
Raymond Chiong (Ed.)

Nature-Inspired Algorithms for Optimisation



Studies in Computational Intelligence,Volume 193

Editor-in-Chief
Prof. Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warsaw
Poland
E-mail: kacprzyk@ibspan.waw.pl

Further volumes of this series can be found on our
homepage: springer.com

Vol. 170. Lakhmi C. Jain and Ngoc Thanh Nguyen (Eds.)
Knowledge Processing and Decision Making in Agent-Based
Systems, 2009
ISBN 978-3-540-88048-6

Vol. 171. Chi-Keong Goh,Yew-Soon Ong and Kay Chen Tan
(Eds.)
Multi-Objective Memetic Algorithms, 2009
ISBN 978-3-540-88050-9

Vol. 172. I-Hsien Ting and Hui-Ju Wu (Eds.)
Web Mining Applications in E-Commerce and E-Services,
2009
ISBN 978-3-540-88080-6

Vol. 173. Tobias Grosche
Computational Intelligence in Integrated Airline Scheduling,
2009
ISBN 978-3-540-89886-3

Vol. 174.Ajith Abraham,Rafael Falcón and Rafael Bello (Eds.)
Rough Set Theory: A True Landmark in Data Analysis, 2009
ISBN 978-3-540-89886-3

Vol. 175. Godfrey C. Onwubolu and Donald Davendra (Eds.)
Differential Evolution: A Handbook for Global
Permutation-Based Combinatorial Optimization, 2009
ISBN 978-3-540-92150-9

Vol. 176. Beniamino Murgante, Giuseppe Borruso and
Alessandra Lapucci (Eds.)
Geocomputation and Urban Planning,2009
ISBN 978-3-540-89929-7

Vol. 177. Dikai Liu, Lingfeng Wang and Kay Chen Tan (Eds.)
Design and Control of Intelligent Robotic Systems, 2009
ISBN 978-3-540-89932-7

Vol. 178. Swagatam Das,Ajith Abraham and Amit Konar
Metaheuristic Clustering, 2009
ISBN 978-3-540-92172-1

Vol. 179. Mircea Gh. Negoita and Sorin Hintea
Bio-Inspired Technologies for the Hardware of Adaptive
Systems, 2009
ISBN 978-3-540-76994-1

Vol. 180.Wojciech Mitkowski and Janusz Kacprzyk (Eds.)
Modelling Dynamics in Processes and Systems, 2009
ISBN 978-3-540-92202-5

Vol. 181. Georgios Miaoulis and Dimitri Plemenos (Eds.)
Intelligent Scene Modelling Information Systems, 2009
ISBN 978-3-540-92901-7

Vol. 182.Andrzej Bargiela and Witold Pedrycz (Eds.)
Human-Centric Information Processing Through Granular
Modelling, 2009
ISBN 978-3-540-92915-4

Vol. 183. Marco A.C. Pacheco and Marley M.B.R.Vellasco
(Eds.)
Intelligent Systems in Oil Field Development under
Uncertainty, 2009
ISBN 978-3-540-92999-4

Vol. 184. Ljupco Kocarev, Zbigniew Galias and Shiguo Lian
(Eds.)
Intelligent Computing Based on Chaos, 2009
ISBN 978-3-540-95971-7

Vol. 185.Anthony Brabazon and Michael O’Neill (Eds.)
Natural Computing in Computational Finance, 2009
ISBN 978-3-540-95973-1

Vol. 186. Chi-Keong Goh and Kay Chen Tan
Evolutionary Multi-objective Optimization in Uncertain
Environments, 2009
ISBN 978-3-540-95975-5

Vol. 187. Mitsuo Gen, David Green, Osamu Katai, Bob McKay,
Akira Namatame, Ruhul A. Sarker and Byoung-Tak Zhang
(Eds.)
Intelligent and Evolutionary Systems, 2009
ISBN 978-3-540-95977-9

Vol. 188.Agustín Gutiérrez and Santiago Marco (Eds.)
Biologically Inspired Signal Processing for Chemical Sensing,
2009
ISBN 978-3-642-00175-8

Vol. 189. Sally McClean, Peter Millard, Elia El-Darzi and
Chris Nugent (Eds.)
Intelligent Patient Management, 2009
ISBN 978-3-642-00178-9

Vol. 190. K.R.Venugopal, K.G. Srinivasa and L.M. Patnaik
Soft Computing for Data Mining Applications, 2009
ISBN 978-3-642-00192-5

Vol. 191. Zong Woo Geem (Ed.)
Music-Inspired Harmony Search Algorithm, 2009
ISBN 978-3-642-00184-0

Vol. 192.Agus Budiyono, Bambang Riyanto and Endra
Joelianto (Eds.)
Intelligent Unmanned Systems: Theory and Applications,2009
ISBN 978-3-642-00263-2

Vol. 193. Raymond Chiong (Ed.)
Nature-Inspired Algorithms for Optimisation, 2009
ISBN 978-3-642-00266-3



Raymond Chiong (Ed.)

Nature-Inspired Algorithms for
Optimisation

123



Raymond Chiong
Swinburne University of Technology
Sarawak Campus, Jalan Simpang Tiga
93350 Kuching
Sarawak, Malaysia
E-mail: rchiong@swinburne.edu.my

and

Swinburne University of Technology
John Street, Hawthorn
Victoria 3122
Australia
E-mail: rchiong@swin.edu.au

ISBN 978-3-642-00266-3 e-ISBN 978-3-642-00267-0

DOI 10.1007/978-3-642-00267-0

Studies in Computational Intelligence ISSN 1860949X

Library of Congress Control Number: 2009920517

c© 2009 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilm or in any other
way, and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from
Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this
publication does not imply, even in the absence of a specific statement, that such
names are exempt from the relevant protective laws and regulations and therefore
free for general use.

Typeset & Cover Design: Scientific Publishing Services Pvt. Ltd., Chennai, India.

Printed in acid-free paper

9 8 7 6 5 4 3 2 1

springer.com



Foreword 

Preface 

Research on stochastic optimisation methods emerged around half a century ago. 
One of these methods, evolutionary algorithms (EAs) first came into sight in the 
1960s. At that time EAs were merely an academic curiosity without much practi-
cal significance. It was not until the 1980s that the research on EAs became less 
theoretical and more applicable. With the dramatic increase in computational 
power today, many practical uses of EAs can now be found in various disciplines, 
including scientific and engineering fields. 

EAs, together with other nature-inspired approaches such as artificial neural 
networks, swarm intelligence, or artificial immune systems, subsequently formed 
the field of natural computation. While EAs use natural evolution as a paradigm 
for solving search and optimisation problems, other methods draw on the inspira-
tion from the human brain, collective behaviour of natural systems, biological 
immune systems, etc. The main motivation behind nature-inspired algorithms is 
the success of nature in solving its own myriad problems. Indeed, many research-
ers have found these nature-inspired methods appealing in solving practical prob-
lems where a high degree of intricacy is involved and a bagful of constraints need 
to be dealt with on a regular basis. Numerous algorithms aimed at disentangling 
such problems have been proposed in the past, and new algorithms are being pro-
posed nowadays.  

This book assembles some of the most innovative and intriguing nature-
inspired algorithms for solving various optimisation problems. It also presents a 
range of new studies which are important and timely. All the chapters are written 
by active researchers in the field of natural computation, and are carefully pre-
sented with challenging and rewarding technical content. I am sure the book will 
serve as a good reference for all researchers and practitioners, who can build on 
the many ideas introduced here and make more valuable contributions in the fu-
ture. Enjoy! 

 
 

November 2008 
 

Professor Zbigniew Michalewicz 
School of Computer Science 

University of Adelaide, Australia 
http://www.cs.adelaide.edu.au/~zbyszek/ 

 



Preface  

Preface 

Nature has always been a source of inspiration. In recent years, new concepts, 
techniques and computational applications stimulated by nature are being continu-
ally proposed and exploited to solve a wide range of optimisation problems in di-
verse fields. Various kinds of nature-inspired algorithms have been designed and 
applied, and many of them are producing high quality solutions to a variety of 
real-world optimisation tasks. The success of these algorithms has led to competi-
tive advantages and cost savings not only to the scientific community but also the 
society at large. 

The use of nature-inspired algorithms stands out to be promising due to the fact 
that many real-world problems have become increasingly complex. The size and 
complexity of the optimisation problems nowadays require the development of 
methods and solutions whose efficiency is measured by their ability to find ac-
ceptable results within a reasonable amount of time. Despite there is no guarantee 
of finding the optimal solution, approaches based on the influence of biology and 
life sciences such as evolutionary algorithms, neural networks, swarm intelligence 
algorithms, artificial immune systems, and many others have been shown to be 
highly practical and have provided state-of-the-art solutions to various optimisa-
tion problems. 

This book provides a central source of reference by collecting and disseminat-
ing the progressive body of knowledge on the novel implementations and impor-
tant studies of nature-inspired algorithms for optimisation purposes. Addressing 
the various issues of optimisation problems using some new and intriguing intelli-
gent algorithms is the novelty of this edited volume. It comprises 18 chapters, 
which can be categorised into the following 5 sections: 

• Section I Introduction 
• Section II Evolutionary Intelligence 
• Section III Collective Intelligence 
• Section IV Social-Natural Intelligence 
• Section V Multi-Objective Optimisation 

The first section contains two introductory chapters. In the first chapter, Weise 
et al. explain why optimisation problems are difficult to solve by addressing some 
of the fundamental issues that are often encountered in optimisation tasks such as 
premature convergence, ruggedness, causality, deceptiveness, neutrality, epistasis, 



VIII Preface
 

robustness, overfitting, oversimplification, multi-objectivity, dynamic fitness, the 
No Free Lunch Theorem, etc. They also present some possible countermeasures, 
focusing on the stochastic based nature-inspired solutions, for dealing with these 
problematic features. This is probably the very first time in the literature that all 
these features have been discussed within a single document. Their discussion also 
leads to the conclusion of why so many different types of algorithms are needed. 

While parallels can certainly be drawn between these algorithms and various 
natural processes, the extent of the natural inspiration is not always clear. Steer et 
al. thus attempt to clarify what it means to say an algorithm is nature-inspired and 
examine the rationale behind the use of nature as a source of inspiration for such 
algorithm in the second chapter. In addition, they also discuss the features of na-
ture which make it a valuable resource in the design of successful new algorithms. 
Finally, the history of some well-known algorithms are discussed, with particular 
focus on the role nature has played in their development. 

The second section of this book deals with evolutionary intelligence. It contains 
six chapters, presenting several novel algorithms based on simulated learning and 
evolution – a process of adaptation that occurs in nature. The first chapter in this 
section by Salomon and Arnold describes a hybrid evolutionary algorithm, called 
the Evolutionary-Gradient-Search (EGS) procedure. This procedure initially uses 
random variations to estimate the gradient direction, and then deterministically 
searches along that direction in order to advance to the optimum. The idea behind 
it is to utilise all individuals in the search space to gain as much information as 
possible, rather than selecting only the best offspring. Through both theoretical 
analysis and empirical studies, the authors show that the EGS procedure works 
well on most optimisation problems where evolution strategies also work well, in 
particular those with unimodal functions. Besides that, this chapter also discusses 
the EGS procedure’s behaviour in the presence of noise. Due to some performance 
degradations, the authors introduce the concept of inverse mutation, a new idea 
that proves very useful in the presence of noise, which is omnipresent in almost 
any real-world application. 

In an attempt to address some limitations of the standard genetic algorithm, Le-
naerts et al. in the second chapter of this section present an algorithm that mimics 
evolutionary transitions from biology called the Evolutionary Transition Algo-
rithm (ETA). They use the Binary Constraint Satisfaction Problem (BINCSP) as 
an illustration to show how ETA is able to evolve increasingly complex solutions 
from the interactions of simpler evolving solutions. Their experimental results on 
BINCSP confirm that the ETA is a promising approach that requires more exten-
sive investigation from both theoretical and practical optimisation perspectives. 

Following which, Tenne proposes a new model-assisted Memetic Algorithm 
for expensive optimisation problems. The proposed algorithm uses a radial basis 
function neural network as a global model and performs a global search on this 
model. It then uses a local search with a trust-region framework to converge to a 
true optimum. The local search uses Kriging models and adapts them during the 
search to improve convergence. The author benchmarks the proposed algorithm 
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against four model-assisted evolutionary algorithms using eight well-known 
mathematical test functions, and shows that this new model-assisted Memetic Al-
gorithm is able to outperform the four reference algorithms. Finally, the proposed 
algorithm is applied to a real-world application of airfoil shape optimisation, 
where better performance than the four reference algorithms is also obtained. 

In the next chapter, Wang and Li propose a new self-adaptive estimation of dis-
tribution algorithm (EDA) for large scale global optimisation (LSGO) called the 
Mixed model Uni-variate EDA (MUEDA). They begin with an analysis on the 
behaviour and performances of uni-variate EDAs with different kernel probability 
densities via fitness landscape analysis. Based on the analysis, the self-adaptive 
MUEDA is devised. To assess the effectiveness and efficiency of MUEDA, the 
authors test it on typical function optimisation tasks with dimensionality scaling 
from 30 to 1500. Compared to other recently published LSGO algorithms, the 
MUEDA shows excellent convergence speed, final solution quality and dimen-
sional scalability. 

Subsequently, Tirronen and Neri propose a Differential Evolution (DE) with 
integrated fitness diversity self-adaptation. In their algorithm, the authors intro-
duce a modified probabilistic criterion which is based on a novel measurement of 
the fitness diversity. In addition, the algorithm contains an adaptive population 
size which is determined by variations in the fitness diversity. Extensive experi-
mental studies have been carried out, where the proposed DE is being compared to 
a standard DE and four modern DE based algorithms. Numerical results show that 
the proposed DE is able to produce promising solutions and is competitive with 
the modern DEs. Its convergence speed is also comparable to those state-of-the-art 
DE based algorithms. 

In the final chapter of this section, Patel uses genetic algorithms to optimise a 
class of biological neural networks, called Central Pattern Generators (CPGs), 
with a view to providing autonomous, reactive and self-modulatory control for 
practical engineering solutions. This work is precursory to producing controllers 
for marine energy devices with similar locomotive properties. Neural circuits are 
evolved using evolutionary techniques. The lamprey CPG, responsible for swim-
ming movements, forms the basis of evolution, and is optimised to operate with a 
wider range of frequencies and speeds. The author demonstrates via experimental 
results that simpler versions of the CPG network can be generated, whilst outper-
forming the swimming capabilities of the original CPG network. 

The third section deals with collective intelligence, a term applied to any situation 
in which indirect influences cause the emergence of collaborative effort. Four chap-
ters are presented, each addressing one novel algorithm. The first chapter of the sec-
tion by Bastos Filho et al. gives an overview of a new algorithm for searching in 
high-dimensional spaces, called the Fish School Search (FSS). Based on the behav-
iours of fish schools, the FSS works through three main operators: feeding, swim-
ming and breeding. Via empirical studies, the authors demonstrate that the FSS 
 is quite promising for dealing with high-dimensional problems with multimodal 
functions. In particular, it has shown great capability in finding balance between  
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exploration and exploitation, self-adapting swiftly out of local minima, and self-
regulating the search granularity. 

The next chapter by Tan and Zhang presents another new swarm intelligence 
algorithm called the Magnifier Particle Swarm Optimisation (MPSO). Based on 
the idea of magnification transformation, the MPSO enlarges the range around 
each generation’s best individual, while the velocity of particles remains un-
changed. This enables a much faster convergence speed and better optimisation 
solving capability. The authors compare the performance of MPSO to the Stan-
dard Particle Swarm Optimisation (SPSO) using the thirteen benchmark test func-
tions from CEC 2005. The experimental results show that the proposed MPSO is 
indeed able to tremendously speed up the convergence and maintain high accuracy 
in searching for the global optimum. Finally, the authors also apply the MPSO to 
spam detection, and demonstrate that the proposed MPSO achieves promising re-
sults in spam email classification. 

Mezura-Montes and Flores-Mendoza then present a study about the behaviour 
of Particle Swarm Optimisation (PSO) in constrained search spaces. Four well-
known PSO variants are used to solve a set of test problems for comparison pur-
poses. Based on the comparative study, the authors identify the most competitive 
PSO variant and improve it with two simple modifications related to the dynamic 
control of some parameters and a variation in the constraint-handling technique, 
resulting in a new Improved PSO (IPSO).  Extensive experimental results show 
that the IPSO is able to improve the results obtained by the original PSO variants 
significantly. The convergence behaviour of the IPSO suggests that it has better 
exploration capability for avoiding local optima in most of the test problems. Fi-
nally, the authors compare the IPSO to four state-of-the-art PSO-based ap-
proaches, and confirm that it can achieve competitive or even better results than 
these approaches, with a moderate computational cost. 

The last chapter of this section by Rabanal et al. describes an intriguing algo-
rithm called the River Formation Dynamics (RFD). This algorithm is inspired by 
how water forms rivers by eroding the ground and depositing sediments. After 
drops transform the landscape by increasing or decreasing the altitude of different 
areas, solutions are given in the form of paths of decreasing altitudes. Decreasing 
gradients are constructed, and these gradients are followed by subsequent drops to 
compose new gradients and reinforce the best ones. The authors apply the RFD to 
solve three NP-complete problems, and compare its performance to Ant Colony 
Optimisation (ACO). While the RFD normally takes longer than ACO to find 
good solutions, it is usually able to outperform ACO in terms of solution quality 
after some additional time passes. 

The fourth section contains two survey chapters. The first survey chapter by 
Neme and Hernández discusses optimisation algorithms inspired by social  
phenomena in human societies. This study is highly important as majority of the 
natural algorithms in the optimisation domain are inspired by either biological 
phenomena or social behaviours of mainly animals and insects. As social phenom-
ena often arise as a result of interaction among individuals, the main idea behind 
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algorithms inspired by social phenomena is that the computational power of the 
inspired algorithms is correlated to the richness and complexity of the correspond-
ing social behaviour. Apart from presenting social phenomena that have motivated 
several optimisation algorithms, the authors also refer to some social processes 
whose metaphor may lead to new algorithms. Their hypothesis is that some of 
these phenomena - the ones with high complexity, have more computational 
power than other, less complex phenomena. 

The second survey chapter by Bernardino and Barbosa focuses on the applica-
tions of Artificial Immune Systems (AISs) in solving optimisation problems. AISs 
are computational methods inspired by the natural immune system. The main types 
of optimisation problems that have been considered include the unconstrained opti-
misation problems, the constrained optimisation problems, the multimodal optimisa-
tion problems, as well as the multi-objective optimisation problems. While several 
immune mechanisms are discussed, the authors have paid special attention to two of 
the most popular immune methodologies: clonal selection and immune networks. 
They remark that even though AISs are good for solving various optimisation prob-
lems, useful features from other techniques are often combined with a “pure” AIS in 
order to generate hybridised AIS methods with improved performance. 

The fifth section deals with multi-objective optimisation. There are four chap-
ters in this section. It starts with a chapter by Jaimes et al. who present a compara-
tive study of different ranking methods on many-objective problems. The authors 
consider an optimisation problem to be a many-objective optimisation problem 
(instead of multi-objective) when it has more than 4 objectives. Their aim is to in-
vestigate the effectiveness of different approaches in order to find out the advan-
tages and disadvantages of each of the ranking methods studied and, in general, 
their performance. The results presented can be an important guide for selecting a 
suitable ranking method for a particular problem at hand, developing new ranking 
schemes or extending the Pareto optimality relation. 

Next, Nebro and Durillo present an interesting chapter that studies the effect of 
applying a steady-state selection scheme to Non-dominated Sorting Genetic Algo-
rithm II (NSGA-II), a fast and elitist Multi-Objective Evolutionary Algorithm 
(MOEA). This work is definitely a timely and important one, since not many non-
generational MOEAs exist. The authors use a benchmark composed of 21 bi-
objective problems for comparing the performance of both the original and the 
steady-state versions of NSGA-II in terms of the quality of the obtained solutions 
and their convergence speed towards the optimal Pareto front. Comparative studies 
between the two versions as well as four state-of-the-art multi-objective optimisers 
not only demonstrate the significant improvement obtained by the steady-state 
scheme over the generational one in most of the problems, but also its competitive-
ness with the state-of-the-art algorithms regarding the quality of the obtained ap-
proximation sets and the convergence speed. 

The following chapter by Tan and Teo proposes two new co-evolutionary algo-
rithms for multi-objective optimisation based on the Strength Pareto Evolutionary 
Algorithm 2 (SPEA2), another state-of-the-art MOEA. The two new algorithms 
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introduce the concept of competitive co-evolution and cooperative co-evolution 
respectively to SPEA2. The authors are able to exhibit, through experimental stud-
ies, the superiority of these augmented algorithms over the original one in terms of 
the non-dominated solutions to the true Pareto front, the diversity of the obtained 
solutions as well as the coverage level. Moreover, the authors observe an in-
creased performance improvement over the original SPEA2 with an increase in 
the number of dimensions to be optimised. Overall, this chapter shows that the in-
troduction of co-evolution, especially cooperative co-evolution, is able to furnish 
significant enhancements to the solution of multi-objective optimisation problems. 

The final chapter by Duran et al. focuses on portfolio optimisation using multi-
objective optimisation techniques. Based on the Venezuelan market mutual funds 
from year 1994 to 2002, the authors conduct a comparative study of three different 
evolutionary multi-objective approaches – NSGA-II, SPEA2, and Indicator-Based 
Evolutionary Algorithm (IBEA) – as well as the optimisation portfolios generated 
by these approaches. Using Sharpe’s index as a measure of risk premium for the 
final solution selection, the authors observe that NSGA-II is able to provide results 
similar to SPEA2 for mixed and fixed mutual funds, and superior solutions than 
SPEA2 for variable funds. This observation, the authors argue, is indication that 
NSGA-II provides better coverage of the regions containing interesting solutions 
for Sharpe’s index. The experimental results presented also demonstrate that 
IBEA is superior to both NSGA-II and SPEA2 regarding the index value attained, 
and the portfolios IBEA generates are more profitable than those indexed by the 
Caracas Stock Exchange. 

In closing, I would like to thank all the authors for their excellent contributions 
to this book. I also wish to acknowledge the help of the editorial advisory board 
and all reviewers involved in the review process, without whose support this book 
project could not have been satisfactorily completed. Special thanks go to all those 
who provided constructive and comprehensive review comments, as well as those 
who willingly helped in last-minute urgent reviews. A further special note of 
thanks goes to Dr Thomas Ditzinger (Engineering Senior Editor, Springer-Verlag) 
and Ms Heather King (Engineering Editorial, Springer-Verlag) for their editorial 
assistance and professional support. Finally, I hope that readers would enjoy read-
ing this book as much as I have enjoyed putting it together. 

 
 
 

December 2008 Raymond Chiong 
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Why Is Optimization Difficult?

Thomas Weise, Michael Zapf, Raymond Chiong, and Antonio J. Nebro

Abstract. This chapter aims to address some of the fundamental issues that
are often encountered in optimization problems, making them difficult to
solve. These issues include premature convergence, ruggedness, causality, de-
ceptiveness, neutrality, epistasis, robustness, overfitting, oversimplification,
multi-objectivity, dynamic fitness, the No Free Lunch Theorem, etc. We ex-
plain why these issues make optimization problems hard to solve and present
some possible countermeasures for dealing with them. By doing this, we hope
to help both practitioners and fellow researchers to create more efficient op-
timization applications and novel algorithms.

1 Introduction

Optimization, in general, is concerned with finding the best solutions for a
given problem. Its applicability in many different disciplines makes it hard
to give an exact definition. Mathematicians, for instance, are interested in
finding the maxima or minima of a real function from within an allowable
set of variables. In computing and engineering, the goal is to maximize the
performance of a system or application with minimal runtime and resources.
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Málaga, Campus de Teatinos, 29071 Málaga, Spain
e-mail: antonio@lcc.uma.es

R. Chiong (Ed.): Nature-Inspired Algorithms for Optimisation, SCI 193, pp. 1–50.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

weise@vs.uni-kassel.de
zapf@vs.uni-kassel.de
rchiong@swinburne.edu.my
antonio@lcc.uma.es


2 T. Weise et al.

In the business industry, people aim to optimize the efficiency of a production
process or the quality and desirability of their current products.

All these examples show that optimization is indeed part of our everyday
life. We often try to maximize our gain by minimizing the cost we need to
bear. However, are we really able to achieve an “optimal” condition? Frankly,
whatever problems we are dealing with, it is rare that the optimization pro-
cess will produce a solution that is truly optimal. It may be optimal for one
audience or for a particular application, but definitely not in all cases.

As such, various techniques have emerged for tackling different kinds of
optimization problems. In the broadest sense, these techniques can be classi-
fied into exact and stochastic algorithms. Exact algorithms, such as branch
and bound, A� search, or dynamic programming can be highly effective for
small-size problems. When the problems are large and complex, especially
if they are either NP-complete or NP-hard, i.e., have no known polynomial-
time solutions, the use of stochastic algorithms becomes mandatory. These
stochastic algorithms do not guarantee an optimal solution, but they are able
to find quasi-optimal solutions within a reasonable amount of time.

In recent years, metaheuristics, a family of stochastic techniques, has be-
come an active research area. They can be defined as higher level frameworks
aimed at efficiently and effectively exploring a search space [25]. The initial
work in this area was started about half a century ago (see [175, 78, 24], and
[37]). Subsequently, a lot of diverse methods have been proposed, and to-
day, this family comprises many well-known techniques such as Evolutionary
Algorithms, Tabu Search, Simulated Annealing, Ant Colony Optimization,
Particle Swarm Optimization, etc.

There are different ways of classifying and describing metaheuristic algo-
rithms. The widely accepted classification would be the view of nature-inspired
vs. non nature-inspired, i.e., whether or not the algorithm somehow emulates
a process found in nature. Evolutionary Algorithms, the most widely used
metaheuristics, belong to the nature-inspired class. Other techniques with in-
creasing popularity in this class include Ant Colony Optimization, Particle
Swarm Optimization, Artificial Immune Systems, and so on. Scatter search,
Tabu Search, and Iterated Local Search are examples of non nature-inspired
metaheuristics. Unified models of metaheuristic optimization procedures have
been proposed by Vaessens et al [220, 221], Rayward-Smith [169], Osman [158],
and Taillard et al [210].

In this chapter, our main objective is to address some fundamental issues
that make optimization problems difficult based on the nature-inspired class
of metaheuristics. Apart from the reasons of being large, complex, and dy-
namic, we present a list of problem features that are often encountered and
explain why some optimization problems are hard to solve. Some of the is-
sues that will be discussed, such as multi-modality and overfitting, concern
global optimization in general. We will also elaborate on other issues which
are often linked to Evolutionary Algorithms, e.g., epistasis and neutrality,
but can occur in virtually all metaheuristic optimization processes.
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These concepts are important, as neglecting any one of them during the
design of the search space and operations or the configuration of the opti-
mization algorithms can render the entire invested effort worthless, even if
highly efficient optimization methods are applied. To the best of our knowl-
edge, to date there is not a single document in the literature comprising all
such problematic features. By giving clear definitions and comprehensive in-
troductions on them, we hope to create awareness among fellow scientists as
well as practitioners in the industry so that they could perform optimization
tasks more efficiently.

The rest of this chapter is organized as follows: In the next section, prema-
ture convergence to local minima is introduced as one of the major symptoms
of failed optimization processes. Ruggedness (Section 3), deceptiveness (Sec-
tion 4), too much neutrality (Section 5), and epistasis (Section 6), some of
which have been illustrated in Fig. 11, are the main causes which may lead
to this situation. Robustness, correctness, and generality instead are features
which we expect from valid solutions. They are challenged by different types
of noise discussed in Section 7 and the affinity of overfitting or overgeneral-
ization (see Section 8). Some optimization tasks become further complicated
because they involve multiple, conflicting objectives (Section 9) or dynami-
cally changing ones (Section 10). In Section 11, we give a short introduction
about the No Free Lunch Theorem, from which we can follow that no panacea,
no magic bullet can exist against all of these problematic features. We will
conclude our outline of the hardships of optimization with a summary in
Section 12.

1.1 Basic Terminology

In the following text, we will utilize a terminology commonly used in the Evo-
lutionary Algorithms community and sketched in Fig. 2 based on the example
of a simple Genetic Algorithm. The possible solutions x of an optimization
problem are elements of the problem space X. Their utility as solutions is
evaluated by a set f of objective functions f which, without loss of general-
ity, are assumed to be subject to minimization. The set of search operations
utilized by the optimizers to explore this space does not directly work on
them. Instead, they are applied to the elements (the genotypes) of the search
space G (the genome). They are mapped to the solution candidates by a
genotype-phenotype mapping gpm : G �→ X. The term individual is used for
both, solution candidates and genotypes.
1 We include in Fig. 1 different examples of fitness landscapes, which relate solution

candidates (or genotypes) to their objective values. The small bubbles in Fig. 1
represent solution candidates under investigation. An arrow from one bubble
to another means that the second individual is found by applying one search
operation to the first one. The objective values here are subject to minimization.
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1.2 The Term “Difficult”

Before we go more into detail about what makes these landscapes difficult,
we should establish the term in the context of optimization. The degree of
difficulty of solving a certain problem with a dedicated algorithm is closely
related to its computational complexity, i.e., the amount of resources such as
time and memory required to do so. The computational complexity depends
on the number of input elements needed for applying the algorithm. This
dependency is often expressed in the form of approximate boundaries with
the Big-O-family notations introduced by Bachmann [10] and made popular
by Landau [122]. Problems can be further divided into complexity classes. One
of the most difficult complexity classes owning to its resource requirements is
NP, the set of all decision problems which are solvable in polynomial time by
non-deterministic Turing machines [79]. Although many attempts have been
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made, no algorithm has been found which is able to solve an NP-complete [79]
problem in polynomial time on a deterministic computer. One approach to
obtaining near-optimal solutions for problems in NP in reasonable time is to
apply metaheuristic, randomized optimization procedures.

As already stated, optimization algorithms are guided by objective func-
tions. A function is difficult from a mathematical perspective in this context
if it is not continuous, not differentiable, or if it has multiple maxima and
minima. This understanding of difficulty comes very close to the intuitive
sketches in Fig. 1.

In many real world applications of metaheuristic optimization, the charac-
teristics of the objective functions are not known in advance. The problems
are usually NP or have unknown complexity. It is therefore only rarely possi-
ble to derive boundaries for the performance or the runtime of optimizers in
advance, let alone exact estimates with mathematical precision.

Most often, experience, rules of thumb, and empirical results based on the
models obtained from related research areas such as biology are the only
guides available. In this chapter we discuss many such models and rules,
providing a better understanding of when the application of a metaheuristic
is feasible and when not, as well as with indicators on how to avoid defining
problems in a way that makes them difficult.

2 Premature Convergence

2.1 Introduction

An optimization algorithm has converged if it cannot reach new solution
candidates anymore or if it keeps on producing solution candidates from a
“small”2 subset of the problem space. Global optimization algorithms will
usually converge at some point in time. One of the problems in global opti-
mization is that it is often not possible to determine whether the best solution
currently known is situated on a local or a global optimum and thus, if con-
vergence is acceptable. In other words, it is usually not clear whether the
optimization process can be stopped, whether it should concentrate on re-
fining the current optimum, or whether it should examine other parts of the
search space instead. This can, of course, only become cumbersome if there
are multiple (local) optima, i.e., the problem is multimodal as depicted in
Fig. 1.c.

A mathematical function is multimodal if it has multiple maxima or min-
ima [195, 246]. A set of objective functions (or a vector function) f is multi-
modal if it has multiple (local or global) optima – depending on the definition
of “optimum” in the context of the corresponding optimization problem.
2 According to a suitable metric like numbers of modifications or mutations which

need to be applied to a given solution in order to leave this subset.
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2.2 The Problem

An optimization process has prematurely converged to a local optimum if it
is no longer able to explore other parts of the search space than the area cur-
rently being examined and there exists another region that contains a superior
solution [192, 219]. Fig. 3 illustrates examples of premature convergence.

global optimum
local optimum

Fig. 3.a: Example 1: Maximization
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Fig. 3.b: Example 2: Minimization

Fig. 3 Premature convergence in the objective space

The existence of multiple global optima itself is not problematic and the
discovery of only a subset of them can still be considered as successful in many
cases (see Section 9). The occurrence of numerous local optima, however, is
more complicated.

The phenomenon of domino convergence has been brought to attention by
Rudnick [184] who studied it in the context of his BinInt problem [184, 213].
In principle, domino convergence occurs when the solution candidates have
features which contribute significantly to different degrees of the total fitness.
If these features are encoded in separate genes (or building blocks) in the
genotypes, they are likely to be treated with different priorities, at least in
randomized or heuristic optimization methods.

Building blocks with a very strong positive influence on the objective val-
ues, for instance, will quickly be adopted by the optimization process (i.e.,
“converge”). During this time, the alleles of genes with a smaller contribu-
tion are ignored. They do not come into play until the optimal alleles of the
more “important” blocks have been accumulated. Rudnick [184] called this
sequential convergence phenomenon domino convergence due to its resem-
blance to a row of falling domino stones [213].

In the worst case, the contributions of the less salient genes may almost
look like noise and they are not optimized at all. Such a situation is also an
instance of premature convergence, since the global optimum which would
involve optimal configurations of all blocks will not be discovered. In this
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situation, restarting the optimization process will not help because it will
always turn out the same way. Example problems which are often likely to
exhibit domino convergence are the Royal Road [139] and the aforementioned
BinInt problem [184].

2.3 One Cause: Loss of Diversity

In biology, diversity is the variety and abundance of organisms at a given place
and time [159, 133]. Much of the beauty and efficiency of natural ecosystems
is based on a dazzling array of species interacting in manifold ways. Diversifi-
cation is also a good investment strategy utilized by investors in the economy
in order to increase their profit.

In population-based global optimization algorithms as well, maintaining a
set of diverse solution candidates is very important. Losing diversity means
approaching a state where all the solution candidates under investigation are
similar to each other. Another term for this state is convergence. Discus-
sions about how diversity can be measured have been provided by Routledge
[183], Cousins [49], Magurran [133], Morrison and De Jong [148], and Paenke
et al [159].

Preserving diversity is directly linked with maintaining a good balance be-
tween exploitation and exploration [159] and has been studied by researchers
from many domains, such as

• Genetic Algorithms [156, 176, 177],
• Evolutionary Algorithms [28, 29, 123, 149, 200, 206],
• Genetic Programming [30, 38, 39, 40, 53, 93, 94],
• Tabu Search [81, 82], and
• Particle Swarm Optimization [238].

The operations which create new solutions from existing ones have a very
large impact on the speed of convergence and the diversity of the populations
[69, 203]. The step size in Evolution Strategy is a good example of this issue:
setting it properly is very important and leads to the “exploration versus
exploitation” problem [102] which can be observed in other areas of global
optimization as well.3

In the context of optimization, exploration means finding new points in
areas of the search space which have not been investigated before. Since
computers have only limited memory, already evaluated solution candidates
usually have to be discarded. Exploration is a metaphor for the procedure
which allows search operations to find novel and maybe better solution struc-
tures. Such operators (like mutation in Evolutionary Algorithms) have a high
chance of creating inferior solutions by destroying good building blocks but
3 More or less synonymously to exploitation and exploration, the terms intensifi-

cations and diversification have been introduced by Glover [81, 82] in the context
of Tabu Search.
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also a small chance of finding totally new, superior traits (which, however, is
not guaranteed at all).

Exploitation, on the other hand, is the process of improving and combin-
ing the traits of the currently known solution(s), as done by the crossover
operator in Evolutionary Algorithms, for instance. Exploitation operations
often incorporate small changes into already tested individuals leading to
new, very similar solution candidates or try to merge building blocks of dif-
ferent, promising individuals. They usually have the disadvantage that other,
possibly better, solutions located in distant areas of the problem space will
not be discovered.

Almost all components of optimization strategies can either be used for in-
creasing exploitation or in favor of exploration. Unary search operations that
improve an existing solution in small steps can be built, hence being exploita-
tion operators (as is done in Memetic Algorithms, for instance). They can
also be implemented in a way that introduces much randomness into the indi-
viduals, effectively making them exploration operators. Selection operations
in Evolutionary Computation choose a set of the most promising solution
candidates which will be investigated in the next iteration of the optimizers.
They can either return a small group of best individuals (exploitation) or a
wide range of existing solution candidates (exploration).

Optimization algorithms that favor exploitation over exploration have
higher convergence speed but run the risk of not finding the optimal solution
and may get stuck at a local optimum. Then again, algorithms which per-
form excessive exploration may never improve their solution candidates well
enough to find the global optimum or it may take them very long to discover
it “by accident”. A good example for this dilemma is the Simulated Anneal-
ing algorithm [117]. It is often modified to a form called simulated quenching
which focuses on exploitation but loses the guaranteed convergence to the
optimum [110]. Generally, optimization algorithms should employ at least
one search operation of explorative character and at least one which is able
to exploit good solutions further. There exists a vast body of research on the
trade-off between exploration and exploitation that optimization algorithms
have to face [7, 57, 66, 70, 103, 152].

2.4 Countermeasures

As we have seen, global optimization algorithms are optimization methods
for finding the best possible solution(s) of an optimization problem instead
of prematurely converging to a local optimum. Still, there is no general ap-
proach to ensure their success. The probability that an optimization process
prematurely converges depends on the characteristics of the problem to be
solved and the parameter settings and features of the optimization algorithms
applied [215].

A very crude and yet, sometimes effective measure is restarting the opti-
mization process at randomly chosen points in time. One example for this
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method is GRASPs, Greedy Randomized Adaptive Search Procedures [71, 72],
which continuously restart the process of creating an initial solution and re-
fining it with local search. Still, such approaches are likely to fail in domino
convergence situations.

In order to extend the duration of the evolution in Evolutionary Algo-
rithms, many methods have been devised for steering the search away from
areas which have already been frequently sampled. This can be achieved by
integrating density metrics into the fitness assignment process. The most
popular of such approaches are sharing and niching based on the Euclidean
distance of the solution candidates in objective space [55, 85, 104, 138]. Using
low selection pressure furthermore decreases the chance of premature conver-
gence but also decreases the speed with which good solutions are exploited.

Another approach against premature convergence is to introduce the ca-
pability of self-adaptation, allowing the optimization algorithm to change its
strategies or to modify its parameters depending on its current state. Such
behaviors, however, are often implemented not in order to prevent prema-
ture convergence but to speed up the optimization process (which may lead
to premature convergence to local optima) [185, 186, 187].

3 Ruggedness and Weak Causality

3.1 The Problem: Ruggedness

Optimization algorithms generally depend on some form of gradient in the
objective or fitness space. The objective functions should be continuous and
exhibit low total variation4, so the optimizer can descend the gradient easily.
If the objective functions are unsteady or fluctuating, i.e., going up and down,
it becomes more complicated for the optimization process to find the right
directions to proceed to. The more rugged a function gets, the harder it
becomes to optimize it. From a simplified point of view, ruggedness is multi-
modality plus steep ascends and descends in the fitness landscape. Examples
of rugged landscapes are Kauffman’s NK fitness landscape [113, 115], the
p-Spin model [6], Bergman and Feldman’s jagged fitness landscape [19], and
the sketch in Fig. 1.d.

3.2 One Cause: Weak Causality

During an optimization process, new points in the search space are created
by the search operations. Generally we can assume that the genotypes which
are the input of the search operations correspond to phenotypes which have
previously been selected. Usually, the better or the more promising an indi-
vidual is, the higher are its chances of being selected for further investigation.
Reversing this statement suggests that individuals which are passed to the
4 http://en.wikipedia.org/wiki/Total_variation [accessed 2008-04-23]

http://en.wikipedia.org/wiki/Total_variation
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search operations are likely to have a good fitness. Since the fitness of a solu-
tion candidate depends on its properties, it can be assumed that the features
of these individuals are not so bad either. It should thus be possible for the
optimizer to introduce slight changes to their properties in order to find out
whether they can be improved any further5. Normally, such modifications
should also lead to small changes in the objective values and, hence, in the
fitness of the solution candidate.

Definition 1 (Strong Causality). Strong causality (locality) means that
small changes in the properties of an object also lead to small changes in its
behavior [170, 171, 180].

This principle (proposed by Rechenberg [170, 171]) should not only hold for
the search spaces and operations designed for optimization, but applies to
natural genomes as well. The offspring resulting from sexual reproduction of
two fish, for instance, has a different genotype than its parents. Yet, it is far
more probable that these variations manifest in a unique color pattern of the
scales, for example, instead of leading to a totally different creature.

Apart from this straightforward, informal explanation here, causality has
been investigated thoroughly in different fields of optimization, such as Evolu-
tion Strategy [170, 65], structure evolution [129, 130], Genetic Programming
[65, 107, 179, 180], genotype-phenotype mappings [193], search operators [65],
and Evolutionary Algorithms in general [65, 182, 207].

In fitness landscapes with weak (low) causality, small changes in the so-
lution candidates often lead to large changes in the objective values, i.e.,
ruggedness. It then becomes harder to decide which region of the problem
space to explore and the optimizer cannot find reliable gradient information
to follow. A small modification of a very bad solution candidate may then
lead to a new local optimum and the best solution candidate currently known
may be surrounded by points that are inferior to all other tested individuals.

The lower the causality of an optimization problem, the more rugged its
fitness landscape is, which leads to a degradation of the performance of the
optimizer [120]. This does not necessarily mean that it is impossible to find
good solutions, but it may take very long to do so.

3.3 Countermeasures

To our knowledge, no viable method which can directly mitigate the effects of
rugged fitness landscapes exists. In population-based approaches, using large
population sizes and applying methods to increase the diversity can decrease
the influence of ruggedness, but only up to a certain degree. Utilizing the
Baldwin effect [13, 100, 101, 233] or Lamarckian evolution [54, 233], i.e.,
incorporating a local search into the optimization process, may further help
to smoothen out the fitness landscape [89].
5 We have already mentioned this under the subject of exploitation.



12 T. Weise et al.

Weak causality is often a home-made problem: it results from the choice
of the solution representation and search operations. Thus, in order to apply
Evolutionary Algorithms in an efficient manner, it is necessary to find repre-
sentations which allow for iterative modifications with bounded influence on
the objective values.

4 Deceptiveness

4.1 Introduction

Especially annoying fitness landscapes show deceptiveness (or deceptivity).
The gradient of deceptive objective functions leads the optimizer away from
the optima, as illustrated in Fig. 1.e.

The term deceptiveness is mainly used in the Genetic Algorithm commu-
nity in the context of the Schema Theorem. Schemas describe certain areas
(hyperplanes) in the search space. If an optimization algorithm has discov-
ered an area with a better average fitness compared to other regions, it will
focus on exploring this region based on the assumption that highly fit areas
are likely to contain the true optimum. Objective functions where this is not
the case are called deceptive [20, 84, 127]. Examples for deceptiveness are the
ND fitness landscapes [17], trap functions [1, 59, 112] like the one illustrated
in Fig. 4, and the fully deceptive problems given by Goldberg et al [86, 60].

u(x)

f(x) global optimium
with small basin

of attraction

local optimium
with large basin
of attraction

Fig. 4 Ackley’s “Trap” function [1, 112]

4.2 The Problem

If the information accumulated by an optimizer actually guides it away from
the optimum, search algorithms will perform worse than a random walk or
an exhaustive enumeration method. This issue has been known for a long
time [228, 140, 141, 212] and has been subsumed under the No Free Lunch
Theorem which we will discuss in Section 11.
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4.3 Countermeasures

Solving deceptive optimization tasks perfectly involves sampling many indi-
viduals with very bad features and low fitness. This contradicts the basic ideas
of metaheuristics and thus, there are no efficient countermeasures against de-
ceptivity. Using large population sizes, maintaining a very high diversity, and
utilizing linkage learning (see Section 6.3) are, maybe, the only approaches
which can provide at least a small chance of finding good solutions.

5 Neutrality and Redundancy

5.1 The Problem: Neutrality

We consider the outcome of the application of a search operation to an el-
ement of the search space as neutral if it yields no change in the objective
values [15, 172]. It is challenging for optimization algorithms if the best solu-
tion candidate currently known is situated on a plane of the fitness landscape,
i.e., all adjacent solution candidates have the same objective values. As illus-
trated in Fig. 1.f, an optimizer then cannot find any gradient information and
thus, no direction in which to proceed in a systematic manner. From its point
of view, each search operation will yield identical individuals. Furthermore,
optimization algorithms usually maintain a list of the best individuals found,
which will then overflow eventually or require pruning.

The degree of neutrality ν is defined as the fraction of neutral results
among all possible products of the search operations Op applied to a specific
genotype [15]. We can generalize this measure to areas G in the search space
G by averaging over all their elements. Regions where ν is close to one are
considered as neutral.

∀g1 ∈ G ⇒ ν(g1) =
|{g2|P (g2=Op(g1))>0 ∧ f(gpm(g2))=f (gpm(g1))}|

|{g2|P (g2 = Op(g1)) > 0}| (1)

∀G ⊆ G ⇒ ν(G) =
1
|G|

∑

g∈G

ν(g) (2)

5.2 Evolvability

Another metaphor in global optimization borrowed from biological systems
is evolvability [52]. Wagner [225, 226] points out that this word has two uses
in biology: According to Kirschner and Gerhart [118], a biological system is
evolvable if it is able to generate heritable, selectable phenotypic variations.
Such properties can then be evolved and changed by natural selection. In its
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second sense, a system is evolvable if it can acquire new characteristics via
genetic change that help the organism(s) to survive and to reproduce. The-
ories about how the ability of generating adaptive variants has evolved have
been proposed by Riedl [174], Altenberg [3], Wagner and Altenberg [227],
and Bonner [26], amongst others. The idea of evolvability can be adopted for
global optimization as follows:

Definition 2 (Evolvability). The evolvability of an optimization process in
its current state defines how likely the search operations will lead to solution
candidates with new (and eventually, better) objectives values.

The direct probability of success [170, 22], i.e., the chance that search opera-
tors produce offspring fitter than their parents, is also sometimes referred to
as evolvability in the context of Evolutionary Algorithms [2, 5].

5.3 Neutrality: Problematic and Beneficial

The link between evolvability and neutrality has been discussed by many
researchers. The evolvability of neutral parts of a fitness landscape depends
on the optimization algorithm used. It is especially low for Hill Climbing
and similar approaches, since the search operations cannot directly provide
improvements or even changes. The optimization process then degenerates
to a random walk, as illustrated in Fig. 1.f. The work of Beaudoin et al [17]
on the ND fitness landscapes shows that neutrality may “destroy” useful
information such as correlation.

Researchers in molecular evolution, on the other hand, found indications
that the majority of mutations have no selective influence [77, 106] and that
the transformation from genotypes to phenotypes is a many-to-one mapping.
Wagner [226] states that neutrality in natural genomes is beneficial if it con-
cerns only a subset of the properties peculiar to the offspring of a solution
candidate while allowing meaningful modifications of the others. Toussaint
and Igel [214] even go as far as declaring it a necessity for self-adaptation.

The theory of punctuated equilibria in biology introduced by Eldredge and
Gould [67, 68] states that species experience long periods of evolutionary
inactivity which are interrupted by sudden, localized, and rapid phenotypic
evolutions [47, 134, 12]. It is assumed that the populations explore neutral
layers during the time of stasis until, suddenly, a relevant change in a genotype
leads to a better adapted phenotype [224] which then reproduces quickly.

The key to differentiating between “good” and “bad” neutrality is its de-
gree ν in relation to the number of possible solutions maintained by the
optimization algorithms. Smith et al [204] have used illustrative examples
similar to Fig. 5 showing that a certain amount of neutral reproductions can
foster the progress of optimization. In Fig. 5.a, basically the same scenario
of premature convergence as in Fig. 3.a is depicted. The optimizer is drawn
to a local optimum from which it cannot escape anymore. Fig. 5.b shows



Why Is Optimization Difficult? 15

that a little shot of neutrality could form a bridge to the global optimum.
The optimizer now has a chance to escape the smaller peak if it is able to
find and follow that bridge, i.e., the evolvability of the system has increased.
If this bridge gets wider, as sketched in Fig. 5.c, the chance of finding the
global optimum increases as well. Of course, if the bridge gets too wide, the
optimization process may end up in a scenario like in Fig. 1.f where it cannot
find any direction. Furthermore, in this scenario we expect the neutral bridge
to lead to somewhere useful, which is not necessarily the case in reality.

global optimum

local optimum

Fig. 5.a: Premature
Convergence

Fig. 5.b: Small Neutral
Bridge

Fig. 5.c: Wide Neutral
Bridge

Fig. 5 Possible positive influence of neutrality

Examples for neutrality in fitness landscapes are the ND family [17], the
NKp [15] and NKq [155] models, and the Royal Road [139]. Another common
instance of neutrality is bloat in Genetic Programming [131].

5.4 Redundancy: Problematic and Beneficial

Redundancy in the context of global optimization is a feature of the genotype-
phenotype mapping and means that multiple genotypes map to the same
phenotype, i.e., the genotype-phenotype mapping is not injective. The role of
redundancy in the genome is as controversial as that of neutrality [230]. There
exist many accounts of its positive influence on the optimization process.
Shackleton et al [194, 197], for instance, tried to mimic desirable evolution-
ary properties of RNA folding [106]. They developed redundant genotype-
phenotype mappings using voting (both, via uniform redundancy and via a
non-trivial approach), Turing machine-like binary instructions, Cellular au-
tomata, and random Boolean networks [114]. Except for the trivial voting
mechanism based on uniform redundancy, the mappings induced neutral net-
works which proved beneficial for exploring the problem space. Especially the
last approach provided particularly good results [194, 197]. Possibly converse
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effects like epistasis (see Section 6) arising from the new genotype-phenotype
mappings have not been considered in this study.

Redundancy can have a strong impact on the explorability of the prob-
lem space. When utilizing a one-to-one mapping, the translation of a slightly
modified genotype will always result in a different phenotype. If there ex-
ists a many-to-one mapping between genotypes and phenotypes, the search
operations can create offspring genotypes different from the parent which
still translate to the same phenotype. The optimizer may now walk along a
path through this neutral network. If many genotypes along this path can be
modified to different offspring, many new solution candidates can be reached
[197]. The experiments of Shipman et al [198, 196] additionally indicate that
neutrality in the genotype-phenotype mapping can have positive effects.

Yet, Rothlauf [182] and Shackleton et al [194] show that simple uniform
redundancy is not necessarily beneficial for the optimization process and
may even slow it down. There is no use in introducing encodings which, for
instance, represent each phenotypic bit with two bits in the genotype where
00 and 01 map to 0 and 10 and 11 map to 1.

5.5 Summary

Different from ruggedness which is always bad for optimization algorithms,
neutrality has aspects that may further as well as hinder the process of find-
ing good solutions. Generally we can state that degrees of neutrality ν very
close to 1 degenerate optimization processes to random walks. Some forms
of neutral networks [14, 15, 27, 105, 208, 222, 223, 237] accompanied by low
(nonzero) values of ν can improve the evolvability and hence, increase the
chance of finding good solutions.

Adverse forms of neutrality are often caused by bad design of the search
space or genotype-phenotype mapping. Uniform redundancy in the genome
should be avoided where possible and the amount of neutrality in the search
space should generally be limited.

6 Epistasis

6.1 Introduction

In biology, epistasis is defined as a form of interaction between different genes
[163]. The term was coined by Bateson [16] and originally meant that one
gene suppresses the phenotypical expression of another gene. In the context
of statistical genetics, epistasis was initially called “epistacy” by Fisher [74].
According to Lush [132], the interaction between genes is epistatic if the ef-
fect on the fitness of altering one gene depends on the allelic state of other
genes. This understanding of epistasis comes very close to another biological
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expression: Pleiotropy, which means that a single gene influences multiple
phenotypic traits [239]. In global optimization, such fine-grained distinctions
are usually not made and the two terms are often used more or less synony-
mously.

Definition 3 (Epistasis). In optimization, Epistasis is the dependency of
the contribution of one gene to the value of the objective functions on the
allelic state of other genes [4, 51, 153].

We speak of minimal epistasis when every gene is independent of every other
gene. Then, the optimization process equals finding the best value for each
gene and can most efficiently be carried out by a simple greedy search [51]. A
problem is maximally epistatic when no proper subset of genes is independent
of any other gene [205, 153]. Examples of problems with a high degree of
epistasis are Kauffman’s NK fitness landscape [113, 115], the p-Spin model
[6], and the tunable model of Weise et al [232].

6.2 The Problem

As sketched in Fig. 6, epistasis has a strong influence on many of the pre-
viously discussed problematic features. If one gene can “turn off” or affect
the expression of many other genes, a modification of this gene will lead to
a large change in the features of the phenotype. Hence, the causality will be
weakened and ruggedness ensues in the fitness landscape. On the other hand,
subsequent changes to the “deactivated” genes may have no influence on the
phenotype at all, which would then increase the degree of neutrality in the
search space. Epistasis is mainly an aspect of the way in which we define the
genome G and the genotype-phenotype mapping gpm. It should be avoided
where possible.

Generally, epistasis and conflicting objectives in multi-objective optimiza-
tion should be distinguished from each other. Epistasis as well as pleiotropy

ruggedness multi-
modality

weak causality

high
epistasis

� causes

neutrality

Fig. 6 The influence of epistasis on the fitness landscape
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is a property of the influence of the elements (the genes) of the genotypes
on the phenotypes. Objective functions can conflict without the involvement
of any of these phenomena. We can, for example, define two objective func-
tions f1(x) = x and f2(x) = −x which are clearly contradicting regardless of
whether they are subject to maximization or minimization. Nevertheless, if
the solution candidates x as well as the genotypes are simple real numbers
and the genotype-phenotype mapping is simply an identity mapping, neither
epistatic nor pleiotropic effects can occur.

Naudts and Verschoren [154] have shown for the special case of length-
two binary string genomes that deceptiveness does not occur in situations
with low epistasis and also that objective functions with high epistasis are
not necessarily deceptive. Another discussion about different shapes of fitness
landscapes under the influence of epistasis is given by Beerenwinkel et al [18].

6.3 Countermeasures

6.3.1 General

We have shown that epistasis is a root cause for multiple problematic fea-
tures of optimization tasks. General countermeasures against epistasis can be
divided into two groups. The symptoms of epistasis can be mitigated with
the same methods which increase the chance of finding good solutions in the
presence of ruggedness or neutrality – using larger populations and favor-
ing explorative search operations. Epistasis itself is a feature which results
from the choice of the search space structure, the search operations, and the
genotype-phenotype mapping. Avoiding epistatic effects should be a major
concern during their design. This can lead to a great improvement in the
quality of the solutions produced by the optimization process [231]. General
advice for good search space design is given in [84, 166, 178] and [229].

6.3.2 Linkage Learning

According to Winter et al [240], linkage is “the tendency for alleles of different
genes to be passed together from one generation to the next” in genetics. This
usually indicates that these genes are closely located in the same chromosome.
In the context of Evolutionary Algorithms, this notation is not useful since
identifying spatially close elements inside the genotypes is trivial. Instead,
we are interested in alleles of different genes which have a joint effect on the
fitness [150, 151].

Identifying these linked genes, i.e., learning their epistatic interaction, is
very helpful for the optimization process. Such knowledge can be used to pro-
tect building blocks from being destroyed by the search operations. Finding
approaches for linkage learning has become an especially popular discipline
in the area of Evolutionary Algorithms with binary [99, 150, 46] and real
[63] genomes. Two important methods from this area are the messy Genetic
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Algorithm (mGA) by Goldberg et al [86] and the Bayesian Optimization
Algorithm (BOA) [162, 41]. Module acquisition [8] may be considered as a
similar effort in the area of Genetic Programming.

Let us take the mGA as an illustrative example for this family of ap-
proaches. By explicitly allowing the search operations to rearrange the genes
in the genotypes, epistatically linked genes may get located closer to each
other by time. As sketched in Fig. 7, the tighter the building blocks are
packed, the less likely are they to be destroyed by crossover operations which
usually split parent genotypes at randomly chosen points. Hence, the opti-
mization process can strengthen the causality in the search space.

destroyed in 6 out of 9 cases by crossover

destroyed in 1 out of 9 cases by crossover

rearrange

Fig. 7 Two linked genes and their destruction probability under single-point
crossover

7 Noise and Robustness

7.1 Introduction – Noise

In the context of optimization, three types of noise can be distinguished. The
first form is noise in the training data used as basis for learning (i). In many
applications of machine learning or optimization where a model m for a given
system is to be learned, data samples including the input of the system and its
measured response are used for training. Some typical examples of situations
where training data is the basis for the objective function evaluation are

• the usage of global optimization for building classifiers (for example for
predicting buying behavior using data gathered in a customer survey for
training),

• the usage of simulations for determining the objective values in Genetic
Programming (here, the simulated scenarios correspond to training cases),
and

• the fitting of mathematical functions to (x, y)-data samples (with artificial
neural networks or symbolic regression, for instance).

Since no measurement device is 100% accurate and there are always random
errors, noise is present in such optimization problems.

Besides inexactnesses and fluctuations in the input data of the optimization
process, perturbations are also likely to occur during the application of its
results. This category subsumes the other two types of noise: perturbations
that may arise from inaccuracies in (ii) the process of realizing the solutions
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and (iii) environmentally induced perturbations during the applications of
the products.

This issue can be illustrated using the process of developing the perfect
tire for a car as an example. As input for the optimizer, all sorts of material
coefficients and geometric constants measured from all known types of wheels
and rubber could be available. Since these constants have been measured or
calculated from measurements, they include a certain degree of noise and
imprecision (i).

The result of the optimization process will be the best tire construction
plan discovered during its course and it will likely incorporate different ma-
terials and structures. We would hope that the tires created according to
the plan will not fall apart if, accidently, an extra 0.0001% of a specific rub-
ber component is used (ii). During the optimization process, the behavior of
many construction plans will be simulated in order to find out about their
utility. When actually manufactured, the tires should not behave unexpect-
edly when used in scenarios different from those simulated (iii) and should
instead be applicable in all driving scenarios likely to occur.

The effects of noise in optimization have been studied by various re-
searchers; Miller and Goldberg [136, 137], Lee and Wong [125], and Gurin
and Rastrigin [92] are some of them. Many global optimization algorithms
and theoretical results have been proposed which can deal with noise. Some
of them are, for instance, specialized

• Genetic Algorithms [75, 119, 188, 189, 217, 218],
• Evolution Strategies [11, 21, 96], and
• Particle Swarm Optimization [97, 161] approaches.

7.2 The Problem: Need for Robustness

The goal of global optimization is to find the global optima of the objective
functions. While this is fully true from a theoretical point of view, it may
not suffice in practice. Optimization problems are normally used to find good
parameters or designs for components or plans to be put into action by human
beings or machines. As we have already pointed out, there will always be noise
and perturbations in practical realizations of the results of optimization.

Definition 4 (Robustness). A system in engineering or biology is robust if
it is able to function properly in the face of genetic or environmental pertur-
bations [225].

Therefore, a local optimum (or even a non-optimal element) for which slight
deviations only lead to gentle performance degenerations is usually favored
over a global optimum located in a highly rugged area of the fitness land-
scape [31]. In other words, local optima in regions of the fitness landscape with
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strong causality are sometimes better than global optima with weak causal-
ity. Of course, the level of this acceptability is application-dependent. Fig. 8
illustrates the issue of local optima which are robust vs. global optima which
are not. More examples from the real world are:

• When optimizing the control parameters of an airplane or a nuclear power
plant, the global optimum is certainly not used if a slight perturbation can
have hazardous effects on the system [218].

• Wiesmann et al [234, 235] bring up the topic of manufacturing tolerances
in multilayer optical coatings. It is no use to find optimal configurations
if they only perform optimal when manufactured to a precision which is
either impossible or too hard to achieve on a constant basis.

• The optimization of the decision process on which roads should be pre-
cautionary salted for areas with marginal winter climate is an example
of the need for dynamic robustness. The global optimum of this problem
is likely to depend on the daily (or even current) weather forecast and
may therefore be constantly changing. Handa et al [98] point out that it is
practically infeasible to let road workers follow a constantly changing plan
and circumvent this problem by incorporating multiple road temperature
settings in the objective function evaluation.

• Tsutsui et al [218, 217] found a nice analogy in nature: The phenotypic
characteristics of an individual are described by its genetic code. Dur-
ing the interpretation of this code, perturbations like abnormal tempera-
ture, nutritional imbalances, injuries, illnesses and so on may occur. If the
phenotypic features emerging under these influences have low fitness, the
organism cannot survive and procreate. Thus, even a species with good
genetic material will die out if its phenotypic features become too sensi-
tive to perturbations. Species robust against them, on the other hand, will
survive and evolve.

global optimum
robust local optimum

f(x)

X

Fig. 8 A robust local optimum vs. a “unstable” global optimum
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7.3 Countermeasures

For the special case where the problem space corresponds to the real vec-
tors (X ⊆ R

n), several approaches for dealing with the problem of robust-
ness have been developed. Inspired by Taguchi methods6 [209], possible dis-
turbances are represented by a vector δ = (δ1, δ2, .., δn)T

, δi ∈ R in the
method of Greiner [87, 88]. If the distribution and influence of the δi are known,
the objective function f(x) : x ∈ X can be rewritten as f̃(x, δ) [235]. In
the special case where δ is normally distributed, this can be simplified to
f̃
(
(x1 + δ1, x2 + δ2, .., xn + δn)T

)
. It would then make sense to sample the

probability distribution of δ a number of t times and to use the mean values of
f̃(x, δ) for each objective function evaluation during the optimization process.
In cases where the optimal value y of the objective function f is known, Equa-
tion 3 can be minimized. This approach is also used in the work of Wiesmann
et al [234, 235] and basically turns the optimization algorithm into something
like a maximum likelihood estimator.

f ′(x) =
1
t

t∑

i=1

(
y − f̃(x, δi)

)2

(3)

This method corresponds to using multiple, different training scenarios
during the objective function evaluation in situations where X 	⊆ R

n. By
adding random noise and artificial perturbations to the training cases, the
chance of obtaining robust solutions which are stable when applied or realized
under noisy conditions can be increased.

8 Overfitting and Oversimplification

In all scenarios where optimizers evaluate some of the objective values of the
solution candidates by using training data, two additional phenomena with
negative influence can be observed: overfitting and oversimplification.

8.1 Overfitting

8.1.1 The Problem

Definition 5 (Overfitting). Overfitting is the emergence of an overly com-
plicated model (solution candidate) in an optimization process resulting from
the effort to provide the best results for as much of the available training data
as possible [64, 80, 190, 202].

A model (solution candidate) m ∈ X created with a finite set of training
data is considered to be overfitted if a less complicated, alternative model
6 http://en.wikipedia.org/wiki/Taguchi_methods [accessed 2008-07-19]

http://en.wikipedia.org/wiki/Taguchi_methods
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m′ ∈ X exists which has a smaller error for the set of all possible (maybe
even infinitely many), available, or (theoretically) producible data samples.
This model m′ may, however, have a larger error in the training data.

The phenomenon of overfitting is best known and can often be encountered
in the field of artificial neural networks or in curve fitting [124, 128, 181, 191,
211]. The latter means that we have a set A of n training data samples
(xi, yi) and want to find a function f that represents these samples as well
as possible, i.e., f(xi) = yi ∀ (xi, yi) ∈ A.

There exists exactly one polynomial of the degree n − 1 that fits to each
such training data and goes through all its points. Hence, when only polyno-
mial regression is performed, there is exactly one perfectly fitting function of
minimal degree. Nevertheless, there will also be an infinite number of poly-
nomials with a higher degree than n − 1 that also match the sample data
perfectly. Such results would be considered as overfitted.

In Fig. 9, we have sketched this problem. The function f1(x) = x shown in
Fig. 9.b has been sampled three times, as sketched in Fig. 9.a. There exists
no other polynomial of a degree of two or less that fits to these samples than
f1. Optimizers, however, could also find overfitted polynomials of a higher
degree such as f2 which also match the data, as shown in Fig. 9.c. Here, f2

plays the role of the overly complicated model m which will perform as good
as the simpler model m′ when tested with the training sets only, but will fail
to deliver good results for all other input data.

x

y

Fig. 9.a: Three sample
points of f1

x

y

m`

Fig. 9.b: m′ ≡ f1(x) =
x

x

y

m

Fig. 9.c: m ≡ f2(x)

Fig. 9 Overfitting due to complexity

A very common cause for overfitting is noise in the sample data. As we
have already pointed out, there exists no measurement device for physical
processes which delivers perfect results without error. Surveys that represent
the opinions of people on a certain topic or randomized simulations will ex-
hibit variations from the true interdependencies of the observed entities, too.
Hence, data samples based on measurements will always contain some noise.

In Fig. 10 we have sketched how such noise may lead to overfitted re-
sults. Fig. 10.a illustrates a simple physical process obeying some quadratic
equation. This process has been measured using some technical equipment
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Fig. 10.a: The original
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Fig. 10.b: The measure-
ment/training data
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Fig. 10.c: The overfit-
ted result

Fig. 10 Fitting noise

and the 100 noisy samples depicted in Fig. 10.b has been obtained. Fig. 10.c
shows a function resulting from an optimization that fits the data perfectly.
It could, for instance, be a polynomial of degree 99 that goes right through
all the points and thus, has an error of zero. Although being a perfect match
to the measurements, this complicated model does not accurately represent
the physical law that produced the sample data and will not deliver precise
results for new, different inputs.

From the examples we can see that the major problem that results from
overfitted solutions is the loss of generality.

Definition 6 (Generality). A solution of an optimization process is general
if it is not only valid for the sample inputs a1, a2, . . . , an which were used
for training during the optimization process, but also for different inputs
a 	= ai ∀i : 0 < i ≤ n if such inputs a exist.

8.1.2 Countermeasures

There exist multiple techniques that can be utilized in order to prevent over-
fitting to a certain degree. It is most efficient to apply multiple such techniques
together in order to achieve best results.

A very simple approach is to restrict the problem space X in a way that
only solutions up to a given maximum complexity can be found. In terms
of function fitting, this could mean limiting the maximum degree of the
polynomials to be tested. Furthermore, the functional objective functions
which solely concentrate on the error of the solution candidates should be
augmented by penalty terms and non-functional objective functions putting
pressure in the direction of small and simple models [64, 116].

Large sets of sample data, although slowing down the optimization pro-
cess, may improve the generalization capabilities of the derived solutions. If
arbitrarily many training datasets or training scenarios can be generated,
there are two approaches which work against overfitting:

1. The first method is to use a new set of (randomized) scenarios for each eval-
uation of a solution candidate. The resulting objective values may differ
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largely even if the same individual is evaluated twice in a row, introducing
incoherence and ruggedness into the fitness landscape.

2. At the beginning of each iteration of the optimizer, a new set of (random-
ized) scenarios is generated which is used for all individual evaluations
during that iteration. This method leads to objective values which can be
compared without bias.

In both cases it is helpful to use more than one training sample or scenario per
evaluation and to set the resulting objective value to the average (or better
median) of the outcomes. Otherwise, the fluctuations of the objective values
between the iterations will be very large, making it hard for the optimizers
to follow a stable gradient for multiple steps.

Another simple method to prevent overfitting is to limit the runtime of the
optimizers [190]. It is commonly assumed that learning processes normally
first find relatively general solutions which subsequently begin to overfit be-
cause the noise “is learned”, too.

For the same reason, some algorithms allow to decrease the rate at which
the solution candidates are modified by time. Such a decay of the learning
rate makes overfitting less likely.

If only one finite set of data samples is available for training/optimization,
it is common practice to separate it into a set of training data At and a set
of test cases Ac. During the optimization process, only the training data is
used. The resulting solutions are tested with the test cases afterwards. If their
behavior is significantly worse when applied to Ac than when applied to At,
they are probably overfitted.

The same approach can be used to detect when the optimization process
should be stopped. The best known solution candidates can be checked with
the test cases in each iteration without influencing their objective values
which solely depend on the training data. If their performance on the test
cases begins to decrease, there are no benefits in letting the optimization
process continue any further.

8.2 Oversimplification

8.2.1 The Problem

Oversimplification (also called overgeneralization) is the opposite of over-
fitting. Whereas overfitting denotes the emergence of overly-complicated
solution candidates, oversimplified solutions are not complicated enough.
Although they represent the training samples used during the optimization
process seemingly well, they are rough overgeneralizations which fail to pro-
vide good results for cases not part of the training.

A common cause for oversimplification is sketched in Fig. 11: The training
sets only represent a fraction of the set of possible inputs. As this is normally
the case, one should always be aware that such an incomplete coverage may
fail to represent some of the dependencies and characteristics of the data,
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Fig. 11 Oversimplification

which then may lead to oversimplified solutions. Another possible reason
is that ruggedness, deceptiveness, too much neutrality, or high epistasis in
the fitness landscape may lead to premature convergence and prevent the
optimizer from surpassing a certain quality of the solution candidates. It then
cannot completely adapt them even if the training data perfectly represents
the sampled process. A third cause is that a problem space which does not
include the correct solution was chosen.

Fig. 11.a shows a cubic function. Since it is a polynomial of degree three,
four sample points are needed for its unique identification. Maybe not know-
ing this, only three samples have been provided in Fig. 11.b. By doing so,
some vital characteristics of the function are lost. Fig. 11.c depicts a square
function – the polynomial of the lowest degree that fits exactly to these
samples. Although it is a perfect match, this function does not touch any
other point on the original cubic curve and behaves totally differently at
the lower parameter area.

However, even if we had included point P in our training data, it would
still be possible that the optimization process would yield Fig. 11.c as a re-
sult. Having training data that correctly represents the sampled system does
not mean that the optimizer is able to find a correct solution with perfect
fitness – the other, previously discussed problematic phenomena can prevent
it from doing so. Furthermore, if it was not known that the system which
was to be modeled by the optimization process can best be represented by a
polynomial of the third degree, one could have limited the problem space X

to polynomials of degree two and less. Then, the result would likely again be
something like Fig. 11.c, regardless of how many training samples are used.

8.2.2 Countermeasures

In order to counter oversimplification, its causes have to be mitigated. Gen-
erally, it is not possible to have training scenarios which cover the complete
input space of the evolved programs. By using multiple scenarios for each
individual evaluation, the chance of missing important aspects is decreased.
These scenarios can be replaced with new, randomly created ones in each
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generation, which will decrease this chance even more. The problem space,
i.e., the representation of the solution candidates, should further be chosen
in a way which allows constructing a correct solution to the problem de-
fined. Then again, releasing too many constraints on the solution structure
increases the risk of overfitting and thus, careful proceeding is recommended.

9 Multi-objective Optimization

9.1 Introduction

Many optimization problems in the real world have k possibly contradictory
objectives fi which must be optimized simultaneously. Furthermore, the so-
lutions must satisfy m inequality constraints g and p equality constraints h.
A solution candidate x is feasible, if and only if gi(x) ≥ 0 ∀i = 1, 2, .., m and
hi(x) = 0 ∀i = 1, 2, .., p holds. A multi-objective optimization problem (MOP)
can then be formally defined as follows:

Definition 7 (MOP). Find a solution candidate x� in X which minimizes
(or maximizes) the vector function f(x�) = (fi(x�) , f2(x�) , .., fk(x�))T and is
feasible, (i.e., satisfies the m inequality constraints gi(x�) ≥ 0 ∀i = 1, 2, .., m,
the p equality constraints hi(x�) = 0 ∀i = 1, 2, .., p).

As in single-objective optimization, nature-inspired algorithms are popular
techniques to solve such problems. The fact that there are two or more objec-
tive functions implies additional difficulties. Due to the contradictory feature
of the functions in a MOP and the fact that there exists no total order in
R

n for n > 1, the notions of “better than” and “optimum” have to be rede-
fined. When comparing any two solutions x1 and x2, solution x1 can have a
better value in objective fi, i.e., fi(x1) < fi(x2), while solution x2 can have
a better value in objective fj . The concepts commonly used here are Pareto
dominance and Pareto optimality.

Definition 8 (Pareto Dominance). In the context ofmulti-objective global
optimization, a solution candidate x1 is said to dominate another solution can-
didate x2 (denoted by x1 � x2) if and only if f(x1) is partially less than f(x2),
i.e., ∀i ∈ {1, .., k} fi(x1) ≤ fi(x2) ∧ ∃j ∈ {1, .., k} : fj(x1) < fj(x2).

The dominance notion allows us to assume that if solution x1 dominates
solution x2, then x1 is preferable to x2. If both solution are non-dominated
(such as candidate ① and ② in Fig. 12), some additional criteria have to be
used to choose one of them.

Definition 9 (Pareto Optimality). A feasible point x� ∈ X is Pareto-
optimal if and only if there is no feasible xb ∈ X with xb � x�.

This definition states that x� is Pareto-optimal if there is no other feasible
solution xb which would improve some criterion without causing a simul-
taneous worsening in at least one other criterion. The solution to a MOP,
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Fig. 12 Some examples for the dominance relation

considering Pareto optimality, is the set of feasible, non-dominated solutions
which is known as Pareto-optimal set :

Definition 10 (Pareto-Optimal Set). For a given MOP f(x), the Pareto
optimal set is defined as P� = {x� ∈ X|¬∃x ∈ X : x � x�}.
When the solutions in the Pareto-optimal set are plotted in the objective
space (as sketched in Fig. 12), they are collectively known as the Pareto
front :

Definition 11 (Pareto Front). For a given MOP f(x) and its Pareto-
optimal set P�, the Pareto front is defined as PF� = {f (x) |x ∈ P�}.
Obtaining the Pareto front of a MOP is the main goal of multi-objective
optimization. In a real scenario, the solutions in the Pareto front are sent
to an expert in the MOP, the decision maker, who will be responsible for
choosing the best tradeoff solution among all of them. Fig. 13 depicts the
Pareto front of a bi-objective MOP. In a real problem example, f1 could

f1

f2

Fig. 13 Example of Pareto front of a bi-objective MOP
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Fig. 14 Pareto front approximation sets

represent the time required by a car to cover a given distance, while f2 could
be the fuel consumption.

The Pareto front of a MOP can contain a large (possibly infinite) number
of points. Usually, the goal of optimization is to obtain a fixed-size set of
solutions called Pareto front approximation set. Population-based algorithms,
such as Genetic Algorithms, are very popular to solve MOPs because they
can provide an approximation set in a single run.

Given that the goal is to find a Pareto front approximation set, two is-
sues arise. First, the optimization process should converge to the true Pareto
front and return solutions as close to it as possible. Second, they should be
uniformly spread along this front.

Let us examine the three fronts included in Fig. 14. The first picture
(Fig. 14.a) shows an approximation set having a very good spread7 of

7 In MO optimization, this property is usually called diversity. In order to avoid
confusion with the (related) diversity property from Section 2.3, we here use the
term spread instead.
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solutions, but the points are far away from the true Pareto front. Such results
are not attractive because they do not provide Pareto-optimal solutions. The
second example (Fig. 14.b) contains a set of solutions which are very close to
the true Pareto front but cover it only partially, so the decision maker could
lose important trade-off solutions. Finally, the front depicted in Fig. 14.c has
the two desirable properties of good convergence and spread.

9.2 The Problem

Features such as multi-modality, deceptiveness, or epistasis found in single-
objective optimization also affect MOPs, making them more difficult to solve.
However, there are some characteristics that are particular to MOPs. Here
we comment on two of them: geometry and dimensionality.

The Pareto front in Fig. 13 has a convex geometry, but there are other
different shapes as well. In Fig. 15 we show some examples, including non-
convex (concave), disconnected, linear, and non-uniformly distributed Pareto

f1

f2

Fig. 15.a: Non-Convex (Concave)

f1

f2

Fig. 15.b: Disconnected

f1

f2

Fig. 15.c: linear

f1

f2

Fig. 15.d: Non-Uniformly Dis-
tributed

Fig. 15 Examples of Pareto fronts
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fronts. Besides Pareto optimization, there is a wide variety of other concepts
for defining what optima are in the presence of multiple objective functions
[45]. The simplest approach is maybe to use a weighted sum of all objective
values and set v(x) =

∑k
i=1 fi(x). Then the optima would be the element(s)

x� with ¬∃x ∈ X : v(x) < v(x�). However, an optimization process driven
by such a linear aggregating function will not find portions of Pareto fronts
with non-convex geometry as shown by Das and Dennis [50].

Many studies in the literature consider mainly bi-objective MOPs. As a
consequence, many algorithms are designed to deal with that kind of prob-
lems. However, MOPs having a higher number of objective functions are
common in practice, leading to the so-called many-objective optimization
[165], which is currently a hot research topic. Most of the optimization al-
gorithms applied today utilize the Pareto dominance relation. When the
dimension of the MOPs increases, the majority of solution candidates are non-
dominated. As a consequence, traditional nature-inspired algorithms have to
be redesigned.

9.3 Countermeasures

In order to obtain an accurate approximation to the true Pareto front, many
nature-inspired multi-objective algorithms apply a fitness assignment scheme
based on the concept of Pareto dominance, as commented before. For exam-
ple, NSGA-II [61, 62], the most well-known multi-objective technique, assigns
to each solution a rank depending on the number of solutions dominating it.
Thus, solutions with rank 1 are non-dominated, solutions with rank 2 are
dominated by one solution, and so on. Other algorithms, such as SPEA2
[247, 248] introduce the concept of strength, which is similar to the ranking
but also considers the number of dominated solutions.

While the use of Pareto-based ranking methods allows the techniques to
search in the direction of finding approximations with good convergence, addi-
tional strategies are needed to promote spread. The most commonly adopted
approach is to include a kind of density estimator in order to select those
solutions which are in the less crowded regions of the objective space. Thus,
NSGA-II employs the crowding distance [61] and SPEA2 the distance to the
k-nearest neighbor [62].

9.4 Constraint Handling

How the constraints mentioned in Definition 7 are handled is a whole research
area in itself with roots in single-objective optimization. Maybe one of the
most popular approach for dealing with constraints goes back to Courant [48]
who introduced the idea of penalty functions [73, 44, 201] in 1943: Consider,
for instance, the term f ′(x) = f(x)+v [h(x)]2 where f is the original objective
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function, h is an equality constraint, and v > 0. If f ′ is minimized, an infea-
sible individual will always have a worse fitness than a feasible one with the
same objective values.

Besides such static penalty functions, dynamic terms incorporating the
generation counter [111, 157] or adaptive approaches utilizing additional
population statistics [95, 199] have been proposed. Rigorous discussions on
penalty functions have been contributed by Fiacco and McCormick [73] and
Smith and Coit [201].

During the last fifteen years, many approaches have been developed
which incorporate constraint handling and multi-objectivity. Instead of using
penalty terms, Pareto ranking can also be extended by additionally com-
paring individuals according to their feasibility, for instance. Examples for
this approach are the Method of Inequalities (MOI) of Zakian [245] as used
by Pohlheim [164] and the Goal Attainment method defined in [76]. Deb
[56, 58] even suggested to simply turn constraints into objective functions in
his MOEA version of Goal Programming.

10 Dynamically Changing Fitness Landscape

It should also be mentioned that there exist problems with dynamically
changing fitness landscapes [33, 32, 36, 147, 173]. The task of an optimization
algorithm is, then, to provide solution candidates with momentarily optimal
objective values for each point in time. Here we have the problem that an
optimum in iteration t will possibly not be an optimum in iteration t + 1
anymore.

The moving peaks benchmarks by Branke [33, 32] and Morrison and De
Jong [147] are good examples for dynamically changing fitness landscapes.
Such problems with dynamic characteristics can, for example, be tackled with
special forms [244] of

• Evolutionary Algorithms [9, 34, 35, 145, 146, 216, 236],
• Genetic Algorithms [83, 119, 142, 143, 144],
• Particle Swarm Optimization [23, 42, 43, 126, 160],
• Differential Evolution [135, 243], and
• Ant Colony Optimization [90, 91]

11 The No Free Lunch Theorem

By now, we know the most important problems that can be encountered when
applying an optimization algorithm to a given problem. Furthermore, we
have seen that it is arguable what actually an optimum is if multiple criteria
are optimized at once. The fact that there is most likely no optimization
method that can outperform all others on all problems can, thus, easily be
accepted. Instead, there exist a variety of optimization methods specialized
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Fig. 16 A visualization of the No Free Lunch Theorem

in solving different types of problems. There are also algorithms which deliver
good results for many different problem classes, but may be outperformed by
highly specialized methods in each of them.

These facts have been formalized by Wolpert and Macready [241, 242]
in their No Free Lunch Theorems (NFL) for search and optimization algo-
rithms. Wolpert and Macready [242] focus on single-objective optimization
and prove that the sum of the values of any performance measure (such as the
objective value of the best solution candidate discovered until a time step m)
over all possible objective functions f is always identical for all optimization
algorithms.

From this theorem, we can immediately follow that, in order to outperform
the optimization method a1 in one optimization problem, the algorithm a2

will necessarily perform worse in another. Fig. 16 visualizes this issue. The
higher the value of the performance measure illustrated there, the faster will
the corresponding problem be solved. The figure shows that general opti-
mization approaches (like Evolutionary Algorithms) can solve a variety of
problem classes with reasonable performance. Hill Climbing approaches, for
instance, will be much faster than Evolutionary Algorithms if the objective
functions are steady and monotonous, that is, in a smaller set of optimization
tasks. Greedy search methods will perform fast on all problems with matroid
structure. Evolutionary Algorithms will most often still be able to solve these
problems, it just takes them longer to do so. The performance of Hill Climb-
ing and greedy approaches degenerates in other classes of optimization tasks
as a trade-off for their high utility in their “area of expertise”.
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One interpretation of the No Free Lunch Theorem is that it is impossi-
ble for any optimization algorithm to outperform random walks or exhaus-
tive enumerations on all possible problems. For every problem where a given
method leads to good results, we can construct a problem where the same
method has exactly the opposite effect (see Section 4). As a matter of fact,
doing so is even a common practice to find weaknesses of optimization algo-
rithms and to compare them with each other.

Another interpretation is that every useful optimization algorithm utilizes
some form of problem-specific knowledge. Radcliffe [167] states that without
such knowledge, search algorithms cannot exceed the performance of simple
enumerations. Incorporating knowledge starts with relying on simple assump-
tions like “if x is a good solution candidate, than we can expect other good
solution candidates in its vicinity”, i.e., strong causality. The more (correct)
problem specific knowledge is integrated (correctly) into the algorithm struc-
ture, the better will the algorithm perform. On the other hand, knowledge
correct for one class of problems is, quite possibly, misleading for another
class. In reality, we use optimizers to solve a given set of problems and are
not interested in their performance when (wrongly) applied to other classes.

Today, there exists a wide range of work on No Free Lunch The-
orems for many different aspects of machine learning. The website
http://www.no-free-lunch.org/8 gives a good overview about them. Fur-
ther summaries and extensions have been provided by Köppen et al [121]
and Igel and Toussaint [108, 109]. Radcliffe and Surry [168] discuss the NFL
in the context of Evolutionary Algorithms and the representations used as
search spaces. The No Free Lunch Theorem is furthermore closely related to
the Ugly Duckling Theorem proposed by Watanabe [228] for classification
and pattern recognition.

12 Concluding Remarks

The subject of this introductory chapter was the question about what makes
optimization problems hard, especially for metaheuristic approaches. We have
discussed numerous different phenomena which can affect the optimization
process and lead to disappointing results. If an optimization process has con-
verged prematurely, it has been trapped in a non-optimal region of the search
space from which it cannot “escape” anymore (Section 2). Ruggedness (Sec-
tion 3) and deceptiveness (Section 4) in the fitness landscape, often caused
by epistatic effects (Section 6), can misguide the search into such a region.
Neutrality and redundancy (Section 5) can either slow down optimization
because the application of the search operations does not lead to a gain in
information or may also contribute positively by creating neutral networks
from which the search space can be explored and local optima can be escaped

8 Accessed: 2008-03-28

http://www.no-free-lunch.org/
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from. The solutions that are derived, even in the presence of noise, should
be robust (Section 7). Also, they should neither be too general (oversimpli-
fication, Section 8.2) nor too specifically aligned only to the training data
(overfitting, Section 8.1). Furthermore, many practical problems are multi-
objective, i.e., involve the optimization of more than one criterion at once
(Section 9), or concern objectives which may change over time (Section 10).

In the previous section, we discussed the No Free Lunch Theorem and
argued that it is not possible to develop the one optimization algorithm, the
problem-solving machine which can provide us with near-optimal solutions
in short time for every possible optimization task. This must sound very
depressing for everybody new to this subject.

Actually, quite the opposite is the case, at least from the point of view of
a researcher. The No Free Lunch Theorem means that there will always be
new ideas, new approaches which will lead to better optimization algorithms
to solve a given problem. Instead of being doomed to obsolescence, it is far
more likely that most of the currently known optimization methods have at
least one niche, one area where they are excellent. It also means that it is very
likely that the “puzzle of optimization algorithms” will never be completed.
There will always be a chance that an inspiring moment, an observation in
nature, for instance, may lead to the invention of a new optimization algo-
rithm which performs better in some problem areas than all currently known
ones.
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The Rationale Behind Seeking Inspiration from
Nature

Kent C.B. Steer, Andrew Wirth, and Saman K. Halgamuge

Abstract. There are currently numerous heuristic algorithms for combinatorial opti-
misation problems which are commonly described as nature-inspired. Parallels can
certainly be drawn between these algorithms and various natural processes, but the
extent of the natural inspiration is not always clear. This chapter attempts to clarify
what it means to say an algorithm is nature-inspired. Additionally, we will discuss
the features of nature which make it a valuable resource in the design of success-
ful new algorithms. Not only does nature provide processes which can be used for
optimisation, but it is also a popular source of useful metaphors, which assist the de-
signer. Finally, the history of some well-known algorithms will be discussed, with
particular attention to the role nature has played in their development.

1 Introduction

In this chapter we will examine the rationale behind the use of nature as a source of
inspiration for optimisation algorithms. We will consider the features of nature that
contribute to its status as a valuable and popular resource.

The field of nature-inspired computing has grown in popularity over the last fifty
years. The algorithms that the field has produced can often be traced to the use of
computer simulations to investigate nature. Their popularity is largely driven by the
success of these algorithms, many of which were discovered by interdisciplinary
partnerships.

Nature-inspired algorithms for optimisation generally fall into the category of
heuristic methods. That is, the algorithms will tend to improve computation time at
the cost of solution quality—a satisfactory trade-off in many real world problems,
which are often NP-hard. The best known exact methods for NP-hard problems
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require time exponential in problem size. As such, there are no known feasible exact
solution methods for large problems of this kind.

It is hoped that by exploring the strengths and weaknesses of nature as a source of
inspiration we can help readers better utilise this valuable resource in finding solu-
tions to real problems. Furthermore, we hope to emphasise the potential benefits of
interdisciplinary research in discovery of new methods and improvement of existing
ones.

Here we use the term nature to refer to any part of the physical universe which
is not a product of intentional human design. We would like to distinguish between
two forms of inspiration. The first, which we will call ‘strong’ inspiration, involves
the investigation of some existing problem-solving mechanism, the extraction of
some qualitative process description, and the application to some alternative pur-
pose. The second, which we will call ‘weak’ inspiration, is the less formal role of
some phenomenon in the creative stage of solution formulation.

2 Nature’s Résumé

We shall now examine various aspects of nature relevant to optimisation and algo-
rithm design. This will hopefully give some insight into the popularity and success
of nature-inspired methods for both research and practical applications.

Specifically, we will consider the origins of optimising phenomena in nature,
and the strengths of emergent behaviours. Additionally, we will discuss the role of
metaphor in algorithm research, and how nature achieves and encourages creativity.
This should not be seen as an exhaustive account of what nature has to offer, but
rather, it focuses on the aspects we consider to be important and interesting.

2.1 Optimisation by Natural Selection

If we momentarily restrict our attention to the biological branch of nature, we can
highlight some of the useful characteristics of this plentiful supplier of inspira-
tion. Undoubtedly the most important contribution to modern biology was made
by Charles Darwin with his Theory of Evolution by Natural Selection. Observing
the achievements of animal husbandry, he writes:

Why, if man can by patience select variations most useful to himself, should nature fail
in selecting variations useful, under changing conditions of life, to her living products
. . . I can see no limit to this power, in slowly and beautifully adapting each form to the
most complex relations of life. [17]

The immense explanatory power of a relatively simple set of rules—reproduction,
mutation and selection—has often earned Darwin’s theory the title of the most sig-
nificant scientific discovery of the 19th century. As the evolutionary biologist Theo-
dosius Dobzhansky writes, “nothing in biology makes sense except in the light of
evolution.” [19]

The period between the birth of an organism and the birth of its offspring can
be decades. The optimality of its behaviour during this period will influence the
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likelihood of its genes being propagated. We should not then be surprised to find
evolution producing numerous ‘optimisation sub-processes’ suited to different time-
scales. To achieve this, organisms use various mechanisms to interact with their
environment, which may be of use to an algorithm designer. Not only is natural
selection itself a source of much inspiration, but it is also key to the existence of all
the biological problem-solving mechanisms we find in nature. Accordingly, a solid
understanding of evolution by natural selection is of use to any researcher interested
in nature-inspired techniques.

If we are to extract an optimisation method from nature, it seems appropriate
to ask exactly what nature was using it for. What is being optimised by natural
selection? Is there some approximation to an objective function? How is the problem
constrained? How can we measure success?

Ants make up 10 percent of the biomass of all animals in the Amazon rain for-
est [53], but that does not necessarily mean they are a superior solution. Should
we measure success by the longevity of the gene? the individual? or perhaps the
species? Maybe the efficiency of energy use is important? In The Diversity of Life,
E. O. Wilson writes,

The hallmark of life is this: a struggle among an immense variety of organisms weigh-
ing next to nothing for a vanishingly small amount of energy. [53]

Hopfield and Tank [35] describe the challenges when modelling a natural process
as an optimisation problem:

While a cost function may be specified, real world data used to evaluate it is gen-
erally not precise. Also, complex cost functions usually involve somewhat arbitrary
weightings and forms of the various contributions. From an engineering viewpoint,
these complications imply that little meaning can be attached to “best”. Often, what
is truly desired is a very good solution, . . . computed on a time scale short enough so
that the solution can be used in the choice of appropriate action . . . This is especially
true in . . . perception and pattern recognition, because these problems typically have an
immense number of variables and the task of searching for the mathematical optimum
of the criterion can often be of considerable combinatorial difficulty, and hence time
consuming [emphasis in the original].

In nature, managing the trade-off between ‘solution quality’ and ‘computation time’
is essential to survival. A similar trade-off is made when using a heuristic to solve
the various optimisation problems faced by engineers.

In 1932 Sewall Wright introduced a vivid metaphor to help visualise natural evo-
lution. The fitness landscape, according to T. Smith et al.,

describes the search space as a multidimensional landscape defined by the genotype-
to-fitness mapping through which evolution moves. The classical idea of searching this
landscape for good genotypes focuses on the difficulty of climbing up to the globally
optimal fitness solution and avoiding locally optimal solutions. [51]

The genotype can be described as the encoded blueprint for producing the organism.
Wright states,
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The problem of evolution as I see it is that of a mechanism by which the species may
continually find its way from lower to higher peaks in this field. [55]

We can consider a species as occupying some portion of the fitness landscape, or
a niche. De Castro defines a niche as “the region consisting of the set of possible
environments in which a species can persist; members of one species occupy the
same ecological niche.” He then elaborates,

[A fitness landscape] is a topographic map used to represent the degree of adaption of
individuals in a given environment. Individuals that only reproduce with each other are
part of the same species, which occupies one or more biological niche. As the fittest
individuals of the population have higher chances of surviving and reproducing, the
outcome of evolution is a population increasingly more fit to its environment. [13]

The fittest individuals are those with superior problem-solving mechanisms. It is
these problem-solving mechanisms which have been the source of ‘strong’ inspira-
tion for many popular optimisation algorithms.

While it is difficult to say exactly what is being optimised by natural selection,
we do observe it to have produced certain useful features. These features will now
be discussed in more detail, along with their applicability to optimisation.

2.1.1 Adaptation

The natural world is not a stagnant place; meteorological events, tidal forces, plate
tectonics, and all the biological activities. Evolution by natural selection is a dy-
namic process, where the fitness landscape is always changing. As individuals and
populations search for new ways to exploit their environment, the environment
changes. For example, if a species becomes too skilled at hunting a certain prey, the
food supply may run out. To survive, organisms must be able to cope with changing
environmental conditions. This change can occur over millennia, a few generations,
an individual’s lifetime, or in an instant.

Some organisms have the ability to withstand large variations in the environment.
This approach can be thought of as change tolerance, or robustness. Other organisms
respond to change more dynamically, using a process called adaptation.

In the most general sense, adaptation is a feedback process in which external changes
in an environment are mirrored by compensatory internal changes in an adaptive sys-
tem. [23]

Nature has been observed to achieve this adaptive ability in many ways, and bi-
ologists will undoubtedly continue to discover new mechanisms in the future. An
important feature of any adaptive process is some form of memory, either implicit
or explicit. Memory allows previous experience to influence future actions.

Closely related to memory is the concept of a learning mechanism. Learning
mechanisms process experience and store it in memory. This ability is clearly seen
in the human brain, although the mechanism is still poorly understood [38]. A less
obvious example is the human immune system, which is capable of recognising and
combating infectious foreign elements with specialised responses based on previous
exposure [14].
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Due to the niche-filling tendency of natural selection we find a range of novel
adaptive methods. In this way, nature provides us with a library of mechanisms for
dealing with environmental changes. These mechanisms are tuned to different scales
of change, be it fast, slow, mild or severe. Many real world problems we are faced
with have some dynamic component. Jin and Branke [36] describe four classes of
uncertainty in dynamic environments,

1. noise—the fitness evaluation is subject to noise,
2. robustness—the design variables are subject to perturbations or changes after the

optimal solution has been determined,
3. fitness approximation—the fitness function is too expensive to evaluate exactly,

or is unavailable and must be estimated from experimental data, and
4. time-varying fitness function.

With some creativity, we can see most of these kinds of uncertainty in nature, and the
natural problem-solving mechanisms must handle them. Accordingly, we can hope
to learn from the natural world techniques for successfully overcoming uncertainty.

The ability to adapt also helps deal with uncertainty in static environments. If
little is known about a problem, it may be desirable to have an algorithm which
learns and adapts as it searches for a solution.

2.1.2 Efficiency

In the opening paragraph of his 1922 article Contribution to the Energetics of Evo-
lution, Lotka writes:

. . . the fundamental object of contention in the life-struggle, in the evolution of the
organic world, is available energy. In accord with this observation is the principle
that, in the struggle for existence, the advantage must go to those organisms whose
energy-capturing devices are most efficient in directing available energy into channels
favourable to the preservation of the species. [39]

Nature is often under pressure to produce efficient solutions. Given the unpre-
dictability of the environment, whenever resources become scarce, the efficient in-
dividuals will have an advantage. Perhaps an analogy can be made between the
computational efficiency of an optimisation algorithm and the energy efficiency of
the natural mechanism upon which it is based.

2.1.3 Generality

Many of the nature-inspired algorithms currently in use are being applied to a wide
range of problems. This puts them in the category of metaheuristics, where little or
no problem specific information is used in the design of the algorithm. But is this
kind of generality found in nature, or is it a human innovation?

Generality is related to the concept of adaptability. Some problem-solving mech-
anisms found in nature can be viewed as hierarchic algorithms. A successful high
level algorithm will often use various adaptive subroutines. For example, ants build
nests in many different environments, using the most suitable available materials.
As generations pass they may adjust to better collect local materials, but the gen-
eral rules of assembly are retained. This can be tied back to the use of diversity
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as a means of preservation. A species which survives only in a very small niche
is far more likely to suffer extinction when the environment changes. On the other
hand some degree of specialisation will be advantageous, especially during periods
of stability. As such, natural selection must find a balance between generality and
specialisation.

Natural selection itself is certainly a widespread process in nature, capable of
finding novel and elaborate solutions to a huge number of problems. Accordingly, it
is not surprising that the evolutionary algorithms have been so broadly and success-
fully applied [27].

It is interesting to consider natural algorithms in terms of the No Free Lunch
Theorems [54]. Since all problem-solving techniques found in nature are to some
extent specialised to real problems, there is at least an intuitive reason to think they
will perform better than random search on the set of problems arising from real
world situations.

2.2 Complex Systems and Emergent Behaviour

We now move to a discussion of complex systems and the phenomenon of emergent
behaviour. At this point we broaden our scope to include all physical systems, not
merely the biological systems previously considered.

In general terms, emergent behaviour is the appearance of some high level func-
tion as a result of the interactions of some collection of independent elements. A
more formal definition is given by El-Hani and Emmeche [22], who treat the topic
from a philosophical perspective.

A property P is said to be an emergent property of an object O if and only if:

1. P supervenes on properties and relations of the parts of O;
2. P is not observed in any of the parts of O; and
3. O has a downward causal influence over its parts, constraining their relations in

space-time so that the pattern of constraints realises and, thus, explains P.

Emergence has also been described as non-linear aggregate behaviour, where
the behaviour of a whole is not simply the sum of the parts. This does not, however,
rule out a deterministic relationship between the parts and the whole. De Castro [13]
writes:

there are many systems that can be described adequately as being strictly deterministic
but that still remain unpredictable.

and also,

One of the very important theoretical consequences of chaos theory is the divorce
between determinism and predictability.

This is seen in dynamical systems with highly sensitive initial conditions, that is,
a slight change in initial conditions can cause a large change in the state of the
system at some later time. Given the limitations of our ability to make precise



The Rationale Behind Seeking Inspiration from Nature 57

measurements, we find that a system can be both fully deterministic yet entirely
unpredictable.

This leads to an important provision of nature—emergent problem-solving mech-
anisms. A few billion years of trial-and-error have allowed nature to find simple
rules for producing useful emergent behaviour. An algorithm designer can look to
nature for the desired emergent behaviour, and then—possibly with the help of a
biologist—extract the basic rules. In this way we can develop algorithms which are
relatively simple to code, yet capable of achieving complex emergent behaviour.
These emergent approaches to optimisation are also well suited to parallel computa-
tion, and as such, capable of utilising recent developments in the field. Furthermore,
being derived from natural processes, these algorithms are likely to be robust, adap-
tive and efficient, albeit approximate. The human immune system is, again, a good
example:

From the information processing perspective, the immune system can be seen as a
parallel and distributed adaptive system. It is capable of learning, it uses memory and
is capable of associative retrieval of information in recognition and classification tasks.
Particularly, it learns to recognise patterns, it remembers patterns that it has been shown
in the past and its global behaviour is an emergent property of many local interactions.
All these features of the immune system provide, in consequence, great robustness,
fault tolerance, dynamism and adaptability. These are the properties of the immune
system that mainly attract researchers to try to emulate it in a computer. [14]

Any heuristic which exploits some emergent behaviour observed in nature is in the
‘strong’ inspiration category.

2.3 Natural Metaphors

As astute pattern matchers, humans are capable of recognising similarities between
our own particular problems and others found in nature. This has two immediate
advantages, first we can see how nature solves the problem, and second the metaphor
helps us think abstractly about new solution methods.

For example, it has been suggested by some that the fitness landscape proposed
by Wright [55] be inverted, and thus evolution viewed as a minimisation problem.
From a computational perspective this is a trivial modification, but as a metaphor to
assist human comprehension some have found it useful.

Such a viewpoint is intuitively appealing. Searching for peaks depicts evolution as a
slowly advancing, tedious, uncertain process. Moreover, there appears to be a certain
fragility to an evolving phyletic line; an optimized population might be expected to
quickly fall off the peak under slight perturbations. The inverted topography leaves an
altogether different impression. [25]

The way we think about problems has a significant impact on the kinds of solutions
we are able to produce. Thinking metaphorically about a problem gives the mind
much greater flexibility in exploring solutions. Artificially imposed constraints can
be removed when a problem is considered from an alternative perspective.
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Physicist David Bohm and scientist David Peat, in their book Science, order and
creativity [9], describe the role of metaphor as a facilitator of the ‘free play’ of
thought. The use of metaphor in science is compared to its literary use:

For, in perceiving a new idea in science, the mind is involved in a similar form of
creative perception as when it engages a poetic metaphor. However, in science it is
essential to unfold the meaning of the metaphor in even greater and more “literal”
detail, while in poetry the metaphor may remain relatively implicit. [9]

Nature can inspire a new optimisation algorithm without providing a mechanism.
Heuristics produced in this manner can be attributed to ‘weak’ inspiration.

2.4 Creativity

To create an entirely novel heuristic which performs well for some optimisation
problem—or set of problems—is a difficult task. This task itself can be conceived
of as a search procedure, with various local optima and vast plateaux. The number
of possibilities is often large, and the islands of success can be sparsely located. In
such a situation, discoveries are largely due to luck and perseverance.

Dean Simonton gives examples of various scientists describing their discoveries
as the result of a mechanistic combinatorial search process. However, he is cautious
of drawing any conclusions from these anecdotal accounts:

Admittedly, these introspective reports cannot be considered empirical proof that sci-
entific creativity operates according to a chance combinatorial mechanism. [48]

For some problems it may be possible for heuristics to be designed in a logi-
cal procedural fashion. However, as the complexity of the problem increases, this
approach becomes unrealistic, and we usually resort to some semi-blind explo-
ration. In some cases, a little knowledge can be inhibitive to the discovery—or even
consideration—of alternatives.

Nature has been conducting this blind search continuously for billions of years. In
this way, nature provides a shortcut in the creative process. Assuming an analogous
problem can be found, nature will do the hard work. In Archimedes’ Bathtub, by
David Perkins, we read:

Mother nature may repurpose, but do we see the full pattern of breakthrough thinking
in nature—the long search, little apparent progress, the precipitating event, some non-
mental equivalent of the cognitive snap, and transformation? Arguably, yes! [41]

3 Selected Examples

We will now examine some examples of nature-inspired algorithms for optimisa-
tion, with reference to the topics discussed in the previous section. It is hoped that
an awareness of the history of nature-inspired methods will be useful for future
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heuristic development. In examining these examples, the following questions have
also been considered:

• To what extent does the natural phenomenon optimise?
• How well is (or was) the natural phenomenon understood?
• How similar are the inspired algorithm and the natural phenomenon?
• What is the relationship between the investigation of nature and the exploitation

of nature?

While at some points it will be helpful to discuss the details of the natural mech-
anism and the algorithmic abstraction, these are peripheral considerations. The cen-
tral issue is the role of nature in the inspiration process.

3.1 Evolutionary Algorithms

There are many members in the family of evolutionary algorithms, each with a large
number of variants and degrees of specialisation. Many hybrid methods have been
developed in an attempt to combine particular characteristics. All these algorithms
share certain features which were initially inspired by ideas traceable to the Dar-
winian Theory of Evolution by Natural Selection. In broad terms, these algorithms
contain a population of individuals (solutions) capable of reproduction (recombina-
tion), undergoing mutation and selection [27].

The work of evolutionary biologists in the 1950s and 1960s, a key period in the
history of evolutionary computation, lead to many of the algorithms currently in
use [13]. As the availability and processing power of computers grew, researchers
began using computer simulations to test hypothesis about natural evolution, with
the emphasis on understanding nature [16, 30].

The history of evolutionary algorithms, as with almost any history, is not a lin-
ear sequence of events, but a tapestry of innovations made by various different re-
searchers. The transition from pure investigation of natural evolution to the com-
bined investigation and exploitation occurred in numerous locations. D. B. Fogel
has compiled many important papers from this period in [26]. Among the most
widely recognised are German researchers I. Rechenberg and H.-P. Schwefel [43],
L. J. Fogel [29] of the U.S.A., and J. H. Holland [32], also from the U.S.A., whose
respective work gave rise to evolution strategies, evolutionary programming and
genetic algorithms.

The view of natural evolution as a process of optimisation is widely recognised,
as was discussed in Section 2.1. Furthermore, the problems faced in nature share
many features with the hard optimisation problems faced by engineers and computer
scientists. D. B. Fogel writes:

Evolved biota demonstrate optimized complex behavior at every level: the cell, the
organ, the individual, and the population. The problems that biological species have
solved are typified by chaos, chance, temporality, and nonlinear interactivity. These
are also characteristics of problems that have proved to be especially intractable to
classic methods of optimization. [25]
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He also notes the need for researchers in the field of evolutionary computation to
pay attention to the developments being made in the natural world:

the ultimate advancement of the field will, as always, rely on the careful observation
and abstraction of the natural process of evolution. [25]

The basic principles of natural evolution are quite clearly fundamental to the general
success of evolutionary algorithms, in all their variants. However, the finer details
can be quite different from those found in the natural mechanism [5]. For example,
the evaluation of a fitness function and the selection of individuals to reproduce are
two areas in which researchers have explored numerous possibilities not thought to
occur in nature. Similarly, evolutionary algorithms are typically run iteratively, with
all members of a population reproducing and dying simultaneously, whereas natural
life-cycles proceed in a more asynchronous fashion.

Discussing the key differences between the various evolutionary algorithms,
D. B. Fogel writes:

The differences between the procedures are characterized by the typical data represen-
tations, the types of variations that are imposed on solutions to create offspring, and
the methods employed for selecting new parents. Over time, however, these differences
have become increasingly blurred, and will likely become of only historical interest.
[26]

Some of the differences between the various algorithms require a distinction be
made between ‘genotypic’ and ‘phenotypic’ spaces, concepts borrowed from biol-
ogy. The representation of an individual in genotypic space is typically encoded us-
ing some finite set of symbols, such as a bit string, or a DNA strand. The behaviour
of these individuals is determined by decoding the genotype, thereby mapping it
into phenotypic space. The evaluation of an individual’s fitness usually occurs in
the phenotypic space.

3.1.1 Evolutionary Operations

In 1957, George E. P. Box proposed a “method for increasing industrial produc-
tivity”, which he called ‘Evolutionary Operation’ [11]. He noted the similarities
between the evolution of living things and the advances in industrial processes. The
presence of evolutionary processes in non-biological systems has often been ob-
served by researchers,

Artifacts, cultures, and technologies change and evolve. There are no molecular “genes,”
but there is change and evolution. Research and development efforts are deliberate at-
tempts to develop methods and technologies which bring about a speedy evolution of
products [12].

More recently, such observations have lead to the development of cultural algo-
rithms and memetic algorithms [49].

Box developed a strategy for continual improvement which made the parallels to
natural evolution explicit, and thereby sought to improve the effectiveness of this
process.
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His model iterates through two phases, the first of which is a tight local search
similar to basic hill-climbing, which operates on a subset of the variable parameters.
The second phase, which Box likens to mutations, involves a team of human experts
meeting at regular intervals to suggest more significant modifications to the process.
Box emphasises these experts should be from different backgrounds, to promote
diversity.

