [2], [21], [22], [23], [24], [28], [58], [130], [248], [269], [270], [306], [307],
[377], [432], [435], [436], [476], [477], [518], [524], [585], [644], [650], [651], [710], [766]. Through
such work, you can, for example, obtain better understanding of issues such as inaccuracy
of information in QoS routing, the relation between routing and scheduling, differences in
performance between different routing schemes, and so on. For analysis of PNNI routing,
[210], [437]. While most work consider intradomain, interdomain QoS routing is an important
problem; see [622].

Exercises
17.1 How is QoS routing different from best-effort routing?

17.2 Explain constrained shortest path routing and its variations when you consider differ-
ent attributes.

17.3 What is the relation between caching paths for alternate routing and inaccuracy in in-
formation available due to periodic link state update? For example, if there is no path
caching, how would this inaccuracy effect routing performance?

17.4 How does bandwidth guarantee required by services affect the performance it receives
in a heterogeneous bandwidth environment?

17.5 Compare QOSPF and PNNI.

18
MPLS and GMPLS
Are we there yet?

Any kid in the back seat of a car

Reading Guideline

Understanding the material presented in this chapter requires basic knowledge of
packet switching, circuit switching, and routing protocols. In addition, the back-
ground presented in the chapter on quality-of-service routing is helpful.

C H A P T E R 1 8 MPLS and GMPLS 613

In this chapter, we present emerging environments that are beneficial to routing and traf-
fic engineering. In this regard, there are two key frameworks: MPLS and GMPLS. MPLS is
designed for packet-switched arbitrary-rate services, whereas GMPLS is suited for circuit-
oriented periodic or on-demand services with bidirectional requirements. We also discuss
extensions required in routing protocols that can be useful in MPLS/GMPLS environments.
It may be noted that both MPLS and GMPLS are evolving standards. This chapter captures
the basic features.

18.1 Background
We start by reviewing the IP routing process: at a router, the routing table is determined, from
which the forwarding table is built; when a packet arrives, the IP address of the destination
is looked up and mapped against the forwarding table to identify the appropriate routing
interface. The underlying principle is to operate on a packet-by-packet basis, while tracking
a microflow and forwarding on the same path if possible. However, there are times when
controlling the flow of packets for a class of traffic streams that is beyond a single packet
or even a microflow is desirable. In an IP environment, IP traffic engineering that involves
link weight determination in an OSPF/IS-IS environment can direct overall flow control; we
have previously discussed IP traffic engineering in Chapter 7. However, in IP traffic engineer-
ing, all packets for a destination follow the same path due to a destination-oriented routing
paradigm of IP routing; certainly, if equal cost paths are found, traffic can take two or more
different paths to the destination. However, having a well-defined control mechanism that
allows packets to take different paths to a particular destination, for example, depending on
the type of packet or class of traffic, is desirable. This can be thought of as traffic engineering
with more knobs or controls, to distinguish it from IP traffic engineering based on link weight
settings as the primary control.

To attain the ability to define a path and force packets for a particular traffic stream or
class or affinity to take this path, it is imperative that a mechanism is needed that allows the
path to be defined/identified, independently of designated packets traversing this path. The
question then is how to define such paths. It may be noted that the notion of defining a path
is done in the voice telephone network where call setup is done first using, for example, ISUP
signaling. Here, instead, we are interested in having a mechanism that can work for packet
traffic, yet that is not necessarily meant to work on a per-microflow or per-call basis. There is
an important point to be noted here—if we were to look for a mechanism to work on a per-
call basis that can also work in an IP environment, a session initiation protocol (SIP) can be
considered; SIP is, however, at the end-to-end basis. Rather, we are interested in a mechanism
that is on a router-to-router basis. Thus, it should be clear that to set up a path between two
routers, a mechanism for signaling such a setup is certainly required that is not necessarily
on a per-microflow basis. Second, if part of the goal is to do traffic engineering with more
knobs/controls, the state of the network still needs to be communicated among the routers.

As we know, one way to communicate the state of the network is to communicate link
state information through a link state routing protocol. But standard link state protocols de-
fined for IP networks carry only a single metric value for each link, typically to represent the
cost of the link. For traffic engineering with more knobs/controls, additional information,
such as the bandwidth of a link, must be communicated. This means that to learn about the

614 18.3 Multiprotocol Label Switching

state of a network, a link state protocol paradigm can still be used, however, with additional
information about each link. Finally, to engineer a network, it should be possible to invoke
different routing path computation framework, which is preferably decoupled from the link
state update mechanism; such a path communication framework may also depend on the
specific operational use and requirements of a network for services it provides (for example,
refer to Table 17.1).

In addition to packet-based traffic, the need for a traffic engineering framework is also
felt for circuit-mode connections for services provided in a modular switching environment
such as optical wavelength switching or time-division multiplexed switching.

With the above background, we now discuss enabling environments that allow signaling
setup and traffic engineering with more knobs/controls to be done.

18.2 Traffic Engineering Extension to Routing Protocols
We can see from the earlier discussions that at a minimum, the bandwidth of a link must be
communicated for the purpose of traffic engineering. In addition, a link may allow higher
reservable bandwidth than the announced bandwidth due to statistical multiplexing gain for
certain types of traffic, meaning that oversubscription may be tolerable. Also, a link may an-
nounce currently unreserved bandwidth, which is useful for routing path computations, but
which is not necessarily based on a shortest path computation. Since a network may provide
more than one type of prioritized services, it would be useful to announce the unreserved
bandwidth allowed for each priority class. Also, a network provider might want to use a dif-
ferent metric, other than the standard link metric; this link metric might have meaning that is
internal only to the provider. To summarize, the following attributes of a link are desirable:

• Maximum link bandwidth that is usable

• Maximum reservation bandwidth in case oversubscription is allowed

• Unreserved bandwidth available at different priority levels

• Traffic engineering metric.

The question is: how is this information communicated? This is where two popularly
deployed link state routing protocols—OSPF and IS-IS, presented in Chapter 6—come into
the picture. These two protocols have been extended to allow for communication of the above
attributes. The actual extensions are somewhat different in GMPLS compared to MPLS due
to additional requirements in circuit-mode connections. We will cover them as we introduce
MPLS and GMPLS in the following sections; specifically, refer to Sections 18.3.4 and 18.4.4,
respectively.

18.3 Multiprotocol Label Switching
Multiprotocol Label Switching (MPLS) is a mechanism that addresses several issues discussed
above; it is meant for packet-based services. Briefly, MPLS adds a label in front of a packet, i.e.,
as another header so that routers know how to act based on this label. To be able to act based
on a label, routers must be label-switched routers (LSRs), and each LSR must maintain a valid

C H A P T E R 1 8 MPLS and GMPLS 615

F I G U R E 18.1 Conceptual architecture of an MPLS label-switched router.

mapping from the label of an incoming packet (“incoming label”) to a label to be attached
to the packet before being sent out (“output label”). This, in turn, means that LSRs maintain
states in terms of input/output labels associated with a particular path, referred to as a label-
switched path (LSP), which may be designated for a particular class of traffic flows. Note that
an LSP must already be established between two routers so that packets can follow this path.
To establish a path, a label distribution protocol is used. Certainly, the next question then is: how
do we know this is the best path for the particular class of traffic flows? This will depend on
the traffic engineering requirements of the network, and on the service requirements of the
traffic flow to be carried by the LSP. In this section, we present the basic foundation for MPLS
and the enabler for traffic engineering in MPLS; in Chapter 19, we will present examples of
routing and traffic engineering design using MPLS networks.

In Figure 18.1, a conceptual architecture of an MPLS LSR with IP functionality is shown.
As can be seen, there are two planes: a control plane and a data plane. At the control plane, IP
routing protocols can exchange routing information, and another component manages label
distribution and binding. It also maintains a label information base (LIB), and creates a label
forwarding information base (LFIB). The packet arriving on the data plane consults the LFIB for
proper forwarding in an outgoing direction.

It may be noted that the establishment of an LSP is a connection-oriented functionality—
that is, a path must be set up before traffic can use this path. An established LSP may or may
not have any packet traffic flow on it; furthermore, the packet traffic flow rate on an LSP can
vary from one instant of time to another. Many traffic flows may be combined on a specific
LSP; usually, such a flow aggregation is based on some affinity, such as a traffic class. The
aggregated flow constructed on some affinity basis is referred to as a traffic trunk. Typically,

616 18.3 Multiprotocol Label Switching

a traffic trunk is defined on an ingress/egress LSR pair basis and is carried on an LSP. Note
that all traffic between the same two ingress/egress LSRs may be split into multiple traffic
trunks; each traffic trunk is then mapped into an LSP. Thus, a traffic trunk is a logical entity,
while an LSP is a transport manifestation of this logical entity.

18.3.1 Labeled Packets and LSP

A label in MPLS is 20 bits long and is part of a 32-bit MPLS shim header. A packet with an
MPLS shim header will be referred to as an MPLS packet. If an MPLS packet is to carry an IP
packet, then we can think of MPLS as being placed in layer 2.5 (see Figure 18.2). Note that
it still requires the help of layer 2 for packet delivery on a link-by-link basis between two
adjacent LSRs; the main difference for MPLS from being at layer 2 is that it does provide a
form of routing through labels and LSPs across multiple hops. Suppose that layer 2 is a Packet
over SONET (PoS) technology between two LSRs. Since PPP is used for Packet over SONET,
we have PPP as the layer 2 protocol to deliver an MPLS packet from one LSR to the other.

The 32-bit shim header also includes 3 experimental bits, a bit (“S” bit) to indicate this
label is the last label (bottom of the stack) in the case of stacked labels, and 8 bits for the time-
to-live (TTL) field (see Figure 18.3). The experimental bits are meant to describe services that
require different priorities. The label values 0 to 15 are reserved. For example, label 0 (explicit
null label) refers to a packet that is to be forwarded based on the IPv4 header and is allowed
only at the bottom of the label stack. Similarly, label 2 serves as the explicit null label for IPv6.
The explicit null label can be used by an egress router to signal its immediate upstream router
(“penultimate hop router”). In turn, the egress router receives packets from the penultimate
hop router with label value 0 and can also learn any priority information included in the
experimental bits, which it can use for IP forwarding.

F I G U R E 18.2 MPLS header as layer 2.5.

C H A P T E R 1 8 MPLS and GMPLS 617

There is another terminology, tunnel, closely related to an LSP. A tunnel provides a trans-
port service between two routers so that packets for a specific stream can flow without being
label swapped at any intermediate switches or routers. A tunnel in MPLS can be realized
by a well-defined LSP, often based on serving certain traffic engineering requirements. Thus,
typically, such tunnels have longevity. Furthermore, note that tunnel is a generic name used
in networking; it is not limited just to MPLS.

When an MPLS packet arrives at an LSR, the incoming label is swapped with an outgoing
label; this assumes that an LSP is already defined and lookup tables at LSRs have appropriate
entries. Before sending it out to a received MPLS packet, the TTL value is decreased by one.
If the TTL value becomes zero, then the MPLS packet is to be dropped. Since the TTL field is
8 bits long, the likelihood of a path having more than 255 hops is zero. Consider Figure 18.4.
Here an MPLS packet with label 16 arrives at LSR3 from LSR1 and is swapped with label 17
for transmittal to LSR4; similarly, the MPLS packet with label 17 that arrives from LSR2 at
LSR3 is swapped with label 18 for transmittal to LSR4. In this case, the assumption is that
two LSPs, LSR1-LSR3-LSR4 and LSR2-LSR3-LSR4, are already defined.

F I G U R E 18.3 MPLS shim header.

F I G U R E 18.4 Label swapping and label switched paths.

618 18.3 Multiprotocol Label Switching

F I G U R E 18.5 Label-switched paths using an LSP tunnel (“tunnel within a tunnel”).

It may be noted that MPLS also allows stacked labels. A stack tag means that an MPLS
shim header may appear more than once; each one is related to a particular LSP between
certain points. Thus, a stacked MPLS packet has the following form:

Layer 2 header | MPLS shim header | MPLS shim header | Data

Consider Figure 18.5. Here, there is already an LSP set up from LSR3 to LSR5; this is re-
ferred to as an LSP tunnel. Now consider two LSPs, one from LSR1 to LSR6 and the other from
LSR2 to LSR7, that use the LSR3-LSR5 tunnel as a logical link on their paths. For illustration,
consider the LSP from LSR1 to LSR6. The packet with label 16 arrives at LSR3 and is swapped
with label 17; due to the LSP tunnel LSR3-LSR5, an additional label 21 will be added—the “S”
bit for this label would not be set. When this MPLS packet arrives at LSR4, the top label 21
will be swapped to 42 and the “S” bit is set—this means that it is as if LSR4 is thinking about
the LSP tunnel LSR3-LSR4 and does not care about any labels in the MPLS packet. When
this packet arrives at LSR5, the role of the label with value 42 will end here since this is the
end of the tunnel; because of LSP path LSR1-LSR6, the second label 17 will be swapped to
34 and will be forwarded to LSR6. Similarly, the packet from LSR2 to LSR7 will be handled.
There is an important point to note here: having an already established LSP tunnel between
two routers does not imply that all LSPs that traverse this tunnel need to have the same la-
bel value. Now, if the LSP from LSR1 to LSR6 is established as long-lived, it will serve as a
tunnel for other traffic; thus, we arrive at a scenario known as a tunnel within a tunnel. Note
that we have described only the functionality—when and where to establish LSP tunnels in
a network to encapsulate other LSPs that can be driven by traffic engineering decisions.

Note that examples discussed so far do not show how MPLS receives an IP packet. An
MPLS network must have edge routers, which are the point where a native IP packet is
prepended with an MPLS label; these routers are known as label edge routers (LERs). This
is shown in Figure 18.6.

Another concept that is associated with an LSP is a forwarding equivalence class (FEC). In a
network, an FEC streamlines packets based on, for example, traffic engineering requirements.
Thus, an FEC must then have an association with at least one LSP in the MPLS network so
that packets for this FEC have an actual path to follow along with any QoS considerations.

C H A P T E R 1 8 MPLS and GMPLS 619

F I G U R E 18.6 Label-edge routers and label-switched routers.

That is, an FEC does not define a path; one or more LSPs are used for carrying packets for an
FEC.

18.3.2 Label Distribution
Between defining an FEC and establishing an LSP for this FEC, there is another very impor-
tant phase known as label distribution. The basic idea of label distribution is analogous to route
information exchange, somewhat similar to BGP. In BGP, two BGP speakers exchange IP pre-
fix reachability information, while in MPLS two LSRs exchange label-related information. A
key difference is that while a BGP speaker computes and determines an outgoing routing
decision, in MPLS, an LSR essentially trusts that the label information is based on a valid LSP
and does only a sanity check with its appropriate neighbor about label mapping; note that
label mapping to an LSP may be generated by an outside entity, such as a traffic engineer-
ing manager. So that labels distributed can be associated with LSRs, each LSR must have an
identifier (LSR ID) that must be unique in the MPLS domain. Typically, a router’s IP address
serves as the LSR ID.

In MPLS, label binding refers to directly associating a specific label to a specific FEC. Con-
sider two LSRs, LSR-u and LSR-d, that have agreed to bind a specific label, for packets that
will be sent from LSR-u to LSR-d; in regard to this label binding, LSR-u is referred to as the
upstream LSR and LSR-d as the downstream LSR. The decision to bind a label is made by the
LSR, which is downstream with respect to this binding. The downstream LSR then informs
the upstream LSR of the binding. We can then say that labels are assigned from upstream to
downstream, while label bindings are communicated from downstream to upstream. In MPLS,
the distribution of labels for label binding can be accomplished through a label distribution pro-
tocol (LDP) [16]. Two approaches for label distribution are possible in the LDP paradigm in
MPLS: in the downstream on-demand approach, a downstream LSR can distribute an FEC label
binding when it receives a request explicitly from an upstream LSR on demand; in the down-
stream unsolicited approach, an LSR can distribute label bindings to LSRs without receiving
an explicit request.

In the terminology of LDP, two LSRs that can exchange label/FEC mapping information
are referred to as LDP peers using a bidirectional LDP session. TCP is used for setting an LDP
session. The question is how. Do they need to set up an LSP first to exchange this information?
That is, is there a chicken and egg problem? Fortunately, no. Recall that an MPLS router ac-
tually serves in dual-mode, IP for control plane and MPLS for data plane. Thus, two adjacent
LSRs can use the IP only-mode to set up this TCP session, bypassing the MPLS plane.

18.3.3 RSVP-TE for MPLS
The MPLS framework originally defined the basic specification for a label distribution proto-
col [16]. Recently, the Resource ReSerVation Protocol with Traffic Engineering extension (RSVP-TE,

620 18.3 Multiprotocol Label Switching

in short) has become the de facto label distribution protocol for the purpose of traffic engineer-
ing. Thus, we will focus on RSVP-TE. We first start with a brief overview of RSVP.

RESOURCE RESERVATION PROTOCOL: OVERVIEW

RSVP is a connection setup protocol in a packet network. Originally, it was defined in the
context of an integrated services (int-serv) framework. RSVP is considered a soft-state approach;
this means that if a reservation refreshing message is not sent periodically for a session that
has been setup, the session is teared down after a given interval. Such a soft-state measure
is appealing in a networking environment where both best-effort and guaranteed bandwidth
services are offered in a connection-less packet mode. RSVP is not scalable when there are
many on-going end-to-end conversations on a network due to the number of messages that
would be generated. However, for RSVP-TE, the setup messages are generated only for
LSPs—this number is much smaller than if used for signaling of end-to-end sessions; fur-
thermore, RSVP refresh reduction is possible in RSVP-TE. Here, we first highlight a few key
elements about RSVP that are applicable to RSVP-TE.

All RSVP messages have a common header (see Figure 18.7). A key field in the header
is the message type. Originally, seven main message types have been defined: Path, Resv,
PathErr, ResvErr, PathTear, ResvTear, and ResvConf; they are used in regard to connection
set-up and connection teardown. Additional types have been added for a variety of purposes,
see [318] for an updated list. However, discussion of all of them is outside the scope of this
book.

An RSVP message includes one or more RSVP objects, with each object having a certain
significance in regard to a specific message; it may be noted that some objects can be optional.
An RSVP object consists of four fields (see Figure 18.8): Length (16 bits), Class Number (8 bits),
Class Type (8 bits), and Object Contents (variable). Length is the total object length in bytes,
in multiples of 4 bytes. Class Number (Class-Num) identifies an object class, while Class Type
(C-Type) identifies unique information within a class.

F I G U R E 18.7 RSVP common header.

F I G U R E 18.8 RSVP object format.

C H A P T E R 1 8 MPLS and GMPLS 621

In Figure 18.9, an RSVP Path message is shown using a notation known as a Backus–Naur
Form (BNF). Objects are specified using angle brackets, such as “<SESSION>”; an optional
object is enclosed in square brackets, such as “[<INTEGRITY>].” as “[<POLICY-DATA>...].”
A molecular object can be formed from atomic objects, which in turn can be part of a more
complex object. The notation “::=” is used to separate the name of an object on the left side
that is defined by the set of objects on the right side. It may be noted that the Path message
example shown in Figure 18.9 is actually for RSVP-TE, not for the original version of RSVP;
this is included for ease of our discussion in regard to traffic engineering.

RSVP-TE

RSVP-TE is the extension to RSVP, which has been developed for use in establishing LSPs,
particularly geared to traffic engineering. The label distribution approach in RSVP-TE is
based on the downstream on-demand approach. There are certain key differences between
RSVP-TE and the original RSVP. For example, RSVP-TE is used for signaling between routers
to set up LSP flows, unlike the original RSVP, which was used between hosts to set up mi-
croflows. Because of this RSVP-TE does not have the scalability problem that RSVP faces in
regard to management of microflows. RSVP-TE is used to set up directional unicast LSPs,
while RSVP allows multicast flow setup.

Traffic trunks, discussed earlier, can be carried in RSVP-TE–defined LSPs. A traffic trunk
may be split on two LSPs established from an ingress LER to an egress LER, or multiple
traffic trunks may be combined to be carried on a single LSP. Thus, such LSPs serve as traffic
engineering tunnels. Note that RSVP-TE does not dictate how to decide or when to create
different traffic trunks or when to split a traffic trunk into multiple LSPs; rather, the role of
RSVP-TE is that of an enabler from a functional point of view, while the actual decision is left
to operational network providers.

RSVP allows three service-type specifications, which can be used by RSVP-TE when set-
ting up LSPs. The service types described within the purview of int-serv are Guaranteed
Quality-of-Service [637], Controlled-load Service [747], and Null Service [76]. For example,
if the tunnel requires a bandwidth guarantee, the Peak Data Rate parameter is specified and
that it is a guaranteed service request. In case of Null Service, it need not specify resource
requirements. However, controlled-load service can provide a full guarantee if the network
is under little congestion; but in case of congestion, some delay would be experienced by
packets.

〈Path Message〉 ::= 〈Common Header〉 [〈INTEGRITY〉]
〈SESSION〉 〈RSVP-HOP〉
〈TIME-VALUES〉
[〈EXPLICIT-ROUTE〉]
〈LABEL-REQUEST〉
[〈SESSION-ATTRIBUTE〉]
[〈POLICY-DATA〉 ...]
〈sender descriptor〉

〈sender descriptor〉 ::= 〈SENDER-TEMPLATE〉 〈SENDER-TSPEC〉
[〈ADSPEC〉]
[〈RECORD-ROUTE〉]

F I G U R E 18.9 RSVP path message in Backus-Naur form.

622 18.3 Multiprotocol Label Switching

TA B L E 18.1 RSVP object examples for MPLS (An up-to-date list is maintained at [318]).

Object Name Used in Class Examples: Class type with value in parentheses
Number (source RFC listed as [] from bibliography)

INTEGRITY Path, Resv 4 RSVP Integrity (1) [51]
SESSION Path, Resv 1 LSP Tunnel for IPv4 (7) [43]
RSVP-HOP Path, Resv 3 IPv4 (1), IPv6 (2) [90]
TIME-VALUES Path, Resv 5 Time Value (1) [90]
FILTER-SPEC Resv 10 LSP Tunnel for IPv4 (7) [43]
SENDER-TEMPLATE Path 11 LSP Tunnel for IP4 (7) [43]
RSVP-LABEL Path 16 Type 1 Label (1) [43]; Generalized Label (2) [74]
LABEL-REQUEST Path 19 No label range (1) [43]; generalized label request

(4) [74]
EXPLICIT-ROUTE Path 20 Type 1 Explicit Route (1) [43]
POLICY-DATA Path 14 Type 1 (1) [90]
SENDER-TSPEC Path 12 Integrated Services (1) [90]
RECORD-ROUTE Path 21 IPv4 (1) [43]
SESSION-ATTRIBUTE Path 207 LSP Tunnel (7) [43]
DETOUR Path 63 IPv4 (7) [541]
FAST-REROUTE Path 205 Type 1 (1) [541]
UPSTREAM-LABEL Path 35 Same as in RSVP-LABEL

F I G U R E 18.10 Example: label distribution using RSVP-TE.

Consider Figure 18.10, where we want to set up the traffic engineering tunnel LSR1-LSR2-
LSR3. Here the Path message generated at LSR1 is renewed at LSR2 for destination LSR3.
LSR3, being the destination, generates the Resv message in the reverse direction to LSR2 and
which in turn forwards to LSR1. Thus, in RSVP-TE, the Resv message then helps accomplish
the label-binding function.

What does the Path message include when it is initially generated by a router such as
LSR1? And what specifics are key when it is used for RSVP-TE? In general, the Path message
generated at LSR1 will include objects as shown in Figure 18.9; it can contain certain key
objects:

• SESSION: It identifies the session type through a C-Type field set to LSP-TUNNEL-IPv4
and includes the IP address of the destination.

• LABEL-REQUEST: This indicates that a label binding is requested.

C H A P T E R 1 8 MPLS and GMPLS 623

• RSVP-HOP: This indicates the IP address of the sending RSVP-capable router, and the
outgoing interface.

• EXPLICIT-ROUTE: This is included to specify that this particular path LSR1-LSR2-LSR3 is
to be followed; however, RSVP-TE allows an intermediate node to modify this EXPLICIT-
ROUTE object to allow for any local rerouting; in this case, both the original and the modi-
fied EXPLICIT-ROUTE objects are stored. Certainly, any such local rerouting assumes that
the intermediate router is somehow aware of this reroute. Note that such a local reroute is
essentially a crankback feature.

• RECORD-ROUTE: This serves as a form of acknowledgment so that the sending node
knows if the path specified was the actual route taken. The visited routers are added as a
subobject to RECORD-ROUTE, as the Path message is being forwarded downstream.

• SESSION-ATTRIBUTE: This is included for the purpose of session identification as well
as troubleshooting. Setup priorities and holding priorities are included here.

• SENDER-TEMPLATE: This is used primarily to announce the IP address of the sender
along with an LSP identifier.

• ADSPEC: This is advertising information that may be carried in a Path. This information
is passed to the local traffic control at a router, which returns an updated ADSPEC, which,
in turn, is forwarded in Path messages sent downstream.

• SENDER-TSPEC: The traffic characteristics of the tunnel are defined through this object;
it uses int-serv as C-Type. This field contains Token bucket rate (r in bytes/sec), Token
bucket size (b in bytes), Peak data rate (p in bytes/sec), Minimum policed unit (m in
bytes), and Maximum packet size (M in bytes). The service option can be specified as
either Guaranteed QoS, Controlled-Load Service, or Null Service.

Similarly, the Resv message includes SESSION, RSVP-HOP, TIME VALUES, STYLE,
FLOWSPEC, FILTERSPEC, and LABEL. There is an important connection between QoS,
SENDER-TSPEC, and FLOWSPEC. Note that RSVP-TE is specifically designed to setup QoS-
enabled LSPs, where QoS parameters may include diffserv parameters. QoS is specified using
the SENDER-TSPEC object. The egress node, in return, creates and sends the FLOWSPEC ob-
ject.

In addition to Path and Resv messages, there are other message types as well; for exam-
ple, the PathErr message is generated if an LSP tunnel could not be established at any of the
intermediate routers; the PathTear message is used to tear down an LSP session. Furthermore,
a new optional message type, Hello, has been introduced to determine if an adjacent LSR is
reachable.

Each RSVP object, shown in Figure 18.8, must contain a valid and unique class number
and a class type. Relevant objects that are included in an RSVP Path message are shown in
Figure 18.9. To address any future requirements, the ability to add new objects is possible by
defining new class numbers. In Table 18.1, a representative set of objects with class number
and class type is listed; an up-to-date list is maintained at [318].

You may note that RSVP-TE Path and Resv message can contain many parameters and
sub-parameters. In fact, if we were to print a Path message with each field listed separately,

624 18.3 Multiprotocol Label Switching

it would run to several pages. Instead, you might want to consult [744], in which samples
of RSVP-TE messages are available—they are very helpful in understanding RSVP-TE mes-
sages. Below, we briefly illustrate the important contents of the SENDER-TSPEC object.

Example 18.1 Illustration of traffic characteristics of SENDER-TSPEC.
As mentioned earlier, traffic characteristics have three key parameters: Token bucket rate

(r in bytes/sec), Token bucket size (b in bytes), and Peak data rate (p in bytes/sec). For the
concept of token bucket, refer to Chapter 23.

If the data are generated at a steady rate of 625,000 bps to provide guaranteed service,
then r = 625,000 bps, and b = 1 byte. Note that b = 1 means that the token is spent immedi-
ately. In this case, the peak rate does not play a role. If, however, b is given to be 1000 bytes,
then credits can be accumulated to use in a future time slot as long as it is allowed by the
peak rate. For example, if p is also set at 625,000 bps, then the bucket size value is not mean-
ingful. If, however, p is set at 630,000 bps, then even if the token is received at 625,000 bps,
not all need to be used up; i.e., it can accumulate 1000 bytes credit for up to 5 sec, so that it
can transmit at 630,000 bps at the end of the 5 sec. �

An important issue during the label distribution phase is loop detection. This might give
the impression that EXPLICIT-ROUTE, when created at the originating router, will check and
provide a loopless path that would be sufficient; the difficulty is that local rerouting along
the path may not be ruled out. Thus, RSVP-TE relies on the RECORD-ROUTE object; more
specifically, when an intermediate router processes the RECORD-ROUTE object, it checks all
subobjects inside this object to see if it is already listed as one of the nodes visited to detect
looping.

Once a traffic engineering tunnel is set up, traffic trunks can use them. However, a tunnel
might get broken, for example, if one of the links between intermediate routers goes down.
In this case, the MPLS network faces the issue of generating a new tunnel in place of the
original tunnel so that traffic trunks have a path to destination. However, there is a lag time
from when a link fails to when a new path is established. This lag time, however, may not be
acceptable to customers and services that rely on the network for reliable services. Consider,
for example, TCP-based services that are using this link—in fact, in most actual networks,
the bulk of the services are TCP-based. From the transport layer protocol perspective, a new
TCP connection can be established on the new path after a failure (when the old connection
times out). However, this also introduces delay; furthermore, if n TCP sessions are using
such a link, 3n messages will be generated due to a TCP connection set phase. Such a delay
and overhead also impact user perception on service reliability. To nullify such a delay and
overhead, MPLS has introduced the concept of fast reroute. This means that when a TE tunnel
(LSP) using Path message is established, a backup path is also established that is along routers
and links that do not belong to the first path; this setup can be on a local basis or on an end-to-
end basis between two LERs. To provide this functionality, RSVP-TE has also added two new
objects, FAST-REROUTE and DETOUR. To control the backup for a protected LSP, the FAST-
REROUTE object is used. The bandwidth to be guaranteed is the value in the bandwidth field
of the FAST-REROUTE object. An LSP that is used to reroute traffic around a failure in one-to-
one backup is referred to as a detour LSP; then, the DETOUR object is used in the one-to-one
backup method to identify detour LSPs.

C H A P T E R 1 8 MPLS and GMPLS 625

A question remains on how an RSVP-TE message is sent between two MPLS routers. In
practice, MPLS routers are actually integrated IP/MPLS routers; thus, an RSVP-TE message
is sent over the IP control plane, on a hop-by-hop basis.

To summarize, RSVP-TE supports the following key functionalities: downstream-on-
demand label distribution, explicitly routed LSPs, and allocation of network resources. It
also allows tracking of the actual route traversed by an LSP and loop detection. Rerouting
is possible through FAST REROUTE.

18.3.4 Traffic Engineering Extensions to OSPF and IS-IS
Earlier in Section 18.2, we highlighted the additional attributes that need to be communicated
about a link by the routing protocol. This information is then used by a routing computation
module, whether centralized or decentralized, to determine LSPs for traffic trunks. Here, we
summarize the extensions to protocols OSPFv2 and IS-IS for MPLS traffic engineering.

EXTENSIONS TO OSPFV2

In OSPFv2, several link state advertisement (LSA) types have been already defined. One of
them is known as the opaque LSA [149], briefly described earlier in Section 6.2.8. The intended
use of opaque LSA is to allow a general LSA feature so that it might be useful for any future
extension. With regard to the opaque LSA, three link state types have been presented for the
scope of flooding; they are known as type 9, type 10, and type 11 for local subnet flooding,
intra-area flooding, and flooding in the entire autonomous systems, respectively.

For MPLS traffic engineering, opaque LSA type 10 is used; this limits flooding to an intra-
area of an OSPF domain; it is known as a traffic engineering LSA (TE LSA). The TE LSA
[355] contains a standard header that includes information such as link state age, advertising
router, and link state sequence number; in addition, it uses nested TLV to contain informa-
tion needed for TE LSA. At the top level, there are two TLVs: (1) a router address TLV and
(2) a Link TLV. The Router Address TLV contains the IP address of the advertising router; this
is preferably a stable and reachable address such as loopback addressing (refer to Section 8.4).

The link TLV contains several sub-TLVs. The key ones have already been mentioned in
Section 18.2: maximum link bandwidth, maximum reservation bandwidth, unreserved band-
width available at different priority levels, and traffic engineering metric. Note that IP differ-
entiated services requirements can be mapped to the different priority levels. In addition, the
link is identified as to whether it is a point-to-point or a multi-access link.

EXTENSIONS TO IS-IS

Recall that in IS-IS, each intermediate system, i.e., the router, advertises link state protocol
data units (LSPs), which are analogous to LSAs in OSPF. The basic format of an LSP is a
fixed header followed by a number of TLV-formated information units. The important point
to note is that LSPs already use TLV encoding. Thus, IS-IS extensions for traffic engineering
define new TLVs. Most importantly, it replaces the extended IS reachability TLV that was
originally defined in the IS-IS protocol. The new TLV types are 22, 134, and 135 (see Table 6.2
in Chapter 6).

The proposed extended IS reachability TLV specifies the following: system ID, default
metric, and then through sub-TLVs the fields needed for traffic engineering such as maximum
link and reservable link bandwidths are specified, the same ones as in an OSPF extension.

626 18.4 Generalized MPLS

18.4 Generalized MPLS
Generalized MPLS (GMPLS), as the name suggests, is an extension of MPLS. Certainly, the
question then is why such an extension is needed and what it is meant for. Recall that MPLS
has been designed to switch packets using a labeling mechanism. Yet, there is the need for
an MPLS control-type functionality for controls that is beyond just switching packets, such
as wavelength switching, time division multiplexing, and fiber (port) switching. This mode
of switching is traditionally referred to as circuit switching or circuit routing since a dedicated
path and physical resources must be allocated for a service from one end to another. Note
that the term circuit switching is commonly used with telephony voice circuit switching, and
is not always the best terminology to use in this generalized context.

It is worth noting that originally GMPLS was intended for wavelength (lambda) switch-
ing where a dedicated path is required to be set up for a wavelength path end to end; however,
it was soon realized that there is a need for a similar framework that can be used for other
switching as well. GMPLS is thus intended for the following four switching capabilities:

• Packet-Switch Capable (PSC) for IP packets or ATM cell-level switching

• Time-Division Multiplexing Capable (TDMC): for timeslot-based circuit switching

• Lambda-Switch Capable (LSC): for wavelength switching at optical cross-connects

• Fiber-Switch Capable (FSC): for fiber-level switching at optical cross-connects.

Collectively, for brevity, we will refer to them as generalized modular switching (GMS) instead
of calling them circuit switching. Note that this is our terminology, used here for ease of
discussion, to save us, each time, from discussing/mentioning switching for all of the above
four technologies. GMS is thus distinguished from the umbrella suite GMPLS; modular is used
here since in GMPLS, switching can only be on well-defined modular values that are tied to
specific technology, for example, OC-3 rate in SONET or T1 for TDM. This certainly makes
sense for TDM, LSC, and FSC. What about PSC? This requires some elaboration. Consider
Packet over SONET. Here the data stream is coming as IP packets at an arbitrary data rate
that is then mapped to a specific SONET frame rate through asynchronous mapping in an
envelope mode; similarly, if IP traffic is to be carried over TDM switching, then PSC capability
means that IP packets coming at an arbitrary data rate are mapped to, say, a T3 rate for TDM
switching. Thus, for PSC, an incoming stream is mapped to modular value of a data rate,
which may not be completely filled.

In essence, GMPLS is an umbrella suite that encompasses signaling and traffic engineer-
ing for generalized modular switching services. Note that GMPLS encompasses MPLS due
to PSC, however, with a few twists. While in MPLS, a bandwidth request can be any quan-
tity, in GMPLS the bandwidth request corresponds to one of the well-defined modular values
such as asynchronous mapping of T1 or Packet over SONET at an OC-3 rate. That is, if PSC
is used in a GMPLS environment, then the requirement must be mapped to one of the al-
lowable packet switching types along with the associated bandwidth. In addition, due to the
bidirectional nature of the services offered by GMPLS, LSPs must be set up in each direction
for a path to be operational.

It is important to note that GMPLS is not necessarily for IP traffic, since it is meant for
generalized modular switching. Thus, a GMPLS tunnel does not need to start or end on an

C H A P T E R 1 8 MPLS and GMPLS 627

IP router; rather, it starts and ends on similar GMS nodes. To allow for different GMS types, a
generalized label has been defined for GMPLS; this is discussed later.

GMPLS allows LSP setup for protection for any link-related failure. Thus, a primary and
secondary (backup) LSP can be set up if and when needed. Thus, an LSP setup indicates
whether it is primary or secondary. Furthermore, protection types such as dedicated 1 + 1,
dedicated 1:1, and shared 1:N can be announced. Furthermore, GMPLS allows control and
data channels to be separate.

18.4.1 GMPLS Labels

GMPLS defines several types of labels. The most common one is known as a generalized la-
bel request. A generalized label request includes three pieces of information: LSP encoding
type, switching type, and generalized payload identifer (G-PID) (see Figure 18.11). LSP en-
coding types are values such as Packet, Ethernet, SDH, and Lambda (see Table 18.2). Switch-
ing type refers to the generalized modular switching discussed earlier with additional details.
For example, within PSC, variations in implementation such as asynchronous mapping, bit
synchronous mapping, and byte synchronous mapping are possible; thus, they are identi-
fied separately while G-PID specifies the payload identifier (see Table 18.3 and Table 18.4).
Note that since GMPLS is for generalized modular switching, bandwidth encoding for well-
defined data rates such as DS0, DS1, and Ethernet has also been defined.

In addition to the standardized label request discussed so far, GMPLS allows a general-
ized label, port, and wavelength label by using a 32-bit field without specifying any details.
For wavelength switching, there are three fields defined, each of 32 bits; they are identified
wavelength ID, start of a label, and end of a label (Figure 18.12).

TA B L E 18.2 GMPLS LSP encoding type.

Value Type
1 Packet
2 Ethernet
3 ANSI PDH
5 SONET ANSI T1.105/ SDH ITU-T G.707
7 Digital Wrapper
8 Lambda (photonic)
9 Fiber

11 FiberChannel
12 ITU-T G.709 Optical Data Unit (ODUk)
13 ITU-T G.709 Optical Channel

F I G U R E 18.11 Generalized label request.

628 18.4 Generalized MPLS

TA B L E 18.3 GMPLS switching types.

Value Type
1 Packet-Switch Capable-1 (PSC-1)
2 Packet-Switch Capable-2 (PSC-2)
3 Packet-Switch Capable-3 (PSC-3)
4 Packet-Switch Capable-4 (PSC-4)

51 Layer-2 Switch Capable (L2SC)
100 Time-Division-Multiplex Capable (TDM)
150 Lambda-Switch Capable (LSC)
200 Fiber-Switch Capable (FSC)

F I G U R E 18.12 GMPLS label for wavelength switching.

F I G U R E 18.13 Label stacking and hierarchical LSPs: MPLS/GMPLS.

18.4.2 Label Stacking and Hierarchical LSPs: MPLS/GMPLS

It is possible to coordinate between MPLS and GMPLS through label stacking to create hi-
erarchical LSPs. This can be useful when operating over multiple technologies such as in
multilayer networking (refer to Section 25.3). In this section, we present a simple example to
illustrate this nested label concept over multiple technologies.

In Figure 18.13, we consider a label from an MPLS router marked as node 1 to an MPLS
router marked as node 6. This LSP is an MPLS packet level LSP. This LSP, however, is con-
nected on the GMPLS LSP between node 2 and node 5, which are TDM switches. Note only
that the TDM level GMPLS-based LSP is carried further over two optical switches, marked
as node 3 and node 4. Thus, the original LSP between node 1 and node 6 is nested in GMPLS
LSP between node 2 and node 5, which, in turn, is nested in another GMPLS LSP between
node 3 and node 4.

C H A P T E R 1 8 MPLS and GMPLS 629

TA B L E 18.4 Examples of GMPLS Generalized Protocol identifier (G-PID).

Value Type Technology
0 Unknown All
6 Asynchronous mapping of DS3/T3 SDH
7 Asynchronous mapping of E3 SDH
8 Bit synchronous mapping of E3 SDH
9 Byte synchronous mapping of E3 SDH

13 Asynchronous mapping of E1 SDH
14 Byte synchronous mapping of E1 SDH
15 Byte synchronous mapping of 31 * DS0 SDH
16 Asynchronous mapping of DS1/T1 SDH
17 Bit synchronous mapping of DS1/T1 SDH
18 Byte synchronous mapping of DS1/T1 SDH
19 VC-11 in VC-12 SDH
22 DS1 SF Asynchronous SONET
23 DS1 ESF Asynchronous SONET
24 DS3 M23 Asynchronous SONET
25 DS3 C-Bit Parity Asynchronous SONET
28 POS—No Scrambling, 16-bit CRC SDH
29 POS—No Scrambling, 32-bit CRC SDH
30 POS—Scrambling, 16-bit CRC SDH
31 POS—Scrambling, 32-bit CRC SDH
32 ATM mapping SDH
33 Ethernet SDH, Lambda, Fiber
34 SONET/SDH Lambda, Fiber
36 Digital Wrapper Lambda, Fiber
37 Lambda Fiber
38 ANSI PDH SDH
43 FiberChannel-3 (Services) FiberChannel
44 HDLC SDH
45 Ethernet V2/DIX (only) SDH, Lambda, Fiber
46 Ethernet 802.3 (only) SDH, Lambda, Fiber
47 G.709 ODUj G.709 ODUk (with k > j)
48 G.709 OTUk(v) G.709 OCh (ODUk mapped into OTUk(v))
53 IP/PPP (GFP) G.709 ODUk (and SDH)
54 Ethernet MAC (framed GFP) G.709 ODUk (and SDH)
55 Ethernet PHY (transparent GFP) G.709 ODUk (and SDH)
58 Fiber Channel G.709 ODUk, Lambda, Fiber

18.4.3 RSVP-TE for GMPLS

For GMPLS LSP setup, several setup and confirmation message types are used in RSVP-TE
(see Table 18.6). Note that RSVP uses unreliable delivery since it is embedded in an UDP
packet. However, GMPLS requires reliable delivery of setup messages; to accomplish this, a
simple reliable delivery mechanism is used where the sender retransmits the setup message
until it receives an acknowledgment message from the neighbor. Message retransmission can
be frequent, such as every 10 millisec; however, an exponential decay mechanism can be used
to reduce frequency if successive tries do not result in a response, along with a maximum
timeout value to indicate failure to establish a tunnel.

To carry a GMPLS label, RSVP-TE creates an object by including its own 32-bit header
to identify the length of the message, class number, and C-Type. For the generalized label
request shown in Figure 18.11, the corresponding RSVP-TE object is shown in Figure 18.14.

630 18.4 Generalized MPLS

F I G U R E 18.14 RSVP-TE generalized label request object for GMPLS.

Similarly, the RSVP-TE header is included for other GMPLS labels. Note that class number
and class type depend on the RSVP object (see Table 18.5).

Recall that label setup is bidirectional in GMPLS. To accomplish this in RSVP-TE, an
Upstream-Label is included in the Path message. The class number for Upstream-Label is
35 and the C-Type used is as in RSVP-LABEL (see Table 18.5). The data rate of particular GM-
PLS connections is also communicated through an RSVP-TE Path message using SENDER-
TSPEC. Since the data rates for GMPLS generalized modular switching are well-defined, the
actual rate does not need to be coded; instead, a mapping value is provided for well-known
data rates; this is listed in Table 18.7.

18.4.4 Routing Protocols in GMPLS
The role and use of a routing protocol in GMPLS are primarily to enable traffic engineering
of GMPLS-based connection-oriented networks. There are two important points to note:

• GMPLS-based networks require a link state–based framework for communicating status
of links.

TA B L E 18.5 RSVP object examples for GMPLS, in addition to Table 18.1

Object Name Used in Class Examples: Class-Type with value in ()
Number (source RFC listed as [] from bibliography)

RSVP-LABEL Path 16 Generalized Label (2) [74]; Wavelength switching (3) [74]
LABEL-REQUEST Path 19 Generalized label request (4) [74]
SENDER-TSPEC Path 12 Integrated Services (1) [90]; G.709 (5) [542]
Upstream-Label Path 35 Same as in RSVP-LABEL
RECOVERY-LABEL Path 34 Same as in RSVP-LABEL
PROTECTION Path 37 Type 1 Protection (1) [74]
NOTIFY-REQUEST Path, Resv 195 IPv4 request (1) [74]

TA B L E 18.6 GMPLS message type and RSVP-TE protocol messages.

GMPLS Message type for setup RSVP-TE Protocol message
LSP Setup Path
LSP Accept Resv
LSP Confirm ResvConfirm
LSP Upstream Error PathErr
LSP Downstream Error ResvErr
LSP Downstream release PathTear
LSP Upstream release PathErr
LSP Notify Notify

C H A P T E R 1 8 MPLS and GMPLS 631

TA B L E 18.7 Data rate for GMPLS.

Signal Type Bit rate 32-bit Encoding value
(in Mbps) (in hex)

DS0 0.064 0x45FA0000
DS1 1.544 0x483C7A00
E1 2.048 0x487A0000
DS2 6.312 0x4940A080
E2 8.448 0x4980E800
Ethernet 10.000 0x49989680
E3 34.368 0x4A831A80
DS3 44.736 0x4AAAA780
STS-1 51.840 0x4AC5C100
Fast Ethernet 100.000 0x4B3EBC20
E4 139.264 0x4B84D000
FC-0 133M — 0x4B7DAD68
OC-3/STM-1 155.520 0x4B9450C0
FC-0 266M — 0x4BFDAD68
FC-0 531M — 0x4C7D3356
OC-12/STM-4 622.080 0x4C9450C0
GigE 1,000.000 0x4CEE6B28
FC-0 1062M — 0x4CFD3356
OC-48/STM-16 2,488.320 0x4D9450C0
OC-192/STM-64 9,953.280 0x4E9450C0
10GigE-LAN 10,000.000 0x4E9502F9
OC-768/STM-256 39,813.120 0x4F9450C0

• The actual path computation algorithm need not be within the scope of these routing
protocols.

You may recall that we have made the above points about link state routing protocols
earlier in Chapter 3. Since GMPLS can be used for different technologies, the routing proto-
cols need to be somewhat generic so that it can be used in any of these technologies. At the
same time, there are existing routing protocol frameworks that can be applicable, for example,
OSPF and IS-IS.

To satisfy the traffic engineering requirements, extensions to OSPF/IS-IS have been devel-
oped. However, first, we need to note that a “link” in a GMPLS network may not necessarily
be a physical link. Depending on the technology, it may ride over another physical technol-
ogy; this will be discussed later in the context of multilayer networking. Second, an LSP that
has been set up can serve as a point-to-point link for other nodes. Third, a protection notion
about a link may be helpful to communicate that might be useful to the routing path compu-
tation module. Thus, in general, it is safer to refer to a link in the context of GMPLS routing
as a TE link. Since in GMPLS, control and data planes are completely separate, appropriate
identifiers must be used so that the end of a link can be identified, which is discussed later in
Section 18.4.5.

GMPLS extension of traffic engineering of a routing protocol relies on MPLS traffic en-
gineering extensions. For example, sub-TLVs discussed earlier for MPLS such as maximum
link bandwidth are still applicable. In addition, the following new sub-TLV types have been
defined:

632 18.4 Generalized MPLS

• Link Local/Remote Identifiers to provide support for unnumbered links.

• Support for link protection to announce the protection capability available for a link; this
may be useful for path computation. Typical values are unprotected, shared, dedicated
1 + 1, and dedicated 1:1.

• Interface Switching Capability Descriptor to identify generalized modular switching ca-
pabilities (see Table 18.3).

• Shared Risk Link Group (SRLG) identification: This issue arises from multilayer network-
ing since multiple TE links at a particular layer may be using the same “link” at a lower
layer, such as at a fiber level. Alternately, a TE link may belong to multiple SRLGs. This
information may be used for path computation as well. We will describe SRLGs in detail
later in the context of multilayer networking.

We now briefly highlight some of extensions to OSPF and IS-IS.

OSPF AND IS-IS EXTENSION

To allow for TE link information exchange, OSPF again uses the opaque LSA—this is the same
as done for MPLS. That is, for TE usage, an opaque-type value of 10 is specifically assigned;
this LSA is known as a TE LSA. From an information encoding point of view, a TE LSA
uses one top-level TLV along with nested sub-TLVs, when needed, for an unnumbered link
identifier, link protection type, SRLG, and so on. The sub-TLVs then include the extension
information described above. Note that this is a continually evolving standard; for an up-to-
date list of sub-TLVs for TE, refer to [317].

In IS-IS, all routing information encoding is always done using TLVs. Thus, for GM-
PLS, new TE TLVs have been defined to capture information such as protection information,
SRLGs, and so on, which we have listed earlier in this section (also, see Table 6.2 in Chapter 6).
An up-to-date list of defined TLVs can be found at [316].

18.4.5 Control and Data Path Separation and Link Management Protocol
Control and data path separation in GMPLS is quite different from IP networks. Recall that,
in IP networks, there is no separation of control and data traffic carried in terms of physical
channel or partitioned bandwidth. An IP link carries both control and data traffic—the sepa-
ration of control traffic is identified either at the IP protocol type field level (e.g., OSPF packet)
or port level (e.g., RSVP packet). In an IP/MPLS environment, although there is separation
of control traffic and MPLS packet forwarding, they both use the same logical link between
two routers.

Now let us consider a different example: PSTN with SS7 for signaling. In PSTN, data traf-
fic means the voice calls, which are carried on TDM trunks, while control traffic, for example
ISUP messages for call setup, is sent over the SS7 network—that is, on a complete separate
network. Thus, ISUP call setup messages on the SS7 network traverse on a completely differ-
ent path or channel than the voice circuits (for example, refer to Figure 12.9).

In GMPLS, control and data path separation is similar to the PSTN/SS7 architecture.
In GMPLS, they are separated through use of separate channels; the difference between the
GMPLS approach and that of PSTN is that GMPLS does not define a completely separate

C H A P T E R 1 8 MPLS and GMPLS 633

F I G U R E 18.15 Control and data path separation in GMPLS.

network architecture like SS7 for PSTN. Instead, a separate channel may be dedicated for
the delivery of control traffic from data traffic (Figure 18.15). More importantly, the channel
that carries control traffic need not be on the same physical path as the data traffic. Recall
that in PSTN, the voice circuit to be used is identified in an SS7 message through trunk ID
(that is, TCIC code, refer to Section 12.8); similarly, in GMPLS the data link must be explicitly
identified so that this can be communicated through exchange of control traffic.

Separation of control and data paths, however, necessitates the need for a link manage-
ment control so that the two ends of a data link can communicate link-level information,
which is completely decoupled from control information for traffic engineering. To accom-
plish this, the link management protocol (LMP) has been defined for use in a GMPLS net-
working environment [396].

LMP provides two core functions: (1) control channel management, and (2) link property
correlation. The role of control channel management is to establish and maintain bidirectional
control channels between adjacent nodes. The establishment step is accomplished using a
configuration message; after establishment, a keep-alive message is generated frequently to
ensure that the control channel is up. The link property correlation function of LMP allows
aggregation of multiple, parallel data links into a TE link along with synchronization of the
properties of the TE link. Multiple-link situation arises, for example, when there are multiple
data links between ports of two adjacent nodes—they can be combined into a TE link through
the link property correlation function.

From Figure 18.15, we can see that it is quite possible in GMPLS to have control channels
on a completely different physical facility from the data channels. To check that both chan-
nels/paths are operating normally, additional functions have been defined. There are two
additional LMP functions for this purpose: link connectivity verification and fault manage-
ment. Link connectivity verification is accomplished by sending a test message over the data
channel; in turn, a test status message is sent back over the control channel to complete such
verification. That is, the verification is performed only at the end nodes of a TE link.

When the control channel uses a different path from the data channel, additional issues
come up. Specifically, two scenarios are possible: (1) the channel that carries the control mes-
sages has a failure, while the data path is intact, (2) the control path is intact; however, a
part on the data path is lost due to a failure. In the first case, the data path will continue to
carry data traffic—an issue is that if an established data path is to be torn down, this can-

634 18.5 MPLS Virtual Private Networks

not be communicated due to the control channel being down. The second scenario is more
problematic. Here the control-ends think that the data path is working fine; however, it is not
any more. To address this problem, LMP fault management procedure has been additionally
defined. Briefly, the LMP fault management procedure is based on a ChannelStatus message
exchange that uses the following messages: ChannelStatus, ChannelStatusAck, ChannelSta-
tusRequest, and ChannelStatusResponse. The ChannelStatus message is sent unsolicited and
is used to notify an LMP neighbor about the status of one or more data channels of a TE link.
The ChannelStatusAck message is used to acknowledge receipt of the ChannelStatus mes-
sage. The ChannelStatusRequest message is used to query an LMP neighbor about the status
of one or more data channels of a TE Link. The ChannelStatusResponse message is used to
acknowledge receipt of the ChannelStatusRequest message and to indicate the status of the
queried data links.

Finally, it is worth noting that, to use LMP, the end nodes are first established with a
control channel; then, addresses of the ends from the control channel are used to establish an
LMP communication.

18.5 MPLS Virtual Private Networks
While MPLS was originally intended for controlled IP traffic engineering, it has been found
useful in virtual private networking (VPN) as well. Suppose that a corporate customer has of-
fices in different physical locations distributed geographically; such customers would like to
lease a seamless “network” service through a provider that has geographic presence in these
areas and would require this provider to carry their corporate intranet IP-based traffic. Since
MPLS is a label-based concept, a VPN backbone provider can assign (provision) a unique
label along with an LSP for traffic between any two sites, including any bandwidth guaran-
tee using RSVP-TE label setup. To do that, the VPN backbone provider would need to have
LERs, commonly referred to as provider edge (PE) routers, at each site to which customers can
be connected through their customer edge (CE) routers. To the customer, it appears to be a point-
to-point link with a guaranteed data rate. For the VPN backbone provider, the MPLS-based
approach is appealing since it can combine different customers’ traffic on the same network
by doing software-based provisioning of LSPs for different customers. Such VPN service is
also known as provider-provisioned VPN (PPVPN) service; generic requirements for PPVPN
can be found in [517] and terminologies are described in [17].

While conceptually this approach is appealing, there is a key issue: address conflict. What
does address conflict mean? Private IP addressing as defined in RFC 1918 [592] has become
a popular mechanism for addressing hosts within almost any organization or corporate en-
vironment. Because of the prevalence of private IP addressing, two organizations may both
choose to number hosts in the address block, say 10.0.0.0/8; certainly, within an organization
the address allocation from this address block is unique for different hosts and subnets. If
both these organizations are to be supported by a VPN provider, then address conflict will
exist since both are using the same address block. Thus, an identifier is needed so that they
can be distinguished and the traffic is properly routed through the VPN provider’s network.

A possible approach for identifier tracking is that every router in the provider’s network
maintains routing information for all customers’ networks. While this is a possible approach,
it raises a second issue: scalability; this is because there would be limitations based on how
many sites a router can support in terms of amount of routing information.

C H A P T E R 1 8 MPLS and GMPLS 635

18.5.1 BGP/MPLS IP VPN

The BGP protocol has been extended for IP VPN to provide a mechanism for private IP traffic
for different customers to be carried on the same network. The bearer network is maintained
by a VPN network provider.

Consider a customer that has three locations separated by geographic distance. It uses
private IP address block, 10.0.0.0/8, for numbering its internal networks at these three differ-
ent locations, and numbers its private IP prefixes (routes) for its three geographically separate
locations as 10.1.0.0/16, 10.2.0.0/16, and 10.3.0.0/16. Thus, traffic generated at 10.1.0.0/16
destined for other sites would need to be routed to either 10.2.0.0/16 or 10.3.0.0/16. In pub-
lic domain Internet, if we were to consider three such public IP address blocks or prefixes
(routes), they would belong to three different organizations; we would then consider the
respective AS numbers they belong to and then do a BGP advertisement to announce the
prefixes along with the AS number. However, when prefixes belong to a private IP address
space, they cannot be advertised simply as in public BGP since another customer might num-
ber its private IP address space exactly in the same manner. If then a VPN provider were to
carry traffic for both these customers, it would need to have physically partitioned channel
in order to avoid address space conflict.

Instead of doing separate partitioned channels for different customers, another approach
is possible using the BGP/MPLS approach. In this approach, to support different cus-
tomers with addresses coming from the same private address space, the private IP prefix
is prepended with a VPN route distinguisher; together this address family is known as a VPN-
IPv4 address family. For clarity, a private IP prefix associated with this address family will be
referred to as a VPN-IPv4 route. An advantage of BGP multiprotocol extension is that it allows
multiple address families to coexist, thus allowing BGP to carry routes for multiple address
families. To make the BGP/MPLS approach work, customers and IP VPN providers are sep-
arated in term of traffic hand-off. Each customer needs to have its traffic exit through a CE
router that is then sent to the PE router. When a PE router receives a private IP-based route
from a CE router, the PE router changes it to a unique VPN-IPv4 route for announcement on
the BGP/MPLS VPN network.

In a nutshell, BGP/MPLS takes the following approach:

• Each VPN-IPv4 route is assigned an MPLS label.

• The PE router, when generating a BGP advertisement, announces the assigned MPLS label
with the VPN-IPv4 route.

• For labels received for the VPN-IPv4 route, LSPs are established, as necessary, between PE
routers using, for example, the RSVP-TE protocol.

• Actual data flow uses the already established appropriate LSPs.

In order to allow for association between route information and actual packet forward-
ing, each PE router needs to maintain VPN routing and forwarding tables, or VRFs, so that the
association works at the time of actual packet forwarding. Also note that when the VPN-IPv4
route is advertised by a PE router, the next-hop attribute in the BGP message points to this
PE router.

636 18.5 MPLS Virtual Private Networks

F I G U R E 18.16 Encoding of route distinguisher in BGP/MPLS.

The VPN Route Distinguisher in the VPN-IPv4 address family is an 8-byte address; thus,
collectively, the VPN-IPv4 address looks like a 12-byte address. Since IPv4 can be from the
same private address space used by different customers, the VPN-IPv4 then helps uniquely
distinguish routes. The Route Distinguisher part is divided into a type and value field of 2
bytes and 6 bytes, respectively. Currently the type field takes on three values: 0, 1, and 2. The
value field is made up of two subfields: an administrator subfield and an assigned number
subfield; their length depends on the specific type field, as shown in Figure 18.16. In case of
Type 0, the administrator subfield contains the 2-byte AS number; this can be a public or pri-
vate AS number. The assigned number subfield serves as a degree of freedom allowing the
customer that has that AS number to assign any internal numbering scheme. For example, a
customer might internally want to do such a numbering scheme based on its different loca-
tions. Type 2 is similar to Type 0 where the 4-byte AS number extension takes the 4-byte ad-
ministrator subfield, whereas the assigned number subfield is limited to 2 bytes. For Type 1,
the administrator subfield is set to 4 bytes, but it must be an IPv4 address; thus, the assigned
number subfield is limited to 2 bytes. The IPv4 address in Type 1 can be a public IP address.
We can see that type and value fields together can uniquely identify different routes, when
the administrator subfield uses public addressing for an AS number or IP address. However,
a customer may choose to announce the route distinguisher using a private AS number or
private IP address in the administrator subfield; if this is so, then the provider may choose to
impose restrictions on the assigned number subfield so that the routes are distinct within the
provider’s network.

Example 18.2 Illustration of labeling in BGP/MPLS IP VPN between two customer edge routers of
a customer.

In Figure 18.17, we show an IP packet being sent from CE router CE1 to CE router CE2 at
another location; this packet is intended for a network/subnet served behind CE2 (not shown
in the figure). Note that the CE1 is connected to the PE router, PE1; similarly, CE2 is connected
to PE2. In between PE1 and PE2, the provider has LSRs; we show two in Figure 18.17—we
assume that between PE1 and PE2, a label-switched path (LSP) is already established for
carrying this customer’s traffic.

First, CE1 forwards the packet to its default gateway, which happens to be PE1. On re-
ceiving this packet from CE1, PE1 consults its VRF for route lookup. For the VRF to know that
there is a route to networks supported behind CE2, PE1 would need to have already received
an advertisement from PE2 about networks supported by CE2. Suppose that the VPN-IPv4

C H A P T E R 1 8 MPLS and GMPLS 637

F I G U R E 18.17 Prepending of two labels in BGP/MPLS packet forwarding.

address for the networks supported behind CE2 is advertised as MPLS label 7. The VRF at
PE1 would then have an entry for MPLS label 7. Thus, the IP packet will first be prepended
with the MPLS label 7. Second, PE1 would look up the LSP setup between PE1 and PE2 that
happens to have label 90; thus, the packet will now be prepended by label 90 for using this
LSP for packet forwarding. �

We can see from the above example that every IP packet will have two labels prepended:
the inner label is for route distinguisher, and the outer label is for packet forwarding through
the MPLS VPN provider’s network. It is important to note that the route distinguisher is
advertised through a BGP advertisement; it is not included in the actual packet forwarding;
instead an MPLS label is used. This MPLS label (inner label) is the information advertised
with the route distinguisher.

While injection of two labels on an IP packet certainly incurs additional overhead, it pro-
vides the ability to clearly separate the route distinguishing part and the LSP part; further-
more, because of this advantage, a provider has the flexibility to use a single LSP between
two sites to carry traffic between different customers. Alternately, for the same customer and
for traffic between two sites, the VPN provider’s network may choose to set up multiple LSPs
through its network for its traffic engineering requirements while satisfying the customers’
goals; note that use of multiple LSPs to split traffic between two sites is transparent to the
customers. VPN traffic engineering will be discussed later in Section 19.2. Moreover, there is
a scalability advantage since only one label for each pair of ingress/egress points is sufficient
through the backbone, instead of having different labels for different customers for the same
pair of ingress/egress points.

Now consider again Figure 18.17. If the customer edge routers are also MPLS LERs,
then the LSP can possibly be set up from CE1 to CE2 where the receiving customer edge
router is responsible for the outer label processing. However, to reduce load on customer
edge routers, a function known as Penultimate Hop Popping is performed at the provider edge
router (“penultimate hop router”) in which the outermost label of an MPLS packet is re-
moved before the packet is passed to the customer edge router. To activate this function, the
edge router must indicate to the penultimate hop router to use implicit null label 3.

Example 18.3 Illustration of multiple customers in a BGP/MPLS IP VPN provider’s network.
Consider the topology shown in Figure 18.18, where two customers are identified as Cus-

tomer 1 and Customer 2. Each uses private address space 10.0.0.0/8, which is assigned to each
site as indicated in Figure 18.18; their CE routers in a particular location connect through the
same PE routers in the MPLS VPN provider’s network.

638 18.5 MPLS Virtual Private Networks

F I G U R E 18.18 BGP/MPLS example with multiple customers.

At each PE router, two VRFs would be maintained, one for each customer. When initial-
ized, the network will use an M-BGP protocol to exchange route information, rather than
VPN-IPv4 route information, as shown in Figure 18.18 from PE2 to other PE routers—note
that when advertising this route, the BGP announcement will include the next hop as that
of this PE. Similarly, the other PE routers will advertise route information (not shown in the
figure). �

It may be noted that the BGP extended community attribute can also be used with distri-
bution of VPN routing information. For example, this can be helpful to customers in control-
ling the distribution of routes.

Because of policy capabilities of BGP, two customers can choose to exchange traffic
through MPLS VPN if they have any business relations. In the above example, Customer 1
might want to exchange data with Customer 2; once the policy determining which routes are
allowed to which customer is finalized, the policies can be set up at the PE routers. It should
be clear by now that PE routers are acting as BGP speakers.

In general, it may be noted that BGP/MPLS is not designed for all types and sizes of
customers or VPN services. For example, a customer that has just two sites in two different
locations might choose to tunnel any internal traffic through the public Internet by encrypting
the data such as IPSec, especially if it does not require any guaranteed QoS; such a customer
does not necessarily need to use the BGP/MPLS approach. This means that the BGP/MPLS
approach is meant more for moderate to large customers that have multiple sites and re-
quired guaranteed QoS and that have an interest in sharing business traffic with other simi-
lar customers; for them, a BGP/MPLS provides a good alternative in an IP framework while
bypassing the public Internet. It is worth pointing out that BGP/MPLS is meant for a single
VPN provider to operate its network in order to carry traffic for different customers; it does
not solve the need of a customer that wants a VPN tunnel between two locations that are not

C H A P T E R 1 8 MPLS and GMPLS 639

served by a single VPN provider’s network—in such cases, often a VPN provider becomes
the contract (“official”) provider who, in turn, makes contractual arrangements, with another
provider to carry the traffic for the customer to locations with which the official provider has
no connectivity.

What about traffic engineering from the point of view of a VPN provider? This will be
discussed later in Section 19.2. Finally, we point out that BGP/MPLS does not have multicas-
ting capability as originally envisioned; extensions have been planned.

18.5.2 Layer 2 VPN
In the previous section, we discussed layer 3 VPN using the BGP/MPLS IP VPN approach.
Many customers with offices located in geographically disparate sites are also interested in
layer 2 VPN services; this means that they have a layer 2, e.g., Ethernet, subnet that they
would like to tunnel across a wide-area network so that all sites for a particular customer
look as if they are on the same LAN by, e.g., using standard Ethernet frames. Such a service is
known as a Virtual Private LAN Service (VPLS), transparent LAN services (TLS), or “emulated”
Ethernet service [449].

A key advantage of MPLS is its label-based forwarding mechanism to carry any type
of packets. Thus, input to an MPLS router need not be only IP packets; it can be any other
protocol packets as long as the ingress MPLS router has the functionality to accept them.
When such a packet arrives, MPLS routers add the MPLS label header and forward it to a
destination at another site. For example, such a received packet at an MPLS ingress router
can be an Ethernet frame [449]. Thus, this frame will be carried as an MPLS packet through
the wide-area network and is delivered to an egress MPLS router that will strip off the MPLS
header and deliver the Ethernet frame on the LAN at the other site.

Example 18.4 A layer 2 over MPLS example.
Consider two geographically disparate sites that a customer needs to be on subnet

10.2.3.0/24. Now consider an IP packet generated at host 10.2.3.49 destined for 10.2.3.22
where the second host is at a different site.

As shown in Figure 18.19, the IP packet generated at host 10.2.3.49 will be encapsulated
as an Ethernet frame that will arrive at the layer 2 CE device, which forwards it to a provider
ingress PE router. The Ethernet frame is then encapsulated in an MPLS packet using an LSP
to reach the egress PE router where the MPLS label is stripped, and the Ethernet frame is sent
to the customer edge device for forwarding to the LAN for delivery to 10.2.3.22. As far as the
two hosts are concerned, the Ethernet frame stayed on the same LAN. �

Note that for such services, for each Ethernet frame that arrives at the ingress MPLS
router, two labels are added: (1) at MPLS level to identify the input source, and (2) a label
that serves as the LSP tunnel from the ingress to the egress router. Once the packet arrives at
the egress router, it first removes the label associated with the LSP tunnel, and then for the
second label, a lookup table is checked to find the destination interface to the customer edge
device.

Finally, layer 2 VPN creates an interesting scenario in that more than two sites for the
same customer might want to be connected in the same emulated LAN. Consider again Fig-

640 18.6 Further Lookup

F I G U R E 18.19 Layer 2 VPN over MPLS.

ure 18.19 and imagine a third site for the same customer that is also on 10.2.0.0/16 subnet. In
this case, copies of the packet would need to be sent to each destination requiring multiple
LSP setup. While this approach is doable, it requires many more LSPs to be set up as well
as extra packet transmission, resulting in more bandwidth consumption than necessary. In
fact, this approach can be thought of as the conference service on PSTN where more than
two parties can join conference, while the underlying connections are all unicast based. The
point-to-multipoint (P2MP) concept for use in MPLS is currently being developed to con-
sider this scenario. Later in Section 19.2.4, we will discuss traffic engineering implications
for point-to-point and P2MP virtual private LAN services form the point of view of a VPN
provider.

18.6 Summary
In this chapter, we have presented two enabling environments for traffic engineering: MPLS
and GMPLS. While MPLS is exclusively used for packet-based networks, GMPLS can be
used for both packet-based as well as circuit-based networks on modular well-defined data
rate levels. Furthermore, GMPLS addresses bidirectional requirements in circuit-mode con-
nections, whereas MPLS is unidirectional. For traffic engineering information exchange in
MPLS/GMPLS environment, OSPF and IS-IS protocols have been extended to contain traffic
engineering information. It is important to note that the TCP/IP stack is used for exchanging
control traffic information in GMPLS. This requires GMPLS nodes to have IP addresses; this
aspect is also significant when you consider nested label stacking between MPLS and GMPLS.
This is shown earlier in Figure 18.13. Such use of the TCP/IP stack allows label exchanges to
be performed seamlessly.

In subsequent chapters, we will discuss how these enabling environments help traffic
engineering in a variety of networks.

Further Lookup
MPLS architecture is described in RFC 3031 [604], while label stack encoding is discussed
in RFC 3032 [603]. LDP specification is described in RFC 3036 [16]. For extensive coverage

C H A P T E R 1 8 MPLS and GMPLS 641

of MPLS, see books such as [167], [211], [263], [271]. Originally, MPLS has been defined for
use within a provider’s network (“intra-AS”). Recently, there have been works on extending
MPLS for inter-AS; see RFC 4216 [765], RFC 4726 [214].

There have been two primary candidates for traffic engineering specifications in MPLS:
RSVP-TE and Constraint-Routing Label Distribution Protocol (CR-LDP, in short). The MPLS
working group within IETF recommended discontinuation of any new effort on CR-LDP in
2003 [18]. Extensions of RSVP to RSVP-TE for MPLS have been described in RFC 3209 [43]
and RFC 4090 [541], and updates in RFC 4420 [215]; applicability of RSVP-TE to LSP is de-
scribed in RFC 3210 [44]. We refer readers interested in CR-LDP to RFC 3212 [337], RFC 3213
[35], and RFC 3214 [37].

RFC 2764 [255] presents a framework for IP-based VPN. The concept of BGP/MPLS was
presented in RFC 2547 [601], and has been updated in RFC 4364 [602]; for recent work, see
RFC 4684 [448] and RFC 4797 [588]. Example 18.3 is adapted from [632]. Layer 2 VPN en-
capsulation of Ethernet over MPLS has recently been described in RFC 4448 [449]; see also
RFC 4761 [376] and RFC 4762 [398].

GMPLS was originally described in RFC 3471 [73] and has been updated in RFC 4201
[372], and RFC 4328 [542]. For routing extensions to GMPLS, see RFC 4202 [375], RFC 4203
[374], and RFC 4205 [373]. GMPLS extension to G.709 is described in RFC 4328 [542]. LMP is
described in RFC 4204 [396]. Details on GMPLS can be found in [212].

Exercises
18.1. What are the key differences between MPLS and GMLPS?

18.2. What is the FAST-REROUTE object used for?

18.3. Sample messages for RSVP-TE are available at [744]. Investigate how different values
are specified in RSVP-TE messages.

18.4. Explore the current activities of the MPLS-related working groups at IETF.

18.5. Explain the main differences between BGP/MPLS IP VPN and layer 2 VPN.

19
Routing and
Traffic Engineering
with MPLS
If one sticks too rigidly to one’s principles,
one would hardly see anybody.

Agatha Christie

Reading Guideline

Understanding of the material presented in this chapter requires a basic knowledge
of MPLS as presented in Chapter 18. In addition, material on IP traffic engineer-
ing (Chapter 7), network flow modeling (Chapter 4), and quality-of-service rout-
ing (Chapter 17) for three classes of problems considered is helpful. Note that each
problem class should be read independently with the background material from the
respective chapters identified here.

C H A P T E R 1 9 Routing and Traffic Engineering with MPLS 643

In this chapter, we present the applicability of MPLS for routing and traffic engineering for a
set of representative real-world problems. Specifically, three problem classes are considered:
(1) an integrated IP/MPLS environment for IP traffic engineering, (2) VPN traffic engineer-
ing/routing using MPLS, and (3) a voice over MPLS network, that is, an MPLS network
where voice or multimedia real-time interactive service is provided. Our discussion here is
primarily limited to intradomain traffic engineering.

MPLS is usable in a variety of ways. It is, however, important to understand how it is
used so that for any future network design or services deployed, it is possible to explore if
and how MPLS can be used.

19.1 Traffic Engineering of IP/MPLS Networks
In this section, we discuss traffic engineering of IP networks, where IP/MPLS-integrated
routers are deployed. Recall that IP traffic engineering was discussed earlier in Chapter 7.

19.1.1 A Brisk Walk Back in History

We will first provide a short historical context for the emergence of MPLS for IP traffic engi-
neering. This is only a very brief overview focusing on a few key facts in regard to IP traffic
engineering and is not focused on providing precise details of what happened when. For a
detailed history of MPLS and its forerunners, refer to [167], [263].

By the mid to late 1990s, it was realized that some form of traffic engineering of IP net-
works was needed. At that time, large IP networks were either using OSPF or IS-IS pro-
tocol and, primarily, either simple hop-based link weight or the inverse of link capacity
as link weights. As discussed in Chapter 7, there are many network situations where it is
possible for some links to have very high utilization if link weights are not assigned prop-
erly.

Somewhat independent of the above development, there were concerns about the IP for-
warding engine’s ability to handle a large volume of traffic. Concepts such as IP switching,
tag switching, and aggregate router-based IP switching (ARIS) emerged in 1996. It was soon
recognized that a standard switching approach for packets is needed, which led to the MPLS
workgroup being chartered by IETF in early 1997. By 1999, the role of MPLS in IP traffic en-
gineering was well recognized [42], [45], citing the limitation of OSPF/IS-IS in being able to
move traffic away from heavily utilized links due to lack of any control mechanism.

By 2000, however, it was reported that there was indeed a systematic way to determine
OSPF/IS-IS link weights for IP traffic engineering [233], [565] (see also [234], [566]). Certainly,
this was good news for many ISPs who wanted to continue to run IP-only routers in their
network. Six years later, many large ISPs continue to successfully run IP-only networks with
good traffic engineering through optimal link weight determination coupled with good traffic
matrix determination.

Certainly, MPLS has its place in IP traffic engineering; in fact, many other large ISPs
currently successfully run IP/MPLS networks for controlled IP traffic engineering. It is also
important to note that MPLS has now found roles in many arenas, as discussed in Chapter 18.

Thus, whether IP-only is better or worse than IP/MPLS for IP traffic engineering is often a
matter of opinion and preference; furthermore, this is also tied to customers that a provider is

644 19.1 Traffic Engineering of IP/MPLS Networks

serving as well as personnel and expertise locally available. Next, we will present the essence
of IP/MPLS traffic engineering in a provider’s network in its own right.

19.1.2 MPLS-Based Approach for Traffic Engineering

The basic question is how to control traffic movement through a network if we do not like
current traffic flows on different links. Ideally, it is desirable to somehow force traffic to a
certain path. This is where one of the benefits of MPLS comes into the picture; that is, an LSP
can be set up, where desired and when desired, and the bandwidth flow can be limited.

First note that once a tunnel is set up through MPLS, at the IP level, specifically to the
routing protocol, it appears as a logical link. In an IP/MPLS network, the routing protocols
such as OSPF and IS-IS are used in extension mode, i.e., OSPF-TE or IS-IS-TE, which provides
bandwidth information. This information is then used by the traffic engineering component
to determine LSPs.

WHEN TRAFFIC DEMAND IS FIXED

We first start with an example in which the traffic demand is fixed and given.

Example 19.1 A simple example of IP/MPLS traffic engineering
We first discuss the four-node example we presented earlier in Chapter 7 for IP traffic

engineering; the topology with demand and link capacity is reproduced in Figure 19.1. We
assume that the goal is to minimize maximum link utilization; then, the optimal solution is
to send 54.54 Mbps of the total east-west traffic on the southern route and the rest of the
5.45 Mbps on the northern route.

In the case with IP traffic engineering, the best we can do is to allow all flow, 60 Mbps,
to take the southern route, which is accomplished by choosing link weights so that the cost
of the southern route is lower than the northern route. Now consider employing MPLS on
this same network. We can now set up two LSPs, one with the guaranteed bandwidth set
to 54.54 Mbps (southern path) and the other to 5.45 Mbps (northern path), while the MPLS
router on the left provides proportional load balancing in terms of packet flow. �

F I G U R E 19.1 Four-node example with different link capacity.

C H A P T E R 1 9 Routing and Traffic Engineering with MPLS 645

ON DETERMINING OPTIMAL LSPS

To determine where and how many endpoint tunnels (from ingress to egress) are needed,
the multicommodity network flow (MCNF) model presented in Eq. (4.4.10) can be used; note
the subtle difference with the multicommodity shortest-path routing flow (MCSPRF) model
Eq. (7.5.1). Recall that Eq. (4.4.10) is shown for minimizing maximum link utilization; as ap-
propriate, the objective function can be replaced by either a piece-wise linear approximation
of the delay function or by a composite function; refer to Eq. (7.6.25) and Eq. (7.6.20), respec-
tively. Once the MCNF model is solved, we will obtain a solution where paths with positive
flows will be identified; these paths are then prime candidates for becoming LSP tunnels in
the IP/MPLS network. Note that the MCNF model may identify some paths with very small
positive flow amounts; such paths may not need to be considered in the final optimal LSPs
selected.

As an alternative to the MCNF approach, a constrained shortest-path first approach for
LSP determination can be taken. Typically, this approach cannot provide optimal flows under
certain situations. This will be illustrated later in the context of MPLS VPN traffic engineering.

TIME-DEPENDENT TRAFFIC VARIATION

Traffic does change quite significantly, for example, in a 24-hour time cycle. Instead of consid-
ering a single traffic matrix, multiple traffic matrices for different hours during the day may
be estimated. Thus, the MCNF model can be solved on each of these matrices separately. The
resulting paths with positive flows for each such traffic matrix are very likely to be different.
Yet, some paths will be common. If so, such paths can be candidates for LSP tunnels to be
set up as explicit LSP routes where the bandwidth allocation can be varied from one time
period to another. For the ones not common, LSPs can be set up on a time-dependent basis.
An important issue to keep in mind is that tearing down and setting up LSPs can affect the
end-user’s performance. Thus, minimizing such an impact is also important.

WHEN TRAFFIC DEMAND IS NOT FIXED

Next we consider the case in which the traffic demand is not fixed; this case is not to be con-
fused with the case of time-dependent variation in traffic demand. In an IP network, demand
is stochastic as it can vary instantaneously; this is sometimes referred to as elastic demand.
Thus, from measurements, we can at best determine projected demand, not fixed demand.
Going back to Example 19.1, assume that 60 Mbps is the projected demand. Thus, the traf-
fic may fluctuate from this value at any instant, possibly going over 60 Mbps. Thus, if the
network is set up with a guaranteed bandwidth on each LSP, then any traffic over 60 Mbps
will be denied entry to the network. This is certainly not a good situation in an IP traffic en-
vironment. Thus, LSPs would need to be set up carefully to allow for fluctuations and also
knowing that one path has much less bandwidth. For instance, when the RSVP-TE Path mes-
sage is initiated, the LSP on the north path is set up with int-serv under a guaranteed service
option to limit it from having to handle any load fluctuations. The LSP on the south path can
be set up using RSVP-TE with int-serv under a controlled load service option to allow for
flexibility for any overload. Note that there is no instantaneous service or delay guarantee;
however, in a best-effort IP network or in a differentiated services IP network, this allows for
service-level agreements to be met.

646 19.1 Traffic Engineering of IP/MPLS Networks

An alternate solution is to set up two LSPs on the south path, where one is set up at
54.54 Mbps with a guaranteed option, and the other one is set up with a null service option.
Depending on the implementation, another option is to allow any traffic over 54.54 Mbps to
be routed as IP traffic based on the shortest-path first routing decision made by the interior
gateway protocols (IGPs). For this to happen, we need to ensure that the links on the north
route are set with high weights, so that the IGP does not select this as a preferred route for
overflow traffic. Another point to note is that the ingress node must be able to handle over-
flow of traffic from the first LSP to the second LSP. That is, at any time in IP/MPLS networks,
both link weight setting and MPLS LSP setup is possible; while this provides flexibility, it also
results in a certain amount of complexity in determining and managing link weights as well
as MPLS LSPs so that the network is efficiently used.

JOINT LINK WEIGHTS AND MPLS LSP ENGINEERING

As stated above, the joint traffic engineering optimization problem determining link weights
for the IGP and optimal MPLS LSPs is a complex problem for an integrated IP/MPLS net-
work. We will consider a special case here that allows us to approach this problem through
decoupling.

Suppose that a large ISP has a set of critical customers with web servers running directly
off this ISP. Because of service-level agreements, it is decided that these customers would
get specialized treatment. Thus, at the entry points to the network, traffic trunks for such
customers can be defined that point to the address block of web servers; accordingly, LSP
tunnels can be set up. Thus, when a real user’s packet arrives at the ingress router, it will go
on a “fast track” LSP to the destination, since such LSP tunnels have already been established
for user traffic delivery. Alternately, the maximum rate that is allowed to be handled can also
be limited using the same idea. In other words, controlled traffic engineering can be helpful
in providing special treatment to large customers.

However, all the rest of the users can use standard IP-mode service. Given this, we can
approach the joint optimization somewhat differently through a two-stage approach:

• For customers with SLAs, estimate traffic demands and determine the optimal LSPs using
the MCNF approach (refer to Section 4.4.2).

• Determine residual link capacities after allocating bandwidth resources for the required
LSP.

• For traffic estimated (that does not fall under SLAs provided through MPLS LSPs), con-
sider the link weight optimization approach using an MCSPRF approach (refer to Sec-
tion 7.5), in which case link capacity is considered to be the residual link capacity.

In addition, some customers might require failure protection as part of the SLA, which
can be supported through FAST-REROUTE option in MPLS and by providing backup LSPs.
In general, customers with varied levels of protection requirement might need to be accom-
modated through MPLS tunnels. To traffic engineer a network for this requirement, the trans-
port modeling approach presented later in Section 24.4 can be used; see also [665], [750], [751].

C H A P T E R 1 9 Routing and Traffic Engineering with MPLS 647

TUNNEL IN THE MIDDLE

Finally, it may be noted that through label stacking, MPLS allows LSP tunnels to be set up in
the “middle”; see Figure 18.5 for an example of tunnel in the middle. Based on traffic profile
and knowledge of a specific network, it is quite possible to consider the option of creating
tunnels in the middle. However, the general problem of selecting tunnels at the end and also
determining where in the middle is a difficult combinatorial optimization problem.

GENERAL REMARK

We can see from the above discussion that in an IP/MPLS environment, the traffic engineer-
ing approach and decision depend on what types of customers a provider is serving, and the
level of guarantee needed for meeting demand volume request.

19.2 VPN Traffic Engineering
It may be noted that VPN is a widely used terminology for a broad variety of VPN services,
including accessing a corporate network from home through a VPN service. Here, the mean-
ing of VPN is different in that a corporate customer may have offices in different physical
locations distributed geographically; such customers would like to lease a seamless virtual
link connectivity through another provider (“VPN provider”) that has geographic presence
in these areas. In this section, we present an MPLS VPN traffic engineering approach for
such virtual services. Note that this usage of MPLS is quite different from the IP/MPLS
traffic engineering issue for an ISP. Here, our focus is networks provided by MPLS/VPN
providers, which is not to be confused with public ISPs. Such a VPN is also known as a
provider-provisioned VPN (PPVPN); generic requirements and terminology for PPVPN can
be found in [17], [517].

In Chapter 18, we discussed how PPVPN can be accomplished using BGP MPLS. We
briefly review a few key points for the purpose of VPN traffic engineering. Here, we con-
sider the case where the connectivity is provided at layer 3, i.e., a layer 3 VPN service. For
illustration, we will assume that each customer has its own address block. From the point
of view of the VPN provider, it will be necessary to have an LER where a customer is con-
nected at layer 3, and then another LER at the other geographic location to connect back to the
customer. Thus, within the VPN provider’s networks, the LERs serve as ingress and egress
points and the provider can have multiple LSRs for transiting traffic; such VPN providers
are referred to as MPLS VPN providers, or more generally, as PPVPN providers. Note that
the ingress and egress points serve as locations for LSP tunnels to originate and terminate
to serve different customers. Furthermore, LERs are referred to as provider edge (PE) routers,
while the routers at customer sites are referred to as customer edge (CE) routers.

Later, we will consider another VPN concept called layer 2 VPN (refer to Section 18.5.2).
In this case, the customer edge is not a router. This is discussed later in Section 19.2.4.

19.2.1 Problem Illustration: Layer 3 VPN

We will illustrate a routing/traffic engineering problem from the perspective of an MPLS
VPN provider who will be referred to as ProviderStealth. This provider has three customers:

648 19.2 VPN Traffic Engineering

TA B L E 19.1 Customer demand matrix.

Customer ID Locations Bandwidth
between Requirement

Customer A Kansas City (27.27.1.0/24) San Francisco (27.27.128.0/24) 45 Mbps
(27.27.0.0/16) Kansas City (27.27.1.0/24) New York (27.27.192.0/24) 60 Mbps

San Francisco (27.27.128.0/24) New York (27.27.192.0/24) 20 Mbps

Customer B San Francisco (42.84.0.0/20) New York (42.84.128.0/20) 80 Mbps
(42.84.0.0/16)

Customer C San Francisco (2.4.0.0/20) New York (2.4.128.0/20) 100 Mbps
(2.4.0.0/16)

TA B L E 19.2 LSPs chosen as traffic engineering tunnels.

Customer ID Origin-Destination LSP for TE Tunnel
Customer A SF-KC (for 27.27.1.0/24) LER-SF1 · · · LSR-SF · · · LSR-KC · · · LER-KC1

KC-SF (for 27.27.128.0/24) LER-KC1 · · · LSR-KC · · · LSR-SF · · · LER-SF1
KC-NY (for 27.27.192.0/24) LER-KC1 · · · LSR-KC · · · LSR-NY · · · LER-NY1
NY-KC (for 27.27.1.0/24) LER-NY1 · · · LSR-NY · · · LSR-KC · · · LER-KC1
SF-NY (for 27.27.192.0/24) LER-SF1 · · · LSR-SF · · · LSR-NY · · · LER-NY1
NY-SF (for 27.27.128.0/24) LER-NY1 · · · LSR-NY · · · LSR-SF · · · LER-SF1

Customer B SF-NY (for 42.84.128.0/20) LER-SF1 · · · LSR-SF · · · LSR-KC · · · LSR-NY · · · LER-NY2
NY-SF (for 42.84.0.0/20) LER-NY2 · · · LSR-NY · · · LSR-KC · · · LSR-SF · · · LER-SF1

Customer C SF-NY (for 2.4.128.0/20) LER-SF2 · · · LSR-SF · · · LSR-NY · · · LER-NY2
NY-SF (for 2.4.0.0/20) LER-NY2 · · · LSR-NY · · · LSR-SF · · · LER-SF2

Customer A, Customer B, and Customer C. Customer A has locations in three cities: San Fran-
cisco (SF), Kansas City (KC), and New York (NY), while Customer B and Customer C have
locations only in San Francisco and New York. We assume that each of these customers has
already obtained an IP address block as follows:

Customer A: 27.27.0.0/16
Customer B: 42.84.0.0/16
Customer C: 2.4.0.0/16

Customer A decides to activate only three subnets at a /24 level: 27.27.1.0/24 for KC,
27.27.128.0/24 for SF, and 27.27.192.0/24 for NY. Customer B has decided to equally divide
its address space in its two locations using /20 and, thus, has allocated 42.84.0.0/20 to SF
and 42.84.128.0/20 to NY. Customer C has also used the same address allocation rule for its
address block, i.e., 2.4.0.0/20 to SF and 2.4.128.0/20 to NY. Each customer has a bandwidth
requirement between its different sites as located in Table 19.1.

ProviderStealth has LERs and LSRs at a PoP in each city and customers would need to
have connectivity to each PoP’s LERs at respective locations; ProviderStealth’s responsibil-
ity then is to meet the demand requirement of each customer in its MPLS VPN network.
ProviderStealth’s core network links are assumed to be OC-3 (155 Mbps), which provides an
OC-3 rate in each direction. The entire network topological view is shown in Figure 19.2(a).
From the bandwidth requirement, we can see the total bandwidth requirement between SF
and NY is 200 Mbps; since ProviderStealth has only OC-3 capacity between SF and NY, it
cannot meet the total bandwidth requirement using this direct link. By inspecting its capacity

C H A P T E R 1 9 Routing and Traffic Engineering with MPLS 649

F I G U R E 19.2 MPLS-VPN routing/traffic engineering example.

650 19.2 VPN Traffic Engineering

in the entire network, it can route Customer B’s requirement through KC taking the path SF
to KC to NY using LSRs in each city. Accordingly, ProviderStealth will set up label-switched
paths for traffic engineering tunneling for Customer B.

The LSPs in each direction are listed in Table 19.2 where FECs can be assigned based on
the network destination for each customer. Note that LSPs are unidirectional; thus, two LSPs
must be set up to meet the bidirectional requirement on bandwidth. The routes for the LSPs
are shown in Figure 19.2(c), while the logical connectivity view to each customer would be
made apparent of the MPLS VPN network by the MPLS VPN provider and is shown for each
customer Figure 19.2(b).

Remark 19.1. Customers’ private addressing and MPLS VPN.
In the above illustration, we used different IP address blocks for different customers.

It is now common for organizations to use private IP address block such as 10.0.0.0/8 for
numbering within their organizations with different subnets defined for different locations.
Because of this, it is possible that two different customers have the same private address
subnets, say 10.5.3.0/24 assigned for their own locations. This may look conflicting from the
point of view of proper routing within the MPLS network. However, this is not an issue
if BGP/MPLS IP VPN functionality [601], [602], presented earlier in Section 18.5.1, is used,
which uses route distinguishers to distinguish between two customer’s subnet addresses.
Regardless of the numbering issue, the traffic engineering problem faced by the VPN provider
is the same as if the address blocks were unique. �

19.2.2 LSP Path Determination: Constrained Shortest Path Approach

Assume that MPLS routers are equipped with a constrained shortest path first (CSPF) al-
gorithm, which is similar to shortest path algorithm, Algorithm 2.4, described in Chapter 2.
There are two main differences/requirements: (1) a link is considered only if it has the band-
width available to meet the request, and (2) a path must be computed only for a given desti-
nation, say, v. A simple way to address the first difference is to prune links that do not meet
the bandwidth requirement by temporarily setting the link cost to infinity. For the second
requirement, the algorithm needs to stop as soon as the path is found. For completeness, the
basic idea of a CSPF algorithm is listed in Algorithm 19.1 using the same notation as used
in Chapter 2; note that this algorithm is particularly stated for meeting bandwidth constraint.
Other resource constraints can be considered as well by appropriately changing Step 2 of this
algorithm.

To use CSPF for the problem illustrated, we first note that in our case, the link cost may be
set to the hop count. The bandwidth availability can be determined at each router based on
OSPF-TE or IS-IS-TE for traffic engineering. With this information, a sequence of steps would
need to be performed that can be invoked at each router independently as follows:

1. Set up TE 100-Mbps tunnel for Customer C (at LSR-SF from SF to NY, and reverse)
Available link bandwidth: SF-NY: 55 Mbps; SF-KC: 155 Mbps; KC-NY: 155 Mbps

2. Set up TE 80-Mbps tunnel for Customer B (at LSR-SF from SF to NY, and reverse)
Available link bandwidth: SF-NY: 55 Mbps; SF-KC: 75 Mbps; KC-NY: 75 Mbps

C H A P T E R 1 9 Routing and Traffic Engineering with MPLS 651

A L G O R I T H M 19.1 Constrained shortest path first algorithm: from node i to node v,
for bandwidth constraint, computed at time t

1. Network N and cost of link di
km(t) and available bandwidth on bi

km(t) on link k–m, as known to node i at the
time of computation, t.

2. For link k–m, if available bandwidth, bk
km(t), is smaller than bandwidth request b̄, then set link cost temporarily

to infinity, i.e., di
km(t) = ∞.

3. Initially, consider only source node i in the list of nodes considered (“permanent list”), i.e., S = {i}; mark the list
with all the rest of the nodes as S ′ (“tentative list”). Initialize

Dij(t) = di
ij(t), for all j ∈ S ′.

4. Identify a neighboring node (intermediary) k not in the current list S with the minimum-cost path from node i,
i.e., find k ∈ S ′ such that Dik(t) = minm∈S ′ Dim(t)

if k is the same as destination v, stop.

Add k to permanent list S , i.e., S = S ∪ {k},
Drop k from tentative list S ′ , i.e., S ′ = S ′\{k}.
If S ′ is empty, stop.

5. Consider neighboring nodes Nk of the intermediary k (but do not consider nodes already in permanent list S) to
check for improvement in the minimum-cost path, i.e.,

for j ∈ Nk ∩ S ′

Dij(t) = min{Dij(t),Dik(t) + di
kj(t)} (19.2.1)

go to Step-4.