A termination criterion—a feature of many modern evolutionary algorithms with-
out a natural counterpart—was also considered, again requiring human interaction:

Only if it seemed that more would be lost than gained from the evolutionary procedure
would the reintroduction of static operation be justified. [11]

Box does not explicitly consider the limitations of local optima in his parameter
optimisation. However, the modifications—or mutations—suggested by the team of
experts could allow the process to escape local optima.

Since the process Box proposed was to run continuously, without disrupting stan-
dard production, he restricted the local search to small variations in a regular pattern.
This increased the likelihood of becoming trapped in local optima. A further pre-
caution also stifled the evolutionary process:

The plant manager is himself a part of the ‘closed loop’, thus ensuring that sensible
action will be taken even in unforeseen circumstances [11].

By restricting operation to what is ‘sensible’, the potentially superior unknown re-
gions remain unexplored. In contrast, natural evolution has no notion of the sensi-
ble, no manager with veto rights. Understandably, the occasional catastrophic failure
may not be acceptable in a chemical plant. Such limitations serve to illuminate the
importance of computers and computer simulations in the development of evolu-
tionary algorithms.

Importantly, Box recognised natural evolution as a process which could form the
basis for an iterative improvement strategy: “What we have to do is to imitate this
process”[11].

3.1.2 Genetic Algorithms

Genetic algorithms are an optimisation technique which has readily borrowed termi-
nology, processes, theory and even researchers from the study of natural evolution,
specifically at the level of genes.

The evolving entity within [genetic algorithms] . . . is the genome, typically repre-
sented by a binary string. The main source of variation is the crossover of two parental
strings . . . . Exploitation is performed . . . by means of fitness proportional mating se-
lection alone. [47]

Yet for reasons of necessity or simplicity, there remain some important differ-
ences, for example, “although genetic algorithms mimic the effects of natural se-
lection, until now they have operated on a much smaller scale than does biological
evolution” [33]. Nonetheless, they have become one of the most widely used tools
in heuristic optimisation.
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In the 1950s and 1960s, A. S. Fraser was using one of the early computers—the
SILLIAC—to simulate evolution in genetic systems [28]. His models used bit-string
representations for individuals in a population, which underwent iterative recom-
bination and strategic selection. Each individual was assigned a phenotypic value
based on some function of the bit-string, which would in turn be used for selection.
Using these models, Fraser was able to empirically investigate various theories in
evolutionary biology, an approach which he saw as complementary to the mathe-
matical investigation of such processes.

Monte Carlo analyses can never be a substitute for complete mathematical simplifi-
cations. They can, however, be regarded as complementary to the present incomplete
mathematical solutions, and provide an easily used tool for those geneticist, such as
myself, who cannot otherwise add to the mathematical theory of natural selection. [30]

Although Fraser’s early efforts were focused on the investigation of nature, due
to the broader applicability of his work, he is considered a pioneer in the field of
evolutionary computation.

By 1968, Fraser had placed his work in the context of purposive learning systems . . . .
In retrospect, his computational procedures presaged the mechanisms that would later
become common in traditional genetic algorithms. [28]

Hans J. Bremermann was also experimenting with computer simulations of ge-
netic systems, particularly with recombination methods:

the characteristics of offspring were determined by summing up corresponding genes
in two parents. This mating procedure was limited, however, because it could apply
only to characteristics that could be added together in a meaningful way. [33]

Bremermann was interested not only in the use of simulated evolution for optimi-
sation, but also as a means of better understanding natural evolution. He mentions
the apparent mathematical intractability of natural evolution: “a system of such com-
plexity is beyond the reach of an explicit mathematical analysis” [12]. He claimed
that the assumptions necessary to obtain solutions were oversimplifying, and thus
the results were of diminished significance. Accordingly, he suggests computer sim-
ulation may be the more enlightening research area.

Biology today would be unthinkable without the theory of evolution. Nevertheless
there are vast areas of ignorance . . . the manifold interactions of proteins with each
other and with the cell environment are not well understood . . . the details of the pro-
cess by which anatomy and behavior of macro-organisms arise from their DNA are
largely unknown. [12]

Bremermann also experimented with variants which were not based on any natu-
ral mechanism, and in 1966 claimed to have discovered “evolutionary schemes that
converge much better, but with no known biological counterpart” [12]. These results
prompted him to question the optimality of biological species, and to suggest they
may in fact be trapped in ecological niches.
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In the 1960s John H. Holland became interested in the use of evolutionary tech-
niques to investigate adaptive processes. He was concerned with producing mathe-
matical descriptions of strategies for the collection and application of information in
unknown environments. While the models he developed are responsible for the form
of current genetic algorithms, the focus was not initially on optimisation [26]. But
rather, they were a tool for the study of adaptation in natural and artificial systems.

In 1992 Holland reiterated the use of simulated evolution in the investigation of
nature:

as researchers probe the natural selection of programs under controlled and well-
understood conditions, the practical results they achieve may yield some insight into
the details of how life and intelligence evolve in the natural world. . . . Eventually arti-
ficial adaptation may repay its debt to nature by increasing researchers understanding
of natural ecosystems and other complex adaptive systems. [33]

3.1.3 Evolution Strategies

In the mid sixties, Ingo Rechenberg, Hans-Paul Schwefel and Peter Bienert devel-
oped a technique for optimising the parameters in various fluid mechanics prob-
lems. Their approach was based on ideas from natural evolution, and accordingly
was named evolution strategies.

Rechenberg, Schwefel and Bienert were graduate students at the Technical Uni-
versity of Berlin. They were searching for an automatic means of solving engineer-
ing problems, such as minimising drag over a surface. The conventional methods—
single parameter variation, and discrete gradient search—were found to be insuffi-
cient because they could not escape local optima. Rechenberg was aware of parallels
between the natural world and engineering problems:

In cybernetics it is axiomatic that common theories can be applied to apparently widely
separated fields of science. The increasingly evident points in common between biol-
ogy as the theory of organisms and technology as the theory of mechanisms provide a
good example of this. [43]

Making an analogy to natural evolution, Rechenberg suggested randomly varying
all parameters simultaneously, followed by a selection stage. The selection compared
the single parent with the single offspring, always choosing the superior. Experiments
were initially conducted on physical apparatus, with manually adjustable design vari-
ables, and dice were used for random number generation. Their approach successfully
found a pipe elbow shape superior to any previously known, which both confirmed
the potential of the technique and encouraged further research.

In 1965 Schwefel implemented the procedure on a computer allowing more
rigourous tests to be conducted. He found that the previously used discrete bino-
mial distribution for generating random mutations led to premature stagnation, and
at times provided solutions that were not even locally optimal [26]. Further exper-
imentation led to the use of continuous variables and normally distributed random
mutations. In 2002 Schwefel explained:

Broadly accepted hereditary evidence has led to saying: the apple does not fall far off
of the tree. A better model of variations from one generation to the next, at least for
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multi-cellular individuals—an early evolutionary achievement with no simple geno-
type/phenotype mapping—may be a normal or Gaussian probability density distribu-
tion for phenotypic changements between generations, its maximum and expectation
being centered at the respective ancestors position. [47]

Schwefel is suggesting that the variation in physical traits between parents and their
offspring approximates a normal distribution. This can be contrasted with genetic
mutations—both in nature and in genetic algorithms—which do not require conti-
nuity between the original and the mutated value, although the organism as a whole
may be quite similar to its parent(s).

Whilst acknowledging the complexity and importance of the numerous—and
possibly unknown—mechanisms between genetic code and functioning organisms,
Schwefel suggests much can be learnt from simulations of evolution at higher levels
of abstraction.

A descriptive or Keplerian model is sufficient for the investigation, and there is no need
for a Newtonian or explicative model. [47]

Such tiered investigations are important in both the exploration and exploitation of
nature, and are connected to previously mentioned ideas of complexity and emergent
behaviour (Section 2.2).

Various extensions were later introduced, many of which were based on some
aspect of natural evolution. Such extensions include, but are not limited to: a popu-
lation of individuals (solutions), multiple offspring, recombination, variable length
encoding (with duplication and deletion operators), various strategies for selecting
individuals to retain for the next generation, evolution of strategy parameters (self-
adaptivity), and limited life-spans [26].

Often, some limitation or shortcoming of the existing approach would lead re-
searchers to ask: how does nature do it? However, since there were—and still are—
many unanswered questions in the field of evolutionary biology, improvements were
sought through trial-and-error experiments. Fortunately, natural evolution provided
a ‘shortlist’ of candidate extensions which fuelled progress in this area.

Drawing from his experience using evolutionary algorithms as heuristic optimi-
sation techniques, Schwefel has written about the insights that can be gained into
the natural world by the study of simulated evolution [47]. Among these insights
are the role of death and forgetting, and the importance of diversity in an uncertain
world.

3.1.4 Evolutionary Programming

The technique known as Evolutionary Programming has its origins in the work of
Lawrence J. Fogel, who, along with his colleagues, was developing a new approach
to artificial intelligence. L. J. Fogel treated intelligence as the ability to seek goals
by responding appropriately to predictions of relevant future events, as explained by
D. B. Fogel:

Intelligence can be viewed as that property which allows a system to adapt its behav-
ior to meet desired goals in a range of environments . . . in that light, prediction is a
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keystone to intelligent behaviour because it is only through predicting the expected
outcomes of alternative actions and assessing their projected worth in light of the sys-
tem’s purpose that a system can adapt its behaviour. [24]

At the time, many other researchers in the field of artificial intelligence were giv-
ing their attention to the object most commonly associated with intelligence, the
human brain. This was pursued from two directions: neural networks and expert
systems. Expert systems attempt to explicitly capture the knowledge of human ex-
perts, and as such are not generally considered ‘intelligent’; in essence they could
only repeat what they had been told, albeit in a useful manner.

Alternatively, research into artificial neural networks aimed to copy the hardware
which was considered responsible for human intelligence. L. J. Fogel et al. pointed
to the difficulties in directly replicating nature:

The immense complexity of the central nervous system, coupled with our incomplete
knowledge of the neural and molecular mechanisms, limits our ability to replicate the
biological entity which provides human intellect. Networks of threshold elements may
simulate arrays of neurons, but this is a far cry from providing behavior at higher levels
of abstraction. In short, the case for replicating nature in terms of physical correspon-
dence stands on weak ground. [29]

One’s ability to physically replicate biological problem-solving mechanisms is
limited by the available technology. However, if the observed mechanism is a spe-
cific implementation of a universal, ‘platform independent’ principle, then it may be
possible to study that principle, and implement it with technology that is available.
Based on the state of research in the 1960s, L. J. Fogel et al. suggested that neural
networks were unlikely to produce ‘intelligent’ behaviour, at least not at that point
in time. This was partly because the underlying principle was insufficiently under-
stood, and partly because the replication technology was not yet advanced enough.

As an alternative, they sought to mimic the system responsible for producing
intelligence:

Man may be recognized to be but a single artifact of the natural experiment called
evolution. . . Might it not be far wiser to model the process of evolution—iterative
mutation and selection—in order to discover successively better logic for seeking
the given goal under the constraint imposed by the environment? [29]

Based on this insight, L. J. Fogel et al. began investigating evolution-inspired
approaches to producing a Finite State Machine.

To provide maximum generality, in a series of experiments, a simulated environment
was described as a sequence of symbols taken from a finite alphabet. The problem was
then defined to evolve an algorithm that would operate on the sequence of symbols thus
far observed in such a manner as to produce an output symbol that is likely to maximize
the benefit to the algorithm in light of the next symbol to appear in the environment and
a well-defined payoff function. Finite-state machines provided a useful representation
for the required behaviour. [24]

In L. J. Fogel’s initial model, each member in a population of ‘parent’ finite-state
machines produced a single offspring by mutation, thereby doubling the overall
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population. The fitness of all members was evaluated and the ‘best’ fifty percent
were retained.

The link between environmental prediction and optimisation is mentioned by
Atmar:

Evolutionary optimization is not characterized by simple combinatorial optimizations.
Rather, it is intrinsically composed of problems that minimize the costs of mispredict-
ing sequences of environmental stimuli. Misprediction of a forthcoming event (sur-
prise) is generally costly, if not occasionally lethal. [4]

While L. J. Fogel et al. mentioned the greater applicability of their approach
[29], the move from artificial intelligence to a more widely applicable optimisation
procedure was largely due to D. B. Fogel in the early 1990s.

Models used to predict the system’s environment reflect the system’s understanding of
its surroundings. These models can then be used for the sake of control by examining
the projected outcomes of alternative allocations of available resources and selecting
those which are believed to be most favourable. [24]

D. B. Fogel showed how the evolutionary programming technique can be applied
to pattern discovery, system identification and automatic control, performing a form
of numerical optimisation in each.

The development of evolutionary programming is a case of strong inspiration, yet
many important aspects of natural evolution are excluded. For example, the typical
formulation has no means by which members can combine or share their ‘knowl-
edge’. Furthermore, there is some ambiguity as to whether the individuals in a pop-
ulation correspond to individual organisms or entire species. Schwefel suggests the
lack of recombination in typical implementations is because the model is based on
the evolution of species:

[Evolutionary programming] intends to model the birth and death of species and thus,
generally does not include recombination.[47]

But if this is the case, then there are some inconsistencies with other elements
of the approach. For example, natural mutation is a phenomenon that occurs at the
genetic level, and as such it is inaccurate to talk about the mutation of the individual,
of the species more so. Variation at the species level, based on the fossil record, can
be characterised by long periods of stability interspersed with occasional periods
of rapid change. It may be possible to draw an analogy with Gould and Eldredge’s
theory of punctuated equilibrium1, but there are no suggestions that the initial con-
ception was inspired by these ideas.

3.1.5 Future Directions

Advances in our understanding of natural evolutionary processes are often unno-
ticed by optimisation practitioners. There have, however, been exceptions. Whitacre

1 An alternative optimisation heuristic, extremal optimisation [8], is inspired by the Bak–
Sneppen model of evolution, which reproduces various events thought to occur in natural
evolution, including punctuated equilibrium.
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et al. [52] have attempted to bring the most recent work in complex biological sys-
tems into the field of evolutionary computation. Specifically, self-organised local-
ity and the effects of gene interactions. They show that “sustainable coexistence
of genetically distinct individuals” can be achieved in an emergent fashion using
nature-inspired mechanisms.

Population diversity was not imposed upon the [evolutionary algorithm] as is tradi-
tionally done but instead emerges in the system as a natural consequence of population
dynamics. The environmental conditions which enable sustainable diversity are similar
to what is observed in complex biological systems. [52]

Another promising area of evolutionary algorithm research—and many other na-
ture inspired heuristics—involves “implementation on parallel machines, for evo-
lution is an inherently parallel process” [25]. The separation of populations across
multiple processors with intermittent migrations is a natural extension of the evolu-
tionary analogy.

3.2 Particle Swarm Optimisation

Particle swarm optimisation is a population based method which has received a lot
of attention since it was published in 1995. Kennedy and Eberhart describe how
the “method was discovered through simulation of a simplified social model”, and
provide a detailed account of the development process. They write,

[Particle swarm optimisation] can be implemented in a few lines of code. It requires
only primitive mathematical operators, and is computationally inexpensive in terms of
both memory requirements and speed. Early testing has found the implementation to
be effective with several kinds of problems. [37]

Kennedy and Eberhart mention the work of C. W. Reynolds [44], who had made
progress in the realistic simulation of ‘flocks, herds and schools’ for computer ani-
mation. They also note the work of Heppner and Grenander, who write in their 1990
paper:

Certain small birds such as pigeons, starlings, and shorebirds fly in coordinated flocks
that display strong synchronization in turning, initiation of flight, and landing. Ex-
perimental efforts to find leaders in such flocks have to date failed. We propose that
synchronization of movement may be a byproduct of “rules” for movement followed
by each bird in the flock. Accordingly, we have developed a computer-simulated bird
flock employing stochastic differential equations which demonstrates realistic “flock-
ing” behavior. [31]

The success of these models for movement followed from the assumption that
the emergent flocking behaviour was a product of the efforts of individuals to opti-
mise their position relative to neighbours. Kennedy and Eberhart then extended this
concept to social interactions:

It does not seem a too-large leap of logic to suppose that some same rules underlie
animal social behavior, including herds, schools, and flocks, and that of humans. [37]
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This is an informal argument, based on intuition and a form of pattern matching.
They elaborate:

It seems reasonable, in discussing human social behavior, to map the concept of change
into the bird/fish analogy of movement. This is consistent with the classic Aristotelian
view of qualitative and quantitative change as types of movement. Thus, besides mov-
ing through three-dimensional physical space, and avoiding collisions, humans change
in abstract multidimensional space, collision-free. [37]

As such, their investigation of one part of nature—social interactions—is some-
what inspired by discoveries in a different, albeit related, part of nature.

From this point Kennedy and Eberhart began experimenting with variations in the
low level behaviour of individuals. They consciously “thought of agents as collision-
proof birds”, with the tentative goal of producing “graceful but unpredictable chore-
ography of a bird flock” [37]. This experimentation involved the introduction of
simple rules for individuals to follow at each iteration. While one rule, neighbour
tracking, was based on a mechanism thought to exist in nature, another, craziness,
was more arbitrarily invented to produce the desired ‘lifelike’ behaviour.

Unsatisfied with this solution, Kennedy and Eberhart gave further consideration
to the dynamic forces used in Heppner’s simulation, and again they drew inspiration
from nature:

Heppner’s birds knew where their roost was, but in real life birds land on any tree or
telephone wire that meets their immediate needs. Even more importantly, bird flocks
land where there is food. How do they find food? [37]

They hypothesised that birds make some form of evaluation of their current position,
retain the location of the best position they have encountered, and eagerly share this
information with the whole flock. To allow the evaluation of their current position
they introduced the equation:

Eval. =
√

(presentx−100)2 +
√

(presenty−100)2 , (1)

where lower values are considered better. As such, (100,100) was the target.
Without going into the specifics of the algorithm, after some parameter adjust-

ments the individuals exhibited realistic approach behaviour. But perhaps more im-
portantly, Kennedy and Eberhart recognised the parallels to an optimisation task.
At this stage they began removing features of the algorithm to find the essential
components. Notably, the flock of individuals, who paid attention to the actions of
neighbours, became a swarm of particles, who paid attention to the global best. The
focus shifted to the emergent properties of the swarm, and thus can be considered a
single, purposeful entity.

It was found that their flocks could find the optimum in a simple, two-
dimensional, linear field. They proceeded to prune parts of the simulation unim-
portant to optimisation. What is relevant to our discussion here is the extent of the
inspiration from nature. While it is true that Kennedy and Eberhart were experi-
menting with models of nature, it was not necessary for the models to accurately
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represent the natural process in order to produce the optimising behaviour. In their
own words:

the social metaphor is discussed, though the algorithm stands without metaphorical
support. [37]

The benefits of interdisciplinary collaboration are also mentioned:

The authors of this paper are a social psychologist and an electrical engineer. The par-
ticle swarm optimiser serves both of these fields equally well. Why is social behaviour
so ubiquitous in the animal kingdom? Because it optimises. What is a good way to
solve engineering optimisation problems? Modelling social behaviour. [37]

Pithy as this statement may be, in practice the situation is more complicated. It
is difficult to say exactly what is being optimised by social behaviour, and how
we define ‘good’ solution methods is equally challenging. Nonetheless, from this
example we can see the collaboration of researchers from different backgrounds has
the potential for mutual gains.

If we look at how the understanding of the relevant natural phenomena has pro-
gressed since the discovery of the particle swarm optimiser, we can further construct
a picture of how the inspiration has occurred. Current studies in collective animal
behaviour—such as bird flocking—acknowledge that these phenomena are still not
well understood. Various models have been proposed and evaluated somewhat sub-
jectively by visual inspection. Recent work by Ballerini et al. [6] has attempted
to capture detailed three-dimensional position information of a large flock of star-
lings. They hope that this will enable better testing of proposed models. Similarly,
current work in social interaction modelling—an undoubtedly more complicated
challenge—shows there is much still to be discovered [7]. Accordingly, we find a
nature-inspired algorithm can still be successful even if it is based on an incorrect
or incomplete understanding of nature.

Since the Kennedy and Eberhart paper was published, there has been a vast spec-
trum of extensions and modifications to the original. Each new algorithm published
generally reports some superior behaviour over some set of problems. These varia-
tions usually retain the metaphorical language, and often add to the vocabulary (e.g.
scouts, sentinels, etc. ). It seems reasonable then to attribute some of the popularity
of this method to the ease with which the solution process can be perceived.

3.3 Ant Colony Optimisation

The behaviours exhibited by ant colonies when locating and collecting food, or ‘for-
aging’, were a ‘strong’ inspiration for a class of techniques known as ant colony
optimisation, or ant inspired algorithms. However, the diversity of behaviours ob-
served in different species of ants suggest

it is more accurate to describe ACO as being inspired by the recruitment strategy of
ants which use chemical markers (pheromone trails) to mark the location of a rich food
source such as the Iridomyrmex humilis (Argentine ant) species. [2]
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Differences in foraging strategies arise from differences in the evolutionary envi-
ronments. The strategy employed by I. humilis, which arose in regions abundant in
food supplies, relies on optimal allocation of resources [2]. Another species of ant,
cataglyphis, evolved in a harsh desert environment, employs a strategy which places
more importance on the previous success of each individual ant. The cataglyphis
species does not use intra-colony communication, but rather depends on the mem-
ory of individuals. These differences accommodate the expected pay-off for taking
risks in the respective environments.

The emergent behaviour of I. humilis was demonstrated by Deneubourg et al.
in their double bridge experiment [18]. Using a simple model for the behaviour
of individual ants, a Monte Carlo simulation was able to reproduce the complex
collective behaviour of an actual colony of ants as they explore their environment.

The simplicity of the mechanisms involved, and Occam’s principle of scientific parsi-
mony, leads us to speculate that only two conditions are necessary for this phenomenon
to appear. The workers outside the nest must continually lay pheromone and must leave
the nest together in sufficient numbers. [18]

The platform independence of this process can be observed in “the formation of
trails, for example, [made] by mammals in scrub or grassland or even by students
on a snowed-under campus!”[18]. The advantages of the emergent, distributed ap-
proach to foraging are more apparent when compared with a centralised strategy.

Indeed if one considers how many different and complicated “instructions” would be
necessary explicitly to coordinate a swarm, one may readily appreciate both the genetic
economy and the added reliability that come with such simplicity. [18]

This model of ant behaviour was the basis for the stochastic, population based, com-
binatorial optimisation technique proposed by Dorigo et al. [20], which they called
Ant System.

One of the problems studied by ethologists was to understand how almost blind an-
imals like ants could manage to establish shortest route paths from their colony to
feeding sources and back. . . . The algorithms that we are going to define . . . are mod-
els derived from the study of real ant colonies. [20]

While Deneubourg et al. were seeking to understand the mechanisms behind
the behaviour of I. humilis, Dorigo et al. focused on producing an optimisation
technique:

As we are not interested in simulation of ant colonies, but in the use of artificial ant
colonies as an optimization tool, our system will have some major differences with a
real (natural) one:

• artificial ants will have some memory,

• they will not be completely blind,

• they will live in an environment where time is discrete.

Once a mechanism has been extracted from a natural system and formulated
into an algorithm, experimentation with the various parameters typically focuses on
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improving the performance of the algorithm, with little regard for remaining faithful
to the natural origins.

But the ants’ success in collectively selecting the shortest path is only statistical: the
colony may occasionally get ‘stuck’ on a longer path if by chance the longer path is the
first one to be marked. In using the ‘trail laying–trail following’ metaphor for optimiza-
tion purposes, computer scientists have found it essential to improve the convergence
properties of their algorithms by artificially increasing the rate of pheromone evapora-
tion beyond biological plausibility. [10]

These points of difference make the technique more suited to the problems to
which it is applied, and the system on which it is implemented. Nonetheless, the
underlying mechanism is retained, and furthermore, “the ant colony metaphor can
be useful to explain [their] model” [20].

Since ant colony algorithms appeared, they have been applied with great success
to many problems, achieving state-of-the-art results for the quadratic assignment
problem, sequential ordering, vehicle routing, and others [15].

3.4 Artificial Neural Networks

The most extensive computation known has been conducted over the last billion years
on a planet-wide scale: it is the evolution of life. The power of this computation is
illustrated by the complexity and beauty of its crowning achievement, the human brain.
[46]

Artificial neural networks (ANNs) are a group of computational methods based
on the central nervous system found in many organisms. They consist of a large
number of interconnected computational elements, each of which is defined by rela-
tively simple input-output relations [34]. They are well suited to clustering, classifi-
cation, pattern recognition, and function approximation problems [13], and as such
are found in a broad variety of applications. Of particular interest to us is their ap-
plication to combinatorial optimisation problems, an area where they have achieved
mixed success [50]. Nonetheless, the history of ANNs—even outside optimisation
problems—is worth discussing for what it reveals about the process of natural in-
spiration.

In 1943 the neuropsychiatrist Warren McCulloch and the mathematician Wal-
ter Pitts published a paper—A Logical Calculus of the Ideas Immanent in Nervous
Activity—which would later be considered “a landmark event in the history of cy-
bernetics, and fundamental to the development of cognitive science and artificial
intelligence” [1]. In it they write:

Many years ago one of us . . . was led to conceive of the response of any neuron as
factually equivalent to a proposition which proposed its adequate stimulus. [40]

In 1923 McCulloch was working on models of human thought, specifically proposi-
tional logic. These investigations played an important role in the formulation of the
neuron model twenty years later.
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My object, as a psychologist, was to invent a kind of least psychic event, or ‘psychon,’
that would have the following properties: First, it was to be so simple an event that it
either happened or else it did not happen. Second, it was to happen only if its bound
cause had happened . . . that is, it was to imply its temporal antecedent. Third, it was to
propose this to subsequent psychons. Fourth, these were to be compounded to produce
the equivalents of propositions concerning their antecedents. (McCulloch, 1965a, p. 8)
[cited by Abraham [1]].

Despite these origins as a model of actual neuronal process, in [40] there is no
ambiguity about the explanatory nature of the proposed model.

But one point must be made clear: neither of us conceives the formal equivalence to
be a factual explanation. [40]

That is, the proposed neuronal model is not considered a sufficient description of the
workings of the human brain. McCulloch and Pitts go on to emphasise the strength
of their conclusions, regardless of the correspondence to the natural phenomenon:

The importance of the formal equivalence lies in this: that the alterations actually un-
derlying facilitation, extinction and learning in no way affect the conclusions which
follow from the formal treatment of the activity of nervous nets, and the relations of
the corresponding propositions remain those of the logic of propositions. [40]

Many improvements and variations have been made since this initial proposal, and
the McCulloch-Pitts model is now thought of as a specific instance of the current
general model used in the field of artificial intelligence [13]. The field of neuro-
science has also come a long way; recent developments include the persistence of
neuro-plasticity in adults [21], and the role of mirror neurons in learning [45]. How-
ever, while occasional parallels and idea exchanges can be seen, they have largely
been pursued independently.

In 1975 Michael A. Arbib published Artificial Intelligence and Brain Theory:
Unities and Diversities, in which he wrote:

While many workers in the field of [artificial intelligence] believe that introspection on
the way they solve problems can help them program computers to solve those prob-
lems, a majority of such workers feel that the analysis of brain mechanisms involved in
intelligent behaviour is irrelevant to them. Rather, they take as their maxim “Airplanes
do not flap their wings”. [3]

Noting the overwhelming absence of overlap in the respective literature, Arbib ar-
gued that the fields of neuroscience and artificial intelligence were suffering from a
premature divergence, and that a unified perspective would be beneficial for both.

In 1985 Hopfield and Tank extended ANNs to produce solutions to certain com-
binatorial optimisation problems. They claimed to identify a link between the prob-
lems “in engineering and commerce, and in perceptual problems which must be
rapidly solved by the nervous systems of animals.”

Recognizing that the nature of perceptual problems is similar to other optimization
problems. . . , we will show here how to organize a computational network of exten-
sively interconnected nonlinear analog neurons so that it will solve a well character-
ized, but non-biological, optimization problem. [35]
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They consider recognition tasks solved by the nervous system to require “truly
immense” computational power. The importance of parallel processing in achieving
this feat is noted, and emphasis is put on the analog nature of the biological compu-
tation mechanism. This analog computation is claimed to improve speed at the cost
of accuracy, however, the “computational load is meaninglessly increased by high
digital accuracy” [35]. This assertion is justified by pointing out the inaccuracy in
the definition of the ‘good’ solution being searched for.

Hopfield and Tank credit other authors as identifying the connection between
perceptual problems and optimisation problems. Poggio et al. [42] were working
on computer vision techniques and posed the image regularisation problem as an
optimisation problem, and discussed its plausibility as a biological process.

Despite the initial enthusiasm for the Hopfield and Tank approach, attempts to
reproduce their results “raised doubts as to the reliability and validity of the H-T
approach to solving [combinatorial optimisation problems]” [50]. It seemed that
the majority of solutions produced were infeasible. In the years that followed some
researchers abandoned the approach while others sought rectifying modifications.
While the success of ANNs for optimisation is inconclusive, their origins are an
example of the joint investigation and exploitation of nature. This can be seen in
[42]’s description of the goals of computer vision:

[The aims of the field of computer vision are] to develop image understanding sys-
tems, which automatically construct scene descriptions from image input data, and to
understand human vision.

Again we observe a mutually beneficial investigation of a natural phenomena; to
understand it in its own right, and to utilise the mechanism.

4 Conclusions

We have seen that nature provides inspiration for optimisation algorithms in nu-
merous ways. Some natural systems exhibit behaviour which can be accurately de-
scribed as optimum-seeking. From these we can extract the essential features and
achieve qualitatively similar behaviour on some application of interest.

Other natural systems can be more accurately described as metaphor inspiring.
They provide a conceptual framework in which researchers can more easily compre-
hend problems and more freely produce creative solutions. Additionally, there are
natural systems which both inspire creative thought and provide useful mechanisms,
such as swarm intelligence methods.

It has also been shown that interdisciplinary collaboration can be mutually ben-
eficial. Theories about natural phenomena can inspire heuristic algorithms, and the
simulation of natural phenomena can help evaluate theories about nature.

Finally, as the technology to produce massively parallel computing devices is im-
proving, algorithms which fully exploit these systems are required. Many of the com-
plex problems in nature are solved using essentially parallel techniques—swarms,
herds, neural networks, immune systems, societies. Accordingly, future heuristics for
hard optimisation problems are likely to benefit from close observation of nature.
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The Evolutionary-Gradient-Search Procedure in
Theory and Practice

Ralf Salomon and Dirk V. Arnold

Abstract. The pertinent literature controversially discusses in which respects evo-
lutionary algorithms differ from classical gradient methods. This chapter presents
a hybrid, called the evolutionary-gradient-search procedure, that uses evolutionary
variations to estimate the gradient direction in which it then performs an optimiza-
tion step. Both standard benchmarks and theoretical analyses suggest that this hybrid
yields superior performance. In addition, this chapter presents inverse mutation, a
new concept that proves particularly useful in the presence of noise, which is om-
nipresent in almost any real-world application.

1 Introduction

In the field of continuous parameter optimization, an optimization algorithm aims
at finding a set of n real-valued parameters xo

i , also called optimizer xo, such that
an objective function f (xo

1, . . . ,x
o
n) = f (xo) assumes an optimal value. Depending

on the particular application, the term “optimal value” refers to an overall minimum
∀x : f (xo) ≤ f (x) or an overall maximum ∀x : f (xo) ≥ f (x). Without loss of gen-
erality, it is sufficient to consider only minimization tasks, since maximizing f ()
is equivalent to minimizing − f (). In practice, many problems impose further con-
straints on the parameters, also called feasible search space, that have to be taken
into account.

In case the objective function cannot be explicitly solved for the parameters xi,
the designer must resort to iterative methods where a sequence xt≥1 is to be gener-
ated. The goal is that in the limit limt→∞ ‖xt − xo‖ ≤ ε , the search points xt arrive
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arbitrarily close to the optimizer xo. Depending on the problem’s nature and the
chosen requirements, it might also be sufficient to get arbitrarily close to a local
optimum.

The very many algorithms provided by the pertinent literature on optimization
can be categorized by the way in which they utilize knowledge gathered in previous
steps to generate new search points xt+1. The Monte Carlo search, for example,
generates all search points at random, and thus, does not utilize any previous search
points at all.

Newton’s gradient search method, also known as steepest descent, uses the first
derivatives ∂ f/∂xi along each coordinate axis to determine the n-dimensional gra-
dient g

g = ∇ f (x) =
(

∂ f
∂x1

, . . . ,
∂ f
∂xn

)T

. (1)

If the objective function is not given in an explicit analytical form, the first deriva-
tives can be approximated by n differences, which require n + 1 experiments (i.e.,
function evaluations):

∂ f/∂xi ≈ f (xt
1, . . . ,x

t
i + Δx, . . . ,xt

n)− f (xt
1, . . . ,x

t
i, . . . ,x

t
n)

Δx
. (2)

At any point x, the gradient g always points in the direction of the maximal increase
of f (x). Hence, it is always perpendicular to the (n-1)-dimensional hyper surface
f (x) = c with constant objective function values. Thus, by repeatedly subtracting
sufficiently small fractions η of the locally calculated gradients gt

xt+1 = xt −ηgt = xt −η∇ f (xt) , (3)

the steepest-descent method converges to the next (local) optimum of any continu-
ously differentiable objective function f (x) from any initial point x0. The literature
[12, 14] provides numerous programming examples and acceleration methods.

Evolutionary algorithms, such as genetic algorithms [10], evolutionary program-
ming [8, 9], and evolution strategies [15, 21] (see [5] for a comparison of these
methods), operate in a different manner. They all maintain a population of μ search
points x1..μ

t from which they generate λ offspring x1..λ
t by applying random vari-

ation operators, such as mutation and recombination. After assigning a fitness or
error value by using the objective function f (·), specific offspring are selected as
parents for the next generation.

At first glance, gradient descent methods and evolutionary algorithms seem to be
two frameworks that do not have much in common. Some believe that evolution-
ary algorithms are not gradient descent methods [6], whereas others believe they
are [15] or partly work like them [18]. Regardless of a particular perception, the
following property can be noted: gradient descent methods use all n experiments
(fitness evaluations) to calculate the direction of progress, i.e. the gradient direction,
whereas evolutionary algorithms advance towards better fitness values by select-
ing offspring with above-average fitness values. In other words, since mutation and
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recombination are normally unbiased random variations, selection is the mechanism
with which evolutionary algorithms proceed towards better solutions.

As has been indicated above, selection is a key element of evolutionary algo-
rithms for advancing to better solutions. It is interesting to note though that selec-
tion is inherently linked to discarding potentially valuable information. This raises
the question of whether or not all offspring can be easily used to gain progress. To
provide a partial answer, Section 2 describes a hybrid method, called evolutionary-
gradient-search (EGS) procedure, that incorporates elements from both approaches.
The EGS procedure is a hybrid in that it estimates the local gradient direction g
by applying random variations (i.e., mutations), and then deterministically searches
along that direction. The results, as presented in Section 3, indicate that indeed all
offspring can be beneficially utilized. Using all individuals rather than some selected
ones improves the procedure’s performance.

Experimental results are important in order to validate a new concept. How-
ever, experiments are limited to the investigation of certain aspects. Section 4 thus
presents a short theoretical analysis, which supports the experimental findings. Fur-
ther theoretical analyses, as presented in Section 5, indicate a progressive perfor-
mance degradation in case of noisy fitness evaluations. Since noise is present in
virtually any practical application, Section 5 analyses the main mechanisms respon-
sible for the observable performance degradation. In order to overcome these limits,
Section 6 discusses the concept of inverse mutations.

The pertinent literature on traditional and evolutionary optimization provides a
large number of possible enhancements, such as the momentum term, individual step
sizes, and correlated mutations. Section 7 discusses the incorporation of some of
these into the EGS procedure. Finally, Section 8 concludes with a brief discussion.

2 The EGS Procedure

This section starts off with an informal description of the EGS procedure’s main
concepts. Figure 1 presents a generic situation, which allows for the following ob-
servations:

1. The three randomly generated mutation vectors z(1..3)
t lead to superior individuals

y(1..3)
t with fitness values f (y(1..3)

t ) < f (xt).
2. The three other mutations z(4..6)

t result in inferior individuals y(4..6)
t with fitness

values f (y(4..6)
t ) > f (xt).

3. The fitness advantage or disadvantage f (y(i)
t )− f (xt) depends on the mutation

vector z(i)
t and is thus different for every offspring y(i)

t , which is also called a trial
point.

4. The fitness difference f (y(i)
t )− f (xt) is negative for superior trial points and pos-

itive for inferior ones. Hence, the weighted trial point ( f (y(i)
t )− f (xt))z

(i)
t always

points away from the optimum.
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Fig. 1 In the displayed situation, trial points y(1..3) yield some progress, whereas trial points
y(4..6) yield candidates with inferior fitness than the parents. However, candidates y(4..6) sug-
gest that some progress might be attainable in the reversal directions −z(4), −z(5), and −z(6)

As has already been argued above, most evolution strategies, such as a (3,6)-
evolution strategy would probably discard those offspring that “go into the wrong
direction”. By contrast, however, the EGS procedure assumes that inferior offspring,

such as y(4..6)
t in Figure 1, suggest that some progress may be obtained in the rever-

sal direction−z(4)
t ,−z(5)

t , and−z(6)
t . Based on this observation, it estimates the true

local gradient direction gt by using all mutation vectors z(i)
t , which are weighted by

the fitness difference f (y(i)
t )− f (xt). After estimating the gradient direction gt , it

applies a rather traditional gradient-descent step xt+1 = xt −σt+1gt at the current
search point xt . In summary, the EGS procedure uses populations of offspring to ex-
plicitly estimate the gradient direction in which it tries to advance to the optimum.
It then collapses the entire population to only one individual in order to apply a
gradient-descent step to a single search point. The remainder of this section focuses
on a rather formal description of the procedure.

In each iteration (generation) t, the procedure starts off at one particular search
point, denoted as xt . In its simplest form, it then applies the following operations:
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1. Generate i=1, . . . ,λ offspring y(i)
t as trial points

y(i)
t = xt + σz(i)

t (4)

from the current point xt at time step t, with σ>0 denoting a step size, z(i) de-
noting a mutation vector consisting of n independent, normally distributed com-
ponents.

2. Estimate the gradient direction g̃t :

g̃t =
λ

∑
i=1

(
f (y(i)

t )− f (xt)
)

z(i)
t . (5)

3. Perform a step

xt+1 = xt −σt+1
√

n
g̃t

‖g̃t‖ = xt −σt+1z(prog)
t , (6)

with z(prog)
t =

√
ng̃t/‖g̃t‖ denoting the progress vector.

The EGS procedure can self-adapt the step size σt by performing the follow-
ing simple test (see, also, [18]):

σt+1 =
{

σt ζ if f (xt −σt ζ z(prog)
t )≤ f (xt − (σt/ζ )z(prog)

t )
σt/ζ otherwise

(7)

with ζ ≈ 1.8 denoting a variation factor (see, also, [20]). The adaptation step
in Eq. (7) requires two function evaluations. However, since one of the two test
steps is equivalent to the actual progress step of Eq. (6), the self-adaptation of
the step size σt requires only one additional function evaluation, which is small
in comparison to the number λ of trial points. That is, the procedure’s computa-
tional cost is λ +2 function evaluations per iteration, which already includes the
necessary self-adaptation of the step size σt .

3 Basic Behavior

The purpose of this section is to examine the procedure’s basic behavior and the
possible benefits of using all offspring (for estimating the local gradient direction).
Unless otherwise stated, the procedure has used the following parameter settings:
σ0 = 0.1, ζ = 1.8, n = 10 dimensions, x0 = (1000, . . . ,1000)T , and t = 100 steps
averaged over 50 independent trials. In these experiments, the initial step size σ0 is
deliberately ill-set in order to demonstrate the procedure’s self-adaptation ability.

The sphere model fsphere(x) = ∑n
i=1 x2

i is the simplest test case. Figure 2 shows the
procedure’s optimization behavior as a function of the number λ of offspring (trial
points). The figure clearly shows that the number λ of offspring significantly influ-
ences the procedure’s convergence speed, which can be expected from the gradient
estimate. According to Eq. (5), an increasing number λ of offspring per iteration
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increases the accuracy with which the actual gradient is estimated. It is interesting
to note, however, that a saturation at λ ≥ 200 can be observed. From that point on, a
larger number of offspring does not lead to a more accurate estimate of the gradient.
The influence of the number of offspring λ can be summarized by saying that up to
a saturation point, which depends on the fitness function f (x) and the n number of
dimensions, the accuracy of the gradient estimation can be increased by increasing
the number λ of offspring.

Figure 2 also shows the procedure’s adaptation behavior of the step size σt .
Due to the initialization of x0 = (1000, . . . ,1000)T , optimization starts at an ini-
tial fitness of f (x0) = 107. During approximately the first 16 iteration steps, no
significant fitness improvement can be observed, since the step size σt has a value
that is way too small. At iteration 16, however, the step size has reached the value
σ16 = σ0 ζ 16 = 0.1×1.816 ≈ 1214, which is in the order of the remaining distance
to the optimum. In the subsequent generations, linear convergence can be observed,
which goes along with a continuous decrease of the step size. It should be noted
that due to its step-size update in (7), the procedure requires merely 4 iterations to
update the step size by an order of magnitude.

The behavior of the EGS procedure is further illustrated in Figure 3. This figure
shows the evolution of two selected variables, x1 and x2, over time for two different
values λ = 1 and λ = 100 of the number of trial points per iteration. The t-index is
neglected in the figure for readability. It can be seen that for λ = 1 the evolutionary

Performance at the Sphere with n=10 Dimensions

Fig. 2 The convergence speed over 100 steps as a function of the number λ of offspring. It
can be observed that up to a saturation point at λ ≈ 200, an increase of λ leads to an increase
of the convergence speed.
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Evolution of two Selected Variables x1 and x2

Fig. 3 The evolution over time of two selected variables, x1 and x2, as a function of the
number λ of trial points. For λ = 1 the evolutionary path is rather erratic, whereas it is
almost along the gradient direction for λ = 100.

path is rather erratic, whereas the path for λ = 100 is close to the direction of the
gradient. This observation supports the behavior described above.

Figure 4 illustrates the scaling behavior of the EGS procedure when applied to
the sphere model fsphere with different dimensions n. The figure shows the average
number of generations required to reach a precision of ‖xi− xo

i ‖ ≤ ε = 10−5 for
all parameters xi when using a constant number λ = 30 of test candidates. From
the figure, it can be seen that the EGS procedure exhibits an almost linear scaling
behavior.

Figure 5 shows the performance of the EGS procedure when applied to the ellip-
soid fellipsoid(x) = ∑n

i=1 ix2
i . In order to be independent of the initialization, the figure

plots the normalized, logarithmic performance log( f ∗) = log( f (x0)/ f (xt)), which
indicates the achieved improvements in orders of magnitude. The general behavior
is similar to the case of the sphere model. The progress is smaller, though, due to
the different eigenvalues.

Figure 6 shows the performance of the EGS procedure when minimizing the step
function fstep(x) = ∑n

i=1
|xi|+0.5�2, with 
·� denoting the floor function that yields
the largest integer smaller than its argument. Again, it can be seen that increasing

the number λ of trial points y(i)
t per iteration accelerates the convergence speed.
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Fig. 4 The average number of generations of the EGS procedure with λ = 30 trial points to
acquire a precision of ‖xi−xo

i ‖ ≤ ε = 10−5 for all parameters xi when minimizing the sphere
model fsphere with different dimensions n. It can be clearly seen that the EGS procedure
exhibits an almost linear scaling behavior.

Fig. 5 The normalized, logarithmic progress over 2000 steps as a function of the number λ
of trial points when EGS minimizes the ellipsoid fellipsoid
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Fig. 6 Performance of the EGS procedure momentum as a function of the number λ of trial

points y(i)
t when applied to the step function fstep(x) = ∑n

i=1
|xi|+0.5�2. After reaching the
minimum, the procedure oscillates in the neighborhood. In all 50 runs, the EGS procedure
found the optimum.

The observable oscillations are due to intermittent increases of the step size σt . In
all four test cases λ ∈ {3,10,30,100} the procedure found the optimum in all 50
runs. On average, the procedure requires 3107 (λ = 3), 317 (λ = 10), 85.2 (λ =
30), 24.3 (λ = 100), and 15.6 (λ = 300) generations for finding the optimum with
fstep(0) = 0. In all runs, the initial step size was set to σ0 = 3 as has also been done
for evolution strategies [5]. As has been reported, a (30,200)-evolution strategy with
individual step sizes requires approximately 4000 generations, whereas a simple
(30,200)-evolution strategy with one global step size fails on this task [5]. Further
comparisons with evolutionary programming and genetic algorithms have shown [5]
that evolutionary programming requires approximately 7500 generations, whereas
a canonical genetic algorithm with bit-coding representations failed on this task.

4 Theoretical Analysis

Most theoretical performance analyses so far have been done on the quadratic func-
tion f (x1, . . . ,xn) = ∑i x2

i , which is also known as the sphere model. This choice has
two main reasons: First, most other functions are currently too difficult to analyze,
and second, the sphere model approximates the optimum’s vicinity of many (real-
world) applications reasonably well. Thus, the remainder of this chapter also uses
this choice.
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The theoretical analysis presented in this chapter also considers the (μ/μ ,λ )-
evolution strategy, since it is mathematically well analyzed and since it yields a
very good performance [7, 15]. The (μ/μ ,λ )-evolution strategy maintains μ par-
ents, applies global-intermediate recombination on all parents, and applies normally
distributed random numbers to generate λ offspring, from which the μ best ones are
selected as parents for the next generation. In addition, this strategy also features a
step size adaptation mechanism. Further details can be found in the literature [1, 7].

As a first performance measure, the rate of progress is defined as

ϕ = f (xt)− f (xt+1) (8)

in terms of the best population members’ objective function values in two subse-
quent time steps t and t+1. For standard (μ ,λ )-evolution strategies operating on the
sphere model, Beyer [7] has derived the following rate of progress ϕ :

ϕ ≈ 2Rcμ,λ σ −nσ2 , (9)

with R = ‖xt‖ denoting the distance of the best population member to the opti-
mum and cμ,λ denoting a constant that subsumes all influences of the population
configuration as well as the chosen selection scheme. Typical values are: c1,6=1.27,
c1,10=1.54, c1,100=2.51, and c1,1000=3.24 [15]. To be independent of the current dis-
tance to the optimum, normalized quantities are usually considered (i.e., relative
performance):

ϕ∗ = σ∗cμ,λ −0.5(σ∗)2 with

ϕ∗ = ϕ n
2R2 ,σ∗ = σ n

R . (10)

Similarly, the literature [1, 3, 7, 15] provides the following rate of progress formulas
for EGS and the (μ/μ ,λ )-evolution strategies:

ϕ∗EGS ≈ σ∗
√

λ
1 + σ∗2

/4
− σ∗2

2
, (11)

ϕ∗μ/μ,λ ≈ σ∗cμ/μ,λ −
σ∗

2μ
. (12)

Both formulas assume a large number of dimensions n
 1.
The rate of progress formula is useful to gain insights about the influences of vari-

ous parameters on the performance. However, it does not consider the computational
costs required for the evaluation of all λ offspring. For the common assumption that
all offspring be evaluated sequentially, the literature often uses a second perfor-
mance measure, called the efficiency η = ϕ∗/λ . In other words, the efficiency η
expresses the sequential run time of an algorithm.

Figure 7 shows the efficiency of both algorithms according to Eqs. (11) and (12).
It can be seen that for small numbers of offspring (i.e., λ≈5), EGS is most efficient
in terms of sequential run time and superior to the (μ/μ ,λ )-evolution strategy.
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Fig. 7 Rate of progress of EGS and (μ/μ,λ )-evolution strategies according to Eqs. (11) and
(12). Further details can be found in [1, 3].

5 The Problem of Noise

Section 4 has analyzed the performance in terms of obtainable progress rates for
the undisturbed, noise-free case. The situation changes, however, when considering
noise, i.e., noisy fitness evaluations. Noise is present in many if not all real-world
applications. For the viability of practially relevant optimization procedures, noise
robustness is thus of high importance.

5.1 Performance Analysis of Noisy Fitness Evaluations

Noise is most commonly modeled by additive N(0,σε ) normally distributed random
numbers with standard deviation σε . For noisy fitness evaluations, Arnold [1] has
derived the following rate of progress for the EGS procedure

ϕ∗EGS ≈ σ∗
√

λ
1 + σ∗2

/4 + σ∗2
ε /σ∗2 −

σ∗2

2
, (13)

with σ∗ε = σε n/(2R2) denoting the normalized noise strength.
Figure 8 demonstrates how the presence of noise σ∗ε reduces the rate of progress

of the EGS procedure. Eq. (13) reveals that positive progress can be achieved only
if σ∗ε ≤

√
4λ + 1 holds. In other words, the required number of offspring (trial

points) required to estimate the gradient direction grows quadratically with the noise
strength σ∗ε .
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Fig. 8 The rate of progress ϕ∗ of EGS progressively degrades under the presence of noise
σ∗ε . The example has used λ=25 offspring. Further details can be found in [1].

Another point to note is that the condition σ∗ε ≤
√

4λ + 1 incorporates the nor-
malized noise strength. Thus, if the procedure approaches the optimum, the distance
R decreases and the normalized noise strength increases. Consequently, the proce-
dure exhibits an increasing performance loss as it advances towards the optimum.

By contrast, the (μ/μ ,λ )-evolution strategy benefits from an effect called ge-
netic repair induced by the global-intermediate recombination, and is thus able to
operate with larger mutation step sizes σ∗. For the (μ/μ ,λ )-evolution strategy, the
literature [3] suggests that only a linear growth in the number of offspring λ is re-
quired.

5.2 Causes

Now that Subsection 5.1 has analyzed the performance of the EGS procedure in
the presence of noise, this subsection examines the reasons and mechanisms that
cause the observable performance degradation. In so doing, this subsection bases its
analysis on the description presented in Section 2. Particularly Figure 1 illustrated
how the EGS procedure estimates the gradient direction according to Eq. (5): g̃t =
∑λ

i=1( f (y(i)
t )− f (xt))z

(i)
t . The following two points should be mentioned here:

1. The EGS procedure uses the same step size σt for generating trial points and
performing the step from xt to xt+1.

2. For small step sizes σ , the probability for an offspring to be better or worse than
its parents is half chance. With increasing step sizes, the chances of generating
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trial points that improve on those of the previous time step steadily decrease, and
they tend to zero for very large σ . For small λ , unequal chances have a negative
effect on the accuracy of the gradient approximation.

Both points can be further elaborated as follows: A modified version of the EGS
procedure uses two independent step sizes σg and σp for generating trial points

(offspring) y(i)
t = xt + σgz(i)

t and performing the actual progress step xt+1 = xt

−σp
√

ng̃t/‖g̃t‖ in accordance with Eqs. (4) and (6), respectively. Figure 9 illus-
trates the effect of these two step sizes for the example of the sphere model with
R = 1, n = 10 dimensions, and λ = 10 trial points. It can be seen that the rate
of progress ϕ∗ significantly degrades for large step sizes σg. Since Figure 9 plots
the performance for ‘all possible’ step sizes σp, it can be concluded that the ac-
curacy of the gradient estimation significantly degrades for step size σg being too
large. If the estimation g̃ = g was precise, the attainable rate of progress would be
ϕ∗ = ( f (x0)− f (0))n/(2R2) = (1−0)10/2 = 5.

The hypothesis that the accuracy of the gradient estimation significantly degrades
when the step size σg is too large is supported by Figure 10, which shows the angle
cosα = gg̃/(‖g‖‖g̃‖) between the true gradient gand its estimate g̃. It can be seen that
in addition to being dependent on the number of trial points λ , the gradient estimate’s
accuracy significantly depends on the step size σg. The qualitative behavior is more
or less equivalent for all three numbers of trial points λ ∈ {5,10,25}. It is good for
small step sizes, but starts degrading at σg ≈ R, and quickly approaches zero for large
σg. Figure 11 shows how the situation changes when noise is present. It can be seen
that below the noise level, the accuracy of the gradient estimate degrades.

Fig. 9 Normalized rate of progress ϕ∗ when using different step sizes σg and σp for the
sphere example with n = λ = 10
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Fig. 10 cosα between the true gradient g and its estimate g̃ as a function of the number of
trial points λ and n = 10 dimensions

Fig. 11 cosα between the true gradient g and its estimate g̃ as a function of the noise strength
σe ∈ {0.002,0.01,0.05,0.5}. In this example, n=λ=10 and R=1 were used.

In summary, this section has shown that it is generally advantageous to employ
two step sizes σg and σp, and that the performance of the EGS procedure degrades
when the step size σg is either below the noise strength or above the distance to the
optimum. The next section shows how to largely mitigate these problems.
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6 Inverse Mutations

Section 5.2 has shown that both for small σg (where any information gained from
evaluating trial points is hidden in the noise) as well as for large σg gradient esti-
mates are poor. This problem could be tackled by by increasing the number of dif-
ferent trial points. However, Eq. (13) suggest only a performance gain of only

√
λ ,

which is significantly lower than the linear performance gain the (μ/μ ,λ )-evolution
strategy yields due to its genetic repair [1]. Therefore, this section considers the con-
cept of inverse mutations.

6.1 The Concept of Inverse Mutations

When employing inverse mutations, the EGS procedure still generates λ trial points
(offspring). However, half of them are mirrored with respect to the parent xt , that
is, they are pointing in the opposite direction. Inverse mutations can be formally
defined as:

y(i)
t = xt + σgz(i)

t for i = 1 . . .�λ/2� (14)

y(i)
t = xt −σgz(i−�λ/2�)

t for i = �λ/2�+ 1, . . .λ

In other words, each mutation vector z(i)
t is used twice, once in its original form

(upper part of Eq. (15)) and once as −z(i)
t (lower part of Eq. (15)).

Figure 12 illustrates the effect of introducing inverse mutations. The performance
gain is clear: The observable accuracy of the gradient estimate is constant over the
entire range of σg values. This is in sharp contrast to the regular case, which exhibits
the performance loss as discussed above. The figure, however, indicates that a slight
disadvantage exists in that the number of trial points need to be twice as much in
order to gain the same performance as in the regular case. The figure also shows the
accuracy for λ = 6, which is smaller than the number of search space dimensions;
the accuracy is cosα ≈ 0.47 and thus still reasonably good.

Figure 13 illustrates the performance that inverse mutations yield in the presence
of noise. For comparison purposes, the figure also shows the regular case for λ = 10
and σε ∈ {0.05,0.5}, which are plotted in dashed lines. Again, the performance gain
is obvious: the accuracy degrades for small σg but is high for large step sizes, which
is in contrast to the case where no inverse mutations are used.

Figure 14 shows the rate of progress ϕ∗ of the EGS procedure using two step
sizes σg and σp and inverse mutations for the example n = 40 and λ=24 and a
normalized noise strength of σ∗ε = 8. When comparing the figure with Figure 8,
it can be seen that the rate of progress is almost that of the undisturbed case, i.e.,
σ∗ε = 0. Furthermore, it can be seen that the performance starts degrading only for
too small a step size σg. It should be mentioned here that for the case of σ∗ε = 0, the
graphs are virtually identical to the case σ∗ε = 8 and σg = 32, and are therefore not
shown.
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Fig. 12 cosα between the true gradient g and its estimate g̃ for various numbers of trial points
λ . For comparison purposes, also the regular case with λ = 10 is shown. In this example,
n = 10 and R = 1 were used.

Fig. 13 cosα between the true gradient g and its estimate g̃ for λ ∈ {10,20} and σε ∈
{0.05,0.5}. For comparison purposes, also the regular case with λ = 10 and σε ∈ {0.05,0.5}
(dashed lines). In this example, n = 10 and R = 1 were used.



The Evolutionary-Gradient-Search Procedure in Theory and Practice 93

Fig. 14 The rate of progress ϕ∗ of EGS with two step sizes and inverse mutations under the
presence of noise σ∗ε = 8. The example has used n = 40 and λ=24. In comparison to Figure
8, the performance is not affected by the noise.

Fig. 15 Rate of progress of the modified EGS procedure in comparison to the original ver-
sion and the (μ/μ,λ )-evolution strategies according to Eqs. (15), (11) and (12) with κ = 1.
Further details can be found in [4].
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6.2 Analysis of Inverse Mutations

Because of its complexity, a thorough analysis of the behavior of inverse mutations
is beyond the scope of this chapter. However, it may be worthwhile to present the
main results. For the detailed theory, the reader is referred to [4]. The normalized
rate of progress of the EGS procedure with inverse mutations can be expressed as
follows:

ϕ∗EGS−IV ≈
1
κ

(
σ∗
√

λ − σ∗2

2κ

)
, (15)

with κ=σg/σp. Figure 15 compares the progress of the modified EGS procedure

with the progress ϕ∗EGS ≈ σ∗
√

λ/(1 + σ∗2
/4)−0.5σ∗2

according to Eq. (11) of the
original algorithm and the progress ϕ∗μ/μ,λ ≈ σ∗cμ/μ,λ −0.5σ∗/μ of the (μ/μ ,λ )-
evolution strategy according to Eq. (12). It can be seen that inverse mutations lead
to a rate of progress qualitatively similar to that of the (μ/μ ,λ )-evolution strategies
but with significantly better values.

7 Enhancements

The form of the EGS procedure, as discussed so far, is simple and has its limitations,
especially when applied to functions f (x) = 0.5ω1x2

1 + · · ·+ 0.5ωnx2
n, which have

very different eigenvalues ωi � ω j �=i. From classical optimization techniques, it is
well known that in such situations, rotationally invariant methods, such as steepest-
descent or simple evolution strategies, exhibit useless oscillations of the gradient
and thus of the optimization path: rather than going along a narrow valley, the opti-
mization path might be oscillating between both sides resulting in a small effective
progress along the valley’s direction. To this end, this section discusses three en-
hancements, which have been adopted from other research and which are orthogonal
in that they are independent of each other and in that they can be freely combined
with inverse mutations.

7.1 Momentum

It has been shown [17, p. 330] [20] that a momentum term can alleviate the problem
of useless oscillations, since it provides a memory by incorporating previous steps.
The momentum term can be expressed as follows:

Δxt+1 = −σt+1et + αΔxt

xt+1 = xt + Δxt+1 (16)

with 0≤ α ≤ 1 and Δx0 = 0. The parameter α is often simply called momentum. It
should be noted that when α = 0, the update rule in Eq. (16) is identical to that in
Eq. (6).
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It is straightforward to self-adapt the momentum αt with the same adaptation
mechanism previously described for the step size σt . In this case, the procedure
has to adapt two parameters, which can be done by testing all four combinations,
(σt ζ ,αt ζ ), (σt ζ ,αt/ζ ), (σt/ζ ,αt ζ ), and (σt/ζ ,αt/ζ ). In a more general form,
the procedure has to test logarithmic-normally-distributed combinations of σt and
αt . The procedure can achieve this at no extra cost, if it adapts σt and αt alternately.

As an example, Figure 16 illustrates the effect of the momentum term on the ellip-
soid fellipsoid(x) = ∑n

i=1 ix2
i . A comparison with Figure 5 indicates that with λ = 300

trial points the momentum term accelerates the progress by about 70 %, i.e., 144 or-
ders of magnitude as compared to 86 without momentum. The label “ES” refers to a
(15,100)-evolution strategy with recombination and individual step sizes for which
the literature [22] reports only 80 orders of magnitude. The concept of individual
step sizes assigns one particular σi to each parameter xi. These individual step sizes
are used to generate adapted mutations xi← xi + σizi, with zi denoting N(0,1) nor-
mally distributed random numbers. In comparison to the momentum term, individ-
ual step sizes are not rotationally invariant. That is, the performance progressively
degrades if the functions are rotated in n dimensions.

Schwefel’s ridge function fridge(x) = ∑n
i=1

(
∑i

j=1 x j

)2
may serve as a second

example, which demonstrates the benefits of using the momentum term. A com-
parison of Figures 17 and 18 shows that for n = 30 dimensions, the momentum

Fig. 16 The normalized, logarithmic progress over 2000 steps as a function of the number λ
of test candidates when minimizing the ellipsoid fellipsoid with n=30 dimensions by means of
the EGS procedure with momentum. The label “ES” refers to a (15,100)-evolution strategy
with individual step sizes σ t (result taken from [22]).
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Fig. 17 The normalized, logarithmic progress over 2000 steps as a function of the number λ
of test candidates when minimizing Schwefel’s ridge fridge by means of the EGS procedure
without momentum

Fig. 18 The normalized, logarithmic progress over 2000 steps as a function of the num-
ber λ of test candidates by means of the EGS procedure with momentum when minimizing
Schwefel’s ridge fridge. The label ES1 refers to a (15,100)-evolution strategy with correlated
mutations, ES2 to a (15,100)-evolution strategy with individual step sizes σ t , and ES3 to a
(1,100)-evolution strategy, respectively.



The Evolutionary-Gradient-Search Procedure in Theory and Practice 97

term yields seven times more orders of magnitude than that obtained without mo-
mentum. Figure 18 also indicates the performance of a simple (15,100)-evolution
strategy, a (15,100)-evolution strategy with individual step sizes, and a (15,100)-
evolution strategy with correlated mutations. Correlated mutations employ a general
n-dimensional normal distribution for generating mutation vectors. The variances
and covariances of that distribution are adapted using self-adaptation [5, 21]. for
details. In practice, the covariance matrix adaptation mechanism described below is
a more reliable approach to adapting the parameters of general normal distributions.

7.2 Individual Step Sizes

Previous research [19] has also investigated the utility of individual step sizes. Here,
a particular step size σi is assigned to its corresponding coordinate axis. Experiments
have shown that similar to standard (μ ,λ )-evolution strategies, the EGS procedure
benefits from this concept when optimizing quadratic functions with very different
eigenvalues. However, this concept is not rotationally invariant and its benefit is thus
limited to certain functions (the function’s natural axes need to be nearly aligned
with the coordinate axes xi). Therefore, this concept is not further considered here
and performance figures are omitted due to space limitations. For some results, the
interested reader is referred to [19].

7.3 CMA-EGS

The basic EGS strategy described in Section 2 uses an isotropic normal distribution
for generating mutation vectors. That distribution is fully described by a single pa-
rameter (the common variance of the individual components). The surfaces of equal
probability density of the offspring candidate solutions are concentric hyperspheres
with the search point xt at their center. Individual step sizes as described in Sec-
tion 7.2 generalize the procedure by using a normal distribution with potentially
differing variances of the components, but with zero covariances between them.
The distribution is characterized by n independent parameters, and the surfaces of
equal probability density are hyperellipsoids with principal axes that are parallel
to the axes of the coordinate system. The procedure can be generalized further by
generating mutation vectors using general n-dimensional normal distributions. Such
distributions are characterized by n(n + 1)/2 parameters (the variances and covari-
ances that form the covariance matrix), and the surfaces of equal probability density
are general hyperellipsoids of arbitrary orientation.

Using a general mutation covariance matrix that is adapted to the problem at
hand can speed up convergence by several orders of magnitude. As recognized by
Rudolph [16] for evolution strategies, ideally, the covariance matrix is the inverse of
the Hessian matrix of the objective function at the current search point. In that case,
under certain conditions, the local performance of the strategy is identical to that of
a strategy that uses isotropically distributed mutations on the sphere model.
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However, the potential performance gain comes at the cost of the need to con-
trol n(n + 1)/2 parameters (as opposed to a single one for the basic strategy, and n
for the case of individual step sizes). Hansen and Ostermeier [11] have developed
a powerful, derandomized algorithm for adapting the mutation covariance matrix in
evolution strategies (CMA-ES) that has been adapted for use in EGS in [2]. That al-
gorithm accumulates consecutive search steps in order to provide information on the
basis of which adaptation of the mutation covariance matrix is performed. Realizing
that it may be advantageous to adapt the overall step length on a time scale shorter
than that used for adapting the shape of the distribution, trial points are generated
with covariance matrix σ2C, where step length parameter σ is adapted separately
from symmetric, positive definite n×n matrix C. Adaptation of the former uses the
idea of cumulative step length adaptation introduced by Ostermeier et al [13]. Adap-
tation of the latter is done with the implicit goal of maximizing the probability of
replicating successful steps. Somewhat inaccurately, C is referred to as the mutation
covariance matrix. As the CMA-ES, CMA-EGS utilizes two n-dimensional vec-
tors p and q referred to as search paths that hold exponentially fading records of the
most recently taken steps. An iteration of CMA-EGS updates the search paths along
with the search point x, the mutation strength σ , and matrix C using the following
six steps:

1. Compute an eigen decomposition Ct = BtDt(BtDt)T of the mutation covariance
matrix such that the columns of n×n matrix bfseries Bt are the normalized eigen-
vectors of Ct and Dt is a diagonal n× n matrix the diagonal elements of which
are the square roots of the eigenvalues of Ct .

2. Generate λ trial points

y(i)
t =

{
xt + σtBtDtz

(i)
t for i = 1, . . . ,�λ/2�

xt −σtBtDtz
(i−�λ/2�)
t for i = �λ/2�+ 1, . . . ,λ

where the z(i)
t consist of n independent, standard normally distributed compo-

nents.
3. Determine the objective function values f (y(i)

t ) of the trial points and compute
the weighted sum

g̃t =
λ

∑
i=1

(
f (y(i)

t )− f (xt)
)

z(i)
t

as an estimate of the gradient direction.
4. Perform a step

xt+1 = xt + σtBtDtz
prog
t

where

zprog
t =

√
n

κ
g̃t

‖g̃t‖
points in direction of the gradient estimate.
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5. Update the search paths according to

pt+1 = (1− cC)pt + κ
√

cC(2− cC)BtDtz
prog
t

and
qt+1 = (1− cσ)qt + κ

√
cσ (2− cσ)Btz

prog
t

where cC = cσ = 4/(n + 4) as recommended in [11].
6. Update covariance matrix and step length according to

Ct+1 = (1− ccov)Ct + ccovpt pT
t

and

σt+1 = σt exp

(‖qt+1‖2−N
2DN

)

where ccov = 2/(n +
√

2)2 and D = 1 + 1/cσ as recommended in [11].

Notice that steps 2. to 4. closely parallel steps 1. to 3. of the basic algorithm in Sec-
tion 2. Differences include the use of two separate mutation strengths for generating
trial and search steps as proposed in Section 5 (the quotient κ determines the size of
the latter relative to the size of the former) and the use of inverse mutations as de-
scribed in Section 6. The scaling and rotation with matrices D and B, respectively, of
the mutation vectors in step 2. ensures that offspring are generated with covariance
matrix σC. Steps 5. and 6. implement cumulative step length and covariance matrix
adaptation that replace the simple mutation strength adaptation rule from Section 2.
See [11] for a more thorough motivation of the algorithm and the settings of its
parameters. Finally, realizing that the eigen decomposition in step 1. is expensive
and that its cost may, for large n, outweigh the cost of evaluating the trial points,
Hansen and Ostermeier [11] suggest to perform it only every n/10 steps, and to use
slightly outdated matrices B and D in between. The loss in performance from that
modification is typically negligible.

8 Summary

This chapter has described a hybrid evolutionary algorithm, called the evolutionary-
gradient-search (EGS) procedure. Rather than selecting only the best offspring, the
procedure utilizes them all to gain as much information as possible. The theoreti-
cal analysis as well as the experimental results have shown that the use of all off-
spring, including the inferior ones, can improve a procedure’s performance. Due to
its design, the EGS procedure works well on those optimization problems on which
evolution strategies also work well. This mainly includes unimodal functions.

This chapter has also discussed the EGS procedure’s behavior in the presence
of noise. Due to some performance degradations, this chapter has also discussed
the concept and performance of inverse mutations, which use a very same muta-

tion vector z(i)
t twice as z(i)

t and −z(i)
t . Finally, this chapter has also discussed the



100 R. Salomon and D.V. Arnold

incorporation of further enhancements, such as the momentum term, individual step
sizes, and correlated mutations, as known from classical optimization procedures
and standard evolutionary algorithms. These enhancements are orthogonal to the
basic concepts of the EGS procedure and can thus be freely incorporated.
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The Evolutionary Transition Algorithm:
Evolving Complex Solutions Out of Simpler
Ones

Tom Lenaerts, Anne Defaweux, and Jano van Hemert

Abstract. Capturing the metaphor of evolutionary transitions in biological complex-
ity, the Evolutionary Transition Algorithm (ETA) evolves solutions of increasing
structural and functional complexity from the symbiotic interaction of partial ones.
In this chapter we show that the ETA indeed captures this idea and we illustrate this
on instances of the Binary Constraint Satisfaction problem. The results make the
ETA a promising optimization approach that requires more extensive investigation
from both a theoretical and optimization perspective. We analyze here, in depth,
some of the design choices that are made for the algorithm. The analysis of these
choices provides insight on the plasticity of the algorithm toward alternative choices
and other kinds of problems.

1 Introduction

In biology, evolutionary transitions theory [14, 15] provides a generalized explana-
tion of how organisms of increasing complexity may have emerged from the interac-
tion of simpler life forms. The Evolutionary Transition Algorithm (ETA), presented
here, captures this metaphor to create structurally and functionally more complex
solutions from the combination (interactions) of simpler ones (solutions that solve

Tom Lenaerts
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a smaller part of the problem, for example). As such, the goal of this chapter is
to show how a particular biological metaphor was transformed into an algorithm
with definite potential. Future investigations will attempt to show its relevance for
real-world applications.

Apart from its general contribution to the development of nature-inspired algo-
rithms, this new evolutionary algorithm was introduced to address some limitations
of the standard genetic algorithm (GA). One of these limitations follows from the
dependencies between the variables in the solution representation. In the standard
GA, new genotypes are produced by the recombination of existing ones. To avoid
the disruption of good building blocks, one needs to ensure that correlated parts of a
solution are close to one another in the genotype . For many problems, determining
the internal structure of the genotype is a problem on its own since the interdepen-
dencies between the variables of the problem are not known. The compositional
mechanism implicit to the ETA provides a way to discover the closely related vari-
ables of the problem during the evolutionary process while at the same time looking
for the solution to the complete problem. An additional motivation follows from the
difficulty of scaling the GA to evolve larger solutions for more extensive problems.
By taking the compositional approach the evolutionary process can first focus on
solving parts of the problem, which can be combined later just like the modular
watch constructed by Simon’s watchmaker [22].

We show here, using the Binary Constraint Satisfaction problem (BINCSP) as
an illustration, that the ETA evolves increasingly complex solutions from the in-
teractions of simpler evolving solutions. The results for BINCSP confirm that the
ETA is promising approach that requires more extensive investigation from both a
theoretical and practical optimization perspective. Especially decision problems in
general [11] and BINCSPs in particular seem to be very well suited for this new evo-
lutionary algorithm. We provide an in depth analysis of the design choices that are
made for the algorithm: choices related to the configuration of the initial population,
the introduction of a decomposition operator which breaks down more complex so-
lutions into simpler components and the impact of the transition condition on the
performance of the algorithm.

This chapter is partitioned as follows. Before discussing the algorithm, which
will be explained using BINCSP, a non-exhaustive overview of related work is pro-
vided. Afterwards, a set of BINCSP simulations and their results are shown and
explained. Apart from a brief overview of earlier results, we provide new results
on particular design choices that can be made for the ETA. Finally, a summary is
provided and some conclusions are drawn concerning the usefulness and the future
of this algorithm.

2 Related Work

There are two ideas behind the compositional search approach: the first idea con-
cerns the use of symbiotic relations to identify good collaborations, and the second
idea is concerned with the aggregation of complex solutions from the interaction
of partial ones. The related work listed here falls under either one or both of these
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categories. It is necessary to note that what we are going to provide is not a full list but
a rough picture of the major research work related to the topic. Consequently, certain
publications which are very similar to those mentioned here might be missing.

The very first GA-related reference that can be found on the evolution of com-
plete solutions from the combination of partial ones is the work on the messy GA
[5, 6, 7]. The messy GA has the structure of a classical GA. When two partial solu-
tions are selected for reproduction in the messy GA, their combined genetic material
creates a bigger solution that is defined at a higher level of complexity. Messy GAs
therefore have the idea of combining partial solutions. However, this approach dif-
fers from the one we propose here: fitness effects caused by the interactions of the
partial solutions are not taken into account. Partial solutions are evaluated and se-
lected on their own as in the classical GA. It is during the process of reproduction
that combination occurs. Messy GAs therefore lack the idea of a transition that op-
erates on the behavior of good symbionts.

Other approaches focus on the collaboration between partial solutions to con-
struct a full solution for a particular problem. In the Parisian Approach [17, 18]
for example, the algorithm intends not to evolve a full solution to a problem but
rather a collection of partial solutions that together solve the entire problem. This
approach takes an additional step into the direction of compositional evolutionary
search. However, the Parisian approach lacks a transition step that merges the set of
partial solutions into a full solution. In this respect, the Parisian approach is more
related to previous work on multilevel selection [13].

Other approaches introduce an evolutionary “divide and conquer” mechanism
like the cooperative co-evolutionary GA [16, 30]. In this algorithm, the problem
consists of a collection of sub-problems that can be solved in isolation. Afterwards
these partial solutions can be recombined into a full solution for the global problem.
The major difference with the ETA resides in the explicit divide and conquer frame-
work. In the cooperative co-evolutionary GA, the process divides the problem into
collaborating sub-problems; for each sub-problem, the algorithm evolves solutions
that collaborate with one another in order to address the entire problem. The way to
divide the problem can become an issue when the problem structure to learn is not
trivial or cannot be easily identified.

Finally, a truly compositional approach that uses both the concept of symbiosis
and transitions is the Symbiogenetic Model (SEAM) [27, 28, 29]. This model con-
siders a population of partial solutions that interact with one another through the
mechanism of symbiosis. In this population, the good symbiotic relations are iden-
tified and produce a new partial solution through a transition. This model initially
appears very similar to ETA. There is, however, a major difference between SEAM
and ETA: SEAM does not generate a succession of populations by reproducing the
parent population through the mechanism of fitness proportional selection. It ran-
domly selects pairs of individuals and places them into a symbiotic relation. It then
replaces the symbiotic relation by a new individual when it performs better than the
parents in isolation. The condition under which this transition occurs also differs
from ETA: it uses the concept of pareto optimality with respect to an evolutionary
context to define whether a symbiosis performs better or worse than the parents
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alone. The result of this approach requires the model to include features about the
structure of the problem that needs to be solved like for instance the degree of mod-
ularity of the problem. Furthermore, in order to work, it requires the problem to
be fully hierarchically decomposable, which covers only a subset of the structured
problem class.

Finally, the Hierarchical Genetic Algorithm (HGA) [23] is an algorithm very
similar to SEAM. The major difference resides in the fact that the HGA introduces,
in its implementation, explicit information concerning the hierarchical nature of the
problem that needs to be solved (by hard coding the hierarchical search in the pro-
cess and therefore disclosing the emergent aspect present in SEAM) and optimizes
the sampling approach so that only the best samples are present for evaluation at all
time, considerably speeding up the search process.

3 BINCSP: The Illustrating Test Case

Before we explain the algorithm we briefly define the problem that is used to illus-
trate the technique.

Constraint Satisfaction Problems (CSP) [24] are NP-complete problems that are
defined by a set of variables X associated with possible domain values D and a set
of constraints C defined on this set of variables that specify which combinations of
assignments can or cannot occur. The problem consists of finding an assignment to
the whole set of variables from the associated domain values so that all constraints
are satisfied. This makes the problem a decision problem [11]. If an assignment
is impossible then the corresponding problem is said to be unsolvable. A variant
of this problem is the BINCSP, where each constraint is defined on at most two
variables. This introduces no restriction on the general form of CSP as every CSP
can be rewritten into a BINCSP and vice versa [19].

Let us take as an illustration the following BINCSP: consider a set of six vari-
ables: X = {x1,x2,x3,x4,x5,x6} all taking values in D = {1,2,3}. We consider the
following set of constraints:

C = {(x1 �= x2),(x2 �= x3),(x3 �= x1),
(x4 �= x5),(x5 �= x6),(x6 �= x4),
(x1 = x4),(x2 = x5),(x3 = x6)}

(1)

This constraints setup consists of 9 binary constraints. Each binary constraints de-
fines a relation on 2 variables. For each pair of variables, only one binary constraint
may be defined.

The problem consists of finding the right assignment for the variables so that all
these constraints are satisfied. We denote the assignment of one variable xi ∈ X with
value d ∈ D by 〈i,d〉 where i is the index of the variable we consider. Using this
notation, we represent the simultaneous assignments of variables x1, x2 and x4 with
respective values v1, v2 and v4 as

(〈1,v1〉,〈2,v2〉,〈4,v4〉)
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4 General Description of the ETA

As can be seen in Figure 1, the ETA follows a classical evaluate-select-reproduce
evolutionary loop. As a GA it works with a limited fixed size population which is
evaluated and reproduced at each iteration. Before the evaluation phase, all (free)
individuals are paired up. This grouping can be performed in different ways. Here
we opted for the most simple form, i.e. random pairing. Once each individual has a
partner, a fitness score is assigned based on their own properties and the properties
they obtain from the interaction with the other individual. The combination of both
properties is referred to as the induced phenotype, which will be explained in more
detail later. The fitness score will guide the selection process as in the GA and
selected individuals can reproduce in three different ways:

1. They can just reproduce their own genetic information, as in the GA.
2. To maintain interesting links, we also provide the possibility that both individuals

and their interaction are reproduced.

Fig. 1 Schematic overview of the ETA. The algorithm consists of three phases: 1) the pairing
up of partial solutions, 2) the evaluations of the interacting solutions and 3) the reproduction
of the solutions. Every iteration of these three steps produces a new population.
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3. Good symbionts which solve the partial problem completely are reproduced as
individuals at a higher level of complexity, meaning that their genetic information
is combined into a new individual.

Repeated iterations of this process produce individuals of increasing complexity
that solve an increasing proportion of the problem.

The following sections explain each part of the ETA in detail.

4.1 Representation of Basic Elements and Partial Solutions

A partial solution for BINCSP is a compound label which is not defined on all
variables of the variable set X . A compound label on, for instance, variable x1,x3

and x7 where each variable is instantiated with values d1, d3 and d7 respectively is
denoted by

(〈1,d1〉,〈3,d3〉,〈7,d7〉).
In the current description of ETA, we make a distinction between a partial solution
and a solution: A partial solution for the BINCSP is a compound label which does
not assign all variables of the variable set defined by the BINCSP. When all vari-
ables are assigned, we obtain a solution to the problem. The underlying idea behind
this distinction is that a solution defining a full genotype is the achievement of the
compositional search algorithm. We therefore speak of partial solution as long as
the algorithm is still in the process of evolving complexity, meaning it is still trying
various combinations of partial solutions with the hope of obtaining a full solution
to the problem. The representation of a (partial) solution is also called the genotype.

In its most basic form, a partial solution should correspond to the assignment
of exactly one variable. However, such solutions are meaningless by themselves as
each constraint is defined on exactly two variables. As a consequence, they need to
be evaluated during their interaction with other individuals.

The fact that basic elements of length 1 have a zero fitness has consequences
when considering a fitness-proportional selection model. Indeed, initializing the
population with length 1 partial solutions means that none of them can expect a pos-
itive fitness, i.e. be selected, without interacting with others. This lead us to think
that the most basic units of selection are not of length 1 but rather of at least length
2. In our simulations, we evaluated both scenarios (see simulations section for more
details) and observed that the length of the initial partial solutions has little impact
on the evolutionary process itself.

4.2 Interactions and the Induced Phenotype

In the ETA, pairs of (partial) solutions are bound by symbiotic relations. When
bound the two solutions exchange information. The result of this exchange is cap-
tured in the induced phenotype of the solution which can alter positively or nega-
tively the fitness of each of the solutions. We explicitly make the distinction between
phenotype and induced phenotype to stress that the latter is phenotype produced
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from both the genetic information of an individual and the effect of external factors,
like other population members and the environment, on the final phenotype.

Since the induced phenotype of an individual is constructed by combining the
information contained in its own genotype with the information contained in the
genotype of the other members of the symbiotic relation, conflicts in this informa-
tion may occur. In case of a conflict (i.e. two different values are assigned by the
partial solutions to the same variable), a conflict mediation strategy is applied here
that randomly chooses one of the possible values from the set of conflicting values.

As explained earlier, interactions are pairwise and created randomly using the
population of solutions, i.e. the solution can be linked to any other solution in the
population. Alternative strategies, based on multilevel selection [13] are currently
under investigation.

Let us briefly illustrate the process by which the induced phenotype is constructed
in the context of the BINCSP example. Suppose we have a partial solution s that
interacts with another partial solution sp. Both partial solutions are represented
through the following genotypes:

s = 〈1,α1〉,〈2,α2〉,〈9,α9〉
sp = 〈2,β2〉,〈4,β4〉,〈9,α9〉

In these two solutions, we observe that s is well defined for the variables 1, 2 and
9 and sp for the variables 2, 4 and 9. The value assigned to variable 9 is the same
for both partial solutions. However, the values assigned to variable 2 are not the
same, meaning that the solutions have a conflict to solve for this variable: we need
to choose between value α2 or β2. The conflict mediation strategy randomly chooses
between one of the conflicting values yielding in our specific example two possible
induced phenotypes:

ϕ(s,sp) = 〈1,α1〉,
〈

2,

(
α2

β2

)〉
,〈4,β4〉,〈9,α9〉

where α2 or β2 is chosen randomly with equal probability.
After conflict resolution, the resulting phenotype assigns exactly one value for

each variable that was assigned in s or sp. This phenotype is then used by the fitness
function to evaluate the partial solution. The details concerning the fitness function
and the way the partial solutions are evaluated in the context of BINCSP is provided
in the following section. Note first that the induced phenotypes of the members of
the symbiotic relation do not have to be the same for both partners since the process
decides randomly which value to use for each member independently. Thus both s
and sp can select α2, β2 or make different choices (s takes β2 and sp takes α2 or
vice versa).

4.3 Evaluation Functions

We consider two evaluation functions for BINCSP. The first function evaluates the
quality of the solution’s phenotype with respect to the entire constraints set. The
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second function is restricted only to the constraints that are defined on the variables
that are present in the partial solution.

Definition 1. The classical fitness evaluation for the ETA on BINCSP of a solution
s, fet (s) which interacts with a symbiotic partner sp and for which the induced phe-
notype of the interaction for s with sp is denoted by ϕ(s,sp) is given by following
equation:

fet(s) =
1
|C| ∑

c∈C

eval(ϕ(s,sp),c) (2)

where evalc(ϕ ,c) checks whether the compound label ϕ satisfies the constraint c or
not.

We have slightly adapted the notion of constraint satisfaction as we also need to
address partial solutions that have no assignment or incomplete assignment defini-
tions for a given constraint. We therefore suppose that a compound label satisfies a
constraint c if:

• it covers the constraints, i.e. there are assignments for all the variables comprised
in c in the compound label of the partial solution.

• the assignments do not violate the constraints.

This is summarized in the following equation:

eval(ϕ ,c) =
{

1 if (ϕ covers c) and (satis f ies(ϕ ,c))
0 otherwise

(3)

This fitness value gives an estimation of how the partial solution scores with respect
to the entire set of constraints. This means that small partial solutions, even if they
are made of good genetic material, cannot receive a high reward value in compar-
ison with larger partial solutions which, by assigning more variables increase their
chance of improving their score, even if some of these variables are incorrectly as-
signed. To obtain an objective value of how a partial solution scores with respect to
the sub-problem of constraints that are covered by the partial solution, we therefore
also consider a restricted version of this fitness function which limits the evaluation
to the covering set of constraints for this partial solution.

Definition 2. The covering set of constraints for a given genotype γ on the con-
straints set C is denoted by Ccov(γ) and consists of all the constraints of C which are
covered by γ:

Ccov(γ) = {c ∈C | γ covers c}.
With this covering set, we can now define the covering fitness function.

Definition 3. The covering fitness function of a solution s interacting with sp is
denoted fcov and is given by the following equation:

fcov(s) =
1

|Ccov(ϕ(s,sp))| ∑
c∈Ccov(ϕ(s,sp))

eval(ϕ(s,sp),c) (4)
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We typically use the first evaluation function to guide the evolutionary process, that
is, for selecting the best solutions for reproduction, while the second measure is used
as an observation measure for deciding whether the interacting partial solutions are
merged into one new solution.

The motivation for the use of two different fitness measures is the following: the
classical fitness function fet will tend to favor cooperation as bigger partial solutions
are more likely to receive a greater fitness than smaller partial solutions and we wish
the system to evolve a complete solution to the problem and therefore to favor in-
crease in the length of the solution genotype. The covering fitness does not capture
information with respect to the entire problem since partial solutions of any size
(bigger than 2) can have maximum fitness, which is 1. This function prevents the
system from evolving larger solutions as they will not perform better than smaller
partial solutions. This is the reason why we choose the classical fitness for the se-
lection process. However, when it comes to evaluating the quality of a symbiotic
relation, the covering fitness contains much more information than the classical fit-
ness. By limiting the evaluation to the problem actually covered by the symbiotic
relation, we obtain a measure of how well the relation performs with respect to the
sub-problem it addresses. The covering fitness therefore allows us to assess whether
a symbiotic relation should be preserved for future generations through the mecha-
nism of transitions.

4.4 Replication and Transitions

When selected for reproduction, a partial solution will have three possible options
(examples are based in BINCSP problem defined in Section 3:

1. Simple replication: In this case, one solution is replicated, that is, its genotype
is copied and passed on to its offspring (with possible mutations: the value of
variable 1 changed from 1 to 2 in the example below). It occurs when the solu-
tion scored sufficiently high to survive one more generation but did not perform
good enough within its symbiotic relation to see this relation survive or preserved
through a transition.

s = 〈1,1〉,〈2,2〉,〈3,2〉 −→ s′ = 〈1,2〉,〈2,2〉,〈3,2〉

2. Inherit symbiotic link: In this situation, the solution not only replicates itself but
also trigger the replication of its symbiotic partner. The symbiotic link that binds
both parents is also inherited by their offspring. This reproduction mode is a
step toward a transition; it is, however, a reversible step since both individuals
still exist independently. In the situation of BINCSP, we did not implement any
special condition for this mode to occur and it can therefore occur randomly at
each generation.

{
s = 〈1,1〉,〈2,2〉,〈3,2〉
sp = 〈2,1〉,〈5,1〉,〈6,3〉

}
−→

{
s′ = 〈1,1〉,〈2,2〉,〈3,3〉
sp′ = 〈2,1〉,〈5,1〉,〈6,3〉

}
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In the example, the covering fitness of the induced phenotype of both individuals
(s and sp) is less than 1. As a consequence, no transition occurs. Yet we can
replicate both partners and their link to check if we can improve it by choosing,
for instance, another value for variable 2. Again, mutation might occur when the
individuals are reproduced, as is the case here for variable 3 in individual s.

3. Transitions: This case occurs when the induced phenotype of an individual actu-
ally solves the sub-part of the problem completely, i.e. when the covering fitness
is equal to 1.0. In this case, the outcome of the symbiotic relation is replicated
instead of the original genotype of the solution. This means that the induced phe-
notype becomes the genotype of the offspring.

{
s = 〈1,1〉,〈2,2〉,〈3,3〉
sp = 〈2,1〉,〈5,2〉,〈6,3〉

}
−→ s′ = 〈1,1〉,〈2,2〉,〈3,2〉,〈5,2〉,〈6,3〉

In this example, the induced phenotype of s can be for instance:

ϕ(s,sp) = 〈1,1〉,〈2,2〉,〈3,2〉,〈5,2〉,〈6,3〉

The covering fitness of ϕ(s,sp) is 1. As a consequence a transition occurs, mak-
ing the genotype of s′ the same as the induced phenotype produced by the inter-
action of s and sp.

The second reproduction mode might look like an unnecessary step in the entire
process as it occurs randomly without any relation to the transition itself. Neverthe-
less, this mode may be very important for various reasons:

1. Even though this event occurs randomly, it is performed on individuals selected
according to some fitness proportionate selection scheme. In this way, only indi-
viduals which are potentially better get the chance to reproduce their symbiotic
partner. Consequently, it provides the conflict mediation strategy more chances
of finding a good combination.

2. It is a way to keep potentially good genetic material in the population as the
symbiotic partner might possess the genetic information that actually causes this
solution to be selected. In other words, their high fitness is a result of the combi-
nation of both partners. Therefore, we need to explore their relationship further.

3. Through a possible error during copying, a nearly good combination may become
the right combination. See the examples above.

Further evaluation is required for this part of the algorithm.
The third reproduction mode, the transition, creates solutions of higher complex-

ity: Small genotypes aggregate into larger genotypes that in turn, through interac-
tions with other genotypes, can aggregate into more complex genotypes until a full
solution emerges.

5 Evaluation of the ETA on Concrete BINCSP Instances

The objective of the current simulations is to demonstrate that ETA succeeds in
building complex solutions that can actually solve BINCSP problems. Since we
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will evaluate BINCSP instances of different complexities we may derive the subset
of problems on which the ETA performs well. Moreover, we examine here how
the ETA behaves when we change certain operations or conditions inherent to the
algorithm.

5.1 Simulation Setup

Each simulation has an almost similar setup and uses the same set of BINCSP in-
stances. These instances are randomly generated using RandomCSP package pro-
vided by [26] and produce instances with common statistical properties as the one
used in [25]. This allows us to compare the ETA with other coevolutionary ap-
proaches that were tested on this set (see [2]).

The complexity of the instances created by the tool can be tuned by two param-
eters p1 and p̄2. We let p1 and p̄2 vary from 0.1 up to 0.9 with a step size of 0.2.
In Table 1 these instances are classified according to their problem complexity into
either the easy or difficult class. For each combination of p1 and p̄2, 25 different
random problem instances for a BINCSP of 15 variables, each taking values in a
domain of size 15, were generated.

For each of the 25 problem instances, we perform 10 runs (each run using a
different random seed). The maximum amount of generations is set to 100000.
This means that for each setup of p1 and p̄2, 250 runs are performed in total.
This amount of runs for each problem instance should be sufficient to evaluate the
algorithm.

The initial population is created such that it contains all partial solutions of length
1, i.e. every variable-value combination is present once. We refer to this population
as a sound population.

During replication, the genotype may mutate with probability 0.001, i.e. the value
of a variable may be altered to some random value in the domain of the variable.
Transitions are performed when the covering fitness is 1.0.

The speed of the algorithm is determined as follows: Let e be the number of
evaluations in the run r where the optimal solution was found and emax the maximum
number of evaluations in the simulation run. We wish to evaluate the speed of the
algorithm on a scale of [0,1] where higher values mean that the algorithm needed
less evaluations to find a solution than lower values and the value 0 corresponds to

Table 1 Identification of easy and difficult BINCSP instances

Tightness ( p̄2)
0.1 0.3 0.5 0.7 0.9

D
en

si
ty

(p
1
) 0.1 easy easy easy easy difficult

0.3 easy easy easy difficult unsolvable
0.5 easy easy difficult unsolvable unsolvable
0.7 easy easy difficult unsolvable unsolvable
0.9 easy difficult unsolvable unsolvable unsolvable
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the situation where no solution was found in the given time. We have therefore the
following equation for the speed of the run r:

speed(r) =
{

0 if no solution found during r
emax−e

emax
if the optimum is found in e evaluations (5)

5.2 Observations

We collected different types of data over all the runs:

• The size of the solutions over time: We monitor the maximum and minimum
size of the solutions over time, together with the amount of overlap between the
symbiotic partners.

• The fitness of the solutions over time: We trace the best fitness, the average fit-
ness, the worst fitness in the population and the fitness of the largest individual
(i.e. the individual that achieved the highest level of complexity). We collect the
values of the classical fitness as provided by Equation 2 for these observations.

• Success ratio: This gives the ratio of successful runs over the total amount of
runs.

• Average number of generations required to reach a complete solution for all
BINCSP instances of a particular complexity: Since the population is evaluated
exactly once in each generation, this number is strongly correlated to the speed
of the algorithm (see Section 5.1).

5.3 Previous Results

In this section, we summarize the results of the simulations of the ETA on BINCSP
discussed in [3, 4], for reasons of comparison.

Table 2 shows the success ratio, average number of generations to find a solution
and standard deviation in this number for each BINCSP setup. The plots in Figures
2 and 3 show the evolution of fitness and genotype complexity over time for 4 easy
and 4 difficult BINCSP instances (see Table 1).

From these simulations the following conclusions were drawn. The results in
Figure 2 show that the transition model succeeds in finding a solution for the easy
BINCSP as the fitness converges rapidly to 1.0. They also show that, for difficult
BINCSP (after over 2000 generations), the algorithm converges to a population that
contains a combination of partial solutions that solve over 90% of the constraints
but are unable to resolve the conflicts between the interacting partial solutions in
order to solve the entire set of constraints.

We observe in Figure 3 that for easy BINCSP, the intersection (reflecting the
number of variables that are in common between the two solutions) is small
while exploring, which corresponds to a high complementarity. Indeed for the easy
BINCSP (left column of Figure 3) we see that initially the intersection between
the two solutions is rather small. Once the algorithm begins to converge toward a
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Fig. 2 Evolutionary dynamics of the ETA. All plots show the evolution of the best fitness.
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Fig. 3 Evolutionary dynamics of the ETA: All plots show the evolution of the genotype
complexity. Each plot contains the maximum and minimum size of the individuals in the
population, the average number of variables in common (intersection) and the average number
of remaining conflicts (conflicts).
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Table 2 Results of the simulations. Each square contains the success ratio, average number
of generations, standard deviation and average number of evaluation (between braces).

Density Tightness
p1 0.1 0.3 0.5 0.7 0.9

0.1 1.0 1.0 1.0 1.0 0.992
(4) (5) (7) (13) (3627)
[0] [0] [1] [3] [1224]
{900} {1125} {1575} {2925} {816075}

0.3 1.0 1.0 1.0 0.28 -
(5) (12) (43) (11758) -
[0] [3] [25] [-] -
{1125} {2700} {9675} {2645550} -

0.5 1.0 1.0 0.54 - -
(6) (25) (11409) - -
[1] [8] [-] - -
{1350} {5625} {2567025} - -

0.7 1.0 1.0 0.29 - -
(8) (61) (8673) - -
[1] [29] [-] - -
{1800} {13725} {1951425} - -

0.9 1.0 0.972 - - -
(11) (2335) - - -
[2] [4902] - - -
{2475} {525375} - - -

solution, this complementarity decreases and the number of conflicts in the intersec-
tion stabilizes. The positive number of the conflicts in this intersection for certain
easy BINCSP setups reflects a low but existing variation in the genotype popula-
tion throughout the evolutionary process. One can also see in the left column that
when the population converges completely, all conflicts disappear. In contrast, when
p1 = 0.3 and p̄2 = 0.5 (and also p1 = 0.7 and p̄2 = 0.3), there are still alternatives
present in the population even though an optimal solution is found.

When we look at difficult BINCSP in the same figure, we observe quite a sim-
ilar evolution (right column of Figure 3). However, in these cases, the individual
size and the intersection (almost) never reaches the maximum number of variables.
Since the maximum size is not reached, each genotype needs a symbiotic partner
to cover the entire variable set, implying some complementarity to achieve the final
solution. Yet the problem is that for these difficult problems it is not sufficient to
glue together complementary solutions (see three last plots in the right column of
Figure 3). In those cases, the number of variables that are common between the part-
ners in the symbiotic relation is even less than the minimum size of the individuals
in the population. This shows that partial solutions seem to agree on certain aspects
of the solution yet are divided over the other variables and their assignments that
are required to reach the complete solution. So here we have an exploration issue
that needs to be solved. The low number of conflicts shows that the ETA evolves
complementary partial solutions that specialize in solving two different sub-sets of
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the constraints set too. However, the difficulty of solving the entire problem makes
it impossible to resolve certain conflicts among these variables - the results show
that the evolutionary process is stuck in some local optimum, which may require
other mechanisms to resolve the issue.

The results in Table 2 were compared to other co-evolutionary BINCSP ap-
proaches in [4]. The ETA performs relatively well compared to problem-specific
EA techniques and outperforms them in one specific case: those instances where
the constraint network has some kind of modular structure due to the sparseness
of the connection between the constraints. Even when the constraints to learn are
difficult (high p̄2), the ETA conquers these constraints by solving the subproblems
separately and aggregating them once they are solved.

In [3] we analyzed the effect of initial population composition on the results
of the ETA. We compared a randomly generated population of partial solutions of
size two and a sound population (as used here). The results showed that the initial
population has little overall effect on the chance of success, which is interesting as it
indicates that our algorithm performs well with a small initial population and hence
does not need a large and complete population to achieve good results. We illustrated
that these differences are indeed not significant when comparing the speed (using
Equation 5) of the algorithm.

5.4 Introducing Decomposition in the ETA

The ETA, as described so far, only creates more and more complex solutions. This
might result in a dead-end, possibly explaining why a higher success score on the
difficult BINCSP instances was not achieved. It could then be useful to decompose
these bad solutions back into smaller individuals so alternative composition paths
may be followed. The motivation for not including this from the beginning stems
from the description of the biological metaphor. Evolutionary transitions are con-
sidered as a one-way process [15]. Once a transition occurs, the components of the
new individual are forced to collaborate with one another. Defection leads irremedi-
ably to the death of the organism together with all its components. So, biologically,
individuals cannot decompose back into lower level units and such a situation, when
it happens, leads to the extinction of the individual and all its components. In an op-
timization context however, we are not limited by this restriction.

To introduce decomposition in the evolutionary process, we slightly adapted the
ETA described at the beginning of this chapter so that, at each generation, a certain
fraction of the population has the possibility of being decomposed into smaller units.
These smaller units of selection can then recombine with other units and evolve a
new solution which is defined at a higher level of complexity. The deconstruction
(decomposition) therefore introduces a new exploration mechanism that tries other
combinations of building blocks that had been identified as potentially good units in
former symbiotic relations.

This notion of decomposition is, in a certain sense, related to the backtracking
process implicit to depth-first and related search methods [8, 20]. Indeed, these de-
terministic approaches decompose invalid solutions to reconstruct them afterwards
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with valid assignments. In the evolutionary approach, the process is no more deter-
ministic but stochastic [11]. However, the idea of decomposing solutions which lead
to a dead-end in the optimization process remains.

In this simulation setup, we observe whether the introduction of decomposition,
i.e. deconstruction operation, can affect the quality of the results. We first describe
the adaptation of the existing algorithm with the introduction of a decomposition
mechanism and then we present the simulation setup and results.

5.4.1 Evolutionary Transition Algorithm with Decomposition

ETA with decomposition introduces two new features to the existing framework of
the algorithm: the decomposition condition and the decomposition operator. The
decomposition condition determines when a given solution should decompose into
elementary solutions. This condition may trivially be implemented as a random pro-
cess but may also relate to observations of the evolutionary process (for example the
process is stuck in a local optimum, the solution has lasted many generation with-
out resolving its conflicts with the symbiotic partners) or even to problem-specific
aspects. The decomposition operator may be implemented in different ways to in-
duce different dynamics in the search process. For example, it can decompose one
solution all the way back to its elementary units. Such an operator, ensures the pres-
ence of elementary solution units during the entire run. Another possibility consists
of decomposing one solution back into 2 (or more) partial solutions, reducing the
complexity of the given solution by a factor 2 (or more) but without asking the
process to rebuild a complex solution with these partial units from scratch.

Given the operator and the condition, the ETA can now be extended. During
the replication process, the selected solutions are passed one by one through the
reproduction operator. This operator, as before, verifies if the transition condition
is met, that is, if the symbiotic relation performs well enough to emerge a new
individual at a higher level of complexity. This part of the replication process is
unchanged with respect to the classical implementation of ETA. If the transition
condition is not met, which means that the selected solution will self-replicate and
will possibly replicate its symbiotic relation, the replication process will first check
whether the decomposition condition is met before proceeding with self-replication
as before. If the decomposition condition is met, then the solution decomposes to a
lower level of complexity.

For the simulations, we consider random decomposition. Each selected solution
which does not perform a transition may be decomposed with a certain probability.
The choice for random decomposition instead of a more problem-or-process related
condition is motivated by the idea that we are mainly concerned with the evaluation
of the decomposition process. We want to see if decomposition brings something to
the system. Random decomposition, not being problem related, offers an objective
view of the induced dynamics of the decomposition process.

When the decomposition condition is met, the selected solution will not replicate
as a whole but split itself into two or more parts according to the decomposition
operator. In our implementation of ETA with decomposition for this set of simula-
tions, we implement a simple decomposition operator where the solution is divided
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decompose(solution)
for pos := 1 to solution.size step 1 do

allele := solution[pos]
prob := 0.5
if offspring1.size > offspring2.size

then
prob := prob× (1− offspring1.size

solution.size )

else
prob := prob× (1+ offspring2.size

solution.size )

if random(prob)
then

offspring1.add(allele)

else
offspring2.add(allele)

Fig. 4 Pseudo-code for the decomposition operation

into two parts of approximatively the same size. This strategy means that we do
not really backtrack to the former situation consisting of the two partial solutions
that were merged into this parent solution. We obtain, however, a decomposition in
terms of complexity as the solution goes back to a former level of complexity with
respect to this parent solution. The way the two offspring solutions are generated
in corresponds to a random process where, on average, each allele of the parent so-
lution is passed on to one of the two offspring solutions with the same probability.
The pseudo-code of the decomposition of a solution is given in Figure 4. The two
offsprings that are created are then added to the offspring population.

5.4.2 Simulation Setup

The problem setup is the same as before. The goal here is to compare the transition
model without decomposition (see Table 2) with a transition model using decompo-
sition. Both models will use initial sound populations as described in the previous
simulation. They also share exactly the same parameters setup, not considering the
additional decomposition probability. To explore the impact of this parameter on the
behavior of the process, we consider 3 possible values for this parameter:

• Small probability for decomposition: the value of the decomposition probability
scales from 0.001 to 0.05 which means that, at each generation, a very small part
of the population will be decomposed.

• Medium probability for decomposition: the value of the decomposition proba-
bility scales from 0.15 to 0.35. In this situation, at each generation, a larger part
of the population will be decomposed. However, decomposition remains a rare
event as the solutions have more chance to remain unchanged than to undergo a
decomposition operation.

• High probability for decomposition: the value of the decomposition is set to 0.5
and above. In this situation, at each generation, the population will perform at
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least as much decomposition operations as self-replication operations. This situ-
ation corresponds to a situation where exploration is preferred over exploitation.

For each setup of the BINCSP and the decomposition probability, we perform 10
runs each with a different seed on the 25 problem instances that were randomly
generated. We collect the same information as for the previous simulation.

5.4.3 Simulation Results

In Table 3, we gather results concerning the success ratio and average number of
generations to reach a solution for the 5 difficult test cases identified in Table 1. For

Table 3 Comparison of success ratio between different decomposition setups. Each entry
consists of three values: 1) the success ratio, 2) the average number of generations and 3)
the standard deviation. The upper row corresponds to the situation of a generic transition
model operating with initial sound population and no decomposition, the other rows gives the
results for different decomposition probabilities (DP). Results better than the generic model
are shown in bold.

p1: 0.9 0.7 0.5 0.3 0.1
p̄2: 0.3 0.5 0.5 0.7 0.9

DP:

N
o Generic

0.972 0.29 0.54 0.28 0.992
(2335) (8673) (11409) (11758) (3627)
[4902] [-] [-] [-] [1224]

L
ow

0.001
0.976 0.276 0.54 0.236 0.992
(3106) (4654) (7955) (10534) (2803)
[5077] [1546] [8128] [33000] [2220]

0.01
0.992 0.308 0.604 0.236 1.0
(2476) (8507) (12993) (8230) (2835)
[2956] [9492] [10729] [8053] [4201]

0.05
0.984 0.36 0.58 0.3 1.0
(2922) (13705) (11879) (9248) (1457)
[3869] [14214] [7222] [5126] [2407]

M
ed

iu
m

0.15
0.736 0.232 0.3 0.172 0.884
(7869) (13168) (13542) (19029) (3003.5)
[2166] [11514] [1246] [16504] [4857.5]

0.25
0.648 0.26 0.248 0.156 0.856
(9492) (15437) (12890) (10436) (3471)
[1191] [12867] [3104] [12701] [6290]

0.35
0.736 0.1 0.26 0.096 0.892
(8774) (12836) (17794) (18952) (4223)
[6220] [9810] [13272] [12820] [7425]

H
ig

h

0.5
0.38 0.08 0.076 0.048 0.604
(18237) (9509) ( 25637) (25561) (13627.5)
[13186] [3147] [20368] [23721] [9136]

0.65
0.004 0.0 0.0 0.0 0.02
(46) (-) (-) (-) (39)
[0] [-] [-] [-] [14]
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each test case, runs were performed for different decomposition probabilities scaling
from low to high. The success ratios that are printed bold in the table represent the
best results achieved for the corresponding problem setup.

We observe that decomposition influences the results of the ETA. It is not a sur-
prise to see that high values for the decomposition probability yield the worst results.
Indeed, high decomposition probabilities result in an almost systematic decomposi-
tion of solutions. As a consequence, partial solutions do not have the necessary time
to perform conflict mediation or produce new levels of complexity. Medium values
do not perform well either. We had expected that the significant increase in explo-
ration provided by medium levels of decomposition would have helped the process
in finding the good solutions. However, even the medium range values for probabil-
ity did not score well. Actually, only low values for the probability, that scale from
0.01 to 0.05 have a positive impact on the simulation results. In this situation, the
ETA with decomposition is able to match and even outperform the results of the
generic ETA. This leads to the conclusion that, if the decomposition does influence
the search process, it should remain a rare event like the standard mutation operator.

To conclude this comparison of the generic ETA with the ETA with decompo-
sition, we performed the Wilcoxon rank-test between the speeds (defined in Equa-
tion 5) of the generic ETA and the best performing ETA with decomposition on each
test case. These tests which are summarized in Table 4 compare the speed of each
run to find an optimum between a generic ETA and the best performing ETA with
decomposition. It evaluates whether the difference in success ratio we observed in
Table 3 between both algorithms is significant or not in the global optimization pro-
cess. The null hypothesis of these tests is that the average speeds of both algorithms
are equivalent. The speed is computed the same way as in Equation 5 (see page 114)
and captures the average speed of each run in a measure between 0 and 1 where 0
means that the run did not find any optimum value in the given time while 1 means
that the solution was found from the very first generation. Higher values for the
speed mean that the run was able to find a solution faster than others.

In Table 4 we see that the null hypothesis cannot be rejected under the classical
5% confidence interval except for the test case p1 = 0.9, p̄2 = 0.3. We can conclude
from this that, in general, the differences in performance we observed between the
generic ETA and the best scoring ETA with decomposition in Table 3 are not signif-
icant. So, introducing a small fraction of decomposition at each generation during
the evolutionary process may increase the expected chance of success, although this

Table 4 Wilcoxon-Rank Test between the Generic ETA and the ETA with Decomposition
(for the decomposition probability DP that scored best)

BINCSP problem DP p-value
p1 = 0.9, p̄2 = 0.3 0.01 0.01826
p1 = 0.7, p̄2 = 0.5 0.05 0.2406
p1 = 0.5, p̄2 = 0.5 0.01 0.08414
p1 = 0.3, p̄2 = 0.7 0.05 0.7706
p1 = 0.1, p̄2 = 0.9 0.05 0.955
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Fig. 5 Comparing size dynamics between generic ETA and ETA with Decomposition
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increase is not significant with respect to the dynamics one obtains with a generic
ETA without decomposition.

In Figure 5, we illustrate that the ETA with decomposition techniques has a rela-
tively equivalent dynamics for the sizes when compared to a generic ETA. However,
decomposition guarantees the survival of smaller building blocks as we can observe
that the average minimum size of the ETA with decomposition remains below 3
during the evolutionary process, meaning that the smallest unit of selection is on av-
erage of length 2 while for generic ETA the minimum size increases slowly during
the process and tends to converge toward the maximum size. This capacity to keep
lower level building blocks during the process enforces exploration through combi-
nation of these units during the entire process and therefore, through the mechanism
of conflict mediation, yields better results as it provides the system with a mecha-
nism to escape local peaks.

5.5 The Relevance of a Good Transition Condition

All the simulation results discussed so far used the covering fitness to determine
whether a transition occurred or not. This problem-specific approach will now
be compared to a process of random transitions. The motivation for this study is
twofold. First of all, problem-specific transition conditions may be difficult to de-
termine. This issue is not new: in the context of learning classifier systems (LCS)
[12, 10], the problem of finding a good mechanism to evaluate partial solutions is
known as the credit assignment problem [9]. It is clear that given the problems on
which one wants to apply the ETA, one will spend some time in determining how
to decide on the quality of a partial solution. The difference with the assignment
problem in LCS is that we do not need to address how the success of a bunch of
classifiers has to be distributed over all classifiers since two partial solutions are
merged as soon as they are considered to be adequate, which means they are no
longer independent partial solutions.

If random transitions show good performance, a broader class of problems could
be addressed with evolutionary transitions as well. Our second motivation is to
compare the behavior of both setups and observe how significant the impact of a
problem-specific transition condition is on the overall dynamics and success ratio.
The random results form a baseline against which we can compare the results of
problem-specific transition functions.

5.5.1 Simulations Setup

Our simulation uses the same setup as before. It uses a sound population and per-
forms a total of 250 runs (10 seeds, 25 instances) on different types of BINCSP. In
the case of a random transition condition, each selected solution will perform a tran-
sition with a certain probability (the Transition Probability T P) whose distribution
law is uniform. We consider three possible setups for this:
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1. A low transition rate (0.2): this means that each selected solution makes its sym-
biotic relation permanent with a relatively low probability. At each generation,
approximatively 20 % of the population will perform a transition.

2. A medium transition rate (0.5): approximatively 1 solution out of 2 will increase
in complexity.

3. A High transition rate (0.8): only 20 % of the population does not perform a
transition at each time step.

The random transition condition does not require the symbiotic relation to be suc-
cessful to see an increase in the genotype complexity. Therefore, all of these rates
are more likely to induce a relatively fast emergence of maximum size genotypes in
the population. This means that after several generations, the evolution toward the
solution only occurs through recombination of existing solutions by means of sym-
biosis1. In these simulations, we wish to observe whether the observed transitions
perform significantly better than random based transitions.

5.5.2 Simulation Results

In Table 5, we show the results obtained for a set of difficult BINCSP instances.
The results show that the choice of transition condition has quite a significant im-
pact on the performance of the algorithm. It is not surprising that the generic ETA
outperforms the random transition ETA. The performance of the generic ETA in
comparison to the random transition ETA is, however, particularly dominant. Ta-
ble 6 illustrates that this difference is significant for all test cases and setups of T P.
Random transitions produce a fully defined genotype too quickly. As a consequence,
the ETA can only evolve a solution through the recombination operation provided by

Table 5 Comparison of the success ratio between an ETA that uses a problem-specific tran-
sition condition and ETAs that perform transition on a randomly (with the Transition Proba-
bility T P)

p1: 0.9 0.7 0.5 0.3 0.1
p̄2: 0.3 0.5 0.5 0.7 0.9

TP:

Generic
0.972 0.29 0.54 0.28 0.992
(2335) (8673) (11409) (11758) (3627)
[4902] [-] [-] [-] [1224]

L
ow 0.2

0.464 0.064 0.136 0.036 0.804
(6936) (10431) (12624) (2011) (3917)
[7774] [5725] [11080] [2310] [3484]

M
ed

.

0.5
0.612 0.08 0.196 0.072 0.868
(7248) (2546) (6256) (20503) (4244)
[8446] [4169] [5708] [26279] [4529]

H
ig

h

0.8
0.0 0.0 0.0 0.0 0.0
(-) (-) (-) (-) (-)
[-] [-] [-] [-] [-]

1 Although similar to uniform cross-over in GAs, this recombination mechanism differs in
the sense that recombination occurs prior to selection while GAs perform recombination
after selection.
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Table 6 Comparisons tests between the different random based transition and the generic
ETA. The values in each column correspond to the p-value of the Wilcoxon-Mann-Whitney
ranking test.

0.2 0.5 0.8
p1 = 0.9, p̄2 = 0.3 < 0.0001 < 0.0001 -
p1 = 0.7, p̄2 = 0.5 < 0.0001 < 0.0001 -
p1 = 0.5, p̄2 = 0.5 < 0.0001 < 0.0001 -
p1 = 0.3, p̄2 = 0.7 < 0.0001 < 0.0001 -
p1 = 0.1, p̄2 = 0.9 < 0.0001 < 0.0001 -

the symbiotic relation. It ignores one important step of compositional search: First
conquer the lower level of complexity before tackling higher levels of complexity.

Figures 6, 7, 8 and 9 show the evolution of the fitness, maximum size, minimum
size and conflicts of each algorithm on the difficult test cases.

The same observation can be made for each test case; High values of T P lead
to the situation where the worst average fitness is obtained. This means that the
high probability of transition prevents selection from performing its task well (i.e.
distinguishing the good symbiotic relations from the bad ones). This observation is
confirmed by the conflicts’ curves in the figures. We observe that the highest value of
T P yields the highest number of conflicts at the beginning of the evolutionary pro-
cess (which results from premature transitions). Furthermore, this number of con-
flicts soon tends to become zero. This means that the evolutionary process converges
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Fig. 7 Comparison between random base transition and observed transition (generic ETA).
p1 = 0.7, p̄2 = 0.5.
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Fig. 9 Comparison between random base transition and observed transition (generic ETA).
p1 = 0.3, p̄2 = 0.7.

toward a sub-optimal solution and is lacking of the necessary exploration to evolve
a solution to the problem. The other T P values (0.2 and 0.5) perform much better,
achieving similar average fitness levels as the generic ETA. The conflicts’ curves
with scores above the generic case imply that the population is able to main-
tain sufficient diversity and therefore, some exploration is still active. However, a
brief look at the evolution of the maximum and minimum sizes reveals that for all
the random based transition instances, full genotypes are produced from the very
beginning of the process (in less than 100 generations) and the population soon con-
tains only fully defined genotypes (as the minimum size also converges to a fully
defined genotype). Conversely, in the generic ETA, we observe that the maximum
and minimum sizes remain at lower complexity levels and that different levels of
complexity are present in the population (as the maximum size differs from the
minimum size). This means that random-based transitions lose the efficiency inher-
ent in the compositional approach and that these processes have to, relatively early
in the evolutionary process, rely only on recombination of fully defined genotypes
to evolve a solution.

6 Conclusion

In this chapter, we introduced an algorithm that mimics evolutionary transitions
from biology and tackles evolutionary compositional search. We applied the ETA
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on a test case which has many practical applications [20, 21]: the Binary Constraints
Satisfaction Problems. We wished to evaluate how ETA performs on a challenging
test case and simulated the ETA on randomly generated problem instances for var-
ious setups of the BINCSP. These instances scale from easy to difficult depending
on the parameters p1 and p̄2 [25]. We extensively analyzed the relevance of cer-
tain design decisions that were made for the ETA. From the simulation results, the
following conclusions can be drawn.

First of all, ETA succeeds in compositionally building complex solutions by ag-
gregating partial solutions through the mechanism of symbiotic relations and tran-
sitions. In the case where the system fails to evolve a fully defined genotype for
the given problem instances, it is able to evolve two different partial genotypes that
together through, their symbiotic relation, yield a full representation for a solution.
Yet, this fully defined solution is sub-optimal. A possible reason explaining why
ETA failed to evolve complete solutions for the difficult problem instances may
reside in the random nature of the instances themselves. These instances are ran-
domly generated, which means that the constraints network is, most likely, totally
unstructured and that the resulting epistasis (correlation between the variables) is
high. ETA, by its compositional nature, is more likely to work fine on structured
instances where modularity in the problem is more apparent. This requirement for
structured problem instances is confirmed when we observe the performance of ETA
with other co-evolutionary approaches on BINCSP [1]. The fact that the ETA per-
forms well on structured problems makes it promising for real-world applications,
since most of them tend to be structured in some way. The study of the impact of the
initial population setup on the outcome of ETA demonstrated little differences in the
results [3]. This means that modeling the initial population setup is not necessarily
an issue and can be kept relatively simple (for example, an initial small population
of random assignments).

Concerning the impact of the introduction of decomposition techniques to the
ETA, we showed that the outcome of the algorithm is positively influenced when
decomposition is a rare event (only a very small fraction of the population should
see the solutions being decomposed). Even though it may improve the success ratio,
a statistical comparison of the best performing decomposition ETA with the generic
ETA showed that, in general, there are no significant differences in terms of speed.

To analyze the quantitative relevance of a problem-specific transition condi-
tion, we re-examined all previous BINCSP results using a random (performance-
independent) transition condition. We conclude that the choice to perform a
transition on a symbiotic relation should be considered thoroughly and should be
related to the nature of the problem to be solved as we observed that the ETA with
problem-specific transition condition significantly outperformed any setup of the
ETA with random condition.

Regarding the evaluation of the performance of ETA on structured problems, the
ETA will be evaluated on hierarchically structured problems like the Hierarchical if-
and-only-if function [27]. Moreover, we are currently investigating the performance
of the ETA on combinatorial optimization problems where one does not only need
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to find an assignment of values to variables but also find the optimal assignment.
These new studies should provide additional understanding on the applicability of
the ETA for real-world applications.
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14. Maynard Smith, J., Szathmáry, E.: The Major Transitions in Evolution. W.H. Freeman,
San Francisco (1995)

15. Michod, R.: Darwinian Dynamics: Evolutionary transitions in Fitness and Individuality.
Princeton University Press, Princeton (1999)

16. Potter, M.: The Design and Analysis of a Computational Model of Cooperative Coevo-
lution. PhD thesis, Department of Computer Science, George Mason University, USA
(1997)



The Evolutionary Transition Algorithm 131

17. Raynal, F., Collet, P., Lutton, E., Schoenauer, M.: Individual gp: an alternative viewpoint
for the resolution of complex problems. In: Banzhaf, W., et al. (eds.) Proceeding of the
Genetic and Evolutionary Computation Conference, Orlando, Florida, USA, pp. 974–
981 (1999)

18. Raynal, F., Collet, P., Lutton, E., Schoenauer, M.: Polar ifs + parisian genetic program-
ming = efficient ifs inverse problem solving. Genetic Programming and Evolvable Ma-
chines Journal 1(4), 339–361 (2000)

19. Rossi, F., Dhar, V.: On the equivalence of constraint satisfaction problems. In: Aiello,
L.C. (ed.) Proceedings of the 9th European Conference on Artificial Intelligence, Stock-
holm, Sweden, pp. 550–556 (1990)

20. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice-Hall, En-
glewood Cliffs (1995)

21. Salido, M.A., Garrido, A., Barták, R.: Introduction: special issue on constraint satis-
faction techniques for planning and scheduling problems. Engineering Applications of
Artificial Intelligence 21(5), 679–682 (2008)

22. Simon, H.A.: The Sciences of the Artificial, 3rd edn. MIT Press, Cambridge (1969)
23. Thierens, D., de Jong, E.D., Watson, R.A.: On the complexity of hierarchical problem

solving. In: Proceedings of The Genetic and Evolutionary Computation Conference,
Washington DC, USA, pp. 1201–1208 (2005)

24. Tsang, E.P.K.: Foundations of Constraint Satisfaction. Academic Press, London (1993)
25. van Hemert, J.: Application of Evolutionary Computation to Constraints Satisfaction and

Data Mining. PhD thesis, Universiteit Leiden, Netherlands (2002)
26. van Hemert, J.: RandomCSP Freely (2002),

http://freshmeat.net/projects/randomcsp/
27. Watson, R.: Compositional Evolution: Interdisciplinary Investigations in Evolvability,

Modularity, and Symbiosis. PhD thesis, Brandeis University, USA (2002)
28. Watson, R.A., Pollack, J.B.: Symbiotic combination as an alternative to sexual recombi-

nation in genetic algorithms. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoe-
nauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 425–434.
Springer, Heidelberg (2000)

29. Watson, R.A., Pollack, J.B.: A computational model of symbiotic composition in evolu-
tionary transitions. Special Issue on Evolvability Biosystems 69(2-3), 187–209 (2002)

30. Wiegand, P.: An Analysis of Cooperative Coevolutionary Algorithms. PhD thesis,
George Mason University, USA (2004)

http://freshmeat.net/projects/randomcsp/


A Model-Assisted Memetic Algorithm for
Expensive Optimization Problems

Yoel Tenne

Abstract. This chapter proposes a new model-assisted memetic algorithm for ex-
pensive optimization problems. The algorithm follows successful optimization ap-
proaches such as a combined global–local, modelling and memetic optimization.
However, compared to existing studies it offers three novelties: a statistically-sound
framework for selecting optimal models during both the global and the local search,
an improved trust-region framework and a procedure for improved exploration
based on modifying previously found sites. The proposed algorithm uses a radial
basis function neural network as a global model and performs a global search on
this model. It then uses a local search with a trust-region framework to converge
to a true optimum. The local search uses Kriging models and adapts them dur-
ing the search to improve convergence. A rigorous performance analysis is given
where the proposed algorithm is benchmarked against four reference algorithms us-
ing eight well-known mathematical test functions. The individual contribution of
the components of the algorithm is also studied. Lastly, the proposed algorithm is
also applied to a real-world application of airfoil shape optimization where it is also
benchmarked against the four reference algorithms. Statistical analysis of all these
tests highlights the beneficial combination of the proposed global and local search
and shows that the proposed algorithm outperforms the reference algorithms.

1 Introduction

Modern engineering design optimization replaces expensive laboratory experiments
with computer experiments. These are computationally-intensive simulations which
accurately model real-world physics. Using computer experiments reduces the cost
and time of the design process and so they are used in diverse areas ranging from
the design of integrated circuits [105] to complete aircraft [31].
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With computer experiments, the engineering design process is cast as a nonlinear
optimization problem having three distinct features:

• The objective function (or cost function) being minimized depends on the sim-
ulation outputs. However, such simulations are often legacy computer codes
available only as executables. As such there is no analytic expression relating
the simulation inputs to its outputs and so the simulation is treated as a black-
box function. This means a suitable optimization algorithm must rely only on
the observed responses and not require the function expression or derivatives.
• Each simulation run is expensive, that is it requires anywhere from minutes

to hours of computer run time [86, 88]. This means only a small number of
simulation runs can be made.
• The underlying real-world physics and possibly the numerical solution itself

often give a complicated inputs–outputs response surface, for example which
is multimodal and nonsmooth [16]. This means an elaborate optimization algo-
rithm should be used.

Due to these issues common optimization algorithms often perform poorly in
such problems. For example, nonlinear programming algorithms [23] either require
the function derivatives or approximate them by finite-differences which is too ex-
pensive. Heuristics and nature-inspired algorithms [70] use only the observed re-
sponses but they often require far too many function evaluations to converge.

These difficulties have motivated new optimization approaches and we review
two of these in the following two subsections.

1.1 Hybrid or Memetic Algorithms

One approach to improving the optimization search is by combining several algo-
rithms. For example, the chances of locating a good optimum are improved when
the search combines both a global and local search. The global search explores the
function landscape to identify promising regions. A local search then exploits local
information to identify a better solution. As such, finding a good solution requires
an exploration–exploitation balance. This approach originated in the global opti-
mization community in the mid 1970s and has been applied in various algorithms
[96, 116].

In the late 1980s researchers in the evolutionary algorithm community proposed
similar approaches. Goldberg [32, p.202–204] described hybrid schemes which
combine an evolutionary algorithm (EA) with a local search. Norman and Moscato
[77] proposed a similar approach for combinatorial optimization. Moscato [74]
termed such combined approaches as memetic algorithms following the concept
of a ‘meme’ which is a unit of imitation in cultural transmission or an abstract unit
of information [21]. In all these cases a population-based algorithm explores the
function landscape and efficiently adapts to it [49]. A local search is also used to
improve individuals (candidate solutions) by focusing on a small region.

Later studies have focused on hybridization with gradient-based algorithms such
as finite-difference quasi-Newton [37, 90, 94, 103]. Others have studied hybridization
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with heuristics such as the simplex or hill-climbing algorithms [93, 122]. Some have
replaced the EA by a simulated annealing algorithm (SA) [43].

Recent studies have focused on improving the search by analyzing the
exploration–exploitation interaction [44]. If the cost of the local search is low it may
be beneficial to apply it to all individuals [55]. Another approach uses fuzzy logic
to balance exploration–exploitation [123]. It is also possible to adaptively select the
‘best’ type of local search to use [78].

Hybrid and memetic algorithms are an active research field and recent reviews
are given in [54, 81]. A book [39] and three special issues [38, 82, 83] have focused
on these algorithms which indicates their significance as an emerging research field.

1.2 Reducing the Number of Expensive Evaluations

One main difficulty in expensive optimization is the tight limit on function evalu-
ations. To illustrate the problem we consider a population-based algorithm with a
population size s and which is run for a total of g generations or iterations. The to-
tal run time of the algorithm (T ) depends on the time required by the optimization
algorithm alone (ta) for actions such as sorting strings or performing mutations but
excluding function evaluations, and the time required by a function evaluation (t f ) .
As such the total run time is

T = g(s× t f + ta) . (1)

In expensive problems each function evaluation is a simulation run which requires
minutes to hours of computer time. As such we can assume that the algorithm time
is negligible, that is t f � ta and so

T � g(s× t f ) . (2)

To get an estimate of the required time we use the EA settings recommended in
[50], that is a population size of s = 50 and g = 1000 generations. This means the
EA requires 50,000 function evaluations for its run. If a single simulation requires
an hour (but often much longer) that is t f = 1hr then a full run of the EA would
require about 2083 days or 5.5 years. This is unacceptable in practice and shows that
population-based algorithms such as EAs cannot be directly applied to expensive
problems. As such several approaches have been studied to solve this difficulty.

In fitness inheritance only a fraction of the population is evaluated with the ex-
pensive function while the remaining candidate solutions inherit their fitness from
their ‘parents’ [95, 107]. An extension of this approach uses clustering to assign a
variable fitness to offspring [52].

A second approach uses hierarchical or variable-fidelity simulations. Here the
algorithm uses several simulations which differ by their accuracy (or fidelity) and so
by their computational cost. Promising solutions migrate from low- to high-fidelity
simulations and vice versa [27, 102]. The approach was also used with deterministic
nonlinear programming algorithms [2].
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A third approach is that of parallelization. It does not reduce the number of
expensive evaluations but only the wall-clock time needed to obtain a solution.
Population-based algorithms such as EA and SA operate in a decentralized man-
ner and so they are easily implemented on parallel machines [80, 86].

In this study we take the approach of Modelling. Models are computationally-
cheaper approximations of the expensive black-box function. They are based on
function approximation theory, that is, they interpolate the unknown function based
on the observed responses [62, 69, 117]. Since they are cheaper to evaluate, a model-
assisted algorithm uses the model instead of the expensive function during most of
the search [4, 31, 106].

The framework of model-assisted optimization, also called design and analysis
with computer experiments [98], involves three main components [28, 99]:

• Selecting the sites where the expensive function will be evaluated (design of
experiment).
• Generating a model based on the sample and
• Assessing the model accuracy.

The early approach of Response Surface Methodology was developed for noisy
real-world experiments and used least-squares quadratic models and designs which
aim to counter the noise, such as full and fractional factorial designs [8, 76].

However computer experiments are deterministic and so are noiseless (the same
inputs repeatedly give the same outputs). Therefore more suitable methods have
been studied. Designs tailored for computer experiment are space-filling, meaning
they spread the sample sites over the search space (instead of resampling at the same
location to counter noise). These include Latin hypercube designs [67], orthogonal
arrays [84] and maximin designs [47]. Also, the lack of noise motivates using more
flexible models which interpolate more accurately than the least-squares quadratics.
Such models include neural-networks [6, 40] (also discussed in Sect. 3.3), Kriging
[20] (also discussed in Sect. 3.5.2) and radial basis functions (RBFs) [11].

Whatever model is used, it is likely to be inaccurate due to the small sample size.
It is then necessary to estimate the degree of inaccuracy since a poor model can
drive the optimization search to a false optimum, that is an optimum of the model
but not of the true function [46]. One approach to estimate the model accuracy is
with statistics of goodness-of-fit [76, p.28–36], [120]. Another is with resampling
methods which train a model using part of the available sample and test the model
using the remaining part [61, Ch.2]. Recent studies have compared various methods
for model accuracy assessment [68, 112].

1.3 Model-Assisted Algorithms

The modelling approach has proven to be efficient and effective and as such several
classes of model-assisted algorithms have emerged.

One class of algorithms uses Kriging models in a Bayesian statistics framework.
Kriging models are a statistical-oriented approach to interpolation and are discussed
in length in Sect. 3.5.2. Briefly, a Kriging model treats the black-box function as a
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combination of a deterministic function and a Gaussian random process. Statistical
methods select the parameters of these functions to improve the model accuracy. Af-
ter generating the Kriging model the algorithm seeks the site which is expected to
either improve the best value found so far or to improve the overall model accuracy.
These two objectives are combined to give a merit value known as the ‘expected
improvement’ (EI). Sites already evaluated have an EI = 0 while all others have an
EI which reflects both the predicted model value and the uncertainty about this pre-
diction. At each iteration the algorithm samples the site having the highest EI value
and it updates the model, which then results in new EI values for all sites. As such
the EI approach balances between global and local search. The approach originated
in 1960s with Kushner’s univariate method [57]. Later studies extended it to mul-
tivariate functions [34, 110] and incorporated the Bayesian framework [72, 119],
including the recent paper by Jones et. al. [48].

Another class of algorithms uses quadratic interpolants as models, motivated by
a Taylor series function approximation. Quadratics both account for function curva-
ture which assists the optimization and are simple to optimize. Algorithms in this
class combine quadratics with a trust-region framework to ensure convergence to an
optimum of the true expensive function [17]. Winfield studied in 1970s an early ap-
proach of a model-assisted algorithm using quadratics [121]. Powell [89] and Conn
et. al. [14, 15] have later improved the approach based on recent advances in inter-
polation theory.

A third class is the surrogate-management framework. It uses a variant of Tor-
czon’s pattern search algorithm [115] as the search algorithm. The pattern search
seeks the optimum of the current model (termed ‘Search Step’). If it fails to find a
new optimum then the model is refined (termed ‘Poll Step’) [7]. No restriction is
made on the model type.

A fourth class is that of model-assisted memetic algorithm. The idea is to generate
a model and seek its optimum with a memetic algorithm. A number of candidate
solutions are then evaluated with the expensive function, the model is updated and
the process repeats. One algorithm combines an EA, a neural network and a local
search [30, 88]. Other algorithms combine an EA with global and local radial basis
function models [79, 80, 114, 126, 127]. An algorithm which combines an EA with
quadratic models and a local search was studied in [60, 113].

The latter class has proven to be both efficient and effective and following its suc-
cess we propose a new model-assisted memetic algorithm for expensive optimiza-
tion problems. Briefly, the algorithm first trains and selects a global model which
is an artificial neural network and seeks the optimum of this model. It then uses a
local search to improve this predicted optimum. This sequence is repeated until the
number of function evaluations reaches the prescribed limit. Compared to existing
studies the proposed algorithm contains three main novelties:

• Model selection and model management using statistical model selection:
typically there will be a family of candidate models. Due to lack of domain
knowledge the user often chooses a non-optimal model which degrades the
optimization search. To address this and to improve the search the proposed
algorithm selects all models under a unified and statistically-sound framework
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of model selection. This yields optimal models which are adapted during
the search.
• Improved trust-region framework: to converge to a true optimum the proposed

algorithm uses a trust-region approach. We describe several improvements to
this approach, such as selecting sites to improve the model and more efficient
stopping criteria. Further, we replace the quadratic models (in the classical ap-
proach) with Kriging model and adapt the models during the search.
• Improved global exploration: a model can lead the optimization search to con-

verge repeatedly to the same optimum without promoting exploration of the
search space, a condition termed ‘model stall’. To address this we propose a
modification of sampled sites which promotes exploration and discovery of new
optima. The method is computationally-efficient and applicable to any type of
model.

Rigorous performance analysis shows the proposed algorithm outperforms several
reference algorithms.

This chapter is organized as follows: Sect. 2 reviews concepts of model selec-
tion theory relevant to the proposed algorithm. Section 3 then describes in detail the
proposed algorithm and Sect. 4 provides a rigorous performance analysis. It is fol-
lowed by Sect. 5 which summarizes this chapter.

2 Model Selection and Complexity Control

A major aspect of the proposed algorithm is the selection of optimal models. This
section briefly explains the basics of statistical model selection theory and focuses
on the approach used in the proposed algorithm.

In a model selection problem we are given a set of sites and responses generated
by an unknown function and we wish to select a model which best describes this
function [12, 61]. The model is selected from a family of candidate models. The
statistical theory of model selection uses a discrepancy (Δ), which is the mismatch
between model predictions and the true responses, to measure the goodness-of-fit of
a candidate model to the given data. The discrepancy is calculated for each candidate
model and the model chosen is the one having the smallest discrepancy.

Based on information theory we consider the Kulback-Leibler discrepancy [56].
It uses the likelihood of a candidate model given the data, that is the conditional
probability of observing the sample of sites and responses

X = {(xi , f (xi)} , i = 1 . . .n , (3)

under the model S(x) , or L(S|X) [87]. The discrepancy is then

Δ = − logL(S|X) . (4)

With the Kulback-Leibler discrepancy the optimal model is the one having the max-
imum likelihood, that is

Δmin = − logLmax(S|X) . (5)
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For some models a closed-form expression exists for the likelihood and the discrep-
ancy. Otherwise, an empirical discrepancy [61, Ch.5] is used where

Δ =
1
|X|

|X|∑

i=1

(
S(x)− f (x)

)2 , (6)

which is the mean of sum of squared error between the true responses and the model
predictions over the sample. Since the likelihood is a function of the model (and
hence of the model parameters), maximizing the likelihood by solving (4) gives the
optimal model parameters [65].

The family of feasible models may contain models of different complexity, that
is the number of model parameters. More complex models may fit the sample better
than simpler ones but their prediction at new sites (or generalization) may be poor,
a condition termed over-fitting [6, Ch.9]. Often a simpler model may be a better
approximation of the true function.

This motivates the selection of models based not only on their discrepancy but
also on their complexity. As such we consider the Akaike information criterion
(AIC) for complexity control [1], [61, p.243–245]. The criterion uses the Kulback-
Leibler discrepancy but adds a penalty which increases with model complexity
where

AIC = − logL(S|X)+2m , (7)

and m is the number of model parameters. As such a more complex model is pre-
ferred over a simpler one only if it is significantly more accurate. The optimal model
is the one having the lowest AIC value.

The AIC was derived under asymptotic assumptions of a large sample. However
in expensive optimization problems the sample is small and the AIC becomes biased
[3, 59]. As such we use the corrected Akaike information criterion (AICc) which is
unbiased for small samples where

AICc = AIC+
2(m+1)(m+2)

n−m−2
, (8)

and n is the sample size [42]. The AICc has performed well against other complexity
control criteria [3, 42].

3 The Proposed Algorithm

3.1 Initialization and Main Loop

The proposed algorithm begins by generating a Latin hypercube design (LHD) con-
sisting of k = 0.2 f emax sites, where f emax is the prescribed limit of expensive evalu-
ations. As mentioned in Sect. 1.2, this design improves the accuracy of the resultant
model by spreading the sites in the search space.
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To generate a LHD of k sites the range of each variable is split into k equally sized
intervals and one point is sampled at random in each interval. To create a LHD site
a sampled point is selected at random (without replacement) for each variable and
these samples are combined to give a site (a vector). The process is repeated until
k sites have been created. Algorithm 1 gives a pseudocode for generating a LHD
sample.

Algorithm 1. Generating a LHD sample

inputs
number of variables (d);
sample size (k);
bounds on variables;

for each variable i = 1 . . .d do
divide the variable range into k equal intervals;
sample one point (a scalar) at random in each interval;

for each LHD site x j , j = 1 . . .k do
for each variable i = 1 . . .d do

select at random and without replacement a sample point;
set ith component of site j (that is x j,i) to selected sample point;

Output: a Latin hypercube design of size k

The expensive function is then evaluated at the LHD sites. During the search the
algorithm caches all sites evaluated with the expensive function and their responses
to reuse them later in the search and to reduce new evaluations.

The main loop then begins and the algorithm generates a global model of the
objective function, as follows. It first uses a modified copy of the cache where sites
found during previous local searchs have been ‘masked’ (as described in Sect. 3.2).
It then uses this modified copy to train and select an artificial neural network
which serves as the global model (as described in Sect. 3.3). Next, it seeks the
optimum of the global model (as described in Sect. 3.4) and improves this pre-
dicted optimum with a local search (as described in Sect. 3.5). This sequence is

Algorithm 2. Main loop
generate an initial LHD;
evaluate and cache sites;
while f e � f emax do

if local searchs have been made then
create a copy of the cache and ‘mask’ sites found during local searchs;

using the (modified) cache train and select a global model;
select initial site for the local search (the model’s predicted optimum);
improve predicted optimum with a local search;

Output: best solution and response found
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repeated until the number of function evaluations reaches the prescribed limit f emax
( f emax = 100 , 150 and 200 were used for performance analysis) . A pseudocode of
the main loop is given in Algorithm 2.

3.2 Modifying the Cache to Assist Exploration

The global model is trained using the cached sites and responses. Elite sites (having
a low response), which are typically found during the local searches, can ‘dominate’
the model so other minima will not be represented. To avoid this and to promote ex-
ploration such elite sites (and nearby sites) are identified and ‘masked’ by setting
their response to the mean response of all cached sites. To identify sites nearby
elites the proposed algorithm clusters the cached sites. All sites in clusters with sites
found in previous local searchs have their responses set to the mean of responses
in the cache ( f̄ ). When the global model is trained using this modified cache it
will not be dominated by the elite sites and will promote exploration. The algo-
rithm uses the mean response to avoid adding artificial multimodality to the global
model.

For clustering the algorithm uses the k-harmonic means algorithm [124, 125]
which is efficient and has outperformed competing algorithms such as the popu-
lar k-means [35]. At each iteration the algorithm finds the location of the k cluster
centres as the harmonic mean of the distance to all sites, so all sites are accounted
for. This improves the clustering quality and differs from the popular k-means algo-
rithm where only the nearest sites to a centre are accounted for. Algorithm 3 gives a
pseudocode of the k-harmonic means algorithm.

The k-harmonic means requires the number of clusters (k) as an input and so to
find the optimal k the proposed algorithm uses a model selection approach. Following

Algorithm 3. k-harmonic means clustering
Input: sites to cluster x j , j = 1 . . .n
set t = 1 ; /* iterations counter */
initialize centres ci , i = 1 . . .k at random;
repeat

for i = 1 . . .k do scan over clusters
for j = 1 . . .n do scan over sites

di, j = ‖ci − x j‖2 ; /* distance of centre i to site j */

qi, j = di, j
3

⎛⎜⎜⎜⎜⎜⎝
∑k

p=1
1

dp, j
2

⎞⎟⎟⎟⎟⎟⎠
2

;

ci =

∑n
j=1

1
qi, j

x j
∑n

j=1
1

qi, j

; /* new centre i is harmonic mean */

t = t + 1;
until change in centres is small or max. iterations ;
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(a) First local search (b) Second local search

Fig. 1 A 1-D example of the proposed cache modification. The objective function is f (x) =
x sin(x) . The sampled sites, objective function and model are shown. (a) shows the first local
search finds the local optimum at x = 0.75 (�). Sites are then clustered and those in the
cluster containing the found optimum have their responses modified (�). (b) shows this leads
to a model which identifies the second optimum such that the second local search now finds
to the optimum at x = 1.75

(a) First local search (b) Second local search

Fig. 2 A 2-D example of the proposed cache modification. The objective function is Branin.
(a) shows the first local search finds the local optimum at (−3.1 , 12.2) (�). Next, cached
sites are clustered and those in the cluster containing the found optimum have their responses
modified (�). (b) shows the second local search used with the model based on the modified
sites now converges to a different optimum at (3.1 , 2.2) (�)

Sect. 2, the optimal k is found by minimizing the corrected Akaike information
criterion (AICc), where the discrepancy function is the inter-cluster error

Δ =
k∑

i=1

ni∑

j=1

‖ci − x(i)
j ‖2 , (9)
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where ni is the number of sites in cluster i , ci is the ith cluster centre and x(i)
j is

the jth site in cluster i . This is a univariate minimization problem of minimizing
AICc(k) . It is solved with Brent’s golden-search algorithm [9].

Figures 1 and 2 give a 1D and 2D example, respectively, of the proposed method
and Algorithm 4 gives a pseudocode of the proposed method.

Algorithm 4. Modifying the cache to assist exploration
Input: cache of sites and responses;
create a copy of cache;
find mean response in cache f̄ ;
cluster cached sites using k-harmonic means, find optimal k with AICc criterion;
for clusters containing a site found in previous local searchs set all responses to f̄ ;
Output: modified copy of the cache

3.3 Generating the Global Model

Next, the proposed algorithm uses the modified copy of the cache to train a global
model of the expensive function. Such a model can be a Lagrangian interpolant so
it interpolates exactly at all available sites, that is

S(xi) = f (xi) , i = 1 . . .n (= cache size) , (10)

where S(xi) is the model response at the ith site and f (xi) is the true response there.
However, there are two difficulties with such models:

a) they can generalize poorly due to over-fitting to the given data (as mentioned in
Sect. 2) so their prediction is likely to be poor at new sites and

b) they become computationally-expensive to handle (since they account for all
sites) and numerically unstable (due to ill-conditioning of the interpolation ma-
trix) [22, 51].

To avoid these issues the proposed algorithm uses a radial basis function network
(RBFN) for the global model which is an artificial neural network with radial basis
functions processing units. Artificial neural networks are a form of nonparametric
regression [6, 40] and can approximate a continuous function with high accuracy
(given sufficient sites) [6, Ch.4]. RBFNs have the advantage of approximating well
complicated function landscapes while their structure is simpler compared to other
networks and so they are faster to train [6, Ch.5], [10, 73].

Figure 3 shows a typical RBFN. It contains three layers: the input layer, the pro-
cessing layer containing the processing units (or neurons) and the output layer which
is a weighted sum of the units responses. The proposed algorithm uses an RBFN
with Gaussian processing units which is equivalent to approximating the objective
function by a superposition of Gaussians [69]. The response of this RBFN is

S(x) =
N∑

j=1

λ j exp

⎛⎜⎜⎜⎜⎜⎝−
‖x− t j‖22

c j
2

⎞⎟⎟⎟⎟⎟⎠ , (11)
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where N is the number of processing units, λ j is a coefficient, t j is the centre of the
jth Gaussian and c j is the shape parameter (or hyperparameter) which determines
the width of the jth Gaussian.

Fig. 3 An RBFN with three
neurons (processing units)

)

An RBFN generalizes well and avoids over-fitting by abstracting the data. This
is achieved by using fewer processing units than sample sites (N < n) so the centres
(t j) typically do not coincide with the sample sites. Training an RBFN requires
selecting the number of processing unit (N), the centres (t j), the shape parameters
(c j) and the coefficients (λ j) . To efficiently select all these the proposed algorithm
uses the following two steps.

First, it identifies the optimal number of processing units (N). For a candidate
number of processing units the cached sites are clustered using the k-harmonic
means algorithm (described in Sect. 3.2) and the resulting centres are taken as the
Gaussians’ centres. The shape parameters (c j) are taken as the radii of the corre-
sponding clusters. The coefficients λ j are obtained from the least-squares solution
of the interpolation equations as

ΦTΦλ =ΦT f , (12)

whereΦ is the interpolation matrix such that

Φ :Φi , j = exp

⎛⎜⎜⎜⎜⎜⎝−
‖xi − t j‖22

c j
2

⎞⎟⎟⎟⎟⎟⎠ , (13)

and f is the vector of responses. This linear system is solved by the truncated singular
value decomposition method (TSVD) sinceΦmay be ill-condtioned [6, p.170–171].

All these parameters define an RBFN with N processing units. Similar to Sect. 3.2,
finding the optimal number of processing units is treated as a model selection prob-
lem and is solved using the corrected Akaike information criterion (AICc). For a
network with N units the algorithm finds the empirical discrepancy (6) calculated
over all cached sites. Each value of N defines a specific network and a correspond-
ing AICc . As such the algorithm finds the optimal N by minimizing AICc(N) using
Brent’s algorithm [9].
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The proposed algorithm then optimizes the shape parameters. Taking the shape
parameters found in the previous step (c = (c1, . . .cN)) as baseline values it finds the
factor l which minimizes the discrepancy (6) of a network with shape parameters
lc . The number of centres (N) and their location (t j) are fixed to those found in
the previous step, but the coefficients λ j are recalculated for each candidate l value.
Similarly to the previous stage, each l value defines a specific network and a corre-
sponding discrepancy and so the algorithm finds the optimal l by minimizing Δ(l)
using Brent’s algorithm. Algorithm 5 gives a pseudocode of the proposed method
for generating the RBFN global model.

Algorithm 5. Generating the global model
Input: modified copy of cache;
optimize number of units (N) by minimizing AICc( N ):
begin

for each candidate N cluster sites using k-harmonic means;
set Gaussian centres (t j) to cluster centres;
set Gaussian widths (c j) to cluster radii;
find coefficients (λ j) by least-squares;
find discrepancy of candidate network and its AICc;

end
set c as shape parameters for optimal N;
optimize shape parameters by minimizing the discrepancy Δ( l ):
begin

for each candidate l set Gaussian widths to l c;
generate network (find coefficients by least-squares);
find discrepancy of candidate network;

end
Output: an RBFN global model with optimized parameters

3.4 Selecting the Starting Site for the Local Search

Next, the proposed algorithm seeks the global optimum of the global model. It uses
a real-coded EA [13] followed by a gradient-based finite-differences quasi-Newton
BFGS algorithm [23, Ch.5–6]. The EA uses a population size spop = 50 , linear rank-
ing, stochastic universal sampling (SUS), intermediate recombination, elitism with a
generation gap ggap = 0.9 and the breeder-genetic-algorithm mutation operator with
probability pm = 0.05 [75] . The evolutionary search is stopped when no improve-
ment is observed after gn.i. = 10 generations. The gradient-search then improves the
best site found by the EA and this gives the predicted optimum (xp) of the global
model.

The predicted optimum is then evaluated with the expensive objective function to
give the true response f (xp) . If f (xp) is better than the best value found so far then
the local search is started from xp . Otherwise, this indicates the model is inaccurate
and so the algorithm improves the model by adding a new site to it.
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The accuracy of interpolants depends on the spread of the interpolation sites,
measured by the maximin distance [63, 100]. For a set of sites xi , i = 1 . . .k the
maximin distance is the maximum of all nearest-neighbour distances in the set. The
model accuracy improves as the maximin distance increases, that is as the sites are
more space-filling. As such, the proposed algorithm improves the global model by
seeking the site which maximizes the maximin distance for the cached sites. It finds
this site (xn) by solving the nonlinear optimization problem

xn : max
x∈F

min
xi∈X
{ ‖xi − x‖2 } (14)

whereX is the set of cached sites andF is the search space. This approach generates
sites similarly to the maximin design of experiments [47].

The new site is evaluated with the expensive function and is cached. The global
model is then updated and the process repeats until either a better optimum is found
or 10 attempts have been made. In the latter case the best cached site is taken as the
starting site for the local search. Algorithm 6 gives a pseudocode for the proposed
method for selecting the starting site.

Algorithm 6. Selecting the starting site for the local search
Input: cache and modified copy of cache;
set i = 1 ; /* number of attempts */
find best site in cache (xb);
repeat

generate global model;
seek optimum of model using an EA followed by a gradient search (SQP);
evaluate the predicted optimum (xp) with expensive function and cache;
if optimum is better then current best in cache then

set x0 = xp ; /* set starting site */
else

improve model by searching for a site (xn) using maximin distance;
evaluate xn with expensive function and cache;
i = i + 1;

if i = 10 then set x0 = xb ; /* set starting site */

until f (xp) < f (xb) or i = 10 ;
Output: initial site for local search (x0)

3.5 Improving the Optimum with the Local Search

Next, the proposed algorithm improves the starting site (x0) by using a local search.
The proposed local search has three distinct features: a) since it concentrates on a
small region, it uses local models to better model the objective function b) it uses
an improved trust-region framework to converge to a true optimum of the expensive
function but it replaces the classical quadratic models with more flexible ones to
improve the search and c) to further assist convergence it continuously adapts the
type of model used.
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3.5.1 Using a Trust-Region Framework to Converge to a True Optimum

As mentioned in Sect. 1.3, due to model inaccuracy a model-assisted optimization
search can converge to a false optimum. To avoid this the proposed algorithm uses
a trust-region framework.

The classical trust-region framework generates at each iteration a quadratic model
and obtains its constrained optimum (a truncated Newton step) as a quadratic pro-
gramming problem [17]. The framework guarantees asymptotic convergence to an
optimum of the true objective function (a critical site satisfying the first order Karush-
Kuhn-Tucker optimality conditions).

For quadratic models the constrained optimum is easily found but such models
cannot model a complicated landscape well. As such, the proposed local search re-
places them with the more flexible Kriging models which are described in Sect. 3.5.2
which follows. When compared to quadratics, Kriging models can approximate the
objective function better over a larger trust-region and so convergence will be faster
and require less function evaluations.

The proposed trust-region local search begins with an initial cuboid trust-region
centred at xc = x0 (the starting site) and of size Δ = 0.1 , that is

T = {x : ‖xc− x‖∞ � Δ} . (15)

To emphasize local function behaviour all cached sites which are in T are used to
generate the local model. If the trust-region contains less than m = min{d + 1 , 10}
sites then the nearest exterior sites are also used. The algorithm selects the optimal
type of Kriging model (as described in Sect. 3.5.2) and finds its constrained optimum
in the trust-region (xm). However, this is no longer a simple quadratic programming
problem (as in the classical framework) and so to find the constrained optimum the
algorithm uses an EA followed by a gradient-search, similarly to Sect. 3.4.

Following the classical trust-region approach the objective function is evaluated
at the predicted optimum and a merit value is calculated

ρ =
f (xm)− f (xc)
S(xm)−S(xc)

, (16)

where S(x) is the current Kriging local model. A value of ρ � 1 indicates a good fit
of the model to the objective function in the trust-region.

The classical trust-region framework assumes exact derivatives are available so
a poor model fit is only due to a trust-region which is too large and so it decreases
the trust-region. However, in model-assisted search the model may be inaccurate
due to an insufficient number of interpolation sites in the trust-region. This needs
to be accounted for to avoid a quick reduction of the trust-region and premature
convergence [15].

As discussed in Sect. 3.4, the model’s accuracy depends on the maximin distance
of the interpolated sites. As such, the proposed algorithm determines if a model is
sufficiently accurate (to justify reducing the trust-region) based on the number of
space-filling sites in the trust-region. The maximum separation distance for a cuboid
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trust-region is the diagonal length
√

d(2Δ)2 (d is the function dimension). A site is
considered space-filling if its nearest-neighbour distance is at least 5% of the diago-
nal length. The model is considered accurate when the number of space-filling sites
in the trust-region (s) is larger than a threshold value (s� = d+1). This value is based
on the number of sites required to model the gradient by well-established methods
like quasi-Newton finite-differences [15]. However, as d increases the required num-
ber of sites becomes comparable to the total number of function evaluations ( f emax).
As such, the algorithm uses s� =min{d+1 , 0.1 f emax} .

Based on ρ , s and s� the algorithm performs as follows:

• if ρ > 0: then the local model is accurate since a better solution has been found.
Following the classical trust-region framework the algorithm centres the trust-
region at the new optimum (xm) and the trust-region is enlarged by a factor
δ+ .
• if ρ � 0 and s < s�: the optimum predicted by the model is a false one, but the

poor model accuracy is attributed to an insufficient number of space-filling sites
in the trust-region. As such, the algorithm improves the local model by adding
a new site xn . Similar to Sect. 3.4, this site (xn) is chosen to give the largest
maximin distance with respect to all sites in the trust-region. xn is evaluated
with the expensive function and is cached. If f (xn) < f (xc) than xn becomes the
new trust-region centre.
• if ρ � 0 and s � s�: the local model fails to predict an improvement but its poor

accuracy is attributed to the trust-region being too large (the model is considered
to be accurate). Following the classical trust-region framework the algorithm
decreases the trust-region by a factor δ− .

As such the local search uses at most two expensive evaluations at each iteration,
one for xc and possibly another for xn . All new sites evaluated with the expensive
function are cached.

Next, the local search stops if the trust-region is small enough Δ < Δmin (we use
Δmin = Δ0 · δ2−) or if the limit of expensive evaluations has been reached. Otherwise,
a new local search iteration begins. Algorithm 7 gives a pseudocode of the proposed
trust-region local search.

3.5.2 Selecting Optimal Local Models

To assist the local search the proposed algorithm selects at each iteration an opti-
mal local model. It selects models from a family of Kriging (or spatial-correlation)
models as they have performed well compared to other models [45, 58].

Kriging models originated in geostatistics with the work of Krige and Matheron
[19, 66]. Such a model has two components: a ‘drift’ function which models global
variations in the objective function and a stochastic function (a stationary Gaussian
process) which locally improves the prediction [20].

A common approach is to use a constant drift function (for example set to 1) [53]
so the Kriging model is

S(x) = β+Z(x) , (17)
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Algorithm 7. A trust-region framework for the local search

inputs
X; /* cache of sites and responses */
x0; /* initial site for local search */

s� =min{d+1 , 0.1 f emax} ; /* model accuracy threshold */
xc = x0 ; /* centre trust-region at x0 */
repeat

define a cuboid trust-region centred at xc and of size Δ;
find the cached sites inside the trust-region (if insufficient use exterior sites);
select an optimal local model based on these sites;
find model optimum in trust-region (xm) with EA and gradient-search;
calculate a trust-region merit value ρ;
update trust-region:

if ρ > 0 set xc = xm, increase Δ
if ρ � 0

⋂
s < s� improve local model by adding a site xn , if better set xc = xn

if ρ � 0
⋂

s � s� decrease Δ
until Δ < Δmin or f e � f emax ;
Output: optimum found in local search

where β is the drift function coefficient and Z(x) is the stochastic function [98]. The
latter is taken as a Gaussian process with a zero mean and variance σ . The response
of the Kriging model at any site is correlated with that of other sites. The correlation
between two sites (x1 and x2) is defined by a covariance function

C(x1, x2) = σ2R(x1, x2) , (18)

where R(x1, x2) is a spatial correlation function (SCF). The model is defined by
adjusting the free coefficient (β) and the SCF parameters to fit the available data.

Different spatial correlation functions have been studied [53]. Each SCF results in
a different model and so the optimal SCF is problem dependant. In practice the SCF
is prescribed and fixed throughout the optimization search [71]. To improve this, the
proposed algorithm uses the model selection framework (described in Sect. 2) to
select the optimal SCF based on maximum likelihood. The likelihood of a Kriging
model is given by the closed-form expression [98]

L = −d
2

log(2πσ2)− 1
2

log(|R|)− 1

2σ2
( f −1β)TR−1( f −1β) , (19)

where

R : Ri , j = R(xi , x j , θ) (20)

is the correlation matrix of all sites in the sample, θ is a correlation parameter and
the spatial correlation function is given by
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Table 1 Candidate spatial correlation functions (SCFs)

Name R(θ, lk)
Exponential exp(−θ |lk|)
Gaussian exp(−θ l2k)
linear max{0 ,1− θ |lk |}
spherical 1−1.5ξk +0.5ξ3k , ξk =min{1 , θ |lk |}

spline
ζ(ξk) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1−15ξ2k +30ξ3k 0 � ξk � 0.2

1.25(1− ξk)3 0.2 < ξk < 1

0 ξk � 1

ξk = θ|lk|
lk = xi ,k − x j ,k is the difference between the kth component of two sites xi and x j [109].

(a) Iteration 5 (b) Iteration 14

Fig. 4 An example of models used during the local search with the Branin function. (a) shows
iteration 2 where the local model used a Gaussian SCF. (b) shows iteration 14 where the local
model used a spline SCF. The trust-region is also shown.

Algorithm 8. Selecting optimal local models
Input: sites and responses used for the local model
for SCF = exponential, Gaussian, linear, spherical, spline do

generate Kriging model using candidate SCF;
find the model’s maximum likelihood;

select the Kriging model having the largest maximum likelihood;
Output: optimal Kriging local model

R(xi , x j , θ) =
d∏

k=1

R(θ, lk) , lk = xi ,k − x j ,k , (21)

where the functions R(θ, lk) are defined in Table 1. The model parameters (β , σ and
θ) are found by maximizing its likelihood (19) [65]. The numerical procedures for
generating the Kriging models are given in [109].
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As such, at each local search iteration the proposed algorithm builds a Krig-
ing model, one for each of the SCFs in Table 1, and it selects the one giving the
largest maximum likelihood. Complexity control is unnecessary since all models
have equal complexity, that is the three parameters σ , β and θ . This approach re-
sults in a model-adaptive local search. Figure 4 shows an example and Algorithm 8
gives a pseudocode of the proposed method.

3.6 Caching New Sites

During the optimization search new sites and responses are cached for later use. If
cached sites are nearly collocated the interpolation matrices used to generate the
global and local models will be severely ill-condtioned. To avoid this a new site
is added to the cache if it is sufficiently spaced from cached sites (a minimum l2
distance of Δmin/2, where Δmin is the prescribed minimum trust-region radius, as
described in Sect. 3.5.1). Otherwise the new site replaces the cached site nearest to
it (in the l2 norm) if the new response is better than the cached one. Algorithm 9
gives the pseudocode for caching new sites.

Algorithm 9. Caching new sites

Input: xnew, f ( xnew) ; /* new site and response */
find the cached site xcac nearest to xnew;
if ‖xcac− xnew‖2 � Δmin/2 then

add xnew and f (xnew) to the cache;

else if f (xnew) < f (xcac) then
replace xcac and f (xcac) with xnew and f (xnew);

4 Performance Analysis

This section gives a detailed performance analysis of the proposed algorithm in three
parts. First, we test the proposed algorithm on eight well-known mathematical test
functions. In these tests it is also benchmarked against four reference algorithms.

Next, we study the individual contribution of the global search and of the local
search components of the proposed algorithm. This is done by comparing the full
proposed algorithm to the two cases where its global search is disabled and where
its local search is disabled.

Lastly, we apply the proposed algorithm to a real-world application of airfoil
shape optimization and we also benchmark it against the four reference algorithms.

4.1 Reference Algorithms and Test Procedure

To obtain a reference of performance we benchmarked the proposed algorithm
against four representative model-assisted EAs [91, 92]. These algorithms build a
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Algorithm 10. Reference algorithm
generate initial sites with LHD and evaluate them;
cache sites and responses;
while f e � f emax do

generate a Kriging model based on cache;
search for model optimum with an EA for 10 generations;
evaluate candidate solutions from population with true function;
cache evaluated candidate solutions and their responses;

Output: best solution and response found

Kriging model, seek its optimum and evaluate a certain percentage of the popula-
tion with the true function. The model is then updated and the process repeats until
the limit of function evaluations is reached. Algorithm 10 gives a pseudocode of the
reference algorithms.

The four algorithms differ by their Kriging spatial correlation function (SCF) and
the percentage of elites and non-elites that they evaluate at each iteration. Table 2
compares the reference algorithms.

Table 3 gives the parameter settings used by the proposed algorithm during the
tests. Parameters which define the EA operation were identical in the proposed al-
gorithm and in the four reference algorithms.

To obtain statistically-significant results 30 runs were repeated for each test with
the proposed algorithm and the reference algorithms. For each function and each al-
gorithm we provide the statistics mean, standard deviation, median, best and worst
result. Also, to determine in a rigorous manner which algorithm performs better we
used the Mann–Whitney (or Wilcoxon) significance test [64], which is a nonpara-
metric version of the t-test [18, Ch.5], [104, p.513–576]. The Mann–Whitney test is
preferable since it is more widely applicable: it is valid for non-normal data while
applying the t-test on non-normal data can give incorrect inferences [18, Ch.2].

We used the one-tailed Mann–Whitney test which provides a test statistic U . The
null and alternative hypothesis are:

H0 : P(ri � rp) � 0.5 (22a)

H1 : P(ri > rp) < 0.5 , (22b)

where P(ri < rp) is the probability that a result of the proposed algorithm is larger
(worse) than a result of the ith reference algorithm (i = 1 . . .4). As such we test
if the proposed algorithm is more likely to give a better result than the reference
algorithms. The null hypothesis is rejected at the α = 0.05 significance level if U >
1.644 and at the α = 0.01 significance level if U > 2.326 . For each test function we
applied the Mann–Whitney test between results of the proposed algorithm and each
of the four reference algorithms and provide the resultant U statistics. As such, for
each reference algorithm if U > 1.644 or U > 2.326 we reject the null hypothesis at
the 0.05 and 0.01 significance level, respectively, and accept the proposed algorithm
outperformed the reference algorithm.
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Table 2 Settings for the reference algorithms

Evaluated per generation

Number Designation SCF 1 % elites % non-elites
1 (G,10,0) Gaussian 10 0
2 (S,10,0) spline 10 0
3 (G,5,5) Gaussian 5 5
4 (S,5,5) spline 5 5

1 spatial correlation function.

Table 3 Parameter settings for the proposed algorithm

General Parameters

f emax max. (true) objective function evaluations 100 , 150 , 2001

EA Search
spop population size 50
ggap generation gap 0.9
gmax maximum generations 20
pm mutation probability 0.05
gn.i. no-improvement generations to stop 10

Trust-region Search
Δ0 initial trust-region radius 0.1
δ+ trust-region size increase factor 2
δ− trust-region size decrease factor 0.5
Δmin minimum trust-region radius Δ0 ·δ2−
Δmax maximum trust-region radius Δ0 ·δ2+

1 100 and 200 for test functions, 150 for airfoil optimization.

4.2 Mathematical Test Functions

In this section we used eight mathematical test functions which are widely used
and well-known: Branin, Hartman 3 and Hartman 6 [24], Greiwank [33], Rastrigin
[117, p.185–192], Rosenbrock [97], Schwefel 2.13 [101, p.301–302] and Weier-
strass [36]. For the Greiwank, Rastrigin, Rosenbrock, Schwefel and Weierstrass we
used the function definitions from [111] along with the supporting files available
online. The Branin, Hartman 3 and Hartman 6 have a fixed dimension (2, 3 and 6,
respectively) while those from [111] were tested in dimension 10 and 30 to evaluate
the ‘curse of dimensionality’ [5] on the algorithms performance. All functions were
tested with a limit on function evaluations ( f emax = 100 for Branin, Hartman 3 and
Hartman 6 and f emax = 200 for all other functions). These are realistic settings for
expensive problems and they test the algorithms under a constraint of resources, as
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Table 4 Mathematical test functions

Function Dimension (d) Definition Search space f (xg)1

Reference: Dixon and Szegö [24]

Branin 2 (x2−
5.1

4π2
x2

1 +
5
π

x1−6)2 +10(1− 1
8π

)cos(x1)+10 [−5,10]× [0,15] 0

Hartman 3 3
∑4

i=1 ci exp
[∑4

j=1 ai, j(xi − pi, j)2] [0,1]d −3.86

Hartman 6 6
∑4

i=1 ci exp
[∑6

j=1 ai, j(xi − pi, j)2] [0,1]d −3.32

Reference: Suganthan et. al. [111]

Griewank 10, 30
∑d

i=1

x2
i

4000
−

∏d
i=1 cos

(
xi√

i

)
+1 [−600,600]d 0

Rastrigin 10, 30
∑d

i=1

{
x2

i −10 · cos(2πxi)+10
}

[−5,5]d 0

Rosenbrock 10, 30
∑d

i=1

{
(2xi−1− x2

i )2+ (1− xi)2
}

[−2,2]d 0

Schwefel 2.13 10, 30
∑d

i=1
(∑d

j=1 ai, j sin(α j)+bi, j cos(α j)−
∑d

j=1 ai, j sin(x j)+bi, j cos(x j)
)2

[−π,π]d 0

Weierstrass 10, 30
∑d

i=1
∑20

k=0 ak cos
(
2πbk(xi +0.5)

)
[−0.5,0.5]d −d

1 Value at global optimum.

suggested in [118]. Table 4 gives the test functions’ details and Fig. 5 shows their
bivariate version (excluding Hartman 3 and Hartman 6 which are not bivariate).

Tables 5–7 provide the resultant test statistics for the comparisons with the four
reference algorithms over the eight test functions. Results for the Branin, Hartman 3
and Hartman 6 for all algorithms are similar since they all obtained a good ap-
proximation of the global optimum. This indicates that these functions were not
challenging to all five algorithms and there is no clear winner.

A significant difference in performance between the proposed algorithm and
the reference algorithms is seen with the more complicated functions (Greiwank,
Rastrigin, Rosenbrock, Schwefel and Weierstrass). The mean and median statis-
tics indicate that the proposed algorithm found a better solution than the refer-
ence algorithms. This is attributed to the combined global and local search and
the careful selection of models in these searches. Also, the standard deviation of
results for the proposed algorithm is typically lower than that of the reference algo-
rithms which indicates its performance is more stable. Overall, based on the Mann–
Whitney test in all cases we reject the null hypothesis in (22) at both significance
levels α = 0.05 and 0.01 and accept that the proposed algorithm outperformed the
four reference algorithms.

4.3 Individual Component Contribution

We also study the individual contribution of the global search and the local search
to the overall performance of the proposed algorithm. For this, we used two ref-
erence algorithms obtained from the complete proposed algorithm. One algorithm
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(a) Branin (b) Greiwank

(c) Rastrigin (d) Rosenbrock

(e) Schwefel 2.13 (f) Weierstrass

Fig. 5 Bivariate versions of the mathematical test functions

uses only the proposed global search (local search is disabled) and the other uses
only the proposed local search (global search is disabled). The two reference algo-
rithms were tested with five test functions: Greiwank and Rastrigin in dimension
10 and Rosenbrock, Schwefel and Weierstrass in dimension 30. A similar analysis
to that of the Sect. 4.2 was used, that is we provide the statistics mean, standard
deviation, median, best and worst and the Mann–Whitney U statistic.

Table 8 shows test results over the five test functions. First, for the highly multi-
modal functions (Greiwank, Rastrigin, Weierstrass) the global search reference al-
gorithm performed better than the local search one. In such complicated landscapes
an extensive global search finds a better optimum while a local search converges
to an inferior optimum typically close to the starting site. An opposite trend exists
for the simpler Rosenbrock and Schwefel functions where an extensive local search
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Table 5 Results for mathematical tests functions

finds a better optimum. Second, the Mann–Whitney statistic indicates the full pro-
posed algorithm outperformed the reference algorithms, which shows the benefit
of the proposed global–local approach. Lastly, the standard deviation of results of
the reference algorithms was typically much larger than for the proposed algorithm
which indicates their performance is much less stable. Overall, results show that
both the proposed global search and the proposed local search contribute to the
optimization search. However, individually they perform well on some functions
but worse on others. The proposed algorithm combines both approaches and so it
achieves an effective and efficient search over a wide range of functions.

4.4 Real-World Application

As a final test we have also applied the proposed algorithm to the real-world ap-
plication of airfoil shape optimization. Here we are given an aircraft’s flight condi-
tions (speed and altitude) and the goal is to find an airfoil shape which generates
the required lift force (L) with a minimum of aerodynamic friction (or drag) force
(D). In practice these requirements are not expressed as forces but as aerodynamic
coefficients:
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cL =
L

1
2ρU

2
(lift coefficient) (23a)

cD =
D

1
2ρU

2
(lift coefficient) (23b)

where ρ is the air density at the prescribed flight altitude and U is the prescribed
flight speed. Figure 6 shows an example.

Table 6 Results for mathematical tests functions–10D



158 Y. Tenne

Table 7 Results for mathematical tests functions–30D

The specific problem we study is that of optimizing the airfoil of a transport
aircraft cruising at 35,000ft and at a Mach number M= 0.8 (that is 80% of the speed
of sound at this altitude) with an angle of attack α = 2◦ . The target lift coefficient
is c�L = 1 . Also, the airfoil thickness must be equal to or larger than a minimum
value (t� = 0.095, normalized by the airfoil chord) to ensure the airfoil does not
break during flight. The cruise conditions and thickness constraint are based on [29,
p.484–487], [85]. The airfoil optimization problem is then
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min cD (drag coefficient)
s.t. c�L = 1 (required lift coefficient)

t� = 0.095 (min. allowed thickness at 0.2–0.8 of chord)

α = 2◦ (cruise angle of attack)

M = 0.8 (cruise Mach number)

h = 35,000ft (cruise altitude)

(24)

Table 8 Results for mathematical tests functions–Individual component contribution
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Fig. 6 The forces operating on an aircraft at flight. The angle-of-attack (α) is the measured
approximately between the velocity and the airfoil chord.

Fig. 7 PARSEC design
variables

Accordingly, we used the objective function

f =
|cL− c�L |

max{cL,max− c�L ,c
�
L − cL,min}

+
cD

cD,max
+

max{t� − t , 0}
t�

(25)

where cL,max = 1.5 , cL,min = −0.5 are the assumed extremal values for the lift coeffi-
cient and cD,max = 0.2 is an assumed maximal drag coefficient. For cL,min , cL,max and
cD,max only rough estimates are needed since they only normalize the objectives.

To generate a candidate airfoil we used the PARSEC parameterization which uses
11 design variables [108]. Figure 7 shows an example of this. We set the bounds of
these design variables based on previous studies [41, 86] and Table 9 gives their
values. To ensure a closed airfoil shape we set the leading edge gap as ΔzTE = 0 .
Also, to avoid unrealistic shapes where the lower airfoil curve intersects the upper
curve we set the trailing edge angles to satisfy βTE � αTE (effectively βTE = αTE + θ
where θ � 0) .

To obtain the lift coefficient and drag coefficient of candidate airfoils the opti-
mization algorithm used XFoil, an analysis code for subsonic isolated airfoils based
on the panel method [26]. Each airfoil evaluation required approximately 30 seconds
on a desktop computer. We set the limit of function evaluations to f emax = 150 .

Figure 8 shows an airfoil found by the proposed algorithm and the variation of
the pressure coefficient (cP) along the upper and lower airfoil curves. The airfoil
yields a lift coefficient of cL = 1.019 and a drag coefficient cD = 0.023 and satisfies
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Table 9 PARSEC design variables and their bounds

(a) Airfoil geometry (b) Pressure coefficient change

Fig. 8 An airfoil obtained by the proposed algorithm. (a) shows the airfoil geometry. (b)
shows the change of pressure coefficient along the upper and lower airfoil curves and the
airfoil is shown below for reference

the minimum thickness requirement (minimum thickness at 0.2–0.8 of chord is t =
0.097). Figure 8(b) shows the pressure coefficient change along the upper and lower
airfoil curves. A pressure jump on the upper curve around 0.7 of the chord indicates
a shockwave, which is expected due to the high subsonic cruise speed (M = 0.8).

We have also benchmarked the proposed algorithm against the four reference al-
gorithms from the Sect. 4.1 and have performed a statistical analysis as in Sects. 4.2–
4.3. Table 10 shows the test statistics from which it follows that also in this real-world
application the proposed algorithm outperformed the four reference algorithms.
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Table 10 Results for the airfoil shape optimization

5 Summary

Modern engineering design optimization uses computer simulations and as such it is
cast as a problem of optimizing an expensive black-box function. To efficiently and
effectively solve such problems we have proposed a new model-assisted memetic
algorithm. The proposed algorithm combines several optimization approaches such
as: global–local optimization, modelling and memetic optimization. It first trains
and selects a global model which is an artificial neural network and seeks the op-
timum of this model. It then uses a local search to improve this predicted opti-
mum. This sequence is repeated until the number of function evaluations reaches
the prescribed limit. Compared to existing studies the proposed algorithm contains
three main novelties: a) it selects all models under a unified and statistically-sound
framework of model selection and complexity control, and this gives optimal models
which are adapted during the search b) it uses an improved trust-region framework
to converge to a true optimum while replacing the classical quadratic models with
Kriging models and adapting these models during the search and c) it improves
global exploration by training the global model with modified sites.

An extensive performance analysis has been provided. Results show the proposed
algorithm outperformed four model-assisted EAs on eight well-known mathemat-
ical test functions. The individual contribution of the proposed global search and
local search component was also studied. While each component performs well on
a certain class of problems it also performs poorly on another. This emphasizes the
advantage of the global–local approach used. Lastly, the proposed algorithm was
also applied to a real-world application of airfoil shape optimization where it also
performed better than the reference algorithms.

References

1. Akaike, H.: Information theory and an extension of the maximum likelihood principle.
In: Proceedings of the 2nd International Symposium on Information Theory, Akadémiai
Kiadó, Budapest, pp. 267–281 (1973)



A Model-Assisted Memetic Algorithm for Expensive Optimization Problems 163

2. Alexandrov, N.M., Lewis, R.M., Gumbert, C.R., Green, L.L., Newma, P.A.: Optimiza-
tion with variable-fidelity models applied to wing design. In: Proceedings of the 38th
Aerospace Sciences Meeting and Exhibit, American Institute for Aeronautics and As-
tronautics, Reston, Virginia (2000)

3. Anderson, D.R., Burnham, K.P., White, G.C.: Comparison of Akaike information cri-
terion and consistent Akaike information criterion for model selection and statistical
inference from capture-recapture studies. Journal of Applied Statistics 25(2), 263–282
(1998)

4. Barthelemy, J.F.M., Haftka, R.T.: Approximation concepts for optimum structural de-
sign – a review. Structural optimization 5, 129–144 (1993)

5. Bellman, R.E.: Adaptive Control Processes: A Guided Tour. Princeton University Press,
Princeton (1961)

6. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, New
York (1995)

7. Booker, A.J., Dennis, J.E., Frank, P.D., Serafini, D.B., Torczon, V., Trosset, M.W.: A
rigorous framework for optimization of expensive functions by surrogates. Structural
Optimization 17(1), 1–13 (1999)

8. Box, G.E.P., Draper, N.R.: Empirical Model Building and Response Surface. John Wi-
ley and Sons, New York (1987)

9. Brent, R.P.: Algorithms for Minimization Without Derivatives, 3rd edn. Dover Publica-
tions, New York (2002)

10. Broomhead, D., Lowe, D.: Multivariate functional interpolations and adaptive net-
works. Complex Systems 2, 321–355 (1988)

11. Buhman, M.D.: Radial Basis Functions Theory and Implementations. Cambridge
Monographs on Applied and Computational Mathematics, vol. 12. Cambridge Univer-
sity Press, Cambridge (2003)

12. Burnham, K.P., Anderson, D.R.: Model selection and inference: A Practical
Information-theoretic Approach. Springer, New York (1998)

13. Chipperfield, A., Fleming, P., Pohlheim, H., Fonseca, C.: Genetic Algorithm TOOL-
BOX For Use with MATLAB, Version 1.2. Department of Automatic Control and Sys-
tems Engineering, University of Sheffield, Sheffield (1994)

14. Conn, A.R., Scheinberg, K., Toint, P.L.: On the convergence of derivative-free methods
for unconstrained optimization. In: Iserles, A., Buhmann, M.D. (eds.) Approximation
Theory and Optimization: Tributes to M.J.D. Powell, pp. 83–108. Cambridge Univer-
sity Press, Cambridge (1997)

15. Conn, A.R., Scheinberg, K., Toint, P.L.: Recent progress in unconstrained nonlinear
optimization without derivatives. Mathematical Programming 79, 397–414 (1997)

16. Conn, A.R., Scheinberg, K., Toint, P.L.: A derivative free optimization algorithm in
practice. In: Proceedings of the Seventh AIAA/USAF/NASA/ISSMO Symposium on
Multidisciplinary Analysis and Optimization, American Institute for Aeronautics and
Astronautics, Reston, Virginia, AIAA Paper AIAA-1998-4718 (1998)

17. Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust Region Methods. SIAM, Philadelphia
(2000)

18. Conover, W.: Practical Nonparametric Statistics, 2nd edn. John Wiley and Sons, New
York (1980)

19. Cressie, N.A.C.: The origins of Kriging. Mathematical Geology 22(3), 239–252 (1990)
20. Cressie, N.A.C.: Statistics for Spatial Data. Wiley, New York (1993)
21. Dawkins, R.: The Selfish Gene. Oxford University Press, Oxford (1976)



164 Y. Tenne

22. Demmel, J.W.: The geometry of ill-conditioning. Computer Journal 3(2), 201–229
(1987)

23. Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and
Nonlinear Equations. Classics in Applied Mathematics. SIAM Publishing, Philadelphia
(1996)

24. Dixon, L.C.W., Szegö, G.P.: The global optimization problem: An introduction. In:
[25], pp. 1–15 (1978)

25. Dixon, L.C.W., Szegö, G.P. (eds.): Towards Global Optimisation 2. North-Holland Pub-
lishing Company, Amsterdam (1978)

26. Drela, M., Youngren, H.: XFOIL 6.9 User Primer. Department of Aeronautics and As-
tronautics, Massachusetts Institute of Technology, Cambridge, MA (2001)

27. Eby, D., Averill, R.C., Punch III, W.F., Goodman, E.D.: Evaluation of injection island
GA performance on flywheel design optimization. In: Proceedings of the Third Confer-
ence on Adaptive Computing in Design and Manufacturing–ACDM 1998, pp. 121–136.
Springer, London (1998)

28. Fang, K.T., Li, R., Sudjinato, A.: Design and Modeling for Computer Experiments.
Chapman and Hall, Boca Raton (2006)

29. Filippone, A.: Flight Performance of Fixed and Rotary Wing Aircraft, 1st edn. Elsevier,
Amsterdam (2006)

30. Gaspar-Cunha, A., Vieira, A.: A multi-objective evolutionary algorithm using neural
networks to approximate fitness evaluations. International Journal of Computers, Sys-
tems and Signals 6(1), 18–36 (2005)

31. Giannakoglou, K.C.: Design of optimal aerodynamic shapes using stochastic optimiza-
tion methods and computational intelligence. International Review Journal Progress in
Aerospace Sciences 38(1), 43–76 (2002)

32. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley, Reading (1989)

33. Griewank, A.O.: Generalized descent for global optimization. Journal of Optimization
Theory and Applications 34, 11–39 (1981)

34. Groch, A., Vidigal, L.M., Director, S.W.: A new global optimization method for elec-
tronic circuit design. IEEE Transactions on Circuit and Systems 32(2), 160–170 (1985)

35. Hamerly, G., Elkan, C.: Alternatives to the k-means algorithm that find better cluster-
ings. In: Munson, E.V., Furuta, R., Maletic, J.I. (eds.) Proceedings of the 2002 ACM
Symposium on Document Engineering, in conjunction with the eleventh ACM Inter-
national Conference on Information and Knowledge Management–CIKM 2002, New
York, pp. 600–607 (2002)

36. Hardy, G.H.: Weierstrass’s non-differentiable function. Transactions of the American
Mathematical Society 17, 301–325 (1916)

37. Hart, W.E., Belew, R.K.: Optimization with genetic algorithm hybrids that use local
search. In: Belew, R.K., Mitchell, M. (eds.) Adaptive Individuals in Evolving Popula-
tions: Models and Algorithms, Santa Fe Institute Studies in the Sciences of Complexity,
ch. 27, pp. 483–496. Addison-Wesley, Reading (1995)

38. Hart, W.E., Krasnogor, N., Smith, J.E.: Special issue on memetic algorithms. Evolu-
tionary Computation 12(3) (2004)

39. Hart, W.E., Krasnogor, N., Smith, J.E.: Recent Advances in Memetic Algorithms. Stud-
ies in Fuzziness and Soft Computing, vol. 166. Springer, Heidelberg (2005)

40. Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice-Hall,
Upper Saddle River (1999)



A Model-Assisted Memetic Algorithm for Expensive Optimization Problems 165

41. Holst, T.L., Pulliam, T.H.: Aerodynamic shape optimization using a real-number-
encoded genetic algorithm. In: Proceedings of the 19th AIAA Applied Aerodynam-
ics Conference, American Institute for Aeronautics and Astronautics, Reston, Virginia,
AIAA Paper AIAA-2001-2473 (2001)

42. Hurvich, C.M., Tsai, C.L.: Regression and time series model selection in small samples.
Biometrika 76(2), 297–307 (1989)

43. Ingber, L.A., Rosen, B.: Genetic algorithms and very fast simulated reannealing: A
comparison. Mathematical and Computer Modelling 16(11), 87–100 (1992)

44. Ishibuchi, H., Yoshida, T., Murata, T.: Balance between genetic search and local search
in memetic algorithms for multiobjective permutation flowshop scheduling. IEEE
Transactions on Evolutionary Computation 7, 204–223 (2003)

45. Jin, R., Chen, W., Simpson, T.W.: Comparative studies of metamodeling techniques
under multiple modeling criteria. Structural Optimization 23(1), 1–13 (2001)

46. Jin, Y., Olhofer, M., Sendhoff, B.: A framework for evolutionary optimization with
approximate fitness functions. IEEE Transactions on evolutionary computation 6(5),
481–494 (2002)

47. Johnson, M.E., Moore, L.M., Ylvisaker, D.: Minimax and maximin distance designs.
Journal of Statistical Planning and Inference 26(2), 131–148 (1990)

48. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive
black-box functions. Journal of Global Optimization 13, 455–492 (1998)

49. de Jong, K.A.: Genetic algorithms are NOT function optimizers. In: Whitley, D.L. (ed.)
Foundations of Genetic Algorithms 2, pp. 5–17. Morgan Kaufmann, San Mateo (1993)

50. de Jong, K.A., Spears, W.M.: An analysis of the interacting roles of population size
and crossover in genetic algorithms. In: Schwefel, H.-P., Männer, R. (eds.) PPSN 1990.
LNCS, vol. 496, pp. 38–47. Springer, Heidelberg (1991)

51. Kansa, E.J., Hon, Y.C.: Circumventing the ill-conditioning problem with multiquadric
radial basis functions: Applications to elliptic partial differential equations. Computers
and Mathematics with Applications 39(7), 123–137 (2000)

52. Kim, H.S., Cho, S.B.: An efficient genetic algorithm with less fitness evaluation by
clustering. In: Proceedings of 2001 IEEE Conference on Evolutionary Computation,
pp. 887–894. IEEE, Piscataway (2001)

53. Koehler, J.R., Owen, A.B.: Computer experiments. In: Ghosh, S., Rao, C.R., Krishna-
iah, P.R. (eds.) Handbook of Statistics, pp. 261–308. Elsevier, Amsterdam (1996)

54. Krasnogor, N., Smith, J.E.: A tutorial for competent memetic algorithms: Model, taxon-
omy, and design issues. IEEE Transactions on Evolutionary Computation 9(5), 474–488
(2005)

55. Ku, K., Mak, M., Siu, W.: A study of the Lamarckian evolution of recurrent neural
networks. IEEE Transactions on Evolutionary Computation 4, 31–42 (2000)

56. Kullback, S., Leibler, R.A.: On information and sufficiency. The Annals of Mathemati-
cal Statistics 22(1), 79–86 (1951)

57. Kushner, H.J.: A versatile stochastic model of a function of unknown and time varying
form. Journal of Mathematical Analysis and Applications 5(1), 150–167 (1962)

58. Laslett, G.M.: Kriging and splines: An empirical comparison of their predictive perfor-
mance in some applications. Journal of the American Statistical Association 89(426),
391–400 (1994)

59. Leontaritis, I.J., Billings, S.A.: Model selection and validation for non-linear systems.
International Journal of Control 45(1), 311–341 (1986)



166 Y. Tenne

60. Liang, K.H., Yao, X., Newton, C.: Evolutionary search of approximated N-dimensional
landscapes. International Journal of Knowledge-Based Intelligent Engineering Sys-
tems 4(3), 172–183 (2000)

61. Linhart, H., Zucchini, W.: Model Selection. Wiley Series in Probability and Mathemat-
ical Statistics. Wiley-Interscience Publication, New York (1986)

62. Lorentz, G.G.: Approximation of Functions. Rinehart and Winston, New York (1966)
63. Madych, W.R.: Miscellaneous error bounds for multiquadric and related interpolators.

Computers and Mathematics with Applications 24(12), 121–138 (1992)
64. Mann, H.B., Whitney, D.R.: On a test whether one of two variables is stochastically

larger than the other. The Annals of Mathematical Statistics 18, 50–60 (1947)
65. Marida, K., Marshall, R.: Maximum likelihood estimation of models for residual co-

variance in spatial regression. Biometrika 71(1), 135–146 (1984)
66. Matheron, C.: Principles of geostatistics. Economic Geology 58, 1246–1266 (1963)
67. McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for se-

lecting values of input variables in the analysis of output from a computer code. Tech-
nometrics 21(2), 239–245 (1979)

68. Meckesheimer, M., Booker, A.J., Barton, R.R., Simpson, T.W.: Computationally inex-
pensive metamodel assessment strategies. AIAA Journal 40(10), 2053–2060 (2002)

69. Medgyessy, P.: Decomposition of Superpositions of Distribution Functions. Akadémiai
Kiadó, Budapest (1961)

70. Michalewicz, Z., Fogel, D.B.: How to Solve It: Modern Heuristics. Springer, Berlin
(2004)

71. Mitchell, T.J., Morris, M.D.: Bayesian design and analysis of computer experiments:
Two examples. Statistica Sinica 2 (1992)

72. Mockus, J., Vitešis, V., Žilinskas, A.: The application of Bayesian methods for seeking
the extremum. In: [25], pp. 117–130 (1978)

73. Moody, J., Darken, C.J.: Fast learning in networks of locally-tuned processing units.
Neural Computation 1(2), 281–294 (1989)

74. Moscato, P.: On evolution, search, optimization, genetic algorithms and martial arts: To-
ward memetic algorithms. Tech. Rep. 826, California Institute of Technology, Pasadena,
California (1989)

75. Mühlenbein, H., Schlierkamp-Voosen, D.: Predictive models for the breeder genetic
algorithm I: Continuous parameter optimization. Evolutionary Computations 1(1), 25–
49 (1993)

76. Myers, R.H., Montgomery, D.C.: Response Surface Methodology: Process and Product
Optimization Using Designed Experiments. John Wiley and Sons, New York (1995)

77. Norman, M., Moscato, P.: A competitive-cooperative approach to complex combina-
torial search. Tech. Rep. 790, California Institute of Technology, Pasadena, California
(1989)

78. Ong, Y.S., Keane, A.J.: Meta-Lamarckian learning in memetic algorithm. IEEE Trans-
actions On Evolutionary Computation 8(2), 99–110 (2004)

79. Ong, Y.S., Nair, P.B., Keane, A.J.: Evolutionary optimization of computationally ex-
pensive problems via surrogate modeling. AIAA Journal 41(4), 687–696 (2003)

80. Ong, Y.S., Nair, P.B., Keane, A.J., Wong, K.W.: Surrogate-assisted evolutionary op-
timization frameworks for high-fidelity engineering design problems. In: Knowledge
Incorporation in Evolutionary Computation. Studies in Fuzziness and Soft Computing,
vol. 167, pp. 307–332. Springer, Berlin (2005)



A Model-Assisted Memetic Algorithm for Expensive Optimization Problems 167

81. Ong, Y.S., Lim, M.H., Zhu, N., Wong, K.W.: Classification of adaptive memetic algo-
rithms: A comparative study. IEEE Transactions on Systems, Man, and Cybernetics–
Part B 36(1), 141–152 (2006)

82. Ong, Y.S., Krasnogor, N., Ishibuchi, H.: Special issue on memetic algorithms. IEEE
Transactions on Evolutionary Computation 37(1) (2007)

83. Ong, Y.S., Lim, M.H., Neri, F., Ishibuchi, H.: Special issue on emerging trends in soft
computing–memetic algorithms. Journal of Soft Computing (to appear)

84. Owen, A.B.: Orthogonal arrays for computer experiments, integration and visualiza-
tion. Statistica Sinica 2, 439–452 (1992)

85. Oyama, A., Obayashi, S., Nakahashi, K.: Real-coded adaptive range genetic algorithm
and its application to aerodynamic design. International Journal of the Japan Society of
Mechanical Engineering 43(2), 124–129 (2000)

86. Oyama, A., Obayashi, S., Nakahashi, T.: Real-coded adaptive range genetic algorithm
applied to transonic wing optimization. In: Schoenauer, M. (ed.) The 6th International
Conference on Parallel Problem Solving from Nature–PPSN VI, pp. 712–721. Springer,
Heidelberg (2000)

87. Pawitan, Y.: In All Likelihood: Statistical Modelling and Inference Using Likelihood.
Oxford Scientific Publishing, Oxford (2001)

88. Poloni, C., Giurgevich, A., Onseti, L., Pediroda, V.: Hybridization of a multi-objective
genetic algorithm, a neural network and a classical optimizer for a complex design
problem in fluid dynamics. Computer Methods in Applied Mechanics and Engineer-
ing 186(2-4), 403–420 (2000)

89. Powell, M.J.D.: UOBYQA: Unconstrained optimization by quadratic approximation.
Mathematical Programming, Series B 92, 555–582 (2002)

90. Quagliarella, D., Vicini, A.: Coupling genetic algorithms and gradient based optimiza-
tion techniques. In: Quagliarella, D., Périaux, J., Poloni, C., Winter, G. (eds.) Genetic
Algorithms in Engineering and Computer Science, ch. 14, pp. 288–309. John Wiley and
Sons, Chichester (1997)

91. Ratle, A.: Accelerating the convergence of evolutionary algorithms by fitness landscape
approximations. In: Eiben, A.E., Bäck, T., Schwefel, H.P. (eds.) Proceedings of the 5th
International Conference on Parallel Problem Solving from Nature–PPSN V, pp. 87–
96. Springer, Berlin (1998)

92. Ratle, A.: Optimal sampling strategies for learning a fitness model. In: The 1999 IEEE
Congress on Evolutionary Computation–CEC 1999, pp. 2078–2085. IEEE, Piscataway
(1999)

93. Renderes, J.M., Bersini, H.: Hybridizing genetic algorithms with hill-climbing meth-
ods for global optimization: Two possible ways. In: Sebald, A., Fogel, L.J. (eds.) Pro-
ceedings of the Third Annual Conference on Evolutionary Programming, pp. 312–317.
World Scientific, Singapore (1994)

94. Renderes, J.M., Flasse, S.P.: Hybrid methods using genetic algorithms for global opti-
mization. IEEE Transactions on Systems, Man, and Cybernetics–Part B 26(2), 243–258
(1996)

95. Reyes-Sierra, M., Coelle Coello, C.A.: Dynamic fitness inheritance proportion for
multi-objective particle swarm optimization. In: Keijzer, M. (ed.) Proceedings of the
Genetic and Evolutionary Computation Conference–GECCO 2006, pp. 89–90. Associ-
ation for Computing Machinery, New York (2006)

96. Rinnooy Kan, A.H.G., Timmer, G.T.: Stochastic global optimization methods part I:
Clustering methods. Mathematical Programming 39, 27–56 (1987)



168 Y. Tenne

97. Rosenbrock, H.H.: An automated method for finding the greatest of least value of a
function. The Computer Journal 3, 175–184 (1960)

98. Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P.: Design and analysis of computer
experiments. Statistical Science 4(4), 409–435 (1989)

99. Santner, T.J., Williams, B.J., Notz, W.: The Design and Analysis of Computer Experi-
ments. Springer Series in Statistics. Springer, New York (2003)

100. Schaback, R.: Multivariate interpolation and approximation by translates of a basis
function. In: Chui, C.K., Schumaker, L.L. (eds.) Approximation Theory VIII, pp. 491–
514. World Scientific, Singapore (1995)

101. Schwefel, H.P.: Numerical Optimization of Computer Models, Interdisciplinary Sys-
tems Research, vol. 26. John Wiley and Sons, Chichester (1981)

102. Sefrioui, M., Périaux, J.: Aerodynamic shape optimization using a hierarchical genetic
algorithm. In: European Conference on Computational Methods in Applied Sciences
and Engineering–ECCOMAS 2000, European Committee on Computational Methods
in Applied Sciences, pp. 1–18 (2000)

103. Seront, G., Bersini, H.: A new GA-local search hybrid for continuous optimization
based on multi level single linkage clustering. In: Whitley, D.L., Beyer, H., Cantu-
Paz, E., Goldberg, D.E., Parmee, I., Spector, L. (eds.) Proceedings of the Genetic and
Evolutionary Computation Conference–GECCO 2000, pp. 90–95. Morgan Kaufmann,
San Francisco (2000)

104. Sheskin, D.J.: Handbook of Parametric and Nonparametric Statistical Procedures, 4th
edn. Chapman and Hall, Boca Raton (2007)

105. Simkin, J., Trowbridge, C.W.: Optimizing electromagnetic devices combining direct
search methods with simulated annealing. IEEE Transactions on Magnetics 28(2),
1545–1548 (1992)

106. Simpson, T.W., Poplinski, J.D., Koch, P.N., Allen, J.K.: Metamodels for computer-
based engineering design: Survey and recommendations. Engineering with Comput-
ers 17, 129–150 (2001)

107. Smith, R.E., Dike, B., Stegmann, S.: Fitness inheritance in genetic algorithms. In:
George, K.M. (ed.) Proceedings of the 1995 ACM Symposium on Applied Computing–
ACM 1995, pp. 345–350. Association for Computing Machinery, New York (1995)

108. Sobieckzy, H.: Parametric airfoils and wings. In: Fujii, K., Dulikravich, G.S.,
Takanashi, S. (eds.) Recent Development of Aerodynamic Design Methodologies: In-
verse Design and Optimization, Notes on Numerical Fluid Mechanics, vol. 68, pp. 71–
88. Vieweg, Braunschweig (1999)

109. Søren, L.N., Nielsen, H.B., Søndergaard, J.: DACE: A MATLAB Kriging toolbox.
Technical Report IMM-TR-2002-12, Informatik and Mathematical Modelling, Tech-
nical University of Denmark, Lingby, Copenhagen (2002)

110. Stuckman, B.E.: A global search method for optimizing nonlinear systems. IEEE Trans-
actions on Systems, Man, and Cybernetics 18(6), 965–977 (1988)

111. Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.P., Auger, A., Tiwari, S.:
Problem definitions and evaluation criteria for the CEC 2005 special session on real-
parameter optimization. Technical Report KanGAL 2005005, Nanyang Technological
University, Singapore and Kanpur Genetic Algorithms Laboratory, Indian Institute of
Technology Kanpur, India (2005), http://web.mysites.ntu.edu.sg/epnsugan/
PublicSite/SharedDocuments/Forms/AllItems.aspx

112. Tenne, Y.: Metamodel accuracy assessment in evolutionary optimization. In: Proceed-
ings of the IEEE Congress on Evolutionary Computation–CEC 2008. IEEE World
Congress on Computational Intelligence, pp. 1505–1512. IEEE, Piscataway (2008)

http://web.mysites.ntu.edu.sg/epnsugan/PublicSite/SharedDocuments/Forms/AllItems.aspx
http://web.mysites.ntu.edu.sg/epnsugan/PublicSite/SharedDocuments/Forms/AllItems.aspx


A Model-Assisted Memetic Algorithm for Expensive Optimization Problems 169

113. Tenne, Y., Armfield, S.W.: A memetic algorithm using a trust-region derivative-free op-
timization with quadratic modelling for optimization of expensive and noisy black-box
functions. In: Yang, S., Ong, Y.S., Jin, Y. (eds.) Evolutionary Computation in Dynamic
and Uncertain Environments. Studies in Computational Intelligence, vol. 51, pp. 389–
415. Springer, Berlin (2007)

114. Tenne, Y., Armfield, S.W.: A versatile surrogate-assisted memetic algorithm for opti-
mization of computationally expensive functions and its engineering applications. In:
Yang, A., Shan, Y., Thu Bui, L. (eds.) Success in Evolutionary Computation. Studies in
Computational Intelligence, vol. 92, pp. 43–72. Springer, Heidelberg (2008)

115. Torczon, V.: On the convergence of pattern search algorithms. SIAM Journal on Opti-
mization 7(1), 1–25 (1997)

116. Törn, A.: Global optimization as a combination of global and local search. In: Proceed-
ings of Computer Simulation Versus Analytical Solutions for Business and Economic
Models, School of Business Administration, Göteborg, Göteborg, Sweden. Business
Administration Studies–BAS, vol. 17, pp. 191–206 (1973)

117. Törn, A., Žilinskas, A.: Global Optimization. LNCS, vol. 350. Springer, Heidelberg
(1989)

118. Törn, A., Ali, M.M., Viitanen, S.: Stochastic global optimization: Problems classes and
solution techniques. Journal of Global Optimization 14, 437–447 (1999)

119. Žilinskas, A.: A review of statistical models for global optimization. Journal of Global
Optimization 2, 145–153 (1992)

120. Waldorp, L.J., Raoul, P.P.P., Huizenga, H.M.: Goodness-of-fit and confidence intervals
of approximate models. Journal of Mathematical Psychology 50, 203–213 (2006)

121. Winfield, D.: Function minimization by interpolation in a data table. Journal of the
Institute of Mathematics and its Applications 12, 339–347 (1973)

122. Yen, J., Liao, J.C., Lee, B., Randolph, D.: A hybrid approach to modeling metabolic
systems using a genetic algorithm and simplex method. IEEE Transactions on Systems,
Man, and Cybernetics–Part B 28(2), 173–191 (1998)

123. Yun, Y., Gen, M., Seo, S.: Various hybrid methods based on genetic algorithm with
fuzzy logic controller. Journal of Intelligent Manufacturing 14, 401–419 (2003)

124. Zhang, B.: Generalized K-harmonic means–dynamic weighting of data in unsupervised
learning. Tech. Rep. HPL-2000-137, Hewlett-Packard Labs (2000)

125. Zhang, B., Hsu, M., Dayal, U.: K-harmonic means–a data clustering algorithm. Tech.
Rep. HPL-1999-124, Hewlett-Packard Labs, Software Technology Laboratory, HP Lab-
oratories Palo Alto (1999)

126. Zhou, Z., Ong, Y.S., Lim, M.H., Lee, B.: Memetic algorithms using multi-surrogates for
computationally expensive optimization problems. Journal of Soft Computing 11(10),
957–971 (2007)

127. Zhou, Z., Ong, Y.S., Nair, P.B., Keane, A.J., Lum, K.Y.: Combining global and local
surrogate models to accelerate evolutionary optimization. IEEE Transactions On Sys-
tems, Man and Cybernetics-Part C 37(1), 66–76 (2007)



A Self-adaptive Mixed Distribution Based
Uni-variate Estimation of Distribution
Algorithm for Large Scale Global Optimization

Yu Wang and Bin Li

Abstract. Large scale global optimization (LSGO), which is highly needed for
many scientific and engineering applications, is a very important and very difficult
task in optimization domain. Various algorithms have been proposed to tackle this
challenging problem, but the use of estimation of distribution algorithms (EDAs) to
it is rare. This chapter aims at investigating the behavior and performances of uni-
variate EDAs mixed with different kernel probability densities via fitness landscape
analysis. Based on the analysis, a self-adaptive uni-variate EDA with mixed ker-
nels (MUEDA) is proposed. To assess the effectiveness and efficiency of MUEDA,
function optimization tasks with dimension scaling from 30 to 1500 are adopted.
Compared to the recently published LSGO algorithms, MUEDA shows excellent
convergence speed, final solution quality and dimensional scalability.

1 Introduction

Considered as a kind of classical yet extremely difficult task, large scale global
optimization (LSGO) has attracted more and more research interest in recent years
[21, 31]. LSGO problems have numerous scientific and engineering applications,
such as designing large scale electronic systems, scheduling problems with large
number of resources, vehicle routing in large scale traffic networks, gene detection
in bioinformatics, etc. Therefore, effective LSGO algorithms are in high demand.

Inherently, the nonlinear characteristics of the practical applications usually in-
clude discontinuous prohibited zones, ramp rate limits, and nonsmooth or convex
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cost functions. Historically, a number of algorithms, including both mathemati-
cal and evolutionary algorithms, have been proposed to handle LSGO problems
[5, 10, 15, 17, 23, 26, 32, 33, 36, 37, 38, 42, 43]. Various evolutionary algorithms
(EAs) have been developed, in which significant progress has been observed [20]
compared to the mathematical algorithms. The major advantages of these EAs over
other classical methods can be summarized as: 1) prior knowledge of the search
problem is not necessary for EAs, while for mathematical approaches the highly
nonlinear characteristic of the problem must be approximated beforehand; 2) they
work with a population of candidate solutions and can handle LSGO problems
automatically through a single run. However, almost all of these approaches in-
evitably suffer from the “curse of dimensionality”, which means poor performances
on LSGO problems.

Without loss of generality, LSGO problems considered in this chapter can be
stated as follows:

minimize F(x) = f (x1,x2, ...,xD)
subject to x ∈ X ,

(1)

where X ⊂ RD denotes the decision space with D dimensions; x = {x1,x2, ...,xD} ∈
RD is the decision variable vector; f : X → R stands for a real-valued continuous
objective function for mapping from D dimensional space to 1 dimensional fitness
value F(x). The dimensions of LSGO problems considered in this chapter are more
than 100. Hence, the purpose of the approaches is to search for the minimized solu-
tion in such a large dimensional space. If X is a closed and connected region in RD,
we call eq. (1) continuous LSGO.

In the previous works on LSGO, developing more effective operators for EAs has
attracted much research attention. The successful implementations consist of self-
adapting strategies for parameter setting, modification of the classical EA operators,
etc. The reason of making these modifications is that the classical operators are
usually developed for low-dimensional task and they lose their efficiency for high-
dimensional tasks. Their performances on LSGO problems cannot be measured ef-
fectively [31]. Recently, this field has attracted increased research attention and the
typical approaches include population reduction for differential evolution (DE) [5],
Dynamic multi-swarm PSO [43], and estimation of distribution algorithm (EDA)
with mixed sampling operator [33]. For these approaches, the LSGO problems are
optimized as an entire body, which means no divide-and-conquer methods are used.
Actually, the implementation of specific operators is attributed to strengthening the
algorithm’s capability for higher dimensional tasks.

The classical EDAs have been proven to be effective on most classical test func-
tions with less than 100 dimensions [11]. However, EDAs also suffer from the “curse
of dimensionality”, which implies that their performances deteriorate quickly as the
search space increases in dimensions [33]. In this chapter, the difficulties associated
with EDAs in solving LSGO problems will be discussed. Then, a heavy tail distribu-
tion based sampling (also called mutation in the evolutionary computation domain)
operator will be analyzed, and introduced into a Gaussian based EDA to improve its
performance. Compared to classical Gaussian distribution based operators, the heavy
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tail distribution based operators have demonstrated better exploration and faster con-
vergence speed on most test problems. Some typical examples include fast evolu-
tionary programming (FEP) [40], fast evolution strategy (FES) [41], fast simulated
annealing (FSA) [30], evolutionary programming using Lévy mutation (LEP) [13]
and estimation of distribution algorithm with heavy tail distribution based sampling
(LSEDA-gl) [33]. Due to the success of the above algorithms, the heavy tail distribu-
tion based sampling operator is regarded as a promising EA technique to tackle some
difficult problems. In this chapter, the evovabilities of different sampling operators
are investigated via a technique called fitness landscape portrait (FLP). Based on
this analysis, a self-adaptive mixed model uni-variate EDA (MUEDA) is proposed.
In order to evaluate the performance of MUEDA, it is tested on typical function op-
timization problems with dimensionality scaling from 30 to 1500.

The rest of this chapter is organized as follows: In section 2, the principle and
a brief review of EDAs are provided. The mathematical characteristics of Gaussian
and heavy tail distributions are analyzed. Then, the main contributions of this work
are presented. In section 3, a general FLP analysis is carried out to investigate the
evolvability of different sampling operators in the low-dimension problems. After
that, a self-adaptive uni-variate EDA with mixed kernels is proposed. In section 4,
discussion of the experimental studies with dimensions ranging from 30 to 1500 is
presented. Following which, the scalability and efficiency of MUEDA are presented.
In section 5, several general conclusions are drawn and emphasized. In section 6,
the future research directions of this area are outlined.

2 Related Work

2.1 Estimation of Distribution Algorithms

The notion of modeling the search space was first proposed in the statistics and ma-
chine learning domain. Recently, many works within the Evolutionary Computation
community have employed probabilistic models to describe the solution space [11].
These methods have come to be known as EDAs. It has been reported in various
works that EDAs have been applied with significant success to many numerical and
combination optimization problems in the past few years. Optimization by EDAs
can be summarized into two major steps:

• Model the promising area of solution space of the optimization problem by learn-
ing from the superior solutions found thus far;

• Generate the population (i.e., offspring) for the next generation by sampling
based on the estimated probabilistic model and then, replace the old population
(i.e., parents) partially or fully.

These two steps can be regarded as a population-based version of the classical
generate-and-test method [39]. As is shown in Fig. 1, there are no classical crossover
or mutation operators in EDAs in contrast to traditional GA. The main operators
of EDAs are as follows: selection involves selecting good solutions from the entire
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Fig. 1 A general flowchart
of EDA

population by truncation or league strategy; modeling involves building the proba-
bilistic model to simulate the landscape of the problem; and generation is to sample
the new population based on the probabilistic model. The evolution dynamics of
EDAs depend on the distribution of the population directly. Therefore, the major
advantage of EDAs is that they can explicitly extract useful structural information
to efficiently generate new individuals, which results in faster convergence speed
compared to GA [33].

In the EDA domain, modeling the structure of the optimization problem accu-
rately has recently been an area of great concern. To overcome the disadvantages
of limited learning ability of uni-variate EDAs, such as population-based incremen-
tal learning algorithm (PBIL) [25], stochastic hill climbing by vectors of normal
distributions (SHCLVND) [24] and continuous uni-variate marginal distribution al-
gorithm (UMDAc) [12], EDAs whose dependencies are considered in terms of pair-
wire or multiwire when building probabilistic model have been proposed. Some of
the more successful approaches are mutual information maximizing input clustering
(MIMIC) [12], estimation of Gaussian networks algorithm by edge exclusion (EG-
NAee) [12], estimation of Gaussian networks algorithm by BGe metric (EGNABGe),
clustering and estimation of Gaussian distribution algorithm (CEGDA) [16], etc.
The learning ability of the EDAs is always considered as the major indicator of the
performance for the above-mentioned algorithms. However, the fundamental task
of EDAs is to search for the global optimum of the given optimization problem,
rather than to simply model the structure of the optimization accurately. Further-
more, the computational cost of constructing a complex model is too expensive for
LSGO problems, whose dimensions are usually more than 100. For example, the
computational cost of generating the covariance matrix for iterated density estima-
tion algorithm (IDEA) [1, 2, 4, 7] increases exponentially. The reported studies on
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extending EDAs to LSGO domain are scarce so far. The emphasis of heavy tail
based EDA in this work is therefore on extending EDAs to the LSGO domain.

2.2 Mathematical Characteristics of Heavy Tail Distribution

In the above reviewed EDA works, Gaussian probabilistic distribution has been
widely adopted in continuous optimization. In this work, a low proportion of heavy
tail stable distribution is incorporated in order to strengthen the search ability of
EDAs for LSGO problems.

Definition: Consider a process represented by a set Yi of identically distributed
random variables. If the sum of these random variables has the same proba-
bility distribution as individual random variables, then this process is called
stable [13].

The Gaussian process is a typical example of a stable process with finite sec-
ond moment, which would lead to a characteristic scale and the Gaussian behavior
for the probability density through the central limit theorem [13]. The probability
density of Gaussian distribution with mean 0 and variance σ is defined as follows:

N(0,σ) =
1

σ
√

2π
e
− x2

2σ2 (2)

Different to Gaussian probability distribution whose variance can be denoted as
a finite scalar, a class of probability distributions with an infinite second moment
that also yields a stable process were discovered by P. Lévy in the 1930s [14]. The
formal representation for such a class of probability can be expressed as follows
[6, 14]:

Łα ,γ y =
1
π

∫ ∞

0
e−γqα

cos(qy)dq y ∈ R, (3)

where γ is the scaling factor satisfying γ > 0, and α controls the shape of the dis-
tribution, requiring 0 < α < 2. More analytic details about the Lévy distribution are
available in [6, 13, 14]. Although the analytic form of the integral is still unknown
for general α , the shapes generated by Lévy distributions with different α values
are known: the length of the tail is inversely proportional to the value of α . The
Cauchy probability distribution adopted in FEP, is a special case of the Lévy prob-
ability distribution with α = 1. For the limit of α = 2, the distribution is reduced to
the classical Gaussian distribution which is not included in Lévy probability distri-
bution class. The Cauchy density with median 0 and upper quartile τ can be denoted
as follows:

C(0,τ) =
1
π

τ2

x2 + τ2 (4)
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Fig. 2 Comparison among Gaussian, Cauchy and Mixed distributions in terms of the density
function (up left) and the distributions of 10000 sampled points

The comparison between Gaussian and Cauchy probability density is shown in
Fig. 2. It is apparent that the characteristic of infinite second moment in Cauchy
probability provides a much wider distribution.

Since it is rather difficult to generate random numbers under different Lévy prob-
ability distributions except Cauchy distribution [13], several works adopt a mixed
distribution, which combines the Gaussian distribution with Cauchy distribution by
a suitable proportion to simulate the desired distribution. Some successful examples
are [27] and [33]. These special mixed sampling density functions can be expressed
as:

fM = (1−η)
1√
2π

e−
x2
2 + η

1
π

1
x2 + 1

(5)

where η stands for the mixed proportion that can be tuned to any scalar be-
tween 0 and 1. In this chapter, η = 0.1 is used for analysis without statement.
After investigating the mixed distribution in [13, 27, 33], it was observed that
η = 0.1 favors more problems than any other value of η . For heavy distribution
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based sampling operator, the sampling distribution in classical uni-variate EDA
(N(μ ,σ) = μ + σN(0,1)) is replaced by:

NM(μ ,σ) = μ + σ(1−η)N(0,1)+ σηC(0,1) (6)

The density of 10000 sampled points by Gaussian, Cauchy and Mixed probability
distribution are compared in Fig. 2. In contrast to the widest distribution sampled by
Cauchy, it can be observed that the shape of a 2-D Gaussian distribution is like that
of a sphere with the density increasing from the periphery towards the core. Similar
observation can be made for mixed distribution but the sampling region is much
wider. The mixed distribution is expected to achieve a more reasonable balance
between exploration and exploitation theoretically.

2.3 Analysis of Heavy Tail Distribution in Evolutionary
Computation

2.3.1 Fast Evolutionary Programming

In 1996, Yao X [40] proposed an important EP version named FEP, which replaces
the Gaussian mutation in classical EP (CEP) with the Cauchy mutation. This change
leads the individuals to make a much longer jump, which results in a significantly
faster convergence speed when the global optima is far from the initial point. It was
shown that the FEP outperforms CEP in terms of convergence speed in most test
functions and the accuracy of the result in the multimodal functions [40].

Due to the excellent performance of FEP, [35] and [40] investigated the differ-
ences of expected length between Cauchy mutation and Gaussian mutation. The
existing analysis methods of different probability operators focus on the properties
of the operators themselves (i.e., properties related to the operators closely only).
The expected length of Gaussian mutation jump with σ = 1 is calculated as fol-
lows:

EG(x) = 2
∫ +∞

0
x

1√
2π

e−
x2
2 dx =

2√
2π

= 0.80, (7)

and the expected length of Cauchy mutation jump is calculated as:

EC(x) = 2
∫ +∞

0
x

1
π

1
x2 + 1

dx = +∞ (8)

Under the 1-D space, it is obvious that the Cauchy probability operator extends
the expected sampling region to an infinite area. Therefore, a general conclusion has
been made in [40]: Gaussian mutation is much more localized than Cauchy muta-
tion. However, benefiting from the proportion of Cauchy probability incorporated
into it, the mixed operator (EM(x) = +∞) also exhibits the ability of sampling pop-
ulation widely. There is no remarkable difference between mixed sampling operator
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and Cauchy sampling operator in expected sampling length theoretically. Thus, in
the following section, a much more effective analysis tool FLP is adopted to distin-
guish the differences between different operators.

2.3.2 Heavy Tail Distribution Analysis

An important work which tries to answer the question: when do the important tail
distributions help? is presented in [9]. The most important contributions of this
work come from two hypotheses and their proofs, which can be summarized as:
although the heavy tail distributions have stronger ability of maintaining diversity,
they inevitably get lost in huge dimensional space, which will be proven to be worth
discussing in the following section. The experimental analysis in [9] was carried
out to study the behaviors of ES on Rastrigin function optimization with different
distributions based mutation operators. Obviously, the viewpoint of the first hypoth-
esis that heavy tail distributions are good at maintaining diversity is absolutely true.
In our work, however, the heavy tail distributions are also proven to work in large
dimension problems empirically, which is remarkably inconsistent to the second
hypothesis.