3. Set up TE 20-Mbps tunnel for Customer A (at LSR-SF from SF to NY, and reverse)
Available link bandwidth: SF-NY: 35 Mbps; SF-KC: 75 Mbps; KC-NY: 75 Mbps

4. Set up TE 45-Mbps tunnel for Customer A (at LSR-SF from SF to KC, and reverse)
Available link bandwidth: SF-NY: 35 Mbps; SF-KC: 30 Mbps; KC-NY: 75 Mbps

5. Set up TE 60-Mbps tunnel for Customer A (at LSR-KC from KC to NY, and reverse)
Available link bandwidth: SF-NY: 35 Mbps; SF-KC: 30 Mbps; KC-NY: 15 Mbps

Since MPLS tunnel setup is undirectional, each direction must be set up separately. The
change in available capacity at each link after each step is also noted above. Step 2 above re-
quires further explanation. Since after Step 1, link SF-NY has only 55 Mbps left, CSPF will
prune this link since it cannot meet the 80-Mbps requirement, which will result is choosing
path SF-KC-NY.

Note again that CSPF is performed by each router indendently based on its current view
of bandwidth availability. Suppose that requests were submitted and invoked in the follow-
ing order in which the first two steps from the above are swapped:

1′. Set up TE 80-Mbps tunnel for Customer B (at LSR-SF from SF to NY, and reverse)
Available link bandwidth: SF-NY: 75 Mbps; SF-KC: 155 Mbps; KC-NY: 155 Mbps

652 19.2 VPN Traffic Engineering

2′. Set up TE 100-Mbps tunnel for Customer C (at LSR-SF from SF to NY, and reverse)
Available link bandwidth: SF-NY: 75 Mbps; SF-KC: 55 Mbps; KC-NY: 55 Mbps

3. Set up TE 20-Mbps tunnel for Customer A (at LSR-SF from SF to NY, and reverse)
Available link bandwidth: SF-NY: 55 Mbps; SF-KC: 55 Mbps; KC-NY: 55 Mbps

4. Set up TE 45-Mbps tunnel for Customer A (at LSR-SF from SF to KC, and reverse)
Available link bandwidth: SF-NY: 55 Mbps; SF-KC: 10 Mbps; KC-NY: 55 Mbps

Now we can see that after the fourth step, there is not enough unsplit tunnel bandwidth left
in the network to accommodate the final request of 60 Mbps. It may be noted that in the above
case, you can go back and release the first LSP that was already set up in order to rearrange
and fit them all. That is, in most cases, the CSPF approach works quite well; however, the
order can matter and it is important to be careful. Otherwise, extra work/steps would be
needed to reset some LSP tunnels. This is an issue, in particular, if network bandwidth is
tight. If there is plenty of bandwidth, CSPF should not have trouble finding feasible paths.
However, rearrangement can be time consuming for a large network, especially if it were to
be done at the command line.

19.2.3 LSP Path Determination: Network Flow Modeling Approach

In this section, we discuss how to arrive at an optimal traffic engineering solution from the
point of view of the MPLS VPN provider using a network flow optimization approach. For
the small network example we have discussed, we can use functionalities such as OSPF-TE or
IS-IS-TE to obtain bandwidth information about different links, and then issue a tunnel set-
up command at the router’s command line interface, which invokes the constrained shortest
path approach. While this is a doable approach, it is not a scalable approach as the network
size grows; in addition, the impact of the order of the CSPF invocation is difficult to predict
in a large network.

Thus, in a large network environment, it would be necessary to do global optimization
for the best traffic engineering solution. Here, for ease of illustration, we will still consider
the same example as in the previous section and discuss how optimization is performed. In
addition, the following discussion shows how network flow modeling presented earlier in
Chapter 4 can be used for VPN traffic engineering.

The network has a total of eight LERs/LSRs in the ProviderStealth’s network, of which
five are LERs. Thus, a simple way to look at it is that we need to consider a 5×5 traffic demand
matrix. However, this is often not necessary since instead of using an LER-level view, we can
consider a PoP-level view. That is, there are three PoPs, one each in San Francisco, Kansas
City, and New York. Thus, the core network routing is the key problem here rather than
how an LER is connected to an LSR at a particular PoP. Second, the core network links are
usually where the capacity is more constrained; here, we have used an OC-3 link. A link
between an LER and an LSR in the same PoP may be on a gigabit Ethernet LAN—certainly,
this bandwidth is not as tight of a constraint as the core network link. Thus, we can abstract
the problem at the PoP-to-PoP level as a three- node in which a node represents a PoP.

Thus, we will consider the PoP-to-PoP network problem. We have three distinct cus-
tomers that we need to track separately. However, we do not need to consider each direct

C H A P T E R 1 9 Routing and Traffic Engineering with MPLS 653

path separately; for this model, bidrectionality can be used, which reduces the number of
constraints to be considered. After the solution is obtained, the LSPs can be generated based
on direction.

To see how to model the problem, consider Customer B, for which we need to choose
from two possible candidate paths: either direct on SF to NY or the alternate one from SF to
KC to NY. We can assign two unknowns for these two possible paths, and impose the binary
requirement that only one of them must be chosen, i.e., the following decision requirement:

x_B_sf_ny + x_B_sf_kc_ny = 1

where x_B_sf_ny can take either the value 0 or 1; this is similar for x_B_sf_kc_ny. Certainly,
both cannot be 1 in the final solution since that will then violate the above equation. In the
same way, we can write for other demands. Since there are five demands (three for Customer
A and one each for Customers B and C), we will have a total of five such equations. Note
that if we were to consider each direction separately, we would have 10 equations—an un-
necessary increase in the number of equations, which becomes very prominent in solving
a large network problem. Next, we need to consider the bandwidth constraint on each core
link. Consider the OC-3 link with a capacity of 155 Mbps between SF and KC. This link can be
used by any of the paths for each of the customers, as long as the capacity is not exceeded. We
need to consider the fact that if a path for a customer between two locations is chosen, then
this path must be allocated the demand requirement. We will use the demand requirement as
stated earlier in Table 19.1. If, for example, path x_A_sf_kc_ny is chosen, then on each link,
SF-KC and KC-NY, 80 Mbps would need to be allocated. Since the unknowns are defined as
binary variables, we can multiply such a variable by the demand amount. If we now consider
all of the possible candidate paths for different customers and locations, we see that for the
SF-KC link the following condition must be satisfied:

45 x_A_sf_kc + 60 x_A_kc_sf_ny + 20 x_A_sf_kc_ny
+ 80 x_B_sf_kc_ny + 100 x_C_sf_kc_ny <= 155

Since not all Xs can take a value of 1, these capacity constraints must work in concert with the
decision requirements. Finally, an objective function may be considered that is appropriate
for the provider. For simplicity, we will assume here that the “cost” of each possible path is
one. We can write the entire optimization problem as follows:

Minimize x_A_sf_kc + x_A_sf_ny_kc + x_A_kc_ny + x_A_kc_sf_ny
+ x_A_sf_ny + x_A_sf_kc_ny + x_B_sf_ny + x_B_sf_kc_ny
+ x_C_sf_ny + x_C_sf_kc_ny

subject to
d45_A_sf_kc: x_A_sf_kc + x_A_sf_ny_kc = 1
d60_A_kc_ny: x_A_kc_ny + x_A_kc_sf_ny = 1
d20_A_sf_ny: x_A_sf_ny + x_A_sf_kc_ny = 1
d80_B_sf_ny: x_B_sf_ny + x_B_sf_kc_ny = 1
d100_C_sf_ny: x_C_sf_ny + x_C_sf_kc_ny = 1
l_sf_kc: 45 x_A_sf_kc + 60 x_A_kc_sf_ny + 20 x_A_sf_kc_ny

+ 80 x_B_sf_kc_ny + 100 x_C_sf_kc_ny <= 155
l_sf_ny: 45 x_A_sf_ny_kc + 60 x_A_kc_sf_ny + 20 x_A_sf_ny

+ 80 x_B_sf_ny + 100 x_C_sf_ny <= 155
l_kc_ny: 45 x_A_sf_ny_kc + 60 x_A_kc_ny + 20 x_A_sf_kc_ny

+ 80 x_B_sf_kc_ny + 100 x_C_sf_kc_ny <= 155

654 19.2 VPN Traffic Engineering

Integer
x_A_sf_kc x_A_sf_ny_kc x_A_kc_ny x_A_kc_sf_ny
x_A_sf_ny x_A_sf_kc_ny x_B_sf_ny x_B_sf_kc_ny
x_C_sf_ny x_C_sf_kc_ny
End

Note that the above is the format accepted by CPLEX, a linear optimization tool dis-
cussed earlier in Chapter 4. Note that each decision equation or constraint is identified at the
beginning of the line with a name; for ease of tracking, we have embedded the demand value
and location/customer information in such names for decision requirements, for example,
d80_B_sf_ny, and link names, for example, l_sf_kc. Also, note that to indicate the binary na-
ture of the path choice, the unknowns must be declared as “Integer,” which means binary by
default in CPLEX. On solving this model, we obtain the following solution:

x_A_sf_kc = 1, x_A_kc_ny = 1, x_A_sf_ny = 1,
x_B_sf_kc_ny = 1, x_C_sf_ny = 1.

All of the rest of the decision variables are zero. We can see that for Customer B, path SF-
KC-NY is selected. Accordingly, this solution can be implemented by generating LSPs in each
direction by taking into account the LER-LSR path; this is shown earlier in Table 19.2. It may
be noted that this problem does not have a unique solution. For instance, Customer C could
have routed on SF-KC-NY instead of Customer B; the capacity constraints will still be satisfied
and the objective cost as defined here would be the same. Thus, sometimes additional factors
need to be taken into account in defining the objective function such as whether any cost
weight should be given to any customer, or on link utilization, or if twice the weight should
be placed on two-link paths. Accordingly, the objective function can be adjusted in the above
model. For example, if we were to give twice the weight to longer paths, then the objective
function will take the following form:

Minimize x_A_sf_kc + 2 x_A_sf_ny_kc + x_A_kc_ny + 2 x_A_kc_sf_ny
+ x_A_sf_ny + 2 x_A_sf_kc_ny + x_B_sf_ny + 2 x_B_sf_kc_ny
+ x_C_sf_ny + 2 x_C_sf_kc_ny

Note that for the above problem, the optimal solution would not change by using this
modified objective. We have listed the above objective to illustrate another point. Suppose
the fact that unknowns are to be binary is not declared, i.e., the part with “Integer” is left out.
What does this mean? This means that decision equations must be satisfied, but each can take
fractional values at the solution. In fact, for this problem by ignoring the binary requirement,
with the modified objective, we find that the solution for Customer A remains the same.
Customer B will be routed on the direct SF-NY route, while Customer C’s requirement will
be split over two paths: 55% on the direct SF-NY path and 45% on the SF-KC-NY path; that
is, a 55-Mbps tunnel is created on the SF-NY path and another 45-Mbps tunnel on the SF-KC-
NY path. Recall our discussion earlier about a traffic trunk being split on two LSPs; this is an
example of how this can be generated through a network flow modeling approach; here, the
customer requirement is a traffic trunk.

C H A P T E R 1 9 Routing and Traffic Engineering with MPLS 655

There are several additional points to note:

• For the same objective function considered, the total bandwidth required to accommo-
date all demands with nonsplit LSPs is more than with split LSPs. This is an important
observation that is a result of linear programming theory: integer linear programming
solution cost is either equal to or more than linear programming solution cost when the
same objective function is minimized where the cost coefficient in the objective function
is nonnegative. For instance, in the above example, with modified cost function, the split
solution results in a total network bandwidth requirement of 350 Mbps as opposed to
385 Mbps for the nonsplit solution, out of a total bandwidth of 3 × 155 = 465 Mbps in the
core network.

• The above observation can be used either to decide to split traffic trunks into multiple
paths if the network capacity is tight, or to temporarily delay capacity expansion cost.

• The decision to split a traffic trunk for a customer into multiple paths could itself de-
pends on the terms of the SLA with the customer. Accordingly, this requirement can be
taken into account in the modeling phase. In particular, for the customers for which a traf-
fic trunk split is allowed, the path variables can be defined using continuous variables,
and for the customers where the traffic trunk split is not, the path variables are defined
using binary variables, as presented earlier; the network flow modeling framework can
handle this mixed-mode scenario, which results in a mixed integer linear programming
problem.

• In addition to customer traffic, a network carries control traffic and management traffic.
Thus, on each link, a certain amount of bandwidth can be set aside. This can also be in-
corporated in the network modeling approach. For example, if 10 Mbps is to be set aside
on each link for control and management traffic, then the link capacity constraint require-
ment “<= 155” can be replaced by “<= 145.” The same idea can also be used if no links
are to be allocated to its fullest capacity in anticipation of future requests.

• The bandwidth requested by a customer may vary depending on time. This scenario oc-
curs when customers have plants in different countries around the globe. When coupled
with pricing for such service, a time-varying bandwidth requirement may be requested.
If so, it would be necessary to do a network reoptimization periodically because of the
time-dependent demands; the model discussed above can still be used except that the
bandwidth demand value at the time of re-optimization will change while the network
capacity will remain the same. The important issue to note is that if an LSP for an explicit
route is to be released and a new one is to be established, some customers may be affected;
therefore, minimizing this effect is important. However, bandwidth change on an already
existing explicit route has little impact.

• Typically, the bandwidth requirement for customers is based on service-level agreements
(SLAs). Often, at any particular instant, the tunnels established may not be fully utilized
by the customer, and/or if one customer is using them, another customer may not use
them at the same instant. Thus, a “bank”-style approach can also be taken. For example, a
bank guarantees that it has the funds for your account; they do so in the hope that not all
customers will withdraw all their money at the same time. A similar approach is possible

656 19.2 VPN Traffic Engineering

in VPN networking. Suppose that we assume that each customer is likely to use about
80% of their bandwidth requirement on an average. Then, this can be taken into account
in LSP generations since RSVP-TE includes a controlled services option. This can be taken
into account in the network modeling approach; for example, the 45-Mbps requirement of
Customer A can be replaced by 36 Mbps (= 0.8×45), and similarly for others. Accordingly,
the link capacity constraints can be adjusted.

If the network is large and a large number of customers are to be supported, then the
number of tunnels to be set up will also grow. Thus, the use of an automated configuration
management system to invoke tunnel setup would be required; such a management system
can also check for label assignment and addresses mapping issues to ensure that different
customers paths are assigned properly. Second, the number of candidate paths that is to be
considered in the network flow modeling approach can be generated using the k-shortest
path approach (refer to Section 2.8). The network modeling formulation for the general case
is Model (4.5.3), presented in Chapter 4, and is thus not repeated here.

Finally, while CPLEX is efficient in solving linear programming problems, it is time con-
suming to solve large integer linear programming problems due to their combinatorial nature.
Thus, other specialized algorithms may be developed. A detailed discussed about such ap-
proaches can be found, for example, in [564].

19.2.4 Layer 2 VPN Traffic Engineering
In layer 2 VPN, the CE device is a layer 2 device, not a router; we have discussed the basic
concepts behind layer 2 VPN using MPLS in Section 18.5.2 to provide virtual private LAN
service. We first briefly explain again why such a service is appealing. Consider again a cus-
tomer that has corporate offices in two different locations where their layer 2 facility is Eth-
ernet based. This customer wants a connectivity between these two sites instead of assigning
separate IP address blocks so that it appears as if it is part of the same LAN. This way, it can
have a common supernetted subnet that covers both sites, and the entity to be shipped be-
tween different site is Ethernet frames. This approach of using Ethernet as the bearer is also
appealing for carrying any protocol other than IP.

The question from the point of view of a layer 2 VPN provider is how to route such a
layer 2 request between the customer’s sites. For the VPN provider, there might be many
such requests from different customers to facilitate. In each case, the customers enter a VPN
network from a CE device to an ingress edge router in which lookup tables for LSPs to the
ingress node must be configured. In fact, conceptually this picture is not different than the
view show in Figure 19.2(c). We can now assume Customer A to be the one wanting a layer 2
service between SF and KC; it is similar for other customers.

Thus, for the VPN provider to do traffic engineering based on many customers’ requests,
the basic network flow model is then the same as the one described in Section 19.2.3, which is
a nonsplittable multicommodity network flow (MCNF) model, for determining optimal LSP
paths through the provider’s network. In this case, the demand volume request can be based
on the customers’ own estimates of how much they need, which becomes the bandwidth
request to the VPN provider, for example, in terms of an SLA.

Consider again Figure 19.2(c). Note that both customers B and C have demand requests
between SF and NY. In this specific example, the routes through the network were found to

C H A P T E R 1 9 Routing and Traffic Engineering with MPLS 657

be different based on the optimization goal. Suppose that the route selected were found to be
the same—they are both to use SF-KC-NY route. This poses an interesting question for the
VPN provider—should the provider combine these demands into a single LSP on the route
SF-KC-NY? From the traffic point of view, two labels can be used to differentiate traffic for
different customers at the edge devices while using a common LSP for both. An advantage
of combining such a request is that there are fewer numbers of tunnels to manage and track
within the VPN provider’s network; however, if each customer has a different bandwidth
request, it must be ensured at the ingress point that no individual customer’s agreed upon
bandwidth receives more than its share.

Now consider the case of P2MP virtual private LAN service (refer to Section 18.5.2). From
the service provisioning point of view, the P2MP scenario would then require a tree structure
for delivery within the MPLS networks. Such a tree structure can be addressed in the follow-
ing ways: (1) set up multiple point-to-point LSP tunnels as before; the ingress router gener-
ates multiple copies to be sent on each LSP tunnel destinations, or (2) the MPLS has multicast
functionality. How do we handle these from the point of view of traffic engineering by the
VPN provider?

If multiple tunnels are to be set up due to the lack of P2MP capability in the MPLS VPN
network, then different requests for different sites need to be identified first and then the
point-to-point model from Section 19.2.3 can again be used for determining optimal tunnels.

If the network is equipped with multicast functionality, then for the P2MP case, a can-
didate tree generation concept instead of a candidate path generation concept in the MCNF
model is required. The generation of such candidate trees for use in an MCNF modeling
framework is discussed in [564, § 4.6.2].

19.2.5 Observations and General Modeling Framework

From the illustration of different scenarios above for VPN traffic engineering, whether layer 2
or layer 3, we can say that the VPN routing/traffic engineering problem can be classified as
a Type B classification according to our service classification tabulated earlier in Table 17.1.
Thus, this use of MPLS is primarily a transport network service mode. If such requests are
to be set up on semi-permanent basis, and different customer requests might arrive over a
time horizon for tunneled services, then from the point of view of the VPN provider, the net-
work traffic engineering problem can fall under the transport network routing framework as
discussed in Chapter 24. This means that there are multi–time period VPN transport rout-
ing problems to consider for the provider, for which the model presented in Section 24.3 is
applicable.

It is also possible that some customers might want protection and restoration of traf-
fic engineering tunnels through a VPN provider’s network. From MPLS functionality point
of view, FAST-REROUTE can be used. From modeling the route selection for primary and
backup path for many such requests, while some might have partial protection, the model
presented later in Section 24.4 can be used.

Finally, under certain situations, dynamic transport and reconfigurability of LSP tunnels
for customers are also permissible; if so, then a Type C classification, listed in Table 17.1, is
also applicable.

658 19.3 Routing/Traffic Engineering for Voice Over MPLS

19.3 Routing/Traffic Engineering for Voice Over MPLS
Real-time interactive applications such as voice and multimedia can also be carried over
MPLS. This means that for the duration of the call, a connection is set up for a voice call
and MPLS then provides a reserved path for the voice call through an MPLS network, much
like circuit-switching for packet delivery. The connection setup aspect can be, for example,
SIP based; this will be discussed later in Section 20.4.3. In general, voice over MPLS can mean
either (a) voice over IP over MPLS, or (b) voice directly over MPLS. Sometimes, Voice over
ATM over MPLS is also listed under this category.

To directly do voice over MPLS, the basic idea is to set up LSP tunnels as traffic trunks
and then multiplex multiple calls on the same LSP. Such LSPs may be set up on an end-to-end
basis with the MPLS network to carry a voice call, or a call may travel over multiple LSPs.

The MFA forum [487] has standardized the LSP structure for multiplexing voice calls,
which is shown in Figure 19.3. An LSP has an outer label that identifies an LSP for two end-
points, and one or more VoMPLS primary subframes. Between the outer label and the pri-
mary subframe, an optional inner label is also allowed. Each primary subframe carries four
fields: channel ID, payload type, counter, and length. The channel ID field is to identify VoM-
PLS channels. Up to 248 channels can be multiplexed within a single LSP tunnel; however,
using the inner label, the stacked label property of MPLS can be invoked to allow multiple
different streams within an LSP.

You may note that VoMPLS falls under a Type A classification, listed earlier in Table 17.1.
This means that a call is to be established as soon as the request arrives, bandwidth is to be
reserved on a label switch path for each voice call, and, thus, link capacity resources are used
on the link an LSP traverses. On average the duration of such a call is relatively short. Note
that an LSP is not set for each call; rather, an LSP is set up to serve as trunkgroups between
MPLS routers, on a periodic basis—thus, there is no scalability issue of setting up such LSPs

F I G U R E 19.3 LSP Structure in VoMPLS (adapted from [487]).

C H A P T E R 1 9 Routing and Traffic Engineering with MPLS 659

using, say RSVP-TE. This is not to be confused with call setup signaling on a per-call basis
that can be based on either ISUP messaging or SIP.

In a sense, this usage of MPLS for voice service is essentially the same as QoS routing
discussed in greater depth in Chapter 17; thus, we refer the reader to this chapter for further
details. Note that here MPLS LSPs serve as trunkgroups between two routers, thus forming a
virtual topology in which calls are to be routed. The alternate call routing concept discussed
in Chapter 17 means that in this MPLS environment, the MPLS routers for voice services
would need to have alternate call routing capability.

If alternate call routing functionality is not available, then LSP tunnels set up for trunk-
groups would serve as direct links. The capacity of these links would need to be engineered
so that call-blocking probability is kept low at an acceptable Grade of Service (GoS). Voice
traffic engineering was discussed earlier in Chapter 11 and will be discussed again in the
context of VoIP in Chapter 20.

An important issue is that call traffic volume can vary over time. Either LSP can be set
up statically with plenty of bandwidth that does not change over time, or it may frequently
be set up along the way with the required capacity to meet GoS. Note that this may result
in bandwidth allocation to an LSP, and then deallocation later since it is not needed due to a
drop in call traffic volume.

In the presence of dynamic traffic, the dynamic allocation/deallocation problem can ac-
tually lead to network instability showing oscillatory behavior when there is no control. This
oscillatory behavior is shown in Figure 19.4(a); here, to denote change in offered traffic over
time, a sinusoidal traffic arrival curve is used that is subjected to allocation and deallocation
of bandwidth on a tunnel if the blocking is below acceptable QoS tolerance or if it is above
QoS tolerance, respectively. If simple controls such as hold-down timer between updates are
used, it is possible to arrive at a stable environment (see Figure 19.4(b)). Thus, in a dynamical
setup of LSPs, to meet service guarantee requirements, it is important to consider the LSP
bandwidth update procedure in a way that avoids network instability. See [266] for further
discussion.

(a) (b)

F I G U R E 19.4 Transient performance due to an LSP bandwidth allocation/deallocation
scheme: (a) instability; (b) corrected through control.

660 19.4 Exercises

19.4 Summary
In this chapter, we have presented a set of routing and traffic engineering problems in which
MPLS can be used. In general, an MPLS traffic engineering-based approach requires several
issues to be considered, such as path management, traffic assignment, network information
dissemination, and network management [42]. We have highlighted several approaches for
traffic assignment and path management for different MPLS-based environments.

An important flexibility about MPLS is that depending on the service offered, it can fall
in one of the three classifications identified earlier in Table 17.1. MPLS provides powerful ca-
pabilities if you know how to use it. In this chapter, we have presented a set of examples to
illustrate the flexibility of MPLS. Furthermore, we have illustrated how various routing par-
adigms, including a network flow-based modeling approach, can be helpful in determining
the optimal routing for a particular problem.

Further Lookup
For a historical treatment of the “birth” and development of MPLS, including an excellent
organization of historical Internet drafts and RFCs on this subject, see [263].

For provider-provisioned VPN, see [517]. For discussions on issues related to traffic engi-
neering an IP network, see [42], [45]. For dynamic two-layer reconfigurability, see [474]. For
an early implementation of MPLS-enabled switch for routing, see [111].

For a dynamic MPLS environment with anticipation of future service request, a net-
work would need to consider minimum interference routing [349], [757]. Such services can be
served also using mechanisms that are variations of trunk reservation; the concept of trunk
reservation is discussed elsewhere in this book.

Additional information about voice over MPLS can be found with the MFA forum;
see [487].

Exercises
19.1. Discuss where and how MPLS-based IP/MPLS traffic engineering is different from

“pure” IP traffic engineering.

19.2. Consider the network illustrated in Figure 19.2(a) and the network flow modeling ap-
proach described in Section 19.2.3.

(a) Extend the model if the traffic trunk for Customer C is allowed to be split. Deter-
mine the optimal flows and tunnels if the objective function is the same as the one
discussed in Section 19.2.3.

(b) Assume that Customer B requires protection through FAST-REROUTE using a
backup path. Extend the model to accommodate this change. Does the network
have enough capacity to accommodate this request? If not, determine minimum
additional capacity needed on each link if the objective is to load balance the net-
work with no link having more than 70% utilization once this new capacity is
added.

(c) Each customer requests full protection back up tunnels with dedicated tunnels.
Does the network have enough capacity to meet this request? If not, determine

C H A P T E R 1 9 Routing and Traffic Engineering with MPLS 661

the minimum additional capacity needed in the network to serve this request, and
determine the optimal LSP tunnel routing configuration.

(d) Suppose that Customer A wants full-protection backup path; Customer B wants
partially-protection backup up path with 50% guarantee; and Customer C requests
a basic MPLS tunnel service with guarantee bandwidth, but no protection for fail-
ure. Present a network flow optimization model. Determine if additional capacity
is needed in the network. If so, determine the minimum additional capacity needed
and the optimal LSP tunnel routing configuration.

19.3. Generalize the network flow model for traffic engineering for a network of L links and
K demands in which K1 customers require path protection, K2 customers allow traffic
trunk to be split, and K3 require no-split traffic trunks.

20
VoIP Routing:
Interoperability
Through IP and
PSTN
If I knew where the songs came from, I’d go there more often.

Leonard Cohen

Reading Guideline

This chapter assumes an understanding of many pieces covered in this book. In
particular, the reader is expected to be familiar with Internet routing architectures
(Chapter 9), call routing in PSTN (Chapter 10 and Chapter 13), including some un-
derstanding of SS7 signaling (Chapter 12), IP traffic engineering (Chapter 7) and,
voice traffic engineering (Chapter 11).

C H A P T E R 2 0 VoIP Routing: Interoperability Through IP and PSTN 663

Voice service over IP networks has received considerable attention in the past decade. This
raises the issue of providing seamless voice service (and/or multimedia services) between an
IP and PSTN. In this chapter, we present call routing in this hybrid IP-PSTN environment; for
brevity, it will be referred to as voice over IP (VoIP) routing. As you will see in this chapter,
there are several different scenarios possible. We consider a representative set of scenarios to
show how call flow and routing would work when IP and PSTN are interconnected.

20.1 Background

Introduction of VoIP requires hybrid integration of the PSTN and the Internet. There are three
key environments that we will discuss in detail in this chapter. They are broadly referred to
as VoIP environments and can be briefly stated as follows:

• A call originating and terminating in PSTN that can use IP networks and protocols

• A call originating in a telephone network terminating in the Internet, and vice versa

• Call handling/routing work in an all-IP environment.

You may note that in some cases we have used the term “Internet” and in other cases as
“IP network”; there is a subtle difference that we want to distinguish for VoIP environments.
When we use “Internet,” we refer to the public Internet, while “IP networks” is used to refer
to the possibility that it is primarily a private IP network while not ruling out the public
Internet.

To consider the above environments, there are several issues to consider. At the heart of it
all is addressing. For example, the two key addressing schemes, E.164 for PSTN and IPv4 for
Internet, must somehow interwork. Second, due to extensive deployment of SS7 for PSTN,
SS7 point code addressing and protocols must also be interworked. Third, number portabil-
ity is also another important factor to consider. All of these must work seamlessly without
breaking the current service functionality and unduly affecting quality of service (QoS) re-
quirements. Furthermore, there has been widescale deployment of private IP addressing both
in residential and in enterprise settings that uses NAT/NAPT functionality; this then brings
up the practical necessity of making VoIP work in such an environment where VoIP devices
behind a private IP address interface with the public network and still can communicate.

This brief discussion indicates that there are many complexities involved. Thus, it is
tempting to say “why don’t we just move to an all-IP public network” for VoIP and Inter-
net services with the hope that this resolves or minimizes all of the problems and issues
mentioned above. While this may occur over time, this is not currently or in the near future
completely possible for practical, real-life reasons, such as the huge installation base of PSTN
and PSTN equipment, regulatory policies in different countries, widescale use of private IP
addressing, and implementation costs. Thus, in this chapter, we consider the three environ-
ments listed earlier, along with the addressing factor for routing. Because of the mix of many
components, there are many possible approaches; we present only a representative set of
scenarios; by no means is this an exhaustive list. We have left enough room here for you to
wonder and imagine other possible combinations.

664 20.2 PSTN Call Routing Using the Internet

20.2 PSTN Call Routing Using the Internet
In this section, we will discuss call routing for plain old telephone service (POTS) where the
Internet is part of the call.

20.2.1 Conceptual Requirement
Chapter 13 covered PSTN architecture and routing in detail; you may note that our discussion
on routing was focused primarily on a central office switch to another central office switch
when a call is dialed by a user, in a traditional TDM environment. The segment from the
user’s residential telephone to the central office switch was assumed to be analog and directly
connected through copper-wire technology. This segment is often referred to as the user-to-
network interface (UNI).

Briefly, the UNI in the case of telephone service provides the following functionalities:
when a user picks up the receiver at a residential phone, the central office recognizes that the
receiver is off-hook and the central office provides the dial tone. On hearing the dial tone, the
user dials a sequence of numbers to reach the desired party. If the central office is successful
in setting up the call, the user hears the ring. A conversation takes place if the other party
picks up the receiver, and the voice analog signal is carried by the UNI to the central office;
this is then converted to 64 Kbps for carrying it, for example, through the PSTN using TDM
switching. When the conversation ends, either party can hang up the receiver—at this point
the phone goes to an on-hook state.

What if we want to replace the analog UNI segment with a different technological en-
vironment? There are two aspects to consider: (1) replacing the direct line with a nondirect
networked connectivity mode, and (2) changing the communication mode to a packet-based
communication environment. In addition, it is imperative that both the phone end and the
central office end have the proper adapters so that the basic as well as any add-on functions,
of the phone service for the UNI part is still possible. Interestingly, a number of technical en-
vironment has been proposed in the past two decades to address this; we limit our discussion
to a representative set of scenarios in order to bring in the routing component.

For example, for the UNI part when a data protocol can be used, there are several possibil-
ities. For our illustration, we will assume that the ITU-T Q.931 protocol is used; this protocol
provides the basic call control for access signaling.1 Call signaling within the network part in
PSTN, however, would still use SS7. Then, the message flow for call establishment and call
teardown, commonly referred to as call flow, would be as shown in Figure 20.1. As you can
see, Q.931 has a set of messages that can essentially be considered to equivalent be to SS7
ISUP messages.

Suppose that the nondirect connectivity mode uses an IP-based environment. That is,
what happens if the UNI is an IP network, and we want to use Q.931 for UNI call signaling?
Then, the VoIP adapter must have the functionality to create Q.931 packets that are then car-

1ITU-T recommendation H.323 is an umbrella protocol suite for packet-based multimedia services in a local
area network environment. The call signaling component of H.323 is described in H.225.0, which, in turn, is a subset
of ITU-T recommendation Q.931 protocol. Thus, you will see the use of an expression such as “call setup is done
using H.323,” which then refers to relevant Q.931 messages used for call setup signaling. Thus, H.323 and Q.931 are
often used interchangeably, although it is certainly important to understand the context of this usage.

C H A P T E R 2 0 VoIP Routing: Interoperability Through IP and PSTN 665

F I G U R E 20.1 Call flow: setup and tear-down with Q.931 and SS7 ISUP.

ried over the IP networks. To accommodate the PSTN network side of UNI for the above situ-
ation, the central office switch must have an adapter as well. This adapter is a media/signaling
gateway. This gateway function then has the ability to communicate with the VoIP adapters
for exchange of call connection-related messages and packetized voice packets. This gateway
function can either be physically integrated with the central office switch, or can be a separate
server that also has circuit-mode functionality to communicate with a central office switch. In
this environment, call management is accomplished by the central office switch through this
gateway. Note that the gateway end would need to have an IP-based interface, so that it can
receive and interpret packetized Q.931 messages; furthermore, it must also have an interface
that can talk to the central office switch end for using SS7 messaging. In return, the gateway
would need to generate a Q.931 message to send to the VoIP adapter over an IP network. This
basic conceptual picture allows a regular phone to be used to connect to the PSTN, as shown
in Figure 20.2.

666 20.2 PSTN Call Routing Using the Internet

F I G U R E 20.2 Change in access technology (UNI) in telephony: (a) traditional model,
(b) incorporation of an IP network.

20.2.2 VoIP Adapter Functionality
Going beyond the conceptual picture, there are certain practical considerations to take into
account. While the VoIP adapter would require a telephone jack such as an RJ-11 jack to
connect a regular telephone to it, it would also need to have an Ethernet RJ-45 jack since this
is the most commonly deployed physical interface for connectivity to an IP network through
Ethernet. In addition, the VoIP adapter would require the following:

• It has IP-stack based software and can generate IP packets as dictated by the upper layer
for transmission in Ethernet format.

• It has add-on software/functionality to generate Q.931 messages, voice packetization, and
the ability to generate certain sounds such as the dial tone that can be heard through the
phone receiver.

You can see that instead of a plain telephone relying on the central office switch for all its
functionalities, it would use the VoIP adapter as a proxy for the central office switch.

20.2.3 Addressing and Routing
Next, we need to reconcile two addressing schemes: E.164 for PSTN and IPv4 for Internet.
Note that IPv6 has similar issues when reconciling with E.164 and is not discussed separately.
A basic requirement is that a telephone number is to be associated/homed with a specific cen-
tral office switch; this number can be associated as a native number or through number porta-

C H A P T E R 2 0 VoIP Routing: Interoperability Through IP and PSTN 667

F I G U R E 20.3 Addressing and call routing example.

bility. The second requirement is that both the VoIP adapter and the media/signaling gateway
attached to the central office switch must have IP addresses associated with them. In addi-
tion, due to the use of SS7 signaling in PSTN, SS7 point code addressing also comes into the
picture. Note that the VoIP adapter requires authorization to talk to the signaling/media gate-
way, which can be accomplished if the subscriber obtained the VoIP provider from its tele-
phone service provider and the authorization process is, for instance, preconfigured, which
may include hardware address information of the VoIP adapter. It should be noted that the
provider is not required to statically assign the IP address for each VoIP adapter.

We will now illustrate call routing using Figure 20.3. Consider E.164 number +1-816-339-
1706. This is located in country code +1 (North American zone, specifically in the United
States), in area code 816. Thus, the central office to which this number is natively homed is
identified by 816-339, and has the SS7 point code assigned as 243.1.3. For ease of discussion,
the service provider that is assigned this address block and maintains this central office switch
will be referred to as Provider X. We assume that the signaling/media gateway associated
with this switch has the static IP address, 2.98.179.1. Allocation of the number +1-816-339-
1706 to the subscriber (“Subscriber A”) by Provider X requires a local postal address. For
example, in the United States, this is required, for example, for billing purposes and also
to determine the location for 911 emergency service. Using the VoIP adapter, Subscriber A
would need to initialize the service. This involves the follows steps:

• Subscriber A connects a POTS telephone to the VoIP adapter.

• Subscriber A connects the VoIP adapter to the Internet.

• The VoIP adapter acquires an IP address, say, through the dynamic host configuration
protocol; we assume the address is 42.42.34.12.

• The VoIP adapter with IP address 42.42.34.12 starts an initial configuration session with
the gateway that has IP address 2.98.179.1. Since both these devices have Internet ad-
dresses, any packet generated by the VoIP adapter will be routed through the Internet to

668 20.2 PSTN Call Routing Using the Internet

destination IP 2.98.179.1 (refer to Chapter 9). Through this process, the telephone number
of the subscriber, +1-816-339-1706, is verified and stored in the VoIP adapter.

Now, Subscriber A is ready to make a call. Suppose that Subscriber A wants to call an-
other subscriber (“Subscriber B”) with the number +1-816-367-2525. Both of these are then
local numbers. Assume that Subscriber B uses a POTS to connect to the central office switch
through analog copper-wire technology to the central office switch identified as 816-367. The
following steps occur:

• Subscriber A picks up the receiver. The phone then goes to the off-hook stage. The VoIP
adapter with IP address 42.42.34.12 generates a notification packet that is routed to the
gateway with IP address 2.98.179.1; the gateway checks with the central office switch,
identified with location routing number (LRN) 816-339-0000, if dail tone service can be
provided. If the switch allows the dial tone capability, then the gateway sends a response
packet back to 42.42.34.12 that affirms dial tone service. The VoIP adapter then generates
the sound for a dial tone so that the subscriber can hear the dial tone; note that the dial
tone sound is not generated by the gateway; the gateway only generates a data packet that
indicates the dial tone service while the VoIP adapter generates the actual sound.

• Since this is a local call, Subscriber A dials the numbers 367-2525 to reach Subscriber B.
The called party number 367-2525 and calling party number 339-1706 are inserted in the
payload of the packet generated by the VoIP adapter to send to the gateway 42.42.34.12;
this packet is then the Q.931 SETUP message that is embedded in an IP packet.

• The central office that is home to Subscriber A will determine the outgoing trunkgroup
and routing, consulting the SCP database, if needed, for delivery to 367-2525; refer to
Chapter 9 for different scenarios that are possible and details for this call routing. The
originating central office with its SS7 point code address (marked as 243.1.3) will identify
the SS7 address for the next TDM switch, and so on, until the signal arrives at the des-
tination central office (marked with SS7 point code address 244.1.1). Once Subscriber B’s
phone rings, an SS7 message will be communicated back to the original central office.
This switch will be in charge of generating a Q.931 ALERTING message via its gateway
to indicate call ringing for Subscriber A. On receiving this message, the VoIP adapter will
generate the audio for the ring so that Subscriber A can hear it.

• If Subscriber B now picks up the receiver (called party off-hook state), then its home cen-
tral office switch will generate an SS7 ANM message directed to the originating central
office. Once it receives this message, the originating central office switch will generate a
Q.931 CONNECT message through its gateway, which is transmitted to the VoIP adapter.
Thus, as soon as the VoIP adapter receives the message, it will indicate the CONNECT
state by stopping the ring tone and providing connectivity for voice communication.

Once the CONNECT state is established, the voice packetization will take place as soon
as the conversation begins. This packetization will occur at the gateway for an audio stream
directed to Subscriber A and at the VoIP adapter for an audio stream directed to Subscriber B;
in the former case, the source IP address is 42.42.34.12 and the destination IP address is
2.98.179.1; in the latter case, the source IP address is 2.98.179.1 and the destination IP ad-

C H A P T E R 2 0 VoIP Routing: Interoperability Through IP and PSTN 669

dress is 42.42.34.12. Both ends would need to do translation of voice packets. At the VoIP
adapter, it would need to convert to analog form in the 4-KHz range for the plain telephone,
and while at the gateway, it would need to convert to 64-Kbps PCM coding known as G.711
standard for transmission in TDM in the core of the PSTN. Unless, another audio conversion
standard is introduced at the gateway, G.711-based VoIP packets will be carried to the VoIP
adapter; thus, the VoIP adapter must be G.711 aware so that it is compatible with the gateway.

How does either end of the IP network know whether IP packets received are for the call
signaling function or for the voice media since this is not distinguishable at the IP address
level? The distinction is accomplished at the transport layer protocol through different trans-
port port numbers. Furthermore, for reliable delivery, the Q.931 packets can be carried in a
TCP session; because some voice packet loss may be tolerable, voice packets, however, can be
carried over UDP.

Suppose that Subscriber A would like to call a number located in a different country
such as the number +91-11-62345678 (“Subscriber C”). The process would be the same as
above. The subscriber will dial the number including the international access code. This will
be transmitted as payload in a Q.931 SETUP message to the central office switch. The cen-
tral office switch will recognize that it is an international call and will then do call routing
as described earlier in Chapter 13. This would require SS7 point code address translation at
an international gateway to the ITU point code address (not shown in figure); the SS7 mes-
sages can then be properly routed to the destination central office identified by ITU SS7 point
code 4.9.12 so that the call communication to +91-11-62345678 can be established.

Next, how would a call originating with Subscriber B destined for Subscriber A work? In
this case, the SS7 call establishment message, IAM, will start from SS7 point code 244.1.1 and
will be routed to point code 243.1.3, the home central office for Subscriber A. The gateway
will generate a Q.931 setup message with payload containing called and calling number that
will be encapsulated in an IP packet that will be routed to 44.44.34.12. Once the phone rings
at Subscriber A’s end, an ALERTING message will be generated by the VoIP adapter to let the
central office know that the phone is ringing so that this information can be communicated
back to Subscriber A. Similarly, a call from Subscriber C will be routed to Subscriber A.

Finally, we consider an example in which Subscriber A calls another subscriber (“Sub-
scriber D” with E.164 number +1-816-339-1605) who is also homed of the same central office
switch and uses the service through the VoIP adapter (Figure 20.4). When Subscriber D reg-
isters, the gateway notes the IP address of Subscriber D’s VoIP adapter, which is currently
is at IP address 27.14.32.10. Now, Subscriber A calls Subscriber B; the Q.931 SETUP message
encapsulated in an IP packet is still sent to the gateway, which then realizes that Subscriber B
is also a VoIP customer. Thus, the gateway retransmits this Q.931 SETUP message to the VoIP
adapter of Subscriber B through the Internet, by announcing its IP address as the source IP
address; thus, IP address translation would take place at the gateway. Because of this address
translation, on receiving this message, the VoIP Subscriber D responds back to the gateway,
not directly to the VoIP adapter of Subscriber A. Once a connection is established, the encoded
voice packets for the audio stream would still go through the gateway from Subscriber A to
Subscriber D, and vice versa. It is important to note that once the call is established, it is con-
ceptually possible and feasible to allow a direct audio stream from the VoIP adapter address
42.42.34.12 of Subscriber A to the VoIP adapter address 27.13.32.10 of Subscriber B and back
without involving the gateway, a concept referred to as antitromboning. Despite this possibil-

670 20.2 PSTN Call Routing Using the Internet

F I G U R E 20.4 Call between two subscribers who are homed to Provider X’s switch.

ity, this may not be used in practice, for example, due to (1) Provider X being required by
regulatory reasons to track all call flows through a call detailed record, and (2) Provider X
having no ability to monitor and troubleshoot if a subscriber complains about service quality
when direct audio stream communication was allowed from one subscriber to another.

20.2.4 Service Observations

There are certain important observations to note:

• If there is a loss of electricity at the home where the VoIP adapter is located, then the sub-
scriber cannot avail itself of the phone service; this is not to be confused with purposefully
turning off the VoIP power much like turning off a mobile phone. That is, always-available
service is not completely possible unlike a plain telephone connected to the central office
switch where the electricity for the phone is directly supplied by the central office.

• Subscriber A’s VoIP adapter is not tied to the IP address 44.44.34.12. The subscriber may
decide to take the VoIP adapter and connect to the Internet from anywhere in the world.
What gateway 2.98.179.1 really needs to be able to identify is that the VoIP adapter is au-
thorized and that it has an assigned E.164 number. This is possible since this information
is payload in a Q.931 message, which is then carried in an IP packet.

• The ability to take the VoIP adapter and connect to the Internet from anywhere is of great
interest to the subscriber. This way any local call to which the telephone number was
assigned is still a local call. In essence, this functionality provides location portability.

• The location portability, however, creates a problem in certain situations. For example,
Subscriber A who has the number +1-816-339-1706 takes the VoIP adapter anywhere and
connects to the Internet, and then dials for 911 emergency service. The 911 operator will
understand it as coming from the physical postal address on record. Recently, there have
been new discussions on how to to handle such issues; refer to [523] for recent develop-
ments.

C H A P T E R 2 0 VoIP Routing: Interoperability Through IP and PSTN 671

Certainly, some of the above issues are beyond the purview of network routing. Yet, they
provide a perspective on how location portability is possible while certain regulatory issues
are to be completely addressed.

20.2.5 Traffic Engineering

From a service perspective, an important aspect is QoS. Since packets for call control that use
Q.931 and for media are being transmitted over the Internet, a stringent end-to-end guarantee
such as delay or jitter is not possible. Still it is important to take measures to provide good
QoS. To understand this, we consider a few factors.

PER-CALL BANDWIDTH REQUIREMENT

First, we need to understand the bandwidth requirement of a call. Suppose that G.711 PCM
coding is used for voice; its data rate in TDM is 64 Kbps. The sampling rate for G.711, as
originally specified for use in the TDM environment, is every 10 millisec. However, for IP
packetization a different time frequency can be used. A typical packetization frequency is
20 millisec; this results in 50 packets (=1 seconds/20 millisec) generated per second. Thus,
for a 64-Kbps rate, the packet size for voice-coded information generated every 20 millisec
will be

64Kbps
50

= 1280 bits = 160 bytes.

There is overhead involved in carrying a 160-byte packet in an IP network. The best-known
mechanism for audio payload for IP is real-time transport protocol (RTP) that has a 12-byte
overhead. RTP, in turn, is carried over UDP protocol that has an 8-byte overhead. IP default
header is 20 bytes. Thus, each packet has 40 bytes of header overhead when counted at the
IP level. Together, a G.711 codec voice packet generated every 20 millisec will be of size 200
bytes (=160 + 40). Note that this size packet is generated 50 times every second. Thus, the
IP-level date rate is

200 bytes × 8 bits per byte × 50 packets per second = 80 Kbps.

Thus, a 64-Kbps voice circuit is translated to an 80-Kbps rate at the IP level.
Now consider layer 2 overhead. Suppose that each packet is carried in an Ethernet frame.

Note that Ethernet has 26 bytes overhead per frame due to 8 bytes of preamble, 14 bytes
for the header, and 4 bytes for the trailer. Thus, at the Ethernet level, every G.711 packet of
160 bytes, which is 200 bytes at the IP level, becomes 226 bytes, and the data rate becomes
90.4 Kbps. Thus, Ethernet induces another 13% overhead over the IP packet.

Another common technology in the core of the Internet is SONET technology such as
OC-3 which uses Packet over SONET (PoS) for carrying IP packets over SONET. PoS uses
PPP protocol with HDLC to frame an IP packet; in most common cases, this induces 5 bytes
of header and 4 bytes of trailer for a total of 9 bytes. Thus, PoS overhead is 4.5% (9 bytes
over 200 bytes) to carry an IP packet, and a G.711 voice call data rate at the SONET level is
83.2 Kbps.

672 20.2 PSTN Call Routing Using the Internet

ADDITIONAL FACTORS/OVERHEAD

In addition to header overhead, there are other overheads for each call. For example, call con-
trol is accomplished using Q.931. Typically, four minimum messages are generated when a
call is established (SETUP, ALERTING, CONNECT, and CONNECT ACK); the ALERTING
message is repeated frequently until the user at the other end picks up the phone. At con-
nection tear-down, three messages are generated (DISCONNECT, RELEASE, and RELEASE
COMPLETE). During the life of a call, some additional messages are generated that are peri-
odic; for example, RTCP control messages are generated for RTP synchronization; typically,
this is limited to 5% of the RTP data traffic. Now consider the duration of a voice call, which
is often estimated to be on average 3 min. Thus, we can see that Q.931 one-time messages
for each call are almost insignificant overhead; most overhead is due to RTCP. These various
control packets are small, typically 50 to 100 bytes; this means that a 160-byte G.711 coded
packet is still the most dominant packet size.

Thus, considering a 80-Kbps data rate for voice coding over IP, we see two types of over-
head: one for the layer 2 technology and the other for call control/management overhead. It
is safe to say that together, this overhead is not more than 20%. Thus, a simple rule of thumb
for an equivalent data rate by taking this overhead into account is 80 Kbps × 20% overhead
=96 Kbps. Thus, a simple rule to consider is that the path of a call within the IP network can
receives a 96-Kbps data rate. This is then primarily affected by any bottleneck link segment
along the path. Assuming Internet service providers in the core are maintaining capacity
with good traffic engineering objectives, the bottleneck then potentially falls into two places:
(1) the place at which the user connects the VoIP adapter, or (2) the IP link from the service
provider’s gateway to the Internet. For example, if the user connects the VoIP adapter from
behind a cable modem or DSL service, it is often possible to get the data rate estimated above.

CALL-CARRYING CAPACITY

Now consider the IP link from the gateway connected to the Internet. Note that this gateway
will be required to handle traffic for all its customers with VoIP adapters. The gateway, being
IP based, might not have the proper mechanism to block any calls; however, as we go through
this analysis, you will see how the call rate can be monitored for QoS. Assume that this link is
an OC-3 link; the SONET payload available to PoS for OC-3 is 149.760 Mbps. Assume that call
bandwidth, including overhead as estimated above, is 96 Kbps at the PoS level. Thus, this link
has a maximum call-carrying capacity of 1560 (= 149.76 Mbps/96 Kbps). Using the Erlang-B
loss formula, we can find that to keep call blocking below 1%, it can handle around 1531.2
Erlangs of offered load. Thus, this load-to-link capacity ratio gives a utilization around 97%.
This is where we need to understand another important fact. While packets for a particular
call stream are essentially equispaced when generated, the call arrival is not. Call arrival is
typically assumed to follow Poisson arrival, and each stream is then dictated by the start time
of a particular call. Because of the nature of the call arrival and its impact, ensemble packet
arrival will have Poisson arrival behavior. Now, from a discussion of IP traffic engineering
(refer to Section 7.1.4 in Chapter 7), we know that link utilization should be kept at a level so
that packet delay is not impacted. Suppose that we want to keep utilization at less than 60% to
avoid unduly impacting packet delay; this is especially important for VoIP traffic. This means
that we cannot let utilization build up to 97% as would be indicated by the call capacity–based

C H A P T E R 2 0 VoIP Routing: Interoperability Through IP and PSTN 673

computation, which is meant for pure circuit-mode assessment. In other words, we need to
be restrictive to the more stringent requirement, i.e., the minimum of these two utilization
values, which is at 60%. Note that 60% of the SONET payload capacity of 149.76 Mbps is
89.86 Mbps. At 96 Kbps of call bandwidth, effective call capacity becomes 936 voice call units.
At this call capacity, we do not need to again impose the blocking requirement since this is
already accounted for; in other words, 936 can also serve as the acceptable maximum offered
load in Erlangs. With this offered load, call blocking will be essentially zero. If we now assume
that the average call duration time is 3 min, then for an OC-3 link interface to the gateway,
we can find that an acceptable call arrival rate is approximately

936 Erlangs

180 sec
= 5.2 calls/sec.

Thus, the provider can monitor the call arrival rate at its gateway, for example, by monitoring
Q.931 SETUP message arrivals. If the average call arrival rate is found to be noticeably more
than 5.2, then this would mean that this OC-3 does not have sufficient capacity to provide
good QoS; it is then time to do capacity expansion. The caveat here is that 5.2 is not a magic
number for use with an OC-3 link. As you can see from the above discussion, it depends
on the following key factors: (1) use of G.711 coding, (2) overhead estimation to determine
call data rate, (3) link utilization and call blocking trade-off, and (4) average call duration.
By following the above analysis, you can compute an acceptable arrival rate if any of these
factors change.

20.2.6 VoIP Adapter: An Alternative Scenario

We now revisit the VoIP adapter issue. While we presented a specialized hardware–based
adapter scenario earlier, this is not always necessary. In other words, a computer or a laptop
can be loaded with a software-based adapter to mimic the same signaling or media genera-
tion functionality; this can then talk to the IP interface of a central office, and in essence, the
phone number can be associated with the computer regardless of where it is located since
the communication between the computer and the central office is over the public Internet.
Certainly, it is possible to have the computer turned off; thus, for an incoming call, a central
office with an answering machine service is desirable.

20.3 PSTN Call Routing: Managed IP Approach
The scenario we are about to describe is similar to the above scenario, with certain differences.
In this instance, a subscriber receives the adapter from the provider (“Provider Y”) but is re-
quired to physically locate it at the postal address provided at the time of sign-up. Certainly,
this does not provide the flexibility of taking the phone anywhere as discussed above, but it
addresses regulatory requirements and serves many customers who would like a nonmobile
phone that provides POTS. Such a service paradigm is currently being deployed primarily
in a cable modem environment, known as PacketCable, where the cable service provider
wants to provide a home telephone service to its cable customers [456], [457]. A VoIP phone
connectivity using an RJ-11 jack along with a RJ-45 jack for a computer connectivity is avail-
able through an embedded Multimedia Terminal Adapter (eMTA). The name implies that

674 20.3 PSTN Call Routing: Managed IP Approach

F I G U R E 20.5 Cable IP networking for telephony services.

in addition to voice, such terminals are intended for multimedia services. The conceptual
architecture for cable IP networking for telephony is shown in Figure 20.5.

In this case, the IP networking available at the customer’s home utilizes a cable facility
that already belongs to Provider Y through the cable modem service. For example, the cus-
tomer through cable modem service has IP accessibility. Thus, the eMTA is connected to the
cable line (refer to Figure 20.5). The cable modem is visible to the the Cable Modem Termina-
tion System (CMTS) using Data Over Cable Service Interface Specification (DOCSIS) protocol,
for example, with DOCSIS v. 1.1, which provides QoS. It should be noted that CMTS is pri-
marily a layer device that can be integrated with a layer 3 router for IP communication. Thus,
from the eMTA at home to the call manager server, this entire IP network is in the jurisdiction
of Provider Y; this forms a managed IP backbone for Provider Y (see Figure 20.5). PacketCable
specification requires each endpoint to have a fully qualified domain name. Thus, from the
call management server, DNS lookup can be performed and IP address allocation to different
MTAs can be done. Since mobility is not involved here, we can say that each telephone num-
ber is then associated with an IP address that may likely remain the same for a long time,
although for ease of tracking a fully qualified domain name (FQDN) is used with each IP
address and it has the form such as billing-number.provider.NetworkRouting.net. Another
way to look at it is that this network is intradomain and the provider might choose to run
OSPF or integrated IS-IS for all its IP routers in this network. Thus, traffic engineering of
this IP network would require optimal link weight determination in order to maintain mini-
mum delay (refer to Chapter 7). Alternately, the provider might choose to deploy integrated
IP/MPLS routers, in which case MPLS-based controlled traffic engineering can be used (refer
to Chapter 19).

From a deployment point of view, the actual network architecture can be quite different
depending on the cable network provider’s physical domain. For example, if a cable network
provider’s service is limited to a geographic location, such as a metropolitan area, the exit
point to PSTN can be in one location as shown in Figure 20.5; however, if the cable provider
has multiple geographic locations, or a nationwide presence, it might consider the option of

C H A P T E R 2 0 VoIP Routing: Interoperability Through IP and PSTN 675

routing a call originating in one geographic location to another geographic location, typically
considered as a toll call, within its network, rather than entering PSTN and exiting in another
location back to the cable network. This might be desirable from a cost perspective and for
business reasons. In this scenario, the provider will have call management functions in dif-
ferent geographic locations, and depending on the number dialed by a subscriber, the actual
point of leaving the network might be different, resulting in early-exit routing or late-exit
routing within its IP network. Accordingly, traffic engineering and routing issues are to be
addressed.

It may be noted that the cable provider would typically need to lease high-bandwidth
circuits such as OC-3 from a telecommunication provider for connections between different
metropolitan areas in order to form its IP network. The telecommunication provider, in turn,
would then need to address such requests through transport network routing and provision-
ing.

20.4 IP-PSTN Interworking for VoIP
From the above discussions, you can see that IP-PSTN internetworking in general is an im-
portant issue. In this section, we discuss the generic IP-PSTN interworking where a call starts
in PSTN and ends in IP networks, or vice versa. This is different than the previous examples
in that the actual end devices are not both analog telephones.

For use with telephony and multimedia real-time two-way applications, the session ini-
tiation protocol (SIP) has been developed for an IP environment. For ease of reference, a
SIP-compliant phone will be referred to as a SIP phone. It may be noted that SIP handles only
the session control aspect of a call; the actual media for a call is packetized and handled using
RTP. An important point to note about SIP is that it can be used end-to-end from one end de-
vice to another; it does not require a separate protocol for the network part. You can contrast
this with the situation in PSTN where, within a network, ISUP SS7 messaging is used while
for the end device to central office, a different protocol such as Q.931 is used.

20.4.1 Gateway Function
In our discussion earlier, we introduced the role of a gateway for interfacing between IP and
PSTN to use an analog POTS telephone through a VoIP adapter. We now discuss the general
functionality of a gateway interfacing an IP network providing SIP phone services and PSTN.

A conceptual picture is presented in Figure 20.6. There are three components, media gate-
way controller, signaling gateway, and media gateway, in this conceptual architecture. The
signaling gateway receives SS7 ISUP messages from PSTN and passes them to the media
gateway controller; these messages are then translated to SIP-equivalent messages for trans-
mittal over the IP network; similarly, the media gateway controller receives SIP messages,
which are passed to the signaling gateway to generate equivalent SS7 ISUP messages for
transmittal over the PSTN.

An important role of the media gateway controller is to control the audio streams, typi-
cally through a PCM-coded circuit-switched voice channel on the PSTN side and using RTP
on the IP side. Note that the controller would need to act and inform the media gateway re-
garding media handling based on the status of a call, such as being established or released.
The controller is the brain in this system and is required to maintain states and translation

676 20.4 IP-PSTN Interworking for VoIP

F I G U R E 20.6 Gateway interfacing between PSTN and IP.

for different connections. As you can see, there are two interfaces involved in this architec-
ture: one between the signaling gateway and the media gateway controller, and the other be-
tween the media gateway controller and the media gateway; for the former, a protocol known
as the streaming control transmission protocol (SCTP) can be used, while for the latter, the
MEGACO/H.248 protocol can be used. However, the signaling gateway, the media gateway,
and the media gateway controller are often bundled together as an integrated gateway server
since from an operational network point of view, such equipment is easier to manage; in this
case, a vendor can do exchanges internally without using SCTP or MEGACO. Note that this
equipment would handle two different addressing schemes: SS7 point code addressing and
IP addressing. Furthermore, it will need to handle three different types of links: SS7 signaling
link, circuit trunkgroup for PCM voice, and IP link.

20.4.2 SIP Addressing Basics
We now briefly describe SIP functions as related to call routing. Similar to SS7 ISUP messages,
SIP defines a set of messages and actions for call establishment and release. SIP, however, has
an important additional feature: it has a built-in portability concept. That is, it is not neces-
sary to tie a physical address. To provide this mobility function, SIP has its own addressing
mechanism that looks similar to an email address—this is known as a SIP Universal Resource
Identifier, or SIP URI in short. For telephony use in E.164 addressing, the SIP standard also
allows the use of another format called tel URI.

Suppose that a subscriber has a SIP phone with E.164 number +1-816-323-2208. Its tel URI
for SIP-based service can be listed as

tel:+18163232208

or, in more human readable form as

tel:+1-816-323-2208

Both are acceptable usage since “-” is to be ignored during call processing. The equiv-
alent SIP URI refers to the same SIP phone, but requires additional information, as shown

C H A P T E R 2 0 VoIP Routing: Interoperability Through IP and PSTN 677

below:

sip:+18163232208@proxy1.NetworkRouting.Net;user=phone

There are three important points to note: (1) the telephone number part is listed in
globally unique E.164 form in its entirety with prefix “+” so that the country code and,
consequently, the numbering plan for a particular country can be easily identified (refer
to Section 13.1); (2) while the SIP URI has some similarity to the standard email address,
the at-sign “@” is used here to separate out and identify a domain name; in this case,
the fully qualified domain name (FQDN) for the proxy (to be discussed soon) is listed as
proxy1.NetworkRouting.Net; (3) the last part, user=phone, identifies it as a phone.

When such a SIP phone is initially activated in a network, it would need to contact a regis-
tration server to obtain a domain name and an IP address, and a proxy server through which
all communication to this phone is accomplished. As you can see, the SIP URI described
above includes the domain name information of the proxy in the URI. Most importantly,
both the proxy server and the SIP phone must be associated with valid IP addresses.

20.4.3 SIP Phone to POTS Phone
Suppose that a subscriber with a SIP phone (“Subscriber A”), identified through tel URI
tel:+1-816-323-2208, would like to talk to another subscriber (“Subscriber B”) who has a POTS
telephone with telephone number +1-816-367-2555. We next describe the call setup and call
release between these two heterogeneous phones being served by different types of networks.
In the process, we will identify the relevant SIP messages that are associated with SS7 ISUP
messages.

Suppose that the IP address of the SIP phone with tel URI tel:+1816-323-2208 is identi-
fied as 27.5.16.22 and the proxy’s IP address as 27.5.16.1. The gateway is identified for the IP
network with IP address 27.0.1.2 and for the SS7 network with SS7 point code 241.1.7. On the
PSTN side, the call terminates at the central office switch with SS7 point code 244.1.1; this
switch is the home to the Subscriber B’s analog POTS phone. In Figure 20.7, we indicate ad-
dresses of all entities along with the call flow and messages generated. Note that Subscriber A
would dial 3442525 based on local dialing instructions. The SIP phone will generate an SIP
INVITE message; the key components of this message are as follows:

INVITE sip:+18163672525@proxy1.NetworkRouting.net;user=phone SIP/2.0
From: <sip:+18163232208@proxy1.NetworkRouting.net;user=phone>
To: <sip:+18163672525@proxy1.NetworkRouting.net;user=phone>
Via: SIP/2.0/TCP host-a-client.NetworkRouting.net:5060

First note that SIP is a text-based protocol. The first word in the first line indicates that
it is an INVITE message followed by SIP URI and the version number of the SIP protocol
used. The SIP URI for Subscriber A’s SIP phone is listed in the “From” field, and the “To”
field contains the SIP URI of the destination. Although Subscriber A has dialed 3672525, the
SIP phone is responsible for conversion to the correct SIP URI. Note that only at the IP header
level (not shown) will the source IP be identified as 27.5.16.22 and the destination IP address
as 27.5.16.1. The “Via” field indicates that TCP is used for reliable delivery of this message; in
addition, the domain name for Subscriber A’s SIP phone and the transport layer port number
(“5060”) are included. Since the SIP session is to be established using TCP, a TCP connection
setup will need to be initiated to 27.5.16.1, thus requiring first exchange of TCP establishment

678 20.4 IP-PSTN Interworking for VoIP

F I G U R E 20.7 Call flow example from SIP phone to PSTN.

segments: SYN, SYN-ACK, and ACK (not shown in Figure 20.7). Once the TCP session is
setup, the SIP INVITE message will be sent. Note that in this case, the device addresses are
found to be from the same IP subnet (27.5.16.0/24), and thus the packet delivery will use any
local mechanism such as Ethernet.

C H A P T E R 2 0 VoIP Routing: Interoperability Through IP and PSTN 679

Once the SIP INVITE message is received at the proxy, it will generate a “100 TRYING”
response message to the SIP phone to indicate that it is trying to establish a connection in the
forward direction; this response message will be transmitted back through the TCP session
already in place. The proxy will also initiate a SIP session with the gateway 27.0.1.2 and
regenerate a SIP INVITE message as follows:

INVITE sip:+18163672525@gw1.NetworkRouting.net;user=phone SIP/2.0
From: <sip:+18163232208@proxy1.NetworkRouting.net;user=phone>
To: <sip:+18163672525@proxy1.NetworkRouting.net;user=phone>
Via: SIP/2.0/TCP proxy1.NetworkRouting.net:5060;branch=z9hG4bK2d4790.1
Via: SIP/2.0/TCP host-a-client.NetworkRouting.net:5060;branch=z9hG4bK74bf9

;received=27.5.16.22

There are a few subtle differences in this INVITE message compared to the first one:
(1) a new “Via” field is appended to indicate the node visited, and to identify the IP address
from which it has received the request, and (2) a “branch” parameter is included for both
“Via” listings with a unique tag for the purpose of identifying this call. Note that another
TCP connection is set up between the SIP proxy and the gateway that will generate TCP
connection setup messages (not shown). The proxy is responsible for internally mapping the
two TCP sessions to its two sides for this call, and the branch information it inserted can be
helpful for this tracking purpose. The IP address for the second TCP connection may require
packet forwarding through one or more routers in the SIP service provider’s network, which
is not shown here.

Next, the gateway would need to translate information from the SIP INVITE message to
the ISUP IAM message. We assume that the gateway is directly connected to the SS7 inter-
face of the terminating central office switch (identified with point code 244.1.1) using an SS7
F-link (refer to Chapter 12). In this message, the originating point code (OPC) will be 241.1.7
and the destination point code (DPC) will be 244.1.1. The called party number will include
816-367-2525, identifying that it is based on E.164 but using a national coding scheme, i.e.,
country code information is excluded. Thus, the initial address message (IAM) will contain
the following key information:

Routing Label: OPC=244.1.7 DPC=244.1.1
TCIC: 45
Message Type: IAM
CalledPartyNumber:

NatureofAddressIndicator: National
NumberingPlan: E.164
Digit: 816-367-2525

CallingPartyNumber:
NatureofAddressIndicator: National
NumberingPlan: E.164
Digits: 816-328-2208

Note that a free trunk circuit, as identified through TCIC (refer to Section 12.6.2), must
first be available before this IAM message will be generated. It may be noted that IAM is
a bit-oriented protocol—information is represented using text for ease of understanding the
content of the IAM message.

On receiving this IAM message, the destination central office will ring the phone of Sub-
scriber B and generate an ACM message. When this is received at the gateway, a “183 Ses-
sion Progress” message will be generated by the gateway to the proxy; this message will use

680 20.4 IP-PSTN Interworking for VoIP

the TCP connection already set up earlier. The proxy, in turn, will regenerate a “183 Session
Progress” to the SIP phone. Thus, the entire call setup is complete only when this message
is received at the originating SIP phone. As you can see, there is also the overhead of TCP
connection setup (not shown) that adds to the call setup time.

Once the call is set up, the gateway sets up an RTP session with the SIP phone and seizes a
TDM voice circuit with the destination central office. Note that the IP packets that contain RTP
data usually would not go through the proxy. How does the gateway know not to do so, or, for
that matter, which voice packetization scheme to use? So far, we have only mentioned G.711;
there are other standardized schemes possible that might be available with the SIP phone.
To determine these two pieces of information, the original SIP INVITE message from the SIP
phone would actually contain more information than the headers we have shown earlier; this
information is provided through a protocol format called session description protocol (SDP),
which contains the IP address information of the SIP phone, the coding scheme it would use,
and the transport port number where it will be expecting an RTP session from the gateway if
the session is connected.

Similar to the call setup, the call release works and it is shown starting with an SIP BYE
message generated by Subscriber A, which will be mapped to the REL message for the PSTN
part.

There are certain important points to note: SIP ANM does not generate a response mes-
sage while a SIP “200 OK” results in an ACK message in response. Furthermore, when the SIP
BYE message reaches the gateway, it does not necessarily wait for the response RLC message
to the REL message to arrive from the PSTN part; it goes ahead and issues a “200 OK” mes-
sage. Thus, it is important to note that there is no exact, direct one-to-one mapping between
SIP and SS7 ISUP messages.

20.4.4 POTS Phone to SIP Phone
Next, we consider call flow in the reverse direction. That is, the call starts from the POTS
phone subscriber and is destined for the subscriber who has an SIP phone.

For the PSTN phone to SIP phone, the basic idea is similar to the detailed discussion given
above for the other direction; thus, we present a pictorial view in Figure 20.8 and will not
discuss this in detail. However, we want to address one issue. When an IAM message arrives
at the gateway, it would need to identify the proxy to which the initial INVITE message is to
be sent. This means that the gateway would need to be configured with information about the
proxy server. If there is more than one proxy server, then the gateway needs to determine the
proxy server to which the call setup message should be forwarded. To identify that quickly,
through a separate mechanism, each proxy server informs the gateway of the current list of
phones it serves, or the changes since the last announcement. Thus, the gateway can maintain
a lookup table so that whenever a call arrives, it immediately knows to which proxy server
to forward the SIP message.

20.4.5 PSTN-IP-PSTN
We next consider the interworking scenario where a call originates in PSTN, then goes to an
IP network using a gateway, and then reenters PSTN. This involves SS7 ISUP signaling in two
different segments: at the beginning and then again at the end. In between, SIP messaging is

C H A P T E R 2 0 VoIP Routing: Interoperability Through IP and PSTN 681

F I G U R E 20.8 Call flow example from PSTN to SIP.

used to carry call control information. The call flow is similar to the ones discussed earlier.
For completeness, it is depicted in Figure 20.9.

When a call goes from PSTN to IP back to PSTN, it implicitly implies that all PSTN fea-
tures available to users are seamless. We next illustrate an example of what we mean by seam-
less. Suppose that a subscriber calls a number that uses PSTN-IP-PSTN architecture, and that
the subscriber wants to make it a collect call, i.e., the recipient is suppose to pay for the call,
also known as an operator-assisted call. Typically, the dialing rule for making a collect call is
different. This information is then captured in the SS7 IAM message; however, SIP does not
have a message type indicator to indicate this information. Thus, such information, which is
to be carried back to the terminating PSTN segment, would get lost if address conversion is
done only from PSTN to IP.

682 20.4 IP-PSTN Interworking for VoIP

F I G U R E 20.9 PSTN to IP to PSTN.

To avoid specific information loss such as the one described in the above illustration, SIP
is invoked somewhat differently than the normal mode; this is referred to as SIP for Telephones
(SIP–T) [715]. As before, a SIP INVITE message will be generated; in this case, however, the
entire ISUP IAM message will be encapsulated in the SIP INVITE message. A difficulty with
this is that an SIP INVITE message typically carries media information using the session de-
scription protocol—this is the payload. For SIP to include multiple payloads such as SDP,
ISUP messages, and so on, SIP–T uses multipart MIME (multipurpose Internet mail exten-
sion) for separation of different payload contents. Note that MIME was originally standard-
ized for simple mail transfer protocol (SMTP) to carry binary data of different types such

C H A P T E R 2 0 VoIP Routing: Interoperability Through IP and PSTN 683

as pictures, and is, in fact, a standard that can be thought independently of SMTP. MIME
has been found to be useful in many other application layer protocols, such as HTTP. There
is, however, yet another issue; there are several ISUP variations standardized and deployed
throughout the world; thus, such MIME encoding is also required to identify the standard
that is used so that the terminating PSTN segment would know how to handle it.

If SIP is used to serve the role of the bearer for ISUP messages for delivery to the ter-
minating PSTN segment, can this be accomplished directly in a TCP session, bypassing the
need for SIP? The answer is no. An advantage of SIP–T is that it allows call control that uses
proxy servers for call routing; this feature would be lost if ISUP information is carried directly
over TCP. Furthermore, the original PSTN segment does not necessarily know ahead of time
whether there is a terminating PSTN segment after traversing through an IP network. Thus,
SIP–T provides a richer functionality than carrying directly over TCP. From this discussion,
you have probably realized by now that for PSTN-IP interworking discussed in the previous
section, the gateway will generate SIP as SIP–T, since it does not know if the call necessarily
ends in the IP network.

Finally, it may be noted that from an SS7 ISUP message, the routing label that contains the
origination and destination point codes, and the TCIC information are excluded from being
included in SIP–T. Note that OPC and DPC included in ISUP messages are on a trunkgroup
basis connecting two TDM switches (refer to Figure 12.9 in Chapter 12); every TDP switch
serves a service switching point (SSP) and changes OPC and DPC codes as the call control is
being forwarded. Thus, we can imagine that the IP part in PSTN-IP-PSTN as the replacement
for a trunkgroup by an IP network; because of this, TCIC information is not needed. Since
we do not know ahead of time whether the call is PSTN-IP-PSTN or just PSTN-IP, there is
no meaningful way the SS7 routing label information can be used. Thus, for PSTN-IP-PSTN,
the gateway that starts the PSTN termination segment can just use its SS7 point code as the
originating point code and generate the destination point code based on where the call is to
be routed next.

20.4.6 Traffic Engineering
For an interworking environment, PSTN-IP, IP-PSTN, or PSTN-IP-PSTN, proper traffic engi-
neering is required to provide good QoS. It may be noted that often the intersection point
where PSTN meets IP is also the demarcation boundary between two different providers.
Thus, traffic engineering issues center around offered load in a particular network although
call flows in an interoperable environment. Thus, for the PSTN end, the voice traffic engineer-
ing and SS7 traffic engineering principles are applicable; refer to Chapter 11 and Section 12.12.
For IP, the discussion presented in Section 20.2.5 is applicable, with one key difference. In a
generic interoperable IP/PSTN environment, G.711 coding may not be the only voice coding
scheme in use. In fact, the voice coding can be different. Thus, the per-call bandwidth calcula-
tion will be different depending on the coding scheme. In Table 20.1, we listed IP bandwidth
requirements for a representative set of standardized voice coding schemes; the calculation
is similar to the one discussed in Section 20.2.5. You will note that RTP and IP overhead,
which is 40 bytes (including UDP overhead), together remains the same; the code schemes,
the packetization time, and actual sample rate influence the IP call bandwidth data rate.

Once the coding information is known, through network monitoring and call flow logs
we can then determine the percentage of calls for different coding schemes that is currently

684 20.5 IP Multimedia Subsystem

TA B L E 20.1 Call bandwidth requirement for different voice coding schemes (overhead =
40 bytes: 20 for IP, 8 for UDP, and 12 for RTP).

Codec Raw Rate Sampling Packet Packets Bits Bytes IP Level IP Rate
(Kbps) Interval (ms) GenFreq (ms) per sec per frame per frame (bytes) (Kbps)

G.711 64 10 20 50 1280 160 200 80.0
G.726 32 5 20 50 640 80 120 48.0
G.726 (2) 24 5 20 50 480 60 100 40.0
G.728 16 5 30 33.33 480 60 100 26.7
G.728 10 10 30 33.33 300 37.5 77.5 20.7
G.729 8 10 20 50 160 20 60 24.0
G.723 (1) 5.3 30 30 33.33 159 19.875 59.875 16.0
G.723 (2) 6.4 30 30 33.33 192 24 64 17.1
iLBC 15.2 20 20 50 304 38 78 31.2
iLBC 13.3 30 30 33.33 399 49.875 89.875 24.0

using a network. Taking this information along with the IP data rate, cumulative bandwidth
requirements and performance guarantees can be assessed.

An important point to note is that in a PSTN-IP-PSTN environment, IP is used as a bearer,
and the endpoints are in PSTN networks with an E.164 telephone address. Since E.164 in-
formation is carried in the header of SIP-T and the entire ISUP information is carried as a
payload, it is not necessary for the IP network part to use public IP address space—private IP
addresses can be used; in other words, it is important to realize that the IP part can be carried
as a private IP network instead of being transmitted over the public Internet. There is another
advantage to it being a private IP network; the traffic carried is only for call signaling and
packetized voice and is not influenced by IP packets due to many services in a public Inter-
net. This means the performance variation for the IP segment deployed through a private IP
network is much less and quality of service is easier to guarantee through traffic engineering.

20.4.7 Relation to Using MPLS

Note that once a call enters an IP provider’s network, it would be routed based on its internal
routing and technology environment. A provider may have a separate IP/MPLS network for
this purpose. In this case, LSPs can be setup to serve traffic trunks between two LERs, and
then call bandwidth is allocated based on traffic measurements. Thus, the QoS routing frame-
work, discussed in Chapter 17, is also applicable here. In particular, the discussion presented
in Section 19.3 in regard to routing with voice over MPLS is also applicable.

20.5 IP Multimedia Subsystem
In the managed IP section approach (refer to Section 20.3), we presented a managed IP ap-
proach for circumventing the copper wire–based UNI part highlighted in Figure 20.2(a).
There is another emerging approach for replacing this segment for a mobile Internet, referred
to as the IP multimedia subsystem (IMS). Interestingly, the basic IMS architecture is also ap-
plicable for the wired managed IP approach discussed in Section 20.3. We first start with a
brief motivation for and overview of IMS.

C H A P T E R 2 0 VoIP Routing: Interoperability Through IP and PSTN 685

The current cellular networks are primarily voice-circuit mode based. The underlying
physical technology for cellular networks is either time-division multiple access (TDMA) or
code-division multiple access (CDMA); both of these are voice optimized to provide dedi-
cated channels to voice calls. As we move forward to providing multimedia services, it has
become clear that the wireless mobile part would need to be an IP-based common platform
so that a variety of services in addition to voice can be provided. Thus, IMS addresses the
conceptual architectural framework for providing IP-based services in the mobile wireless
world. It may be noted that IMS is constructed to address layer 3 requirements without dic-
tating how layer 2 or layer 1 would work, thus allowing evolution of underlying wireless
technology to take its own path for layer 1 and layer 2 for data-optimized applications. This
is where two standardizations have emerged: third-generation partnership project (3GPP),
and third-generation partnership project 2 (3GPP2). The essential difference between 3GGP
and 3GPP2 is that 3GPP has evolved from GSM specifications, i.e., from a TDMA-based ap-
proach, while 3GPP2 has evolved from North American ANSI/TIA/EIA-41 standards and
CDMA2000 (1x, 1xEV-DO), i.e., from a CDMA-based approach to allow for data mode ap-
plications. Discussions on TDMA/CDMA are beyond the scope of this book. An important
point to note about IMS is that due to the clear separation of layer 3 from the physical tech-
nology, the basic architecture is not just limited to wireless; in fact, the managed IP approach
discussed in Section 20.3 for a cable modem environment can implement the IMS architecture
due to a well-defined separation of IP from the underlying technology for layer 2.

20.5.1 IMS Architecture

The goal of IMS is to make the mobile Internet a reality through the availability of a common
platform for multimedia services. This provides support for mobility, for session manage-
ment, and for QoS negotiation. Furthermore, it must be able to interwork with PSTN.

For session control, SIP has been chosen for IMS. It may be noted that SIP was originally
designed for a wired Internet for session control of VoIP and multimedia services. Funda-
mentally, since SIP has no restriction to be on the wired part, it became the right choice for
IMS as well. However, 3GPP has mandated several extensions to SIP for IMS to cope with
radio access network characteristics. Note that for interworking between IP and PSTN, it is
necessary to have signaling interoperability between SIP and SS7 ISUP; this is discussed sep-
arately in Section 20.4. Besides SIP, Diameter [104], [430], also specified by IETF, is used for
authentication, authorization, and accounting in IMS.

In IMS, there are several different entities defined to serve different functions (see Fig-
ure 20.10). Some of these functions can be combined into one node, with the actual configu-
ration or integration depending on the goal and the scope of the network provider that de-
ploys IMS. For example, a regional provider’s scope could be quite different from a national
provider. Since IMS is IP based, all entities must have an IP address. Broadly, IMS defines the
following functions:

• Home Subscriber Server (HSS): HSS is similar to home location register (HLR) in current
cellular network; it contains various user information, especially identifying the home
location of a user. In 3GPP, Subscriber Location Functions (SLF) is another entity that maps
users’ addresses to HSS, while in 3GPP2, this is not defined separately.

686 20.5 IP Multimedia Subsystem

F I G U R E 20.10 IMS architecture.

• Call/Session Control Function (CSCF): This serves the role of a SIP server for process-
ing SIP signaling and is further divided into three categories: Proxy-CSCF (P-CSCF),
Interrogating-CSCF (I-CSCF), and Serving-CSCF (S-CSCF). P-CSCF plays the same role
as the proxy server discussed in Section 20.4. I-CSCF is listed in the DNS record; this is
queried by a remote SIP entity, for example, during a session setup. S-CSCF is also a SIP
server with its key responsibility as the SIP registration server; furthermore, it provides
translation services for SIP routing when a telephone number is dialed.

• Application Server (AS): This has the function of executing IP multimedia services.

• Media Resource Function (MRF): This handles all media-related issues such as transcoding
between different codes.

• Breakout Gateway Control Function (BGCF): This function is used to select the appropriate
gateway/network based on a called number.

• PSTN Gateway: This provides the interface to PSTN as shown earlier in Figure 20.6.

It may be noted that multiple instances of the above functions may exist in a network.
More details about IMS and description of functions can be found, for example, in [106].

20.5.2 Call Routing Scenarios

NONMOBILE CASE

We first consider the case where a user is using the service from its home network; in addition
to 3GPP and 3GPP2, this scenario also works for wired IMS deployment in a technological
environment such as cable modem. Since the user’s phone is an IP-based SIP phone, for a
call routing from IMS to PSTN, the call flow would be as illustrated in Figure 20.7; note that
in this figure, registration is not shown. Thus, the S-CSCF function would also be required

C H A P T E R 2 0 VoIP Routing: Interoperability Through IP and PSTN 687

when a user activates the phone or turns it on after a power loss. Beyond registration, there
are three additional possibilities:

1. The called number is in the same or is outside the geographic region but is provided by
the same IMS provider.

2. The called number is provided by a different telephone service provider that is a tradi-
tional PSTN-based provider.

3. The called number is provided by a different telephone service provider that is also an
IMS-based wired/wireless VoIP provider.

The first option can be handled by doing intradomain routing in the IP network assum-
ing that the IMS provider has a wired IP network spanning both geographic regions; this
network may run OSPF or IS-IS protocol. An internal lookup service is needed to identify the
IP address of the dialed number.

In regard to either of the last two cases, an important function is to identify the receiving
provider. To do that, there are two possible options: (1) the carrier identification code (CIC)
of the long-distance provider of the caller, or (2) the CIC code of the receiving provider. In
an IMS-based environment, the CIC code of the long-distance provider most likely will be
the same as the user’s local IMS-based provider, for instance, due to bundling of services
at a competitive price. Thus, for a called number, the receiving provider’s CIC code would
need to be considered, and then, accordingly, used to identify the gateway node for rout-
ing. If it is going to a traditional PSTN, then the IP-PSTN internetworking discussed earlier
will be applicable. If it is another IMS-based provider, then there are two possible options:
(1) whether the entire transaction is carried through public IP-based network space, or (2) a
session border controller is used. For the first approach, packets for the session and media
stream will be routed by possibly traversing one or more autonomous systems in the public
Internet. However, the second option, known as a session border controller (SBC)–based ap-
proach, has become an emerging option due to a service provider’s interest in maintaining
and providing stringent quality of service, as protection from divulging information such as
IP address blocks about its network, and for full management of session and media control in
a seamless manner. From the perspective of economics as well, SBCs are becoming popular.
Interestingly, for either option, policy-based routing can play a role (refer to Section 9.5).

MOBILE USER CASE

When IMS is deployed in a mobile environment such as 3GPP or 3GPP2, a user may visit
another network but still want to use the VoIP or multimedia service. A function similar to
the visitor location register (VLR) function currently used in cellular networks (whether IS-95
based or GSM-based) is needed in the IMS architecture for its mobility function; this can be
accomplished through deployment of P-CSCF in visited networks. However, in an IP-based
world, this is not entirely necessary. When a user turns on an IMS-based phone in a visited
network, it will generate a message to the P-CSCF for registration that is stored in the handset.
Since both the home and visited network are IP-based, and although they may span a large
geographic region, they may be connected by an intradomain wired IP network running,

688 20.6 Multiple Heterogeneous Providers Environment

for example, OSPF or IS-IS protocol; thus, the actual message for registration can be routed
through this network to the actual PC-CSCF in the home network.

There is another important issue to consider when a user activates services from a vis-
ited network in an IP-based environment. First, the user must be authenticated; second, the
user must be assigned an IP address. Consider the following two approaches for IP address
assignment:

• If the user is always assigned an IP address from its home network for service delivery,
then an IP-over-IP tunnel would need to be set up from the user’s device in the visited
network to the home network to carry packets back and forth for this user. This option
is especially necessary if P-CSCF is located only in the home network. In this case, the
network has a tunneling overhead cost.

• If the user is assigned a new IP address for service delivery from the IP address block of the
visited network upon registration, then the role of P-CSCF in a visited network becomes
apparent. In this case, the IMS network would need to provide addressing mapping based
on registration for routing an incoming call properly to this user.

It may be noted that we have touched on the above issues only briefly; this falls in the
area of mobile IP, a detailed discussion is outside the scope of this book.

20.6 Multiple Heterogeneous Providers Environment

So far we have discussed issues and requirements for call routing in a mixed IP-PSTN envi-
ronment so that interoperability is possible. We now briefly consider a multiple heterogeneous
provider environment. After all, we live in a world that consists of network providers of vari-
ous types and sizes, vendors who come up with solutions that hopefully make economic and
business sense. In this section, we illustrate two real-world examples, which we label as “Via
routing,” and “Carrier Selection Alternative.”

20.6.1 Via Routing

Our example involves a call that can be routed through a mix of networking technologies and
providers to reach a certain destination, e.g., a 1-800 call routing in the United States. Here,
the user dials an 800-number that is being answered in another country.

First, it must be noted that the 800-number must have a routable (telephone) number in
the North American numbering plan so that the originating TDM knows where to route it.
When a subscriber dials the 800-number, the call setup message is routed in the SS7 network
to an SCP that provides the translation service to a routable number and identifies the CIC
number of the provider. Based on this information, the setup message is routed in the SS7
network to a terminating central office; this switch then forwards the call to a location at
which there is a logical trunkgroup from the destination central office. Note that this location
is still in the North American region; once the call arrives at this location, there are several
possible options that logically can be depicted as shown in Figure 20.11 (marked as “2”).
There are three possible options from this location to another country (marked as “3”):

C H A P T E R 2 0 VoIP Routing: Interoperability Through IP and PSTN 689

F I G U R E 20.11 Via routing example.

1. There is yet another outgoing facility or mechanism used to forward this information/call
further; this can be on private line–leased circuits that terminate in a different country.

2. The outgoing point serves as a gateway and is connected to a private IP network provided
by a private IP network provider, which then carries the call through a shared private
virtual network mechanism, including logical tunneling, to another country.

3. The outgoing point is a gateway connected to the public Internet; in this case, the call can
be routed to any part of the world.

In the first case, leased circuit routing will fall under transport routing from one country
to another country. In both the second and the third options, SIP-T can be used and the final
termination may convert back to a regular TDM signal or be completed on SIP phones.

Note that the same principle can be used for indirectly dialing an international number
as well. That is, a user wanting to make an international call first dials an 1-800 number. Once
the user’s call is connected to this 1-800 number location, the user now enters the actual in-
ternational number. In this case, it is possible to set up an intermediate point mechanism like
the site marked as “2” to which the 1-800 number for international access is first routed; from
here one of the above options is used for termination at the site marked as “3”; from site 3, lo-
cal or national routing within that country can be invoked to the final destination. Note that
option 2 and/or option 3 can also be set for dialing an international number directly. This
bypasses the need for the call to be carried over PSTN entirely, saving the carrier in the origi-
nating country from having to pay a fee to the terminating carrier in the destination country.
Such models have become quite popular in recent years, again due to pricing advantage, the
drop in transport cost, and the reduction in settlement charges.

690 20.7 All-IP Environment of VoIP Services

20.6.2 Carrier Selection Alternative
We next consider an alternative to route selection where a local exchange carrier has a switch
with an IP gateway interface for SIP-T. This then differs from the related discussion in Chap-
ter 13, especially due to the availability of an IP interface along with the multiprovider envi-
ronment.

When a subscriber dials a number, the central office switch first analyzes the dialed num-
ber. It then confers with a server connected to the SCP to determine which provider owns that
number, or which provider is responsible for handling/delivering the call (especially for in-
ternational calls). Thus, the address translation database contains identifiers such as the CIC
number of the provider that is to handle delivery of the call. Along with that CIC number,
the receiving IP address may be included so that a switch with an IP interface (SIP-T) can
then route this call to the IP interface. Thus, in a hybrid IP-PSTN environment, conceptually
a different carrier may be selected for routing if the economics make sense.

20.7 All-IP Environment of VoIP Services
Finally, we discuss the all-IP environment for delivering VoIP services. In a basic conceptual
sense, a call delivery would not be any different than a standard client-server–type interaction
in the current Internet for TCP-based services. The packets generated due to VoIP services
would be routed at the IP level between any two points as is currently done in IP networks,
hopping from one AS to another AS.

Note that in TCP-based services such as email, the originator somehow already knows the
email address of the receiver or the web URL. Thus, this information can be used with DNS
lookup to identify the receiving node’s IP address; the packets are then routed. The issue in
VoIP is how to somehow know the address or identifier of a user so that the call can be routed
properly. Broadly, there are two options.

In the first option, a presence protocol-based approach can be used to identify when the
user is connected to the Internet: this is transmitted to others who are on the user’s “buddy
list.” This is generally the model of the instant messaging system, which is also applicable to
recognizing the presence of users for VoIP services in an all-IP environment. Typically, these
are proprietary protocol-based approaches in which users from one system may not be able
to access users in another system.

In the second option, the user still uses an E.164 address as the telephone address. In
this case, the issue of identifying where the user is currently connected arises. This can be
handled in two different ways: (1) use an SS7-type all-call query approach to identify which
provider handles the delivery of service for this user, or (2) use a standardized approach for
a telephone number to IP address lookup.

You might immediately realize that this second approach is strikingly similar to the DNS-
based approach for a domain name system for IP address lookup. In fact, for an E.164 address,
a DNS-based approach called ENUM [208], [209], [369] has been proposed. In this approach,
an E.164 address is transmitted to the DNS server using the extension, .e164.arpa, to find the
IP address. In this case, being in a public protocol environment, the SIP-based approach for
call setup can be used while the registration process in SIP will dictate what IP address will
be listed for an E.164 for ENUM. Currently, this approach is being extensively investigated
and testing for trial implementation is being pursued [108], [155], [200].

C H A P T E R 2 0 VoIP Routing: Interoperability Through IP and PSTN 691

20.8 Addressing Revisited
To conclude, we revisit addressing issues. Originally, the role of the telephone numbering
plan was to determine where to route a call geographically; to do that, PSTN was connected
by trunkgroups between switches of various types in a hierarchical manner. The hierarchical
mechanism was used to avoid looping.

With the introduction of SS7 networking, the switches have been identified by SS7 point
code addressing; note that end users have continued to use the telephone number–based
addressing scheme. Since each central office switch with SS7 capability serves a set of sub-
scribers, we can say that all these subscriber telephone number addresses have direct map-
ping to the SS7 number for routing. Thus, to route a call to a number, a lookup needs to be
performed to determine the next hop for SS7 call setup message forwarding; the decision
depends on whether the call was a local call or a long-distance call. With the introduction
of multiple providers for long-distance calls in the United States, a new addressing system
was created, called the carrier identification code (CIC), so that for long-distance calls, map-
ping between the originating user’s phone number and CIC is maintained; this CIC is further
mapped to an SS7 point code for call forwarding and to identify outgoing trunkgroups.

With the introduction of a multiple local access provider, a telephone number address
block is provided to each provider. With number portability, subscribers can take their tele-
phone numbers from one service provider to another provider. An important issue is how do
we know the home switch of a telephone number for call delivery? To determine this, the con-
cept of location routing number (LRN) has been introduced. Essentially, a call is routed based
on the LRN for final delivery to the actual user. This means that during the establishment of
the call, one of the providers needs to do a lookup to determine to which provider/LRN to
route the call.

Let us now discuss the IP addressing scheme. For IP addressing, an important difference
from the telephone numbering scheme is that both end devices and routers share addresses
from the same addressing scheme so that a packet can be routed based on this addressing
scheme. From an address assignment point of view, the IP address is assigned on a block
basis to an entity. For anyone to be able to route to this entity at its allocated IP address, the
entity must sign up with an ISP that will take charge of announcing this address block to the
rest of the Internet through BGP protocol. To do that, the IP address block must be associated
with another addressing scheme called the autonomous system number (ASN). Thus, when
an IP address block is advertised to the rest of the Internet, a “home” ASN must be associated
with it so that routing tables can be formed at the right places so that they point backward
toward this address block correctly.