2.4 Major Contribution

Based on the above review and discussion, the contributions and differences of this
chapter compared to the previous work are summarized as follows:

• The tool fitness landscape portrait (FLP) [28] was proposed over over 5 years
ago. Besides the random search, it has not attracted much interest in analyzing
the specific EA operators, such as crossover, mutation, etc. In our work, this
effective analysis tool is implemented to analyze the expected behaviors of dif-
ferent kernel distribution sampling operators in low dimensional spaces. Based
on the analysis, some valuable suggestions on designing appropriate sampling
operator are presented theoretically.

• LSGO problems are considered as a difficult task in the optimization domain. In
this work, an effective algorithm called the self-adaptive MUEDA is proposed
for the large scale and complex optimization problems.

3 Fitness Landscape Analysis and Self-adaptive Mixed
Probability Distribution Based Uni-Variate Estimation of
Distribution Algorithm

In this section, the evolvability analysis of different kernel probability distributions
is presented in terms of fitness landscape analysis on low dimensional landscapes.
Based on the theoretical analysis, an effective self-adaptive heavy tail based sam-
pling operator is proposed to strengthen the search ability of uni-variate EDAs.
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3.1 Fitness Landscape Analysis

In fitness landscape analysis, the optimization problems can be expressed as a set
of landscapes containing one or more optima [29, 34]. Based on the number of the
optima, we also classify the landscapes into smooth or rugged problems. Evolution
can thus be viewed as the movement of the population, represented by a set of points
(genotypes), towards lower (fitter) areas of the landscape [28]. In order to explore the
evolvability of different probability based operators, we adopt partial FLP technique
to test the ability of sampling population on more promising regions by different
operators on two typical landscapes.

FLP that was derived from comprehensive local view for sampling is adopted as
an effective tool to analyze the evolvability of given operator on special landscapes.
The metric selected for describing the evolvability of different operators is defined
as follows:

f lag(x) =
{

1, i f f (x) ≤ f (xg)
0, otherwise.

(9)

Eev(xg) =
∫ +∞
−∞ fope(x) · f lag(x)dx∫ +∞

−∞ fope(x)dx
, (10)

where evolvability Eev(xg) of solution xg with fitness fope(xg) for the EA operator
ope is directly tied to the probability of solution xg not generating offspring of lower
fitness.

Since the difficulty of searching global optimum related to the structure of the
fitness landscape closely is now clear, two typical fitness landscapes (i.e. sphere
landscape and rugged landscape), which include most of the existing landscapes,
are chosen to evaluate the evolvability of Gaussian, Cauchy and mixed probability
sampling operators.

3.1.1 Smooth Landscape

The evolvability of sampling operators with σ = 1 is tested on the region intercepted
by [−10,10] for the sphere landscape shown in Fig. 3 (left). The evolvability metric
curve line which is generated for each mean value moving from -10 to 10 by eq.(10)
is shown in Fig. 3 (right). The sphere landscape is especially adopted to evaluate the
evolvability of different sampling operators on smooth problems.

It can be observed from the evolvability curve that the Gaussian sampling opera-
tor provides the best evolvability for the whole region. Accordingly, the evolvability
of Cauchy sampling operator decreases sharply while the global optimum is still far
away, and this delays the convergence speed significantly. This may be the reason
for the unsolved question in [9, 35] that Gaussian leads to a faster convergence speed
than Cauchy for Sphere problem. Benefiting from the property of Gaussian distri-
bution, the mixed sampling operator is equipped with similar evolvability as Gaus-
sian sampling operator, which is remarkably better than Cauchy sampling operator
by itself.
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Fig. 3 Sphere landscape on the left and evolvability curve line graph on the right

3.1.2 Nonsmooth Landscape

It has been known that evolvability on rugged landscape mainly depends on the
capability of escaping from the local optima. Consider the rugged landscape ( f (x) =
cos(x)− x

20 ) shown in Fig. 4 (left). We intercept one local optimal basin [0, 2π] for
analysis. Curve lines of evolvability generated by different sampling operators with
mean value moving from 0 to 2π are also generated by eq. (10).

It is apparent that the evolvability of Gaussian sampling operator worsens sharply
near the local optimum, which means that its evolvability shrinks quickly towards
the local optimum. By comparison, Cauchy sampling operator demonstrates the best
ability of escaping from the local optima. Therefore, the incorporation of low pro-
portional Cauchy distribution highly improves the evolvability of mixed sampling
operator. Therefore, the mixed sampling operator keeps a steady high probability of
escaping from the local optima and thus, maintains the evolvability effectively.
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Fig. 4 Sphere landscape on the left and evolvability curve line graph on the right
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Based on the above fitness landscape analysis, the mixed operator shows supe-
rior ability in both moving quickly towards the global optimum on smooth landscape
and maintaining evolvability on rugged landscape globally. Compared to the classi-
cal Gaussian sampling operator, the sampling area of the mixed sampling operator
exceeds the Gaussian model. In such case, the balance between learning and opti-
mization is well handled. Therefore, it seems to be a promising way to develop more
robust EDA by using mixed sampling operator.

3.2 Algorithm

Compared with the mutation operators of GA, ES and EP that mutate the individu-
als, the sampling operator of EDA mutates the distribution of the whole population
in each generation. To strengthen the global search ability, a mixed Gaussian and
Lévy distribution is adopted here, which is similar to [33].

Based on the above analysis, a new self-adaptive uni-variate EDA is proposed
here. In order to reduce the complexity of conducting the probabilistic model, the
uni-variate EDA whose variables are considered independently is adopted in our
algorithm. Similar to UMDAc [12], the joint probabilistic distribution over a set of
random variables x = {xi} where i = 1, 2... D for D dimensional space is defined as
follows:

P(x) =
D

∏
i=1

P(xi). (11)

The probability distribution used to model each variable P(xi) is a single mixed
Gaussian and Cauchy distribution. In contrast to iterated density estimation algo-
rithm (IDEA) [1] developed by Bosman which requires computing all elements of
covariance matrix to adapt an arbitrary Gaussian, MUEDA abandons adapting the
non-diagonal elements in covariance matrix, which remarkably reduces the compu-
tational cost for LSGO problems. The updated rule for P(x) is defined as follows:

Pt+1(x) = (1−θ ) ·Pt(x)+ θ ·P′
t (x) (12)

where P′
t (x) is exactly the estimated joint probability distribution for the superior

solutions of τ generation under the classical Gaussian distribution and θ stands for
the learning intensity coefficient. Hence, the candidates for the t + 1 generation are
produced based on Pt(x). Similar to UMDAc, the model for UMDAc is built by the
current population only, which means that the learning coefficient θ is 1.

The details of mixed distribution and the strategy for generating each candidate
are shown as:

randnum = rand;

Pm =
10 · randnum

D

NL =
{

0.9 ·N(0,1)+ 0.1 ·C, i f D < 100
(1−Pm) ·N(0,1)+ Pm ·C, otherwise,

(13)
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Xji = Xi +
√

δi ·NL, (14)

In eq.(13), N(0,1) stands for the Gaussian distribution with mean 0 and standard
deviation 1; C denotes the Cauchy distribution with t = 1; D is the dimensional
size of the problem; randnum is generated randomly based on uniform distribution
between (0,1). The probability distribution for creating each offspring on different
dimensional size is self-adapted as shown in eq.(13): a smaller mixed probability Pm

is adopted for a larger dimensional size. In eq.(14), the ith element of jth individual
is sampled under mixed Gaussian and Lévy distribution model NL, where Xi stands
for the ith element of the mean vector. Compared with UMDAc, whose sampling
operator is denoted as Xji = Xi +

√
δi ·N(0,1), the standard Gaussian probability

N(0,1) is replaced with the mixed Gaussian and Lévy distribution NL.
The flow of MUEDA is described as follows:

Input:

• LSGO problem;
• a termination condition;

Output: The solution with best fitness value.
Flow of MUEDA:
Step 0) Initialization:

• Step 0.0) Set population size NP = (log(D) − 3) × 50, selection size N =
(log(D)−3.5)×15 and weight vector W .

• Step 0.1) Randomly initialize the population X0.
• Step 0.2) Set t = 0.

Step 1) Reproduction and update:

• Step 1.0) Reproduction: Sample the new candidates by specific EA operator.
• Step 1.1) Set t = t + 1.
• Step 1.2) Selection: Select N best individuals by truncation strategy.
• Step 1.3) Update: Update the model with the selected individuals (eq.(6)).

Step 2) Standard Deviation Control Strategy (STDC) Then, if termination con-
dition is met, go to step 3, else go to step 1.
Step 3) Terminate and output the GO.

It has been observed that one crucial problem that prevents uni-variate Gaussian
based EDAs from biasing the search population towards a better region is that the
standard deviation of some variables often shrinks to zero quickly while the global
optimum is still far away [33]. In step 2, we introduce the standard deviation control
strategy (STDC) to improve the exploration ability of uni-variate Gaussian based
EDA. The main idea of STDC is to estimate a common threshold of standard de-
viations for all variables during the optimization process to control their shrinking
speeds and therefore, to control the decreasing level of diversity dynamically. In
more detail, the variables with lower standard deviation values than the correspond-
ing thresholds will be forced to set their standard deviations to the corresponding
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thresholds. The weighted mean of the standard deviations of all variables is used as
the threshold here. The details of STDC are shown as follows:

Pseudo code of STDC

begin STDC

for j=1:D

if δ ( j) < W ( j)×δ
δ ( j) = W ( j)×δ
/* δ is the mean of variances */

/* W is a weight vector */

end if

end for

end

After analyzing a great deal of W values for each dimensionality setting, we
calculate the value of W in an adaptive way shown as in eq. (15) for problems of
different Ds:

W (i) = 0.55− e
lg( D

105 ) (15)

for i = 1,2, ...,D

The metric W is determined by D only, which means a larger W is adopted for
problems with lower D. It is observed that lower W value is adopted for larger D.
Eq. (15) is used because the metric W is generally hard for the inexperienced users
to choose.

Some existing works on standard deviation based triggering of variance scaling
have been reported, such as adaptive variance scaling [8] and standard deviation
ratio [3]. In these approaches, the scaling of standard deviation is determined by
the performance of the latest generation. In contrast, the STDC strategy only en-
larges the standard deviations of some variables under an adaptive threshold vector.
Therefore, STDC is much simpler.

4 Experimental Study

4.1 Classical Function Optimization with Low Dimensionality

The purpose of this experiment is to compare mixed distribution based sampling
operator of MUEDA with the Gaussian distribution based classical UMDAc. More-
over, the existing heavy tail distribution based algorithms, including FEP and FES,
are adopted to provide the comparison results. The formal definitions of the test
functions are summarized in Table 1. Function 1-6 are unimodal problems. Func-
tion 7-12 are multimodal problems, whose landscapes are full of local optima. In
this chapter, the initialized population are randomly generated within the bounds
for all experiments.
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Table 1 Classical benchmark problems to be minimized

Num Problems Bounds Objective function Global location GO

fun1 Sphere [-100,100] f1(x) = ∑n
i=1 x2

i xi = 0 0

fun2 [-10,10] f2(x) = ∑n
i=1 |xi|+∏n

i=1 |xi| xi = 0 0

fun3 Schwefel [-100,100] f3(x) = ∑n
i=1(∑i

j=1 x2
j ) xi = 0 0

fun4 [-100,100] f4(x) = max |xi| xi = 0 0

fun5 Rochenbrock [-100,100] f5(y) = ∑D
i=1(100(x2

i − xi+1)2 +(xi −1)2) xi = 1 0

fun6 Step [-30,30] f6(x) = ∑n
i=1 | xi +0.5 |2 xi = −0.5 0

fun7 Noise [-1.28,1.28] f7(x) = ∑n
i=1 ix4

i + random[0,1) xi = 0 0

fun8 Rastrigin [-5.12, 5.12] f8(x) = ∑n
i=1(x2

i )−10cos(2πxi)+10 xi = 0 0

fun9 Ackley [-32,32] f9(x) = −20 · exp(−0.2
√

1
n ∑n

i=1 x2
i ) xi = 0 0

+e− exp( 1
n ∑n

i=1 cos(2πxi))+20

fun10 Griewangk [-600,600] f10(x) = 1
4000 ∑n

i=1 x2
i +1−∏n

i=1 cos( xi√
i
) xi = 0 0

fun11 Penalized [-50, 50] see appendix xi = 1 0

fun12 Penalized [-50, 50] see appendix xi = 1 0

Table 2 Experimental results for classical function optimization

function MUEDA UMDAc FES FEP CEP

fun1 2.8E-160 ± 1.5E-159 2.0E-03 ± 4.9E-03 2.5E-04 ± 6.8E-05 5.7E-04 ± 1.3E-04 2.2E-04 ± 5.9E-04

fun2 1.3E-124 ± 3.0E-124 2.2E-01 ± 8.9E-01 6.0E-02 ± 9.6E-03 8.1E-03 ± 7.7E-04 2.6E-03 ± 1.7E-04

fun3 0.0E+00 ± 0.0E+00 1.3E+01 ± 4.6E+01 1.4E-03 ± 5.3E-04 1.6E-02 ± 1.4E-02 5.0E-02 ± 6.6E-02

fun4 4.2E-72 ± 2.9E-71 1.3E-03 ± 3.8E-03 5.5E-03 ± 6.5E-04 3.0E-01 ± 5.0E-01 2.0E+00 ± 1.2E+00

fun5 9.0E-05 ± 2.2E-04 1.7E+01 ± 5.5E+00 3.3E+01 ± 4.3E+01 5.1E+00 ± 5.9E+00 6.2E+00 ± 1.4E+01

fun6 0.0E+00 ± 0.0E+00 0.0E+00 ± 0.0E+00 0.0E+00 ± 0.0E+00 0.0E+00 ± 0.0E+00 5.8E+02 ± 1.1E+03

fun7 3.0E-03 ± 5.8E-03 1.1E-02 ± 1.8E-03 1.2E-02 ± 5.8E-03 7.6E-03 ± 2.6E-03 1.8E-03 ± 6.4E-03

fun8 2.1E+01 ± 4.7E+00 1.9E+00 ± 8.7E-03 1.6E-01 ± 3.3E-01 4.6E-02 ± 1.2E-02 8.9E+01 ± 2.3E+01

fun9 4.4E-15 ± 0.0E+00 1.9E-04 ± 9.6E-03 1.2E-02 ± 1.8E-03 1.8E-02 ± 2.1E-03 9.2E+00 ± 2.8E+00

fun10 0.0E+00 ± 0.0E+00 4.7E-03 ± 5.9E-03 3.7E-02 ± 5.0E-02 1.6E-02 ± 2.2E-02 8.6E-02 ± 1.2E-01

fun11 1.6E-32 ± 0.0E+00 1.9E-06 ± 3.2E-06 2.8E-06 ± 8.1E-07 9.2E-06 ± 3.6E-06 1.8E+00 ± 2.4E+00

fun12 1.3E-32 ± 0.0E+00 4.0E-05 ± 7.0E-05 4.7E-05 ± 1.5E-05 1.6E-04 ± 7.3E-05 1.4E+00 ± 3.7E+00

Statistical experimental results of 50 runs

For fair comparison, we set the parameters as in [40]. The following parameters
are used in this experiment: 1) population size 100 for all algorithms; 2) maximum
number of generations: 1500 for function 1, function 6, function 9, function 11
and function 12; 2000 for function 2 and function 10; 3000 for function 7, 5000
for function 3, function 4 and function 8. The statistical experimental results of 50
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Fig. 5 Evolutionary curves of unimodal problems

independent runs are summarized in Table 2. Fig. 5 and 6 show the optimization
curves for the unimodal problems and multimodal problems respectively.

Compared to UMDAc, it is apparent that MUEDA provides significantly better
performance in terms of both convergence speed and accuracy of the final result
for almost all of the test functions with 30 D. For the unimodal problems functions
1-6, MUEDA always provides the fastest convergence speed. It should be noted that,
for function 5, a well-known hard test problem, the MUEDA approaches the true
global optimum within the fixed number of generations, while the other algorithms
are still struck at local optima after the final generation. The global search ability
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Fig. 6 Evolutionary curves of multimodal problems

of MUEDA is proven via experiments on multimodal test functions (function 7 -
function 12). The accurate results (i.e. the error is lower than 10−8) are achieved in
all runs on function 9 - function 12. For the problem with noise incorporated function
7, MUEDA also outperforms the other approaches. For function 8, MUEDA cannot
achieve satisfactory result, the reason for which will be discussed in the following
section. Through this experiment, the advantages of MUEDA on both exploration
and exploitation have been clearly demostrated.

4.2 Experiments on LSGO Problems

The benchmark set selected for this experiment consists of 6 test functions de-
fined in [31]. Functions 1 - 3 are unimodal functions and Functions 4 - 6 are
multimodal functions. To prevent exploitation of symmetry of the search space
and of the typical zero value associated with the global optimum, the local op-
tima of classical functions are shifted to a value different than zero and the func-
tion values of the global optima are non-zero. Without loss of generality, max-
imum fitness evaluation size (MFES) 500 × D is adopted for function 1, 3, 5
and 6 and 5000× D for function 2 and 4. The details of standard benchmarks
are defined in Table 3. The source codes for these functions are available from
http://nical.ustc.edu.cn/cec08ss.php and http://www3.ntu.
edu.sg/home/EPNSugan/.

http://nical.ustc.edu.cn/cec08ss.php
http://www3.ntu.edu.sg/home/EPNSugan/
http://www3.ntu.edu.sg/home/EPNSugan/
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Table 3 Standard benchmark problems of CEC08 to be minimized

Num Problems Bounds Objective function GO location GO

funcec1 Sphere [-100,100] f1(y) = ∑D
i=1 y2

i + fbias1 yi = 0 fbias1 = −450

funcec2 Schwefel [-100,100] f2(y) = max(|yi|)+ fbias2 yi = 0 fbias2 = −450

funcec3 Rochenbrock [-100,100] f3(y) = ∑D
i=1(100(y2

i − yi+1)2 +(yi −1)2)+ fbias3 yi = 1 fbias3 = 390

funcec4 Rastrigin [-5, 5] f4(y) = ∑n
i=1(y2

i )−10cos(2πyi)+10+ fbias4 yi = 0 fbias4 = −330

funcec5 Griewangk [-600,600] f5(y) = 1
4000 ∑D

i=1 y2
i +1−∏D

i=1 cos( yi√
i
)+ fbias5 yi = 0 fbias5 = −180

funcec6 Ackley [-32,32] f6(x) = −20 · exp(−0.2
√

1
D ∑D

i=1 y2
i ) yi = 0 fbias6 = −140

+e− exp( 1
D ∑D

i=1 cos(2πyi))+20+ fbias6

4.2.1 Comparison among Different Cauchy Proportions Based Algorithm

In order to illustrate the impacts of different heavy tail distributions, four Cauchy
proportion are adopted for comparison: η = 0 (UMDAc), η = 0.1 (constant Cauchy),
η = 1 (only Cauchy), and adaptive η (eq. (13) for MUEDA). For fair comparison,
we choose parameters as consistently as possible. For external parameters, we set
NP = (| log(D)−3|×50) and N = (| log(D)−3.5|×15). The statistical experimen-
tal results of over 50 runs are summarized in Table 4, in which the best result for
each function is in boldface.

Table 4 Experimental results for 100 D cec08 function optimization

Algorithm Metric funcec1 funcec2 funcec3 funcec4 funcec5 funcec6

UMDAc mean 3.81E+02 2.18E+01 2.96E+05 2.20E+01 3.24E+00 3.80E+00

η = 0 std 2.26E+02 3.08E+00 3.33E+05 4.34E+00 1.67E+00 1.14E+00

Mixed mean 7.85E-01 1.72E+01 1.28E+07 8.03E+02 1.00E+00 3.52E+00

η = 0.1 std 5.53E-01 1.43E+00 2.01E+06 1.89E+01 6.04E-02 2.14E-01

Cauchy mean 3.68E+05 1.52E+02 3.05E+11 1.91E+03 3.28E+03 2.13E+01

η = 1 std 2.13E+04 2.79E+00 3.75E+10 4.24E+01 1.70E+02 3.49E-02

MUEDA mean 6.82E-14 2.21E-13 2.89E+03 1.04E+02 1.28E-03 6.57E-12

adaptive η std 2.32E-14 2.50E-14 3.69E+03 2.49E+01 3.63E-03 2.14E-11

Statistical experimental results of 25 runs

It is apparent that Cauchy only (η = 1) distribution based algorithm fails in all
problems. Therefore, excessive exploitation is not always beneficial for high dimen-
sional problems. Generally speaking, MUEDA outperforms the other algorithms
remarkably in most problems and is followed by UMDAc. For the hard task funcec
2, it is interesting to note that the result provided by MUEDA is very accurate while
all of the other algorithms fail to get close to the global optima. The performances
of all algorithms for Rochenbrock problem deteriorate sharply.
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Fig. 7 Rastrigin problem: landscape on the left and convergence process comparison on the
right

The 2-D landscape of Rastrigin problem and variance change process comparison
are shown in Fig. 7. It is obvious that the landscape is full of local optima. The
above experimental results have shown that UMDAc provides the best result for
Rastrigin problem. However, the change curve of variance shows that the population
of classical UMDAc just shrinks into a local optimum after a small fitness evaluation
size. For this reason, the Gaussian distribution exhibits low evolvability and the
final result is no longer reasonable. For the heavy tail distribution based operators,
there is a high variance level throughout the search (which appears as a random
search). Therefore, heavy tail distribution based operators seem more robust in these
landscapes, although the final accuracy is unsatisfactory.

4.2.2 Comparison with other LSGO Evolutionary Algorithms

To benchmark MUEDA further, the comparison on larger dimensional (1000 D)
problems is carried out. In some recent studies, some algorithms have reported the
regular experimental results for the funcec functions. We only take the EA based
algorithms into account. The algorithms are listed as follows:

• Efficient Population Utilization Strategy for Particle Swarm Optimizer (EPUS-
PSO) [10]

• Unbiased Evolutionary Programming (UEP) [17]
• Self-Adaptive Differential Evolution algorithm (jDEdynNP-F) [5]
• Dynamic multi-swarm particle swarm optimizer (DMS-PSO) [43]
• Multilevel cooperative coevolution (MLCC) [38]
• Differential Evolution with Self-Adaptive cooperative co-evolution (DEwSAcc)

[42]

The statistical analysis is shown in Table 5. In Table 6, the t-test results regard-
ing algorithm1 vs algorithm2 are shown as ‘+’, ‘-’, ‘s+’ and ‘s-’ when algorithm1
is insignificantly better than, insignificantly worse than, significantly better than,
and significantly worse than algorithm2 respectively. For unimodal problems, it is
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Table 5 Experimental results for 1000 D cec08 function optimization

Algorithm Metric funcec1 funcec2 funcec3 funcec4 funcec5 funcec6

MLCC mean 6.15E-01 1.09E+02 7.91E+03 1.37E-10 2.98E-02 2.02E-01

std 6.58E-01 4.75E+00 1.12E+03 3.37E-10 2.26E-02 3.14E-01

EPUS-PSO mean 3.46E+05 4.66E+01 3.77E+10 7.58E+03 3.09E+03 2.10E+01

std 1.48E+04 4.00E-01 3.30E+09 1.51E+02 1.30E+02 1.62E-02

jDEdynNP-F mean 2.92E+05 1.95E+01 7.10E+10 2.17E-04 2.53E+03 1.81E+01

std 1.22E+04 2.25E+00 5.99E+09 4.06E-04 1.66E+02 1.81E-01

UEP mean 7.78E+04 1.05E+02 4.43E+09 1.03E+04 7.93E+02 1.99E+01

std 4.54E+03 7.07E+00 4.54E+08 9.94E+02 5.29E+01 1.19E-02

DEwSAcc mean 5.68E+05 1.26E+02 2.16E+11 9.46E+03 5.19E+03 2.00E+01

std 1.06E+05 4.48E+00 2.16E+11 7.15E+01 6.33E+02 3.33E-01

DMS-PSO mean 0.00E+00 9.15E+01 2.94E+11 3.84E+03 0.00E+00 1.92E+01

std 0.00E+00 7.14E-01 1.69E+11 1.71E+02 0.00E+00 4.06E-02

MUEDA mean 3.30E-13 II 9.45E-05 1.99E+03 5.00E+03 IV 1.71E-13 II 5.92E-08

std 2.54E-14 II 9.66E-06 2.35E+02 1.26E+02 IV 2.01E-14 II 8.10E-08

Statistical experimental results of 25 runs

Table 6 The t-test results of comparing MUEDA with the other algorithms

funcec1 funcec2 funcec3 funcec4 funcec5 funcec6

MUEDA vs MLCC s+ s+ s+ s− s+ s+

MUEDA vs EPUS-PSO s+ s+ s+ + s+ s+

MUEDA vs jDEdynNP-F s+ s+ s+ s− s+ s+

MUEDA vs UEP s+ s+ s+ s+ s+ s+

MUEDA vs DEwSAcc s+ s+ s+ + s+ s+

MUEDA vs DMS-PSO s− s+ s+ − s− s+

observed that MUEDA provides accurate results. For 1000 D funcec 1, DMS-PSO
outperforms MUEDA in terms of accuracy. For the other algorithms, high-quality
results cannot be generated due to the low computational cost. Funcec 2 with high
D is an extremely hard task because the variables are non-separable. Although the
fitness landscape is very smooth, the fact that only one variable with largest absolute
value contributes to fitness value makes it almost impossible to be solved by classi-
cal approaches. It is evident that only MUEDA succeeds in converging to a solution
with accuracy lower than 100 to the true global optimum. For the other algorithms,
especially cooperative coevolution based ones, the search is stuck badly, which im-
plies that they are not effective enough to deal with the non-separate LSGO prob-
lem. These results are not surprising, because only MUEDA considers modelling
the rough structure of the search space. Furthermore, the implementation of mixed
distribution makes breaking the common restriction possible.
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The multimodal problems become much harder as the dimensionality increases
to 1000. Funcec 3, whose variables are linked to a neighboring one (i.e. Rocenbrock
problem), is the hardest task. For this problem, all algorithms fail in all runs. Another
difficulty of this problem is that the valley towards the global optimum is very narrow
and none of the algorithms could adaptively control the shrinking speed to suit this
nonseparate problem. Amongst the compared algorithms, MUEDA demonstrates the
most superior performance. For funcec 4, most of the algorithms fail to obtain GO
except MLCC. Funcec 5 and 6 can be solved completely by MUEDA. The dominant
convergence ability of MUEDA is strongly indicated by all these results.

4.2.3 Scalability Study

In order to study the scalability of MUEDA, we compare it with cooperative co-
evolution based LSGO approach Cooperative coevolution differential evolution II
(DECC-II) on the 1500 dimensional problems. The reasons of selecting DECC-II in
this experiment are as follows: 1) the cooperative coevolution appears to be a very
promising method and has becomes very popular in LSGO domain [31]; 2) Com-
pared with the classical cooperative coevolution based algorithms FEPCC [15] and
CCGA [23], DECC-II has performed better on most problems [36]. In DECC-II, the
variables selected for optimization in one iteration are chosen randomly with con-
stant size 100. The other parameters chosen for experiment are the same as [36]. The
comparison of evolution process between MUEDA and DECC-II on 1500 dimen-
sional function optimization is shown in Fig. 8, and the comparison of final error
between the best solution and true global optimum is shown in Table 7.

It is apparent that for unimodal function 1 and function 2, the proposed algo-
rithm outperforms DECC-II not only in convergence speed, but also in the accuracy
of results obtained. This is especially true for function 2 whose variables are linked.
Similar conclusion can be drawn for multimodal functions globally, although the
results achieved by DECC-II and proposed algorithm on function 4 (i.e. shift Ras-
trigin) are comparable. The reasons for this result have been analyzed in the first
experiment. It is observed that the proposed algorithm works well on function 5 and
6 within such low computational cost even for 1500 D. In summary, the proposed
algorithm provides a steady and accurate performance even for problems scaling to
1500 dimensions.

4.2.4 Efficiency Study

In the traditional analysis of [18, 19], the efficiency of the search method is tested
on the problems with different dimensionality setting. Efficiency is defined on num-
ber of function evaluations needed to solve the problem [18]. In order to evaluate
the efficiency of MUEDA, the results for multimodal problems - Ackley function
(function 9 in Table 1) and Giewangk function (function 10 in Table 1) are pre-
sented in Table 8, 9 and Fig. 9. Moreover, the effective algorithms DE and PSO are
also implemented in order to provide comparison results. For fair comparison, we
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Fig. 8 Evolutionary curves of 1500 D problems

choose the same population size 200 for all algorithms and the most commonly used
extensive parameters for respective algorithms.

It is apparent that the computational cost of MUEDA tends to increase linearly
as the dimensionality arises. For DE and PSO, the efficiencies are much less. This is
especially true when D is very large. It is evident that handling large scale optimiza-
tion problems is a difficult task for evolutionary algorithms. Compared to breeder
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Table 7 Experimental results for 1500 D cec08 function optimization

Algorithm Metric funcec1 funcec2 funcec3 funcec4 funcec5 funcec6

MUEDA mean 1.83E-09 8.72E-05 5.83E+03 4.76E+03 1.71E-13 2.74E-05

std 2.51E-09 2.37E-05 2.66E+03 1.41E+02 2.01E-14 2.01E-05

DECC-II mean 2.24E+04 5.13E+01 1.44E+09 6.73E+03 7.46E+01 9.02E+00

std 2.66E+03 3.01E+00 4.46E+08 8.60E+01 5.15E+00 3.80E-01

Statistical experimental results of 25 runs

Table 8 Efficiency test on Ackley function

Dimesionality MUEDA 166D+23000 28D ln(D) DE PSO

100 40625 39600 128945 218802 282723

200 65076 56200 148353 fail 532617

300 86008 72800 159706 fail 761572

400 100458 89400 167761 fail fail

500 113592 106000 174009 fail fail

600 129110 122600 179114 fail fail

700 141982 139200 183430 fail fail

800 159629 155800 187169 fail fail

900 174234 172400 190467 fail fail

1000 189410 189000 193417 fail fail

Termination criterion is 10−3.

Table 9 Efficiency test on Giewangk function

Dimesionality MUEDA 156D+24000 26D ln(D) DE PSO

100 40170 39600 119734 179030 249316

200 67432 55200 137756 fail 472276

300 92017 70800 148298 fail fail

400 105875 86400 155778 fail fail

500 119864 102000 161580 fail fail

600 133825 117600 166320 fail fail

700 142888 133200 170328 fail fail

800 153660 148800 173800 fail fail

900 166801 164400 176862 fail fail

1000 180451 180000 179602 fail fail

Termination criterion is 10−3.
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Fig. 9 Efficiency test on Ackley function on the left and Giewangk function on the right

GA scaling like D ln(D), MUEDA shows excellent efficiency, which scales linearly.
Thus, the advantages of MUEDA on LSGO problems are easily observable.

5 Concluding Remarks

In this chapter, there are two major works, which can be summarized as:

• Via fitness landscape analysis, the expected behaviors and evolvability of Uni-
variate EDAs with different kernel probability distributions based sampling op-
erators are studied in low dimensional spaces. The evolvability change curve
analysis reveals that mixing Gaussian with Cauchy distribution may be a promis-
ing way to strengthen the search ability.

• Based on the above analysis, a self-adaptive mixed distribution based uni-variate
EDA named MUEDA is proposed for both LSGO problems. For the low di-
mensional problems, MUEDA provides excellent performance. Experimental ev-
idence of large scale global function optimization is demonstrated to illustrate the
merits and demerits of the proposed algorithm. Moreover, some scalability study
is also carried out to evaluate MUEDA further.

In summary, this work aims at providing both expected and experimental anal-
ysis on improving the performances of uni-variate EDAs by designing a more ef-
fective sampling operator. As to the experimental results, MUEDA improves the
performance of the uni-variate EDA significantly, and the proposed algorithm is
good at both exploration and exploitation simultaneously. Particularly, the adaptive
mixed distribution based sampling strategy could be simply incorporated into exist-
ing EDAs to accelerate the convergence speed and escape from the local optima.

6 Future Research Direction

There are still many issues that need to be urgently analyzed , of which the major
ones are summarized as follows:
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• Although many attempts have been carried out to analyze the characteristics of
heavy tail distributions, the comprehensive mathematical properties of the heavy
tail probability distributions are subject to suggestion.

• Even though the algorithm performed remarkably better than the classical algo-
rithms, there are still some problems that cannot be completely solved by the
proposed algorithm.

• In this chapter, the heavy tail distribution based sampling operator has shown
good efficiency based not only on theoretical analysis, but also on the experi-
mental analysis. More attempts are needed to prove the efficiency to the adaptive
mixed strategy, such as incorporating the strategy to EP or ES.
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Appendix

Classical test function 11 and 12
u and yi are defined as follows:

u(xi,a,k,m) =

⎧⎨
⎩

k(xi −a)m, i f xi > a,
0, −a ≤ xi ≤ a,
k(−xi −a)m, i f xi < −a,

yi = 1 +
1
4
(xi + 1).

f11 Generalized Penalized Functions

f11 =
π
30

{10sin2 +
2

∑
i=1

9(yi −1)2 · [1+

10sin2(πyi+1 +(yn −1)2)]+
30

∑
i=1

u(xi,10,100,4)}

f12 Generalized Penalized Functions

f12 = 0.1{sin2(π3x1)+
2

∑
i=1

9(xi −1)2 · [1+

sin2(3πxi+1)]+ (xn −1)2[1 + sin2(2πx30)]}+
30

∑
i=1

u(xi,5,100,4)
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A List of Terms and Definition

Heavy tail probability distribution - Different from Gaussian probability distribu-
tion whose variance can be denoted as a finite scalar, heavy tail probability distri-
bution stands for a class of probability distributions with an infinite second moment
that also yields a stable process.

Estimation of distribution algorithms (EDAs) - The methods that make use of the
notion of modeling process as applied in statistics and machine learning domain to

Table 10 Abbreviations used in this chapter

abbreviation full name

EDA estimation of distribution algorithm

LSGO large scale global optimization

MUEDA mixed distribution based uni-variate EDA

EA evolutionary algorithm

DE differential evolution

PSO particle swarm optimization

FEP fast evolutionary programming

FES fast evolution strategy

FSA fast simulated annealing

LEP Lévy mutation

LSEDA-gl EDA with mixed Gaussian and Cauchy distribution for LSGO

FLP fitness landscape portrait

GA genetic algorithm

PBIL population-based incremental learning algorithm

SHCLVND Stochastic hill climbing by vectors of normal distributions

UMDAc uni-variate marginal distribution algorithm

MIMIC mutual information maximizing input clustering

EGNAee estimation of Gaussian networks algorithm by edge exclusion

CEGDA clustering and estimation of Gaussian distribution algorithm

IDEA iterated density estimation algorithm

EP evolutionary programming

CEP classical EP

ES evolution strategy

STDC Standard Deviation Control Strategy

MFES maximum fitness evaluation size
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extract the important information to effectively build the space structure belong to
EDAs.

Fitness landscape analysis - Fitness landscape analysis considers optimization
problems as a set of landscapes containing one or more optima. Evolution can thus
be viewed as the movement of the population, represented by a set of points (geno-
types), towards lower (fitter) areas of the landscape.

Large scale global optimization - Large scale global optimization defines a suit of
global optimization problems with more than 100 variables to be optimized.

Kernel probability distribution - Consider a probability with mean 0, symmetrical
probability distribution and monotonously increasing; then this probability can be
used as Kernel probability distribution for EDA.
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tinuous search spaces. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.)
PPSN 1998. LNCS, vol. 1498, pp. 418–427. Springer, Heidelberg (1998)

26. Shi, Y., Teng, H., Li, Z.: Cooperative co-evolutionary differential evolution for function
optimization. In: Proc. First International Conference on Natural Computation, pp. 1080–
1088 (2005)

27. Sinha, N., Chakrabarti, R., Chattopadhyay, P.K.: Evolutionary programming techniques
for economic load dispatch. IEEE Trans. Evol. Comput. 7(1), 83–94 (2003)

28. Smith, T., Husbands, P., Layzell, P., OShea, M.: Fitness landscapes and evolvability.
Evol. Comput. 10(1), 1–34 (2002)

29. Stadler, P.F.: Fitness landscapes. In: Biological Evolution and Statistical Physics, pp.
187–207. Springer, Heidelberg (2002)

30. Szu, H., Hartley, R.: Fast simulated annealing. Phys. Lett. A 122(3,4), 157–162 (1987)



198 Y. Wang and B. Li

31. Tang, K., Yao, X., Suganthan, P.N., MacNish, C., Chen, Y.P., Chen, C.M., Yang, Z.Y.:
Benchmark functions for the CEC 2008 special session and competition on large scale
global optimization. Technical Report for IEEE Congress of Evolutionary Computation
(CEC) (2008) (special issue)

32. Tseng, L., Chen, C.: Multiple trajectory search for large scale global optimization. In:
Proc. IEEE Congress on Evolutionary Computation (CEC), pp. 3052–3059 (2008)

33. Wang, Y., Li, B.: A restart uni-variable estimation of distribution algorithms: Sampling
under mixed Gaussian and Levy Probability Distribution. In: Proc. IEEE Congress on
Evolutionary Computation (CEC), Hong Kong, pp. 3218–3225 (2008)

34. Wright, S.: The roles of mutation, inbreeding, crossbreeding, and selection in evolution.
In: Proc. 6th Congr. Genetics, vol. 1, p. 365 (1932)

35. Yang, Z., He, J.S., Yao, X.: Making a difference to differential evolution. In:
Michalewicz, Z., Siarry, P. (eds.) Advances in Metaheuristics for Hard Optimization,
pp. 397–414. Springer, Heidelberg (2007)

36. Yang, Z., Tang, K., Yao, X.: Differential evolution for high-dimensional function opti-
mization. In: Proc. IEEE Congress on Evolutionary Computation (CEC), Singapore, pp.
3523–3530 (2007)

37. Yang, Z., Tang, K., Yao, X.: Large scale evolutionary optimization using cooperative
coevolution. Inf. Sci. 178(15), 2985–2999 (2008)

38. Yang, Z., Tang, K., Yao, X.: Multilevel cooperative coevolution for large scale optimiza-
tion. In: Proc. IEEE Congress on Evolutionary Computation (CEC), Hong Kong, pp.
1663–1670 (2008)

39. Yao, X.: An overview of evolutionary computation. Chinese J. Adv. Software Res. 3(1),
12–29 (1996)

40. Yao, X., Liu, Y.: Fast evolutionary programming. In: Proc. Fifth Annual Conference on
Evolutionary Programming (EP 1996), pp. 451–460. MIT Press, San Diego (1996)

41. Yao, X., Liu, Y.: Fast evolution strategies. Control and Cybern 26(3), 467–496 (1997)
42. Zamuda, A., Brest, J., Boskovic, B., Zumer, V.: Large scale global optimization using

differential evolution with self adaptation and cooperative co-evolution. In: Proc. IEEE
Congress on Evolutionary Computation (CEC), Hong Kong, pp. 3719–3726 (2008)

43. Zhao, S., Liang, J.J., Suganthan, P.N., Tasgetiren, M.F.: Dynamic multi-swarm particle
swarm optimizer with local search for large scale global optimization. In: Proc. IEEE
Congress on Evolutionary Computation (CEC), Hong Kong, pp. 3845–3852 (2008)



Differential Evolution with Fitness
Diversity Self-adaptation

Ville Tirronen and Ferrante Neri

Abstract. This chapter proposes the integration of fitness diversity adapta-
tion techniques within the parameter setting of Differential Evolution (DE).
The scale factor and crossover rate are encoded within each genotype and
self-adaptively updated during the evolution by means of a probabilistic cri-
terion which takes into account the diversity properties of the entire popu-
lation. The population size is also adaptively controlled by means of a novel
technique based on a measurement of the fitness diversity. An extensive ex-
perimental setup has been implemented by including multivariate problems
and hard to solve fitness landscapes. A comparison of the performance has
been conducted by considering both standard DE and modern DE based
algorithms, recently proposed in the literature. Available numerical results
show that the proposed approach seems to be very promising for some fit-
ness landscapes and still competitive with modern algorithms in other cases.
In most cases analyzed the proposed self-adaptation is beneficial in terms of
algorithmic performance and can be considered a useful tool for enhancing
the performance of a DE scheme.

1 Introduction

Differential Evolution (DE, see [33], [29], and [6]) is a reliable and versatile
function optimizer. DE, like most popular Evolutionary Algorithms (EAs),
is a population based tool. DE, unlike other EAs, generates offspring by
perturbing the solutions with a scaled difference of two randomly selected
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population vectors, instead of recombining the solutions by means of a prob-
ability function. In addition, DE employs a steady state logic which allows
replacement of an individual only if the offspring outperforms its correspond-
ing parent. Due to its algorithmic structure, over the optimization process
DE generates a super-fit individual which leads the search until an individ-
ual with better performance is generated. Therefore, as highlighted in [16], a
DE population can be subject to stagnation in such cases where no offspring
individuals outperform the corresponding parents for a large number of gen-
erations. In order to avoid this undesired effect a proper parameter setting
(two parameters in particular) is crucial.

Some empirical studies carried out in the literature, for example [28] and
[16], give some hints as to how to perform such settings. A more advanced
criterion based on the fitness values is given in [1]. Paper [36] proposed a
dynamic population sizing strategy based on self-adaptation, and [19] pro-
posed the employment of a fuzzy controller in order to perform setting of
the parameters. In order to avoid execution of the parameter setting, in [30]
an adaptive system based on the combined use of two learning strategies
has been proposed. Paper [2] proposed a simple probabilistic scheme with a
self-adaptive logic for updating parameter values during the evolution. Al-
though the algorithm updates the parameters only by periodically refreshing
them by means of random values, the self-adaptive logic carried out seems
very robust and shows good performance under various fitness landscapes.
This algorithmic philosophy has also been extended in the case of constrained
optimization [3] and multi-objective problems [43]. Some hybrid approaches
(also known as Memetic Algorithms) consisting of a DE framework and local
search components have been proposed in the literature in order to avoid
stagnation problems and, more generally, enhance the performance of the
DE. Paper [35] proposed a hybrid algorithm based on a combination of DE
and an estimation of distribution algorithm. This technique uses a proba-
bility model to detect promising areas and then focuses the search process
on those regions. Recently, [26] proposed a Memetic Algorithm which inte-
grates the local search hill-climber within variation operators of the DE; [31]
proposed a heuristic technique, namely, opposition-based learning (OBL) for
population initialization and also for generation jumping. In [42] a complex
self-adaptation is proposed in order to significantly enhance the performance
of a DE framework. Papers [7] and [8] propose the integration of a neighbor-
hood logic within a DE scheme and the employment of multiple scale factors
in the mutation operator. Papers [37] and [38] proposed a Memetic Differ-
ential Evolution (MDE) composed of a DE framework and two local search
algorithms integrated within the framework and coordinated by a fitness di-
versity logic.

Fitness diversity adaptation has recently been applied with success in the
context of Memetic Algorithms for performing coordination of local search
algorithms and parameter setting. Several control parameters have been
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designed on the basis of the evolutionary framework and optimization prob-
lems under analysis (see [4], [23], [21], [24], and [22]). A measurement of the
fitness diversity as the difference in performance between the fittest individ-
ual and other members of the population has been recently introduced for a
MDE scheme [5].

This chapter aims to employ the fitness diversity logic and integrate it
within each genotype of a DE population in order to enhance the algorithmic
performance. The algorithm proposed in this chapter is composed of a DE
structure employing a self-adaptation similar to the one proposed in [2], with
a modified probabilistic criterion which is based on a novel measurement of
the fitness diversity. In addition, the proposed algorithm contains an adaptive
population size determined by variations in the fitness diversity.

Section 2 presents the state-of-the-art regarding DE and five recently pub-
lished DE based algorithms. Section 3 describes the concept of fitness diver-
sity and the reason for its employment in algorithmic adaptation. Section
4 gives a description of the proposed algorithm, namely Fitness Diversity
Self-Adaptive Differential Evolution. Section 5 shows the numerical results.
Finally, Section 6 gives the conclusion to this chapter.

2 Background: Differential Evolution Based Algorithms

This section describes the DE and five DE based algorithms recently pro-
posed. In order to clarify the notation used throughout this chapter we refer
to the minimization problem of an objective function f (x), where x is a
vector of n design variables in a decision space D.

2.1 Differential Evolution

According to its original definition given in [33], the DE consists of the fol-
lowing steps. An initial sampling of Spop individuals is performed pseudo-
randomly with a uniform distribution function within the decision space D.
At each generation, for each individual xi of the Spop, three individuals xr ,
xs and xt are pseudo-randomly extracted from the population. According to
DE logic, a provisional offspring x′off is generated by mutation as:

x′off = xt + F (xr − xs) (1)

where F ∈ [0, 1+[ is a scale factor which controls the length of the exploration
vector (xr − xs) and thus determines how far from point xi the offspring
should be generated. The mutation scheme shown in eq. (1) is also known
as DE/rand/1. Other variants of the mutation rule have been subsequently
proposed in literature, see [30]:

� DE/best/1: x′off = xbest + F (xs − xt)
� DE/cur-to-best/1: x′off = xi + F (xbest − xi) + F (xs − xt)
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� DE/best/2: x′off = xbest + F (xs − xt) + F (xu − xv)
� DE/rand/2: x′off = xr + F (xs − xt) + F (xu − xv)

where xbest is the solution with the best performance among the individuals
of the population, xu and xv are two additional pseudo-randomly selected
individuals.

Then, to increase exploration, each gene of the new individual x′off is
switched with the corresponding gene of xi with a uniform probability and
the final offspring xoff is generated:

xoff,j =
{

xi,j if rand (0, 1) < CR
x′off,j otherwise

(2)

where rand (0, 1) is a random number between 0 and 1; j is the index of the
gene under examination.

The resulting offspring xoff is evaluated and, according to a one-to-one
spawning strategy, it replaces xi if and only if f(xoff ) < f(xi); otherwise
no replacement occurs. For sake of clarity, the pseudo-code highlighting the
working principles of the DE is shown in Fig. 1.

generate Spop individuals of the initial population pseudo-randomly;
while budget condition

for i = 1 : Spop

compute f (xi);
end-for
for i = 1 : Spop

**mutation**
select three individuals xr, xs, and xt;
compute x′

off = xt + F (xr − xs);
**crossover**
xoff = x′

off ;
for j = 1 : n

generate rand(0, 1);
if rand(0, 1) < CR

xoff,j = xi,j ;
end-if

end-for
**selection**
if f (xoff ) < f (xi)

xi = xoff ;
end-if

end-for
end-while

Fig. 1 DE pseudocode
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2.2 Parameter Setting in Differential Evolution

As highlighted in [16], due to its inner structure, the DE is subject to stagna-
tion problems. Stagnation is that undesired effect which occurs when a pop-
ulation based algorithm does not converge to a solution (even suboptimal)
and the population diversity is still high. In the case of the DE, stagnation
occurs when the algorithm does not manage to improve upon any solution of
its population for a prolonged amount of generations.

In order to avoid this undesired effect, the moving operators of the DE must
be properly set. In other words, for successful functioning of the DE, a proper
setting of the population size and parameters F and CR (see equations (1)and
(2)) must be performed. The population size, analogous to the other Evolution-
ary Algorithms (EAs), if too small could cause premature convergence and if
too large could cause stagnation (see [11]). A good value can be found by con-
sidering the dimensionality of the problem similar to what is commonly per-
formed for the other EAs. A guideline is given in [34] where a setting of Spop

equal to ten times the dimensionality of the problem is proposed.
On the other hand, the setting of F and CR is neither an intuitive nor

a straightforward task but is unfortunately crucial for guaranteeing the al-
gorithmic functioning. Several studies have thus been proposed in literature.
The study reported in [16] arrives at the conclusion, after an empirical analy-
sis, that usage of F = 1 is not recommended, since according to a conjecture
of the authors it leads to a significant decrease in explorative power. Anal-
ogously, the setting CR = 1 is also discouraged since it would dramatically
decrease the amount of possible offspring solutions. In [34] and [17] the set-
tings F ∈ [0.5, 1] and CR ∈ [0.8, 1] are recommended. In [17] the setting
F = CR = 0.9 is chosen on the basis of discussion in [28]. The empirical
analysis reported in [44] shows that in many cases the setting of F ≥ 0.6 and
CR ≥ 0.6 leads to results having better performance.

Several studies, e.g., [13] and [18], highlight that an efficient parameter
setting is very prone to problems (e.g., F = 0.2 could be a very efficient
setting for a certain fitness landscape and completely inadequate for another
problem). This result can be seen as a confirmation of the validity of the No
Free Lunch Theorem [40] with reference to the DE schemes. In [1], a modified
version of DE has been proposed. A system with two evolving populations
has been proposed. The crossover rate CR has been set equal to 0.5 after
an empirical study. Unlike CR, the value of F is adaptively updated at each
generation by means of the following scheme:

F =

⎧⎨
⎩

max
{
lmin, 1 −

∣∣∣ fmax
fmin

∣∣∣} if
∣∣∣ fmax

fmin

∣∣∣ < 1

max
{
lmin, 1 −

∣∣∣ fmin
fmax

∣∣∣} otherwise
(3)

where lm = 0.4 is the lower bound of F , fmin and fmax are the minimum
and maximum fitness values over the individuals of the populations.
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2.3 Self-adapting Control Parameters in Differential
Evolution

In order to avoid the manual parameter setting of F and CR a simple and
effective strategy has been proposed in [2]. This strategy is named Self-
Adapting Control Parameters in Differential Evolution. The DE algorithm
employing this strategy here is called Self-Adaptive Control Parameter Dif-
ferential Evolution (SACPDE) and consists of the following.

With reference to Fig. 1, when the initial population is generated, two
extra values between 0 and 1 are also generated per each individual. These
values represent F and CR related to the individual under analysis. Each
individual is thus composed (in a self-adaptive logic) of its genotype and its
control parameters:

xi = 〈xi,1, xi,2, ..., xi,j , ...xi,n, Fi, CRi〉 .

In accordance with a self-adaptive logic, see e.g., [32], the variation opera-
tions are preceded by the parameter update. More specifically when, at each
generation, the ith individual xi is taken into account and three other individ-
uals are extracted pseudo-randomly, its parameters Fi and CRi are updated
according to the following scheme:

Fi =
{
Fl + Furand1, if rand2 < τ1

Fi, otherwise (4)

CRi =
{
rand3, if rand4 < τ2
CRi, otherwise (5)

where randj , j ∈ {1, 2, 3, 4}, are uniform pseudo-random values between 0
and 1; τ1 and τ2 are constant values which represent the probabilities that
parameters are updated, Fl and Fu are constant values which represent the
minimum value that F could take and the maximum variable contribution to
F , respectively. The newly calculated values of Fi and CRi are then used for
generating the offspring. The variation operators and selection scheme are
identical to that of a standard DE (see section 2.1).

For sake of clarity, the pseudo-code highlighting the working principle of
the SACPDE is given in Fig. 2.

2.4 Differential Evolution with Adaptive Crossover
Local Search

In order to enhance performance of the DE, in [26] a memetic approach,
called Differential Evolution with Adaptive Hill Climbing Simplex Crossover
(DEahcSPX), has been proposed. The main idea is that a proper balance of
the exploration abilities of the DE and the exploitation abilities of a Local
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Searcher (LS) can lead to an algorithm with high performance. The pro-
posed algorithm hybridizes the DE described in section 2.1 as an evolutionary
framework and a LS is deterministically applied to the individual of the DE
population with the best performance (in terms of fitness value).

The LS proposed for this hybridization is Simplex Crossover (SPX) [39].
More specifically, at each generation, that individual having the best fitness
value, indicated here with xb, is extracted and the LS described in Fig. 3
is applied. If the SPX succeeds in improving upon the starting solution, a
replacement occurs according to a meta-Lamarckian logic [27].

It should be remarked that ε in Fig. 3 is a control parameter of the SPX
which has been set equal to 1 in [26]. Finally, the DE framework employed is
the standard DE described in Fig. 1.

generate Spop individuals of the initial population with related
parameters pseudo-randomly;
while budget condition

for i = 1 : Spop

compute f (xi);
end-for
for i = 1 : Spop

**Fi update**
generate rand1 and rand2;

Fi =

{
Fl + Furand1, if rand2 < τ1

Fi, otherwise
;

**mutation**
select three individuals xr, xs, and xt;
compute x′

off = xt + Fi(xr − xs);
**CRi update**
generate rand3 and rand4;

CRi =

{
rand3, if rand4 < τ2

CRi, otherwise
**crossover**
xoff = x′

off ;
for j = 1 : n

generate rand(0, 1);
if rand(0, 1) < CRi

xoff,j = xi,j ;
end-if

end-for
**selection**
if f (xoff ) < f (xi)

xi = xoff ;
end-if

end-for
end-while

Fig. 2 SACPDE pseudocode
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while budget condition OR f(C) ≥ f(xb)
select pseudo-randomly np − 1 individuals from the DE population
compute the center of mass (including xb):

O = 1
np

np∑
i=1

xi;

for i = 1 : np − 1

ri = rand(0, 1)
1

i+1 ;
end-for
for i = 1 : np

yi = O + ε(xi − O);
end-for
C1 = 0;
for i = 2 : np

Ci = ri−1 (yi−1 − yi + Ci−1);
end-for
C = Cnp + ynp ;
end-while

Fig. 3 SPX pseudocode

2.5 Opposition Based Differential Evolution

The Opposition Based Differential Evolution (OBDE), proposed in [31], em-
ploys logic of the opposition points in order to enhance exploration properties
of the DE and test a wide portion of the decision space.

For a given point xi = 〈xi,1, xi,2, ..., xi,j , ..., xi,n〉 belonging to a set D =
[a1, b1]× [a2, b2]× ...× [aj, bj ]× ...× [an, bn] its opposition point is defined as:
x̃i = 〈a1 + b1 − xi,1, a2 + b2 − xi,2, ..., aj + bj − xi,j , ..., an + bn − xi,n〉. The
OBDE consists of a DE framework and two opposition based components:
the first after the initial sampling and the second after the survivor selec-
tion scheme. While the first opposition based component is always applied
after initialization, the second is activated by means of the probability jr
(jump rate). These opposition based components process a set of candi-
date solutions and generate their opposition points. They then merge the
two sets of points (original and opposition) and select those points which
have the best performance (as many as there are candidate solutions in the
original set).

More specifically, when the initial sampling is pseudo-randomly performed,
opposition points of the initial population are calculated and then half of these
points (having the best fitness values) are selected to begin the optimization
process. Analogously, at the end of each DE generation, when the population
has been selected for the subsequent generation, the opposition based com-
ponent is applied.
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For sake of clarity the pseudo-code describing the functioning of the OBDE
is shown in Fig. 4.

generate Spop individuals of the initial population pseudo-randomly;
while budget condition

for i = 1 : Spop

compute f (xi);
end-for
**opposition based component**
for i = 1 : Spop

for j = 1 : n
compute x̃i,j = aj + bj − xi,j ;

end-for
compute f (x̃i);

end-for
merge original population and opposition based points;
select the Spop solutions which have the best performance;
for i = 1 : Spop

**mutation**
select three individuals xr, xs, and xt;
compute x′

off = xt + F (xr − xs);
**crossover**
xoff = x′

off ;
for j = 1 : n

generate rand(0, 1);
if rand(0, 1) < CR

xoff,j = xi,j ;
end-if

end-for
**selection**
if f (xoff ) < f (xi)

xi = xoff ;
end-if

end-for
generate rand(0, 1);
if rand(0, 1) < jr

**opposition based component**
for i = 1 : Spop

for j = 1 : n
compute x̃i,j = aj + bj − xi,j ;

end-for
compute f (x̃i);

end-for
merge original population and opposition based points;
select the Spop solutions which have the best performance;

end-if
end-while

Fig. 4 OBDE pseudocode
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2.6 Differential Evolution with Global and Local
Neighborhoods

The Differential Evolution with Global and Local Neighborhoods (DEGL)
modifies the mutation operation in the DE, explained in Subsection 2.1, by
defining a neighborhood as a portion of the population identified by a radius
k, see [7] and [8]. More specifically, individuals of the population are pseudo-
randomly sorted and each individual is characterized by a position index
i. The neighborhood of the ith individual xi is given by those individuals
xi−k, ..., xi, ..., xi+k.

The concept of neighborhood is used during the mutation operation since
the provisional offspring x′off is acquired through the combination of two
contributions, the first contribution is given by the neighborhood individu-
als and the second by the whole population. Thus, in order to perform the
mutation, for an individual xi, the local contribution is calculated as:

Li = xi + α (xn−best − xi) + β (xp − xq) (6)

where xbest is the individual having best performance in the neighborhood, xp

and xq and two individuals pseudo-randomly selected from the neighborhood.
Values α and β are two constant which have a similar role to that of the scale
factor F , see eq. (1). The global contribution is given by:

Gi = xi + α (xp−best − xi) + β (xr − xs) (7)

where xpbest is that individual with the best performance out of the entire
population, xr and xs are two individuals pseudo-randomly selected from the
population. The two contributions are then combined by means of:

x′off = wGi + (1 − w)Li (8)

where wi is a weight factor to be set between 0 and 1.
Regarding the parameter setting, as suggested in [7], it has been set α = β

equal to constant value. Also the neighborhood radius k has been set as a
constant. On the contrary, the weight factor w is updated according to:

w = wmin + (wmax − wmin)
g

gmax
(9)

where wmin and wmax are the lower and upper bounds of the weight factor,
respectively. The indexes g and gmax denote the current generation index
and the maximum amount of generations, respectively. In other words, at
the beginning of the optimization process (g = 0) the weight factor is set
equal to wmin and subsequently linearly varies over time. At the end of the
optimization process, the weight factor takes the value wmax. The crossover
and replacement occur as with a plain DE, see Subsection 2.1.
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2.7 Self-adaptive Differential Evolution with
Neighborhood Search

TheSelf-AdaptiveDifferential EvolutionwithNeighborhoodSearch (SaNSDE)
[42] is a combination of two different algorithms: Differential Evolution with
Neighborhood Search introduced in [41] and Self-Adaptive Differential Evolu-
tion (SADE) introduced in [30].

The SaNSDE modifies the DE in the following way. When the mutation is
performed, the SaNSDE alternates, with a probabilistic scheme, two mutation
strategies. The first strategy is the so called DE/rand/1 shown in eq. (1) while
the second one is the DE/current to best/2 characterized by the formula:

x′off = xi + F (xp−best − xi) + F (xr − xs) , (10)

where xpbest is the individual displaying best performance in the population,
xr and xs are two individuals pseudo-randomly selected.

The probability of selecting the mutation strategy DE/rand/1 is initially
0.5 and subsequently updated (every 50 generations) by:

ρ =
s1(s2 + f2)

s2(s1 + f1) + s1(s2 + f2)
, (11)

where s1, s2, f1, f2 are respectively the number of successful and unsuc-
cessful attempts at generating offspring by the two mutation strategy under
investigation. More specifically, s1 is the number of times the DE/rand/1 led
to an offspring outperforming the corresponding parent, s2 is the number of
times the DE/current to best/2 led to an offspring outperforming the cor-
responding parent, f1 is the number of unsuccessful attempts at generating
an offspring by DE/rand/1 and f2 is the number of unsuccessful attempts at
generating an offspring by DE/current to best/2. The probability of selecting
the mutation strategy DE/current to best/2 is given by 1 − ρ.

A self adaptation of the scale factor F is also performed. For each indi-
vidual a scale factor Fi is associated. Each scale factor is updated according
to:

Fi =
{
Ni (0.5, 0.3) if rand < Fρ

δi otherwise (12)

where Ni (0.5, 0.3) is a number sampled normal distribution with mean value
of 0.5 and standard deviation equal to 0.3, rand is a pseudo-random num-
ber sampled from a uniform distribution, δi is a random sample from the
Cauchy distribution with a scale parameter equal to 1, Fρ is a probability con-
structed with the same logic as eq. (11) but related to the success of the scale
factor.

In order to perform the crossover, the SaNSDE employs the weighted
crossover rate self-adaptation. With each individual a crossover rate CRi
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is associated. Every five generations new CRi values for each individual are
generated for the new population by means of the following equation:

CRi = N (CRm, 0.1) . (13)

The value CRm is initially set equal to 0.5 and then updated every 25 gen-
erations according to:

CRm =
|CRrec|∑

k=1

wkCRrec (k) (14)

where CRrec is a vector containing the CRi values which contributed to the
generation of a successful offspring (individual which outperform its parent
xi). Each weight factor wk is calculated as:

wk =
Δfrec (k)

|Δfrec |∑
k=1

Δfrec (k)

(15)

where Δfrec (k) is the enhancement in that fitness value corresponding to the
application of CRrec (k).

All remaining operations are performed as shown in Subsection 2.1.

3 Fitness Diversity Adaptation in Evolutionary
Algorithms

As mentioned in [10] Exploration and Exploitation are two cornerstones in
EAs and a proper balance of these properties seems to be the basic princi-
ple for algorithmic success. Unfortunately, every optimization problem has
its own features, and thus, this balance must be designed taking into ac-
count the class of fitness landscapes which should be handled. In addition, as
highlighted in [11], an EA is implicitly dynamic. Thus, in order to design a
highly efficient algorithm, the explorative/exploitative pressure should vary
over time and adapt to the demands of the optimization process while the
search is performed.

A properly designed optimization algorithm should, in principle, be able
to explore the decision space and detect the optimal basin of attraction, even-
tually converging to the global optimum. Unfortunately, the location of the
global optimum and optimal basin of attraction is in general unknown a priori
and it is impossible to even know during the optimization process whether
one candidate solution has fallen within the optimal basin of attraction.

Nevertheless, the behavior of the algorithm (on a fitness landscape) can be
observed and indirectly measured: if the population contains a high variety
of genotypes (highly diverse), the algorithm explores the decision space and
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hopefully detects new promising solutions; if the population contains a low va-
riety of genotypes, the algorithm exploits a search direction and converges to
a solution. The concept of diversity can then be used to monitor algorithmic
behavior and prevent undesired stagnation and premature convergence sit-
uations. By means of a parameter adjustment, the algorithm can increase
exploitation if the algorithm seems to be too explorative (checking a huge
amount of solutions without improving upon the current best) or conversely
increase exploration if the algorithm tends to lose the diversity and converge
to a suboptimal solution (see for example [14], [11], and [9]). This logic has
been implemented in various ways during the latest decades and has been
widely used for local search coordination in Memetic Algorithms since their
early definition in [20].

A not so trivial problem is how to efficiently measure the population di-
versity and how to make use of this information for actually obtaining an
algorithm which adequately responds to variations. Measurement of the geno-
typical diversity presents the problem that a comparison among vectors of
numbers is somehow required (e.g., distance between pairs of vectors) and a
table expressing this comparison is generated; this operation can be compu-
tationally very expensive if the fitness is highly multi-variate.

An indirect way to measure the population diversity is through its fitness
values. Measurement of the fitness diversity requires handling of only one
vector of numbers which is composed of the fitness values of each individual
of the population. On the other hand, the presence of plateaus and saddle
points can give an inaccurate estimation of the distribution of points in the
decision space. Fortunately, this limitation of the fitness diversity schemes
is not very severe when this diversity is used for making an adaptive choice
on the explorative/ exploitative countermeasures. If fitness diversity is high,
the solutions are somehow spread out in the decision space, the algorithm is
exploring new search directions and a higher exploitative pressure can help
in choosing the most promising search direction; if the fitness diversity is low,
either the algorithm is converging towards a solution or the entire population
is contained in a plateau or a saddle; in both cases an increase in exploration
is required in order to detect new promising solutions outside the current
basin of attraction or plateau (or saddle).

The fitness diversity can thus be efficiently employed to measure the state
of the algorithm and apply proper countermeasures to avoid stagnation and
premature convergence, resulting in a high performance algorithm. In order
to use information related to the fitness diversity, an index which estimates
the diversity must be defined. In literature, several proposals have been made.
Indicating with fbest, favg and fworst respectively the best, average and worst
fitness over the individuals of the population, in [4] and [23] the following
index has been proposed:

ξ = min
{∣∣∣∣fbest − favg

fbest

∣∣∣∣ , 1
}

(16)
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In [22] and [24] the following parameter is given:

ψ = 1 −
∣∣∣∣ favg − fbest

fworst − fbest

∣∣∣∣ (17)

In [37] the fitness diversity has been measured by means of the following
index:

ν = min
{

σf

|favg| , 1
}
, (18)

where σf is the standard deviation over the fitness values of individuals of
the population.

In [5] the following parameter is used:

χ =
|fbest − favg|

max |fbest − favg|k
(19)

where fbest and favg are the fitness values of, respectively, the best and av-
erage individuals of the population. max |fbest − favg|k is the maximum dif-
ference observed (e.g., at the kth generation), beginning from the start of the
optimization process.

It must be noted that the four control parameters shown above can take
values in the interval [0, 1]. These limit conditions 0 and 1 mean no fitness
diversity and high fitness diversity respectively. Although all the above men-
tioned parameters measure fitness diversity of the population, the way this
diversity is measured and scored differ much according to the index employed.

Although an in depth analysis of the structure of fitness diversity indexes
is beyond the scope of this chapter, it is interesting to note that these pa-
rameters can be seen as an answer to four distinct questions related to the
algorithms’ state during the run. More specifically, ξ can be seen as the an-
swer to the question “How close is the average fitness to the best one?”; ψ
is the answer to the question “If we sort all fitness values over a line, which
position is occupied by the average fitness?”; ν is the answer to the question
“How sparse are the fitness values within the population?”; χ is the answer to
the question “How much better is the best individual than the average fitness
of the population with respect to the history of the optimization process?”.

4 Fitness Diversity Self-adaptive Differential Evolution

This chapter aims to propose an efficient modification of DE which includes
within its structure the fitness diversity logic in order to control explo-
rative/exploitative pressure and thus improve upon the DE performance.
The proposed algorithm, namely Fitness Diversity Self-Adaptive Differential
Evolution (FDSADE) consists of the following steps.
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4.1 Initial Sampling and Encoding of the Solutions

An initial sampling of Spop individuals is executed pseudo-randomly with a
uniform distribution function. As for the algorithm in [2], each individual
xi is composed of its genotype over the decision space D and its control
parameters Fi and CRi pseudo-randomly sampled between 0 and 1:

xi = 〈xi,1, xi,2, ..., xi,j , ...xi,n, Fi, CRi〉 .

The fitness of each individual is calculated and the solutions are sorted ac-
cording to their fitness values from best to worst.

4.2 Fitness Diversity Self-adaptation

At each generation the following fitness diversity index is calculated:

φ =
σf

|fworst − fbest| (20)

where σf is the standard deviation of fitness values over individuals of the
populations, fworst and fbest are the worst and best fitness values, respec-
tively, of the population individuals.

Analogous to the other fitness diversity indexes listed in section 3, φ varies
between 0 and 1. When the fitness diversity is high, φ ≈ 1; on the contrary
when the fitness diversity is low, φ ≈ 0. The index φ can be seen as a com-
bination of ν in formula (18) and ψ in formula (17) because it represents the
distribution of fitness values over individuals of the population with respect
to its range of variability. In other words, φ is the answer to the question
”How sparse are the fitness values with respect to the range of fitness vari-
ability at the current generation?”. Employment of the standard deviation in
the numerator in formula (20) is due to the fact that a DE framework tends
to generate an individual with performance significantly above the average
(see [37] and [5]) and efficiently continues optimization for several genera-
tions. In this sense, an estimation of the fitness diversity of a DE population
by means of the difference between best and average fitness values can return
a misleading result and each value must be taken into account. Regarding
the denominator in formula (20), a normalization to the range of variability
of the current population makes the index co-domain invariant (unlike ν in
formula (18) ) and its estimation is not affected, for example by adding an
offset to the fitness function. Thus, the index φ can be successfully employed,
within a DE framework, on problems of various kinds.

The control parameter Fi is then updated according to the scheme:

Fi =
{
Fl + Furand1, if rand2 < K (1 − φ)

Fi, otherwise (21)
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where rand1 and rand2 are pseudo-random numbers generated by means of
the uniform distribution, Fl and Fu are the same constant values shown in
formula (4) for the SACPDE.

Analogously, the control parameter CRi is updated according to the
scheme:

CRi =
{
rand3, if rand4 < K (1 − φ)
CRi, otherwise (22)

where rand3 and rand4 are pseudo-random numbers generated by means of
the uniform distribution. For both equations (21) and (22), the constant value
K represents the maximum update probability of the parameters.

In other words, the proposed algorithm hybridizes the self-adaptive scheme
proposed in [2] with the fitness diversity logic in order to obtain a high perfor-
mance DE algorithm. The main idea behind the proposed self-adaptation is
that in high diversity conditions (φ ≈ 1), the solutions xi should tend to keep
the control parameters Fi and CRi unvaried and thus exploit the current po-
tential search. On the contrary, when the diversity condition is low (φ ≈ 0),
the algorithm should try to better explore the decision space by frequently
changing intensity of the mutation move Fi and updating the recombination
rate CRi. The proposed logic is thus similar to the fitness diversity based
activation of a local search in a MA (see e.g., [22]): if the algorithms need
to exploit the genotype no changes to the evolutionary framework are nec-
essary, if the algorithm has poor diversity a change in the exploratory logic
and exploration of new search perspectives are recommended (see [15]).

4.3 Recombination Operators

Recombination operations, i.e., mutation and crossover, occur in the FD-
SADE, similar to operations performed in the standard DE. For each solution
xi, three individuals xr, xs and xt are pseudo-randomly extracted from the
population and a provisional offspring x′off is generated by mutation:

x′off = xt + Fi(xr − xs) (23)

where Fi is the scale factor corresponding to solution xi. Each gene of the new
individual x′off is then switched with the corresponding gene of xi with the cor-
responding uniform probability CRi and the final offspring xoff is generated:

xoff,j =
{

xi,j if rand (0, 1) < CRi

x′off,j otherwise
(24)

4.4 Adaptive Population Size and Selection

When Spop offspring individuals are generated, the offspring xoff is evaluated
and, according to standard DE logic, replaces xi if and only if f(xoff ) <
f(xi); otherwise no replacement occurs.
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generate Spop individuals of the initial population with related
parameters pseudo-randomly;
while budget condition

for i = 1 : Spop

compute f (xi);
end-for
sort the population;
compute φ =

σf

|fworst−fbest| ;
for i = 1 : Spop

**Fi update**
generate rand1 and rand2;

Fi =

{
Fl + Furand1, if rand2 < K(1 − φ)

Fi, otherwise
;

**mutation**
select three individuals xr, xs, and xt;
compute x′

off = xt + Fi(xr − xs);
**CRi update**
generate rand3 and rand4;

CRi =

{
rand3, if rand4 < K(1 − φ)
CRi, otherwise

**crossover**
xoff = x′

off ;
for j = 1 : n

generate rand(0, 1);
if rand(0, 1) < CRi

xoff,j = xi,j ;
end-if

end-for
**selection**
if f (xoff ) < f (xi)

xi = xoff ;
end-if

end-for
**population size adjustment**
compute φ =

σf

|fworst−fbest| ;
Sold

pop = Spop;
compute Spop = Sf

pop + Sv
pop (1 − φ);

if Spop < Sold
pop

select the Spop individuals with the best performance;

else duplicate in the population Spop − Sold
pop

solutions with the best performance;
end-if ;

end-while

Fig. 5 FDSADE pseudocode
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The parameter φ is then calculated as shown in formula (20) and popula-
tion size is adjusted for the subsequent generation according to the equation:

Spop = Sf
pop + Sv

pop (1 − φ) (25)

where Sf
pop stands for fixed population size and is the minimum value of the

population size, Sv
pop stands for variable population size and is the maximum

value of the variable contribution of the population size. The new value of Spop

is then employed for the subsequent generation: if population size is reduced,
only those Spop individuals having the best performance are considered for
the next steps; if the population is expanded, the best solutions are duplicated
in order to have a population composed of Spop individuals.

The meaning of this variable population size is that in high diversity con-
ditions the algorithm should shrink the population and exploit the available
genotypes, in low diversity conditions the algorithm should enlarge the pop-
ulation and through the recombination mechanism focus on detecting new
promising search directions. In this way the algorithm should be able to
adapt to necessities of the fitness landscape and dynamically balance the ex-
plorative/exploitative necessities. Similar approaches have been proposed in
the literature, e.g., [4], [23], [21] and [24].

For sake of clarity the pseudo-code illustrating the working principles of
the FDSADE is given in Fig. 5.

5 Numerical Results

The FDSADE has been tested on a set of various test problems and compared
with a plain DE [33], SACPDE [2], DEahcSPX [26], OBDE [31], the DEGL
[8], and SaNSDE [42].

� The DE has been run with F = 0.7 and CR = 0.7 in accordance to the
suggestions given in [44].

� The SACPDE has been run, with reference to the formulas (4) and (5),
with Fl = 0.1, Fu = 0.9, τ1 = 0.1, and τ2 = 0.1 as shown in [2].

� The DEahcSPX has been run with F = 0.7 and CR = 0.7 (in accordance
with [44]) and, with reference to Fig. 3, np = 10.

� The DEGL has been run, with reference to formulas (6), (7), (8), and (9),
with k = 5, α = β = 0.8, wmin = 0.4, wmax = 0.8, and CR = 0.7

� The SaNSDE has been run as explained in Subsection 2.7
� The FDSADE has been run with reference to formulas (21) and (22),
Fl = 0.1, Fu = 0.9 as suggested in [2] and K = 0.3.

Regarding the population size, the FDSADE has been run with Sf
pop = 10,

Sv
pop = 40 (see formula (25) ) while all the other algorithms have been run

with Spop = 30. Each algorithm has been run for 30 independent runs, 50000
fitness evaluations each run.
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The choice of K = 0.3 has been empirically performed after having carried
out an analysis of the algorithmic behavior with dependance on K. The main
result of our analysis is that the FDSADE has a high algorithmic performance
for chosen K values in the interval [0.1, 0.7] and performance of the FDSADE
is not very sensitive to the chosen K value within this interval. Nevertheless,
it has been observed that the best performance is obtained in correspondence
to K = 0.3. Fig. 6 shows an example of the FDSADE average performance
(over 30 runs) with dependence on various values of K. Fig. 6 refers to the
Michalewicz function in 30 dimensions.

Fig. 6 Algorithmic performance in dependance on K

The test problems under investigation are listed in Table 1. It should be
remarked that some rotated problems have been added to our benchmark
set. The rotated problems are obtained by means of multiplication of the
vector of variables to a randomly generated orthogonal rotation matrix. The
test problem indicated with ”Tirronen” is generated by means of a novel
test function proposed in this chapter. This test function has been included
in order to obtain a highly multi-modal landscape which contains a global
minimum in an asymmetrical position and a pattern that changes towards
the minimum (unlike Rastrigin or Ackley, whose pattern is orthogonal to the
axes throughout the entire landscape). Fig. 7 shows the Tirronen function in
two dimensions.

Table 2 shows the average final results (after 50000 fitness evaluations)
and the related standard deviation, calculated over the 30 available runs.
The best results are highlighted in bold face.

It can be noted that only for the Easom and Camelback functions do all
algorithms converge to the same value. For the other eighteen test problems,
one of the algorithms outperforms all others in terms of final value. Table 2
shows that the DEGL seems to be a very competitive algorithm since it
produced the best performance in ten cases; the proposed FDSADE reached
the best final value in seven cases out of twenty under analysis, the DE
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Table 1 Test Problems

Test Problem n Function Decision Space

Ackley 30 −20 + e + exp
(
− 0.2

n

√∑n
i=1 x2

i

)
[−1, 1]n

− exp
( 1

n

∑n
i=1 cos(2π · xi)xi

)

Alpine 30
∑n

i=1 |xi sin xi + 0.1xi| [−10, 10]n

Camelback 2 4x2
1 − 2.1x2

1 +
x6
1
3 + x1x2 − 4x2

2 + 4x4
2

DeJong 30 ||x||2 [−5.12, 5.12]n

DropWave 30 − 1+cos
(
12
√

||x||2
)

1
2 ||x||2+2

[−5.12, 5.12]n

Easom 2 cos x1 cos x2 exp
(−(x1 − π)2 − (x2 − π)2

)
[−100, 100]n

Griewangk 30 ||x||2
4000 −∏n

i=0 cos
xi√

i
+ 1 [−600, 600]n

Michalewicz 30 −∑n
i=1 sin xi

(
sin

(
i·x2

i
π

))
[0, π]n

Pathological 30 ∑n−1
i=1

(
0.5 +

sin2
(√

100x2
i
+x2

i+1−0.5
)

1+0.001∗
(

x2
i
−2xixi+1+x2

i+1

)2
)

[−100, 100]n

Rosenbrock 30
∑n−1

i=0

((
xn+1 − x2

i

)2
+ (1 − x)2

)
[−2.048, 2.048]n

Rastrigin 30 10n +
∑n

i=0

(
x2

i − 10 cos(2πxi)
)

[−5.12, 5.12]n

Schwefel 30
∑n

i=1 xi sin
(√ |xi|

)
[−500, 500]n

Sum of powers 30
∑n

i=1 |xi|i+1 [−1, 1]n

Tirronen 30
3 exp

(
− ||x||2

10n

)
− 10 exp

(−8||x||2) [−10, 5]n

+ 2.5
n

∑n
i=1 cos (5(xi+(1+i mod 2))cos(||x||)))

Whitley 30 ∑n
i=1

∑n
j=1

(
y2

i,j
4000 − cos (yi,j) + 1

)
,

[−100, 100]n

where yi,j =
(
100(xj − xi)

2 + (1 − xi)
2)2

Zakharov 30 ||x||2 +
(∑n

i=1
ix1
2

)2
+
(∑n

i=1
ix1
2 xi

)4 [−5, 10]n

reached the best final value in five cases, the SaNSDE and the SACPDE
reached the best final values for four test problems and the DEahcSPX only
with the Easom and Camelback functions. In addition, it can be seen that
when the FDSADE does not reach the best value, it will in any case often
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Fig. 7 Tirronen function

return a solution with a high performance (see e.g., the values in De Jong or
Rotated Rastrigin). Finally, it must be highlighted that the FDSADE never
obtained the worst results over the twenty test problems under analysis and
in most cases offers a competitive performance in terms of final solution.

In order to prove statistical significance of the results, the Student’s t-test
has been applied according to the description given in [25] for a confidence level
of 0.95. The final values obtained by the FDSADE have been compared to the
final value returned by each algorithm used as a benchmark. Table 3 shows re-
sults of the test. Indicated with ”+” is the case when the FDSADE statistically
outperforms, for the corresponding test problem, the algorithm mentioned in
the column; indicated with ”=” is the case when pairwise comparison leads to
success of the t-test i.e., the two algorithms have the same performance; indi-
cated with ”-” is the case when the FDSADE is outperformed.

Table 2 and Table 3 show that DEGL performs the best, in terms of final
values, among all the algorithms considered here. However, it must be noticed
from Table 3 that the FDSADE is outperformed in only eighteen cases out of
the hundred-twenty pairwise comparisons considered, the FDSADE has the
same algorithmic performance as the other algorithms in twenty-six cases and
outperforms the other algorithms in fifty-six cases. It can thus be concluded
that the FDSADE is outperformed in only 15% of the cases and outperforms
the other algorithms in 56% of the cases. Therefore, the FDSADE, in a sta-
tistical sense, offers good performance in detecting a final solution with high
quality and is competitive with modern DE based algorithms. Considering
that the experimental setup is composed of a very diverse set of test prob-
lems (e.g., some functions are uni-modal, others are highly multi-modal),
the FDSADE seems to have a high performance with various kinds of prob-
lems. Finally, attention must be paid in observing the comparison between
FDSADE and SACPDE since the FDSADE has the same self-adaptive struc-
ture of the SACPDE and the same update logic of the control parameters.
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Table 3 Results of the Student’s t-test

Test Problem DE SACPDE DEahcSPX DEGL SaNSDE

Ackley + = + = +

Alpine + = + − =

Camelback = = = = =

De Jong = = + = =

Dropwave − = + − +

Easom = = = = =

Griewangk − + + − +

Rot. Griewangk = + + = +

Michalewicz + + + + +

Rot. Michalewicz + + + + +

Pathological + + + − −
Rastrigin − = + + +

Rot. Rastrigin + − + + −
Rosenbrock − + + − −
Schwefel = + + + +

Rot. Schwefel + + + + +

Sum of powers − + + − −
Tirronen + + + + +

Whitely − = = − −
Zakharov + = + − +

As shown in Section 4, the FDSADE integrates, in addition to the SACPDE,
the fitness diversity philosophy and fitness diversity based variable population
size. Integration of the fitness diversity seems to be very promising because,
as shown in Table 3, it leads to an improvement of performance in ten cases,
the same performance in nine cases and a worse performance in only one
case. This analysis confirms that the fitness diversity adaptation can be an
efficient instrument in enhancing the effectiveness of an algorithm.

In order to carry out a numerical comparison of the convergence speed
performance, for each test problem the average final fitness value returned
by the best performing algorithm G has been considered. Subsequently, the
average fitness value at the beginning of the optimization process J has also
been computed. The threshold value THR = J − 0.95(G− J) has then been
calculated. The value THR represents 95% of the decay in the fitness value
in the best performing algorithms fitness value. If an algorithm succeeds
during a certain run to reach the value THR, the run is said to be successful.
For each test problem the average amount of fitness evaluations n̄e required
for each algorithm to reach THR has been computed. Subsequently, the Q-
test (Q stands for Quality) described in [12] has been applied. For each test
problem and each algorithm, the Q measure is computed as Q = n̄e

R where
the robustness R is the percentage of successful runs. It is clear that for
each test problem the smallest value means the best performance in terms of
convergence speed. The value inf means that R = 0, i.e. the algorithm never
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reached the THR. Table 4 shows the Q values in 30 dimensions. The best
results are highlighted in bold face.

Figures 8 show the average performance trend (over 30 independent runs)
of the six algorithms under analysis over some of the test problems listed in
Table 1.

It can be observed that the FDSADE fails in detecting the optimum, with
respect to the others, only in the case of the Dropwave and Whitley functions.
In all other cases the FDSADE displays a high performance; the proposed
algorithm is either competitive with another algorithm of the benchmark (see
e.g., Rotated Griewangk, Michalewicz, Pathological, and Rotated Rastrigin)
or has extraordinarily high performance as shown with Rotated Michalewicz,
Schwefel, and Rotated Schwefel. Performance in terms of convergence speed
is also competitive with the other algorithms in most of the cases analyzed.

Numerical results in Table 4 show that although the FDSADE does not al-
ways have the best performance in terms of convergence velocity, it is in most
cases very competitive with the algorithm that has the best performance. In
other words, the other algorithms seem to have a high convergence velocity
performance with some test problems and a poor performance with others.
On the contrary, the FDSADE demonstrates a performance close to the best
in almost all test problems. In addition, it must be remarked that the FD-
SADE does not reach THR in only two cases (Dropwave and Pathological

Table 4 Results of the Q-test

Test Problem DE SACPDE DEahcSPX DEGL SaNSDE FDSADE

Ackley 6.0e+01 2.8e+01 6.4e+01 2.3e+01 3.4e+01 3.4e+01

Alpine 2.3e+02 5.0e+01 2.4e+02 4.1e+01 2.7e+01 6.4e+01

Camelback 2.5e+00 2.5e+00 1.5e+01 2.4e+00 1.6e+00 2.6e+00

De Jong 8.0e+00 5.3e+00 7.0e+00 1.6e+01 2.6e+01 6.7e+00

Dropwave inf inf inf 1.3e+02 inf inf

Easom 1.7e+01 9.8e+00 8.6e+01 1.5e+01 5.9e+00 1.4e+01

Griewangk 3.5e+01 1.6e+01 1.4e+01 1.3e+01 1.7e+01 2.0e+01

Rotated Griewangk 3.4e+01 1.6e+01 1.4e+01 1.3e+01 1.5e+01 2.0e+01

Michalewicz 3.1e+02 1.1e+02 inf inf inf 1.4e+02

Rotated Michalewicz inf 2.1e+03 inf inf inf 5.2e+02

Pathological inf inf inf 4.0e-01 4.0e-01 inf

Rastrigin 2.8e+02 5.7e+01 inf inf inf 6.5e+01

Rotated Rastrigin inf 2.5e+02 inf inf 5.1e+01 2.3e+02

Tirronen inf 7.4e+02 inf 6.4e+03 1.7e+02 4.9e+02

Rosenbrock 5.3e+01 2.6e+01 9.6e+01 1.9e+01 2.8e+01 3.1e+01

Schwefel 2.2e+02 1.3e+02 inf 1.8e+03 inf 8.2e+01

Rotated Schwefel inf inf inf inf inf 2.5e+02

Sum of powers 2.1e+01 7.0e+00 5.2e+00 4.4e+00 4.2e+00 7.3e+00

Whitely 2.7e+01 8.1e+00 5.7e+00 3.6e+00 3.2e+00 9.7e+00

Zakharov 1.2e+00 5.7e+00 1.5e+01 4.0e-01 4.0e-01 1.5e+00
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(a)

(b)

(c)

Fig. 8 Algorithmic performance over selected test problems
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(d)

(e)

(f)

Fig. 8 (continued)
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(g)

(h)

(i)

Fig. 8 (continued)
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functions); in all other cases it reaches the threshold in at least one case. This
result confirms that the FDSADE has a robust behavior over a set of various
test problems. It can be seen that, in this sense, the FDSADE is the best
algorithm (it is the algorithm with the fewest number of inf values) among
the six under examination.

5.1 Numerical Results for (Relatively) Large Scale
Problems

The previous six algorithms have also been run in order to minimize ten of
the functions in Table 1 for n = 100. The algorithms have been run with
the same parameter setting mentioned above except population size. The
FDSADE has been run with Sf

pop = 30, Sv
pop = 120 while all the other

algorithms with Spop = 100. For each algorithm, 30 independent runs have
been performed for 50000 fitness evaluations. Table 5 shows the average final
results (after 50000 fitness evaluation) and the related standard deviation,
calculated over the 30 available runs.

It must be observed that the algorithmic performance is dramatically dif-
ferent with respect to the numerical results in 30 dimensions. An important
fact is that, in accordance with the No Free Lunch Theorem [40], the al-
gorithmic performance in high dimensions is very problem-dependant, i.e.,
none of the algorithms examined seems to be, in general, clearly superior to
the others. The performance comparison reported here is valid only for the
parameter settings used in this chapter. The effect of variation of parameters
has not been investigated.

However, it can be noticed that the DE and SACPDE never have the
best performance in terms of quality of the final solution. Performance of the
DEGL is not so promising as the one displayed in the low dimensional case.
On the contrary, the SaNSDE seems to be rather promising for large scale
optimization problems. The FDSADE is competitive with the SaNSDE and
reaches quite good results in all the test problems considered.

Table 6 shows results of the Student’s t-test in 100 dimensions.
The t-test in Table 6 shows that the FDSADE is outperformed nine times

and has the same performance in only two cases out of the fifty pairwise
comparisons considered. Thus, the FDSADE is outperformed in only 18% of
the cases and outperforms the other algorithms in 78% of the cases. Finally,
it must be observed that in 100 dimensions, the FDSADE either obtained
results similar to the SACPDE or succeeded in improving upon the SACPDE
performance, thus confirming the efficiency of the approach proposed.

Table 7 shows the Q-test results for the 100 dimension case.
Regarding convergence speed and robustness of the algorithms, since in

the high dimensional space the various algorithms tend to reach very different
values, for each test problem that algorithm which reaches final values with
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Table 6 Results of the Student’s t-test in 100 dimensions

TestProblem DE SACPDE DEahcSPX DEGL SaNSDE

Rotated alpine + + − − +

Dropwave + + − − +

Michalewicz + + + + −
Rotated Michalewicz + + + + −
Rastrigin + = + + +

Rotated Rastrigin + + + + −
Rosenbrock + + − − +

Schwefel + + + + +

Rotated Schwefel + + + + −
Zakharov + = + + +

Table 7 Results of the Q-test in 100 dimensions

Test Problem DE SACPDE DEahcSPX DEGL SaNSDE FDSADE

Rotated alpine inf 4.4e+02 3.1e+02 5.1e+02 inf 7.1e+02

Dropwave inf inf 4.6e+03 inf inf inf

Michalewicz inf inf inf inf 4.2e+02 inf

Rotated Michalewicz inf inf inf inf 1.0e+03 inf

Rastrigin inf 3.4e+02 inf inf inf 3.4e+02

Rotated Rastrigin inf 2.4e+03 inf inf 3.3e+02 1.4e+03

Rosenbrock inf 1.9e+02 1.4e+02 1.2e+02 1.7e+02 1.9e+02

Schwefel inf 1.4e+04 inf inf inf 3.9e+02

Rotated Schwefel inf inf inf inf 3.3e+02 inf

Zakharov 5.1e+00 5.5e+01 2.9e+01 3.6e+00 2.0e+00 5.2e+00

a best performance is usually the one which has the best performance in terms
of Q measures. In this sense, numerical results in Table 7 confirm the findings
in Table 5 and Table 6, i.e., the SaNSDE has very good performance in highly
dimensional problems and the FDSADE is, in any case, quite competitive.
On the other hand, behavior of the algorithms in terms of robustness is
worthwhile commenting on. As shown in Table 7, the DE succeeds in reaching
a competitive value (reaches the threshold value) for only one test problem,
the DEGL in three cases, the DEahcSPX in four cases, SACPDE, SaNSDE
and FDSADE in six cases out of ten test problems considered. This fact means
there is not an algorithm which has an extraordinarily high performance
in terms of robustness among the ones considered. However the FDSADE
maintains the good robustness performance of the SACPDE and tends to
improve upon this in late stages of the optimization process.

For the sake of completeness, some performance trends are shown in Fig-
ures 9.
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(a)

(b)

(c)

Fig. 9 Algorithmic performance over selected test problems in 100 dimensions
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(d)

(e)

Fig. 9 (continued)

6 Conclusion

This chapter proposes integration of fitness diversity logic within the DE
frameworks in order to self-adaptively affect the control parameter update
and adaptively perform a dynamic population sizing. This integration is pur-
sued by the definition of a novel index that measures the fitness diversity of
a DE population and a novel algorithmic implementation.

The proposed algorithm has been tested on a set of twenty test problems
and compared with a standard DE and four recently proposed DE based
algorithms. Numerical results show that the proposed algorithm is very effi-
cient in detecting solutions having high performance and that it has a robust
behavior over a various set of test problems. The performance in convergence
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speed is also competitive with those algorithms that represent the state-of-
the-art in DE based implementation.

The fitness diversity logic is thus very efficient at monitoring the state of
the algorithm during the optimization process and dynamically foreseeing
algorithmic necessities. It is important to remark that the fitness diversity
(self-)adaptation must aim at coordinating the exporative/exploitative pres-
sure by increasing exploration when the diversity is low and exploitation when
diversity is high. This mechanism tends to prevent the undesired effects of
premature convergence and stagnation, therefore efficiently performing the
optimization towards high quality solutions (as numerical results confirm).
This aim is, in this chapter, pursued by frequently updating the scale factor
and crossover rate and enlarging the population size in low diversity condi-
tions; these operations give the algorithm a better chance of testing unex-
plored areas of the decision space and of, hopefully, detecting new promising
solutions. Conversely, in high diversity conditions the population is shrunk
and the control parameters kept constant; in this way the available genotypes
and potential search directions (e.g., by means of the scale factor values) are
exploited until the diversity decreases.

A remaining issue is that a proper fitness diversity index must be designed
on the basis of the algorithmic structure (i.e., variation operators and se-
lection mechanisms). The index proposed in this chapter seems to be very
efficient in monitoring the state of the population of a DE, regardless of the
optimization problem under examination. Therefore, we suggest its employ-
ment for designing (self-)adaptation within a DE framework.
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Central Pattern Generators: Optimisation and
Application

Leena N. Patel

Abstract. This chapter addresses optimisation of a class of biological neural net-
works, called Central Pattern Generators (CPGs), with a view to providing
autonomous, reactive control to otherwise non-adaptive operators. CPGs are self-
contained neural circuits which govern rhythmic motor activities such as locomo-
tion, breathing and digestion. Neurons in this system interact to produce rhythmic
oscillations without requiring sensory or central input. These phasic firing patterns
can be adaptively adjusted, through neuromodulation, and in response to fluctua-
tions in the environment. Thus, CPGs provide autonomous, self-modulatory control
and are an ideal candidate to evolve and utilise for practical engineering solutions.
An empirical study is described which generates CPG controllers with a wider range
of operation than their counterparts. This work is precursory to producing con-
trollers for marine energy devices with similar locomotive properties. Neural circuits
are evolved using genetic algorithm techniques. The lamprey CPG, responsible for
swimming movements, forms the basis of evolution, and is optimised to operate
with a wider range of frequencies and speeds. Results demonstrate that simpler ver-
sions of the CPG network can be generated, whilst outperforming the swimming
capabilities of the original network [34].

1 Introduction

Rhythmic motor behaviour plays a major role in any living organism, producing
actions such as the regular gait of walking, or the slithering snake’s body as it
bends, alternating from side-to-side, or even the coordinated limb movement of an
eight-legged spider. These rhythmic patterns are also evident in non-locomotive be-
haviours such as swallowing, respiration and digestion.
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The continuous, repetitive and voluntary nature of this class of movement dis-
tinguishes it from others, such as involuntary (and instant) reflexes (blinking, pupil
dilation), stimulus-level responses (orgasm, sneezing) which are triggered once a
threshold is reached and direct voluntary control (such as stretching, grasping).

The actuation of rhythmic movements relies on a central pattern generator or
CPG, which is a specialised circuit, characterised by its generation of oscillatory or
alternating motor patterns. It produces these regular patterns of output endogenously
(i.e. without rhythmic sensory or central input). With in vivo preparations, this pat-
tern of activity performs what is termed fictive locomotion, where the motorneurons
fire in such a way that if they were still attached to their muscles, movements would
occur.

This chapter describes the underlying structure, behaviour and performance of
CPG architectures in biology. It provides several examples of these neural circuits
and the functions they drive. Artificial representations of CPGs and their areas of
application are then covered. A specific model is presented in more detail with an
empirical study of the lamprey’s spinal CPG. This is followed by a discussion on
how this network is regenerated using evolutionary techniques, to increase the range
in which the simulated lamprey swims. Based on the theory of natural evolution, a
genetic algorithm is used to evolve alternative CPG configurations. Measures of
fitness which steer the evolutionary process are constructed to reduce connectivity
and produce efficient swimmers which can operate with a larger range of frequen-
cies and speeds. This forms an initial step in our overall aim to develop bio-inspired
reactive controllers for a very challenging engineering task in the area of marine
energy where a wider range of operation is essential. Network evolution to drive re-
active control of wave energy converters is discussed in the final part of this chapter.

2 Central Pattern Generators and Neuromodulation

A CPG is a self-contained network where populations of neurons interact to produce
phasic (periodic on and off cycles) temporal and spatial activity. CPGs produce
these rhythmic motor patterns, even in isolation from motor and sensory feedback.
This characteristic was recognised as early as 1911 by Graham-Brown, where basic
stepping was produced in the absence of descending or afferent inputs to the isolated
spinal cord of a cat [18]. This important concept and discovery of the CPG has
shaped and driven research on the neuronal substrates of invertebrate and vertebrate
motor systems, including observations on humans with spinal cord injuries [8].

CPGs vary in anatomy and physiology, but in general, two conditions classify
this rhythmic generator: 1) that two or more processes interact, passing activity be-
tween them through sequential increase or decrease of activity, 2) the system returns
repeatedly to its starting condition through this interaction. A self-sustaining pattern
of behaviour is thus produced. These enable precise timings of motor commands
which actuate muscles or processes that operate in a synchronised manner (i.e. con-
tracting or stretching, off or on). The following are examples of functions which
operate with rhythmic patterns of activity and their underlying CPG networks.
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2.1 Locomotion

In the analysis and artificial reproduction of locomotive control, CPG research plays
a major role [1, 38]. The primary function of locomotor-CPG networks is to provide
oscillatory motor commands with precise timings to coordinate efficient movement
of related joints and muscles. The first modern evidence of such a neural network
was produced by Wilson in 1961. He isolated the locust nervous system and demon-
strated that it produces rhythmic output resembling the insect’s flight patterns [47].
Since then, evidence has arisen for the presence of intra-spinal CPG networks which
drive and coordinate locomotion in many animals. For instance, Sqalli-Houssaini et.
al induce rhythmic locomotor-like activity by adding an excitatory amino acid re-
ceptor agonist (N-methyl-D,L-aspartate, NMA) to in vitro spinal cord preparations
of neonatal rats. They demonstrate that even at birth, oscillatory patterns of activity
are produced by these spinal neural networks with connections already established
between peripheral sensory afferents and the CPG [45]. There is also evidence of
this type of network in frog embryos [39]. What is interesting is that from a very
early stage of development CPG networks are already functioning, interactive units
of control.

Even though, the actual architecture of the CPG network is seldom observable in
vivo, important aspects of their structure can be inferred by stimulation and obser-
vation of reactionary components. Many studies have been conducted with decer-
ebrate cats (e.g. [18, 43]), all demonstrating the same principle rhythmic patterns
of behaviour and control of different gaits, such as walking, trotting and galloping
through altered levels of stimulation [43]. Studies have even found the presence
of a human locomotive CPG, which is extremely robust and highly adaptable. The
clearest evidence comes from Calancie et al. who witnessed step-like movements
in a male subject who suffered a cervical spinal cord injury. Initially, he suffered
total paralysis below the neck, but eventually regained some movement in his lower
limbs. Still unable to support his own weight, when the subject lay down with ex-
tended hips, his lower extremities underwent step-like movements. The movements
(i) involved alternating flexion and extension of his hips, knees, and ankles; (ii) were
smooth and rhythmic; (iii) were forceful enough that the subject soon became un-
comfortable due to excessive muscle ’tightness’ and an elevated body temperature;
and (iv) could not be stopped by voluntary effort [8].

A detailed example of a locomotor network is given in section 5 as it forms the
basis of our wider research. This system is the spinal neural network of the lamprey,
responsible for rhythmic swimming patterns by alternating motion from one side of
its body to the other.

2.2 Respiration Pattern Generators

Breathing is a non-locomotive function governed by a CPG in many species. The
amphibian brainstem/spinal cord preparation has been widely used to examine the
mechanisms of respiratory rhythm generation (e.g. [46, 5]. It is a good example of
a respiratory CPG, especially as there is evidence to suggest that the mechanisms



238 L.N. Patel

which regulate rhythmogenesis and respiratory motor output in amphibians, share
many common features with mammals [15].

Larval amphibians accomplish gas exchange mainly through rhythmic ventilation
of the gills, but as they develop into mature frogs, lung ventilation assumes a greater
role in gas exchange [7]. This is a most interesting neural network as it performs a
transitional function, from an aquatic to a terrestrial respiratory system, involving a
shift from gill to lung ventilation [7, 46, 15]. Worthwhile comparisons can be made
because both the tadpole and adult frog can be studied using identical experimental
techniques at all stages of development.

A study by Broch, et al. isolated brainstem preparations of larval (tadpole) and
adult bullfrogs. Respiratory motor output from each CPG, measured as neural ac-
tivity from cranial nerve roots, was associated with fictive gill ventilation and lung
ventilation in the tadpole and with only lung ventilation in the adult [5].

With controlled conditions, typical neural activity is recorded from tadpole and
adult preparations (shown in fig.1 (reproduced from [5]). Bursts of activity are
clearly distinguishable between the two generations. Tadpole preparations demon-
strate fictive gill bursts of low amplitude and high frequency while the bullfrog

Fig. 1 Representative recordings from [5] of tadpole and bullfrog (Rana catesbeiana) respi-
ratory brainstem preparations. Raw and integrated (

∫
) gill bursts and a lung burst are shown

in the first two neural recordings and lung bursts of activity in the lower two.
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tests present single (episodic) neural bursts of activity (high amplitude, low fre-
quency) indicative of lung-related activity (see [46, 37]). Their results suggest that
both mechanisms are dependent upon conventional chloride-mediated synaptic in-
hibition and that there may be a developmental change in the fundamental process
driving lung ventilation in amphibians [5].

2.3 Heartbeat CPGs

Network-based rhythmicity is shown clearly by the leech heartbeat CPG. Two tubes
pump blood through the leech’s circulatory system, each alternatively constricting
and relaxing. The CPG consists of eight pairs of interneurons. Of these, five pairs
regulate the timing and rhythm of the heartbeat; they can reset and entrain the sys-
tem, while the remaining pairs of interneurons coordinate motorneuron activity.

In fig. 2b, each heart neuron (HN) is indexed according to the extent along which
its soma lies on the side of the leech’s body. For instance, HN(L,2) is the neuron
on the left hand side at segment two along the body of the leech. Notice that burst
activity of neurons HN(R,4) and HN(L,4) (fig. 2b) fire out of phase with each other.

Fig. 2 a) The CPG network modulating heartbeat regulation in the leech (reproduced from
[27]). Open circles represent cell bodies, open squares are sites of spike initiation and small
filled circles represent inhibitory synapses. b) Neural recordings from some interneurons
(HN(L,2) from [27] and HN(L,4), HN(R,4) from [21] c) the intact medicinal leech, hirudo
medicinalis.
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This is the kind of behaviour that produces antiphase patterns between two bilat-
eral functions (inhaling or exhaling). Bursts of activity of each heart neuron also
demonstrate the typical active and inactive cycles, which govern rhythmic muscle
movement.

2.4 Swallowing Pattern Generators

A final example is the CPG responsible for swallowing patterns of activity. Swal-
lowing involves the coordinated contraction of more than 25 pairs of muscles in the
larynx, oesophagus and oropharynx. This complex interaction depends on a CPG
located in the medulla oblongata, which involves several brain stem motor nuclei
and two main groups of interneurons: a dorsal swallowing group (DSG) and a ven-
tral swallowing group (VSG). Neurons in the DSG generate the swallowing pattern,
while those in the VSG distribute commands to the various motorneuronal pools
[26]. The swallowing CPG is an interesting one because of its flexibility. Some of
its neurons can belong to several CPGs (e.g. the swallowing and respiratory control
networks) and thus perform multifunctional roles [10].

2.5 Neuromodulation

Organisms must adapt their behaviour to meet the needs of their internal and ex-
ternal environments. As well as governing centrally-generated base rhythms, CPGs
can be modulated to produce several different physical actions depending on the
immediate needs of the animal. This family of different motor outputs results from
internal and external innervation. Internally, neurotransmitters act on the CPG sys-
tem to produce appropriate changes in its activity. Evidence suggests that related,
but distinct functions can be performed dependant upon the level and type of neuro-
transmitter released. For example, in a type of sea slug called the Tritonia diomedea
(fig. 3), a CPG modulates escape swimming, reflexive withdrawal and crawling
whereby one function is unaffected by neuromodulation of another. Reflexive with-
drawal is actuated in response to weak sensory input, escape swimming with strong
sensory input [35] and crawling occurs after escape swimming has ceased. Dorsal
swim interneurons (DSIs) within the pattern generator release serotonin to convert
to swim mode, while the application of serotonergic antagonists prevents the swim
pattern.

The ability to rapidly convert from one mode to another is a fascinating mech-
anism of CPG networks. Feedback from the environment cause chemical reactions
which in turn enable the neural system to respond and change its mode or rate of
behaviour. This type of self-regulatory control has gained much interest in the Arti-
ficial Intelligence community, particular in the area of robotics where autonomy is
crucial for developing responsive systems.
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3 Artificial Central Pattern Generators

Although CPGs are generally discussed in relation to biological entities, they can
also be replicated artificially for robotic applications [36, 1, 38]. The only require-
ment is that they produce continuous rhythms of behaviour after an initial stimulus.
Examples of artificial neural networks (ANNs) based on CPGs include biophysi-
cal models, connectionist models and systems of coupled oscillators. Biophysical
models are detailed depictions incorporating chemical properties of individual neu-
rons in the system such as ion pumps and channels (e.g. [20]). They tend to closely
resemble actual biological networks. Connectionist models comprise networks of
simplified neuron units (e.g. [12]). These networks demonstrate the typical activity
of the system using less realistic models of neurons. A detailed example is pro-
vided in section 5 where Ekeberg’s connectionist network of the lamprey CPG is
detailed. These representations demonstrate that complicated neuronal mechanisms
are not necessary to produce oscillatory patterns and that modelling connectivity
itself is sufficient. Finally, at the most abstract level, coupled oscillator networks

Fig. 3 The sea slug Tritonia Diomedea escaping from a sea star, Pycnopodia. The top of the
diagram shows simultaneous intracellular electrophysiological recordings taken from an iso-
lated brain from the three central pattern generator neurons: C2, DSI and VSI. A body wall
nerve was stimulated at the arrow, producing oscillatory discharges with activity alternating
between DSI and VSI neuron groups. These result in dorsal and ventral body flexions indica-
tive of escape type swimming. The right hand side displays the CPG circuit from sensory
neurons to efferent output. Image reproduced from [28].
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model only the behaviour and dynamics of neural populations. They focus on prop-
erties of the entire network rather than just individual neurons or sets of neurons to
produce phase relations. For example, see [25] where coupled nonlinear oscillators
are used to construct a salamander-type robot with a CPG for its body coupled with
limb CPGs to enable swimming in water and a trotting gait on land.

Typically, ANNs, inspired by biology and its architecture, form the basis for au-
tonomous control in numerous applications [4, 42, 29]. Such technology is devel-
oped to provide a degree of intelligent control to an otherwise non-adaptive operator.
For example, sensory robots can navigate and explore inhospitable areas such as the
oceans [2] and space [14, 44]. Although they behave in a complex manner, they are
designed according to simple control principles from biological exemplars such as
stick insects and lobsters.

Unlike conventional approaches, these biomimetic systems are not reliant upon
error-prone and expensive reprogramming or fine-tuning by the operator. As a result,
the engineered solutions are often more efficient, productive and independent, whilst
less labour and time intensive.

Optimum performance of neural circuitry can be generated with evolutionary
techniques such as genetic algorithms. However, despite their ability to find supe-
rior solutions, evolutionary techniques are not frequently deployed to increase the
performance of CPGs (with the exception of [24, 32, 33]). Instead, mainly in the
robotics domain, they are used to computationally calculate parameters of neural
controllers for locomotion such as biped walking [41], hexapod limb coordination
[3] and anguiliform swimming [23] where manual, intelligent configuration is virtu-
ally impossible. The motivation to design better artificial intelligence (AI) systems
for real-world engineering problems underpins the work of this research, and ulti-
mately uses genetic algorithms to generate task-specific, optimised CPG controllers
for wave energy devices. As with most AI solutions, inspiration is provided by mod-
els of real biological networks and these form the basis of evolution.

4 Optimisation with Evolutionary Algorithms

Evolutionary algorithms (EAs) are search and optimisation techniques for finding
optimal solutions to a given problem. They include methods such as:

1. Particle Swarm Optimisation (PSO) [30] which is based on the flocking be-
haviour of birds (or swarming behaviour of bees).

2. Ant Colony Optimisation (ACO) [11] based on how ants leave pheromone trails
along the shortest route to food. These trails diffuse with time to enable newer,
shorter routes to dominate.

3. Estimation of Distribution Algorithms (EDAs) [31] which determine fit solutions
according to probabilities of where good solutions lie in the solution space.

4. Genetic Algorithms (GAs), based on survival of the fittest mechanisms in na-
ture where good parent solutions are paired to produce child solutions which are
tweaked and then evaluated.



Central Pattern Generators: Optimisation and Application 243

Each technique may differ but their overall aim is to find optimal solutions. Of
these methods, the genetic algorithm is the most commonly used.

Inspired by Darwin’s theory of natural selection and genetics, a Genetic Algo-
rithm (GA) [16, 17, 13] computationally encodes candidate solutions as chromo-
somes, within which genes represent evolvable elements. The search is directed
towards better solutions by the careful construction of an evaluation function. In-
dividuals that score well are more likely to survive and be chosen for the basis of
subsequent generations.

Evolution typically starts with a randomly generated population of individuals,
covering the entire solution space (although sometimes solutions can be ”seeded”).
It cycles through several generations, evaluating the fitness of each individual in the
population. Three operations are applied each generation, which are selection, vari-
ation and elimination. Selection involves choosing pairs of parent chromosomes,
based on their fitness ranking. Generally, fitter individuals have a greater chance
of being selected depending on the level of elitism adopted. Varying some of the
genes of some chosen parents is the next stage in the GA process. This results in
new child candidate solutions which are evaluated in the subsequent generation. It
is considered that children will possess good quality genes from their parents and
with some tweaking, may result in better fitness. The level of genetic modification
and number of cells to vary can be stipulated with probability ratios. Finally, elimi-
nation involves rejecting the worst solutions, being replaced by higher ranked new
candidates to maintain a consistent overall population size.

If well constructed, this evolutionary approach is resistant to problems of local
minima that beset other algorithms. Ideally, a good combination of exploration and
honing is required. At the appropriate level of search, the GA should converge to find
optimal solutions. Furthermore, it is a common and efficient choice for optimisation
and exploring the space spanned by a model. For these reasons, this tool is used to
re-evolve alternative, wider functioning and more efficient swimming CPGs based
on an invertebrate called the lamprey.

5 Modelling the Lamprey’s CPG Network, Musculature and
Environment

The lamprey (shown in fig. 4a) is an eel-like fish which propels itself by propa-
gating an undulatory wave from its head to its tail. A CPG network (schematically
modelled in fig. 4b), along its spine, governs this swimming module by causing
rhythmic activity of motorneurons. These actuate muscles which cause motion to
alternate between the two sides of the fish’s body.

This vertebrate’s CPG has been mapped thoroughly after careful analysis and
innervation of reactionary components [19] and modelled artificially [12]. This has
been possible because the intact spinal cord can survive in vitro for several days after
being removed, because it is a relatively simple network, with few neurons, and it
can be stimulated to produce the fictive swimming (without tonic input) motion
indicative of a CPG.
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a)

b)

Fig. 4 a) the lamprey, a vertebrate belonging to the family Petromyzontiformes; b) the con-
nectionist model of the lamprey’s spinal CPG. Excitatory connections are shown as closed
circles and inhibitory input as open forks.

Several copies of an oscillatory neural circuit (one is highlighted amongst the four
shown in fig. 4b) are interconnected along the fish’s spine. On each side of a single
network there are four types of neuron governing rhythmic patterns as follows:

1. On the dominantly active side, the excitatory interneuron (EIN) group excites
neurons on its side (ipsilaterally). Meanwhile, contralateral inhibitory interneu-
rons (CINs) inhibit all cells on the opposite side (contralaterally). This results in
the ipsilateral motorneuron (MN) activating the muscles.

2. After a short delay, a burst terminating mechanism causes control to switch sides.
Burst termination is caused by the lateral inhibitory interneurons (LINs) becom-
ing active later in the cycle, which suppresses the active CIN, relinquishing con-
trol from one side and building it up on the other.
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This ensures that only one side is active at a time, with periodic transfer of control
between sides. This behaviour continues while the segment receives base excitation
from the brainstem.

Tonic (i.e. non-oscillating) signals (global excitation) from the brainstem (or from
neurotransmitters when in vitro) regulate the frequency of oscillation. This principle
of control is reported in [43], where different levels of stimulation on a decerebrate
cat’s brainstem results in walking, trotting or galloping. In the lamprey, oscillation
frequency and speed of swimming can be adjusted by adding neurotransmitter ag-
onists such as amino acids [9] or L-Dopa [40]. A further tonic input, referred to
as extra excitation, is applied to the CPG’s headmost segments to invoke a phase
lag along the length of the lamprey’s body and this causes forward motion. This
is achieved in vitro by applying a greater concentration of neurotransmitter to the
rostral section of the network. For clarity, these tonic inputs are not shown in fig. 4b.

Finally, edge cells (ECs) seen in the schematic (fig. 4b), are external sensors,
which inhibit contrateral activity and excite ipsilateral activity. They provide feed-
back to the circuit from external forces, and invoke adjustments in activity, which
maintain straight line swimming.

The lamprey’s CPG network, described here, can be reduced to a simplified con-
nectionist model. Neurons are non-spiking and belong to a population of similarly
functioning nerve cells. The CPG receives delayed excitatory and inhibitory input
and its output is calculated from first order differential equations:

ξ̇+ =
1

τD
( ∑

iεΨ+

uiwi − ξ+), (1)

ξ̇− =
1

τD
( ∑

iεΨ−
uiwi − ξ−), (2)

ϑ̇ =
1
τA

(u−ϑ), (3)

u = max(0,1− exp{(Θ − ξ+)Γ }− ξ−− μϑ) (4)

In this set of equations, output u represents the mean firing frequency of each
neuron population. A time delay (τD) is applied to summed excitatory (ξ+) and
inhibitory (ξ−) inputs,Ψ+ and Ψ− represent groups of presynaptic inputs (excitatory
and inhibitory respectively) and wi is the weight associated with each input (eqns. 1-
2). The term ui denotes inputs received from neurons within the single network and
from neurons of connected segments, whereas u refers to output of a single neuron.
A transfer function (eqn. 4) provides saturation for high levels of excitatory input. A
leak is included as delayed negative feedback (eqn. 3) and is subject to a time delay
(τA). The parameters threshold (Θ ), gain (Γ ) and adaptation rate (μ) in eqn. 4 are
tuned to match observed characteristics in some real neurons (see [12]).

Assymmetric initialisation of these equations leads to out-of-phase bursts of ac-
tivity and involves setting ξ+(0)=1, ξ−(0)=0 for all left neurons and ξ+(0)=0,
ξ−(0)=0 for all right neurons. This enables calculation of the initial output value(s)
(u) which are used in subsequent differentiations. Weights, neural parameters and
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time delay values of the biological model are shown in table 2, section 6.3, originat-
ing from [12].

Individual CPG networks are coupled to their neighbours via interneural connec-
tions towards the head (rostrally) and tail (caudally). These are depicted as vertical
dotted lines in fig. 4b. Interconnections are important as they coordinate longitudinal
movement by generating a time delay between successive CPG units. Phase lags are
1% of the period of oscillation and so a single wavelength can be maintained along
the length of the body independent of swimming velocity.

Details of intersegmental connectivity in the real lamprey remain unknown, thus,
in the original model Ekeberg [12] applied symmetrical connections in both direc-
tions. He achieves this by dividing each synaptic weight value by the number of
CPG units it is linked to. Since neurons at each end of the complete CPG have
fewer afferent connections, their synaptic weights are calibrated accordingly.

A complete simulated CPG interacts with a model of its body in water to demon-
strate the expected anguiliform swimming behaviour [12, 24, 34]. The mechanical
body comprises ten rigid links, each 30mm long, and corresponding to ten neural
segments. Their movement is constrained, forcing them to stay connected, by joints
with one degree of freedom. Width (generally 30mm) and mass of the lamprey de-
crease at the caudal end (i.e. the tail narrows). As in Ijspeert’s model [24], mass and
inertia of each link is calculated by assuming that the density of the lamprey is con-
stant and equal to the surrounding water. Muscles connecting each link are modelled
as a combination of springs and dampers. The forces acting upon each link are:

1. Water forces apply both horizontal and vertical pressure to the body. These de-
pend on the speed of the body relative to the water and in the model they can be
reasonably approximated by considering the water as stationary and applying a
3D water force vector on each link.

2. Inner forces exert pressure from neighbouring units. These joint constraints en-
sure links remain connected together at all times.

3. Muscle torque forces prevent links from bending in both directions at once.
A linear relationship can be considered to exist between motorneuron activity,
these forces and resulting muscular spring constants. Torque forces function as
feedback from the neural CPG to the mechanical model. This feedback loop is
completed with stretch sensitive edge cells providing information about the local
curvature of muscles (assumed to be equal to the length of the body) to the CPG.

The entire lamprey swimming model was first defined in [12], and refined in
[32, 33, 34] to more realistically fit physical data. It characterises the biological
lamprey’s swimming network with some accuracy [12], provides a tool for further
exploration of network connectivity and activity (e.g. [34]) and offers potential for
developing systems for more complex control. Achieving this type of unmanaged,
responsive control in unpredictable conditions is a major challenge in engineering.
Such problems can be resolved through CPG architecture coupled with the power
and speed of evolutionary computing. The flexibility of the CPG network parameters
and swimming capabilities are explored further with the aim to develop a solution
in the area of marine energy (discussed in section 7). An initial goal towards this
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solution is to develop CPGs capable of swimming in wider operative ranges. To
achieve this, both the neural CPG and mechanical model of the network interacting
in water are modelled (as described in section 5 ) and then further enhanced with
genetic algorithms.

6 SuperLamprey Controllers: Optimised to Increase Swim
Ranges

In order to remodel the circuitry for a new and complex control task, the flexibility
of the lamprey CPG requires further exploration. Detailed analyses of candidate bio-
logical neural systems are essential and must explore whether nature’s evolved con-
figurations are unique, whether simpler versions perform effectively, and whether
their operation range can be optimised for similar mechanical engineering tasks.

Two GA processes are implemented to enhance the capabilities of the simulated
lamprey CPG: the first evolves synaptic weights and neural parameters of an inde-
pendent neural module and the second generates interconnections between the best
solutions (of the first phase) to produce complete multi-segment controllers. The
goal of the first GA is to generate a single rhythmic oscillator [32] which operates
over a wider range and is less complex, the latter property is important for eventual
silicon reproduction. The second GA takes improved CPG units and determines lon-
gitudinal connections between neighbouring segments, with optimum performance
signified by their capacity to control swimming at different speeds, oscillation fre-
quencies and phase lags between segments.

The decision to implement the evolutionary process in two stages is for the fol-
lowing reasons: (1) computational efficiency - invoking the GA in one process
would result in the assessment of far fewer candidates yet over a much longer period,
wasting valuable resources, (2) to avoid lengthy testing of linked controllers which
have already failed to oscillate in isolation, (3) reducing the problem into subgoals
is a widely used and accepted method of developing plausible solutions, (4) each
network component (single-segment oscillators) must function, even in isolation
[12, 32, 33] and our approach guarantees this. The condition of isolated segments
operating independently is also imperative for our engineering solution if continued
operation is to be maintained even when part of the system fails.

A random initial population is generated for each experiment of an evolution-
ary process. They loop through the standard operations of selection, variation and
rejection, each generation. Selection involves a fixed number of parents being cho-
sen according to rankbased probability. An elitist procedure is adopted, selecting
the fittest individuals of each generation to create offspring. Two-point crossover,
mutation and pruning (for isolated CPGs) are applied to vary candidates. Finally,
the worst solutions (denoted by their fitness ranking) are rejected, being replaced
by higher ranked new solutions. Parameters of both GA procedures are outlined in
table 1.

Probability rates and ranges in table 1 describe the degree to which chromosomes
are altered. For example, crossover (where substrings of paired parent chromosomes
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Table 1 Genetic evolution parameters for generating single rhythmic controller solutions and
complete, multilinked swim modules

Unitary CPG (GA1) Multilinked CPG (GA2)
population size: 100 60
number of children: 30 18
crossover probability: 0.5 0.5
mutation probability: 0.4 0.4
mutation range 0.2 0.2
pruning probability 0.1 -
pruning range 1.0 -
number of generations 500 50

are swapped) occurs with 50% chance. Pruning is a non-standard GA procedure,
where every connection is considered independently for removal (setting it to 0)
with a probability of 10%. This is to explore solutions with fewer connections. Of
course, their calculated fitness determines the success of this arbitrary removal of
connections on a solution-by-solution basis. In addition to this arbitrary pruning
through the lifetime of the GA, weak connections of the final population which do
not affect neural activity are eliminated through a final prune. This is applied by
setting any weight below 0.1 to 0, provided that doing so does not diminish this
individual’s fitness value. If the pruned candidate is inferior, the original value is
reinstated. This procedure is repeated with decrements of 0.02 until all ineffectual
or weak connections are eliminated.

The properties in table 1 are held consistent with [24], to ensure confounds are
not introduced and because they generate satisfactory results within a reasonable
process time. The following sections outline the distinct characteristics of each GA,
including their genetic composition and fitness criteria.

6.1 GA1 - Evolving Independent CPG Oscillators

The primary GA optimises independent lamprey CPGs, seeking solutions with im-
proved performance ranges and low-level system complexity. Ekeberg’s artificial
network [12] featured hand-tuned network values, developed through measurement,
trial and error. Ijspeert [24] used a genetic algorithm to evolve synaptic inputs. In my
work [34], these are generated together with neuron-specific parameters (threshold,
gain and adaptation rate) that describe the dynamics of the model neurons, explor-
ing their diversity, while testing the true flexibility of the modelled CPG. However,
the functional form and circuit structure of Ekeberg’s original model is maintained
to ensure consistency with the underlying biology.

A real value GA is used, comprising decimal numbers rather than traditional bi-
nary digits. Individual solutions are encoded as fixed length strings of 43 genes.
Each gene corresponds directly to one evolvable parameter of the neural configura-
tion as shown in fig. 5.
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Fig. 5 a) An example chromosome solution for the GA evolving a single oscillating network.
b) Table showing values corresponding to each evolved gene in the chromosome.

Fig. 5 visually depicts the structure of each solution chromosome with corre-
sponding gene values relating to weights within the CPG (shown in the table of fig.
5b). Each chromosome is a vector of values representing: synaptic connections from
EIN (E), CIN (C), LIN (L), Brain Stem Input, Threshold, Gain and Adaptation (as
labelled above the chromosome) to E, C, L, MN (labelled within the chromosome).
The symmetric nature of the network means that only half of the values require
coding into the chromosome. Note that the values in this particular example corre-
spond to Ekeberg’s original model. Finally, the sign (excitatory or inhibitory) of each
neuron group is contained in three chromosome units. These determine whether the
connection is excitatory or inhibitory. Motorneurons only connect to muscles and so
their outputs are not evolved. The single CPG unit GA guides solutions according
to a fitness function (detailed in [34]), designed to select candidates which favour
effective oscillatory behaviour. The following are the objectives incorporated into
this evaluation together with justification for their inclusion:

1. Frequency is controllable by simple tonic excitation from the brainstem. It should
increase monotonically with input levels. This is to enable variable control of
oscillation frequency which in turn varies extensor or flexor phases of muscles.

2. Oscillations must be regular and have only one peak of activity each period.
An imperative feature of CPGs is regular activity to ensure cyclic phases of on
and off states so that the muscle contracts once it has reached the extent of its
stretching phase. This makes this a necessary condition of new solutions.

3. Motorneuron activity must alternate between left and right sides of the CPG. Out-
of-phase activity is crucial for rhythmic swimming in the lamprey. This ensures
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only one side of each particular section of its body is active at any time. Again,
this is a necessary condition for CPG function.

4. Oscillators operating over a wider frequency range are highly favoured. In order
to demonstrate improved control, it was considered important to have controllers
which performed outside the limits of the biological model. This is also a goal
for our intended application in wave energy, where a wider operation bandwidth
will be required.

5. The biological frequency range must be included within the operating range of
the new solution. Although not essential for marine energy solutions, this was an
important aspect to enable a basis for comparison between the biological model
and newly evolved CPGs. The evolved solution should perform with wider con-
trol ranges than Ekeberg’s original solution.

6. Low connectivity is desirable. For converting any CPG solution into silicon, sim-
plicity in network configuration is of major importance. This would make the sys-
tem more robust, easier to implement and cheaper to manufacture and maintain.
Low connectivity is encouraged via a pruning operator (described in section 6).

6.2 GA2 - Evolving Linked Oscillators

As described in section 5, the lamprey comprises several interconnected oscilla-
tory segments. For the whole body to coordinate movements, oscillators need to be
linked to their immediate neighbours. Therefore, the function of this GA is to evolve
the extent of interlinking connections to coordinate efficient swimming. Still retain-
ing the basic architecture of Ekeberg’s model, intersegmental connections between
100 copies of a fixed segmental network are generated. The best segmental oscil-
lators of the previous evolutionary stage (section 6.1 and in [32]) are used and five
discrete evolutionary experiments invoked.

Candidate solutions are coded into integer-valued chromosomes, with genes de-
picting the extent of connections in rostral and caudal directions. Each chromosome
comprises 51 genes. Owing to Left-Right symmetry, A CPG’s 96 rostral/caudal in-
terconnects are coded as 48 of these. Each has a value between 1 and 12 to incor-
porate biological prototype values. The other three genes denote whether the inputs
are excitatory or inhibitory. These sign genes are preassigned according to the value
this connection held in the unitary oscillator and therefore not evolved.

The fitness function (detailed in [34]) rewards solutions based on their ability to
control swimming with wide operation bandwidths. These include large ranges of
speed, oscillation frequency and phase lags between segments. Stated as objective
criteria, multilinked controllers should:

1. be able to alter the oscillation frequency monotonically (with global excitation)
and wavelength of undulation (with extra excitation) independently,

2. generate stable oscillations within each CPG unit, with coordinated phase differ-
ences to enable travelling undulations of the body, and

3. be able to change the speed of swimming by altering the CPG’s oscillation fre-
quency or the wavelength of undulations [33].
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These are implemented to ensure efficient, smooth and linear control and to remain
within the scope of the biological mechanism for swim control. Also, in line with
the biological CPG, emphasis is placed on controllers which invoke swimming with
a wavelength corresponding to the length of the fish’s body (i.e. phase lag of 1% per
segment). Resulting CPG controllers from both evolutionary processes are described
in the following section.

6.3 Results of Single- and Multi-Segment GA Phases

Neural weights and parameters of an independent CPG module are evolved as a
first-phase genetic algorithm (GA). A second GA takes the best of these solutions
and evolves interconnects between neighbouring segments.

Fifty percent (20 experiments) of the first process generate improved oscillators
than in [12, 24]. At the second GA stage, five of the best are chosen and four of these
demonstrate wider swim ranges when interconnected as complete swim modules.
The decision to terminate processes at 500 and 50 generations, for each GA phase
respectively, is because most of the populations are stable by this point. Simulation
times for the second evolutionary algorithm are significantly greater and so extra
process time for little gain seemed unnecessary.

Most evolved solutions in our study demonstrate improved control. The statistics
and neural configuration of the best of these is compared (table 2) with the original
CPG prototype [12] (where all values were hand-tuned) and the best fixed parameter
controller of [24] (where neuron-specific parameters threshold, gain and adaptation
rate were hand-tuned values of [12]).

An interpretation of the results presented in table 2 is as follows:

Fitness - evolved CPG oscillators (of the first GA process) produce fitness values
of 0.15 to 0.8. Of these, 90% outperform Ekeberg’s prototype (fitness 0.11) and
30% out-evolve the fixed parameter (FP) networks (best of [24] is 0.31). Therefore,
generating both neural weights and neuron specific parameters proves crucial to the
development of high-performance networks.

Linking these via interconnections (the purpose of the second GA) also demon-
strates improved swimming performance, with the controller of our study receiving
a fitness value of 0.51 compared to 0.2 (biological model) and 0.16 (FP).

In one case, an improved CPG unit failed when it was interlinked to form a mul-
tisegment controller. This was due to poor independent control of oscillation fre-
quency and phase lag. This demonstrates the importance of the second phase GA;
and more generally that a good oscillator does not necessarily mean it will operate
well when cross-coupled.

It is worth noting that Ijspeert’s best segmental oscillator (shown in table 2) did
not perform as well as the biological prototype when coupled to its neighbours,
also confirmed by his results [24] and that another controller superceded it. How-
ever, this controller is still not as effective as the best lamprey CPG evolved in our
experiments.
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Table 2 Comparison of statistics and CPG configurations of the biological [12], fixed pa-
rameter [24] and evolved controller [34]. In column order, for each test, the table shows
the CPG and level of intra-CPG connectivity (Conn), resulting objective values (GA1 and
GA2), operative ranges of frequency, speed and phase lag, synaptic weights with the extent
of cross-coupling in square brackets, brainstem input (BS), and finally, evolved neural pa-
rameters of threshold (θ ), gain (Γ ) and adaptation rate (μ). Due to the symmetrical nature of
these controllers only half the inputs need to be shown. The complete weight set is derived
by substituting l (left) with r(right) and vice versa.

CPG FitVb Frqc Range (Hz) Synaptic Intra-CPG weights and Neural
and GA1, Spdd Range (m/s) Inter-CPG connection extent [rostral, caudal] Parameters

Conna GA2 Lag Range (%)
From: EINl CINl LINl EINr CINr LINr BS θ Γ μ
To:

bio 0.11, 1.74 - 5.56 EINl 0.4 - - - -2.0 - 2.0 -0.2 1.8 0.3
0.2 0.01 - 0.45 [2,2] [1,10]

26 0 - 1.165 CINl 3.0 - -1.0 - -2.0 - 7.0 0.5 1.0 0.3
[2,2] - [5,5] - [1,10] -

LINl 13.0 - - - -1.0 - 5.0 8.0 0.5 0
[5,5] [1,10]

MNl 1.0 - - - -2.0 - 5.0 0.1 0.3 0
[5,5] [5,5]

FP 0.31, 1.2 - 8.0 EINl -0.8 -3.8 - -0.9 -0.7 - 0.8 -0.2 1.8 0.3
0.16 0.06 - 0.41 [12,4] [12,10] [5,10] [1,10]

22 0.73 - 1.37 CINl - - - -3.5 -3.7 - 13.0 0.5 1.0 0.3
[2,2] [9,9]

LINl - - - - - - - 8.0 0.5 0

MNl -0.4 -3.2 - - - - 3.8 0.1 0.3 0
[9,2] [8,1] - - - -

Evo 0.8, 0.99 - 12.67 EINl - -4.6 - - - - 3.06 -1 0.7 0
0.51 -0.01 - 0.6 [3,4]

16 0 - 1.59 CINl 5.53 - - - -2.9 - -1.18 -1 0.48 0
[1,8] [10,1]

LINl - - - - - - -5.0 -1 0.7 0

MNl - -4.3 - - - - 10.8 -1 0.27 0
[8,6] - - - -

a Conn = Connection Density, b FitV = Fitness Value, c Frq = Frequency, d Spd = Speed.

Connection density - sparse connectivity is far more efficient computationally and
thus a very important consideration for silicon reproduction. This is especially the
case when there are several copies of that same unit (as with multilinked controllers).
Compared to the former models, the least densely connected CPG unit is produced
in our results (with 16 vs. 22 and 26 intra-connections).

Frequency range - the range of frequencies covered by the best evolved con-
troller is 0.99 - 12.67 Hz. This is substantially greater than the frequencies covered
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Fig. 6 Neuron behaviour of Ekeberg’s biological network [12] (top four graphs) compared
to our evolved controller [32] (bottom four graphs): part a) is the lowest oscillation level and
part b) the highest frequency, for each CPG network. Network operation is simulated for a
fixed duration of 3000ms (for clarity, oscillations for only 1500ms are shown in the charts),
with asymmetric initial conditions (all left neurons excited).

by the biological and FP networks (1.74 - 5.56 Hz and 1.2 - 8 Hz respectively).
This demonstrates over 100% of a performance increase over prior work where
key variables remained static. Frequency is modulated by varying the tonic input,
termed global excitation (as it is applied to the whole network). Lowest and highest
frequencies are displayed in fig. 6b comparing the biological CPG and our best
evolved solution.

The sets of graphs in fig. 6 demonstrate activity of Ekeberg’s CPG (top fig. 6 a
and b) with our evolved network (bottom fig. 6 a and b). It is evident from them
that the evolved network operates with a broader frequency bandwidth than Eke-
berg’s model. Each set of graphs displays activity of the left neurons (top of each
set) and the right neurons (bottom of each set). In all cases, the left-neurons oper-
ate antiphase to right-neurons; therefore only one side is active at any time as per
stipulated conditions for fictive swimming. Other characteristics developed into the
fitness evaluator include regular, oscillatory activity (see objective 2 in section 6.1),
which is also demonstrated by each solution.

Speed range - The multilinked controller, when interacting with the environ-
ment swims within a greater range of speeds than the other networks; numerically,
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-0.01 - 0.6 m/s (compared with 0.01 - 0.45 m/s (biological) and 0.06 - 0.41 m/s (FP)).
The negative speed recording (-0.01) is due to the kind of wriggling the lamprey
performs and not considered an adverse effect.

Lag range - The phase lag between interconnected units ranges from 0 - 1.59%
(compared to 0 - 1.165% (biological) and 0.73 - 1.37% (FP)). This is recorded at the
midrange of oscillation frequency and by monotonically altering the extra excitation
tonic input.

Synaptic weights and interconnections - The magnitude of possible configura-
tions due to connection permutations and synapse strengths can produce very di-
verse solutions. This is exemplified by the notable differences in type, quantity, sign
and weights of active neurons in each solution shown in table 2. It can also be seen
graphically by the chart activity shown in fig. 6 where different neurons interact to
produce the eventual motorneuron burst patterns. Unlike the biological prototype,
oscillatory activity of the best evolved solution occurs by opposing CIN neurons
inhibiting each other, while the active EIN excites the CIN ipsilaterally. The non-
dormant CIN also suppresses the EIN and MN neurons on its side, thus MN (and
EIN) activity is asynchronous with the CIN on each side.

Although the neuron-naming scheme has been kept for comparison purposes, it
is worth noting that each neural population loses its functional meaning and even
the sign it had in the biological model. This is even true of prior evolved controller
networks (i.e. [24]). The only feature they retain are the original dendritic time de-
lays of τD = 30ms, 20ms, 50ms and 20ms for the neuron types EIN, CIN, LIN and
MN respectively and τA = 400ms and 200ms for EIN and CIN. These accord the
original solution in [12].

Neural parameters - As with synaptic weights and interconnections, a distinct
pattern does not emerge for neuron-specific parameters (threshold, gain and adap-
tation rate) when solutions are compared. The evolved network parameters seem
to bear no commonalities with the fixed parameter CPGs. Furthermore, the best
evolved solution is simpler through the elimination of frequency adaptation (μ = 0),
removing the need for the leak (eqn. 3, section 5) without affecting preferred swim-
ming capabilities. Note that this parameter’s behaviour should not be confused with
the role of tonic input changes or edge cell feedback, which perform frequency mod-
ulation of the interlinked swim system. Rather, parameter μ relates to an individual
neuron group generating time-changing rather than constant output. Since the sys-
tem does not seem to need this feature to meet its objectives, there is no reason to
force its existence. This variation between CPGs demonstrates diversity in the solu-
tion set and suggests that there is a spectrum of continuous models as opposed to a
distinct number of species.

6.4 Discussion

This study demonstrates that Ekeberg’s CPG model [12] of the lamprey spinal con-
troller is not a unique solution and that many simpler versions with wider operative
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ranges can be generated. Evolved networks operate with a wider frequency, phase
lag and speed range with independency of control. Improvements of over 100%
are achieved. Our methodology builds upon previous work [24], but improves an-
guiliform swimming performance substantially by relaxing some constraints and
exploring variables (threshold, gain and adaptation rate) previously fixed in value.
Therefore, the true flexibility of the CPG network is assessed.

In terms of system connectivity, evolved networks are vastly simpler than the
biological prototype [12] and fixed parameter solutions [24]. They have reduced
parameter sets, which also simplify the original equation set. This is desirable if
an integrated VLSI controller is to be developed, especially where this network is
one of many functional units of a complete, dynamic system. Furthermore these
improvements do not come at the expense of performance.

Since these controllers are developed with specific goals in mind they do not nec-
essarily incorporate all the functionality of the biological prototype. For example,
constraints of the natural lamprey may include attributes for mating, searching for
food and / or escape swimming. However, since these actions are not essential in
a wave power device, it is not worthwhile building them into the new control unit
just to keep them in line with the biological model. Instead, targeting specific and
necessary behaviours (i.e. rhythmic patterns and adaptation) within the architecture
and basic routines of the lamprey CPG, produces streamlined, better solutions.

Additionally, there is absolutely no reason why a natural evolved solution should
be optimal even in its own multifunctional capabilities, since evolution does not
work that way. Natural lamprey parameter choices could be a result of historical
contingency, that is, they are what the genome could build given what it had avail-
able at that time. The important point is that it is not possible to know why the
biological lamprey neurons use the parameters they do, but if the lamprey could
freely optimise for performance, perhaps it would choose different ones. This form
of behaviour is intriguing in the context of real biological systems. It is potentially of
enormous importance when seeking bio-inspired advances in engineering applica-
tions, where the fitness function is different and the rules imposed by the biological
substrate are absent.

A large motivator of this work is to develop high performance mechanical con-
trollers based upon, but not limited by or linked slavishly to the underlying biology.
Our work therefore out-evolves the natural organism’s operation range rather than
out-evolving nature. Improving the range of operation is fundamental to developing
bio-inspired solutions for alternative control tasks.

In summary, our experiments show that, by relaxing some of the constraints asso-
ciated with a biological exemplar, controllers (and potentially other computational
structures) can be evolved that can capture the strengths of biological computation
in a simpler, or perhaps more effective manner. This is intrinsically interesting, as
a contribution to understanding the naturally-evolved performance of real organ-
isms. It is also an enormously encouraging first step towards re-evolving other CPG
controllers, and potentially other biological processors, for different tasks, using
non-biological computing substrates.
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7 Towards Controlling Wave Energy Devices and Improving
Power Capture Efficiency – A Bio-inspired Solution

Marine energy devices operate with similar rhythmic routines, locomotion and in the
same environment as the lamprey. Adding reactive control to these machines can
result in autonomy, improved efficiency and increased productivity in the marine
energy sector.

The depletion of natural energy resources and the need to reduce carbon dioxide
emissions has generated a huge interest in renewable energy. Significant power is
stored in the motion of the seas. However, harnessing this energy effectively remains
a very difficult challenge. This is due to the highly unpredictable and dynamic nature
of seas which are influenced by factors such as wind strength, wind direction, drag
forces, as well as superposition and counteracting incoming waves, with different
frequencies and velocities.

Wave energy converters (WECs), such as the one displayed in fig. 7, harness
some of this energy but cannot adapt autonomously to irregular and changing sea
conditions. Instead they rely on past wave data to make inaccurate predictions of
future waves or use compromise operational settings until manually reset. As a re-
sult, they operate at sub-optimal efficiency. An active and adaptive approach would
provide the currently lacking, but necessary, self-regulatory control, thus producing
more power and under more robust conditions. Biology already invokes this kind
of adaptive control (and does it very well) in the swim module of the lamprey and
inspires application of a similar mechanism for marine energy devices.

The general underlying mechanism of WEC operation is to perform managed
movements in the oceans, converting wave energy into usable electricity. Locomo-
tion is usually oscillatory, and devices try to match the complex characteristics of
wave frequencies or forces. Again, this bears similarity with the type of locomotion
governed by lamprey CPG circuits.

In this chapter, the wave power solution has not been addressed directly as there
are many contributory components that require attention. This chapter reports on
issues that must be resolved with the bio-inspired model, which in turn will be used
to advance wave technology. The work assesses the flexibility of the biological ar-
chitecture intended for use with wave power devices to determine how much it can

Fig. 7 The Pelamis, a wave energy converter developed by Pelamis Wave Power Ltd. It re-
sembles the lamprey (in fig. 4a), both visually and in locomotion.
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be stretched to accommodate the wider range of operability required for the en-
gineering solution. The following section discusses other aims in developing this
bio-inspired solution for wave energy.

8 Working towards Wave Power

The aim is to develop adaptive controllers based on the lamprey’s CPG architecture
to boost the efficiency of wave power devices (both articulated devices and single-
point absorbers) operating in irregular sea states. The intention is to increase the
renewable power these devices extract from the sea in a reactive rather than static,
currently inefficient manner. The lamprey CPG model is an ideal control architec-
ture within which to work. Initially, the biological model was explored without the
constraints imposed by the biological substrate. Redevelopment will focus on tun-
ing it to power-extraction elements of WECs, replacing swimming efficiency with
power efficiency in the fitness function.

The flexibility and operational boundaries (ranges) of the network were explored
by evolving the CPGs interneuron control parameters. The majority of the condi-
tions built into the fitness functions of these genetic programs are also requisite
for wave energy control (WEC) solutions. Some promote efficient, streamlined
and cost-effective outcomes, such as simplification of the network. Others may
require tweaking such as ranges of operation to match requirements of wave con-
ditions. Other factors will require complete implementation such as operations re-
lating to the measurement and dissipation of power. Other developmental goals will
include:

1. Complete remodelling of the mechanical body, its effect on surrounding water,
and of the waves as they interact with the device.

2. Evolution of sensory input cells - edge cells will play a big role, with fluctuations
in wave conditions being fed back to the neural controller in order to modulate or
alter the system’s behaviour. This will involve a further GA process and related
fitness functions to evolve sensory feedback components.

3. Further reorganisation of the network - if the tonic inputs are to serve a more
direct reactive role (with inputs feeding directly back to the network rather than
modulating patterns of activity from a higher command node).

4. Alternative control strategies - although reactive control is the main aim, other
control strategies will be investigated and compared (e.g. latched control [22]) to
ascertain their efficiency and resource requirements.

5. A longer term goal, once the concept has been proven - individual implementa-
tion of each wave power device, related fitness functions and evolution according
to device-specific criteria.

The evolution of improved lamprey CPGs has been a crucial step towards achiev-
ing these next stages of WEC application control.
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9 Concluding Remarks

This chapter has discussed a class of neural networks called Central Pattern Gen-
erators (CPGs), responsible for rhythmic patterns of behaviour. CPGs comprise or-
ganised neuronal populations which function collectively to coordinate activity of
several cells to produce oscillatory output. CPG modules do not require sensory in-
put to generate rhythmic behaviour, but temporal and phasic signals from afferent
sensory inputs can modulate its intrinsic activity.

It has been shown that CPGs control a broad range of functions in animals. Fur-
thermore, they are widely variable and adaptable with age, environment and be-
haviour. Although anatomical details of CPG circuits are known in only a few cases,
most originate from vertebrate spinal cords which are generally small autonomous
networks which govern rhythmic patterns of behaviour. A model of the lamprey’s
(an eel-like fish) CPG is described in detail.

This neural circuit’s ability to self-regulate behaviour to meet the needs of a
changing environment, and the fact that the system produces the same fictive swim-
ming when implemented artificially, make it an ideal candidate for providing similar
artificial intelligence to other real tasks where automation would result in increased
efficiency and productivity.

Evidence has been presented to demonstrate the flexibility of this network with
genetically evolved, more superior controllers (in terms of their operation ranges).
These will be further evolved and implemented with wave energy devices to boost
the energy they extract from unpredictable and everchanging seas; a task that re-
quires similar rhythmic locomotion and self-regulation that the lamprey’s swim
module displays. Thus this provides a bio-inspired solution to a challenging en-
gineering task.

Finally, inspiration does not end here; there are many other CPG-driven tasks
that could benefit from bio-inspired technology. These include heart-pacemakers,
responsive, for example, to changes in the level of physical activity, robotic loco-
motion (much research is already evident in this area), and hearing-aid modulators
(an area not previously considered).
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Abstract. Real world problems are packed with complex issues often hard to be
computed. Searching for parameters or candidate solutions is frequently associated
with these complexities. The reason for that is chiefly related to the large dimension-
alities of some search spaces. In general, problems involving large search spaces
use traditional computer intensive methods that are, quite often, expensive (i.e. re-
source consuming). Nature-inspired algorithms, on the other hand, are able to deal
reasonably well with the abovementioned difficulties. In this chapter, we provide an
overview of a novel approach for searching in high-dimensional spaces based on the
behaviors of fish schools. As any other intelligent technique based on population,
Fish School Search (FSS) greatly benefits from the collective emerging behavior
that increases mutual survivability. Broadly speaking, FSS is composed of operators
that can be grouped in the following categories: feeding, swimming and breeding.
Together, these operators provide computing behavior such as: (i) high-dimensional
search ability, (ii) automatic selection between exploration and exploitation, and
(iii) self-adaptable guidance towards sought solutions. This chapter seeks to explain
the main ideas behind FSS to researchers and practitioners. In addition, we include
examples and simulations aimed at clarifying the simplicity and potentials of FSS.

1 Introduction

Several oceanic fish species, as with other animals, present social behavior. This
phenomenon’s main purpose is to increase mutual survivability and may be viewed
in two ways: (i) for mutual protection and (ii) for synergistic achievement of other
collective tasks. By protection we mean reducing the chances of being caught by
predators; and by synergy, we refer to an active means of achieving collective goals
such as finding food.
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Apart from debating whether the emergent behavior of a fish school is due to
learning or genetic reasons, it is important to note that some fish species live their
entire lives in schools. This reduces individual freedom in terms of swimming move-
ments and increases competition in regions with scarce food. However, fish aggre-
gation is a fact and the benefits largely outweigh the drawbacks. This chapter aims at
presenting a novel computational intelligent search technique inspired by the above-
mentioned behavior.

Along with the development of this technique we have taken great care not to
depart from the original inspiration source, but FSS contains a few abstractions and
simplifications that have been introduced to afford efficiency and usability to the
algorithm. The main characteristics derived from real fish schools and incorporated
into the core of our approach are sound. They are grouped into two observable cat-
egories of behaviors as follows:

• Feeding: inspired by the natural instinct of individuals (fish) to find food in order
to grow strong and to be able to breed. Notice that food here is a metaphor for the
evaluation of candidate solutions in the search process. We have considered that
an individual fish can lose as well as obtain weight, depending on the regions it
swims in;

• Swimming: the most elaborate observable behavior utilized in our approach. It
aims at mimicking the coordinated and the only apparent collective movement
produced by all the fish in the school. Swimming is primarily driven by feeding
needs and, in the algorithm, it is a metaphor for the search process itself.

2 Background

2.1 Search Problems and Algorithms

Although there are several approaches for searching, there is, unfortunately, no gen-
eral optimal search strategy [1]. Thus, solving search problems is sometimes more
of an art form than an engineering practice. Although custom-made algorithms are
valuable options for specific problems, a more generalized automatic search engine
would be a great bonus for tackling problems of high dimensionality.

Search problems can be highly varied. For example, they can be classified into
two groups with regard to the structure of their search-space: structured or unstruc-
tured. For the former, there are many traditional techniques that are, on average,
quite efficient. The same observation does not apply to the latter, that is, there is no
overall good approach for search spaces on which there is no prior information.

We think that FSS might be a valuable option for searching in high dimensional
and unstructured spaces.

2.2 Population-Based Algorithm (PBA)

Many nature-inspired algorithms such as genetic algorithms (GA) [2, 3], artificial
immune systems (AIS) [4], ant colony optimization (ACO) [5, 6] and particle
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swarm optimization (PSO) [7, 8, 9] are based on the concept of populations. In all
these approaches, the computing discrimination power and memorization ability of
past experiences are distributed among the individuals of the population in varying
degrees.

Distributed representation and computation are interesting features to incorpo-
rate into search algorithms because of the parallelization they provide. The obvious
trade-off is the cost of control (i.e. communication among individuals), as opposed
to the lower costs associated with centralized control.

In recent years, PSO has produced good results for search problems with high
dimensionality. It is an intelligent computational technique proposed by Kennedy
and Eberhart in 1995 [7]. This technique is commonly used to solve optimization
problems of nonlinear functions. It is inspired by the social behavior of bird flocks.
The idea behind PSO is to create particles that simulate the movements of birds to
achieve a specific goal within the search space. It explores the social behavior of
an organized group of individuals and the group’s communication capacity. Each
particle represents a solution in a high-dimensional space. The entire swarm uses
a specific communication mechanism. The candidate solutions emerge by flocking
behavior around more successful individuals. Particles in PSO utilize the notion of
adjustable speed according to the degree of success achieved. In the most common
PSO implementations, particles move through the search space using a combination
of the attraction to the best solution that they have found individually, and the attrac-
tion to the best solution that any particle in the neighborhood has found. A neighbor-
hood is the part of the swarm which a particle is able to communicate with. Bratton
et al. [9] proposed a standard for performance comparison of PSO implementa-
tions. Many velocity equations and communication mechanisms were proposed in
recent years [10, 11, 12, 13, 14]. However, the PSO technique struggles in some
multimodal problems.

3 Fish-School Search (FSS)

3.1 FSS Computational Principles

The search process in FSS is carried out by a population of limited-memory indi-
viduals – the fish. Each fish represents a possible solution to the problem. Similar
to PSO or GA, search guidance in FSS is driven by the success of some individual
members of the population.

The main feature of the FSS paradigm is that all fish contain an innate memory
of their successes – their weights. In comparison to PSO, this information is highly
relevant because it can obviate the need to keep a log of the best positions visited by
all individuals, their velocities and other competitive global variables.

Another major feature of FSS is the idea of evolution through a combination of
some collective swimming, i.e. “operators” that select among different modes of
operation during the search process, on the basis of instantaneous results.
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As for dealing with the high dimensionality and lack of structure of the search
space, the authors believe that FSS should at least incorporate principles such as the
following:

(i) Simple computation in all individuals;
(ii) Various means of storing distributed memory of past computation;

(iii) Local computation (preferably within small radiuses);
(iv) Low communication between neighboring individuals;
(v) Minimum centralized control (preferably none); and

(vi) Some diversity among individuals.

A brief rationale for the above-mentioned principles is given, respectively: (i)
this reduces the overall computation cost of the search; (ii) this allows for adaptive
learning; (iii), (iv) and (v) these keep computation costs low as well as allowing
some local knowledge to be shared, thereby speeding up convergence; and finally,
(vi) this might also speed up the search due to the differentiation/specialization of
individuals. These principles incorporated in FSS lead the authors to believe that
FSS can deal with multimodal problems better than the PSO approaches.

3.2 Overview of the New Approach

The inspiration mentioned in Section I, together with the principles just stated
above, are incorporated in our approach in the form of two operators that comprise
the main routines of the FSS algorithm. To understand the operators, a number of
concepts need to be defined.

The concept of food is related to the function to be optimized in the process.
For example, in a minimization problem the amount of food in a region is inversely
proportional to the function evaluation in this region. The “aquarium” is defined by
the delimited region in the search space where the fish can be positioned.

The operators are grouped in the same manner in which they were observed when
drawn from the fish school. They are as follows:

• Feeding: food is a metaphor for indicating to the fish the regions of the aquarium
that are likely to be good spots for the search process;

• Swimming: a collection of operators that are responsible for guiding the search
effort globally towards subspaces of the aquarium that are collectively sensed by
all individual fish as more promising with regard to the search process.

3.3 FSS Operators

3.3.1 The Feeding Operator

As in real situations, the fish of FSS are attracted to food scattered in the aquar-
ium in various concentrations. In order to find greater amounts of food, the fish in
the school can move independently (see individual movements in the next section).
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As a result, each fish can grow or diminish in weight, depending on its success or
failure in obtaining food. We propose that fish’s weight variation be proportional to
the normalized difference between the evaluation of fitness function of previous and
current fish position with regard to food concentration of these spots. The assess-
ment of ‘food’ concentration considers all problem dimensions, as shown in 1,

Wi(t + 1) = Wi(t)+
f [xi(t + 1)]− f [xi(t)]

max{| f [xi(t + 1)]− f [xi(t)]|} , (1)

where Wi(t) is the weight of the fish i, xi(t) is the position of the fish i and f [xi(t)]
evaluates the fitness function (i.e. amount of food) in xi(t).

A few additional measures were included to ensure rapid convergence toward
rich areas of the aquarium, namely:

• Fish weight variation is evaluated once at every FSS cycle;
• An additional parameter, named weight scale (Wscale) was created to limit the

weight of a fish. The fish weight can vary between ”1” and Wscale.
• All the fish are born with weight equal toWscale

2 .

3.3.2 The Swimming Operators

A basic animal instinct is to react to environmental stimulation (or sometimes, the
lack of it). In our approach swimming is considered to be an elaborate form of
reaction regarding survivability. In FSS, the swimming patterns of the fish school
are the result of a combination of three different causes (i.e. movements).

For fish, swimming is directly related to all the important individual and collec-
tive behaviors such as feeding, breeding, escaping from predators, moving to more
livable regions of the aquarium or, simply being gregarious.

This panoply of motivations to swim away inspired us to group causes of swim-
ming into three classes: (i) individual, (ii) collective-instinct and (iii) collective-
volition. Below we provide further explanations on how computations are performed
on each of them.

3.3.2.1 Individual Movement

Individual movement occurs for each fish in the aquarium at every cycle of the FSS
algorithm. The swim direction is randomly chosen. Provided the candidate destina-
tion point lies within the aquarium boundaries, the fish assesses whether the food
density there seems to be better than at its current location. If this is not the case or
if the step-size is not possible (i.e. it lies outside the aquarium or is blocked by, say,
reefs), the individual movement of the fish does not occur. Soon after each individual
movement, feeding occurs, as detailed above.

For this movement, we define a parameter to determine the fish displacement in
the aquarium called individual step (stepind). Each fish moves stepind if the new
position has more food than the previous position. Actually, to include more ran-
domness in the search process we multiply the individual step by a random number
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generated by a uniform distribution in the interval [0,1]. In our simulation we de-
crease the individual step linearly in order to provide exploitation abilities in later
iterations.

Fig. 1 shows an illustrative example of this swimming operator. One can note that
just the fish that found spots with more food had moved.

Fig. 1 Individual movement is illustrated here before and after its occurrence; circular dots
are fish positions after and triangular dots are the same fish before individual movement

3.3.2.2 Collective-Instinctive Movement

After all fish have moved individually, a weighted average of individual movements
based on the instantaneous success of all fish of the school is computed. This means
that fish that had successful individual movements influence the resulting direction
of movement more than the unsuccessful ones. When the overall direction is com-
puted, each fish is repositioned. This movement is based on the fitness evaluation
enhancement achieved, as shown in 2.

xi(t + 1) = xi(t)+ ∑N
i=1 Δxind i { f [xi(t + 1)]− f [xi(t)]}

∑N
i=1 { f [xi(t + 1)]− f [xi(t)]}

(2)

where Δxind i is the displacement of the fish i due to the individual movement in the
FSS cycle.

Fig. 2 shows the influence of the collective-instinctive movement in the example
presented in Fig. 1. One can note that in this case all the fish had their positions
adjusted.
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Fig. 2 Collective-instinctive movement is illustrated here before and after its occurrence;
circular dots are fish positions after and triangular dots are the same fish before collective-
instinctive movement

3.3.2.3 Collective-Volitive Movement

After individual and collective-instinctive movements are performed, one additional
positional adjustment is still necessary for all fish in the school: the collective-
volitive movement. This movement is devised as an overall success/failure evalu-
ation based on the incremental weight variation of the whole fish school. In other
words, this last movement will be based on the overall performance of the fish
school.

The rationale is as follows: if the fish school is putting on weight (meaning the
search has been successful), the radius of the school should contract; if not, it should
dilate. This operator is deemed to help greatly in enhancing the exploration abilities
in FSS. This phenomenon might also occur in real swarms, but the reasons are as
yet unknown.

The fish-school dilation or contraction is applied as a small step drift to every
fish position with regard to the school’s barycenter. The fish-school’s barycenter is
obtained by considering all fish positions and their weights, as shown in 3.

Collective-volitive movement will be inwards or outwards (in relation to the fish-
school’s barycenter), according to whether the previously recorded overall weight of
the school has increased or decreased in relation to the new overall weight observed
at the end of the current FSS cycle.
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Bari(t) = ∑N
i=1 xi (t)Wi (t)
∑N

i=1 Wi (t)
(3)

For this movement, we also define a parameter called volitive step (stepvol). We
evaluate the new position as in 4 if the overall weight of the school increases in the
FSS cycle; if the overall weight decreases, we use 5.

xi(t + 1) = xi(t)− stepvol.rand. [xi(t)−Bari(t)] , (4)

xi(t + 1) = xi(t)+ stepvol.rand. [xi(t)−Bari(t)] , (5)

where rand is a random number uniformly generated in the interval [0,1]. We also
decreased the linear stepvol along the iterations.

Fig. 3 shows the influence of the collective-volitive movement in the example pre-
sented in Fig. 1 after individual and collective-instintive movements. In this case, as
the overall weight of the school had increased, the radius of the school diminished.

Fig. 3 Collective-volitive movement is illustrated here before and after its occurrence; circu-
lar dots are fish positions after and triangular dots are the same fish before collective-volitive
movement

3.4 FSS Cycle and Stop Conditions

The FSS algorithm starts by randomly generating a fish school according to param-
eters that control fish sizes and their initial positions.
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Regarding dynamics, the central idea of FSS is that all bio-inspired operators
perform independently of each other across the three conceived classes.

The search process (i.e. FSS at work) is enclosed in a loop, where invocations of
the previously presented operators will occur until at least one stop condition is met.

As of now, stop conditions conceived for FSS are as follows: limitation of
the number of cycles (the stopping condition of all experiments in this chapter),
time limit, maximum school radius, minimum school weight and maximum fish
number.

We present below the pseudo-code for the Fish School Search Algorithm. In the
initialization step, each fish in the swarm has its weight initialized with the value
Wscale

2 and its position in each dimension initialized randomly in the search space.

Algorithm Fish School Search

1. Initialize fish in the swarm
2. While maximum iterations or stop criteria is not attained do
3. for each fish i in the swarm do

a. update position applying the individual operator

Δxi(t + 1) = stepind(t) ·2 · rand ·direction

−−→tempi = xi(t)+ Δxi(t + 1)

calculate fish fitness fi(−−→tempi)
if f (−−→tempi) < f (xi(t))

xi(t + 1) = −−→tempi

f (t+1)
i = fi(−−→tempi)

else
xi(t + 1) = xi(t)

f (t+1)
i = f (t)

i

b. apply feeding operator
update fish weight according to 1

c. apply collective-instinctive movement
update fish position according to 2

d. apply collective-volitive movement
if overall weight of the school increases in the cycle
update fish position using 4
elseif overall weight of the school decreases in the cycle
update fish position using 5

end for decrease the individual and volitive steps linearly

end while
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4 Illustrative Example

This section presents an illustrative example aimed at better understanding how FSS
can be used and, ultimately, how it works. The selected example considers a small
school and a very simple problem that is three fish are set to find the global optimum
of the sphere function in two dimensions. The sphere function is presented in 6 and
its parameters are: (i) feasible space [-10,10], (ii) number of iterations equal to 10,
(iii) wscale= 10, (iv) initial stepind = 1, (v) final stepind = 0.1, (vi) initial stepvol

= 0.5, (vii) final stepvol = 0.05. Table 1 includes initial values associated with the
experimental fish school; Fig. 4a presents start-up loci of all fish.

Fsphere(x) =
n−1

∑
i=1

(xi)
2 , (6)

Table 1 Initial conditions for the three fish in the sphere example

Fish Initial conditions
weight position fitness

# 1 5 (9,7) 130
# 2 5 (5,6) 61
# 3 5 (8,4) 80

After initialization, all fish are free to check for new candidate positions that are
generated by the individual movement operator. Lets assume that these positions are
x1 = (9.6,6.2), x2 = (4.6,4.4) and x3 = (6.2,4.2), and the associated fitnesses are
f (x1) = 130.6, f (x2) = 40.52 and f (x3) = 56.08. One should notice that fish #2
and fish #3 found best positions, whereas fish #1 did not move. The positions after
the individual movement are then x1 = (9,7), x2 = (4.6,4.4) and x3 = (6.2,4.2).
Fig. 4b illustrates the individual movement of the three fish in search space for the
sphere problem.

According to our model, the next operator to be computed is feeding. As fish
#1 remained in the same position, it will not change its weight. The weight of fish
#2 and fish #3 will change according to 1. The weight variation depends on the
maximum fitness change. The maximum fitness variation in this case was achieved
by fish #3 and is equal to 23.92. As a result, fish #3 increased its weight by 1 unit
and its new weight became 6. The fitness variation of fish #2 was 20.48. Dividing
the fitness variation of fish #2 by maximum fitness change, we conclude that the
weight variation of fish #2 is 0.86. The new weight of fish #2 is then 5.86.

Following our model, the third operator to be computed is the collective-
instinctive one. This operator evaluates the collective displacement of the fish school
considering the individual fitness variations and the individual movement according
to 2. As fish #1 stayed in the same position, it will not influence the overall calcula-
tion. Considering the values obtained in this iteration, the displacement is (-1.2,-0.6).
This vector is applied to all the fish (including fish #1), so the new positions, after
third operator computations, are x1 = (7.8,6.4), x2 = (3.4,3.8) and x3 = (5,3.6).
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Then, the fitnesses regarding new positions recalculations are 101.8, 26 and 37.96
for fish #1, #2 and #3, respectively. The individual displacement of all fish due to
collective-instinctive operator is presented in Fig. 4c. Reader may find it interesting
to compare Fig. 4b and Fig. 4c.

The last operator to be considered in this example is the collective-volitive one.
For that, one has to obtain the instantaneous value of the barycenter of the fish school
according to 3. In this case, the barycenter is (4.96,4.25). Notice that the weight of
whole school has increased, therefore a contraction instead of a dilatation is the im-
plicit decision of the school (i.e. collective-volitive). By means of using 4, the new
positions are x1 = (5.81,4.89), x2 = (4.02,3.98)and x3 = (4.98,3.92). The barycen-
ter and the collective-volitive movement for this step are presented in Fig. 4d.

At this point the algorithm tests if valid stop-conditions are met. Obviously it is
not the case yet, thus a new cycle begins as explained above. If one compares the
initial and final positions illustrated in Fig. 4, after this first iteration, the reader can
observe that all fish are closer to the optimum point (0,0).

Of course the optimum point is unknown to the algorithm. However, in a very
peculiar manner the FSS model assures fast convergence towards it (i.e. the goal for
the search process) because of the above mentioned natural principles instantiated
in the FSS algorithm.

Fig. 4 Example with three fish in the sphere example: (a) Initial position, (b) individual
movement, (c) instinctive collective movement and (d) volitive collective movement
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Fig. 5 Fish school evolution after iteration (a) 1, (b) 50, (c) 100, (d) 200, (e) 300, (f) 400, (g)
500, (h) 750 e (i) 1000 for sphere function with 30 fish

In order to illustrate the convergence behavior of the fish school along the itera-
tions, we present the simulation results for the sphere function. In these simulations
we used 30 fish, [-100,100] in the two dimensions, initialization range [0,100] in the
two dimensions, wscale= 500, initial stepind = 10, final stepind = 0.1, initial stepvol =
5, final stepvol = 0.5. Fig. 5. shows the fish positions after iteration (a) 1, (b) 50, (c)
100, (d) 200, (e) 300, (f) 400, (g) 500, (h) 750 e (i) 1000, respectively. One can note
that the school was attracted to the optimum point (0,0).

5 Comparative Examples

5.1 Experimental Setup

Five benchmark functions were used to carry out simulations and are described
in 7, 8, 9, 10, and 11. Table 2 shows the search space, the initialization range, and
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the optimum for each function. All searches were carried out in 30 dimensions. All
five functions are used for minimization problems. Two of these functions namely,
Rosenbrock and Schwefel 1.2, represent simple unimodal problems; the other three,
Rastrigin, Griewank, and Ackley, are highly complex multimodal functions that
contain many local optima. Considered functions in comparisons are:

FRosenbrock(x) =
n−1

∑
i=1

[
100

(
xi+1 − x2

i

)2
+(1− xi)

2
]
, (7)

FRastrigin(x) = 10n +
n

∑
i=1

[
x2

i −10cos(2πxi)
]
, (8)

FGriewank(x) = 1 +
n

∑
i=1

x2
i

4000
−

n

∏
i=1

cos

(
xi√

i

)
, (9)

FAckley(x) = −20exp

(
−0.2

√
1
n

n

∑
i=1

x2
i

)
−exp

(
1
n

n

∑
i=1

cos(2πxi)

)
+ 20 + e, (10)

Table 2 Function parameters

Function Parameters
Search space Initialization Optima

Rosenbrock −30 ≤ xi ≤ 30 15 ≤ xi ≤ 30
1.0D

Rastrigin −5.12 ≤ xi ≤ 5.12 2.56 ≤ xi ≤ 5.12
0.0D

Griewank −600 ≤ xi ≤ 600 300 ≤ xi ≤ 600
0.0D

Ackley −32 ≤ xi ≤ 32 16 ≤ xi ≤ 32
0.0D

Schwefel 1.2 −100 ≤ xi ≤ 100 50 ≤ xi ≤ 100
0.0D
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and

FSchwe f el1.2(x) =
n

∑
i=1

(
i

∑
j=1

x j

)2

. (11)

A factorial planning of experiments was performed to find suitable parametric
combination of individual and volitive steps at both initial and final limits (i.e.
stepind,initial , stepind, f inal, stepvol,initial , stepvol, f inal). We have associated the indi-
vidual and volitive steps as percentages of the actual search space. Percentage val-
ues considered for initial and final limits were, respectively, as follows: 10; 1; 0.1
and 0.1; 0.01; 0.001; 0.0001. Wscale was set as 5000; this is half of the number of
considered iterations.

All FSS simulations were performed using 30 fish and 10,000 iterations. Only
after 30 trials the mean and the standard deviation were recorded. All the fish were
randomly initialized in areas of the aquarium that are far from the optimal solu-
tion regarding every dimension. This initialization process is carried out in order to
measure the ability of the fish school in locating the optimum solution outside the
initialization space.

We compared our results with PSO simulation results presented in an earlier land-
mark paper [9]. Three PSO approaches were considered for comparisons: original
PSO with the Gbest topology, constriction PSO with the Gbest topology and con-
striction PSO with the Lbest topology. All the PSO simulations included 30 trials,
each of which performed 300,000 evaluations, and simulations that considered 30
dimensions and used 30 particles. Thus, we considered that a fair convergence anal-
ysis between the FSS and PSO approaches could be made.

5.2 Simulation Results

Tables 3, 4, 5, 6 and 7 show the best simulation results for function Rosenbrock,
Rastrigin, Griewank, Ackley and Schwefel 1.2, respectively. Only the best six re-
sults sorted by the fitness average for each function are presented here. The high-
lighted values are indications of success for all search performed by FSS.

Table 8 presents the comparison between the FSS and PSO approaches. It con-
tains the best results achieved for the five benchmark functions used to evaluate the
performance of the four algorithms.

Table 3 Simulation Results for the Rosenbrock Function – Fitness (average and standard
deviation) for 30 trials

stepind,initial stepind, f inal stepvol,initial stepvol, f inal f itness(average) f itness(stddev)
0.1 0.001 1 0.01 16.1183 0.729559
0.1 0.0001 1 0.01 16.4036 0.853030
0.1 0.0001 1 0.001 16.4470 0.770458
0.1 0.001 1 0.001 16.4629 0.797471
10 0.01 1 0.001 44.7585 7.785530
10 0.1 0.1 0.001 46.4926 5.676689
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Table 4 Simulation Results for the Rastringin Function – Fitness (average and standard de-
viation) for 30 trials

stepind,initial stepind, f inal stepvol,initial stepvol, f inal f itness(average) f itness(stddev)
10 0.01 10 0.1 13.3868 4.005888
10 0.1 10 0.01 13.7376 2.889882
10 0.1 10 0.1 14.1285 3.680864
10 0.01 10 0.01 14.5193 2.780258
10 0.01 0.1 0.0001 200.225 22.09435
10 0.01 0.1 0.001 200.652 19.42133

Table 5 Simulation Results for the Griewank Function – Fitness (average and standard devi-
ation) for 30 trials

stepind,initial stepind, f inal stepvol,initial stepvol, f inal f itness(average) f itness(stddev)
1 0.001 1 0.01 0.00270 0.002291
0.1 0.0001 1 0.001 0.00373 0.004015
1 0.001 10 0.01 0.00377 0.002375
0.1 0.001 1 0.001 0.00445 0.003982
0.1 0.0001 1 0.01 0.00499 0.004313
0.1 0.001 1 0.01 0.00603 0.004149

Table 6 Simulation Results for the Ackley Function – Fitness (average and standard devia-
tion) for 30 trials

stepind,initial stepind, f inal stepvol,initial stepvol, f inal f itness(average) f itness(stddev)
10 0.01 10 0.1 0.04004 0.020568
10 0.01 10 0.01 0.08393 0.041568
10 0.01 1 0.01 0.15836 0.032344
10 0.01 1 0.001 0.16337 0.031565
10 0.1 10 0.1 0.18650 0.038461
10 0.1 10 0.01 0.20383 0.039025

Table 7 Simulation Results for the Schwefel 1.2 Function – Fitness (average and standard
deviation) for 30 trials

stepind,initial stepind, f inal stepvol,initial stepvol, f inal f itness(average) f itness(stddev)
1 0.001 1 0.01 0.08085 0.022414
1 0.001 1 0.001 0.09159 0.032054
1 0.01 1 0.001 0.09478 0.031902
1 0.01 1 0.01 0.09720 0.026483
1 0.001 0.1 0.001 0.37266 0.264715
1 0.001 10 0.01 0.61065 0.139308

Notice that the FSS algorithm outperforms the original PSO in all the cases.
Moreover, FSS achieved excellent results for notoriously hard multimodal functions
such as the Rastrigin, Griewank, and Ackley.
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Table 8 Overall comparison of results between algorithms – Fitness (average and standard
deviation) for 30 trials

Function Fitness (average and standard deviation)
Orig. PSO Constricted

PSO (Gbest)
Constricted
PSO (Lbest)

FSS

Rosenbrock 54.6867
(2.8570)

8.1579
(2.7835)

12.6648
(1.2304)

16.118
(0.729)

Rastrigin 400.7194
(4.2981)

140.4876
(4.8538)

144.8155
(4.4066)

13.386
(4.005)

Griewank 1.0111
(0.0031)

0.0308
(0.0063)

0.0009
(0.0005)

0.0027
(0.002)

Ackley 20.2769
(0.0082)

17.6628
(1.0232)

17.5891
(1.0264)

0.0400
(0.020)

Schefel 1.2 5.4572
(0.1429)

0.0
(0.0)

0.1259
(0.0178)

0.0808
(0.022)

6 Discussion and Conclusions

In this chapter, we have detailed the general ideas and principles embedded in FSS.
This novel search algorithm is quite promising as a search tool for dealing with
multimodal high dimensional problems, as it may be concluded from the examples
provided in previous sections.

The performance of FSS on some multimodal functions was surprisingly good,
especially when compared to monomodal ones.

Although previous works [15, 16, 17] have similar titles and motivations, our
approach is quite different as it considers bio-inspired operators to directly guide
the search process. Additionally, FSS presents an interesting balance between ex-
ploration and exploitation abilities, self-adapts quite swiftly out of local minima
(towards sought solutions), and self-regulates the search granularity.

We foresee that FSS will most likely receive a great number of extensions in the
near future, namely, sea currents, springs, predators, reefs, corals and other barriers
to the school progression; all of them, situations to be avoided or taken advantage of.
Altogether, these extensions may allow FSS to deal with noise, attractors, repulsors
and no-go regions. Finally, breeding is another bio-inspired feature that ought to be
considered further in the near future.
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Magnifier Particle Swarm Optimization

Ying Tan and Junqi Zhang

Abstract. In this chapter, after a brief introduction to the Particle Swarm Optimiza-
tion (PSO), a novel PSO algorithm based on magnification transformation called
Magnifier Particle Swarm Optimization (MPSO) is presented. In the MPSO, the
range around each generation’s best individual is enlarged akin to using a magni-
fier, while the velocity of particles stays unchanged. This way, the MPSO achieves
much faster convergence speed and better optimization solving capability than the
Standard Particle Swarm Optimization (SPSO) by a number of simulations. In the
context, the proposed MPSO algorithm is described and explained in detail by com-
paring it with the SPSO. Simulations on thirteen benchmark test functions are con-
ducted to verify the effectiveness of the MPSO. Our experimental results show that
the proposed MPSO not only speeds up the convergence tremendously but also
maintains a strong capability of searching for the global solution with high accu-
racy. The application to spam detection shows that the proposed MPSO gives a
promising result.

1 Introduction

PSO is a stochastic global optimization technique inspired by the social behavior of
bird flocking or fish schooling [12, 33]. In the conventional PSO, each particle in a
swarm population adjusts its position in the search space according to the best posi-
tion it has found so far and also the overall best position found so far by the whole
swarm. The essence of PSO is to use particles with best known positions to guide the
swarm population to converge to a single optimum in the search space. Compared to
other population based evolutionary algorithms, i.e., genetic algorithms, PSO does
not need genetic operators such as crossover and mutation. Thus it has the advan-
tages of easy implementation, fewer parameters to be adjusted, strong capability to
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escape from local extrema as well as rapid convergence. Since the PSO comprises a
very simple concept and can be implemented easily, it has been successfully utilized
in many practical engineering fields such as function optimization, artificial neural
network training, fuzzy system control, blind source separation as well as machine
learning. Furthermore, the PSO has also been found to be robust and fast in solving
nonlinear, nondifferentiable and multimodal problems. A review of PSO application
is presented in [37] by identifying and analyzing around 700 PSO application papers
stored in IEEE Xplore database at the time of writing. In this chapter, a simple mag-
nification transformation is introduced into the PSO, resulting in a novel magnifier
PSO (MPSO).

2 Theoretical Analysis and Variants of PSO

Most research on PSO concentrates on the theoretical analysis and the development
of variants of PSO. Actually, the theoretical analysis and the development of vari-
ants of PSO are usually promoted by each other. Several theoretical analyses of the
dynamics of particle swarms have been offered over the last decade. The first the-
oretical model of the PSO was presented in [3, 4]. Similar assumptions were used
in [25] to analyze the trajectory of particles. One particle, without randomness and
during stagnation, was modeled in [5]. An eigen-value analysis of the resulting dy-
namic system [23] was performed to determine the parameter settings that lead to
system stability, and the different classes of particle’s behaviors possible. How the
spatial extent of a particle swarm varies over time is investigated in [39]. Analyses
of a 4-parameter family of particles’ model and regions identified in the parameter
space are provided in [8]. The distribution of velocities of one particle controlled
by the update rule of the PSO with inertia term and stochastic forces are analyzed
in [26] for better understanding of the behavior of the PSO during phases of stagna-
tion. The stability of particles in the presence of stochasticity was studied in [41] by
using Lyapunov stability analysis. The velocity term of PSO is discussed in detail
in [44, 14, 16].

Recently, the probability distributions were analyzed in [14, 15, 16, 17]. In
[14, 15], the described probabilistic models select the next point solely based on
the previous bests, using a random number generator to produce a candidate prob-
lem solution vector from a probability distribution. The previous position of a par-
ticle is not taken into account. In [17], the particle’s movement over time is defined
as a series of points, each selected from the previous one. Empirical trials show
that the effective probability distribution is a truncated triangle, with uniform prob-
ability across the middle and decreasing in the tails. The “truncated triangle” was
termed “Maya pyramid” by James Kennedy and discussed in [27] in detail. The
sampling distribution of the PSO is analyzed under the assumption of stagnation
in [34, 35, 36, 37]. In [34], a discrete markov chain model of the bare bone PSO
was built using finite element grid technique. In [35, 36], the characteristics of a
PSO’s sampling distribution and their change over generations was determined in
the presence of stochasticity under the assumption of stagnation.
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Chapter 5 of Holland’s book [7], “optimum allocation of trials” reveals the deli-
cate balance between conservative testing of known regions versus risky exploration
of the unknown. It appears that the PSO can allocate trials almost optimally [12].
Trelea has given an explanation of the exploitation and exploration for the PSO:
“The PSO algorithm includes some parameters that greatly influence its perfor-
mance, often stated as the exploration-exploitation trade-off: Exploration is the abil-
ity to test various regions in the problem space in order to locate a good optimum,
hopefully the global one. Exploitation is the ability to concentrate the search around
a promising candidate solution in order to locate the optimum precisely.” [8]. A pa-
rameter of inertia weight was introduced into the original particle swarm optimizer
to increase the tendency of particles to explore the unknown search space [44]. A
complete theoretical analysis of the algorithm has been given by [25]. Based on
this analysis, the authors derived a reasonable set of parameters. The exploration-
exploitation trade-off is discussed and illustrated in [8]. Despite these recent efforts,
it is still hard to explain how the particle swarm works. Furthermore, selection of
the algorithm’s parameters remains empirical to a large extent. Simple user-oriented
guidelines for the parameter selection for a specific problem are not straightforward.

Since its invention, PSO has attracted extensive attention and interest of re-
searchers from different scientific and engineering domains. Many researchers have
worked on improving its performance in various ways, which generally involve bal-
ancing the exploitation and exploration of the particles in the swarm. A clever tech-
nique for creating a discrete binary version of the PSO introduced by Kennedy and
Eberhart [13] in 1997 uses the concept of velocity as a probability that takes on either
one or zero. By analyzing the convergence behavior of the PSO, a variant of the PSO
with a constriction factor was introduced by Clerc and Kennedy [25], which guaran-
tees convergence and at the same time improves the convergence speed sharply. Par-
sopoulos and Vrahatis proposed a unified particle swarm optimizer (UPSO) which
combines both the global version and local version together [24]. A cooperative
particle swarm optimizer was also proposed in [6]. Furthermore, El-Abd and Kamel
proposed a Hierarchal Cooperative Particle Swarm Optimizer [28]. In [40], Peram et
al. proposed a fitness-distance ratio based particle swarm optimization (FDR-PSO),
by defining the “neighborhood” of a particle as the n closest particles of all particles
in the population. Very recently, a comprehensive learning particle swarm optimizer
(CLPSO) was proposed to greatly improve the performance of the original PSO on
multi-modal problems by a novel learning strategy [20]. In [43], Tan proposed a
novel strategy of PSO called Clonal PSO (abbreviated as CPSO), which clones and
mutates the best particles of certain generations to join the swarm, and then selects
the better ones to continue evolving. A stretching technique was introduced into PSO
by Parsopoulos and Plagianakos in [29], which applies a two-stage transformation
to the shape of the fitness function that eliminates undesired local minima, but pre-
serves the global ones. An ARC-PSO [21] was proposed by introducing the advance
and retreat strategy based on the clonal mechanism from [43]. A RBH-PSO [22] was
introduced by randomly attracting the particles to the best known area, by which the
exploitation of particles is increased.



282 Y. Tan and J. Zhang

3 Principle and Analysis of PSO

In [2], Daniel Bratton and James Kennedy defined a Standard PSO model (abbrevi-
ated as SPSO), which includes a local ring topology, the constricted update rules in
Eqs. (1) and (2), 50 particles, non-uniform swarm initialization, and boundary con-
ditions wherein a particle is not evaluated when it exits the feasible search space.
This version is designed to be a straightforward extension of the original algorithm
while taking into account more recent developments that are expected to improve
performance on standard measures. This standard algorithm is intended for use both
as a baseline to test the performance of improvements introduced to the technique,
as well as to represent PSO to the wider optimization community. The constriction
coefficient χ in this case is defined in Equation (3). It was found that when ϕ < 4,
the swarm would slowly “spiral” toward and around the best found solution in the
search space with no guarantee of convergence, while for ϕ ≥ 4 convergence would
be quick and guaranteed. While it is possible to weigh the velocity update equation
to favor the best position of the individual particle or the best position of the entire
swarm by adjusting the values of c1 and c2, most implementations of constricted
particle swarms use equal values for both parameters for the sake of simplicity.
Using the constant ϕ = 4.1 to ensure convergence, the values χ ≈ 0.72984 and
c1 = c2 = 2.05 are obtained.

V̂id(t + 1) = χ(Vid(t)+ c1ε1(PiBd(t)−Xid(t))+ c2ε2(PgBd(t)−Xid(t))), (1)

Xid(t + 1) = Xid(t)+ V̂id(t + 1). (2)

χ =
2

|2−ϕ −
√

ϕ2 −4ϕ| ,ϕ = c1 + c2. (3)

The other update rule with inertia weight as in Eqs (4) and (5) is algebraically
equivalent to a PSO with constriction [25].

V̂id(t + 1) = wVid(t)+ c1r1(PiBd(t)−Xid(t))+ c2r2(PgBd(t)−Xid(t)), (4)

Xid(t + 1) = Xid(t)+ V̂id(t + 1). (5)

In Eqs. (4) and (5), i = 1,2, · · · ,n, n is the number of particles in the swarm,
d = 1,2, · · · ,D, and D is the dimension of solution space. The learning factors c1 and
c2 are nonnegative constants, r1 and r2 are random numbers uniformly drawn from
the interval [0,1], which are all scalar quantities for each particle in each dimension.
The parameter w ∈ [−1,1] in Eq. (4) is the inertia weight for the inertia velocity.
PiBd and PgBd are the locations of the best positions found so far by particle i and its
neighbors in dimension d. The termination for iterations in the PSO is determined
according to whether it reaches the designated fitness value or the fixed maximum
number of fitness evaluations.

Intuitively, the more particles, the faster the search will be in terms of the number
of iterations. However, this iteration count is not really a relevant criterion. Rather,
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the number of times that the function must be evaluated is significant, because this
evaluation requires a considerable time in the majority of real problems. The num-
ber of evaluations is obviously equal to the number of particles in the swarm. If
one wants to reduce the total number of evaluations needed to find a solution, one
is tempted to decrease the size of the swarm. However, too small a swarm is likely
to take longer to find a solution or even fail to find a solution. Therefore, a com-
promise must be reached. Empirically, sizes of about 20 to 50 particles have been
proposed, which, indeed, proved entirely sufficient to solve almost all classic test
problems [27]. It should, however, be noted that such small value does not facilitate
comparison with other methods. Using 100 genes as in genetic algorithms would not
be as effective in terms of the number of evaluations as this gene size is too large for
PSO. Similarly, if only 20 genes are used for genetic algorithms, the solutions are
not always found.

The position of every particle in each dimension is updated independently. The
only link between the dimensions in problem space is introduced by the objective
function, via PiBd and PgBd . Thus, for the purpose of analysis, without any loss of
generality, the algorithmic description can be reduced to the one-dimensional parti-
cle case by dropping the subscript d and i, as shown in Eqs. (6) and (7),

V (t + 1) = wV (t)+ c1r1(PpB(t)−X(t))+ c2r2(PgB(t)−X(t)), (6)

X(t + 1) = X(t)+V(t + 1), (7)

where PpB(t) denotes the historical best position of this particle, and PgB(t) denotes
the historical best position in this particle’s neighborhood in the current t-th genera-
tion. It is clear that, in each generation, the PSO uses these two factors to guide the
particles to evolve.

For the sake of convenience, we make the following denotations,

d1 = PpB(t)−X(t), (8)

d2 = PgB(t)−X(t). (9)

the update function of the PSO in Eqs (6) and (7) can be rewritten as follows,

X(t + 1) = X(t)+ wV(t)+ Z(t). (10)

where Z(t) is the hybrid uniform distribution.
We consider that, in each generation, the PSO tries to guide all particles to per-

form two jobs, local search in the space around PgB and PpB (exploitation), and
random search in the rest of the space (exploration). Here, we first give reason-
able definitions of the exploitation and exploration areas in the one-dimensional
search space according to the PSO model. Next, we provide exact calculations of the
probabilities of the exploitation and exploration jobs using the exact density func-
tion of X(t + 1). When we define the exploitation and exploration, we share the
same basic idea with [8], and improve them in three aspects. First, our definitions
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are quantified and can be calculated accurately. Second, our definitions can be illus-
trated and analyzed. Third, our definitions can help users understand the PSO and
tune the PSO in an easier way.

Definition 1 (Exploitation Area): The sampling area of a particle X for exploitation
is defined as

A(exploitation) = [(PpB −|d1|),(PpB + |d1|)]
⋃

[(PgB −|d2|),(PgB + |d2|)]. (11)

Definition 2 (Exploration Area): The sampling area of a particle X for exploration
is defined as

A(exploration) = R−A(exploitation). (12)

where R denotes a set of all real numbers.

Definition 3 (Exploitation Probability): The probability of a particle X landing in
A(exploitation) is defined as

P(exploitation) =
∫

A(exploitation)
fX (x)dx. (13)

Definition 4 (Exploration Probability): The probability of a particle X landing in
A(exploration) is defined as

P(exploration) =
∫

A(exploration)
fX (x)dx. (14)

For convenience, we use the abbreviations A(ita), A(ra), P(ita) and P(ra) for
A(exploitation), A(exploration), P(exploitation) and P(exploration), respectively. As
can be seen by Eqs. (13) and (14), there exists

P(ra)+ P(ita) = 1, (15)

so, we focus solely on the P(ita) sequences in the following sections.
As in Eq. (10), at time t, X(t) and wV (t) are constants, which only give Z(t)

translations. So, given the probability density function of Z(t), we can calculate the
exact one-step transition probability density function of X(t + 1) of every particle
in each dimension. The probability density function of Z(t) can be calculated by
assuming Z(t) to be Z for simplification. The fZ(z) can be calculated as illustrated
in Figure 1(a).

According to the above analyses, given the information of t − th generation, we
can calculate the exact P(ita) and P(ra). First, we consider the PSO without the
inertia velocity term for its facility in each generation. In this case, w = 0, so

X(t + 1) = X(t)+ Z(t). (16)
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We set the current position of a particle X(t) at the origin, and only consider one-
step movement of the particle in each dimension. The corresponding allocations of
the P(ita) and P(ra) are illustrated in detail in Figure. 1(b). The dark area is the
P(ita), and the rest of the area inside the trapezia is the P(ra).

Similarly, we consider the PSO with the inertia velocity term, as shown in
Eq. (10). The area of the sampling distribution of X(t + 1) will be shifted due to
the wV (t) term. The allocations of the P(ita) and P(ra) are illustrated in
Figure. 1(c).

As can be seen from these figures, the introduction of the inertia velocity term
results in the displacement of X(t + 1), which increases the probability of X(t + 1)
landing farther from X(t), makes the allocation change acutely, and facilitates the
exploration job.

4 Magnifier PSO

4.1 Magnification Transformation

Magnification transformation is a simple but very useful strategy, which is inspired
by the use of a convex lens to observe objects precisely. The essence of this trans-
formation is to set a magnifier around a point of interest, so that the range around
the point could be inspected more carefully and precisely. For example, this trans-
formation is regularly used in building screen magnifiers to enlarge the information
presented on a visual display in a computer system [31]. Transformation strategies
can be divided into two categories: Linear transformations and Non-Linear trans-
formations (which include Fisheye Zoom, Hyperbolic, 3D Pliable Surfaces) [38].
The essence of the SPSO is to use particles with best known positions to guide
the swarm to converge to a single optimum in the search space. However, the way
the best known individual affects other particles in the swarm is a critical issue.
This becomes even more acute when the problem to be solved has multiple optima
since the entire swarm or population could be potentially misled to many local op-
tima. In [29], attention was paid to the top part of the fitness function to eliminate
undesired local minima by a two-stage transformation. The original function was
changed in the stretching PSO to make search easier. Conversely, we will focus on
the bottom of the fitness landscape since the range around the best individual de-
serves a better check, and the probability of the actual global best particle lying
in that range is probably greater than others in the search space. The sketch map
of MPSO on a composition function is shown in Figure 2. In MPSO, the original
function is not changed; just the range mentioned above is enlarged via magnifi-
cation transformation, while keeping the velocity of particles unchanged. At this
speed, it will speed up the local search while maintaining MPSO’S global search
capability.
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Fig. 2 Sketch map of the MPSO on a composition test function

4.2 MPSO Algorithm

Based on the above discussion, we propose a magnifier operator for the SPSO. First,
in each generation, a range around the best individual is set up in each dimension.
If the particles in the swarm pass through the range in the next generation, the mag-
nifier operator would enlarge the range without changing the velocity of particles.
Thus the particles would have a better chance of landing in the range and check
the area around the current best individual more precisely. For those particles who
were already going to land in the range, we do not use the magnifier operator on
them, because they have already shown interest in the range. On the other hand, we
keep the velocity of the particles unchanged so that they are able to fly out of the
range after certain generations for maintaining the global search ability of the SPSO.
In MPSO, the position transition process of a particle x from the t-th to (t + 1)-
th generation in each dimension can be schematically expressed as four situations
in Figs. 3(a)- 3(d), respectively. For each situation, the position after the applica-
tion of the magnifier operator in the MPSO will be calculated by Eqs. (17) - (20),
respectively:

x̃(t + 1) = x(t + 1)− (2 ∗ r/s−2∗ r)
i f x(t) < L and x(t + 1) > R, (17)

x̃(t + 1) = x(t + 1)+ (2 ∗ r/s−2∗ r)
i f x(t) > R and x(t + 1) < L, (18)

x̃(t + 1) = x(t + 1)− [(R− x(t))/s− (R− x(t))]
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i f L < x(t) < R and x(t + 1) > R, (19)

x̃(t + 1) = x(t + 1)+ [(x(t)−L)/s− (x(t)−L)]
i f L < x(t) < R and x(t + 1) < L. (20)

In Figs. 3(a)- 3(d), xgB is the position of the current global best-fit particle, x(t) is
the position of the particle in the current t-th generation, x(t +1) is the position that
x is supposed to be in the next generation without the magnifier operation, x̃(t + 1)
is its actual position in the next generation after the magnifier operation has been
applied, and range is the interval containing the current best particle.

In Eqs. (17) - (20), r is the radius of the interval whose left and right bound-
aries are indicated by L and R; s is the scale which decides the on the degree of
magnification to enlarge the range.

In Figs. 3(a) and 3(b), the particle x(t) is supposed to pass through the range
completely, and the actual position x̃(t + 1) in our MPSO would be calculated by
Eqs. (17) and (18), respectively. In Figs. 3(c) and 3(d), the particle x(t) is supposed
to pass through the range partially, which denotes the particles already in the range.
The actual position x̃(t +1) can be computed using Eqs. (19) and (20), respectively.
Moreover, r should reduce along with the growth of generations, because we want
the best individuals to converge inside the range. So, we should fix an initial value
for r, from which it reduces linearly to zero. The iterative equation of r is expressed
by Equ. (21).

r = r ∗ (1− k/M), (21)

where k is the current iteration number and M is the maximum iteration number we
set.

Briefly, the MPSO algorithm has been summarized in Algorithm 1.

Algorithm 1. MPSO Algorithm
Step 1: Initialization. Assume c1 = 2, c2 = 2, and w be from 0.9 to 0.4 linearly.
Step 2: The state evolution of particles is iteratively updated according to Eqs. (4) and (5).
Step 3: Find the current best-fit particle XgB, and set a range around it in each dimension.
The radius of the range is decided by r.
Step 4: Magnification operation. For every particle except for XgB, for each situation men-
tioned in Figs. 3(a)- 3(d), update its position using equations (17)- (20), respectively.
Step 5: Termination. The algorithm can be terminated by a given maximum number of fit-
ness value evaluations or a preset solution accuracy. In our experiments, we adopt the for-
mer stop criterion, i.e. a maximum number of fitness value evaluations, which is 1,200,000
in this study. If the termination condition is not met, go to step 2.

Note that the basic idea about MPSO was also reported in [30] in advance.
Since, in real-life applications, the optimization cost is usually dominated by

evaluations of the objective function, the expected number of fitness evaluations is
retained as the main algorithm performance criterion.
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4.3 Analysis and Discussion

In each generation of the SPSO, we search the space according to Eqs. (4) and (5),
and find a current best position xgB. According to our analysis, SPSO does not make
a good use of the information from xgB which guides us to search the space around
it more carefully. So, the range around xgB is enlarged to give it a more precise
search, which in turn speed up the local search. On the other hand, the velocity
of particles remains unchanged during the iterations which guarantees the global
search capability.

The essence of MPSO is to adjust the particles to search the solution space more
pertinently. We increase the probability of particles landing into the range around
xgB, maintain the probability of particles flying far from xgB, and decrease the prob-
ability of particles wandering around the range containing xgB. In such a way, the
particles wandering around the range of xgB are forced to join the range to enhance
the local search. In other words, all the particles are given only two choices, either
they land very close to xgB to enhance the local search ability or land far from xgB

to keep the global search capability. So, MPSO simply makes the particles search
the space more pertinently and efficiently to improve both the convergent speed and
global search performance without adding much computational cost.

CPSO [43] has a similar mechanism of searching the range around the positions
xgB more carefully as MPSO. However, CPSO is more complex by the introduction
of the mutation and selection operations, has more computational cost and requires
much more memory. On the contrary, the MPSO has a very simple operation like
SPSO, which is easier to conduct and understand.

The stretching PSO in [29] makes an indirect search of the optima by introducing
a two-stage transformation, which changes the test function, and greatly increases
the total number of function evaluations. When the exact shape of the function is
unknown, this strategy will run into trouble.

In summary, our MPSO is simpler and more effective than the current improved
algorithms in SPSO.

5 Simulations

In order to compare the performance of MPSO and SPSO, thirteen benchmark func-
tions from the CEC′05 Test Functions [32] were chosen to be the objective func-
tions, as shown in Table 1. In our simulations, we adopt the number of fitness value
evaluations as a criterion of comparison. The stop criterion, i.e. the maximum num-
ber of fitness evaluations is set to 50,000 for this study. FEs denote the number of
the fitness evaluations. In addition, the MPSO and the SPSO have the same features
for the sake of comparison. They include a local ring topology, the constricted up-
date rules in Eqs. (1) and (2), 50 particles, non-uniform swarm initialization, and
boundary conditions wherein a particle is not evaluated when it exits the feasible
search space.
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Table 1 List of thirteen benchmark test functions and their parameters from CEC’05

Functions Exp. Search Space fbias Type
Shifted Sphere F1 [−100,100]D −450 unimodal

Shifted Schwefel’s Problem 1.2 F2 [−100,100]D −450 unimodal
Shifted Rotated High
Conditioned Elliptic F3 [−100,100]D −450 unimodal

Shifted Schwefel’s Problem 1.2
with Noise in Fitness F4 [−100,100]D −450 unimodal

Schwefel’s Problem 2.6
with Global Optimum on Bounds F5 [−100,100]D −310 unimodal

Shifted Rosenbrock F6 [−100,100]D 390 basic multimodal
Shifted Rotated Griewanks
Function without Bounds F7 [0,600]D −180 basic multimodal
Shifted Rotated Ackleys

Function with Global Optimum on Bounds F8 [−32,32]D −140 basic multimodal
Shifted Rastrigin’s Function F9 [−5,5]D −330 basic multimodal

Shifted Rotated Rastrigin F10 [−5,5]D −330 basic multimodal
Shifted Rotated Weierstrass F11 [−0.5,0.5]D 90 basic multimodal

Schwefel’s Problem 2.13 F12 [−π,π]D −460 basic multimodal
Expanded Extended Griewanks

plus Rosenbrocks Function (F8F2) F13 [−3,1]D −130 extended multimodal

The parameters involved in the proposed MPSO include s and r, which denote
the scale of the magnifier operator and the radius of the range in each dimension,
respectively. It is probably impossible to find a unique set of algorithm parameters
that work well in all cases because the best tradeoff between exploration and ex-
ploitation, depends strongly on the function being optimized. The best values of
these paprameters may vary for different problems. According to experiments, one
good combination is s = r = 0.1. So in the following experiments, we let s be 0.1
and let r reduce from 0.1 to 0 linearly along with the iteration number.

The performance comparisons between the proposed MPSO algorithm and SPSO
algorithm on thirteen typical benchmark test functions have been shown in Figs. 4
and 5. The convergent curves have been drawn from the averaged values of 20 in-
dependent runs. This way, these curves can demonstrate the stable performances
of the MPSO and SPSO algorithms completely and reliably. It can be observed
from these figures that our proposed MPSO algorithm has much greater speed
of convergence than that of the SPSO algorithms on most of the benchmark test
functions.

Furthermore, in order to verify the effectiveness and efficiency of our MPSO,
the statistical means and standard deviations of the obtained solutions of the thir-
teen benchmark test functions listed in Table 1 are provided in Table 2 by using
MPSO and SPSO, over 20 independent runs. FEs denote the number of fitness value
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Fig. 4 The averaged performances of the MPSO and SPSO on F1 −F8 in Table 1 on 20
independent runs with 40 particles in a swarm
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Fig. 5 The averaged performances of the MPSO and SPSO on F9 −F13 in Table 1 on 20
independent runs with 40 particles in a swarm

evaluations of the swarm. It can been seen from the averaged solutions that our
proposed MPSO outperforms the SPSO on most of the functions except the F3, F4

and F7 functions.
It can be concluded from the comparisons of performances between MPSO and

SPSO that the MPSO not only has a much faster convergence speed, but also has a
more accurate optimal solution than the SPSO on most of the thirteen benchmark
functions used in the simulations.
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Table 2 Statistical means and standard deviations of the solutions of thirteen benchmark test
functions, listed in Table 1, given by the MPSO and the SPSO over 20 independent runs

Func MPSO’s M ± S SPSO’s M ± S
F1 -449.9977± 0.0024 -449.9969 ± 0.0022
F2 8.7017e+003 ±2.5447e+003 8.8899e+003± 4.4882e+003
F3 1.8750e+007±6.3259e+006 1.8492e+007± 8.6569e+006
F4 3.8060e+004±8.5856e+003 3.6913e+004±8.4731e+003
F5 8.8096e+003±1.4042e+003 1.0019e+004±2.2322e+003
F6 866.4773 ± 438.7067 1.0046e+003±849.1794
F7 -178.8568±0.1176 -178.8719± 0.0748
F8 -119.0347± 0.0836 -119.0067± 0.0740
F9 -223.0912± 31.4580 -222.6391±23.8404
F10 -157.3146±31.4300 -154.7425±33.4417
F11 122.8890± 2.9707 123.2119± 2.2154
F12 4.4655e+004± 2.0974e+004 4.8664e+004 ± 2.1744e+004
F13 2.3361e+004±2.3592e+004 2.8910e+004± 1.8748e+004

6 Application of MPSO to Spam Detection

Spam, which is usually defined as unsolicited commercial email (UCE), unsolicited
bulk email (UBE), or uninterested email from the perspective of an individual email
user, has been considered as an increasingly serious problem to the infrastructure
of Internet. According to the statistics from ITU (International Telecommunication
Union), about 70% to 80% of the present emails sent over the Internet are spam.
They not only occupy valuable communications bandwidth and storage space, but
also threaten the network security when used as a carrier of viruses and malicious
codes. Meanwhile, spam decreases the receiver’s productivity considerably as pre-
cious time is wasted in tackling them.

Many solutions have been put into practice for solving spam problems so far.
[1] investigates how PSO algorithm can help select features relevant for spam email
classification. Here, we use the taxonomy of current methods to summarize these
solutions, i.e, simple approaches, intelligent approaches and hybrid approaches.
Simple approaches include munging, listing, aliasing and challenging. These tech-
niques are easy to implement but can be quite easily deceived. Intelligent approaches
play an increasingly important role in anti-spam in recent years because of the self-
learning ability and good performance. They include Naive Bayes, Support Vector
Machine (SVM) [42], Artificial Neural Network (ANN), Artificial Immune Sys-
tem (AIS) and DNA Computing. An anti-spam shield with one technique alone can
be easily intruded in practice. Consequently, several hybrid approaches by combin-
ing two or more techniques together have been proposed in an attempt to improve
overall performance whilst overcoming the shortcomings of each single approach.
SVM has already proved its superiority in pattern recognition for its generaliza-
tion performance. AIS has some desirable properties for spam detection, including
pattern recognition, dynamically changing coverage and noise tolerance. Thus, we
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utilize some of the characteristics of these algorithms in our algorithm. SVM is a
classification algorithm based on the Structural Risk Minimization principle from
statistical learning theory formulated by Vapnik. The goal of SVM is to find an op-
timal hyperplane for which the lowest true error can be guaranteed. A concentration
based feature construction (CFC) approach, inspired by the human immune system,
is employed to characterize each email through a two-element feature vector. In
the CFC approach, self concentration and none-self concentration are constructed
by using self gene library and none-self gene library, respectively, and are subse-
quently used to form a two-element concentration vector which characterizes the
email efficiently.

SVM is used as the classifier for spam classification. Two corpus used to test
our proposed CFC approaches are the PU1 corpus [9] and Ling corpus [10]. PU1
corpus consists of 1,099 messages, with spam rate 43.77%, while the Ling corpus
consists of 2,893 messages, with spam rate 16.63%. All the messages in both cor-
pus have header fields, attachment and HTML tags removed, leaving only subject
line and mail body text. In PU1, each token is mapped to a unique integer to ensure
the privacy of the content while keeping its original form in Ling. Each corpus is
divided into ten partitions with approximately equal amount of messages and spam
rate. The version with stop-word removal is used in our simulations. LIBSVM soft-
ware package is used for the implementation of SVM. Polynomial kernel with three
parameters, i.e., gamma, coef0 and degree, is adopted. Together with the cost pa-
rameter C, there are four parameters to be optimized. Proposed MPSO is employed
to tune the above four parameters. A corresponding test function model with four
parameters as input and classification accuracy as output is established. The classifi-
cation accuracy measured by 10-fold cross validation serves as the fitness evaluation
in optimization process of above PSOs. The PSOs terminate when the fitness of the
global best particle has not changed for 50 consecutive generations.

Comparisons of the performance of MPSO, Naive Bayesian, Linger-V and SVM-
IG are made as shown in Table 3, which shows the accuracy of the MPSO, Naive
Bayesian, Linger-V and SVM-IG on corpus PU1 and Ling. Naive Bayesian, Linger-
V and SVM-IG are reported in [9, 10, 19, 11]. Linger-V is a NN-based system
for automatic e-mail classification. For Naive Bayesian, the version of the corpus
adopted in the simulations is the original version. For Linger-V and SVM-IG, the
stemming versions are used. All these results are obtained by using 10-fold valida-
tion. For Naive Bayesian, 50 words with the highest mutual information scores are
selected. LINGER-V and SVM-IG use variance (V) and information gain (IG) as
feature selection criteria respectively and the 256 best scoring features are chosen.

Table 3 Performances of MPSO, Naı̈ve Bayesian (NB), Linger-V and SVM-IG on corpus
PU1 and Ling, using 10-fold cross validation

Data Sets MPSO (%) NB (%) Linger-V(%) SVM-IG(%)
PU1 99.09 91.07 93.45 93.18
Ling 99.82 96.40 98.2 96.85



296 Y. Tan and J. Zhang

It can be seen that the proposed MPSO can be used to tune the classifier to promote
the accuracy of the classification.

7 Conclusions

On the basis of the theoretical analysis of hybrid uniform distribution of PSO, a
variant, named as MPSO was proposed and implemented based on a magnification
transformation in this chapter. By enlarging the range around the best individual of
every generation and keeping the velocity of particles unchanged, the MPSO is char-
acterized by a better optimization solving capability and convergence performance
than the SPSO. The experimental results on thirteen benchmark test functions have
demonstrated that the proposed MPSO algorithm is able to speed up the evolution
process and improve the performance of the global optima greatly. The application
of MPSO on spam detection shows that the proposed MPSO gives a promising re-
sult. The better performance of MPSO is mostly credited to the magnification trans-
formation which increased the exploitation of the PSO around the best position of
the swarm. However, the developing of a PSO variant which can increase the ex-
ploitation and exploration simultaneously is not clear yet. Raising the efficiency of
the trade-off between exploitation and exploration in PSO is one area of our future
research interest.
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Improved Particle Swarm Optimization in
Constrained Numerical Search Spaces

Efrén Mezura-Montes and Jorge Isacc Flores-Mendoza

Abstract. This chapter presents a study about the behavior of Particle Swarm Op-
timization (PSO) in constrained search spaces. A comparison of four well-known
PSO variants used to solve a set of test problems is presented. Based on the informa-
tion obtained, the most competitive PSO variant is detected. From this preliminary
analysis, the performance of this variant is improved with two simple modifica-
tions related with the dynamic control of some parameters and a variation in the
constraint-handling technique. These changes keep the simplicity of PSO i.e. no ex-
tra parameters, mechanisms controlled by the user or combination of PSO variants
are added. This Improved PSO (IPSO) is extensively compared against the original
PSO variants, based on the quality and consistency of the final results and also on
two performance measures and convergence graphs to analyze their on-line beha-
vior. Finally, IPSO is compared against some state-of-the-art PSO-based approaches
for constrained optimization. Statistical tests are used in the experiments in order to
add support to the findings and conclusions established.

1 Introduction

Nowadays, it is common to find complex problems to be solved in diverse areas
of human life. Optimization problems can be considered among them. Different
sources of difficulty can be associated in their resolution e.g. a very high number of
possible solutions (very large search spaces), hard-to-satisfy constraints and a high
nonlinearity. Mathematical Programming (MP) offers a set of techniques to solve
different type of problems like numerical, discrete or combinatorial optimization
problems. This chapter focuses only on numerical (continuous) optimization pro-
blems. MP techniques are always the first option to solve optimization problems. In
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fact, they provide, under some specific conditions to be accomplished by the pro-
blem, convergence to the global optimum solution. However, for some real-world
problems, MP techniques are either difficult to apply (i.e. a problem transforma-
tion may be required), they cannot be applied or they get trapped in local optimum
solutions. Based on the aforementioned, the use of heuristics to solve optimiza-
tion problems has become very popular in different areas. Tabu Search [11], Simu-
lated Annealing [16] and Scatter Search [12] are examples of successful heuristics
commonly used by interested practitioners and researchers to solve difficult search
problems. There is also a set of nature-inspired heuristics designed for optimiza-
tion problem-solving and they comprise the area of Bio-inspired optimization. Two
main groups of algorithms can be distinguished: (1) Evolutionary algorithms (EAs)
[7] and (2) Swarm Intelligence algorithms (SIAs) [9]. EAs are based on the theory
of evolution and the survival of the fittest. A set of complete solutions of a problem
are represented and evolved by means of variation operators and selection and re-
placement processes. There are three main paradigms in this area: (1) Evolutionary
Programming [10], Evolution Strategies [37] and Genetic Algorithms [14]. There
are other important EAs proposed such as Genetic Programming [17] where solu-
tions are represented by means of nonlinear structures like trees and its aim is ori-
ented to symbolic optimization and Differential Evolution [34], designed to solve
numerical optimization problems by using vector differences as search directions
coupled with an EA framework.

On the other hand, SIAs emulate different social and cooperative behaviors found
in animals or insects. The two original paradigms are the following: (1) Particle
Swarm Optimization (PSO) [15] and (2) Ant Colony Optimization (ACO) [6]. PSO
is based on the cooperative behavior of bird flocks, whereas ACO models social
behaviors of ants e.g. the foraging behavior as to solve mainly combinatorial opti-
mization problems.

These Bio-Inspired Algorithms (BIAs), such as genetic algorithms, evolutionary
programming, evolution strategies, differential evolution and particle swarm opti-
mization, share some features. They work with a set of complete solutions for the
problem (usually generated at random). These solutions are evaluated in order to
obtain a quality measure, i.e. fitness value, for each one of them. A selection me-
chanism is then implemented as to select those solutions with a better fitness value.
These best solutions will be utilized to generate new solutions by using variation
operators. Finally, a replacement process occurs, where the size of the population
(which was increased) is trimmed as to always maintain a fixed population size.

In their original versions, BIAs are designed to solve unconstrained optimization
problems. Then, there is a considerable amount of research dedicated to designing
constraint-handling techniques to be added to BIAs. There are some classifications
for constraint-handling techniques based on the way they incorporate feasibility in-
formation in the quality of a given solution [4, 30]. For the purpose of this chapter,
a simple taxonomy is proposed, because the main goal of the current study is not
to design a novel constraint-handling mechanism. Instead, the aim is to propose the
analysis of the behavior of a BIA (PSO in this case) as a first step in designing a com-
petitive approach to solve Constrained Numerical Optimization Problems (CNOPs).
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As a result, the simplicity of PSO is maintained i.e. no additional mechanisms and/or
parameters controlled by the user are considered.

This chapter is organized as follows: Section 2 contains the statement of the
problem of interest and some useful optimization concepts. Section 3 introduces
PSO in more detail, considering its main elements and variants. A brief introduc-
tion to constraint-handling techniques is summarized in Section 4. In Section 5, the
approaches which use PSO to solve CNOPs are detailed and discussed. Section 6
presents the empirical comparison of PSO variants and a discussion of results. After
that, Section 7 details the modifications made to the most competitive PSO variant
obtained from the previous study, all of them in order to improve its performance
when solving CNOPs. An in-depth study of the behavior of this novel PSO and a
comparison against state-of-the-art PSO-based approaches to solve CNOPs are pre-
sented in Section 8. The chapter ends with a conclusion and a discussion of future
work in Section 9.

2 Constrained Optimization Problems

The optimization process consists of finding the best solution for a given problem
under certain conditions. As it was mentioned before, this chapter will only con-
sider numerical optimization problems in presence of constraints. Without loss of
generality a CNOP can be defined as to:

Find x which minimizes
f (x) (1)

subject to
gi(x) ≤ 0, i = 1, . . . ,m (2)

h j(x) = 0, j = 1, . . . , p (3)

where x ∈ IRn is the vector of solutions x = [x1,x2, . . . ,xn]T and each xi, i = 1, ...,n
is bounded by lower and upper limits Li ≤ xi ≤Ui which define the search space S ,
Fcomprises the set of all solutions which satisfy the constraints of the problems
and it is called the feasible region; m is the number of inequality constraints and
p is the number of equality constraints (in both cases, constraints could be linear
or nonlinear). Equality constraints are transformed into inequalities constraints as
follows:

∣
∣h j(x)

∣
∣− ε ≤ 0, where ε is the tolerance allowed (a very small value).

As multiobjective concepts will be used later in the chapter, the multiobjective
optimization problem will be also introduced. Without loss of generality, a Multi-
objective Optimization Problem (MOP) is defined as:

Find x which minimizes

f (x) = [ f1(x), f2(x), ..., fk(x)]T (4)

subject to
gi(x) ≤ 0, i = 1, ..,m (5)

h j(x) = 0, j = 1, ..., p (6)
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where x ∈ IRn is the vector of solutions x = [x1,x2, ...,xn]T and each xi, i = 1, ...,n
is bounded by lower and upper limits Li ≤ xi ≤Ui which define the search space S ,
F is the feasible region; m is the number of inequality constraints and p is the num-
ber of equality constraints (in both cases, constraints could be linear or nonlinear).

A vector u= (u1, ...,uk) is said to dominate another vector v = (v1, ...,vk) (denoted
by u � v) if and only if u is partially less than v, i.e. ∀i ∈ {1, ...,k}, ui ≤ vi ∧∃i ∈
{1, ...k} : ui < vi.

3 Particle Swarm Optimization

Kennedy and Eberhart [15] proposed PSO, which is based on the social behavior of
bird flocks. Each individual “i”, called particle, represents a solution to the optimiza-
tion problem i.e. a vector of decision variables xi. The particle with the best fitness
value is considered the leader of the swarm (population of particles), and guides the
other members to promising areas of the search space. Each particle is influenced on
its search direction by cognitive (i.e. its own best position found so far, called xpbesti)
and social (i.e. the position of the leader of the swarm named xgBest) information. At
each iteration (generation) of the process, the leader of the swarm is updated. These
two elements: xpbesti and xgBest , besides the current position of particle “i” xi, are
used to calculate its new velocity vi(t +1) based on its current velocity vi(t) (search
direction) as follows:

vi(t + 1) = vi(t)+ c1r1(xpbesti −xi)+ c2r2(xgBest −xi). (7)

where c1 and c2 are acceleration constants to control the influence of the cognitive
and social information respectively and r1, r2 are random real numbers between 0
and 1 generated with an uniform distribution.

After each particle updates its corresponding velocity, the flight formula is used
to update its position:

xi(t + 1) = xi (t)+ vi(t + 1). (8)

where xi(t) is the current position of the particle, xi(t +1)is the new position of this
particle and vi(t + 1) is its recently updated velocity (search direction).

Based on Equation 7, two main different approaches have been proposed to up-
date the velocity of a particle. The aim is to improve the usefulness of the search di-
rection generated and to avoid premature convergence: (1) PSO with inertia weight
and (2) PSO with constriction factor.