An important point about addressing for the IP world is that additional addressing
schemes have been defined for user-level addressing, for example, domain name, email ad-
dress, web URL, and, more recently SIP URI (address). Since all of them fundamentally de-
pend on the domain name, a lookup from the domain name to an IP address must be done;
this function is provided through the domain name system that is globally available.

If we now compare these, we can say that a CIC code is to a telephone address as an
ASN is to an IP address. This way of looking at different address relationships tells us that an
address must have a home provider, where the provider must have a defined address as well.
Furthermore, such homing to a provider is preferably changeable over time; i.e., the customer
has the ability to change a provider without having to change their numbering.

692 20.9 Summary

With IP-PSTN interworking, we have arrived at a situation in which a telephone number
is associated with an IP address. The question is how and where is this association taking
place. Consider Figure 20.8 shown earlier. Here, the E.164 number +1-816-367-2525 has a di-
rect association with IP address 27.0.1.2; certainly, this associate is through a masked PSTN
network. For +1-816-323-2208, which is from a SIP phone, an IP address 27.5.16.22 is directly
associated with the SIP phone. The larger question is how do we identify this association at
the time of making a call. From the above discussion, it is clear that there are two possible
models: (1) for each number dialed, identify a provider CIC number and find a route to this
provider, and let the provider take care of final delivery, or (2) do a direct DNS lookup for
a telephone number to an IP address through ENUM, and then route the call. Theoretically,
and in practice, both of these are viable options and are currently being used. Although the
second option looks more globally desirable, much like website domain name translation to
an IP address, whether this will happen, and how quickly, remains to be seen. This is affected
by factors such as regulatory policies, which may be different from one country to another,
and the economics of delivery due to business relations between providers.

Finally, in general, addressing and routing remain a critical issue for any communication
network, in particular for Internet and PSTN. We point out that while the address space ex-
haustion is an issue, simply increasing the address space, for example, by increasing the num-
ber of digits or bits, does not necessarily solve addressing and routing issues. In many ways,
addressing and routing issues are intertwined. For example, we know that hierarchical ad-
dressing allows the route determination to be based on higher-level information, rather than
more specific information. Alternately, a flat addressing scheme requires more specific infor-
mation to be listed for routing table lookup, thus losing the benefit of hierarchy, and, thereby,
route aggregation. However, a benefit of flat addressing is that it allows movability—that
is, a customer does not need to renumber its network, yet can change a provider—this has
come true both for IPv4 prefixes as well as for local number portability in PSTN. On the other
hand, more specific information needed for routing for an addressing scheme, however, in-
creases the size of the routing table. We have noticed that with routing table growth for IPv4
addressing, as discussed earlier in Chapter 9; a similar effect is starting to take place with
local number portability in PSTN. The challenge then lies in building more efficient lookup
algorithms that exploit every feature, along with improvement in hardware speed. Certainly,
if the growth in routing table is slower than this progress in lookup algorithm and hardware
speed, then even with a large routing table, we can say that the system has the ability to han-
dle it; however, it is not apparent that this growth in the table will be slower. Thus, this brings
a new challenge for networking researchers to think about innovative addressing schemes
that are scalable from a routing point of view yet provide flexibility. Furthermore, any such
addressing scheme must have the ability to be deployable in a live network. Thus, we antic-
ipate many interesting and important issues to be tackled on addressing and routing in the
coming years.

20.9 Summary
In this chapter, we covered VoIP routing. Because of IP-PSTN interactions and interworking,
many different scenarios for service routing and delivery are possible. We present a repre-
sentative set of approaches. Furthermore, we discuss IMS and how this can impact/influence
routing.

C H A P T E R 2 0 VoIP Routing: Interoperability Through IP and PSTN 693

The interworking environment also brings to light the issue of addressing for routing. In
fact, similar to an email address the E.164 address is now taking the role of a service-based
address, for service delivery for multimedia services. The issue of how E.164 is mapped to
an IP address is currently a topic of considerable interest as this may entail regulatory issues
that can be different in different countries. How this plays out remains to be seen.

As a final thought, in this book, we have attempted to provide a detailed coverage of
network routing for a variety of communication networks. Thus, we pause for a moment
and look back at the history of communication networking over the past 150 years or so. We
can say that, broadly, we can classify the communication networking paradigm into three
groups: telegraphy, telephony, and the Internet. If we look at time spacing, going from the
birth of telegraphy (in 1844) to the birth of telephony (in 1876), it took thirty years; from the
birth of telephony to the birth of the Internet (in 1969) took nearly a hundred years. Thus,
we can ask a general question: is there any new communication paradigm that is different
from the way have thought or done so far, i.e., from telegraphy, telephony, and the Internet?
If so, what would be addressing and routing be? While we do not claim to have the answers
to these questions, we hope that our coverage of routing in different networks, along with
issues covered and lessons learned, will help in a small way toward such a vision.

Further Lookup
The basic concept for telephony for IP over cable, PacketCable, is discussed in [456], [457];
detailed specifications for PacketCable can be found at [103]. A discussion on IP-PSTN signal
mapping between SIP INVITE and ISUP IAM messages can be found in [107]; also refer to
[341] for SIP-PSTN call flows. Any hybrid environment brings new vulnerability; for exam-
ple, see [12]. The emerging IMS architecture is discussed in detail in [106]. Both IMS archi-
tecture and cable providers are exploring/deploying IPv6 addresses; this is partly based on
the issue of lack of IP address blocks (even private IP address) for large-scale deployment of
services. In most such deployment, address need not be moved out of a provider since an IP
address is potentially softly associated with a customer for the duration of service the cus-
tomer signs up for. However, in many other situations, there is need for a customer to take
the address block with them and have provided service by another provider; in this regard,
there have been developments on provider-independent IPv6 addressing; see [281].

DNS mapping for E.164 addressing is discussed in [208], [209], which assigned certain
aspects of ENUM to the Internet Architecture Board; a discussion on responsibility and the
relation to ITU–T can be found in [369]. ENUM request for SIP is described in [561]. Enum-
service that contains PSTN signaling is discussed in [415]. For recent trial implementation of
ENUM, see [108], [155], [200].

You may note that there is more material available on the subject of routing than is pos-
sible to cover in a book. Two useful resources are Wikipedia [739] for a general description of
any routing-related topic (and others as well) and Google [258] to search for things not found
in Wikipedia or for detailed information through a series of complex searches. We can al-
most guarantee that someone has written about it, or, better, created a presentation that helps
you learn. We also encourage you to read, participate, discuss, and learn from many routing-
and addressing-related mailing lists, maintained by standards bodies and the networking
research community.

694 20.9 Exercises

Exercises
20.1 Describe the IP-PSTN-IP call routing scenario, along with the different protocol mes-

saging involved in call routing setup.

20.2 Consider the call-carrying capacity discussed in Section 20.2.5 for G.711. Determine call-
carrying capacity on a OC-3 link for other codec schemes listed in Table 20.1 due to
packetization.

20.3 Discuss the key differences between ISUP signaling and SIP.

20.4 Identify what type of information may not be mappable when an ISUP IAM message is
converted to a SIP INVITE message.

20.5 Discuss where and why SIP–T needs to use MIME.

This page intentionally left blank

Appendix A:
Notations,
Conventions, and
Symbols
In most people’s vocabularies, design means veneer. It’s interior decorating.
It’s the fabric of the curtains of the sofa. But to me, nothing could be further
from the meaning of design. Design is the fundamental soul of a
human-made creation that ends up expressing itself in successive outer
layers of the product or service.

Steve Jobs

Appendix A: Notations, Conventions, and Symbols 697

A.1 On Notations and Conventions
In networking, we sometimes say that there are not enough bits or digits in a particular ad-
dress space or a protocol field. We faced a somewhat similar situation with notations; we
found that Roman and Greek scripts do not have enough alphabets to avoid repeats. Cer-
tainly, we were tempted to use Assamese and Tamil scripts to ensure uniqueness. In the end,
we choose notations in this book so that the material is relatively easy to read and without
being confusing due to repeats.

Typically, any two generic nodes are identified by i and j. If there is a link between them,
then it is noted as i-j. You will note that k is used as a generic intermediate node between two
nodes i and j. If we are referring to the pair of nodes i and j, for example, to denote traffic or to
find a path between them, this pair is noted as i:j, so that it is not confused with link i-j. This
set of notations is used in Chapter 2 and Chapter 3. A general comment is that historically
k-shortest path is the common name in which the shortest, next best shortest, up to k paths
are to be determined. Certainly, this k has no relation to the use of k to mean an intermediate
node.

For notations related to network flow modeling and traffic engineering, we have used a
somewhat different notation. Typically, for a link, we use single identifier 	. Similarly, to iden-
tify a pair of nodes for demand, we use a single identifier k. The demand volume, regardless
of the unit of measure, is denoted by hk for demand pair k. This basic notational guideline
is followed in Chapter 4, Chapter 7, Chapter 19, Chapter 24, and Chapter 25. Since most of
these chapters have quite a few notations, we have often used tables to list all notations that
are relevant to a chapter. There are, however, commonality in notations; still, keeping similar
looking summary tables on notations avoid the need to refer back to Chapter 4 when this
notations were first introduced.

Other than that, the notations in the rest of the chapters are of primarily of local signif-
icance, i.e., they are unique within a chapter itself. In many occasions, we do reuse i, j, or k
to denote an index or an iteration; however, all such usage should be clear within the context
they are used.

When possible, we use a number range, rather than a set notation. For example, k =
1,2, . . . ,K is to denote the demand pairs from k = 1 to the maximum value of K. However,
in certain situations, a set notation is helpful to use; in such cases, a set is denoted, say K, and
an element k in this set is indicated as k ∈ K.

In general, we follow a single letter notation for describing a unit, for example, c for ca-
pacity. However, there are a few cases where we do use an abbreviation, due to such use
being well known. For example, RTT is used to denote the round trip time; it does not mean
R × T × T. Because of this possibility, on several occasions we have used the sign “×” explic-
itly, primarily for clarity. We tend to use a descriptive name more commonly in a subscript,
such as Taverage. Otherwise, a subscript is used as an index, such as hk to denote demand vol-
ume for demand identifier k. In a few places, we have also used a slightly different notation,
T[k], to convey the same meaning; typically, we use this notation when we are referring to
memory location, such as location k for array T.

In this book, we use byte to indicate an 8-bit element, instead of using the traditional name
octet.

Equation numbering has three parts: the chapter number, the section number, then the
equation number within this section. For example, (7.6.12) refers to equation number 7 lo-

698 A.1 On Notations and Conventions

F I G U R E A.1 List of symbols.

Appendix A: Notations, Conventions, and Symbols 699

cated in Section 6 of Chapter 7. In general, we refer to an equation number as “Eq. (7.6.12)”
regardless of whether it is an equation or an inequality or a formulation. In certain cases, we
do qualify an equation number using a term to indicate what it reflects; for example, Formu-
lation (7.6,8), or Constraints (7.4.8).

References cited are marked in square brackets (e.g., [21]).
In algorithmic description, we use double-slash (“//”) to indicate the start of comments.
As a general convention, we use private addresses or unassigned addresses for illustrat-

ing examples.

A.2 Symbols
The book uses a variety of symbols to denote different types of nodes such as routers and
switches. The entire list is summarized in Figure A.1.

Appendix B:
Miscellaneous
Topics
If you don’t know what to do with many of the papers piled on your desk,
stick a dozen colleagues’ initials on ’em, and pass them along. When in
doubt, route.

Malcolm Forbes

Appendix B: Miscellaneous Topics 701

B.1 Functions: Logarithm and Modulo
The logarithm of n to the base b is written as logb n. If we write this quantity as z, then the
equivalence between log and the exponent is as follows:

z = logb n ⇔ bz = n.

There are two values of the base that are of interest to us, b = 2 and b = e, where e is the Euler
number (e = 2.718128). The relation between different bases, shown below between bases e
and 2, is as follows:

log2 n = log2 e × loge n.

For base e, ln is often used instead of log; similarly, for base 2, lg is used. Thus, the above
relation can also be written as: lg n = lg e × ln n.

You may note that we use the notation logd N in several places in this book; this means
(log N)d, which is not the same as log Nd(= d log N).

The modulo function is written in short as mod. Thus, a mod m means the non-negative
remainder when a is divided by m, which results in a number in the range [0, . . . ,m − 1).
Thus, 1 = 10 mod 3.

B.2 Fixed-Point Equation
A fixed point equation has the following form:

x =F(x). (B.2.1)

That is, when the continuous function F is applied to input x, then the output is x as well.
It is important to note that the fixed point equation makes sense when the domain and the
range of function F is the same. It is called a fixed point equation since there must be at least
an x, i.e., a fixed point for which Eq. (B.2.1) holds; that is, the input is equal to the output.

An approach to solve a fixed point equation is to consider a simple iterative process
where the input leads to output which, in turn, becomes input. In other word, if at iteration
k, we have xk, then using Eq. (B.2.1), we can compute a new x through the following recursion:

xk+1 =F(xk). (B.2.2)

Then xk+1 becomes input in Eq. (B.2.1) to obtain xk+2, and so on. The process stops when
the difference between two consecutive x’s, |xk+1 − xk|, is below an acceptable threshold,
ε. The general fixed-point algorithm is outlined in Algorithm B.1. Note that at the time of
initialization, xold �= xnew and as long as the difference is more than ε; a simple rule is to set
xold to be 2ε away from xnew. Finally, the actual value of ε depends on accuracy desired for a
specific problem; for some problems, it might be acceptable to set ε = 0.01 while for others ε =
10−6 might be required. Sometimes, the relative difference as percentage is more appropriate
when the solution is far away from zero; in such cases the stopping rule |xk+1 − xk| ≤ ε is
replaced by |xk+1−xk|

|xk| ≤ ε; accordingly, the continuation condition in the while-loop of the
algorithm is adjusted along with ensuring that no divide-by-zero situation occurs, i.e., as
|xold − xnew| > ε|xold|.

702 B.3 Computational Complexity

A L G O R I T H M B.1 Fixed Point Algorithm.

procedure FixedPointSolution (F)
Initialize xnew

Set xold = xnew ± 2ε

while (|xold − xnew| > ε) do
xold = xnew

xnew = F(xold)

endwhile
return(xnew)
end procedure

It is important to note that a fixed point equation does not necessarily always have a
unique solution or stable point. Consider the function F(x) = 3x(1 − x) in the domain [0,1].
In this case, the fixed point equation x = F(x) has two solutions: x = 0 and x = 2

3 . A fixed
point equation is known to have a unique solution if the absolute value of the first derivative
of F(x) is in the interval (0,1), i.e., |F ′(x)| ≤ D, where constant D ∈ (0,1). If F ′(x) �= 0, then
the rate convergence of the fixed point equation is linear, i.e., limk→∞ = |xk+1−x∗|

|xk−x∗| = C, where
C = |F ′(x)| < 1 and x∗ denoted the solution.

In general, while the fixed-point iterative scheme looks innocent, the convergence can
be a problem depending on the starting point (x0) and the function, F(x). This point is well
described in [86] for F(x) = 4ax(1 − x) (where a is a parameter); it was shown (through ani-
mation) that the fixed point algorithms leads to convergence easily if a ≤ 0.75, and alternates
between two points for 0.75 < a ≤ 0.86237, and becomes very chaotic beyond a = 0.86237.

The fixed point equation problem arises also “in cube”, i.e., in the n-dimensional space,
instead of a single variable described so far. In this case, there are n unknowns, and there is a
set of n equations connecting a set of functions F1,F2, . . . ,Fn as follows:

x1 = F1(x1,x2, . . . ,xn)

x2 = F2(x1,x2, . . . ,xn)

· · · = · · ·
xn = Fn(x1,x2, . . . ,xn).

(B.2.3)

If we denote n unknowns by vector x = (x1,x2, . . . ,xn), then we can write the above in the fol-
lowing compact form x = −→F (x), where −→F denotes the vector function, −→F = (F1,F2, . . . ,Fn).
Certainly, the domain and the range need to be the same.

B.3 Computational Complexity
Many problems we have described in this book require algorithmic approaches. Algorithmic
approaches can be broadly classified into the ones that can be described in terms of finite
number of operations of the input, and the ones that are numeric precision oriented. An ex-
ample of the former is Dijkstra’s shortest path algorithm, and an example of the latter is the
fixed-point algorithm. For the former, we usually consider the complexity of the algorithm in
terms of the input length n and present with a notation known as big-Oh, such as O(log n) and

Appendix B: Miscellaneous Topics 703

O(n2). For the latter, the performance of an algorithm is described in terms of linear, super-
linear, or quadratic convergence. For example, Newton’s method to find a root of an equation
has quadratic convergence in general (there are exceptions, see [739]); we have already dis-
cussed earlier about the convergence of the fixed-point equation.

In this section, we consider the class of algorithms that can be determined in a finite
number of steps, for input of size n. When we say finite number of operations or steps, we
do not mean small. For instance, for input size n, a particular algorithm might require 2n

operations or steps to arrive at the solution; certainly, 2n is finite, but can be very large. For
example, suppose that each operation takes 1 microsec (= 10−6 sec), then for n = 50, 2n turns
out to be 36 years! If someone comes up with a clever algorithm to solve the same problem
in n3 operations, then for n = 50, it will take only 0.13 sec. Thus, it is very helpful if we can
count the number of operations of an algorithm. Often, however, we do not need to find the
exact number of operations; an approximation that is off by a fixed multiplier and, thus, that
can be written as a function of n is helpful enough. Suppose that the clever algorithm actually
takes 5×n3 operations, then the total time will be 0.65 sec. We still know that this approach is
much better than the algorithm that takes 2n operations. The role of the big-oh notation is to
give an approximate, yet clear idea of the time (in terms of the number of operations) it takes
for an algorithm to solve a problem.

Formally, consider two functions f and g in the domain {1,2,3,4, . . .}. We say f (n) is
“order g(n)” or “big-Oh of g(n)” and write as

f (n) = O(g(n))

if there exists a positive constant C and a positive number k such that

|f (n)| ≤ C|g(n)|
whenever n > k.

The meaning of k is best understood for algorithms in the sense that we are only inter-
ested in input size that is at least of size k. Going back to our previous example, if we were
to consider the input size to be n = 3, then 2n is smaller than n3; this would have given us a
false sense of security that the algorithm with 2n operations is better than the algorithm with
n3 operations. In other words, we look at an algorithm from the growth point of view as n
increases.

What are f (n) and g(n) then? The function, f (n), represents the number of operations
of an algorithm for input size n. Typically, the function, g(n), is considered from a set of
well-known functions that have clear demarcations, such as n, log n (here we assume base 2),
n log n, n2. In Figure B.1, we plot a few such functions to illustrate their growth as n increases.
You may note that we have also plotted O(1)—this means that regardless of the input size n,
the number of operations remains constant.

With time complexity, it is also important to consider space complexity. Sometimes, an
algorithm has a good time complexity, but requires a large storage space for operations to
be computed. For example, an algorithm might have the time complexity O(n) but requires
O(n4) storage space—in this case, you have to determine if this storage is possible from an
implementation of view. Such time-space trade-off is an important issue in determining ap-
propriate lookup algorithms and classification algorithms as you will find when you read
Chapter 15 and Chapter 16.

704 B.5 Using CPLEX

F I G U R E B.1 Growth of some common functions.

B.4 Equivalence Classes
To understand equivalence classes, first consider a relation. A relation defines the notion of
a connection between two elements, but in a broader sense than a function. For example, an
element may be related to more than one elements. Consider a set X . Then, an element a in
X may be related to two elements b and c, also in X . We can then use the ordered pair (a,b)

and (a, c) to indicate that both belong to the same relation R. Using the set notation, we can
write (a,b) ∈ R, (a, c) ∈ R.

There are three properties we need to define in order to define an equivalence relation.
A relation R on a set X is reflexive if (a,a) ∈ R for every a ∈ X ; a relation R is symmetric if for
all a,b ∈ X , if (a,b) ∈ R, then (b,a) ∈ R; a relation R is transitive if for a,b, c ∈ X , if (a,b) ∈ R
and (b, c) ∈ R, then (a, c) ∈ R. Then, a relation R on a set X is called an equivalence relation if
it satisfies reflexive, symmetric, and transitive relations.

Now suppose that R is an equivalence relation on a set X . Then the set of all elements
that are related to an element a ∈ X is called an equivalence class of a. In other words, an
equivalence class helps grouping or partitioning “like minded” elements.

As an example, consider the set X = {1,2, . . . ,10}. We define the relation R to mean that
“3 divides x − y.” You can verify that R is an equivalence relation. We can see that the set
X can be partitioned to three equivalence classes consisting of elements that follow “3 di-
vides x − 1,” the elements that follow “3 divides x − 2,” and the elements that follow “3 di-
vides x − 3,” which then correspond to the subsets {1,4,7,10} , {2,5,8}, and {3,6,9}, respec-
tively.

B.5 Using CPLEX
We will illustrate use of CPLEX [158] for a simple load balancing problem over two paths.
First note that in CPLEX, a problem can be written almost similar to how an optimization
problem formulation is written. There are, however, two main caveats: (1) variables should
be all on the left-hand side, and (2) no “divide by” entry such as x1/10 is allowed. A nice
feature in CPLEX is that you can give a name to each constraint (dual multiplier). Thus,
a formulation in CPLEX looks like

Minimize
r

Subject to
demandflow: x1 + x2 = 11

Appendix B: Miscellaneous Topics 705

link1utilization: x1 - 10 r <= 0
link2utilization: x2 - 15 r <= 0

End

Note that in CPLEX, it is not necessary to indicate that the variables are non-negative;
this is implicitly assumed. If the above model is saved in a file, say, load-balance.lp, then in
CPLEX, it can be invoked at the command prompt CPLEX> as follows:

CPLEX> read load-balance.lp
CPLEX> optimize
CPLEX> display solution variables -
Variable Name Solution Value
r 0.440000
x1 4.400000
x2 6.600000

The dual solutions can be displayed as follows:

CPLEX> display solution dual -
Constraint Name Dual Price
demandflow 0.040000
link1utilization -0.040000
link2utilization -0.040000

When some of the variables are integer-valued they must be explicitly noted. Further-
more, besides declaring the appropriate variables as integer, it is necessary to provide an
upper bound. Without the bound, CPLEX assumes the integer variables to be binary vari-
ables. For instance, in the above problem, suppose we want the routing flow variable, x1 and
x2, to be integer as well; then, they must be declared under Integer. Thus, by changing the
variables to Integer and providing bounds, we can write the above problem as:

Minimize
r

Subject to
demandflow: x1 + x2 = 11
link1utilization: x1 - 10 r <= 0
link2utilization: x2 - 15 r <= 0

Bounds
0 <= x1 <= 11
0 <= x2 <= 11

Integer
x1 x2

End

Note that Bounds for variables are set to 11, knowing that the total demand volume is 11.
Also note that CPLEX requires Bounds to be listed before Integer. The solution this time will
be:

CPLEX> display solution variables -
Variable Name Solution Value
r 0.466667
x1 4.000000
x2 7.000000

706 B.6 Exponential Weighted Moving Average

Finally, a nifty feature in CPLEX is that you can create a file with other comments/do-
cumentation before the declaration minimize and after the declaration End, which CPLEX
ignores. Thus, to run the above model for continuous capacity variables, you can move up
End and list it before Bounds declaration, without completely deleting Bounds and Integer
declaration from the file. You might want to test and see what happens (and why) if you do
not include the entire Bounds part, but do include Integer part.

While in this book, we have used CPLEX to illustrate how to solve linear programming
or mixed integer linear programming problems, there are many other commercial and public-
domain solvers available.

B.6 Exponential Weighted Moving Average
Consider the following data collected at time t = 1,2,3,4,5:

t = 1 2 3 4 5
Mmeasured = 5 10 7 8 11

We will assign 0.75 weight to the old value and 0.25 weight to the new value to compute a
new weighted or smoothed value. For the initial step, we will use the value as given, that is, 5
in this case at time t = 1. Thus, the smoothed value at time t = 2 is 0.75 × 5 + 0.25 × 10 = 6.25.
Now, to compute the value at t = 3, the smoothed value from t = 2, i.e., 6.25 is weighted with
the new value; thus, we calculate the smoothed value at time t = 3 as 0.75 × 6.25 + 0.25 × 7 =
6.43 (rounded to two decimal places), and so on. Below, we show the results for different
values of the weight, α (all values to two decimal places), both in tabular and graphical forms:

Event Original α =
t Measurements 0.25 0.50 0.75 0.875

1.00 5.00 5.00 5.00 5.00 5.00
2.00 10.00 8.75 7.50 6.25 5.63
3.00 7.00 7.44 7.25 6.44 5.80
4.00 8.00 7.86 7.63 6.83 6.07
5.00 11.00 10.21 9.31 7.87 6.69

F I G U R E B.2 Exponential weighted
moving average.

From the computed values, we note that the numbers are being evened out to around 6 or 7
when α = 0.75, taking away fluctuations such as 10 and 11 from the measured values. When
the weight is reduced to, say 0.25, we see that the smoothed value is pulled toward the mea-
sured value; this is natural since higher weight is given to the new measurement. That is,
the weight can make a big difference. However, whether to give a low or high weight to the
newly measured value depends on a specific problem and is not generalizable. In any case, if
we denote the weight by α (with 0 ≤ α ≤ 1), then the smoothed computation at time t + 1 can

Appendix B: Miscellaneous Topics 707

be written based on knowing the smoothed value at t and the newly measured value at time
t + 1 as follows:

Msmoothed(t + 1) = αMsmoothed(t) + (1 − α)Mmeasured(t + 1).

The above approach is called the exponential weighted moving average (EWMA) method. It
may be noted that if α = 0, then this is nothing but considering the new measurement without
giving any weight at all to the old measurement, and if α = 1, then no weight is given to the
new measurement. Most implementation of the EWMA method that require fast computation
uses a weight value α that is a negative power of 2 so that it can be computed efficiently using
the shift operation in registers.

B.7 Nonlinear Regression Fit

There are many forms of non-linear regression fits. We will focus here on a simple and effec-
tive model that fits a relation of the following form:

y = a + cxm.

Note that it has “shift” factor a, which can be thought of as the degree of freedom; thus, we
can focus on determining c and m. If we subtract a from both sides, we get y − a = cxm. If we
use ỹ = y − a, we then have ỹ = cxm. Taking log of both sides (note: any base will do here), we
get

log ỹ = log c + m log x.

Now, if we have a set of measurements (xi,yi), i = 1,2, . . . ,n, we can write

log ỹi = log c + m log xi, i = 1,2, . . .n
log xi log ỹi = log c log xi + m(log xi)

2, i = 1,2, . . .n,

where the second set is multiplied throughout by log xi. Now, summing each set of relations
over i = 1,2, . . .n, we have the following two equations:

n∑

i=1

log ỹi = n × log c + m
n∑

i=1

log xi,

n∑

i=1

(
log xi × log ỹi

)= log c
n∑

i=1

log xi + m
n∑

i=1

(
log xi

)2
.

708 B.8 Computing Probability of Path Blocking or Loss

This is a simultaneous equation of two unknowns, m and log c. Thus, they can solved by
substitution to arrive at the following solution:

log c =

(
n∑

i=1

log ỹi

)

×
(

n∑

i=1

(log xi)
2

)

−
(

n∑

i=1

log xi

)(
n∑

i=1

(log xi × log ỹi)

)

n×
n∑

i=1

(log xi)
2 −

(
n∑

i=1

log xi

)2 ,

m =
n

n∑

i=1

(log xi × log ỹi) −
(

n∑

i=1

log xi

)

×
(

n∑

i=1

log ỹi

)

n×
n∑

i=1

(log xi)
2 −

(
n∑

i=1

log xi

)2 .

While the above formula looks complicated, it is fairly simple to do using a tool such as Excel.
Thus, m and c can be obtained for the regression fit. Recall that the shift parameter, a, is the
degree of freedom and it must be chosen properly and carefully so that the fit is acceptable.
Often, a regression fit is done to determine the future trend. Thus, a set of different values of a
can be considered so that an upper and a lower bound on trend projection, i.e., an acceptable
band, can be obtained.

The projection on IP prefix growth, shown in Eq. (9.3.1), is based the above approach.
The measurement data used was for the first day of each quarter from the beginning of year
2002 to April 1, 2006, obtained from [303]; a quick side note is that the first quarter data for
2002 was for January 3, 2002, due to non-availability of data on January 1, 2002. For each data
input day, the measurements during the day was averaged first, which then became the input
to the regression model. Although we show an equation with specific values in Eq. (9.3.1), a
band can also be determined to indicate over- and under-estimate by appropriately choosing
the degree of of freedom, a.

B.8 Computing Probability of Path Blocking or Loss
Consider that probability of blocking on link 1 is b1 and that on link 2 is b2. Now consider
the path that is composed of the links, 1 and 2. Assuming that the link blocking probability is
independent, the probability of blocking for the path is given by

P[2] = 1 − (1 − b1)(1 − b2).

This result can be generalized to any number of links. Suppose that a path has L links
and probability of blocking on link 	 is given by b	, 	 = 1,2, . . . ,L. Then the path blocking
probability, b, is given by

P[L] = 1 −
L∏

	=1

(1 − b) (B.8.1)

where
L∏

	=1
(1 − b) denotes the product (1 − b1)(1 − b2) · · · (1 − bL).

Appendix B: Miscellaneous Topics 709

When b	 � 1, the path blocking probability can be approximated with a simpler result.
Consider again the path with two links. On expanding, we get

P[2] = 1 − (1 − b1 − b2 + b1b2) = b1 + b2 − b1b2.

If b1 and b2 are very small, then the product b1b2 is negligible compared to either b1 or b2
and can be ignored. For example, if b1 = b2 = 0.01, then b1b2 = 0.0001. That is, we can write

P[2] ≈ b1 + b2.

Generalizing for a path with L links, we have

P[L] ≈ b1 + b2 + · · · + bL =
L∑

	=1

b	. (B.8.2)

This result is also useful if we replace the probability of blocking on a link by packet loss
probability of a link buffer for data networks. That is the packet loss probability of a path is
determined by knowing the packet loss probably of each link that is a constituent of this path;
the additive property shown above holds since packet loss probability of a link is usually very
small.

B.9 Four Factors in Packet Delay
There are four factors that cause delay for a packet starting from nodal processing to travers-
ing a link. They are: (1) nodal processing delay, τproc, (2) transmission delay, τtrans, (3) propa-
gation delay, τprop, and (4) queueing delay, τqueueing. Thus, we can write the overall link delay,
τdelay, as

τdelay = τproc + τtrans + τprop + τqueueing.

The nodal processing delay is due to packet checking at a node (e.g., a router) for bit error
and determining which output link to use—usually, this factor needs to be the least dominant
of all the four factors.

Transmission delay refers to the time to send bits into a link. If link speed is c bits per
second, and the packet length is κ bits, then the transmission delay is

τtrans = κ × 1000
c

millisec.

For example, a 40 byte packet (i.e., 320 bits) on a 56 Kbps links would have transmission delay
of about 5.7 millisec (= 320 × 1000/56000). The same packet size on a OC-3 link (=155 Mbps)
would have a transmission delay of 0.002 millisec. In other words, the transmission delay is
fairly significant on a low-speed link.

Propagation delay refers to the time it takes to send a bit from one end of the link to the
other end, i.e., it depends on the length of the link and the propagation speed of the medium.
If length of the link is specified as D kilometers (Km), and the propagation speed as s meters
per second (m/sec), then propagation delay is

τprop = D × 1000 × 1000
s

millisec.

710 B.10 Exponential Distribution and Poisson Process

For example, the propagation speed of coaxial cable and fiber cables is about 2 × 108 m/sec.
Thus, the propagation delay on a 300 Km long link at this propagation speed is 1.5 millisec.
If the distance is only 10 Km, then the propagation speed reduces to 0.05 millisec. Thus, on a
long-distance link, the propagation delay can be a fairly signification factor.

Queueing delay depends on the stochastic arrival property of packets and the packet ser-
vice rate of links. For simplicity, we assume here that it is an M/M/1 system, i.e., the packet
arrival to a link follows Poisson process with rate λ and the packet service rate (μ) is expo-
nential distributed (refer to Appendix B.12.2). If the link speed is c bits/sec, and the average
packet size is κ (in bits), then the service rate is μ = c/κ packets/sec. Then, the M/M/1 aver-
age queueing delay is given by

τqueueing = 1
c/κ − λ

sec = 1000
c/κ − λ

millisec.

It is easy to see that the queueing delay is the most dominant factor when the arrival rate, λ,
approaches the service rate, c/κ .

B.10 Exponential Distribution and Poisson Process
EXPONENTIAL DISTRIBUTION

The probability density function (PDF) and the cumulative distribution function (CDF) of the
exponential distribution with rate parameter λ are given by

f (t) = λe−λt, t ≥ 0 (PDF)

F(t) = 1 − e−λt, t ≥ 0 (CDF),
(B.10.1)

respectively. The mean and the variance of the exponential distribution are given by E(X) =
1/λ,V(X) = 1/λ2. The PDF and CDF are plotted for λ = 1,5,10 (Figure B.3).

POISSON PROCESS

A Poisson process is a stochastic process. It is easy to understand a Poisson process through
its relation to the exponential distribution. For a Poisson process with rate λ, the inter-arrival
time between two events are independent and exponentially distributed with parameter 1/λ.

F I G U R E B.3 PDF and CDF of the exponential distribution.

Appendix B: Miscellaneous Topics 711

Thus, if we consider event i − 1 occurring at time τi−1 and the next event i occurring at time
τi, we can look at the difference in the event time si = τi − τi−1. Then, we can say that the
inter-arrival time, si, between i − 1-th event and the i-th event is probabilistically related to
the exponential distribution and can be written as:

Pr{si ≤ t} = 1 − e−λt.

Note that the right-hand side is the CDF of the exponential distribution. An important prop-
erty of a Poisson process is that the sum of two independent Poisson processes is a Poisson
process with rate being the sum of the two.

GENERATING EXPONENTIAL RANDOM VARIABLE

Generating exponential distribution involves a trick known as the inverse-transform tech-
nique [399]. Note that for the exponential distribution, the CDF is monotonically increasing
and takes a value between 0 and 1, i.e., 0 ≤ F(t) ≤ 1. Thus, if we consider from the point of
view of the y-axis of the CDF function, we need to generate F(t) uniformly between 0 and 1,
to get back t, rather a random t. Let us write u for this uniform value, then u = F(t), and thus,
we can write u = 1 − e−λt. Rearranging, we get e−λt = 1 − u. Taking log (base e) of both sides,
we get −λt = ln(1 − u). This implies

t = −1
λ

ln(1 − u).

Thus, for a given rate λ, we can obtain a specific value t if we can generate a uniformly
distributed number, u. You may note that we can make another minor change here by using
u instead of 1 − u, since if u is from a uniform distribution, so is 1 − u. Thus, we can safely
replace u in place of 1 − u, i.e.,

t = −1
λ

ln(u).

Most programming environments provide a function called rand, which generates uniform
random number between 0 and 1; in fact, each invocation gives a different random value.
Thus, rand can be used in place of u for generating the exponentially distributed random
number t. This is discussed next for Poisson process.

ON GENERATING POISSON ARRIVAL PROCESS

Recall that the Poisson Process with rate λ has the property that the inter-arrival time is expo-
nentially distributed with mean 1/λ. Then, we can generate τi for event i = 1,2,3, . . . (assume
t0 = 0) for a Poisson process in the following manner:

1. Generate u ∼ rand

2. Set τi = τi−1 − 1
λ

ln u.

This process is continued until you have generated the desired number of events, n, or τn

reaches a desired value. In the following table, we show the result of the above approach for
λ = 10 packets per sec, and the generated packet arrival events until around 1 sec. As you can
see, due to the randomness of arrivals, you might not get exactly 10 arrivals in 1 sec.

712 B.11 Self-Similarity and Heavy-Tailed Distributions

TA B L E B.1 Generated events for Poisson arrival (λ = 10 pps).

Event Inter-arrival time Event time, τi

i (millisec) (millisec)
1 71.85 71.85
2 263.72 335.57
3 553.33 888.90
4 18.28 907.18
5 26.75 933.93
6 51.12 985.05
7 202.66 1187.71

B.11 Self-Similarity and Heavy-Tailed Distributions
SELF-SIMILARITY AND LONG-RANGE DEPENDENCY

A stochastic process A(t) is self-similar if A(αt) = αHA(t) where H is the self-similarity para-
meter, known as the Hurst parameter.

Long-range dependency means that events that are distant in time are correlated, i.e.,
a process measured at time t and again at time t + �t are correlated; this correlation is mea-
sured through an auto-correlation function. Note that long-range dependency does not nec-
essarily imply self-similarity. A certain type of self-similarity, known as second-order self-
similarity that preserves auto-correlation independent of time aggregation, (but not all) typi-
cally implies long-range dependency.

HEAVY-TAILED DISTRIBUTIONS

There is a connection between self-similarity and heavy-tailed distributions, especially for
Internet traffic. The presence of heavy tail in the distribution for transfer sizes is believed to
be the cause of self-similarity in Internet traffic. Additionally, the Hurst parameter is observed
to be H > 1/2, which reflects that burstiness at different time scales.

A distribution is considered to have a heavy-tail if

Pr[X > t] ≈ t−α, as t → ∞,0 < α < 2.

A heavy-tailed distribution is also known as a power-law distribution.
There are many heavy-tailed distributions. A well-known heavy-tailed distribution is the

general Pareto distribution; its probability density function is given by

f (t) = αkα/tα+1, α,k > 0, t ≥ k.

and the cumulative probability distribution is given by

F(t) = P[X ≤ t] = 1 − (k/t)α ,

where α is known as the shape parameter and k is known as the scale parameter. The PDF
and CDF of the general Pareto distribution are plotted in Figure B.4, keeping scale parameter

Appendix B: Miscellaneous Topics 713

F I G U R E B.4 PDF and CDF of Pareto distribution (including exponential with λ = 10).

k fixed at 1. For visual comparison, the exponential distribution with λ = 10 is also plotted
alongside.

Visually, from the figure on the left side, we can see that the exponential distribution has
a much shorter tail than heavy-tailed distributions.

The mean of the general Pareto distribution is given by E(X) = kα/(α − 1) if α > 1, and
the variance by V(X) = k2α/[(α−1)2(α−2)] if α > 2. For heavy-tailed distributions, the mean
and the variance are essentially “infinite.” Note that for the general Pareto distribution, the
mean becomes infinite as α → 1.

There is an important behavior to understand about heavy-tailed distributions. Suppose
we consider a probability distribution describing the transmission time of a packet to have a
mean of 10 millisec. If the distribution were considered “light tailed,” then if after 10 millisec
the packet has not completed its transmission, the expected amount of time until it does com-
plete transmission will be less than 10 millisec. If the distribution describing the transmission
time were exponential, the expected remaining transmission time would equal 10 millisec. If
the distribution describing the transmission time were heavy tailed, the expected remaining
transmission time would be greater than 10 millisec. This can be explained by the fact that if
a packet does not complete its transmission in 10 millisec, then it is much more likely to be
one of the few that have an exceedingly long transmission time.

For additional material on self-similarity, long-range dependency, and heavy-tailed dis-
tributions, see [160], [404], [545], [551], [739], [740], [741].

B.12 Markov Chain and the Birth-and-Death Process
A Markov chain is a stochastic process in a countable state space (i.e., in discrete space,
S = {0,1,2, . . .}) with the special property that the probability of being at state j at a time
instant depends only on the state i it was at in the previous time instant, not on any time
instant before that; this is commonly known as the memoryless property. Time can be de-
scribed either in discrete time or continuous time; these then correspond to the discrete time
Markov chain, and the continuous time Markov chain, respectively. We will consider here the
continuous time Markov chain, for which the memoryless property can be stated in terms of
transition probability as follows:

pij(t) = Pr{x(t + u) = j | x(u) = i}, t > 0

714 B.12 Markov Chain and the Birth-and-Death Process

This is interpreted as follows: if we are at state i at time u, then for any small positive time
movement t since u, the transition probability for time t, pij(t), to be at state j depends only
on being at state i at time u, nothing before that. Now, if we consider all the possible states to
which transition is possible given that the system is at state i, we can write

∑

j∈S

pij(t) = 1, for each i. (B.12.1)

The initial system at start time, t = 0, is described by pii(0) = 1; otherwise, pij = 0, for j �= i.
If we now consider the steady-state system, i.e., to describe the system that is irrespective of
time, then it is more meaningful to consider the steady-state transition rate qij for going from
state i to j. It can be shown (by using limits) that Eq. (B.12.1) translates to the following in a
steady-state:

∑

j∈S

qij = 0, for each i. (B.12.2)

Now, the steady state probability of being at particular state j, to be denoted by pj (note: the
difference from pij(t)), is related to the transition rate qij by the following set of equations
[481]:

p0q00 + p1q10 + p2q20 + · · · = 0
p0q01 + p1q11 + p2q21 + · · · = 0
p0q02 + p1q12 + p2q22 + · · · = 0
. . .

(B.12.3)

This set is known as the set of balance equations. It may also be noted that the sum of the
steady-state probabilities, pj, must add to 1, i.e.,

p0 + p1 + p2 + · · · = 1. (B.12.4)

For many well-known systems, qij is known or can be derived; thus, by solving Eq. (B.12.3)
along with Eq. (B.12.4), we can determine the steady-state probability pj.

B.12.1 Birth-and-Death Process
The birth-and-death process is a specialized continuous-time Markov chain. This name has
stuck on since this model was first used for population birth and death modeling; in a net-
working system, a better name would be to call it the arrival-and-service process. In this
special Markov chain, qij is measurable only to its immediate one-step neighbors, i.e., going
from i to i + 1 or to i − 1; the transition rate is zero, otherwise. Typically, we write going from
i to i + 1 as λi (“birth” or arrival rate) and from i to i − 1 as μi (“death” or service rate). Thus,
the transition rate can be summarized as follows:

qi,i+1 = λi, i = 0,1,2, . . .

qi,i−1 = μi, i = 1,2, . . . (B.12.5)

qi,j = 0, for j �= i + 1, i − 1, i.

Appendix B: Miscellaneous Topics 715

Due to relation (B.12.2) and (B.12.5), we can see that for the birth-and-death process, we can
write:

qii = −(λi + μi), for i not in a boundary state.

Rewriting Eq. (B.12.3) with this knowledge, we have

−p0λ0 + p1μ1 = 0
p0λ0 − p1(λ1 + μ1) + p2μ2 = 0
p1λ1 − p1(λ2 + μ2) + p3μ3 = 0
. . .

(B.12.6)

The above balance equations for the birth-and-death process can be easily depicted pictorially
by considering each state i and observing the balance maintained by rates going into a state
and out of that state as shown below:

For example, consider state 1 to which from state 0 where steady-state probability is p0, rate
λ0 is going in; similarly, from state 2 where steady-state probability is p2, rate μ2 is going into
state 1; now, from state 1 where steady-state probability is p1, two rates λ1 and μ1 are going
out. Thus, p0λ0 + p2μ2 = p1(λ1 + μ1); this is the second equation in (B.12.6). Similarly, others
can be determined. The set of equations given by Eq. (B.12.6) can be analytically solved by
substitution and elimination to obtain:

p1 = λ0

μ1
p0, p2 = λ1

μ2
p1 = λ0λ1

μ1μ2
p0, . . .

Generalizing, we have

pj = λ0λ1 · · ·λj−1

μ1μ2 · · ·μj
p0, j ≥ 1. (B.12.7)

Now, plugging in pj to Eq. (B.12.4), we can obtain p0, and thus all pjs; this assumes that the
summation converges, i.e., the following condition is satisfied:

∑

j

λ0λ1 · · ·λj−1

μ1μ2 · · ·μj
< ∞.

B.12.2 M/M/1 System
An M/M/1 system is a special case of the birth-and-death process. In this system, transition
rate for birth (arrival) is the same regardless of the state; similarly, the transition rate for death
(service) is the same regardless of the state.

qi,i+1 = λi = λ, i = 0,1,2, . . .

qi,i−1 = μi = μ, i = 1,2, . . .

qi,j = 0, for j �= i + 1, i − 1, i.
(B.12.8)

716 B.12 Markov Chain and the Birth-and-Death Process

This system is stable if the arrival rate, λ, is smaller than the service rate, μ. Here, the steady-
state probability pj, given in Eq. (B.12.7), reduces to:

pj =
(

λ

μ

)j

p0, j = 1,2, . . .

Accounting for Eq. (B.12.4), we can write

pj =
(

1 − λ

μ

)(
λ

μ

)j

, j = 1,2, . . .

An advantage of knowing the steady-state probability is that the average number in a system
can be determined as follows:

N =
∞∑

j=0

jpj = λ

μ − λ
. (B.12.9)

(We have shown above the result of the summation, without showing the detailed deriva-
tion.) A well known result, known as Little’s law, says that the average number in a system
and the average delay is related as follows: N = λ × T . Thus, we can write the average delay
as:

T = 1
μ − λ

. (B.12.10)

Consider now a network link with bandwidth C and average packet size κ , the service rate
becomes μ = C/κ . If we denote utilization by ρ = λ/μ = λ × κ/C, then we can rewrite the
average delay in a network link as

T = 1
C/κ − λ

= κ

C(1 − ρ)
. (B.12.11)

B.12.3 Trunk Reservation Model
The trunk reservation model presented in Section 11.8.3 is also a specialized case of the birth-
and-death process. In this case, the total number of state is finite, which is the total number
of circuits on a link, denoted by c circuits; thus, S = {0,1, . . . , c}. If r is the trunk reservation
parameter, then the arrival rate up to state c − r is to allow both direct and alternate routed
arrival, i.e, λdirect + λalternate, and after the state c − r is reached, only direct routed calls are
allowed, i.e. the arrival rate is λdirect. Furthermore, in a circuit-switched environment, the ser-
vice rate, qi,i−1, is defined by the number circuits being currently occupied by calls assuming
the average call duration to be 1/μ, i.e., the per-circuit service rate to be μ. Thus, we can write

qi,i+1 = λdirect + λalternate, i = 0,1,2, . . . , c − r − 1
qi,i+1 = λdirect, i = c − r, . . . , c − 1
qi,i−1 = iμ, i = 1,2, . . . , c

(B.12.12)

Now consider the discussion in Section 11.8.3. In term of offered load, A and a described
there, this means that

A = (λdirect + λalternate)/μ, i = 0,1, . . . , c − r − 1
a = λdirect/μ, i = c − r, . . . , c − 1.

(B.12.13)

Appendix B: Miscellaneous Topics 717

Thus, the result shown in Eq. (11.8.22a) can be derived from Eq. (B.12.7) using Eq. (B.12.12)
and Eq. (B.12.13).

B.13 Average Network Delay
The results given by Eq. (B.12.9) is for the average number in a system. From a network link
point of view, this result is then the average number of packets in a link assuming Poisson
arrival and exponential service time. Now consider a network that consists of more than one
link in which traffic from one link may feed to another; in other words, traffic interaction
is possible. To obtain a simple network-wide result, an assumption is made that each link
behaves as an M/M/1 system regardless of traffic interaction—this assumption is known as
the Kleinrock independence assumption. Consider for link 	 = 1,2, . . . ,L in a network, the link
arrival rate is y	 and the link capacity c	; if we assume average packet size to be one, then the
service rate can be represented by c	. Thus, using Eq. (B.12.9), the average number of packets
on link 	 can be written as

N	 = y	

c	 − y	

. (B.13.1)

Summing over all links, we can obtain the average number of packets in the network as

N =
L∑

	=1

N	 =
L∑

	=1

y	

c	 − y	

. (B.13.2)

Now, if there are k = 1,2, . . . ,K demand pairs in the network, and the arrival rate for demand
k is hk, then the total arrival rate is given by H =∑K

k=1 hk. Then using Little’s law again, we
can write the average network delay as

T = N
H

= 1
H

L∑

	=1

y	

c	 − y	

. (B.13.3)

B.14 Packet Format: IPv4, IPv6, TCP, and UDP
In this section, we summarize packet formats for IPv4, IPv6, TCP and UDP. Recall that the
pictorial views of packet formats with field locations were shown earlier in Figure 1.3 for
IPv4 and IPv5, and in Figure 1.4 for TCP and UDP. We present below a brief explanation of
the various fields associated with each of these packet types. Details are shown in Tables B.2,
B.3, B.4, and B.5 for IPv4, IPv6, TCP, and UDP, respectively.

718 B.14 Packet Format: IPv4, IPv6, TCP, and UDP

TA B L E B.2 Explanation of IPv4 header fields.

IPv4 Header Field Explanation
Version Specifies IP version number, set to 4
Header Length Length of the header (useful when options are included in

header)
DiffServ/Type-of-Service Six-bit Differentiated Service Code Point (two bits that follow

are used for Explicit Congestion Notification) or 8-bit Type of
Service Field

Total Length Length of the IP packet in bytes
Identification A unique identifier generated by the originator of the IP packet
Flags The first bit is unused; if the second bit is set to 1, the packet is

not to be fragmented; when a packet is fragmented, the third
bit is set to 1 if a fragmented packet has more fragments to
follow arising from the original IP packet

Fragment Offset This field specifies the offset from the start of the header to the
start of the fragment, counted in increments of eight bytes

Time to Live (TTL) The life-time of packet as indicated by the originating host; the
default value is set to 64, and a router that the packet visits
decrements this value by 1, and discards if the value has be-
come zero

Protocol Type Indicates the protocol above IP for which this packet is for; this
field indicates protocols such as TCP, UDP, ICMP, OSPF, IGRP

Header Checksum Checksum computed on the header; see [89], [444]
Source Address / Destina-
tion Address

32-bit IPv4 addresses for source and destination

Options Variable length optional field for extending IP header
Padding bits added to follow Options field so that Options together

with Padding is a multiple of 32 bits

TA B L E B.3 Explanation of IPv6 header fields.

IPv6 Header Field Explanation
Version Specifies IP version number, set to 6
Traffic Class Traffic class identifies Differentiated Services code points
Flow Label An identifier to label packets from a source to a destination that

require same treatment for the benefit of router processing
Payload Length Length of the IPv6 packet, not counting header
Next Header This field is used for indicating the protocol type field (as in

IPv4), and also Options field
Hop Limit This is the TTL field; This new name is given to indicate that it

is counted in hops.
Source Address / Destina-
tion Address

128-bit IPv6 addresses for source and destination

Appendix B: Miscellaneous Topics 719

TA B L E B.4 Explanation of TCP header fields.

TCP Header Field Explanation
Source Port / Destination
Port

16-bit port address for applications

Sequence Number The first byte identification counter of the current TCP segment
Acknowledgment Num-
ber

Informs the sequence number expected to receive to indicate
bytes count received so far

Header Length Length of header in multiples of 4 bytes
Reserved Not used
ECN For explicit congestion notification
Control Bits Used for connection control functions; the well-known bits or

Flags are SYN (synchronize for start of a TCP connection),
ACK (for packet acknowledged), FIN (to end a TCP session),
RST (to reset a TCP connection), PSH (to push data to upper
layer immediately on arrival), URG (Urgent pointer indicator)

Advertised Window Specifies the window size (in bytes) on how much outstanding
data (in bytes) the sender is willing to receive from the receiver

Checksum Checksum computed over header and payload
Urgent Pointer Used with URG flag
Options Optional field to extend the default header size; used for sev-

eral features such as TCP window scaling, selective acknowl-
edgment

Padding bits added to follow Options field so that Options together
with Padding is a multiple of 32 bits
Note: TCP does not have a segment length field; the length of
the payload data in TCP is derived from IP total length field,
IP header length field, and TCP header length field

TA B L E B.5 Explanation of UDP header fields.

UDP Header Field Explanation

Source Port / Destination
Port

16-bit port address for applications

Length UDP Packet Length in bytes
Checksum Checksum computed over the whole segment; optionally, this

can be ignored

Solutions to Selected
Exercises
� Exercise 1.2: The IP prefix is: 10.20.0.0/14.

� Exercise 1.6(a): Time-to-live field and header checksum.

� Exercise 2.5(a): The shortest path is 1-4-3-5.

� Exercise 2.5(b): The shortest path is 1-2-4-3-5.

� Exercise 2.6: The widest path is 2-4-6 with bandwidth 10.

� Exercise 3.2: Count-to-infinity and looping.

� Exercise 3.6(a): It will take 10 × 4 = 40 sec.

� Exercise 4.2(b): We name the flow variables based on clockwise or counter-clockwise direc-
tions. Thus, for demand between 1 and 3, there are two paths 1-2-3 and 1-4-3, resulting in
paths variables x123 and x143; we can similarly name the flow variables for the other de-
mand pairs. The linear programming formulation for the load balancing problem as an input
to CPLEX is shown below:

Minimize r
subject to

dem13: x123 + x143 = 25
dem24: x234 + x214 = 30
dem23: x23 + x2143 = 10
link12: x123 + x214 + x2143 - 50 r <= 0
link23: x123 + x234 + x23 - 50 r <= 0
link34: x143 + x234 + x2143 - 50 r <= 0
link41: x143 + x214 + x2143 - 50 r <= 0

End

Solutions to Selected Exercises 721

� Exercise 5.1(a): The three timers are: Autoupdate Timer (default value: 30 sec), Expiration
Timer (default value: 180 sec), and Garbage Collection Timer (60 sec longer than Expiration
Timer).

� Exercise 6.5: This is a trick question. Try again.

� Exercise 6.10: Yes.

� Exercise 7.2: The linear programming formulation for the load balancing objective can be
written as:

Minimize r subject to
dem12: x142 + x1342 + x1432 + x132 = 15
dem13: x13 + x143 + x1423 = 20
dem23: x23 + x243 + x2413 = 10
link13: - x1342 - x132 - x13 - x2413 + 30 r >= 0
link14: - x142 - x1432 - x143 - x1423 - x2413 + 5 r >= 0
link23: - x1432 - x132 - x1423 - x23 + 15 r >= 0
link24: - x142 - x1342 - x1423 - x243 - x2413 + 10 r >= 0
link34: - x1342 - x1432 - x143 - x243 + 10 r >= 0

End

On solving the above problem, we can obtain the dual solutions, which can possibly be
used for link weights. Check if link weights so determined will work here.

� Exercise 8.2: By carrying the AS numbers visited in the path vector.

� Exercise 9.4: It is not necessary. However, to avoid the address spoofing problem, uRPF can
be helpful.

� Exercise 10.4: Crankback is helpful because at the time of call setup, the call control can
be cranked back to trying another path if the path first tried does not have any resources
available. However, crankback is not beneficial if the network is overloaded since there might
not be any alternate paths available—in this case, crankback causes unnecessary attempts
without providing any benefit.

� Exercise 11.2: For the duration of a telephone call, bandwidth is required to be dedicated for
the call; in other words, during this period, no other calls can use this bandwidth. A smaller
duration means that another newly arriving call has the opportunity to use the released band-
width for its call; otherwise, the call would be dropped.

� Exercise 12.1(c): The common fields are: Flag, BIB/BSN, FIB/FSN, S/LI, and FCS.

� Exercise 12.2: Two STPs are associated with an SSP for redundancy. Thus, if one fails, the
other is still accessible to the SSP.

� Exercise 13.2: SS7 point code addressing is intended for the nodes in the network, not for
end devices. The subscriber’s telephone number addressing is completely decoupled from
SS7 addressing.

722 Solutions to Selected Exercises

� Exercise 14.1(d): The key elements of a router are: network interface, forwarding engine,
queue manager, traffic manager, backplane, and route control processor.

� Exercise 15.1(a): A key difference is that the classful addressing scheme implicitly assumes
that the netmask to be on specific bit boundaries while CIDR requires the network mask to
explicitly announced.

� Exercise 15.2: 25 nanosec.

� Exercise 15.4: The memory accesses required would be 2 and 3, respectively.

� Exercise 16.1(d): It consumes more memory because of duplication.

� Exercise 16.4: The best matching rule is R8; It would require 9 memory accesses.

� Exercise 17.3: The short answer is: having multiple paths cached compensates for inaccuracy
in the information received since the last link state update.

� Exercise 18.2: The FAST-REROUTE object is used to protect an LSP so that in the event of
a failure, traffic flow can use a backup LSP immediately, which is setup using DETOUR. The
bandwidth guarantee for the backup path is specified in the FAST-REROUTE object.

� Exercise 19.2(a): The only change required is that the decision variables associated with
customer C should be allowed to take fractional values. In CPLEX, this means that variables
x_C_sf_ny and x_C_sf_kc_ny should be allowed to take continuous values and are not de-
clared in the block for Integer. For completeness, the entire formulation is shown below:

Minimize x_A_sf_kc + x_A_sf_ny_kc + x_A_kc_ny + x_A_kc_sf_ny
+ x_A_sf_ny + x_A_sf_kc_ny + x_B_sf_ny + x_B_sf_kc_ny
+ x_C_sf_ny + x_C_sf_kc_ny

subject to
d45_A_sf_kc: x_A_sf_kc + x_A_sf_ny_kc = 1
d60_A_kc_ny: x_A_kc_ny + x_A_kc_sf_ny = 1
d20_A_sf_ny: x_A_sf_ny + x_A_sf_kc_ny = 1
d80_B_sf_ny: x_B_sf_ny + x_B_sf_kc_ny = 1
d100_C_sf_ny: x_C_sf_ny + x_C_sf_kc_ny = 1
l_sf_kc: 45 x_A_sf_kc + 60 x_A_kc_sf_ny + 20 x_A_sf_kc_ny

+ 80 x_B_sf_kc_ny + 100 x_C_sf_kc_ny <= 155
l_sf_ny: 45 x_A_sf_ny_kc + 60 x_A_kc_sf_ny + 20 x_A_sf_ny

+ 80 x_B_sf_ny + 100 x_C_sf_ny <= 155
l_kc_ny: 45 x_A_sf_ny_kc + 60 x_A_kc_ny + 20 x_A_sf_kc_ny

+ 80 x_B_sf_kc_ny + 100 x_C_sf_kc_ny <= 155
Integer
x_A_sf_kc x_A_sf_ny_kc x_A_kc_ny x_A_kc_sf_ny
x_A_sf_ny x_A_sf_kc_ny x_B_sf_ny x_B_sf_kc_ny
End

� Exercise 20.3: There are many differences. We list here two differences: (1) ISUP messaging
allows carrier identification code to be included while SIP does not have a similar field, (2) SIP
allows different media to be communicated through session description protocol, which is not
available with ISUP messaging.

Solutions to Selected Exercises 723

� Exercise 21.7: The width of the bus should be 80 bits and approximately 134 bits, respec-
tively.

� Exercise 21.10: 5 time slots.

� Exercise 22.3: The short answer is that it is better to avoid the network from reaching an
unbearable congestion level by indicating (either implicitly or explicitly) to the TCP sources
to reduce data transfer rate.

� Exercise 23.2: It allows to regulate traffic rate in an efficient manner in a packetized envi-
ronment.

� Exercise 24.1(a): Since the flow variables are integer-valued, the only change needed is to
declare xkpτ as integer-valued.

� Exercise 25.3: Use the approach presented in Section 25.1.2.

Bibliography
[1] M. Adams, J. Coplien, R. Gamoke, R. Hanmer, F. Keeve, and K. Nicodemus, “Fault-tolerant

telecommunication systems patterns,” in Pattern Languages of Program Design, J. M. Vlissides,
J. O. Coplien, and N. L. Kerth (Eds.), Addison-Wesley, pp. 549–562, 1996.

[2] S. Agarwal, C.-N. Chuah, S. Bhattacharyya, and C. Diot, “The impact of BGP dynamics on in-
tradomain traffic,” in Proc. ACM SIGMETRICS’2004, pp. 319–330, New York, NY, 2004.

[3] G. Agrawal and D. Medhi, “Lightpath topology configuration for wavelength-routed IP/MPLS
networks for time-dependent traffic,” in Proc. of IEEE GLOBECOM’2006, San Francisco, CA,
November–December 2006.

[4] H. Ahmadi and W. E. Denzel, “A survey of modern high performance switching techniques,”
IEEE Journal of Selected Areas in Communications, vol. 7, pp. 1091–1103, 1989.

[5] A. V. Aho and D. Lee, “Hierarchical networks and the LSA N squared problem in OSPF routing,”
in Proc. IEEE GLOBECOM’2000, pp. 397–404, San Francisco, CA, November–December 2000.

[6] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory, Algorithms, and Applications.
Prentice-Hall, 1993.

[7] J. M. Akinpelu, “The overload performance of engineered networks with nonhierarchical and
hierarchical routing,” AT&T Bell Labs Technical Journal, vol. 63, pp. 1261–1281, 1984.

[8] C. Alaettinoglu, C. Villamizar, E. Gerich, D. Kessens, D. Meyer, T. Bates, D. Karrenberg, and
M. Terpstra, “Routing policy specification language (RPSL),” IETF RFC 2622, June 1999. http://
www.rfc-editor.org/rfc/rfc2622.txt

[9] M. Ali and H. Nguyen, “A neural network implementation of an input access scheme in a high
speed packet switch,” in Proc. IEEE GLOBECOM’89, pp. 1192–1196, 1989.

[10] Alliance for Telecommunications Industry Solutions, “555 Technical service interconnection
arrangements (ICCF96-0411-014),” July 1998, ATIS Industry Numbering Committee. http://
www.cnac.ca/numres/555/555_96041114.doc

[11] M. Allman, V. Paxson, and W. Stevens, “TCP congestion control,” IETF RFC 2581, April 1999.
http://www.rfc-editor.org/rfc/rfc2581.txt

[12] W. Allsopp, “VoIP—vulnerability over Internet protocol?” March 2004. http://www.
continuitycentral.com/feature074.htm

[13] V. Alwayn, Optical Network Design and Implementation. Cisco Press, 2004.

Bibliography 725

[14] Amsterdam Internet Exchange, AMS-IX. http://www.ams-ix.net/

[15] T. Anderson, S. Owicki, J. Saxe, and C. Thacker, “High-speed switch scheduling for local area
networks,” ACM Trans. on Computer Systems, vol. 11, pp. 319–352, November 1993.

[16] L. Andersson, P. Doolan, N. Feldman, A. Fredette, and B. Thomas, “LDP specification,” IETF RFC
3036, January 2001. http://www.rfc-editor.org/rfc/rfc3036.txt

[17] L. Andersson and T. Madsen, “Provider provisioned virtual private network (VPN) terminology,”
IETF RFC 4026, March 2005. http://www.rfc-editor.org/rfc/rfc4026.txt

[18] L. Andersson and G. Swallow, “The multiprotocol label switching (MPLS) working group deci-
sion on MPLS signaling protocols,” IETF RFC 3468, February 2003. http://www.rfc-editor.org/
rfc/rfc3468.txt

[19] T. Anjali, C. M. Scoglio, J. C. de Oliveira, L. C. Chen, I. F. Akyildiz, J. A. Smith, G. Uhl, and
A. Sciuto, “A new path selection algorithm for MPLS networks based on available bandwidth es-
timation.” in Proc. International Workshop on Quality of Future Internet Services (QofIS’2002), Zurich,
Switzerland, Lecture Notes in Computer Science, Springer, vol. 2511, pp. 205–214, October 2002.

[20] AOL Transit Data Network Settlement-Free Interconnection Policy. http://www.atdn.net/
settlement_free_int.shtml

[21] G. Apostolopoulos, R. Guerin, and S. Kamat, “Implementation and performance measurements
of QoS routing extensions to OSPF,” in Proc. IEEE INFOCOM’99, pp. 680–688, New York, NY,
March 1999.

[22] G. Apostolopoulos, R. Guerin, S. Kamat, and S. K. Tripathi, “QoS routing: A performance per-
spective,” in Proc. ACM SIGCOMM’98, pp. 17–28, Vancouver, Canada, September 1998.

[23] G. Apostolopoulos, S. Kama, D. Williams, R. Guerin, A. Orda, and T. Przygienda, “QoS routing
mechanisms and OSPF extensions,” IETF RFC 2676, August 1999. http://www.rfc-editor.org/
rfc/rfc2676.txt

[24] G. Apostolopoulos and S. K. Tripathi, “On reducing the processing cost of on-demand QoS path
computation,” in Proc. ICNP’98, pp. 80–89, Austin, TX, October 1998.

[25] G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing router buffers,” in Proc. ACM SIG-
COMM’2004, Portland, OR, August–September 2004.

[26] G. Armitage, Quality of Service in IP Networks. Macmillan Technical Publishing, April 2000.

[27] G. R. Ash, Dynamic Routing in Telecommunication Networks. McGraw-Hill, 1997.

[28] G. R. Ash, “Performance evaluation of QoS-routing methods for IP-based multiservice networks,”
Computer Communication, vol. 26, pp. 817–833, 2003.

[29] G. R. Ash, Traffic Engineering and QoS Optimization of Integrated Voice & Data Networks. Morgan
Kaufmann Publishers, 2006.

[30] G. R. Ash, R. H. Cardwell, and R. P. Murray, “Design and optimization of networks with dynamic
routing,” Bell System Technical Journal, vol. 60, pp. 1787–1820, 1981.

[31] G. R. Ash, K. K. Chan, and J.-F. Labourdette, “Analysis and design of fully shared networks,” in
Proc. 14th International Teletraffic Congress (ITC14), pp. 1311–1320, Antibes, France, June 1994.

726 Bibliography

[32] G. R. Ash, F. Chang, and D. Medhi, “Robust traffic design for dynamic routing networks,” in Proc.
IEEE INFOCOM’91, pp. 508–514, Bal Harbour, Florida, April 1991.

[33] G. R. Ash and P. Chemouil, “20 years of dynamic routing in telephone networks: Looking back-
ward to the future,” IEEE Global Communications Newsletter, pp. 1–4, October 2004, note: appears
as insert in the October 2005 issue of IEEE Communications Magazine.

[34] G. R. Ash, J. S. Chen, A. E. Frey, and B. D. Huang, “Real time network routing in a dynamic class-
of-service network,” in Proc. 13th International Teletraffic Congress (ITC13), pp. 187–194, Copen-
hagen, Denmark, 1991.

[35] G. R. Ash, M. Girish, E. Gray, B. Jamoussi, and G. Wright, “Applicability statement for CR-LDP,”
IETF RFC 3213, January 2002. http://www.rfc-editor.org/rfc/rfc3213.txt

[36] G. R. Ash, A. H. Kafker, and K. R. Krishnan, “Servicing and real-time control of networks with
dynamic routing,” Bell System Technical Journal, vol. 60, pp. 1821–1845, 1981.

[37] G. R. Ash, Y. Lee, P. Ashwood-Smith, B. Jamoussi, D. Fedyk, D. Skalecki, and L. Li, “LSP modifi-
cation using CR-LDP,” IETF RFC 3214, January 2002. http://www.rfc-editor.org/rfc/rfc3214.txt

[38] S. Asthana, C. Delph, H. V. Jagadish, and P. Krzyzanowski, “Towards a gigabit IP router,” Journal
of High Speed Networks, vol. 1, no. 4, pp. 281–288, 1992.

[39] ATM Forum, “Private Network-Network Interface specification, version 1.1, af-pnni-0055.001,”
April 2002.

[40] AT&T Global IP Network Settlement-Free Peering Policy. http://www.att.com/peering/

[41] R. Y. Awdeh and H. T. Mouftah, “Survey of ATM switch architectures,” Computer Networks &
ISDN Systems, vol. 27, pp. 1567–1613, 1995.

[42] D. Awduche, “MPLS and traffic engineering in IP networks,” IEEE Communications Magazine,
vol. 37, no. 12, pp. 42–47, December 1999.

[43] D. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan, and G. Swallow, “RSVP-TE: Exten-
sions to RSVP for LSP tunnels,” IETF RFC 3209, December 2001. http://www.rfc-editor.
org/rfc/rfc3209.txt

[44] D. Awduche, A. Hannan, and X. Xiao, “Applicability statement for extensions to RSVP for LSP-
tunnels,” IETF RFC 3210, December 2001. http://www.rfc-editor.org/rfc/rfc3210.txt

[45] D. Awduche, J. Malcolm, J. Agogbua, M. O’Dell, and J. McManus, “Requirements for traffic engi-
neering over MPLS,” IETF RFC 2702, September 1999. http://www.rfc-editor.org/rfc/rfc2702.txt

[46] J. Aweya, “IP router architectures: An overview,” International Journal of Communication Systems,
vol. 14, no. 5, pp. 447–475, May 2001.

[47] F. Baboescu, S. Singh, and G. Varghese, “Packet classification for core routers: Is there an alterna-
tive to CAMs,” in Proc. IEEE INFOCOM’2003, pp. 53–63, April 2003.

[48] F. Baboescu and G. Varghese, “Scalable packet classification,” in Proc. ACM SIGCOMM’2001, pp.
199–210, San Diego, CA, August–September 2001.

Bibliography 727

[49] S. Bahk and M. El Zarki, “Dynamic multi-path routing and how it compares with other dynamic
routing algorithms for high speed wide area network,” in Proc. ACM SIGCOMM’1992, pp. 53–64,
Baltimore, MD, 1992.

[50] F. Baker, “Requirements for IP version 4 routers,” IETF RFC 1812, June 1995, http://www.rfc-
editor.org/rfc/rfc1812.txt.

[51] F. Baker, B. Lindell, and M. Talwar, “RSVP cryptographic authentication,” IETF RFC 2747, January
2000. http://www.rfc-editor.org/rfc/rfc2747.txt

[52] K. Bala, I. Cidon, and K. Sohraby, “Congestion control for high speed packet switched networks,”
in Proc. IEEE INFOCOM’90, pp. 520–526, 1990.

[53] D. Banerjee and B. Mukherjee, “A practical approach for routing and wavelength assignment
in large wavelength-routed optical networks,” IEEE Journal of Selected Areas in Communication,
vol. 14, no. 5, pp. 903–908, June 1996.

[54] D. Banerjee and B. Mukherjee, “Wavelength-routed optical networks: Linear formulation, re-
source budgeting tradeoffs, and a reconfiguration study,” IEEE/ACM Trans. on Networking, vol. 8,
no. 5, pp. 598–607, October 2000.

[55] S. Banerjee, J. Yoo, and C. Chen, “Design of wavelength-routed optical networks for packet
switched traffic,” Journal of Lightwave Technology, vol. 15, no. 9, pp. 1636–1646, September 1997.

[56] G. H. Barnes, R. M. Brown, M. Kato, D. J. Kuck, D. L. Slotnick, and R. A. Stokes, “The ILLIAC IV
computer,” IEEE Trans. on Computers, vol. 17, no. 8, pp. 746–757, August 1968.

[57] R. Barr and R. A. Patterson, “Grooming telecommunications networks,” Optical Networks Maga-
zine, vol. 2, no. 3, pp. 20–23, May/June 2001.

[58] C. Basso and P. Scotton, “Computing the widest shortest path in high-speed networks,” U.S.
Patent No. 6,370,119, April 9, 2002.

[59] T. Bates and R. Chandra, “BGP route reflection: An alternative to full mesh BGP,” IETF RFC 1966,
June 1996. http://www.rfc-editor.org/rfc/rfc1966.txt

[60] T. Bates, R. Chandra, and E. Chen, “BGP route reflection—an alternative to full mesh IBGP,” IETF
RFC 2796, April 2000, (Made obsolete by [62]). http://www.rfc-editor.org/rfc/rfc2796.txt

[61] T. Bates, R. Chandra, D. Katz, and Y. Rekhter, “Multiprotocol extensions for BGP-4,” IETF RFC
4760, January 2007. http://www.rfc-editor.org/rfc/rfc4760.txt

[62] T. Bates, E. Chen, and R. Chandra, “BGP route reflection: An alternative to full mesh internal BGP
(IBGP),” IETF RFC 4456, April 2006. http://www.rfc-editor.org/rfc/rfc4456.txt

[63] T. Bates, Y. Rekhter, R. Chandra, and D. Katz, “Multiprotocol extensions for BGP-4,” IETF RFC
2858, June 2000. http://www.rfc-editor.org/rfc/rfc2858.txt

[64] A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rexford, “In VINI Veritas: Realistic and con-
trolled network experimentation,” in Proc. ACM SIGCOMM’06, pp. 3–14, Pisa, Italy, September
2006.

[65] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger, “The R*-tree: An efficient and robust access
method for points and rectangles,” in Proc. ACM SIGMOD’90, pp. 322–331, 1990.

728 Bibliography

[66] F. Bedard, J. Regnier, and F. Caron, “Dynamically controlled routing using virtual nodes,” U.S.
Patent No. 5,526,414, June 11, 1996.

[67] M. Belaidouni and W. Ben-Ameur, “Super-additive approach to solve the minimum cost single
path routing problem: Preliminary results,” in Proc. International Network Optimization Conference
(INOC’2003), pp. 67–71, 2003.

[68] R. Bellman, “On a routing problem,” Quarterly of Applied Mathematics, vol. 16, no. 1, pp. 87–90,
1958.

[69] W. Ben-Ameur, E. Gourdin, B. Liau, and N. Michel, “Optimizing administrative weights for effi-
cient single path routing,” in Proc. Networks’2000, Toronto, Canada, 2000.

[70] V. E. Benes̆, “Rearrangeable three stage connecting networks,” Bell System Technical Journal, vol. 41,
pp. 1481–1492, 1962.

[71] V. E. Benes̆, Mathematical Theory of Connecting Networks and Telephone Traffic. Academic Press, 1965.

[72] J. Bennett and H. Zhang, “Hierarchical packet fair queueing algorithm,” in Proc. ACM SIG-
COMM’96, pp. 143–156, Palo Alto, CA, August 1996.

[73] L. Berger (Ed.), “Generalized multi-protocol label switching (GMPLS): Signaling functional de-
scription,” IETF RFC 3471, January 2003. http://www.rfc-editor.org/rfc/rfc3471.txt

[74] L. Berger (Ed.), “Generalized multi-protocol label switching (GMPLS) signaling resource reser-
vation protocol-traffic engineering (RSVP-TE) extensions,” IETF RFC 3473, January 2003.
http://www.rfc-editor.org/rfc/rfc3473.txt

[75] L. Berger (Ed.), “GMPLS—communication of alarm information,” IETF RFC 4783, December 2006.
http://www.rfc-editor.org/rfc/rfc4783.txt

[76] Y. Bernet, A. Smith, and B. Davie, “Specification of the Null Service type,” IETF RFC 2997, No-
vember 2000. http://www.rfc-editor.org/rfc/rfc2997.txt

[77] G. Bernstein, B. Rajagopalan, and D. Saha, Optical Network Control: Architecture, Protocols, and Stan-
dards. Addison-Wesley, 2003.

[78] D. Bertsekas, “Dynamic models of shortest path routing algorithms for communication networks
with multiple destinations,” in Proc. 1979 IEEE Conference on Decision and Control, pp. 127–133, Ft.
Lauderdale, FL, 1979.

[79] D. Bertsekas, “Dynamic behavior of shortest path routing algorithms for communication net-
works,” IEEE Trans. on Automatic Control, vol. AC-27, pp. 60–74, 1982.

[80] D. Bertsekas, Network Optimization: Continuous and Discrete Models. Athena Scientific, 1998.

[81] D. Bertsekas and R. Gallager, Data Networks, 2nd Edition. Prentice-Hall, 1992.

[82] R. Bhandari, Survivable Networks—Algorithms for Diverse Routing. Kluwer Academic Publishers,
1999.

[83] M. Bhatia, V. Manral, and Y. Ohara, “IS-IS and OSPF difference discussions,” Internet draft, 2005.

[84] R. Bhatia, M. Kodialam, and T. Lakshman, “Fast network re-optimization schemes for MPLS and
optical networks,” Computer Networks, vol. 50, pp. 317–331, 2006.

Bibliography 729

[85] P. K. Bhatnagar, Engineering Networks for Synchronization, CCS 7, and ISDN: Standards, Protocols,
Planning and Testing. Wiley–IEEE Press, 1997.

[86] A. Bogomolny, “Emergence of chaos (there is order in chaos).” http://www.cut-the-
knot.org/blue/chaos.shtml

[87] E. Bouillet, J.-F. Labourdette, R. Ramamurthy, and S. Chaudhuri, “Lightpath re-optimization in
mesh optical networks,” IEEE/ACM Trans. on Networking, vol. 13, pp. 437–447, 2005.

[88] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, S. Floyd, V. Jacobson, G. Min-
shall, C. Partridge, L. Peterson, K. Ramakrishnan, S. Shenker, J. Wroclawski, and L. Zhang, “Rec-
ommendations on queue management and congestion avoidance in the Internet,” IETF RFC 2309,
April 1998. http://www.rfc-editor.org/rfc/rfc2309.txt

[89] R. Braden, D. Borman, and C. Partridge, “Computing the Internet checksum,” IETF RFC 1071,
September 1988, http://www.rfc-editor.org/rfc/rfc1071.txt.

[90] R. Braden Ed., L. Zhang, S. Berson, S. Herzog, and S. Jamin, “Resource ReSerVation Protocol
(RSVP)—Version 1 functional specification,” IETF RFC 2205, September 1997. http://www.rfc-
editor.org/rfc/rfc2205.txt

[91] D. Braess, “Uber ein paradoxon der verkehrsplanung,” Unternehmensforschung, vol. 12, pp. 258–
268, 1968.

[92] W. S. Brainerd and L. H. Landweber, Theory of computation. John Wiley & Sons, 1974.

[93] H.-W. Braun, “Models of policy based routing,” IETF RFC 1104, June 1989. http://www.rfc-
editor.org/rfc/rfc1104.txt

[94] H.-W. Braun, “The NSFNET routing architecture,” IETF RFC 1093, February 1989. http://www.
rfc-editor.org/rfc/rfc1093.txt

[95] A. Bremler-Barr, Y. Afek, and S. Schwarz, “Improved BGP convergence via ghost flushing,” in
Proc. IEEE INFOCOM’2003, San Francisco, CA, 2003.

[96] J. Brewer and J. Sekel, “PCI express technology,” Dell Technology White Paper, February 2004.
http://www.dell.com/content/topics/global.aspx/vectors/en/2004_pciexpress?c=us&l=en
&s=corp

[97] B. Briscoe, “Flow rate fairness: Dismantling a religion,” Internet Draft, October 2006. http://
www.cs.ucl.ac.uk/staff/bbriscoe/pubs.html#rateFairDis

[98] F. Brodersen and A. Klimetschek, “Anatomy of a high performance IP router.” http://
citeseer.ist.psu.edu/brodersen03anatomy.html

[99] N. Brownlee and M. Murray, “Streams, flows and torrents,” in Passive and Active Measurement
Workshop, April 2001.

[100] D. Brugman, “Call-routing analysis using SS7 data,” Bell Labs Technical Journal, vol. 9, no. 4, pp.
133–138, 2005.

[101] M. M. Buddhikot, S. Suri, and M. Waldvogel, “Space decomposition techniques for fast layer-4
switching,” in Proc. Conference on Protocols for High Speed Networks, pp. 25–41, August 1999.

[102] c7.com resource site. http://www.c7.com/

730 Bibliography

[103] CableLabs, “PacketcableTM.” http://www.packetcable.com/

[104] P. Calhoun, J. Loughney, E. Guttman, G. Zorn, and J. Arkko, “Diameter based protocol,” IETF
RFC 3588, September 2003. http://www.rfc-editor.org/rfc/rfc3588.txt

[105] R. Callon, “Use of OSI IS-IS for routing in TCP/IP and dual environments,” IETF RFC 1195, De-
cember 1990. http://www.rfc-editor.org/rfc/rfc1195.txt

[106] G. Camarillo and M. A. García-Martín, The 3G IP Multimedia Subsystem (IMS), 2nd Edition. John
Wiley & Sons, 2006.

[107] G. Camarillo, A. B. Roach, J. Peterson, and L. Ong, “Integrated Services Digital Network (ISDN)
User Part (ISUP) to Session Initiation Protocol (SIP) Mapping,” IETF RFC 3398, December 2002.
http://www.rfc-editor.org/rfc/rfc3398.txt

[108] Canadian ENUM Working Group. http://www.enumorg.ca/

[109] Canadian Steering Committee on Numbering. http://www.cnac.ca/cscn/cscn.htm

[110] J. Carlson, P. Langner, E. Hernandez-Valencia, and J. Manchester, “PPP over simple data link
(SDL) using SONET/SDH with ATM-like framing,” IETF RFC 2823, May 2000. http://www.rfc-
editor.org/rfc/rfc2823.txt

[111] M. Carson, J.-H. Hahm, S. Shah, and M. Zink, “MPLS-enabled routing algorithms,” Decem-
ber 1999, DARPA Next-Generation Internet Principal Investigators’ Meeting. http://www-
x.antd.nist.gov/nistswitch/darpa.slides.ps.gz

[112] V. G. Cerf and R. E. Kahn, “A protocol for packet network interconnection,” IEEE Trans. on Com-
munications, vol. COM-22, pp. 627–641, May 1974.

[113] R. Chandra and J. Scudder, “Capabilities advertisement with BGP-4,” IETF RFC 2842, May 2000,
(Made obsolete by [114]). http://www.rfc-editor.org/rfc/rfc2842.txt

[114] R. Chandra and J. Scudder, “Capabilities advertisement with BGP-4,” IETF RFC 3392, November
2002. http://www.rfc-editor.org/rfc/rfc3392.txt

[115] R. Chandra, P. Traina, and T. Li, “BGP communities attribute,” IETF RFC 1997, August 1996.
http://www.rfc-editor.org/rfc/rfc1997.txt

[116] J. Chandrashekar, Z. Duan, Z.-L. Zhang, and J. Krasky, “Limiting path exploration in path vector
protocols,” in Proc. IEEE INFOCOM’2005, pp. 2337–2348, Miami, FL, March 2005.

[117] T. J. Chaney, J. A. Fingerhut, M. Flucke, and J. S. Turner, “Design of a gigabit ATM switch,” in
Proc. IEEE INFOCOM’97, pp. 2–11, 1997.

[118] C.-S. Chang, Performance Guarantees in Communication Networks. Springer, 2000.

[119] F. Chang, “Routing-sequence optimization for circuit-switched networks,” AT&T Technical Jour-
nal, vol. 68, no. 3, pp. 57–63, May/June 1989.

[120] F. Chang, W. Feng, and K. Li, “Approximate caches for packet classification,” in Proc. IEEE INFO-
COM’2004, pp. 2196–2207, Hong Kong, March 2004.

[121] H. J. Chao, “Next generation routers,” Proceedings of the IEEE, vol. 90, pp. 1518–1558, 2002.

Bibliography 731

[122] H. J. Chao, K. L. Deng, and Z. Jing, “A petabit photonic packet switch (P3S),” in Proc. IEEE INFO-
COM’2003, pp. 775–785, San Francisco, CA, April 2003.

[123] H. J. Chao, K. L. Deng, and Z. Jing, “Petastar: A petabit photonic packet switch,” IEEE Journal of
Selected Areas in Communications, vol. 21, no. 7, pp. 1096–1112, September 2003.

[124] H. J. Chao, C. H. Lam, and E. Oki, Broadband Packet Switching Technologies. John Wiley & Sons,
2001.

[125] H. J. Chao, S. Y. Liew, and Z. Jing, “A dual-level matching algorithm for 3-stage Clos-network
packet switches,” in Proc. Hot Interconnects 11, Stanford, CA, August 2003.

[126] B. Chazelle, “How to search in history,” Information and Control, vol. 64, pp. 77–99, 1985.

[127] B. Chazelle and J. Friedman, “Point location hyperplanes and unidirectional ray shooting,” Com-
putational Geometry: Theory and Applications, vol. 4, pp. 53–62, 1994.

[128] P. Chemouil, J. Filipiak, and P. Gauthier, “Analysis and control of traffic routing in circuit-
switched networks,” Computer Networks and ISDN System, vol. 11, pp. 203–217, 1986.

[129] E. Chen, “Route refresh capability for BGP-4,” IETF RFC 2918, September 2000. http://www.rfc-
editor.org/rfc/rfc2918.txt

[130] S. Chen and K. Nahrstedt, “An overview of quality-of-service routing for the next generation
high-speed networks: Problems and solutions,” IEEE Network, vol. 12, no. 6, pp. 64–79, Novem-
ber/December 1998.

[131] G. Cheung and S. McCanne, “Optimal routing table design for IP address lookups under memory
constraints,” in Proc. IEEE INFOCOM’99, pp. 1437–1444, 1999.

[132] H. C. Chi and Y. Tamir, “Starvation prevention for arbiters of crossbars with multi-queue input
buffers,” in Proc. COMPCON’94, pp. 292–297, February 1994.

[133] T. Chiueh and P. Pradhan, “High performance IP routing table lookup using CPU caching,” in
Proc. IEEE INFOCOM’99, pp. 1421–1428, April 1999.

[134] F. M. Chiussi, J. G. Kneuer, and V. P. Kumar, “Low-cost scalable switching solutions for broadband
networking: The ATLANTA architecture and chipset,” IEEE Communications Magazine, vol. 35,
no. 12, pp. 44–53, 1997.

[135] B.-Y. Choi, S. Moon, R. Cruz, Z.-L. Zhang, and C. Diot, “Practical delay monitoring for ISPs,”
in Proc. ACM Conference on Emerging Network Experiment and Technology (CoNEXT’05), pp. 83–92,
Toulouse, France, October 2005.

[136] J. S. Choi, N. Golmie, F. Lapeyrere, F. Mouveaux, and D. Su, “A functional classification of routing
and wavelength assignment schemes in DWDM networks: Static case,” in Proc. of VII International
Conference on Optical Communication and Networks, New Jersey, 2000.

[137] X. Chu and B. Li, “Dynamic routing and wavelength assignment in the presence of wavelength
conversion for all-optical networks,” IEEE/ACM Trans. on Networking, vol. 13, no. 3, pp. 704–715,
June 2005.

[138] Cisco Systems, “Policing and shaping overview,” in Tech Notes, Cisco Systems, 2000.

732 Bibliography

[139] Cisco Systems, “Comparing traffic policing and traffic shaping for bandwidth limiting,” in
Document ID: 19645, Tech Notes, Cisco Systems, 2005. http://www.cisco.com/warp/public/
105/policevsshape.html

[140] Cisco Systems, “Cisco CRS-1 carrier routing 8-slot line card chassis system description,”
in Cisco Systems White Paper, April 2006. http://www.cisco.com/en/US/products/ps5763/
products_pre-installation_guide_chapter09186a008036e0d8.html

[141] K. Claffy, “Internet traffic characterization,” Ph.D. dissertation, University of California, San
Diego, CA, 1994.

[142] D. D. Clark, “What is “architecture”?” v 4.0 of 28 November 2005. http://find.isi.edu/
presentation_files/Dave_Clark-What_is_architecture_4.pdf

[143] D. D. Clark, “The design philosophy of the DARPA Internet protocols,” ACM SIGCOMM Com-
puter Communication Review, vol. 18, no. 4, pp. 106–114, August 1988.

[144] D. D. Clark, “Policy routing in Internet protocols,” IETF RFC 1102, May 1989. http://www.rfc-
editor.org/rfc/rfc1102.txt

[145] K. L. Clarkson, “New applications of random sampling in computational geometry,” Discrete and
Computational Geometry, vol. 2, pp. 195–222, 1987.

[146] C. Clos, “A study of non-blocking switching networks,” Bell System Technical Journal, vol. 32, no. 2,
pp. 406–424, March 1953.

[147] R. Cole and J. Hopcroft, “On edge coloring bipartite graphs,” SIAM Journal on Computing, vol. 11,
pp. 540–546, 1982.

[148] R. Cole, K. Ost, and S. Schirra, “Edge-coloring bipartite multigraphs in O(E log D) time,” Com-
binatorica, vol. 21, no. 1, pp. 5–12, 2001.

[149] R. Coltun, “The OSPF opaque LSA option,” IETF RFC 2370, July 1998. http://www.rfc-
editor.org/rfc/rfc2370.txt

[150] R. Coltun, D. Ferguson, and J. Moy, “OSPF for IPv6,” IETF RFC 2740, December 1999.
http://www.rfc-editor.org/rfc/rfc2740.txt

[151] D. Comer, “Ubiquitous B-tree,” ACM Computing Surveys, vol. 11, no. 2, pp. 121–137, 1979.

[152] D. Comer, Internetworking With TCP/IP, Volume 1: Principles Protocols, and Architecture, 4th Edition.
Prentice-Hall, 2000.

[153] M. Conte, Dynamic Routing in Broadband Networks. Kluwer Academic Publishers, 2003.

[154] J. P. Coudreuse and M. Servel, “PRELUDE: An asynchronous time-division switched network,”
in Proc. IEEE International Conference on Communications (ICC’87), pp. 769–772, June 1987.

[155] Counry Code 1 ENUM LLC, “Provider ENUM trial.” http://www.enumllc.com/

[156] J. Cowie and A. Ogielski, “Global routing instabilities during Code Red 2 and Nimda worm prop-
agation,” in Presentation at NANOG23 Meeting, Oakland, CA, October 2001. http://www.renesys.
com/tech/presentations/pdf/Renesys-NANOG23.pdf

Bibliography 733

[157] J. Cowie, A. T. Ogielski, B. J. Premore, and Y. Yuan, “Internet warms and global routing insta-
bilities,” in Proc. SPIE 2002 Conference, July 2002. http://www.renesys.com/tech/presentations/
pdf/renesys-spie2002.pdf

[158] CPLEX, CPLEX User’s Manual. ILOG, 1999.

[159] P. Crescenzi, L. Dardini, and R. Grossi, “IP address lookup made fast and simple,” in Proc. 7th
Annual European Symposium on Algorithms, pp. 65–76, 1999.

[160] M. E. Crovella and A. Bestavros, “Self-similarity in world wide web traffic: Evidence and possible
causes,” IEEE/ACM Trans. on Networking, vol. 5, pp. 835–846, 1997.

[161] W. J. Dally, “Scalable switching fabrics for Internet routers,” in Avici Systems White Paper, 2002.
http://www.avici.com/technology/whitepapers/TSRfabric-WhitePaper.pdf

[162] W. J. Dally, M.-J. E. Lee, F.-T. An, J. Poulton, and S. Tell, “High performance electrical signaling,”
in Proc. 5th International Conference on Massively Parallel Processing using Optical Interconnects, pp.
11–16, 1998.

[163] W. J. Dally and B. Towles, Principles and Practices of Interconnection Networks. Morgan Kaufmann
Publishers, 2004.

[164] G. B. Dantzig and M. N. Thapa, Linear Programming 2: Theory and Extensions. Springer, 1997.

[165] G. B. Dantzig, “On the shortest route through a network,” Management Science, vol. 6, pp. 187–190,
1960.

[166] P. Datta and A. K. Somani, “Diverse routing for shared risk resource groups (SRRG) failures in
WDM optical networks,” in Proc. BROADNETS’2004, pp. 120–129, 2004.

[167] B. Davie and Y. Rekhter, MPLS Technology and Applications. Morgan Kaufmann Publishers, 2000.

[168] E. Davies and A. Doria, “Analysis of IDR requirements and history,” IETF Internet-draft, 2006.

[169] R. De La Briandais, “File searching using variable length keys,” in Proc. Western Joint Computer
Conference, pp. 295–298. Spartan Books, 1959.

[170] R. de Rooij, “Bgphints.” http://bgphints.ruud.org/

[171] D. Decasper, Z. Dittia, G. Parulkar, and B. Plattner, “Router plugins: A software architecture for
next-generation routers,” in Proc. ACM SIGCOMM’98, pp. 229–240, Vancouver, Canada, Septem-
ber 1998.

[172] J. J. Deegan, G. W. R. Luderer, and A. K. Vaidya, “Fast packet techniques for future switches,” AT
& T Technical Journal, pp. 36–50, March 1989.

[173] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink, “Small forwarding tables for fast routing
lookups,” in Proc. ACM SIGCOMM’97, pp. 3–14, Cannes, France, 1997.

[174] P. Demeester, M. Gryseels, A. Autenrieth, C. Brianza, L. Castagna, G. Signorelli, R. Clemente,
M. Ravaera, A. Jajszczyk, D. Janukowicz, K. V. Doorselaere, and Y. Harada, “Resilience in multi-
layer networks,” IEEE Communications Magazine, vol. 37, no. 8, pp. 70–75, 1999.

734 Bibliography

[175] M. Devault, J. Y. Cochennec, and M. Servel, “The PRELUDE ATD experiment: Assessments and
future prospects,” IEEE Journal on Selected Areas on Communications, vol. 6, no. 9, pp. 1528–1537,
December 1988.

[176] D. DeWitt and J. Gray, “Parallel database systems: the future of high performance database sys-
tems,” Communications of the ACM, vol. 35, no. 6, pp. 85–98, 1992.