3.1 PSO with Inertia Weight

Proposed by Shi and Eberhart [38], the inertia weight was added to the velocity
update formula (Equation 7) as a mechanism to control PSO’s exploration and
exploitation capabilities. Its goal is to control the influence of the previous velocity
of a given particle. The inertia weight is represented by w and scales the value of the
current velocity vi(t) of particle “i”. A small inertia weight value promotes local ex-
ploration, whereas a high value promotes global exploration. Shi and Eberhart [38]
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suggested w=0.8 when using PSO to solve unconstrained optimization problems.
The modified formula to update the velocity of a particle by using the inertia weight
value is the following:

vi(t + 1) = wvi(t)+ c1r1(xpbesti −xi)+ c2r2(xgBest −xi) (9)

3.2 PSO with Constriction Factor

With the aim of eliminating velocity clamping and encouraging convergence, Clerc
and Kennedy [3] proposed, instead of a inertia weight value, a constriction coe-
fficient. This constriction factor is represented by k. Unlike the inertia weight, the
constriction factor affects all values involved in the velocity update as follows:

vi(t + 1) = k[vi(t)+ c1r1(xpbesti −xi)+ c2r2(xgBest −xi)] (10)

3.3 Social Network Structures

There are two basic PSO variants depending of the social network structure used
[9]: (1) global best and (2) local best PSO. In the global best variant the star so-
cial structure allows each particle to communicate with all the remaining particles
in the swarm, whereas in the local best PSO, the ring social structure allows each
particle to communicate only with those particles in its neighborhood. Therefore,
in the global best PSO, there is a unique leader of the swarm. On the other hand,
in local best PSO, there is a leader for each neighborhood. There are differences
expected in the behavior of these two PSO variants due to the way particles commu-
nicate among themselves. In global best PSO a faster convergence is promoted as
the probability of being trapped in local optima is increased. However, in local best

Begin
GEN = 0
Generate a swarm of random solutions (xi), i = 1,2, ...,SWARM SIZE.
Initialize for each particle, xpbesti = xi , and vi(t) = 0.
Evaluate the fitness of each particle in the swarm.
Do

Select the leader (xgBest) of the swarm.
For each particle, update its velocity with (7).
For each particle, update its position with (8).
Evaluate the fitness of the new position for each particle.
Update the xpbesti (memory) value for each particle.
GEN=GEN+1

Until GEN = Gmax
End

Fig. 1 Global best PSO pseudocode
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PSO, a slower convergence usually occurs while a better exploration of the search
space is encouraged.

A pseudocode for the global best PSO is presented in Figure 1.
A pseudocode for the local best PSO is presented in Figure 2.

Begin
GEN = 0
Generate a swarm of random solutions (xi) i = 1,2, ...,SWARM SIZE.
Divide the swarm in n neighborhoods.
Assign equal number of particles to each neighborhood.
Initialize for each particle, xpbesti = xi, and vi(t) = 0.
Do

Evaluate the fitness of the particle in each neighborhood.
Select the leader (xlBesti ) of each neighborhood.
For each particle, update its velocity with (7).

by using the corresponding leader of each neighborhood xlBesti
For each particle, update its position with (8).
Evaluate the fitness of the new position for each particle.
Update the xpbesti (memory) value for each particle.
GEN=GEN+1

Until GEN= Gmax
End

Fig. 2 Local best PSO pseudocode

4 Constraint-Handling

As it was mentioned in the introduction to the chapter, EAs and SIAs were origi-
nally designed to solve unconstrained optimization problems. Constraint-handling
techniques are required to add feasibility information in the fitness calculation of
a solution [4, 30]. Roughly, constraint-handling techniques can be divided in two
groups:

1. Those based on the fitness penalization of a solution i.e. a combination of the ob-
jective function value (Equation 1) and the sum of constraint violation (Equations
2 and 3) .

2. Those based on the separated use of the objective function value (Equation 1)
and the sum of constraint violation (Equations 2 and 3) in the fitness value of a
solution.

In the first group penalty functions are considered, which is in fact the most
popular constraint-handling mechanism. They transform a constrained problem into
an unconstrained problem by punishing, i.e. decreasing, the fitness value of in-
feasible solutions in such a way that feasible solutions are preferred in the selec-
tion/replacement processes. However, an important drawback is the definition of
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penalty factor values, which determine the severity of the penalization. If the penalty
is too low, the feasible region may never be reached. On the other hand, if the penalty
is too high, the feasible region will be reached so fast, mostly at random and the
probability of getting trapped in local optimum might be very high [4].

The second group includes constraint-handling techniques based on Deb’s feasi-
bility rules [5], Stochastic Ranking [35], multiobjective concepts [28], lexicographic
ordering [36], the α-constrained method [40], Superiority of Feasible points [33]
among others.

Different search engines have been used on the above mentioned approaches:
Genetic Algorithms [5, 28], Evolution Strategies [35], Differential Evolution [40].
However, to the best of the authors’ knowledge, the research usually focuses on
adapting a constraint-handling mechanism to a given search engine, but the studies
to analyze the performance of a search engine in constrained search spaces are
scarce [29].

5 Related Work

This section presents PSO-based approaches proposed to solve CNOPs. Toscano
and Coello [42] proposed a global best PSO with inertia weight coupled with a
turbulence (mutation) operator, which affects the velocity vector of a particle as
follows: vi = vΦ

j (t)+ r3, where vi is the current velocity of particle i, vΦ
j (t) is the

current velocity of its nearest neighbor and r3 is a random value. The use of this
turbulence operator is calculated with a dynamic adaptation approach. The idea is
to use more of the turbulence operator in the first part of the search. The constraint-
handling technique used was a group-2 approach [5].

Parsopoulos and Vrahatis [32] used their Unified Particle Swarm Optimization
(UPSO) to solve CNOPs. The UPSO combines the exploration and exploitation
abilities of two basic PSO variants (local best and global best together, both with
constriction factor). The scheme of UPSO is the following: A weighted sum of
the two velocity values (from the local and global variants) is computed, where a
parameter (0 ≤ u ≤ 1) represents the unification factor and controls the influence of
each variant in the final search direction. Finally a typical flight formula with this
unified velocity is used to update the position of a particle. A group-1 constraint-
handling technique i.e. static penalty function, was used in this approach where the
number of violated constraints as well as the amount of constraint violation were
taken into account.

Liang and Suganthan [23] proposed a PSO-based approach to solve CNOPs by
using dynamic multi-swarms (DMS-PSO). The DMS-PSO was implemented using
a local best PSO with inertia weight, where the size and particles of the sub-swarms
change periodically. Two concepts are modified from the original PSO in DMS-
PSO: (1) Instead of just keeping the best position found so far, all the best positions
reached for a particle are recorded to improve the global search and (2) a local
search mechanism, i.e. sequential quadratic programming method, was added. The
constraints of the problems are dynamically assigned, based on the difficulty to be
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satisfied for each sub-swarm. Moreover, one sub-swarm will optimize the objective
function. As the function and constraints are handled separately, they use a group-2
constraint-handling. The sequential quadratic programming method is applied to the
pbest values (not to the current positions of the particles) as to improve them.

Li, Tian and Kong [21] solved CNOPs by coupling an inertia weight local best
PSO with a mutation strategy. Their constraint-handling mechanism belongs to
group 2 and was based on the superiority of feasible points [33]. The mutation stra-
tegy used a diversity metric for population diversity control and for convergence im-
provement. When the population diversity was low (based on a defined value), the
swarm is expanded through the mutation strategy. This mutation strategy consisted
of a random perturbation applied to the particles in the swarm. Li, Tian and Min
[22] used a similar constraint-handling mechanism, but without mutation strategy
and using instead a global best PSO variant to solve Bilevel Programming Problem
(BLPP).

Lu and Chen [25] implemented a group-2 constraint-handling technique by using
a global best PSO with inertia weight and velocity restriction. The original problem
(CNOP) is transformed into a bi-objective problem using a Dynamic-Objective Stra-
tegy (DOM). DOM consists of the following: if a particle is infeasible, its unique
objective is to enter the feasible region. On the other hand, if the particle is feasible
its unique objective is now to optimize the original objective function. This process
is dynamically adjusted according to the feasibility of the particle. The bi-objective
problem is defined as: minimize F(x) = (φ(x), f (x)). φ(x) is the sum of constraint
violations and f (x) is the original function objective. Based on the feasibility of
xgBest and xpbesti , the values of important parameters like c1 and c2 are defined to
promote feasible particles to remain feasible. The formula to update the velocity is
modified in such a way that the positions of the pbest and gbest are mixed in the
search direction defined.

Cagnina, Esquivel and Coello [2] used a group-2 constraint-handling technique,
Deb’s rules [5], in a combination of global-local best PSO particle swarm opti-
mizer to solve CNOPs. The velocity update formula and also the flight formula are
changed as to include information of the global and local best leaders and to use a
Gaussian distribution to get the new position for the particle, respectively. Further-
more, a dynamic mutation operator is added for diversity promotion in the swarm.

Wei and Wang [43] presented a global best PSO with inertia weight which trans-
formed the problem, as in [25], into a bi-objective problem (group-2 constraint-
handling). The original objective function was the second objective and the first
one was the degree of constraint violation: min(δ (x), f (x)). Deb’s feasibility rules
were used as selection criteria. A new three-parent crossover operator (TPCO) is
also added to the PSO. Finally, a dynamic adaptation for the inertia weight value
was included to encourage a correct balance between global and local search.

Krohling and dos Santos Coelho [18] proposed a global best PSO with constriction
factor and a co-evolutionary approach to solve CNOPs. This problem is transformed
into a min-max problem. The Lagrange-based method (group-1 constraint-handling)
is used to formulate the problem in terms of a min-max problem. Two swarms are
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used: The first one moves in the space defined by the variables of the problem, whereas
the second swarm optimizes the Lagrange multipliers.

He, Prempain and Wu [13] proposed a ‘fly-back’ mechanism added to a global
best PSO with inertia weight to solve CNOPs. In their approach, the authors also
solved mixed (i.e. continuous-discrete) optimization problems. Discrete variables
were handled by a truncation mechanism. The initial swarm must be always located
in the feasible region of the search space, which may be a disadvantage when dealing
with problems with a very small feasible region. The ‘fly-back’ mechanism keeps
particles from flying out of the feasible region by discarding those flights which
generate infeasible solutions. Then, the velocity value is reduced and a new flight is
computed.

Based on the related work, some interesting modifications were found regarding
PSO for solving CNOPs: (1) Mutation, crossover operators or even local search are
added to PSO to promote diversity in the swarm [2, 21, 23, 42, 43], (2) there is a
tendency to mix global and local best PSO variants into a single one [2, 32], (3)
the original CNOP is transformed into a multiobjective problem [23, 25, 43], and
finally, (4) the original velocity update and flight formulas are modified [2, 25].

6 Motivation and Empirical Comparison

Unlike the previous research, the motivation of this work is two-fold: (1) to acquire
more knowledge about the behavior of PSO in its original variants when solving
CNOPs and (2) after considering this knowledge as a first step of design, to propose
simple modifications to PSO in order to get a competitive approach to solve CNOPs
by maintaining PSO’s simplicity.

In this section, two original PSO variants (inertia weight and constriction factor)
combined with two social network structures (star and ring) are compared. In the
remaining of this chapter, each combination of variant-social network will be called
as variant. They are selected based on the following criteria:

• They are the most used in the approaches reported in the specialized literature on
numerical constrained optimization (Section 5).

• As mentioned in the beginning of this Section, the motivation of this work is to
acquire knowledge about the behavior of PSO in its original variants i.e. variants
without additional mechanisms.

The four variants are: (1) global best PSO with inertia weight, (2) global best PSO
with constriction factor, (3) local best PSO with inertia weight and (4) local best
PSO with constriction factor.

In order to promote a fair analysis of the four PSO variants and not add extra
parameters to be fine-tuned, a group-2 (objective function and constraints handled
separately) parameter-free constraint-handling technique is chosen for all the vari-
ants. This technique consists of a set of three feasibility rules proposed by Deb [5].
They are the following: (1) If two solutions are feasible, the one with the best value
of the objective function is preferred, (2) if one solution is feasible and the other one
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is infeasible, the feasible one is preferred and (3) if two solutions are infeasible, the
one with the lowest normalized sum of constraint violation is preferred.

24 test problems (all minimization problems) were taken from the specialized
literature [24] and used to test the performance of the four PSO variants. These
problems are an extension of the well-known benchmark used to test BIAs in cons-
trained search spaces. In fact, these problems were used to evaluate state-of-the-art
approaches in the IEEE Congress on Evolutionary Computation (CEC 2006). De-
tails of the problems can be found in [24]. A summary of their features can be found
in Table 1.

As can be noted, the problems have different characteristics such as
dimensionality, type of objective function, type and number of constraints and ac-
tive constraints at the optimum (i.e. the solution lies in the boundaries between the

Table 1 Details of the 24 test problems. “n” is the number of decision variables, ρ = |F |/ |S|
is the estimated ratio between the feasible region and the search space, LI is the number of
linear inequality constraints, NI the number of nonlinear inequality constraints, LE is the
number of linear equality constraints and NE is the number of nonlinear equality constraints.
a is the number of active constraints at the optimum.

Prob. n Type of function ρ LI NI LE NE a

g01 13 quadratic 0.0111% 9 0 0 0 6
g02 20 nonlinear 99.9971% 0 2 0 0 1
g03 10 polynomial 0.0000% 0 0 0 1 1
g04 5 quadratic 52.1230% 0 6 0 0 2
g05 4 cubic 0.0000% 2 0 0 3 3
g06 2 cubic 0.0066% 0 2 0 0 2
g07 10 quadratic 0.0003% 3 5 0 0 6
g08 2 nonlinear 0.8560% 0 2 0 0 0
g09 7 polynomial 0.5121% 0 4 0 0 2
g10 8 linear 0.0010% 3 3 0 0 6
g11 2 quadratic 0.0000% 0 0 0 1 1
g12 3 quadratic 4.7713% 0 1 0 0 0
g13 5 nonlinear 0.0000% 0 0 0 3 3
g14 10 nonlinear 0.0000% 0 0 3 0 3
g15 3 quadratic 0.0000% 0 0 1 1 2
g16 5 nonlinear 0.0204% 4 34 0 0 4
g17 6 nonlinear 0.0000% 0 0 0 4 4
g18 9 quadratic 0.0000% 0 12 0 0 6
g19 15 nonlinear 33.4761% 0 5 0 0 0
g20 24 linear 0.0000% 0 6 2 12 16
g21 7 linear 0.0000% 0 1 0 5 6
g22 22 linear 0.0000% 0 1 8 11 19
g23 9 linear 0.0000% 0 2 3 1 6
g24 2 linear 79.6556% 0 2 0 0 2
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feasible and infeasible regions). Therefore, they present different challenges to the
algorithms tested.

This first experiment is designed as follows: 30 independent runs were computed
per PSO variant per test problem. Statistical results (best, mean and standard devia-
tion) were calculated from the final results. They are presented, for the first twelve
problems in Table 2 and for the last twelve in Table 3. The parameters used in
this experiment are the following: 80 particles and 2000 generations (160,000 to-
tal evaluations), c1 = 2.7 and c2 = 2.5 for all PSO variants. For the two local best
variants 8 neighborhoods were used, w = 0.7 for both inertia weight variants and
k = 0.729 [3] for both constriction factor variants. The tolerance for equality cons-
traints was set to ε =0.0001 for all variants.

These parameter values were defined by a trial and error process. The population
size was varied from low values (40) to higher values (120), however no improve-
ment was reported. c1 and c2 values required unusually higher values to provide
competitive results. w and k values were taken as recommended in previous research
[39, 38, 3] where the performance was the most consistent. In fact, PSO presented
a high sensitivity to w and k values. Higher or lower values for these parameters
decreased the performance of the variants, which, at times, were unable to reach the
feasible region of the search space in some problems, despite slightly improving the
results in other test functions.

Lower Li and upper Ui limits for each decision variable i are handled in the flight
formula (Equation 8) as follows: After the flight, if the new value xi(t +1) is outside
the limits, the velocity value vi(t + 1) is halved until the new position is within the
valid limits. In this way, the search direction is maintained.

The results will be discussed based on quality and consistency. Quality is mea-
sured by the best solution found from the set of 30 independent runs. Consistency
is measured by the mean and standard deviation values, i.e. a mean value closer to
the best known solution and a standard deviation value close to zero indicate a more
consistent performance of the approach.

In order to have more statistical support, nonparametric statistical tests were
applied to the samples presented in Tables 2 and 3. Kruskal-Wallis test was applied
to pair of samples with the same size (30 runs) and Mann-Whitney test was applied
to samples with different sizes (<30 runs) as to verify if the differences shown in
the samples are indeed significant. Test problems where no feasible solutions were
found for all the algorithms e.g. g20 and g22, or when just the one variant found
feasible results e.g. g13 and g17 are not considered in these tests. The results ob-
tained confirmed the differences shown in Tables 2 and 3, except in the following
cases, where the performance of the compared approaches is considered similar in
problems g03 and g11 for the global best PSO with inertia weight and the local best
PSO with constriction factor, in problem g11 for the local best PSO with inertia
weight and the local best PSO with constriction factor and in problems g02, g03,
g08 and g24 for both (global and local) constriction factor variants.

The results in Tables 2 and 3 suggest that the local best PSO with constriction
factor (last column in Tables 2 and 3) provides the best performance overall. With
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Table 2 Statistical results of 30 independent runs on the first 12 test problems for the four
PSO variants compared.“(n)” means that in only “n” runs feasible solutions were found.
Boldface remarks the best result per function. “-” means that no feasible solutions were found
in any single run.

STATISTICS FROM 30 INDEPENDENT RUNS FOR THE PSO VARIANTS

Problem & global best global best local best local best
best-known (w=0.7) (k=0.729) (w=0.7) (k=0.729)

solution
g01 Best -14.961 -14.951 -14.999 -15.000

-15.000 Mean -11.217 -11.947 -12.100 -13.363
St. Dev. 2.48E+00 1.81E+00 3.05E+00 1.39E+00

g02 Best -0.655973 -0.634737 -0.614785 -0.790982
-0.803619 Mean -0.606774 -0.559591 -0.543933 -0.707470

St. Dev. 2.64E-02 3.03E-02 2.00E-02 5.92E-02
g03 Best -0.080 -0.019 -0.045 -0.126

-1.000 Mean -9.72E-03 -1.72E-03 -1.00E-02 -1.70 E-02
St. Dev. 1.60E-02 4.64E-03 1.20E-02 2.70E-02

g04 Best -30655.331 -30665.439 -30665.539 -30665.539
-30665.539 Mean -30664.613 -30664.606 -30665.539 -30665.539

St. Dev. 5.70E-01 5.40E-01 7.40E-012 7.40E-012
g05 Best - - 5126.646 (18) 5126.496

5126.498 Mean - - 6057.259 5140.060
St. Dev. - - 232.25E+00 15.52E+00

g06 Best -6959.517 -6959.926 -6958.704 -6961.814
-6961.814 Mean -6948.937 -6948.121 -6941.207 -6961.814

St. Dev. 6.31E+00 6.41E+00 9.05E+00 2.67E-04
g07 Best 43.731 38.916 41.747 24.444

24.306 Mean 68.394 64.186 59.077 25.188
St. Dev. 40.69E+00 17.15E+00 7.65E+00 5.9E-01

g08 Best -0.095825 -0.095825 -0.095825 -0.095825
-0.095825 Mean -0.095824 -0.095825 -0.095825 -0.095825

St. Dev. 1.75E-07 7.25E-08 4.23E-17 4.23E-17
g09 Best 692.852 693.878 696.947 680.637

680.630 Mean 713.650 708.274 728.730 680.671
St. Dev. 12.96E+00 10.15E+00 15.80E+00 2.10E-02

g10 Best 8024.273 8769.477 8947.646 7097.001
7049.248 Mean 8931.263 9243.752 9247.134 7641.849

St. Dev. 39.0.6E+01 22.94E+01 18.4.7E+01 36.14E+01
g11 Best 0.749 0.749 0.750 0.749

0.749 Mean 0.752 0.755 0.799 0.749
St. Dev. 9.27E-03 1.40E-02 5.70E-02 1.99E-03

g12 Best -0.999 -0.999 -0.999 -1.000
-1.000 Mean -0.999 -0.999 -0.999 -1.000

St. Dev. 6.96E-07 5.13E-07 2.59E-05 0.00E+00
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Table 3 Statistical results of 30 independent runs on the last 12 test problems for the four
PSO variants compared.“(n)” means that in only “n” runs feasible solutions were found.
Boldface remarks the best result per function. “-” means that no feasible solutions were found
in any single run.

STATISTICS FROM 30 INDEPENDENT RUNS FOR THE PSO VARIANTS

Problem & global best global best local best local best
best-known (w=0.7) (k=0.729) (w=0.7) (k=0.729)

solution
g13 Best - - - 8.10E-02

0.053949 Mean - - - 0.45
St. Dev. - - - 2.50E-01

g14 Best - - -41.400 (9) -41.496 (3)
-47.764 Mean - - -38.181 -40.074

St. Dev. - - 2.18E+00 1.45E+00
g15 Best - - 967.519 (5) 961.715

961.715 Mean - - 970.395 961.989
St. Dev. - - 2.62E+00 3.9E-01

g16 Best -1.904 -1.903 -1.904 -1.905
-1.905 Mean -1.901 -1.901 -1.904 -1.905

St. Dev. 1.46E-03 1.37E-03 1.51E-04 5.28E-11
g17 Best - - - 8877.634

8876.981 Mean - - - 8932.536
St. Dev. - - - 29.28E+00

g18 Best - - -0.450967 (3) -0.866023
-0.865735 Mean - - -0.287266 -0.865383

St. Dev. - - 1.40E-01 8.65E-04
g19 Best 36.610 36.631 36.158 33.264

32.656 Mean 42.583 43.033 39.725 39.074
St. Dev. 7.05E+00 4.30E+00 2.30E+00 6.01E+00

g20 Best - - - -
0.188446 Mean - - - -

St. Dev. - - - -
g21 Best - - 800.275 (3) 193.778

193.778 Mean - - 878.722 237.353
St. Dev. - - 10.64E+01 35.29E+00

g22 Best - - - -
382.902 Mean - - - -

St. Dev. - - - -
g23 Best -3.00E-02 (5) -228.338 (20) -335.387 (20) -98.033 (16)

-400.003 Mean 107.882 -20.159 159.312 134.154
St. Dev. 14.03E+01 13.23E+01 25.47E+01 17.99E+01

g24 Best -5.507 -5.507 -5.508 -5.508
-5.508 Mean -5.507 -5.507 -5.508 -5.508

St. Dev. 2.87E-04 1.87E-04 9.03E-16 9.03E-16
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respect to the global best PSO with inertia weight, the local best PSO with constric-
tion factor obtains results with better quality and consistency in twenty test problems
(g01, g02, g04, g05, g06, g07, g08, g09, g10, g12, g13, g14, g15, g16, g17, g18, g19,
g21, g23 and g24). With respect to the local best PSO with inertia weight, the local
best PSO with constriction factor provides better quality and consistency results in
sixteen problems (g01, g02, g05, g06, g07, g09, g10, g12, g13, g14, g15, g16, g17,
g18, g19 and g21). Finally, with respect to the global best PSO with constriction
factor, the local best PSO with constriction factor presents better quality and con-
sistency results in seventeen problems (g01, g04, g05, g06, g07, g09, g10, g11, g12,
g13, g14, g15, g16, g17, g18, g19 and g21).

Table 4 Comparison of results provided by two state-of-the-art PSO-based approaches and
the two local best PSO variants. “(n)” means that in only “n” runs feasible solutions were
found. Boldface remarks the best result per function. “-” means that no feasible solutions
were found in any single run.

PSO VARIANTS AND STATE-OF-THE-ART ALGORITHMS

Problem & local best local best Toscano Lu Cagnina
best-known (w = 07) (k = 0.729) & Coello & Chen et al.

solution [42] [25] [2]

g01 Best -14.999 -15.000 -15.000 -15.000 -15.000
-15.000 Mean -12.100 -13.363 -15.000 -14.418 -15.000

g02 Best -0.614785 -0.790982 -0.803432 -0.664 -0.801
-0.803619 Mean -0.543933 -0.707470 -0.790406 -0.413 0.765

g03 Best -0.045 -0.126 -1.004 -1.005 -1.000
-1.000 Mean -1.00E-02 -1.70 E-02 -1.003 -1.002 -1.000

g04 Best -30665.539 -30665.539 -30665.500 -30665.659 -30665.659
-30665.539 Mean -30665.539 -30665.539 -30665.500 -30665.539 -30665.656

g05 Best 5126.646 (18) 5126.496 5126.640 5126.484 5126.497
5126.498 Mean 6057.259 5140.060 5461.081 5241.054 5327.956

g06 Best -6958.704 -6961.814 -6961.810 -6961.813 -6961.825
-6961.814 Mean -6941.207 -6961.814 -6961.810 -6961.813 -6859.075

g07 Best 41.747 24.444 24.351 24.306 24.400
24.306 Mean 59.077 25.188 25.355 24.317 31.485

g08 Best -0.095825 -0.095825 -0.095825 -0.095825 -0.095825
-0.095825 Mean -0.095825 -0.095825 -0.095825 -0.095825 -0.095800

g09 Best 696.947 680.637 680.638 680.630 680.636
680.630 Mean 728.730 680.671 680.852 680.630 682.397

g10 Best 8947.646 7097.001 7057.900 7049.248 7052.852
7049.248 Mean 9247.134 7641.849 7560.047 7049.271 8533.699

g11 Best 0.750 0.749 0.749 0.749 0.749
0.749 Mean 0.799 0.749 0.750 0.749 0.750
g12 Best -0.999 -1.000 -1.000 -1.000 -1.000

-1.000 Mean -0.999 -1.000 -1.000 -1.000 -1.000
g13 Best - 8.10E-02 0.068 0.053 0.054

0.053949 Mean - 0.45 1.716 0.681 0.967
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The local best PSO with inertia weight provides the “best” quality result in one
problem (g23).

The global best PSO with constriction factor obtains more consistent results in
one problem (g23). Problems g20 and g22 could not be solved by any PSO variant;
these problems have several equality constraints and are the most difficult to solve
[23].

Comparing the global best variants (third and fourth columns in Tables 2 and 3)
with respect to those local best PSOs (fifth and sixth columns in Tables 2 and 3) the
results suggest that the last ones perform better in this sample of constrained search
spaces i.e. the global best variants have problems finding the feasible region in some
problems where the local best variants indeed find it (g05, g14, g15, g18 and g21).
Finally, when comparing inertia weight variants (third and fifth columns in Tables
2 and 3) with respect to constriction factor variants (fourth and sixth columns in
Tables 2 and 3), there is no clear superiority. However, both variants (inertia weight
and constriction factor) perform better coupled with local best PSO (ring social
network).

The overall results from this first experiment suggest that the local best PSO with
constriction factor is the most competitive approach (based on quality and consis-
tency) in this set of test CNOPs. Besides, some important information regarding the
behavior of PSO in constrained search spaces was obtained and discussed.

As an interesting comparison, in Table 4 the two most competitive PSO variants
from this experiment (local best PSO with constriction factor and inertia weight) are
compared with three state-of-the-art PSO-based approaches. The results show that
these two variants are competitive in some test problems (g04, g08, g11 and g12).
However, they are far from providing a performance like those presented by the
state-of-the-art algorithms. Therefore, the most competitive PSO variant (local best
PSO with constriction factor) will be improved in the next Section of this chapter.

7 Simple Modifications to the Original PSO

Besides the results presented, the experiment in the previous Section provided valua-
ble information regarding two issues related to PSO for constrained search spaces.
(1) The local best PSO with constriction factor presents a lower tendency to con-
verge prematurely when solving CNOPs and (2) all PSO variants compared have
problems dealing with test functions with equality constraints. Therefore, two sim-
ple modifications are proposed to this most competitive variant to improve its per-
formance. This new version will be called Improved PSO (IPSO).

7.1 Dynamic Adaptation

Based on the velocity update formula (Eq. 10) two parameters were detected as the
most influential in this calculation: (1) k, which affects the entire value of the velo-
city and (2) c2, which has more influence in the calculation because, most of the
time, the pbest value is the same as the current position of the particle i.e. this term
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in Eq. 10 may be eliminated, whereas the gbest value is different from the position
of the particle in all the search process (except for the leader). Moreover, PSO has
a tendency to prematurely converge [9]. Then, a dynamic (deterministic) adaptation
mechanism [8] for these two parameters k and c2 is proposed to start with low velo-
city values for some particles and to increase these values during the search process
as follows: A dynamic value for k and c2, based on the generation number will be
used for a (also variable) percentage of particles in the swarm. The remaining parti-
cles in the swarm will use the fixed values for these two parameters. It is important
to note that, at each generation, the particles which will use the dynamic values will
be different e.g. a given particle may use the fixed values at generation “t” and the
dynamic values at generation “t + 1”. The aim is to let, at each generation, some
particles (those which use the dynamic values) to move at a slower velocity with
respect to the remaining ones. The expected behavior is to slow down convergence
and, as a result, better performance i.e. better quality and consistent results.

Based on the strong tendency of PSO to converge fast, a dynamic variation was
chosen in such a way that in the first part of the process (half of total genera-
tions) k and c2 values would remain low, and in the second half of the process they
would increase faster. Then, the following function was chosen: f (y) = y4, where
y = GEN/Gmax. This function is presented in Figure 3, where it is noted that very
low values are generated before 0.5 in the x-axis i.e. in the first half of the search
process. This means that the values for the adapted parameters will be also low.
However, in the second part of the search (0.5 to 1.0) the parameter values increase
faster to reach their original values.

The expressions to update both parameter values at each generation “t + 1” are
defined as follows: kt+1 = k · f (y) and ct+1

2 = c2 · f (y), where k and c2 are the static
values for these parameters. The initial values are small values close to zero e.g.

Fig. 3 Function used to dynamically adapt k and c2 parameters. In the first half of the search
low values are generated, while in the second half the values increase very fast.
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Fig. 4 Oscillatory percentage of particles that will use the fixed values for k and c2. The
remaining particles will use the dynamic values.

4E-13, and the values at the last generation will be exactly the fixed values (k =
0.729 and c2 = 2.5).

As it was mentioned before, the number of particles which will use these dynamic
values is also dynamic. In this case, based on observations considering the best
performance, an oscillatory percentage of particles was the most suited. Therefore, a
probability value is computed as to decide if a given particle will use either the static
or the dynamic values: p = k+ (sin(4πy))

10.3 , where k is the fixed value for this parameter
(k = 0.729) and y = GEN/Gmax. The constant value 10.3 defines the maximum and
minimum values p can take (p∈ [0.62,0.82]). A higher constant value decreases this
range and a lower value increases it. The value suggested (10.3) worked well in all
the experiments performed. The percentage of particles which will use the fixed
parameters is modified as shown in Figure 4.

The main advantage of the dynamic mechanism proposed in this chapter over
the addition of extra parameters (e.g. mutation operators), the combination of PSO
variants or the modification of the original problem, all of them to keep PSO from
converging prematurely (as shown on previous approaches in Section 5), is that the
user does not need to fine-tune additional parameter values i.e. this work is done
in IPSO by the own PSO. Even though the dynamic approach seems to be more
complicated with respect to the addition of a parameter, this additional mechanism
maintains the simplicity of PSO from the user’s point of view.

7.2 Modified Constraint-Handling

The third feasibility rule proposed by Deb [5] selects, from two infeasible solutions,
the one with the lowest sum of normalized constraint violation:
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s =
m

∑
i=1

max(0,g(x))+
p

∑
j=1

max(0,(|h(x)|− ε)) (11)

As can be noted from Equation 11, the information of the violation of inequa-
lity and equality constraints are merged into one single value s. Besides, in the
specialized literature there is empirical evidence that equality constraints are more
difficult to satisfy than inequality constraints [27, 40, 31].

Based on the way s is computed, some undesired situations may occur when
two infeasible solutions a and b are compared e.g. the s value from one of them
(called sa) can be lower than the the other one (sb), but the violation sum for equality
constraints can be higher in sa. Therefore, it may be more convenient to handle
these sums separately as to provide the search with more detailed information in the
selection process:

s1 =
m

∑
i=1

max(0,g(x)) (12)

s2 =
p

∑
j=1

max(0,(|h(x)|− ε)) (13)

After that, a dominance criterion (as defined in Section 2) is used to select the
best solution by using the vector [s1,s2] for both solutions to be compared. The
solution which dominates the other is chosen. If both solutions are nondominated
between them, the age of the solution is considered i.e for the leader selection and
for the pbest update there will be always a current solution and a new solution to be
compared, if both solutions do not dominate each other, the older solution is kept.
In this way, the solutions will be chosen/updated only if one amount of violation
is decreased without increasing the other or if both amounts are decreased. The
expected effect is detailed in Figure 5, where the current solution (white circle)
must be replaced by a new one. Three candidate solutions are available: P1, P2

Fig. 5 Expected behavior on the modified constraint-handling mechanism
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and P3 (all black circles). P1 is discarded because it decreases the violation of the
equality constraint but also increases the violation of the inequality constraint. P2 is
also discarded because it decreases the violation amount of the inequality constraint
but also increases the violation of the equality constraint. P3 is chosen because both
violation amounts are decreased i.e. P3 dominates P1 and P2.

IPSO is then based on the local best PSO with constriction factor as a search en-
gine, coupled with the dynamic adaptation mechanism for k and c2 parameters and
the modification to the third rule of the constraint-handling technique. No additional
operators, parameters, local search, problem re-definition, PSO variants mixtures
nor original velocity or flight formulas modifications were considered on IPSO,
whose details are found in Figure 6 (modifications are remarked) and its behavior
and performance is analyzed in the next Section. The same mechanism explained in
Section 6 to generate values within the allowed boundaries for the variables of the
problem is also used in IPSO.

Begin
GEN = 0
Generate a swarm of random solutions (xi) i = 1,2, ...,SWARM SIZE.
Divide the swarm in n neighborhoods.
Assign equal number of particles to each neighborhood.
Initialize for each particle, xpbesti = xi, and vi(t) = 0.
Evaluate the fitness of the particle in each neighborhood.
Do

Select the leader (xlBesti ) of each neighborhood.
by using the modified feasibility rules

For each particle, update its velocity with (10).
by using the corresponding leader of each neighborhood xlBesti
Depending of the p value use the fixed values for k and c2
Otherwise use the dynamic values for these parameters

For each particle, update its position with (8).
Evaluate the fitness of the new position for each particle.
Update the xpbesti (memory) value for each particle.

by using the modified feasibility rules
GEN=GEN+1

Until GEN = Gmax
End

Fig. 6 Improved PSO pseudocode. Modifications are underlined

8 Experiments and Results

In this Section, four aspects of IPSO are analyzed: (1) The quality and consistency
of its final results, (2) its online behavior by using two performance measures found
in the specialized literature [27], (3) its convergence behavior by analyzing conver-
gence graphs and (4) its performance compared to those provided by state-of-the-art



318 E. Mezura-Montes and J.I. Flores-Mendoza

PSO-based approaches to solve CNOPs. The same 24 test problems used in the pre-
liminary experiment are considered in this Section.

8.1 Quality and Consistency Analysis

A similar experimental design to that used in the comparison of PSO variants is
considered here. IPSO is compared against two PSO original variants: global best
and local best PSO, both with constriction factor, as to analyze the convenience
of the two modifications proposed. The parameter values are the same used in the
previous experiment. 30 independent runs were performed and the statistical results
are summarized in Tables 5 and 6 for the 24 test problems.

Like in the previous experiment, the nonparametric statistical tests were applied
to the samples summarized in Tables 5 and 6. For the following problems, no sig-
nificant differences were found among the results provided by the three algorithms:
g04, g08 and g24. Besides, no significant difference in performance is found in pro-
blems g05, g13 and g17 when the local best PSO with constriction factor and IPSO
are compared, and in problem g23 when the global and local best PSOs, both with
constriction factor, are also compared. In all the remaining comparisons, the differ-
ences are significant. IPSO provides better quality and more consistent results in
five problems (g03, g07, g10, g14 and g21), better quality results in two problems
(g02 and g18) and it also obtains more consistent results in six problems (g01, g06,
g09, g11, g19 and g23), all with respect to the local best PSO with constriction fac-
tor, which is the variant in which IPSO is based. The original PSO with constriction
factor presents the best performance in problems g15. Also, it is more consistent in
problems g02 and g18 and it finds the “best” quality result in problems g09 and g23.
The global best PSO with constriction factor is not better in any single problem.

The overall analysis of this experiment indicates that the two simple modifica-
tions made to a competitive PSO variant lead to an improvement in the quality and
mostly in the consistency of the final results e.g. in problems with a combination
of equality and inequality constraints such as g21 and g23, IPSO provided a very
consistent and good performance. The exception was g05, where, despite the better
results in the samples for IPSO, the statistical test considered the differences as not
significant.

8.2 On-Line Behavior Analysis

Two performance measures will be used to compare the two PSO variants and IPSO
to know: (1) how fast the feasible region is reached and (2) the ability of each PSO
to move inside the feasible region (difficult for most BIAs as analyzed in [27]).

1. Evals: Proposed by Lampinen [19]. It counts the number of evaluations (objective
function and constraints) required to generate the first feasible solution. Then, a
lower value is preferred because it indicates a faster approach to the feasible
region of the search space.
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Table 5 Statistical results of 30 independent runs on the first 12 test problems for IPSO and
the two PSO variants with constriction factor compared. “(n)” means that in only “n” runs
feasible solutions were found. Boldface remarks the best result per function.

STATISTICS FROM 30 INDEPENDENT RUNS

Problem &
best-known global best (k) local best (k) IPSO

solution
g01 Best -15.000 -15.000 -15.000

-15.000 Mean -10.715 -13.815 -15.000
St. Dev. 2.54E+00 1.58E+00 0.00E+00

g02 Best -0.612932 -0.777758 -0.802629
-0.803619 Mean -0.549707 -0.717471 -0.713879

St. Dev. 2.39E-02 4.32 E-02 4.62 E-02
g03 Best -0.157 -0.426 -0.641

-1.000 Mean -0.020 -0.037 -0.154
St. Dev. 3.00E-02 9.20E-02 1.70 E-01

g04 Best -30665.539 -30665.539 -30665.539
-30665.539 Mean -30665.539 -30665.539 -30665.539

St. Dev. 7.40E-12 7.40E-12 7.40E-12
g05 Best 6083.449 (12) 5126.502 5126.498

5126.498 Mean 6108.013 5135.700 5135.521
St. Dev. 9.78E+00 9.63E+00 1.23E+01

g06 Best -6957.915 -6961.814 -6961.814
-6961.814 Mean -6943.444 -6961.813 -6961.814

St. Dev. 9.45E+00 4.66E-04 2.81E-05
g07 Best 45.633 24.463 24.366

24.306 Mean 60.682 25.045 24.691
St. Dev. 7.50E+00 5.10E-01 2.20E-01

g08 Best -0.095825 -0.095825 -0.095825
-0.095825 Mean -0.095825 -0.095825 -0.095825

St. Dev. 4.23E-17 4.23E-17 4.23E-17
g09 Best 705.362 680.635 680.638

680.630 Mean 736.532 680.675 680.674
St. Dev. 1.58E+01 2.90E-02 3.00E-02

g10 Best 8673.098 7124.709 7053.963
7049.248 Mean 9140.877 7611.759 7306.466

St. Dev. 2.36E+02 3.22E+02 2.22E+02
g11 Best 0.749 0.749 0.749

0.749 Mean 0.794 0.753 0.753
St. Dev. 5.90E-02 1.00E-02 6.53E-03

g12 Best -0.999 -1.000 -1.000
-1.000 Mean -0.999 -1.000 -1.000

St. Dev. 2.77E-05 0.00E+00 0.00E+00
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Table 6 Statistical results of 30 independent runs on the last 12 test problems for IPSO and
the two PSO variants with constriction factor compared. “(n)” means that in only “n” runs
feasible solutions were found. Boldface remarks the best result per function. “-” means that
no feasible solutions were found in any single run.

STATISTICS FROM 30 INDEPENDENT RUNS

Problem &
best-known global best (k) local best (k) IPSO

solution
g13 Best - 0.127872 0.066845

0.053949 Mean - 0.520039 0.430408
St. Dev. - 2.30E+00 2.30E+00

g14 Best -47.394 (7) -45.062 (4) -47.449
-47.764 Mean -38.619 -43.427 -44.572

St. Dev. 4.95E+00 1.59E+00 1.58E+00
g15 Best 967.519 (5) 961.715 961.715

961.715 Mean 969.437 961.963 962.242
St. Dev. 2.62E+00 3.20E-01 6.20E-01

g16 Best -1.904 -1.905 -1.905
-1.905 Mean -1.904 -1.905 -1.905

St. Dev. 1.46E-04 5.28E-11 2.42E-12
g17 Best - 8853.721 8863.293

8876.981 Mean - 8917.155 8911.738
St. Dev. - 3.17E+01 2.73E+01

g18 Best -0.295425 (5) -0.865989 -0.865994
-0.865735 Mean -0.191064 -0.864966 -0.862842

St. Dev. 1.20E-01 1.38E-03 4.41E-03
g19 Best 37.568 33.939 33.967

32.656 Mean 40.250 38.789 37.927
St. Dev. 3.97E+00 3.97E+00 3.20E+00

g20 Best - - -
0.188446 Mean - - -

St. Dev. - - -
g21 Best 666.081 (7) 193.768 193.758

193.778 Mean 896.690 237.604 217.356
St. Dev. 1.21E+02 3.60E+01 2.65E+01

g22 Best - - -
382.902 Mean - - -

St. Dev. - - -
g23 Best -98.033 (16) -264.445 -250.707

-400.003 Mean 134.154 70.930 -99.598
St. Dev. 1.79E+02 2.58E+02 1.20E+02

g24 Best -5.508 -5.508 -5.508
-5.508 Mean -5.508 -5.508 -5.508

St. Dev. 9.03E-16 9.03E-16 9.03E-16
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2. Progress Ratio: Proposed by Mezura-Montes & Coello [27], it is a modification
of Bäck’s original proposal for unconstrained optimization [1]. It measures the
improvement inside the feasible region by using the objective function values of
the first feasible solution and the best feasible solution reached at the end of the

process. The formula is the following: Pr =

∣
∣
∣
∣
∣
ln

√

fmin(Gf f )
fmin(T )

∣
∣
∣
∣
∣
, where fmin

(

G f f
)

is

the objective function value of the first feasible solution found and fmin (T ) is the
objective function value of the best feasible solution found in all the search so
far. A higher value means a better improvement inside the feasible region.

30 independent runs for each PSO variant, for each test problem, for each perfor-
mance measure were computed. Statistical results are calculated and summarized in
Tables 7 and 8 for the Evals performance measure and in Tables 9 and 10 for the
Progress Ratio. The parameter values for the three PSOs are the same utilized in the
previous experiment.

Regarding the Evals measure, some test problems are not considered in the dis-
cussion because feasible solutions were found in the initial swarm generated ran-
domly. This was due to the size of the feasible region with respect to the whole
search space (Table 1, fourth column). These problems are g02, g04, g08, g09, g12,
g19 and g24. Problems g20 and g22 are also excluded because none of the algo-
rithms could find a single feasible solution.The nonparametric tests applied to the
samples of the remaining problems confirmed the significance of differences for
all of them, with the exception of problem g11 for the three algorithms and in the
comparison between the global best PSO and IPSO in problem g23.

The global best PSO with constriction factor is the fastest and also the most
consistent variant to reach the feasible region in four problems (g01, g06, g07, g10).
It is also the fastest (but not the most consistent) in problem g03 and it is the most
consistent in problem g16. However, it failed to find a single feasible solution in
problems g13 and g17 and it is able to find feasible solutions in just some runs (out
of 30) in problems g05 (12/30), g14 (17/30), g15 (5/30), g18 (5/30), g21 (7/30) and
g23 (16/30). The local best PSO with constriction factor provides the fastest and
more consistent approach to the feasible region in problem g23 and it is the fastest
(but not the most consistent) in problems g16, g18 and g21. Finally, IPSO presents
the fastest and more consistent approach to the feasible region in four problems
(g05, g13, g15 and g17) and it is the most consistent in four problems (g03, g14,
g18 and g21).

The overall results for the Evals performance measure show that the global best
PSO with constriction factor, based on its fast convergence, presents a very irregular
approach to the feasible region, being the fastest in some problems, but failing to
find feasible solutions in others. The local best PSO with constriction factor is not
very competitive at all, whereas IPSO provides a very consistent performance, while
not the fastest. However, IPSO has a good performance in problems g05 and g21,
both with a combination of equality and inequality constraints. The exception in this
regard is problem g23.
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Table 7 Statistical results for the EVALS performance measure based on 30 independent
runs in the first 12 test problems for IPSO and the two PSO variants with constriction factor.
“(n)” means that in only “n” runs feasible solutions were found. Boldface remarks the best
result per function.

EVALS

Problem global best (k) local best (k) IPSO
g01 Best 162 246 252

Mean 306 368 419
St. Dev. 6.40E+01 5.41E+01 7.77E+01

g02 Best 0 0 0
Mean 0 0 0

St. Dev. 0.00E+00 0.00E+00 0.00E+00
g03 Best 189 366 457

Mean 3568 2118 1891
St. Dev. 3.50E+03 1.35E+03 9.82E+02

g04 Best 0 0 0
Mean 4 2 2

St. Dev. 5.14E+00 3.11E+00 2.92E+00
g05 Best 33459 (12) 16845 13087

Mean 86809 23776 17037
St. Dev. 4.53E+04 3.68E+03 2.21E+03

g06 Best 180 256 254
Mean 440 513 562

St. Dev. 2.73E+02 2.58E+02 1.86E+02
g07 Best 178 484 812

Mean 873 1164 1316
St. Dev. 7.11E+02 4.01E+02 2.52E+02

g08 Best 4 0 3
Mean 56 78 76

St. Dev. 3.97E+01 5.21E+01 5.79E+01
g09 Best 5 8 17

Mean 88 94 107
St. Dev. 5.01E+01 4.81E+01 6.91E+01

g10 Best 242 579 522
Mean 861 972 1202

St. Dev. 3.29E+02 2.69E+02 4.56E+02
g11 Best 85 249 364

Mean 1662 1152 1009
St. Dev. 2.10E+03 8.32E+02 5.72E+02

g12 Best 2 0 1
Mean 19 15 25

St. Dev. 1.60E+01 1.77E+01 2.17E+01
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Table 8 Statistical results for the EVALS performance measure based on 30 independent
runs in the last 12 test problems for IPSO and the two PSO variants with constriction factor.
“(n)” means that in only “n” runs feasible solutions were found. Boldface remarks the best
result per function. “-” means that no feasible solutions were found in any single run.

EVALS

Problem global best (k) local best (k) IPSO

g13 Best - 11497 8402
Mean - 1.75E+04 1.28E+04

St. Dev. - 2.82E+03 1.82E+03
g14 Best 7820 (17) 9481 (4) 8353

Mean 33686 13485 12564
St. Dev. 2.47E+03 3.13E+03 3.07E+03

g15 Best 24712 (5) 7299 5228
Mean 68444 11805 8911

St. Dev. 4.16E+04 2.43E+03 1.72E+03
g16 Best 164 32 106

Mean 309 442 493
St. Dev. 1.28E+02 2.26E+02 2.23E+02

g17 Best - 21971 16489
Mean - 29458 22166

St. Dev. - 5.07E+03 2.73E+03
g18 Best 110395 (5) 2593 2614

Mean 125303 5211 4479
St. Dev. 2.31E+04 1.04E+03 8.87E+02

g19 Best 0 0 0
Mean 2 2 2

St. Dev. 2.15E+00 2.13E+00 2.90E+00
g20 Best - - -

Mean - - -
St. Dev. - - -

g21 Best 43574 (7) 11617 13403
Mean 82594 27978 19652

St. Dev. 3.45E+04 7.11E+03 3.51E+03
g22 Best - - -

Mean - - -
St. Dev. - - -

g23 Best 8499 (16) 2081 18304
Mean 32661 17797 28764

St. Dev. 2.58E+04 1.35E+04 5.34E+03
g24 Best 0 0 0

Mean 1 1 2
St. Dev. 1.95E+00 1.88E+00 2.36 E+00
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Table 9 Statistical results for the PROGRESS RATIO performance measure based on 30
independent runs in the first 12 test problems for IPSO and the two PSO variants with cons-
triction factor. “(n)” means that in only “n” runs feasible solutions were found. Boldface
remarks the best result per function.

PROGRESS RATIO

Problem global best (k) local best (k) IPSO

g01 Best 0.302 0.346 0.368
Mean 0.196 0.266 0.295

St. Dev. 5.90E-02 5.00E-02 3.80E-02
g02 Best 1.388 1.373 1.218

Mean 0.884 1.015 1.013
St. Dev. 1.20E-01 1.00E-01 9.00E-02

g03 Best 0.346 0.346 0.334
Mean 0.037 0.026 0.067

St. Dev. 6.50E-02 7.25E-01 8.10E-02
g04 Best 0.110 0.120 0.124

Mean 0.070 0.080 0.071
St. Dev. 2.30E-02 2.30E-02 2.50-02

g05 Best 4.273E-07 (12) 0.087 0.087
Mean 1.250E-07 0.056 0.036

St. Dev. 1.64E-07 3.70E-02 3.20E-02
g06 Best 0.799 0.807 0.772

Mean 0.306 0.348 0.296
St. Dev. 2.00E-01 1.80E-01 1.90E-01

g07 Best 2.117 2.504 2.499
Mean 1.656 1.919 1.963

St. Dev. 3.60E-01 3.60E-01 3.50E-01
g08 Best 0.494 0.451 0.556

Mean 0.317 0.304 0.356
St. Dev. 9.10E-02 9.20E-02 7.20E-02

g09 Best 4.685 4.394 4.768
Mean 2.622 2.209 2.510

St. Dev. 1.29E+00 1.12E+00 1.24E+00
g10 Best 0.598 0.665 0.678

Mean 0.360 0.482 0.468
St. Dev. 1.30E-01 1.00E-01 1.10E-01

g11 Best 0.143 0.143 0.143
Mean 0.088 0.113 0.101

St. Dev. 4.70E-02 4.90E-02 5.20E-02
g12 Best 0.342 0.281 0.285

Mean 0.136 0.119 0.096
St. Dev. 7.20E-02 6.70E-02 7.40E-02
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Table 10 Statistical results for the PROGRESS RATIO performance measure based on 30
independent runs in the last 12 test problems for IPSO and the two PSO variants with cons-
triction factor. “(n)” means that in only “n” runs feasible solutions were found. Boldface
remarks the best result per function. “-” means that no feasible solutions were found in any
single run.

PROGRESS RATIO

Problem global best (k) local best (k) IPSO
g13 Best - 1.165 2.327

Mean - 0.410 0.549
St. Dev. - 3.40E-01 5.70E-01

g14 Best 7.564E-04 (7) 0.077 (4) 0.167
Mean 3.253E-04 0.028 0.061

St. Dev. 2.78E-04 3.50-02 3.90E-02
g15 Best 1.520E-06 (5) 5.460E-03 5.419E-03

Mean 6.866E-07 2.805E-03 2.571E-03
St. Dev. 5.79E-07 1.82E-03 1.67E-03

g16 Best 0.379 0.509 0.412
Mean 0.224 0.217 0.246

St. Dev. 7.20E-02 9.20E-02 8.90E-02
g17 Best - 0.023 0.022

Mean - 8.342E-03 6.015E-03
St. Dev. - 7.17E-03 6.50E-03

g18 Best 0.660 (5) 1.540 1.297
Mean 0.348 0.883 0.690

St. Dev. 2.70E-01 3.30E-01 2.90E+00
g19 Best 3.463 3.470 3.580

Mean 2.975 3.062 3.050
St. Dev. 2.70E-01 1.80E-01 3.2E-01

g20 Best - - -
Mean - - -

St. Dev. - - -
g21 Best 7.252E-03 (7) 0.819 0.819

Mean 1.036E-03 0.628 0.646
St. Dev. 2.74E-03 1.60E-01 1.40E-01

g22 Best - - -
Mean - - -

St. Dev. - - -
g23 Best 2.697E-03 (16) 0.691 0.847

Mean 3.835E-04 0.139 0.240
St. Dev. 6.19E-04 1.90E-01 2.10E-01

g24 Best 1.498 1.211 1.062
Mean 0.486 0.443 0.481

St. Dev. 3.50E-01 2.60E-01 2.40E-01
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The behavior, regarding Evals, presented by IPSO is somehow expected, because
the approach to the feasible region might be slower because some particles will
use lower parameter values in the velocity update, mostly in the first half of the
search.

The nonparametric tests applied to the samples of results for the Progress Ratio
showed no significant differences for the three algorithms in problems g04, g08,
g12, g16 and g24 and in the comparison of the local best PSO with constriction
factor and IPSO in problems g13 and g17. Problems g20 and g22 were discarded
because no feasible solutions were found. In the remaining problems, the differences
are significant.

Despite being very fast in reaching the feasible region, the global best PSO ob-
tains the “best” improvement within the feasible region only in problem g02 and it
is the most consistent in problem g09. The local best PSO obtains the “best” quality
and most consistent results in problems g05, g06, g15, g17 and g18. Also, it presents
the best result in problem g07 and the most consistent improvement in the feasible
region in problems g10, and g19. IPSO is the best approach, based on quality and
consistency in problems g01, g13, g14, g21 and g23. Besides, it presents the “best”
quality results in problems g10 and g19 and it is the most consistent approach in
problem g07.

As a conclusion for the Progress Ratio measure, IPSO does not significantly im-
prove PSO’s ability of moving inside the feasible region. However, IPSO is very
competitive in problems with a combination of equality and inequality constraints
(g21 and g23), but it is surpassed by the local best PSO with constriction fac-
tor in problem g05 as well as in other problems. A last finding to remark is the
poor results obtained for the global best PSO with constriction factor. It seems that
its fast approach to the feasible region leads to an inability to improve solutions
inside it.

8.3 Convergence Behavior

The convergence behavior of the two original PSO variants and IPSO is graphically
compared by plotting the run located in the mean value from a set of 30 indepen-
dent runs. Problems where the behavior is very similar are omitted. The graphs are
grouped in Figure 7. Based on the behavior found in those graphs, IPSO is able to
converge faster than the two PSO variants in problems g01, g02 and g10, even local
best PSO with constriction factor achieves similar results but in more generations.
Global best PSO with constriction factor is trapped in a local optimum solution. In
problem g03, the local best PSO provides the best convergence while IPSO and the
global best PSO with constriction factor are trapped in local optima solutions. Fi-
nally, IPSO clearly shows a better convergence in problems g14, g17, g21 and g23.
It is worth reminding that problems g21 and g23 have a combination of equality and
inequality constraints. Therefore, the graphs suggest that the modified constraint-
handling mechanism helps PSO in this kind of problems.
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Fig. 7 Representative convergence graphs for the two compared PSO variants and IPSO

8.4 Comparison with State-Of-The-Art PSO-Based Approaches

As a final comparison, IPSO’s final results are compared with respect to those re-
ported by four state-of-the-art PSO-based approaches. The approaches are the PSO
algorithms proposed by Toscano and Coello [42], Li et al. [20], Lu and Chen [25]
and Cagnina et al. [2]. These approaches are selected because they were tested
against the same set of test problems. Statistical results (best, mean and worst val-
ues) are shown in Table 11. Test problems g14 to g24 are omitted because no results
are reported by the compared approaches.
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Table 11 Comparison of results with respect to state-of-the-art PSO-based approaches. ( |)
indicates that the results for this function were not available.

Comparison with state-of-the-art PSO-based approaches.

Problem & Toscano Li, Tian Lu Cagnina
best-known & Coello & Kong & Chen et al. IPSO

solution [42] [20] [25] [2]

g01 Best -15.000 -15.000 -15.000 -15.000 -15.000
-15.000 Mean -15.000 -15.000 -14.418 -15.000 -15.000

Worst -15.000 -15.000 -12.453 -134.219 -15.000
g02 Best -0.803432 | -0.664 -0.801 -0.802629

-0.803619 Mean -0.790406 | -0.413 0.765 -0.713879
Worst -0.750393 | -0.259 0.091 -0.600415

g03 Best -1.004 | -1.005 -1.000 -0.641
-1.000 Mean -1.003 | -1.002 -1.000 -0.154

Worst -1.002 | -0.934 -1.000 -3.747E-03
g04 Best -30665.500 -30665.600 -30665.539 -30665.659 -30665.539

-30665.539 Mean -30665.500 -30665.594 -30665.539 -30665.656 -30665.539
Worst -30665.500 -30665.500 -30665.539 -25555.626 -30665.539

g05 Best 5126.640 5126.495 5126.484 5126.497 5126.498
5126.498 Mean 5461.081 5129.298 5241.054 5327.956 5135.521

Worst 6104.750 5178.696 5708.225 2300.5443 5169.191
g06 Best -6961.810 -6961.837 -6961.813 -6961.825 -6961.814

-6961.814 Mean -6961.810 -6961.814 -6961.813 -6859.075 -6961.814
Worst -6961.810 -6961.644 -6961.813 64827.544 -6961.814

g07 Best 24.351 | 24.306 24.400 24.366
24.306 Mean 25.355 | 24.317 31.485 24.691

Worst 27.316 | 24.385 4063.525 25.15
g08 Best -0.095825 -0.095825 -0.095825 -0.095825 -0.095825

-0.095825 Mean -0.095825 -0.095825 -0.095825 -0.095800 -0.095825
Worst -0.095825 -0.095825 -0.095825 -0.000600 -0.095825

g09 Best 680.638 680.630 680.630 680.636 680.638
680.630 Mean 680.852 680.654 680.630 682.397 680.674

Worst 681.553 680.908 680.630 18484.759 680.782
g10 Best 7057.900 | 7049.248 7052.852 7053.963

7049.248 Mean 7560.047 | 7049.271 8533.699 7306.466
Worst 8104.310 | 7049.596 13123.465 7825.478

g11 Best 0.749 0.749 0.749 0.749 0.749
0.749 Mean 0.750 0.749 0.749 0.750 0.753

Worst 0.752 0.749 0.749 0.446 0.776
g12 Best -1.000 | -1.000 -1.000 -1.000

-1.000 Mean -1.000 | -1.000 -1.000 -1.000
Worst -1.000 | -1.000 9386 -1.000

g13 Best 0.068 | 0.053 0.054 0.066
0.053949 Mean 1.716 | 0.681 0.967 0.430

Worst 13.669 | 2.042 1.413 0.948
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The statistical results show that IPSO provides the most consistent results in
problems g05 (with a combination of equality and inequality constraints), g06 and
g13. IPSO also has a similar performance with respect to the PSOs compared in
problems g01, g04, g08, g11 and g12. Moreover, IPSO obtains the second best per-
formance in problems g02, g07, g09 and g10. In problem g03 IPSO is not competi-
tive at all. Regarding the computational cost of the compared approaches, Toscano
and Coello [42] and Cagnina et al. [2] use 340,000 evaluations, Li et al. [20] do
not report the number of evaluations required and Lu and Chen [25] report 50,000
evaluations. However, Lu and Chens’ approach requires the definition of an extra pa-
rameter called ω and the original problem is also modified. IPSO requires 160,000
evaluations and does not add any extra operator or complex mechanism to the orig-
inal PSO, keeping its simplicity.

9 Conclusions and Future Work

This chapter presented a novel PSO-based approach to solve CNOPs. Unlike tradi-
tional design steps to generate an algorithm to deal with constrained search spaces,
which in fact may produce a more complex technique, in this work a preliminary
analysis of the behavior of the most known PSO variants was performed as to get
an adequate search engine. Furthermore, empirical evidence about the convenience
of using PSO local best variants in constrained search spaces was found (constric-
tion factor was better than inertia weight). From this first experiment, the local best
PSO with constriction factor was the most competitive variant and two simple mod-
ifications were added to it: (1) a dynamic adaptation mechanism to control k and
c2 parameters, these to be used for a dynamically adapted percentage of particles
in the swarm and (2) the use of a dominance criterion to compare infeasible solu-
tions in such a way that new solutions are accepted only if both, the sums of ine-
quality and equality constraint violations (handled separately) are decreased. This
Improved PSO (IPSO) was compared against original PSO variants based on their
final results and also based on their on-line behavior. IPSO’s final results were sig-
nificantly improved with respect to the original variants. On the other hand, IPSO
was not the fastest to reach the feasible region and it did not improve considerably
the ability to move inside the feasible region. In other words, the way the original
PSO works in constrained search spaces was modified in such a way that a slower
approach to the feasible region allowed IPSO to enter it from a more promising
area. However, this issue requires a more in-depth analysis. The convergence be-
havior shown by IPSO suggest that their mechanisms promote a better exploration
of the search space to avoid local optimum solutions in most of the test problems.
Finally IPSO, which does not add further complexity to PSO, provided competitive
and even better results, with a moderate computational cost, when compared with
four state-of-the-art PSO-based approaches. A final conclusion of this work is that,
regarding PSO to solve CNOPs, the previous knowledge about the heuristic used as
a search engine led to a less complex but competitive approach. Part of the future
work is to improve the dynamic adaptation proposed in this chapter i.e. adaptive
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mechanism, testing more recent PSO variants such as the Fully Informed PSO [26],
to test PSO variants with other constraint-handling mechanisms such as adaptive
penalty functions [41] and to use IPSO in real-world problems.
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Applying River Formation Dynamics to Solve
NP-Complete Problems

Pablo Rabanal, Ismael Rodríguez, and Fernando Rubio

Abstract. For obvious practical reasons, NP-complete problems are typically solved
by applying heuristic methods. In this regard, nature has inspired many heuristic
algorithms to obtain reasonable solutions to complex problems. One of these algo-
rithms is River Formation Dynamics (RFD). This heuristic optimization method is
based on imitating how water forms rivers by eroding the ground and depositing sed-
iments. After drops transform the landscape by increasing/decreasing the altitude of
places, solutions are given in the form of paths of decreasing altitudes. Decreasing
gradients are constructed, and these gradients are followed by subsequent drops to
compose new gradients and reinforce the best ones. In this chapter, we apply RFD to
solve three NP-complete problems, and we compare our results with those obtained
by using Ant Colony Optimization (ACO).

1 Introduction

NP-complete problems are (strongly) supposed to require exponential time in the
worst case to be solved. Fortunately, heuristic methods can be used to obtain sub-
optimal solutions in reasonable time. Nature has been a source of inspiration for
obtaining many interesting and useful heuristic algorithms (see e.g. [12, 13, 4,
11, 5, 10]). Among them, we would like to highlight Ant Colony Optimization
(ACO) [7, 5, 6]. This method provides algorithms based on how (natural) ants
find the shortest path from the colony to the food source. This efficient method
is well-known: (1) Ants release pheromones as they move; (2) ants tend to follow
pheromone trails; and thus, (3) paths are reinforced. In the long term, the reinforce-
ment of paths is stronger in short paths than in long paths because ants can traverse
the former paths more often per unit of time. Eventually, only a good short path
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prevails and the rest of paths vanish. A pheromone value is attached to each edge,
and ants probabilistically tend to choose those edges where the ratio ‘pheromone
trail at destination’/‘edge cost’ is the highest.

Alternatively, let us suppose that ants’ decisions were based on the gradient of
trail values instead of the trail values themselves. In particular, let us suppose that
ants probabilistically tend to choose the movement providing the highest ratio ‘dif-
ference of trails between the new place and the current place’/‘edge cost’ (for in-
stance, higher the decrease, higher the probability). Leaving aside for now the im-
portant question of how ants could iteratively create paths of decreasing pheromone
trails (which will be addressed later), what are the differences between this gradient
approach and the standard approach? First, in the standard approach ants can be led
by pheromone trails in such a way that, after some movements, it is impossible not
to repeat a node, i.e. a local cycle is followed. Let us note that following a cyclic
pheromone trail does not imply that any previous ant actually followed this cycle;
in particular, each part of the cycle could have been reinforced by an ant follow-
ing a different path. When an ant finds that it cannot avoid to repeat a node, it is
either killed or reinserted at the origin node. In both cases, the computational ef-
fort required to move it was useless. However, following a cycle is impossible in
the gradient approach because it would require an ever decreasing cycle, which is
contradictory. Second, let us note that in the standard approach, when an ant finds
a shorter path, it needs a lot of movement to convince other ants following older
well-reinforced paths to join the new path. Technically speaking, reinforcing the
new path until pheromone trails are higher than in older paths requires a lot of
subsequent steps. On the other hand, if the difference of trails is considered, then
when a shorter path is discovered, from this precise moment onwards its edges are
preferable (on average) to the edges of older paths. This is because the difference
of pheromone trails between the final destination and the origin is the same in these
paths (the origin and the destination are the same indeed), but the cost is lower in
the shorter path. So, the ratio ‘total difference of trails’/‘total cost’ is higher in the
shorter path. On the contrary, when a shorter path is found in the standard approach,
the edges of this path are not preferable yet (not even when considered as a whole)
because the amount of pheromones in its edges is still negligible.

This alternative approach provides some advantages, but the following question
arises: How can we get pheromone trails to decrease along the steps of each path?
We can find an answer to this question by giving the ant metaphor up and getting
some inspiration from another nature-based phenomenon: The river formation dy-
namics. Let us consider that a water mass is unleashed at some high point. Gravity
will make it follow a path down until it cannot go down anymore. In geological
terms, when it rains in a mountain, water tries to find its own way down to the sea.
Along the way, water erodes the ground and transforms the landscape, which even-
tually creates a riverbed. When a strong downward slope is traversed by water, it
extracts soil from the ground on the way. This soil is deposited later when the slope
is lower. Rivers affect the environment by reducing (i.e. eroding) or increasing (i.e.
depositing) the altitude of the ground. Let us note that if water is unleashed at all
points of the landscape (e.g., it rains) then the river form tends to optimize the task
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of collecting all the water and taking it to the sea, which does not imply taking the
shortest path from a given origin point to the sea. Let us remark that there are a lot
of origin points to consider (one for each point where a drop falls). In fact, a kind of
combined grouped shortest path is created in this case. The formation of tributaries
and meanders is a consequence of this. However, if water flows from a single point
and no other water source is considered, then the water tends to form an efficient
way to reduce the altitude (i.e., it tends to form a short path between the origin and
the destination).

An algorithm based on these ideas called River Formation Dynamics (RFD) was
presented in [17]. In order to apply the previous scheme, ants are substituted by
drops and pheromone trails are replaced by altitudes. Drops tend to flow down the
slope and they modify altitudes in the process. A classical benchmark NP-complete
problem, the Traveling Salesman Problem (TSP) [9, 1], was considered, which re-
quired to adapt the general scheme to this particular problem (for instance, since
the general framework implicitly instructs that drops avoid cycles, a change was
introduced to allow cycles involving all nodes). The applicability of RFD to other
NP-complete problems was studied in [18]. Given a cost-evaluated graph, let us
consider the problems of (a) finding the minimum spanning tree, and (b) finding
the minimum distances tree (that is, a tree such that the addition of distances from
each node to a given exit node is minimal). The standard forms of both problems do
not require using heuristic methods because they can be polynomially solved (e.g.,
by using Kruskal and Dijkstra algorithms, respectively). However, some generaliza-
tions of both problems are NP-complete indeed. In particular, let us consider that the
cost of taking an edge e depends on the path followed so far. That is, if we traverse
e after following a path σ then the cost of adding e to the path is ce,σ ; in general,
we have ce,σ �= ce,σ ′ for any other path σ ′. We denote these graphs as variable-cost
graphs. The problems of finding a minimum spanning tree or a minimum distances
tree for a variable-cost graph (denoted by MSV and MDV, respectively) were defined
in [18], where the capability of RFD to solve them was considered. As we will dis-
cuss later, both generalizations of the standard problems are NP-complete, and they
are applicable to some IT domains (e.g. formal testing methods and routing). How-
ever, to the best of our knowledge, they have not been considered in the literature
before.

Since TSP, MSV, and MDV consist in finding some kinds of short paths, the char-
acteristics of RFD commented before (that is, the avoidance of local cycles and the
fast reinforcement of shorter paths) make it a suitable choice. Moreover, the geolog-
ical metaphor provides another characteristic that is important in this regard. Let us
note that the erosion process provides a method to punish inefficient paths as well as
to avoid blocked paths: If a path leads to a node that is lower than any adjacent node
(i.e., it is a blind alley) then the drop will deposit its sediment, which will increase
the altitude of the node. Eventually, the altitude of this node will match the altitude
of its neighbors, which will avoid other drops falling on this node. If the ground
reaches this level, other drops will be allowed to cross this node from one adjacent
node to another. Thus, paths will not be interrupted at this point.
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In [17] and [18], the performance of RFD to solve TSP and MSV, respectively,
was analyzed by comparing the results of RFD with those given by an ACO imple-
mentation for the same problem instances. It was observed that the time required
by RFD to find good solutions is in general longer than the time required by ACO
to find equivalent solutions, though solutions provided by RFD outperformed those
given by ACO after some additional time passes. As we will explain later in higher
detail, the reasons for these differences lie in the fact that RFD develops a deeper
exploration of the graph. In this chapter we summarize our previous work on RFD
in an integrated fashion. We sketch the main ideas of the algorithm and we recall
previous experiments. In addition, we report and analyze other experiments where
RFD and ACO are compared for the same instances of the MDV problem. More-
over, we conduct new experiments to study the capability of RFD and ACO to deal
with dynamic graphs, i.e. graphs where nodes and edges can appear/disappear along
time, in the three problems. This will allow us to study the capability of drops and
ants to dynamically adapt paths found so far to environmental changes. Finally, in
order to demonstrate the difficulty of MSV and MDV, we prove the NP-completeness
of both problems. In particular, we polynomially reduce 3-SAT to each of them.

The rest of the chapter is structured as follows. Next we describe the main ideas
of the RFD algorithm. In Section 3, we formally define the problems we have con-
sidered in this chapter to analyze the performance of RFD. Next, in Section 4 we
apply RFD and ACO to solve TSP, MSV, and MDV in the case where graphs are
static (i.e., they do not change along time), and we report some results. These three
problems are revisited in Section 5, where we repeat these experiments in a context
where graphs are dynamic. We present our conclusions and lines of future work in
Section 6. We prove the NP-completeness of MSV and MDV in the appendix of this
chapter.

2 Main Ideas of RFD

In this section we introduce the basic structure of our method based on river for-
mation dynamics. The method works as follows. Instead of associating pheromone
values to edges, we associate altitude values to nodes. Drops erode the ground (they
reduce the altitude of nodes) or deposit the sediment (increase it) as they move. The
probability of the drop to take a given edge instead of others is proportional to the
gradient of the downward slope in the edge, which in turn depends on the difference
of altitudes between both nodes and the edge distance (i.e. the cost of the edge).
At the beginning, a flat environment is provided, that is, all nodes have the same
altitude. The exception is the destination node, which is a hole. Drops are unleashed
at the origin node and spread around the flat environment until some of them fall
in the destination node. This erodes adjacent nodes, which creates new downward
slopes, and in this way the erosion process is propagated. New drops are inserted
in the origin node to transform paths and reinforce the erosion of promising paths.
After some steps, good paths from the origin to the destination are found. These
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paths are given in the form of sequences of decreasing edges from the origin to the
destination.

This method provides some advantages over ACO that were briefly outlined be-
fore in the introduction. On one hand, local cycles are not created and reinforced
because they would imply an ever decreasing cycle, which is contradictory. Though
ants usually take into account their past path to avoid repeating nodes, they can-
not avoid being led by pheromone trails through some edges in such a way that
a node must be repeated in the next step. However, altitudes cannot lead drops to
these situations. Moreover, since drops do not have to worry about following cycles,
in general drops do not need to be endowed with memory of previous movements,
which releases some computational memory and reduces some execution time.1 On
the other hand, when a shorter path is found in RFD, the subsequent reinforcement
of the path is fast: Since the same origin and destination are concerned in both the
old and the new path, the difference of altitude is the same but the distance is dif-
ferent. So, the (global) gradient of the shorter path makes it preferable to any other
path connecting the same nodes. This does not necessarily imply that all individ-
ual edges in this path are immediately preferred to their respective competitors; this
only means that these edges are preferred on an average. In particular, bad-gradient
steps in the shorter path must be compensated by other good gradients in the path;
otherwise, the alternative path cannot be shorter. The erosion/sedimentation process
tends to equalize gradients in paths, so bad gradients in the shorter path tend to gain
the surplus from other good gradients in the path. In this way, all edges of this path
easily tend to be preferable to other edges. On the contrary, when a shorter path
is found in ACO, this path is not immediately preferable (not even if considered
as a whole) because pheromone trails are still negligible on this path. In particular,
the pheromone trail at each individual edge is also negligible, so all edges of this
path are still far away from being preferable compared to their respective competi-
tors. Thus, the reinforcement of shorter paths is faster in RFD than in ACO. Finally,
the erosion process provides a method to avoid inefficient solutions because sedi-
ments tend to be cumulated in blind alleys (in our case, in valleys). These nodes
are filled until eventually their altitude matches those of adjacent nodes, i.e., the
valley disappears. This differs from typical methods to reduce pheromone trails in
ACO: Usually, the trails of all edges are periodically reduced at the same rate. On
the contrary, RFD intrinsically provides a focused punishment of bad paths where,
in particular, those nodes blocking alternative paths are modified.

Let us consider the applicability of RFD to MSV and MDV (its applicability to TSP
will be considered below). These problems consist in finding a kind of combination
of short paths, in particular a tree. After executing RFD for some time, for each
node we take the edge with the highest gradient, and we discard the rest of edges.
This guarantees that selected edges form a tree: If the formed subgraph includes
two or more paths to go from A to B then, for at least one node, there are two

1 In fact, each drop still needs memory to know the amount of sediments it is carrying. This
is a single value so, for each drop, the size of the required memory is in O(1). On the
contrary, if drops were required to record the previously traversed path, then the required
memory would be in O(n), where n is the number of nodes of the graph.
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or more outgoing edges (which contradicts the fact that, for each node, only the
edge providing the highest gradient is taken). As discussed before, natural rivers
do not tend to form solutions where each drop goes to the sea through its shortest
path, but they tend to form grouped solutions. This allows RFD to implicitly deal
with path conflicts, i.e. situations where, at a given node, two drops coming from
different origins have different preferences regarding which edge should be taken
next (because costs are different for each of them; recall that, in MSV and MDV, we
are considering that costs depend on previously followed paths). In these situations,
the tendency of RFD to form grouped solutions implicitly leads to forming paths
with a suitable cost tradeoff between available choices: After some steps, the erosion
will reinforce more strongly the slopes providing the lowest overall cost. In addition,
in the minimum spanning tree problem (MSV), the tendency of drops to join each
other is very appropriate: If drops tend to join the main flow, instead of following
their respective individual shortest paths, then less edges are added to the tree and
the tree cost is reduced.

Let us note that the tendency of ACO methods to form grouped solutions is well
known, so similar arguments can be given in the case of ACO. In particular, ACO
allows to form short paths from a single node to a single destination. However,
combining some short paths departing from different points in such a way that a
tree is formed is not a natural task for ACO. Let us suppose that two paths coming
from different origins join at a given node and then continue together.2 Ants coming
from a departure node can be confused by pheromone trails and go on to the other
departure node, instead of following to the destination node. Solving this problem
requires to use some artificial methods (e.g., using different types of pheromones,
using directed pheromones, associating ants to specific areas, etc). On the contrary,
edge gradients formed by RFD are intrinsically directed, and their direction natu-
rally leads to the destination node. This eases the task of constructing trees in RFD.
Interestingly, we can adapt RFD to the minimum distances tree problem (MDV) just
by changing a parameter: If we reduce the erosion caused by high flows, then the
incentive of drops to join each other is partially reduced, and thus each drop tends
to follow its own shortest path. For instance, we can achieve this effect by changing
the erosion rules in such a way that, if n drops traverse an edge, then they make the
effect of e.g. a single drop. In this case, grouped paths are promoted by the method
only when they are required to solve path conflicts. Moreover, by considering in-
termediate erosion effects, we can construct trees partially fitting into the objectives
of both problems (i.e., a combination of minimum spanning tree and minimum dis-
tances tree). This may be a suitable choice for several optimization problems.3

Regarding the third NP-complete problem considered in this chapter, TSP, let us
note that some of the previous considerations apply to this case as well. In particular,
the mechanism of focalized punishment of inefficient paths, the avoidance of local

2 That is, the convergence area reminds the form of a ‘Y’ letter.
3 For instance, we design a subway network to carry citizens from different areas to down-

town in such a way that (a) the time spent by citizens to arrive to downtown is minimized
(i.e., we need a minimum distances tree), and (b) the expenses required to build tunnels
are minimized (i.e., we need a minimum spanning tree).
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cycles, and the fast reinforcement of shorter paths are also good for solving TSP.
However, facing this problem requires slightly modifying the general RFD scheme.
In particular, let us note that TSP requires finding a cycle in the graph, but RFD
implicitly avoids cycles. The adaptation of RFD to solve TSP will be addressed
later in Section 2.2.

2.1 Basic Algorithm

The basic scheme of the RFD algorithm follows:

initializeDrops()
initializeNodes()
while (not allDropsFollowTheSamePath()) and

(not otherEndingCondition())
moveDrops()
erodePaths()
depositSediments()
analyzePaths()

end while

This scheme shows the main ideas of the proposed algorithm. We comment on
the behavior of each step. First, drops are initialized (initializeDrops()),
i.e., all drops are put in the initial node(s). Next, all nodes of the graph are initial-
ized (initializeNodes()). This consists of two operations. On one hand, the
altitude of the destination node is fixed to 0. In terms of the river formation dynam-
ics analogy, this node represents the sea, that is, the final goal of all drops. On the
other hand, the altitude of the remaining nodes is set to some equal value.

The while loop of the algorithm is executed until either all drops find the same
solution (allDropsFollowTheSamePath()), that is, all drops departing from
the same initial nodes traverse the same sequences of nodes, or another alternative
finishing condition is satisfied (otherEndingCondition()). This condition
may be used, for example, for limiting the number of iterations or the execution
time. Another choice is to finish the loop if the best solution found so far is not
surpassed during the last n iterations.

The first step of the loop body consists of moving the drops across the nodes
of the graph (moveDrops()) in a partially random way. The following transition
rule defines the probability that a drop k at a node i chooses the node j to move next:

Pk(i, j) =

{
decreasingGradient(i, j)

∑l∈Vk(i) decreasingGradient(i,l) if j ∈Vk(i)

0 if j �∈Vk(i)
(1)

where Vk(i) is the set of nodes that are neighbors of node i that can be visited by the
drop k and have a negative value of decreasingGradient(i,j), which represents the
gradient between nodes i and j and is defined as follows:

decreasingGradient(i, j) =
altitude( j)−altitude(i)

distance(i, j)
(2)
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where altitude(x) is the altitude of the node x and distance(i,j) is the length of the
edge connecting node i and node j. Let us note that, at the beginning of the algorithm,
the altitude of all nodes is the same, so ∑l∈Vk(i) decreasingGradient(i, l) is 0. In
order to give a special treatment to flat gradients, we modify this scheme as follows:
We consider that the probability of a drop moving through an edge with 0 gradient is
set to some (non null) value. This enables drops to spread around a flat environment,
which is required, in particular, at the beginning of the algorithm.

In fact, going one step further, we also introduce this improvement: We let drops
climb increasing slopes with a low probability. This probability will be inversely
proportional to the increasing gradient, and it will be reduced during the execution
of the algorithm by using a method similar to the one followed by Simulated Anneal-
ing (see [12, 8]). This new feature improves the search of good paths. Let us note
that solutions found during the first steps tend to bias the exploration of the graph af-
terwards. This is because previously formed paths tend to be followed by subsequent
drops. Enabling drops to climb increasing slopes with some low probability allows
us to find alternative choices and enables the exploration of other paths in the graph.
This partially decouples the method from its behavior in the first steps. Actually,
the probability of climbing increasing slopes encapsulates most of the dependency
of the method on previous solutions in a single value. As usual in heuristic search
algorithms, this dependency must provide a suitable tradeoff between past solutions
and alternative choices. Let us note that allowing climbing up gradients does not in-
validate the argument that local cycles are avoided in practice in our method: After
following a sequence of downward gradients, completing a cycle requires to climb
up all the altitude lost so far, and the probability of climbing up a high gradient is
negligible.

The climbing up mechanism works as follows. Given a drop d located at node k,
we randomly decide whether d can climb upward gradients according to the follow-
ing probability:

P(d) =
1

notClimbingFactor
(3)

where notClimbingFactor is a variable that is initially set to 1 and is slightly in-
creased after each loop iteration. Every N iterations, this variable is not increased,
but decreased (this is done to emulate the tempering process used in Simulated An-
nealing). When the drop is allowed to climb up and it decides its next move, it can
also choose moving upwards – as well as moving downwards or going through a
null gradient, as the rest of drops can. In particular, the transition rule of a climbing
drop is defined as follows:

Pk(i, j) =

⎧⎪⎨
⎪⎩

decreasingGradient(i, j)
total if j ∈Vk(i)

ω/|decreasingGradient(i, j)|
total if j ∈Uk(i)

δ
total if j ∈ Fk(i)

(4)
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where

total =

(
∑

l∈Vk(i)
decreasingGradient(i, l)

)
+ ∑

l∈Uk(i)

(
ω

|decreasingGradient(i, l)|
)

+ ∑
l∈Fk(i)

δ

and Vk(i), Uk(i) and Fk(i) are the sets of nodes that are neighbors of node i that can
be visited by the drop k and are connected to k through a down, up, and flat gradient,
respectively. We consider that δ and ω are parameters of the algorithm. On the other
hand, if a drop fails to be considered as a climbing drop then it only considers taking
down or flat gradients.

In the next phase (erodePaths()) paths are eroded according to the move-
ments of drops in the previous phase. In particular, if a drop moves from node A to
node B then we erode A. The reduction of the altitude of this node depends on the
current gradient between A and B. In particular, the erosion is higher if the down-
ward gradient between A and B is high. The altitude of the eroded node A is modified
as follows:

altitude(A) := altitude(A)− erosion(A,B)

erosion(A,B) =
paramErosion

(numNodes−1) ·numDrops
·decreasingGradient(A,B)

where paramErosion is a parameter of the erosion process, numNodes is the number
of nodes of the graph, and numDrops is the number of drops used in the algorithm.
On the contrary, if the edge is flat or increasing then a small erosion is performed.
However, the altitude of the final node (i.e., the sea) is never modified and it remains
equal to 0 during the execution.

Once the erosion process finishes, the altitude of all nodes of the graph is slightly
increased (depositSediments()). The objective is to avoid, after some itera-
tions, the erosion process leading to a situation where all altitudes are close to 0,
which would make gradients negligible and would ruin all formed paths. In partic-
ular, the altitude of a node N is increased according to the following expression:

altitude(N) := altitude(N)+ (erosionProduced/(numNodes−1))

where erosionProduced is the sum of erosions introduced in all graph nodes in the
previous phase, and numNodes is the number of nodes of the graph.

We also enable individual drops to deposit sediment on nodes. This happens when
all movements available for a drop imply climbing an increasing slope and the drop
fails to climb any edge (according to the probability assigned to it). In this case, the
drop is blocked and it deposits the sediments it is transporting. This increases the
altitude of the current node in proportion to the cumulated sediment carried by the
drop, which in turn is proportional to the erosions produced by the drop in previous
movements. If a drop gets blocked at node N, then the altitude of N is increased as
follows:

altitude(N) := altitude(N)+ paramBlockedDrop · cumulatedSediment
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where paramBlockedDrop is a parameter and cumulatedSediment is the amount of
sediment carried by the drop.

Finally, the last step (analyzePaths()) studies all solutions found by drops
and stores the best solution found so far.

Some additional improvements can be introduced to this basic scheme (see [17]
for details). For instance, we can gather drops to reduce the number of individual
movements, we can consider the formation of lakes in blind alleys, etc.

2.2 Adapting RFD to TSP

Though the basic RFD scheme is suitable for solving MSV and MDV as it is, some
adaptations are required to apply RFD to TSP. We present them in this section
(further details can be found in [17]). We can define TSP as follows: Given a set of
cities and the costs of traveling from any city to any other city, compute the cheapest
round-trip route that visits each city exactly once and then returns to the starting city.
Note that, since we are looking for a cyclic tour, it is irrelevant what concrete node
is the origin of the tour: The cycle A-B-C-D-A has the same length as B-C-D-A-B
or C-D-A-B-C.

The adaptation of our method to TSP has several similarities with the way ACO is
applied to this problem. In ACO, endowing ants with the capability of remembering
all nodes traversed so far is necessary to avoid repeating nodes. Let us recall that
the use of gradients strongly minimizes these situations in RFD. In particular, only
sequences of low-probability climbing movements can lead drops to follow local
cycles.4 Thus, in RFD memories are not as useful as in ACO, and not using them is
preferable in the general case because less operations are performed (e.g., this is the
case in MSV and MDV). However, in TSP memories are actually required to identify
round-trips: Any path not including all nodes is not a round-trip, and so it should
not be reinforced. Thus, drops must be endowed with memory indeed.

Another difference with the general scheme of RFD is that altitudes are not
eroded after each individual drop movement. On the contrary, altitudes of all tra-
versed nodes are eroded all together when the drop actually completes a round-trip
(as ants actually increase pheromone trails). This is another reason to keep track of
the sequence of traversed nodes. As in ACO, when a drop finds that all adjacent
nodes have already been visited, the drop disappears (again, this is less probable in
RFD than in ACO). In RFD, there is an additional reason why a drop may disappear:
When all adjacent nodes are higher than the actual node (i.e., the node is valley) and
the drop fails to climb any up gradient, the drop is removed and it deposits the sed-
iment it carries at the current node. Let us note that in this case the computations
performed to move the drop should not be considered as lost despite the fact that it
did not find a solution. This is because the cumulation of sediments increases the
node altitude, and thus gradients coming from adjacent nodes are flattened. This
eventually avoids that other drops fall in the same blind alley.

4 This may happen e.g. at the earliest steps of the algorithm, where the environment is still
almost flat.
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Other peculiarities of the adaptation of RFD to TSP are specific to RFD and
do not appear in ACO. Our method provides an intrinsic method to avoid drops
traversing cycles, but the goal of TSP consists in finding a cycle indeed. In order
to allow drops to follow a cycle involving all nodes, the origin node (which, as we
said before, can be any fixed node) is cloned as well as all edges involving it. The
original node plays the role of origin node and the cloned node plays the role of
destination node. In this way, drops can form decreasing gradients from the origin
node to the destination node (for us, from a node to “itself”).

Finally, the adaptation of RFD to TSP requires introducing other additional nodes
for different technical reasons. Let us suppose that a solution A-B-C-D-E-A′ is found
(A′ being the clone of A playing the role of destination node). Drops create a decreas-
ing gradient along this path. In particular, the altitude of B is higher than the altitude
of C, C is higher than D, and D is higher than E . Let us also suppose that there exists
an edge from B to E . Since the difference of altitude between B and E is the addition
of the differences between B and C, C and D, and D and E , the decreasing gradient
from B to E could be so big that drops prefer to go directly from B to E . However,
in that case drops will fail in finding a solution: C, D, and E would not be included
in this path, but solutions must traverse all nodes. In order to avoid the altitude of
adjacent nodes wrongly deviating paths, an auxiliary node will be created at each
edge of the graph. These new nodes, called barrier nodes, are introduced as follows:
If there is an edge connecting (standard) nodes X and Y , this edge is replaced by an
edge connecting X and a new barrier node xy, as well as another edge connecting
xy and Y . If a drop traverses all standard nodes (i.e., it finds a solution) then barrier
nodes traversed in the path are eroded exactly as standard nodes are. For instance, let
us consider the solution A-B-C-D-E-A′ given in the previous example. This solution
actually traverses nodes A-ab-B-bc-C-cd-D-de-E-ea′-A′, ab being the barrier node
appearing between A and B, and so on. These barrier nodes will be eroded when
finding this solution. However, the barrier node between B and E , be, is not eroded
by drops following this path. In fact, if a drop moves directly from B to E and next
moves to A′, then it will not find a solution, so node be will not be eroded by this
alternative path. Thus, the altitude of node be will remain high and drops at B will
not prefer moving to be. That is, be imposes a barrier between B and E .

Let us note that barrier nodes must be taken into account in the initialization
and sedimentation phases of the algorithm. In the initialization phase, we must set
the height of barrier nodes. This height will be the same as the height of the rest
of nodes of the graph. Regarding the sedimentation phase, it will be necessary to
increase their heights in the same way as any other node.

3 Formal Definition of MSV and MDV

Though the TSP problem is well-known, a precise definition of the other two prob-
lems considered in this chapter, MSV and MDV, is required. In this section we for-
mally define them, and we briefly consider their applicability to some computational
problems. As we said in the introduction, finding a minimum spanning tree (i.e. a
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tree embracing all nodes where the addition of costs of all edges in the tree is min-
imal) or a minimum distances tree (i.e. a tree where the addition of distances from
each node to the exit node through edges in the tree is minimal) are polynomial
time problems, and thus heuristic methods are not necessary in this case. However,
if we assume that the cost of including an edge in the tree depends on the rest of
edges included in the tree, then these problems are not that simple. In particular, let
us consider that the cost of an edge depends on the path we have to traverse in the
tree before taking it. More technically, we assume that the cost of a path of edges
e1, . . . ,en from a given origin node o to a given destination node d depends on the
evolution of a variable through the path. Initially, a value vo is assigned to this vari-
able at node o. Then, the cost added to the path due to the inclusion of edge e1 is an
amount depending on vo. After traversing e1, the value of the variable is updated to
a new value v1. Next, the cost of adding e2 to the path depends on v1. After taking
e2, the value of the variable is updated again, and the process continues so on until
we obtain the whole cost of the path e1, . . . ,en.

Following this idea, we can define a variable-cost graph by attaching some in-
formation to a standard graph. Let us consider a set of origin nodes (in particular,
this set could include all nodes of the graph). Then, (1) we assign an initial value
to each origin node; (2) we assign a cost function to each edge. Depending on the
value of the variable just before traversing the edge, taking the edge adds a different
cost; and (3) we assign a transformation function to each edge. Given the value of
the variable before traversing the edge, it returns the new value after taking it.

Let us suppose that a variable-cost graph defined in these terms is given. On
one hand, a minimum distances tree is a tree connecting each origin node with the
destination node in such a way that the addition of costs of all paths from each
origin node to the destination is minimal. Since the returned solution is a tree, paths
departing from different origin nodes could share some edges (in particular, different
sequences of edges could share some suffixes). Let us note that, in general, the cost
of a shared edge is different for each path because the value of the variable when
the edge is reached may be different for each path. On the other hand, a minimum
spanning tree is a tree connecting all origin nodes with the destination node in such
a way that the addition of costs of all edges included in the tree is minimal. In this
case, the cost of an edge e in a tree t is computed as follows. Let us consider all the
paths of t connecting an origin node with the destination node and including edge
e. The cost of e in t is the average of the cost of e for all of these paths. Let us note
that, in both problems, trees are not required to include all nodes from the original
graph, but only those actually used to connect origin nodes to the destination node.
In particular, if all nodes are considered origin nodes then the resulting tree must
include all nodes indeed.

Definition 1. A variable-cost graph is a tuple G = (N,O,d,V,A,E) where:

• N is a finite set of nodes,
• O ⊆ N is the set of origin nodes,
• d is the destination node,
• V = {v1, . . . ,vn} is a finite set of values,



Applying River Formation Dynamics to Solve NP-Complete Problems 345

• A : O −→ V is the initial value function, that is, a function assigning an initial
value to each origin node.

• E is the set of edges. Each edge e ∈ E is a tuple (n1,n2,C,T ) where n1,n2 ∈ N
are the origin and destination nodes, respectively, and

– C : V −→ IN is the cost function of e. Given a value in V denoting the current
value of the variable, it returns the cost of traversing e.

– T : V −→V is the transformation function of e. Given the current value of the
variable, it returns the new value assigned to the variable if e is traversed.

Paths are sequences of edges departing at an origin node and arriving to the des-
tination node. Formally, a path of G is a sequence of edges σ = (e1, . . . ,ek) with
ei = (ni,n′i,Ci,Ti) ∈ E for all 1 ≤ i ≤ k such that n1 ∈ O, n′k = d, and for all
1 ≤ i ≤ k−1 we have n′i = ni+1. The cost of σ , denoted by c(σ), is equal to

C1(A(n1))+C2(T1(A(n1)))+C3(T2(T1(A(n1))))+ . . .+Ck(Tk−1(. . .(T2(T1(A(n1)))) . . .))

The term denoting the cost of traversing ei in the previous expression, that is
Ci(Ti−1(. . . (T2(T1(A(n1)))) . . .)), will be denoted by cei(σ). In a notation abuse, we
will write e ∈ σ if e = ei for some 1 ≤ i ≤ k.

We say that G′ = (N′,O,d,V,A,E ′) with N′ ⊆ N and E ′ ⊆ E is a tree of G if for
all o ∈ O there exists a single path σ = (e1, . . . ,ek) of G′ departing from o, that is,
such that e1 = (o,n,C,T ) for some n,C,T . For each o ∈ O, we denote by σo the
unique path of G′ departing from o.

The distances cost of G′, denoted by dc(G′), is equal to ∑o∈O c(σo). The span-

ning cost of G′, denoted by sc(G′), is equal to ∑e′∈E ′ ∑{ce′ (σo)|o∈O,e′∈σo}
|{ce′ (σo)|o∈O,e′∈σo}| . �	

Now we are provided with all the needed machinery to formally define the problems
considered in this chapter. As it is usual in Complexity theory, these minimization
problems are defined in terms of their equivalent decision problems.

Definition 2. The problem of the minimum distances tree for a variable-cost graph,
denoted by MDV, is stated as follows: Given a variable-cost graph G and a natural
number K ∈ IN, is there any tree G′ of G such that dc(G′) ≤ K?

The problem of the minimum spanning tree for a variable-cost graph, denoted
by MSV, is stated as follows: Given a variable-cost graph G and a natural number
K ∈ IN, is there any tree G′ of G such that sc(G′)≤ K? �	
The previous problems generalize the classical minimum spanning tree and the min-
imum distances tree problems to the case where the cost of traversing each edge
depends on the path traversed before taking the edge. The past path is abstracted
by the value of the variable, which particularizes the cost of each edge for each
path. Let us note that, in formal terms, we do not need to consider several variables
in the problem definition because the dependence on past paths can be denoted by
using a single variable. Though several variants of the minimum spanning tree and
the minimum distances tree problems have been studied in the literature, as far as
we are concerned the variant problems proposed in this chapter have not been con-
sidered. Hence, their properties must be analyzed. A proof of the NP-completeness
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of both problems is presented in the appendix of this chapter. In fact, variants of
both problems where only graphs fulfilling N = O are considered (that is, where all
nodes are origin nodes) are NP-complete as well. These alternative problems are
also considered in the appendix.

As a matter of fact, the generalization introduced in MDV and MSV (that is, the use
of variable-cost graphs instead of fix-cost graph) increases their applicability to new
interesting scenarios. In fact, we recently came across these problems because we
were constructing some testing derivation algorithms (for an introduction to Formal
Testing Techniques, see e.g. [14, 16, 2, 15, 20]). Typically, the goal of a testing
methodology is to interact with the analyzed system so that all system states are
reached at least once. If previous system configurations can be restored then we can
explore a part of the system, then go back to a previously traversed point, and next
go on through a different way. Thus, the problem of reaching all states consists in
creating a tree embracing all states. Since the time required to go from state s to state
s′ depends on the previous activities of the system (available resources, values of
variables, etc), composing the optimal tree reaching all states at least once requires
taking past activities into account. We can use a variable-cost graph to denote how
the execution time of each activity depends on the current values of variables. Thus,
if we assume that previous configurations can be restored then finding a tree which
allows reaching all states in minimum time essentially consists of solving MSV for
this graph. There exist other related testing problems whose basic structure fits into
this problem scheme as well.

Next we consider an applicability example of MDV. Let us consider that a local
area network (LAN) is constructed on top of a given existing networking infrastruc-
ture. The transmission cost of a given connection (i.e. edge) depends on the kind
of information being transmitted (e.g., low connections are unacceptable for a real-
time video stream, but may be suitable for low priority packets). Besides, the kind
of information being transmitted depends on the kind of sender machine. Thus, a
variable-cost graph can be used to define communication costs in the existing in-
frastructure. Let us suppose that we want to design a networking tree that allows all
nodes to communicate with a central dispatcher in such a way that average com-
munication costs are minimized. Finding this tree consists of solving MDV. Other
applicability scenarios of MSV and MDV may be considered as well (for instance,
this is the case of the subway design problem we briefly sketched before).

4 Applying RFD and ACO to MDV, MSV, and TSP

In this section we describe the application of our approach to solve MDV, MSV, and
TSP, and we report some experimental results. Only static graphs will be consid-
ered in this section. Experiments where nodes and edges appear/disappear along
time will be considered in the next section. In both sections, we compare the results
obtained by using ACO methods and the solutions obtained by using our method.
All experiments were performed in an Intel Core Duo T7250 with a 2.00 GHz pro-
cessor. The basic aspect of our application interface can be seen in Figure 1 (left);
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Fig. 1 Application interface (left) and altitudes in a TSP solution (right)

the picture on the right shows the altitudes of each of the nodes after solving an
instance of TSP.

Next we introduce the values of parameters of RFD and ACO used in these exper-
iments. Parameters depend on the problem we are executing. The number of drops
and ants used to solve MDV and MSVwas detected not to be very significant; they are
set to 10 in both cases. However, we observed that these values did influence results
when TSP was solved. In this case, the number of drops is set to 50 and the num-
ber of ants is 1000. In RFD, the initial altitude of the nodes is 1000 in the case of
MDV and MSV, and 10000 in the case of TSP. Furthermore, parameters paramEro-
sion and paramBlockedDrop (see Section 2.1) are set to 1 for all problems, and δ
and ω are set to 1 and 0.1. The parameter notClimbingFactor is increased by 0.01
after every loop iteration, and after every 100 iterations it is decreased by 0.5. For
ACO, the initial amount of pheromone in edges is set to 1000 and the amount of
pheromone deposited by an ant after a movement is 100. The evaporation rate is set
to a standard value, 0.5. The α and β parameters, considered as in [7], are set to 4
and 2, respectively, when MDV and MSV are considered, and they are equal to 1 and
5 when TSP is solved.

4.1 Static MSV

Next we present the results obtained when MSV is solved by both methods. In the
case of RFD, we have directly applied the method presented in Section 2, while in
the case of ACO we have used an implementation inspired by [3]. Three randomly
generated variable-cost graphs with 100, 200, and 300 nodes were considered.5 In
these graphs, each node is connected to approximately 40% of the rest of nodes.
Variables can take up to 10 possible values. Cost functions and transformation
functions attached to edges are randomly generated. In particular, features such as

5 All graphs used in experiments in this paper can be downloaded from
http://kimba.mat.ucm.es/˜prabanal/.
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monotonicity or injectivity are not required in these functions. Figure 2 shows the
results of an experiment where the input of both algorithms was the graph with 100
nodes. The graph shows the cost of the solution found by each algorithm for each
execution time (in seconds). Analogously, Figure 3 contains the results obtained by
using the graph with 200 nodes as the input of both algorithms, while Figure 4 shows
the results for the 300 nodes graph. All figures show the evolution of the algorithms
in a single execution, but the same basic shape has been obtained for most of the ex-
ecutions. In order to report solutions that are not biased by a single execution, each
algorithm was executed thirty times for each of the graphs. Table 1 summarizes the
arithmetic mean (Avg), the variance (Var), and the best solution (Best) found by
each method among all thirty executions.

Fig. 2 MSV results for a randomly generated variable-cost graph with 100 nodes

Fig. 3 MSV results for a randomly generated variable-cost graph with 200 nodes
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Fig. 4 MSV results for a randomly generated variable-cost graph with 300 nodes

Table 1 Summary of MSV results. Static case.

Graph size Avg RFD Avg ACO Var RFD Var ACO Best RFD Best ACO
100 nodes 300.20 273.30 193.73 17.33 262.75 263.03
200 nodes 538.76 577.54 160.33 365.01 506.36 542.32
300 nodes 829.22 1128.73 128.40 641.79 802.44 1069.99

The results presented in the previous table show that average solutions found by
the RFD method are better than the solutions found by ACO. Moreover, the variance
is also lower in our algorithm than in the ACO algorithm, with the only exception
of the smallest graph.

4.2 Static MDV

Next we study the application of ACO and RFD to solve MDV. Let us recall that
changing a single parameter which defines the erosion caused by drops, makes RFD
solve either MSV or MDV: If n drops traversing an edge per unit of time erode the
ground, as if the erosion effect of a single drop were multiplied by n, then con-
structed trees will approximately solve MSV. However, if n drops have the effect of
a single drop, then trees tend to solve MDV.

The comparison results obtained for the MDV problem are similar to the case of
MSV. That is, RFD again obtains better solutions (on average), but solutions pro-
vided by ACO in short times are better. Times required by RFD to surpass ACO
solutions are now a little bit longer. Figures 5, 6, and 7 show the results of exper-
iments performed with 100, 200, and 300 nodes graphs. Again, in all these cases
the figures show the evolution of the algorithms in a single execution. Following the
same methodology as in the previous example, each algorithm was executed thirty
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Fig. 5 MDV results for a randomly generated variable-cost graph with 100 nodes

Fig. 6 MDV results for a randomly generated variable-cost graph with 200 nodes

Table 2 Summary of MDV results. Static case.

Graph size Avg RFD Avg ACO Var RFD Var ACO Best RFD Best ACO
100 nodes 613.81 711.90 60.92 4026.26 600.14 587.52
200 nodes 884.05 933.20 111.41 5275.66 854.78 771.64
300 nodes 1362.05 1414.31 244.50 8804.20 1330 1239.73

times for each of the graphs. Table 2 summarizes the same parameters as those con-
sidered before for MSV.

As in the case of MSV, the results presented in the previous table show that aver-
age solutions found by the RFD method are again slightly better than those found by
ACO. Moreover, the variance is lower again. However, now RFD needs more time
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Fig. 7 MDV results for a randomly generated variable-cost graph with 300 nodes

to surpass the quality of the solutions found by ACO. In fact, despite the fact that the
mean of solutions is better in RFD than in ACO, the best solution found in all the
thirty executions is usually found by ACO. Thus, although the results obtained by
RFD are good, the advantage over ACO is not as significant as in the case of MSV.
The main reason is that RFD intrinsically promotes the formation of grouped paths
instead of individual paths, which reduces the size of constructed trees (as required
by MSV). In particular, let us note that the incentive of drops to join the main flow
is structurally provided by the use of gradients in RFD: If a drop d moving at a
high altitude falls into a strongly eroded flow then, due to the fast reinforcement of
shorter paths in RFD, subsequent drops traversing the same area as d will quickly
tend to join this flow as well. This feature helps RFD to properly solve MSV (but it
is not that useful for solving MDV).

4.3 Static TSP

We apply RFD and ACO to solve some instances of TSP, and we report the col-
lected results. Let us recall that handling TSP by means of RFD requires taking into
account the adaptations previously sketched in Section 2.2.

Figures 8 and 9 show the results of two experiments. The first one shows the
results for a graph taken from the TSPLIB library [19]. TSPLIB is a library of sam-
ple instances for the TSP that has become a standard benchmark for this problem.
Nodes are defined by means of points in a 2D plain, and there is an edge between all
pairs of nodes. Thus, fully connected graphs are represented. The distance of each
edge is the euclidean distance between both points of the plain.

Figure 9 contains a larger case example where we consider a graph of 100 nodes.
This graph has been randomly generated assuming that each node is connected with
only a few other nodes (between 10 and 20 connections per node) as it is the most
common case in complex networks. The basic shape shown in the figures is also
obtained with other benchmark examples.
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Fig. 8 TSP results for the TSPLIB eil51 graph

Fig. 9 TSP results for a 100 nodes graph

Table 3 Summary of TSP results. Static case.

Graph size Avg RFD Avg ACO Var RFD Var ACO Best RFD Best ACO
eil51 458.08 457.97 51.19 3.05 441.9 454.42

100 nodes 101.36 102.61 197 12.06 84.15 96.55

Note that the shapes shown in these figures are analogous to the case of MSV and
MDV: ACO finds solutions faster, while RFD finds better solutions after some time.
However, in this case it seems harder for RFD to surpass ACO solutions. The main
reason is that drops need memory to register the traversed path in TSP, so one of the
advantages of RFD with respect to ACO (that is, the absence of memories) is lost.

Following the same methodology as in the previous example, each algorithm
was executed thirty times for each of the graphs. Table 3 summarizes the same
parameters as in previous tables.
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4.4 Summarizing Results

We extract the following conclusions from the experimental results obtained for the
three considered problems. In all problems, we observe that ACO usually provides
good solutions earlier than RFD. However, after some additional time passes, the so-
lutions provided by RFD usually surpass the quality of those given by ACO. These
features are a consequence of the fact that the exploration of the graph is deeper
in RFD than in ACO, which in turn is due to the differences between both meth-
ods. First, let us note that the erosion-sedimentation mechanism of RFD provides a
dynamic dual mechanism to promote/punish good/bad paths or parts of paths. This
process allows not only to locally reinforce good parts of paths, but also to locally
punish bad sequences. This is an active try and fail mechanism which enables a more
exhaustive exploration of the graph. Besides, as we said before, the construction of
paths of decreasing altitudes implicitly avoids the formation of local cycles, which
in turn avoids inefficient movements of drops. Moreover, this forces drops not to be
concentrated in local areas but to spread around the graph, which allows a wider and
more homogeneous search. In addition, let us recall that the use of gradients makes
shorter paths preferable overall from the time they are discovered, which accelerates
the process of reinforcing them. This increases the competitiveness of shorter paths:
At a given time, several new shorter paths may have attractive gradients, even if
they are still young. This helps new shorter paths strongly compete with each other,
which again enables a deeper exploration of the graph.

The previous considerations are common to all three problems, though the differ-
ences of RFD and ACO is affected by an additional factor in the cases of MSV and
MDV. As we said before, when RFD solves TSP, drops keep a memory of previously
traversed nodes, though no memory is used in RFD when MSV or MDV are solved.
This contrasts with ACO, where memories are used in the three problems. The im-
plicit avoidance of cycles of RFD allows us not to provide drops with any memory
in MSV and MDV, but ants still need memories in both problems because they can
fall in cycles indeed. Though cycles are avoided by formed gradients in RFD, gra-
dients are still weak during the first steps of the algorithm. Thus, drops do follow
some cycles during these early steps. In the long term, when gradients are stronger,
drops avoid cycles without maintaining any memory structure, which boosts their
performance with respect to ACO. Thus, the absence of memory in MSV and MDV
also promotes the general characteristic we already pointed out before: Solutions
given by ACO are better in the short term, but RFD surpasses solutions given by
ACO after some time.

5 Applying RFD and ACO to MDV, MSV, and TSP in Dynamic
Graphs

In this section we reconsider the previous problems in a scenario where graphs are
dynamic, that is, nodes and edges can change along time. In particular, we are in-
terested in studying the capability of each method to adapt previous solutions to
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new configurations after each change is introduced. In these experiments, we follow
the following procedure for each of the considered problems. First, we calculate the
solution of an instance of the problem by using either ACO or RFD. Next, we intro-
duce one or more of the following changes in the graph: (a) We delete an edge that is
common to the solutions found by both methods; (b) we delete a node of the graph;
(c) we add a new node. Once the change is introduced, we calculate a solution for
this instance of the problem. Let us remark that we do not restart the algorithms,
but we keep the state of the methods (that is, the amount of pheromone at each edge
and the altitudes of the nodes, respectively) just before the change. In most cases we
observe that, after some time, the quality of the solutions of our method surpasses
the quality of the solutions provided by ACO. In fact, the time needed to surpass
ACO solutions is shorter than in the static case. Moreover, it is specially remarkable
that for some graphs ACO does not find a solution at all after changing the graph
(but, in all of these cases, RFD does).

5.1 Dynamic MSV

Let us start by considering the MSV problem. As we did in the static case, we will
compare the performance of RFD and ACO by using the same input graphs. In
particular, we consider the same graphs introduced in the static case, and in each
experiment we introduce several changes at the same time. In the case of the 100
nodes graph, we remove two nodes, we remove two edges (one of them belongs
to the solution found by ACO and another one to the solution found by RFD), and
we add other two new nodes. The results can be seen in Figure 10. In the case of
the 200 nodes graph (see Figure 11) we proceed in an analogous way: We remove
four nodes as well as four edges (where two edges belong to the solution given by
ACO and the other two edges belong to the solution provided by RFD), and we add

Fig. 10 MSV results for a dynamic randomly generated variable-cost graph with 100 nodes
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Fig. 11 MSV results for a dynamic randomly generated variable-cost graph with 200 nodes

Fig. 12 MSV results for a dynamic randomly generated variable-cost graph with 300 nodes

two new nodes. We proceed analogously in the 300 nodes graph (see Figure 12): six
nodes and six edges are removed, and next two new nodes are added.

In all cases we see that the time needed to react to the modifications is similar
both in ACO and RFD. However, the results obtained by using RFD are better than
those given by ACO in all graphs but the smallest one. Thus, the advantages of RFD
in the static case are still valid in the dynamic case, while the main disadvantage of
RFD in the static case is minimized in dynamic frameworks.

Table 4 summarizes observed results after executing each algorithm thirty times
for each graph.

Let us remark that the results are somehow similar to those obtained in the static
case. That is, ACO finds better solutions in the smallest graph, while RFD obtains
better results in the larger graphs. Moreover, the time needed to react to the changes
in both cases is very similar.
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Table 4 Summary of MSV results. Dynamic case.

Graph size Avg RFD Avg ACO Var RFD Var ACO Best RFD Best ACO
100 nodes 383.53 265.08 11.72 14.23 376.45 258.68
200 nodes 559.15 602.90 3.87 172.93 556.94 578.41
300 nodes 835.10 1121.66 1.38 200.71 834.56 1058.86

5.2 Dynamic MDV

Next we analyze the performance of RFD and ACO when MDV is solved in envi-
ronments where the graph changes along time. Again, we consider the same graphs
introduced in the static case and, for each experiment, we introduce several changes
at the same time. The changes introduced are the same as in the MSV case.

The results can be seen in Figures 13, 14, and 15, where experiments with the
graphs of 100, 200, and 300 nodes, respectively, are considered. The situation now
is similar to the MSV case: (i) the time needed to react to the modifications is similar
both in ACO and in RFD; (ii) the results obtained using RFD are better than in ACO.
In fact, we can see that RFD has a bit more advantage over ACO in the dynamic case
than the static case.

Following the same methodology as in the previous case, each algorithm was ex-
ecuted thirty times for each of the graphs. Table 5 summarizes the same parameters
as in previous tables.

Notice that in the dynamic case the advantage of RFD over ACO has increased
with respect to the static case: The average results and the variance are better, and the
best results are usually found by RFD. However, the main advantage with respect to
the static case is that the time needed by RFD to surpass the quality of the solutions
found by ACO is much less than in the static case. In fact, both RFD and ACO
require similar times to react to changes.

Fig. 13 MDV results for a dynamic randomly generated variable-cost graph with 100 nodes
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Fig. 14 MDV results for a dynamic randomly generated variable-cost graph with 200 nodes

Fig. 15 MDV results for a dynamic randomly generated variable-cost graph with 300 nodes

Table 5 Summary of MDV results. Dynamic case.

Graph size Avg RFD Avg ACO Var RFD Var ACO Best RFD Best ACO
100 nodes 699.49 753.35 65.53 5216.30 681.69 618.25
200 nodes 878.02 1241.58 10.47 18653.47 873.37 1012
300 nodes 1264.53 1473.34 1.18 16106.36 1263 1275

5.3 Dynamic TSP

Next we use ACO and RFD to solve TSP in the case where changes are introduced
in the graph. Figure 16 shows the results after removing one edge that was com-
mon to solutions found by both ACO and RFD, considering the 100 nodes graph.
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Fig. 16 TSP results for the 100 nodes graph, after removing an edge

Next, Figure 17 shows the results after removing one node in the same graph, and
Figure 18 considers the case where several changes (in particular, deleting two com-
mon edges, adding two new edges, adding two new nodes, and deleting other two
nodes) are introduced at the same time in the same graph. Next, Figure 19 shows the
results after introducing a new node in the TSPLIB eil51 graph. Finally, Figure 20
shows the results after introducing several changes (in particular, the same as in the
case of the 100-nodes graph) at the same time in eil51.

Let us remark that, in one of these experiments, ACO did not find any solution to
the problem after several modifications were introduced. That is, ACO did not find
a way to either integrate the modifications within its previous solution or compose a
completely new solution where the modifications were considered. However, RFD
obtains a solution. Hence, in this case the advantage of RFD over ACO is quite
relevant. Obviously, we could completely restart the computation of ACO from the
beginning. This is a good choice indeed, because the time needed by ACO to provide
reasonable solutions when executed from scratch is actually shorter. However, this

Fig. 17 TSP results for the 100 nodes graph, after removing a node
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Fig. 18 TSP results for the 100 nodes graph, after performing several modifications together

Fig. 19 TSP results for the TSPLIB eil51 graph, after adding a node

Fig. 20 TSP results for the TSPLIB eil51 graph, after performing several modifications
together



360 P. Rabanal, I. Rodríguez, and F. Rubio

shows that the adaptability of ACO to changing landscapes (which is the point of
considering the dynamic case) is worse than the adaptability of RFD.

Regarding the cases where ACO finds a solution after the modifications, we ob-
serve that ACO finds them faster than RFD, but RFD finds better solutions after
some time. Moreover, it is worth pointing out that, in general, the time needed by
RFD to surpass ACO is smaller after a modification is introduced than in the case
where we compute the initial solution from scratch. However, the advantage of RFD
over ACO in terms of quality of results was clearer in MSV and MDV. The reason in
that TSP is harder for RFD to solve than MSV and MDV, as now drops need to keep
memories of the path traversed so far. Anyway, it is remarkable that RFD can always
react to changes in the graph, while that is not the case for ACO.

Next we study in higher detail the case where several changes are introduced at
the same time, considering both the randomly generated graph of 100 nodes and
the eil51 graph from TSPLIB. Following the same methodology as in previous
examples, each algorithm was executed thirty times for each graph. Table 6 sum-
marizes the same parameters as in previous tables. The ’–’ symbol denotes that no
solution was found in this case. Interestingly, ACO did not find any solution for the
100 nodes graph in all the thirty executions.

Table 6 Summary of TSP results. Dynamic case.

Graph size Avg RFD Avg ACO Var RFD Var ACO Best RFD Best ACO
eil51 436.40 441.76 57.39 28.63 427.68 436.35

100 nodes 149.86 - 199.49 - 123.11 -

5.4 Summarizing Results

We extract the following general conclusions from experiments where RFD and
ACO were applied to solve MSV, MDV and TSP in dynamic graphs:

(1) In both static and dynamic graphs, RFD usually obtains better solutions in the
long term;

(2) In dynamic graphs, ACO and RFD require similar time to react to changes, with
the only exception of TSP, where ACO is faster than RFD.

(3) Once RFD has found a good solution in the static case and when several changes
were introduced later in the graph, RFD works faster than in the static case
because it can exploit the slopes created before; and

(4) RFD always obtains a solution after a modification is introduced, while some-
times ACO cannot adapt the solution constructed before the graph was modified
to the new scenario (in particular TSP).

These features are again a consequence of the fact that the exploration of the
graph is deeper in RFD than in ACO, which in turn is due to the differences between
both methods.

The fact that sometimes ACO does not find a new solution for TSP after a
change is introduced deserves additional comments. First, let us note that finding
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any solution is harder for TSP than for MSV or MDV (in particular, given a graph,
there are less round-trips than spanning trees). When ACO converges to a solution,
pheromone trails not involved in the solution sequence are negligible, i.e. only the
edges included in the solution sequence have significant pheromone trails. Hence,
no information about other alternatives is available when the graph changes. In par-
ticular, resetting missing pheromone trails to some default values does not recover
this information. On the other hand, when RFD converges to a solution, all nodes are
provided with some altitude, which gives them a relative position in the graph. That
is, providing a solution does not require to completely resetting part of the graph
information. Thus, this information helps RFD react to subsequent graph changes.

6 Conclusions and Future Work

In this chapter we have studied the application of the River Formation Dynamics
approach to three NP-complete problems. One of them, TSP, is well-known and
has been extensively studied in the literature. The other problems, MSV and MDV,
are novel generalizations of other known tree-construction problems. Let us note
that RFD is conceptually related to both ACO methods and other gradient-oriented
Evolutionary Computation (EC) approaches. On one hand RFD is, in a rough sense,
a gradient-driven variant of ACO. On the other hand, the gradient orientation of RFD
reminds of methods like Hill Climbing (HC) or Genetic Algorithms (GA) which
traverse a space of solutions by seeking solutions with higher fitness. However, there
is a big difference between RFD and these methods. RFD modifies the points of a
given structure (a graph) by iteratively traversing and transforming these points.
In this way, the structure is iteratively transformed as well, and finally the formed
structure constitutes the returned solution. In HC and GA, the traversed structure is
the space of solutions itself, which is of exponential size in general. Hence, only a
small proportion of these points can be traversed. In these cases, aiming at iteratively
modifying this space is unfeasible.

Other features of RFD make it different from other EC approaches, specifically
ACO. The main ones are the mechanism of focalized punishment of inefficient
paths, the avoidance of local cycles, and the fast reinforcement of shorter paths.
These characteristics are a consequence of the natural tendency of RFD to form
paths that are intrinsically directed towards a given final destination. As commented
in previous sections, these features are specially suitable for dealing with MDV and
MSV problems. Interestingly, a simple parameter change allows RFD to solve either
of these problems. RFD’s intrinsic features also make it an interesting choice for
solving TSP, though in this case one of the advantages of RFD with respect to ACO
is lost (in particular, the possibility of not endowing drops with memory to register
the path traversed so far).

Since RFD is a young method, there is still enough room for introducing both
general improvements and purpose-specific variants. Out of a long list of choices,
we are specially interested in simulating the speed of the drops. Intuitively, when
a drop falls through a strong downward slope its speed increases. This gives the
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drop some kinetic energy allowing it to climb up slopes later. Thus, the speed can
be thought as a kind of drop credit. In this way, a second derivative mechanism
would be introduced in RFD. We are also interested in developing a hybrid RFD-
ACO system. Altitudes and pheromone trails would be simultaneously represented
and considered by drop-ant hybrids. The rate of influence of each approach could
change along time depending on the suitability of each approach for each execution
stage. In this way, we could take the best characteristics of both approaches.
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Appendix: Proving MDV, MSV ∈ NP-complete

In this appendix we prove that the novel problems considered in this chapter, MDV
and MSV, belong to the NP-complete class. This implies that exponential times
are (very probably) required to optimally solve them. Thus, sub-optimally solving
them by means of heuristic algorithms like those considered in this chapter is an
appropriate choice. The proof is structured as follows. First, we prove that both
problems belong to the NP class. Next, we prove that a well-known NP-complete
problem, 3-SAT, can be polynomially reduced to each considered problem, which
implies that they belong to the NP-complete class. At the end of this appendix,
we study variants of MDV and MSV where only graphs fulfilling N = O (that is,
graphs where all nodes are origin nodes) are considered, showing that these variants
are also NP-complete.

Lemma 1. MDV ∈ NP and MSV ∈ NP.

Proof. We consider MDV∈ NP; proving MSV∈ NP is similar. We prove that MDV can
be solved in polynomial time by a non-deterministic algorithm. Given a variable-
cost graph G and a natural number K ∈ IN, this algorithm non-deterministically
constructs a subgraph G′ of G and next deterministically checks whether (a) G′ is a
tree of G, and (b) we have dc(G′)≤K. Both operations are performed in polynomial
time with respect to the size of G and the size of K (measured in bits). Given a
subgraph G′ of G, checking whether G′ is a tree of G requires polynomial time.
Next, if G′ is a tree of G, calculating dc(G′) requires traversing all paths connecting
each origin node to the destination node and adding the costs of all of these paths.
The length of each of these paths is polynomial, so calculating the cost of a path
requires polynomial time. Since G′ is a tree, for each origin node there exists a
single path connecting it to the destination node. Thus, the number of paths to be
considered is polynomial. Hence, we can check whether the property dc(G′) ≤ K
holds or not in polynomial time. �	
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In order to prove the NP-completeness of MDV and MSV, we construct a polynomial
reduction of a known NP-complete problem to each of these problems. In particu-
lar, we consider the well-known 3-SAT problem. Next we introduce some notions
related to this problem as well as the problem itself.

Definition 3. The 3-SAT problem is stated as follows: Given a propositional logic
formula ϕ expressed in conjunctive normal form where each disjunctive clause has
at most 3 literals, is there any valuation ν satisfying ϕ?

Let ϕ ≡ (l11 ∨ l12 ∨ l13) ∧ . . . ∧ (lk1 ∨ lk2 ∨ lk3) be an input for 3-SAT. We
denote by props(ϕ) = {p1, . . . , pn} the set of propositional symbols appearing in
ϕ . We denote the i-th disjunctive clause of ϕ by ci, that is, ci ≡ li1 ∨ li2 ∨ li3.

We say that ci holds when p j is equal to x ∈ {
,⊥}, formally denoted by
h(p j,x,ci), if for all valuation ν fulfilling ν(p j) = x we have that ci evaluates to 
.
That is, h(p j,
,ci) iff lim ≡ p j for some 1 ≤ m ≤ 3, and h(p j,⊥,ci) iff lim ≡ ¬p j

for some 1 ≤ m ≤ 3. �	
Theorem 1. 3-SAT∈ NP-complete. �	
We prove MDV,MSV ∈ NP-complete as follows (next we consider MDV; the same
arguments are given in the case of MSV). Given an input ϕ of 3-SAT, we show that
we can construct an input (G,K) of MDV from ϕ in polynomial time in such a way
that the solution of 3-SAT for ϕ is yes iff the solution of MDV for the variable-cost
graph G and the natural number K is yes. By the definition of the NP-complete
class, this implies MDV ∈ NP-complete. In particular, if we were able to solve
MDV in polynomial time then we could solve the NP-complete problem 3-SAT
in polynomial time as well: We could just transform ϕ into (G,K), next call the
algorithm that solves MDV in polynomial time, and finally return the answer given
by it.

Before formally presenting the construction of (G,K) from ϕ , let us informally
introduce it. Each origin node of the constructed graph G represents a disjunctive
clause of ϕ . From each of these origin nodes, edges iteratively lead through some
nodes representing each proposition symbol appearing in ϕ . Each of these propo-
sition nodes is connected to the next proposition node through two edges. One of
them represents valuating the corresponding proposition symbol to 
, while the
other edge represents giving it the ⊥ value. Depending on the origin node where we
come from (that is, depending on the disjunctive clause we are considering), taking
the edge that evaluates the proposition symbol to true or to false adds a different cost
to the path. This cost is 1 unless the proposition valuation represented by the edge
allows to make true the disjunctive clause for the first time in the path. In this case,
the edge adds 0 to the overall path cost. In order to keep track of this information,
the value of the variable of the variable-cost graph G codifies the considered clause,
as well as whether this clause necessarily holds (according to the valuation repre-
sented by the path traversed so far). In particular, variable values follow the form
v j,w where j is an index denoting a clause and w ∈ {already
,notyet
}. A value
v j,w denotes that the current path departed at an origin node denoting the j-th clause
of ϕ , and w = already
 denotes that the j-th clause must be true regardless of the
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clause1 clausek

prop1

propn

end

ν(p1) = ⊥ν(p1) = 


ν(pn−1) = ⊥ν(pn−1) = 


ν(pn) = ⊥ν(pn) = 


Fig. 21 Structure of the variable-cost graph G

valuation of the remaining proposition symbols (because the valuation implicitly
defined by the path traversed so far necessarily makes it true). Otherwise, we con-
sider w = notyet
. After the last proposition node is traversed, the destination node
of G is reached. The structure of G is depicted in Figure 21.

Recall that MDV seeks a tree where the addition of costs from each origin node
to the destination node is minimal. On the other hand, MSV seeks a tree where the
addition of average edge costs is minimal. Let us note that, given the variable-cost
graph G, a tree of G can include only one of the edges that connect each proposition
node to the next proposition node (otherwise, it would not be a tree). Hence, given
G, trees computed by both problems represent valuations of proposition symbols.
Since MDV searches the cheapest tree connecting all origin nodes to the destination
node, MDV actually seeks a tree that allows making as many clauses true as possible.
In particular, we will prove that the cost of the cheapest tree found by MDV is under
a given threshold if and only if all clauses are true under the constructed valuation,
that is, iff ϕ holds. Moreover, due to the specific form of G, finding a tree where
the addition of costs from each origin to the destination is minimal is equivalent
to finding a tree where the addition of average costs of edges is minimal: Due to
the definition of G, for both problems the tree cost is minimized if the valuation
represented by the tree makes true as many clauses as possible. Hence, we can also
define a threshold such that the cost of the minimum tree for MSV is under it iff ϕ is
satisfiable.

Theorem 2. MDV ∈ NP-complete and MSV ∈ NP-complete.

Proof. First, we proveMDV∈NP-complete. Due to Lemma 1, if we polynomially
reduce 3-SAT to MDV then MDV ∈ NP-complete. Let ϕ denote a conjunctive
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normal form ϕ ≡ c1 ∧ . . . ∧ ck where props(ϕ) = {p1, . . . , pn}. We construct a
variable-cost graph G = (N,O,d,V,A,E) as follows:

• N = {clause1, . . . ,clausek, prop1, . . . , propn,end},
• O = {clause1, . . . ,clausek},
• d = end,
• V = {v j,w|1 ≤ j ≤ k ∧ w ∈ {already
,notyet
}}
• For all clausei ∈ O we have A(clausei) = vi,notyet
.
• E = {(clausei, prop1,C,T )|1 ≤ i ≤ k ∧ ∀ v ∈V : (C(v)=0 ∧ T (v)=v)}⋃⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎝

propi,
propi+1,

Cx
i ,

T x
i

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 ≤ i ≤ k−1 ∧ x ∈ {
,⊥} ∧
Cx

i (v j,notyet
) =
{

0 if h(pi,x,c j)
1 otherwise

}
∧

Cx
i (v j,already
) = 1 ∧

T x
i (v j,notyet
) =

{
v j,already
 if h(pi,x,c j)
v j,notyet
 otherwise

}
∧

T x
i (v j,already
) = v j,already
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⎪⎪⎪⎪⎪⎪⎪⎪⎭⋃⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
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⎛
⎜⎜⎝
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end,
Cx

n,
T x

n

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x ∈ {
,⊥} ∧
Cx

n(v j,notyet
) =
{

0 if h(pn,x,c j)
1 otherwise

}
∧

Cx
n(v j,already
) = 1 ∧

T x
n (v j,notyet
) =

{
v j,already
 if h(pn,x,c j)
v j,notyet
 otherwise

}
∧

T x
n (v j,already
) = v j,already


⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

We show that constructing G from ϕ requires polynomial time. This property is
a consequence of the following conditions:

(a)|N| is equal to the number of clauses of ϕ plus the number of proposition symbols
of ϕ plus 1 (the end node), which is polynomial with respect to the size of ϕ .

(b)|V | is equal to the number of disjunctive clauses of ϕ multiplied by 2. Thus,
for each edge in E , defining functions C and T by means of extensional arrays
(relating each input value with its output value) requires polynomial size and
time.

(c)|E| is equal to the number of clauses plus the number of propositions multiplied
by 2, which is polynomial with respect to the size of ϕ .

Finally, we prove that the answer of MDV for G and a given threshold is yes iff ϕ
is satisfiable. In particular, we prove that ϕ is satisfiable iff there exists a tree G′ of
G such that dc(G′) ≤ k ∗ (n−1). We consider each implication of this statement:

⇒:Let us note that a tree G′ of G must include all edges connecting each node
clausei with prop1. All of these edges have 0 cost. Besides, for each pair of
edges connecting each node propi with node propi+1, the tree G′ must include
exactly one of these edges. Let us consider a valuation ν such that for all 1≤ i≤ n
we have ν(pi) = 
 if G′ includes the edge (propi, propi+1,C


i ,T

i ) and pi = ⊥
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if G′ includes (propi, propi+1,C⊥
i ,T⊥

i ). For all clausei ∈ O, the cost of the path
from clausei to end in G′ is n− 1 if ν makes ci true, and n otherwise. This is
because if ν makes ci true then all edges in the path but one add 1 cost to this
path. The exception is the edge that makes ci true for the first time, which adds 0
cost. If ϕ is satisfiable then there exists a valuation ν ′ making all clauses ci true.
Thus, there exists a way to choose the edges connecting each propi with propi+1

in such a way that, for all clausei, the unique path from clausei to end has n−1
cost. In this case, dc(G′) = k ∗ (n−1).

⇐:Let us consider a valuation ν defined as in the previous case. If the cost of G′ is
k∗(n−1) then the cost from each clausei to end must be n−1. This implies that,
for each 1 ≤ i ≤ n, ν makes the clause ci true. Hence, ϕ is satisfiable.

We prove MSV∈ NP-complete by following very similar arguments. In partic-
ular, we can construct a polynomial reduction of 3-SAT to MSV by using the same
variable-cost graph G defined before. In this case, we argue that ϕ is satisfiable iff
there exists a tree G′ of G such that sc(G′) ≤ n− 1. Let us recall that, in MSV, the
cost of each edge e of G′ is the average cost of e for all paths traversing e. Due to

the structure of G, it is easy to check that sc(G′) = dc(G′)
k . Thus, ϕ is satisfiable iff

sc(G′) = k∗(n−1)
k = n−1. �	

It is worth pointing out that the goal of the previous construction is proving the NP-
completeness of MDV and MSV, not providing a suitable graph construction to solve
3-SAT by means of RFD or ACO. In particular, if the variable-cost graph G were
used to find solutions to 3-SAT by means of RFD, then we would need to introduce
a barrier node at each edge connecting a node propi with propi+1 (see details about
barrier nodes in [17]).

Finally, we study the relation of MSV with other NP-complete problems. Let us
note that MSV is a generalization of the Minimum Steiner Tree problem. This NP-
complete problem is stated as follows: Given a (non-variable) cost-evaluated graph
G and a subset S of its nodes, find the minimum spanning tree including (at least)
all nodes in S. MSV generalizes this problem by considering variable-cost graphs
instead of fixed-cost graphs (in particular, the set of origin nodes O in MSV corre-
sponds to the set S given in the previous problem definition). Thus, we may argue
that the NP-completeness of MSV is a consequence of the NP-completeness of the
Minimum Steiner Tree problem. However, the NP-completeness of MSV (as well
as the NP-completeness of MDV) does not lie only in the fact that a given subset of
nodes is required to be included in the tree. In fact, even if only trees including all
nodes are considered, the NP-completeness of MDV and MSV is met – though, in
this case, the Minimum Steiner Tree problem would not be NP-complete, because it
would be equivalent to the (standard) Minimum Spanning Tree problem (which can
be polynomially solved).

Let MSV′ and MDV′ be problems defined as MDV and MSV, respectively, but with
the following difference: Only graphs fulfilling N = O (that is, graphs where all
nodes are origin nodes) are considered. We prove MSV′,MDV′ ∈ NP-complete
by using very similar arguments as before. In particular, let us consider the same
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construction as in the proof of Theorem 2, but now nodes prop1, . . . , propn,end are
also included in the set of origin nodes O. A new variable value nullCost ∈ V is
assigned, as initial value, to all of these new nodes, that is, A(a) = nullCost for all
a∈ {prop1, . . . , propn,end}. If nullCost is the current variable value, then taking the
next edge is costless and the value nullCost remains after taking any edge. Formally,
for all transition (n1,n2,C,T ) ∈ E we have C(nullCost) = 0 and T (nullCost) =
nullCost. For the rest of variable values, the behavior of edges remains exactly as
defined in the proof of Theorem 2. By using the same arguments as those given in
that proof, we infer MSV′,MDV′ ∈ NP-complete. Thus, the presence of variable-
cost edges is a sufficient condition for the NP-completeness of both problems.
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Algorithms Inspired in Social Phenomena

Antonio Neme and Sergio Hernández

Abstract. Natural computing finds its source of inspiration in diverse biological
phenomena and social behaviors from mainly insects and birds. In this chapter, we
instead propose human social phenomena. The presented algorithms have been ap-
plied in optimization endeavours with success or are promising tools in the design
of optimization techniques.

1 Introduction

Computer Science has turned its attention to a wide variety of natural phenomena
with the aim of abstracting new optimization algorithms. Such phenomena can ei-
ther be physical, biological or even social processes, like simulated annealing, ge-
netic algorithms and interactions between large communities of insects respectively.

Social phenomena have been extensively studied as a basis for several algorithms,
many of them in the area of optimization. The great majority of these social phe-
nomena come from the social behavior shown by ants, termites and some other
insects, as well as from bird flocks and fish schools [9]. Most of the social phenom-
ena that have been used as inspiration for optimization algorithms are mainly cases
of collaboration between organisms, and are referred to as swarm intelligence [10].

The relevance, complexity and computational power of optimization algorithms
taken from social phenomena in species other than humans (swarm intelligence)
is enormous and can be traced elsewhere, as, for example, in [15, 19, 64]. In this
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chapter we discuss social phenomena in human societies that have been or may be
the foundation for optimization algorithms.

2 Social Phenomena

Since their early stages, human societies have proven to be very successful in sev-
eral, if not all, aspects of technological development [6]. People have been optimiz-
ing every aspect of daily life, from water supply for agriculture to machine design
and transportation, to name just a few. Many of these processes are the result of a
group of people explicitly working on them. In this sense, a group of say, engineers
working toward optimizing a mechanical engine is a social phenomenon. On the
other hand, some social phenomena not explicitly intended to reach a certain goal
could also be the source of inspiration for optimizing algorithms. We are interested
in those social phenomena that are the result of a non-conscious procedure, that is,
social phenomena in which there is not an explicit agreement between individuals
to perform a given optimizing algorithm.

The study of social phenomena has been dictated by the cultural influence of
their time. Human behavior and social phenomena were analyzed at the light of
pendulums, steam engines, computers and so on [6]. The complex systems theory
establishes that the behavior of a system is not accessible from the study of its sep-
arated components [11]. To fully understand the richness of complex systems, it is
mandatory to explicitly define the relations that are observed between the compo-
nents. Almost all these relations are non-linear and in many cases conflicts among
components are present.

Modern social sciences have recently incorporated the multiagent-based model-
ing, which has shed new light on some unclear aspects in social behavior [11]. In
multiagent models, actors of the studied process are abstracted into a group of agents
whose behavior is guided by a set of rules that represents the relationship observed
among the actors. There is a two-way communication bridge between social and
computer sciences, as social phenomena have been the basis for several algorithms
[15, 19].

The main idea behind Algorithms Inspired in Social Phenomena is that the com-
putational power of the inspired algorithms is correlated to the richness and com-
plexity of the social behavior. Social phenomena arise as the result of interaction
among individuals. These interactions may be non-linear and the number of inter-
acting agents is required to surpass a given threshold. In general, the agents may not
be aware of the state of all other agents.

By optimization we refer to finding a minimum or a maximum of a given func-
tion. It is defined over a triplet (S,Ω , f ) in which S is the search space defined by a
set of variables, Ω is the set of constraints over the variables and f is the objective
function to be optimized.

The objective function to minimize (maximize) is

f (x) (1)
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subject to constraints Ω = gi ∪h j, of which there are k inequalities:

gi(x) ≥ 0, i = 1, ...,k (2)

and r equalities:
h j(x) = 0, j = 1, ...,r (3)

In this chapter we present social phenomena that are present mainly in human
societies and that have motivated several optimization algorithms. We also refer to
some social processes whose metaphor may lead to new algorithms. The hypoth-
esis is that some of these phenomena, the ones with high complexity, have more
computational power than other, less complex phenomena.

Human interactions cannot be explained only by means of biological information,
as a great variety of social phenomena are present in societies [35]. Human social
phenomena tend to show a high level of diversity. Even if there is not an optimizing
principle behind social interactions they lead to robust social structures that may
even present a high level of stability. The former features make social phenomena a
valuable source of inspiration for algorithms.

In the following sections, the human social phenomena we present are leader-
ship and influence from prominent counterparts, alliance formation, neighborhood
segregation, and social labeling of individuals.

3 Leadership

Leaders have been important for societies since the dawn of humankind. In the early
ages, wizards and magicians, followed by feudal lords and religious officers, and
now presidents or football stars, determine many of the individual behaviors and,
in some sense, are the idols to whom many people are attracted [34]. Leaders have
been identified as outstanding members of a society and they tend to do better than
the rest. Leaders influence their counterparts who are drawn toward the former’s
position, circumstance that may be seen as a searching strategy.

3.1 Society Civilization Algorithm

Several algorithms have been inspired by the leadership phenomena. For example
in [43], an optimization algorithm is defined in terms of leader guidance, the so
called society civilization algorithm (SCA). In this model search space is explored
by candidate solutions which at the beginning are distributed in clusters that resem-
ble societies. The best solutions in each society bias the search toward them, that is,
the leaders influence their counterparts to follow them. Some leaders may migrate to
other regions and thus, their counterparts in former societies migrate with them. The
set of all societies is defined as the civilization, in which all individuals (solutions)
may interact by means of their leaders. The general algorithm of these schemes is
summarized as:
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1. t ← 0.

2. Generate the civilization C(t) of N individuals: C(t) = I1, ..., IN uni-
formly distributed in the parameter space.

3. Evaluate individuals by computing the objective function as well as
constraints.

4. Construct S(t) societies from C(t) as clusters. Clusters may be formed by
any cluster analysis technique.

5. Identify leaders in each society.

6. Migrate individuals in each society toward the location of its nearest
leaders.

7. Identify leaders in the civilization C(t) from the leaders of the soci-
eties S(t).

8. Migrate society leaders toward the location of civilization leaders.

9. t ← t + 1.

10. If the stop condition is not met, go to step 3.

The social phenomena that inspired SCA are i) migration and ii) leadership, but
also iii) cooperation: leaders share their knowledge, that is their position in search
space, to the rest of individuals. From these features, SCA algorithms have been
applied in several areas. For example, in [47], a variant of SCA is applied to opti-
mize the economic dispatch with multiple minima, a well-known problem in electric
power systems operation, and results are promising as performance is comparable
to those from mathematical programming, with less computational effort. In [58], a
variation of the particle swarm optimization model that incorporates the concept of
leadership by allowing particles to move toward the location of the best evaluated
particle lead to good results in several benchmarks, while reducing the number of
collisions between particles.

In the context of data analysis, several techniques may be classified as leader-
guided, as that of self-organizing maps [31], in which the so-called best matching
unit attracts toward them the weight vectors of their neighbor units. An explicit
leader-guided algorithm has been proposed in [56]. The proposed algorithm obtains
a hierarchical structure from data in which each leader is the centroid of a cluster
and there are one or more subleaders within that cluster.
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3.2 Cultural Algorithms

A unique aspect that characterizes all human societies is the concept of culture.
Culture is based on learning from experienced individuals and in that sense, there is
also a guidance (leadership) from them to the rest of the individuals. Reynolds [44]
introduced a type of algorithm based on how cultures gather information to solve
the problems presented to them; these are called cultural algorithms (CA). Such
algorithms are a vehicle for modeling social evolution and learning. The intention is
to abstract the necessary knowledge from experiences needed to solve some specific
problem into, as Reynolds calls it, a space belief which can vary among normative,
spatial, temporal domain and exemplar knowledge.

The main idea behind CA is to divide the process of learning and information
retrieving into three phases. First, a coarse-grained phase is established which is ex-
pected to grasp a general idea of the problem in order to identify regions to explore.
Then, a fine grained phase and finally a phase that comes into action when the search
process gets stagnated.

The approach to problem optimization inspired by cultural algorithms is an ab-
straction of how cultures learn to solve their problems by means of a space belief
and the proper use of this space belief in order to retrieve useful facts related to the
problem at hand. The intention is to abstract a methodology used by humans to op-
timize their solutions and this can only be done when the variables and the problem
domain are fully understood.

Cultural algorithms are inspired by human behavior. They were proposed to in-
corporate some statements about cultural change. These determine a belief space,
which, together with the population space, constrains the search space. The cultural
algorithm is also guided by an influence scheme that prevents some individuals from
modifying the belief space, while allowing others to do so. In this sense there is a
desired, although unknown, behavior that is represented as a location that should be
reached by individuals.

Cultural algorithms have been applied in multiobjective optimization, as for ex-
ample, that of [16, 55], in which a CA is combined with evolutionary programming
(CAEP) that achieves outstanding performance. The CAEP is sketched as:

1. Generate k individuals that are the initial population.

2. Evaluate the initial population.

3. Initialize the belief space.

4. While stop conditions are not met:

5. Apply mutation to generate p offspring.

6. Evaluate each offspring.
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7. Obtain the relative performance of each solution by means of
random mutations.

8. Select the q individuals with the largest number of victories to
produce the new generation.

9. Add the non-dominated individuals to an external memory.

10. Modify the belief space with individuals in external memory.

It is important to realize that the cited algorithms seek to improve the per-
formance of individuals in optimization problems. This is achieved by means of
learning from the ”good” individuals. These algorithms complement some other
convergence-orientedmodels that try to avoid unfeasible regions of the search space.
In that sense, there is also a guide from the good individuals or leaders to the rest of
the population.

In leader-based algorithms, such as SCA and CA, an important assumption is
made about individuals: their inability to consider self experiences, that is, they are
guided toward the leaders’ location without relying on their own previous experi-
ences (locations). Apart from leadership, migration toward leaders and cooperation
from leaders to the rest of individuals, free-will has also been included in some al-
gorithms, as that in [17], in which there is also a liberty parameter that allows or
stops the individuals migrating to the region occupied by the leader. From this lib-
erty of choosing the desired region to move to, a different set of algorithms have
been proposed: the leaderless algorithms.

3.3 Leaderless Algorithms

In Leaderless Algorithms (LA) there are not privileged individuals that bias the di-
rection of searching nor attract others toward them. In LA all individuals have a lack
of global information and tend to present the same capabilities while communication
is a necessary condition for the algorithm to be successful. In [18], a parallel search-
ing algorithm is presented based on homogeneous agents that are able to construct
a map of undirected graphs without a supervisor. The algorithm is a distributed ver-
sion of the standard depth-first algorithm, but as there are several anonymous agents,
they are not able to distinguish between nodes visited by themselves and nodes vis-
ited by others. Each agent generates a partial map, Ti, and the complete map of the
graph is obtained by a spanning algorithm executed by the first agent that finishes
its exploration.

In [48], a group of moving agents reaches a stable velocity as a consensus among
all agents. No agent’s preferences are identified as the desired option and in a
scenario of unbounded time, consensus is always reached. Agent’s individual
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performance cost is minimized and constrained to partial information and by do-
ing so, the overall cost of reaching a stable and safe velocity is minimized.

LA has a strong inspiration in the family of algorithms known as swarm intel-
ligence [10], but also in some human behaviors such as those observed in certain
business and corporative firms in which duties and privileges are equally shared, as
described in [40].

Leaders tend to group individuals toward them. Grouping is also a complex be-
havior in human societies and has been a source of inspiration for several algorithms.
A leader may form a group, but leadership is not the only factor that causes group
formation, as will be shown in the next section.

4 Alliance Formation Basis

An alliance, also known as a coalition, is relatively stable group of agents. Agents
may be people, political parties, software programs, robots or firms that work toward
a common goal that in general cannot be achieved by the agents on their own.

Humans and groups of humans tend to form alliances in several contexts. For ex-
ample, in democratic regimes with multi-parties such as in Europe and Latin Amer-
ica, alliance formation is a very common practice. An alliance, or coalition, is a set
of agents (humans or groups) that may have a similar set of features and a common
goal, that in general contrast with goals and features of a rival alliance [21]. Agents
may seek their own good and form alliance only by their selfish interests but alliance
formation is only profitable when all agents gain more by being part of the group
than interacting on their own. An agent might join one alliance not only because it is
wealthy but also because by making the alliance wealthier, it increases the chances
to defeat the other one in which rival agents may be clustered.

4.1 Basic Definitions

Coalition formation has been studied extensively in game theory mainly with the
unfeasible condition that all participants possess full information about the features
and preferences of each agent. From the multi-agent community, several proposals
have been made with more feasible constraints, such as that of a lack of complete
information about the rest of participants, although not all algorithms guarantee
stable coalition formation. In [3], an algorithm that leads to stable alliances even
with incomplete information is proposed, and since then, several algorithms with
more constraints have been studied.

An alliance is goal-directed and in general short-lived [27]. Human alliances may
also be very stable at short times, but very unstable after a critical time which trans-
lates into rifts and reconfigurations [22]. Alliance or coalition formation has been
extensively studied in Computer Science, as there are many applications in which
several agents work toward a common goal [42].
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In general, the problem of alliance formation can be stated as finding the best par-
tition such that all agents belong to one and only one coalition and at the same time
a set of constraints is satisfied. The constraints are derived from the preferences of
agents to interact with specific agents, or with agents that present specific features,
while avoiding being in the same partition with agents that show some non-desirable
features. Agents have features that describe them and allow the interaction with oth-
ers. In the political scene, an agent, i.e. a party, may have a certain position about
public education, public welfare, and science and research policies that determine
those parties to whom it may ally with.

In the traditional alliance formation problem, there are only two alliances, which
lead to a total of 2 possible alliance ensembles. Each point in the alliance space has
a given energy, or feasibility. Some ensembles may not be very probable in the sense
that some of their members may have very different characteristics. For example, a
possible party alliance may include the left-most and the right-most parties, but as
they show very different positions on the same issues, this alliance is very energetic,
i.e., not feasible.

The space of possible ensembles was studied by Axelrod and Bennett under the
name of landscape theory [4]. The landscape defined by all the possible ensembles
may have several local minima according to the energy, but also may have a global
minimum and thus, the ensemble be optimal. The quantity that is optimized here is
the energy. Fig. 1 shows a landscape for a fictitious group of 9 political parties and
their positions about certain social aspects. There are 256 possible alliances and in
fig. 1-b, the energy for each one of them is shown.

Fig. 1 a) Nine political parties and positions about eight social aspects. b)Landscape for all
possible alliances

In mathematical terms, the alliance ensemble problem is stated as follows. Let A
be the group of N agents and Ai the description of agent i in terms of its features
(vector) and C the optimal alliance ensemble, which consists of at least two disjoint
alliances. The ensemble contains alliances Cj, j > 1, that is, by definition there is
more than one alliance and each agent Ai belongs to one and only one of them.
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The optimal alliance ensemble is defined as:

C = minarg∑
i,k

δ (Ai,Ak) (4)

where δ (Ai,Ak) are the differences between agent Ai and agent A j over all the fea-
ture vectors, measured as the distance between vectors Ai and A j.

Each agent is defined through a set of variables and each agent may change one
or more of these variables over time. Agents try to interact with each other in order
to devise better states, that is, better alliances. From the statistical mechanics point
of view, the landscape defined by all the possible ensembles may have several local
minima, but also may have a global minimum and thus, the ensemble be optimal.

Axelrod proposed this model, based on spin glass theory [4], as an alternative
explanation to alliance formation in European countries in the Second World War.
There was a global optimum consisting of two alliances which were very similar to
the ones observed during the conflict. Although the landscape model is very inter-
esting from the sociophysics point of view [20, 57], it is not feasible in most human
alliances as it requires absolute information access for all agents, being humans, par-
ties, companies or any other social structure. In the great majority of cases, agents
are not allowed to be aware of the state and features that describe other agents.

4.2 Algorithms

Several alliance formation algorithms have been proposed in the context of multi-
agent systems [49, 29, 50]. The main idea is to maximize the sum of the payoffs
to all the alliances by identifying the optimal combination of alliances and the di-
vision of agents into these alliances. Each agent has a set of tasks that may or may
not be similar to the tasks assigned to other agents. The general alliance formation
algorithm can be summarized as:

1. Construct a list of possible alliances, Si(q) of up to q agents.

2. While Si(q) is not empty, do:

3. Contact agents A j ∈ Si(q).

4. Evaluate the benefit of joining A j in an alliance, subject to
preferences and constraints.

5. Extract q from Si(q) and share subtasks.

6. If contacted by agent Ak, substract q as well as the
common tasks.
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Alliance formation algorithms may be classified according to the general assump-
tions of communication and information access for individual agents. The first class
is that of complete information assumptions, which includes dynamic programming
algorithms that guarantee to find the optimal alliance, but whose complexity is pro-
hibitive for real applications [62, 42, 30]. In this scheme, the messages that are sent
between agents in order to share their preferences could be exponential, although
some alternatives have been proposed to reduce complexity. The second class is that
of heuristic-based algorithms that do not guarantee finding the optimal, but reach
solutions very fast [45, 61].

Coalition formation in human societies does not follow the dynamics specified by
many of the known alliance formation algorithms, though alliances still tend to be
robust (at least for a short period of time). In human societies, agents are unreliable,
do not completely share information, and may even lie in order to obtain better
profits [22]. Alliance formation is thus based on a weak communication scheme,
i.e., agents do not completely share their information.

As a consequence of the lack of pervasive information, each agent is forced to
explore its local environment. Agents, therefore, have to join an alliance based solely
on local information and a limited knowledge of the features of other agents in the
alliance.

Human alliances are guided by heuristics that do not always lead to robust en-
sembles, i.e., the alliances may not correspond to a global optimum. However, some
human alliances tend to be robust and long lasting [21]. It is of special interest to
study the general behavior of agents in this context as a source of inspiration for
new algorithms that do not need all the available information.

From Political and Management Sciences as well as from Sociology, there are
several successful examples of human alliance formation, at least for the allies’ im-
mediate purposes. However, the grounds for those alliances are not always obvious
from the analysis of the agents, and, in some cases, the alliance might even appear
contradictory in itself. In general, social agents are not homogeneous. They are often
expressed with weighted influence of some over others or with non-linear relations
among them. For example, agent i may be in the same alliance as agent j, as long as
agent k is also part of it. However, agent k may be inclined to form an alliance with
agent j as long as agent i is not part of it [21].

In human alliance formation, dynamics are mainly governed by two types of
coordination. The first one is a centralized organization where agents communicate
with agents from other groups via their group as a whole [42]. The second coordina-
tion scheme is decentralized, i.e., there is no group of agents that is pervasive in the
environment and therefore, the coordination must be achieved through individual
interactions.

Based on the above-mentioned constraints and features of human alliances,
several coalition algorithms have been proposed. In [37], the agents do not have
knowledge of the complete feature vector of all agents, leading to restricted alliance
formation. A set of agents is a restricted alliance when all agents agree to share
information within the set, but not with the rest of agents. [38, 41] describe a mul-
tiagent system model of humanitarian assistance services in conflict areas, in which
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agents represent non-government organizations that, in general, have a common ob-
jective. The available information is not always reliable and the agents are aware of
this fact when they decide whether or not to group with another agent.

The variety of reasons why an individual may have to become part of an alliance
have been included in some schemes in order to obtain stable alliances when com-
plete information is not available. For example, in [12] each agent i is provided with
a variable that quantifies its strength of character determining its predisposition to
form complete new alliances, Ci. A second variable Gi defines its attraction to ob-
tain a profit within that alliance. Finally, a third variable Ri is defined that states its
reluctance to abandon its current alliance to join another one.

Agents with a high Ci will send invitations to form new coalitions more often
that those with lower predisposition to form new aliances. When an agent i that is
part of a coalition Aact is invited to join another alliance An, its decision is based
not only on the benefit xn

i it will receive but also on the individual parameters that
define its personality. The gains from both the new and actual coalition, S(An) and
S(Aact), are determined by the agent through the benefits it would achieve and from
individual preferences:

S(Aact) = Gi ×
xact

i

xact
i + xn

i
+ Ri × (1 − sbact) (5)

S(An) = Gi ×
xn

i

xact
i + xn

i
+ Ri × (1 − sbn) (6)

where sbact is a parameter that summarizes the stability of the coalition that contains
agent i, and sbn is the stability of the new coalition. So, if S(Aact) ≤ S(An), the
agent decides to abandon alliance Aact and be part of the alliance An. When agents
are homogeneous (Gi = Ri = Ci, ∀i), the simulations converge to a unique stable
structure, but when the personality is heterogeneous, several coalitions may result.
As each agent’s decision is influenced not only by the profit it will obtain by joining
an alliance but also by its own personality, non-optimal alliances are avoided.

5 Optimization through Social Labeling

Classification of individuals in a society is a common phenomenon. The label or tag
assigned to an individual may be the result of prejudices, ignorance or true facts.
An individual’s tag may influence the way other individuals interact with him/her,
by inducing a positive or negative reaction/feeling [26]. Some algorithms have been
inspired by such social tags.

Achieving cooperation in Peer to Peer networks (P2P) is not a trivial task. Some
peers may decide to stop cooperating once they have obtained the resources they
were looking for, as often happens in file-sharing schemes. A P2P network in which
the number of attempts made to obtain a given resource for all peers is minimized
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is highly desirable. In [25], a method is presented that improves cooperation in P2P
networks based on the evaluation among peers leading to each individual being
assigned a tag. Peers that tend to avoid cooperation are tagged as non-cooperative
whereas peers that tend to cooperate are tagged positively. The algorithm is:

1. While the number of generations is not met:

2. for each agent i in the population:

3. Select a game partner agent j with a similar tag (whenever possible).

4. Peers i and j interact through their strategies and get payoff.

5. Reproduce agents proportionally to their payoff.

6. Mutate tags and strategies of each reproduced agent.

Each peer is assigned a strategy that states its behavior for interacting with other
agents. This strategy is based on the Prisoner’s Dilemma (PD), as proposed in [4].
Two agents (peers) are involved in a situation where they have the option to coop-
erate (C) with each other or to defect (D). Each agent obtains a payoff as a function
of its action and the action of the other peer. The payoff proposed in the PD is as
follows:

T > R > P > S (7)

2R > T + S (8)

where T is the payoff an agent receives if it defects and the other cooperates, R is the
payoff when both agents cooperate, P is the payoff when both of them defect, and
S is the payoff an agent receives if it cooperates and the other defects. The second
condition is to prevent an agent from alternating between cooperation and defection.

As it is known in game theory, if there is only one encounter between two agents,
the best strategy is to defect (D). In the proposed model there is no possibility of
confronting the same peer twice, which makes the result surprising: the best strat-
egy, in terms of a cooperative network, is that in which cooperative peers (C) are
dominant. In other words, the overall number of attempts for each peer to obtain a
given resource is minimized through cooperation.

Optimization is achieved by choosing a more convenient counterpart (step 3 in
the previous algorithm) in order to have a significant level of cooperation [25]. When
tags are removed, the achieved network is highly inefficient, as the peers do not
obtain the desired resource because of the lack of cooperative agents. An alternative
is to find an outstanding member within the society that performs better than the rest
as in [43].
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Another algorithm based on social tags is that presented in [2]. Here, a mining
newsgroup algorithm leads to the classification of people in two opposite camps over
a discussion issue. The algorithm is based on the assumption that people respond
more frequently to messages that contain ideas they do not agree with. Through
their responses, people get tagged and this tag is taken into account to define the
topology of a bipartite network in which each vertex represents a participiant and
edges (E) represent responses between participants.

The algorithm seeks a partition of the vertices into two sets: F and A, one rep-
resenting participants in favor and the other representing users against the discus-
sion issue. The central hypothesis is: if most edges in the graph associated to the
newsgroup represent disagreement then the optimum choice of F and A maximizes
f (F,A), which is the cut function: f (F,A) = |E ∩ (F × A)|). It is only possible to
seek this bipartition when the opinions are tagged (favor, against). The mining algo-
rithm, through tags, obtains better results than those obtained by statistical analysis
of texts, which is the most used algorithm.

Tags may lead to a separation of cooperative and non-cooperative peers as a side
effect in P2P networks and discrimination against participants in debates. However,
the richness of segregation has been explicitly studied in several algorithms that are
presented in the next section.

6 Neighborhood Delimitation and Segregation

Although house formation and house-keeping processes exist in termites, ants, birds
and other species [14], the complexity and richness of human neighborhood forma-
tion and segregation is immense. The genesis, evolution and structure of cities are
the result of several factors, some external and some endogenous. Economic rules,
political constraints and psychological factors, among many other factors determine
the overall distribution of neighbors over a city [32, 7].

Residential segregation and neighborhood delimitation has been widely studied
from many perspectives within the social sciences [33, 28, 39]. There are at least
two approaches to this process. The first is that of phenomenological analysis, as
in the previous cited works, and the second is a constructive approach based on
multiagent models. One of the early examples of the later approach is that of [46].
In this model, the consequences of many individual decisions and its counterintu-
itive foundations in urbanism were presented and the dynamics underlying the city
genesis and evolution were subject of formal analysis.

The segregation behavior states that all householders try to live near people very
similar to them and avoid householders radically different from them. Each house-
holder is described by a feature vector. In mathematical terms, each householder
Hi has a propensity to stay comfortably with his/her neighbors defined by the total
differences between Hi and Hk, where k are the neighbors of Hi.

In the Schelling model (SM), each agent occupies a cell in a rectangular lattice.
The segregation of dissimilar agents is guided by a simple set of rules. At the be-
ginning, agents are randomly distributed in the lattice and after a few decisions by
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each agent, a structured (segregated) distribution appears [53]. This process is an ex-
ample of self-organization, a common feature present in several processes, among
them social phenomena. Each agent Ai is subject to the following rules:

1. Compute the fraction of neighbors that are of the same color, that is, that
have a similar feature vector, Fi.

2. If the agent is satisfied with its neighbors, then it stays in its actual
location: F : i > Ti, where Ti is the satisfaction threshold. If this condition is
satisfied, then the agent ends.

3. The agent looks for the nearest available location that satisfies its
requirements and moves there.

The Schelling model has been widely studied as a theoretical tool to explain
segregation phenomena not only in the cities, but also in international conflicts [60].
Besides these applications in social sciences, SM has also been studied in other
contexts. It has inspired several algorithms in network routing. For example, in [52]
a Schelling-resembling algorithm dynamically modifies the topology of a network
of hubs, and in [51], it manages to improve bandwidth in P2P networks.

P2P networks are distributed and thus, present a lack of any central control. All
nodes present the same functionality and peers can cooperate and communicate with
each other based only on a virtual communication network with the constraint that
peers are aware only of their local topology.

In a P2P network the topology is dynamic, i.e., peers in contact may decide to
delete the link or peers who were previously not in contact may create a new link. In
this kind of network, nodes have a maximum number of connections and when the
network grows, some algorithms tend to form hubs, i.e., nodes with a higher num-
ber of connections than the rest of the nodes. This may lead to several communica-
tion problems. The Schelling abstract algorithm (SAA) is a topology modification
scheme that not only prevents the emergence of hubs, but also leads to topologies
with high cohesion [54]. Each peer has a desired percentage of neighbors with sim-
ilar properties, PNSPdes, that it tries to preserve. The general algorithms is:

1. set the PNSPdes.

2. while true

3. obtain PNSPact

4. if PNSPact < PNSPdes
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5. drop a neighbor with a different property.

6. search for another peer with more similarity.

Peers are described in terms of their number of connections, their bandwidth and
other features. When the actual percentage of peers with similar properties with
whom peer i is linked to (its neighborhood), PNSPact , is lower than PNSPdes, peer
i deletes one link. The link to one of the most different peers is the one chosen for
deletion. Then, peer i starts its search for another peer with some resemblance to it.

The SAA segregates peers based on their descriptions leading to well structured
networks in which the achieved topologies are connected, which is a very desirable
feature in P2P networks [63]. As PNSPdes increases, the algorithm leads to networks
with a higher number of segregating clusters and at a critical point, the network may
become unconnected.

7 Further Horizons and Conclusions

In this section, as a part of a wider panorama into algorithms inspired by social phe-
nomena, we propose some ideas that may contribute to enrich the existing options
in the Computer Science community.

Leadership is presented as an influence model in which the best individuals are
followed by others. However, there are plenty of social phenomena [14] that are de-
centralized and distributed, i.e., there is not a leader at all. Human behavior such as
that of opinion dynamics has attracted attention from the computer science commu-
nity [5, 20] as it is stated that opinions may not be influenced (at least directly) by
leaders opinion.

The assumption that leaders are the best solutions is not entirely true in more
realistic approaches because there is a wide range of individuals with some respon-
sibilities that may be interesting to study. Among them is the negotiator, which is
responsible for communicating with other leaders and transmitting to them the de-
sires of his/her own leader. A negotiator is a character that could make the work of
leaders a lot easier.

In leader-based algorithms, in which migration is important, human patterns of
mobility at local [23] or global scales [59] have not been widely considered. A com-
mon strategy of exploring unknown spaces in mammals, including humans, is that
of Lévy flight [13], which has been incorporated into some optimizing algorithms,
such as those of [24], which tend to copy the outstanding foraging strategy of many
species.

The self-organizing process of neighborhood segregation is very simple and very
elegant. However, there are other aspects of neighborhood delimitation and seg-
regation that are being considered in more detailed models, for example, a wider
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neighborhood of influence or a more detailed preference for each agent [7, 8]. Algo-
rithms inspired by these behaviors may be applied in, for example, cluster formation.

Most of the algorithms whose origin is a metaphor of social phenomena obtain
results equivalent to algorithms inspired by other metaphors. Although the results
are encouraging, a lot of ideas and metaphors from human social phenomena are
still waiting for further exploration.
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Artificial Immune Systems for Optimization

Heder S. Bernardino and Helio J.C. Barbosa

Abstract. Artificial Immune Systems (AISs) are computational methods inspired
by the biological immune system and thus classified as a nature-inspired meta-
heuristic along with genetic algorithms, ant colony optimization, particle swarm
optimization, and others. This chapter is focused on the application of AISs to solve
optimization problems. Optimization is a mathematical principle largely applied to
design and operational problems in all types of engineering, as well as a tool for
formulating and solving inverse problems such as parameter identification in scien-
tific and engineering situations. This chapter provides a survey of the applications of
AISs in optimization. The main contributions are studied and contrasted with respect
to the different concepts of the biological immune system, such as clonal selection,
hypermutation, immune network, affinity, etc. that have inspired such techniques.
The main types of optimization problems are considered, namely, (i) unconstrained
problems, (ii) constrained problems, (iii) multimodal problems where several op-
tima are to be obtained in a single run, and, finally (iv) multi-objective problems,
where an approximation to the Pareto set is to be obtained as the result of a single
run of the algorithm. Although AISs are good for solving optimization problems,
useful features from other techniques have been combined with a “pure” AIS in
order to generate hybrid AIS methods with improved performance.

1 Introduction

Computer Science has, for some time now, found inspiration in nature in order
to find new ways of solving computational problems. Artificial Immune Systems
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(AISs) are composed of intelligent methodologies, inspired by biological immune
systems, to solve real world problems [34].

In nature, when an animal is exposed to antigens, an efficient immune response
is developed in order to defend the organism. To do so, specific antibodies are pro-
duced to combat the antigens. The best antibodies are cloned, hypermutated, and se-
lected, while random antibodies (produced by the bone marrow) are also generated
to improve the diversity of the population. Also, if the organism is again attacked
by that antigen a quicker immune response is developed. This skill of adaptation is
known as clonal selection and affinity maturation by hypermutation or, more simply,
clonal selection [39].

The natural immunity comprises innate and adaptive immunities [64]. The in-
nate immune system is composed of cells and mechanisms that defend the host
from attacks by other organisms, in a non-specific manner. The adaptive immune
system comprises highly specialized cells and processes that defend the organism
from antigens. The main adaptive immunity feature is to distinguish between pro-
teins produced by cells of the body (self) and the ones produced by intruders or by
cells under virus control (non-self). The clonal selection mechanism belongs to the
adaptive immune system.

It is natural to think of the application of an AIS to security problems since
the immune system provides protection against foreign invaders in the biological
world. However, they have been exploited for other classes of problems as well,
such as classification and data analysis, pattern recognition, image processing, ma-
chine learning, robotics, control, scheduling, and optimization. Good surveys of the
AIS field can be found in [34, 14, 72, 47, 75].

For optimization problems, our main focus in this chapter, different techniques
based on AISs have been developed. AISs are relatively new to solving optimiza-
tion problems, when compared with other nature-inspired meta-heuristics such as
genetic algorithms (GAs) and evolution strategies (ESs), both inspired by evolution.
It is then only natural to compare the AIS with other bio-inspired algorithms [47],
identifying similarities and differences. In the context of optimization, GAs and ESs
are, perhaps, most commonly used for such comparisons. The majority of AIS al-
gorithms applied to optimization are based on immune network theory [13, 76] and
the clonal selection principle [17, 74]. Those algorithms, and other immune inspired
ones, are studied in this chapter with emphasis on their application to optimization
problems.

The clonal selection and immune network algorithms are similar to other stochas-
tic search methods and, as such, can be hybridized with other methods. The AIS
technique has a good balance between global and local exploration and is simple to
implement [80].

This chapter is organized as follows. Section 2briefly discusses AISs and identifies
immune mechanisms which have been used in computational algorithms. Section 3
shows the main artificial immune algorithms used to solve optimization problems.
A review of several immune techniques for continuous or discrete, constrained or
unconstrained, multimodal, and multi-objective, optimization problems is presented
in Section 4. Finally, Section 5 concludes this chapter.
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2 Artificial Immune Systems

AISs are computational techniques, inspired by the biological immune system,
which can be used to solve complex real world problems. The AIS technique evolves
improved solutions of the problem by means of clonal selection, immune network
theory, vaccination, or other immune system concepts.

Although there is no consensus on what should be the canonical immune algo-
rithm for, say, solving a standard optimization problem, there is general agreement
on what a clonal selection or immune network algorithm looks like [75].

In general, an immune optimization algorithm will have a population of individ-
uals (candidate solutions), called antibodies, and other individuals (or objectives)
that the antibodies attempt to reach or match. Those are called antigens. The main
differences among the AIS techniques applied to optimization problems reside in
how their antibodies evolve.

The CLONALG algorithm [17], or CSA (as it was called in [15]), evolves the
antibodies inspired by the concept of clonal selection. The clonal selection evolution
is based on the principle that each individual is cloned, hypermutated, and those with
higher affinity are selected. The mutation rate is, normally, inversely proportional to
the affinity of the antibody with respect to the antigens. AISs usually do not use
recombination operators (such as crossover in GAs).

Based on the immune network theory, the opt-aiNet algorithm [13] is another
well known immune-inspired technique. The main idea of this method is to construct
a network of the best non-similar antibodies, i.e., maintain in the immune system the
cells of the body (self) that have less affinity among themselves and more affinity
with the ones produced by intruders or by cells under virus control (non-self).

Keko et al[52] produced good solutions to combinatorial optimization problems
by including a vaccination process in their AIS algorithm, which can be seen as a
way of introducing domain knowledge into the algorithm.

Although there are many different algorithms which are referred to as “artifi-
cial immune systems” it is interesting to identify some mechanisms of the natural
immune system that have inspired specific computational procedures which can be
found in many different implementations of AISs. Somatic hypermutation, clonal
selection, immune network, and vaccination are briefly discussed in the following
sections.

2.1 Somatic Hypermutation

This process, also known as affinity maturation, is directly responsible for the evo-
lution of the algorithm. Unlike standard Evolutionary Algorithms (EAs), it is a mu-
tation of the individuals applied with a high rate, which is inversely proportional to
the fitness of the antibody (affinity antibody-antigen). In this way, worst individuals
are subject to more modification than the best ones, which need a finer tuning. Also,
it is easy to see that this procedure is a random search method if applied alone. A
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selection method is then necessary to keep the good solutions, eliminate the worst
ones, and maintain diversity.

2.2 Clonal Selection

According to clonal selection theory, there is a selection mechanism which leads
to the evolution of the immune system repertoire during the lifetime of the individ-
ual [12]. By this theory, on binding with a suitable antigen, activation of lymphocytes
occurs. Once activated, clones of the lymphocyte are produced expressing receptors
identical to the original lymphocyte that encountered the antigen. This process is
known as clonal expansion. Any lymphocyte that has receptors specific to molecules
of its own body must be deleted (these lymphocytes will not be cloned). This en-
sures that only an antigen may cause a clonal expansion. In this way, the immune
system can be viewed as a classifier of cells into either self or non-self cells. The
non-self cells are called antigens, and are assumed as being from a pathogen and
thus need to be removed from the body. The affinity maturation is the increase in
the average of the affinity between the antibodies and antigens due to the somatic
hypermutation and selection mechanisms of clonal expansion. It is responsible for
the fact that upon a subsequent exposure to the antigen, a stronger immune response
is produced [1].

2.3 Immune Network

In [51] Jerne proposed the immune network theory which helps to explain some
properties of the natural immune system. By this theory, any lymphocyte recep-
tor within an organism can be recognised by a subset of the total receptor repertoire.
The receptors of this recognising set have their own recognising set and so on, form-
ing an immune network of interactions, often referred to as idiotypic networks [1].
While the body is not attacked by an antigen, the immune system may interact with
itself. From this behavior, the immune system acquires tolerance and memory [51].
Computationally speaking, this process keeps the diversity of the population, cov-
ers the search space, and eliminates similar individuals. Immune network inspired
algorithms are discussed in Section 3.2.

2.4 Vaccination

In the XIth century, smallpox attacked the world population. At that time, it was
observed that those who managed to recover from a first contamination became
resistant to a subsequent contact with the disease. From this knowledge, children
(who were the main victims) were infected with extracts of pustules of smallpox.
The idea was that if they manage to survive, these children would be immunized
against any further contagion. After some time it was discovered that the use of
milder variations of smallpox pustules also made individuals resistant to the disease.
At the end of the XVIIIth century, the English physician Edward Jenner observed
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that workers that milked the cattle and had picked up the smallpox from cows, a
mild variation, were protected against the human variation of the disease. Jenner
used cattle pustules to cure infected people. This substrate was known as vaccı́nia
or cowpox (vacca, Latin for cow) and so the procedure was known as vaccination.
After Jenner, in the XIXth century, Robert Koch proved that the infectious diseases
were caused by different microorganisms. By 1900, Louis Pasteur, in his studies on
vaccination, concluded that exposure to a non-virulent strain of an agent causing the
disease can protect one against future infection of other similar agent [5].

The vaccination process, when used in AISs, usually partially modifies the can-
didate solution according to a-priory knowledge of the problem that is being solved.
The method produces good solutions (higher fitness or affinity) with greater proba-
bility than if the individual is mutated randomly [61]. For the TSP, for instance, it
seems clear that the shortest distances between pairs of cities have a good probabil-
ity of generating a good tour and such domain knowledge can then be regarded as a
kind of vaccine. When inserting the vaccine, there is a higher probability of lower-
ing the total distance of the tour than that of increasing the total distance. However,
this procedure requires a-priory knowledge of the problem which, many times, is
not available or is too expensive to extract.

3 Immune Optimization Algorithms

Due to the more widespread use of EAs in optimization on one hand, and the fact
that some AISs (like clonal selection algorithms) can be seen as a subset of EAs on
the other, it is natural to look for similarities and contrasts between AISs and EAs.

Wierzchoń [81] makes a distinction between an immune optimization algorithm
and GA-based methods with the same objective. The main differences are the
crossover and mutation (at a low rate) operators. If the comparison is made between
AIS and ESs, besides the obvious differences, Garrett [40] cites the control of mu-
tation (the mutation rate is altered at each generation, multiplying or dividing the
current value by a constant value, often 1.3 [69]) and the real-valued encoded indi-
viduals (this difference considered the first immune optimization algorithms; today
real encoded immune inspired methods are available [39]). Also, both GA and ES
have the mutation rate fixed when applied in any given generation. The AIS tunes
the mutation rate according to the fitness of the solutions [40] (lower mutation rates
are applied to better solutions). The dialect is also presented as a difference between
these techniques [81].

Although there are many AIS algorithms to solve optimization problems, they
are often classified into one of the following classes [1]: (i) Clonal Selection or (ii)
Immune Network Algorithms, which are detailed in the following sub-sections.

3.1 Clonal Selection Algorithms

Based on the clonal selection theory, de Castro and Von Zuben [15, 17] proposed
an AIS that performs computational optimization and pattern recognition tasks. The



394 H.S. Bernardino and H.J.C. Barbosa

clonal selection evolution is inspired by the principle that each individual is cloned,
hypermutated, and those with higher affinity are selected. Sometimes, the AIS algo-
rithms use the idea of memory cells. This mechanism retains solutions that can be
used later and it is often applied in pattern recognition problems.

In [15] the CSA (as the algorithm was called) was proposed as “a powerful com-
putational implementation of the clonal selection principle” and applied to three
problems: binary character recognition, multimodal optimization, and a 30-city in-
stance of the Travelling Salesman Problem (TSP). Of course only the last two ones
are true optimization problems and they will be discussed in Section 4. CSA was
shown to be a good meta-heuristic to solve multimodal and combinatorial optimiza-
tion problems. In fact, the clonal selection principle can be interpreted as a remark-
able microcosm of Darwinian evolution [33] and can be considered an evolutionary
algorithm.

The improved CSA is known as CLONALG and was proposed in [17]. In that
work, a sensitivity analysis with respect to the user-defined parameters was pre-
sented, and benchmark problems were considered in order to evaluate the perfor-
mance of the algorithm (see Section 4).

A pseudo-code for the CLONALG algorithm is given in Algorithm 1, but opti-
mized to reduce the computational complexity (as seen in [39]).

Algorithm 1. A CLONALG pseudo-code for optimization problems.

Data: antibodies, nGenerations, β , nSelection, nReplaces
Result: bestA f f inity, antibodies
begin1

a f f inities←− calcAffinities(antibodies);2

for generation = 0; generation < (nGenerations−1) do3

selectedAntibodies←− select(antibodies, a f f inities, nSelection);4

clones←− clone(selectedAntibodies, a f f inities, β );5

clones←− hypermutate(clones, a f f inities);6

cloneA f f inities←− calcAffinities(clones);7

update(antibodies, a f f inities, clones, cloneA f f inities, nReplaces);8

bestA f f inity←− getBestAffinity(antibodies);9

end10

In Algorithm 1, antibodies is a population of individuals (candidate solutions),
nGenerations is the number of generations that the algorithm will perform, β de-
fines the number of clones each antibody will generate, nSelection is the number
of antibodies selected to be cloned, nReplaces is the number of lower affinity anti-
bodies which will be replaced by the new ones, and bestA f f inity is the best value
found by the algorithm. Also, in the same algorithm, the following functions can be
found: calcAffinities, calculates the affinities between each antibody and all antigens
(in optimization problems this value often corresponds to the value of the objective
function); select, selects the nSelection best individuals to be cloned; clone, clones
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the selected antibodies; hypermutate, applies the somatic hypermutation in gener-
ated clones; update, replaces the nReplaces worst antibodies by other ones from
clones and update the a f f inities; and getBestAffinity, returns the best found affin-
ity. The number of clones Nc is given by

Nc(antibodyi) = round

(
β .|antibodies|

i

)
,

where round is the operator that rounds its argument towards the closest integer.
If evolutionary algorithms are to be applied to situations where the user requires

several different solutions to be obtained simultaneously in the final population, these
algorithms must be extended with niching techniques [3, 63]. Fitness sharing [42]
and crowding are niching techniques well-known in the literature. CLONALG does
not require such extensions in order to maintain multiple solutions. Instead, two pa-
rameters may assume default values:

• nSelection = |antibodies|, i.e., all antibodies from the population will be selected
to be cloned;

• Nc may be the same for all antibodies, i.e., Nc(antibodyi)=round(β .|antibodies|),
∀i.
In CLONALG it is not necessary to define a crossover operator probability (pa-

rameter always used in GAs, for example). However, it is easy to see that there are
some other user-defined parameters in this algorithm. They are: nSelection (number
of antibodies to be selected for cloning), β (parameter used to define the number of
clones for each antibody), and nReplaces (number of low-affinity antibodies to be
replaced [17] (for the sensitivity analysis see [17]).

There is source code available for many immune inspired algorithms on the
Web [1] while the CLONALG source code can be found in [18]. The Optimiza-
tion Algorithm Toolkit [11] is an open source project that contains implementations
for some bio-inspired algorithms; among them: Adaptive Clonal Selection (ACS),
Optimization Immune Algorithm (opt-IMMALG), Optimized Artificial Immune
Network (opt-aiNET), Optimization Immune Algorithm (opt-IA), Clonal Selection
Algorithm (CLONALG), B-Cell Algorithm (BCA), Cloning, Information Gain, Ag-
ing (CLIGA), and Immunological Algorithm (IA).

Other immune algorithms, inspired by clonal selection, to solve optimization
problems are presented in Section 4.

3.2 Immune Network Algorithms

Inspired by the immune network theory, de Castro [16] proposed an algorithm for
data analysis which was called aiNet. An adaptation of this model to solve optimiza-
tion problems, called opt-aiNet, was proposed later in [13].

The opt-aiNet is an extension of CLONALG (see Section 3.1) [13], the differ-
ence between the algorithms being the inclusion of steps involving the iteration
among the network cells. In opt-aiNet, the population size is free, since suppression
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eliminates similar antibodies from the network and keeps the better ones. A pseudo-
code for the opt-aiNet, which is similar to the one presented in [13] and revised
in [74], is shown in Algorithm 2.

Algorithm 2. A opt-aiNet pseudo-code.

Data: antibodies, β , α σ , pRandom
Result: bestFitness, antibodies
begin1

f itness←− calcFitness(antibodies);2

while stopping criteria is not met do3

normalizedFitness←− normalize( f itness);4

clones←− clone(antibodies, normalizedFitness, β );5

clones←− hypermutate(clones, normalizedFitness, α);6

cloneFitness←− calcFitness(clones);7

clones←− getBetterAntibodies(clones);8

clones←− suppression(clones, cloneFitness, σ );9

update(antibodies, normalizedFitness, clones, cloneFitness,10

pRandom);
antibodies←− suppression(antibodies, f itness, σ );11

bestFitness←− getBestFitness(antibodies);12

end13

In Algorithm 2, fitness is the value of the objective function to be optimized and
the affinities are the euclidean distances between the network cells [13]. Also, σ is
the suppression threshold, α is a parameter used to compute the proportional mu-
tation, normalizedFitness contains the fitness of the antibodies normalized in the
interval [0,1], pRandom is the percentage of randomly generated cells that will be
introduced in the network, and the function “suppression” eliminates similar indi-
viduals (i.e. those with affinity less than σ ).

The mutation is performed as

antibodyc = antibody +
1
α

e− fnN(0,1),

where antibodyc is the result of mutating the cell antibody, N(0,1) is a Gaussian
random variable of zero mean and unit standard deviation, and fn is the fitness of
the antibody (normalized in the interval [0,1]).

It is easy to see that the population size is continuously increasing. According
to [13], that is an indication that the problem has many local optima and that the
algorithm is capable of finding all of them.

The source code for opt-aiNet is available on the Web [18].
Other immune algorithms inspired by the immune network theory to solve opti-

mization problems are presented in Section 4.
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3.3 Hybrid Immune Algorithms

Hybrid algorithms are designed by combining existing methods in order to obtain
performance higher than that of each method working alone. Yen et al. [83] describe
four forms of hybrids in an EA context: (i) pipelining hybrids, (ii) asynchronous hy-
brids, (iii) hierarchical hybrids, and (iv) the use of additional operators. In pipelining
hybrids, the techniques are applied sequentially: one generating data to be used by
the other, while an asynchronous hybrid maintains a population shared by both tech-
niques which work cooperatively and asynchronously. A hierarchical hybrid uses
different search procedures at different levels of the problem (for instance, topol-
ogy of a neural net and weights of the connections). Finally, a hybrid algorithm can
also be constructed by introducing a given search procedure as an additional move
operator.

A hybrid immune algorithm uses the immunological principles combined with
other methods to generate improved algorithms.

In this way, Hajela and co-workers [43, 44, 45, 84], used a GA in order to increase
the similarity (or reduce the distance) between infeasible elements (antibodies) and
feasible ones (antigens), and embedded it into the original one. The inner GA uses
as fitness function the genotypical distance between the antigens and antibodies in
order to evolve better (hopefully feasible) individuals. As a result, there is no need
for additional expensive evaluations of the original fitness function of the prob-
lem since the internal loop uses a relatively inexpensive fitness function based on
Hamming distance calculations. Coello and Cruz-Cortés[22] proposed an extension
of Hajela’s algorithm, together with a parallel version, and tested them in a larger
problem set. In that work, the embedded algorithm was called an AIS, although
the evolution of the candidate solutions was actually done by standard evolutionary
operators (selection, crossover and mutation).

Bernardino et al. [6, 7, 8, 5] proposed hybrid algorithms with new inner loops
and selection procedures. The inner GA was replaced by CLONALG to minimize
the distance between feasible and infeasible individuals through genotype changes.
Although the AIS changes the genotype of the individuals, the fitness values are
kept unchanged.

In [5, 9] the authors proposed a new hybrid immune algorithm which uses a GA
in parallel with an AIS. In this work, the AIS’ objective is to minimize the constraint
violations, while the GA is used to optimize the objective function. All hybrid algo-
rithms presented above are used to solve constrained optimization problems and are
better detailed in the Section 4.2.

Wang et al. [79] proposed a hybrid optimization method based on the Ant Colony
Optimization (ACO) [37, 24] and clonal selection algorithm. The idea is to introduce
the cloning and mutation operations in the ant colony algorithm in order to enhance
its search capability.

Along the same lines, Yuan et al. [85] proposed an evolutionary algorithm based
on Ant Colony Optimization algorithm and the AIS model to solve the Geomet-
ric Constraints Problem (a non-convex constrained optimization problem). In this
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algorithm, the affinity calculation process and pheromone trail deposition maintain
diversity and carry out the global and the local searches.

4 Solving Optimization Problems

Optimization problems cover a large number of real-world applications. The AIS
algorithm, as mentioned before, was initially proposed to solve other kinds of prob-
lems. Nevertheless, there are many papers in the literature that present the efficiency
of the AISs in solving optimization problems.

Although a Markov-chain analysis proves weak convergence of the AIS algo-
rithms (see, for example, [20, 77, 32]), good results can actually be found for many
classes of optimization problems. Also, Cutello et al. [32] have shown the conver-
gence of a general immune algorithm to a global optimum under certain assump-
tions (any cloned antibody can be mutated with a probability greater than zero and
the best individual survives in each generation with probability equal to 1).

This section shows some of these algorithms and the problems they were applied
to. The optimization problems considered can be classified as: unconstrained, con-
strained, combinatorial, and multi-objective. A new paradigm, immune program-
ming, is also commented upon.

4.1 Unconstrained Optimization Problems

An unconstrained minimization problem can be stated as finding x∗, such that
f (x∗) ≤ f (x) for all x in the domain of the problem. Although bound constraints
are often present, they need not be considered here since such bounds can be easily
enforced in the AIS implementation. The unconstrained optimization problems can
be static or dynamic. In dynamic problems, the objective function changes over time
and the algorithm has to track the moving optimum in the search space.

It is easy to see that it should be natural for AIS algorithms to solve dynamic
optimization problems, since the problem faced by the natural immune system is a
dynamic one: the immune system must be adaptive in order to face different antigens
over time.

In this way, Gaspar and Collard [41] proposed an AIS algorithm to solve Time
Dependent Optimization (TDO). This algorithm, called Sais (Simple Artificial Im-
mune System), is based on the model of the idiotypic network and was compared
with other evolutionary algorithms to illustrate its efficiency. According to [41],
Sais opened a new way in the study of the adaptive dynamics through Time Depen-
dent Optimization Tasks.

CLONALG, perhaps the most popular immune inspired algorithm to solve opti-
mization problems, was tested with functions having many local optima in [17, 15]
where it was able to find all peaks including the global optimum. CLONALG
does not require a niching method, as required by any standard evolutionary
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algorithm which tends to converge the whole population of individuals towards a
single solution.

The clonal selection algorithm was also applied to the travelling salesman prob-
lem (TSP). The TSP is a well-known combinatorial optimization problem which
arises in many applications [15]. The travelling salesman must visit all cities in a
list, only once, and return to the starting one. The objective function is the sum
of the costs of traveling between each two cities in a given tour. For the instance
considered, the CSA found the global optimum [65].

In [17], CLONALG was tested on four optimization tasks: three multimodal op-
timization problems and a 30-city instance of the TSP. One multimodal problem and
the TSP were solved in [15]. One of the multimodal functions was used in [3, 42]
to evaluate niching methods for GAs. Also, this work presents many comparisons
with evolutionary algorithms, and the empirical comparisons with a GA with fitness
sharing [3, 63] demonstrated that CLONALG is capable of locating a larger number
of local optima.

A version of CLONALG was applied to dynamic optimization problems in [78]
where the algorithm was compared with an evolution strategy. That study concluded
that, usually, an evolution strategy can optimise more quickly than a clonal selection
algorithm. According to [78, 40], clonal selection tends to perform better than ESs at
low dimensionalities while the ESs perform better when higher dimensional spaces
are considered.

To solve dynamic optimization problems, Kelsey et al. adopted, in [53], the B-
Cell algorithm. The B-Cell algorithm (BCA) is an immune clonal selection based
algorithm that was proposed in [54]. The important features of the BCA are the use
of a unique mutation operator, called continuous somatic hypermutation [54], and
the size of the population, which evolves together with the candidate solutions. The
BCA was found to be significantly more effective than a hybrid GA when tracking
the fixed points of the two mappings considered in [54].

In [74], Timmis et al. presented an empirical study of opt-aiNet, BCA, and an
HGA (Hybrid Genetic Algorithm) for function optimization. The authors discussed
if AISs have something to offer to the world of optimization. In the tests, the BCA
and HGA were found more effective. The conclusion was that the BCA performs
well in terms of quality of the solutions found and number of the objective function
evaluations. According to the authors, the possible reason for this is the mutation of
the algorithm which endows the BCA with the ability to escape from local optima
more quickly.

Cutello et al. investigated the search capability of hypermutation operators [26]
by applying them to trap functions and to the 2D HP model [36] for the protein
structure prediction problem. Four mutation operators were considered: static hyper-
mutation, proportional hypermutation, inversely proportional hypermutation, and
hypermacromutation. In the last one, two integers, i and j, are chosen at random
such that i + 1 ≤ j ≤ l, where l is the chromosome length, and most values in the
range [i, j] are changed. The tests indicated good performance with the hypermacro-
mutation operator when coupled with static or inversely proportional hypermutation.



400 H.S. Bernardino and H.J.C. Barbosa

As it can be seen in Section 3.1, the clonal selection algorithm requires several
parameters. Also, it was proposed in [17] that using a binary representation can
limit the accuracy of the results [39] in some cases. To avoid those shortcomings,
Garrett proposed in [39] a real-valued, parameter-free clonal selection algorithm
called Adaptive Clonal Selection (ACS). The modifications proposed were: (i) to
change from a binary to a real-valued representation, (ii) to remove the parameter
used to control the amount of mutation, (iii) to remove the parameter defining the
size of the sub-population that will be cloned, and (iv) to remove the parameter
used to calculate the number of clones of each antibody. Modification (ii) is based
on the principle of adaptation used by ESs: the parameter is either multiplied or
divided by 1.3 at each generation [2]. Note that this adaptation is different from the
ES because it is adapting the parameter that controls the amount of mutation (in
AIS, the mutation is usually inversely proportional to antibody affinity). The sub-
population size and the number of clones (iii and iv) are adapted considering the
ratio between fitness of the fittest members of two contiguous generations:

Δ =
max( fγ−1)
max( fγ )

. (1)

where a minimization problem is assumed. To verify the performance of the algo-
rithm, uni- and multimodal functions were considered. The results demonstrate that
ACS is a good algorithm, capable of reaching accurate approximations of the global
optimum. Also, this algorithm can be applied without prior tuning of its parameters.
For the test-functions considered, Garrett verified that the ACS algorithm is more
effective than a pre-parametrized ES.

Cutello et al. [27] reviewed and compared CLONALG and opt-IA algorithms in
optimization and pattern recognition problems over a range of user defined param-
eters and concluded that the opt-IA algorithm performed better than CLONALG.
Later [28] the opt-IA algorithm was compared with evolutionary algorithms and
was shown to be an effective numerical optimization algorithm in terms of solution
quality.

Another clonal selection inspired algorithm, called opt-IMMALG, which is an
improved version of opt-IA, was proposed in [31] to solve continuous global opti-
mization problems with real-coded representation. Opt-IMMALG produced better
results than opt-IA, was competitive with respect to particle swarm optimization,
but was outperformed by the differential evolution algorithm.

In the same symposium, Cutello et al. [29] proposed a new evolutionary algo-
rithm with two mutation operators: one for local search and another (hypermacro-
mutation) for global search. The Evolutionary Algorithm with Local Search (EALS)
was then applied to trap functions and the results were found to outperform those
obtained by opt-IA.

A parallel immune algorithm, par-IA, based on opt-IA and using a master-slave
approach, was proposed in [30]. The master process delegates the tasks to slaves
and communicates with them when the termination condition is reached. The slaves
perform the cloning, hypermutation, and evaluation of the antibodies sent by the
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master. Experiments indicated that par-IA obtains high speedup values when ap-
plied to problems with large search spaces which is reasonable, considering that
the function evaluation consumes, on most real-world situations, more computation
resources than other immune algorithm steps.

Wang et al. [79] proposed a hybrid immune ant colony algorithm to solve multi-
modal static and dynamic optimization problems where a clonal selection algorithm
was combined with an ACO to enhance its search capability. Six static and one
dynamic problems were used to evaluate the performance of the algorithm. The
tests demonstrated the remarkable advantages of this approach in diverse optimal
solutions, closely tracking the moving optimum, and with improved convergence
speed [79].

Two algorithms, suppression control algorithm (SCA) and its parallel version
(PSCA), were proposed by Lau and Tsang [60]. In SCA, the mutation rate depends
on the inverse of the affinities and the class of the individuals (the population is par-
titioned in three subsets according to affinity levels). The antibodies from the low
affinity class are replaced by randomly generated ones. A method called general
suppression control framework (GSCF) [56, 57] is used to regulate the dynamics
of the population, where antibodies with high affinity to self cells are eliminated.
The PSCA is organized as an island model where the overall population is dis-
tributed among the processes. Each island is responsible for the evolution of its
sub-population and the communication among them corresponds to the migration,
at the end of each iteration, of a high affinity subset of antibodies to another island.
The algorithms were tested on eleven numerical benchmark functions, and PSCA
produced in most cases better results than the other immune inspired techniques, but
was outperformed by the differential evolution algorithm.

4.2 Constrained Optimization Problems

A standard constrained optimization problem in Rn corresponds to finding the vec-
tor of design/decision variables x ∈ Rn which minimizes a given objective function
f (x) subject to inequality constraints gp(x) ≥ 0, p = 1,2, . . . , p̄ as well as equality
constraints hq(x) = 0, q = 1,2, . . . , q̄. Additionally, the variables are usually subject
to bounds, which do not require special treatment here.

Coello and Cruz-Cortés[22] proposed an extension of Hajela’s algorithm (see [43,
44, 45, 84]), together with a parallel version, and tested them on a larger problem set
comprising a well-known benchmark set of mathematical functions and some opti-
mization problems from the mechanical engineering field. Comparisons were made
with several penalty techniques in order to check the performance of the proposed
approach.

Cruz-Cortez et al. [25] proposed a CLONALG algorithm to solve constrained
optimization problems. To evolve the immune system, any feasible antibody (a can-
didate solution that satisfies all constraints) is better than any infeasible individ-
ual. Binary as well as real representations were implemented. As the results for
the real-coded version of CLONALG were disappointing, the authors proposed an
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alternative mutation operator in order to improve the performance of the AIS with
real representation. In that approach, the mutation operator depends on (i) the affin-
ity of the antibodies, (ii) the range of each decision variable, and (iii) the antibody
population size. The proposed AIS showed good results when compared with other
well-known algorithms. However, it was unable to outperform the results obtained
using the stochastic ranking technique [70].

In [62], an AIS was proposed for the fuzzy c-means clustering algorithm. The al-
gorithm is called AINFCM (Artificial Immune Network for Fuzzy C-Means). Fuzzy
c-means (FCM) is a clustering method which allows one piece of data to belong to
two or more clusters. A clustering problem can be viewed as an optimization prob-
lem that locates the optimal centroids of the clusters directly under the membership
function constraints, rather than finding an optimal partition. The problem can be
seen as the minimization of an objective function given by

J(U,c1, . . . ,cc) =
c

∑
i=1

Ji =
c

∑
i=1

n

∑
j

um
i jd

2
i j,

under the constraints:

c

∑
i=1

ui j = 1,∀ j = 1, . . . ,n

where ui j ∈ [0,1] indicates the membership of data vector x j assigned to i-th cluster,
ci is the i-th centroid, and di j is the Euclidean distance between data vector x j and
centroid ci. The fuzzifier m ∈ [1,∞), is a cluster sensitivity parameter. More infor-
mation about the problem can be found in [55, 62]. For the AINFCM algorithm, the
antigens represent the data set for data clustering and the antibodies are the possi-
ble centroid clusters [62]. Some sensitivity analyses of the user-defined parameters
were performed. To evaluate the performance of the algorithm, it was compared with
other fuzzy clustering methods (such as K-means, K-medoid, and FCM algorithm).
The Partition Coefficient Index (PC), which measures the amount of “overlapping”
between clusters, and the Separation Index (S), which is the ratio of the sum of
compactness and separation of the clusters, were the compared values. AINFCM
showed better fuzzy clustering behavior according to both PC and S indexes [62].

Another approach used to solve constrained optimization problems is to hy-
bridize an AIS with a GA. The GA-AIS [6, 7, 8] hybrid follows the idea proposed
in [43, 44, 45, 84] and extended in [22]. The idea of the method is that an AIS
(CLONALG) is called to help the GA in increasing the number of feasible individ-
uals in the population. The hybrid GA-AIS consists of an outer (GA) search loop
where the current population is checked for constraint violation and then segregated
into feasible (antigens) and infeasible (antibodies) individuals . If there are no fea-
sible individuals, the two (or some other user defined quantity) “least infeasible”
ones (those with the lowest constraint violation) are moved to the antigen popula-
tion. The selection operation is then performed in order to apply recombination and
mutation operators to the selected parents producing a new population and finishing



Artificial Immune Systems for Optimization 403

the external (GA) loop. The AIS is introduced as an inner loop where antibodies
are first cloned and then mutated. Next, the distances (affinities) between antibodies
and antigens are computed. Those with higher affinity (smaller sum of distances)
are selected, thus defining the new antibodies (closer to the feasible region). This
AIS cycle is repeated a number of times. The resulting antibody population is then
passed to the GA. It is important to notice that each cloned hypermutated indi-
vidual inherits its parent’s fitness, so that no fitness function evaluation is required
at this point. In [6], the GA-AIS was tested and compared with other algorithms
well-known in the literature using a set of benchmark functions and presented good
results. In [7], the procedure of changing the population for a new one was modified.
In this new approach an individual is replaced by the best between an antibody and
its parent. Many tests were done comparing different distance definitions. A niching
method, a modified version of Petrowski’s clearing procedure [68], was introduced
later in [8]. Mechanical as well as structural engineering problems were considered
and the GA-AIS found good solutions when compared with other GAs with binary
encoding (as the GA-AIS was proposed with binary encoding). A new hybrid algo-
rithm was proposed in [9]. This last algorithm divides the population into feasible
and infeasible individuals. A GA is used to optimize the feasible population, as if
the problem were unconstrained, and the infeasible individuals are evolved by an
AIS to minimize their constraint violations, instead of their distance to feasible in-
dividuals. This algorithm has shown good results when applied to a simple structural
engineering optimization problem.

Wu [82] combined two techniques in his approach: clonal selection and idio-
typic network theory, the later being used to control the number of good solutions.
The clonal selection operator explores the search space looking for good solutions
and maintaining the diversity of the antibodies’ population. The performance of
that algorithm was evaluated in constrained optimization problems with continuous
variables.

Based on the work by Hajela and Yoo [45], Rajasekaran and Lavanya [71] pro-
posed an immune network for constraint handling in GA. The technique was applied
to obtain optimal sectional areas for minimum weight of tri-dimensional truss struc-
tures subject to static loading and earthquake ground motion. Test problems were
also conducted for the design of the optimal mix of high-performance concrete.

4.3 Combinatorial Optimization Problems

Besides TSP, scheduling problems are very important combinatorial optimization
problems. Optimal solutions to such problems are often fragile [50]: if the original
problem changes slightly, the existing optimal solution cannot be easily modified,
and a new one must be produced. As such changes happen frequently, there is a great
interest in the scheduling community in generating robust, good-enough schedules
rather than optimal ones. Hart et al.[48, 46] described some results applying an AIS
to job-shop scheduling problems exploiting the properties of the immune system to
produce robust rather than just optimal schedules. Furthermore, they have shown
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that scheduling is much more robust using clonal selection than using a simple GA,
which may be an interesting line of research of AIS [47].

Coello [23] showed that an AIS algorithm using gene-libraries and a clonal selec-
tion mechanism was highly competitive with respect to GRASP [10] for solving a
series of 31 benchmark job-shop scheduling problems taken from the OR-library [4].
Their algorithm showed improvements over GRASP on some problems and was less
computationally expensive.

Another clonal-selection based algorithm known as ClonaFlex was proposed by
Ong et all [67] and applied to a benchmark set of 12 flexible job-shop problems,
comparing results against GENACE, a cultural EA [49]. Only one objective function
“makespan” is considered and comparable results were found, although practical
difficulties in optimising the algorithm parameters for individual problem instances
have been observed.

4.4 Immune Programming

This technique [66], inspired by the Genetic Programming (GP) [58] paradigm is
also applied to evolve programs in a given language. A candidate solution is often
represented as a tree structure and can, in principle, be decoded into a computer
program, a numerical function in symbolic form, and also a candidate design, such
as an analog circuit. An objective function which translates a conveniently defined
performance index of the candidate program, function, or design is then maximized
or minimized. The immune programming (IP) technique was applied to symbolic
regression (to derive the analytical expression of a function that best approximates
a given set of data points) where it performed better than GP in the tests conducted.

In recent work by Cicazzo et al. [19] “elitist Immune Programming”, or simply
eIP, was proposed. That method is inspired by clonal selection and uses the genetic
programming theory to generate the candidate solutions. The elitism is due to the
fact that the best individual of the population and its hypermuted clone are always
kept. The proposed technique was applied to optimize a circuit design and the results
obtained were compared to those given by the standard IP [66], and Koza’s GP [59]
showing that the eIP algorithm outperforms both in that test problem.

It is felt then that the application of AIS ideas to more complex search spaces
also seems to be an important and promising area of research where more research
work is needed.

4.5 Multi-Objective Optimization Problems

In real-world problems one is often faced with more than one objective functions
that should be maximized or minimized, f1(x), . . . , fm(x) where x∈ℜn, fi is the i-th
objective, and m is the number of objectives of the problem. As the objective func-
tions are often non-comensurable and conflicting, it is not usually possible to define
a unique optimal solution. By introducing the concept of dominance, the set of non-
dominated solutions, often called the Pareto set, becomes the target to be pursued.
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Population based algorithms seem to be well suited to the task of approximating the
Pareto set, which can then be presented to the decision maker to make the final deci-
sion based on his or her set of preferences. A multi-objective optimization problem
can be proposed to search a unique solution or a set of solutions (Pareto optimum).

After developing multi-objective clonal selection based algorithms [23],
Villalobos-Arias et al. [77] provide a complete proof for their multi-objective im-
mune inspired algorithm. They discuss the B-cell algorithm [73] and how it may
be possible to use this algorithm to solve complex optimisation problems, and also
analyse the dynamic behavior of the algorithm using dynamical systems theory.

Clark et al. [20] have produced a theoretical analysis of the B-Cell algorithm [73]
providing a complete model of the B-cell algorithm with a proof of convergence. In
addition, from their model, it seems possible to locate the optimum mutation rate
for a given function [47].

Freschi and Repetto [38] observed that opt-IA performs comparably to the fast
evolutionary programming (FEP) technique on 23 numeric optimization problems.
They also find that their multi-objective immune algorithm, VAIS, is comparable
to NSGA2, an evolutionary state-of-the-art multi-objective optimization solver, al-
though their comparative study involved only three problems.

The omni-aiNet [21] is an algorithm proposed to solve single- and multi-objective
optimization problems. It is based on opt-iaNet (see Section 3.2) and its search
engine adapts itself to the exploration of the search space according to the intrinsic
demands of the optimization problem [21]. As with the opt-aiNet, the population
size of this method evolves during its execution. The difference between the omni-
aiNet and opt-aiNet is that the first one added a variation mechanism called Gene
Duplication. This mechanism selects randomly a decision variable i (the individuals
are real-coded) of an antibody and replaces its value xi in all other individuals of the
immune system. The method was compared with the original version of the omni-
optimizer algorithm [35] when applied to multi-objective optimization problems
and the results showed that the omni-aiNet was even capable of outperforming the
original algorithm (omni-optimizer) for two of the problems treated.

An immune inspired method was proposed by Zhang [86] for solving constrained
nonlinear multi-objective optimization problems. This algorithm was compared
with other well-known methods from the literature and performed well when com-
pared with the Strength Pareto Evolutionary Algorithm (SPEA), which is a good
multi-objective EA.

5 Conclusions

This chapter presented several computational techniques inspired by the natural im-
mune system and their applications in solving optimization problems. The two most
popular immune methodologies, clonal selection and immune networks, have been
given special attention.

It seems that AIS algorithms do not outperform other bio-inspired meta-heuristics
when solving numerical optimization problems in general, but they can be applied
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with advantage in certain classes of problems, such as dynamic optimization, or
situations where multiple solutions are required. Also, immune programming algo-
rithms, a paradigm that uses complex structures to encode the candidate solutions,
have shown good results and seem to be an interesting research field. It is also noted
that much more work is required in the three promising application areas mentioned
above.

Of course, AISs are also open to profitable hybridization with other available
optimization techniques, nature-inspired or classical, in order to improve the overall
performance.

One question raised in the literature [47, 74] is whether immune algorithms have
added value to the field of optimisation. The authors think AISs have added and will
continue to add value to the field, and hope that this chapter will help readers form
their own assessment of the subject.

Finally, the AIS area has shown continuous evolution of methods to solve opti-
mization problems, as well as to tackle other complex computational problems. It is
expected that there will always be inspiration for conceptualizing and implementing
artificial systems derived by new discoveries and theories developed from the highly
complex natural immune system.
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tion Optimisation. In: Cantú-Paz, E., et al. (eds.) GECCO 2003. LNCS, vol. 2724, pp.
207–218. Springer, Heidelberg (2003)

54. Kelsey, J., Timmis, J., Hone, A.: Chasing chaos. In: Proceedings of the Congress on
Evolutionary Computation - CEC 2003, pp. 413–419. IEEE Press, Canberra (2003)
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Ranking Methods in Many-Objective
Evolutionary Algorithms

Antonio López Jaimes, Luis Vicente Santana Quintero,
and Carlos A. Coello Coello

Abstract. This chapter presents a comparative study of different ranking methods
on many-objective problems. The aim of this work is to investigate the effectiveness
of different approaches in order to determine any possible limitations and/or advan-
tages of each of the ranking methods studied and, in general, their performance.
Thus, the results may help practitioners to select a suitable ranking method for a
problem at hand, and can serve researchers as a guideline to develop new ranking
schemes or further extensions of the Pareto optimality relation.

1 Introduction

In many disciplines, optimization problems have two or more objectives, which
are normally in conflict with one another, and that we wish to optimize simulta-
neously. These are called multi-objective optimization problems (MOPs), and their
solution involves the design of algorithms different from those adopted for dealing
with single-objective optimization problems. In single-objective optimization, the
determination of the optimum among a set of given solutions is clear. However, in
the absence of preference information, in multi-objective optimization there does
not exist a unique or straightforward way to determine if a solution is better than
other. The notion of optimality most commonly adopted is the one called Pareto
optimality [27] which leads to trade-offs among the objectives. Thus, by using this
relation, it is not possible to obtain a single solution, but instead, we produce a set
of them called the Pareto optimal set.

Nowadays, Multi-objective Evolutionary Algorithms (MOEAs) have shown an ac-
ceptable performance in many real-world problems with their origins in engineering,
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scientific and industrial areas [4]. Nonetheless, most of the publications in this
area consider problems with only two or three objectives, in spite of the fact that
many real-world problems involve a larger number of objectives (4 or more).1 The
MOEAs that are based on traditional Pareto dominance and that are the most rep-
resentative and most cited in the current literature are: PAES [20], NSGA-II [7],
SPEA2 [39] and micro-GA [5]. Besides the difficulty to analyze the Pareto front when
there are more than three objectives, recent studies [17, 18, 28, 36] have shown that
MOEAs based on Pareto optimality have difficulties to find a good Pareto front ap-
proximation in problems with a large number of objectives, which are called many-
objective problems.2 One of the reasons for this limitation is that the proportion of
nondominated solutions (i.e., equally good solutions regarding Pareto optimality) in
a population increases rapidly with the number of objectives. In [14] it is shown that
this number goes to infinity when the number of objectives approaches infinity. This
implies that in the presence of a large number of objectives the selection of new
solutions is carried out almost at random since a large number of the solutions are
equally good.

In the current literature we can identify two approaches commonly adopted to
cope with many-objective problems, namely: i) to propose relaxed forms of Pareto
optimality as in [2, 11, 14, 33], and ii) to reduce the number of objectives of the
problem to ease the decision making or the search processes [3, 8, 21].

Since relaxed forms of Pareto optimality are the most common approach found
in literature, in this chapter we present a comparative study that tries to reveal the
advantages and disadvantages of some ranking methods used as optimality rela-
tions in many-objective problems. That is, methods that induce a partial order in a
set of vectors but with a finer grain resolution than the one induced by traditional
Pareto optimality. The assessment to the different ranking methods is based on the
distribution of the ranks (i.e., the number of ranks and the number of solutions in
each rank) and on the plots of the solutions in decision space versus their ranks.
The ranking methods considered in this study include redefinitions of the Pareto
optimality relation or methods that complement it by inducing a finer ordering on
the nondominated solutions found. In Section 5, we will briefly describe the ranking
methods considered for this study. These methods were adopted because they follow
considerably different approaches, do not require extra parameters and have shown
promising results.

The remainder of this chapter is organized as follows. In Section 2, we provide
some basic concepts related to multi-objective optimization. We mention the scala-
bility problems of the Pareto optimality relation in Section 3 and the optimality rela-
tions are discussed in Section 4. The ranking methods are all discussed in Sections 5
and 6. Section 7 includes the comparison and analysis of the ranking methods.

1 See for example [23, 29] in which the use of MOEAs in circuit optimization is discussed.
2 Although this term is commonly used in the specialized literature, there is no consensus

about how many objectives are considered ‘many’. However, judging by the scalability
difficulties shown by Pareto-based MOEAs, we consider that we deal with a many-objective
problem if it has more than 4 objectives.
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Finally, in Section 8, we provide our final remarks with respect to the comparative
study performed.

2 Background Concepts

2.1 Multi-Objective Optimization Problem (MOP)

The Multi-objective optimization problem can be formally defined as the problem
of finding:

x∗ = [x∗1,x
∗
2, . . . ,x

∗
n]

T which satisfies the m inequality constraints:

gi(x) ≤ 0; i = 1, . . . ,m

the p equality constraints:

hi(x) = 0; i = 1, . . . , p

and optimizes the vector function:

f(x) = f1(x), f2(x), . . . , fk(x)

In other words, we aim to determine from among the set F of all vectors (points)
which satisfy the constraints those that yield the optimum values for all the k objec-
tive functions simultaneously. The constraints define the feasible region F and any
point x in the feasible region is called a feasible point.

2.2 Pareto Dominance

Pareto Dominance is formally defined as follows:
A vector u = (u1, . . . ,uk) is said to dominate v = (v1, . . . ,vk) if and only if u is

partially less than v, i.e., ∀i ∈ (1, . . . ,k),ui ≤ vi ∧∃i ∈ (1, . . . ,k) : ui < vi (assuming
minimization).

In order to say that a solution dominates another one, this one needs to be strictly
better in at least one objective, and not worse in any of them. So when we are
comparing two different solutions A and B, there are 3 possibilities:

• A dominates B
• A is dominated by B
• A and B are nondominated

2.3 Pareto Optimality

The formal definition of Pareto optimality is provided next:
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A solution xu ∈ F (where F is the feasible region) is said to be Pareto optimal
if and only if there is no xv ∈ F for which v = f (xv) = (v1, . . . ,vk) dominates u =
f (xu) = (u1, . . . ,uk), where k is the number of objectives.

In other words, this definition says that xu is Pareto optimal if there exists no
feasible vector xv which would decrease some objective without causing a simulta-
neous increase in at least one other objective (assuming minimization).

This definition does not provide us a single solution (in decision variable space),
but a set of solutions which form the so-called Pareto Optimal Set (P∗). The vectors
that correspond to the solutions included in the Pareto optimal set are nondominated.

2.4 Pareto Front

When all the nondominated solutions of a MOP are plotted in objective function
space, their nondominated vectors are collectively known as the Pareto Front (PF∗).
Formally:

PF∗ := {f(x) = ( f1(x), . . . , fk(x))|x ∈ P∗}

It is, in general, impossible to find an analytical expression that defines the Pareto
front of a problem, so the most common way to obtain the Pareto front is to compute
a sufficient number of points in the feasible region, and then filter out the nondomi-
nated vectors from them.

The previous definitions are graphically depicted in Figure 1, showing the Pareto
front, the Pareto Optimal Set and the dominance relations among solutions. Please
refer to [4] for more in-depth information about multi-objective optimization.
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Fig. 1 Mapping of the Pareto Optimal Solutions to the Objective Function Space
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3 Scalability Problems When Dealing with Many Objectives

Since the implementation of the first MOEA in the mid-1980s [31], a wide variety
of new MOEAs have been proposed, gradually improving in effectiveness and effi-
ciency for solving MOPs. However, the typical validation of such MOEAs is done
by adopting test problems with only two or three objectives, and soon researchers re-
alized that the traditional Pareto ranking schemes (in spread use today) scale poorly
when the number of objectives increases. It is therefore, a natural step to start de-
signing MOEAs that can deal with problems having a large number of objectives,
and therefore the importance of studies such as the one presented in this chapter.

Recent experimental [17, 18, 28, 36] and analytical [6, 19, 34] studies have shown
that MOEAs based on Pareto optimality scale poorly in MOPs with a high num-
ber of objectives (4 or more). Although this limitation seems to affect only the
Pareto-based MOEAs, optimization problems with a large number of objectives
(also known as many-objective problems) introduce some difficulties common to
any other multi-objective optimizer. Three of the most serious difficulties due to
high dimensionality are the following:

1. Deterioration of the Search Ability. One of the reasons for this problem is that the
proportion of nondominated solutions (i.e., equally good solutions) in a popula-
tion increases rapidly with the number of objectives [14]. According to Bentley
et al. [1] the number of nondominated k-dimensional vectors on a set of size n is
O(lnk−1 n). This implies that in problems with a large number objectives, the se-
lection of solutions is carried out almost at random or guided by diversity criteria.
In fact, Mostaghim and Schmeck [25] have shown that a random search optimizer
achieves better results than NSGA-II [7] in a problem with 10 objectives.

2. Dimensionality of the Pareto front. Due to the ‘curse of dimensionality’ the num-
ber of points required to represent accurately a Pareto front increases exponen-
tially with the number of objectives. The number of points necessary to represent
a k-dimensional Pareto front with resolution r is given by O(krk−1) (e.g., see [32]).
This poses a challenge both to the data structures to efficiently manage that num-
ber of points and to the density estimators to achieve an even distribution of the
solutions along the Pareto front.

3. Visualization of the Pareto front. Clearly, with more than three objectives is not
possible to plot the Pareto front as usual. This is a serious problem since visual-
ization plays a key role for a proper decision making. Parallel coordinates [38]
and self-organizing maps [26] are some of the methods proposed to ease the de-
cision making in many-objective problems. However, more research in this area
is required.

Currently, there are mainly two approaches to solve many-objective problems,
namely:

1. Adopt or propose an optimality relation that yields a solution ordering finer than
that yielded by Pareto optimality. Among these alternative relations we can find
average ranking [2], k-optimality [14], preference order ranking [11], favour rela-
tion [33], and a method that controls the dominance area [30]. Besides providing
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a richer ordering of the solutions, these relations obtain an optimal set that usu-
ally is a subset of the Pareto optimal set. Therefore, these techniques can be used
as a remedy for the first and second issues of the previous enumeration.

2. Reduce the number of objectives of the problem during the search process or, a
posteriori, during the decision making process [3, 8, 21]. The main goal of this
kind of reduction techniques is to identify the redundant objectives (or redundant
to some degree) in order to discard them. A redundant objective is one that can
be removed without changing the dominance relation3 induced by the original
objective set.

4 Optimality Relations to Discriminate Solutions

Optimization techniques search a problem domain for the most efficient solution.
Some techniques focus on one solution at a time and some other techniques can
process a set of solutions (called “population”). The optimizer locates a single point
in the objective space, tests it, compares its fitness to the previous best result, and
determines the next point to test. Population-based optimizers are more complex,
because they need to identify a whole set of points in the objective space, test all the
points, rank their fitnesses, and determine the next set of solutions to test.