[177] A. Dhamdhere, H. Jiang, and C. Dovrolis, “Buffer sizing for congested Internet links,” in Proc.
IEEE INFOCOM’2005, pp. 1072–1083, Miami, FL, March 2005.

[178] E. W. Dijkstra, “A note on two problems in connection with graphs,” Numerische Mathematik,
vol. 1, pp. 269–271, 1959.

[179] E. W. Dijkstra and C. S. Scholten, “Termination detection for diffusing computations,” Information
Processing Letters, vol. 11, pp. 1–4, 1980.

[180] W. Doeringer, G. Karjoth, and M. Nassehi, “Routing on longest matching prefixes,” IEEE Trans.
on Networking, vol. 4, pp. 86–97, February 1996.

[181] Q. Dong, S. Bannerjee, J. Wang, D. Agarwal, and A. Shukla, “Packet classifiers in ternary cams
can be smaller,” in Proc. ACM SIGMETRICS’2006, St. Malo, France, June 2006.

[182] A. Doria, E. Davies, and F. Kastenholz, “Requirements for inter-domain routing,” IETF Internet-
draft, 2006.

[183] B. Douskalis, IP Telephony: The Integration of Robust VoIP Services. Prentice-Hall, 2000.

[184] R. D. Doverspike, “Algorithms for multiplex bundling in a telecommunications network,” Oper-
ations Research, vol. 39, no. 6, pp. 925–944, 1991.

[185] R. D. Doverspike, “A multi-layered model for survivability in intra-LATA transport networks,”
in Proc. IEEE GLOBECOMŠ91, pp. 2025–2031, 1991.

[186] R. D. Doverspike, S. J. Phillips, and J. R. Westbrook, “Transport network architectures in an IP
world,” in Proc. IEEE INFOCOM’2000, pp. 305–314, Tel Aviv, Israel, 2000.

[187] R. D. Doverspike and J. Yates, “Challenges for MPLS in optical network restoration,” IEEE Com-
munications Magazine, vol. 39, no. 2, pp. 89–96, February 2001.

[188] J. Doyle and J. Carroll, Routing TCP/IP, Volume II. Cisco Press, 2001.

[189] J. Doyle and J. Carroll, Routing TCP/IP, Volume I, 2nd Edition. Cisco Press, 2006.

[190] L. Dryburgh and J. Hewett, Signaling System No. 7 (SS7/C7): Protocol, Architecture, and Services.
Cisco Press, 2005.

[191] J. Duato, S. Yalamanchili, and L. Ni, Interconnection Networks: An Engineering Approach. Morgan
Kaufmann Publishers, 2002.

[192] A. M. Duguid, “Structural properties of switching networks,” Brown University, Tech. Rep.
BTL-7, 1959.

[193] D. Dunn, W. Grover, and M. MacGregor, “Comparison of k-shortest paths and maximum flow
routing for network facility restoration,” IEEE Journal on Selected Areas in Communications, vol. 12,
pp. 88–99, 1994.

Bibliography 735

[194] B. Dunsmore and T. Skandier, Telecommunications Technologies Reference. Cisco Press, 2003.

[195] A. Dutta and J.-I. Lim, “A multiperiod capacity planning model for backbone computer commu-
nication networks,” Operations Research, vol. 40, pp. 689–705, 1992.

[196] R. Dutta and G. N. Rouskas, “A survey of virtual topology design algorithms for wavelength
routed optical networks,” Optical Networks Magazine, vol. 1, no. 1, pp. 73–89, January 2000.

[197] Z. Dziong, M. Pióro, and U. Körner, “State-dependent routing in circuit-switched networks:
A maximum reward approach,” in Proc. 12th International Teletraffic Congress(ITC12), Turin, Italy,
1988.

[198] W. Eatherton, G. Varghese, and Z. Dittia, “Tree bitmap: hardware/sofware IP lookups with in-
cremental updates,” ACM SIGCOMM Computer Communication Review, vol. 34, pp. 97–122, April
2004.

[199] N. Endo, T. Kozaki, T. Ohuchi, H. Kuwahara, and S. Gohara, “Shared buffer memory switch for
an ATM exchange,” IEEE Trans. on Communications, vol. 41, no. 1, pp. 237–245, January 1993.

[200] ENUM Forum. http://www.enum-forum.org/

[201] D. Eppstein, “Finding the k shortest paths,” in Proc. 35th IEEE Symposium on Foundations of Com-
puter Science, pp. 154–165, 1994.

[202] D. Eppstein, “Bibliography on k shortest paths and other “k best solutions” problems.”
http://www.ics.uci.edu/̃eppstein/bibs/kpath.bib

[203] M. Ericsson, M. G. C. Resende, and P. M. Pardalos, “A genetic algorithm for the weight setting
problem in OSPF routing,” Journal of Combinatorial Optimization, vol. 6, no. 3, pp. 229–333, 2002.

[204] A. K. Erlang, “The theory of probabilities and telephone conversations,” Nyt Tidsskrift for Matem-
atik B, vol. 20, 1909.

[205] A. K. Erlang, “Solution of some problems in the theory of probabilities of significance in automatic
telephone exchanges,” Elektrotkeknikeren, vol. 13, 1917.

[206] D. Estrin, “Policy requirements for inter administrative domain routing,” IETF RFC 1125, Novem-
ber 1989. http://www.rfc-editor.org/rfc/rfc1125.txt

[207] European Radiocommunications Office. http://www.ero.dk/

[208] P. Faltstrom, “E.164 number and DNS,” IETF RFC 2916, September 2000, (Made obsolete by
RFC4632 [209]). http://www.rfc-editor.org/rfc/rfc2916.txt

[209] P. Faltstrom and M. Mealling, “The E.164 to Uniform Resource Identifiers (URI) Dynamic
Delegation Discovery System (DDDS) Application (ENUM),” IETF RFC 3761, April 2004.
http://www.rfc-editor.org/rfc/rfc3761.txt

[210] A. Farago, A. Szentesi, and B. Szviatovszki, “Allocation of administrative weights in PNNI,” in
Proc. Networks’98, pp. 621–625, Sorrento, Italy, 1998.

[211] A. Farrel, The Internet and Its Protocols: A Comparative Approach. Morgan Kaufmann Publishers,
2004.

736 Bibliography

[212] A. Farrel and I. Bryskin, GMPLS: Architecture and Applications. Morgan Kaufmann Publishers,
2006.

[213] A. Farrel, J.-P. Vasseur, and G. R. Ash, “A path computation element (PCE)-based architecture,”
IETF RFC 4655, August 2006. http://www.rfc-editor.org/rfc/rfc4655.txt

[214] A. Farrel, J.-P. Vasseur, and A. Ayyangar, “A framework for inter-domain multiproto-
col label switching traffic engineering,” IETF RFC 4726, November 2006. http://www.rfc-
editor.org/rfc/rfc4726.txt

[215] A. Farrel (Ed.), D. Papadimitriou, J.-P. Vasseur, and A. Ayyangar, “Encoding of attributes for mul-
tiprotocol label switching (MPLS) label switched path (LSP) establishment using Resource Reser-
Vation Protocol-Traffic Engineering (RSVP-TE),” IETF RFC 4420, February 2006. http://www.rfc-
editor.org/rfc/rfc4420.txt

[216] N. Feamster, H. Balakrishnan, and J. Rexford, “Some foundational problems in interdomain rout-
ing,” in Proc. 3rd ACM SIGCOMM Workshop on Hot Topics in Networks (HotNets-III), San Diego,
CA, November 2004.

[217] N. Feamster, J. Borkenhagen, and J. Rexford, “Guidelines for interdomain traffic engineering,”
ACM Computer Communication Review, vol. 33, no. 5, pp. 19–30, 2003.

[218] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, and J. Rexford, “NetScope: Traffic engineering
in IP networks,” IEEE Network, vol. 14, no. 2, pp. 11–19, March/April 2000.

[219] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, J. Rexford, and F. True, “Deriving traffic de-
mands for operational IP networks: Methodology and experience,” IEEE/ACM Trans. on Network-
ing, vol. 9, pp. 265–279, 2001, (an earlier version appeared in Proc. ACM SIGCOMM’2000).

[220] A. Feldmann and S. Muthukrishnan, “Tradeoffs for packet classification,” in Proc. IEEE INFO-
COM’2000, vol. 3, pp. 1193–1202, March 2000.

[221] A. Feldmann, O. Maennel, Z. M. Mao, A. Berger, and B. Maggs, “Locating Internet routing insta-
bilities,” in Proc. ACM SIGCOMM’04, pp. 205–218, Portland, OR, 2004.

[222] W. Feng, D. D. Kandlur, D. Saha, and K. G. Shin, “Stochastic fair blue: A queue management
algorithm for enforcing fairness,” in Proc. IEEE INFOCOM’2001, pp. 1520–1529, Anchorage, AK,
2001.

[223] J. Filipiak, Modeling and Control of Dynamic Flows in Communication Networks. Springer-Verlag,
1988.

[224] S. Floyd, “Connections with multiple congested gateways in packet-switched networks, Part 1:
One-way traffic,” ACM SIGCOMM Computer Communication Review, vol. 21, no. 5, pp. 30–47, 1991.

[225] S. Floyd and K. Fall, “Router mechanisms to support end-to-end congestion control,” February
1997, Networking Research Group, LBL Labs.

[226] S. Floyd and K. Fall, “Promoting the use of end-to-end congestion control in the internet,”
IEEE/ACM Trans. on Networking, vol. 7, pp. 458–472, 1999.

[227] S. Floyd and V. Jacobson, “Random early detection gateways for congestion avoidance,”
IEEE/ACM Trans. on Networking, vol. 1, pp. 397–413, August 1993.

Bibliography 737

[228] S. Floyd and V. Jacobson, “The synchronization of periodic routing messages,” IEEE/ACM Trans.
on Networking, vol. 2, pp. 122–136, 1994, (an earlier version appeared in ACM SIGCOMM’93).

[229] S. Floyd and E. Kohler, “Profile for datagram congestion control protocol (DCCP) conges-
tion control ID 2: TCP-like congestion control,” IETF RFC 4341, March 2006. http://www.rfc-
editor.org/rfc/rfc4341.txt

[230] S. Floyd, E. Kohler, and J. Padhye, “Profile for datagram congestion control protocol (DCCP)
congestion control ID 3: TCP-friendly rate control (TFRC),” IETF RFC 4342, March 2006.
http://www.rfc-editor.org/rfc/rfc4342.txt

[231] L. R. Ford, “Network flow theory,” The Rand Corporation, Santa Monica, Tech. Rep. Paper P-923,
1956.

[232] L. R. Ford and D. R. Fulkerson, “A suggested computation for maximal multicommodity network
flows,” Management Science, vol. 5, pp. 97–101, 1958.

[233] B. Fortz and M. Thorup, “Internet traffic engineering by optimizing OSPF weights,” in Proc. IEEE
INFOCOM’2000, pp. 519–528, Tel Aviv, Israel, March 2000.

[234] B. Fortz and M. Thorup, “Optimizing OSPF/IS-IS weights in a changing world,” IEEE Journal on
Selected Areas in Communications, vol. 20, pp. 756–767, May 2002.

[235] B. Fortz, J. Rexford, and M. Thorup, “Traffic engineering with traditional IP routing protocols,”
IEEE Communication Magazine, vol. 40, no. 10, pp. 118–124, October 2002.

[236] M. Foster, T. McGarry, and J. Yu, “Number portability in the Global Switched Telephone Network
(GSTN): An overview,” IETF RFC 3482, February 2003. http://www.rfc-editor.org/rfc/rfc3482.txt

[237] R. Fourer, “2003 software survey: Linear programming,” ORMS Today, vol. 30, no. 6, pp. 34–43,
December 2003.

[238] E. Fredkin, “Trie memory,” Communications of the ACM, vol. 3, pp. 490–499, September 1960.

[239] V. Fuller, T. Li, J. Yu, and K.Varadhan, “Classless inter-domain routing (CIDR): An ad-
dress assignment and aggregation strategy,” IETF RFC 1519, September 1993, http://www.rfc-
editor.org/rfc/rfc1519.txt.

[240] V. Fuller, T. Li, J. Yu, and K. Varadhan, “Supernetting: An address assignment and aggregation
strategy,” IETF RFC 1338, June 1992. http://www.rfc-editor.org/rfc/rfc1338.txt

[241] A. Fumagalli and L. Valcarenghi, “IP restoration vs. WDM protection: Is there an optimal choice?”
IEEE Network, vol. 14, no. 6, pp. 34–41, November/December 2000.

[242] P. Gajowniczek, M. Pióro, A. Szentesi, J. Harmatos, and A. Jüttner, “Solving an OSPF routing
problem with simulated allocation,” in Proc. 1st Polish-German Teletraffic Symposium, pp. 177–184,
Dresden, Germany, 2000.

[243] L. Gao and J. Rexford, “Stable Internet routing without global coordination,” IEEE/ACM Trans. on
Networking, vol. 9, no. 6, pp. 681–692, 2001.

[244] J. J. Garcia-Luna-Aceves, “A distributed, loop-free, shortest-path routing algorithm,” in Proc. IEEE
INFOCOM’1988, pp. 1125–1137, 1988.

738 Bibliography

[245] J. J. Garcia-Luna-Aceves, “Loop-free routing using diffusing computation,” IEEE Trans. on Net-
working, vol. 1, pp. 130–141, 1993.

[246] A. Gencata and B. Mukherjee, “Virtual-topology adaptaion for WDM mesh networks under dy-
namic traffic,” IEEE/ACM Trans. on Networking, vol. 11, no. 2, pp. 236–247, April 2003.

[247] T. George, B. Bidulock, R. Dantu, H. Schwarzbauer, and K. Morneault, “Signaling System 7 (SS7)
Message Transfer Part 2 (MTP2)—User Peer-to-Peer Adaptation Layer (M2PA),” IETF RFC 4165,
September 2005. http://www.rfc-editor.org/rfc/rfc4165.txt

[248] D. Ghosh, V. Sarangan, and R. Acharya, “Quality of service routing in IP networks,” IEEE Trans.
on Multimedia, vol. 3, pp. 200–208, 2001.

[249] R. J. Gibbens, P. Hunt, and F. P. Kelly, “Bistability in communication networks,” in Disorder in
Physical Systems: a Volume in Honour of John M. Hammersley. G. Grimmett and D. Welsh (Eds.),
Oxford University Press, pp. 113–127, 1990.

[250] R. J. Gibbens and F. P. Kelly, “Dynamic routing in fully connected networks,” IMA Journal of
Mathematical Control and Information, vol. 7, 1990.

[251] R. J. Gibbens, F. P. Kelly, and P. B. Key, “Dynamic Alternate Routing—modeling and behaviour,”
in Proc. 12th International Teletraffic Congress (ITC12), pp. 3.4A3.1–3.4A3.7, Turin, Italy, 1988.

[252] V. Gill, J. Heasley, and D. Meyer, “The generalized TTL security mechanism (GTSM),” IETF RFC
3682, February 2004. http://www.rfc-editor.org/rfc/rfc3682.txt

[253] A. Girard, Routing and Dimensioning in Circuit-Switched Networks. Addison-Wesley, 1990.

[254] A. Girard and B. Sansò, “Multicommodity flow models, failure propagation and reliable network
design,” IEEE/ACM Trans. on Networking, vol. 6, pp. 82–93, 1998.

[255] B. Gleeson, A. Lin, J. Heinanen, G. Armitage, and A. Malis, “A framework for IP based virtual
private networks,” IETF RFC 2764, February 2000. http://www.rfc-editor.org/rfc/rfc2764.txt

[256] J. Goldsmith and T. Wu, Who Controls the Internet?: Illusions of a Borderless World. Oxford University
Press, 2006.

[257] S. J. Golestani, “A self-clocked fair queueing scheme for broadband applications,” in Proc. IEEE
INFOCOM’94, pp. 636–646, Toronto, Canada, June 1994.

[258] Google. http://www.google.com/

[259] S. Gorinsky, A. Kantawala, and J. Turner, “Link buffer sizing: A new look at the old problem,” in
Proc. IEEE Symposium on Computers and Communications (ISCC 2005), pp. 507–514, June 2005.

[260] J. Gottlieb, A. Greenberg, J. Rexford, and J. Wang, “Automated provisioning of BGP customers,”
IEEE Network, vol. 17, no. 6, pp. 44–55, November/December 2003.

[261] E. Gourdin, “Optimizing Internet networks,” ORMS Today, vol. 28, no. 2, pp. 48–49, April 2001.

[262] L. Gouveia, P. Amaro, A. F. de Sousa, and R. Valadas, “MPLS over WDM network design with
packet level QoS constraints based on ILP models,” in Proc. IEEE INFOCOM’2003, pp. 576–586,
San Francisco, CA, 2003.

[263] E. Gray, MPLS: Implementing the Technology. Addison-Wesley, 2001.

Bibliography 739

[264] T. Griffin and G. Huston, “BGP wedgies,” IETF RFC 4264, November 2005. http://www.rfc-
editor.org/rfc/rfc4264.txt

[265] T. G. Griffin, F. B. Shepherd, and G. Wilfong, “The stable paths problem and interdomain routing,”
IEEE/ACM Trans. on Networking, vol. 10, pp. 231–243, 2002.

[266] B. Groskinsky, D. Medhi, and D. Tipper, “An investigation of adaptive capacity control schemes in
a dynamic traffic environment,” IEICE Tran. on Communications, vol. E84-B, pp. 263–274, February
2001.

[267] W. D. Grover, Mesh-based Survivable Networks: Options and Strategies for Optical, MPLS, SONET and
ATM Networking. Prentice-Hall, 2004.

[268] M. Gryseels, K. Struyve, M. Pickavet, and P. Demeester, “Survivability design in multi-layer trans-
port networks,” in Proc. 6th ICTS, 1998.

[269] R. Guerin and A. Orda, “QoS-based routing in networks with inaccurate information: Theory and
algorithms,” IEEE/ACM Trans. on Networking, vol. 7, pp. 350–364, 1999.

[270] R. Guerin, A. Orda, and D. Williams, “QoS routing mechanisms and OSPF extensions,” in Proc.
2nd IEEE Global Internet Mini-Conference, pp. 1903–1908, Phoenix, AZ, November 1997.

[271] J. Guichard, F. Le Faucheur, and J.-P. Vasseur, Definitive MPLS Network Designs. Cisco Press, 2005.

[272] L. Guo and I. Matta, “The war between mice and elephants,” in Proc. 9th IEEE International Con-
ference on Network Protocols (ICNP’2001), pp. 180–188, Riverside, CA, November 2001.

[273] P. Gupta, “Algorithms for routing lookups and packet classification,” Ph.D. dissertation, Stanford
University, Palo Alto, CA, 2000.

[274] P. Gupta, S. Lin, and N. McKeown, “Routing lookups in hardware at memory access speeds,” in
Proc. IEEE INFOCOM’98, pp. 1240–1247, April 1998.

[275] P. Gupta and N. McKeown, “Packet classification on multiple fields,” in Proc. ACM SIGCOMM’99,
pp. 147–160, Cambridge, MA, 1999.

[276] P. Gupta and N. McKeown, “Packet classification using hierarchical intelligent cuttings,” in Proc.
Hot Interconnects’99, 1999.

[277] P. Gupta and N. McKeown, “Algorithms for packet classification,” IEEE Network, vol. 15, no. 2,
pp. 24–32, March/April 2001.

[278] A. Guttman, “R-trees: A dynamic index structure for spatial searching,” in Proc. ACM SIG-
MOD’84, pp. 47–57, 1984.

[279] D. Haenschke, D. A. Kettler, and E. Oberer, “Network management and congestion in the U.S.
telecommunications network,” IEEE Trans. on Communications, vol. COM-29, pp. 376–385, 1981.

[280] J. Hagstrom, “Braess’s paradox—web-site.” http://tigger.uic.edu/̃hagstrom/Research/Braess/
index.html

[281] T. Hain, “An IPv6 provider-independent global unicast address format,” August 2006, Internet
Draft. http://tools.ietf.org/wg/ipv6/draft-hain-ipv6-pi-addr-10.txt

[282] S. Halabi (with D. McPherson), Internet Routing Architectures, 2nd Edition. Cisco Press, 2000.

740 Bibliography

[283] R. Hanmer and M. Wu, “Traffic congestion patterns,” in Proc. 6th Annual Conference on Pattern
Languages of Programs (PLoP99), Urbana, IL, August 1999.

[284] E. Hashem, “Analysis of random drop for gateway congestion control,” Laboratory for Com-
puter Science, Massachusetts Institute of Technology, Cambridge, MA, Tech. Rep. MIT-LCS-TR-
465, 1989.

[285] B. M. Hauzeur, “A model for naming, addressing, and routing,” ACM Trans. Office Information
Systems, vol. 4, pp. 293–311, 1986.

[286] J. Hawkinson and T. Bates, “Guidelines for creation, selection, and registration of an autonomous
system (AS),” IETF RFC 1930, March 1996. http://www.rfc-editor.org/rfc/rfc1930.txt

[287] J. F. Hayes, R. Breault, and M. K. Mehmet-Ali, “Performance analysis of a multicast switch,” IEEE
Trans. on Communications, vol. 39, no. 4, pp. 581–587, 1991.

[288] J. He, M. Bresler, M. Chiang, and J. Rexford, “Towards multi-layer traffic engineering: Optimiza-
tion of congestion control and routing,” to appear in IEEE Journal on Selected Areas in Communica-
tions.

[289] J. He, M. Chiang, and J. Rexford, “Can congestion control and traffic engineering be at odds?” in
Proc. IEEE GLOBECOM’2006, San Francisco, CA, November/December 2006.

[290] C. L. Hedrick, “Routing Information Protocol,” IETF RFC 1058, June 1988. http://www.rfc-
editor.org/rfc/rfc1058.txt

[291] J. Heinanen and R. Guerin, “A single rate three color marker,” IETF RFC 2697, September 1999,
http://www.rfc-editor.org/rfc/rfc2697.txt.

[292] J. Heinanen and R. Guerin, “A two rate three color marker,” IETF RFC 2698, September 1999,
http://www.rfc-editor.org/rfc/rfc2698.txt.

[293] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach, 4th Edition.
Morgan Kaufmann Publishers, 2006.

[294] M. Hidell, P. Sjodin, and O. Hagsand, “Router architectures,” May 2004.
http://www.imit.kth.se/̃mahidell/pubs/networking04_tutorial_final.pdf

[295] C. V. Hollot, Y. Liu, V. Misra, and D. Towsley, “Unresponsive flows and AQM performance,” in
Proc. IEEE INFOCOM’2003, San Francisco, CA, 2003.

[296] J. E. Hopcraft and R. M. Karp, “An n5/2 algorithm for maximum matching in bipartite graphs,”
SIAM Journal of Computing, vol. 2, pp. 225–231, 1973.

[297] P. Hosein, “An improved congestion control algorithm for telecommunications signaling net-
works,” Telecommunication Systems, vol. 16, pp. 379–398, 2001.

[298] D. J. Houck, K. S. Meier-Hellstern, F. Saheban, and R. A. Skoog, “Failure and congestion propaga-
tion through signaling controls,” in Proc. 14th International Teletraffic Congress (ITC14), pp. 367–376,
Antibes, France, 1994.

[299] A. Huang and S. Knauer, “Starlite: A wideband digital switch,” in Proc. IEEE GLOBECOM’84, pp.
121–125, 1984.

Bibliography 741

[300] J. Y. Hui and T. Renner, “Queueing analysis for multicast packet switching,” IEEE Trans. on Com-
munications, vol. 42, no. 2-4, pp. 723–731, Febraury 1994.

[301] C. Huitema, Routing in the Internet, 2nd Edition. Prentice-Hall, 2000.

[302] G. Huston, Personal Communication, May 2006.

[303] G. Huston, “BGP routing table analysis reports,” 2006. http://bgp.potaroo.net/

[304] G. Huston, “CIDR report,” 2006. http://www.cidr-report.org/

[305] G. Huston, “Where’s the money?—Internet interconnection and financial settlements,” January
2005, The ISP Column (Internet Society). http://ispcolumn.isoc.org/2005-01/interconns.html

[306] R.-H. Hwang, “LLR routing in homogeneous VP-based ATM networks,” in Proc. IEEE INFO-
COM’95, pp. 587–593, 1995.

[307] R.-H. Hwang, J. F. Kurose, and D. F. Towsley, “MDP routing in ATM networks using the virtual
path concept,” in Proc. IEEE INFOCOM’94, pp. 1509–1517, 1994.

[308] G. Iannaccone, C.-N. Chuah, S. Bhattacharyya, and C. Diot, “Feasibility of IP restoration in a tier-1
backbone,” IEEE Network, vol. 18, no. 2, pp. 13–19, March/April 2004.

[309] Industrial Numbering Committee/Alliance for Telecommunications Industry Solution.
http://www.atis.org/inc/

[310] Industrial Numbering Committee/Alliance for Telecommunications Industry Solutions, “Num-
bering and dialing plan within the United States,” ATIS-0300076; last issue date: August 19, 2005.
http://www.atis.org/inc/Docs/Finaldocs/US-Numbering-Dialing-Plan-08-19-05.doc

[311] Intel, “Public network signalling tutorial.” http://resource.intel.com/telecom/support/ss7/
SS7tutorial/tutorial.html

[312] International Dialing Codes. http://www.timeanddate.com/worldclock/dialing.html

[313] Internet Assigned Number Authority (IANA), “Address family numbers.” http://www.iana.
org/assignments/address-family-numbers

[314] Internet Assigned Number Authority (IANA), “BGP capability codes.” http://www.iana.org/
assignments/capability-codes

[315] Internet Assigned Number Authority (IANA), “BGP parameters.” http://www.iana.org/
assignments/bgp-parameters

[316] Internet Assigned Number Authority (IANA), “IS-IS TLV codepoints.” http://www.iana.org/
assignments/isis-tlv-codepoints

[317] Internet Assigned Number Authority (IANA), “OSPF traffic engineering TLVs.” http://www.
iana.org/assignments/ospf-traffic-eng-tlvs

[318] Internet Assigned Number Authority (IANA), “RSVP parameters.” http://www.iana.org/
assignments/rsvp-parameters

[319] Internet Assigned Number Authority (IANA), “Special-use IPv4 addresses,” IETF RFC 3330, Sep-
tember 2002. http://www.rfc-editor.org/rfc/rfc3330.txt

742 Bibliography

[320] P. Iovanna, M. Settembre, and R. Sabella, “A traffic engineering system for multi-layer networks
based on the GMPLS paradigm,” IEEE Network, vol. 17, no. 2, pp. 28–37, March/April 2003.

[321] ISO, “Intermediate system to intermediate system routing information exchange protocol for
use in conjunction with the protocol for providing the connectionless-mode network service (iso
8473),” ISO/IEC 10589, February 1990, (also see [537]).

[322] ITU-T, “List of Signalling Area/Network Codes (SANC): Position on 1 December 2004—
complement to ITU-T recommendation Q.708 (03/99).” http://www.itu.int/itudoc/itu-t/ob-
lists/icc/q708_767.html

[323] ITU-T Recommendation E.164, “The International Public Telecommunication Numbering Plan,”
February 2005, International Telecommunications Union–Telecommunication Standardization
Sector.

[324] ITU-T Recommendation E.171, “International Telephone Routing Plan,” 1993, International
Telecommunications Union–Telecommunication Standardization Sector.

[325] ITU-T Recommendation Q.706, “Specifications of Signaling System No. 7: Message trans-
fer part signalling performance,” March 1993, International Telecommunications Union–
Telecommunication Standardization Sector.

[326] ITU-T Recommendation Q.709, “Specifications of Signaling System No. 7: Hypothetical
signalling reference connection,” March 1993, International Telecommunications Union–
Telecommunication Standardization Sector.

[327] ITU-T Recommendation Q.761, “Signalling System No. 7—ISDN User Part: Functional descrip-
tion,” September 1997, International Telecommunications Union–Telecommunication Standard-
ization Sector.

[328] ITU-T Recommendation Q.762, “Signalling System No. 7—ISDN User Part: General func-
tions of messages and signals,” December 1999, International Telecommunications Union–
Telecommunication Standardization Sector.

[329] ITU-T Recommendation Q.763, “Signalling System No. 7—ISDN User Part: Formats and codes,”
December 1999, International Telecommunications Union–Telecommunication Standardization
Sector.

[330] ITU-T Recommendation Q.769.1, “Signalling System No. 7—ISDN User Part: Enhancements for
the support of number portability,” December 1999, International Telecommunications Union–
Telecommunication Standardization Sector.

[331] ITU-T Recommendation Q.850, “Usage of cause and location in the Digital Subscriber Signalling
System No. 1 and the Signalling System No. 7 ISDN User Part,” May 1998, International Telecom-
munications Union–Telecommunication Standardization Sector.

[332] S. Iyer and N. McKeown, “Techniques for fast shared memory switches,” Stanford University,
Stanford, CA, Tech. Rep. TR01-HPNG-081501, August 2001.

[333] A. R. Jacob, “A survey of fast packet switches,” ACM SIGCOMM Computer Communication Review,
vol. 20, no. 1, pp. 54–64, January 1990.

[334] V. Jacobson, “Congestion avoidance and control,” in Proc. ACM SIGCOMM’88, pp. 314–329, 1988.

Bibliography 743

[335] V. Jacobson, “Modified TCP congestion control algorithm,” April 1990, end2end-interest mailing
list.

[336] J. Jaffe and F. Moss, “A responsive distributed routing algorithm for computer networks,” IEEE
Trans. on Communications, vol. 30, pp. 1758–1762, 1982.

[337] B. Jamoussi, Ed., L. Andersson, R. Callon, R. Dantu, L. Wu, P. Doolan, T. Worster, N. Feldman,
A. Fredette, M. Girish, E. Gray, J. Heinanen, T. Kilty, and A. Malis, “Constraint-based LSP setup
using LDP,” IETF RFC 3212, January 2002. http://www.rfc-editor.org/rfc/rfc3212.txt

[338] Japan Internet Exchange: JPIX. http://www.jpix.ad.jp/

[339] L. Jereb, T. Jakab, and F. Unghváry, “Availability analysis of multi-layer optical networks,” Optical
Networks, vol. 3, pp. 84–95, 2002.

[340] L. Jereb, F. Unghváry, and T. Jakab, “A methodology for reliability analysis of multi-layer com-
munication networks,” Optical Networks Magazine, vol. 2, pp. 42–51, 2001.

[341] A. Johnston, S. Donovan, R. Sparks, C. Cunningham, and K. Summers, “Session initiation proto-
col (SIP) public switched telephone network (PSTN) call flows,” IETF RFC 3666, December 2003.
http://www.rfc-editor.org/rfc/rfc3666.txt

[342] Y. M. Joo and N. McKeown, “Doubling memory bandwidth for network buffers,” in Proc. IEEE
INFOCOM’98, pp. 808–815, April 1998.

[343] M. Joshi, A. Mansata, S. Talauliker, and C. Beard, “Design and analysis of multi-level active queue
management mechanisms for emergency traffic,” Computer Communications, vol. 28, pp. 162–173,
February 2005.

[344] A. Jüttner, B. Szviatovszki, I. Mécs, and Z. Rajkó, “Lagrange relaxation based method for the QoS
routing problem,” in Proc. IEEE INFOCOM’2001, pp. 859–868, Anchorage, AK, April 2001.

[345] R. E. Kalaba and M. L. Juncosa, “Optimal design and utilization of communication networks,”
Management Science, vol. 3, no. 1, pp. 33–44, October 1956.

[346] H. Kanakia, “Datapath switch,” AT&T Bell Labs Internal Memorandum, 1999.

[347] H. Kaplan, “Resilient IP network design,” tutorial, 3rd IEEE International Workshop on IP Oper-
ations & Management, Kansas City, MO, October 2003.

[348] H. Kaplan, “NSRTM: Non-stop routing technology,” 2002. http://www.avici.com/technology/
whitepapers/reliability_series/NSRTechnology.pdf

[349] K. Kar, M. Kodialam, and T. V. Lakshman, “Minimum interference routing of bandwidth guaran-
teed tunnels with MPLS traffic engineering applications,” IEEE Journal on Selected Areas in Com-
munications, vol. 18, pp. 2566–2579, 2000.

[350] T. Karagiannis, M. Molle, M. Faloutsos, and A. Broido, “A nonstationary Poisson view of Internet
traffic,” in Proc. IEEE INFOCOM’2004, Hong Kong, March 2004.

[351] M. Karol and M. Hluchyj, “Queueing in high performance packet switching,” IEEE Journal of
Selected Areas in Communications, vol. 6, pp. 1587–1597, Decemeber 1988.

[352] M. Karol, M. Hluchyj, and S. Morgan, “Input vs output queuing on a space division switch,” IEEE
Trans. on Communications, pp. 1347–1356, Decemeber 1987.

744 Bibliography

[353] R. Karp, U. Vazirani, and V. Vazirani, “An optimal algorithm for on-line bipartite matching,” in
Proc. 22nd Annual ACM Symposium on Theory of Computing, pp. 352–358, May 1990.

[354] D. Katz, “OSPF and IS-IS—a comparative anatomy,” June 2000. http://www.nanog.org/mtg-
0006/ppt/katz.ppt

[355] D. Katz, K. Kompella, and D. Yeung, “Traffic engineering (TE) extensions to OSPF version 2,”
IETF RFC 3630, September 2003. http://www.rfc-editor.org/rfc/rfc3630.txt

[356] J. S. Kaufman, “Blocking in a shared resource environment,” IEEE Trans. on Communications, vol.
COM-29, pp. 1474–1481, 1981.

[357] F. P. Kelly, “Blocking probabilities in large circuit-switched networks,” Advances in Applied Proba-
bility, vol. 18, pp. 473–505, 1986.

[358] F. P. Kelly, “Routing in circuit-switched networks: Optimization, shadow prices and decentraliza-
tion,” Advances in Applied Probability, vol. 20, pp. 112–144, 1988.

[359] F. P. Kelly, “Routing and capacity allocation in networks with trunk reservation,” Mathematics of
Operations Research, vol. 15, pp. 771–793, 1990.

[360] F. P. Kelly, “Loss networks,” Annals of Applied Probability, vol. 1, pp. 319–378, 1991.

[361] F. P. Kelly, “Network routing,” Philosophical Transactions of the Royal Society, vol. A337, pp. 343–367,
1991.

[362] F. P. Kelly, “Charge and rate control for elastic traffic,” European Trans. on Telecommunications, vol. 8,
pp. 33–37, 1997.

[363] F. P. Kelly, “Fairness and stability of end-to-end congestion control,” European Journal of Control,
vol. 9, pp. 159–176, 2003.

[364] F. P. Kelly, A. K. Mauloo, and D. H. K. Tan, “Rate control for communication networks: Shadow
prices, proportional fairness and stability,” Journal of the Operations Research Society, vol. 49, pp.
2006–2017, 1997.

[365] S. Keshav, An Engineering Approach to Computer Networking: ATM Networks, the Internet, and the
Telephone Network. Addison-Wesley, 1997.

[366] S. Keshav, “Naming, addressing, and forwarding reconsidered,” August 2005. http://blizzard.
cs.uwaterloo.ca/keshav/home/Papers/data/05/naming.pdf

[367] S. Keshav and R. Sharma, “Issues and trends in router design,” IEEE Communications Magazine,
vol. 36, no. 5, pp. 144–151, May 1998.

[368] A. Khanna and J. A. Zinky, “The revised ARPANET routing metric,” in Proc. ACM SIGCOMM’89,
pp. 45–56, September 1989.

[369] J. Klensin (Ed.), “The history and context of telephone number mapping (ENUM) operational
decisions: Informational documents contributed to ITU-T Study Group 2 (SG2),” IETF RFC 3245,
March 2002. http://www.rfc-editor.org/rfc/rfc3245.txt

[370] D. E. Knuth, The Art of Computer Programming, Volume 3, Sorting and Searching, 3rd Edition.
Addison-Wesley, 1998.

Bibliography 745

[371] E. Kohler, M. Handley, and S. Floyd, “Datagram congestion control protocol (DCCP),” IETF RFC
4340, March 2006. http://www.rfc-editor.org/rfc/rfc4340.txt

[372] K. Kompella, Y. Rekhter, and L. Berger, “Link bundling in MPLS traffic engineering (TE),” IETF
RFC 4201, October 2005. http://www.rfc-editor.org/rfc/rfc4201.txt

[373] K. Kompella and Y. Rekhter (Eds.), “Intermediate system to intermediate system (IS-IS) exten-
sions in support of generalized multi-protocol label switching (GMPLS),” IETF RFC 4205, October
2005. http://www.rfc-editor.org/rfc/rfc4205.txt

[374] K. Kompella and Y. Rekhter (Eds.), “OSPF extensions in support of generalized multi-
protocol label switching (GMPLS),” IETF RFC 4203, October 2005. http://www.rfc-
editor.org/rfc/rfc4203.txt

[375] K. Kompella and Y. Rekhter (Eds.), “Routing extensions in support of generalized
multi-protocol label switching (GMPLS),” IETF RFC 4202, October 2005. http://www.rfc-
editor.org/rfc/rfc4202.txt

[376] K. Kompella and Y. Rekhter (Eds.), “Virtual private LAN service (VPLS) using BGP
for auto-discovery and signaling,” IETF RFC 4761, January 2007. http://www.rfc-
editor.org/rfc/rfc4761.txt

[377] T. Korkmaz and M. Krunz, “Routing multimedia traffic with QoS guarantees,” IEEE Trans. on
Multimedia, vol. 5, pp. 429–443, 2003.

[378] A. Kortebi, L. Muscariello, S. Oueslati, and J. Roberts, “On the scalability of fair queueing,” in
Proc. Third Workshop on Hot Topics in Networks (HotNets-III), San Diego, CA, November 2004.

[379] A. Kortebi, S. Oueslati, and J. Roberts, “Implicit service differentiation using deficit round robin,”
in Proc. 19th International Teletraffic Congress (ITC19), Beijing, China, August 2005.

[380] B. Kraimeche and M. Schwartz, “Analysis of traffic access control strategies in integrated service
networks,” IEEE Trans. on Communications, vol. COM-33, pp. 1085–1093, 1985.

[381] D. Krioukov, “Routing → AS types.” http://www.caida.org/analysis/routing/astypes/

[382] K. R. Krishnan, “Routing of telephone traffic to minimize network blocking,” in Proc. IEEE Con-
ference on Decision and Control, vol. 21, pp. 375–377, 1982.

[383] K. R. Krishnan, R. D. Doverspike, and C. D. Pack, “Improved survivability with multi-layer dy-
namic routing,” IEEE Communications Magazine, vol. 33, no. 7, pp. 62–68, July 1995.

[384] B. Krithikaivasan, Y. Zeng, K. Deka, and D. Medhi, “ARCH-based traffic forecasting and dynamic
bandwidth provisioning for periodically measured nonstationary traffic,” IEEE/ACM Trans. on
Networking, vol. 15, August 2007.

[385] R. S. Krupp, “Stabilization of alternate routing networks,” in Proc. IEEE ICC’82, pp. 31.2.1–31.2.5,
June 1982.

[386] J. Kurose and K. Ross, Computer Networking: A Top-Down Approach Featuring the Internet: 3rd Edi-
tion. Addison-Wesley, 2004.

[387] C. Labovitz, “Scalability of the Internet backbone routing infrastructure,” Ph.D. dissertation, Uni-
versity of Michigan, Ann Arbor, MI, 1999.

746 Bibliography

[388] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian, “Delayed Internet routing convergence,”
IEEE/ACM Trans. on Networking, vol. 9, no. 3, pp. 293–306, 2001.

[389] C. Labovitz, A. Ahuja, and F. Jahanian, “Experimental study of Internet stability and wide-area
network failures,” in Proc. Twenty-Ninth Annual International Symposium on Fault-Tolerant Comput-
ing (FTCS99), pp. 278–285, Madison, WI, June 1999.

[390] C. Labovitz, A. Ahuja, R. Wattenhofer, and S. Venkatachary, “The impact of Internet policy and
topology on delayed routing convergence,” in Proc. IEEE INFOCOM’2001, pp. 537–546, Anchor-
age, AK, 2001.

[391] C. Labovitz, G. R. Malan, and F. Jahanian, “Internet routing instability,” IEEE/ACM Trans. on Net-
working, vol. 6, pp. 515–528, 1998.

[392] T. V. Lakshman and D. Stidialis, “High-speed policy based packet forwarding using efficient mul-
tidimensional range matching,” in Proc. ACM SIGCOMM’98, pp. 203–214, Vancouver, Canada,
September 1998.

[393] K. Lakshminarayanan, A. Rangarajan, and S. Venkatachary, “Algorithms for advanced packet
classification with ternary CAMs,” ACM SIGCOMM Computer Communication Review, vol. 35,
no. 4, pp. 193–204, 2005.

[394] R. O. LaMaire and D. N. Serpanos, “Two dimensional round robin schedulers for packet switches
with multiple input queues,” IEEE/ACM Trans. on Networking, vol. 2, no. 5, pp. 471–482, October
1994.

[395] B. Lampson, V. Srinivasan, and G. Varghese, “IP lookups using multiway and multicolumn
search,” in Proc. IEEE INFOCOM’98, pp. 1248–1256, April 1998.

[396] J. Lang (Ed.), “Link management protocol (LMP),” IETF RFC 4204, October 2005. http://www.rfc-
editor.org/rfc/rfc4204.txt

[397] L. Lasdon, Optimization Theory for Large Systems. Macmillan, 1970.

[398] M. Lasserre and V. Kompella (Eds.), “Virtual private LAN service (VPLS) using la-
bel distribution protocol (LDP) signaling,” IETF RFC 4762, January 2007. http://www.rfc-
editor.org/rfc/rfc4762.txt

[399] A. M. Law and W. D. Kelton, Simulation Modeling and Analysis, 3rd Edition. McGraw Hill, 2000.

[400] D. N. Lee, K. T. Medhi, J. L. Strand, R. G. Cox, and S. Chen, “Solving large telecommunications
network loading problems,” AT&T Technical Journal, vol. 68, no. 3, pp. 48–56, May/June 1989.

[401] W. Lee, M. Hluchyi, and P. Humblet, “Routing subject to quality of service constraints in inte-
grated communication networks,” IEEE Network, vol. 9, no. 4, pp. 46–55, July/August 1995.

[402] B. Leiner, “Policy issues in interconnecting networks,” IETF RFC 1124, September 1989, (available
only as postscript or PDF file). http://www.faqs.org/rfc/rfc1124.pdf

[403] B. M. Leiner, V. G. Cerf, D. D. Clark, R. E. Kahn, L. Kleinrock, D. C. Lynch, J. Postel, L. G. Roberts,
and S. Wolff, “A brief history of the Internet,” version 3.32, last revised 10 December, 2003.
http://www.isoc.org/internet/history/brief.shtml

[404] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson, “On the self-similar nature of Ethernet
traffic,” in Proc. ACM SIGCOMM’93, pp. 183–193, September 1993.

Bibliography 747

[405] G. Li, D. Wang, C. Kalmanek, and R. Doverspike, “Efficient distributed restoration path selection
for shared mesh restoration,” IEEE Trans. on Networking, vol. 11, pp. 761–771, 2003.

[406] J. Li, H. Liu, and K. R. Sollins, “AFBV: a scalable packet classification algorithm.” ACM Computer
Communication Review, vol. 32, no. 3, p. 24, 2002.

[407] K. Li, F. Chang, D. Berger, and W. Fang, “Architectures for packet classification caching,” in Proc.
IEEE ICON, 2003.

[408] W. Liang and X. Shen, “Improved lightpath (wavelength) routing in large WDM networks,” IEEE
Transactions on Communications, vol. 48, pp. 1571–1579, 2000.

[409] W. Liang and X. Shen, “Finding multiple routing paths in wide-area WDM networks,” Computer
Communications, vol. 28, pp. 811–818, 2005.

[410] D. Lin and R. Morris, “Dynamics of random early detection,” in Proc. ACM SIGCOMM’97, pp.
127–137, Cannes, France, September 1997.

[411] R. J. Lipton and J. F. Naughton, “Query size estimation by adaptive sampling,” in PODS 1990, pp.
40–46, 1990.

[412] R. J. Lipton, J. F. Naughton, and D. A. Schneider, “Practical selectivity estimation through adaptive
sampling,” in Proc. ACM SIGMOD’90, pp. 1–11, 1990.

[413] Y. Liu, D. Tipper, and P. Sinpongwutikorn, “Approximating optimal spare capacity allocation by
successive survivable routing,” in Proc. IEEE INFOCOM’2001, pp. 699–798, Anchorage, AK, April
2001.

[414] Y. Liu, H. Zhang, W. Gong, and D. Towsley, “On the interaction between overlay routing and
underlay routing,” in Proc. IEEE INFOCOM’2005, pp. 2543–2553, Miami, FL, March 2005.

[415] J. Livingood and R. Shockey, “IANA registration for an enumservice containing public
switched telephone network (PSTN) signaling information,” IETF RFC 4769, November 2006.
http://www.rfc-editor.org/rfc/rfc4769.txt

[416] Local Number Portability Administration Working Group. http://www.npac.com/cmas/

[417] Local Number Portability Administration Working Group, “LNPA WG interpretation of N − 1
carrier architecture, Version 5.0,” January 17, 2005. http://www.npac.com/cmas/co_docs/
LNPA_WG_N-1_INTERPRETATION_v5.doc

[418] Local Number Portability Administration Working Group, “NP best practices matrix,” 2005.
http://www.npac.com/cmas/co_docs/LNPA_NP_Best_Practices_November_2005.doc

[419] London Internet Exchange, LINX. http://www.linx.net/

[420] K. Long, R. Tucker, S. Cheng, J. Ma, and R. Zhang, “A new approach to multi-layer network
survivability: strategies, model and algorithm,” Journal of High Speed Networks, vol. 10, no. 2, pp.
127–134, 2001.

[421] B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M. Hellerstein, P. Maniatis, R. Ramakrishnan,
T. Roscoe, and I. Stoica, “Declarative networking: Language, execution and optimization,” in Proc.
ACM SIGMOD International Conference on Management of Data, Chicago, June 2006.

748 Bibliography

[422] B. T. Loo, J. M. Hellerstein, and I. Stoica, “Customizable routing with declarative queries,” in Proc.
3rd Workshop on Hot Topics in Networks (ACM SIGCOMM HotNets-III), San Diego, CA, November
2004.

[423] B. T. Loo, J. M. Hellerstein, I. Stoica, and R. Ramakrishnan, “Declarative routing: Extensible rout-
ing with declarative queries,” in Proc. ACM SIGCOMM’05, pp. 289–300, Philadelphia, PA, August
2005.

[424] E. Lorenz, “Predictability: Does the flap of a butterfly’s wings in Brazil set off a tornado in Texas?”
Washington, DC, December 1972, meeting of the American Association for the Advancement of
Science.

[425] G. Lorenz, T. Moore, G. Manes, J. Hale, and S. Shenoi, “Securing SS7 telecommunications net-
works,” in Proc. 2001 IEEE Workshop on Information Assurance and Security, pp. 273–278, West Point,
NY, June 2001.

[426] P. Lothberg, “Sprintlink optical IP network,” Joint NLANR Internet2 Techs Meeting, Las Cruces,
NM, March, 1999. http://www.ncne.org/training/techs/1999/990307/Talks1/lothberg/sprint-
i2/index.htm

[427] J. Lou and X. Shen, “Frame-based packet-mode scheduling for input-queued switches,”
IEEE/ACM Trans. on Networking, vol. 15, 2007.

[428] K. Lougheed and Y. Rekhter, “A border gateway protocol (BGP),” IETF RFC 1105, June 1989.
http://www.rfc-editor.org/rfc/rfc1105.txt

[429] K. Lougheed and Y. Rekhter, “A border gateway protocol 3 (BGP-3),” IETF RFC 1267, October
1991. http://www.rfc-editor.org/rfc/rfc1267.txt

[430] J. Loughney, “Diameter command codes for third generation partnership project (3GPP) Release
5,” IETF RFC 3589, September 2003. http://www.rfc-editor.org/rfc/rfc3589.txt

[431] J. Loughney, M. Tuexen (Ed.), and J. Pastor-Balbas, “Security considerations for sig-
naling transport (SIGTRAN) protocols,” IETF RFC 3788, June 2004. http://www.rfc-
editor.org/rfc/rfc3788.txt

[432] K.-S. Lui and K. Nahrstedt, “Topology aggregation and routing in bandwidth-delay sensitive net-
works,” in Proc. IEEE GLOBECOM’2000, pp. 410–414, San Francisco, CA, November–December
2000.

[433] C. Lund, S. Philips, and S. Reingold, “Fair prioritized scheduling in an input-buffered switch,” in
Proc. International IFIP-IEEE Conference on Broadband Communications, pp. 358–369, April 1996.

[434] J. Luo, J. Xie, R. Hao, and X. Li, “An approach to accelerate convergence for path vector protocol,”
in Proc. IEEE GLOBECOM’2002, pp. 2390–2394, Taipei, Taiwan, November 2002.

[435] Q. Ma and P. Steenkiste, “Quality-of-service routing for traffic with performance guarantees,” in
Proc. IFIP Fifth International Workshop on Quality of Service (IWQoS’97), pp. 115–126, New York,
May 1997.

[436] Q. Ma and P. Steenkiste, “Supporting dynamic inter-class resource sharing: A multi-class QoS
routing algorithm,” in Proc. IEEE INFOCOM’99, pp. 649–660, New York, March 1999.

[437] A. Magi, A. Szentesi, and B. Szviatovszki, “Analysis of link cost functions for PNNI routing,”
Computer Networks, vol. 34, no. 1, pp. 181–197, July 2000.

Bibliography 749

[438] P. Mahadevan, D. Krioukov, M. Fomenkov, B. Huffaker, X. Dimitropoulos, k.c. Claffy, and A. Vah-
dat, “The Internet AS-level topology: Three data sources and one definitive metric,” ACM SIG-
COMM Computer Communication Review, vol. 36, no. 1, pp. 17–26, January 2006.

[439] R. Mahajan, D. Wetherall, and T. Anderson, “Towards coordinated interdomain traffic engineer-
ing,” in Proc. 3rd ACM SIGCOMM Workshop on Hot Topics in Networks (HotNets-III), San Diego,
CA, November 2004.

[440] A. Malis and W. Simpson, “PPP over SONET/SDH,” IETF RFC 2615, June 1999. http://www.rfc-
editor.org/rfc/rfc2615.txt

[441] G. Malkin, “RIP version 2 protocol applicability statement,” IETF RFC 1722, November 1994.
http://www.rfc-editor.org/rfc/rfc1722.txt

[442] G. Malkin, “RIP Version 2,” IETF RFC 2453, November 1998. http://www.rfc-
editor.org/rfc/rfc2453.txt

[443] G. Malkin and R. Minnear, “RIPng for IPv6,” IETF RFC 2080, January 1997. http://www.rfc-
editor.org/rfc/rfc2080.txt

[444] T. Mallory and A.Kullberg, “Incremental updating of the Internet checksum,” IETF RFC 1141,
January 1990, http://www.rfc-editor.org/rfc/rfc1141.txt.

[445] D. A. Maltz, G. Xie, J. Zhan, H. Zhang, G. Hjálmtýsson, and A. Greenberg, “Routing design in op-
erational networks: A look from the inside,” in Proc. ACM SIGCOMM’2004, pp. 27–40, Portland,
OR, August 2004.

[446] P. Manohar, D. Manjunath, and R. K. Shevgaonkar, “Routing and wavelength assignment in op-
tical networks from edge disjoint paths algorithms,” IEEE Communication Letters, vol. 6, no. 5, pp.
211–213, May 2002.

[447] J. D. Marchland, “Braess’s paradox of traffic flow,” Transportation Research, vol. 4, pp. 391–394,
1970.

[448] P. Marques, R. Bonica, L. Fang, L. Martini, R. Raszuk, K. Patel, and J. Guichard, “Constrained route
distribution for border gateway protocol/multiprotocol label switching (BGP/MPLS) internet
protocol (IP) virtual private networks (VPNs),” IETF RFC 4684, November 2006. http://www.rfc-
editor.org/rfc/rfc4684.txt

[449] L. Martini (Ed.), E. Rosen, N. El-Aawar, and G. Heron, “Encapsulation methods for trans-
port of Ethernet over MPLS networks,” IETF RFC 4448, April 2006. http://www.rfc-
editor.org/rfc/rfc4448.txt

[450] M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “The macroscopic behavior of the TCP congestion
avoidance algorithm,” ACM SIGCOMM Computer Communication Review, vol. 27, no. 3, pp. 67–82,
July 1997.

[451] M. May, J. Bolot, C. Diot, and B. Lyles, “Reasons not to deploy RED,” in Proc. 7th International
Workshop on Quality of Service (IWQoS’99), London, UK, 1999.

[452] R. Mazumdar, L. G. Mason, and C. Douligeris, “Fairness in network optimal flow control: opti-
mality of product forms,” IEEE Trans. on Communications, vol. 39, pp. 775–782, 1991.

[453] A. McAuley and P. Francis, “Fast routing table lookup using cams,” in Proc. IEEE INFOCOM’93,
pp. 1382–1391, 1993.

750 Bibliography

[454] C. J. McCallum, “An algorithm for finding the k shortest paths in a network,” Bell Laboratories
Technical Memorandum, 1973.

[455] S. McCreary and K. C. Claffy, “Trends in wide area IP traffic patterns,” Cooperative Association
for Internet Data Analysis - CAIDA, Tech. Rep., 2000.

[456] D. McIntosh, “Building a PacketCable network: A comprehensive design for the delivery of
VoIP services,” in Society of Cable Telecommunications Engineers (SCTE) Cable Tec-Expo 2002, 2002.
http://www.packetcable.com/downloads/SCTE02_VOIP_Services.pdf

[457] D. McIntosh and M. Stachelek, “VoIP services: PacketCable delivers a comprehensive system,”
in National Cable & Telecommunications Association—National Meeting (NCTA 2002), New Orleans,
LA, 2002. http://www.packetcable.com/downloads/NCTA02_VOIP_Services.pdf

[458] N. McKeown, “Scheduling algorithms for input-queued cell switches,” Ph.D. dissertation, Uni-
versity of California, Berkeley, CA, May 1995.

[459] N. McKeown, “A fast switched backplane for a gigabit switched router,” Business Communications
Review, vol. 27, no. 12, pp. 188–201, December 1997.

[460] N. McKeown, “The iSLIP scheduling algorithm for input-queued switches,” IEEE/ACM Trans. on
Networking, vol. 7, no. 2, pp. 188–201, April 1999.

[461] J. McQuillan, “Adaptive routing algorithms for distributed computer networks,” BBN Report No.
2831, Bolk Beranek & Newman, May 1974.

[462] J. M. McQuillan, G. Falk, and I. Richer, “A review of the development and performance of the
ARPANET routing algorithm,” IEEE Trans. on Communications, vol. COM-26, pp. 1802–1811, 1978.

[463] J. M. McQuillan, I. Richer, and E. Rosen, “The new routing algorithm for the ARPANET,” IEEE
Trans. on Communications, vol. COM-28, pp. 711–719, 1980.

[464] J. M. McQuillan and D. C. Walden, “The ARPA network design decisions,” Computer Networks,
vol. 1, pp. 243–289, 1977.

[465] D. Medhi, “Traffic restoration design for self-healing networks,” AT&T Bell Laboratories—Technical
Memorandum, 1989.

[466] D. Medhi, “Diverse routing for survivability in a fiber-based sparse network,” in Proc. IEEE
ICC’91, pp. 672–676, Denver, Colorado, June 1991.

[467] D. Medhi, “A unified framework for survivable telecommunications network design,” in Proc.
IEEE ICC’92, pp. 411–415, Chicago, Illinois, June 1992.

[468] D. Medhi, “A unified approach to network survivability for teletraffic networks: Models, algo-
rithms and analysis,” IEEE Trans. on Communications, vol. 42, pp. 534–548, 1994.

[469] D. Medhi, “Quality of Service (QoS) routing computation with path caching: A framework and
network performance,” IEEE Communications Magazine, vol. 40, no. 12, pp. 106–113, December
2002.

[470] D. Medhi, “Network restoration,” in Handbook of Optimization in Telecommunications, M. G. C. Re-
sende and P. Pardalos (Eds.), Springer, pp. 801–836, 2006.

Bibliography 751

[471] D. Medhi and S. Guptan, “Network dimensioning and performance of multi-service, multi-rate
loss networks with dynamic routing,” IEEE/ACM Trans. on Networking, vol. 5, pp. 944–957, 1997.

[472] D. Medhi, S. Jain, D. Shenoy Ramam, S. R. Thirumalasetty, M. Saddi, and F. Summa, “A net-
work management framework for multi-layered network survivability: An overview,” in Proc.
IEEE/IFIP Conference on Integrated Network Management (IM’2001), pp. 293–296, Seattle, WA, May
2001.

[473] D. Medhi and R. Khurana, “Optimization and performance of network restoration schemes for
wide-area teletraffic networks,” Journal of Network and Systems Management, vol. 3, no. 3, pp. 265–
294, 1995.

[474] D. Medhi and C.-T. Lu, “Dimensioning and computational results for wide-area broadband net-
works with two-level dynamic routing,” IEICE Trans. on Communications, vol. E80-B, no. 2, pp.
273–281, 1997.

[475] D. Medhi and S. Sankarappan, “Impact of a transmission facility link failure on dynamic call
routing circuit-switched networks under various circuit layout policies,” Journal of Network and
Systems Management, vol. 1, pp. 143–169, 1993.

[476] D. Medhi and I. Sukiman, “Admission control and dynamic routing schemes for wide-area broad-
band networks: Their interaction and network performance,” in Proc. IFIP-IEEE International Con-
ference on Broadband Communications, pp. 99–110, Montreal, Canada, April 1996.

[477] D. Medhi and I. Sukiman, “Multi-service dynamic QoS routing schemes with call admission con-
trol: A comparative study,” Journal of Network & Systems Management, vol. 8, no. 2, pp. 157–190,
June 2000.

[478] D. Medhi and D. Tipper, “Multi-layered network survivability—models, analysis, architecture,
framework and implementation: An overview,” in Proc. DARPA Information Survivability Confer-
ence and Exposition (DISCEX’2000), vol. I, pp. 173–186, Hilton Head Island, South Carolina, USA,
January 2000.

[479] D. Medhi and D. Tipper, “Some approaches to solving a multi-hour broadband network capacity
design problem with single-path routing,” Telecommunication Systems, vol. 13, pp. 269–291, 2000.

[480] D. Medhi, A. van de Liefvoort, and C. S. Reece, “Performance analysis of a digital link with
heterogeneous multislot traffic,” IEEE Trans. on Communications, vol. 43, pp. 968–976, March 1995.

[481] J. Medhi, Stochastic Models in Queueing Theory, 2nd Edition. Academic Press, 2003.

[482] A. Mekkittikul and N. McKeown, “A starvation-free algorithm for achieving 100% throughput in
an input-queued switch,” in Proc. IEEE ICCCN’96, pp. 226–231, October 1996.

[483] A. Mekkittikul and N. McKeown, “A practical scheduling algorithm to achieve 100% throughput
in input-queued switches,” in Proc. IEEE INFOCOM’98, pp. 792–799, March 1998.

[484] P. Merlin and A. Segall, “A failsafe distributed routing protocol,” IEEE Trans. on Communications,
vol. COM-27, pp. 1280–1288, 1979.

[485] D. Meyer and K. Patel, “BGP-4 protocol analysis,” IETF RFC 4274, January 2006. http://www.rfc-
editor.org/rfc/rfc4274.txt

[486] D. Meyer, J. Schmitz, C. Orange, M. Prior, and C. Alaettinoglu, “Using RPSL in practice,” IETF
RFC 2650, August 1999. http://www.rfc-editor.org/rfc/rfc2650.txt

752 Bibliography

[487] MFA Forum, “Voice over MPLS bearer transport implementation agreement,” MPLS Forum 1.0,
July 27, 2001. http://www.mfaforum.org/tech/MPLS1.0.pdf

[488] D. L. Mills, “A maze of twisty, turney passages–routing in the Internet swamp (and other ad-
ventures),” last updated May 18, 2005. http://www.cis.udel.edu/̃mills/database/brief/goat/
goat.pdf

[489] D. L. Mills, “Exterior gateway protocol formal specification,” IETF RFC 904, April 1984.
http://www.rfc-editor.org/rfc/rfc904.txt

[490] D. L. Mills, “Autonomous confederations,” IETF RFC 975, February 1986. http://www.rfc-
editor.org/rfc/rfc975.txt

[491] Ministry of Communications and Information Technology, Department of Telecommunica-
tions, Government of India, “National numbering plan,” April 2003. http://www.dot.gov.in/
numbering_plan/nnp2003.pdf

[492] M. Minoux, “Optimal synthesis of a network with non-simultaneous multicommodity flow re-
quirements,” in Studies in Graphs and Discrete Programming, P. Hansen (Ed.), North-Holland, pp.
269–277, 1981.

[493] M. Minoux, “Discrete cost multicommodity network optimization problems and exact solution
methods,” Annals of Operations Research, vol. 106, pp. 19–46, 2001.

[494] N. F. Mir, Computer and Communication Networks. Prentice Hall, 2007.

[495] V. Misra, W.-B. Gong, and D. Towsley, “Fluid-based analysis of a network of AQM routers sup-
porting TCP flows with an application to RED,” in Proc. ACM SIGCOMM’2000, pp. 151–160,
Stockholm, Sweden, August–September 2000.

[496] D. Mitra and J. B. Seery, “Comparative evaluations of randomized and dynamic routing strategies
for circuit-switched networks,” IEEE Trans. on Communications, vol. 39, pp. 102–116, 1990.

[497] P. V. Mockapetris, “Domain names—Concepts and facilities,” IETF RFC 1034, November 1987,
(originally as RFC882, published in November 1983). http://www.rfc-editor.org/rfc/rfc1034.txt

[498] G. Mohan, C. Siva Ram Murthy, and A. K. Somani, “Efficient algorithms for routing dependable
connections in WDM optical networks,” IEEE/ACM Trans. on Networking, vol. 9, pp. 553–566, 2001.

[499] E. F. Moore, “The shortest path through a maze,” in Proc. International Symposium on the Theory of
Switching, pp. 285–292, Cambridge, MA, April 1959.

[500] T. Moore, J. Kosloff, J. Keller, G. Manes, and S. Shenoi, “Signaling system 7 (SS7) network se-
curity,” in 45th Midwest Symposium on Circuits and Systems (MWSCAS-2002), vol. 3, pp. 496–499,
August 2002.

[501] K. Morneault, R. Dantu, G. Sidebottom, B. Bidulock, and J. Heitz, “Signaling System 7 (SS7)
Message Transfer Part 2 (MTP2)—user adaptation layer,” IETF RFC 3331, September 2002.
http://www.rfc-editor.org/rfc/rfc3331.txt

[502] D. R. Morrison, “PATRICIA—practical algorithm to retrieve information coded in alphanumeric,”
Journal of ACM, vol. 15, pp. 514–534, October 1968.

[503] J. Moy, “The OSPF specification,” IETF RFC 1131, (available only as postcript or PDF file).
http://www.faqs.org/rfc/rfc1131.pdf

Bibliography 753

[504] J. Moy, OSPF: Anatomy of An Internet Routing Protocol. Addison-Wesley, 1998.

[505] J. Moy, “OSPF version 2,” IETF RFC 2328, April 1998. http://www.rfc-editor.org/rfc/rfc2328.txt

[506] W. Mühlbauer, A. Feldmann, O. Maennel, M. Roughan, and S. Uhlig, “Building an AS-topology
model that captures route diversity,” in Proc. ACM SIGCOMM’2006, Pisa, Italy, September 2006.

[507] A. Mukherjee, “On the dynamics and significance of low frequency components of Internet load,”
Journal of Internetworking: Research and Experience, vol. 5, pp. 163–205, 1994.

[508] A. Mukherjee, L. H. Landweber, and J. C. Strikwerda, “Simultaneous analysis of flow and error
control strategies with congestion-dependent errors,” in Proc. ACM SIGMETRICS’90, pp. 86–95,
Boulder, CO, 1990.

[509] B. Mukherjee, Optical Communication Networks. McGraw-Hill, 1997.

[510] B. Mukherjee, Optical WDM Networks. Springer, 2006.

[511] B. Mukherjee, D. Banerjee, S. Ramamurthy, and A. Mukherjee, “Some principles for designing a
wide-area WDM optical network,” IEEE/ACM Trans. on Networking, vol. 4, pp. 684–696, 1996.

[512] B. Mukherjee and H. Zang, “Survey of State of the Art,” in WDM Optical Networks: Principles and
Practice, K. M. Sivalingam and S. Subramaniam (Eds.), Springer, 2002.

[513] S. Murphy, “BGP security vulnerabilities analysis,” IETF RFC 4272, January 2006. http://www.
rfc-editor.org/rfc/rfc4272.txt

[514] S. Murphy, M. Badger, and B. Wellington, “OSPF with digital signatures,” IETF RFC 2154, June
1997. http://www.rfc-editor.org/rfc/rfc2154.txt

[515] K. Murty, Linear Programming. Wiley, 1983.

[516] R. Nagarajan, “Threshold-based congestion control for SS7 signaling network in the GSM digital
cellular network,” IEEE Trans. Vehicular Technology, vol. 48, pp. 385–396, 1999.

[517] A. Nagarajan (Ed.), “Generic requirements for provider provisioned virtual private networks
(PPVPN),” IETF RFC 3809, June 2004. http://www.rfc-editor.org/rfc/rfc3809.txt

[518] K. Nahrstedt and S. Chen, “Coexistence of QoS and best effort flows—routing and scheduling,”
in Proc. 10th IEEE Tyrrhenian International Workshop on Digital Communications: Multimedia Commu-
nications, Ischia, Italy, September 1998.

[519] Y. Nakagome and H. Mori, “Flexible routing in the global communication network,” in Proc. 7th
International Teletraffic Congress (ITC7), pp. 426.1–426.8, Stockholm, Sweden, 1973.

[520] K. S. Narendra, “Recent developments in learning automata: Theory and applications,” in Proc.
3rd Yale Workshop on Applications of Adaptive Systems Theory, vol. 3, pp. 90–99, 1983.

[521] K. S. Narendra, E. A. Wright, and L. G. Mason, “Application of learning automata to telephone
traffic routing schemes,” IEEE Trans. on Systems, Man and Cybernatics, vol. SMC-7, pp. 785–792,
1977.

[522] National Communication Systems, “SMS over SS7,” Technical Information Bulletin 03-2, Decem-
ber 2003.

754 Bibliography

[523] National Emergency Number Association. http://www.nena.org/

[524] S. Nelakuditi, Z.-L. Zhang, R. P. Tsang, and D. H. C. Du, “Adaptive proportional routing: a local-
ized QoS routing approach,” IEEE/ACM Trans. on Networking, vol. 10, pp. 790–804, 2002.

[525] Network Simulator—ns-2. http://www.isi.edu/nsnam/ns/

[526] NeuStar, “ETNS register: European telephone numbering space.” http://www.etns.org/

[527] P. Newman, G. Minshall, and L. Houston, “IP switching and gigabit routers,” IEEE Communica-
tions Magazine, January 1997.

[528] J. Nievergelt, H. Hinterberger, and K. C. Sevcik, “The grid file: An adaptable, symmetric multikey
file structure,” ACM Trans. Database Systems, vol. 9, no. 1, pp. 38–71, 1984.

[529] S. Nilsson and G. Karlsson, “IP-address lookup using LC-tries,” IEEE Journal of Selected Areas in
Communications, vol. 17, pp. 1083–1092, June 1999.

[530] North American Network Operators’ Group. http://www.nanog.org/

[531] North American Numbering Plan Administration (NANPA). http://www.nanpa.com/

[532] A. Nucci, B. Schroeder, S. Bhattacharyya, N. Taft, and C. Diot, “IGP link weight assignment for
transient link failures,” in Proc. 18th International Teletraffic Congress (ITC18), pp. 321–330, Berlin,
Germany, September 2003.

[533] T. Oetiker and D. Rand, “MRTG: Multi Router Traffic Grapher.” http://www.mrtg.org/

[534] Y. Oie, T. Suda, M. Murata, D. Kolson, and H. Miyahara, “Survey of switching techniques in high
speed networks and their performance,” in Proc. IEEE INFOCOM’90, pp. 1242–1251, June 1990.

[535] Open Network Laboratory. http://onl.arl.wustl.edu/

[536] OPNET. http://www.opnet.com/

[537] D. Oran, “OSI IS-IS intra-domain routing protocol,” IETF RFC 1142, February 1990, (re-publication
of [321]). http://www.rfc-editor.org/rfc/rfc1142.txt

[538] S. Orlowski and R. Wessäly, “Comparing restoration concept using optimal network configura-
tions with integrated hardware and routing decisions,” in Proc. Design of Reliable Communication
Networks (DRCN’2003), pp. 15–22, Banff, Canada, 2003.

[539] T. J. Ott and K. R. Krishnan, “State dependent routing of telephone traffic and the use of separa-
ble routing schemes,” in Proc. 11th International Teletraffic Congress (ITC13), pp. 5.1.A.5.1–5.1A.5.6,
Kyoto, Japan, 1985.

[540] A. Ozdaglar and D. Berteskas, “Routing and wavelength assignment in optical networks,”
IEEE/ACM Trans. on Networking, vol. 11, no. 2, pp. 259–272, April 2003.

[541] P. Pan, G. Swallow, and A. Atlas (Eds.), “Fast reroute extensions to RSVP-TE for LSP tunnels,”
IETF RFC 4090, May 2005. http://www.rfc-editor.org/rfc/rfc4090.txt

[542] L. Papadimitriou (Ed.), “Generalized multi-protocol label switching (GMPLS) signaling ex-
tensions for G.709 optical transport networks control,” IETF RFC 4328, January 2006.
http://www.rfc-editor.org/rfc/rfc4328.txt

Bibliography 755

[543] A. K. Parekh and R. G. Gallager, “A generalized processor sharing approach to flow control in
integrated services networks: The single node case,” IEEE/ACM Trans. on Networking, vol. 1, pp.
344–357, June 1993.

[544] A. K. Parekh and R. G. Gallager, “A generalized processor sharing approach to flow control in
integrated services networks: The multiple node case,” IEEE/ACM Trans. on Networking, vol. 2,
pp. 137–150, April 1994.

[545] K. Park and W. Willinger (Ed.), Self-Similar Network Traffic and Performance Evaluation. Wiley-
Interscience, 2000.

[546] W. R. Parkhurst, Cisco BGP-4 Command & Configuration Handbook. Cisco Press, 2001.

[547] C. Partridge, P. P. Carvey, E. Burgess, I. Castineyra, T. Clarke, L. Graham, M. Hathaway, P. Her-
man, A. K. S. Kohalmi, T. Ma, J. Mcallen, T. Mendez, W. C. Milliken, R. Pettyjohn, J. Rokosz,
J. Seeger, M. Sollins, S. Storch, B. Tober, G. D. Troxel, D. Waitzman, and S. Winterble, “A 50-Gb/s
IP router,” IEEE/ACM Trans. on Networking, vol. 6, pp. 237–248, 1998.

[548] C. Partridge, Gigabit Networking. Addison-Wesley, 1994.

[549] M. M. B. Pascoal, V. Captivo, and J. C. N. Climaco, “An algorithm for ranking quickest simple
paths,” Computers & Operations Research, vol. 32, pp. 509–520, 2005.

[550] V. Paxson, “End-to-end routing behavior in the Internet,” IEEE/ACM Trans. on Networking, vol. 5,
pp. 601–615, 1997.

[551] V. Paxson and S. Floyd, “Wide-area traffic: The failure of Poisson modeling,” IEEE/ACM Trans. on
Networking, vol. 3, pp. 226–244, 1995.

[552] Peering Database. http://www.peeringdb.com/

[553] D. Pei, M. Azuma, D. Massey, and L. Zhang, “BGP-RCN: Improving BGP convergence through
root cause notification,” Computer Networks, vol. 48, no. 2, pp. 175–194, 2005.

[554] D. Pei, B. Zhang, D. Massey, and L. Zhang, “An analysis of convergence delay in path vector
routing protocols,” Computer Networks, vol. 50, no. 3, pp. 398–421, 2006.

[555] D. Pei, X. Zhao, L. Wang, D. Massey, A. Mankin, F. Wu, and L. Zhang, “Improving BGP conver-
gence through assertions approach,” in Proc. IEEE INFOCOM’2002, 2002.

[556] Performance Technologies, Inc., “SS7/IP Interworking Tutorial,” 2001. http://www.pt.com/
tutorials/iptelephony/

[557] Performance Technologies, Inc., “Tutorial on Signaling System 7 (SS7),” 2003. http://www.pt.
com/tutorials/ss7/

[558] R. Perlman, “What is the fundamental difference between OSPF and IS-IS,” August 31, 2002.
http://archives.neohapsis.com/archives/microsoft/various/ospf/2002-q3/0303.html

[559] R. Perlman, Interconnections, 2nd Edition. Addison-Wesley, 2000.

[560] H. G. Perros, Connection-Oriented Networks: SONET/SDH, ATM, MPLS and Optical Networks. John
Wiley & Sons, 2005.

756 Bibliography

[561] J. Peterson, “enumservice registration for session initiation protocol (SIP) addresses-of-record,”
IETF RFC 3764, April 2004. http://www.rfc-editor.org/rfc/rfc3764.txt

[562] L. Peterson and B. Davie, Computer Networks—A Systems Approach, 4th Edition. Morgan Kaufmann
Publishers, 2007.

[563] M. Pickavet and P. Demeester, “Long-term planning of WDM networks: A comparison between
single-period and multi-period techniques,” Photonic Network Communications, vol. 1, no. 4, pp.
331–346, December 1999.

[564] M. Pióro and D. Medhi, Routing, Flow, and Capacity Design in Communication and Computer Net-
works. Morgan Kaufmann Publishers, 2004.

[565] M. Pióro, A. Szentesi, J. Harmatos, A. Jüttner, P. Gajowniczek, and S. Kozdrowski, “On open
shortest path first related network optimization problems,” in Proc. IFIP ATM IP 2000, Ilkley,
England, July 2000, (see also [566]).

[566] M. Pióro, A. Szentesi, J. Harmatos, A. Jüttner, P. Gajowniczek, and S. Kozdrowski, “On open
shortest path first related network optimization problems,” Performance Evaluation, vol. 48, pp.
201–223, 2002, (see [565] for a preliminary version).

[567] D. M. Piscitello and A. L. Chapin, Open Systems Networking: TCP/IP and OSI. Addison-Wesley,
1993.

[568] Planetlab. http://www.planet-lab.org/

[569] PMC-Sierra, Inc., “A new architecture for switch and router design,” v2r1, December 22, 1999.
http://www.pmc-sierra.com/pressRoom/pdf/lcs_wp.pdf

[570] B. Prabhakar, N. McKeown, and R. Ahuja, “Multicast scheduling for input-queued switches,”
IEEE Journal of Selected Areas in Communications, vol. 15, no. 5, pp. 855–866, 1997.

[571] R. Puz̆manová, Routing and Switching. Addison-Wesley, 2002.

[572] L. Qiu, G. Varghese, and S. Suri, “Fast firewall implementations for software-based and hardware-
based routers,” in Proc. ACM SIGMETRICS’2001, pp. 344–345, 2001.

[573] B. Rajagopalan, J. Luciani, and D. Awduche, “IP over optical networks: A framework,” IETF RFC
3717, March 2004. http://www.rfc-editor.org/rfc/rfc3717.txt

[574] K. G. Ramakrishnan and M. A. Rodrigues, “Optimal routing in shortest-path data networks,” Bell
Labs Technical Journal, vol. 6, no. 1, pp. 117–138, 2001.

[575] K. K. Ramakrishnan and R. Jain, “A binary feedback scheme for congestion avoidance in com-
puter networks with a connectionless network layer,” in Proc. ACM SIGCOMM’88, pp. 303–313,
August 1988.

[576] R. Ramamurthy and A. Ramakrishnan, “Virtual topology reconfiguration of wavelength-routed
optical WDM networks,” in Proc. of IEEE GLOBECOM’2000, pp. 1269–1275, San Francisco, CA,
November 2000.

[577] K. Ramasamy, “Efficient storage and query processing of set-valued attributes,” Ph.D. disserta-
tion, University of Wisconsin, Madison, WI, 2001.

Bibliography 757

[578] K. Ramasamy, J. M. Patel, R. Kaushik, and J. F. Naughton, “Set containment joins: The good, the
bad and the ugly,” in Proc. 26th International Conference on Very Large Databases (VLDB), September
2000.

[579] R. Ramaswami and K. N. Sivarajan, “Design of logical topologies for wavelength-routed net-
works,” IEEE Journal of Selected Areas in Communication, vol. 14, no. 5, pp. 840–851, June 1996.

[580] R. Ramaswami and K. N. Sivarajan, Optical Networks: A Practical Perspective, 2nd Edition. Morgan
Kaufmann Publishers, 2002.

[581] U. Ranadive and D. Medhi, “Some observations on the effect of route fluctuation and network
link failure on TCP,” in Proc. 10th IEEE International Conference on Computer Communications and
Networks (ICCCN’01), pp. 460–467, Scottsdale, AZ, October 2001.

[582] Y. Rapp, “Planning of a junction network in a multi-exchange area I,” General Principles Ericsson
Tech., vol. 20, no. 1, pp. 77–130, 1964.

[583] Y. Rapp, “Planning of a junction network in a multi-exchange area II,” Extensions of the Principles
and Applications. Ericsson Tech., vol. 21, no. 2, pp. 187–240, 1965.

[584] Y. Rapp, “Planning of a junction network in a multi-exchange area III,” in Proc. 5th International
Teletraffic Congress (ITC5), New York, 1967.

[585] A. Rattanadilokochai, “QoS routing with inaccurate link-state information,” M.S. Thesis, Univer-
sity of Missouri–Kansas City, May 2000.

[586] V. C. Ravikumar, R. Mahapatra, and J. C. Liu, “Modified LC-trie based efficient routing lookup,”
in Proc. 10th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS’02), 2002.

[587] Y. Rekhter, “EGP and policy based routing in the new NSFNET backbone,” IETF RFC 1092, Feb-
ruary 1989. http://www.rfc-editor.org/rfc/rfc1092.txt

[588] Y. Rekhter, R. Bonica, and E. Rosen, “Use of provider edge to provider edge (PE-PE) generic
routing encapsulation (GRE) or IP in BGP/MPLS IP virtual private networks,” IETF RFC 4797,
January 2007. http://www.rfc-editor.org/rfc/rfc4797.txt

[589] Y. Rekhter, S. Hotz, and D. Estrin, “Constraints on forming clusters with link-state hop-by-hop
routing,” University of Southern California, Tech. Rep. 93-536, August 1993.

[590] Y. Rekhter and T. Li, “A Border Gateway Protocol 4 (BGP-4),” IETF RFC 1771, March 1995, (Made
obsolete by [591]). http://www.rfc-editor.org/rfc/rfc1771.txt

[591] Y. Rekhter, T. Li, and S. Hares, “A Border Gateway Protocol 4 (BGP-4),” IETF RFC 4271, January
2006. http://www.rfc-editor.org/rfc/rfc4271.txt

[592] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot, and E. Lear, “Address allocation for
private internets,” IETF RFC 1918, February 1996. http://www.rfc-editor.org/rfc/rfc1918.txt

[593] Y. Rekhter (Ed.), “BGP protocol analysis,” IETF RFC 1265, October 1991. http://www.rfc-
editor.org/rfc/rfc1265.txt

[594] J. Rexford, Personal Communication, 2005.

758 Bibliography

[595] J. Rexford, “Route optimization in IP networks,” in Handbook of Optimization in Telecommunications,
M. G. C. Resende and P. Pardalos (Eds.), Springer, 2006.

[596] R. F. Rey (Ed.), Engineering and Operations in the Bell System, 2nd Edition. AT&T Bell Laboratories,
1983.

[597] J. W. Roberts, “A service system with heterogeneous user requirements: application to multi-
services telecommunications systems,” in Performance of Data Communication Systems, and Their
Applications, G. Pujolle (Ed.), North-Holland, pp. 423–431, 1981.

[598] G. Rogers, D. Medhi, W.-J. Hsin, S. Muppala, and D. Tipper, “Performance analysis of multicast
and priority-based routing under a failure in differentiated-services Internet,” in Proc. of IEEE
MILCOM’99, pp. 897–901, Atlantic City, NJ, October 1999.

[599] E. Rosen, “The updating protocol of ARPANET’s new routing algorithm,” Computer Networks,
vol. 4, no. l, pp. l–19, 1980.

[600] E. Rosen, “Exterior gateway protocol (EGP),” IETF RFC 827, October 1982. http://www.rfc-
editor.org/rfc/rfc827.txt

[601] E. Rosen and Y. Rekhter, “BGP/MPLS VPNs,” IETF RFC 2547, March 1999, (Made obsolete by
[602]). http://www.rfc-editor.org/rfc/rfc2547.txt

[602] E. Rosen and Y. Rekhter, “BGP/MPLS IP virtual private networks (VPNs),” IETF RFC 4364, Feb-
ruary 2006. http://www.rfc-editor.org/rfc/rfc4364.txt

[603] E. Rosen, D. Tappan, G. Fedorkow, Y. Rekhter, D. Farinacci, T. Li, and A. Conta, “MPLS label stack
encoding,” IETF RFC 3032, January 2001. http://www.rfc-editor.org/rfc/rfc3032.txt

[604] E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol label switching architecture,” IETF RFC
3031, January 2001. http://www.rfc-editor.org/rfc/rfc3031.txt

[605] E. Rosen, “Vulnerabilities of network control protocols: An example,” IETF RFC 789, July 1981.
http://www.rfc-editor.org/rfc/rfc789.txt

[606] G. Rosenbaum, C.-T. Chou, S. Jha, and D. Medhi, “Dynamic routing of restorable QoS connec-
tions in MPLS networks,” in Proc. 30th IEEE Conference on Local Computer Networks(LCN), Sydney,
Australia, November 2005.

[607] M. Roughan, J. Li, R. Bush, Z. Mao, and T. Griffin, “Is BGP update storm a sign of trouble: Observ-
ing the Internet control and data planes during Internet worms,” in Proc. International Symposium
on Performance Evaluation of Computer and Telecommunication Systems (SPECTS), Calgary, Canada,
2006.

[608] T. Roughgarden and E. Tardos, “How bad is selfish routing?” Journal of the ACM, vol. 49, no. 2,
pp. 236–259, March 2002, (A preliminary version of this paper appeared in Proc. 41st Annual IEEE
Symposium on Foundations of Computer Science, November 2000).

[609] G. Rouskas and M. Ammar, “Dynamic reconfiguration in multihop WDM networks,” Journal of
High Speed Networks, vol. 4, pp. 221–238, 1995.

[610] H. Rudin, “On routing and “delta routing”: A taxonomy and performance comparison of tech-
niques for packet-switched networks,” IEEE Trans. on Communications, vol. 24, pp. 43–59, January
1976.

Bibliography 759

[611] M. A. Ruiz-Sanchez, E. W. Biersack, and W. Dabbous, “Survey and taxonomy of IP address lookup
algorithms,” IEEE Network, vol. 15, no. 2, pp. 8–23, March/April 2001.

[612] M. P. Rumsewicz and D. E. Smith, “A comparison of SS7 congestion control options during mass
call-in situations,” IEEE/ACM Trans. on Networking, vol. 3, pp. 1–9, 1995.

[613] T. Russell, Signaling System # 7, 4th Edition. McGraw-Hill, 2002.

[614] R. Sabella, P. Iovanna, G. Oriolo, and P. D’Aprile, “Routing and grooming of data flows into
lightpaths in new generation network based on the GMPLS paradigm,” Photonic Network Commu-
nications, vol. 7, no. 2, pp. 131–144, 2004.

[615] R. Sabella, M. Settembre, G. Oriolo, F. Razza, F. Ferlito, and G. Conte, “A multi-layer solution for
path provisioning in new-generation optical/MPLS networks,” IEEE Journal on Lightwave Technol-
ogy, vol. 21, no. 5, pp. 1141–1155, 2003.

[616] S. Sahni and K. Kim, “Efficient construction of fixed-stride multibit tries for IP lookup,” in Proc.
8th IEEE Workshop on Future Trends of Distributed Computing Systems, 2001.

[617] S. Sahni and K. Kim, “Efficient construction of variable-stride multibit tries for IP lookup,” in
Proc. IEEE Symposium on Applications and the Internet (SAINT), pp. 220–227, 2002.

[618] J. Saltzer, “On the naming and binding of network destinations,” IETF RFC 1498, August 1993.
http://www.rfc-editor.org/rfc/rfc1498.txt

[619] H. Samet, “The Quadtree and related hierarchical data structures,” ACM Computing Surveys,
vol. 16, no. 2, pp. 187–260, 1984.

[620] S. Sangli, E. Chen, R. Fernando, J. Scudder, and Y. Rekhter, “Graceful restart mechanism for BGP,”
IETF RFC 4724, January 2007. http://www.rfc-editor.org/rfc/rfc4724.txt

[621] S. Sangli, D. Tappan, and Y. Rekhter, “BGP extended communities attribute,” IETF RFC 4360,
February 2006. http://www.rfc-editor.org/rfc/rfc4360.txt

[622] V. Sarangan, D. Ghosh, and R. Acharya, “Capacity-aware state aggregation for interdomain QoS
routing,” IEEE Trans. on Multimedia, vol. 8, pp. 792–808, 2006.

[623] L. J. Seamonson and E. Rosen, ““Stub” exterior gateway protocol,” IETF RFC 888, January 1984.
http://www.rfc-editor.org/rfc/rfc888.txt

[624] R. Sedgewick and R. Flajolet, An Introduction to the Analysis of Algorithms. Addison-Wesley, 1996.

[625] R. Sedgewick, Algorithms in Java, Part 5: Graph Algorithms, 3rd Edition. Addison-Wesley, 2004.

[626] S. Seetharaman and M. Ammar, “On the interaction between dynamic routing in the native and
overlay layers,” in Proc. IEEE INFOCOM’2006, Barcelona, Spain, April 2006.

[627] A. Segal, “Advances in verifiable fail-safe routing procedures,” IEEE Trans. on Communications,
vol. COM-29, pp. 491–497, 1981.

[628] T. K. Sellis, N. Roussopoulos, and C. Faloutsos, “The R+−tree: A dynamic index for multi-
dimensional objects,” in Proc. 13th International Conference on Very Large Data Bases (VLDB), pp.
507–518, Brighton, England, 1987.

760 Bibliography

[629] C. Semeria, “Internet backbone routers and evolving internet design,” in Juniper Networks White
Paper, 1997.

[630] C. Semeria, “Internet processor II ASIC: Rate limiting and traffic-policing features,” in Juniper
Networks White Paper, Part Number 200005-001, 2000.

[631] C. Semeria, “T-series routing platforms: System and packet forwarding architecture,” in Juniper
Networks White Paper, Part Number 200027-001, 2002.

[632] C. Semeria, “RFC 2547bis: BGP/MPLS VPN fundamentals,” in Part Number 200012-001 03/01,
Juniper network, 2001. http://www.juniper.net/solutions/literature/white_papers/200012.pdf

[633] S. Sen, R. D. Doverspike, and M. S. Dunatunga, “Unified facilities optimizer,” University of Ari-
zona, Department of Systems and Industrial Engineering, Tech. Rep., January 1989.

[634] T. Seth, A. Broscius, C. Huitema, and H. P. Lin, “Performance requirements for signaling in Inter-
net telephony,” November 1998, Internet Draft. http://www.cs.columbia.edu/sip/drafts/draft-
seth-sigtran-req-00.txt

[635] S. A. Shah and D. Medhi, “Performance under a failure of wide-area datagram networks with uni-
cast and multicast traffic routing,” in Proc. IEEE MILCOM’98, pp. 939–945, Bedford, MA, October
1998.

[636] A. Shaikh, A. Varma, L. Kalampoukas, and R. Dube, “Routing stability in congested networks:
Experimentation and analysis,” in Proc. ACM SIGCOMM’2000, pp. 163–174, Stockholm, Sweden,
August–September 2000.

[637] S. Shenker, C. Partridge, and R. Guerin, “Specification of guaranteed quality of service,” IETF
RFC 2212, September 1997. http://www.rfc-editor.org/rfc/rfc2212.txt

[638] K. G. Shin and M. Chen, “Performance analysis of distributed routing strategies free of ping-
pong-type looping,” IEEE Trans. on Computers, vol. 36, pp. 129–137, 1987.

[639] J. Shoch, “Inter-network naming, addressing, and routing,” in Proc. IEEE Computer Conference
(COMPCON), pp. 72–79, Washington, DC, 1978.

[640] M. Shreedhar and G. Varghese, “Efficient fair queueing using deficit round robin,” in Proc. ACM
SIGCOMM’95, pp. 231–242, Cambridge, MA, August–September 1995.

[641] S. Sibal and A. DeSimone, “Controlling alternate routing in general-mesh packet flow networks,”
in Proc. ACM SIGCOMM’94, pp. 168–179, London, United Kingdom, 1994.

[642] G. Sidebottom, K. Morneault, and J. Pastor-Balbas (Eds.), “Signaling System 7 (SS7) Message
Transfer Part 3 (MTP3)—User Adaptation Layer (M3UA),” IETF RFC 3332, September 2002.
http://www.rfc-editor.org/rfc/rfc3332.txt

[643] S. Singh, F. Baboescu, G. Varghese, and J. Wang, “Packet classification using multidimensional
cutting,” in Proc. ACM SIGCOMM’2003, pp. 213–224, Karlsruhe, Germany, August 2003.

[644] R. J. Sivasankar, S. Ramam, S. Subramaniam, T. S. Rao, and D. Medhi, “Some studies on the
impact of dynamic traffic in QoS based dynamic routing environment,” in Proc. IEEE ICC’2000,
pp. 959–963, New Orleans, LA, June 2000.

[645] K. Sklower, “A tree-based packet routing table for berkeley unix,” in Proc. 1991 Usenix Winter
Conference, pp. 93–99, 1991.

Bibliography 761

[646] R. A. Skoog, “Engineering common channel signaling networks for ISDN,” in Proc. 12th Interna-
tional Teletraffic Congress (ITC12), pp. 915–921, Torin, Italy, 1988.

[647] D. Slepian, “Two theorems on a particular crossbar switching networks,” 1952, unpublished man-
uscript.

[648] D. L. Slotnick, W. C. Borck, and R. C. McReynolds, “The soloman computer,” in Proc. AFIPS Sprint
Joing Computer Conference, vol. 22, pp. 97–107. Spartan Books, 1967.

[649] H. Smit and T. Li, “Intermediate System to Intermediate System (IS-IS) extensions for traffic engi-
neering (TE),” IETF RFC 3784, June 2004. http://www.rfc-editor.org/rfc/rfc3784.txt

[650] B. R. Smith and J. J. Garcia-Luna-Aceves, “Efficient policy-based routing without virtual circuits,”
in Proc. First International Conference on Quality of Service in Heterogeneous Wired/Wireless Networks
(QSHINE’04), pp. 242–251, 2004.

[651] B. R. Smith and J. J. Garcia-Luna-Aceves, “A new approach to policy-based routing in the inter-
net,” in Performance Evaluations and Planning Methods for the Next Generation Internet, A. Girard,
B. Sansò, and F. Vázquez-Abad (Eds.), Springer, pp. 99–124, 2005.

[652] SMS/800 Management Team, “Introduction to toll free services.” http://www.sms800.com/

[653] R. Souza, P. Krishnakumar, C. Ozveren, R. Simcoe, B. Spinney, R. Thomas, and R.Walsh, “GI-
GAswitch: A high performance packet switching platform,” Digital Technical Journal, vol. 27, no. 1,
pp. 9–22, 1994.

[654] E. Spitznagel, D. Taylor, and J. Turner, “Packet classification using extended TCAMs,” in Proc. 11th
IEEE International Conference on Network Protocols (ICNP), pp. 120–131, Washington, DC, 2003.

[655] E. W. Spitznagel, “Compressed data structures for recursive flow classification,” Department of
Computer Science and Engineering, Washington University, St. Louis, MO, Tech. Rep. WUCSE-
2003-65, 2003.

[656] Sprintlink’s BGP Policy. http://www.sprintlink.net/policy/bgp.html

[657] P. R. Srikantakumar, “Learning models and adaptive routing in telecommunication networks,”
Ph.D. dissertation, Yale University, New Haven, CT, 1980.

[658] V. Srinivasan, “Fast and efficient Internet lookups,” Ph.D. dissertation, Washington University,
Saint Louis, MO, August 1999.

[659] V. Srinivasan, “A packet classification and filter management system,” in Proc. IEEE INFO-
COM’2001, pp. 1464–1473, 2001.

[660] V. Srinivasan, S. Suri, and G. Varghese, “Packet classification using tuple space search,” in Proc.
ACM SIGCOMM’99, pp. 135–146, Cambridge, MA, 1999.

[661] V. Srinivasan and G. Varghese, “Fast address lookups using controlled prefix expansion,” ACM
Trans. on Computer Systems, vol. 17, pp. 1–40, February 1999.

[662] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel, “Fast and scalable layer four switching,”
in Proc. ACM SIGCOMM’98, pp. 191–202, Vancouver, Canada, August 1998.

762 Bibliography

[663] S. Srivastava, G. Agrawal, and D. Medhi, “Dual-based link weight determination towards single
shortest path solutions for OSPF networks,” in Proc. 19th International Teletraffic Congress (ITC19),
pp. 829–838, Beijing, China, August–September 2005.

[664] S. Srivastava, G. Agrawal, M. Pióro, and D. Medhi, “Determining link weight system under var-
ious objectives for OSPF networks using a Lagrangian relaxation-based approach,” IEEE eTrans.
on Network & Service Management, vol. 2, no. 1, pp. 9–18, 2005.

[665] S. Srivastava, S. R. Thirumalasetty, and D. Medhi, “Network traffic engineering with varied levels
of protection in the next generation internet,” in Performance Evaluations and Planning Methods for
the Next Generation Internet, A. Girard, B. Sansò, and F. Vázquez-Abad (Eds.), Springer, pp. 99–124,
2005.

[666] W. Stallings, Data and Computer Communications, 8th Edition. Prentice-Hall, 2007.

[667] M. Steenstrup (Ed.), Routing in Communications Networks. Prentice-Hall, 1995.

[668] W. R. Stevens, TCP/IP Illustrated, Volume 1. Addison-Wesley, 1994.

[669] J. W. Stewart III, BGP4: Inter-Domain Routing in the Internet. Addison-Wesley, 1999.

[670] D. Stiliadis and A. Varma, “Frame-based fair queueing: a new traffic scheduling algorithm for
packet-switched networks,” in Proc. ACM SIGMETRICS’96, pp. 104–115, 1996.

[671] J. Stokes, “PCI express: An overview,” in Arstechnica Web Site, July 2004. http://arstechnica.com/
articles/paedia/hardware/pcie.ars/1

[672] M. Stonebraker, “The case for shared nothing,” Database Engineering Bulletin, vol. 9, no. 1, pp. 4–9,
1986.

[673] J. Strand, “Transport networks & technologies,” 2001, Tutorial presentation, Optical Fiber Com-
munication Conference (OFC 2001).

[674] J. Strand and A. Chiu, (Eds.), “Impairments and other constraints on optical layer routing,” IETF
RFC 4054, May 2005. http://www.rfc-editor.org/rfc/rfc4054.txt

[675] J. Strand, R. Doverspike, and G. Li, “Importance of wavelength conversion in an optical network,”
Optical Networks Magazine, vol. 2, no. 3, pp. 33–44, May/June 2001.

[676] H. Sullivan and T. R. Bashkow, “A large scale, homogeneous, fully distributed parallel machine,”
in Proc. International Symposium on Computer Architecture (ISCA), pp. 105–124, March 1977.

[677] J. W. Suurballe, “Disjoint paths in a network,” Networks, vol. 4, pp. 125–145, 1974.

[678] J. W. Suurballe and R. E. Tarjan, “A quick method for finding shortest pairs of disjoint paths,”
Networks, vol. 14, pp. 325–336, 1984.

[679] Syniverse Technologies, “A global perspective on number portability,” May 2004.
http://www.syniverse.com/pdfs/MNPReport.pdf

[680] E. Szybicki and M. Lavigne, “Alternate routing for a telephone system,” U.S. Patent No. 4,284,852,
August 18, 1981.

[681] Y. Tamir and H. C. Chi, “Symmetric crossbar arbiters for vlsi communication switches,” IEEE
Trans. Parallel and Distributed Systems, vol. 4, no. 1, pp. 13–27, January 1993.

Bibliography 763

[682] Y. Tamir and G. Frazier, “High performance multi-queue buffers for VLSI communication net-
works,” in Proc. 15th Annual Symposium on Computer Architecture, pp. 343–354, June 1988.

[683] A. Tanenbaum, Computer Networks, 4th Edition. Prentice-Hall, 2003.

[684] A. Tang and S. Scoggins, Open Networking with OSI. Prentice-Hall, 1992.

[685] J. Tapolcai, T. Cinkler, and A. Recski, “On-line routing algorithms with shared protection in WDM
networks,” in IFIP ONDM 2003, Budapest, 2003.

[686] D. E. Taylor, “Survey and taxonomy of packet classification techniques,” ACM Computing Surveys,
vol. 37, no. 3, pp. 238–275, 2005.

[687] D. E. Taylor and J. S. Turner, “Scalable packet classification using distributed crossproducting of
field labels,” in Proc. IEEE INFOCOM’2005, pp. 269–280, March 2005.

[688] R. Teixeira, A. Shaikh, T. Griffin, and G. Voelker, “Network sensitivity to hot-potato disruptions,”
in Proc. ACM SIGCOMM’2004, pp. 231–244, Portland, OR, August–September 2004.

[689] Telcordia, “Telcordia Technologies specification of Signalling System number 7,” GR-246-CORE,
Issue 10, December 2005.

[690] Telecom Regulatory Authority of India, “Consultation paper on mobile number portability,” July
2005. http://www.trai.gov.in/conpaper22jul05.pdf

[691] Telecom Regulatory Authority of India, “Recommendation on mobile number portability,” March
2006. http://www.trai.gov.in/recomm8mar06.pdf

[692] TeleGeography, Hubs and Spokes: A TeleGeography Internet Reader. TeleGeography, Inc., 2000.

[693] TeleGeography, “Global communication submarine map,” 2004. http://www.telegeography.
com/products/map_cable/index.php

[694] S. Thiagarajan and A. K. Somani, “Optimal wavelength converter placement in arbitrary topology
wavelength-routed networks,” Computer Communications, vol. 26, pp. 975–985, 2003.

[695] S. R. Thirumalasetty and D. Medhi, “On the performance and behavior of QoS routing schemes,”
Technical Report, University of Missouri–Kansas City, 2000.

[696] K. Thompson, G. Miller, and R. Wilder, “Wide-area Internet traffic patterns and characteristics,”
IEEE Network, vol. 11, no. 6, pp. 10–23, November/December 1997.

[697] R. A. Thompson, Telephone Switching Systems. Artech House, 2000.

[698] M. Thorup and M. Roughan, “Avoiding ties in shortest path first routing,” Technical Report,
AT&T Labs-Research, 2003.

[699] F. Tobagi, “Fast packet switching architectures for broadband integrated services digital net-
works,” Proceedings of the IEEE, vol. 78, pp. 133–167, 1990.

[700] D. M. Tow, “Network management—recent advances and future trends,” IEEE Journal on Selected
Areas in Communications, vol. 6, no. 4, pp. 732–741, 1988.

[701] P. Traina, “Autonomous system confederations for BGP,” IETF RFC 1965, June 1996.
http://www.rfc-editor.org/rfc/rfc1965.txt

764 Bibliography

[702] P. Traina, D. McPherson, and J. Scudder, “Autonomous system confederations for BGP,” IETF
RFC 3065, February 2001. http://www.rfc-editor.org/rfc/rfc3065.txt

[703] P. Traina (Ed.), “BGP-4 protocol analysis,” IETF RFC 1774, March 1995. http://www.rfc-
editor.org/rfc/rfc1774.txt

[704] J. Tünnissen, “BGP: the Border Gateway Protocol: Advanced Internet routing resources.”
http://www.bgp4.as/

[705] J. Turner and N. Yamanaka, “Architectural choices in large scale ATM switches,” IEICE Trans. on
Communications, vol. E81-B, no. 2, pp. 120–137, 1998.

[706] J. S. Turner, “New directions in communications (or which way to the information age),” IEEE
Communications Magazine, vol. 24, no. 10, pp. 8–15, October 1986.

[707] University of Oregon Route Views Project, “Route views.” http://www.routeviews.org/

[708] L. G. Valiant and G. J. Brebner, “Universal schemes for parallel communication,” in Proc. ACM
Symposium of the Theory of Computing, pp. 263–277, May 1981.

[709] I. van Beijnum, BGP. O’Reilly, 2002.

[710] P. van Mieghem, F. A. Kuipers, T. Korkmaz, M. Krunz, M. Curado, E. Monteiro, X. Masip-Bruin,
J. Solé-Pareta, and S. Sánchez-López, “Quality of service routing,” in Quality of Future Internet
Services: COST Action 263 Final Report M. Smirnov et al. (Eds.), Springer, 2003.

[711] R. J. Vanderbei, Linear Programming: Foundations and Extensions, 2nd Edition. Kluwer Academic
Publishers, 2001.

[712] G. Varghese, Network Algorithmics. Morgan Kaufmann Publishers, 2005.

[713] J.-P. Vasseur, M. Pickavet, and P. Demeester, Network Recovery: Protection and Restoration of Optical,
SONET-SDH, IP, and MPLS. Morgan Kaufmann Publishers, 2004.

[714] J.-P. Vasseur (Ed.), Y. Ikejiri, and R. Zhang, “Reoptimization of multiprotocol label switching
(MPLS) traffic engineering (TE) loosely routed label switched path (LSP),” IETF RFC 4736, No-
vember 2006. http://www.rfc-editor.org/rfc/rfc4736.txt

[715] A. Vemuri and J. Peterson, “Session initiation protocol for telephones (SIP–T): Context and archi-
tectures,” IETF RFC 3372, September 2002. http://www.rfc-editor.org/rfc/rfc3372.txt

[716] VeriSign, “Intelligent database services.” http://www.verisign.com/products-services/
communications-services/intelligent-database-services/index.html

[717] VeriSign, “Future-proofing LNP architecture,” 2004. http://www.verisign.com/stellent/groups/
public/documents/white_paper/001949.pdf

[718] Verizon Business Policy for Settlement-Free Interconnection with Internet Networks.
http://www.verizonbusiness.com/uunet/peering/

[719] D. Verma, Supporting Service Level Agreements on IP Networks. Macmillan Technical Publishing,
1999.

[720] C. Villamizar, R. Chandra, and R. Govindan, “BGP route flap damping,” IETF RFC 2439, Novem-
ber 1998. http://www.rfc-editor.org/rfc/rfc2439.txt

Bibliography 765

[721] C. Villamizar and C. Song, “High performance TCP in ANSNET,” Computer Communications Re-
view, vol. 24, no. 5, pp. 45–60, October 1994.

[722] VINI—A Virtual Network Environment. http://www.vini-veritas.net/

[723] K. Vinodkrishnan, N. Chandhok, A. Durresi, R. Jain, R. Jagannathan, and S. Seetharaman, “Sur-
vivability in IP over WDM networks,” Journal of High Speed Networks, vol. 10, no. 2, pp. 79–90,
2001.

[724] D. C. Walden, “Routing,” BBN Memorandum, Bolk Beranek & Newman, June 1972.

[725] D. C. Walden, “The Bellman–Ford algorithm and “distributed Bellman–Ford algorithm”,” 2003.
http://www.walden-family.com/public/bf-history.pdf

[726] M. Waldvogel, “Fast longest prefix matching: Algorithms, analysis and applications,” Ph.D. dis-
sertation, Swiss Federal Institute of Technology, Zurich, 2002.

[727] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner, “Scalable high-speed prefix matching,”
ACM Trans. on Computer Systems, vol. 19, pp. 400–482, November 2001.

[728] L. Wang, X. Zhao, D. Pei, R. Bush, D. Massey, A. Mankin, S. F. Wu, and L. Zhang, “Observa-
tion and analysis of BGP behavior under stress,” in Proc. ACM SIGCOMM Internet Measurement
Workshop (IMW’2002), November 2002.

[729] W.-P. Wang, D. Tipper, B. Jæger, and D. Medhi, “Fault recovery routing in wide area packet net-
works,” in Proc. 15th International Teletraffic Congress (ITC15), pp. 1077–1086, Washington, DC, June
1997.

[730] Y. Wang, Z. Wang, and L. Zhang, “Internet traffic engineering without full mesh overlaying,” in
Proc. IEEE INFOCOM’2001, pp. 565–571, Anchorage, AK, 2001.

[731] Z. Wang and J. Crowcroft, “Quality-of-service routing for supporting multimedia applications,”
IEEE Journal on Selected Areas in Communications, vol. 14, pp. 1228–1234, 1996.

[732] J. G. Wardrop, “Some theoretical aspects of road traffic research,” Proc. Inst of Civil Engineers,
Part-2, vol. 1, no. 2, pp. 325–378, 1952.

[733] Y. Watanabe and T. Oda, “Dynamic routing schemes for international networks,” IEEE Communi-
cations Magazine, vol. 38, no. 8, pp. 70–75, 1990.

[734] D. Watson, G. R. Malan, and F. Jahanian, “An extensible probe architecture for network protocol
performance measurement,” Software Practice & Experience, vol. 34, no. 1, pp. 47–67, 2004.

[735] J. H. Weber, “Some traffic characteristics of communication networks with automatic alternate
routing,” Bell Systems Technical Journal, vol. 41, pp. 769–792, 1962.

[736] J. H. Weber, “A simulation study of routing and control in communication networks,” Bell Systems
Technical Journal, vol. 43, pp. 2639–2676, 1964.

[737] M. Welzl, Network Congestion Control: Managing Internet Traffic. John Wiley & Sons, Ltd, 2005.

[738] R. White, D. McPherson, and S. Sangli, Practical BGP. Addison-Wesley, 2004.

[739] Wikipedia, the free encyclopedia. http://www.wikipedia.org/

766 Bibliography

[740] W. Willinger and V. Paxson, “Where mathematics meets the Internet,” Notices of the American
Mathematical Society, vol. 45, no. 8, pp. 961–970, August 1998.

[741] W. Willinger, M. S. Taqqu, and A. Erramilli, “A bibliographical guide to self-similar traffic and
performance modeling for high-speed networks,” in Stochastic Networks: Theory and Applications,
F. P. Kelly, S. Zachary and I. Ziedins (Eds.), pp. 339–366. Clarendon Press, 1996.

[742] A. Winnicki and J. Paczynski, “An approach to design three-layer controlled telephone net-
works,” Large Scale Systems, vol. 1, pp. 245–256, 1980.

[743] Wireshark. http://www.wireshark.org/

[744] Wireshark Sample Capture Files. http://wiki.wireshark.org/SampleCaptures

[745] T. C. Woo, “A modular approach to packet classification: Algorithms and results,” in Proc. IEEE
INFOCOM’2000, pp. 1213–1222, 2000.

[746] World Telephone Numbering Guide. http://www.wtng.info/

[747] J. Wroclawski, “Specification of the controlled-load network element service,” IETF RFC 2211,
September 1997. http://www.rfc-editor.org/rfc/rfc2211.txt

[748] T.-H. Wu, Fiber Network Service Survivability. Artech House, 1992.

[749] T. Wu, “Network neutrality, broadband discrimination,” Journal of Telecommunications and High
Technology Law, vol. 2, pp. 141–179, 2005.

[750] X. Xiao, A. Hannan, B. Bailey, and L. Ni, “Traffic engineering with MPLS in the Internet,” IEEE
Network, vol. 14, no. 2, pp. 28–33, March/April 2000.

[751] X. Xiao, T. Telkamp, V. Fineberg, C. Chen, and L. Ni, “A Practical Approach for Providing QoS in
the Internet,” IEEE Communications Magazine, vol. 40, no. 12, pp. 56–62, December 2002.

[752] B. Yaged, “Minimum cost routing for dynamic network models,” Networks, vol. 3, pp. 193–224,
1973. (See also, B. Yaged, “Minimum cost routing for static network models,” Networks, vol. 1, pp.
139–172, 1971.)

[753] X. Yang, “NIRA: A new Internet routing architecture,” Ph.D. dissertation, Massachusetts Institute
of Technology, September 2004.

[754] X. Yang, D. Clark, and A. Berger, “NIRA: A new inter-domain routing architecture,” IEEE/ACM
Trans. on Networking, vol. 15, December 2007.

[755] Y. Yeh, M. Hluchyj, and A. Acampora, “The Knockout Switch: A simple modular architecture for
high performance packet switching,” IEEE Journal of Selected Areas in Communications, pp. 1426–
1435, October 1987.

[756] J. Y. Yen, “Finding the k shortest loopless paths in a network,” Management Science, vol. 17, pp.
712–716, 1971.

[757] S. Yilmaz and I. Matta, “On the scalability-performance tradeoffs in MPLS and IP routing,” in
Proc. SPIE ITCOM’2002: Scalability and Traffic Control in IP Networks, Boston, MA, August 2002.

[758] N. Zadeh, “On building minimum cost communication networks,” Networks, vol. 3, pp. 315–331,
1973.

Bibliography 767

[759] N. Zadeh, “On building minimum cost communication networks over time,” Networks, vol. 4, pp.
19–34, 1974.

[760] F. Zane, G. Narlikar, and A. Basu, “CoolCAMs: Power–efficient TCAMs for forwarding engines,”
in Proc. IEEE INFOCOM’2003, pp. 42–52, April 2003.

[761] H. Zang, C. Ou, and B. Mukherjee, “Path-protection routing and wavelength assignment in WDM
mesh networks under duct-layer constraints,” IEEE/ACM Trans. on Networking, vol. 11, pp. 248–
258, 2003.

[762] L. Zhang, “A new architecture for packet switching network protocols,” Laboratory for Com-
puter Science, Massachusetts Institute of Technology, Cambridge, MA, Tech. Rep. MIT-LCS-TR-
455, 1989.

[763] L. Zhang, M. Andrews, W. Aiello, S. Bhatta, and K. R. Krishnan, “A performance comparison
of competitive on-line routing and state-dependent routing,” in Proc. IEEE GLOBECOM’97, pp.
1813–1819, December 1997.

[764] R. Zhang and M. Bartell, BGP Design and Implementation. Cisco Press, 2003.

[765] R. Zhang and J.-P. Vasseur, “MPLS inter-autonomous system (AS) traffic engineering (TE) require-
ments,” IETF RFC 4216, November 2005. http://www.rfc-editor.org/rfc/rfc4216.txt

[766] W. Zhao and S. Tripathi, “Routing guaranteed quality of service connections in integrated services
packet networks,” in Proc. of IEEE International Conference on Network Protocols (ICNP’97), pp. 175–
182, Atlanta, GA, 1997.

[767] Y. Zhu, C. Dovrolis, and M. Ammar, “Dynamic overlay routing based on available bandwidth
estimation: A simulation study,” Computer Networks, vol. 50, pp. 742–762, 2006.

Index
A
ABV. See Aggregated bit vector
ACH. See Attempts per circuit per hour
ACM. See Address Complete Message
ACQ. See All Call Query
Actual Route Attempt (ARA), 600–601
Adapters, 664, 666–670, 667f, 670f
Address

aggregation, 489, 490–492, 491f
Called Party, 400
Calling Party, 400
Generic, 391, 448
lookup, 488

binary tries and, 493t, 495–500, 496f, 497f,
498f, 499f
compression of multibit tries and,
506–519, 508f, 509f, 511f, 513f, 517f
different approaches for, 530–531
further lookup on, 531–532
hardware algorithms and, 525–530, 525f,
527f, 529f
impact of, 489–490, 491f
length algorithms and, 519–522, 520f, 521f
multibit tries and, 500–506, 501t, 502f,
503f, 504f, 506f, 528–530, 529f
naïve algorithms and, 495
prefix matching and, 492–494, 492t, 493t
search algorithms and, 503, 503f
summary on, 531
update algorithms and, 503f, 504–505, 504f
value approaches and, 522–525, 523f, 524f

Address Complete Message (ACM), 388, 418
Address Resolution Protocol (ARP), 285, 474
Addressing, 691–692

architecture routing in, 283–290, 285f, 286f,
288f, 289f

assignment, 382
basics of SIP, 676–677
forms of, 15
hierarchy within, 3–4
Internet service and, 4–5
IP, 7–8, 25

CIDR and, 10–11, 11t
expression of, 8–9
hostids in, 4–5, 8, 8f
hosts, 143–144
netids in, 4–5, 6–7, 8, 8f
netmask/subnetting in, 9–10
numbering, 6
scheme, classful, 8–9

IS-IS, 187
in network routing, 3

internet service and, 4–5
in postal system, 3–4
in SS7 signaling, 380, 382, 382t, 383–384, 384f

Adjacent Point Code (APC), 380
African Network Information Centre

(AfriNIC), 302
Aggregated bit vector (ABV), 558–560, 559f
All Call Query (ACQ), 445, 447t
Alliance for Telecommunications Industry

Solution (ATIS), 410
American National Standards Institute (ANSI),

380
American Registry for Internet Numbers

(ARIN), 302
AMS-IX. See Amsterdam Internet Exchange
Amsterdam, 297
Amsterdam Internet Exchange (AMS-IX),

292–293
ANSI. See American National Standards

Institute

All entries denoted with § are located in Chapters 21–25 on the attached CD-ROM.

Index 769

Antitromboning, 669
APC. See Adjacent Point Code
APNIC. See Asia Pacific Network Information

Centre
Application Server, 686
ARA. See Actual Route Attempt
Architecture(s), 7

hierarchical routing, 320–321, 320f, 321f
IMS, 685–686, 686f
IP/protocol stack, 7–8, 11, 13–14

application layer/applications of, 15–17
auxiliary applications of, 18–19, 19f
headers’ role in, 18
network/transport layer in, 15, 16f, 17f
routing protocols and, 18

network management, 11, 21, 22f
network topology, 11, 20–21
router, 458

clustered, 484, 485f
elements of, 465–468, 466f
functions of, 459–463, 459f, 462t
further lookup on, 485–486
packet flow within, 468–470, 468f, 469f
packet processing within, 470–475, 471f
shared CPU, 476–479, 477f, 478f
shared forwarding engine, 479–481, 480f
shared nothing, 481–484, 482f, 483f
summary on, 484–485
types of, 463–465

routing, 11
addressing/routing in, 283–290, 285f,
286f, 288f, 289f
ASNs and, 301–303
customer traffic within, 297–298, 297f
further lookup on, 312
growth/size of, 298–301, 299t, 300f, 301t
internet instability and, 310–311
internet routing evolution in, 281–283,
281f
internet view and, 290–294, 291f
IP prefixes and, 8, 298–303, 299t, 301t,
309–310
packet forwarding, 19, 20f
PoPs and, 293, 307–308, 308f
primary functions of, 19–20, 20f
representative, 294–297, 294f, 296f
routing protocol message processing and,
19, 20f
specialized services of, 20, 20f
summary on, 312
traffic engineering of, 308–310

service, 11, 22
best-effort, 12

differentiated services, 13
integrated services, 12
supplementation of, 13

seven-layer, 14, 14f
Area codes, 410
ARIN. See American Registry for Internet

Numbers
ARP. See Address Resolution Protocol
ARPANET, 27, 363

role of, 281, 281f
routing, 36, 53

metrics, 103–104
AS. See Autonomous system
Asia Pacific Network Information Centre

(APNIC), 302
ASN. See Autonomous system number
Asynchronous Transfer Mode (ATM), 24, 26,

169, 240, 292, 609
ATIS. See Alliance for Telecommunications

Industry Solution
ATM. See Asynchronous Transfer Mode
Attempts per circuit per hour (ACH), 357
Autonomous system (AS), 102, 158, 239

BGP and, 241–242
path, 246f, 251, 251f, 255–256

confederation sequences, 261–263, 262f
default-free entries and, 289
home, 241
super-network of, 240
transit, 289–290

Autonomous system number (ASN), 272, 282
repetition of, 241–242
routing architectures and, 301–303

Average holding time, 348
Avici Systems, 486

B
Backup Designated Router (BDR), 169–170

DR, 179
election of, 171, 178

Backward Information Bit (BIB), 385
Backward Sequence Number (BSN), 385, 386
Bandwidth, 5–6, 154

constraint, 650–651
dedicated, 45–46, 46f
delay product, traffic applications’ view of,

201–202
different, 253
fields, 159
per-call, 671
raw, 155
residual capacity of, 45
threshold, 598–599

770 Index

Bandwidth Denial Ratio, 599
BDR. See Backup Designated Router,

Bandwidth Denial Ratio
Bell System, 321
Bell System’s Engineering and Operations

Handbook, 27–28
Bellman–Ford algorithm, 32, 57–58

based approach, 49
centralized view of, 33–35, 34f, 35t
comparison of, 36f, 41f, 43, 64
distance vector approach and, 52

distributed view in, 34f, 36–38, 37f, 38t
operation of, 53

Bell-Northern Research, 330
Benes̆ Network, § 21.12.1
Best-effort service, 12
BGCF. See Breakout Gateway Control Function
BGP. See Border Gateway Protocol
BIB. See Backward Information Bit
Binary tries, 493t, 495–500, 496f, 497f, 498f, 499f
Bitarr, 510–512, 511f
Bitmap

compression, 510–512, 511f
number of bits in, 513–514, 513f
pointer, 515
prefix, 515
tree, 514–519, 516f, 517f

Blocked-calls-cleared modes, 22–23
Border Gateway Protocol (BGP), 10, 18, 19f, 21,

93. See also External Border Gateway
Protocol; Internal Border Gateway
Protocol

AS and, 241–242
additional features of

communities as, 265–266
multiprotocol extension as, 266

assignment of, 146
basic operations within, 243–244
basic terminology of, 242–243
best route determination phase during, 255
configuration initialization, 245–247, 246f,

247f
decision process within

path selection during, 254–256
recap of, 257–258, 258f, 258t
route aggregation/dissemination during,
256–257, 257f

filtering phase during, 255
FSM and, 267t–268t, 268f

active state of, 269
connect state of, 268–269
established state of, 270
idle state of, 266–267

OpenConfirm state of, 270
OpenSent state of, 269–270

further lookup on, 278–279
import policy for, 255
message operations within

KEEPALIVE, 243
NOTIFICATION, 243–244
OPEN, 243
ROUTE/REFRESH, 243–244
UPDATE, 243

MPLS IP VPN and, 241–242, 635–639, 636f,
637f, 638f

overview of, 238–242
path attributes of, 250–254

AS-path as, 246f, 251, 251f, 255–256
local-pref as, 253–254, 254f
MED as, 253, 253f
origin as, 251

path vector and, 240
protocol message format within

common header in, 270, 271f
KEEPALIVE message type in, 274
NOTIFICATION message type in, 274,
275f, 276t
OPEN message type in, 270–272, 271f
ROUTE-REFRESH message type in, 275,
277f
UPDATE message type in, 272–274, 273f,
275–277, 277f, 278t

relationships to, 63f, 102
route flap dampening and, 263–265, 265f
scalability, internal, 258

CLUSTER-LIST for, 260–261, 260f
confederation approach for, 261–263
ORIGINATOR-ID for, 260–261, 260f
route reflection approach for, 259–261,
260f

summary on, 277–278
timers, 244–245
topology illustration, 239–241, 240f
Wedgies, 305–307, 306f

Branching factor, 508–509, 508f, 509f
Breakout Gateway Control Function (BGCF),

686
British Telecom, 334
BSN. See Backward Sequence Number
Buffers, 5–6, 202–203
Butterfly effect, 311

C
Cached sticky random adaptive routing

(CaSRAR), 603–607, 604f, 605f

Index 771

Call(s)
admission control, 606–607, 607f
arrivals, 346–347
blocking, 345–348, 347f, 347t, 348f

code, 359
with multiple traffic classes, 349

carrying capacity, 672
control/crankback, 325–326, 325f, 397–398
dialed, 417, 418–419
duration, 348
flow, 664
gapping, 359
international, 417
local, 417
long-distance, 417
processing, SS7 signaling and, 388–396, 390t,

391t, 392f, 393f, 394f
routing

on PSTN, 417–418, 419–423, 420f, 421f
scenarios, 686–688
state-dependent, 362–363

set up time, 375
special services, 417
toll-free, 417, 423

Call detail record (CDR), 394
Call dropback/Return to Pivot (CD/RTP), 444,

447t
Call duration average. See Average holding

time
Called Party

Address, 400
Number, 391, 395–396, 433, 447–448

Calling Party
Address, 400
Number, 390, 395–396

Call/Session Control Function (CSCF), 686
CAMs. See Content-addressable memories
Canada, 407, 409t, 410
Canadian Steering Committee on Numbering

(CSCN), 410
Carrier Identification Code (CIC), 388,

426–427, 687
CaSRAR. See Cached sticky random adaptive

routing
CCH. See Connections per circuit per hour
CCIS. See Common channel inter-office

signaling
CCS. See Centi-call seconds
CD/RTP. See Call dropback/Return to Pivot
CDR. See Call detail record
CDS. See Content delivery service
Centi-call seconds (CCS), 352–354
ChannelStatus message, 634

CIC. See Carrier Identification Code and Trunk
Circuit Identification Code

CIDR. See Classless Inter-Domain Routing
Circuit Identification Code, 388
Circuit switching, 22–23, 317
Cisco Systems, 157–158, 163, 486
Classifier, 537
Classless Inter-Domain Routing (CIDR), 10–11,

11t, 174, 283–284
Clos Network, § 21.12
Connectionless Network Protocol (CLNP),

167, 186
Code control, 358–359, 359f
Commodity costs, 218
Common channel inter-office signaling (CCIS),

323, 375
Communication networks

background on, 30–33, 31f
destination nodes in, 31, 31f, 110
distance measure terms in, 31f, 32
routing traffic in, 31–32
source nodes in, 31, 31f, 110

Communication technologies. See also specific
technologies

digital, 23–24, 23t
transport services provided by, 23

Complete sequence number PDUs (CSNPs),
188–189

Concave cost property, 45
Congestion, in telephone network

control examples of, 357–361, 358f, 359f, 360f
manifestation of, 361–362

Connections per circuit per hour (CCH), 357
ConnectRetry timers, 244
Constrained shortest-path first (CSPF),

650–652
Constraints, 113

binding, 220
capacity, 112, 115–116, 126
demand flow, 112

Content delivery service (CDS), 293, 297–298
Content-addressable memories (CAMs), 526
Control channel management, 633
Convergence

problems, 161
slow, 63f, 66–67

Cost(s), 31f, 32
commodity, 218
distance, 31f, 32, 110
of flow, unit, 110, 112
implicit, 63f, 102
link, 31f, 32, 103, 110
path, 44, 47

772 Index

routing
case, minimum, 118–123, 118f, 119f, 121f
/MCNF, 215–219
objective, minimum, 111–114, 112f

CPE. See Customer premise equipment
CPLEX, 121

duality with, 226–231
identifiable, 227

CPU, 310–311, 471
processing, 474
shared, 476–479, 477f, 478f

Crossbar, § 21.6
Cross-producting

on-demand, 562
packet classification and, 560–562, 561f
tables in, 565–566

CSCF. See Call/Session Control Function
CSCN. See Canadian Steering Committee on

Numbering
CSNPs. See Complete sequence number PDUs
CSPF. See Constrained shortest-path first
Customer premise equipment (CPE), 22

D
DAR. See Dynamic alternate routing
Data planes, 11, 21
DCR. See Dynamically Controlled Routing
Delay, 154–155, 159, 196

average
MCNF/minimization of, 222–226, 223f
in single link system, 197–199, 198f

dial-tone, 357
post-dial, 375
in traffic engineering, 195–200, 198f, 199f

Demand
crossproducting on-, 562
flow constraints, 112
node, 110
pair, 110
router, 109
traffic, 645–646
volume

flowing, 109
routing, 109

Designated Router (DR), 169–170
BDR, 179
election of, 171, 178

Destination Point Code (DPC), 380, 386, 418,
679

DHCP. See Dynamic Host Configuration
Protocol

Diffusing update algorithm (DUAL), 75, 157
Digit analysis, 417

Dijkstra’s algorithm, 32, 57–58
-based approach, 48–49, 49f
centralized version of, 34f, 38–40, 40f
comparison of, 36f, 41f, 43
for distributed environment, 41
distributed variant of, 40–42, 41f
features of, 172–174
interative steps/view of, 40f, 41f
operation of, 53, 93
with tracking of next hop, 42

Dimensioning, network, 200, 604, 604n2
Distance costs, 31f, 32, 110
Distance vector. See also Enhanced Interior

Gateway Routing Protocol; Interior
Gateway Routing Protocol; Routing
Information Protocol

Bellman–Ford algorithm and, 52
distributed view in, 34f, 36–38, 37f, 38t

IP routing and
basics of, 143–146, 144f, 145t
communication of, 146
comparison of protocols within, 161–163,
162t
distance vector protocol and, 142–163
redistribution of, 160–161, 161f
static, 146
summary on, 161–163, 162t
table, 143–146, 144f, 145t

routing protocols, 43, 60, 104–106, 142
based on diffusing computation, 75–83,
77f, 79f, 80f, 81f, 82f
basic, 75–76
broadcast of, 65
conceptual framework/illustration of,
60–66, 62f, 63f, 63t, 64t, 65f
counting to infinity and, 63f, 68–70
dissemination of, 65
loop-free, 75–83, 77f, 79f, 80f, 81f, 82f
main operation of, 61–63, 62f, 63f
message content, 73–74
solutions for, 70–74
timers and, 63f, 66–70, 66f

usage of, 58
DNHR. See Dynamic Nonhierarchical Routing
DNS. See Domain Name System
DOC. See Dynamic overload control
Domain Name System (DNS), 19
Dotted decimal notation, 8–9
DPC. See Destination Point Code
DR. See Designated Router
DUAL. See Diffusing update algorithm
Dynamic alternate routing (DAR), 334, 337

Index 773

Dynamic Host Configuration Protocol
(DHCP), 287

Dynamic Nonhierarchical Routing (DNHR),
328–330, 329f, 337, 396

Dynamic overload control (DOC), 358, 358f,
361

Dynamically Controlled Routing (DCR), in
telephone networks, 30, 84, 316–317

concept of, 324
development of, 330, 330f
hierarchical routing and, 327, 327f
path computation, 332–334, 333f
summary on, 328
trunk reservation and, 326
understanding, 330–332, 331f

E
EBGP. See External Border Gateway Protocol
ECCS. See Economic centi-call seconds
ECMP. See Equal-cost multi-path
ECN. See Explicit Congestion Notification
Economic centi-call seconds (ECCS), 354–356,

356f
EGP. See Exterior Gateway Protocol
EIGRP. See Enhanced Interior Gateway

Routing Protocol
E-mail, 195
Engineered paths, 328–330, 329f
Engineering and Operations in the Bell

System, 371
Enhanced Interior Gateway Routing Protocol

(EIGRP), 75, 163
fields in

ACK, 158
checksum, 158
flags, 158
OpCode, 158

functionality of, 233, 233t
packet format of, 157–160, 158f, 159f
provision of, 157

EP. See Internet exchange points
Equal-cost multi-path (ECMP)

basis of, 174
OSPF and, 172, 174–175, 175f

Equivalence Classes, 563, 704
Erlang, A.K., 347, 371
Erlang-B loss formula

computation of, 349–350, 362–363
illustration of, 347–348

Erlangs (Erls), 596, 672–673
Ethernet, 169, 285, 285f, 292
European Telephone Numbering Space

(ETNS), 409, 409t
Explicit Congestion Notification, § 22.6.2

Exterior Gateway Protocol (EGP), 282–283
External Border Gateway Protocol (EBGP),

247–250, 248f

F
Fair queueing, § 22.1.3

weighted, § 22.1.4
False matches/positives, 560
FCC. See Federal Communication Commission
FCS. See Frame Check Sequence
FE. See Fraction of Required Extra Capacity
Federal Communication Commission (FCC),

324
Feedback schemes

explicit, § 22.6
implicit, § 22.3

FIB. See Forward Information Bit; Forwarding
Information Base

Fiber-Switch Capable (FSC), 626
Field sets, 555
File Transfer Protocol (FTP), 16–17, 19f
Fill-in signaling unit (FISU), 384–387, 386f
Filtering

packet, 534
phase during BGP, 255

Finite state machine (FSM), BGP and,
267t–268t, 268f

active state of, 269
connect state of, 268–269
established state of, 270
idle state of, 266–267
OpenConfirm state of, 270
OpenSent state of, 269–270

FISU. See Fill-in signaling unit
Fixed stride multibit tries, 502–503
Flag, 385
Flooding, 84–88, 85f, 167
Flow. See also Network flow

call, 664
classifier, 537
constraints, demand, 112
packet, 468–470, 468f, 469f
path, 109
unit cost of, 110, 112
unit link cost of, 110
usage of, 109–110

Forts-Thorup function (FT), 222–225, 223f, 232
Forward Call Indicator, 391
Forward Information Bit (FIB), 385
Forward Sequence Number (FSN), 385
Forwarding functions

basic, 460
complex, 460–461

774 Index

Forwarding Information Base (FIB), 7, 304
Forwarding tables, 492, 492t

routing tables v., 462, 462t
usage of, 7, 59, 459

Fraction of Required Extra Capacity (FE), 232
Fraction of Used Capacity (FU), 232
Frame Check Sequence (FCS), 385–386
Frame Relay Alliance, 26, 169
FSC. See Fiber-Switch Capable
FSM. See Finite state machine
FSN. See Forward Sequence Number
FT. See Forts-Thorup function
FTP. See File Transfer Protocol
FU. See Fraction of Used Capacity

G
Garbage collection, 150
Gbps. See Gigabits per sec
Generalized modular switching (GMS), 626
Generalized MultiProtocol Label Switching

(GMPLS), 58
further lookup on, 641
intention for, 626–627
label stacking and, 628, 629f
labels, 627, 628t, 629f, 629t
protocols in, 631–632
RSVP-TE for, 629f, 630, 630t, 631f, 631t
summary on, 640–641

Generic Address, 391, 448
Gigabits per sec (Gbps), 109, 195
GMPLS. See Generalized MultiProtocol Label

Switching
GMS. See Generalized modular switching
GoS. See Grade-of-service
GOSIP (Government Open Systems

Interconnection Profile), 187
Grade-of-service (GoS), 324, 350–352, 351f
Greenland, 409, 409t
Grid-of-tries

extended, 553
packet classification and, 545–548, 546f, 547f

H
Hard-to-reach capability (HTR), 358–359, 359f
Head-of-line blocking, § 21.7
HiCuts. See Hierarchical intelligent cuttings
Hierarchical intelligent cuttings (HiCuts),

572–574, 573f
Hierarchical tries, 541–544, 542f, 543f
HoldTimer, 244–245
Home Subscriber Server (HSS), 686
HSRC. See Hypothetical signaling reference

connection

HSS. See Home Subscriber Server
HTR. See Hard-to-reach capability
HTTP. See HyperText Transfer Protocol
HyperCuts, 573f, 575–576, 575f
HyperText Transfer Protocol (HTTP), 16–17,

19f
Hypothetical signaling reference connection

(HSRC), 403–404, 404t

I
IAB. See Internet Advisory Board
IAM. See Initial Address Message
IANA. See Internet Assigned Numbers

Authority
IBGP. See Internal Border Gateway Protocol
ICANN. See Internet Corporation for Assigned

Names and Numbers
ICMP. See Internet Control Message Protocol
IDD. See International direct dialing
IESG. See Internet Engineering Steering Group
IETF. See Internet Engineering Task Force
IGRP. See Interior Gateway Routing Protocol
ILP. See Integer Linear Programming
IMS. See IP multimedia subsystem
IMT. See Inter-machine trunk
INC. See Industry Numbering Committee
Industry Numbering Committee (INC), 410
Initial Address Message (IAM), 446

impact on, 447–448
processing, 418–419
signaling and, 388, 389–391, 390t, 391t,

394–395
Integer Linear Programming (ILP), 122
Integer values, 220
Integrated Services Digital Network (ISDN),

388
Integrated Services User Part (ISUP)

functionalities of, 397–398
illustration of, 398–399
SS7 signaling and, 388–399, 390t, 391t, 392f,

393f, 394f, 397f
Inter-exchange carrier (IXC)

illustration of, 427–431, 427f, 428f, 429f, 430f,
431f

usage of, 322, 322f, 424–426, 425f
Interior Gateway Routing Protocol (IGRP), 104

composite metric computation and, 154–157
development of, 153
packet format of, 153–154, 154f

Inter-machine trunk (IMT), 31, 317

Index 775

Intermediate System-to-Intermediate System
(IS-IS), 53, 58, 309, 632

extensions to, 625, 626
further lookup on, 192
integrated, 186–189, 189t
key features of

addressing as, 187
areas as, 187
categorization of packets as, 188–189
information encoding as, 189, 189t
packet format as, 189, 189t
pseudonyms/non-pseudonyms as, 188
shortest path calculation as, 188

OSPF and, 190–191, 191t
as protocol, 167
summary on, 191
TLV codes for, 189, 189t

Internal Border Gateway Protocol (IBGP),
247–250, 248f

International direct dialing (IDD), 411
International Telecommunication Union (ITU),

25, 380, 387, 664n1
Internet, 298

buffers in, 5–6, 202–203
conceptual framework of, 4
routers in, 5
service addressing and, 4–5
transfer model, 5

Internet Advisory Board (IAB), 25
Internet Assigned Numbers Authority

(IANA), 25
Internet Control Message Protocol (ICMP), 19,

470
Internet Corporation for Assigned Names and

Numbers (ICANN), 25, 302
Internet Engineering Steering Group (IESG),

25
Internet Engineering Task Force (IETF), 25
Internet exchange points (EP), 291
Internet Protocol (IP), 186, 195. See also TCP/IP

addressing, 7–8, 25
CIDR and, 10–11, 11t
expression of, 8–9
hostids in, 4–5, 8, 8f
hosts, 143–144
netids in, 4–5, 6–7, 8, 8f
netmask/subnetting in, 9–10
numbering, 6
scheme, classful, 8–9

datagrams in, 5, 195
dynamic call routing and, 340–341, 341t
header processing and, 472, 475
interface in, 31
link/trunk, 31

network traffic, 195
packets in, 5–6

formats, 15, 16f, 17f
prefixes, 8, 298–303, 299t, 301t, 309–310
protocol stack architecture, 7–8, 11, 13–14

application layer/applications of, 15–17
auxiliary applications of, 18–19, 19f
headers’ role in, 18
network/transport layer in, 15, 16f, 17f
routing protocols and, 18

routing
basics of, 143–146, 144f, 145t
communication of, 146
comparison of protocols within, 161–163,
162t
distance vector protocol and, 142–163
redistribution of, 160–161, 161f
static, 146
summary on, 161–163, 162t
table, 143–146, 144f, 145t

standards for
de facto, 24–25
de jure, 24–25

traffic engineering of, 194–235
Internet Service Providers (ISPs)

commercial, 535
geographical perspective of, 297–298
growth/size of, 298–301, 299t, 300f, 301f
networks, 535–537, 536f
peering/tiering of, 291–294
representative view of, 294–297, 294f, 296f

Internet Society (ISOC), 25
IP. See Internet Protocol
IP multimedia subsystem (IMS), 684–692, 684t,

686f, 689f
ISDN. See Integrated Services Digital Network
IS-IS. See Intermediate System-to-Intermediate

System
iSLIP scheduling, § 21.9.3, § 21.9.4
ISOC. See Internet Society
ISPs. See Internet Service Providers
ISUP. See ISDN User Part
ITU. See International Telecommunication

Union
ITU Point Code, 380–381, 382
ITU Telecommunication Standardization

Sector (ITU-T), 25
IXC. See Inter-exchange carrier

J
Japan Internet exchange (JPIX), 293
Jitter. See Timers
Juniper Networks, 486

776 Index

K
Kalaba-Juncosa, 139
Kazakhstan, 409, 409t
Kbps. See Kilobits per second
KeepAlive timers, 245
Kilobits per second (Kbps), 348

L
Label(s)

binding, 619
GMPLS and, 627, 628t, 629f, 629t
routing, 387
stacking

GMPLS, 628, 629f
MPLS, 628, 629f

Label distribution protocol (LDP), 619
Label forwarding information base (LFIB), 615
Label information base (LIB), 615
Label switched path, 616
LACNIC. See Latin American and Caribbean

Internet Address Registry
Lambda-Switch Capable (LSC), 626
LAN (local-area network), 167, 169, 285
LATA. See Local access and transport area
Latin American and Caribbean Internet

Address Registry (LACNIC), 302
LDP. See Label distribution protocol
Leaky bucket, § 23.3.1
Learning automata, 334
LEC. See Local-exchange carrier
Length indicator (LI), 385
Level compressed tries, 507–509, 508f, 509f
LFIB. See Label forwarding information base
LI. See Length indicator
LIB. See Label information base
Line Information Database (LIDB), 426
Linear programming (LP)

dual in, 212
integer, 122
mixed integer, 122
optimality conditions for, 217–218
problems, 113, 120, 122

Link(s)
costs, 31f, 32, 103, 110
directionalization of, 360–361, 360f
metric, 31f, 32
number of, 182
property correlation, 633
representation

bidirectional, 60
unidirectional, 60

SS7 signaling, 376–378, 377f

system, average delay in, 197–199, 198f
traffic engineering and, SS7 signaling,

402–403
trunk/, 31
virtual, 168f, 169, 239
weights, 646

Link management protocol (LMP), 633–634,
633f

Link state (LS)
acknowledgment packet, 181, 181f
request packet, 180
update packet, 180–181, 181f

Link state advertisement (LSA), 288
flooding of, 84–88, 85f, 167
header, 180
LSRefreshTime and, 170
LSU and, 85f, 88–92, 90f, 91t
MinLSArrival, 170
MinLSInterval, 170
network, 171, 183–184, 184f

examples of, 184–186, 184f, 185f, 186f
OSPF, 181–184, 182f, 183f, 183t, 184f
packet format, 181–184, 182f, 183f, 183t, 184f
router, 171, 182–183, 183f, 183t

examples of, 184–186, 184f, 185f, 186f
summary, 175
types of, 170

additional, 176
area border, 171
external, 171
5 (AS-external-LSA), 176
Group Membership, 176
NSS External, 177
NSSS External, 177
Opaque, 176

Link state protocol (LSP), 43, 186, 188
dynamic call routing and, 339–340
in-band

based on end-to-end session, 92–93
hop-by-hop communication, 84–92, 85f,
90f, 91t
v. out-of-band, 83–84

routing protocol, 83
Link state update (LSU), 85f, 88–92, 90f, 91t
Link status indicator (LSI), 385
Link status signaling unit (LSSU), 384, 386,

386f
Link weight, 31f, 32

determination/traffic engineering
through duality, 226–232
large networks and, 232–234
problem, 211–213, 212t

Index 777

LMP. See Link management protocol
Load, 154–155

balancing
in multi-commodity/three node example,
123–126, 125f
in single-commodity network flow,
114–116

carried, 347–348
offered, 352–354
traffic, 345–349, 347f, 347t, 348f

Load set periods (LSPs), 328
optimal, 645
path determination

with CSPF, 650–652
with network flow modeling, 108–139,
652–656

tunnels, 646–647
Local access and transport area (LATA), 427
Local service management system (LSMS), 442
Local Service Order Administration (LSOA),

441
Local-exchange carrier (LEC). See also Multiple

local-exchange carrier
competitive, 432
illustration of, 322, 322f, 396, 424–426, 425f
incumbent, 432
usage of, 427–431, 427f, 428f, 429f, 430f, 431f

Location routing number (LRN), 440–442, 441f
London Internet exchange (LINX), 293
Loop(s)

free distance vector protocol, 75–83, 77f, 79f,
80f, 81f, 82f

occurrence of, 161
routing, 63f, 67–68

Looping
avoidance of, 75, 318, 321
problem, 324

Loss system. See Blocked-cells-cleared-modes
LP. See Linear programming
LRN. See Location routing number
LS. See Link state
LSA. See Link state advertisement
LSC. See Lambda-Switch Capable
LSI. See Link status indicator
LSMS. See Local service management system
LSOA. See Local Service Order Administration
LSP. See Label switched path
LSSU. See Link status signaling unit
LSU. See Link state update
Lulea compressed tries, 506f, 510–514, 511f,

513f

M
MACRIC. See Maximum available capacity

routing with instantaneous computation
MACRNPC. See Maximum available capacity

routing with periodic update without
crankback

MACRPC. See Maximum available capacity
routing with periodic update and
crankback

MAEs. See Metropolitan Area Exchanges
MARC. See Maximum Allowable Residual

Capacity Routing
MaxAge, 181, 189
Maximum Allowable Residual Capacity

Routing (MARC), 338–339
Maximum available capacity routing with

instantaneous computation (MACRIC),
603–607, 604f, 605f, 607f

Maximum available capacity routing with
periodic update and crankback
(MACRPC), 603–607, 604f, 605f, 607f

Maximum available capacity routing with
periodic update without crankback
(MACRNPC), 603–607, 604f, 605f, 607f

Maximum link utilization (ML)
capture of, 232
MCNF and, 219–221
minimization of, 114–116
objective of, 226–228
traffic engineering and, 219–221

Maximum Transmission Unit (MTU), 5, 179,
180f

Mbps. See Megabits per sec
MCNF. See Multi-commodity network flow
MCSPRF. See Multi-commodity

shortest-path-based routing flow
MED. See Multi-exit-discriminator
Media Resource Function (MRF), 686
Megabits per sec (Mbps), 109, 155, 195, 596–599
Memory, 301, 494
Message signaling unit (MSU), 385–387, 386f,

387t, 474–475
Message Transfer Part-Level 1 (MTP1), 384
Message Transfer Part-Level 2 (MTP2), 384
Message Transfer Part-Level 3 (MTP3), 384
Metrics

ARPANET routing, 103–104
computation, composite, 154–157
figure-of-merit penalty, 263–264, 265f
link, 31f, 32
narrow, 188
performance, 538–539

778 Index

TOS, 182–183
wide, 188

Metropolitan Area Exchanges (MAEs), 291
MFA. See MPLS/Frame Relay Alliance
MILNET, 281, 281f
MILP. See Mixed integer linear programming
MIME (multi-purpose Internet mail

extension), 682
MinASOriginationInterval timers, 245
MinRouteAdvertisementInterval timers, 245,

264–265
Minutes of Usage (MoU), 353–354
Mixed integer linear programming (MILP), 122
ML. See Maximum link utilization
MoU. See Minutes of Usage
MPLS. See MultiProtocol Label Switching
MPLS/Frame Relay Alliance (MFA), 26
MRF. See Media Resource Function
MSU. See Message signaling unit
MTP1. See Message Transfer Part-Level 1
MTP2. See Message Transfer Part-Level 2
MTP3. See Message Transfer Part-Level 3
MTU. See Maximum Transmission Unit
Multibit tries, 500–506, 501t, 502f, 503f, 504f,

506f, 528–530, 529f
compression of, 506–519, 508f, 509f, 511f,

513f, 517f
fixed stride, 502–503
variable stride, 506, 507f

Multicasting, 9
Multicommodity network flow (MCNF)

composite objective function and, 221–222
duality/illustration of, 213–214
minimization of average delay, 222–226, 223f
minimum cost routing and, 215–219
ML and, 219–221
notation summary used in, 212t
problem, 211–213

Multicommodity shortest-path-based routing
flow (MCSPRF)

notation summary used in, 212t
problem, 211–213

Multi-exit-discriminator (MED), 253, 253f
Multilayer routing, § 25.3

IP over SONET, 25.3.2
Multiple local-exchange carrier (MLEC), 431f,

432–433, 432f
Multiple switching function role, 318f, 319
MultiProtocol Label Switching (MPLS), 24, 26

background on, 613–614
further lookup on, 641, 659–660
IP VPN, 635–639, 636f, 637f, 638f
label stacking and, 628, 629f

mechanism, 614–627, 615f, 616f, 617f, 618f,
619f, 620f, 621f, 622f, 622t

routing in, 30, 614
summary on, 640–641, 659
traffic engineering of, 643–647, 644f

layer 2 VPN, 656–657
for voice over, 657–659, 659f
VPN, 634–635, 647–657, 648t, 649f

usage of, 58, 310

N
NANP. See North American Numbering Plan
NANPA. See North American Numbering Plan

Administration
NAPs. See Network access points
NAT. See Network address translation
NBMA. See Nonbroadcast multiaccess

(NMBA)
Network(s). See also Communication

networks; Virtual private networks
addressable, 143–144, 146
capacitated, 110
dimensioning, 200, 604, 604n2
directed/undirected, 110, 143
hierarchy within OSPF, 168, 168f
information, 239
interfaces, 465
layer reachability information (variable), 274
LSA/OSPF and, 184–186, 184f, 185f, 186f
management/architecture, 11, 21, 22f
mask, 178
N-node symmetric, 366–367

with trunk reservation, 367–371, 370f
non-broadcast, 152
number, 146
optical electric switch within, 31
routing

addressing in, 3–5
definition of, 3
internet service and, 4–5
introduction to, 3–28
overview of, 5–7
summary on, 27
traffic in, 5–7

storm effect, 310
stub, 146, 176
telephone, dynamic call routing and,

340–341, 341t
three-node, 364–366
topology

architecture, 11, 20–21
of routing protocol path vector, 95f

Index 779

/transport layer, IP protocol stack
architecture in, 15, 16f, 17f

types/OSPF, 169
broadcast, 169
NBMA, 169
point-to-multipoint, 169
point-to-point, 169–170
virtual links as, 168f, 169, 239

usage of, 145–146
widest path routing algorithm examples for,

46–47, 47f
Network access points (NAPs), 291, 312
Network address translation (NAT), 15
Network flow

modeling, 108–139, 652–656
multi-commodity/general example

background on notation and, 129–131,
131t
link-path formulation and, 131–136, 132t,
133t
node-link formulation and, 136–137

multi-commodity/non-splittable flow,
137–138

multi-commodity/three node example
average delay with, 126–129
load balancing in, 123–126, 125f
minimum cost routing case and, 118–123,
118f, 119f, 121f

shortest path routing/, traffic engineering
and, 206–211, 206f, 209f, 210f

single-commodity
applicability/summary on, 117–118
average delay in, 116–117
description/minimum cost routing
objective of, 111–114, 112f
load balancing in, 114–116
modeling, 108–139
three-node illustration of, 110–111, 111f

summary on, 138–139
Network layer reachability information

(NLRI), 266, 274
Network portability administration center

(NPAC), 439–440, 441
Network provider. See Service provider
Network routing number (NRN), 440
Network service access point (NSAP), 186
Network trunk congestion (NTC), 399
Networking

environments, 45
introduction to, 3–28
protocol analyzer in, 26–27
summary on, 27

NLRI. See Network layer reachability
information

Node(s)
availability, 335
demand, 110
destination, 31, 31f, 110
-link formulation, 136–137
multi-commodity/three

average delay with, 126–129
load balancing in, 123–126, 125f
minimum cost routing case and, 118–123,
118f, 119f, 121f

pair, 110
sink, 110
source, 31, 31f, 110
super-, 102

virtual, 239
three-

illustration, 110–111, 111f
network, 364–366

types, 376
NOL. See Number of Overloaded Links
Non broadcast multiaccess (NMBA), 169
North American Numbering Plan (NANP),

357–358, 409–410, 415, 447, 688
North American Numbering Plan

Administration (NANPA), 410
North American Point Code, 380–384, 387
Not-so-stubby area (NSSA), 176, 303
NPA Allocation Plan and Assignment

Guidelines, 410
NPAC. See Network portability administration

center
NRN. See Network routing number
NSAP. See Network service access point
NSFNET, 281, 281f, 282, 303
NSSA. See Not-so-stubby area
NTC. See Network trunk congestion
Number(s). See also Location routing number

Called Party, 391, 395–396, 433, 447–448
Calling Party, 390, 395–396
dialed, handling, 418–423, 420f, 421f
emergency, 423
port, 14
portability

classification of, 435–436
fixed/mobile, 45f, 439–454, 441f, 443f,
447t, 449t, 452f, 453f
implementation, 448
local, 434, 436, 451–454, 451f, 452f, 453f
location, 436, 670
operator, 435
service, 436
toll-free, 436–439, 437f, 438f

780 Index

portability/PSTN, 434–439, 437f, 438f
fixed/mobile, 45f, 439–454, 441f, 443f,
447t, 449t, 452f, 453f
further lookup on, 454–455
summary on, 454

routable, 419
subscriber, 418–419
toll-free, 417, 423

Number of Overloaded Links (NOL), 232

O
Objective function, 113
OCC. See Originating call control
Onward routing (OR), 443–444, 443f, 447t
OPC. See Origination Point Code
OpCode, 158
Open Shortest Path First protocol (OSPF), 18,

19f, 309, 632
additional features of, 176

route redistribution as, 177
stub areas/networks as, 146, 176

ECMP and, 172, 174–175, 175f
extensions to, 625
flooding and, 170
further lookup on, 192
in-network functionality and, 170
as instance of protocol, 167
inter-area routing computation and, 175
IS-IS and, 190–191, 191f
LSA and, 170–171, 176

network, 184–186, 184f, 185f, 186f
router, 184–186, 184f, 185f, 186f

network hierarchy within, 168, 168f
network types and, 169

broadcast, 169
NMBA, 169
point-to-multipoint, 169
point-to-point, 169–170
virtual links as, 168f, 169, 239

packet format
common header, 177–178, 177f
database description, 173f, 179–180, 180f
designated router, 179–180, 180f
hello, 178–179, 179f
link state acknowledgment, 181
link state request, 180
link state update, 180–181, 181f
LSA, 181–184, 182f, 183f, 183t, 184f

protocol features of, 168
router classification within, 168–169, 168f

area border, 168, 168f
backbone, 168f, 169
AS boundary, 168f, 169

internal, 168f, 169
routing computation and, 172–174
specifications for, 174–175
sub protocols of

database synchronization process as, 172,
173f, 183f
hello as, 171

summary on, 191
usage of, 58, 146

Open Systems Interconnections (OSI), 28
definition of, 14
NSAP, 187
Reference Model, 13–14, 14f

Operations Support Systems (OSS), 440–442,
441f

Operator. See Service provider and Internet
service provider

Optimal link weight system, 203
OR. See Onward routing
Originating call control (OCC), 325, 327, 337,

380, 396
Origination Point Code (OPC), 387, 679
OSI. See Open Systems Interconnections
OSPF. See Open Shortest Path First protocol
Overlay routing, § 25.4

P
Packet(s)

context, 468–469, 469f
filtering, 534
flow within router architectures, 468–470,

468f, 469f
formats

of EIGRP, 157–160, 158f, 159f
of IGRP, 153–154, 154f
of IS-IS, 189, 189t
of LSA, 181–184, 182f, 183f, 183t, 184f

formats/OSPF
common header, 177–178, 177f
database description, 173f, 179–180, 180f
designated router, 179–180, 180f
hello, 178–179, 179f
link state acknowledgment, 181
link state request, 180
link state update, 180–181, 181f
LSA, 181–184, 182f, 183f, 183t, 184f

forwarding, 459–461, 459f
function of, 472–473
in router architectures, 19, 20f

IP, 5–6, 15, 16f, 17f
labeled, 616–619, 616f, 617f, 618f, 619f
LS

acknowledgment, 181, 181f

Index 781

request, 180
update, 180–181, 181f

processing
egress, 469–470
fast path v. slow path, 470–475, 471f

queueing/scheduling, 473–474
switching, 12, § 21.2
translation, 461

Packet classification, 461, 473
algorithms and, 540, 540t
approaches to, 555, 555n1, 556f

ABV as, 558–560, 559f
crossproducting as, 560–562, 561f
decision tree, 571–576, 573f, 575f
lucent bit vector as, 556–558, 557f
RFC as, 562–568, 563f, 564f, 566f, 567f

d dimensions and, 548–552, 549f, 550f,
566–568

further lookup on, 579–580
hardware-based solutions to, 576
importance of, 535–537, 536f
naïve algorithms and, 540–541
problem, 537–539, 539t
summary on, 579
TCAMs and, 576–579, 577f
tuple space and

approaches, 568, 568f
pruning, 570–571, 571f
search, 569–570, 569f

two-dimensional solutions to, 541–548, 542f,
543f, 545f, 546f, 547f
extension of, 552–555, 553f, 554f

Packet marking, § 23.5
single-rate tricolor, § 23.5.2
two-rate tricolor, § 23.5.3

Packet over SONET (PoS), 616, § 25.1.3
Packet queueing, § 22.1
Packet scheduling, § 21.1

See Round robin
See Fair queueing

Packet-Switch Capable (PSC), 626
Partial sequence number PDUs (PSNPs),

188–189
Pass-along method, 394
Path

AS/BGP, 246f, 251, 251f, 255–256
caching

preliminary, 600–601
shortest path computation with, 31f,
43–45, 44f

compression, 498–500, 499f
labeled-switched, 615, 616–619, 616f, 617f,

618f, 619f
vector routing protocols, 93–94, 104–106

basic principle of, 94–97, 95f, 96f
implicit cost/relationships of, 63f, 102
link failure case and, 97
network topology of, 95f
with path caching, 97–102, 100f, 101f

PATRICIA, 498
PCC. See Progressive call control
PDUs. See Protocol data units
Pendulum effect, 73, 245
Ping, 19
Plain old telephone service (POTS), 436,

677–680, 678f
PNNI. See Private Network-to-Network

Interface
Point Codes, 380–382
Point of presence (PoP), 293, 307–308, 308f, 432
Point-to-point tunneling protocol (PPTP), 464
Poisson process, 196, 346, 371
PoP. See Point of presence
Port numbers, 14
Portability

number
classification of, 435–436
fixed/mobile, 45f, 439–454, 441f, 443f,
447t, 449t, 452f, 453f
implementation, 448
local, 434, 436, 451–454, 451f, 452f, 453f
location, 436, 670
operator, 435
service, 436
toll-free, 436–439, 437f, 438f

number/PSTN, 434–439, 437f, 438f
fixed/mobile, 45f, 439–454, 441f, 443f,
447t, 449t, 452f, 453f
further lookup on, 454–455
summary on, 454

Ported Number Translation bit (PNTI), 447
Postal system, 3–4
POTS. See Plain old telephone service
PPTP. See Point-to-point tunneling protocol
Prefix(es)

disjoint, 500–502, 502f
expansion, 500–501, 501t
IP, 8, 298–303, 299t, 301t, 309–310
matching, 492–494, 492t, 493t
range search, 522–525, 523f, 524f
sequence, 506f, 510–512, 511f
transformations, 500–502, 501t, 502f

Private Network-to-Network Interface
(PNNI), 240

Progressive call control (PCC), 318, 325, 327,
337, 394, 396

Protocol data units (PDUs), 188

782 Index

Provider. See Service provider, VPN provider
Pruning tries, 544–545, 545f
PSC. See Packet-Switch Capable
PSNPs. See Partial sequence number PDUs
PSTN. See Public Switched Telephone Network
Ptrbitarr, 516, 516f
Ptrblk, 516, 516f
Public Switched Telephone Network (PSTN),

21–23, 406
basic telephone call on, 415–416, 416f
call routing on

multiple long-distance provider case and,
424–431, 425f, 427f, 428f, 429f, 430f, 431f
multiple provider environment and, 431f,
432–433, 432f
single national provider environment and,
417–418, 419–423, 420f, 421f

dialed calls on, 417–419
dialing plans and, 412–415, 412n1
digit analysis v. translation and, 417
gateway, 686
global telephone addressing and, 407–409,

408t, 409t
intermediate TDM switch and, 433
national numbering plans and, 409–412
number portability and, 434–439, 437f, 438f

fixed/mobile, 45f, 439–454, 441f, 443f,
447t, 449t, 452f, 453f
further lookup on, 454–455
summary on, 454

Q
QoR. See Query on release
QoS. See Quality-of-Service
Quality-of-Service (QoS), routing, 30, 53, 584

attributes of, 589
background on, 585–589, 586t, 587f
classification, 586–589, 586t, 587f
heterogeneous service and, 596–599, 597t
impact/update on, 593–595, 595f
lessons of, 595–596
shortest v. widest path in, 590–593, 591t
source-based, 599–608, 604f, 604n2, 605f,

607f
Query on release (QoR), 444, 447t

R
Random access memory (RAM), 528

based implementation, 525
based lookup, 525–526, 525f

Random early detection (RED), § 22.4
adaptive, § 22.5.2
weighted, § 22.5.1

Real-time Network Routing (RTNR), 84, 328,
334–337, 335t, 336f, 375, 396

Real-time paths, 329, 329f
Real-time Transfer Protocol (RTP), 17–18, 19f
Recursive flow classification (RFC), 562,

566–568, 566f, 567f
equivalence classes and, 563–565, 563f, 564f
techniques, 563

RED. See Random early detection
Release message (REL), 418
Reliability, 154–155
Requests for Comments (RFCs), 25, 163
Resource ReSerVation Protocol (RSVP), 12

for GMPLS, 629f, 630, 630t, 631f, 631t
overview of, 620–621, 620f, 621f
TE, 621–625, 622f, 622t

Resource ReSerVation Protocol-TE (RSVP-TE),
621–625, 622f, 622t

RFCs. See Requests for Comments
RIB. See Routing Information Base
RIP. See Routing Information Protocol
RIPE (Réseaux IP Européens), 302
Round robin, § 22.1.3

deficit, § 22.1.5
weighted, § 22.1.4

Round-trip time (RTT), 200, 202
Route(s)

aggregation/dissemination during BGP,
256–257, 257f

distribution, 160–161, 161f
expiration, 150
flap dampening, 263–265, 265f
non-clients, 259
open jaw, 146
reflection clients, 259
tag, 151
Views, 298
withdrawn, 272–274

Router(s), 5. See also Backup Designated
Router; Designated Router

architectures, 458
clustered, 484, 485f
elements of, 465–468, 466f
functions of, 459–463, 459f, 462t
further lookup on, 485–486
packet flow within, 468–470, 468f, 469f
packet processing within, 470–475, 471f
shared CPU, 476–479, 477f, 478f
shared forwarding engine, 479–481, 480f
shared nothing, 481–484, 482f, 483f
summary on, 484–485
types of, 463–465

buffer size, 5–6, 202–203

Index 783

circuit, 109
cold potato, 253
concentration, 259
core, 6, 463–464

IP and, 144–146, 144f, 145t
customer-edge, 634
dead arrival, 179
Dead Interval, 189
definition of, 31
demand, 109
edge, 464
enterprise, 464–465
hop-by-hop, 59
in-band hop-by-hop, link state protocol,

84–92, 85f, 90f, 91t
interface/link, 169
as intermediate systems, 186
labeled-switched, 615
least-hop-widest path, 52–53
loops, 63f, 67–68
in MPLS, 30, 614
next hop, 6–7, 151

attributes, 262–263
-based, 59
Dijkstra’s algorithm and, 42
tracking of, 42

OC-3, 169
provider-edge, 634
static, 31
tables, 6–7, 66

entries, 59
forwarding, 7, 59
routing protocol and, 57–59

transport, 109
Routing, 459. See also specific routing types

architectures, 11
addressing/routing in, 283–290, 285f,
286f, 288f, 289f
ASNs and, 301–303
customer traffic within, 297–298, 297f
further lookup on, 312
growth/size of, 298–301, 299t, 300f, 301t
in a SONET ring, § 25.1.2
in SONET/SDH Transport Networks,
§ 25.1.3
internet instability and, 310–311
internet routing evolution in, 281–283,
281f
internet view and, 290–294, 291f
IP prefixes and, 8, 298–303, 301t, 309–310
packet forwarding, 19, 20f
PoPs and, 293, 307–308, 308f
primary functions of, 19–20, 20f

representative, 294–297, 294f, 296f
routing protocol message processing and,
19, 20f
specialized services of, 20, 20f
summary on, 312
traffic engineering of, 308–310

constraint-based, 342
dynamic, analysis of, 363–371, 370f
dynamic call

classification of, 337–338
IP and, 340–341, 341t
link state protocol and, 339–340
summary on, 341–342
in telephone networks, 340–341, 341t

early-exit, 295, 298
hierarchical, 316

architecture, 320–321, 320f, 321f
basic idea regarding, 316–318
call control/crankback and, 325–326, 325f,
397–398
DCR and, 327, 327f
illustration of, 318–320, 318f
summary on, 341–342
telephone network architecture and,
321–322, 322f
TSP and, 321–322, 322f

impact of, 429f, 430–431, 431f
label, 387
policy-based, 303–305, 304f
in presence of transit network, 448–451, 449t
process functions, 461–462
QoS, 30, 53, 584

attributes of, 589
background on, 585–589, 586t, 587f
classification, 586–589, 586t, 587f
heterogeneous service and, 596–599, 597t
impact/update on, 593–595, 595f
lessons of, 595–596
shortest v. widest path in, 590–593, 591t
source-based, 599–608, 604f, 604n2, 605f,
607f

rule, ordered, 319–320
in SS7 signaling, 377f, 378–379, 379t
tables v. forwarding tables, 462, 462t

Routing algorithms. See also Bellman–Ford
algorithm; Dijkstra’s algorithm

goal of, 31–32
shortest path, 30, 47f

additive property in, 32–33
background on, 31–33, 31f
with candidate path caching, 31f, 43–45,
44f
computation of, 32–33

784 Index

k−,31f, 49–50, 51
summary on, 50–53, 52t

summary of notations used in, 52f
widest path, 30

approaches to, 47–49, 49t
background on, 31–33, 31f
with candidate path caching, 45–47, 46f,
47f
least-hop-, 52–53
network example for, 46–47, 47f
non-additive concave property in, 31–33,
31f
summary on, 50–53, 52t

Routing Information Base (RIB), 304
adjacent, 254
loc-, 254–255
-OUT, adjacent, 255

Routing Information Protocol (RIP), 18, 19f
development of, 104
usage of, 57–58
Version 1, 163

communication/message format of, 145t,
147–149, 147f, 148f
fields, 148–149
general operation of, 149–150
usage of, 150

Version 2, 150–152, 151f, 152f
Routing Policy Specification Language (RPSL),

304
Routing protocol(s)

distance vector, 43, 60, 104–106
based on diffusing computation, 75–83,
77f, 79f, 80f, 81f, 82f
basic, 75–76
broadcast of, 65
conceptual framework/illustration of,
60–66, 62f, 63f, 63t, 64t, 65f
counting to infinity and, 63f, 68–70
dissemination of, 65
loop-free, 75–83, 77f, 79f, 80f, 81f, 82f
main operation of, 61–63, 62f, 63f
message content, 73–74
solutions for, 70–74
timers and, 63f, 66–70, 66f

forwarding table and, 7, 59
framework/principles of, 56–106
information push/pull in, 58
IP and, 18
link state, 43, 83

in-band based on end-to-end session,
92–93
in-band hop-by-hop communication,
84–92, 85f, 90f, 91t

in-band v. out-of-band, 83–84
mechanisms, 7
messages/routing information

representation, 59–60
modes of, 58–59
path vector, 93–94, 104–106

basic principle of, 94–97, 95f, 96f
implicit cost/relationships of, 63f, 102
link failure case and, 97
network topology of, 95f
with path caching, 97–102, 100f, 101f

routing table and, 6–7, 57–59
summary of, 104–106
usage of, 18

Routing update interval (RUI), 605
RPSL. See Routing Policy Specification

Language
RSVP. See Resource ReSerVation Protocol
RTNR. See Real-time Network Routing
RTP. See Real-time Transfer Protocol
RTT. See Round-trip time
RUI. See Routing update interval
Rule, aggregation/arrangement, 558

S
San Francisco, 297
SANC. See Signaling Area/Network Code
SCCP. See Signaling Connection Control Part
Scheduling. See Packet scheduling
SCP. See Service control point
SDCA. See Short distance charging area
Sender Keeps All (SKA), 293
Service architecture, 11, 22

best-effort, 12
differentiated services, 13
integrated services, 12
supplementation of, 13

Service control point (SCP), 376, 419
Service information field (SIF), 385
Service information octet (SIO), 385, 387
Service level agreements (SLAs), 293–294,

§ 23.1
Service management system (SMS), 442
Service Order Administration (SOA), 441–442,

441f
Service provider, 294–297, 614, 673
Service provider number portability (SPNP),

435
Service switching point (SSP), 376, 683
Session initiation project (SIP), 675

addressing basics of, 676–677
phone, 677–680, 678f

Index 785

Shared Risk Link Group (SRLG), 632, § 25.3.2,
§ 25.4

Short distance charging area (SDCA), 411
Shortest path routing algorithms, 30, 47f

additive property in, 32–33
background on, 31–33, 31f
with candidate path caching, 31f, 43–45, 44f
computation of, 32–33
summary on, 50–53, 52t

SIA. See Stuck-in-active
SIF. See Service information field
Signal transfer point (STP), 376
Signaling

IAM and, 388–391, 390t, 391t, 394–395
in-band, 374
SS7, 374

addressing in, 380, 382, 382t, 383–384, 384f
call processing and, 388–396, 390t, 391t,
392f, 393f, 394f
Called/Calling Party Number and,
395–396
further lookup on, 404
ISUP and, 388–399, 390t, 391t, 392f, 393f,
394f, 397f
link traffic engineering and, 402–403
links, 376–378, 377f
network management of, 388–389
network performance and, 403–404, 404t
network topology of, 375–378, 377f
node types for, 376
point codes and, 380–382, 381t
protocols, 384–388, 385f, 386f, 387t
reasons for, 375
routing in, 377f, 378–379, 379t
summary on, 404
telephone switch and, 382–383
transaction services and, 400–401, 400f,
401f

Signaling Area/Network Code (SANC), 381
Signaling Connection Control Part (SCCP),

388, 400–401, 400f, 401f
Signaling link selection (SLS), 387
Signaling point identifier (SPID), 381
Simple Mail Transfer Protocol (SMTP), 15–17,

19f, 470, 682
Simple Network Management Protocol

(SNMP), 21
SIO. See Service information octet
SIP. See Session initiation project
SIP for Telephones (SIP-T), 681
Sizing, 604, 604n2
SKA. See Sender Keeps All
Skip value, 507

SLA. See Service Level Agreement
SLS. See Signaling link selection
SMS. See Service management system
SMTP. See Simple Mail Transfer Protocol
SNMP. See Simple Network Management

Protocol
SOA. See Service Order Administration
SONET. See Synchronous Optical Network
SPC. See Stored program control
SPID. See Signaling point identifier
Split horizon

with poisoned reverse, 71
technique, 63f, 70–71

SPNP. See Service provider number portability
SS7 signaling, 374

addressing in, 380, 382, 382t, 383–384, 384f
call processing and, 388–396, 390t, 391t, 392f,

393f, 394f
Called/Calling Party Number and, 395–396
further lookup on, 404
ISUP and, 388–399, 390t, 391t, 392f, 393f,

394f, 397f
link traffic engineering and, 402–403
links, 376–378, 377f
network management of, 388–389
network performance and, 403–404, 404t
network topology of, 375–378, 377f
node types for, 376
point codes and, 380–382, 381t
protocols, 384–388, 385f, 386f, 387t
reasons for, 375
routing in, 377f, 378–379, 379t
summary on, 404
telephone switch and, 382–383
transaction services and, 400–401, 400f, 401f

SSP. See Service switching point
Stored program control (SPC), 323
STP. See Signal transfer point
Stuck-in-active (SIA), 82–83
Subnet(s), 9–10, 143–144

mask, 151
VLSM and, 145

Supernetting, 10
Switching (Packets)

input and output blocking, § 21.10
output queued, § 21.8
Parallel Iterative Matching (PIM), § 21.9.2
scaling, § 21.11, § 21.14

bit slicing, § 21.14.1
time slicing, § 21.14.2

virtual output queued, § 21.9
Synchronous Optical Network (SONET),

23–24, 23t, 109, 292, § 25.1.1

786 Index

T
Take-a-ticket scheduler, § 21.6.1
Tandem switches, 319
TCAMs. See Ternary content-addressable

memories
TCAP. See Transaction Capabilities

Application Part
TCIC. See Trunk Circuit Identification Code
TCP. See Transmission Control Protocol
TCP Congestion Control, § 22.2
TCP/IP (Transmission Control

Protocol/Internet Protocol), 4
aspects of, 146
basic principles of, 5–6

TDM. See Time-division-multiplexed switch
TDMC. See Time-Division Multiplexing

Capable
Telephone networks

DCR and, 30, 84, 316–317
concept of, 324
development of, 330, 330f
path computation, 332–334, 333f
summary on, 328
trunk reservation and, 326
understanding, 330–332, 331f

end (central office) office/toll switch in, 31
hierarchical routing and

architecture, 321–322, 322f
DCR in, 327, 327f
historical perspective of, 323–325
limitation of, 322, 323f
TSP and, 321–322, 322f

IMT and, 31
traffic engineering in, 344–372

blocking and, 345–349, 347f, 347t, 348f
CCS and, 352–354
congestion and, 357–362, 358f, 359f, 360f
dynamic routing and, 363–371, 370f
ECCS and, 354–356, 356f
examples of controls for, 357–361, 358f,
359f, 360f
further lookup on, 371–372
goal of, 344–345
GoS and, 350–352, 351f
network controls for, 356–357
state-dependent call routing and, 362–363
summary on, 371
trunk occupancy and, 350–352, 351f

trunkgroup in, 31
Telephone service provider (TSP), 321–322,

322f
Telephone User Part (TUP), 388
Telnet, 195

Telstra, 298, 299t
Ternary content-addressable memories

(TCAMs), 526–528, 527f, 576–579, 577f
TFP. See Transfer prohibited
Time-Division Multiplexing Capable (TDMC),

626
Time-division-multiplexed switch (TDM)

intermediate, 433
usage of, 317, 420–423, 420f, 421f

Timers, 4
adjustment (jitter), 72–73
autoupdate, 149
BGB, 244–245
ConnectRetry, 244
distance vector routing protocols and, 63f,

66–70, 66f
flush, 150
holddown, 72
HoldTimer, 244–245
KeepAlive, 245
MinASOriginationInterval, 245
MinRouteAdvertisementInterval, 245,

264–265
TLS. See Transparent LAN Service
TLV. See Type-Length-Value
Token bucket, § 23.3.2
Torus Networks, § 21.13
TOS. See Type of service
Traffic

carried, 347
demand, 645–646
directional, 349
load, 345–349, 347f, 347t, 348f
in network routing, 5–7
prioritization, 461
routing, 31–32
shaping, 470
terminologies used in, 109–110
variation, 645
volume, 109, 209–210, 209f

Traffic engineering, 7, 108
applications’ view of

bandwidth-delay product and, 201–202
router buffer size, 5–6, 202–203
TCP throughput/possible bottlenecks
with, 200–201

architectural framework of, 203–204, 203f
characterization of, 196
delay/stochasticity/utilization in, 195–200,

198f, 199f
four-node illustration of, 204–206, 204f, 205f,

206f
further lookup on, 235

Index 787

inter-domain, 310
of IP, 194–235
link weight determination and

through duality, 226–232
large networks and, 232–234
problem, 211–213, 212t

matrix, 203
MCNF and

composite objective function and, 221–222
duality/illustration of, 213–214
minimization of average delay, 222–226,
223f
minimum cost routing and, 215–219
ML and, 219–221
notation summary used in, 212t
problem, 211–213

of MPLS, 643–647, 644f
layer 2 VPN, 656–657
for voice over, 657–659, 659f
VPN, 647–657, 648t, 649f

network dimensioning and, 200, 604, 604n2
network flow/shortest path routing and,

206–211, 206f, 209f, 210f
nonstationarity of, 199, 199f
performance measures and, 195–196
summary on, 234–235
in telephone network, 344–372

blocking and, 345–349, 347f, 347t, 348f
CCS and, 352–354
congestion and, 357–362, 358f, 359f, 360f
dynamic routing and, 363–371, 370f
ECCS and, 354–356, 356f
examples of controls for, 357–361, 358f,
359f, 360f
further lookup on, 371–372
goal of, 344–345
GoS and, 350–352, 351f
network controls for, 356–357
state-dependent call routing and, 362–363
summary on, 371
trunk occupancy and, 350–352, 351f

traffic estimation and, 200
VoIP and, 671–673

Traffic policing, § 23.4
Transaction Capabilities Application Part

(TCAP), 401
Transfer cluster prohibited, 389
Transfer prohibited (TFP), 389
Translation, 15

dialed number requiring, 417, 419
packet, 461

Transmission Control Protocol (TCP), 15,
17–18, 17f

segments, 195
throughput, 175

traffic applications’ view of, 175
Transmission Control Protocol/Internet

Protocol. See TCP/IP
Transparent LAN Service (TLS), 639
Transport Network Routing, § 24.3, § 24.4

multi-period, § 24.3
Transport network routing with varied

protection levels, § 24.4
Traveling class mark, 397–398
Tries

binary, 493t, 495–500, 496f, 497f, 498f, 499f
fixed stride multibit, 502–503
grid-of-

extended, 553
packet classification and, 545–548, 546f,
547f

hierarchical, 541–544, 542f, 543f
level compressed, 507–509, 508f, 509f
lulea compressed, 506f, 510–514, 511f, 513f
multibit, 500–506, 501t, 502f, 503f, 504f, 506f,

528–530, 529f
compression of, 506–519, 508f, 509f, 511f,
513f, 517f
fixed stride, 502–503
variable stride, 506, 507f

pruning, 544–545, 545f
variable stride multibit, 506, 507f

Triggered update, 72
Trunk(s). See also Inter-machine trunk

bidirectional, 349
groups, 323–324

final, 319
high usage, 319
telephone networks and, 31

IP link/, 31
occupancy, 350–352, 351f
reservation, 326

N−node symmetric trunk, 367–371, 370f
traffic, 616

Trunk Circuit Identification Code (TCIC), 388,
391t, 393–394, 418

TSP. See Telephone service provider
TUP. See Telephone User Part
Tuple space

approaches, 568, 568f
pruning, 570–571, 571f
search, 569–570, 569f

Two-ladder limit rule, 318f, 319
Type of service (TOS), 172

metric, 182–183
number of, 182–183

788 Index

Type-Length-Value (TLV), 26, 272
codes, 189, 189t
information encoding through, 189, 189t
usage of, 157–159

U
UDP. See User Datagram Protocol
Unknowns, 111
Updated Path Ordering (UPO), 600–601
User Datagram Protocol (UDP), 14, 17, 17f, 146
User Service Information, 391
Utility function, 221

V
Valarr, 510–512, 511f
Variable stride multibit tries, 506, 507f
Variable-length subnet masking (VLSM), 10,

145
Variables, 111
Virtual Private LAN Service (VPLS), 639
Virtual private networks (VPNs), 266, 298

IP MPLS, 635–639, 636f, 637, 638f
layer 2, 639–640, 640f
MPLS, 634–635

traffic engineering of, 647–657, 648t, 649f
VLSM. See Variable-length subnet masking
VoIP (Voice over IP), 17, 30, 662, 690–691

adapters, 664, 666–670, 667f, 670f, 673
background on, 663
further lookup on, 693–694
PSTN and, 664–673, 664n1, 665f, 666f, 667f,

670f
call routing, 673–675, 674f

interworking, 675–685, 676f, 678f, 681f,
682f, 684t

summary on, 692–693
traffic engineering and, 671–673, 683–684,

684t
VPLS. See Virtual Private LAN Service
VPN Provider, 634, 640
VPNs. See Virtual private networks

W
Wavelength Division Multiplexing (WDM),

109, § 25.2.1
WDM. See Wavelength Division Multiplexing
WDM routing, § 25.2

with full conversion, § 25.2.2
no conversion case, § 25.2.3
on-demand, § 25.2.5

Weak duality theorem, 217
Web, 195
Weighted Fair Queueing (WFQ), § 22.1.4
Western Union System, 139
WFQ. See Weighted Fair Queueing
Widest path

in QoS routing, 590–593, 591t
routing algorithms, 30

approaches to, 47–49, 49t
background on, 31–33, 31f
with candidate path caching, 45–47, 46f,
47f
least-hop-, 52–53
network examples for, 46–47, 47f
non-additive concave property in, 31–33,
31f
summary on, 50–53, 52t

Part VI:
Advanced Topics
(Bonus Material
on CD-ROM)
This part includes additional material that are related to Part IV and Part V; it consists of two
sub-parts.

In the first sub-part, three chapters (Chapter 21, Chapter 22, and Chapter 23) cover func-
tions and components of a router in further detail as a continuation of Part IV. First, different
approaches to architect the switch fabric of a router are presented in Chapter 21. Second,
packet queueing and scheduling approaches are discussed along with their strengths and
limitations in Chapter 22. Third, traffic conditioning, an important function of a router, espe-
cially to meet service level agreements, is presented in Chapter 23.

In the second sub-part, we include two chapters (Chapter 24 and Chapter 25). Transport
network routing is presented first in its general framework, followed by a formal treatment of
the transport network route engineering problem over multiple time periods, in Chapter 24.
The final chapter (Chapter 25) covers two different dimensions: optical network routing and
multi-layer network routing. In optical network routing, we discuss both SONET and WDM
in a transport network framework; more importantly, we also point out the circumstances un-
der which a WDM on-demand network differs from a basic transport network paradigm. Fur-
thermore, we discuss routing in multiple layers from the service network to multiple views
of the transport networks; this is done by appropriately considering the unit of information
on which routing decision is made and the time granularity of making such a decision. We
conclude by presenting overlay network routing and its relation to multilayer routing.

21
Switching Packets
One never notices what has been done; one can only see what remains to be
done.

Marie Curie

Reading Guideline

The switching fabric of a router must be extremely efficient so that packets are
processed quickly. In this chapter, we present a variety of switching architectures
used in routers. It is important to note that many concepts originally came from
switching architectures for circuit switching; this connection is highlighted. Under-
standing switching architectures is helpful in gaining an appreciation of modern-
day routers. Furthermore, due to commonalities, the material presented here is use-
ful for understanding similar switching architectures employed in networking tech-
nologies such as optical networking.
D. Medhi and K. Ramasamy, Network Routing: Algorithms, Protocols, and Architectures.
c© 2007 by Elsevier, Inc. All rights reserved.

C H A P T E R 2 1 Switching Packets 3

A switch fabric is a core component of any router that provides a physical path between
the ingress line card and the egress line card. In routers, the line cards terminate the network
interfaces that carry packet traffic from or to another router or host. As the packets arrive from
these interfaces, the line cards perform route lookups to determine their destination. The line
card then forwards each packet to the switch fabric, which is responsible for transporting the
packet from the ingress line card to the egress line card. At the egress line card, the packet is
queued and scheduled for transmission on the output network interface.

In this chapter, we study in detail the architecture of different types of switches, but those
used in routers belong to a broader class of packet switches. These switches transport packets
that contain data as well as the information needed to determine the destination. While the
literature on switch fabrics is vast, we restrict most of our discussion to those that are imple-
mented today in commercial routers. In addition, we also discuss some of the recent advances
in switch architectures that are capable of carrying terabits of traffic per second. Sometimes,
in the literature, a switch fabric is referred to as a backplane.

21.1 Generic Switch Architecture

A generic switch fabric in a router has five main components as shown in Figure 21.1.

• The fabric input interface connects the ingress network processing modules of a line card
to the switch fabric. This component performs various functions: it coordinates with the
scheduler regarding the presence of packets, segments the variable-length IP packets into
fixed-sized cells if needed, and enables their transmission when indicated by the sched-
uler.

F I G U R E 21.1 A generic switch.

4 21.2 Requirements and Metrics

• The fabric input buffers provide temporary storage for the packets in case the switch fabric
is not able to schedule packets immediately upon their arrival. In addition, the presence
of these buffers reduces packet loss during bursty conditions.

• The switch fabric transfers data from one line card to another line card. It dynamically
connects multiple ingress line cards to egress line cards to ensure paths are available in
the fabric to transfer data simultaneously. The scheduler is the heart of the switch fabric,
which identifies the paths through the fabric from ingress line cards to egress line cards.

• The fabric output interface receives traffic from the switch fabric and forwards it to the egress
network processing modules of the line card. It coordinates with the fabric scheduler to
receive packets from the switch fabric. If the packet is originally segmented, it assembles
the cells into whole packets. Furthermore, it coordinates with the output scheduler to
transmit the packets depending on priority and quality-of-service (QoS) requirements.

• The fabric output buffers store the packets as they are awaiting their turn to be transmitted.

In most routers, the fabric input and output interfaces are implemented in a single chip
that resides in the line card. The line cards also contain the fabric input and output buffers.
However, the switch fabric along with the scheduler is implemented in a separate card
called the switch fabric card. The switch fabrics can be dichotomized into shared backplanes
and switched backplanes.

21.2 Requirements and Metrics
Before delving into individual switch architectures, we need to understand the requirements
of a switch fabric when used inside a router. The primary requirement is to maximize the
amount of data transferred across the fabric. This means that the fabric should transfer traffic
from multiple line cards simultaneously.

A network switch fabric should provide fair bandwidth allocation for all the line cards.
This implies that even during a momentary overload, excess traffic destined for line card
A should not steal bandwidth from traffic destined for line card B even though the traffic
destined for line cards A and B shares the resources of the fabric.

Another desirable requirement is that the switch fabric should not reorder packets. Since
higher-layer protocols (like TCP) implement buffering for sequencing out-of-order packets,
the natural question is why the switch fabric should not reorder packets. With current routers
carrying voice and multimedia traffic, the reordering of packets increases the end-to-end de-
lay, affecting user experience. Such delay-sensitive traffic imposes another requirement: the
traffic needs to be prioritized and higher-priority traffic must be transferred across the fabric
before the lower-priority traffic.

Since the switch fabric is a central critical component of a router, its failure implies that
the router will be unable to forward any packets. Hence, an important requirement is that the
switch fabric must provide sufficient redundancy for a router to continue to operate when a
fabric failure occurs.

The performance of a switch fabric depends on several factors, such as its internal ar-
chitecture and the nature of the traffic passing through it. The three primary performance
metrics of interest are throughput, latency, and path diversity [163].

C H A P T E R 2 1 Switching Packets 5

• Throughput: The throughput of a fabric determines how much data it can transfer in a unit
of time. It is measured in bits per second. For instance, consider a router with 16 line cards
with each line card capable of sending 40 Gbps of traffic into the fabric. If all the line cards
wish to transfer packets simultaneously, then the aggregate throughput of the fabric needs
to be 640 Gbps (= 16 × 40 Gbps). Since Internet traffic is growing at a high rate, routers
need to forward more packets and thus places more demands on the switch throughput.

• Latency: Another metric is the latency experienced by a packet as it travels to the switch
fabric. This is significant as IP packets carry multimedia traffic that requires delay guar-
antees. Formally, the latency in a switch fabric is defined as the time it takes to transfer a
packet through the switch fabric from an input port to an output port. To a certain degree,
the latency experienced by a packet in a router depends on the latency introduced by the
switch fabric.

• Path Diversity: This refers to the number of available paths within the switch fabric for
every pair of input and output ports. When more than one path is available, the switch
fabric is said to be more robust. The traffic can be load-balanced across these paths, which
allows the switch to tolerate any component failures.

In the following sections, we study shared and switched backplanes and their represen-
tative architectures in detail.

21.3 Shared Backplanes
This type of backplane uses a shared medium for transferring packets from one line card
to another. The switches using a shared bus or ring topology fall under this category. While
this type of backplane is more economical, it is often limited in throughput. Hence, such
backplanes are used in low-bandwidth enterprise routers. In the next section, we will discuss
the simplest shared backplane, the shared buses, in detail.

21.3.1 Shared Bus

A shared bus is the simplest and most commonly used form of switching. A bus connects a
number of ports with a shared channel that serves as a broadcast medium. Within a router,
each port houses a line card. A typical implementation of a bus uses a set of signal lines or a
single line connected to all the ports. When a packet is transmitted over the bus, every port
receives it. Depending on whether the packet is destined for it, a port chooses to accept the
packet or ignore it. A bus protocol determines which port has permission to transmit at any
given time. A shared bus with line cards is shown in Figure 21.2.

A shared bus has two key properties. First, it implements broadcast and multicast na-
tively and they are no more expensive than a packet transmitted point-to-point. This is be-
cause all the packets transmitted over the bus are broadcast to all the ports. Second, at any
given instant, only one port can transmit a packet over the bus and, hence, there is no need
for any packet resequencing on the destination line cards.

Now let us turn our attention to how much bus bandwidth will be required. If each port is
capable of a data rate of R bps, a bus supporting N line cards needs to operate at a bandwidth

6 21.3 Shared Backplanes

F I G U R E 21.2 A shared bus with 6 line cards connected to ports.

of RN bps. If the bus uses a clock frequency of r Hz, the bus width w must be at least Rn/r
bits. Let us go through an example that calculates the bus bandwidth and the bus width.

Example 21.1 Shared bus bandwith and width for a router.
Consider a router with 16 line cards using a shared bus with each line card operating

at 100 Mbps. In this scenario, the bus must provide a bandwidth of 1.6 Gbps (= 100 × 16).
Assuming the bus uses an internal clock rate of 40 MHz, the bus width should be 40 bits
(1.6 Gbps/40 MHz). �

With the availability of fast CPUs, in router architectures using a shared bus (discussed in
Section 14.6.1), the primary bottleneck is the bus itself. When one line card is sending a packet
to another line card, other line cards have to refrain from communicating even though they
might have packets to transmit. Clearly, this is not desirable as the need for routing band-
width is growing exponentially and, hence, high-capacity routers are needed. For instance,
consider a high-capacity router that has eight line cards with each operating at 40 Gbps. The
required bus bandwidth is, at worst, 320 Gbps (= 8 × 40 Gbps) when all the line cards want
to transfer their packets simultaneously. It is not practically feasible to build a shared bus
operating at 320 Gbps. At present, a fast off-the-shelf bus commercially available is the PCI
Express, which offers speeds of up to 80 Gbps [96], [671].

Another disadvantage with the use of a shared bus is that as the number of ports con-
nected to a bus increases, the electrical loading on the signal lines grows [459], [705]. This
reduces the maximum clock frequency that can be achieved (that is, r reduces to cr, 0 < c < 1).
Hence, the bus width w should grow more than the number of ports N to maintain sufficient
bus bandwidth. For instance, if c is 0.8 due to electrical loading, the bus width for Exam-
ple 21.1 should be 50 bits (= 1.6 Gbps/(0.8 × 40 MHz)). While there are techniques to reduce
or eliminate the impact of this electrical loading, they are more complex to implement [705].

Because of these limitations, it is necessary to develop backplanes that provide high per-
formance at a reasonable cost. For smaller routers with a few Gbps of throughput, the shared
bus is attractive from both a cost and performance perspective.

C H A P T E R 2 1 Switching Packets 7

F I G U R E 21.3 A switched backplane showing the transfer of multiple packets
simultaneously.

21.4 Switched Backplanes
A switched backplane allows packets to be transferred simultaneously between different line
cards. Such a parallel transfer of packets increases the aggregate throughput of a backplane.
Like a shared backplane, a switched backplane also consists of N ports with each port housing
a line card. Since each line card can transmit as well as receive packets simultaneously from
the backplane, conceptually it has an input port and an output port. Hence, the switched
backplanes are depicted using N input and N output ports.

A typical switched backplane with four ports is shown in Figure 21.3, which shows that
multiple packet transfers are occurring simultaneously from input to output ports. For in-
stance, input port A is transferring packet 3 to output port 3 while port B is transmitting
packet 1 to output port 1, and so on. Meanwhile, other packets are waiting at the input ports
for their turn.

An important component of any switched backplane is the scheduler. The scheduler de-
termines which input ports will transmit their packets to which output ports. Since IP packets
are of variable length, the design of the scheduler becomes complex and leads to starvation
and reduction in throughput (see Exercise). Hence, variable-length packets are segmented
into fixed-sized cells and these cells are scheduled so that their transfers can occur within a
fixed time called a timeslot. At the end of each timeslot, the scheduling algorithm examines
the cells at the input ports waiting to be transferred across the backplane and decides which
inputs will be connected to which outputs (for the next timeslot). Then the cells are phys-
ically transferred during the next timeslot. Such segmentation of packets to cells efficiently
uses backplane and simplifies the hardware design. Unless otherwise specified, for the rest
of the chapter we will assume that an IP packet is segmented into cells before traversing the
switch fabric. In the next few sections, we will study switched backplanes in detail starting
with shared memory, and followed by crossbar, Clos networks, Benes̆ networks, and torus
networks.

21.5 Shared Memory
Perhaps the simplest implementation of a switched backplane is based on a centralized mem-
ory shared between input and output ports. When packets arrive at the input ports, they are
written to this centralized shared memory. When the packets are scheduled for transmission,
they are read from shared memory and transmitted on the output ports. Figure 21.4 shows a
shared memory switch. As shown, the memory is partitioned into multiple queues, one for

8 21.5 Shared Memory

F I G U R E 21.4 A shared memory switch where the memory is partitioned into multiple
queues.

each output port, and an incoming packet is appended to the appropriate queue (the queue
associated with the output port on which the packet needs to be transmitted). The incoming
bits of the packet are accumulated in an input shift register. Once enough bits equal to the
width of the memory word are accumulated in the shift register, it is stored in memory. Dur-
ing output, the packet is read out from the output shift register and transmitted bit by bit in
the outgoing link.

A related issue with each output port being associated with a queue is how the memory
should be partitioned across these queues. One possibility is to partition the memory into
fixed-sized regions, one per queue. While this is simple, the problem with this approach is
that when a few output ports are oversubscribed, their queues can fill up and eventually start
dropping packets. An alternative approach is to allow the size of each partition to be flexible.
In other words, there is no boundary on the size of each queue as long as the sum of all queue
sizes does not exceed total memory. Such flexible-sized partitions require more sophisticated
hardware to manage; however, they improve the packet loss rate [699]. The rationale is that
a queue does not suffer from overflow until no free memory remains; since outputs idle at a
given time they can “lend” some memory to other outputs that happen to be heavily used at
the moment.

Despite its simplicity, it is difficult to scale the capacity of shared memory switches to
the aggregate capacity needed today. Let us examine why. First, a significant issue is the
memory bandwidth. When the line rate R per port increases, the memory bandwidth should
be sufficiently large to accommodate all input and output traffic simultaneously. A switch
with N ports that buffers packets in memory requires a memory bandwidth of 2NR as N input
ports and N output ports can write and read simultaneously. Hence, the memory bandwidth
needs to scale linearly with the line rate.

Second, the access times of memory available are much higher than required. It is typical
in most implementations to segment the packets into fixed-sized cells as memory can be

C H A P T E R 2 1 Switching Packets 9

utilized more efficiently when all buffers are the same size [332]. If the cell size is C, the
shared memory will be accessed every C/(2NR) sec. For a switch with N = 32 ports, a cell size
of C = 40 bytes, and a data rate of R = 40 Gbps, the access time required will be 0.125 nanosec.
This is an order of magnitude smaller than the fast-memory SRAM, the access time of which
is 5–10 nanosec at present.

Third, as the line rate R increases, a larger amount of memory will be required. As indi-
cated in Chapters 7 and 22, the routers need buffers to hold packets during times of conges-
tion to reduce packet loss. The standard rule of thumb is to use buffers of size RTT × R for
each link, where RTT is the average roundtrip time of a flow passing through the link. For ex-
ample, a port capable of 10 Gbps needs approximately 2.5 Gbits (= 250 millisec × 10 Gbps). If
there are 32 ports in a router, the shared memory required is 32 × 2.5 Gbits = 80 Gbits, which
would be impractical.

Finally, the time required to determine where to enqueue the incoming packets and issue
the appropriate control signals for that purpose should be sufficiently small to keep up with
the flow of incoming packets. In other words, the central controller must be capable of issuing
control signals for simultaneous processing of N incoming packets and N outgoing packets.

Despite these disadvantages, some of the early implementations of switches used shared
memory. These include the datapath switch [346], the PRELUDE switch from CNET [154],
[175], and the SBMS switching element from Hitachi [199]. Commercially, some of the routers
such as the Juniper M40 [629] use shared memory switches. Before closing the discussion on
shared memory, let us examine a few techniques for increasing memory bandwidth.

21.5.1 Scaling Memory Bandwidth

With increasing link data rate, the memory bandwidth of a shared memory switch, as shown
in the previous section, needs to proportionally increase. However, currently available mem-
ory technologies like SRAM and DRAM are not very well suited for use in large shared mem-
ory switches. While SRAM has access times that can keep up with the line rates, it does not
have large enough storage because of its low density. On the other hand, DRAM is too slow,
with access times on the order of 50 nanosec (which has increased very little in recent years).

In such scenarios, the standard tricks to increase memory bandwidth [293] are to use
a wider memory word or use multiple banks and interleave the access. For a line rate of
40 Gbps, a minimum-sized packet of 40 bytes will arrive every 8 nanosec, which will require
two accesses to memory; one to store the packet in memory when it arrives at the input
port and the other to read from memory for transmission through the output port. If we
were to use a DRAM with an access time of 50 nanosec, the width of the memory should
be approximately 500 bytes (= 2 × 50 nanosec/8 nanosec × 40 bytes), in which 2 is for read
and write. This means more than one minimum-sized packet needs to be stored in a single
memory word. However, it is not possible to guarantee that these packets will be read out at
the same time for output. This is because the packets could belong to different flows and QoS
requirements might require that these packets depart at different times.

Alternatively, the memory can be organized as multiple DRAM banks so that multiple
words can be read or written at a time rather than a single word. This type of organization
is sometimes referred to as interleaved memory. In this case, for a line rate of 40 Gbps, we
would need 13 (= �50 nanosec/8 nanosec × 2�) DRAM banks with each bank required to be

10 21.6 Crossbar

40 bytes wide. When a stream of packets arrives, the first packet is sent to bank 1, the second
packet to bank 2, and so on. The idea is that by the time packet 14 arrives, bank 1 would
have completed writing packet 1. Assuming minimum-sized packets, if packet 1 arrives at
time t = 0, then packet 14 will arrive at t = 104 nanosec (t = 13 packets × 40 bytes/packet ×
8 bits/byte/40 Gbps). By this time, bank 1 would have finished writing packet 1 and would
be ready to write packet 14. Actually, bank 1 would be ready at t = 50 nanosec. If so, then
why a gap of 54 nanosec? It is because another 50 nanosec is needed for an opportunity to
read a packet from bank 1 for transmission to an output port.

However, the problem with this approach is that it is not clear in what order the packets
must be read. To satisfy QoS requirements, the packets might have to be read in a different or-
der. This could lead to something called the “hot bank” syndrome where the packet accesses
are directed to a few DRAM banks, leading to memory contention and packet loss. Another
variation of this approach is to send the incoming packets to a randomly selected DRAM
bank. The problem with this approach is that if the packets are segmented into cells, the cells
of a packet will be distributed randomly on the banks, making reassembly complicated.

21.6 Crossbar
The simplest switched backplane is a crossbar. An N × N crossbar switch has N input buses
and N output buses in a fully connected topology, as shown in Figure 21.5; that is, there are N2

crosspoints, which are either on or off. Each crosspoint (i, j), 0 ≤ i < N, 0 ≤ j < N is controlled
by a transistor that can be either turned on or off. When a line card i wishes to transfer a cell
to line card j, the crosspoint (i, j) is turned on and the actual cell is transmitted. For instance, if
the line card at port 2 has a cell destined for the line card at port 5, the transistor at crosspoint
(2,5) is turned on to enable the data transfer, which is also shown in Figure 21.5. A crossbar is
internally nonblocking as it allows all inputs and outputs to transfer packets simultaneously.

A crossbar switch is controlled by a centralized scheduler. The scheduler provides a
schedule that indicates the inputs that need to be connected to the outputs at a given instant.
If the cells arrive at fixed intervals, then the schedule can be computed a priori. Otherwise,
the switch must compute the schedule on the fly. In such cases, the schedule is generated by

F I G U R E 21.5 A crossbar switch showing data flow from input port 2 to output port 5.

C H A P T E R 2 1 Switching Packets 11

considering all the cells waiting to be transferred across the switch fabric. Then a configura-
tion of crossbar is selected, ensuring that at a given instant each input is connected to at most
one output and each output is connected to at most one input. Since the scheduler needs to
turn the transistors on or off at the crosspoints, a control line is necessary that connects each
of them to the scheduler.

The high performance of the crossbar switch is attributed to two factors. The links con-
necting the line cards to the switch fabric are simple point-to-point links and hence they can
operate at high speeds. With the recent advances in semiconductor technology these links can
operate as fast as 10 Gbps. The second factor is that the switch supports simultaneous connec-
tions of multiple inputs with outputs. The crossbar switch can close several crosspoints at the
same time, thereby allowing the transfer of packets between multiple ports simultaneously.
This greatly increases the aggregate bandwidth of the switch. However, the performance can
be limited by several factors. First, some of the line cards might not have any data to send.
Second, two or more line cards might want to send data destined for the same output port.
In this case, only one of them can win and this, as a consequence, limits the data throughput
since the other line card cannot send its data.

Before using a crossbar as a switch fabric, it is important to consider the advantages and
potential drawbacks. It uses a simple two-state crosspoint (on or off), which is easy to imple-
ment. The modularity of the switch design allows large switches to be built by simply adding
more crosspoints. Another significant advantage of a crossbar is the ability to natively sup-
port multicast. If an input port wishes to transmit its cell to multiple output ports, all the
crosspoints corresponding to the input and output ports need to be turned on simultane-
ously. This allows each output port to receive a copy of the cell. For instance, assume that
input port 5 in Figure 21.5 needs to multicast to output ports 2, 3, and 4. This is easily pos-
sible by turning on the crosspoints at (5,2), (5,3), and (5,4). Finally, the crossbar provides a
low-latency path for connecting input to output compared to other switches since it has the
lowest number of connecting points (just one).

The major disadvantage is that the cost of a N × N crossbar, measured in terms of the
number of crosspoints, increases quadratically as N increases. For doubling the number of
inputs and outputs of a switch, the number of crosspoints need to be increased to four times
the original. For instance, a 50 × 50 switch requires 2,500 crosspoints, whereas a 100 × 100
switch requires 10,000 crosspoints.

A crosspoint can be implemented using a transistor and hence it takes very minimal
space in a chip. With the current chip fabrication technologies, millions of transistors can be
easily accommodated in a chip. Consequently, the cost of crosspoints and the area it consumes
might not be relevant for configurations N < 1000. For higher configurations of N > 1000, still
the dominant cost is the number of crosspoints.

The number of pins that can be packaged on a chip affects the cost of a crossbar; how-
ever, a chip may include other components. Thus, there is a fixed cost associated with each
chip. Because of pin issues and the fixed cost associated with pins, most implementations of
crossbar switches are restricted to between 8 and 32 ports. The second potential drawback
is the difficulty in providing guaranteed QoS. This is because the cells arriving at the switch
must compete for access to the fabric with the cells already waiting at the input port and also
with cells in other input ports bound for the same output port. The third disadvantage is that
there is only a single path between an input and output—thus, any single crosspoint failure

12 21.6 Crossbar

would make this nonfunctional. Finally, even though multicast can be supported easily by
connecting the input bus to all the output buses, scheduling becomes tricky and complex.

The interesting algorithmic aspect of crossbar switches is the scheduling algorithm. The
objective of the scheduling algorithm is to compute pairs of input and output ports that max-
imize the number of cells transferred in a timeslot, by taking into consideration the cells
that are waiting to be transferred. In the next few sections, we will focus on such crossbar
scheduling algorithms. Our discussion begins with a simple and elegant scheduling scheme
implemented in DEC’s Gigaswitch [653], called “take-a-ticket.”

21.6.1 Take-a-Ticket Scheduler

The basic idea behind the take-a-ticket scheduler is based on a ticketing scheme used in deli
sandwich shops. In these shops, you first go to the counter, order your sandwich, and af-
ter payment, the cashier gives you a number that identifies your position in the queue. The
cashier calls out the current number and you keep monitoring until your number is called.
When your number is called, you can pick up your sandwich.

Similarly, each output port Q in the switch maintains a distributed queue for all the input
ports P waiting to send to Q. The queue is actually not maintained at the output port Q.
Instead, it is stored at the input ports using a ticket number mechanism. An input port P that
has a cell to send to output port Q obtains a ticket from that port indicating its position in the
queue. To obtain a ticket, port P sends a request over a separate control bus to Q. In response,
the output port Q provides a queue number to P, again over the same control bus. The queue
number indicates the position of P in the output queue of Q.

Port P keeps monitoring the control bus until its queue number is called out. Meanwhile,
after port Q finishes serving the current cell, Q sends the next queue number it is willing to
serve on the control bus. When P notices that its number is being served, it places its cell on
the data bus to Q. At this time, the crosspoint connecting port P to port Q is turned on by Q
to facilitate the cell transmission. As you can see, at any given instant, each input port works
with only one cell and starts with the cell at the head of the queue.

Now we are ready to describe the algorithm, which consists of three distinct phases:

• Request Phase: This phase initiates the request for obtaining a ticket number. Each input
port sends a request to the output port for which the cell at the head of the queue is
destined via the control bus.

• Grant Phase: This phase assigns and communicates the ticket number. The output port
on receiving the requests from the input ports assigns a ticket number based on order of
arrival and sends the number to the input ports again via the control bus.

• Connect and Transfer Phase: In this phase, the output port indicates its willingness to
serve a request by placing the ticket number on the control bus. When the input port
recognizes it is being served, it initiates the actual flow of data and the cell is transferred
to the output port. The output ports ensure the appropriate crosspoints are turned on for
the transfer to take place.

C H A P T E R 2 1 Switching Packets 13

The algorithm operates iteratively and in each iteration many cells (from different input ports
to different output ports) are transferred simultaneously. Let us walk through an example of
scheduling cells for a better understanding of the algorithm.

Example 21.2 Scheduling and transfer of cells using take-a-ticket scheduler.
Consider a switch with four input ports denoted by A, B, C, and D and output ports

denoted by 1, 2, 3, and 4 as shown in Figure 21.6. It shows the input port A has to send cells
to output ports 1, 2, and 3, while port B has three cells destined for output ports 1, 3, and 4.
Port C has three cells similar to port B. Finally, port D has three cells bound for output ports
2, 3, and 4. In Figure 21.6 notice that the cells are numbered based on the output port to which
they are bound. The algorithm operates iteratively and each iteration is referred to as a round.

In round 1, during the request phase, ports A, B, and C send their requests to output
port 1 as each has a cell at the head of the queue bound for that port. At the same time, port D
sends a request to port 2. Assuming the request from A arrives at port 1 first, followed by B
and then C, the grant phase assigns the tickets T11, T12, and T13 to A, B, and C, respectively.
Similarly, port 2 responds with the ticket T21 to port D, which concludes the request phase.
In Figure 21.6, the requests and the ticket grants are represented using black lines with the
direction arrows connecting the appropriate input and output ports. Now, output ports 1
and 2 broadcast the current ticket numbers being served, T11 and T21, on a separate control
bus. As soon as the ports A and D see that their requests are being served, they transfer their

F I G U R E 21.6 Three rounds of a take-a-ticket scheduler in operation.

14 21.6 Crossbar

respective cells 1 and 2 to the corresponding output ports. Before the transfer, the crosspoints
at (A,1) and (D,2) are turned on by the centralized scheduler. In Figure 21.6, the solid black
lines without arrows illustrate the data transfer between the input and output ports. This
concludes round 1.

In the next round (round 2), ports A and D send their requests to ports 2 and 4, respec-
tively. Port A is granted the ticket number T22, while port D gets T41 as it is the first request
for port 4. In parallel, the outport ports 1, 2, and 4 indicate their serving ticket numbers T12,
T22, and T41, respectively. Note that ticket T12 was obtained in the previous round, but it is
being served in the current round. During the connect phase, port A transfers its cell to port
2, port B to port 1, and port D to port 4.

Now for round 3, ports A, B, and D send their requests to port 3. If the requests from A, B,
and D arrive in order, ticket numbers T31, T32, and T33 are granted, respectively. The current
serving ticket numbers T13 for port 1 and T31 for port 3 are broadcast in a separate control
bus. Once the crosspoints (A,3) and (C,1) are enabled, the cells are transferred from ports A
and C to the outport ports 3 and 1, respectively. Finally, port C gets a chance to transfer its
first cell to port 1. The algorithm continues in this fashion for six rounds until the remaining
cells are transmitted. �

The major advantage of this scheme is the ability to handle variable-length packets due
to the nonexistence of any dependencies in the algorithm across ports. Each output port can
asynchronously grant a ticket number whenever an input port requests it and similarly, can
asynchronously broadcast the current serving ticket number once the current transfer is com-
pleted. Hence, it obviates the need to break up the original packets into cells of fixed size
before transmitting and the need for reassembling at the output line card.

In addition to variable-length packets, the scheme has the advantage of using a small
amount of memory to maintain the control state; two log2 N bit counters at each output port,
one for the current serving ticket number and the other for tracking the highest ticker num-
ber granted. Since the control state required is very small, DEC’s implementation of the Gi-
gaswitch [653] is scaled to 36 ports.

A major drawback of this scheme is head-of-line blocking, which limits the amount of par-
allelism, and as a result, reduces the throughput of the switch. Furthermore, since the sched-
ulers at the output ports operate independently, it is hard to coordinate a subset of them for a
multicast. If output ports must wait until all the requested ports become free, several oppor-
tunities for transferring packets from other input ports are lost and, hence, the throughput
might be expected to be lower. Therefore, multicasts were handled separately in software
running on a central processor.

21.6.2 Factors That Limit Performance
As can be seen from Example 21.2, after three rounds only eight cells have been transmitted.
In each round, each input port can potentially tranfer a cell to an output port. With three
rounds, there have been a total of 12 opportunities (4 input ports × 3 rounds) to transmit, but
only 8 of them have been used. Ports B and C still have two cells left to transmit at the end of
three rounds. This shows that the available parallelism has not been fully exploited.

To visualize this better, we can depict the order of the transmission of cells at the input
ports using a timeslot diagram as shown in Figure 21.7. Each input port in Figure 21.7 is

C H A P T E R 2 1 Switching Packets 15

F I G U R E 21.7 Transfer of cells from input to output ports using take-a-ticket scheduling.

associated with six timeslots, representing the six rounds needed to transmit all the packets.
Each round is numbered using the timeslot to which it belongs at the top. Each timeslot
either contains an output port indicating the transfer of a cell to that port, or it is empty
indicating that it is not used. Note that in our example, the cells are named based on the
output port to which they are destined. From Figure 21.7 is it possible to infer that all the 12
input cells are transmitted out of 24 transmission opportunities, which amounts to just 50%
utilization. We shall show in the later sections how other scheduling algorithms better exploit
parallelism.

To determine the reasons for low utilization, we need to examine three types of blocking.
The first type of blocking is called head-of-line (HOL) blocking and the second and third types
are called input and output blocking, respectively. We shall see how HOL blocking reduces the
throughput, while input and output blocking increase the delay of the cells passing through
the fabric. In the next section, we discuss HOL blocking, the conditions under which it occurs,
and how it impacts performance.

21.7 Head-of-Line Blocking
In a crossbar switch, all the cells waiting at an input port are stored in a single FIFO queue.
Once the cell reaches the head of its queue, the scheduling algorithm considers it for trans-
mission. However, this cell must compete with other cells that are at the head of the queues of
other input ports but destined for the same output port. Such a tie is broken by the scheduler,
which decides which cell will be transmitted next. Eventually, each cell will be selected and
delivered to its output port. Using an FIFO queue at the input presents a problem since cells
can be held by other cells ahead of them that are destined for a different output. This type
of blocking is called HOL blocking. Since the scheduler when generating a schedule consid-
ers only the HOL cell, other cells behind it destined for different output ports are essentially
blocked.

A good way to understand HOL blocking is to think of yourself in a car traveling on a
single-lane road. You arrive at an intersection where you need to turn right. However, there
is a car ahead of you that is not turning and is waiting for the traffic signal to turn green. Even
though you are allowed to turn right at the light, you are blocked since you cannot pass on a

16 21.8 Output Queueing

single lane. Now let us consider an analogous example where in some time slots a few input
ports are unable to send to their cells.

Example 21.3 Cells blocked by the cell at the head of the queue.
Going back to Example 21.2, in round 1 there were three cells destined for output port

1 from ports A, B, and C. The scheduler picks the cell from A to transmit. Because of this
decision, the queues at ports B and C are essentially stuck waiting for A to complete. Hence,
the cells 3 and 4 waiting behind cell 1 are blocked in ports B and C. As a result, ports B and
C lose their opportunity to transmit. �

As mentioned earlier, such a loss of opportunities occurs because the scheduling algorithm
considers only the cells at the head of the queue. Sophisticated scheduling algorithms, as we
shall see in later sections, take into account the cells behind the head of the queue and allow
them to be transmitted. For example, while port A is transmitting its cell to port 1, port B and
port C can send their waiting cells 3 and 4 behind the head of the queue to port 3 and port 4,
respectively.

The lost opportunities to transmit because of HOL blocking lead to lower throughput of a
switch. Let us analytically derive the reduction in throughput by assuming an N × N switch.
Furthermore, assume that all inputs always have a cell to transmit. Now consider the cells at
the head of their queue, which in this case is only N. If the traffic is uniform, each cell could
be destined to each output with an equal probability of 1/N. If cells from different inputs
are bound to the same output, then only one of them can get through and the rest will be
blocked.

Now let us consider the probability that an output O is idle. This is possible only when
none of the inputs has a cell to transmit to O. The probability that an input does not choose
output O is 1 − 1/N. Since an input not sending to output O is independent of the other, the
probability that all N inputs are not sending to output O is (1 − 1/N)N . As N increases, this
expression converges to 1/e, which is approximately 0.37. Hence the probability of the output
being busy is 1 − 0.37 = 0.63. Ideally, the throughput of the switch should be NR, where R is
the data rate at which the outputs operate. Since each output can be busy at most 63% of the
time, the maximum expected throughput can be as much as 0.63NR.

In the analysis, we assumed that the cells considered for scheduling in the current iter-
ation are independent of the previous iteration. In reality, this is not the case. The cells that
were not transmitted in the previous iteration have to be reconsidered in the current itera-
tion. Hence the maximum throughput is even lower and is closer to 58% [352]. In the next
few sections, we will take a detailed look at some of the solutions proposed to avoid or even
eliminate HOL blocking and discuss their advantages and disadvantages.

21.8 Output Queueing
The initial set of solutions proposed for HOL blocking was based on the use of output queue-
ing instead of input queueing. If a cell C can be instantly transmitted to an output port with-
out any queueing at the input, then it is impossible for that cell to block other cells behind
it, thus eliminating HOL blocking. As a result, all the cells arriving at the input ports are im-
mediately delivered upon their arrival to the output ports. In the worst case, cells at all the

C H A P T E R 2 1 Switching Packets 17

F I G U R E 21.8 An output-queued switch with queues operating N times faster than input
ports.

input ports may be destined for the same output port. Since the switch does not have any
input buffers and if the packets are not to be dropped, the switch must deliver N cells to the
single output port and the output queue must store all of them in the time it takes for one
cell to arrive at an input. Hence, the switch fabric and the output queue need to run N times
faster than the input ports. This can be expensive or difficult to implement. An output-queued
switch is shown in Figure 21.8.

One way to reduce the cost of implementing output queueing is to use the knockout prin-
ciple [755]. This principle states that if there are N inputs in the switch, it is very unlikely
that all N cells received in any cell time are destined for the same output port. If the expected
number of such cells is S, where S < N, then the fabric and output queue can be optimized to
be run only S times faster instead of N. This is less expensive and can be implemented using
S parallel buses.

When the expected case is violated by the arrival of a number of cells greater than S in a
cell time, the remaining cells must be dropped. In such cases, the packet losses will be fairly
distributed among the input ports. For a variety of input distributions, it has been shown that
S = 8 reduces the packet loss probability to one in a million.

There are two main difficulties in designing a switch based on the knockout principle.
The first is how to implement a mechanism to choose S cells when the number of expected
cells exceeds S. A naive approach is to pair the input cells and choose the winner of the pair.
When S = 4 and N = 8, we require four 2 × 2 concentrators to pair eight cells. The concen-
trators choose one cell randomly out of their two input cells and the winning cell is passed
to the output while the loser cells are dropped. While this approach is simple and easy to
implement, it is not fair in the sense that the cell drops are not evenly distributed among all
the inputs ports. To obtain a better insight, consider the following. Assume two heavy traf-
fic sources M1 and M2 are paired in a concentrator while another heavy traffic source M3

is paired with an occasional traffic-generating source M4. In this case, M3 gets double the
amount of bandwidth compared to M1 and M2, and hence the implementation is not fair.
Now let us develop the concepts for a fair implementation by considering simpler cases be-
fore describing the final solution.

18 21.8 Output Queueing

F I G U R E 21.9 Choosing a winning cell when (a) N = 2 and (b) N = 4.

• Case S = 1 and N = 2: For such cases, a simple 2×2 concentrator can be used to choose one
winner randomly from the two input cells. However, the concentrator outputs both the
cells, one of them being the winner and the other being the loser as shown in Figure 21.9(a).
The loser is interesting in the general case.

• Case S = 1 and N > 2: In this case, one winner needs to be chosen among the cells N > 2.
This is analogous to choosing the winner in an elimination tournament. As in the tour-
nament, each cell is paired with another cell for the first stage using N/2 concentrators
to identify N/2 winners. The rest of the N/2 cells are “knocked out,” i.e., dropped. In the
second stage, these N/2 winners are paired using N/4 concentrators and a new set of N/4
winners is found and so on until the root concentrator chooses the final winner. These
concentrators form a tree referred to as the knockout tree. The knockout tree for N = 8 is
illustrated in Figure 21.9(b), where concentrators are shown as nodes.

Now let us consider the general case where the switch needs to choose S out of N possible
cells. A straightforward approach is to use S knockout trees as shown in Figure 21.10, one for
each winner. Unlike other approaches in which the loser cells are dropped, they are allowed
to participate in the subsequent knockout trees to provide fairness. This is why the concen-
trators provide two outputs—one for the winner and the other for the loser. As can be seen
in Figure 21.10, the first knockout tree takes as input all the N cells and produces the first
winner. All the N − 1 cells that lose enter the competition again at various stages in the sec-
ond knockout tree, and so on. Note from the figure that winning cells will appear at different
times. If all the winning cells need to output at the same time, some concentrators must be
added that will be used as delay elements.

The second difficulty is the design of output queues that accept cells S times faster than
the speed of the output link. A naive approach is to implement an FIFO that accepts cells S
times faster than the output link. However, this is expensive to implement and it might not be
worth the effort since these buffers cannot sustain the imbalance between input and output
speeds for a longer period. If the objective is to sustain this for a shorter period, a cheaper

C H A P T E R 2 1 Switching Packets 19

F I G U R E 21.10 Knockout trees for S = 4 and N = 8.

solution is to use k memory banks and interleave the access to these banks. The knockout
switch design [755] uses a shifter to spray the cells to these S memory banks in round-robin
order. The cells to be transmitted on the output link are read one at a time in the same order.

21.9 Virtual Output Queueing
To understand virtual output queueing, let us take a closer look at HOL blocking. The HOL
blocking occurs because the input port is allowed to schedule only the cell at the front of the
queue. If we can relax this restriction and allow the cells behind the head of the queue to be
scheduled for transmission when the head is blocked, then HOL blocking can be eliminated.

Well, we might think that during scheduling we need to consider all the cells waiting
in each input queue, which could be hundreds or thousands. If the state of each queue, (es-
pecially the cells waiting), has to be passed to the scheduler, it would become complex and
consume too much memory, even assuming only a single bit per cell.

However, a few key observations eliminate the need for such complexity. First, note that
all the cells waiting in the input queue can be destined for only N possible outputs. Second,
if the cells C1 and C2 from the same input queue S are destined for the same output port R,
then in order to maintain FIFO order, C1 needs to be scheduled before C2. Hence, it does not
make sense to schedule C2 before C1. As a result, any cells other than the first cell destined to
every distinct output port need not be considered for scheduling.

Therefore, the input queue at each port is split into multiple queues, one queue per out-
put at each input port as shown in Figure 21.11. Hence, a total of N2 input queues is needed
for an N × N switch. This concept is called virtual output queueing, although the queueing

20 21.9 Virtual Output Queueing

F I G U R E 21.11 A virtual output-queued switch with N queues per input port.

physically occurs at the inputs and is referred to as VOQ for the rest of the chapter. With vir-
tual output queues, scheduling to pair input ports to output ports becomes complex. Hence,
in the next section, we digress to examine the theory behind how the scheduling problem
can be mapped to a bipartite graph matching problem. It is followed by a discussion of two
important scheduling algorithms, parallel iterative matching and iSLIP.

21.9.1 Maximum Bipartite Matching

The use of virtual queues complicates the problem of scheduling as it needs to take into
consideration N2 queues at the input ports and pair them with the output port in such a way
that maximum transfer of cells occurs in a single time slot. Such a scheduling problem can be
viewed as an instance of a bipartite matching problem as shown in Figure 21.12. The inputs
and outputs form the nodes of a bipartite graph while the connections needed by queued
cells from different inputs to various outputs are considered as edges in a bipartite graph.
Additionally, there are no edges among the set of inputs or among the set of outputs; after
all, the goal is to transfer cells from input ports to output ports, not from one input port to
another input port.

A maximum match is one that pairs a maximum number of inputs and output ports to-
gether and there is no other pairing that matches more inputs and outputs. We can easily
show that such pairings maximize the connections made in each timeslot and, as a result,
maximize the instantaneous allocation of bandwidth. There are many algorithms for maxi-
mum bipartite matching, and the most efficient requires O(N5/2) time [296]. A randomized
algorithm [353] comes close to finding a maximum match, but it still requires O(N + E) in an
N ×N bipartite graph with E edges. The main drawbacks of these algorithms are that they are
too complex to implement in hardware and too slow to be of any practical use. Furthermore,
a maximum matching can potentially starve some input queues indefinitely. The following
example illustrates such a possibility.

C H A P T E R 2 1 Switching Packets 21

F I G U R E 21.12 Equivalence of scheduling and bipartite matching.

F I G U R E 21.13 Starvation in maximum matching.

Example 21.4 Starvation in a maximum matching.
Consider a 4 × 4 crossbar switch with cells shown in Figure 21.13. Assume that a steady

stream of cells keeps arriving at input A destined for output 2. At the same time, input C
also gets a stream of cells, of which the majority are destined for output 4 and the remaining
for 2. In this case, the maximum matching would always connect input A with output 2 and
input C with output 4. This is because a maximum matching algorithm pairs as many inputs
with outputs and no more pairing is possible. Hence, as long as there are cells at input C
destined for output 4, the cells queued at input C destined for output 2 would never have an
opportunity to be transmitted. �

Due to such drawbacks, practical scheduling algorithms attempt to find a maximal match.
A maximal match is one for which new pairings of input to output cannot be trivially added;
each node is either matched or has no edge to an unmatched node. A maximum match is
maximal, but the reverse is not true. There may be a way to add more input and output pair-
ings than a maximal match by reshuffling the pairings of input ports to different output ports.
The following example illustrates the difference between maximal and maximum matching.

22 21.9 Virtual Output Queueing

F I G U R E 21.14 Maximum versus maximal matching.

Example 21.5 Maximal versus maxiumum matching.
Consider again a 4 × 4 crossbar switch. For the sake of discussion, assume that each input

port has three cells to transfer to the output port as shown in Figure 21.14. Port A has cells to
transfer to output ports 1, 2, and 3. Similarly, cells bound for outports 1, 3, and 4 are waiting
to be transferred to ports B and C. Also, port D has cells 2, 3, and 4 to be transferred to their
respective output ports.

Now the pairings {(A,1), (B,3), (C,4), (D,2)} constitute a maximum match since they
provide maximum parallelism by connecting all inputs to outputs. However, the pairings
{(A,3), (B,1), (D,4)} constitute a maximal match. This is because it is possible to obtain more
parallelism by different pairings of input ports and output ports as in maximum match-
ing. �

In practice, to communicate the scheduling needs, each input port must send a bitmap
of size N to the scheduler. In the bitmap, a bit at position i indicates whether there is any
cell destined for output port i. Since each input port sends a bitmap, the scheduler needs to
process N2 bits and for smaller values of N, say 32, this might not be enough bits to com-
municate to other components using buses or even to store in memory. Now let us turn our
attention to a few scheduling algorithms that achieve close to maximal matches at very high
speeds.

21.9.2 Parallel Iterative Matching

The key idea behind parallel iterative matching (PIM) [15] is the use of randomness to find a
maximal match between input ports and outputs. The algorithm uses multiple iterations to
converge quickly on a maximal match so that the number of cells transferred in a time slot is
maximized. Before outlining the algorithm, let us attempt to understand it using the example
in Figure 21.15.

Example 21.6 Scheduling and transfer of cells using parallel iterative matching.
The algorithm starts with the request phase, where all the input ports A, B, C, and D send

requests to output ports for which they have a cell to forward to as shown in Figure 21.15. As
we can see, A sends requests to ports 1, 2, and 3 while ports B and C both send their requests
to 1, 3, and 4. Finally, port D communicates its request to ports 2, 4, and 3.

C H A P T E R 2 1 Switching Packets 23

F I G U R E 21.15 Single-iteration PIM in operation.

Now observe that output port 1 gets three requests from A, B, and C. Of course, it can
service only one port at a time. If that is the case, how will output port 1 choose which request
to grant? A simple way is to choose randomly among the requests. Let us say port 1 chooses
to serve A. Since port 2 also received requests from both A and D, it has to break the tie by
choosing one of them randomly, say port A again. Finally, assume that ports 3 and 4 agree to
serve port B and port C, respectively. Since grants to requests are issued, this phase is referred
as the grant phase.

Notice that port A has been chosen by both ports 1 and 2, leading to input port contention.
Now how do we break the tie? Well, again we can randomly choose one of them. Assume that
port A picks port 1. Hence, a third accept phase is needed in which each input port randomly
chooses an output port. The final pairings are (A,1), (B,3), and (C,4). Port D does not have
a pairing since it lost among the choices made randomly. The appropriate crosspoints are
turned on and cells are transferred. This concludes round 1 of the algorithm.

For round 2, again the requests for the remaining cells are sent from the input ports to the
output ports. In this case, port A sends to output ports 2 and 3 and port B to output ports
1 and 4. Since the cells remaining in port C have to be transferred to ports 1 and 3, it sends
the requests to those ports. Port D has not been able to transfer any cell in the first round
and, hence, its requests are sent to ports 2, 3, and 4 as it has a cell bound for these ports.

24 21.9 Virtual Output Queueing

Output ports 1 and 4 grant the requests from port B. On the same note, port A receives a
grant from output ports 2 and 3 while ports C and D receive none. Port A accepts the request
from port 2 and port B from 1. Now the actual data transfer takes place, which concludes
round 2. Note that an opportunity to transfer a cell from port D to port 4 is lost because of
randomness. �

The algorithm continues in this fashion until all the cells are transferred to their respective
output ports. Figure 21.15 illustrates only the first three rounds of PIM. The remaining three
rounds of the PIM operation are left as an exercise to the interested reader.

Based on the understanding of the operation, we are now ready to formally describe the
algorithm. The PIM algorithm consists of three phases, similar to the take-a-ticket scheduler,
which are described as follows:

• Request Phase: Each unmatched input sends a request to every output for which it has
a buffered cell. This notifies an output port about the input ports that are interested in
communicating.

• Grant Phase: If an unmatched output received any requests, the algorithm chooses ran-
domly to grant a request. The output port notifies each input if its request was granted.

• Accept Phase: If an input receives any grants, it accepts one of them and notifies that
output.

As we saw earlier, note that two or more input ports can request the same output port, leading
to output port contention; the grant phase chooses one of them randomly. Similarly, input
port contention can occur when two or more grants are issued to the same input port from
multiple output ports; the accept phase chooses one of them randomly.

For Example 21.6, it may take as many as six time slots to transfer the cells, as shown in
Figure 21.16. Each box in the figure corresponds to an opportunity to transfer a cell from an
input port to an output port. In round 1, which corresponds to time slot 1, cells 1, 3, and 4 are
transferred from their input ports A, B, and C, respectively. Similarly, during time slot 2, port
A transmits cell 3 and port B transmits its cell 1 and so on. Out of 24 (6 time slots × 4 ports)
opportunities to transmit cells, only 12 of them were used, which gives a throughput of 50%.

F I G U R E 21.16 Transfer of cells using single-iteration PIM.

C H A P T E R 2 1 Switching Packets 25

The low throughput can be attributed to a single iteration of the algorithm in each round,
where some input ports might have been paired with output ports. However, some input
ports still can be paired with other unpaired outputs. This is because two or more output
ports can grant to the same input port while it chooses only one of them. The output ports
whose grant is not accepted can be paired with some other unpaired input port. Hence, the
algorithm is repeated in each round, retaining the matches made in the previous iterations to
find matches for unpaired input and output ports.

Example 21.7 Scheduling and transfer of cells using two-iteration PIM algorithm.
Continuing with Example 21.6, we saw that port A received two grants (one from port 1

and the other from port 2), before it chose port 1. Also note that port D did not have a pairing.
Now since port 2 is free, it could very well have been paired with port D, as it has a cell
destined for. If one more iteration of the algorithm is allowed with unmatched input and
output ports, then the algorithm would have paired port D with port 2 and four cells could
have been transferred in round 1. This is shown in Figure 21.17. The requests and grants are
shown as solid black arrows; the matches in the previous iterations are shown as light black
arrows. �

Hence, to maximize the pairings, the algorithm needs to be rerun preserving the matches
from previous iterations. A follow-up iteration will increase the number of matches by 1, if
maximum pairing has not occurred. Subsequent iterations cannot worsen the matches since
the previous matches are retained. The cells transferred in each time slot using two-iteration
PIM for Example 21.7 are shown in Figure 21.18. In contrast to single-iteration PIM, it requires
only four time slots (or rounds). From a total of 16 opportunities to transmit, 12 are utilized

F I G U R E 21.17 Round 1 of a two-iteration PIM in operation.

26 21.9 Virtual Output Queueing

F I G U R E 21.18 Transfer of cells using two-iteration PIM.

and, hence, the throughput is 75% (12 × 100/16), which is a 25% improvement over single-
iteration PIM and “take-a-ticket” scheduling.

Since PIM requires a variable number of iterations to find a maximal match, it is impor-
tant to understand the number of iterations it will take to converge. In the worst case, if all
outputs grant requests to the same input, only one match will be made in a single iteration.
If this sequence is repeated, it will take N iterations to reach a maximal match. Hence, it is
no faster than a sequential approach. In the best case, every output grants to a unique input,
achieving a maximal match in one iteration. For the average case, it takes O(log2 N) iterations
to converge [15], independent of the pattern of requests. This is based on the observation that
each iteration, on average, resolves 75% of the remaining unresolved requests.

For a large value of N, from an implementation perspective, it might not be possible
to iterate until the maximal match is reached. This is because of the fixed amount of time
required to schedule the switch. Hence, a small fixed number of iterations is used. Also, note
that the algorithm might not necessarily forward cells through the switch in the order in
which they arrive.

Since the algorithm randomly selects a request among contending requests, all the re-
quests will eventually be granted, ensuring that no starvation occurs in any input queue.
Hence, no state is needed to keep track of how recently a VOQ has been served. The algo-
rithm begins all over, at the beginning of each cell time, independently of the matches that
were made in the previous cell times. While the use of randomness does not require main-
taining the state, it is expensive to implement, as a selection has to be made randomly among
the requests of a time-varying set.

If a single iteration is used, the throughput of PIM is limited to approximately 63%, which
is only slightly higher than a switch that uses FIFO [460]. The rationale for this is as follows.
The probability that an input port will not be granted its request is (1 − 1/N)N . As N in-
creases, the throughput tends to be 1 − 1/e ≈ 63%. However, the algorithm typically finds
a good maximal match after several iterations. Since each iteration requires the execution of
three phases, the time for scheduling increases, which affects the rate at which the switch can
operate. As a result, the switch provides lower throughput for moving packets between line
cards. Hence, it is desirable to have a matching algorithm that uses one or two iterations to
find a close enough maximal match.

C H A P T E R 2 1 Switching Packets 27

21.9.3 iSLIP Scheduling
The iSLIP algorithm was designed to overcome the problems of complexity and unfairness
in PIM. It is a simple iterative algorithm that achieves close to maximal matches in just one
or two iterations. As discussed in the previous section, PIM chooses randomly among a com-
peting set of requests or grants in order to provide fairness. However, iSLIP provides fairness
using rotating pointers that track which input (output) port needs to be served next. These
pointers allow the “winning” request or grant to be chosen among multiple contenders in
a round-robin fashion. Even though these pointers are synchronized at the start of the algo-
rithm, they tend to desynchronize, which results in maximal matches as time progresses. For
the sake of discussion, let

Ii = Accept pointer at input port i.

Oj = Grant pointer at output port j.

The algorithm starts by initializing Ii for all values of 0 < i < N − 1 to the first output port.
Similarly, Oi, for all values of 0 < j < N − 1 is initialized to the first input port. The algorithm
is invoked at the start of each time slot and uses single or multiple iterations to match input
ports that have cells to transmit to output ports. The following steps are in the iteration:

• Request Phase: Each input port sends a request to every output port for which it has a
cell queued in its VOQs.

• Grant Phase: When an output port j receives one or more requests, it chooses the lowest
input port number that is equal to or greater than Oj. After choosing the input port to
serve, the output port notifies each input whether its request has been granted.

• Accept Phase: When an input port i receives multiple grants, it chooses to accept the
lowest output port number that is equal to or greater than Ii. Once the input port accepts
a grant, Ii is incremented to the next output port in a circular order. In other words, if
input port i accepts a grant from output port X , then Ii is updated to (X + 1) mod N.
Pointer Oj of output port j is also incremented in circular order to the next input port
beyond the granted input. If the accepted input port is Y , then Oj is assigned the value of
(Y + 1) mod N. These pointers are updated only after the first iteration, not in subsequent
iterations.

As mentioned earlier, the steps of the iteration are repeated a predefined number of times
with unmatched inputs and outputs, retaining the matches from the previous iterations.
Finally, the cells are transferred from the matched input port to the output port. To ob-
tain a concrete understanding, let us use an example of how iSLIP schedules a set of
cells.

Example 21.8 Scheduling and transfer of cells using iSLIP.
Consider scheduling the same set of inputs as in Example 21.6 using two-iteration iSLIP.

The first three rounds of operation of iSLIP are shown in Figures 21.19, 21.20, and 21.21. Each
round consists of two iterations before the actual data transfer occurs. As can be seen from

28 21.9 Virtual Output Queueing

F I G U R E 21.19 Two-iteration iSLIP scheduling in operation—round 1.

the figures, each output port is associated with a grant pointer Ii for 1 < i < N and all of them
are initialized to the first input port A. Similarly, each input port maintains an accept pointer
Oj for 1 < j < N and is initialized to the first output port 1.

In Figure 21.19, each input port sends requests to each output port for which it has a
queued cell. According to the algorithm, each output port grants to the lowest input equal
to or greater than its grant pointer. For example, when output port 1 receives requests from
input ports A, B, and C, it grants to A since its pointer O1 points to A. Similarly, output ports
2 and 3 also grant to A as their grant pointers contain A while the output port 4 grants to
input port B.

As the grants are communicated to the input ports, A finds that it received three grants,
one each from ports 1, 2, and 3. The accept pointer IA indicates that A can accept grants from
port 1 or greater. Therefore, it chooses to accept the grant from port 1 and rejects the grants
from ports 2 and 3. Similarly, B accepts the single grant from port 4. The accepted grants
are communicated to the respective output ports, A to 1 and B to 4, as shown in the upper
rightmost column in Figure 21.19. At this time, the grant pointers O1 and O4 are updated to B
and C, respectively. Similarly, accept pointers IA and IB are updated to 2 and 1, respectively.
Note that the value of IB continues to be output port 1 since the next port after port 4 is 1 in
circular order.

Observe that the grant pointers O2 and O3 are not incremented despite granting for
port A. This is because their grants are not accepted by port A. If these grant pointers are
incremented, even after the grant is rejected, they might be synchronized in lock-step (for
details refer to [460]), thereby reducing the number of cells transmitted in a time slot.

At the end of the first iteration, a match of size only 2 has been achieved. It can be further
improved by a second iteration, shown in the lower half of Figure 21.19. The second iteration
begins with unmatched inputs only requesting unmatched outputs. Input ports C and D send

C H A P T E R 2 1 Switching Packets 29

F I G U R E 21.20 Two-iteration iSLIP scheduling in operation—round 2.

requests for ports 3 and 2, respectively, which are granted. Unlike the first iteration, the grant
and accept pointers are not incremented to avoid starvation [460].

Thus, the accept pointer at C and D remains at A while the grant pointers at 2 and 3
remain at 1. At the end of the second iteration, the paired inputs and outputs are (A,1),
(B,4), (C,3), and (D,2). The crosspoints are turned and the actual data transfer occurs. The
data transfers are shown as thick solid lines in the bottom rightmost switch in Figure 21.19.

The next two rounds of the operation of iSLIP are shown in Figures 21.20 and 21.21. The
reader can trace through the algorithm and identify the cells transferred in each round. By the
end of three rounds, all the cells except cell 3 at input port B are transferred to the respective
output ports. The remaining cell can be transferred in the fourth round. �

How do the accept and grant pointer break away from each other? Observe the first row
in Figure 21.20. At the start of round 2, since output port 1 has been granted to input port
A, it moves on to provide priority for serving ports beyond A, in this case B. Hence, even if
port A has another cell destined for port 1 (unlike our example), port 1 will grant only the
requests for port B and beyond.

The algorithm requires that 2N pointers be maintained, one for each input port and
one for each output port. Each pointer should have log2 N bits to address the ports from 0
to N − 1.

The time slot at which the cells depart from the input port for Example 21.8 is shown in
Figure 21.22. As shown, all the cells are transmitted in four time slots. While comparing it with
two-iteration PIM, it might appear that iSLIP performs only as well as PIM even with two
iterations (both consume four time slots). This is due to the startup penalty of iSLIP because
of the synchronization of pointers. Once the pointers are desynchronized, iSLIP performs
well with just a single iteration. Also, notice that despite the startup penalty, iSLIP uses all the

30 21.9 Virtual Output Queueing

F I G U R E 21.21 Two-iteration iSLIP scheduling in operation — round 3.

F I G U R E 21.22 Transfer of cells using two-iteration iSLIP.

transmission opportunities in the first two rounds compared to PIM. Most of the commercial
implementations of iSLIP use only a single iteration.

21.9.4 Priorities and Multicast in iSLIP

For many Internet applications such as VoIP and video, their traffic must be scheduled
through the router ahead of lower-priority traffic to guarantee latency and jitter requirements.
For this the switch fabric must let this traffic pass as quickly as possible. Similarly, applica-
tions like video conferencing require support for their packets to be replicated at the router for
multicasting. Since the growth of such traffic is on the rise, first-class support for multicasting
is becoming more important.

The iSLIP algorithm can easily accommodate priorities using a separate VOQ for each
priority at each input port per output port. For instance, if there are four priorities that need
to be supported on a 16 × 16 switch, each input port needs 64 (4 priority levels × 16 out-

C H A P T E R 2 1 Switching Packets 31

put ports) VOQs. Also, for each output port j and priority k a separate grant pointer Ok
j is

maintained. Similarly, an accept pointer Ik
i is also maintained at each input port for each pri-

ority. Scheduling the prioritized traffic necessitates performing the original iSLIP algorithm
on each input and output port on the highest priority level for which there are cells to be
transmitted.

To be precise, each output port accepts a request from the highest priority request it re-
ceives; in addition, each input port also accepts a grant from the highest priority level it sees.
Consider a situation in which an input port I issues a request for priority level 1 for output
port 2 and another request for priority level 3 for output port 3. If both requests are granted,
I chooses the one with the highest priority grant. Note that the choice is not based on accept
pointers since they are at different priorities; instead it is based on priority. Once the grant
is accepted in the first iteration for a priority k between input port I and output port O, the
corresponding accept and grant pointers are incremented.

A straightforward approach for implementing multicast is to replicate the input cell and
transmit a copy to the output port for every time slot for the respective output ports. But
the disadvantage is that the same input cell competes with other cells multiple times for
the switch. This reduces the available switch bandwidth for other traffic at the same input.
However, as seen in Section 21.6, crossbar naturally supports multicasting, which can be used
to achieve higher throughput.

The iSLIP can be extended to support multicast, and the variant is referred to as
ESLIP [459]. To accommodate multicast, ESLIP includes an additional queue per input port.
The use of a single queue might introduce HOL blocking for multicast. Indeed, it will. For
instance, consider cell C1 destined for outputs O1 and O3, which in the queue occurs before
cell C2 bound for outputs O2 and O4. If outputs O1 and O3 are busy, the cell C1 will block cell
C2 even if outputs O2 and O4 are idle. If HOL blocking needs to be avoided for multicast, it
will require a queue for each subset of output ports, which might not be practical (216 for 16
ports). The set of output ports to which an input cell needs to be replicated is called its fanout.
For instance, if input port I contains a cell that needs to be copied to output ports 1, 2, and 4,
then its fanout is 3.

Now the multicast traffic can be scheduled in two ways. In the first approach, referred to
as no fanout-splitting, all copies of the input cell are transmitted in a single time slot. In this
case, if there is contention for one of the output ports, none of the copies is transmitted and it
has to be retried in some other time slot. In the other approach called fanout-splitting, the cells
to be multicast are delivered to output ports over multiple time slots. The cells that are not
transmitted due to contention in some output ports will continue to try in the next time slot.
Studies [287], [300], [570] show that fanout-splitting leads to higher throughput with a slight
increase in implementation complexity.

ESLIP implements a variation of fanout-splitting in which a particular input is favored
until it completes the transmission of its fanout completely before the next input cell, which
is different from multiple inputs competing for output ports and transmitting their fanouts
partially. This version of fanout-splitting is implemented in ESLIP using a shared multicast
grant pointer that is different from the separate grant and accept pointers per port for unicast.

When a mix of multicast and unicast requests arrives at an output port, how does the
output port choose which one to grant? ESLIP solves this problem by giving preferential

32 21.10 Input and Output Blocking

treatment to unicast and multicast in alternate time slots. Let us consider an example of how
a mix of unicast and multicast traffic is handled.

Example 21.9 Scheduling of unicast and multicast traffic using ESLIP.
Consider two input ports I1 and I2 that have a unicast cell and a multicast cell to be trans-

mitted, respectively. Let us assume that the unicast cell from I1 is destined for output port O4

and the multicast cell from I2 is destined for output ports O1, O2, and O4. Also assume that
the switch provides preference for unicast traffic in odd time slots and for multicast traffic in
even time slots.

If the current time slot is odd, then the output O4 will grant the request for unicast from I1.
Since the outputs O1 and O3 do not have any requests for unicast traffic, they will choose
to grant the multicast request to the first port that is greater than or equal to the current
shared multicast grant pointer. Assuming that I2 is chosen, the outputs O1 and O3 will grant
request I2.

Unlike unicast, all the multicast grants are accepted by input I2. Also, the shared multicast
grant pointer is not increased beyond I2, since I2 has not yet completed its fanout. In the
next time slot, when the multicast traffic gets priority, the grant will be issued to O4, which
completes the fanout of I2. Then the shared multicast grant pointer is increased by one past I2.

�

21.10 Input and Output Blocking
So far, our attention has been focused on HOL blocking and on how it affects the throughput
of the crossbar; various solutions that eliminate HOL blocking have been outlined. But the
delay experienced by a packet inside a router as it travels from the input interface through
the crossbar to the outgoing interface can be unpredictable. However, with the growth of the
Internet, large amounts of multimedia and delay-sensitive traffic require that packets arrive
at their destination within a predictable time.

Routers, as we shall see in Chapter 18, in their outgoing interfaces employ an output link
scheduler, which determines the exact time at which each packet needs to be transmitted.
Such output scheduling alone cannot guarantee a predictable delay for the packets forwarded
by the router. Within the router, the packets could experience unpredictable delays as they try
to pass through the fabric. These delays in the crossbar can be attributed to input and output
blocking.

Input blocking occurs when there are multiple input cells in different VOQs on the same
input port contending for the fabric. Since the scheduler selects only one cell from a VOQ
to be served in a time slot, the other cells are blocked. For a better understanding, consider
the VOQs shown in Figure 21.11. Assume that the scheduler selects a VOQ to be serviced by
the scheduler at one input. The other nonempty VOQs at the same input must wait until a
later time slot for service. In fact, it will be difficult to predict when a nonempty VOQ will be
scheduled to receive service. This is because new cells might keep arriving for VOQs in other
inputs in every time slot, changing their occupancy, and the scheduler tries to pair VOQs in
input ports with output ports to achieve a maximal match so that throughput is maximized.
Hence the VOQ needs to compete with other VOQs that might block it for an unpredictable
number of time slots.

C H A P T E R 2 1 Switching Packets 33

To understand output blocking, consider two cells in different input ports destined for the
same output port. Since each output line in a crossbar switch can connect to one input during
a cell time, only one cell can be transferred. The other cell will be blocked until a later cell time.
In such cases, we say that output blocking has occurred since the transfer of a cell bound to
an output blocks other cells bound for the same output. Similar to input blocking, in output
blocking the time when a cell will be delivered to its output can also be unpredictable.

Example 21.10 Unpredictable delay due to input blocking and output blocking.
Consider the set of input cells in VOQs shown in Example 21.8. Assume that all the cells

arrived at their VOQs at the same time. At the end of round 1, input port B is able to transfer
its cell bound for output port 4. Note that port B contains other cells bound for ports 1 and 3,
which are blocked as it is serving the cell for port 4. These cells are transmitted later in round
2 and round 4. Even though all the cells arrived at the same time, the cell for port 4 did not
experience any delay, but the cells for ports 1 and 3 were delayed by one time slot and three
time slots, respectively.

For output blocking, consider the cells bound for port 4 at input ports B, C, and D. In
round 1, port B is allowed to transmit to port 4 while ports C and D were blocked since the
output can serve only one input port in a time slot. Port C gets a chance to transmit in round
2, thus experiencing a delay of one time slot. In round 3, port D sends its cell to port 4, and
hence the delay is two time slots. As you can see, the delay is unpredictable in both cases and
to a large extent depends on the cells in other VOQs and the scheduling algorithm. �

Two techniques to control the delay a packet experiences through the crossbar switch
have been described in [459]. The first technique is to segregate packets into different pri-
ority classes based on the delay requirements. Higher-priority packets that belong to delay-
sensitive traffic are given preferential treatment access to the switch. While prioritization does
not eliminate input and output blocking, it mitigates the delay experienced when higher-
priority packets are affected by lower-priority packets. Results [459] indicate that if the traffic
in the higher-priority class is kept relatively small, the delay is close to zero. Therefore, the
high priority cells will be transferred to the output port with a fixed but negligible delay.
Scheduling of higher-priority cells ahead of lower-priority cells can be incorporated as de-
scribed in Section 21.9.4.

The second technique is to run the switch faster than the external input and output links
(as described in Section 21.8). For instance, when the switch is run S times as fast as the
external line, S cells can be transferred from each input port to each output port during each
time slot. Such a speedup delivers more cells per time slot and, hence, reduces the delay of
each cell through the switch. In an ideal case, every input cell can be transferred to its output
port immediately upon arrival when the switch runs with sufficient speedup. The worst-case
scenario is when all input ports need to transmit cells to the same output port, which requires
a speedup of N, in theory. As shown in Section 21.8, this is impractical.

21.11 Scaling Switches to a Large Number of Ports
As the Internet traffic enjoys tremendous growth, network operators require routers that are
capable of moving more than a few terabits per second of traffic. Since most of the traffic

34 21.12 Clos Networks

(a) (b)

F I G U R E 21.23 Replacing a cluster of routers (a) with a large-capacity scalable router (b).

passing through the router has to traverse the internal switched backplane, there is a need
for large-capacity switches. Unfortunately, the switched backplanes that we studied so far
cannot scale to large capacity to satisfy current and expected future routing demands. As a
result, a number of routers are interconnected with numerous links in a cluster-like form as
shown in Figure 21.23(a). In these architectures, routers need to employ expensive line cards
to connect links to other routers in the cluster. These links carry intracluster traffic rather than
the revenue-generating user traffic. Thus, it has been proposed that such router clusters be
replaced by a single scalable router (see Figure 21.23(b)). Such large routers are advantageous
as they save the cost of numerous line cards and expensive links. Furthermore, there will be
fewer such routers that need to be configured and managed.

A key requirement for such a router is the support for a large number of line cards. This is
required since the router needs many links to connect access routers, PoPs, and WAN. Hence,
the internal switched backplane needs to support a large number of ports. Another key re-
quirement is the need to accommodate high-speed links as their bit rates can be as high as
40 Gbps because of recent advances in optical technologies. As a result, the backplanes need
to scale in two orthogonal dimensions: number of ports and link speed. In the next few sections,
we discuss switching architectures that scale to a larger number of ports. In Section 21.14, we
examine in detail how switches can be scaled for higher link speeds.

21.12 Clos Networks
A single-stage network like a crossbar can be scaled to a larger number of ports using a
naive approach. Simply build a larger crossbar by interconnecting smaller crossbar chips.
However, the cost of the crosspoints still increases quadratically. In such a composite switch,
other dominant costs include the cost of the pins and the number of links connecting these
chips. Hence, these switches tend to be expensive for a large number of ports. Furthermore,
a crosspoint failure isolates an input from the output, making it less robust for failure.

Clos [146] described a method to reduce the number of crosspoints, in addition to pro-
viding more than one path between input and output ports, using multistage switching tech-
niques. A Clos (pronounced as “Close”) network is a three-stage network constructed by
using smaller crossbar switches as shown in Figure 21.24. Since the number of inputs and
outputs is the same in the Clos network shown in Figure 21.24, it is sometimes referred to as
a symmetric Clos network. The first stage divides the inputs into smaller groups of n each and

C H A P T E R 2 1 Switching Packets 35

F I G U R E 21.24 A (m,n, r) Clos network with m middle switches and r input and output
switches.

switches each group to the middle stage. It uses a simple crossbar switch of type n × m for
each group. Assuming there are r groups, then r such switches are needed for the first stage.
The middle stage uses m switches of type r× r, and each switch has one input link from every
switch in the first stage in order. In other words, output j of switch i in the first stage is con-
nected to input i of switch j in the midde stage. Similarly, each output link of a middle stage
switch is connected to one input link of a switch in the final stage, again in order. The final
stage involves r switches of type m × n connecting all m middle switches to its outputs. As
a result, there exists m distinct paths for a given pair of input and output ports through the
Clos network.

Often, such a Clos network is referred to by a triple (m,n, r), where m represents the
number of switches in the middle stage, n denotes the number of input (output) ports on
each input (output) switch, and r is the number of input or output switches. For a router
that switches packets from N input line cards to N output line cards, we need a (m,n, �N/n�)
Clos network. A Clos network need not be restricted to only three stages. Clos networks with
an odd number of stages more than three can be recursively constructed by replacing the
switches in the middle stage with a three-stage Clos network.

Recall that a switch is nonblocking if there is no configuration of connections that can
prevent the addition of a new connection between an idle input i and an idle output o. Now
the question is, can a Clos network be nonblocking? It might appear that perhaps it is not
nonblocking as an input switch has at most m connections to the middle stage and each
middle stage switch has at most one connection to an output switch. This might be true for
small values of m where an input switch I might not be able to find a path to a middle switch
with a free link to an output switch O.

However, Clos showed that when m ≥ 2n − 1, the resulting Clos network is nonblocking.
The proof for Clos’s observation is relatively simple. Consider a scenario where an input port
i that has been idle so far wants to transmit to an idle output port o. Assume that i belongs to
input switch P and o to output switch Q. If P is an n × m switch, in the worst case, at most

36 21.12 Clos Networks

F I G U R E 21.25 Proof of the Clos theorem.

n − 1 of its inputs can be busy. These inputs can be switched to at most n − 1 switches in the
middle stage. Similarly, if Q is an m × n switch, at most n − 1 outputs can be busy and these
outputs are fed from at most n − 1 middle-stage switches.

We can assume, without loss of generality, that the connections from switch P use the first
n−1 middle switches and the connections to switch Q use the last n−1 middle switches. This
scenario is depicted in Figure 21.25. To connect i to o, a middle switch not used by both P and
Q is required. Since n − 1 middle switches are used by P and different n − 1 middle switches
are used by Q, there must be at least 2n − 1 middle switches for a switch to be available for
communication between i and o.

Note that there is an implicit assumption that switches P and Q are crossbars or other
nonblocking switches. This implies that switch P always finds a path to connect i to the cor-
responding input link of the middle switch R and, similarly, switch Q finds a path to connect
to the corresponding output link of R to o.

Clos’ result is interesting since it showed, for the first time, that nonblocking switches can
be constructed with less than quadratic complexity. If m = 2n − 1 and r = N/n, then the total
number of crosspoints of a Clos switch is

(2n − 1) × N + (2n − 1) × N/n2 + (2n − 1) × N,

C H A P T E R 2 1 Switching Packets 37

which is less than N2. The number of crosspoints is minimized when n = √
N/2 and it is

approximately equal to 5.76N
√

N. For instance, if N = 1024, then the total number of cross-
points for a crossbar is approximately a million. For a nonblocking Clos switch, the number of
crosspoints is approximately 190,000, which represents a savings of 81%. However, this bene-
fit of reduced crosspoints is achieved at the expense of increasing the latency (two additional
stages of switching), but typically this is acceptable.

For instance, consider the design of a multichassis router where individual routers are
connected by high-speed switching fabric.

While nonblocking Clos networks are clearly desirable, they come at a cost. Can we do
better? By reducing the number of middle switches, the cost of the switch can be further
reduced. However, in this case, the Clos network is no longer nonblocking. Instead, when
m = n, the Clos switch becomes what is called rearrangeably nonblocking. A switch is rearrange-
ably nonblocking when a new connection from input i to an unconnected output o may re-
quire rearranging some existing connections to use different middle-stage switches. While a
nonblocking network might be desirable, it is not necessary for a router. Let us examine why.

Looking at a bit of history, the Clos networks were originally used in telephone networks
that are circuit switched. In these networks, a circuit is established before the actual conver-
sation takes place. During the establishment of a circuit, a path is chosen through the Clos
network and held for the entire duration of the conversation, which could be seconds or even
minutes. However, routers use the Clos network to move packets between the line cards. The
packets are often further divided into fixed-sized cells (typically between 40 and 64 bytes)
and transferred from their input ports to output ports for every time slot, as long as a path
can be established in the switch. Unlike circuit-switched networks, a path from input i to
output o is held only during the duration of a time slot (which is extremely small—on the
order of nanosec or picosec) and freed at the end of the time slot. Again, at the beginning of
the next time slot, a new set of paths between input and output ports is established, cells are
transferred, and so on. This approximately achieves the same effect of rearranging circuits in
a circuit-switched network.

21.12.1 Complexity of Scheduling Algorithms

With a rearrangeably nonblocking Clos switch, the scheduling becomes more complex. To
schedule cells from input ports to output ports, it is necessary to address two issues. First,
an input-buffered Clos switch, like crossbar, will suffer from HOL blocking. To avoid HOL
blocking, each input port maintains a separate queue for each output port in such a way that
cells in a VOQ do not block cells in any other VOQ except when contending for an input
port. Hence, a scheduling algorithm is required to determine a set of nonconflicting cells
from N2 input queues to be transferred to N output ports. This is similar to the bipartite
graph matching discussed in Section 21.9.1, where input ports form one set of nodes and the
output ports form another set of nodes. Some algorithms that find fast maximal matches are
discussed in the context of scheduling crossbar switches in Sections 21.9.2 and 21.9.3.

Second, given a maximal match of input and output ports, we need to identify inter-
nally conflict-free paths connecting an input port to an output port through the middle-stage
switches. Such a route assignment can be mapped onto an edge-coloring problem in a bi-
partite multigraph. Note that this bipartite multigraph is different from the bipartite graph

38 21.12 Clos Networks

F I G U R E 21.26 A (4, 4, 2) rearrangeable Clos network.

used for matching input and output ports. In this bipartite multigraph, the input switches are
mapped to one set of nodes I and the output switches to the other set of nodes O. The edges
in the bipartite multigraph represent the routes needed through the middle switches between
a node in I and a node in O. There can be more than one edge connecting a node in I to a
node in O and hence it is a multigraph.

If a unique color is assigned to represent each middle switch, the assignment of the routes
is equivalent to coloring the edges of the bipartite multigraph such that no two edges coming
out of a node have the same color. Well, what does this mean, intuitively? Coloring of the
edges represents the use of a distinct middle switch to connect one input switch to an output
switch. Recall that in a Clos network each middle switch has a single link to one input switch
and output switch. If two paths are needed for the same pair of input and output switches,
then it requires the use of two different middle switches. This is reflected by the constraint
that no edges incident on the same node should be of the same color. The following example
will provide a better understanding of this.

Example 21.11 Scheduling in a three-stage Clos switch.
Consider the three-stage Clos switch illustrated in Figure 21.26 with four middle-stage

switches. For the sake of discussion, assume a matching algorithm based on cells waiting in
VOQs identifying the pairs (A,3), (B,6), (C,1), (D,7), (E,2), (F,4), (G,5), and (H,8) of input
and output ports as the maximal match. This maximal match is shown as a bipartitie graph
in Figure 21.27(a).

With these pairings, we can identify the number of paths needed from an input switch i
to an output switch j. For instance, consider pairs (A,3) and (C,1). These require two paths
connecting switch IS1 and switch OS1. For all the pairs, the paths required are represented
as a switch bipartite multigraph shown in Figure 21.27(b). Now if each of the four middle

C H A P T E R 2 1 Switching Packets 39

(a) (b) (c)

F I G U R E 21.27 Route assignment (a) and edge coloring for scheduling (b, c) in a Clos
network.

switches is assigned a distinct color, the edges of the switch bipartite graph should be colored
such that no two edges incident on the same node are assigned the same color. A possible
color assignment is shown in Figure 21.27(c). In Figure 21.27(c), instead of colors, we use
different line shades to illustrate edges with colors. �

Thus, the scheduling algorithm must not only compute the maximal match of the input
and output ports but also the path through the middle stage. Hence, the time required for the
scheduler to make a decision becomes longer as the fast known edge-coloring algorithm takes
O(N log D), where D is number of distinct colors. Therefore, with the increase in switch size
(number of ports) and port speed, the time available for the scheduler decreases even further.
As a result, some implementations instead of using slow edge-coloring schemes resort to
approximate algorithms that distribute the traffic from each input across the middle switches
using some form of load balancing. Recently, a class of algorithms that solves matching and
the computation of paths simultaneously has been outlined [122], [123], [125].

An example of a commercial router using the Clos network is the T-series from Juniper
Networks. It uses a Juniper-designed 16 × 16 crossbar chip as the building block for all stages
of the Clos network [631]. The Clos network also provides the interconnection between line
cards in a multichassis T-series router where up to 16 single-chassis routers are connected by
a separate switch chassis.

There is another network type, called the Benes̆ (pronounced as “Be’nesh”) network, that
is very similar to the Clos network; Recall that that each switch at input in Clos networks is an
n × m switch, where n is the outer ports while m is the inner ports, and in the inner core is an
r × r switch. If we now set n = m = 2, and r = n/2 = 1, we have four switches where each one
has two input and two output ports, i.e., a 2×2 fabric serves as the basis—this building block
is recursively used in constructing the Benes̆ network. An example of a commercial router
that has implemented the Benes̆ network is the CRS-1 routers from Cisco systems [140].

21.13 Torus Networks
So far, many of the switch architectures we examined use some form of centralized control
for scheduling cells in every time slot. With the increase in line rates of the links and the need

40 21.13 Torus Networks

for large number of ports, the switching backplanes in routers need to scale to bandwidths
more than 1 Tbps. Such a large bandwidth requires the centralized scheduling algorithm to
operate at high speeds and still find pairs of inputs and outputs that maximize the number
of cells transferred. Since the currently used matching algorithms already trade accuracy for
time, a further increase in speed could reduce accuracy and in turn affect the throughput of
the backplane. A torus network provides an alternative that does not employ any centralized
control. It belongs to a class of networks called direct networks where each node serves as an
input port, output port, and a switching node of the network.

A k1 × k2 × · · · × kn torus network contains N = k1 × k2 × · · · × kn nodes placed in an
n-dimensional grid with ki nodes in each row of dimension i. Each node is assigned an n-digit
address (a1,a2, . . . ,an) where a digit at position i corresponds to dimension i. The digit at
position i uses the radix of the corresponding dimension, ki. The nodes are connected by a
pair of channels, one in each direction, to all nodes whose addresses differ by ±1 (mod kj)

in exactly one address digit j. Hence, each node requires two channels per dimension for a
total of 2nN channels. In a torus, there are many distinct paths between every pair of nodes.
For instance, in an 8 × 8 × 8 torus network, the packet can choose between 90 different 6-hop
paths from the source node to the destination node. By dividing the traffic over these paths,
the load can be balanced across the channels, even for irregular traffic patterns. This enables
the torus to be fault tolerant. By quickly reconfiguring around faulty channels, the traffic can
be routed along alternative paths.

A 4× 4 torus network is shown in Figure 21.28. Each node of the network uses a two-
digit address and both the digits use a radix of 4. Observe that the neighbors of the node
whose address is 11 are the nodes with addresses 01, 12, 21, and 10, all of which differ by a
single digit ±1. Figure 21.28 also shows two distinct paths by which packets from node 11 can
be sent to node 23, which are indicated by thick black lines. One path uses the intermediate
nodes 12 and 13 while the other uses the intermediate nodes 21 and 22.

In torus networks, routing packets from one node to another node need to load balance
the traffic across multiple paths for any traffic pattern. Otherwise, using a single path could
lead to overloaded processing of the intermediate nodes, which might result in delay and
eventually dropping of packets. To achieve load balancing, the following randomized algo-
rithm described in [708] might be used. A packet from source node s to destination node d
is first sent from s to a random intermediate node r and then from r to d. For instance, in
Figure 21.29, we show how a packet is to be delivered from node s = 11 to node d = 23 in a
4 × 4 torus network. It is routed via a randomly selected node 32.

How do we find the route from node 11 to node 32 and then from node 32 to node 23?
Recall that adjacent nodes in a torus network differ by one digit in their address. This property
can be exploited to direct routing [676]. At every intermediate node, the destination address
is used to determine the dimension and the direction the packet should take for the next
hop. This is referred to as dimension-order routing [163]. Alternatively, the source node itself
computes the route and prepends the packet with the route information, which is known as
source routing.

The torus network has been adopted in the Avici terabit switching router (TSR) [161].
It uses a three-dimensional torus topology kx × ky × kz that can be scaled to a maximum
configuration of 14 × 8 × 5 (560 nodes). Each line card carries one node of the torus and
is assigned a three-coordinate address (x,y,z). Each node is connected using bidirectional

C H A P T E R 2 1 Switching Packets 41

F I G U R E 21.28 A 4 × 4 torus network.

F I G U R E 21.29 Routing in a 4 × 4 torus network.

channels to six neighbors with the addresses [(x ± 1) mod kx, (y ± 1) mod ky, (z ± 1) mod kz].
Each of these channels provides a bandwidth of 10 Gbps in both directions.

The Avici TSR, unlike other router architectures that have dedicated switching fabrics,
distributes the switching task to each node in the network. Hence, each line card should
handle its own incoming and outgoing traffic in addition to the traffic from other line cards

42 21.13 Torus Networks

that pass by it. Therefore, all the active components related to fabric are carried on the line
card. This allows the TSR to expand incrementally starting with a few line cards; as traffic
grows, more line cards can be added, as needed. Also, line cards can be added or removed
while the router is in operation without affecting the forwarding of packets in other line cards.

Such flexibility can lead to partial torus networks because the router is not completely
populated with all the line cards. Even a fully populated router can lead to irregular torus
topologies because some line cards might have failed. To facilitate routing of packets in the
fabric, even in such scenarios, the TSR uses source routing. The exact route for a packet
through the fabric is determined by the sending line card or the source. This routing informa-
tion is expressed in the form of a string such as +x, +y, −z, −y, −x. Each route entry specifies
a single hop of the route from the source line card to the destination line card. For instance,
+x means that for the corresponding hop the packet should be forwarded in the positive x
direction.

The routes between any source line card s and any destination line card d are computed
depending on the current and possibly irregular topology in a software process that popu-
lates a table in hardware. Whenever a source line card needs to send a packet to a destination
line card, it consults the table and appends the route information to the packet header. This
route is used at every hop to determine the next line card to which the packet needs to be
forwarded.

As noted earlier, the torus fabric provides many different paths for packets from one line
card to another line card. To accommodate various IP traffic patterns, without overloading
any of its internal fabric channels, the TSR balances the load by distributing packets across
different routes. Each packet bound from a source line card s randomly chooses one of the
routes to the destination line card d. Since packets belonging to the same flow should be kept
in order, a flow identifier is used in the random selection of a route. This ensures that all the
packets in the same flow use the same route.

21.13.1 Packaging Using Short Wires

Another advantage of torus networks is the ability to package it using short wires for con-
necting nodes [161]. Why is this considered significant? Intuitively, the longer the wire is, the
longer it takes for the signal to propagate, which causes increased delay. Furthermore, the
bandwidth (bit rate) is inversely proportional to the square of the wire length [162]. For in-
stance, when the wire length is doubled, the bandwidth decreases by a factor of 4. However,
Clos and Benes̆ networks need to use longer wires for connections between stages. Hence,
they have to operate at low bit rates or use more expensive signaling to compensate for the
distance limitation of electrical signaling. Now let us see how a torus network uses short
wires.

Figure 21.30(a) shows a one-dimensional torus network containing four nodes. As can
be seen, the one-dimensional torus network is nothing but a ring that requires shorter wires
to connect the nodes, except for the connection between the first node 0 and the last node 3,
which requires a longer wire. A natural question is why a a shorter wire cannot be used to
connect node 0 and node 3. Such an approach, while simple, restricts the placement of nodes
in a higher-dimensional torus network. Hence, instead of reducing the wire length, the nodes
can be placed at equal distances from each other over the entire length of the wire as shown

C H A P T E R 2 1 Switching Packets 43

(a)

(b)

F I G U R E 21.30 Using short wires instead of long wires in a one-dimensional torus
network.

F I G U R E 21.31 A 4 × 4 torus network with short wires.

in Figure 21.30(b). In this approach, the length between nodes 1 and 2 might have doubled,
but all the connections between the nodes have the same length and there is no longer wire.
This approach can be easily extended for use in a higher-dimensional torus network. A 4 × 4
torus network can be easily packaged with uniformly short wires as shown in Figure 21.31.

21.14 Scaling Switches for High-Speed Links
So far, we have studied fabrics that scale in the number of ports. With advances in optical
technologies physical network links connecting to the router can be as fast as 10 Gbps. It is
anticipated that the link speeds can become as fast as 40 Gbps. Such an increase in the link
rate places more of a burden on the switches to transfer more data per second between the
line cards. In this section, we outline various techniques on how switches can be scaled to
accommodate higher link speeds.

44 21.14 Scaling Switches for High-Speed Links

F I G U R E 21.32 Bit slicing using k identical switching planes and central scheduler.

21.14.1 Bit Slicing
Rather than a single, monolithic fabric, bit slicing utilizes k parallel, individual fabrics re-
ferred to as fabric planes. The bit-slicing technique is shown in Figure 21.32. Here each cell of
width C bits is placed across k identical planes and each plane carries a slice of size C/k bits.
A centralized scheduler ensures that all the switches are set to the same configuration during
each time slot. These slices carried by each plane need to be reassembled at the output port
to restore the original cell. This implies that the reassembly logic needs to operate at the same
speed as the fabrics.

Example 21.12 Transferring cells using bit slicing.
For the sake of discussion, assume a switch fabric with eight fabric planes containing

three input ports, referred to as A, B, and C, and three output ports referred to as 1, 2, and
3. With a cell size of 8 bits, each bit can be transferred by a fabric plane. Also, assume that
each fabric plane is a crossbar and the scheduler uses one of the algorithms, such as PIM or
iSLIP. Based on the cells waiting in the VOQs, let us assume for the current time slot that
the scheduler decides to pair port A with port 2, port B with port 3 and port C with port
1. Subsequently, it turns the crosspoints (A,2), (B,3), and (C,1) in each of the fabric plane.
The cells at ports A, B, and C to be transferred are sliced into individual bits and each bit is
transferred to a separate plane. Upon their arrival at the output ports, these bits are assembled
to restore the original cell. Note that each bit of the three cells is transferred simultaneously
in each fabric plane. �

21.14.2 Time Slicing
A different approach is to transfer an entire cell in a single fabric plane within a time slot. The
line card distributes the incoming cells evenly across all the fabric planes. At the begining
of time slot i, the scheduler makes the decision for fabric plane i to transfer the cells. Thus,
the scheduler works in turn on each of the k fabric planes in a round-robin fashion and it
takes k time slots to transfer k cells. Observe that in a given time slot only one of the fabric

C H A P T E R 2 1 Switching Packets 45

F I G U R E 21.33 Time slicing with k identical switching planes and a central scheduler.

planes is actively transferring a cell. This approach is known as time slicing and is shown in
Figure 21.33.

Example 21.13 Transferring cells using time slicing.
Assume that the switch fabric is similar to the one described in Example 21.12 except that

the number of fabric planes is three. To simplify the discussion, assume that each input port
has three cells. Port A has cells to ports 2, 3, and 1 in that order. Similarly, port B needs to
transfer cells to ports 3, 1, and 2 and port C to ports 1, 2, and 3. In the first time slot, the
scheduler chooses fabric plane 1 and connects port A to port 2, port B to port 3, and port C
to port 1 and turns those crosspoints to enable the transfers. Similarly, in the next time slot,
fabric plane 2 is arranged in such a way that port A is connected to port 3, port B to port 1,
and port C to port 3. Finally, in the third time slot, fabric plane 3 carries the rest of the cells to
their output ports. �

While bit slicing and time slicing provide simple ways to scale the switch to faster link
rates, both have the disadvantage of a centralized scheduler. The design of the scheduler
becomes challenging when the link rate increases as it has to operate at high speeds. Further-
more, the failure of the scheduler renders all the fabric planes nonoperable, which implies the
failure of the router. Clearly, this is not desirable.

21.14.3 Distributed Scheduling
In commercial routers, a variation of the time-sliced approach is adapted. In this approach,
shown in Figure 21.34, each fabric plane has its own scheduler and, hence, operates inde-
pendently. Therefore, many cell transfers occur simultaneously across the fabric planes. This
approach is advantageous since the scheduler design becomes simpler as it needs to operate
at lower speeds when compared to approaches using a centralized scheduler. The failure of a
scheduler affects only one fabric plane, and the other fabric planes can still continue forward-
ing cells.

46 21.15 Conclusions

F I G U R E 21.34 Distributed scheduling with k identical switching planes and
independent schedulers.

Commercial routers like Juniper T-series [631] use a switch fabric with five identical fabric
planes, but only four of them are active simultaneously and the fifth acts as a backup for
redundancy. Each fabric plane carries a portion of the required bandwidth and when one of
the active fabric plane fails, the redundant fabric plane takes over. If more than one active
plane fails, the router will still continue to operate at a reduced bandwidth. Similarly, Cisco
CRS-1 [140] also uses eight fabric planes and each fabric card implements two planes of the
switch fabric. The traffic is evenly distributed across all the planes so that every plane carries
an equal amount of traffic. The loss of a single plane does not affect router operation, and
failure of multiple planes results in a linear and graceful degradation of performance.

21.15 Conclusions
A shared bus is a simple way to interconnect line cards. Because of their simplicity and
low cost, many low-end enterprise routers from various vendors use a shared bus. These
routers typically provide a throughput ranging between 1 and 2 Gbps. However, the shared
bus limits throughput and, hence, it is not used in medium-sized routers that need to pro-
vide a throughput of 40 Gbps. Shared memory switches provide an attractive alternative for
medium-sized routers, but the memory bandwidth limits its throughput. Instead, crossbar
switches are used, which allow transfer of traffic between multiple line cards simultaneously.
The limiting factors in a crossbar are the HOL blocking and the scheduling speed.

HOL blocking can be eliminated using VOQs but requires N2 VOQs for N ports. When
the number of ports increases, the scheduling speed needs to increase so that it is fast enough
to pair input ports to output ports. Hence, the design of such schedulers becomes complex.
Furthermore, the number of crosspoints grows with N2, which increases the complexity of
implementation. Hence, the crossbar is the switch topology of choice for routers with a low
to modest number of ports (up to about 64).

To scale switches to ports greater than 64, multistage switches are more appropriate as
they have reduced crosspoint complexity. The three-stage Clos network with a crosspoint
complexity of O(N

√
N) provides multiple paths from the input to output port. Typically, in

routers, Clos networks are used in a rearrangeably nonblocking configuration and the sched-

C H A P T E R 2 1 Switching Packets 47

uler ensures that the path exists in the switch when inputs and outputs are paired. Clos net-
works can scale as many as 256 to ports.

Unlike the aforementioned switches, torus networks do not employ a centralized sched-
uler. This eliminates the bottleneck of scheduling and the switch can scale to a large number
of ports. Each node using a small routing table routes the packets from the source node in the
torus network to a destination node by choosing a random intermediate node. These switches
can scale as many as 512 ports.

21.16 Summary
In this chapter, we studied different type of backplanes that facilitate the movement of pack-
ets from one line card to another line card in a router. At a very high level such switches can
be broadly categorized as shared backplanes or switched backplanes. At any given instant,
a shared backplane transfers packets between any two line cards and hence the through-
put is limited. However, a switched backplane transfers multiple packets simultaneously.
In switched backplane, we started our discussion with single-stage fabrics—shared memory
and crossbar. We examined in detail the scheduling algorithms for crossbar such as take-a-
ticket, PIM and iSLIP and analyzed their pros and cons.

We then studied the need to scale switches along two different dimensions: number of
ports and link speed. This is followed by a detailed discussion about various types of mul-
tistage switching fabrics, CLOS and Benes̆, and the complexity of scheduling algorithms in
these switches. We then examined the architecture of a torus network that belongs to a class
of direct networks. Finally, we explained various techniques about how to scale switches for
higher link speeds.

Further Lookup
Excellent treatises on switching can be found in [124], [163], [191], and [548]. In the context
of routing, a separate chapter is devoted to switches in Varghese’s book [712]. Keshav [365]
provides a nice introductory discussion about circuit and packet switches. Excellent surveys
about switching are also available [4], [41], [172], [333], [534], [699]. A more recent survey of
architectural choices for switches can be found in [705].

Prototypes of shared memory switch designs have also been described in [154], [175],
[199], and [346]. A scalable memory switch using inexpensive DRAMs that emulates an out-
put queueing switch has been presented in [332]. A recent study [342] outlines techniques for
scaling the memory bandwidth of network buffers.

Karol et al. [352] showed that HOL blocking results in reduced throughput. Various tech-
niques for reducing HOL blocking have been described [299], [351]. The idea of output queue-
ing to eliminate HOL blocking was outlined in the knockout switch implementation [755].
VOQs were proposed in [682]. A PIM scheduling algorithm for a crossbar was discussed in
[15], iSLIP in [458], and wavefront arbiter in [132] and [681]. In addition, a variety of schedul-
ing algorithms have been proposed [9], [394], [433], [482], [483]. For excellent coverage on
gigabit switching, see [547].

Clos published his seminal paper [146] on nonblocking networks that introduced the
idea of Clos networks. Furthermore, it derived the conditions under which these networks are

48 21.16 Exercises

strictly nonblocking. It was then discovered [70], [192], [647] that much smaller Clos networks
were rearrangeably nonblocking. There has only been a few attempts to find good matching
schemes for three-stage Clos networks. A random dispatching scheme that evenly distributes
cell traffic to the second stage is given in [117] and [134]. Newer fast matching algorithms
for Clos networks have been outlined [122], [123], [125]. Fast edge coloring algorithms are
described in [147], [148].

Benes̆ networks [70] were first introduced in Benes̆’ classic book [71]. Torus networks
have been used in some of the earliest parallel computers [56], [648]. A randomized routing
algorithm in switches was first described in [708]. A high-level overview of switches used in
commercial routers can be found in [121], [140], [161], and [631]. A comprehensive discussion
of telephone switching can be found in [697].

Exercises

21.1. Enumerate different types of backplanes and explain the advantages and disadvan-
tages of each of them.

21.2. What are the disadvantages of a crossbar?

21.3. What is HOL blocking? How can you prevent it?

21.4. Explain a shared memory switch and why it is difficult to scale such switches to higher
capacity.

21.5. What are the differences between the Clos network and the Benes̆ network?

21.6. What is the main difference between torus network and crossbar?

21.7. You are given the task of designing a router with 8 line cards. Each line card is capable
of operating at 1 Gbps. If you were to use a shared bus using an internal clock rate of
100 MHz, what should be the width of the bus? If the electrical loading on the bus is
0.6, what should be the width of the bus?

21.8. A router needs to be designed using a shared memory switch with 8 line cards. Each
line card is capable of 10 Gbps. The minimum size of the packet is 64 bytes. Assuming
an interleaved memory design is used, how many memory banks will be required if
the memory access time is 40 nanosec?

21.9. Consider a 3 × 3 crossbar shown in Figure 21.35. Each of input ports have cells 1, 3
and 2 destined for the respective output ports. How many time slots will be required
to transfer all the cells using take-a-ticket scheduler scheme?

21.10. Consider a 3 × 3 crossbar shown in Figure 21.35. Can you provide an example stream
of cells for each input where head of line blocking yields the lowest throughput?

21.11. For the crossbar shown in Figure 21.35, assume that the input port has the following
cells. Port A—1, 2, 3, 1 Port B—1, 3, 2, 1 Port C—2, 3, 3, 2.

How many time slots will be required to transfer the cells to output ports using one
iteration PIM and two iteration PIM? What is the switch throughput in both the cases?

C H A P T E R 2 1 Switching Packets 49

F I G U R E 21.35 A 3 × 3 crossbar.

21.12. For the crossbar shown in Figure 21.35, assume that the input port has the following
cells. Port A—1, 3, 2, 1 Port B—2, 1, 2, 2 Port C—2, 3, 3, 2.

How many time slots will be required to transfer the cells to the output ports using
one iteration iSLIP and two iteration iSLIP? What is the switch throughput in both the
cases?

21.13. For the crossbar shown in Figure 21.35, assume that the input port has the following
cells. Port A—1, 1, 1, 1 Port B—2, 2, 2, 2 Port C—3, 3, 3, 3.

How many time slots will be required to transfer the cells to the output ports using
take-a-ticket scheduler? one iteration PIM and one iteration iSLIP? What do you ob-
serve?

21.14. Design an 8 × 8 three-stage Clos switch. Under what conditions will this be a non-
blocking switch?

21.15. For a nonblocking 8 × 8 Clos switch, how many crosspoints will be required? If the
switch is rearrangably nonblocking, how many crosspoints will be required? Do you
see any saving in the number of crosspoints? If there are any, how much do you save?

21.16. Design an n = 2, m = 3, and r = 4 Clos network.

22
Packet Queueing
and Scheduling
We dance round in a ring and suppose,
But the Secret sits in the middle and knows.

Robert Frost

Reading Guideline

In this chapter, we present handling of packets by the queue manager at a router for
queueing and scheduling. While this chapter can be read independently, the back-
ground on router architectures presented in Chapter 14 is useful in understanding
why packet queueing and scheduling is important.
D. Medhi and K. Ramasamy, Network Routing: Algorithms, Protocols, and Architectures.
c© 2007 by Elsevier, Inc. All rights reserved.

C H A P T E R 2 2 Packet Queueing and Scheduling 3

A critical function of a router is to handle queueing of arriving packets and then schedule
them on an outgoing interface. This is essentially the job of the “queue manager” at a router,
as shown earlier in several figures in Chapter 14. An important requirement is that these func-
tions must be efficient so that a packet leaves a router extremely quickly while giving priority
to certain packet types as and when needed. However, in case of heavy traffic, a router might
receive many packets almost instantaneously from active microflows, which are then queued
in a buffer. Since a buffer is of finite size, it is quite possible that it becomes full—in this case,
some packets are to be dropped. The question then is: what rules or policies are to be used
for selecting packets to be dropped? The decision on dropping packet is, in fact, dictated to
some extent by whether this is desirable from the point of view of an end-to-end delivery
to end hosts. Since most microflows going through a router are TCP-based, it is important
to understand the basics of TCP congestion control mechanisms to fully comprehend why a
particular packet-dropping policy might be better or worse.

In this chapter, we discuss queueing and scheduling issues and algorithms for process-
ing packets, including any priority considerations. In addition, we present an overview of
TCP congestion control mechanisms, and a variety of packet-dropping or discarding policies.
From a queue manager point of view, when a packet arrives, it is ready to schedule it using
one of possible schemes, unless it is to be dropped, for example, due to congestion—and to
do this all in an efficient manner.

22.1 Packet Scheduling
There are many possible queueing disciplines for packet scheduling. There are, however,
two important issues to consider about a queueing discipline: (1) its performance in terms
of bounded delay, and (2) whether it can be implemented efficiently. An additional issue
is when there are different traffic classes that require different delay guarantees and, possi-
bly, bandwidth guarantees. In this section, we present several mechanisms and discuss their
strengths and weaknesses.

22.1.1 First-In, First-Out Queueing
The idea of first-in, first-out (FIFO) queueing is simple. The first packet that arrives at the
router is the first one to be transmitted. Note that FIFO queueing is also referred to as
first-come, first-served (FCFS) queueing. FIFO, being the simplest, is easy to implement and
presents a low system overhead for software-based routers. The advantage of a FIFO queue
is that it provides a predictable delay that packets can experience as they pass through the
router. If c is the link speed and B is the maximum buffer size, then the delay bound, D, can
be calculated as follows:

D ≤ B
c

. (22.1.1)

The major limitation of FIFO queueing is its inability to discriminate packets based on
service class. For instance, a single flow that has bursty arrival can monopolize the entire
buffer space of the queue causing all other flows to be denied service until after the burst is
serviced. Thus, this form of queueing is used as the default for an output link in a router in
the absence of any other queueing discipline.

4 22.1 Packet Scheduling

22.1.2 Priority Queueing
The basic idea behind priority queueing is to classify the packets for various traffic streams
arriving at the input link into one or more priority classes as shown in Figure 22.1. This func-
tionality is needed, for example, for the differentiated services architecture. Traffic streams
are also referred as flows, which identify a stream of packets that have certain common pa-
rameters and have well-defined priority. For example, common parameters could be the des-
tination IP address block, source IP address, or port number, and a priority could be VoIP
packets. Such priority information is then communicated along the path of flow, for exam-
ple, by marking differentiated services code bits (DSCP) (see Figure 1.3(a) and Figure 22.11);
this is typically done closer to the origination of a flow, such as the ingress router. Thus, at
an intermediate router, the DSCP bits would serve as the indicator on whether a packet is to
be prioritized and the router then associates a queue with each priority class and places the
classified packets in the appropriate queues. When choosing a packet to transmit, the router
will select the highest priority queue that has a nonempty queue before moving on to the next
priority queue. Within each priority class, packets are still scheduled in FIFO order.

The main advantage of priority queueing is the segregation of traffic into different classes,
and then one class of traffic is served differently from other classes of traffic. Such segregation
allows for the preferential treatment of real-time traffic such as VoIP and interactive video
(that are assigned higher priority) over non–real-time traffic such as ftp traffic. A difficulty
with the priority queueing discipline is that it does not make any guarantees for a particular
priority class. It just allows high-priority packets to cut to the front of the line. Furthermore,
since it always processes a higher-priority queue before a lower-priority one, it is possible for
a high-priority queue to cause packets in a lower-priority queue to be delayed or dropped
if the high-priority queue is receiving a constant stream of packets. This essentially leads to
bandwidth starvation for lower-priority traffic. To make it feasible, some form of hard limit
needs to be imposed on how much higher-priority traffic is inserted in the queue. Thus, to
provide flexibility of choice, priority queueing that operates in one of the two modes, strict
priority queueing and rate-controlled priority queueing, are popular. We discuss them below.

STRICT PRIORITY QUEUEING

This is the mode in which the traffic in higher-priority queues is always scheduled ahead
of the traffic in the lower-priority queues—which is discussed above. We know from the
above discussion that this could lead to bandwidth starvation for lower-priority traffic when

F I G U R E 22.1 Priority queueing.

C H A P T E R 2 2 Packet Queueing and Scheduling 5

there is an excessive amount of high-priority traffic. However, there are situations in which
it is desirable to support strict priority queueing. Consider the scenario in which a service
provider, in order to carry VoIP traffic, might have to comply with certain regulations. For
example, such a regulation might be that no VoIP traffic should be dropped no matter how
congested the network might be. Such a regulation can be supported by using strict priority
queueing in which VoIP traffic is placed in a high-priority queue without any limitation on
the bandwidth consumed.

Another scenario in which strict priority queueing is used is to protect and prioritize
packets that carry routing update information for routing protocols during periods of conges-
tion. Such prioritization is needed to stabilize the route tables when, for example, a topology
change occurs.

RATE-CONTROLLED PRIORITY QUEUEING

Unlike strict priority queueing, rate-controlled priority queueing limits the amount of high-
priority traffic so that lower-priority traffic can be scheduled. In other words, rate-controlled
priority queueing schedules packets from higher-priority queues before packets from lower-
priority queues as long as the amount of traffic in the higher-priority queue stays below a
certain threshold.

Suppose that a higher-priority queue is rate limited to 25% of the outgoing link band-
width. As long as the packets from higher-priority traffic consume less than 25% of the output
link bandwidth, packets from this queue are scheduled ahead of the lower-priority queues.
The moment the higher-priority traffic exceeds 25%, packets in the lower-priority queue can
be scheduled ahead of the packets from the higher-priority queue.

22.1.3 Round-Robin and Fair Queueing

Round-robin is similar to priority queueing. It, however, handles multiple traffic classes dif-
ferently in that it alternates service among different traffic classes (flows). Fair queueing is
essentially a round-robin scheme, but can be best described as an approximate bit-by-bit
round-robin scheme. Consider Figure 22.1 where we described priority queueing, with three
different queues; fair queueing means that the scheduler takes turns in processing a packet
from each queue (see also Figure 22.2).

In practice, it is not possible to implement a bit-by-bit scheme for packets arriving for
different flows; instead, if there are N active flows, we have to count the clock N bits at a
time (“N-bit clock”). Similar to priority queueing, each flow i is assigned a separate queue.
If c is the link speed, then each flow i gets a minimum fair share of c/N bits per second on
the output. Note that if the link is fully loaded, each queue cannot get more than c/N bits per
second. However, if not all flows have packets to send at a particular instant, an individual
queue might get higher than c/N for itself.

Suppose that the arriving time of packet k for a flow is Ak, start time for transmission is
Sk, and the end time is Ek, respectively. Then, the time needed to send packet k is Ek − Sk, to
be denoted by packet sending time Pk, i.e., Pk = Ek − Sk. We can write this as: Ek = Sk + Pk.
We, however, need to determine the start time, Sk—this would be arriving time Ak if there is
no outstanding packet that is done sending; otherwise, the start time will need to wait until

6 22.1 Packet Scheduling

F I G U R E 22.2 Visual comparison of FIFO, FQ, and WFQ scheduler for four traffic classes,
from high priority (Flow A) to low priority (Flow D); for illustration, fixed-size packets are
shown (adapted from [494]).

the end time of previous packet (k − 1) is over. That means the start time for packet k is the
maximum of Ak and Ek−1. Thus, we can write

Ek = max{Ak,Ek−1} + Pk, (22.1.2)

where Ak, the arrival time of packet k, will be computed using the N-bit clock discussed
earlier.

While the fair queueing discipline can guarantee a minimum fair share and bound on
the delay for each flow, it faces a different problem from an implementation point of view.
As we can see above, for a packet for each flow an end time is calculated—this packet is
then added to a queue of packets that are sorted based on the end time. Thus, we face with
the problem of inserting a packet into a sorted queue; for N flows, this operation, however,
requires O(log N) time with currently known best algorithms for insertion into a queue. That
is, packet processing can be quite expensive if there are too many flows to handle, which is
likely, especially in a high-speed core network router.

22.1.4 Weighted Round-Robin and Weighted Fair Queueing
Weighted round-robin (WRR) is also a scheme for handling multiple traffic classes like the
round-robin scheme; rather, it is a variation of round-robin in which each traffic class can
be assigned a weight. Weighted fair queueing (WFQ) is similarly a variation of fair queueing
and can be described as an approximate bit-by-bit weighted round-robin scheme. It is not quite

C H A P T E R 2 2 Packet Queueing and Scheduling 7

apparent where WRR and WFQ are different; to understand their differences, we consider the
following example.

Example 22.1 WRR is fair for packets of fixed length and unfair for packets of variable length.
Consider three queues Q1, Q2, and Q3 that are serviced by WRR. Assume that the output

link bandwidth shared by these queues is as follows. Q1 is allowed to consume 40% of the
bandwidth while the remaining 60% of the bandwidth is split equally between Q2 and Q3.
If all the packets in all queues are 100 bytes, then at the end of a single service round four
packets from Q1 (400 bytes), three packets from queue Q2 (300 bytes), and another three
packets from queue Q3 (300 bytes) would have been transmitted. A total of 1000 bytes are
transmitted, out of which 400 bytes belong to Q1, thereby receiving its allotted bandwidth of
40%. Similarly, queues Q2 and Q3 transmitted 300 bytes each, thereby receiving their allotted
share of 30% each.

Now let us consider the case of packets of variable length, assuming that the WRR sched-
uler is configured exactly the same as in the previous case for sharing the output port band-
width. However, the packet sizes are different for each of the queues. Let us assume the mean
packet sizes for Q1, Q2, and Q3 are 100 bytes, 150 bytes, and 250 bytes, respectively. After a
single round of service, Q1 would have transmitted four packets (400 bytes), Q2 would have
transmitted three packets (450 bytes), and Q3 would also have transmitted three packets (750
bytes) for an aggregate total of 1600 bytes. This implies that Q1 received 25% of the band-
width, which is less than the 40% it is expected to receive. Similarly, Q2 received 28.1%, which
is less than the allotted 30%. However, Q3 received 46.9% of the bandwidth, which is greater
than its share of 30%. As you can see, the queue that receives a larger mean packet size than
other queues consumes more than the configured share of the output port bandwidth. �

Note that if packets from different queues have different sizes, the WRR scheduler di-
vides each queue’s percentage by its mean packet size to obtain a normalized set of weights.
This normalized set of weights indicates how many packets need to be transmitted from each
queue in a single round of service. Using the example of packets of variable length, the nor-
malized weights for Q1, Q2, and Q3 are 2/5, 1/5, and 3/25. Converting these weights into
whole integers gives 10, 5, and 3 packets.

In general, the rate guarantees in a WFQ scheduler can be described as follows. Consider
N flows where each flow i is assigned a weight ωi. Given the outgoing link capacity to be c,
each flow i will receive at least the service rate Ri given by

Ri =
(

ωi
∑N

n=1 ωn

)
c. (22.1.3)

Since at a particular instant, only a subset of flows would be active, say N̂, we can replace N
by N̂ in the above result to obtain the effective fair share. If flow i is allocated a buffer size of
Bi, then the delay bound, Di, for flow i can be given by

Di ≤ Bi

Ri
. (22.1.4)

8 22.1 Packet Scheduling

To summarize, for fixed-size data packets, WRR and WFQ can be thought of as the same
and give the same fairness; however, WRR is not as fair for variable-length packets. We can
see that WFQ provides nice delay bound and bandwidth guarantee for different streams;
however, it suffers from processing complexity since the currently known best algorithms
take O(log N) time for N simultaneous flows [72], [670]. On the other hand, a round-robin
approach is efficient from the processing point of view since its processing complexity is
constant time, i.e., O(1). Can we combine these ideas? This will be discussed in the next
section. Meanwhile, for a visual comparison between FIFO, fair queueing, and WFQ for traffic
streams with different priorities, refer to Figure 22.2; for simplicity of illustration, we have
used fixed-size packets.

22.1.5 Deficit Round-Robin Queueing
From the above discussion, we can see that often the tussle is between bounding delay and
bandwidth guarantee or reducing processing time. Usually, it is favorable to reduce process-
ing time from the viewpoint of a router. However, for many applications, bandwidth guaran-
tee is important—the delay bound is not as critical; furthermore, fairness as in fair queueing
(or WFQ) is also desirable. Deficit round-robin (DRR) queueing tries to address this prob-
lem [640]. The round-robin approach is desirable from the processing point of view since its
processing complexity is constant time, i.e., O(1), as opposed to O(log N) time for fair queue-
ing. Thus, DRR achieves fairness while having low processing complexity.

DRR can be best illustrated through three key parameters: quantum, Qi, represents the
transmission credits in bytes provided to queue i in the round-robin fashion; deficit counter,
Cdef

i , tracks the difference between the number of bytes that should have been sent and the
number of bytes actually sent from queue i in each cycle; and buffer size, Bi, for queue i.

If a larger quantum size is assigned to a queue, it gets a larger share of the bandwidth of
the outgoing link. In this scheme, for each queue i, the algorithm maintains a constant Qi (its
quantum) and a variable Cdef

i (its deficit).
On each cycle, the algorithm visits each nonempty queue in sequence. For each non-

empty queue i, the algorithm will transmit as many packets as possible such that their total
size Bi is less than or equal to Qi + Cdef

i . If the queue i gets emptied, the algorithm resets Cdef
i

to zero. If it is not reset to zero, Cdef
i will build up credits indefinitely, eventually leading to

unfairness. If the queue is not emptied, then a deficit exists between the number of bytes the
algorithm hoped to send Qi + Cdef

i and the number of bytes actually sent Bi. Thus, the deficit
of queue Cdef

i is updated to Qi + Cdef
i − Bi and the algorithm moves on to service the next

nonempty queue.
As can be seen from the algorithm, Qi + Cdef

i represents the maximum number of bytes
that can be transmitted during a round-robin cycle. Queues that were not able to send as
many as Qi + Cdef

i bytes are compensated in the next cycle with Qi + Cdef
i − Bi more bytes

to send in addition to the regular quantum Qi. The updated Cdef
i represents the bytes to be

compensated. The following example will provide a better understanding of the algorithm.

Example 22.2 Scheduling packets using deficit round-robin.
Consider the example illustrated in Figure 22.3. The figures show three queues—F1, F2,

and F3—consisting of packets that need to be transmitted. For the sake of discussion, assume

C H A P T E R 2 2 Packet Queueing and Scheduling 9

F I G U R E 22.3 Illustration of deficit round-robin (DRR).

that the quantum size is 400 bytes. Initially, all Cdef
i are set to zero and the round-robin pointer

points to queue F1.
The algorithm first allocates a quantum size of 400 to Cdef

1 and as a result it contains
400 transmission credits. This allows queue F1 to transmit the first packet of size 250 bytes,

10 22.1 Packet Scheduling

leaving only 150 bytes, which is not sufficient to transmit the second packet of size 300. Thus,
the remaining 150 credits are left as a deficit in Cdef

1 .
Now the algorithm moves to the next non-empty queue F2. Again, a quantum size of 400

is added to Cdef
2 , which is sufficient to transmit the first packet of size 100 bytes. Thus, the

remaining 300 is left as a deficit for the next cycle. Similarly, for queue F3, the first packet of
size 200 is transmitted, leaving a deficit of 200.

The algorithm now returns to the F1 queue, starting the second cycle. It gives another
fresh quantum of 400 credits in addition to the remaining deficit of 150, leaving Cdef

1 at 550.
This is sufficient to send the remaining two packets of sizes 300 and 200. The remaining 50
credits could have been saved as a deficit for the packets that arrive later. Instead, it resets Cdef

1
to zero as there are no more packets waiting in the queue and moves to the next nonempty
queue F2.

Again, queue F2 gets a new quantum of 400 and, thus, the balance becomes 700. This
allows the second packet to be transmitted, leaving a deficit of 100. The pointer now moves
to F3, which gets another fresh quantum of 400. Along with a deficit of 200 from the previ-
ous cycle, it sends the remaining two packets, leaving a deficit of 0 and no more packets to
transmit.

Now the round-robin pointer moves directly to the only nonempty queue F2. After get-
ting a quantum of 400, F2 is able to send its third packet of size 200. Since there are no more
packets to send, the deficit counter Cdef

2 is zeroed. Hence in three cycles, all the packets have
been transmitted. �

To ensure that the algorithm serves at least one packet per queue during a cycle, the
quantum size needs to be at least Cmax, the MTU size of the outgoing link (alternatively, the
largest possible packet size that can be sent).

Irrespective of quantum size, as the size of the packet transmitted can never be larger
than the Pmax of the outgoing link, Cdef

i , at any instant, can never be greater than Cmax. If the
algorithm has cycled all the queues, say N, times, then the expected number of bytes sent by
queue i is N × Qi. If the actual bytes sent is Bi, then N × Qi − Bi will be less than Cmax.

Assigning different quantum values to each queue leads to an allocation of a different
percentage of the outgoing link bandwidth for the corresponding queues. If Qi (quantum
size of queue i) is twice the value of Qj (quantum size of queue j), then queue i will receive
twice the bandwidth of j when both queues are active.

The main issue in implementing DRR is eliminating the examination of empty queues. If
the number of empty queues is much larger than the number of active queues, a substantial
amount of time spent is wasteful. To eliminate this waste, the algorithm maintains a separate
queue called ActiveList. The ActiveList contains a list of the queue indices that contain at least
one packet. Each entry in the ActiveList, in addition to the queue index, keeps track of its
unused deficit as well.

Referring to the example, the ActiveList will contain the indices for all the three queues
(F1, F2, and F3) with F1’s being at the head. After servicing queue F1, it will be placed at the
tail of the ActiveList. If the serviced queue becomes empty (no packets to transmit), then the
queue is removed from the ActiveList. The use of ActiveList provides the advantages of empty
queues not being examined and further prevents an empty queue getting from a quantum
added when it is idle.

C H A P T E R 2 2 Packet Queueing and Scheduling 11

22.1.6 Modified Deficit Round-Robin Queueing

Modified deficit round-robin (MDRR) is a variation of DRR that also addresses delay mini-
mization for some traffic streams. This is helpful, for example, in handling VoIP packets. Al-
though VoIP streams need both bandwidth and delay guarantee, we can think of an alternate
approach of providing bandwidth guarantee with minimizing delay. The MDRR scheme then
addresses how to minimize delay on top of the DRR scheme. For example, such a modifica-
tion can be done by assigning priority to queues, which then serve as scheduling priority for
different queues. For example, an ultra–high-priority queue may be defined, which always
gets priority if it has packets to send and is not restricted by the quantum size. It is important
to note that modification as in MDRR does not necessarily mean that this is a unique approach;
different modifications can be employed; for example, see [379]. It is worthwhile to note that
most router vendors currently implement some form of MDRR queueing.

22.2 TCP Congestion Control
In this section, we present an overview of TCP congestion control. Why do we need to know
about TCP congestion control in regard to packet queueing and scheduling? We first ad-
dress this point before presenting TCP congestion control mechanisms. Currently, most com-
monly used applications in the Internet are TCP-based. To provide good throughput, yet be
conscious about congestion, is the basic philosophy of TCP congestion control mechanisms.
From a router point of view, it is important to see what mechanisms it must have so that it
is TCP-friendly; second, a router should be fair to different TCP microflows in the presence
of congestion as well. It is important to understand the distinction between fairness in TCP
congestion control as opposed to fairness in packet scheduling. Packet scheduling handles
fairness once it has already been decided that a packet is to be processed for queueing; how-
ever, fairness as in TCP congestion control refers to how a buffer handles dropping of packets
(before scheduling) for different TCP microflows so that one or more microflows do not un-
duly suffer. Thus, we start with TCP congestion control in order to understand benefits or
drawbacks of different packet-dropping mechanisms at a router.

When one or several TCP connections send packets at high rates, the network can suf-
fer from congestion. At these high rates, intermediate routers receive more packets than
they can buffer. As a result, some packets or their corresponding ACKs may experience
more delay or may be dropped before reaching their destination. These dropped packets
would trigger timeout at their sources, resulting in retransmission. Such retransmissions in-
crease the number of packets entering the network, thus worsening congestion by introduc-
ing more delay and packet drops. These conditions continue until all the resources in the
network are utilized to carry packets part of the way before they are dropped and essen-
tially the network is not doing any useful work. Such a condition is called congestion col-
lapse.

To avoid congestion collapse from occurring, new mechanisms were introduced into TCP
[334]. These mechanisms are based on the principle of conservation of packets. The idea is
that a new packet is not injected into the network until an old packet leaves. The sender uses
the reception of an ACK as an indication that the packet sent earlier has left the network and
initiates the next packet transmission without adding to the level of congestion. This implies

12 22.2 TCP Congestion Control

that the data packets leave the sender at the same pace as the ACKs arrive at the sender and,
thus, TCP is said to be self-clocking.

In addition, the congestion control mechanism determines the available capacity in the
network so that the sender knows how many packets it can safely have in transit. This prop-
erty can be used to limit the number of transit packets in the network.

For each TCP connection, the congestion control mechanism tracks several parameters
such as congestion window. The congestion window, denoted CongWindow, indicates how
many bytes the source is allowed to have in transit at any given time. The congestion win-
dow is not more than the advertised window (AdvWindow), advertised by the received,
that is used for flow control. Using both the congestion window and advertised window, the
sender calculates the effective window (EffWindow), which represents the amount of unac-
knowledged data that a source can have in transit at a given time. Specifically, the effective
window may not exceed the minimum of the congestion window and advertised window,
i.e.,

MaxWindow ≤ min {CongWindow,AdvWindow} × EffWindow
= MaxWindow − (LastByteSent − LastByteAcked).

(22.2.1)

This equation implies that the source is not allowed to send at a rate faster than what can be
handled either by the network or the destination. For example, consider that CongWindow
is 10 Kbytes and AdvWindow is 1 Kbytes; if the receiver of a TCP connection is able to accept
traffic at 1 Kbytes (AdvWindow of 1 Kbytes) and the network is capable of delivering traffic
at 10 Kbytes (CongWindow of 10 Kbytes), then the sender uses the minimum of AdvWindow
and CongWindow, which is 1 Kbytes. Alternatively, if the receiver is able to accept traffic at
5 Kbytes and the network is capable of handling 1 Kbytes at that time, then the sender will
send at 1 Kbytes speed, even if the receiver can handle 5 Kbytes, for congestion not to occur.
The threshold variable determines how CongWindow can grow.

However, how does TCP know the right value for the congestion window? While the
value for AdvWindow is explicitly sent by the receiver during TCP connection setup, there is
no entity to send a suitable value for CongWindow to the sender. Instead, the sender estimates
the level of congestion in the network and accordingly sets a value. Depending on the level
of congestion, the value for congestion window is varied, which is decreased when the level
of congestion goes up and increased when the level of congestion goes down.

Now the obvious question is how does the source detect congestion? We know that a lost
packet triggers TCP timeouts. Such a packet loss can occur due to noise in the transmission
line or as a result of congestion in the intermediate routers. With recent advances in trans-
mission technologies, it is now relatively rare that the packet is dropped because of an error
during transmission. Thus, TCP assumes that timeouts are caused by congestion and reduces
its rate of transmission.

22.2.1 Slow Start
TCP uses a three-way handbook to establish a connection. Once a TCP connection is estab-
lished between the two end systems, the application process at the sender writes bytes to the
sender’s TCP send buffer. TCP grabs chunks, which can be at most the size of the maximum
segment size (MSS), encapsulates each chunk within a TCP segment, and passes the segments

C H A P T E R 2 2 Packet Queueing and Scheduling 13

to the network layer for transmission across the network. The TCP congestion window reg-
ulates the times at which the segments are sent into the network (i.e., passed to the network
layer).

Initially, CongWindow is set equal to one packet. It then sends the first packet into the
network and waits for an acknowledgment. If the acknowledgment for this packet arrives
before the timer runs out, the sender increases CongWindow by one packet and sends out
two packets. Once both these packets are acknowledged before their timeouts, CongWindow
is increased again by two. Now the size of CongWindow is four packets and, thus, the sender
transmits four packets. Such an exponential increase continues as long as the size of Cong-
Window is below a defined slow start threshold and acknowledgments are received before
their corresponding timeouts expire. After reaching the threshold, the increase is linear until
MaxWindow size is reached.

We can see that during this phase the size of the congestion window increases exponen-
tially, i.e., the congestion window is initialized to one packet; after one RTT the window size
is increased to two packets; after two RTTs the window is increased to four packets; after
three RTTs the window is increased to eight packets; and so on. This mechanism is referred
to as slow start. If slow start increases the congestion window exponentially, why it is then
called slow start? Before slow start was developed, the sender, after establishing the con-
nection, immediately starts transmitting the entire AdvWindow worth of packets at once.
While there could be enough bandwidth in the network, the intermediate routers might not
have enough buffers available to absorb this burst of packets. Thus, slow start was intro-
duced so that the packets are spaced enough to avoid this burst. In other words, the slow
start is considered much slower than transmitting an entire AdvWindow of packets all at
once.

The slow start phase ends when the size of CongWindow exceeds the value of a defined
congestion threshold. Once the congestion window is larger than the current value of the
threshold, the congestion window grows linearly rather than exponentially. Specifically, if W
is the current value of the congestion window, and W is larger than threshold, then after W
acknowledgments have arrived, TCP replaces W with W + 1. This has the effect of increasing
the congestion window by one in each RTT for which an entire window’s worth of acknowl-
edgments arrives. This phase of the algorithm is called congestion avoidance.

The congestion avoidance phase continues as long as the acknowledgments arrive before
their corresponding timeouts. But the window size, and, thus, the rate at which the TCP
sender can send, cannot increase forever. Eventually, the TCP rate will be such that one of the
links along the path becomes saturated, and at which point, loss (and a resulting timeout at
the sender) will occur. When a timeout occurs, the value of threshold is set to half the value of
the current congestion window, and the congestion window is reset to one MSS. The sender
again grows the congestion window exponentially fast using the slow start procedure until
the congestion window hits the threshold.

22.2.2 Additive Increase, Multiplicative Decrease

Suppose the end-to-end path between two hosts is congestion-free; we still then have the
question of how to adjust window size in order to regulate the rate at which the end
hosts transmit. TCP uses a principle called additive increase, multiplicative decrease (AIMD)

14 22.2 TCP Congestion Control

for rate adjustment. This means that when increasing the rate, TCP uses an additive prop-
erty, and when decreasing the rate, it uses a multiplicative property. To be more specific, TCP
rate regulation is governed by the parameter, CongWindow; this parameter is increased in
additive chucks to increase the rate. Suppose the current CongWindow is 500 bytes and the
increase size is 30 bytes, then CongWindow will become 530 bytes. The additive property is
less aggressive and is helpful in congestion avoidance. However, when there is congestion,
which is indicated by loss of packets, TCP reduces the window size by half. Thus, if we are
currently at effective window size of 530 bytes, then it becomes 265 bytes. Note that AIMD is
a general principle; TCP window size must still remain valid such as being not higher than
AdvWindow. Thus, several boundary conditions are checked; in fact, in actual implementa-
tion, the code is intertwined with slow start, congestion avoidance, and fast retransmit and
fast recovery, which will be discussed in the next section. For detailed illustration of various
parameters, and the relation between TCP segment size, maximum segment size, and the
windowing parameters maintained in byte count, see [668].

22.2.3 Fast Retransmit and Fast Recovery

The algorithms described so far, AIMD and slow start, are considered the main TCP conges-
tion control mechanisms. In this section, we consider relatively newer features.

In early implementations of TCP, the sender retransmitted an unacknowledged packet
only after the expiration of its timeout. It was observed that the coarse-grained implemen-
tation of TCP timers led to long periods of time during which the connection went dead.
Thus, a new mechanism called fast retransmit was introduced that allows the retransmission
of a lost packet even if the timeout for that packet has not expired. The fast retransmit mech-
anism does not replace the timeout mechanism of TCP, but it works in parallel to improve
performance.

The idea behind fast retransmit is straightforward. Every time a packet arrives out of or-
der because the previous packet was lost or delayed, the receiver sends an acknowledgment
that is the same as the one sent the last time. The subsequent transmissions of the same ac-
knowledgment are called duplicate ACKs. When the sender detects a duplicate ACK, it knows
that the receiver must have received a packet out of order, implying that the earlier packet was
lost or delayed. To detect reliably the packets that are lost, the sender waits until it sees some
number of duplicate ACKs before retransmitting the missing packet. In practice, the sender
waits until it has seen three duplicate ACKs, then retransmits the packet without waiting for
its timer to expire.

Finally, there is another improvement we can make. Using the fast retransmit mechanism
the sender detects a possible loss of a transmitted packet, implying congestion, and therefore
it is necessary to reduce its congestion window accordingly, after the transmission of the lost
packet. However, when a fast retransmit algorithm is used and when duplicate ACKs are
received by the sender, it means that the packets are still flowing to the receiver. How can
it be safely deduced? The generation of duplicate ACKs at the receiver is triggered only on
a packet arrival. This indicates that serious network congestion may not exist and the lost
packet could be a transient condition. Thus, the sender, instead of reducing its transmission
rate sharply using slow start, decreases the congestion window by half and performs only
additive increase.

C H A P T E R 2 2 Packet Queueing and Scheduling 15

22.3 Implicit Feedback Schemes
With the above background on TCP congestion control, we are now ready to discuss router
congestion control schemes. In general, router congestion control schemes can be classified
as implicit feedback schemes and explicit feedback schemes. The main difference in these
approaches is that implicit schemes trigger packet dropping while explicit schemes are noti-
fications generated by routers to end hosts to “slow down.”

Before we discuss implicit congestion schemes, we need to ask the following question:
is packet dropping required because buffers are not sized properly? Recall that we discussed
earlier about buffer sizing from a traffic engineering point of view in Section 7.2.3. However,
congestions do occur in live networks due to sudden increase in traffic; thus, a buffer sized
for normal circumstances might not be adequate for congested situations. This could mean
that buffer sizes should be increased further to allow for sudden bursts in traffic; however,
there is a downside to having too large of a buffer than required—it can unduly hold packets
in a buffer, thus increasing overall latency. That is, it is important to size buffers properly and
allow packet dropping intelligently for congested situations.

In implicit feedback schemes, the source detects the existence of congestion by making lo-
cal observations. Some of these local observations include timeouts when acknowledgments
are not received, delayed reception of acknowledgments, arrival of duplicate acknowledge-
ments, and so on. The main underlying causes for these observations are packet delay and
packet loss. If the delay experienced by a packet is higher than expected from a source’s per-
spective, it is as good as a packet being lost. As a result, in these schemes the routers simply
drop packets during congestion and expect the source to respond to these lost packets by
slowing their transmission rate.

22.3.1 Drop Position
This design choice pertains to the position in the queue from which the packet needs to be
dropped. For a queue, there are three choices; front of the queue, tail of the queue, and any one
of the intermediate positions between them. We examine these choices in detail and identify
its advantages and disadvantages.

DROP FROM FRONT

In this case, the space for the arriving packet is created by discarding the packet currently at
the head of the queue, as shown in Figure 22.4. While it might sound simple, drop from front
is complex to implement. It requires explicit queue manipulation to remove an existing entry,
thus requiring extra cycles of processing time. However, the main benefit of dropping from
the front of queue is that it expedites TCP’s congestion avoidance behavior. That is, drop from
front causes the destination to “see” missing packets in its stream earlier.

In fact, drop from front enables a congestion signal being expedited by as much as one
RTT time earlier than would be the case with tail drop (where packets are dropped from
the tail of the queue). As a result, a few sources whose packets are near the front at the on-
set of congestion receive earlier congestion notification (that is, they timeout earlier). The
ensuing reduction of transmit rate from these sources allows packets from other sources to
successfully enter and leave the queue. Thus, fewer sources losing packets greatly reduces or
eliminates later overreaction by more sources.

16 22.3 Implicit Feedback Schemes

F I G U R E 22.4 Drop from front.

F I G U R E 22.5 Drop from tail.

You might wonder why the source timeouts as much as one RTT earlier. This is because of
router buffers being sized to hold one RTT worth of traffic. Assume, for the sake of discussion,
there are two packets from the same source; one is at the front of the queue while the other
is at the end of queue. In the worst case, the packet at the end will be dropped; after all, the
packets in the router buffer have been serviced which would consume as much as one RTT.
Therefore, if the packet at the front of the queue is dropped, the source would have been
notified of congestion one RTT earlier.

TAIL DROP

Another discipline for managing queue length in a router is to determine the maximum
length for each queue a priori, accept packets until the queue is full, and then discard subse-
quent packets arriving at the tail of the queue. The dropping behavior continues until space is
available in the queue, when packets at the head of the queue are transmitted. This discipline
is known as drop from tail, or simply tail drop, as the packet that arrived most recently gets
discarded when the queue is filled up; this is illustrated in Figure 22.5. The major advantage
of tail drop is that it is easy to implement as packets can be dropped simply by not inserting
them into the queue. However, it suffers from a few major disadvantages [88].

In some situations, a few flows sharing the output link can monopolize the queue during
periods of congestion. Such flows generate packets at a higher rate that can easily fill up the
queue. Consequently, the packets from flows generating packets at substantially lower rates
have a higher probability of arriving at the queue when it is full and gets discarded. Hence,
these lower rate flows are said to be “locked out” by a few higher rate flows.

C H A P T E R 2 2 Packet Queueing and Scheduling 17

In a TCP flow, packets often arrive in bursts despite constraint by a window size. With
tail drop, when such bursts from several TCP flows arrive at a queue that is full or almost full,
their packets will be dropped. As a result, all the flows throttle back by decreasing their trans-
mit window size almost simultaneously. Now all the senders steadily increase their transmis-
sion window size in tandem. As a result, the sender sends more packets and again the router
queue will overflow, leading to dropping of more packets. This recurring pattern where many
senders reduce and increase their transmission rates at the same time is referred as global syn-
chronization. Such a phenomenon causes drastic oscillations in traffic, resulting in low utiliza-
tion of the link bandwidth and of course, reducing the overall network throughput.

Since tail drop signals congestion only when the queue is full, the queues tend to remain
full or nearly full for sustained periods of time. As a result, the packets at the end of the
queue wait longer before transmission, which increases the latency of flows. Simply making
the queue shorter will decrease the latency, but it defeats the purpose of buffering, which is to
accommodate brief bursts of traffic without dropping packets unnecessarily. Because of such
disadvantages, tail drop is used as the default mechanism for congestion control in the router,
if nothing is configured.

22.3.2 Proactive versus Reactive Dropping

This design choice concerns when a packet should be dropped. If packets are dropped even
before the queue is full, it is referred as proactive dropping. Such proactive dropping of packets
implicitly conveys to the end hosts when congestion is imminent. This early notification is
useful in networks where the end hosts react by reducing their transmission rate. On the
other hand, if the end hosts do not reduce their rate, the router queues will become full and
the packets will be dropped anyway. This is called reactive dropping as the packets are dropped
in reaction to the queue buffers being filled.

For aggregated queues, two variants of proactive dropping have been outlined in the lit-
erature: early random drop [284] and random early detection [227]. In early random drop, when
the queue length exceeds a preconfigured threshold, the router drops each arriving packet
with a fixed drop probability. Intuitively, as aggressive sources send more packets, dropping
an arriving packet randomly will quite likely discard packets from these sources than a packet
from one of well-behaved sources. Thus, this scheme attempts to protect the bandwidth re-
ceived by the well-behaved sources while penalizing the aggressive ones. However, it has
been shown in [762] that this scheme was not successful in controlling misbehaving users.
Some of the shortcomings of early random drop are improved in random early detection
discussed in the next section.

The proactive dropping of packets is called active queue management (AQM) in the litera-
ture. By dropping packets before buffers overflow, AQM allows routers to control when and
how many packets to drop. Active queue management provides the following benefits:

• First, it reduces the number of packets dropped in the router. As the Internet traffic is
bursty, a router might not be able to absorb these bursts if most of the queue space is com-
mitted to steady-state traffic. By keeping the average queue length small, AQM provides
the capability to absorb traffic bursts without discarding packets.

18 22.4 Random Early Detection (RED)

• Second, it eliminates the global TCP synchronization that results in more efficient uti-
lization of network. Second, by keeping the average queue size small, AQM controls the
queueing delay experienced by the packets flowing through it. This is significant for in-
teractive applications as their performance largely depends on minimizing the end-to-end
delay. Finally, it prevents the aforementioned lockout behavior by ensuring that there is
buffer space available for an incoming packet most of the time.

22.4 Random Early Detection (RED)
The basic idea behind random early detection (RED) [227] is to detect incipient congestion
early and convey congestion notification to the end-hosts, allowing them to reduce their trans-
mission rates before queues in the network overflow and packets are dropped. A router
implementing RED continuously monitors the average queue length; when this exceeds a
threshold, it randomly drops arriving packets with a certain probability, even though there
may be space to buffer the packet. The dropping of a packet serves as an early notification to
the source to reduce its transmission rates.

The RED algorithm uses the exponential weighted moving average approach (see Ap-
pendix B.6) to calculate average queue length Qavg and to determine when to drop packets.
The average queue length is compared with two queue length thresholds, a minimim thresh-
old Qmin and a maximum threshold, triggering certain activity. When a packet arrives at the
queue, the RED algorithm compares the current average queue length Qavg with these two
thresholds, Qmin and Qmax (Figure 22.6) according to the following rules:

• If average queue length Qavg is less than the minimum threshold, Qmin, no drop is taken
and the packet is simply enqueued.

• If average queue length Qavg is greater than the minimum threshold, Qmin, but less than
the maximum threshold, Qmax, it indicates some congestion has begun and the packet is
dropped with some probability Pa.

• If average queue length Qavg is greater than the maximum threshold, Qmax, it indicates
persistent congestion and the packet is dropped to avoid a persistently full queue.

The probability Pa is a function of average queue length Qavg and is often referred to
as the drop probability. As shown in Figure 22.7, the drop probability is zero when average
queue length Qavg is less than or equal to Qmin. It increases linearly when Qavg is between

F I G U R E 22.6 RED thresholds on a queue.

C H A P T E R 2 2 Packet Queueing and Scheduling 19

F I G U R E 22.7 Illustration of the relationship among Qmin,Qmax,Qavg, and Pmax.

the thresholds Qmin and Qmax. When Qavg equals Qmax, the drop probability reaches Pmax,
at which point it jumps to unity. This indicates that the gentler approach of probabilistically
dropping packets is not effective, and aggressive measures need to be taken, that is, dropping
all arriving packets.

By using a weighted average, RED avoids overreaction to bursts and instead reacts to
longer-term trends. The average queue length captures the notion of congestion more accu-
rately than the instantaneous queue length. The bursty nature of Internet traffic can fill up
a queue quickly for a very short period of time, which then becomes empty again. Thus, it
is not appropriate to conclude that the router is congested. As a result, the computation of
average queue length uses a weighted running average w to detect persistent congestion by
filtering short-term variations in the queue length.

While RED is in operation, it is definitely possible that the instantaneous queue length
can be much longer than the average queue length Qavg, especially in the presence of bursty
traffic. In such situations, when a packet arrives to the router and if the queue is full, then it
will be dropped. When this happens, RED is operating in tail drop mode.

An interesting aspect of RED is that it provides some sense of fair resource allocation
among flows, due to its random nature. However, the fairness might not be guaranteed to be
precise. Because RED drops packets randomly, the probability that a packet is dropped from
a particular flow is roughly proportional to the share of bandwidth the flow is getting at that
router. Since high-bandwidth flows send a large number of packets through the router, it is
providing more candidates for random dropping, thus penalizing them in proportion.

The four parameters that govern the operation and behavior of RED—minimum thresh-
old Qmin, maximum threshold Qmax, drop probability Pmax, and weight α used by exponen-
tial weighted average—constitute a RED drop profile. Realizing RED functionality in a router
requires the implementation of two algorithms. The first algorithm computes the average
queue length on every packet arrival, while the second algorithm calculates the drop prob-
ability that determines the frequency of packets dropped by the router, given the level of
congestion. The following sections examine these in detail.

20 22.4 Random Early Detection (RED)

22.4.1 Computing Average Length of Queue
The average queue length, Qavg, is computed using an exponential weighted moving average
(refer to Appendix B.6) as

Qavg = (1 − w) × Qavg + w × Qsample (22.4.1)

where 0 ≤ w ≤ 1. Qsample represents the actual length of the queue at the instant the measure-
ment is made. In most software implementations, Qsample is measured every time a packet
arrives at the router. In hardware, due to high speed requirements, it is calculated at some
fixed sampling interval.

Looking at Eq. (22.4.1) more closely reveals that if w is small, even if Qsample is large, Qavg

will only increase by a small amount. As a result, Qavg will increase slowly and a significant
number of samples of Qsample will be required to increase it substantially. This leads to the
detection of long-lived congestion rather than short-term congestion that can come and go.

If w is too small, then Qavg responds too slowly to changes in the actual queue length
and is unable to detect the initial stages of congestion. Alternatively, if w is too large, the
average queue length will not filter out short-term congestion. Thus, the choice of an appro-
priate value for w depends on Qmin and the amount of burstiness desired. Given a minimum
threshold Qmin, and the desired level of burstiness as L packets, then w should be chosen to
satisfy the following equation [227]:

L + 1 + (1 − w)(L+1) − 1
w

< Qmin. (22.4.2)

The left term of the inequality represents the average queue length after L packet arrivals,
assuming the queue is initially empty with an average queue length of zero and the queue
length increases from 0 to L packets. The inequality implies that if w is chosen appropriately,
the router can accept a burst of up to L packets and still manage to keep Qavg below the
minimum threshold Qmin.

Recall that RED drops packets to signal congestion to TCP flows. Consider a router,
dropping a packet from a TCP connection and immediately forwarding subsequent pack-
ets from the same connection. When these packets arrive at the destination, it sends dupli-
cate ACKs to the sender. When the sender sees these duplicate ACKs, it reduces its window
size. Thus, the time elapsed between the router dropping a packet from a connection and the
same router seeing some reduced traffic from the affected connection should be at least one
RTT. Practically speaking, there is not much return in having the router respond to conges-
tion.

22.4.2 Computing Drop Probability
A straightforward approach for computing the packet drop probability uses a linear function
of the average queue length as shown below:

Pa = Pmax (Qavg − Qmin)/(Qmax − Qmin). (22.4.3)

In this approach, as the average queue length increases, Pa increases proportionally and
reaches a maximum allowable value, Pmax, when the average queue length reaches the maxi-
mum threshold Qmax. Note that Pmax is a configurable value in the range, 0 ≤ Pmax ≤ 1. Even

C H A P T E R 2 2 Packet Queueing and Scheduling 21

though it is simple to understand and implement, use of this approach leads to dropping
packets that will not be well distributed in time. Instead, it is likely to drop more than one
packet in a burst of closely spaced packets (clusters) from a source. As the packets of a flow
tend to arrive in bursts, such a behavior is likely to cause multiple drops in a single flow.
While a single drop per RTT will suffice to cause a flow to reduce its transmit window size,
the desirable behavior is to affect many flows so that they can reduce the rate of transmis-
sion, thereby mitigating the congestion or reducing the likelihood of congestion occurring
immediately.

To reduce the likelihood of such scenarios, the calculation of packet-dropping probability
takes into account the number of packets queued since the last drop and that the packet is
marked proportional to its size compared to the maximum packet size, MaxPacketSize. This
enhanced approach uses the following adjusments for computing the drop probability Pa.

Pb = Pmax(Qavg − Qmin)/(Qmax − Qmin) (22.4.4a)

Pb = Pb × PacketSize/MaxPacketSize (22.4.4b)

Pa = Pb/(1 − count × Pb). (22.4.4c)

In Eq. (22.4.4), count keeps track of the number of packets queued since the last drop. As
implied by the equation, the probability Pa increases as count increases. This makes a drop
increasingly likely as the time since the last drop increases. Once a packet is dropped, the
count is reset to zero. With this approach, closely spaced packet drops are relatively less likely
than widely spaced drops.

RED can be efficiently implemented in hardware with only a small number of add and
shift instructions on each packet arrival. The implementation involves the efficient compu-
tation of average queue size, calculating the packet-dropping probability, and arriving at a
decision on whether to drop a packet.

First, the average queue length can be calculated based on the following equation. Rear-
ranging, Eq. (22.4.1), we get

Qavg = Qavg + w(Qsample − Qavg). (22.4.5)

If w is chosen as a negative power of 2, i.e., w = 2−n where n is configurable. The advantage
is that this can be implemented with a few shift operations and two additional instructions.

22.4.3 Setting Qmin and Qmax

Consider the setting of values for Qmin and Qmax. These values to a large extent are deter-
mined by average queue length, Qavg. The choice of values for Qmin determines how effi-
ciently the output link is utilized. If the traffic is fairly bursty, smaller values for Qmin will
lead to packet dropping, thereby underutilizing the output link. As a result, Qmin should be
chosen large enough such that the router will be able to absorb bursts as well as keep the link
utilization at an acceptably high level.

The threshold Qmax determines the delay experienced by a packet as it transits through
the router. A large value for Qmax means that more packets will be buffered in the queue
ahead of the newly arrived packet, and they must be transmitted before the newly arrived

22 22.5 Variations of RED

packet. This introduces significant delay. Thus, the choice of values for Qmax depends on the
maximum average delay that can be allowed by the router.

Also, the difference between the two thresholds Qmax − Qmin should be larger than the
typical increase in the calculated average queue length in one RTT. Given the traffix mix on
today’s Internet, a useful rule of thumb is to set Qmax to at least twice Qmin. During periods
of high load, since the average queue length is expected to vary between the two thresholds,
there should be enough free buffer space above Qmax to absorb bursts in the traffic without
forcing the router to enter tail drop mode.

22.5 Variations of RED
Due to the bursty nature of Internet traffic, the queues can fill up quickly and then become
empty again. In such cases, the queue can be empty most of the time except during such
period of burstiness. Furthermore, because the thresholds are compared with the average
queue length, no dropping of packets takes place even when the instantaneous queue length
is quite large.

22.5.1 Weighted Random Early Detection
The RED algorithm can be considered to be fair for all the flows passing through a single
queue, where flows belong to the same traffic class. The flows from which the traffic needs to
be discarded are chosen randomly without any bias. While fairness is desirable, often there
are situations that need to introduce unfairness. To illustrate such needs, consider the follow-
ing example of packet marking.

Example 22.3 Packet marking.
Consider the scenario where packets are marked as they enter the ISP network. The

process of marking distinguishes packets as either out-of-profile or in-profile. The out-of-
profile packets represent the excess traffic from a customer than the agreed bandwidth with
the ISP. On the other hand, the in-profile packets confirm to the agreed bandwidth. The inten-
tion behind distinguishing the packets is to provide delivery guarantees for in-profile packets
while out-of-profile packets are delivered best effort. When the ISP network is lightly loaded,
out-of-profile packets would most likely get through the network, thereby using the spare
bandwidth. However, during periods of congestion, these out-of-profile packets are dropped
in preference to in-profile packets. �

The RED algorithm has been observed to be unfair in bandwidth sharing when there
are different traffic classes [410]. Furthermore, as seen from the example, when congestion is
anticipated, the router might need to enforce different packet-dropping behavior for different
types of traffic (such as in-profile and out-of-profile packets). This translates into defining
different drop profiles for different queues, or for different types of traffic in the same queue.
Recall from Section 22.4 that a RED profile specifies the parameters Qmin, Qmax, Pmax, and w
that characterize the behavior of RED.

Weighted random early detection (WRED) attempts to achieve this by augmenting RED
to use additional information from the packet. Such additional information in the packet can

C H A P T E R 2 2 Packet Queueing and Scheduling 23

F I G U R E 22.8 Weighted random early detection with in-profile and out-of-profile
packets.

include but is not limited to source and destination address, source and destination ports, pro-
tocol flags and IP precedence/TOS bits. This information provides a context for the packet.
Based on the context of the packet, a RED drop profile is chosen for packet dropping. For the
example discussed earlier, an aggressive drop profile with higher dropping probability can
be assigned for out-of-profile packets, while a less aggressive drop profile with lower drop-
ping probability governs in-profile packets. Two such profiles are shown in Figure 22.8 where
Qmin 1, Qmax 1 and Pmax 1 represent the aggressive drop profile, while the others with (Qmax 2,
Qmax 2, and Pmax 2) specify the less aggressive drop profile. In the figure, the aggressive profile
is shown with dashed lines and the less aggressive profile with solid lines. Such modification
of the drop probability depending on the context of the packet is referred as weighting; hence,
this variation of RED is known as weighted RED or simply WRED.

On receiving packets, the router classifies them based on the contents of their headers
using fast classification algorithms (discussed in Chapter 16) to establish context. This con-
text affects how the packet is processed in the subsequent stages inside the router. When the
packet arrives in the egress linecard, it is appended to the appropriate outgoing queue. Now
the context information of the packet is used for choosing the appropriate drop profile, which
determines how to drop the packet, if needed. Now let us look at two examples that illustrate
how WRED is used in practice.

Example 22.4 Assigning RED drop profiles to each queue.
Consider a router that is configured to use three queues for sharing the output link O

(Figure 22.9(a)). Each of these queues carries traffic of different priorities. The queue R car-
ries high-priority traffic, while queues S and T carry medium-priority and low-priority traf-
fic, respectively. Each queue shares a portion of the bandwidth of the outgoing link. For the
high-priority traffic, the network administrator might be interested in dropping fewer pack-
ets compared to medium-priority traffic and lower-priority traffic. Thus, the administrator
configures different drop profiles for each queue. In this case, a less aggressive drop profile
is associated with queue R and a progressively more aggressive profile, one for each of the
queues S and T.

24 22.5 Variations of RED

F I G U R E 22.9 Two packet drop profiles for weighted random early detection (WRED).

Consider another scenario where the network administrator is interested in further distin-
guishing the traffic in each queue into TCP traffic and non-TCP traffic. Furthermore, he/she
desires that in each queue more non-TCP traffic should be dropped rather than TCP traffic.
In such cases, the administrator has to configure two drop profiles per queue with the appro-
priate drop probability. Depending on the type of the traffic (which is typically embedded in
context of the packet), the appropriate drop profile will be applied. This scenario is illustrated
in Figure 22.9(b). �

While WRED allows dropping of packets depending on their context, it does not dynam-
ically adapt the dropping probability depending on amount of traffic. In the next section, we
describe another variant of RED called adaptive RED that provides this flexibility.

22.5.2 Adaptive Random Early Detection

In basic RED, the decision about when to drop a packet is determined by the parameters in the
RED profile—Qmin, Qmax, w, and Pmax. However, choosing the appropriate values for these
parameters has proven difficult as they are highly dependent on the nature and burstiness of
the traffic. Let us look at a few scenarios on how the choice of these values affects the average
latency experienced by a packet and the network throughput.

First, consider the scenario in which the output link is lightly congested and/or Pmax is
configured to be high. In this case, Qavg hovers close to Qmin and, thus, the queueing delay
experienced by a packet will be low. Similarly, when the link is highly congested and/or Pmax

C H A P T E R 2 2 Packet Queueing and Scheduling 25

is low, Qavg operates closer to Qmax or even above Qmax. This results in a packet experiencing
higher queueing delay.

Now consider another scenario in which an output link is congested due to a large num-
ber of connections flowing through it. In such cases, packets should be dropped from suf-
ficiently large numbers of connections so that the offered traffic load from those sources is
reduced considerably. However, overly aggressive drop behavior could result in underuti-
lization of the network bandwidth as many more sources will back off their transmission
rates. It has been observed that when there are N connections sharing the link, the effect of
any given RED-induced packet drop is to reduce the offered load by a factor of (1 − 1/2N).
Thus, as N increases, the impact of a packet drop decreases and the RED algorithm needs
to be aggressive. Otherwise, it would degenerate into simple tail drop. When N is small, the
impact of packet drop is large and RED should be conservative. Otherwise, it will lead to
underutilization of network bandwidth.

Example 22.5 Impact of the number of connections on throughput.
Assume that the output link capacity of 10 Mbps is shared equally among 100 simulta-

neous TCP connections. A RED-induced packet drop from a single connection reduces its
transmission rate and therefore the offered load reduces to 9.95 Mbps. Alternatively, if only
two connections share the link, RED-induced packet drop from one of the connection reduces
the offered load to 7.5 Mbps. �

We can see from these scenarios that the average queueing delay and output link uti-
lization are sensitive to the traffic load and, therefore, not predictable in advance. To achieve
predictable average delays and maximum utilization of the outgoing link, the RED profile
parameters must be constantly adjusted depending on the current traffic conditions.

Adaptive RED attempts to address these limitations by allowing RED to modify its pa-
rameters based on traffic load. The idea behind this algorithm is to adjust the value of Pmax to
restrict the average queue length Qavg between Qmin and Qmax. In particular, it scales Pmax by
constant factors of α and β depending on whether it is less than Qmin or greater than Qmax.
The algorithm is outlined below.

If the average queue length is less than Qmin, then RED is too aggressive in dropping
packets. Thus, Pmax is decreased by Pmax × β . The decrease in drop probability reduces the
number of packets being dropped, thus allowing the average queue length Qavg to increase
beyond Qmin but less than Qmax. In the other case, when the average queue length is greater
than Qmax, then RED is too conservative and Pmax is increased by Pmax × α. The increase in
drop probability increases the number of dropped packets and reduces the average queue
length Qavg to less than Qmax. The relationship between the average queue length Qavg and
drop probability Pmax is illustrated in Figure 22.10. The algorithm is run periodically using a
predetermined time interval, and the constants α and β are supplied by the network operator.

To be more specific, recall that in basic RED, the choice for w that tracks the average queue
length should be such that it filters transient congestion and still does not react too slowly to
long-term congestion.

The rate at which this congestion could have built up depends partially on how many
TCP connections pass through the outgoing link. If there are fewer connections sharing the
link, then the congestion will build up relatively slowly and w should be low. However, a low

26 22.6 Explicit Feedback Schemes

F I G U R E 22.10 Adaptive random early detection (with different threshold values for
Pmax for light and aggressive traffic).

value of w for a large number of connections would mean less aggressive dropping behavior,
leading to queue overflow. Conversely, choosing a high value for w to enable fast RED be-
havior with many TCP connections can result in the drop behavior being overly aggressive
in the presence of only a few flows. This leads to reduced output link utilization.

22.6 Explicit Feedback Schemes
Various schemes for packet dropping discussed in the previous section have been implicit,
that is, use packet loss to indicate congestion. The packet losses are inferred at the end hosts
and in response adjust their transmission rates. Such schemes do not require explicit help
from the intermediate routers except the dropping of packets, which the router must do any-
way when its queues are full. While these schemes are simple and easy to develop and deploy
in a network, they suffer from a few disadvantages [737]:

• Dropping of packets wastes network resources used for carrying the packet from its source
to the router experiencing congestion.

• Feedback schemes based on packet drops are based on an assumption about the network,
interpreting packet loss as a sign of congestion. This might not be valid for all networks
such as wireless networks.

A departure from these schemes is to explicitly communicate to the source when con-
gestion occurs to reduce the transmission rate. Such explicit notifications can be categorized
depending on the direction as:

• Backward—Here a congested router generates notification to the sender that travels in the
opposite direction of the data traffic. Notification can be piggybacked on the header of
the data packet bound for the sender (probably from the receiver), or a separate packet is
generated and transmitted to the sender.

C H A P T E R 2 2 Packet Queueing and Scheduling 27

• Forward—In this case, the router generates notification to the sender, which flows in the
direction of the traffic. This notification is carried by the data packets to the receiver. The
receiver piggybacks the packets to the sender to echo the notification to the sender. Instead
of echoing, the receiver can exercise the flow control at a higher layer protocol so that the
sender reduces it transmission rate.

Now let us discuss these schemes in detail.

22.6.1 Choke Packets

In this approach, whenever a router experiences congestion, it sends explicit notifications
to sources directly to reduce their transmission rate. These notifications could carry further
details such as the percentage by which the source should reduce the rate or an upper bound
on the rate the source should transmit. Routers implement a variation of this approach called
source quench, which conveys to the source that the congestion has occurred and hence it
should reduce the rate.

A source quench message could be generated by a router in two scenarios. In the first
scenario, whenever a router discards a packet, it may send a source quench message. In the
second scenario, the router may send the source quench message when the queue buffers
exceed a certain threshold rather than waiting until the queues are full. This means that
the packet that triggered the source quench message may be delivered to the destination.
A source quench message is carried by ICMP.

The benefits of this approach are twofold. First, it provides the fastest feedback to the
sources to reduce their rate. This has the benefit of reducing congestion as quickly as possible.
Second, as the router that experiences congestion generates this feedback, the information is
more precise. However, there are disadvantages from system design perspective. The router
has to generate a new packet on the data path, which is typically implemented in hardware
for high-speed requirements. To reduce such complexities in the hardware design, the data
path informs the control processor to generate the source quench message, which is injected
into the data path for forwarding it to the source.

22.6.2 Explicit Congestion Notification

Explicit congestion notification (ECN) is another feedback scheme that indicates congestion
information by marking packets instead of dropping them. The destination of marked packets
returns this congestion notification to the source. As a result, the source decreases its transmit
rate. The implementation of ECN uses an ECN-specific field in the IP header with two bits—
the ECN-capable Transport (ECT) bit and the Congestion Experienced (CE) bit. These two
bits are mapped to bits 6 and 7 of the DSCP field in the IP header as shown in Figure 22.11.
Both ECT and CE bits allow for four ECN field combinations—“00,” “01,” “10,” and “11.”

The ECN field combinations “01” and “10” are set by the data sender to indicate that
the endpoints of the transport protocol are ECN capable. The non-ECT combination “00”
indicates a packet that is not using ECN. The CE combination “11” is set by a router to indicate
congestion to ECN-capable host systems. Table 22.1 summarizes each of the ECT and CE bit
combination settings, including a brief note about how it is used.

28 22.6 Explicit Feedback Schemes

F I G U R E 22.11 ECN field in the differentiated services field of IP packet header.

TA B L E 22.1 ECN bit setting.

ECE Bit CE bit Remark
0 0 Not ECN-capable
0 1 ECN-capable end hosts
1 0 ENC-capable end hosts
1 1 Congestion experienced

The primary motivation for using two combinations for ECT is twofold. First, it allows
a data sender to verify that intermediate routers and switches are not erasing the CE com-
bination. Second, it allows a data source to check whether the data receivers are properly
reporting to the sender the receipt of packets with the CE combination as required by the
transport protocol.

To identify congestion and mark the packets, routers use the same algorithm as RED but
modified to identify ECN field combinations. The modified algorithm is described as follows:

• If the queue occupancy is below Qmin, the packets are transmitted independently of
whether ECN is enabled or not. This is similar to the normal RED algorithm.

• If the queue occupancy is between Qmin and Qmax, then the ECN field in the IP header is
examined. Depending on the combination that occurs in the ECN field, one of the follow-
ing scenarios can occur:

– If the ECN field contains “00,” then the end host systems are not ECN capable and the
packet might be dropped based on the drop probability generated by the RED algo-
rithm. This behavior is identical to normal RED behavior as described in Section 22.4.

– If the ECN field contains either “01” or “10,” then the RED algorithm determines
whether the packet should have been dropped based on the drop probability. If the
decision is to drop, then the ECN field is set to “11” and the packet is transmitted.
Since ECN is enabled, the packet gets marked instead of being dropped.

– If the ECN field contains “11,” then the packet is transmitted. It means that some up-
stream router has experienced congestion and this information needs to be passed on
further and ultimately indicated to the destination.

• If the queue occupancy is greater than Qmax, packets are dropped based on the drop prob-
ability generated by the RED algorithm. Again, this behavior is identical to the normal
RED behavior.

C H A P T E R 2 2 Packet Queueing and Scheduling 29

For ECN to work, the end hosts using TCP and the intermediate routers should cooperate.
When a packet arrives with the ECN field containing “11,” the end host needs to recognize
that congestion has occurred and invoke the congestion control algorithm, which must be
the same as the congestion control response to a single dropped packet. Thus, when an ECN-
capable source running TCP receives a packet with the CE combination set, it should respond
by halving its congestion window. Such behavior is required for the incremental deployment
of ECN in end systems and routers.

ECN is similar to an earlier scheme known as the DECbit scheme [575]; however, there
are quite a few differences. In the DECbit scheme, the algorithm for generating the notifi-
cation is coupled with the actual mechanics of how to carry notification. However, ECN just
outlines how the congestion notification is carried to the destination and back to the source in
IP networks. It is not tied to any queue management algorithm and is typically used in con-
junction with RED. Further, the DECbit scheme uses only a single bit to indicate congestion
as opposed to two bits in ECN.

While the key benefits of ECN are similar to RED, there are additional benefits that ECN
provides. Unlike RED, which drops packets and wastes network resources used to forward
packets to the point where they experience congestion, ECN, by marking the packets, avoids
such resource waste. With ECN, TCP hosts can distinguish between packet loss due to trans-
mission errors and congestion signals. This could be especially useful in networks with rela-
tively high bit error rates. Also, since ECN uses bits in the packet header carrying data, it does
not add any additional traffic to an already congested network. Furthermore, ECN provides
flexibility to deploy incrementally in the Internet.

22.7 New Class of Algorithms
Even though RED is an improvement over traditional drop tail policies, there are a few short-
comings. The fundamental problem in RED is the use of queue length as an indicator of
congestion in the network and the assumption that larger queue length means larger number
of flows are competing for the bandwidth of the outgoing link. This need not be true. For
instance, a single flow can transmit at a rate greater than the bottleneck output link capacity
during a brief busy period. This could result in the buildup of queues that are easily as large
as the queue length with large number of flows. If the packet interarrival time follows the
exponential distribution (see Appendix B.10) the queue length relates directly to the number
of flows—a well-known result in queueing theory. However, this is not the case with Internet
and, thus, RED requires tuning a range of parameters to operate correctly under different
congestion scenarios.

Thus, instead of using the average queue length, the stochastic fair blue (SFB) algorithm
[222] is based on the history of the packet loss and link utilization for managing congestion.
Unlike RED, SFB maintains only a single probability P—this is used for deciding whether
an incoming packet should be dropped. If the queue continues to drop packets due to buffer
overflow, the drop probability is increased; it is decreased as the queue becomes empty or the
output link is idle.

The active queue management schemes discussed so far rely on end hosts being cooper-
ative. In other words, the end hosts react to congestion feedback by slowing the transmission
rate similar to TCP. However, new classes of applications such as video streaming do not

30 22.8 Analyzing System Behavior

always use TCP-like congestion control and, thus, do not react to the congestion feedback
from the network. Such applications could essentially consume an unfair amount of band-
width affecting responsive flows and leading to a high packet loss rate in the network. This
effectively reduces the throughput of the network. The idea behind these approaches is to
detect unresponsive flows and to limit their rates so that they do not impact the performance of
responsive flows [226].

You may note that datagram congestion control protocol (DCCP) [371] has recently been
proposed in the standards track in IETF. DCCP is meant for use in UDP-based applications
that might require timeliness as well as reliable delivery; for that, TCP-friendly rate control
and TCP-like congestion control have been proposed—see [229], [230].

22.8 Analyzing System Behavior
From the discussions presented so far, you can see that a combination of features might be
employed at a router that spans from scheduling to congestion control. This raises an im-
portant question: how do we know one scheme is better than another, and more importantly,
when multiple features are in place, how do we know whether the overall system is behaving
as intended?

From our earlier discussion, we know that a major trade-off to consider with any schedul-
ing discipline is to understand if it is fair to different traffic classes, yet can be implemented
with low time complexity. Typically, in this trade-off, low time complexity is preferable from
a router implementation point of view while the solution might not be fully optimal from
the scheduling discipline point of view. Thus, understanding the details of such a trade-off,
the time complexity analysis is important. Furthermore, it is important to get an idea on per-
formance impact. Since packet arrival is of a bursty nature, developing analytical models is
typically difficult. Thus, often such analysis entails doing a simulation model-based analysis
where realistic traffic streams are mimicked, and then doing a systematic assessment of the
behavior observed based on output of such simulations.

Similarly, to understand any implicit or explicit feedback mechanisms, performance
analysis is required. Typically in such analysis, traffic sources that follow TCP congestion
control mechanisms are considered. Since the overall analysis requires knowing how a router
handles congestions, often a network topology is needed for such studies. A commonly used
topology for such studies is known as the dumbbell topology—this means that several TCP ses-
sions share a bandwidth-limited bottleneck link with two routers [226]. You may note that
most such analysis avoids bringing the routing component into the picture. Why so? First,
in such studies, the goal is to understand the basic behavior without complicating it by con-
sidering too many dimensions. Second, in many instances, it is fair to assume that routing
would not change in a short window time frame during which one might be interested in
congestion behavior or buffer management. Yet, it is important to understand the relation
between congestion control and routing, for example, if there is a link or a router failure—
such analysis using simulation or a simulated environment, however, requires consideration
of many parameters or factors in a systematic manner [64], [581], [635].

What tools can you use for such analysis? From a simulation point of view, ns-2 [525] is a
widely popular public domain platform. There are commercial tools available from vendors
such as OPNET [536] that allow simulation of control mechanisms along with routing. In

C H A P T E R 2 2 Packet Queueing and Scheduling 31

either type of platform, to try out a new area, writing a new software code segment is often
necessary. Certainly, any ability to test a concept through a virtual platform that operates on
the Internet is important. Several such approaches are currently ongoing [535], [568], [722].

22.9 Summary
We started this chapter with a discussion of different queueing disciplines that a router might
employ for scheduling packets. Critical issues are whether a discipline is fair to different traf-
fic streams, yet packet processing can be done efficiently. In this regard, deficit round-robin
and modified deficit round-robin schemes are found to be most preferred. It is, however,
important to note that most scheduling algorithms base their decisions using flow-level in-
formation in order to provide flow-based “fairness.” On the other hand, there are several
newer classes of applications that create multiple TCP flows in parallel. Thus, if we were to
consider at the level of application session-level fairness, application sessions with parallel
TCP flows can receive unduely higher fairness. For such situations, how a router can provide
application-level fairness is still an on-going research problem.

Congestion in routers can occur due to various factors. Thus, schemes are needed to han-
dle congestion, which can be broadly divided into implicit feedback schemes and explicit
feedback schemes. The implicit feedback schemes rely on the local observations at the end-
hosts to infer about congestion in the network, and drop packets at routers. However, explicit
feedback schemes rely on conveying the congestion notification explicitly.

We ended the chapter by including a brief discussion on how to analyze system behavior
when there are a variety of factors to consider in regard to congestion control and routers.

Finally, it is important to realize that there is a direct connection between how well a
network is traffic engineered along with buffer sizing and the congestion perceived by users.
For example, from the viewpoint of an ISP, its goal is to serve its customers with good quality
of service, which may be based on service level agreements; thus, the ISP wants to engineer its
network at an adequate performance level. For instance, many providers use 95th percentile
of traffic volume to engineer their networks. Thus, unless there is a sudden surge in traffic due
to unanticipated demand, most well-engineered networks should be able to avoid network
level congestions. This is important to keep in mind.

Further Lookup
The literature on packet queueing and scheduling and active queue management is vast. We
highlight only a few examples here. For a general processing sharing principle, refer to [543],
[544]. For various queueing disciplines, see [72], [378], [379], [640], [670].

For early works on congestion control in packet networks, see [52], [575], [508]. For ac-
tive queue management, through mechanisms such as RED and its many variations, see [88],
[222], [227], [295], [343], [495], [410], [762]. It is worth noting that if a buffer is small, RED
might not lead to improvement in network performance [451]; thus, it is important to size the
buffer properly for traffic engineering (refer to Section 7.2.3). For understanding the interac-
tion of congestion control and routing, refer to [64], [288], [581], [598], [635].

For the recently proposed datagram congestion control protocol (DCCP) and its TCP-
friendly rate control and TCP-like congestion control mechanisms, see [229], [230], [371].

32 22.9 Exercises

Finally, readers might be interested in comparing congestion control mechanisms used
for voice call traffic in the PSTN, discussed in Section 11.6, with the ones discussed in this
chapter for the Internet.

Exercises
22.1 Explain different packet scheduling disciplines, their strengths and limitations, and

deficit round-robin scheme.

22.2 Consider Example 22.2; work through the numbers if the quantum credit for each queue
is reduced to 300.

22.3 Explain why it is important to consider TCP congestion control mechanisms in a router
design.

22.4 Explain strengths and limitations of the random early detection mechanism and its vari-
ations.

23
Traffic
Conditioning
We used to think that if we knew one, we knew two, because one and one are
two. We are finding that we must learn a great deal more about “and.”

Arthur Eddington

Reading Guideline

The traffic manager at a router is responsible for traffic conditioning. This chapter
can be read independently; however, the background material presented in Chap-
ter 14 on router architectures helps in understanding the overall role of the traffic
manager.
D. Medhi and K. Ramasamy, Network Routing: Algorithms, Protocols, and Architectures.
c© 2007 by Elsevier, Inc. All rights reserved.

C H A P T E R 2 3 Traffic Conditioning 3

While the original service model for IP is the best-effort service model, over the past
decade the differentiated service (“diff-serv”) model has become popular. The difficulty with
the best effort service model is that it provides little guarantee of any kind on quality of
service. The differentiated services model allows traffic classification to be applied to arriv-
ing packets for treatment through a traffic conditioner. Through this process, a form of soft
quality of service can be assigned to different service classes. For example, such classification
can be for certain customer’s traffic that may be based on service level agreements. In other
words, to meet service level agreements for a certain customer’s traffic, a quality of service
mechanism is needed. This is where the diff-serv model comes into the picture, and the need
for traffic conditioning. In essence, service providers need mechanisms to discriminate traffic
from various subscribers and limit their rate and volume of traffic entering into the network.
In this chapter, we focus on such mechanisms, namely, traffic shaping, traffic policing, and packet
marking toward ensuring service level agreements.

23.1 Service Level Agreements
We first start with a discussion of service level agreements. A service level agreement (SLA)
is a formal contract that exists between a customer and a service provider that specifies the
forwarding service the customer will receive from the service provider during the duration of
the agreement. In addition, it details the penalties assessed when any of the clauses in the SLA
are violated by the service provider. As more and more enterprises depend on outsourced
services, they rely on SLAs to guarantee specific levels of functionality and availability.

While there are different types of SLAs governing different aspects of the outsourced
business, we focus our attention on the network service SLA, referred to as a network SLA.
A network SLA specifies its objectives in terms of network performance between one or more
exchange points on its network. A network SLA typically covers the following:

• Physical network characteristics: This covers the type of network infrastructure service that
the service provider is willing to provide. These are expressed as network availability
(system uptime) and network capacity (throughput). While most enterprises desire 100%
availability, it might not be necessary in many environments. For instance, in environ-
ments for e-commerce, 100% availability is critical. However, for traditional business envi-
ronments, an average ranging from 99.5% to 99.9% might be acceptable. When specifying
throughput, a network’s capacity is detailed in the capacity of the backbone connections
within the network’s core, such as 10 Gbps.

• Network connection characteristics: This aspect of the SLA provides details about the band-
width being provisioned, the acceptable rate of data losses, error rate, end-to-end latency,
and jitter. While most of the service providers guarantee 99% packet delivery rates, this
might not be sufficient for real-time applications such as voice over IP (VoIP), interactive
video, and so on. For the predominant web browsing traffic, losses of up to 5% might
be acceptable. Similar to data loss, latency and jitter are critical for VoIP and multime-
dia traffic; these applications require response times of 100 millisec or less. Many service
providers in the United States and Europe often guarantee a round-trip delay of 85 mil-
lisec between the routers in their core networks.

We next present an example of a network SLA.

4 23.2 Differentiated Services

Example 23.1 A network SLA.
An enterprise customer uses an Internet service provider (ISP) to receive dedicated In-

ternet access to connect to its remote sites. The customer and the ISP agree to the following
network SLA, which defines the requirements of the service by the customer and the com-
mitments by the service provider.

• Network availability: The network will be available to the customer free of network outages
99.95% of the time, which is the standard service-level guarantee. In the case of unplanned
down time, the customer will be compensated 10% of the monthly bandwidth charge.
The service provider may suspend the service occasionally for operational reasons and
network upgrades without invalidating the service-level guarantee of 99.95%.

• Network connection: The amount of bandwidth available to the customer is 10 Mbps for
download and 5 Mbps for upload. The average available bandwidth will not be less than
the specified amount for more than 0.1% per month.

• Latency and jitter: The average monthly packet loss on the core network will not ex-
ceed 0.2%. The average monthly latency on the core network will be 50 millisec or less.
The average jitter will be 250 μsec or less. The maximum jitter on the core network will
not exceed 10 millisec more than 0.2% per month. �

23.2 Differentiated Services
From the above discussion, we can see that SLAs provide a way to specify agreements. Con-
ceptually, however, how do we provide differentiated services as an operational framework
so that SLAs can be met? A simple way to understand this framework is shown in Figure 23.1.
Arriving packets are first processed through a packet classifier, which is then handled through
the traffic conditioning phase. As you can see, the traffic conditioning phase has four main
components: traffic meter, packet marker, traffic shaper, and traffic policer. Through these

F I G U R E 23.1 An operational framework for differentiated services.

C H A P T E R 2 3 Traffic Conditioning 5

components, the traffic conditioning phase attempts to ensure SLAs. In particular, it ensures
that an arriving packet does not violate agreements.

How do you communicate that a packet is needed to be treated in a certain manner?
The differentiated services architecture allows such packet marking using the type of service
(TOS) field in the IPv4 header or the traffic class field in IPv6 header. Specifically, 6 bits are
used for differentiated service code point (DSCP), which is then part of the TOS or traffic class
field.

23.3 Traffic Conditioning Mechanisms
Now let us illustrate traffic condition mechanisms through a network example. Consider Fig-
ure 23.2 where the possible locations of traffic shaping, marking, and policing are shown;
here, ISP2 serves as the backbone service provider for the tier 2 ISPs, ISP1 and ISP3. In this
case, the ISP1 and ISP3 are subscribers to ISP2. For the sake of discussion, assume that as a
part of the SLA between ISP1 and ISP3, ISP1 can upload a committed rate of 1 Gbps worth
of traffic (upload bandwidth of 1 Gbps) and download a committed rate of 3 Gbps of traffic.
Similarly, assume that the SLA between ISP2 and ISP3 specifies that ISP2 upload bandwidth
is limited to 5 Gbps and download bandwidth to 10 Gbps.

When traffic from ISP1 is handed off to ISP2, it is the responsibility of ISP1 not to exceed
the committed upload rate of 1 Gbps. The mechanism used to enforce that a stream of packets
transmitted from a router conforms to a specific rate is called traffic shaping. In other words,
when the traffic is handed off to another network, the traffic is shaped so that the SLAs are
not violated.

Similarly, when traffic is received by ISP2 from ISP1, it needs to ensure that the traffic
sent by ISP1 indeed does not exceed 1 Gbps. When the rate is exceeded, it is considered as a
violation of SLA and ISP2 has two options for dealing with such traffic. One option is to drop
the excess traffic; the other option is to mark this excess traffic as “out-of-profile” for the given
SLA. The out-of-profile traffic can be handled according to a certain policy. For instance, one
policy might be to drop such traffic and the other is to admit this traffic into the network
as best-effort delivery. In other words, the out-of-profile traffic dropped when congestion is
encountered in upstream routers; otherwise, the packet is delivered to its destination.

The mechanism of monitoring the incoming traffic rate and dropping packets when the
agreed rate is exceeded is called traffic policing. Marking the packets as out-of-profile when
they exceed the rate and processing them according to a policy is called packet marking. One

F I G U R E 23.2 Traffic shaping, policing, and marking in networks.

6 23.4 Traffic Shaping

can view packet marking as a gentler incarnation of traffic policing which provides the flexi-
bility to handle excess traffic.

Various traffic conditioning mechanisms assume that the packets from one subscriber can
be distinguished from another subscriber. For instance, if ISP1 and ISP3 are connected to ISP2
using a single router, there is a need to segregate (classify) the packets. Such a classification
is possible in practice using several fields in the IP header along with efficient algorithms
for processing the same, as outlined in Chapter 16. In other words, packet classification is
possible, other than fully relying on diff-serv code points.

23.4 Traffic Shaping

Traffic shaping regulates the rate and volume of traffic of an individual flow or an aggregate
of flows admitted into the network. Note that an aggregate flow could mean all the flows
whose traffic is sent out on the same interface. While traffic shaping can be used in many sit-
uations, the primary use is to smooth the traffic to a certain rate and ensure that traffic adheres
to the SLA. Additionally, traffic shaping can be used to mitigate congestion by smoothing the
bursty traffic such that the transmitted rate does not exceed the access speed of the target
interface. Now let us see a few concrete examples of use of traffic shaping.

Example 23.2 The need for traffic shaping.
Consider the network shown in Figure 23.3. The service provider network directly con-

nects to two content providers, CP1 and CP2 and an enterprise customer E. In addition, two
residential customers C1 and C2 are connected indirectly through a point of presence (POP).

• Control access to bandwidth: Consider the enterprise customer E interested in controlling the
bandwidth of outbound traffic due to a tier-pricing agreement with the service provider.
The service provider might have provided a high-bandwidth connection circuit such as
DS3 to customer E; however, the pricing might be based on the average utilization of the
circuit. Thus, the customer has the flexibility to move to a higher bandwidth quickly in
the future, but in the short term, to control expenses, can use shaping at router R9 so that
the traffic submitted to ISP does not exceed a subrate. The shaped traffic, from router R9
to R8, is indicated in the Figure 23.3 using bold arrows.

• Limiting per-user traffic: Assume that the residential customers C1 and C2 connected to the
ISP have signed up for services that provides different download speeds. For the sake
of discussion, let us say that customer C1 has signed up for a service that provides a
download speed of 1 Mbps. Similarly, customer C2 has signed up for a service that allows
a download speed of 512 Kbps. Traffic shaping allows the service provider to set per-
user traffic limits by configuring policies at router R1 and ensures that the user gets what
he/she pays for. When traffic is limited in this fashion, users can still access whatever they
want, but the flows are smoothed out to the specified limit rather than attempting to use
all or much of the total available network capacity. Again, the shaped traffic is indicated
in Figure 23.3 using bold arrows flowing from router R1 to customers C1 and C2. �

C H A P T E R 2 3 Traffic Conditioning 7

F I G U R E 23.3 An ISP network.

Since shaping takes place at an egress interface in the router, it may be necessary to clas-
sify a packet to a flow earlier, possibly at the ingress interface. There are two predominant
methods for traffic shaping:

• Traffic smoothing: This method eliminates bursts and presents a steady stream of traffic to
the network, which can be implemented using a leaky bucket algorithm.

• Traffic burst shaping: This method shapes burst of predetermined size by averaging over a
time window, which can be implemented using a token bucket algorithm.

Both schemes have different behavior and rate-limiting capabilities resulting in output
streams with different characteristics. Most often in the literature, the leaky bucket and token
bucket algorithms are discussed under the same name.

23.4.1 Leaky Bucket

A leaky bucket algorithm is primarily used to control the rate at which traffic enters the
network. It provides a mechanism for smoothing bursty input traffic in a flow to present a
steady stream into the network. In other words, the leaky bucket enforces a constant transmit
rate regardless of the erratic burstiness in the input traffic of a flow.

The leaky bucket algorithm can be conceptually explained as follows. Imagine having
a bucket per flow that has a hole at the bottom. An unregulated stream of packets arriving
in the flow is placed in this bucket. The packets are drained slowly through the hole at the
bottom and transmitted into the network at a constant rate of r bytes per sec. The bucket size
(depth) is limited, say b bytes. When the rate of unregulated packets entering the bucket is

8 23.4 Traffic Shaping

F I G U R E 23.4 Leaky bucket algorithm.

greater than the drain rate of r, the bucket could be filled up. If a new packet arrives when
the bucket is full, the entire packet is discarded. The leaky bucket is illustrated in Figure 23.4.

If the transmit rate is r bytes per sec, theoretically traffic should be injected at a rate of 1
byte every 1/rth of a second. Since IP packets are an integral number of bytes, multiple bytes
might have to be sent together approximating the theoretical rate, as measured over a longer
interval. Consider an example where the transmit rate r is 1.2 Mbps. This implies that a byte
needs to be sent every 6.7 μsec. Hence, a 1500-byte packet will be sent every 10 millisec or
perhaps 500 bytes every 3.3 millisec, thus averaging 1.2 Mbps over a longer time interval.

The leaky bucket algorithm can be easily implemented using a bounded first-in, first-out
(FIFO) queue, a timer, and a counter X . The timer expires every second and increments the
counter by r. The size of the first packet in queue P is compared with the counter value X .
If X > P, the counter is updated with X = X − P and the packet is transmitted. Subsequent
packets in the queue can be transmitted as long as the counter value X is greater than the
size of the packets. When the counter value X is less than the next packet in the queue,
transmission is stopped until the next second. In the next second, the counter value is updated
with X = r and the transmission of traffic continues.

If there are packets waiting in the queue when a new packet arrives, the size of the new
packet P is added with the sum of the sizes S of all packets in the queue. If P + S > b, it repre-
sents a queue overflow (similar to bucket overflow) and the packet is discarded. Otherwise,
the packet is queued.

Thus, the leaky bucket algorithm manages the flow of data into the network such that the
packets are not forwarded at a rate greater than the network can or is willing to absorb. The
bucket size b bounds the amount of delay that a packet can experience at this traffic shaper.
The transmit rate r and bucket size b are typically user configurable.

A significant drawback of the leaky bucket algorithm is that it strictly enforces the av-
erage rate of a flow, no matter how bursty the traffic is. As many Internet applications are
bursty in nature, it helps to allow some burstiness in a flow.

23.4.2 Token Bucket

A token bucket provides a mechanism that allows a desired level of burstiness within a flow
by limiting its average rate as well as its maximum burst size. A token bucket can be viewed
as an abstraction of rate of transfer expressed as a relationship between a committed burst
size B, a committed information rate, CIR, and a time interval, T.

CIR = B/T,

C H A P T E R 2 3 Traffic Conditioning 9

where

• Committed information rate (CIR) specifies the amount of data that can be sent per-unit time
interval and represents the long-term average rate at which a flow can send its data into
the network. Sometimes this parameter is referred to as the mean rate. The mean rate is
specified in bits per sec or bytes per sec as IP packets are of variable length.

• Committed burst size (CBS) specifies the maximum number of bytes that can be transmitted
into the network in an extremely short interval of time. In theory, the committed burst
size, as the time interval tends to zero, represents the number of bytes that can be in-
stantaneously transmitted into the network. However, in practice, it is not possible to in-
stantaneously send multiple bytes into the network since there is an upper bound on the
physical transmission rate that cannot be exceeded.

• Time interval (T) specifies the time per burst.

According to the definition, the rate of the traffic sent over the network, over any integral
multiple of the time interval, will not exceed the mean rate. However, within the interval, the
rate can be arbitrarily fast. For instance, consider a flow that is constrained to send data at
an average rate of 12,000 bits per sec. This flow can send 3000 bits within a time interval of
100 millisec. When considering this 100-millisec interval, it might appear that its average rate
is 30,000 bits per sec. However, as long as the flow does not send more than 9000 bits in the
second interval containing the 100 millisec in which it sent 3000 bits, it will not exceed the
average of 12,000 bits per sec. Before examining the token bucket algorithm, let us consider
an example of how a token bucket is specified.

Example 23.3 Specifying a token bucket.
Assume that the traffic needs to be sent into the network at a mean rate CIR of 2.4 Mbps.

If a burst for a duration of 10 millisec (= 0.01 sec) needs to be sustained, the CBS can be
calculated using the token bucket definition as

CBS = 2,400,000 bits/sec × 0.01 sec
8 bits/byte

,

which yields 3000 bytes. Thus, the token rate is 300,000 (=2,400,000/8) bytes per sec, the CBS
is 3000 bytes, and the token interval (T) is 10 millisec. Therefore, the token generator credits
the token bucket with 3000 bytes worth of tokens every 10 millisec. This indicates that the
conforming traffic will, in the worst case, come in 100 bursts per sec of 3000 bytes each and at
a CIR not exceeding 2.4 Mbps. �

ALGORITHM

Based on the token bucket definition, an algorithm can be devised that controls the rate of
the traffic in such a way that over a long time period the average allowed rate approaches the
desired mean rate CIR asymptotically and over a short time interval the burst size of the traf-
fic is upper bounded by bucket size CBS. The algorithm assigns a token bucket for each flow
that consists of a bucket which can hold up to CBS tokens. Each token can be considered as

10 23.4 Traffic Shaping

F I G U R E 23.5 Token bucket algorithm.

a permission for the source to transmit a certain number of bits into the network. These CBS
tokens in the bucket represent the allowed burst size. New tokens are added to the bucket at
the rate of CIR tokens per token interval. If the bucket contains less than CBS tokens when
a new token is generated, it is added to the bucket; otherwise, the newly generated token is
dropped and the token bucket remains filled with CBS tokens. A conceptual illustration of
the token bucket algorithm is shown in Figure 23.5.

Now, continuing with the algorithm, the packets arriving in a flow are placed into a
packet queue that has a maximum length of L. If the flow delivers more packets than the
queue can store, the excess packets are discarded. When a packet of size P bytes arrives in a
flow, one of the following cases will apply.

• If the token bucket is full, P tokens are removed before the packet is transmitted into the
network.

• If the token bucket is empty, the packet is queued until P tokens are accumulated in the
bucket. Eventually, when the bucket contains P tokens, that many tokens are removed
from the bucket and the packets are transmitted into the network.

• Finally, consider the case when the token bucket is partially filled with, say X tokens. If
P ≤ X , then P tokens are removed from the bucket and the packet is sent into the net-
work. If P > X , the packet is queued and it waits until the remaining P − X tokens are
accumulated. Once the bucket accumulates the required P tokens, they are removed from
the bucket and the packet is forwarded into the network.

If packets arrive in short bursts, up to CBS tokens would be available in the bucket,
and, thus, up to CBS bytes would still get through. As a consequence, the maximum
burst size is limited to at most CBS bytes for the flow. Furthermore, as the token replen-
ishment rate is CIR tokens every token interval T, the maximum number of bytes that
can enter the network over any time period of t is CBS + t × CIR/T. Thus, the token
replenishment rate, CIR, serves to limit the long-term average rate of bytes entering the
network. The length of the packet queue bounds the delay incurred by a packet. Now
let us consider an example that illustrates how traffic in a flow gets shaped using token
bucket.

C H A P T E R 2 3 Traffic Conditioning 11

F I G U R E 23.6 Shaping traffic using the token bucket algorithm.

Example 23.4 Shaping traffic using token bucket.
Consider the token bucket specification of Example 23.3. In this case, the CBS is

3000 bytes. Hence, the token bucket receives 3000 tokens every 10 millisec so that the CIR
does not exceed 2.4 Mbps.

Now let us consider a sequence of packets of a flow as shown in Figure 23.6. It shows the
time of arrival and departure for packets and the time of arrival of tokens into the bucket.
The packets are referred to using the alphabetical letters A through F along with the size of
the packet.

To start, assume that the token bucket contains 3000 tokens when time t = 0. At time
t = 1 millisec, packet A of size 1000 bytes arrives. Since the the bucket contains enough tokens,
the packet is immediately transmitted and 1000 tokens are removed from the bucket leaving
only 2000 tokens. Now packet B of size 1500 bytes arrives at t = 5 millisec which is also
transmitted immediately since 1500 tokens are available. After the packet B is transmitted,
the bucket is left with 500 tokens. At t = 8 millisec, packet C of size 700 bytes arrives. Since
there are not enough tokens in the bucket, packet C is queued.

A fresh set of 3000 tokens is credited to the bucket at t = 10 millisec. However, there are
500 tokens already and, thus, only 2500 of the new 3000 tokens are added so that the total does
not exceed the burst size of 3000 tokens. The rest of the tokens are discarded. Now the packet
C can be transmitted as the bucket has enough tokens. Thus, it departs at t = 10 millisec and
the bucket is left with 2300 tokens after deducting 700 tokens for packet C. Packet D of size
2000 bytes that arrives at t = 12 millisec is immediately transmitted leaving only 300 tokens

12 23.5 Traffic Policing

in the bucket. Now packet E of size 1700 bytes and F of size 1600 bytes, which arrive at t =
14 millisec and t = 18 millisec, respectively, are queued since not enough tokens are available.

At t = 20 millisec another fresh set of 3000 tokens is credited to the bucket. Out of these,
300 tokens are discarded since 300 tokens from the previous interval are present in the bucket.
Now packet E is transmitted, as sufficient tokens are available after a delay of 6 millisec. The
remaining 1300 tokens are not enough for packet F . Thus, it has to wait until the next token
interval when a new set of tokens arrives at t = 30 millisec. Finally, packet F is transmitted at
t = 30 millisec after a delay of 12 millisec. We can see that a total of 8500 bytes was transmitted
in an interval of 30 millisec and, thus, the rate of transfer is 2.26 Mbps (= 8500×8/(30×10−3)),
which is less than the mean rate of 2.4 Mbps. �

Implementation
The token bucket algorithm can be easily implemented using a counter and a timer per flow.
The timer expires every token interval T and increments the value of the counter by CIR
tokens. This value is never allowed to go more than the CBS. When a packet arrives and if the
counter value is greater than the packet size, it is transmitted, and the counter is decremented
the packet size. If the packet size is greater than the counter value, the packet is queued until
enough value is accumulated in the counter when the timer expires in subsequent intervals.
The disadvantage of this approach is that it might not be scalable, as the number of flows
increases and so does the number of timers.

Alternatively, the implementation uses a counter and a variable that stores the arrival
time of the last packet. It uses the interarrival packet time to compute the number of to-
kens. Whenever the next packet arrives, the time between packet arrivals is calculated. If
t1 is the time of arrival of the previous packet and t2 is the time of arrival of the current
packet, then the number of tokens to be credited is calculated as (t2 − t1) × CIR. If there
are N flows to be shaped, it requires 2N integers and, thus, the implementation scales lin-
early. We shall illustrate the use of this method in Example 23.6 when discussing traffic polic-
ing.

23.5 Traffic Policing
Traffic policing allows us to control the maximum rate of traffic for an individual flow or an
aggregate of flows. It is typically used at the edge of the network to limit the traffic entering
network. Let us illustrate the need for traffic policing using a few examples.

Example 23.5 Limiting the data rate using traffic policing.
There are several scenarios in which an ISP might have to limit the data rate:

• Provision subrate delivery: The enterprise customer E might require a bandwidth that might
be a fraction of a T1 interface (384 Kbps). In such cases, the ISP might have to deliver the
full T1 connection and use a traffic policing mechanism to restrict the bandwidth to what
the customer has requested. This is because it might be less expensive than some of the
alternate options like using Frame Relay. When the customer requests more bandwidth,
the ISP can do an upgrade by simply modifying the policer to allow more traffic.

C H A P T E R 2 3 Traffic Conditioning 13

• Rate control of P2P traffic: Use of P2P applications like Kazaa and Bit torrent by residential
customers C1 and C2 can consume a lot of bandwidth, affecting critical business appli-
cations running on the ISP network. This could incur huge penalties for the ISP if SLAs
are not met. If the contents of these P2P applications are fetched from content providers
CP1 and CP2, then the ISP needs to enable traffic policers at routers R4 and R7. These
traffic policers distinguish the P2P traffic from normal traffic and restrict the rate of such
traffic entering the ISP network. The P2P traffic can be either dropped or marked as lower
priority before being admitted into the network.

• Improved network security: The ISP might need to police the ping traffic to a reasonable
amount that would increase the overall security of the network from DOS attacks. The
policing of ping traffic does not preclude someone from launching ICMP-based attacks,
but to some extent drops a good portion of the attack traffic as it enters the ISP’s network,
thereby reducing its impact on the internal network resources. �

If policing determines that the traffic in a flow falls within the rate parameters (in-profile),
then the packet is transmitted into the network. However, if the traffic exceeds the rate pa-
rameters (out-of-profile), then an action is applied based on the policy defined. The action
can be either to drop packets immediately or transmit the packets to the network but marked
with a lower priority. We refer to the action of dropping packets as traffic policing and the ac-
tion of lowering the priority of out-of-profile packets as packet marking, which is discussed in
detail in Section 23.6.

Traffic policing uses the same token bucket algorithm described in Section 23.4.2 for reg-
ulating traffic. Unlike shaping, where the token bucket algorithm uses a queue for storing
packets when sufficient tokens are not available, traffic policing does not use a queue as it
discards packets in such cases. The token bucket algorithm itself does not determine whether
the packets must be queued or discarded. It just discards tokens when the bucket is full, and
when there are no sufficient tokens available for a packet, it delegates the action of handling
the packet depending on shaping or policing. Let us examine a sequence of packets to under-
stand how the token bucket algorithm is used for traffic policing.

Example 23.6 Policing traffic using token bucket.
Consider policing the traffic shown in Example 23.4. Assume that there are 3000 to-

kens at t = 0. When packet A of size 1000 bytes arrives at t = 1 millisec, 300 (= 1 millisec ×
3000/10 millisec) tokens are generated, which are discarded since the bucket is already full.
Since there are enough tokens available in the bucket, the packet is transmitted and 1000
tokens are removed from the bucket, leaving 2000 tokens. Now packet B of size 1500 bytes
arrives at t = 5 millisec, and it is 4 millisec since the last packet arrived. Hence, a new set of
1200 (= 4 millisec × 3000/10 millisec) tokens is credited. However, 200 tokens are discarded
as the bucket overflowed after a total of 3000 tokens. As the bucket contains sufficient tokens,
packet B is transmitted and 1500 tokens are left in the bucket (Figure 23.7).

The same procedure is repeated for packet C of size 700 bytes and packet D of size 2000
bytes. After packet D is transmitted at t = 12 millisec, the bucket is left with 900 tokens.
When packet E arrives 2 millisec later, 600 (= 2 millisec × 3000/10 millisec) new tokens are
generated. However, a total of 1500 tokens is not enough to transmit packet E and, thus,

14 23.5 Traffic Policing

F I G U R E 23.7 Policing traffic using the token bucket algorithm.

it is dropped. After 4 millisec, when packet F arrives at t = 18 millisec, a new set of 1200
(= 4 millisec × 3000/10 millisec) tokens is added to the bucket totaling 2700 tokens. This is
enough to transmit packet F . �

23.5.1 Comparing Traffic Policing and Shaping

Even though shaping and policing control the rate of the traffic, there are substantial differ-
ences, which are summarized in [139]. The key difference is that traffic shaping not only limits
the flows to a specified rate but also buffers the nonconforming traffic. The result of shaping is
that the traffic is output at a smoothed rate. In contrast to shaping, policing propagates bursts
and does not buffer nonconforming traffic; instead, it just simply drops the packet when the
traffic rate exceeds the specified limits. The result is an output rate that appears as a sawtooth
with crests and troughs. This is illustrated in Figure 23.8. The leftmost figure indicates the
variation of input traffic rate over time, the middle figure shows the output rate of shaped
traffic, and the rightmost figure shows the output rate of policed traffic.

Since shaping needs to buffer nonconformant traffic, it requires a queue with sufficient
amount of memory. Typically, traffic shaping is applied for outbound traffic. However, since
policing drops nonconformant traffic, it can be applied to inbound or outbound traffic in a
router. Traffic shaping introduces delay as it buffers nonconforming traffic. However, policing
does not introduce any additional delay or jitter in the traffic.

C H A P T E R 2 3 Traffic Conditioning 15

F I G U R E 23.8 Comparing traffic policing and shaping.

23.6 Packet Marking

The action of lowering the priority of out-of-profile packets by modifying one or more header
bits is referred to as packet marking. Marking out-of-profile packets serves as a hint to the next-
hop downstream routers to handle them differently. For example, an access router that polices
the traffic can mark a packet by changing its header bits so that core routers give the packet
a higher probability of dropping during periods of congestion while they continue to deliver
in-profile traffic.

While traffic policing takes a hard approach of dropping out-of-profile packets, packet
marking uses a softer approach by postponing the decision to discard a packet to a down-
stream router, which is congested. As a result, when the available bandwidth is plentiful,
service providers can deliver higher levels of service to all subscribers. At the same time,
they are able to protect the shared network resources and meet the subscriber SLAs during
periods of scarce bandwidth.

Packet marking can also be implemented using token bucket. When a packet arrives
and if there are enough tokens available for the packet to be transmitted, it is considered
as in-profile; otherwise, it is out-of-profile. If different rates need to be enforced for different
flows then multiple token buckets with the appropriate bucket size and token replenishment
rate can be run simultaneously. When a packet arrives, it is associated with a flow using
packet classification based on the policies or rules configured in the router. Depending on the
flow, the appropriate token bucket is chosen and the packet is marked as in-profile or out-of-
profile. Based on the actions configured in the rules, the packets are subsequently dropped or
marked. This is shown in Figure 23.9.

After marking, the packets are passed to output queueing and scheduling and finally
transmitted on the output link. If the output link experiences congestion, then the priority is
to drop the out-of-profile packets. A simple approach to drop more out-of-profile packets is to
reduce their priority by segreating them from in-profile packets and assigning them to lower-
priority queues. The in-profile packets are assigned to higher-priority queues. However, this
can result in reordering of out-of-profile packets relative to in-profile packets. The reordering
occurs when an out-of-profile packet is scheduled ahead of an in-profile packet. This scenario
is shown in Figure 23.10. Hence, the receiving application will see the out-of-profile packet
first, assuming that the intermediate routers did not drop the packet.

16 23.6 Packet Marking

F I G U R E 23.9 Use of multiple token buckets simultaneously.

F I G U R E 23.10 Reordering of in-profile and out-of-profile packets because of separate
queues.

The preferred approach is to use a single queue and associate different RED drop prob-
ability for different types of packets. An aggressive RED drop probability is assigned for
out-of-profile packets and a conservative RED drop probability for in-profile packets.

23.6.1 Graded Profiles
So far, our discussion assumed that a single average rate and a burst size are used to govern
the traffic in a flow. However, this might be insufficient for expressing the traffic into different
grades based on its temporal characteristics. Such grading of traffic allows the application
of different types of marking or a combination of marking or policing for each grade. For
instance, a graded profile might specify that the traffic exceeding a rate of M bytes per second
is simply marked and if the excess traffic rate becomes greater than N bytes per second, it
should be immediately discarded.

When the traffic is graded, colors can be used to describe marking of packets. That is,
the color of the packet identifies whether it is conforming to the traffic profile. For example,
a green packet means it is conforming to the committed rate of the traffic profile; a yellow
packet means that it is not conforming to the committed rate, but meets the excess rate of
the traffic profile; however, a red packet does not meet the committed nor the excess rates

C H A P T E R 2 3 Traffic Conditioning 17

F I G U R E 23.11 Single-rate three-color marking.

of the traffic profile. Then, green packets are processed as specified in the SLA and are not
candidates for discarding. Yellow packets are candidates for discarding, typically, only if the
network is congested. Red packets are immediately discarded.

Next we describe two marking algorithms: single-rate tricolor marking (srTCM) and two-
rate tricolor marking (trTCM). For these, we need to use a few terms: committed information
rate (CIR), committed burst size (CBS), excess information rate (EIR), and excess burst size
(EBS). We have already discussed CIR and CBS. EIR specifies the average rate that is greater
than or equal to the CIR; this is the maximum rate up to which packets are admitted into the
network. EBS is the maximum number of bytes allowed for incoming packets. Packets are
in-profile if they meet CIR and CBS (“CIR conformant”) while they are out-of-profile if they
meet EIR And EBS (“EIR conformant”).

23.6.2 Single-Rate Tricolor Marking

A single-rate traffic profile uses three parameters, CIR, and the two burst sizes, a CBS and an
EBS. This can be implemented by two token buckets C and E and both share‘ the common
rate CIR. The maximum size of the token bucket C is CBS and the maximum size of the token
bucket E is EBS. This is shown in Figure 23.11.

To start with, the token buckets C and E are initialized with CBS and EBS, respectively.
Thereafter, tokens arrive at CIR times per second. The newly arrived token is added to bucket
C if its token count is less than CBS. Otherwise, the token is added to bucket E, if it has
less than EBS tokens. If buckets C and E already contain CBS and EBS tokens, the token is
discarded.

Assume that the token buckets C and E contain PC and PE tokens, respectively. When a
packet of size B bytes arrives, the packet is handled as follows:

• If B ≤ PC, the packet is colored green and the number of tokens in bucket C is decremented
by B and the packet is transmitted into the network.

• If B ≤ PE, the packet is colored yellow and decrements the number of tokens in bucket E
by the packet size B. The packet is allowed to enter the provider’s network.

• If the packet is colored red, none of the existing tokens in either of the buckets is decre-
mented.

18 23.6 Packet Marking

Example 23.7 Walk through the algorithm.
For this example, assume that the committed rate is configured to be 2000 bytes per sec

and the CBS of 2000 bytes. Similarly, the excess rate and excess burst size are also configured
at 2000 bytes per sec and 2000 bytes, respectively.

The token buckets C and E start with their respective burst sizes of 2000 bytes each. If
a 900 byte packet arrives, the packet conforms because enough bytes are available in the
committed token bucket C. Hence, the packet is declared as CIR conformant, colored green,
and then transmitted. At the same time, 900 bytes are removed from token bucket C, leaving
only 1100 bytes.

If the next packet arrives 0.25 sec later, 500 (= 0.25 × 2000) bytes are added to token
bucket C, leaving a total of 1600 bytes. If the next packet size is 1800 bytes, the packet does
not conform, as only 1600 bytes are available in token bucket C.

The exceed token bucket, which started full at 2000 bytes (as specified by the excess
burst size), is then checked for available bytes. Because enough bytes are available in token
bucket E, the packet is colored yellow and admitted into the network. Subsequently, 1800
bytes are removed from the excess bucket E, leaving only 200 bytes.

If the next packet arrives 0.4 sec later, tokens equivalent to 800 (= 0.4 × 2000) bytes are
generated. Of these 800 bytes, only 400 bytes are added to token bucket C as the maximum
number of tokens is not allowed to exceed 2000 bytes. Since the remaining 400 bytes will
overflow token bucket C, these are placed in token bucket E, leaving a total of 600 bytes.

If the arriving packet is 2000 bytes, the packet conforms because enough bytes are avail-
able in token bucket C. The packet is colored green, transmitted into the network, and 2000
bytes are removed from the conform token bucket (leaving 0 bytes).

If the next packet arrives 0.2 sec later, 400 (= 0.2 × 2000) bytes are added to the token
bucket. Therefore, token bucket C now has 400 bytes. If the arriving packet is 800 bytes,
the packet does not conform because only 400 bytes are available in bucket C. Similarly, the
packet does not exceed because only 600 bytes are available in token bucket E. Therefore, the
packet is colored red and discarded. �

23.6.3 Two-Rate Tricolor Marking
A two-rate traffic profile is described by four parameters: an EIR and its associated EBS, and
a CIR and its associated CBS. EIR and CIR are measured in bytes per second and EIR must
be greater or equal to CIR. Similarly, EBS and CBS are also measured in bytes and should be
greater than zero. In addition, both of them should be configured to be equal to or greater
than the size of the largest possible IP packet in the flow.

Two-rate tricolor marking can be used for ingress policing of a service where a peak rate
needs to be enforced separately from a committed rate. Such a two-rate bandwidth profile can
be also implemented by using two token buckets. One bucket, referred to as the committed
or C bucket, is used to determine CIR-conformant and in-profile packets, while the other
bucket, referred to as the excess or E bucket, is used to determine the EIR-conformant and
out-of-profile packets.

Similar to srTCM, two token buckets C and E are used. The token buckets C and E
are initialized with CBS and EBS, respectively. Thereafter, the token count in bucket C is

C H A P T E R 2 3 Traffic Conditioning 19

F I G U R E 23.12 Two-rate three-color marking.

incremented by CIR times per second up to CBS. Similarly, the token count E is incremented
by EIR times per second up to EBS. The two-rate three-color marking is shown in Figure 23.12.

When a packet of size B arrives and if buckets C and E contain the tokens PC and PE,
respectively, the packet is handled as follows:

• If PE < B, the packet is colored red and discarded.

• If PC < B, the packet is colored yellow, admitted into the network, and B tokens are re-
moved from bucket E.

• If the packet is colored green, it is transmitted into the network and the number of tokens
in both the buckets is decremented by B.

23.7 Summary
In this chapter, we studied the importance of traffic shaping, policing, and packet marking
as important tools available for the service provider to provide differentiated services in a
cost-effective manner. We discussed how traffic shaping limits the rate of traffic sent into a
network. We described two forms of traffic shaping: traffic smoothing and traffic burst shap-
ing. We then studied in detail about how leaky bucket and token bucket algorithms can be
used to regulate traffic.

We continued our discussion about traffic policing, which limits the rate of traffic by
discarding excess packets. We then studied packet marking, which takes a softer approach by
lowering the priority of packets and admitting them into the network under the assumption
that the downstream routers will lower the priority of packets if congestion is imminent. We
concluded the chapter with the discussion of two algorithms for packet marking.

Further Lookup
A detailed discussion about SLAs can be found in the book [719] devoted to this topic. Entire
sections of Chapter 3 of [26] are dedicated to a discussion of traffic shaping, policing, and
packet marking. The white paper [630] from Juniper Networks provides an excellent discus-
sion of shaping and policing. The detailed documentation from Cisco Systems [138] provides
an overview of shaping and policing. Another document from Cisco Systems [139] elaborates
on the differences between shaping and policing.

20 23.7 Exercises

Turner [706] first proposed the idea of the leaky bucket algorithm. Detailed descrip-
tions about the leaky bucket and token bucket algorithms can be found in [683]. Single-rate
three-color marking is described in RFC 2697 [291] and two-rate three-color marking in RFC
2698 [292].

An important direction for traffic shaping is stochastic traffic shaping (as opposed to de-
terministic traffic shaping); for an extensive discussion on stochastic traffic shaping, see [118].

Exercises
23.1. Explain two different ways to shape traffic.

23.2. Why is the idea of token bucket helpful in traffic policing?

23.3. Explain the connection between packet scheduling and traffic policing at a router.

23.4. Consider Example 23.4. Work through the example, if the token bucket size is changed
to 2000 tokens.

23.5. How are service level agreements related to differentiated services?

23.6. What is the relation between traffic policing and traffic marking?

24
Transport Network
Routing
If you ask any filmmaker how they got into it, everyone came a different
route.

Alan Parker

Reading Guideline

The discussion of basic drivers and the need for transport network routing can be
read without much dependence on other chapters. However, to understand the op-
timization models for network engineering, a good understanding of network flow
modeling as presented earlier in Chapter 4 is necessary. Transport network rout-
ing models are useful in solving relevant traffic engineering problems that arise in
MPLS, GMPLS, and optical networking.
D. Medhi and K. Ramasamy, Network Routing: Algorithms, Protocols, and Architectures.
c© 2007 by Elsevier, Inc. All rights reserved.

C H A P T E R 2 4 Transport Network Routing 3

Transport networks play important roles in networking as they serve as the bearers of services
at a physical level. Note that the term transport as used in transport networks has no relation
to transport as used in referring to the transport layer protocol in the TCP/IP protocol stack.
Traditionally, transport networks were referred as telecommunication facilities networks [596],
and in the past decade, the term transport network has caught on. Along with transport net-
work, the term transport service is often used; this means that a customer needs a transport
network service from a transport network provider. This chapter covers transport network
routing, especially for multiple time periods, to accommodate transport service requests.

24.1 Why Transport Network/Service
Transport, as in transport networks/services, requires some explanation. What does it mean
and what is it transporting? Consider the following three examples:

• IP network links/trunks: At the view of IP networks, an IP link or trunk is between two
routers of certain capacity, for example, a T3 data rate or OC-3 data rate. This view is actu-
ally only a logical view. Such links are needed to be carried over actual physical facilities.
Thus, the actual physical route taken by this link is different from the logical view.

• Trunkgroups in the telephone network: Much like IP network links, trunkgroups that connect
two TDM switches in the telephone network are also logical entities. They also need to be
physically routed on actual physical facilities. Similarly, SS7 circuits between SSPs, SCPs,
and STPs must be physically connected.

• Private network services: An entity/customer with offices located in two different cities
might want to have the sites connected at a certain bandwidth, say T1, for internal voice
or data traffic. In this case, such connectivity can be provided by a transport network
provider that then has the responsibility of ensuring that a physical path and the band-
width are both available to the customer.

Clearly, in each case, a transport service is needed. A key point to note is that such links
are usually established on a semi-permanent basis, whereas bandwidth remains fixed for a
long time. In many cases, such physical paths that use a link may not change for a number
of years; for example, in many instances, this length is 3 years because of signed contract
agreements.

Example 24.1 Illustration of logical versus transport.
We will consider a simple illustration to show the difference between logical and trans-

port views (Figure 24.1). Consider switches in three locations: San Francisco (SF), Kansas
City (KC), and New York (NY). We use switch as a generic term here for illustration; it can
be routers or customer edge equipments for private transport services. They are connected
by logical trunks. To provide these logical trunks, ingress and egress transport nodes must be
located in close proximity of end switch sites, which are connected by a transport-routed path
that can further go through one or more intermediate transport nodes. In general, transport
network nodes are referred as cross-connects. Note that the cross-connects are not visible to
switches.

4 24.1 Why Transport Network/Service

F I G U R E 24.1 Transport path for logical links through cross-connects: SF-KC-NY
example.

As an example, the SFsw-KCsw logical link is connected as SFsw-SFcc-cc1-cc2-KCcc-
KCsw; similarly, the KCsw-NYsw logical link is connected as KCsw-KCcc-cc3-cc4-cc5-NYtn-
NYsw (Figure 24.1). However, the SFsw-NYsw link is connected as SFsw-SFcc-cc1-cc2-KCcc-
cc3-cc4-cc5-NYcc-NYsw; note that this link does not enter KCsw at all. Thus, we can think of
the switching points for a logical link as the end points of a transport route between them.

In what sense, then, does transport network routing come into the picture? The paths
shown above that are taken in the transport network are based on certain decisions; these
decisions can depend on transport node functionality, port availability at nodes, and other
services that need to be accommodated. �

It may be noted that in many instances, customers who require transport service do not
want the transport service provider to change the paths since such links are carrying mission-
critical traffic for which rearrangement of the path can have significant financial implications
to the customer. In some instances, some customers are willing to accept it if such a rearrange-
ment is done during a maintenance window, say 2:00 AM–4:00 AM late at night. However,
with a global economy and the role communication plays, such a maintenance window, es-
pecially for international transports, is hard to find; while it is night in one part of the world,
it is daytime in another part. Second, while it may be night in one part of the world, facilities
and logical links in this part of the world might be of significance to users in another part
where it is daytime due to corporate Intranet-based services.

Another important point is that setting up a logical link over a transport network may
require a certain amount of setup time. Depending on the level of transport service requests
as well as the actual bandwidth requested, such requests can take from a few days to a few
months. It should be noted that a new signaling protocol suite such as GMPLS (see Sec-
tion 18.4) has been developed to reduce this setup time; this is partly also necessitated by the
problem faced in finding a maintenance window. However, one of the issues in setting up
such a transport capability is that it involves having agreements in place between customers

C H A P T E R 2 4 Transport Network Routing 5

and providers that may include service-level agreements and payment plans, which also de-
pend on the “size of the pipe” requested. In general, the initial setup may have a certain lag
delay, while rearrangement for an existing transport connectivity may be allowable, but not
always.

Some of the above decisions are also transport equipment dependent. So, what are the
typical transport gears used? This can range at a data rate level: from T1/E1 to T3/E3 to
OC-48, and so on. If cross-connects are for T1/E1 or T3/E3, they are known as digital access
cross-connect systems (DACS), or digital cross-connect systems (DCS). In the optical network-
ing domain, cross-connects are known as optical cross-connects. Transport functionality can
be provided through a mesh network with cross-connects connected by transport links (not
to be confused with logical network links). With transport networks, there are also special
node types to consider, which are known as grooming nodes. Grooming nodes refer to the type
of nodes that can perform multiplexing, say from multiple T1s to fit into a T3, or multiple
OC-3s into an OC-48. There is another special node type called an add-drop multiplexer (ADM)
which provides a grooming-type function but does not usually provide cross-connect func-
tions. ADMs are commonly used in transport rings such as SONET rings. A key difference
between a cross-connect and an ADM is that a cross-connect may be used to interconnect a
larger number of transmission signals and also for grooming of transport networking routing
and management.

The primary focus of this chapter is to consider transport network routing in a generic
cross-connect environment for problems that fall under a Type B classification (refer to Ta-
ble 17.1), without any special focus on a specific technology or a time window. Specific ex-
amples in regard to technology, such as MPLS and optical networking, are discussed later in
the book, including when and how a transport service that has been classified under a Type B
classification might become Type C or even Type A (refer to Table 17.1). It is worth mentioning
that the general move in the industry is toward services that fall under a Type C (or Type A)
classification since with new signaling technology such as GMPLS, dynamic provisioning can
be accomplished. Yet, as we discussed earlier, for many customers and depending on the size
of pipe requested, the overall transport network problem will continue to have a component
that would need to satisfy services that would still fall under a Type B classification. Thus,
our discussion in the rest of the chapter is for transport services that fall under a Type B
classification.

24.2 Timing of Request and Transport Service Provisioning
From the point of view of a transport network provider, a service request from a customer
may arrive on a random basis, as received by this provider. It could be at the beginning of
the week or at the middle of the week or at the end of the week; furthermore, the provider
may receive multiple requests on a particular day, but none on another day. Thus, the random
arrival of the request cannot be avoided.

Now consider the transport service provisioning component. For the sake of this discus-
sion, we assume that the provider provisions transport service once a week, say on Saturday
evenings. However, taking into account the lag time to set up a request, the service request
may take a week to several weeks to be set up. Another important point is that new capacity
may be added periodically into the network based on forecast of growth.

6 24.2 Timing of Request and Transport Service Provisioning

F I G U R E 24.2 Transport service request arrival over a time horizon.

Example 24.2 Transport request arrival and service provisioning: A temporal view.
As an illustration, consider Figure 24.2. Assume that the time horizon is shown on a

weekly basis. Capacity may be added every 4 weeks. Suppose that service setup has a week
lag time from the end of the previous week. For example, we can see that six requests that
arrive by the end of week 1 (marked as τ = 1) are provisioned at the end of week 2; similarly,
the two requests that arrive by the end of week 2 are provisioned at the end of week 3.

Suppose that an expedited service is also available where a request can be installed by
the end of the week if the request arrives early enough in the week. Thus, out of the three
arrivals in week 3, one is expedited and is served at the end of week 3, while the other two
are served at the end of week 4 as normal service provisioning.

Now we discuss the effect due to capacity expansion. Capacity is added at the end of
week 2 and then again at the end of week 6 based on earlier forecasts. However, during
weeks 3 and 4 much higher-than-expected requests were coming in. Six requests from week 3
could be met at the end of week 4. However, of seven requests from week 4, only five could
be accommodated at the end of week 5 due to capacity availability; the rest needed to wait
another week until capacity expansion takes place at the end of week 6. �

The above example listed request arrivals without identifying origin and destination
nodes. Similarly, capacity expansion can be done on a link basis; for some links, it may be
added every 4 weeks, and for others it may not be; furthermore, the quantum of capacity
expansion is a modular quantity such as OC-3. Another issue is the time window factor.
Thus, origin–destination information would need to be taken into account in routing, and
the impact of capacity expansion cannot be decoupled from the routing problem. Finally, it
is possible that some provisioned services, and, thus, capacity allocated, would be released.
Due to these factors, overall routing does not simply have a spatial view as in other routing
problems considered in this book; it also has a temporal component. Another important point
is that because of the scheduled service provisioning, the traffic demand matrix is deterministic
at the time of provisioning.

It is important to note that in the above, a generic time period between updates is used
to communicate the basic idea; depending on the transport technology and technological
capabilities, the time period can be of different duration, typically from a week to months to
a number of years. With new signaling capabilities such as for GMPLS (refer to Chapter 18),

C H A P T E R 2 4 Transport Network Routing 7

this time window can shrink. In the following, we illustrate route provisioning when demand
request changes over multiple time periods.

Example 24.3 Routing over multiple time periods (adapted from [673]).
In this example, routing implications over multiple time periods are discussed for a three-

node transport network (Figure 24.3). The request arrives in units of T1s—they may be for
serving logical links connecting IP routers or logical links for a trunkgroup between two
TDM switches.

From a transport network point of view, they are demand to be met through routing
in its network. Capacity in the transport network is considered in T3 bandwidth units (1
T3 = 28 T1s). Figure 24.3(a) show the first time period where the first demand matrix is shown
as “new request.” The routes taken for these demands and any spares left on any link are
shown. Note that due to modular capacity, there is no need to directly connect node 1 with
node 3—its demand can be routed via node 2.

In time period τ = 2 (Figure 24.3(b)), new requests are to be accommodated; this requires
capacity expansion, along with rearrangement of provisioned flows. If rearrangement is not
allowed, further capacity expansion would be needed to handle these requests.

In Figure 24.3(c), a third time period is shown, where we show that some requests are
disconnected (listed as −20). Going from Figure 24.3(b) to this situation, demands can be
rearranged to fit in just two transport (T3) links, thereby saving on maintenance cost on the
third lik. If rearrangement is not allowed from the previous period, all three transport (T3)
links would need to be active. �

From the above example and discussion, we can see that transport network routing can
involve capacity expansion in one or more time periods. The actual routing path for demands
can change over time depending on whether rearrangement is allowed. You will also see that
transport network routing is essentially a minimum cost routing-type multicommodity net-
work flow problem. If we were to consider just one time period, then the problem of transport
network routing would be a multicommodity network flow (MCNF) problem presented ear-
lier in Chapter 4; for example, see Eq. (4.4.7) for routing without any restriction and Eq. (4.5.3)
if nonsplit demand is to be taken into account.

24.3 Multi-Time Period Transport Network Routing Design
By now, it should be clear that transport network routing that spans multiple time periods
often requires capacity expansion to meet a traffic engineering objective. An important point
about demand volume for the transport network is that the change or new request is incre-
mental. It does not typically negate what is already routed in a period time period; certainly,
rearrangement can be factored in, if allowed. Also, currently active circuits or routes may be
disconnected because a customer might not need any more.

From a network flow modeling perspective, there are a few important issues to consider
(in addition to the incremental demand volume): (1) the cost structure may change over time,
e.g., due to economic discounting; thus, any cost would need to be modeled with a time-
dependency parameter; (2) demand routed in one time window might have maintenance

8 24.3 Multi-Time Period Transport Network Routing Design

F I G U R E 24.3 Transport routing over multiple time periods.

costs in subsequent time windows, in addition to any routing cost; and (3) capacity expansion
might be possible in each time window over a given time horizon.

We assume that only one type of demand module is considered, such as all T1s, and
similarly capacity is also in a specific modular value such as T3s. In simple terms, this means
that without taking routing into consideration, if the demand volume is given as 51 T1s,
then we need at least two T3 units of capacity (since one T3 can carry 28 T1s). Similarly,

C H A P T E R 2 4 Transport Network Routing 9

if the demand volume is 40 OC-3s, then we need three OC-48s (since one OC-48 can carry
16 OC-3s). In general, we will use M to denote the size of the modular capacity units; for
example, M = 28 when demand volumes in T1s are considered in a network where capacity
modules are in T3s, or M = 16 when demand volumes in OC-3s are considered in a network
where capacity modules are in OC-48s. Because of M, capacity variables can be modeled as
non-negative integers.

Now, going from Eq. (4.4.7), which is a single-period model, to a multiperiod model, we
need to factor in a time period parameter, τ . Thus, demand volume hk for demand pair k
in Eq. (4.4.7) changes to hkτ for demand pair k in time τ ; as an example, demand volumes
shown in different time periods in Figure 24.3 can be represented by hkτ . We introduce the
capacity expansion variable z�τ for capacity to be added to link � in time period τ ; there are
two cost components associated with capacity expansion—one for new installation (ζ ′

�τ) and
the other for maintenance (ζ ′′

�τ) of capacity expanded in previous time periods; see Table 24.1
for a summary of notation.

The basic multiple time period routing design problem is to minimize cost of routing and
capacity expansion; it can be written as

minimize{xz} F =
T∑

τ=1

L∑

�=1

(

ζ ′
�τ z�τ + ζ ′′

�τ

τ−1∑

t=1

z�t

)

+
T∑

τ=1

K∑

k=1

Pkτ∑

p=1

ξkpτ xkpτ

subject to
Pkτ∑

p=1

xkpτ = hkτ , k = 1,2, . . . ,K, τ = 1,2, . . . ,T

K∑

k=1

Pkτ∑

p=1

δkp�τ xkpτ ≤ Mz�τ , � = 1,2, . . . ,L, τ = 1,2, . . . ,T

xkpτ ≥ 0, z�τ = 0,1,2,

(24.3.1)

This model, with the temporal parameter, is simply an extension of Eq. (4.4.7). To see this,
suppose that the first term in the objective, which is for capacity expansion, is dropped and
capacity is assumed to be given and also, only one time period (T = 1) is considered, then
Eq. (24.3.1) reduces to Eq. (4.4.7). Since this is a link-path representation, a set of candidate
paths would need to be identified at first, for example, through an algorithm such as the k-
shortest path algorithm (refer to Section 2.8). Eq. (24.3.1) includes both the link installation
cost and the link maintenance cost. In large network planning and design, the link installa-
tion cost is considered under capital expenditure (CapEx), while the link maintenance cost is
considered under operational expenditure (OpEx). Traditionally, CapEx and OpEx are con-
sidered under separate budgetary authorities and organizations within a transport network
provider. The model above shows that it is sometimes necessary to consider two different
budgetary considerations under a unified model to see the overall network cost.

There is another way to represent the objective cost in Eq. (24.3.1) if we rearrange the
first term using an alternate interpretation of cost related to capacity: if we install capacity
in period τ , it will incur maintenance costs in all subsequent periods (including period τ)
until the end of the planning horizon. Then, link � for capacity z�τ has the unit capacity cost,

10 24.3 Multi-Time Period Transport Network Routing Design

TA B L E 24.1 Summary of notation for Section 24.3.

Notation Explanation
Given
K Number of demand pairs, k = 1,2, . . . ,K
T Number of time periods, τ = 1,2, . . . ,T
L Number of links, � = 1,2, . . . ,L
M Size of the link capacity module
Pkτ Candidate paths for flows for demand k = 1,2, . . . ,K in period τ = 1,2, . . . ,T
δkp�τ Link-path indicator, set to 1, if link � belongs to path p for demand k in time

period τ , 0 otherwise
hkτ (≥ 0) New (incremental) demand volume for demand k in period τ

ζ ′
�τ Installation cost of one capacity module on link � for period τ

ζ ′′
�τ Maintenance cost of one capacity module on link � during period τ for capacity

installed in prior time period(s)
ζ�τ Combined cost of one capacity module on link � in time period τ

ξkpτ Unit routing cost on path p of demand k in time period τ

kτ Penalty cost of not routing a portion of demand volume for demand k in τ

Variables
xkpτ (non-negative) flow allocated to path p of demand � at time τ

z�τ (new) capacity of link � expressed in the number of modules (non-negative
integer) needed in time period τ

For tracking
y�τ Link flow on link � in time period τ

ĉ�τ Spare capacity on link � in time period τ

ζ�τ = ζ ′
�τ + ∑T

t=τ ζ ′′
�τ . Thus, the first cost term in the objective function in Eq. (24.3.1), can be

rewritten as

T∑

τ=1

L∑

�=1

(

ζ ′
�τ z�τ + ζ ′′

�τ

τ−1∑

t=1

z�t

)

=
T∑

τ=1

L∑

�=1

ζ�τ z�τ where ζ�τ = ζ ′
�τ +

T∑

t=τ

ζ ′′
�τ . (24.3.2)

A benefit of writing as given in (24.3.2) is that it is easy to see that the routing design prob-
lem given by Eq. (24.3.2) can be decoupled into T-independent problems. Furthermore, the
aggregated cost component, ζ�τ , provides a sense that although CapEx and OpEx cost com-
ponents need to be considered for the entire planning horizon, for modeling purposes it is not
always necessary to model them completely separately, at least for models such as the given
by Eq. (24.3.1). Certainly, the fact that model (24.3.1) can be decoupled into T-independent
problems raises the question on whether multiperiod modeling is necessary. We will now
discuss two basic problems with Eq. (24.3.1).

In Eq. (24.3.1), we have assumed that the incremental demand is non-negative, which re-
flects network growth over the planning horizon. It is certainly possible to imagine the case
where installed demand volume from a previous period is no longer needed in a future pe-
riod (negative growth in a network), for example, disconnection in a future period of circuits
already installed in a previous period in the case of transport networks. As discussed in [400],

C H A P T E R 2 4 Transport Network Routing 11

a way to capture this effect is to have hkτ < 0 (refer to Figure 24.3(c)), which would imply that
previously routed demand volumes need to be altered and that we must allow xkpτ < 0 in the
formulation. However, we need to ensure that this decrease is accommodated only on paths
that have positive flows in prior periods. To do this, we need to replace the requirement that
each flow (xkpτ) is non-negative with the following condition:

τ∑

t=1

xkpt ≥ 0, τ = 1,2, . . . ,T,

along with the understanding that path index p, in this case, refers to the exact same path
from one time period to the next for the same demand identifier, k. The inclusion of this
constraint in Eq. (24.3.1) implies that the modified design problem can no longer be natu-
rally decoupled into T-independent design problems. Although this new constraint satisfies
feasibility, the restriction on demand routing (i.e., routing for any new incremental demand
volume to be performed on a period-by-period basis) is no longer maintained; in other words,
rearrangeability of routed demand volume from one period to the next is possible. While this
flexibility is good from a formulation point of view, the rearrangeability option may not be
allowable/possible for many real transport networks.

For the rest of the discussion, we assume that the incremental demand volume is hkt ≥ 0
and that the rearrangement of routed demand from one period to the next is not allowable.
Thus, we return to Problem (24.3.1) and the fact that this problem can still be decoupled into
T-independent single-period problems. Therefore, we will now discuss another important
reason to consider multiperiod modeling instead of using just single-period design.

If you follow model (24.3.1) carefully, you will notice that this model does not necessarily
generate optimal solutions from the standpoint of overall network capacity over the entire
planning horizon. For example, from the second set of constraints in Eq. (24.3.1), it is easy
to see that due to modularity of capacity installed, not all capacity that was installed in a
previous period may be completely depleted by routing of demand volume in that period.
Thus, in actuality, there is a good chance that some spare capacity will be available from one
time period to the next (refer to Example 24.3), which can be used for realizing routing of
demand volumes in future periods; this aspect is not explicitly considered in the above model.
Thus, in reality, there is a natural coupling from one time period to another in a multiperiod
problem.

To illustrate the effect of spare capacity from one period for use in future periods for flow
routing, we denote y�τ as the link load on link � in period τ (τ = 1,2, . . . ,T). Furthermore, we
denote the spare capacity on link � in period τ by ĉ�τ ≥ 0 for τ = 0,1,2, . . . ,T. In this case,
ĉ�0 denotes any spare capacity available at the beginning of the entire planning cycle. Now at
the end of time τ = 1, any new, incremental demand volume must be satisfied using already
available capacity at the beginning of this period plus any new capacity added in this period;
thus, we have the following link-load satisfiability condition for τ = 1:

y�1 ≤ ĉ�0 + Mz�1, � = 1,2, . . . ,L.

Then, the spare capacity (if any) left at the end of period τ = 1 is available in period τ = 2;
this spare capacity can be written as

ĉ�1 = ĉ�0 + Mz�1 − y�1, � = 1,2, . . . ,L.

12 24.3 Multi-Time Period Transport Network Routing Design

TA B L E 24.2 Link flow, capacity expansion, and spare
capacity in time period τ = 2 (see Figure 24.3(b)).

Link � c�1 z�2 y�2 c�2

1-2 8 0 20 4
1-3 0 1 20 4
2-3 8 0 20 4

Similarly, at the end of period τ = 2, the link-load satisfiability condition and the spare capac-
ity can be written as:

y�2 ≤ ĉ�1 + Mz�2, � = 1,2, . . . ,L

ĉ�2 = ĉ�1 + Mz�2 − y�2, � = 1,2, . . . ,L,

respectively. This is illustrated in Table 24.2 for data in Example 24.3.
Generalizing, we have

y�τ ≤ ĉ�,τ−1 + Mz�τ , � = 1,2, . . . ,L, τ = 1,2, . . . ,T

ĉ�τ = ĉ�,τ−1 + Mz�τ − y�τ , � = 1,2, . . . ,L, τ = 1,2, . . . ,T.

Essentially, we need to incorporate these two sets of relations into model (24.3.1) to account
for reuse of spare capacity from one period to the next. Using substitution, we can rewrite
spare capacity in period τ (for each link �) as

ĉ�τ = ĉ�,τ−1 + Mz�τ − y�τ

= ĉ�,τ−2 + Mz�,τ−1 − y�,τ−1 + Mz�τ − y�τ

· · ·
= ĉ�0 + Mz�τ − y�τ + ∑τ−1

t=1 (Mz�t − y�t).

Rearranging, we get

y�τ + ĉ�τ = ĉ�0 + Mz�τ + ∑τ−1
t=1 (Mz�t − y�t).

Since spare capacity is non-negative, we can arrive at the following inequality:

y�τ ≤ ĉ�0 + Mz�τ + ∑τ−1
t=1 (Mz�t − y�t).

Finally, if we denote the initial spare capacity as ĉ�0 = Mz�0 − y�0 for time τ = 0, if there is any
spare capacity available (and 0, otherwise), we have the following relation

y�τ ≤ Mz�τ + ∑τ−1
t=0 (Mz�t − y�t), � = 1,2, . . . ,L, τ = 1,2, . . . ,T. (24.3.3)

Thus, constraint (24.3.3) is an important constraint to include with Eq. (24.3.1) to capture spare
capacity availability and use, and to model the transport network routing design problem
accurately.

C H A P T E R 2 4 Transport Network Routing 13

DEMAND REQUEST AND CAPACITY EXPANSION: DIFFERENT TIME CYCLE

So far, we have assumed that capacity expansion is possible in every time period. In many
practical situations, this may not be the case. Consider the case where new requests are col-
lected every week for routing, while capacity can be expanded only every 4 weeks due to,
say logistics issues (refer to Figure 24.2). Thus, we cannot then rule out the possibility that in
some periods, there may not be enough capacity to route all requests. To factor in this pos-
sibility, we introduce an artificial variable, x̃kτ , for each demand k in time period τ , which
captures any demand volume that cannot be met by the currently available bandwidth. This
variable, however, does not appear in the link capacity constraints. It is indeed important to
introduce a per-unit penalty parameter,
kτ > 0, if demand cannot be accommodated; this
can then serve, for example, as the cost incurred due to lost revenue and the penalty can be
set high, as appropriate. Furthermore, since capacity cannot be added in every time period,
we must force capacity expansion variable, z�τ , to be zero in the periods in which capacity
expansion is not allowed. To help distinguish, we will denote T̂ to indicate the time periods
when capacity expansion is allowed. If we denote the set of all time periods as T , then the set
difference, T \T̂ , represents the periods when no capacity expansion is possible; that is, for
these periods, z�τ = 0. Thus, we can write the overall model as

minimize{xz} F =
T∑

τ=1

L∑

�=1

ζ�τ z�τ +
T∑

τ=1

K∑

k=1

Pkτ∑

p=1

ξkpτ xkpτ +
T∑

τ=1

K∑

k=1

kτ x̃kτ

subject to
Pkτ∑

p=1

xkpτ + x̃kτ = hkτ , k = 1,2, . . . ,K, τ = 1,2, . . . ,T

K∑

k=1

Pkτ∑

p=1

δkp�τ xkpτ ≤ Mz�τ , � = 1,2, . . . ,L, τ = 1,2, . . . ,T

K∑

k=1

Pkτ∑

p=1

δkp�τ xkpτ = y�τ , � = 1,2, . . . ,L, τ = 1,2, . . . ,T

y�τ ≤ Mz�τ + ∑τ−1
t=0 (Mz�t − y�t), � = 1,2, . . . ,L, τ = 1,2, . . . ,T

z�τ = 0 for τ ∈ T \T̂
z�τ = 0,1,2, . . . (integer) for τ ∈ T̂
xkpτ ≥ 0, x̃kτ ≥ 0.

(24.3.4)

At first look, this appears to be a complicated model. In fact, the basic idea is quite simple.
It addresses multiperiod transport routing design where capacity expansion need not be in
the same time period cycles as new demand requests. Furthermore, a penalty is introduced
if a demand request cannot be met in a time period due to lack of available capacity. Finally,
link flow and spare capacity are tracked for going from one period to another.

OTHER VARIATIONS

There are other possible variations that can depend on transportation technology and net-
work capability; for example, flow variables, xkpτ , can take discrete values, instead of taking
continuous values; multiple heterogeneous size modules, instead of one, are allowed. Such
requirements can be accommodated by extending the model presented here. It may be noted

14 24.4 Transport Routing with Varied Protection Levels

that not all cost components may be necessary for a particular transport routing design prob-
lem; accordingly, such cost components can be dropped from the objective function. Finally,
it is possible to consider transport routing where full rearrangement for existing routed de-
mands is allowed. In this case, the main difference is that the spare capacity relation, given
by Eq. (24.3.3), is not necessary.

24.4 Transport Routing with Varied Protection Levels
In this section, we present a transport routing problem that takes into account protection
requirements at different levels for different service requests. For simplicity, we will present
this model for a single time period. In this model, we consider three protection service classes:
full-, fractional-, and zero-protection transport services. Here, zero protection means that the
service is guaranteed under normal operating conditions but not under a failure; fractional-
protection means providing a reduced level of services under a major link failure in addition
to guaranteed service under normal operating conditions; finally, full protection means pro-
viding guarantee under both normal as well as failure conditions.

For each origin–destination node pair in the network, demand volume must be routed
with one of the protection levels for a set of customers where each customer might have
a different protection service-level agreement; thus, customers are categorized into different
service classes based on the protection-level agreement. Also, customers demand requests for
a particular demand pair k are nonsplittable on multiple paths. We consider a demand pair
k where we have a set of service requests Sk from customers requiring protection services at
differing protection levels. See Table 24.3 for a summary of notation.

TA B L E 24.3 Summary of notation for Section 24.4 (note: K and L are defined in
Table 24.1).

Notation Explanation
Sk Protection service classes for demand k = 1,2, . . . ,K
ds

k Demand volume of service request s for demand pair k
Ps

k Set of candidate path cycles for service request s = 1,2, . . . ,Sk for demand k =
1,2, . . . ,K

c� Capacity of link � = 1,2, . . . ,L
αs

k Protection level of service request s = 1,2, . . . ,Sk for k = 1,2, . . . ,K
δs�

km Link-primary path indicator for a path cycle; 1, if candidate path cycle m =
1,2, . . . ,P s

k for service s = 1,2, . . . ,Sk of demand pair k = 1,2, . . . ,K uses link
� = 1,2, . . . ,L in its primary path; 0, Otherwise

βs�
km Link-backup path indicator for a path cycle; 1, if candidate path cycle m =

1,2, . . . ,Ps
k for service s = 1,2, . . . ,Sk of demand pair k = 1,2, . . . ,K uses link

� = 1,2, . . . ,L in its backup path; 0, Otherwise

s

k Penalty cost of not routing service request s for demand k
Variables:
us

km 0/1 decision variable for choosing path cycle m for s, k
ũs

k 0/1 artificial variable for s, k

C H A P T E R 2 4 Transport Network Routing 15

F I G U R E 24.4 Illustration of path cycles: 1-6-2-5-3-1 and 1-6-2-4-3-1.

Consider now the zero-protection transport level demand request. In this case, only a
path with bandwidth ds

k needs to be provisioned. Considering only the shortest (e.g., in terms
of hops) path may not address the overall traffic engineering goal. Thus, we need to consider
a set of candidate paths for each demand k, as we have done with other models presented
earlier for link-path formulation model.

For the full-protection transport service class, a backup path needs to be available and
bandwidth ds

k needs to be reserved on the backup path. We require that the backup path
survive if the primary path is affected due to any critical failure, e.g., for a single link failure
at a time. Although the primary and backup path could be independently modeled, we use
a pairing idea, i.e., consider a pair of disjoint paths consisting of primary and backup paths.
Similar to the case of zero-protection services, the selection of the shortest pair of primary
and backup paths for a demand ds

k may not be in the best interest of a traffic engineering
objective. Thus, we can consider a candidate set of primary/backup path pairs for a demand
volume, ds

k, for full protection.
Finally, in the case of fractional-protection transport services, the backup path needs to

be allocated bandwidth that is sufficient to carry a fraction of ds
k in order to address partial

survivability. Thus, the fractional-transport service class also requires a pair of disjoint paths.
The difference is that, on the backup path, only a fraction of the demand is required to be
reserved. If we denote the fraction by αs

k (where 0 ≤ αs
k ≤ 1), then the primary path would

reserve ds
k while the backup path would reserve αs

kds
k.

When we consider all three cases, it is easy to see that by appropriately setting αs
k we can

consider each of the protection levels, i.e., αs
k = 0 refers to zero protection, αs

k = 1 refers to full
protection, while αs

k refers to fractional protection if 0 < αs
k < 1.

There are two benefits of introducing αs
k: (1) fractional-protection need not be of a specific

predefined value; each customer can request a different level, and (2) for zero protection,
we can also consider a pair of disjoint paths as well where on the backup path, we assign
αs

k = 0; this means we can still consider a backup path but it is not used. Consequently, the
three service classes can be considered in a unified manner from a modeling framework—
all we need to do is to consider a set of candidate pairs of disjoint paths; there are known
algorithms for generation such path pairs [677], [678]. For simplicity, we refer to a pair of
disjoint paths as a path cycle. As an illustration, consider Figure 24.4, where for the demand
pair connecting nodes 1 and 2, we have two different candidate path cycles 1-6-2-5-3-1 and
1-6-2-4-3-1, which are link-disjoint; such candidate path cycles are considered as input to the
problem formulation.

16 24.5 Solution Approaches

We denote the set of candidate path cycles for service s for demand pair k by P s
k. Suppose

we associate us
km as the decision variable with candidate cycle m, then for each s = 1,2, . . . ,Sk,

k = 1,2, . . . ,K, the decision to select only one cycle is governed by the following requirement:

Ps
k∑

m=1

us
km + ũs

k = 1, s = 1,2, . . . ,Sk, k = 1,2, . . . ,K (24.4.1)

if we also introduce the artificial (slack) variable, ũs
k, to allow for demand that cannot be met

due to capacity limitation. Since we are using 0|1 (binary) variables, a demand can not be
partially routed. Now recall that for each path cycle (because of the way each of them are
generated) we have a primary path and the backup path. Using link-primary path and link-
backup path indicators (see Table 24.3), the flow on link � (denoted by y�) to carry demand
volume under both normal and failure situations (for primary and backup path for different
demand requests) must be less than the capacity:

K∑

k=1

Sk∑

s=1

Ps
k∑

m=1

(
δs�

km + αs
kβs�

km

)
ds

kus
km ≤ c�, � = 1,2, . . . ,L. (24.4.2)

The link flow, given on the left side of the inequality, is a generalization of the link flow
discussed earlier to include the fact that a link may have fractional traffic volume allocated
for a backup path of a service request. Here note parameter αs

k dictates the level of protection
on the backup path; also since we are considering a path cycle consisting of disjoint paths, for
a specific link �, if δs�

km takes the value 1, then the corresponding βs�
km must be zero, and vice

versa.
To address minimum cost routing with penalty for demand not met, we can write the

objective function as

F =
K∑

k=1

Sk∑

s=1

Ps
k∑

m=1

ξ s
kmds

kus
km +

K∑

k=1

Sk∑

s=1

s
kũs

k. (24.4.3)

Thus, the network traffic engineering problem for transport routing design with varied pro-
tection is to minimize (24.4.3) subject to constraints (24.4.1) and (24.4.2).

24.5 Solution Approaches
Transport network routing problems presented in the previous sections are in general clas-
sified as minimum cost routing problems and problem formulations are multicommodity
network flow-based. As can be seen, the size of the problem in terms of unknowns and con-
straints grows when multiple time periods are considered. In many instances, problems are
integer linear programming problems in nature due to modularity of demand in transport
routing. However, a linear programming approximation can be considered by relaxing the
integrality constraints. An advantage of using the linear programming approximation is that
tools such as CPLEX can be used to solve large problems quite efficiently. Some solutions will
not be integral due to this relaxation; from this solution, a post processing heuristic rule can
be developed to round up or down to obtain integer solutions. If CPLEX is run for solving an

C H A P T E R 2 4 Transport Network Routing 17

integer programming problem, then it is advisable to limit the number of branching nodes to,
say 30,000 (i.e., “set mip limits nodes 30000” in CPLEX) so that a good solution can be found
quickly.

For additional advanced approaches that exploit the special structure of a transport rout-
ing problem, there are many specialized algorithms [564]. It may be noted that the transmis-
sion routing problem needs to be solved only periodically, say, once a week or every other
week; thus, quickness of generating a solution is not always the primary driver. The primary
driver might involve the following: does reducing the overall cost by 1% lead to a signifi-
cant cost saving at the expense of an increase in time for computing such a solution that is
allowable within the provisioning time frame? If so, then such guidelines can be explored.

24.6 Summary
In this chapter, we have presented transport network routing. We started by first explaining
why transport network routing problems arise.

We then explained how the time of arrival and service provisioning help to define why
transport network routing falls under a Type B classification (see Table 17.1). We then il-
lustrated through a small network example how time period factors and rearrangement (or
restriction on rearrangement) can play roles in the solution. We then presented two sets of
transport network routing models to discuss the intricacies involved in transport network
routing design.

Further Lookup
Discussions about early days of transport networks can be found [596]. Early work on trans-
port network routing through a minimum cost routing approach can be found in [751], [752],
[758], [759], including first sets of work on multiple time period routing. Since then, multi-
period design has been addressed by many researchers; for example, see [195], [400], and
[563]. In recent years, there has been a surge in understanding transport networks for IP
networking; for example, see [57], [186]. The notion of using path cycles in a link-path formu-
lation setting was originally presented in [466]. For a recent discussion on varied protection
design for different objective functions, see [665].

Exercises
24.1 Extend Eq. (24.3.4) when (a) flow variables are to be integer valued; (b) multiple modu-

lar capacity values are allowed, and (c) if flow for a demand is unsplittable.

24.2 Extend the traffic engineering model presented in Section 24.4 to multiple time periods,
with or without rearrangements.

24.3 Identify any changes required to Eq. (24.3.1) if the capacity expansion falls on different
time windows than the demand cycle.

24.4 Discuss applicability of the model presented in Section 24.4 for protection design of
MPLS networks.

24.5 Consider the various objectives discussed in Chapters 4 and 7. Discuss their applicabil-
ity to the protection design model presented in Section 24.4.

25
Optical Network
Routing and
Multilayer
Routing
Two roads diverged in a wood, and I—
I took the one less traveled by,
And that has made all the difference.

Robert Frost

Reading Guideline

The basic background on optical networking is included in the chapter in order
to understand the routing problems. To understand the relevant routing problems,
basic background on network flow modeling (Chapter 4) and some background
on transport network routing (Chapter 24) are helpful. The material on multilayer
routing requires knowledge about a variety of networking technologies covered
throughout the book, and how they are related.
D. Medhi and K. Ramasamy, Network Routing: Algorithms, Protocols, and Architectures.
c© 2007 by Elsevier, Inc. All rights reserved.

C H A P T E R 2 5 Optical Network Routing and Multilayer Routing 3

Optical network routing is an important problem domain in communication networking. Op-
tical networking is usually used for transport services. For such services, we describe the rout-
ing problems for a representative set of scenarios for synchronous optical networks (SONET)
or synchronous digital hierarchy (SDH), and wavelength division multiplexed (WDM) net-
works.

The second area we cover in this chapter is multilayer routing where routing coordina-
tion is introduced between two layers such as IP and WDM. With the perspective of opti-
cal networking, such a multilayer routing environment provides a perspective on how the
interaction can work and future possibilities for dynamically reconfigurable networks and
services.

25.1 SONET/SDH Routing
Before we discuss the routing problems, we start with a brief overview of SONET/SDH.

25.1.1 SONET/SDH Overview
A widely deployed technology for transport networks is synchronous optical network
(SONET), or synchronous digital hierarchy (SDH). SONET is widely deployed in North
America and SDH is deployed in the rest of the world—but both provide the same function-
ality. We present a brief overview of SONET/SDH technology pertinent to our discussion.
The interested reader is directed to books such as [77], [509], [510], [580], [748] for additional
details about SONET/SDH.

Nodes in SONET or SDH networks are equipped with devices such as terminal mul-
tiplexers (TM), digital cross-connects (DXC), and add-drop multiplexers (ADM). TMs and
DXCs are used in transmission networks with mesh topology, while ADMs are typical nodes
of ring networks. There are several data rates available for SONET/SDH that are given as
a synchronous transfer signal (STS) for SONET and a synchronous transport module (STM)
for SDH (refer to Table 25.1 for these rates). In SONET standard, optical carrier (OC) levels
are also defined corresponding to electrical equivalents in STSs. To complicate this further,
SONET/SDH standard allows subrates for carried demand. These subrates are referred to
as virtual tributaries (VTs) in SONET and virtual containers (VCs) in SDH (see Table 25.1).
Furthermore, old-style rates such as T1 and T3 can also be connected to SONET/SDH nodes
through service adapters.

SONET/SDH technology can be used either as a mesh or ring. An important alter-
native to the mesh SONET/SDH networks discussed is the SONET/SDH ring networks
where the restoration mechanisms are intrinsic to the system. This is contrary to the mesh
case where restoration requires inter-DXC signaling, for example, using GMPLS. Self-healing
SONET/SDH rings have been heavily deployed around the world due to its < 50 millisec
restoration capability for any single-link failure. The nodes of a SONET ring network are also
called ADMs and are capable of inserting or extracting any VC or VT container of the set
of all containers circulating around the ring. Figure 25.1 depicts a bidirectional line-switched
self-healing ring (BLSR) with four optical fibers (because of four fibers, they are also referred
to as BLSR/4). Now assume that this ring is based on an OC-48 transmission system, i.e., the
system that can hold 16 OC-3s. The ring is divided into two pairs of fibers, one basic pair and
one protection pair. OC-3s destined for a particular node are extracted from the incoming

4 25.1 SONET/SDH Routing

TA B L E 25.1 Transmission rates for SONET/SDH,
and subrates (VC for STM and VT for STS).

(a)

SONET Signal SDH Signal Bit Rate (Mbps)
STS-1 (OC-1) – 51.84
STS-3 (OC-3) STM-1 155.52
STS-12 (OC-12) STM-4 622.08
STS-48 (OC-48) STM-16 2,488.32
STS-192 (OC-192) STM-64 9,953.28
STS-768 (OC-768) STM-256 39,812.12

(b)

VC Type Bit Rate (Mbps)
VC-11 1.728
VC-12 2.304
VC-3 48.960
VC-4 150.336

(c)

VT Type Bit Rate (Mbps)
VT-1.5 1.728
VT-2 2.304
VT-3 3.456
VT-6 6.912

F I G U R E 25.1 Bidirectional line-switched ring (BLSR) with four-nodes.

basic fiber (for example, the outermost fiber in Figure 25.1), while the originating OC-3s are
inserted into the outgoing (second outer) basic fiber.

Each OC-3 can, in turn, contain 84 VT-1.5s; note that VT-1.5s are designed to map a T1.
Thus, an OC-3 can effectively carry 84 T1s worth of demand. Now each OC-3 may or may
not be completely filled with T1s, while to the SONET ring it sees only the OC-3s, not T1s that
may reside. Thus, a transmission hierarchy can be built; you can start seeing its multi-layer
nature due to the transmission rate hierarchy. It is, however, worth noting that data rates
lower than 50 Mbps are starting to go away due to increase in demand for higher data rate
optical demands.

C H A P T E R 2 5 Optical Network Routing and Multilayer Routing 5

There is an important difference between concatenated and non-concatenated STS sig-
nals. A SONET STS-1 rate frame is organized as 9 rows and 90 columns, i.e., as 810 bytes
of information. The first 3 columns are set aside for transport overhead; thus, the effective
data rate (payload) is 783 bytes (= 9 × 87). A non-concatenated STS-N is formed by byte-
interleaving of N STS-1 signals and has N distinct 87×9 byte payloads; on the other hand, the
concatenated STS-Nc, where “c” denoted concatenated, has one payload of 87 × 9 × N bytes.
It may be noted that most deployment of SONET are STS-Nc based. Because of concatenation,
it is also preferable to write as OC-48c, to distinguish from non-concatenated OC-48; here, we
use them interchangeably.

25.1.2 Routing in a SONET Ring

We consider an OC-48 SONET ring with four nodes where we want to route OC-3 demands.
We will use the topology shown in Figure 25.1 to illustrate this example; note that the protec-
tion pair is not considered in this illustration. Traffic demand volume between two SONET
nodes in terms of OC-3s is given as follows:

node i \ node j 2 3 4
1 4 4 8
2 – 4 8
3 – – 8

Note that demand is bidirectional and is shown in the upper diagonal part of the traffic
matrix. The capacity of the OC-48 ring in terms of OC-3s is 16. Consider the demand between
nodes 1 and 2. In this illustration, we assume that the entire demand for a pair of nodes can
be routed either on a clock-wise or a counter-clockwise direction (the general case in which
the demand is allowed to be split is left as Exercise 25.1). Thus, we can use a decision variable
to indicate the choice of one over the other:

u12,12 + u12,1432 = 1,

where u12,12 stands for the clockwise direction while u12,1432 stands for the counterclockwise
direction for demand pair (1:2). A similar situation exists for the other five demands:

u13,123 + u13,143 = 1
u14,1234 + u14,14 = 1
u23,23 + u23,2143 = 1
u24,234 + u24,214 = 1
u34,34 + u14,3214 = 1.

Now consider the link segment 1-2 on the ring. This will contain the following decision vari-
ables, if chosen:

u12,12, u13,123, u14,1234, u23,2143, u24,214,and u14,3214.

6 25.1 SONET/SDH Routing

Note that only one for each demand pair would be considered for each link. Now each deci-
sion variable for each pair, if chosen, will need to bear the demand for that pair. In addition,
the capacity of the ring may not be exceeded. Thus, for link 1-2, we can write

4 u12,12 + 4 u13,123 + 8 u14,1234 + 4 u23,2143 + 8 u24,214 + 8 u14,3214 ≤ 16.

Similarly, we can write constraints for link segments 2-3, 3-4, and 1-4. A goal in ring network
routing is that links are load balanced. To do that, a load-balancing variable is introduced that
is to be minimized. Thus, we use instead

4 u12,12 + 4 u13,123 + 8 u14,1234 + 4 u23,2143 + 8 u24,214 + 8 u14,3214 ≤ 16 r,

where r is the load-balancing variable to be minimized. Putting everything together, we can
write the routing problem with load balancing as the goal as follows:

minimize{r,u} r
subject to
u12,12 + u12,1432 = 1 (pair 1:2)
u13,123 + u13,143 = 1 (pair 1:3)
u14,1234 + u14,14 = 1 (pair 1:4)
u23,23 + u23,2143 = 1 (pair 2:3)
u24,234 + u24,214 = 1 (pair 2:4)
u34,34 + u14,3214 = 1 (pair 3:4)
4 u12,12 + 4 u13,123 + 8 u14,1234 + 4 u23,2143 + 8 u24,214 + 8 u14,3214 ≤ 16 r (link 1-2)
4 u12,1432 + 4 u13,123 + 8 u14,1234 + 4 u23,23 + 8 u24,234 + u14,3214 ≤ 16 r (link 2-3)
4 u12,1432 + 4 u13,143 + 8 u14,1234 + 4 u23,2143 + 8u24,234 + 8u34,34 ≤ 16 r (link 3-4)
4 u12,1432 + 4 u13,143 + 8 u14,14 + 4 u23,2143 + 8 u24,214 + 8 u14,3214 ≤ 16 r (link 4-1)
all us are 0 or 1
r ≥ 0.

(25.1.1)

On solving the above problem, for example using CPLEX, we find that r = 1. This means
that at least one segment of the ring is completely occupied. The optimal solution is u12,12 =
1,u13,123 = 1,u14,14 = 1,u23,23 = 1,u24,234 = 1,u34,34 = 1. On checking, we can see that two
segments, 2-3 and 3-4, are fully occupied.

A general question is what does it mean if r > 1 at the optimal solution? It means that
there is not enough bandwidth on the ring to carry all demands. Thus, capacity expansion
is necessary. The above model is useful both for routing decisions and to indicate if capacity
expansion is needed.

The general model for Eq. (25.1.1) can be written in a similar way. To write the general
model, consider a ring with N nodes. Let hij be demand between node i and node j; as before,
we will consider i < j. For ease of notation, we will identify the binary variable u as clockwise
or counterclockwise, i.e., no superscript shown if clockwise or marked as “counter” in the
superscript for counterclockwise. We need an indicator to identify that only one of two paths
for each pair is to be chosen when considering capacity constraints. Specifically, δ�

ij takes the
value 1 if for pair i:j, the clockwise path uses link �. Finally, we will use c to denote capacity.
Then, the general model takes the following form:

C H A P T E R 2 5 Optical Network Routing and Multilayer Routing 7

minimize{r,u} r
subject to

uij + ucounter
ij = 1, i, j = 1,2, . . . ,N, i < j,

∑

(i,j), i<j

(
hijδ

�
ijuij + hij(1 − δ�

ij) ucounter
ij

)
≤ c r, � = 1,2, . . . ,L,

uij,ucounter
ij = 0 or 1

r nonnegative.

(25.1.2)

You can compare this one with the four-ring example above to see how a general model can
be represented, and how specific problems can be represented.

We close this section with the comment that in a ring, when capacity is to be expanded,
it is for the entire ring, not just a segment. Thus, there can be one OC-48 ring, two OC-48
rings, and so on, around the entire ring. How is this related to the above problem? Let us
assume that we have two OC-48 rings; then c needs to reflect that in the formulation as 32
if demands were in OC-3s. If we now solve the model with the new capacity, it is possible
that when we identify the optimal flows, one would have to be split to go on one ring and
the rest to go on another ring. This brings up the issue of whether demand can be split. We
assumed above that demand cannot be split. If we continue with this assumption, we face the
situation of split demand from the solution to the above integer linear programming problem.
Instead, what we can do is to solve for one ring; this will result in r > 1. Now, identify the
link segments that overflow the capacity of the ring, and then identify the minimum amount
of demand that can be taken out, but would still result in feasible flows for the rest of the
demand. Now, the leftover demand can be considered, and the above model can be used
assuming the capacity this time is for the second ring. The case in which rings allow demand
split is left as an exercise.

25.1.3 Routing in SONET/SDH Transport Cross-Connect Networks

In Chapter 24, we presented the need for and the role of transport networks and briefly dis-
cussed the technology they use. We now discuss routing in SONET/SDH cross-connect net-
works for a Type B classification (see Table 17.1).

Examples of typical services that create demand for the transport provided by SONET/
SDH are trunks for digital circuit-switched networks, IP network trunks, and private leased-
line/virtual network services. It may be noted that while the SONET/SDH standard did
not originally address interfacing with IP network routers, it has been possible to use
SONET/SDH as a transport for IP network links between two routers through an interfacing
mechanism called Packet over SONET/SDH (PoS).

The design questions for SONET/SDH transport networks are a bit complicated because
of the actual data rates and interfaces available for a particular SONET/SDH network. An
input demand (sometimes at subrate) could come into one of these interfaces depending on
the type of node functionality deployed in a network.

For illustration, we consider the case in which a SONET network is used as the transport
for an IP backbone network. The demand is assumed to be at OC-3 level for IP network
trunks. Thus, we can count demand between an ingress cross-connect node and an egress
cross-connect node in terms of OC-3 demand. The links interconnecting the transport nodes

8 25.1 SONET/SDH Routing

TA B L E 25.2 Notation used.

Notation Explanation
Given:

K Number of demand pairs with positive demand volume
L Number of links
M Modular capacity of a link
hk Demand volume of demand index k = 1,2, . . . ,K
c� Integral capacity units of link � = 1,2, . . . ,L
c�n Integral capacity untis of link � for type n
Pk Number of candidate paths for demand k, k = 1,2, . . . ,K
δkp� Link-path indicator, set to 1 if path p for demand pair k uses the link �; 0,

otherwise
ξkp Nonnegative unit cost of flow on path p for demand k

Variables:
xkp Flow amount on path p for demand k

are composed of optical transmission systems OC-n, where n = 12,48,192,768 (Table 25.1).
Capacity c� of transport link � is expressed in terms of multiples of OC-3s.

First, we assume that the entire network has links of only one type, say, OC-12s. We
use the same notation we introduced earlier in Chapter 4. For ease of reading, notations are
summarized in Table 25.2. Then, the minimum cost routing problem for the SONET cross-
connect transport network can be written as follows:

minimize{x} F =
K∑

k=1

Pk∑

p=1

ξkpxkp

subject to
Pk∑

p=1

xkp = hk, k = 1,2, . . . ,K,

K∑

k=1

Pk∑

p=1

δkp�xkp ≤ Mc�, � = 1,2, . . . ,L,

xkp nonnegative integers,

(25.1.3)

where M = 4 and c� means number of OC-12s on link �; ξkp is the unit cost of path p for
demand k, and hk is the demand volume for demand identifier k; and Pk is the set of pos-
sible candidate paths pregenerated for consideration in the above formulation, which can be
generated using a k-shortest paths algorithm. Compare this formulation (and the notation)
with the general formulation, presented earlier in Eq. (4.4.7). They are the same except that
the capacity constraint takes into account the modular factor for OC-12s.

C H A P T E R 2 5 Optical Network Routing and Multilayer Routing 9

How does the problem change if the links are a mix of different types, such as OC-48 and
OC-192? The problem formulation changes slightly as shown below:

minimize{x} F =
K∑

k=1

Pk∑

p=1

ξkpxkp

subject to
Pk∑

p=1

xkp = hk, k = 1,2, . . . ,K,

K∑

k=1

Pk∑

p=1

δkp�xkp ≤
4∑

n=1

Mnc�n, � = 1,2, . . . ,L,

xkp nonnegative integers.

(25.1.4)

In this model, the summation on the right side of the capacity constraint captures M1,M2,M3,
and M4, which refer to capacities of OC-12, OC-48, OC-192, and OC-768, respectively, counted
in multiples of OC-3s; similarly, c�1, c�2, c�3, c�4 refer to the number of OC-12, OC-48, OC-192,
and OC-768, respectively, on link �.

The above two models are still somewhat simplified models. Often, demands might need
to be diversified or protected from a failure. For an example of how protection can be incorpo-
rated, see Section 24.4. For a discussion on how to incorporate more complicated constraints,
see [564, Chapter 4].

Finally, you may note that the transport network routing problems for both SONET ring
and SONET cross-connect networks can be formulated in the MCNF framework while the
objective considered can be different and, certainly, the number of path choices does differ.

25.2 WDM Routing
We next consider routing in wavelength division multiplexed (WDM) networks. We first
present an overview of WDM.

25.2.1 WDM Overview
In the past decade, WDM has received much attention [510], [580]. In WDM networks, traffic
demand corresponds to wavelengths called lambdas. Capacities directly correspond to optical
fibers. One wavelength is typically capable of carrying 10 Gbps, while one optical fiber can
typically realize up to around 100 different wavelengths. The nodes of the WDM networks
are called wavelength cross-connects (WXCs).

There are four types of wavelength conversions for a WXC (Figure 25.2): (1) no wave-
length conversion, (2) fixed wavelength conversion, (3) limited wavelength conversion, and
(4) full wavelength conversion. From Figure 25.2, we can see that a WXC without conver-
sion can only serve as a pass-through device; other forms have some conversion, and, finally,
some have full conversion, which is then like a crossbar switch. The reason for different types
is that their costs are different. Thus, a provider might be able to afford one or the other
type of device based on its traffic demand. The illustrations shown in Figure 25.2 are for
2-degree nodes, i.e., nodes that connect two locations. It is now increasingly popular to con-
sider higher-degree nodes. For instance, a 3-degree node means that a wavelength coming
from one of the three locations can be routed to either of the other two locations using a
wavelength-selective cross-connect or a wavelength-selective switch.

10 25.2 WDM Routing

F I G U R E 25.2 Wavelength conversion: (a) no conversion, (b) limited wavelength
conversion, (c) fixed wavelength conversion, and (d) full conversion.

F I G U R E 25.3 WDM network, with and without conversion.

What then is a route in a WDM network? It is a lightpath between two nodes that may go
through multiple intermediate cross-connects. If there is no conversion, the lightpath must
stay on the same wavelength; if there is conversion, some switching to another wavelength
is possible. In Figure 25.3, we show a set of lightpaths through a linear WDM network where
an intermediate node has conversion capability and the other does not. Because of the as-
sociation with lightpath, the WDM routing problem is commonly known as the routing and
wavelength assignment (RWA) problem.

It may be noted that there are certain practical issues to consider in a routing problem. For
example, if a path is too long, it may require to have regeneration. For a detailed discussion
on impairments and constraints in optical layer routing, refer to [674].

C H A P T E R 2 5 Optical Network Routing and Multilayer Routing 11

25.2.2 Routing in WDM with Full Conversion: Transport Mode
As you can probably realize, the routing problem for transport service in a WDM network
is a minimum cost routing problem of integer MCNF type. Below, we present the routing
problem identifying where and how this is different from the general MCNF.

In a WDM network each lightpath is identified with a demand to be routed. There may
be many different distinct demands between the same two endpoints (see Figure 25.3); for
each distinct demands, the path chosen need not be the same. In a full conversion WXC
environment, it can take any path. If we consider all the distinct demands in the network, then
each session (regardless of its endpoints) must be routed on a lightpath. Thus, for the purpose
of formulation, we can list all distinct demands simply identified as k = 1, . . . ,K, without
specifying what the endpoints are. What is the capacity of a link then? It is the number of
lambdas allowed on a link. Thus, the problem can be formulated as follows:

minimizeu F =
K∑

k=1

Pk∑

p=1

ξkpukp

subject to
Pk∑

p=1

ukp = 1, k = 1,2, . . . ,K,

K∑

k=1

Pk∑

p=1

δkp�ukp ≤ c�, � = 1,2, . . . ,L,

ukp = 0 or 1,

(25.2.1)

where ukp is the path decision variable for the specific distinct demands to be routed if path p
is selected and c� is the capacity of a link in terms of number of wavelengths allowed. The rest
of the notations are the same as summarized in Table 25.2. As mentioned earlier, the candidate
paths to be considered need to take into account impairments and other constraints [674].

We need to make an important comment about K. Note that K is the total number of
sessions to be routed, regardless of its endpoints. Consider a network with N nodes; then
there are N(N − 1)/2 demand pairs. Assume on average that there are J number of distinct
demands for each pair. Then, K = J × N(N − 1)/2 is the total number of sessions. Thus, K
can be a large number for a network with a large number of nodes. Note that Eq. (25.2.1) is
an integer linear programming problem. Thus, it can be time consuming to solve for large K.
This is when you want to determine how often such a routing configuration should be done
for transport networking and whether the computation can be done off-line. If the answer is
yes to both these questions, then a canned integer linear programming solver may suffice.

25.2.3 No Conversion Case
The no conversion case is somewhat more complicated to model. Note that a ligthpath must
stay on the same wavelength for the entire path. We present here a formulation discussed in
[675]. In addition to the path selection variable ukp for each session k, we want to assign this
session to only one wavelength i; we thus need another variable wki to relate this requirement.
Furthermore, for each link, it must be the same wavelength for a particular session; this means
the product wkiuikp should not be more than one when considered for each link � and each
wavelength i. Formally, we can formulate the problem as follows:

12 25.2 WDM Routing

minimizeu,w F =
K∑

k=1

Pk∑

p=1

ξkpukp

subject to
Pk∑

p=1

ukp = 1, k = 1,2, . . . ,K,

I∑

i=1

wki = 1, k = 1,2, . . . ,K,

K∑

k=1

Pk∑

p=1

δkp�wkiukp ≤ 1, � = 1,2, . . . ,L, i = 1,2, . . . , I,

ukp = 0 or 1
wki = 0 or 1.

(25.2.2)

The difficulty with the above problem is that it is a nonlinear integer programming problem
due to the product term; these types of problems are the hardest to solve in general. Certainly,
heuristic approaches can be developed. Another possibility is to linearize the above problem
by defining a third variable to replace the product term. See [675] for further details.

25.2.4 Protection Routing

A WDM transport network can be set up with protection routing. With GMPLS signaling,
FAST-REROUTE can be used for fast restoration to a backup path in case there is a link failure.
Thus, any demand between two nodes would need to have a primary path and a backup path.
Second, if there are different demands for customers requiring either full or partial protection,
these would need to be accommodated by the transport provider as well. For this purpose,
the transport network routing design problem presented earlier in Section 24.4 is applicable;
thus, we refer you to this section for how the routing problem can be formulated. Note that
if all demands are to be protected, instead of some being partially protected, the same model
can be used. In this case, the value for protection-level parameter, αs

k, is needed to be set to 1,
and again the model presented in Section 24.4 is applicable.

It is worth noting that in addition to GMPLS, there are hardware-based and control-plane
mechanisms are also available. For instance, automatic protection switching is available for
protection. For additional discussions, see [77]. Also, diversity can be used as an alternative
to backup paths, which serves as a mechanism to provide some level of connectivity if one of
the paths fails where each path is limited in what it can carry due to diversity requirements.
This is another type of constraints that can be incorporated in a modeling framework.

25.2.5 On-Demand, Instantaneous WDM services

In recent years, there have been efforts to provide on-demand, instantaneous WDM services.
This means that the customer request arrival is similar to a voice call arrival, and a request
blocking cannot be ruled out. Then, in the WDM network, the routing problem will be on
demand, unlike in transport mode discussed earlier. Since the request requires a dedicated
wavelength, the on-demand problem is essentially similar to the dynamic routing circuit-
switched routing problem. One major difference is the conversion capability of nodes; if

C H A P T E R 2 5 Optical Network Routing and Multilayer Routing 13

nodes have full conversion capability, then this is similar to dynamic call routing, certainly
allowing for multilink paths, which we discussed and analyzed earlier in Chapter 10 and
Chapter 11, as well as QoS routing presented in Chapter 17. Thus, issues such as trunk reser-
vation are important to consider in routing decision to minimize request blocking. When the
nodes do not have full conversion, the general issue is similar—the main difference is some
paths are not allowable due to this restriction. In any case, we refer you to these chapters for
understanding routing and control implications, which would be similar in an on-demand,
instantaneous WDM routing network.

25.3 Multilayer Networking

25.3.1 Overview

Within the context of the transport network, we can see that a transport network provider
has its own domain to meet the demand requirement through transport node equipment and
transport network links. It is important to point out that three different ISPs could conceivably
use a single transport network provider as shown in Figure 25.4, or an ISP network may be
carried by multiple transport network providers as shown in Figure 25.5. Furthermore, it is
possible that a transport network provider would carry customer requirements for Internet,
telephone network, or private-line customers’ networks (as shown in Figure 25.6). Regardless,
note that routing within its own network remains the responsibility of each provider, be it an
ISP, a telephone service provider, a virtual private network provider, or a transport network
provider.

It is becoming apparent that the overall conglomerate of these various networks gives
rise to a multilayer network environment where each layer has its own definition of traffic, link
capacity, and node gears (i.e., functionalities provided by the equipment in a node).

To put it simply, the architecture of communication networks can be complicated; this is
due to not only the large number of nodes that can form a particular network, but also the

F I G U R E 25.4 Three different administrative domains using the same transport provider.

14 25.3 Multilayer Networking

F I G U R E 25.5 An administrative domain using multiple transport providers.

F I G U R E 25.6 Multiple service networks over one transport provider.

traffic network such as the Internet and PSTN, and the transport network such as SONET or
WDM for carrying these traffic networks. In essence, a network (or layer) rides on another
network, i.e., a traffic network needs a transport network to connect the links needed for the
traffic network; then, within the transport network, multilayers are possible due to differ-
ent data rates. From a service point of view, a user of a traffic network does not “see” the
dependency on the transport network.

We will now illustrate a simple network example to illustrate the distinction between
different layers in a network topological architecture and highlight the relationship. Consider
a four-node network environment for an IP network within an administrative domain. For
this network, we have four routers that are connected as shown in Figure 25.7 (top); links

C H A P T E R 2 5 Optical Network Routing and Multilayer Routing 15

F I G U R E 25.7 Trunking view (IP or PSTN) and transport network view.

(trunks) have the capacity to carry the traffic, possibly with mixed capacity, T1, T3, or OC-3.
Note that links are logical in the traffic network (IP network in this case).

We now need the aid of a transport network to route these logical links and the associated
capacity (see Figure 25.7, bottom). For example, the link capacity unit for the logical link, f ,
between nodes 1 and 3, in an IP network is connected using the transport network route 1-2-
3; similarly, the demand unit for logical link 1-4, between nodes 1 and 4 in the traffic network,
is connected via the transport route 1-2-3-4.

Based on mapping between just two layers in the network hierarchy, an important picture
emerges. For example, in the IP network, we see three node-diverse and link-wise logically
diverse routes between nodes 1 and 4; they are 1-4, 1-2-4, and 1-3-4. By diverse we mean
there is no common link (in the logical view) from one route to another. In reality, the actual
topology view can be different at a different layer. This is shown at the bottom of Figure 25.7
where we see that the logical links are actually all routed on the same transport network path,

16 25.3 Multilayer Networking

F I G U R E 25.8 IP over MPLS over WDM: a three-layer architectural view.

i.e., there is no diversity. Thus, a network may look logically diverse in one layer but may not
be diverse in another layer; this also has implications in protection and restoration design
(network robustness) due to the interrelation between layers. Thus, multilayer network design
is an important problem to consider. For instance, it needs to address which layer would be
responsible for restoration. There are speed issues, which can affect any coordinated effort.
For example, if upper layer takes time to converge, and the lower can do it in less than a sec,
then the upper layer may not perceive it. Thus, we can see that coordination between layers
is an important issue to understand to avoid undesirable behavior when both layers try to
solve the restoration problem at the same time; for additional details, see [564].

As pointed out earlier, there are different traffic networks possible, e.g., Internet, PSTN.
Also, service networks such as VPNs can also be considered along with the traffic net-
works over transport networks. However, there can be multiple transport functionalities, one
stacked over another. For example, an MPLS network can be a transport network for IP; in
turn, the MPLS network can use a WDM network for transport. These may be stacked in a
physical network architecture. Thus, from a network architectural view, a simple picture to
consider is an IP or telephone network at the top layer; this uses a first-layer transport net-
work such as MPLS, which, in turn, uses an optical network; in our illustration, we show IP
over MPLS over WDM (Figure 25.8).

C H A P T E R 2 5 Optical Network Routing and Multilayer Routing 17

25.3.2 IP Over SONET: Combined Two-Layer Routing Design

We have discussed so far why the communication network infrastructure is inherently multi-
layered and how different layers of network resources are related, either in a traffic-over-
transport or in a transport-over-transport manner. In this section, we will discuss a two-layer
routing design problem for a network consisting of the traffic (IP) and the transport (SONET)
layer. As you will see, the routing and capacity design gets intertwined in a multilayer frame-
work.

Recall that in Chapter 7 we discussed IP traffic engineering; in doing so, we have shown
how IP traffic flows depend on the link weight (metric) system with protocols such as OSPF
or IS-IS that use the shortest paths for routing data packets. In Section 25.1.3, we considered
another technology, SONET/SDH, for the transport network with DXC capabilities. Consider
now an IP network and suppose that the IP links connecting IP routers need to be physically
realized as transmission paths in a SONET network using DXCs. Thus, we have the IP-over-
SONET network with a two-layer resource hierarchy, using PoS technology. A pictorial view
of this hierarchy is shown in Figure 25.9. Then, the two-layer routing design question we
want to address is as follows: given an IP intradomain network and the fact that the IP links
are realized as transmission paths over a capacitated SONET network, how do we determine
the capacity required for the IP links and the routing of these links in the SONET network in
an integrated manner to meet a traffic engineering goal?

Such a two-layer integrated design is often possible only for network providers who
own both the IP network (upper layer) and the SONET network (lower layer). Therefore,
we assume that this is the case and that the capacity in the SONET network is given (and
hence limited). Now, for the IP network, we need to determine the IP link capacity given that
(packet) flow allocation is driven by the shortest-path routing. Suppose that we are given the

F I G U R E 25.9 IP over SONET: two-layer architecture.

18 25.3 Multilayer Networking

demand volume for the IP network (in Mbps) between different routers. We will be introduc-
ing two terms: demand volume unit (DVU) and link capacity unit (LCU). Suppose also that
we use OC-3 interface cards to connect the routers; this means that IP links are modular with
a speed equal to 155.52 Mbps, and the LCU of IP links is then 155.52 Mbps. If one DVU in the
IP layer is equal to 1 Mbps, then the IP link module value is given as M = 155.52 Mbps. Now,
the capacity of the IP links becomes demand volumes for the SONET layer, implying that
one DVU in the lower layer is equal to one OC-3. This demand is then routed over the lower
layer network using high-speed SONET transmission links such as OC-48 (or OC-192); this
in turn implies that one LCU of the lower layer links is equal to N = 16M because one OC-48
(= 2,488.32 Mbps) system can carry 16 OC-3 modules. Finally, observe that the capacity of an
IP link is routed (realized) on a path traversing a series of intermediate DXC nodes between
the end DXCs connected to the end IP routers of the considered IP link.

To summarize, the DVU for IP demands is equal to 1 Mbps, and the LCU for IP links is
equal to M = 155.52 Mbps. The LCU from the IP network becomes the DVU for the SONET
network in the two-layer architecture, i.e., DVUs for the SONET network can be thought of
as OC-3s. We assume that the link capacity in the SONET network is given in multiples of
OC-3s, namely, in OC-48s. Then the LCU for the SONET network links is equal to OC-48 with
modularity N = 2,488.32 Mbps.

Formally, we denote the IP network traffic demand volume as hk for demand k, k =
1,2, . . . ,K. The flow on an allowable path, p, for demand k in the IP layer that is induced by
the link weight (metric) system, w = (w1,w2, . . . ,wL), is given by xkp(w), as we discussed in
Chapter 7 for IP traffic engineering modeling. Here, we are interested in the IP routing and
capacity design, subject to capacity limitations in the SONET transport layer. We use δkp� = 1
to indicate path p for demand k if the IP network uses link � (δkp� = 0, otherwise). Then if we
write the modular capacity (to be determined) on IP layer link � as y� (expressed in modules
M), we can see that this new demand volume, y�, induced in the upper layer would need
to be routed on the SONET network. In the SONET, we will use the variable z�q to route
demand volume, y�, for upper layer link � on a candidate path q = 1,2, . . . ,Q� in the SONET
network. It is important to make a distinction between routing in the two considered layers.
Routing in the IP layer is at the packet level and generates the aggregated packet flows, while
routing in the SONET network is at the SONET frame level and is set up on a permanent
or semi-permanent basis by setting up connection paths of OC-48 modules switched in the
DXCs along the path. Note that analogous to δkp�, we need to use another indicator to map
the SONET links onto the SONET paths realizing the IP links. The candidate paths in the
SONET layer for IP link � would be denoted by index q, here q = 1,2, . . . ,Q�. Then, γg�q

takes a value of 1 if path q on the transport layer for demand � uses link g, and 0 otherwise.
Finally, we denote the capacity of link g in the SONET network by cg expressed in OC-48
modules denoted by N.

Assume that the routing cost in the IP network is ξkp on path p for demand k; similarly,
in the SONET network, we incur a cost of ζ�q to carry demand y� on path q for demand �.
Then, the traffic engineering design problem can be written as follows:

C H A P T E R 2 5 Optical Network Routing and Multilayer Routing 19

minimizew,y,z

K∑

k=1

Pk∑

p=1

ξkpxkp(w) +
L∑

�=1

Q�∑

q=1

ζ�qz�q

subject to
Pk∑

p=1

xkp(w) = hk, k = 1,2, . . . ,D,

D∑

k=1

Pk∑

p=1

δkp�xkp(w) ≤ ρMy�, � = 1,2, . . . ,L,

Q�∑

q=1

z�q = y�, � = 1,2, . . . ,L,

L∑

�=1

M
Q�∑

q=1

γg�qz�q ≤ Ncg, g = 1,2, . . . ,G,

w� nonnegative integer
y�,z�q nonnegative integer.

(25.3.1)

Note that other factors in the objective function can be incorporated as well (refer to Chap-
ter 7). In the above, we can see that capacity, y�, of IP layer link � becomes the demand volume
for the lower layer and needs to be routed on the paths in the SONET network. Note that there
is a coefficient, ρ (0 < ρ < 1), called the link utilization coefficient, used in the upper layer link
capacity constraints that can be used for limiting IP link congestion. There are two cost com-
ponents. The first is the routing cost in the IP layer, and the second cost component is the
routing cost in the SONET layer. The second component can be used to model various situa-
tions. For instance, if we assume ζ�q ≡ 1, then we are in fact maximizing the spare capacity on
the SONET links. Another example is when ζ�q = ζ�,q = 1,2, . . . ,Q�; then we can interpret
ζ� as the cost rate (e.g., monthly or yearly cost) of one LCU of the IP link � to be paid by the
IP provider to the SONET network provider for carrying the IP link capacities. Additional
discussion on multilayer design can be found in [564].

25.4 Overlay Networks and Overlay Routing
In recent years, overlay networks and overlay routing have received considerable attention.
From our discussion so far on multi-layer routing, you can see that the notion of overlay
has been around for quite some time. For instance, consider the telephone network over the
transport network, or Internet over the transport network; we can say that any such “service"
network is also an overlay network over the telecommunication transport network. Under-
standing the interaction of such overlay networks over the telecommunications transport
network has been studied for quite some time. One of the key issues to understand is how
a failure in the underlying transport network, for example, due to a fiber cut, can impact
rerouting in the service network [174], [241], [262], [468], [473], [474], [475], [498], [723], [761].
Any such routing decision also needs to consider shared risk link groups, both in terms of
reaction after a failure and also to do preplanning during route provisioning through diver-
sity or capacity expansion. For instance, consider Figure 25.8 in which MPL links M1-M2 and
M1-M3 would likely to be routed on WDM routes S1-S5-S2 and S1-S5-S3, respectively; here,
link S1-S5 falls into the shared risk link group category since the failure of this link will affect

20 25.5 Summary

multiple MPLS network links; in fact, it would isolate MPLS routers M2 and M3, and thereby
would isolate corresponding IP routers. Thus, to protect against such situations, the WDM
network should provide diversity by adding, say link S3-S4 (not shown in figure).

The overlay concept is, however, not limited to just two layers. Consider the three-layer
network architecture such as IP over MPLS over WDM. In this case, the MPLS network is an
overlay over the WDM network while it is, in turn, an underlay to the IP network; in other
words, the IP network is an overly over the MPLS network. It is important to recognize that
each such network can employ routing within its own context; typically, however, the time
granularity of routing decision in each such network could be on different time scales. Re-
gardless, when a failure occurs, each such network might decide to react based on its own
knowledge, which could lead to instability in the overall infrastructure; this point was high-
lighted in Section 19.3. As of now, there is very little protocol-level coordination between
networks in different layers to deploy an orchestrated recovery for overall benefit.

More recent usage of overlay networking is in the context of a virtualized network on top
of the Internet. In this case, nodes can be set up that act as overlay network routing nodes,
where a logical path is set up between any two such nodes over the Internet, for example,
using a TCP session. To convey this picture, consider Figure 25.9, but this time imagine the
lower layer network to be IP (instead of WDM), and the upper network to be an overlay
network (instead of IP). That is, the nodes on the upper plane will be routing nodes for the
overlay network. For example, logical virtual link R2-R3 could take the path, R2-S2-S5-S3-
R3, in one instance, or the path, R2-S2-S3-R3, in another instance due to change in routing
in the underlay IP network. Thus, from the perspective of the overlay network, an estimate
on logical link bandwidth would need be assessed frequently, so that the information is as
accurate as possible in the absence of specifics about the underlying topology; this would then
be useful for the benefit of services that use the overlay network [767]. Similarly, the delay
estimate might be necessary to know for some applications that use the overlay network. To
even out unusual fluctuations, it might be useful to smooth the available bandwidth or the
delay estimate using the exponential weighted moving average method (see Appendix B.6).
Such smoothed estimates can be periodically communicated between overlay network nodes
using a customized link state protocol so that all nodes have a reasonably accurate view. In
turn, based on the information obtained by overlay network nodes, a routing decision for
services that use the overlay network would need to be considered. This would depend on
the scope of the service, though. If, for example, a service requires bandwidth guarantee, then
a QoS routing based approach can be employed (refer to Chapter 17), which may involve
alternate routing through overlay network nodes; in this case, a performance measure such
as the bandwidth denial ratio would be important to consider. If, however, services that use
such an overlay network requires only a soft guarantee, then performance measures other
than bandwidth denial ratio, such as throughput, would be necessary to consider [767]. In
addition, understanding the interaction between overlay and underlay in terms of routing
and the impact on performance is an important problem to consider [414], [626].

25.5 Summary
In this chapter, we covered two topical areas: optical networking and multilayer networking.
For optical networking, there are two main classes of problems: SONET/SDH routing and

C H A P T E R 2 5 Optical Network Routing and Multilayer Routing 21

WDM routing. We discussed how these are transport network routing problems. We also
pointed out that on-demand WDM routing is closer to a dynamic call routing problem.

We then discussed multilayer networking, presenting the overall architectural view in
order to see how routing fits in. It may be noted that routing and capacity design are inter-
twined in a multilayer setting. That is, an upper layer’s capacity becomes demand volume for
a lower layer. Thus, if the capacity assignment can be dynamically configurable, it has many
implications for network and system stability.

It may be noted that multilayer routing requires common addressing schemer for nodes,
or else a mechanism so that information can be exchanged from one layer to another layer.
Furthermore, a coordinated network management system is required to exchange such infor-
mation [472].

Further Lookup
Historically, the first important instance of multilayer networking goes back to the develop-
ment of the circuit-switched voice network as the traffic network, and the transmission sys-
tem (for circuit routing of the link capacity, i.e., trunk groups, for circuit-switched voice) with
rates such as T1 and T3 as the transport network, thus forming a traffic transport layering
architecture. That is, in summary, this combination of circuit-switched voice traffic networks
over transport networks is the first example of multilayered networks.

While this relationship has been known and has been in use for several decades [582],
[583], [584], [596], [742], integrated network modeling and design considering both of these
networks together was not considered initially. In earnest, it can be said that the need was
not as great when the transmission system was made of co-axial cables, which is inherently
physically diverse. The need became much more pronounced when the transmission network
started to move from the PDH systems based on co-axial cables to fiber-based SDH/SONET
systems in the late 1980s. The immediate effect was that the transmission network became
sparse, with links composed of fibers of enormous capacity, capable of carrying many trunk
groups between distant switching nodes. The downside of this was that a single fiber cut
could affect multiple trunk groups in the circuit-switched voice networks. With the advent
of IP networks, the same issues have come up over the past decade. Thus, this area has seen
tremendous interest, starting in the early 1990s. Thus, for the area of multilayer routing and
design, we refer you a sampling of collections: [3], [31], [32], [174], [184], [185], [187], [241],
[254], [267], [268], [420], [383], [465], [467], [468], [472],[473], [475], [511], [512], [633], [723],
[761].

Optical networking, particularly routing, has been an active area of research in the past
decade. Accordingly, the literature is vast. There are excellent books on optical networking
such as [509], [580]. A framework for IP-over-optical networks is described in RFC 3717 [573].
For discussion related to PPP-over-SONET, see RFC 2615 [440] and RFC 2823 [110]. For a
historical view of IP over optical architecture at a tier-1 provider, see [426].

Several heuristic algorithms have been developed to solve the routing and wavelength
assignment problem [53], [137], [446], [540], [511]. For a recent survey of various solutions of
RWA problem, see [136].

Another stream of problems in optical networks is IP logical topology design and routing
at IP layer in an IP-over-WDM networking paradigm; for example, see [54], [55], [196], [511],

22 25.5 Exercises

[512], [579]. Another important factor in logical topology design is time-varying traffic, as a
topology designed for a traffic demand at a certain time might not respond well for traffic
matric at another time. For detailed discussion of logical topology reconfiguration, see [3],
[54], [246], [576] .

Exercises
25.1. Solve the SONET ring routing problem discussed in Section 25.1.2 in which demand is

allowed to be split, but still must be integer valued.

25.2. Explain the relation between routing and capacity in a multilayer setting though a small
network topology example.

25.3. Consider the following demand matrix on a four-node ring (Figure 25.1).

node i \ node j 2 3 4
1 12 16 8
2 – 4 2
3 – – 8

Determine the optimal ring routing if the goal is to balance the ring load.

25.4. Consider Figure 25.8. Determine minimum link connectivity required in the WDM net-
work for protection again any WDM link failure.

25.5. Convert nonlinear Model (25.2.2) to an equivalent model where the constraints are lin-
ear.