An important aspect of population-based algorithms is their need to rank the solu-
tions before they are processed by the optimizer. The ranking procedure takes place
during the evaluation process, after the objective functions have been evaluated and
an array filled with result values has been created. Ranking means to transform the
resultant array that is produced by the multi-objective evaluation into a resultant vec-
tor. Ranking is required because a set of solutions in the problem domain is being
tested and the results have to be presented to the optimization paradigm in a uniform
structure. Ranking is fundamental to those methods because it guides the search: the
best solutions in a set are given the top ranking. The optimizer relies on the top ranks
to identify high-potential regions of the search space to be explored. Therefore, any
ranking method that is used needs to be efficient. The ranking method has to be
robust enough to handle multiple objectives (i.e., it must be scalable). If the rank-
ing method adopted is not robust, then many different ranking methods will have
to be used as the number of objectives increases. To develop a generalized ranking
method the following question has to be answered: Can a single ranking method be
developed that remains consistent across a range of many objectives?

The taxonomy of approaches that we will cover in this comparative study is
shown in Figure 2. These techniques were selected because they were proposed
specially for many-objective optimization problems and they represent a substantial
difference with respect to the Pareto optimality relation. In the literature, we can
find other optimality relations. However, they are minor variations, whether it be of
Pareto optimality or some other optimality relation studied here. For instance, the
fuzzy optimality relation presented in [37] is a variant of that defined by Farina and

3 The dominance relation induced by a given set F of objectives is defined by
�F = {(x,y)|∀ fi ∈ F : fi(x) ≤ fi(y)}.
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Amato [15] and the winning score relation [22] is equivalent to the average ranking
method.

In this proposed taxonomy, we divided the ranking techniques in two groups:
(1) those that do not need extra parameters to rank all the solutions, and (2) those
in which at least one parameter is required to rank the solutions properly. Each of
these two groups are discussed in this chapter.

Ranking Techniques

Without Parameters With Parameters

K-Optimality
Contraction,
Expansion

Average
Ranking

Maximum
Ranking

Favour
Ranking

Preference Order
Ranking

Pareto
Ranking

Fig. 2 Mapping of the Pareto Optimal Solutions to the Objective Function Space

5 Ranking Methods without Parameters

5.1 Average and Maximum Ranking Methods

Although without a specific interest in many-objective problems, Bentley and Wake-
field [2] proposed three alternative ranking methods to Pareto optimality, namely:
average ranking (AR), sum of ratios (SR) and maximum ranking (MR). The AR
method computes for each solution a different rank considering each objective in-
dependently. The final rank of a solution is obtained by summing all their ranks on
each objective. Table 1 illustrates the AR method with a small example with six
3-objective solutions.

In this study, an equivalent method is used to compute the AR for each solution.
First, the following matrix is defined for solutions xi and x j:

ai jk =

⎧
⎨

⎩

1 if fk(xi) < fk(x j)
0 if fk(xi) = fk(x j)

−1 if fk(xi) > fk(x j)

From these values, the rank AR for each solution xi is computed by:
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Table 1 An example of the Average, Maximum, Favour and Preference Order ranking
methods

a) b) c) d)
Solution rank 1 rank 2 rank 3 Average Maximum Favour Preference Order
(4, 3, 5) 3 3 4 10 3 3 3
(1, 4, 7) 1 4 6 11 1 3 2
(6, 2, 2) 4 2 1 7 1 1 1
(7, 7, 6) 5 5 5 15 5 4 5
(8, 1, 3) 6 1 2 9 1 2 3
(3, 8, 4) 2 6 3 11 2 3 4

AR(xi) = KN −
K

∑
k=1

N

∑
j 	=i

ai jk,

where K is the number of objectives, N the number of solutions.
The maximum ranking takes the best rank as the global rank for each solution.

Clearly this method favors extreme solutions, i.e., solutions with high performance
in some of the objectives, although with poor overall performance. Table 1 shows
an example of the use of this method.

5.2 Favour Ranking

This ranking method was proposed by Drechsler in [13] and consists of a new rela-
tion called favour. This technique requires no user interaction and can handle infea-
sible solutions.

x < f y ⇔ |i : fi(x) < fi(y),1 ≤ i ≤ n| > | j : f j(y) < f j(x),1 ≤ j ≤ n| (1)

This means that x is favoured to y (x < f y) iff i components of x are better than
the corresponding components of y and only j components of y are better than the
corresponding components of x. For example: fx1 = (1,1,2) and fx2 = (5,3,1), then
we have that: fx1 < f fx2 .

Also, in this model, the authors proposed that the solutions are divided into so-
called Satisfiability Classes (SCs) depending on their quality. Solutions of the same
quality belong to the same SC. This property helps the mechanism in using a graph
representation to describe properly the relation favour (< f ) , in which each element
is a node and preferences are given by edges. The relation < f is not transitive, thus
the relation < f can generate “cycles” in the graph, causing elements that describe a
cycle to be denoted as not comparable and they are included in the same SC given
the same rank to each of the elements in that cycle. The graph that contains all the
populations (GZ) needs to be a directed graph without internal cycles, so all the
cycles have to be identified and replaced by a single node representing the single
cycle.
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Once we have the final directed graph (GZ), we know that (GZ) is acyclic, and
it is possible to determine a level sorting of the nodes. For each node in GZ we
define a SC. Level sorting of the nodes in GZ determines the ranking of the SCs;
each level contains at least one node of GZ . Then each level corresponds to exactly
one SC. Using the level sorting, it is possible to group nodes (sets of solutions) that
are not connected by an edge in the same SC. These solutions are not comparable
with respect to relation < f and thus they should be ranked in the same level of
quality.

For the case n = 2 it holds that the < f and <d are equal, where <d is the Pareto
dominance relation. So, when n = 2, the favour relation is exactly the same as the
Pareto dominance relation. Relation < f can handle infeasible solutions. When an
element is infeasible, the element is considered as the worst possible value. The
computation time for the SC classification is O(|P|2 · n), where P is the set of
solutions.

5.3 Preference Order Ranking

This is a ranking procedure that exploits the definition of preference order (PO)
proposed by di Pierro in [12]. The preference order definition is:

A point x∗ ∈ ω is considered efficient in order k if f (x∗) is not dominated by any
member of P for any of the k-element subsets of the objectives. In other words, a
point is efficient of order k if it is a Pareto optimal in all the

(
m
k

)
subspaces of F

obtained considering only k objectives at a time.
It is clear that the efficiency of order m for an MOP with exactly m objectives

simply enforces Pareto optimality.
The condition of efficiency of order can be used to help reduce the number of

points in a set by retaining only those that are regarded as “best compromises”. In
fact, it is intuitive that the less extreme components a point has, the more likely it
is to be efficient of order. When the number of points selected is still considerably
large, a more stringent criterion is required to sort out better solutions.

Definition (Efficiency of order k with degree z): A point x∗ is said to be efficient
of order k with degree z if it is not dominated by any member of P for exactly z out
of the possible

(
m
k

)− element subsets.
At every generation t from a population P:

1. Identify the Pareto nondominated solutions of P and group them into the subset
R(1), which is given rank 1.

2. Assign to the individuals of R(1) a rank according to a strategy based on Prefer-
ence Order with Degree z and the worst given rank is w.

3. Identify the Pareto nondominated individuals of P\R(1) and group them into the
subset R(2), which will be given rank w+ s.

4. Iterate (Step 2) and (Step 3) until P\R(s) = /0, where R(s) is the subset that con-
tains the worst individuals.
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6 Ranking Methods with Parameters

6.1 K-Optimality

Farina and Amato [15] proposed an alternative relation which takes into account
the number of improved objectives between two solutions. This relation employs
three quantities, nb(x1,x2),ne(x1,x2) and nw(x1,x2), which denote the objectives
where x1 is better, equal or worse than x2, respectively. Using these, the concepts of
(1− k)-Dominance and k-Optimality are defined. A solution x1 (1− k)-dominates
x2 if and only if {

ne(x1,x2) < M
nb(x1,x2) ≥ M−ne

k+1

In a similar way to Pareto optimality, a solution x∗ is k-optimum if and only if
there is no x in the decision variable space such that x k-dominates x∗.

Then, this definition is fuzzificated by introducing fuzzy numbers to define
nb(x1,x2),ne(x1,x2) and nw(x1,x2). Finally, they propose a further extension that
introduces a fuzzy definition for the Pareto dominance relation itself.

6.2 Contraction – Expansion

Sato, Aguirre and Tanaka [30] proposed a method to control the dominance area
of solutions. This method can control the degree of expansion or contraction of the
dominance area adopting a user-defined parameter S. To contract and expand the
dominance area of solutions, the authors modify the fitness value for each objective
function by changing the user defined parameter Si in the following equation:

f ′i (x) =
r · sin(ωi + Si ·π)

sin(Si ·π)
∀ i = 1,2, . . . ,m

where r is the norm of f (x), fi(x) is the fitness value in the i− th objective, and ωi

is the declination angle between f (x) and fi(x).
If the user adopts a value of Si < 0.5, the dominance area is expanded and pro-

duces a more fine grained ranking of solutions and would strengthen selection. On
the other hand, if the user sets Si > 0.5, the dominance area is contracted from the
original one and produces a coarser ranking of solutions, weakening the selection
procedure.

7 Analysis of Parameterless Ranking Methods

7.1 Ranking Distributions

One criterion to estimate the quality of a ranking method is to analyze the distri-
bution of the ranks assigned to a set of solutions. A ranking method will favor the
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selection process if it is able to generate a richer range of ranks. To measure the scal-
ability of a method with respect to the number of objectives we can determine if the
shape and range of the distribution is maintained when the number of objectives is
incremented. Along with the four ranking methods described in Section 5, a Pareto-
based ranking method is included as a reference to compare the other ranking meth-
ods. The Pareto-based ranking method used is Fonseca and Fleming’s method [16]
which ranks solutions based on the Pareto dominance relation. The ranking distribu-
tions presented in this section belong to the ranking of 10000 random solutions for
the problems DTLZ2 and DTLZ7 described in Table 2. For each problem we used
3, 4, 5, 8, 10, 15 and 20 objectives.

With regard to problems DTLZ2 and DTLZ7, for every number of objectives
considered, the Pareto-based ranking method concentrates most of the solutions un-
der rank 1 and the frequency for the worst ranks quickly approaches zero (see Fig-
ures 3 and 4). This behavior provides few different ranks to the selection process.
In DTLZ7, for 3 objectives, about 60% of the solutions have rank 1 (see Figure 4).
By observing the distributions for more objectives we can appreciate a phenomenon
previously reported in the specialized literature [17, 18, 19, 36]. That is, the number
of nondominated solutions (rank 1) increases quickly with the number of objec-
tives. For example, for 8 objectives, around 80% of the solutions are nondominated
in both MOPs, while for 15 and 20 objectives, all the solutions are nondominated in
DTLZ7.

The distribution of the maximum ranking method (MR) for 3 and 4 objectives in
DTLZ7 is similar to that of the Pareto-based ranking method. However only about
32% of the solutions have the best rank and, consequently, there is a larger range
of ranks available. This behavior changes for more than 5 objectives. For that num-
ber of objectives, most of the solutions are assigned medium ranks, some solutions
have the worst rank, and just a few solutions have rank 1 (only 2%). When the num-
ber of objectives is increased, the number of solutions with the best rank decreases
while the number of solutions with the worst rank increases. For 10 objectives, for
instance, 80% of the solutions have the worst rank and only 1% have the best rank.
We believe that a distribution where the worst solutions represent the majority of
the population may hinder the progress towards the Pareto front. For instance, if
we carried out a tournament selection, most of the tournaments would include bad
solutions. Good solutions would have small chances of survival. With respect to
DTLZ2, MR produces a distribution with two tails until 10 objectives, since when
the number of objectives is increased the range of ranking values is reduced (see Fig-
ure 3). For 10 or more objectives, approximately 80% of the solutions have the best
rank. This means that the maximum ranking method, although scales better than the
Pareto-based method, has poor scalability with respect to the other methods studied.

In both problems, the preference order ranking (POR) method also presents a
skewed right distribution where the frequency of the ranks decreases slowly. Nonen-
theless, in contrast with the previous ranking methods, the POR method’s distribution
is conserved for all the objectives considered, although the range of the distribution
is reduced as the number of objectives is incremented. This distribution suggests that
the POR method scales well with the number of objectives.
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Fig. 5 Average Ranking’s ranking landscape and contour - Viennet

Fig. 6 Maximum Ranking - Viennet

Fig. 7 Favour Ranking - Viennet

The favour ranking method maintains well the shape and range of its rank dis-
tribution through all the objectives considered and for the two problems. However,
it is the only ranking method that shows for all objectives a slightly skewed left
distribution where all the ranks have a similar frequency distribution.
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Fig. 8 Preference Order Ranking - Viennet

Fig. 9 Pareto Ranking - Viennet

In DTLZ7, the AR method presents a bell-shaped distribution which is more
defined as the number of objectives is increased. In contrast to the other ranking
methods, the range of the AR’s distribution is increased with the number of objec-
tives. With respect to DTLZ2, for a high number of objectives this method produces
a slightly skewed distribution.

7.2 Ranking Landscapes

Similar to the fitness landscapes used in single-objective optimization, it is possible
to visualize the behavior of a ranking method by plotting the variables against the
ranking values assigned to each point of the decision space. To make this visualiza-
tion possible the MOP should have at most two variables. In this study we adopted
two multiobjective problems with only two variables. A 3-objective problem defined
by Viennet [35] and a 5-objective problem proposed by [24]. Figures 5–9 and 10–14
show the ranking landscape generated by each ranking method in the Viennet’s and
Miettinen’s problems respectively. Each ranking landscape is accompanied by its
isocontour plot where the Pareto optimal set is shown with a shaded region.



428 A.L. Jaimes et al.

Fig. 10 Average Ranking - Miettinen

Fig. 11 Maximum Ranking - Miettinen

Fig. 12 Favour Ranking - Miettinen

The ranking landscape for Viennet’s MOP presents a smooth and unimodal sur-
face for all the ranking methods except for the maximum ranking method (see Fig-
ure 6). It is interesting to note that, since this method favors extreme solutions,
the surface for this method has three local optima, one for each objective of the
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Fig. 13 Preference Order Ranking - Miettinen

Fig. 14 Pareto Ranking - Miettinen

problem. Even so, the surface generated for all the methods would allow an opti-
mizer to converge easily towards the optimal solutions.

With respect to Miettinen’s MOP (see Figures 10–14), the ranking lanscape gen-
erated by all the ranking methods presents a multi-modal surface. All the surfaces
have peaks and plateaus which hinder the convergence towards the optimal solu-
tions. There are some interesting observations about these ranking landscapes. First,
the isocontour plots show clearly that the ranking methods converge only to some
regions of the Pareto optimal set and, consequently, some regions of the correspond-
ing Pareto front. For example, the average and favour ranking methods only cover the
upper part of the Pareto optimal set. The preference order ranking method is the only
one that converges to a region more similar to the Pareto optimal set. Secondly, if we
see the peaks near the optimal regions we can realize that some solutions (those in
the top of the peaks) may receive worst ranks than those solutions behind the peaks
but farther from the optimal region. That is, the peaks act as a barrier that keeps them
from reaching the optimal solutions. It is interesting to note that the maximum rank-
ing method generates a smoother surface with only one peak before the optimal re-
gion. This fact suggests that the maximum ranking method is useful for approaching
quickly the Pareto optimal solution, although without covering the whole set.
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Table 2 MOP Test Functions

Function Definition
DTLZ2 [9, 10] F = ( f1(x), f2(x), . . . , fM(x)), where:

f1(x) = (1+g(xM))cos(
π
2

x1)cos(
π
2

x2) . . . cos(
π
2

xM−2)cos(
π
2

xM−1)

f2(x) = (1+g(xM))cos(
π
2

x1)cos(
π
2

x2) . . . cos(
π
2

xM−2)sin(
π
2

xM−1)

f3(x) = (1+g(xM))cos(
π
2

x1)cos(
π
2

x2) . . . cos(
π
2

xM−2)

...
...

fM−1(x) = (1+g(xM))cos(
π
2

x1)sin(
π
2

x2)

fM(x) = (1+g(xM))sin(
π
2

x1)

where:

g(xM) = ∑
xi∈xM

(xi −0.5)2

xi ∈ [0,1] ∀ i = 1,2, . . . ,n

n = M + k−1 , k = 10

DTLZ7 [9, 10] F = ( f1(x), f2(x), . . . , fM(x)), where:

f1(x) = x1

f2(x) = x2

f3(x) = x3

...
...

fM−1(x) = xM−1

fM(x) = (1+g(xM))h( f1, f2, . . . , fM−1 ,g(x))
where:

g(x) = 1+
9

|xm| ∑
x1∈xM

xi

h( f1, f2, . . . , fM−1,g(x)) = M −
M−1

∑
i=1

(
fi

1+g(x)
(1+ sin(3π fi))

)

xi ∈ [0,1] ∀ i = 1,2, . . . ,n

n = M + k−1 , k = 10

Viennet [35] F = ( f1(x), f2(x), f3(x)), where:

f1(x,y) = 0.5∗ (x2 + y2)+ sin(x2 + y2),

f2(x,y) =
(3x−2y+4)2

8
+

(x− y+1)2

27
+15,

f3(x,y) =
1

(x2 + y2 +1)
−1.1e(−x2−y2)

x ∈ [−3,3]
y ∈ [−3,3]
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Table 2 (continued)

Function Definition
Miettinen [24] F = ( f1(x), f2(x), f3(x), f4(x), f5(x)), where:

f1(x1,x2) = f (x1,x2),
f2(x1,x2) = f (x1 −1.2,x2 −1.5),
f3(x1,x2) = f (x1 +0.3,x2 −3.0),
f4(x1,x2) = f (x1 −1.0,x2 +0.5),
f5(x1,x2) = f (x1 −0.5,x2 −1.7),

where:

f (x1,x2) = −u1(x1,x2)−u2(x1,x2)−u3(x1,x2)+10

u1(x1,x2) = 3(1− x1)2 exp(−x2
1 − (x2 +1)2)

u2(x1,x2) = −10
(
(1/4)x1 − x3

1 − x5
2

)
exp(−x2

1 − x2
2)

u3(x1,x2) = (1/3)exp
(−(x1 +1)2 − x2

2

)

x1 ∈ [−4.9,3.2]
x2 ∈ [−3.5,6]

8 Conclusion and Future Work

In this study we have compared some ranking methods with respect to their rank
distribution and their ranking landscape which is the surface generated by the ranks
assigned to solutions. The inspection of the rank distribution provided a guide to
determine the scalability of the ranking methods and their possible disadvantages
in the search process. The ranking landscapes allowed us to observe easily how the
ranking method could assist or hinder the progress towards the Pareto optimal set.

One of our findings is that the preference order ranking is the method with the
best scalability among all the methods included in this study. Also it shows a dis-
tribution similar to the one produced by Pareto-based ranking methods with two or
three objectives. This behavior suggests that the introduction of preference order
ranking would perform effectively if incorporated into a MOEA. Another finding is
that although maximum ranking does not induce a promising ranking distribution,
its ranking landscape suggests that it can be used to reach quickly some regions of
the Pareto optimal set. In addition, the ranking landscapes allow us to see that each
ranking method converges to a different subset of the Pareto optimal set. That is,
some methods cover the Pareto front better than others. This means that if we want
to find the whole Pareto front using some of these ranking methods we have to use
an additional technique or to modify the method to achieve this.

As part of our future work we want to incorporate the ranking methods included
in this chapter into a MOEA in order to correlate some features observed here with
convergence capabilities.
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On the Effect of Applying a Steady-State
Selection Scheme in the Multi-Objective Genetic
Algorithm NSGA-II

Antonio J. Nebro and Juan J. Durillo

Abstract. Genetic Algorithms (GAs) are among the most popular techniques to
solve multi-objective optimization problems, with NSGA-II being the most well-
known algorithm in the field. Although most of multi-objective GAs (MOGAs) use
a generational scheme, in the last few years some proposals using a steady-state
scheme have been developed. However, studies about the influence of using those
selection strategies in MOGAs are scarce. In this chapter we implement a steady-
state version of NSGA-II, which is a generational MOGA, and we compare the two
versions with a set of four state-of-the-art multi-objective metaheuristics (SPEA2,
OMOPSO, AbYSS, and MOCell) attending to two criteria: the quality of the result-
ing approximation sets to the Pareto front and the convergence speed of the algo-
rithms. The obtained results show that search capabilities of the steady-state version
of NSGA-II significantly improves the original version, providing very competitive
results in terms of the quality of the obtained Pareto front approximations and the
convergence speed.

1 Introduction

Genetic Algorithms (GAs) have been widely applied for solving optimization prob-
lems in many areas. Since the appearance of the first multi-objective genetic algo-
rithm (MOGA), the Multiple Objective Optimization with Vector Evaluated Genetic
Algorithm (VEGA) [21], there has been a growing interest in these kinds of algo-
rithms for problems with two or more objectives. GAs are very popular in multi-
objective optimization in part because they can obtain a front of solutions in one
single run. Thus, the most well-known algorithms in this field are GAs: NSGA-
II [3] and SPEA2 [26]. GAs belong to a family of nature-inspired techniques, the

Antonio J. Nebro · Juan J. Durillo
Dept. Lenguajes y Ciencias de la Computación, ETSI Informática, University of Málaga,
Campus de Teatinos, 29071 Málaga, Spain
e-mail: antonio@lcc.uma.es,durillo@lcc.uma.es

R. Chiong (Ed.): Nature-Inspired Algorithms for Optimisation, SCI 193, pp. 435–456.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

antonio@lcc.uma.es, durillo@lcc.uma.es


436 Antonio J. Nebro and Juan J. Durillo

evolutionary algorithms, which form part of a broader set of approximation tech-
niques known as metaheuristics [11]. Other metaheuristic techniques include parti-
cle swarm optimization, ant colony optimization, scatter search, etc.

Based on their selection scheme, there exist two main models of GAs: genera-
tional and steady-state. In the generational model, the algorithm creates a population
of individuals from an old population using the typical genetic operators (selec-
tion, crossover, and mutation); this new population becomes the population of the
next generation. On the other hand, a steady-state GA creates typically only one
new member which is tested for insertion into the population at each step of the
algorithm.

In this chapter our purpose is, taking as starting point a steady-state version of
NSGA-II, to study the search enhancements of that scheme over the generational
approach of NSGA-II in the context of a comparison against four state-of-the-art
multi-objective metaheuristics, namely, SPEA2 [26] (GA), AbYSS [18] (scatter
search), MOCell [16] (cellular GA), and OMOPSO [19] (particle swarm optimiza-
tion). For a broader comparison of these algorithms, we have evaluated them by
using test functions from three different benchmarks (ZDT [25], DTLZ [6], and
WFG [12]) and we have considered two different criteria. First, we have assessed
the quality of the Pareto fronts obtained by those algorithms by applying the additive
unary epsilon (I1

ε +) [14], spread (Δ ) [3], and hypervolume (HV ) [24] quality indica-
tors. Second, we have studied their convergence speed, i.e., the number of function
evaluations required by the algorithms to converge towards the optimal Pareto front.

The remainder of this chapter is structured as follows. The next section provides
background information about multi-objective optimization. In Section 3 we review
previous works in the literature. Section 4 describes the NSGA-II algorithm and its
steady-state version. The algorithms used in the comparative study are described in
Section 5. The next two sections are devoted to the experimentation and analysis of
the obtained results. Finally, Section 8 draws some conclusions and lines of future
work.

2 Multi-Objective Optimization Background

In this section, we provide some background on multiobjective optimization. First,
we define basic concepts such as Pareto optimality, Pareto dominance, Pareto opti-
mal set, and Pareto front. In these definitions we assume, without loss of generality,
the minimization of all the objectives.

A general multiobjective optimization problem (MOP) can be formally defined
as follows:

Definition 1 (MOP). Find a vector x∗ = [x∗1,x
∗
2, . . . ,x

∗
n] which satisfies the m in-

equality constraints gi (x) ≥ 0, i = 1,2, . . . ,m, the p equality constraints hi (x) =
0, i = 1,2, . . . , p, and minimizes the vector function f(x) = [ f1(x), f2(x), . . . , fk(x)]T ,
where x = [x1,x2, . . . ,xn]

T is the vector of decision variables.
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The set of all the values satisfying the constraints defines the feasible region Ω and
any point x ∈ Ω is a feasible solution. As mentioned before, we seek for the Pareto
optima. Its formal definition is provided next:

Definition 2 (Pareto Optimality). A point x∗ ∈ Ω is Pareto Optimal if for every
x ∈ Ω and I = {1,2, . . . ,k} either ∀i∈I ( fi (x) = fi(x∗)) or there is at least one i ∈ I
such that fi (x) > fi (x∗).

This definition states that x∗ is Pareto optimal if no feasible vector x exists which
would improve some criteria without causing a simultaneous worsening in at least
one other criterion. Other important definitions associated with Pareto optimality
are the following:

Definition 3 (Pareto Dominance). A vector u = (u1, . . . ,uk) is said to dominate
v=(v1, . . . ,vk) (denoted by u � v) if and only if u is partially less than v, i.e.,
∀i ∈ {1, . . . ,k} , ui ≤ vi ∧ ∃i ∈ {1, . . . ,k} : ui < vi.

Definition 4 (Pareto Optimal Set). For a given MOP f(x), the Pareto optimal set is
defined as P∗ = {x ∈ Ω |¬∃x′ ∈ Ω , f(x′) � f(x)}.

Definition 5 (Pareto Front). For a given MOP f(x) and its Pareto optimal set P∗,
the Pareto front is defined as PF ∗ = {f(x)|x ∈ P∗}.

Pareto dominance relates two solutions and it can be used as a binary operator. Thus,
the application of this operator to two solutions in the objective space returns either
one solution that dominates another or that the solutions do not dominate each other
(i.e., they are non-dominated solutions). The Pareto optimal set is composed of all
those solutions which are non-dominated, and the Pareto front is the correspondence
of the Pareto optimal set in the objective space.

Obtaining the Pareto front of a MOP is the main goal of multiobjective optimiza-
tion. When stochastic techniques such as metaheuristics are applied, the goal is to
obtain a finite set of solutions having two properties: convergence to the true Pareto
front and homogeneous diversity. The first property ensures that we are dealing with
optimal solutions, while the second one, which refers to obtaining a uniform-spaced
set of solutions, indicates that we have carried out an adequate exploration of the
search space, so we are not losing valuable information.

3 Related Work

In this section we analyze previous works in the literature which make use of a
steady-state scheme in multi-objective GAs. Many MOGAs using such scheme have
been proposed in the last few years; here, we focus on the most salient proposals.

One of the first steady-state multi-objective algorithms described in the litera-
ture was the Pareto Converging Genetic Algorithm (PCGA) [15]. PCGA used a
(μ + 2) scheme and a novel mechanism based on histograms of ranks for assess-
ing convergence to the Pareto front. It was found to produce diverse sampling of
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the Pareto front without niching and with significantly less computing effort than
NSGA, the previous version of NSGA-II. Nevertheless, the algorithms were evalu-
ated using only three test problems and no comparisons with PCGA using a gener-
ational scheme were reported.

The Simple Evolutionary Algorithm for Multi-Objective Optimization (SEAMO)
was proposed in [23]. It was a simple steady-state approach following a (μ + 1)
scheme that used only one population and depended entirely on the replacement pol-
icy used: no rankings, subpopulations, niches or auxiliary approach were required.
Due to the fact that a generational version of SEAMO may not make sense, it was
only compared with NSGA-II and SPEA2 using as benchmark the multiple knap-
sack problem.

Deb et al. proposed in [4] a ε-Domination Based Steady State MOEA, which
was also evaluated in [5]. This algorithm used a (μ + 1) scheme and was composed
of a population and an archive, which used a ε-Domination mechanism. In each
generation, one parent from the population and one from the archive were selected
to create new offsprings, which were then tested for insertion in both the population
and the archive using different strategies. It was compared with several state-of-the-
art MOEAS using both bi-objective and three-objective optimization problems. No
comparisons with the same algorithm using a generational scheme were reported.

Two multi-objective steady-state algorithms were presented in [1]: the Objec-
tive Exchanging Genetic Algorithm for Design Optimization (OEGADO), and the
Objective Switching Genetic Algorithm for Design Optimization (OSGADO). The
former proposal consists of several steady-state single-objective optimization GAs
which periodically exchange information about the objectives; the second algorithm
is also composed of multiple single-objective optimization algorithms, but in this
case these algorithms periodically switch the objective they optimize. Both algo-
rithms were compared with NSGA-II using four benchmark academic problems
and two engineering problems. In this work, neither OSGADO and OEGADO were
evaluated using generational single-objective GAs.

Emmerich et al. presented in [10] the so-called S metric selection EMOA (SMS-
EMOA), which is a hypervolume based steady-state GA. It has a (μ + 1) scheme
as well. The paper included a theoretical analysis in which the advantages of using
a steady-state scheme in terms of the complexity of this kind of algorithms were
proofed. The algorithm was evaluated using the ZDT benchmark, and it was com-
pared with NSGA-II, SPEA2, and the above described ε-MOEA. No comparisons
using a generational scheme were reported.

Srinivasan et al. proposed in [22] a new version of the NSGA-II algorithm. This
algorithm uses a (μ + λ ) scheme, like the original NSGA-II. The main difference
was that once all the individuals have been generated, they are considered to update
the population in a steady-state model. The new proposal was evaluated using nine
benchmark problems and compared with the original NSGA-II algorithm.

Igel et al. studied in [13] the effect of two different steady-state schemes, a (μ +1)
and a (μ< + 1), for the Multi-objective covariance matrix adaption evolution strat-
egy (MO-CMA-ES). The latter steady-state scheme did not consider all the popu-
lation for selecting the parents. These different approaches were compared with a
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Fig. 1 The NSGA-II procedure, which follows a generational selection scheme

generational scheme, NSGA-II and SPEA2 using a benchmark composed of con-
strained and unconstrained test functions.

In [9] Durillo et al. proposed a steady-state version of the NSGA-II algorithm
with a (μ +1) scheme and they compared it to the original one. Results showed that
by using such a scheme, the algorithm was able to outperform the original one in
terms of convergence towards the optimal Pareto front and spread of the resulting
fronts of solutions.

Summarizing this section, many of the works in the literature only present new
steady-state algorithms and compare them against the state-of-the-art MOGAs;
comparisons with the same algorithm using a generational scheme are scarce. Fur-
thermore, many of these proposals are only evaluated using a benchmark composed
of small number of problems, and they take into account only the quality of the fi-
nal front obtained without paying attention to other issues such as the convergence
speed of the algorithms.

4 Steady-State NSGA-II

In this section we present the steady-state version of NSGA-II. First, we describe the
original (generational) algorithm, and then we go into details related to the steady-
state proposal.

The NSGA-II algorithm was proposed by Deb et al. [3]. It is based on a ranking
procedure, consisting of extracting the non-dominated solutions from a population
and assigning them a rank of 1; these solutions are removed and the next group of
non-dominated solutions have a rank of 2, and so on. NSGA-II is a generational
MOGA, in which a current population is used to create an auxiliary one, the off-
spring population (see Fig. 1); after that, both populations are combined to obtain-
ing the new current population. The procedure is as follows: the two populations are
sorted according to their rank, and the best solutions are chosen to create the new
population; in the case of selection between some individuals with the same rank,
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Fig. 2 The NSGA-IIss algorithm. Only one offspring is generated and tested to be inserted at
each step.

a density estimation based on the crowding distance to the surrounding individuals
of the same rank is used to get the most promising solutions. Typically, both the
current and the auxiliary populations have the same size.

A steady-state version of NSGA-II can be easily implemented by using an off-
spring population of size 1. In this way, the newly generated individual is imme-
diately incorporated into the evolutionary cycle. However, this also means that the
ranking and crowding procedures have to be applied each time a new individual is
created, so the time required by the algorithm increases notably. The procedure of
this version is shown in Fig. 2. In the rest of this work we will refer to the steady-
state version as NSGA-IIss, and to the original one as NSGA-IIgen.

5 Description of the Evaluated Algorithms

In this section we briefly describe the four algorithms that we have considered
for comparison with the two versions of NSGA-II. We have included SPEA2 be-
cause it is, along with NSGA-II, the most popular MOGAs. The other three tech-
niques, OMOPSO, MOCell, and AbYSS are more recent algorithms, and they have
been proven to be more effective than NSGA-II and SPEA2 in previous works
[17][16][18][20].

The main features of these techniques are described next:

• SPEA2 was proposed by Zitler et al. in [26]. In this algorithm, each individual
has a fitness value that is the sum of its strength raw fitness plus a density es-
timation. The algorithm applies the selection, crossover, and mutation operators
to fill an archive of individuals; then, the non-dominated individuals of both the
original population and the archive are copied into a new population. If the num-
ber of non-dominated individuals is greater than the population size, a truncation
operator based on the distances to the k-th nearest neighbor is used. This way,
the individuals having the minimum distance to any other individual are chosen
to be discarded.
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• OMOPSO (Optimized MOPSO, Coello et al. [19]) is a multi-objective particle
swarm optimization algorithm. Its main features include the use of an external
archive based on the crowding distance of NSGA-II to filter out leader solutions
and the use of mutation operators to accelerate the convergence of the swarm.
OMOPSO also has an archive to store the best solutions found during the search.
This archive makes use of the concept of ε-dominance to limit the number of
solutions stored. Here, we consider the population containing the leaders as the
final approximation set.

• AbYSS is an adaptation of the scatter search metaheuristic to the multi-objective
domain proposed by Nebro et al. in [18]. This algorithm uses an external archive
similar to the one employed by OMOPSO. AbYSS incorporates operators of the
evolutionary algorithms domain, including polynomial mutation and simulated
binary (SBX) crossover in the improvement and solution combination methods,
respectively.

• MOCell (Nebro et al. [16]) is a cellular GA. As OMOPSO and AbYSS, it in-
cludes an external archive to store the non-dominated solutions found so far.
This archive makes use of the crowding distance of NSGA-II to maintain di-
versity. MOCell incorporates a feedback procedure: after each interation some
random solutions in the current population are replaced by solutions contained
in the archive. Here, we have used an asynchronous version of MOCell, called
aMOCell4 in [16]. Furthermore, in this version the feedback procedure takes
place through the selection operator: one parent is selected from the neighbor-
hood of the current solution, and the other parent is selected randomly from the
archive.

We have used the implementation of these algorithms provided by jMetal [8], a
Java-based framework aimed at multi-objective optimization problem solving.

6 Experimentation

In this section we explain the benchmark problems used to evaluate the algorithms,
the quality indicators used to assess their performance, the criterion used to measure
the convergence speed, the parameter settings used, the followed methodology, and
the statistical tests carried out.

6.1 Benchmark Problems

Here, we describe the different sets of problems addressed in this work. These prob-
lems are well-known, and they have been used in many studies in this area.

The problems families are the following:

• Zitzler-Deb-Thiele (ZDT): This benchmark is composed of five bi-objective
problems [25]: ZDT1 (convex), ZDT2 (nonconvex), ZDT3 (nonconvex, dis-
connected), ZDT4 (convex, multimodal), and ZDT6 (nonconvex, nonuniformly
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spaced). These problems are scalable according to the number of decision vari-
ables.

• Deb-Thiele-Laumanns-Zitzler (DTLZ): The problems of this family are scal-
able both in the number of variables and objectives [6]. It is composed of the
following seven problems: DTLZ1 (linear), DTLZ2-4 (nonconvex), DTLZ5-6
(degenerate), and DTLZ7 (disconnected).

• Walking-Fish-Group (WFG): This set is composed of nine problems, WFG1 -
WFG9, that have been constructed using the WFG toolkit [12]. The properties of
these problems are detailed in Table 1. They all are scalable both in the number
of variables and the number of objectives.

Table 1 Properties of the MOPs created using the WFG toolkit

Problem Separability Modality Bias Geometry
WFG1 separable uni polynomial, flat convex, mixed
WFG2 non-separable f1 uni, f2 multi no bias convex, disconnected
WFG3 non-separable uni no bias linear, degenerate
WFG4 non-separable multi no bias concave
WFG5 separable deceptive no bias concave
WFG6 non-separable uni no bias concave
WFG7 separable uni parameter dependent concave
WFG8 non-separable uni parameter dependent concave
WFG9 non-separable multi, deceptive parameter dependent concave

In this work we have used the bi-objective formulation of the DTLZ and WFG
problem families. A total of 21 MOPs are used to evaluate the six metaheuristics.

6.2 Quality Indicators

To assess the search capabilities of algorithms on the test problems, two different
issues are normally taken into account: the distance between the generated solu-
tion set by the proposed algorithm to the optimal Pareto front should be minimized
(convergence) and the spread of found solutions should be maximized in order to
obtain as smooth and uniform a distribution of solutions as possible (diversity). To
measure these two criteria it is necessary to know the exact location of the opti-
mal Pareto front; the benchmark problems used in this work have known Pareto
fronts.

The quality indicators can be classified into three categories depending on
whether they evaluate the closeness to the Pareto front, the diversity in the solu-
tions obtained, or both [2]. We have adopted one indicator of each type.

• Unary Epsilon Indicator (I1
ε+). This indicator was proposed by Zitzler et al.

[27] and makes direct use of the principle of Pareto-dominance. Given an ap-
proximation set of a problem, A, the I1

ε+ indicator is a measure of the smallest
distance one would need to translate every point in A so that it dominates the
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optimal Pareto front of the problem. More formally, given z1 = (z1
1, ...,z

1
n) and

z2 = (z2
1, ...,z

2
n), where n is the number of objectives:

I1
ε+(A) = in fε∈R

{
∀z2 ∈ Pareto Optimal Front ∃z1 ∈ A : z1 ≺ε z2

}
(1)

where, z1 ≺ε z2 if and only if ∀1 ≤ i ≤ n : z1
i < ε + z2

i .
• Spread (Δ ). The diversity Spread indicator [3] measures the extent of spread

achieved among the obtained solutions. This indicator (illustrated in Fig. 3) is
defined as:

Δ =
d f + dl + ∑N−1

i=1

∣∣di − d̄
∣∣

d f + dl +(N −1)d̄
, (2)

where di is the Euclidean distance between consecutive solutions, d̄ is the mean
of these distances, and d f and dl are the Euclidean distances to the extreme
(bounding) solutions of the optimal Pareto front in the objective space (see [3]
for the details). Δ takes a value of zero for an ideal distribution, pointing out a
perfect spread out of the solutions in the Pareto front. We apply this indicator
after a normalization of the objective function values.

• Hypervolume (HV). The HV indicator calculates the volume, in the objective
space, covered by members of a non-dominated set of solutions Q for problems
where all objectives are to be minimized [24]. In the example depicted in Fig. 4,
the HV is the region enclosed within the discontinuous line, where Q = {A,B,C}
(in the figure, the grey area represents the objective space that has been explored).
Mathematically, for each solution i ∈ Q, a hypercube vi is constructed with a ref-
erence point W and the solution i as the diagonal corners of the hypercube. The
reference point can be found simply by constructing a vector of worst objective
function values. Thereafter, a union of all hypercubes is found and its hypervol-
ume (HV ) is calculated:
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HV = volume

⎛
⎝

|Q|⋃
i=1

vi

⎞
⎠ . (3)

Algorithms with larger HV values are desirable. Since this indicator is not free
from arbitrary scaling of objectives, we have evaluated the metric by using nor-
malized objective function values.

Fig. 4 The hypervolume
enclosed by the non-
dominated solutions

f1

f2

Pareto-optimal front

W

A

B

C

6.3 Convergence Speed Criterion

Since one of our main interests is to analyze the convergence speed of the analyzed
algorithms, it is important to define, first, what we mean by convergence, and to
ensure that such definition allows us to measure it in a quantitative and meaningful
way. We have studied and defined in [17], a stopping condition based on the high
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Fig. 5 Fronts with different HV values obtained for problem ZDT1
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Table 2 Parameterization (L = individual length)

Parameterization used in NSGA-II [3]
Population Size 100 individuals
Selection of Parents binary tournament + binary tournament
Recombination simulated binary, pc = 0.9
Mutation polynomial, pm = 1.0/L

Parameterization used in SPEA2 [26]
Population Size 100 individuals
Selection of Parents binary tournament + binary tournament
Recombination simulated binary, pc = 0.9
Mutation polynomial, pm = 1.0/L

Parameterization used in AbYSS [18]
Population Size 20 individuals
Reference Set Size 10 + 10
Recombination simulated binary, pc = 1.0
Mutation (local search) polynomial, pm = 1.0/L
Archive Size 100 individuals

Parameterization used in MOCell [16]
Population Size 100 individuals (10×10)
Neighborhood 1-hop neighbours (8 surrounding solutions)
Selection of Parents binary tournament + binary tournament
Recombination simulated binary, pc = 0.9
Mutation polynomial, pm = 1.0/L
Archive Size 100 individuals

Parameterization used in OMOPSO [19]
Swarm size 100 particles
Mutation uniform + non-uniform
Leaders Size 100

quality of the approximation of the Pareto front found. We have used the HV quality
indicator for that purpose.

In Fig. 5 we show different approximations to the Pareto front for the problem
ZDT1 with different percentages of HV . We can observe that a front with a hyper-
volume of 98.26% represents a reasonable approximation to the optimal Pareto front
in terms of convergence and diversity of solutions. So, we have taken 98% of the
hypervolume of the optimal Pareto front as a criterion to decide that a problem has
been successfully solved. In this way, we mean by convergence speed the number
of function evaluations required to achieve this termination condition. Those algo-
rithms requiring fewer function evaluations can be considered to be more efficient
or faster.

6.4 Parameter Settings

We have chosen a set of parameter settings to guarantee a fair comparison among the
algorithms. All GAs (NSGA-II, SPEA2, and MOCell) use an internal population of
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size equal to 100; the size of the archive is also 100 in SPEA2, OMOPSO, AbYSS,
and MOCell. OMOPSO has been configured with 100 particles. For AbYSS, both
the population and the reference set have a size of 20 solutions. The two versions of
NSGA-II share the same parameterization.

In the GAs we have used SBX and polynomial mutation [2] as operators for
crossover and mutation operators, respectively. The distribution indices for both op-
erators are ηc = 20 and ηm = 20, respectively. The crossover probability is pc = 0.9
and the mutation probability is pm = 1/L, where L is the number of decision vari-
ables. AbYSS uses polynomial mutation in the improvement method and SBX in
the solution combination method. OMOPSO applies a combination of uniform and
non-uniform mutation. A summary of the parameter settings is included in Table 2.

6.5 Methodology

The stopping criterion is to reach 25,000 function evaluations in the experiments
performed for assessing the quality of the obtained solution sets. The quality indi-
cators are computed after the algorithms have finished their executions.

In the experiments carried out to study the convergence speed, the stopping cri-
terion is to reach either 1,000,000 function evaluations or a front with 98% HV
of the optimal Pareto front. If an algorithm stops according to the first condition,
we consider that it has failed to solve the problem. In these experiments, the HV is
measured at every 100 function evaluations.

6.6 Statistical Tests

Since we are dealing with stochastic algorithms we have made 100 independent
runs of each experiment, and we show the median, x̃, and interquartile range, IQR,
as measures of location (or central tendency) and statistical dispersion, respectively.
The following statistical analysis has been performed throughout this work [7].
Firstly, a Kolmogorov-Smirnov test was performed in order to check whether the
values of the results follow a normal (gaussian) distribution or not. If the distri-
bution is normal, the Levene test checks for the homogeneity of the variances. If
samples have equal variance (positive Levene test), an ANOVA test is done; other-
wise a Welch test is performed. For non-gaussian distributions, the non-parametric
Kruskal-Wallis test is used to compare the medians of the algorithms. Fig. 6 sum-
marizes the statistical analysis.

We always consider in this work a confidence level of 95% (i.e., significance level
of 5% or p-value under 0.05) in the statistical tests, which means that the differences
are unlikely to have occurred by chance with a probability of 95%. Successful tests
are marked with ‘+’ symbols in the last column in all the tables containing the
results; conversely, ‘-’ means that no statistical confidence was found (p-value >
0.05). For the sake of better understanding, the best result for each problem has a
gray colored background and the second best one has a clearer gray background.
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Fig. 6 Statistical analysis
performed in this work
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7 Results

This section is devoted to presenting and discussing the results of the experiments.
We start with the analysis of the obtained values of the I1

ε+, Δ , and HV quality
indicators; after that, we focus on the convergence speed.

7.1 Quality Assessment

The results after applying the I1
ε+ indicator are provided in Table 3. Our main in-

terest is to focus on the two versions of NSGA-II, not to determine the best algo-
rithm in the comparisons. We can observe that NSGA-IIgen only achieves the best
(lower) values in two out of the 21 problems composing the whole benchmark,
while NSGA-IIss gets four best and eleven second best results. With the exceptions
of problems WFG1 and WFG8, it is clear that the steady-state scheme in NSGA-II
allows to improve the convergence of the obtained fronts.

If we make a ranking of the algorithms according to the convergence indicator,
considering the best and second best values, it would be headed by MOCell followed
by NSGA-IIss; after them, OMOPSO, NSGA-IIgen, AbYSS, and SPEA2. In Fig. 7

Table 3 Median and interquartile range of the I1
ε+ quality indicator

NSGA-IIgen NSGA-IIss SPEA2 AbYSS MOCell OMOPSO
Problem x̄IQR x̄IQR x̄IQR x̄IQR x̄IQR x̄IQR

ZDT1 1.37e−023.0e−03 5.81e−036.3e−04 8.69e−031.1e−03 7.72e−031.8e−03 6.23e−034.1e−04 5.77e−033.8e−04 +
ZDT2 1.28e−022.3e−03 5.79e−035.5e−04 8.73e−031.4e−03 7.10e−031.6e−03 5.57e−033.0e−04 5.64e−033.0e−04 +
ZDT3 8.13e−031.9e−03 5.24e−035.4e−04 9.72e−031.9e−03 6.10e−033.1e−01 5.66e−037.5e−04 6.16e−031.2e−03 +
ZDT4 1.49e−023.0e−03 9.78e−032.6e−03 3.42e−027.9e−02 1.14e−024.2e−03 8.17e−032.3e−03 7.40e+004.5e+00 +
ZDT6 1.47e−022.8e−03 7.02e−037.6e−04 2.42e−025.2e−03 5.06e−033.9e−04 6.53e−035.6e−04 4.67e−033.3e−04 +
DTLZ1 7.13e−031.6e−03 4.62e−031.9e−03 5.89e−032.8e−03 5.85e−035.5e−03 4.02e−031.5e−03 1.54e+011.4e+01 +
DTLZ2 1.11e−022.7e−03 5.13e−033.6e−04 7.34e−031.1e−03 5.39e−034.6e−04 5.09e−032.8e−04 5.23e−032.9e−04 +
DTLZ3 1.04e+001.2e+00 9.63e−011.4e+00 2.28e+001.9e+00 1.66e+001.6e+00 7.91e−011.0e+00 7.87e+017.5e+01 +
DTLZ4 1.13e−029.9e−01 5.24e−039.9e−01 7.66e−039.9e−01 5.39e−033.0e−04 5.74e−039.9e−01 5.55e−034.5e−04 +
DTLZ5 1.05e−022.5e−03 5.14e−033.4e−04 7.47e−031.2e−03 5.36e−035.2e−04 5.08e−033.2e−04 5.27e−032.8e−04 +
DTLZ6 4.39e−023.4e−02 3.07e−022.5e−02 3.03e−015.3e−02 9.50e−024.7e−02 4.16e−023.8e−02 5.18e−034.1e−04 +
DTLZ7 1.04e−022.8e−03 5.13e−034.1e−04 9.09e−031.4e−03 5.51e−039.6e−04 5.19e−031.0e−03 5.39e−034.8e−04 +
WFG1 3.52e−014.6e−01 4.98e−015.3e−01 9.92e−012.1e−01 1.05e+005.1e−01 4.49e−015.0e−01 1.13e+002.1e−01 +
WFG2 7.10e−017.0e−01 7.10e−017.0e−01 7.10e−016.9e−01 7.11e−011.6e−03 7.10e−013.7e−04 9.51e−039.0e−04 +
WFG3 2.00e+005.8e−04 2.00e+004.3e−04 2.00e+001.1e−03 2.00e+001.6e−03 2.00e+005.2e−04 2.00e+002.0e−05 +
WFG4 3.26e−026.7e−03 1.52e−021.5e−03 2.52e−024.0e−03 1.49e−027.7e−04 1.51e−027.3e−04 4.33e−025.6e−03 +
WFG5 8.41e−028.3e−03 6.41e−021.5e−03 7.27e−022.9e−03 6.39e−027.5e−04 6.35e−026.5e−04 6.36e−026.6e−04 +
WFG6 4.14e−021.6e−02 2.50e−022.8e−02 3.11e−021.4e−02 7.84e−025.9e−02 3.65e−025.4e−02 1.43e−026.7e−04 +
WFG7 3.47e−028.1e−03 1.51e−021.5e−03 2.54e−023.0e−03 1.55e−021.1e−03 1.49e−027.5e−04 1.52e−027.6e−04 +
WFG8 3.38e−012.3e−01 5.08e−012.2e−01 5.11e−011.9e−01 5.13e−017.4e−02 5.08e−015.3e−02 5.09e−012.0e−03 +
WFG9 3.73e−027.5e−03 1.80e−023.7e−03 2.92e−025.9e−03 2.21e−026.0e−03 1.94e−023.6e−03 2.55e−022.7e−03 +
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Fig. 7 Positions of NSGA-IIgen (left columns) and NSGA-IIss (right columns) in the ranking
of the I1

ε+ indicator

we include the positions of each NSGA-II version if we rank the six compared
algorithms per individual problem. We can observe clearly that while NSGA-IIgen

is in the sixth position in many problems, NSGA-IIss is ranked in the first or second
positions in all but six instances.

The values of the Δ indicator are included in Table 4. From the table we can
see that the steady-state version of NSGA-II yields better (lower) values than its
generational counterpart in all the 21 benchmark problems. However, it is unable to

Table 4 Median and interquartile range of the Δ quality indicator

NSGA-IIgen NSGA-IIss SPEA2 AbYSS MOCell OMOPSO
Problem x̄IQR x̄IQR x̄IQR x̄IQR x̄IQR x̄IQR

ZDT1 3.70e−014.2e−02 7.52e−021.5e−02 1.52e−012.2e−02 1.05e−012.0e−02 7.64e−021.3e−02 7.34e−021.7e−02 +
ZDT2 3.81e−014.7e−02 7.80e−021.3e−02 1.55e−012.7e−02 1.07e−011.8e−02 7.67e−021.4e−02 7.29e−021.5e−02 +
ZDT3 7.47e−011.8e−02 7.03e−013.5e−03 7.10e−017.5e−03 7.09e−019.7e−03 7.04e−016.2e−03 7.08e−016.4e−03 +
ZDT4 4.02e−015.8e−02 1.27e−012.9e−02 2.72e−011.6e−01 1.27e−013.5e−02 1.10e−012.8e−02 8.85e−014.6e−02 +
ZDT6 3.56e−013.6e−02 1.05e−011.5e−02 2.28e−012.5e−02 8.99e−021.4e−02 9.33e−021.3e−02 2.95e−011.1e+00 +
DTLZ1 4.03e−016.1e−02 1.18e−014.0e−02 1.81e−019.8e−02 1.40e−011.7e−01 1.05e−013.6e−02 7.74e−011.3e−01 +
DTLZ2 3.84e−013.8e−02 1.10e−011.6e−02 1.48e−011.6e−02 1.09e−011.9e−02 1.08e−011.7e−02 1.27e−012.0e−02 +
DTLZ3 9.53e−011.6e−01 9.52e−013.4e−01 1.07e+001.6e−01 7.55e−014.5e−01 7.45e−015.5e−01 7.68e−019.3e−02 +
DTLZ4 3.95e−016.4e−01 1.13e−019.0e−01 1.48e−018.6e−01 1.08e−011.8e−02 1.23e−019.0e−01 1.23e−011.9e−02 +
DTLZ5 3.79e−014.0e−02 1.11e−011.6e−02 1.50e−011.9e−02 1.10e−012.0e−02 1.09e−011.7e−02 1.25e−011.9e−02 +
DTLZ6 8.64e−013.0e−01 1.81e−015.3e−02 8.25e−019.3e−02 2.31e−016.3e−02 1.50e−014.3e−02 1.03e−012.1e−02 +
DTLZ7 6.23e−012.5e−02 5.19e−011.9e−03 5.44e−011.3e−02 5.19e−011.3e−03 5.19e−012.9e−02 5.20e−013.7e−03 +
WFG1 7.18e−015.4e−02 5.81e−015.8e−02 6.51e−014.8e−02 6.66e−015.8e−02 5.81e−019.4e−02 1.15e+001.2e−01 +
WFG2 7.93e−011.7e−02 7.47e−011.0e−02 7.53e−011.3e−02 7.46e−014.3e−03 7.47e−012.2e−03 7.60e−012.7e−03 +
WFG3 6.12e−013.6e−02 3.71e−017.2e−03 4.39e−011.2e−02 3.73e−018.7e−03 3.64e−016.3e−03 3.65e−016.9e−03 +
WFG4 3.79e−013.9e−02 1.40e−012.0e−02 2.72e−012.5e−02 1.36e−012.1e−02 1.36e−012.2e−02 3.94e−015.2e−02 +
WFG5 4.13e−015.1e−02 1.38e−011.5e−02 2.79e−012.3e−02 1.31e−012.1e−02 1.32e−012.2e−02 1.36e−012.0e−02 +
WFG6 3.90e−014.2e−02 1.23e−013.2e−02 2.49e−013.1e−02 1.45e−014.3e−02 1.27e−014.0e−02 1.19e−011.9e−02 +
WFG7 3.79e−014.6e−02 1.11e−011.9e−02 2.47e−011.8e−02 1.17e−013.0e−02 1.07e−011.8e−02 1.29e−011.7e−02 +
WFG8 6.45e−015.5e−02 5.63e−015.7e−02 6.17e−018.1e−02 5.86e−017.1e−02 5.57e−014.2e−02 5.42e−013.6e−02 +
WFG9 3.96e−014.1e−02 1.52e−012.1e−02 2.92e−012.0e−02 1.50e−012.2e−02 1.44e−011.7e−02 2.03e−012.0e−02 +
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Fig. 8 Positions of NSGA-IIgen (left columns) and NSGA-IIss (right columns) in the ranking
of the Δ indicator

outperform MOCell and AbYSS, the two best algorithms taking into account this
indicator except for the two problems ZDT3 and WFG1.

As before, we include in Fig. 8 the positions of the two versions when ranking the
six compared algorithms per problem. The improvements of the steady-state version
over the generational one are evident: the latter occupies the last rank position in
most of the problems, while the former has two fourth positions as its worst results.

To illustrate the differences between the two versions of NSGA-II, we include
in Fig. 9 the approximation sets to the Pareto front obtained by them when solving
problem ZDT3. This problem is characterized by having a discontinuos Pareto front.
We can observe how the steady-state version produces a front having a uniform
spread of the solutions (Fig. 9 - bottom), while the generational one generates a
not-so-uniform front.

The results of the HV quality indicator are included in Table 5. Those cells con-
taing the symbol “–” mean that the HV has a value of 0, meaning that the obtained
solution sets are out of the limits of the optimal Pareto front. We observe, first, that
NSGA-IIss yield better (higher) values than NSGA-IIgen in 18 out the 21 problems.
Second, a ranking of the algorithms considering the number of best and second best
values would be led by NSGA-IIss, because although OMOPSO yields six best val-
ues (five in the case of NSGA-IIss), it has only a single second best result, while
NSGA-IIss has eight. The ranking per problem is included in Fig. 10, which shows
that NSGA-IIss has a ranking greater than three in only three problems.

As the HV measures both convergence and diversity, and considering the other
two indicators, we can conclude that NSGA-IIss not only outperforms NSGA-IIgen,
but it is also a competitive technique based on the convergence of the produced
Pareto fronts of all the evaluated algorithms.
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Fig. 9 Pareto fronts obtained by NSGA-IIgen (top) and NSGA-IIss (bottom) when solving
problem ZDT3

To conclude this section we would like to remark, first, that the obtained results
in the experiments carried out have statistical significance, as it can be observed in
the ‘+’ symbols in the last column in the three tables. Second, it has to be pointed out
that the use of the steady-states scheme has a computational cost that has to be taken
into account. Specifically, we have measured the running times of the two versions
of NSGA-II when solving all the problems, and NSGA-IIss is about 10 times slower
than the generational algorithm: the mean time is about 1.2 seconds per execution, in
the case of the original NSGA-II, and roughly 12.5 seconds the steady-state version.
We have used the profiling tool provided by the Java IDE Netbeans 6.1 to analyze the
execution of the two algorithms when solving the ZDT1 problem. The profiling re-
port has shown that the computing time required to evaluate the problem is less than
1% of the total execution time. So, although the diferences between the two algo-
rithms are important in the context of our study, we must note that in a real scenario
the computing time of the algorithms can become negligible. As an example, if eval-
uating the objective functions of a problem requires 1 second, as we carry out 25,000
evaluations, the total time would be 25,000 seconds (6,94 hours), so it is obvious that
the running times of the algorithms would not be relevant in this situation.
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Table 5 Median and interquartile range of the HV quality indicator

NSGA-IIgen NSGA-IIss SPEA2 AbYSS MOCell OMOPSO
Problem x̄IQR x̄IQR x̄IQR x̄IQR x̄IQR x̄IQR

ZDT1 6.59e−014.4e−04 6.62e−011.4e−04 6.60e−013.9e−04 6.61e−013.2e−04 6.61e−012.5e−04 6.61e−013.2e−04 +
ZDT2 3.26e−014.3e−04 3.28e−011.6e−04 3.26e−018.1e−04 3.28e−012.8e−04 3.28e−014.3e−04 3.28e−012.4e−04 +
ZDT3 5.15e−012.3e−04 5.16e−018.0e−05 5.14e−013.6e−04 5.16e−013.5e−03 5.15e−013.1e−04 5.15e−018.8e−04 +
ZDT4 6.56e−014.5e−03 6.57e−014.0e−03 6.51e−011.2e−02 6.55e−016.0e−03 6.59e−013.0e−03 – +
ZDT6 3.88e−012.3e−03 3.96e−011.1e−03 3.79e−013.6e−03 4.00e−011.9e−04 3.97e−011.1e−03 4.01e−017.1e−05 +

DTLZ1 4.88e−015.5e−03 4.89e−016.5e−03 4.89e−016.2e−03 4.86e−011.7e−02 4.91e−013.8e−03 – +
DTLZ2 2.11e−013.1e−04 2.12e−014.3e−05 2.12e−011.7e−04 2.12e−016.5e−05 2.12e−014.5e−05 2.12e−012.8e−04 +
DTLZ3 – – – – – – +
DTLZ4 2.09e−012.1e−01 2.11e−012.1e−01 2.10e−012.1e−01 2.11e−015.9e−05 2.11e−012.1e−01 2.10e−014.0e−04 +
DTLZ5 2.11e−013.5e−04 2.12e−013.7e−05 2.12e−011.7e−04 2.12e−016.8e−05 2.12e−013.1e−05 2.12e−013.0e−04 +
DTLZ6 1.75e−013.6e−02 1.73e−012.8e−02 9.02e−031.4e−02 1.11e−014.1e−02 1.61e−014.2e−02 2.12e−015.0e−05 +
DTLZ7 3.33e−012.1e−04 3.34e−013.9e−05 3.34e−012.2e−04 3.34e−017.8e−05 3.34e−019.5e−05 3.34e−012.2e−04 +
WFG1 5.23e−011.3e−01 4.90e−011.9e−01 3.85e−011.1e−01 2.27e−011.3e−01 4.95e−011.7e−01 1.60e−019.0e−02 +
WFG2 5.61e−012.8e−03 5.62e−012.6e−03 5.62e−012.8e−03 5.61e−011.1e−03 5.62e−012.9e−04 5.64e−016.8e−05 +
WFG3 4.41e−013.2e−04 4.42e−011.8e−04 4.42e−012.0e−04 4.42e−015.9e−04 4.42e−011.9e−04 4.42e−012.2e−05 +
WFG4 2.17e−014.9e−04 2.19e−012.4e−04 2.18e−013.0e−04 2.19e−012.0e−04 2.19e−012.3e−04 2.06e−011.7e−03 +
WFG5 1.95e−013.6e−04 1.96e−016.7e−05 1.96e−011.8e−04 1.96e−016.3e−05 1.96e−016.9e−05 1.96e−016.3e−05 +
WFG6 2.03e−019.0e−03 2.03e−011.9e−02 2.04e−018.6e−03 1.71e−013.3e−02 1.95e−013.4e−02 2.10e−011.1e−04 +
WFG7 2.09e−013.3e−04 2.11e−011.4e−04 2.10e−012.4e−04 2.11e−011.7e−04 2.11e−011.3e−04 2.10e−011.0e−04 +
WFG8 1.47e−012.1e−03 1.48e−011.6e−03 1.47e−012.2e−03 1.44e−013.2e−03 1.47e−012.2e−03 1.46e−011.1e−03 +
WFG9 2.37e−011.7e−03 2.40e−011.9e−03 2.39e−012.3e−03 2.38e−013.6e−03 2.39e−012.6e−03 2.37e−015.8e−04 +

7.2 Convergence Speed

In the previous section we have shown that the steady-state version of NSGA-II
performed better than the original algorithm in most of the tested problems. In this
section we analyze the obtained results when measuring the convergence speed.

Table 6 contains the number of evaluations required by the algorithms to reach
a Pareto front with 98% of the HV of the optimal Pareto front. There are cases

ZDT DTLZ WFG

Hypervolume

NSGA-IIgen             NSGA-IIss

Fig. 10 Positions of NSGA-IIgen (left columns) and NSGA-IIss (right columns) in the rank-
ing of the HV indicator
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Table 6 Median and IQR of the number of evaluations computed by the algorithms

NSGA-IIgen NSGA-IIss SPEA2 AbYSS MOCell OMOPSO
Problem x̄IQR x̄IQR x̄IQR x̄IQR x̄IQR x̄IQR

ZDT1 1.430e+04 8.0e+02 1.160e+04 9.0e+02 1.600e+04 1.1e+03 1.370e+04 1.6e+03 1.300e+04 1.2e+03 6.800e+03 2.0e+03 +
ZDT2 2.460e+04 1.6e+03 1.770e+04 1.3e+03 2.480e+04 1.9e+03 1.710e+04 2.8e+03 1.170e+04 4.0e+03 8.900e+03 3.6e+03 +
ZDT3 1.280e+04 8.5e+02 1.095e+04 1.0e+03 1.520e+04 1.0e+03 1.270e+04 2.0e+03 1.300e+04 1.3e+03 9.850e+03 2.7e+03 +
ZDT4 2.245e+04 5.9e+03 1.985e+04 5.4e+03 2.520e+04 6.0e+03 2.285e+04 1.1e+04 1.635e+04 5.0e+03 – +
ZDT6 2.930e+04 1.4e+03 2.280e+04 1.2e+03 3.335e+04 1.0e+03 1.560e+04 1.2e+03 2.090e+04 1.3e+03 2.800e+03 1.5e+03 +

DTLZ1 2.495e+04 8.4e+03 2.225e+04 8.6e+03 2.400e+04 7.5e+03 2.375e+04 1.2e+04 2.015e+04 7.7e+03 1.000e+06 4.7e+04 +
DTLZ2 8.150e+03 1.2e+03 5.300e+03 7.0e+02 7.400e+03 8.0e+02 4.700e+03 9.0e+02 5.600e+03 9.0e+02 8.200e+03 3.1e+03 +
DTLZ3 1.127e+05 5.3e+04 8.270e+04 3.5e+04 1.000e+05 3.0e+04 1.194e+05 7.5e+04 6.735e+04 2.3e+04 – +
DTLZ4 8.650e+03 1.3e+03 5.500e+03 7.0e+02 7.800e+03 5.0e+05 4.800e+03 7.5e+02 1.000e+06 9.9e+05 1.255e+04 3.8e+03 +
DTLZ5 8.300e+03 1.4e+03 5.150e+03 6.0e+02 7.500e+03 7.0e+02 4.650e+03 8.0e+02 5.800e+03 8.5e+02 8.450e+03 2.9e+03 +
DTLZ6 1.000e+06 9.7e+05 – 1.000e+06 9.7e+05 – – 4.100e+03 1.5e+03 +
DTLZ7 1.360e+04 9.0e+02 1.060e+04 9.0e+02 1.585e+04 1.1e+03 1.060e+04 1.7e+03 1.110e+04 1.6e+05 6.150e+03 2.6e+03 +
WFG1 4.315e+04 5.4e+04 3.715e+04 1.5e+04 1.096e+05 7.7e+05 – 4.160e+04 1.7e+04 – +
WFG2 1.700e+03 4.0e+02 1.400e+03 5.0e+02 2.000e+03 7.0e+02 1.850e+03 2.4e+03 1.400e+03 8.0e+02 1.800e+03 4.0e+02 +
WFG3 – – – – – – -
WFG4 2.050e+04 8.8e+03 8.200e+03 2.9e+03 1.280e+04 4.6e+03 6.750e+03 2.4e+03 1.050e+04 3.1e+03 2.233e+05 1.3e+05 +
WFG5 – – – – – – -
WFG6 – 1.000e+06 9.8e+05 1.000e+06 4.8e+04 – 1.000e+06 5.5e+05 7.300e+03 1.2e+03 +
WFG7 1.686e+05 2.5e+05 1.035e+04 2.6e+03 1.775e+04 5.4e+03 9.600e+03 3.4e+03 1.215e+04 3.4e+03 1.495e+04 2.6e+03 +
WFG8 – – – – – – +
WFG9 – 1.000e+06 9.4e+05 – – – 8.935e+04 4.9e+04 +

in which a “–” is reported when the algorithms have computed 1,000,000 function
evaluations without producing a solution set with the desired HV value.

The results show that NSGA-IIss requires a fewer number of evaluations than
NSGA-IIgen in all the problems but DTLZ6, which means that the steady-approach
makes NSGA-II converge faster. If we consider all the problems, we see that NSGA-
IIss is the fastest only in two out of the 21 problems, but it is the second fastest in 10
problems. This can be clearly observed in the ranking per problem in Fig. 11, which

ZDT DTLZ WFG

Number of Evaluations

NSGA-IIgen             NSGA-IIss

Fig. 11 Positions of NSGA-IIgen (left columns) and NSGA-IIss (right columns) in the rank-
ing of the convergence speed
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Fig. 12 Evolution of the HV value during the different generations carried out in the problem
ZDT1 (top) and DTLZ7 (bottom)

allows us to conclude that the steady-state approach makes NSGA-II improve from
being the second slowest algorithm in the comparison (fifth position in most of the
problems) to be second one in terms of convergence speed.

We include in Fig. 12 a trace of the evolution of the value of the HV when solving
problems ZDT1 and DTLZ7 in a single run. The values have been recorded at each
100 function evaluations. Focusing on ZDT1, Fig. 12 - top shows that NSGA-IIss is
the second algorithm in achieving the desired HV value after OMOPSO, the fastest
metaheuristic on this problem. The trace of the DTLZ7 problem (Fig. 12 - bottom)
reveals that NSGA-IIss has been the fourth fastest algorithm in the monitored exe-
cution. In both cases, we can observe that the NSGA-IIss converges faster than the
original algorithm.

8 Conclusions and Future Work

In this chapter we have studied the effect of applying a steady-state selection scheme
to NSGA-II, the reference algorithm in multi-objective optimization. Both the
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original and the steady-state versions have been evaluated using a benchmark com-
posed of 21 bi-objective problems for comparing the performance of the algo-
rithms in terms of the quality of the obtained solutions sets and their converging
speed towards the optimal Pareto front. We have compared the two versions with
a set of four state-of-the-art multi-objective optimizers (SPEA2, AbYSS, MOCell,
and OMOPSO) to have an insight on the search improvements of the steady-state
scheme in NSGA-II.

The obtained results have shown that, in the context of the problems, with the
quality indicators and the parameter settings considered, the use of a steady-state
scheme has improved the results obtained by the generational NSGA-II in most of
the problems. Furthermore, it has also shown to be very competitive taking account
of the quality of the obtained approximation sets and the convergence speed of the
other state-of-the-art algorithms.

Some future research topics along this line are related to the study and application
of steady-state scheme to other multi-objective algorithms and to solve benchmarks
composed of rotated problems and with more than two objectives.
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Improving the Performance of Multiobjective 
Evolutionary Optimization Algorithms Using 
Coevolutionary Learning 

Tse Guan Tan1and Jason Teo2 

Abstract. This chapter introduces two algorithms for multiobjective optimization. 
These algorithms are based on a state-of-the-art Multiobjective Evolutionary Al-
gorithm (MOEA) called Strength Pareto Evolutionary Algorithm 2 (SPEA2). The 
first proposed algorithm implements a competitive coevolution technique within 
SPEA2. In contrast, the second algorithm introduces a cooperative coevolution 
technique to SPEA2. Both novel coevolutionary approaches are then compared to 
the original SPEA2 in seven scalable DTLZ test problems with 3 to 5 objectives. 
Overall, the optimization results show that the two proposed approaches are supe-
rior to the original SPEA2 with regard to the average distance of the nondomi-
nated solutions to the true Pareto front, the diversity of the obtained solutions and 
also the coverage level. In addition, t-tests have been conducted to validate the 
significance of the improvements obtained by the augmented algorithms over the 
original SPEA2. Finally, cooperative coevolution is found to be better than com-
petitive coevolution in terms of enhancing the performance of the original SPEA2. 

1   Introduction 

According to McFadden and Keeton [15], coevolution is defined as “a process in 
which two or more different organisms are evolving together, each in response to 
the other. There is a reciprocal interaction between the two groups where each  
organism adapts to the selection pressures imposed by the other”. Generally, the 
coevolution model can be either Competitive Coevolution (CE) or Cooperative 
Coevolution (CC). The competitive coevolution involves individuals that compete 
against each other for dominance in the population. CE can be classified into three 
categories [25]: those utilizing only two individuals in the tournament, a predator 
and a prey; those with a single population tournament, where competition is  
simply between individuals in a population; and those utilizing more than one 
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population for the tournament, where the competition involves a number of popu-
lations. On the other hand, the CC concept [17, 18] involves a number of indi-
viduals from different subpopulations working together to solve the problem. The 
coevolution concept has several advantages [23, 26]. One of the benefits is that 
coevolution does not necessarily need to specify a global fitness function whereby 
individuals in the population are ranked; rather, only relative fitness is needed. In 
addition, it is extremely useful when the objective evaluation function is hard to 
identify or cannot be determined. This concept can be used to decompose the op-
timization problem into n subtasks. Also, it has the potential for open-endedness in 
terms of the artificial evolution process.  

Evolutionary Algorithms (EAs) are one of the most suitable techniques in han-
dling multiobjective optimization problems because of their population-based ap-
proach that is able to find a set of trade-off solutions in one single simulation run 
instead of having to perform a series of separate runs as in the case of traditional 
optimization techniques. The number of objectives is one of the significant ele-
ments that affect the performance of multiobjective optimization algorithms [4]. 
For instance, the bi-dimensional solution space is plain, but the tri-dimension solu-
tion space comprises of a three-dimensional surface and so on, hence greatly in-
creasing the difficulty of finding a globally optimal solution. Additionally, EAs 
can be used successfully in complex problems, involving features such as discon-
tinuities, multimodality, disjoint feasible spaces and noisy function evaluations 
[7]. Recently, many Multiobjective Evolutionary Algorithms (MOEAs) have been 
shown to be very useful techniques in solving real-life multiobjective problems 
[1]. However, the use of coevolution methods in MOEAs remains largely unex-
plored. In this study, the coevolution model will be embedded into the SPEA2 in 
our attempt to enhance SPEA2’s optimization performance. Hence, the first pro-
posed algorithm is the integration between SPEA2 and CE using the K-Random 
Opponents (KR) competitive fitness strategy. The resulting algorithm is referred 
to as SPEA2-CE-KR whereas the second hybrid algorithm is the combination be-
tween SPEA2 and the CC mechanism. The proposed algorithms will be compared 
to the original SPEA2 using seven standard benchmark test problems, namely 
DTLZ1 to DTLZ7, with the dimensionality of each function ranging from 3 to 5 
objectives. The experimental results are evaluated using the generational distance, 
spacing, and coverage metrics. For the generational distance and spacing, their sta-
tistical significance is analyzed using t-tests.  

The organization of the rest of the chapter is as follows. Section 2 focuses on 
the related works. Section 3 summarizes the basic principle of multiobjective op-
timization. In Section 4, the structure of SPEA2 is reviewed. The proposed algo-
rithms, SPEA2-CE-KR and SPEA2-CC, are introduced in Section 5. Section 6 
presents the characteristics of each test problem and the performance metrics. The 
experimental settings for the algorithms are described in Section 7. The results are 
analyzed and discussed in Section 8 and Section 9 respectively. Finally, the con-
clusions and future work are given in Section 10. 

2   Related Works 

There have been only a very limited number of studies that incorporate competitive 
coevolution into MOEAs. Lohn et al. [12] presented a competitive coevolution  
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genetic algorithm to solve bi-objective problems. In Lohn’s approach, the tourna-
ment is held between two populations, which are the trial population that consists 
of candidate solutions, and the target population that encompasses Target Objective 
Vectors (TOVs). These vectors include a set of targets for the trial population to 
optimize. In general, the results show that the presented algorithm performed well 
compared to Random Search (RAND), Fonseca and Fleming’s multiobjective GA 
(FFGA), Niched Pareto GA (NPGA), Hajela and Lin’s weighted sum approach 
(HLGA), Vector Evaluated GA (VEGA), Nondominated Sorting GA (NSGA), a 
Single-Objective EA using weighted-sum aggregation (SOEA) and Strength Pareto 
Evolutionary Algorithm (SPEA) at finding optimal solutions on several fitness 
landscapes. 

However, a number of CC algorithms for multiobjective optimization have 
been proposed recently. Keerativuttitumrong et al. [10] proposed the Multiobjec-
tive Cooperative Coevolutionary Genetic Algorithm (MOCCGA), which inte-
grates the CC concept with Multiobjective Genetic Algorithm (MOGA). Each 
species represents a single decision variable. In order to evaluate individuals in 
any species, collaborators will be selected from the other species to form a com-
plete solution. Then this complete solution is mapped into the objective vector 
based on the objective function. The evolution of these populations is controlled 
through MOGA. According to the results, cooperative coevolution improved the 
MOGA search performance. MOCCGA was found to be superior to MOGA in 
terms of Pareto front coverage and the closeness of the obtained optimal solutions 
to the true Pareto front.  

Maneeratana et al. [13] presented the integration of the cooperation coevolu-
tionary effect using four different evolutionary multiobjective optimization algo-
rithms. The CC methodology employed was similar to Keerativuttitumrong et al. 
[10]. The evolution of these populations is controlled through the MOGA, NPGA, 
NSGA and Controlled Elitist Nondominated Sorting Genetic Algorithm 
(CNSGA). The algorithm uses a preservation set to store all unrepeated nondomi-
nated solutions and the crowding distance selection method was utilized to nor-
malize the size of the preserved set. The elitist strategy was employed to avoid 
losing good solutions during the optimization process due to random effects. In 
general, the integrated algorithms performed well in terms of the solution set cov-
erage, the average distance to the true Pareto front, the distribution of nondomi-
nated solutions and the extent of the front described by nondominated solutions, 
compared to original MOEAs. 

Coello Coello and Reyes Sierra [3] introduced a multiobjective evolutionary 
algorithm that integrates with the cooperative coevolutionary concept, named CO-
MOEA. This algorithm separates the search space into several regions and later 
focuses on the promising regions. The promising regions are measured by an 
analysis of the current Pareto front. The evolutionary process of this algorithm 
consists of four distinct stages. The number of generations will determine the 
changing of stages. Overall, the presented algorithm obtained a good Pareto front 
regarding the average distance to the true Pareto front and the distribution of the 
optimal solutions. However in the graphical results, CO-MOEA, NSGA-II and 
microGA have similar performances in terms of error ratio and coverage metrics. 

Tan et al. [21] also proposed an algorithm focusing on the CC approach for 
multiobjective optimization, called CCEA. This algorithm adopted the general 
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framework of the CC effect and implemented a rank assignment strategy. The ar-
chive’s functions were to store the nondominated solutions and to help evaluate 
individuals in the subpopulation based on the Pareto-based rank assignment 
scheme.  The diversity of solutions in the archive was maintained using the 
niching mechanism. The extending operator was used to maintain the even distri-
bution of the archive and to encourage widespread exploration. Overall, CCEA 
performed well regarding closeness to the true Pareto front and distribution of the 
nondominated solutions along the true Pareto front.  

Iorio and Li [9] describe a CC algorithm which incorporates a novel collabora-
tion formation mechanism. The individuals of each species are rewarded if they 
are involved in successful collaborations. A nondominated sorting process is used 
to measure the success of the collaboration. The results of Iorio and Li show that 
their proposed algorithm performed well compared to NSGA-II. 

3   Multiobjective Optimization Problems 

The optimization problem consists of three main elements, which are objective 
function(s), decision variables and constraints. Minimizing or maximizing the  
objective function is the aim of the problem. On the other hand, the decision vari-
ables affect the performance of the objective function(s), while the constraint is 
the limitation on the values of the decision variables. Usually, optimization  
problems can be classified into single objective optimization and multiobjective 
optimization. The single objective optimization is the optimization problem which 
involves only one objective function to find an optimal solution. However, a mul-
tiobjective or vector optimization problem has a number of conflicting objective 
functions subject to certain constraints which are to be minimized or maximized.  

The common explanation of multiobjective optimization problems (MOPs) [1] 
can be formally defined as:  

minimize (or maximize) )],,(,),,,([)( 111 nmn vvfvvff ………== vz    (1) 

subject to  

constraints p are ≥   restriction ),,2,1(0)( piai …=≥v
          

(2) 
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(3) 
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)(via , )(vib and )(vic  in the formula are the constraint functions. Vector v , 

),,,( 21 nvvv …  in the decision space V is called the decision vector and n is the 

number of decision variables. Additionally, the vector z, ),,,( 21 mzzz …  in the 
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objective space Z is called the objective vector and m is the number of the objec-
tive functions. The entire decision vector under consideration must satisfy a given 
set of constraints to produce optimum solution values via the objective functions. 

The concept of Pareto dominance [11] is defined as follows. An objective vec-

tor 1z  is said to dominate another objective vector 2z  or 1z  is said to be non-

dominated by 2z , )( 21 zz  if 1z  is not worse than 2z  with respect to every 

objective and 1z  is strictly better than 2z  with respect to at least one objective. 
An optimal decision vector to a multiobjective problem is denoted as Pareto opti-
mal if it is nondominated concerning the entire decision space, and at the same 
time its image in the objective space is denoted as a Pareto optimal objective vec-
tor. The set of all Pareto optimal objective vectors is called the Pareto front and 
the set of all the Pareto optimal decision vectors is called the Pareto optimal set. 

4   Multiobjective Evolutionary Algorithm: SPEA2 

SPEA2, the enhanced version of the original SPEA, is a relatively new approach 
for finding or approximating the Pareto set in multiobjective optimization prob-
lems. SPEA2 was proposed by Zitzler et al. [29] as shown in Algorithm 1.  

Algorithm 1. SPEA2 Algorithm 

Input:  M (offspring population size) 
  N (archive size) 
  T (maximum number of generations) 

Output:  A* (nondominated set) 

Step1: Initialization: Generate an initial population P0 and create the empty ar-
chive (external set) A0 =φ . Set t = 0. 

Step2: Fitness_assignment: Calculate fitness values of individuals in Pt and At. 

Step3: Environmental_selection: Copy all nondominated individuals in Pt and At

to At+1. If size of At+1 exceeds N then reduce At+1 by means of the truncation opera-
tor, otherwise if size of At+1 is less than N, fill At+1 with dominated individuals in 
Pt and At. 

Step4: Termination: If t ≥  T or another stopping criterion is satisfied then set A*

to the set of decision vectors represented by the nondominated individuals in At+1. 
Stop. 

Step5: Mating_selection: Perform binary tournament selection with replacement 
on At+1 in order to fill the mating pool. 

Step6: Variation: Apply recombination and mutation operators to the mating pool
and set Pt+1 to the resulting population. Increment generation counter (t = t + 1) 
and go to Step 2. 
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This algorithm is an elitist multiobjective evolutionary algorithm which incor-
porates a fine-grained fitness assignment strategy, a density estimation technique 
and an improved archive truncation method. Two of the main methods to assign 
the fitness values in SPEA2 are to use the dominance rank and dominance count, 
which takes into consideration, for every individual, the number of individuals it 
dominates and the number of individuals that dominate it. Additionally, SPEA2 
uses the k-th nearest neighbor technique, which is a density estimation method, to 
maintain diversity within the obtained Pareto front, which guides the search to-
wards the Pareto set more effectively. Moreover, if the nondominated individuals 
exceed the archive size, the truncation method is utilized to maintain a constant 
number of elitists in the archive, which iteratively removes individuals from the 
archive until the desired archive size is achieved (i.e. the number of nondominated 
individuals in the archive is equal to archive size). 

5   Proposed Algorithms 

The research question that motivates the work conducted in this chapter is: 

Can coevolutionary methods be used to augment and improve the performance of 
SPEA2 for multiobjective optimization? 

In this research, SPEA2-CE-KR and SPEA2-CC are proposed as different models 
of SPEA2 by adding two techniques respectively: 

i. Competitive coevolution techniques 
ii. Cooperative coevolution techniques 

Specifically, these augmentations are achieved through the following operations: 

i. Opponents Selection: Selects the individuals as opponents from the popula-
tion. 

ii. Reward Assignment: Computes the reward value for each individual against a 
set of opponents in each competition. 

iii. Chromosome Selection: Decomposes the population into various subpopula-
tions, and forms the complete solution from alternative subpopulations. 

In the case of cooperative coevolution, the basic idea is that the population of 
SPEA2 can be dynamically decomposed according to the number of decision vari-
ables and solved in parallel. However in competitive coevolution, the opponents or 
competitors are selected based on K-Random opponents’ strategies from the popu-
lation of SPEA2. The fitness values of individuals depend on the competitions. 

5.1   SPEA2-CE-KR 

The augmented algorithm SPEA2-CE-KR is presented here, which is the integra-
tion of SPEA2 with CE. The CE method will be implemented using the KR strat-
egy. Generally, the framework of this algorithm is similar to the framework of 
SPEA2 with the exceptions of two additional methods, Opponents_selection and 
Reward_assignment as shown in Algorithm 2.  
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Algorithm 2. SPEA2-CE-KR Algorithm 

BEGIN SPEA2-CE-KR 

gen = 0 
Ps(gen) = randomly initialize population // initial population 
Fitness_assignment Ps(gen) // calculate the individual’s fitness value 
Opponents_selection Ps(gen) // choose the opponents based on the KR 
Reward_assignment Ps(gen) // calculate the individual’s reward value 
Environmental_selection Ps(gen) /* copy nondominated individuals into new ar-

chive */ 

     WHILE Termination = False  

          gen = gen + 1 
          Mating_selection Ps(gen) // perform binary tournament selection 
          Variation Ps(gen) // apply crossover and mutation 
          Fitness_assignment Ps(gen) // calculate the individual’s fitness value 
          Opponents_selection Ps(gen) // choose the opponents based on the KR  
          Reward_assignment Ps(gen) // calculate the individual’s reward value 
          Environmental_selection Ps(gen) /* copy nondominated individuals into 

new archive */ 

     END 

END SPEA2-CE-KR 

At the initialization stage, SPEA2-CE-KR randomly generates an initial popu-
lation of individuals. The individuals represent the possible solutions to the prob-
lem. Then, the fitness values for each individual in the population are evaluated. 
Next, the Opponent_selection method selects individuals as the opponents based 
on the KR strategy. Panait and Luke [16] explained a K-Random Opponents strat-
egy as shown in Fig. 1, where each member competes against K other opponents. 
The opponents will be randomly selected from the same population without repeti-
tion and rejects self-play.  This strategy is the most commonly used, easiest to un-
derstand and straightforward to implement. In this investigation, the K is tested 
with the values of 10, 20, 30, 40, 50, 60, 70, 80 and 90. After that, each individual 
competes against the entire set of opponents. During the tournament, the reward 
value is calculated for each competition by the reward function. Each reward 
value is summed up as the fitness score for the individual using the Re-
ward_assignment method. In every generation, the number of competitions is set 
according to the K values. Subsequently, the archive update operation is executed. 
The archive is updated by copying nondominated individuals into the archive and 
the archive truncation method is used to maintain boundary solutions. Any domi-
nated solutions are removed from the archive during the update operation. Indi-
viduals are then selected, based on their fitness, to form offspring by performing 
the genetic operations of simulated binary crossover and polynomial mutation.  
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Fig. 1 K-random opponents 
 opponent 1

opponent 2

opponent 3

i.e. K=3

1

 

Each loop iteration is referred to as a generation. The run of SPEA2-CE-KR ter-
minates when the termination criterion is satisfied. The predefined maximum 
number of generations serves as the termination criterion of the loop. 

The description of the reward function is as (5). I represents the participating 
individual, while O represents the opponent. R is the raw fitness value, max(R) is 
the maximum raw fitness value and the min(R) is the minimum raw fitness value. 
The range of values in this function is within [-1, 1]. If Reward(I, O) = 0, it corre-
sponds to the competition being a draw. 
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5.2   SPEA2-CC 

A combination of SPEA2 with cooperation coevolution is developed in an attempt to 
create an evolutionary algorithm which further improves the optimization perform-
ance of SPEA2. The general framework of SPEA2-CC is shown in Algorithm 3. 
SPEA2-CC is proposed as a different model to SPEA2 that includes chromosome  
selection, which is the operation to decompose the population into various subpopula-
tions based on the decision variables, and forming the complete solution from alterna-
tive subpopulations, whereas SPEA2 involves only a single population. 

With cooperative coevolution, the subpopulations are initialized randomly 
where each subpopulation represents a decision variable. After that, if the termi-
nating criterion is not met, the CC architecture allows cooperating subpopulations 
to evolve in parallel and then combine together to produce a complete solution. 
Each subpopulation is genetically isolated from the others and evolves on its own, 
similar to the original SPEA2. For evaluation, each subpopulation is considered in 
turn. Each individual in the population is combined with a representative of the 
other species so that the combination forms one complete solution. If an obtained 
solution is neither dominated by any solutions in the archive nor is a duplicate of a 
solution, this solution is added to the archive and the dominated solution in the  
archive is discarded. The truncation method is utilized to maintain a constant num-
ber of elitists in the archive. The SPEA2-CC is implemented with binary tourna-
ment selection, simulated binary crossover and polynomial mutation to produce a 
set of new individuals. 

Generally, a cooperative coevolution model has two methods for selecting col-
laborators for the purpose of fitness evaluation, known as CC-1 and CC-2 [27]: 
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Algorithm 3. SPEA2-CC Algorithm 

BEGIN SPEA2-CC 
gen = 0 

/* initial fitness of each subpopulation’s (species) individual by combining it with
a random individual from other species */ 

     FOR each species s  
          Ps(gen) = randomly initialized population 
          Fitness_assignment Ps(gen)  // calculate the individual’s fitness value 
          Environmental_selection Ps(gen) /*copy nondominated individuals into new 

archive */ 
     END 

 

/* compute the fitness of each subpopulation’s (species) individual by combining
it with a selected individual from other species */ 

     WHILE Termination = False 
      gen = gen + 1 

          FOR each species s  
               Mating selection Ps(gen) // perform binary tournament selection 
               Variation Ps(gen) // apply crossover and mutation 
               Fitness_assignment Ps(gen) // calculate the individual’s fitness value 
               Environmental_selection Ps(gen) /* copy nondominated individuals into 

new archive */ 
          END 

     END 

END SPEA2-CC 

i. CC-1: Choose the best individuals from alternative subpopulations, as defined 
by the fitness obtained from the last evaluation process of that group. 

ii. CC-2: Select two individuals, the best and a random individual. Evaluate both 
with the current individual and use the higher objective function value for the 
current individual’s fitness score. 

In this proposed algorithm, the first method is used, that is to select the current 
best individuals from alternative subpopulations for generating a complete chro-
mosome for fitness evaluation. 

6   Test Problems and Performance Measures 

The algorithms will be benchmarked using seven test problems, DTLZ1 to DTLZ7 
for the following reasons [5]:  

i. It is one of the latest sets of test problems for multiobjective benchmarking but 
more importantly, these problems can be tested with varying numbers of deci-
sion variables and objectives. It is the most-widely used benchmark for MOEAs. 
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ii. The structure of the test problems is easy to employ and is formed by using a 
bottom-up technique. 

iii. The test problems have exact known shapes as well as the location of the result-
ing true Pareto front. The corresponding optimal decision variable values are 
also known. 

The views of the true Pareto front are illustrated in Fig. 2. Moreover, Table 1 
summarizes the geometrical properties of the test problems. 

Table 1 The geometries of DTLZ 

Test Problem Geometry 

DTLZ1 Linear 

DTLZ2 Concave 

DTLZ3 Concave 

DTLZ4 Concave 

DTLZ5 Curve 

DTLZ6 Curve 

DTLZ7 Disconnected 
 
 

 
a. True Pareto front of DTLZ1 

 
b. True Pareto fronts of DTLZ2 to 
DTLZ4 

 

 
c. True Pareto fronts of DTLZ5 and 

DTLZ6 

 
d. True Pareto front of DTLZ7 

Fig. 2 True Pareto fronts of DTLZ test problems 
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Three performance metrics were used to validate the proposed algorithms, 
namely generational distance, spacing and coverage metrics. The metrics were 
chosen because they are the most commonly used evaluation criteria for compari-
son among MOEAs [2, 14, 19]. 

Generational Distance (GD): The generational distance metric for evaluating the 
convergence to the obtained Pareto front was proposed by Van Veldhuizen and 
Lamont [24]. It is used for estimating how far the elements in the obtained Pareto 
front are from the true Pareto front of the problem. This metric is defined as: 

n

n

i id

GD

∑
== 1

2

                                                          (6) 

where n is the number of nondominated vectors found by the algorithm being ana-

lyzed and id  is the Euclidean distance (measured in objective space) between 

each of these vectors and the nearest member of the true Pareto front. A value of 
GD = 0 indicates that all the elements generated are in the true Pareto front of the 
problem. Therefore, any other value will indicate how “far” the obtained solutions 
are from the true Pareto front of the problem. 

Spacing (SP): The spacing metric for evaluating the diversity of the optimal solu-
tions was introduced by Schott [20]. It measures how evenly the points in the ap-
proximation set are distributed in the objective space. This metric is defined as: 

∑
=

−
−

=
n

i idd
n

SP
1

2)(
1

1
                                         (7) 

where nji
m

k

j
mf

i
mfjid ,,1,),

1
(min …=∑

=
−= . f is the objective function 

and m is the number of objectives, d  is the mean of all id , and n refers to the 

number of elements of Pareto optimal set found so far. If SP = 0 it means that all 
the nondominated solutions found are equidistantly spaced. 

Coverage (C): This metric was proposed by Zitzler et al. [28]. By using this met-
ric, two sets of nondominated solutions can be compared to each other. Consider 
X ′ , X ′′  as two sets of phenotype decision vectors. C is defined as the mapping of 

the ordered pair ( X ′ , X ′′ ) to the interval [0, 1]: 
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aa ′′′  if a′  dominates a ′′  or a′ equal to a ′′ . The value C( X ′ , X ′′ ) = 1 means 

that all the decision vectors in X ′′  are dominated by X ′ . The value C( X ′ , X ′′ ) = 
0 represents the situation when none of the points in X ′′  are dominated by X ′ . In 
addition, if C( X ′ , X ′′ ) > C( X ′′ , X ′ ), then X ′  is better than X ′′ . Fig. 3 shows  
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C( X ′ , X ′′ ) = 0 

 
C( X ′ , X ′′ ) = 1 

Fig. 3 C( X ′ , X ′′ ) = 0 and C( X ′ , X ′′ ) = 1 

the graphical presentations for coverage metric. The scale is 0 (no coverage) at the 
bottom and 1 (total coverage) at the top per rectangle. Thus, a value of 0 means 
X ′  is totally dominated by X ′′ and vice-versa for a value of 1. 

7   Parameters Used in the Experiments 

In order to have a fair comparison of all algorithms, all runs considered are im-
plemented with the same real-valued representation, simulated binary crossover  
 

Table 2 Evolutionary settings 

Representation 

Crossover 

Mutation 

Selection 

  : Real-valued vector 

  : Simulated binary crossover 

  : Polynomial mutation 

  : Binary tournament selection 

Table 3 Parameter settings 

Parameter 
SPEA2, 

SPEA2-CE-KR 
SPEA2-CC 

Population size 100 100 

Archive size 100 100 

Number of decision variables per generation 12 12 

Number of objectives 3 to 5 3 to 5 

Number of generations 600 50 

Mutation probability 0.08 0.08 

Crossover probability 1 1 

Polynomial mutation operator 20 20 

SBX crossover operator 15 15 

Number of repeated runs 30 30 

Population size per species 100 100 

Total population size per generation 100 1200 

Number of species per generation 1 12 



Improving the Performance of Multiobjective Evolutionary Optimization Algorithms 469
 

(SBX), polynomial mutation and tournament selection. The details of the evolu-
tionary mechanisms are as shown in Table 2 and Table 3, which lists all the pa-
rameter settings for each evolutionary multiobjective optimization algorithm. 

Each of the DTLZ parameters is represented as a vector of a real number. The 
population size and the archive size are both set to 100. Parents are selected 
through binary tournament selection. Offspring are created with the simulated bi-
nary crossover operator and the polynomial mutation operator. The distribution 
parameters associated with the simulated binary crossover and the polynomial mu-

tation operators are cη  = 15 and mη  = 20. The crossover probability is 1.0 and 

the mutation probability is n1 , where n is the total number of decision variables, 

giving 1/12 = 0.08. 
In the CC approach, the number of species (subpopulations) per generation is 

identical to the number of decision variables per generation [9, 10, 13]. In this 
study, both parameters are fixed to 12. The total population size per generation is 
determined by using (population size * number of species per generation), thus in 
the SPEA2-CC, this parameter is equal to 1200. On the other hand, the SPEA2-
CE-KR and the original SPEA2 utilize only a single population for each genera-
tion, so the total population size per generation is equal to 100. 

Furthermore, the total number of evaluations in each run is set to 60,000 and 
the number of generations is determined by following equation: 

sp

e
gen

*
=                                                   (9) 

where p is the population size, s is the number of species per generation and e is 
the number of evaluations. In the experiments, each evolutionary setup was re-
peated 30 times for each test problem. 

8   Optimization Results 

The results of applying SPEA2-CC and SPEA2-CE-KR to solve DTLZ1 through 
DTLZ7 are presented and compared to the original SPEA2. The appendix pro-
vides a detailed presentation of the experimental results. In the figures and tables, 
some symbols are utilized to represent the name of the algorithms. The symbol S2 
corresponds to SPEA2 and the symbol CK represents SPEA2-CE-KR and the 
number refers to the K values. For example, CK10 corresponds to the SPEA2-CE-
KR with 10 random opponents. The symbol CO indicates SPEA2-CC. The overall 
best result for each test problem for the different numbers of objectives is embold-
ened in the respective tables. Additionally, in the comparison of two means 
(SPEA2 against the proposed algorithm), t-tests were conducted at 99% confi-
dence interval for the generational distance and spacing metrics. A (+) sign after 
the mean values indicates that a significantly better result was obtained compared 
to SPEA2, while a (-) sign indicates a significantly worse result was obtained. 
From the experimental results, the following can be observed. 
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Generational distance (GD): Fig. 4 to Fig. 6 depict the generational distance re-
sults over 3 to 5 objectives in box plot format. The leftmost box plot relates to 
SPEA2, second leftmost box plot relates to SPEA2-CC, while boxes from the third 
leftmost onwards relate to SPEA2-CE-KR with a set of K values (10, 20, 30, 40, 
50, 60, 70, 80 and 90). 

SPEA2-CC is observed to be better than SPEA2 and SPEA2-CE-KR in most of 
the DTLZ test problems. However, this proposed algorithm was unable to locate 
the true Pareto optimal solutions of the test problem DTLZ4 with 3 objectives, 
which is a problem with a concave Pareto front. However, the performance of 
SPEA2-CC increased when the number of objectives increased. It is interesting to 
note that in all seven problems of this study, SPEA2-CC outperformed SPEA2 for 
four and five objectives. However, the performance of SPEA2-CC against 
SPEA2-CE-KR is comparable in 4-objective problems. By contrast, SPEA2-CC 
has good performance in 5-objective problems compared to SPEA2-CE-KR re-
garding the average distance from the nondominated solutions to the true Pareto 
front. These presented results are significant in five out of seven test problems, 
which are DTLZ1, DTLZ2, DTLZ3, DTLZ5 and DTLZ6. 

Additionally, the current study found that SPEA2-CE-KR is better than SPEA2 
in almost all of the DTLZ problems except DTLZ5 with 3 objectives. However for 
4 and 5 objectives, the results reveal that SPEA2-CE-KR strongly outperformed 
SPEA2 for the entire set of test problems. Also for several of the test problems, 
the box plots are close to the bottom of the rectangle, which means that SPEA2-
CE-KR was successful as it was able to converge toward the true Pareto front. 

Spacing (SP): Fig. 4 to Fig. 6 display the box plots of spacing metric, in which 
the box plot on the left is the SPEA2 algorithm, second left box plot is the SPEA2-
CC while boxes from the third left to the last of the box plots are SPEA2-CE-KR 
algorithm with different K values. 

In the current study, comparing SPEA2-CC with SPEA2 and SPEA2-CE-KR 
shows that SPEA2-CC performed well in most of the problems with 3 objectives 
except DTLZ2 and DTLZ4, which are problems with concave Pareto fronts. An-
other finding was that SPEA2-CC has the best performance for all the considered 
test problems with 4 objectives. Similarly, SPEA2-CC had good optimization re-
sults in five out of seven problems compared to SPEA2-CE-KR, which are 
DTLZ1, DTLZ2, DTLZ3, DTLZ5 and DTLZ7. Only in DTLZ7 with 5 objectives, 
SPEA2 had better diversity than SPEA-CC. Meanwhile, SPEA2-CE-KR produced 
better spacing results in DTLZ4 and DTLZ7 compared to SPEA2-CC. 

Furthermore, the results of this study show that in test problems with 3 objectives, 
the performances of SPEA2-CE-KR and SPEA2 are similar. Once the number of 
objectives was increased to four and five, the performance of SPEA2-CE-KR was 
noticeably better than SPEA2 in distributing nondominated solutions evenly along 
the Pareto front. 
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Fig. 4 Box plots of SPEA2, SPEA2-CC and SPEA2-CE-KR for generational distance (GD) 
and spacing (SP) with 3 objectives 
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Fig. 5 Box plots of SPEA2, SPEA2-CC and SPEA2-CE-KR for generational distance (GD) 
and spacing (SP) with 4 objectives 
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Fig. 6 Box plots of SPEA2, SPEA2-CC and SPEA2-CE-KR for generational distance (GD) 
and spacing (SP) with 5 objectives 
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Fig. 7 Box plots of SPEA2, SPEA2-CC and SPEA2-CE-KR with 90 selected opponents for 
coverage with 3 to 5 objectives 
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Coverage (C): The box plots of C values from all seven problems are shown in 
Fig. 7. In each rectangle, from the leftmost box to the rightmost box represent the 
test problems from DTLZ1 to DTLZ7. The box plots of SPEA2-CE-KR with 90 
opponents has been selected to be presented in Fig. 7, because the results show 
that this proposed algorithm with 90 opponents has a better coverage level com-
pared to other K values. 

SPEA2-CC is superior to SPEA2 in all the DTLZ test problems with three to 
five objectives. As can be noticed from the figure, all the box plots are approxi-
mately close to or at the bottom of the rectangle for C(SPEA2, SPEA2-CC). On 
the other hand, in all DTLZ problems with 3 objectives, the box plots obtained 
clearly indicate that SPEA2-CC outperformed SPEA2-CE-KR and also almost all 
the box plots have a C metric value of 0. In the 4-objective problems, SPEA2-CC 
has excellent coverage because most of the box plots are very close to or at the 
base of the plot. In the 5-objective DTLZ4 and DTLZ7 problems, SPEA2-CE-KR 
weakly dominated the nondominated solutions obtained by SPEA2-CC. However, 
SPEA2-CC provided nondominated solutions with very good coverage for 
DTLZ1, DTLZ2, DTLZ3, DTLZ5 and DTLZ6 problems.  

Furthermore, SPEA2-CE-KR shows regular coverage of nondominated solu-
tions for DTLZ test problems with 3 objectives compared to SPEA2. But for 4 and 
5 objectives, the obtained nondominated solutions found by SPEA2-CE-KR clear-
ly dominated the obtained nondominated solutions found by SPEA2 in almost all 
of the DTLZ test problems. The SPEA2-CE-KR’s weakest results against SPEA2 
are in DTLZ5. As can be seen from the box plots of the 4- and 5-objective prob-
lems, some box plots in the column C(SPEA2, SPEA2-CE-KR) are at the bottom 
of the rectangle, which indicates that the proposed algorithm is completely free 
from the domination of SPEA2. 

t-tests: Tables 4 through 17 include the t-test results for generational distance and 
spacing respectively. For generational distance with 3 to 5 problems, it is clear 
from these results that SPEA2-CC and SPEA2-CE-KR are significantly better than 
SPEA2 in almost all of the test problems. On the other hand, for the spacing with 
3-objective test problems, SPEA2-CE-KR is significantly worse in DTLZ2, 
DTLZ4, DTLZ5 and DTLZ7, whilst SPEA2-CC is significantly worse only in 
DTLZ4. However, when the number of objectives is increased to 4 and 5, SPEA2-
CC and SPEA2-CE-KR are again significantly better.  

9   Discussion 

In this chapter, the performances of the proposed algorithms are evaluated by com-
paring them against SPEA2 since SPEA2 is currently one of the best performing 
MOEAs. SPEA2 has already been clearly shown to outperform other MOEAs such 
as NSGA-II and PESA [29]. To date, a very large majority of new studies still util-
ize SPEA2 as a common benchmark for comparing their proposed algorithms, 
some of which are still unable to outperform SPEA2 comprehensively [8, 14]. 
Hence, the proposed algorithms which show improvements over the original 
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SPEA2 will similarly compare favorably to other algorithms that have been outper-
formed by SPEA2. 

From the experimental analysis, the KR competitive coevolution helps to en-
hance the SPEA2 optimization performance in terms of convergence, diversity 
and coverage level. These results may be explained by the fact that SPEA2-CE-
KR is proposed as a different model to SPEA2 in terms of fitness evaluation of the 
individuals. In the SPEA2, individuals are evaluated simply by using a fitness 
function to gain the raw fitness values. However in SPEA2-CE-KR, although in-
dividuals are also evaluated by using a fitness function, this is only the first part of 
the evaluation process. The actual fitness values of each individual are based on 
the reward function determined by comparing the raw fitness of each individual 
with that of a set of opponents from the archive.  

On the other hand, the new mechanism added to SPEA2 in the form of SPEA2-
CC is the utilization of multiple populations that work independently of each other 
during the optimization process. This essentially resulted in the niching of optimi-
zation effectiveness for the individual populations to a certain area of the search 
space of the problem. In other words, each population has specialized itself to op-
timize only certain variables of the optimization problems. Hence, this is the main 
reason why SPEA2-CC performed better than SPEA2 in that each individual pop-
ulation could concentrate its optimization effort on searching and finding the best 
values for a limited number of variables within its niched area of optimization. In 
contrast, SPEA2 is not able to separate its optimization efforts to focus only on 
certain parts of the search space since it has neither the means nor the capacity of 
achieving this through its heterogeneous composition of individuals within a sin-
gle combined population, which are unable to isolate themselves from other com-
peting individuals in the single population. Consequently, the optimization effort 
of SPEA2 is diluted over the entire search space while in contrast, SPEA2-CC is 
focused only a small, niched area of the search space. 

10   Conclusions and Future Work 

Two new coevolutionary SPEA2 algorithms for multiobjective optimization called 
SPEA2-CE-KR and SPEA2-CC were proposed. The performances of these aug-
mented algorithms were compared to the original SPEA2. The main findings as a 
result of the work conducted in this study are summarized below: 

i SPEA2-CC was the most successful performer compared to SPEA2-CE-KR 
and SPEA2. It can achieve very good convergence and diversity values as 
well as the solution set coverage. 

ii SPEA2-CE-KR was also successful and outperformed SPEA2 in terms of the 
average distance from the obtained optimal solutions to the true Pareto front, 
the distribution of the obtained solution set and the solution set coverage. 

iii As the number of dimensions to be optimized increased, the performance of 
the proposed coevolution-augmented algorithms also increased in the large 
majority of cases, compared to the original SPEA2. 
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Based on the experimental results, both the competitive and cooperative coevo-
lution can greatly assist in enhancing the optimization performance of SPEA2, es-
pecially using the cooperative coevolution method. Overall, the introduction of the 
coevolutionary learning effectively improved the performance of an evolutionary 
multiobjective optimizer in terms of the convergence to the true Pareto front, the 
diversity distribution of the obtained nondominated solutions, coverage level and 
for better scalability to higher dimensional problems. 

This research has generated many questions which require further investigation. 
It would be interesting to investigate whether a hybrid of competitive coevolution 
and cooperative coevolution would be able to further improve the performance of 
MOEAs, since cooperative coevolution can focus on the individual objectives us-
ing speciation and competitive coevolution can focus on the opposition-based 
learning [22] between individual solutions. It would also be highly informative to 
conduct further tests of scalability to higher dimensions for the proposed algo-
rithms since the current results already demonstrate that proposed algorithms per-
form better than the original algorithm as the number of objectives was increased 
from 3 to 5 dimensions. 

Also, it has been shown only very recently that algorithm Optimized Multi-
Objective Particle Swarm Optimization (OMOPSO) is able to outperform SPEA2 
[6]. As future work, it would be interesting to compare these proposed algorithms 
against OMOPSO. 

Acknowledgments.   The first author is supported by a National Science Fellowship (NSF) 
from the Ministry of Science, Technology and Innovation (MOSTI), Malaysia. 

Appendix 

Table 4 Summarization of mean and standard deviation of generational distance (GD) 
between SPEA2, SPEA2-CC and SPEA2-CE-KR for DTLZ1 test problem with 3 to 5  
objectives 

3 Objectives 4 Objectives 5 Objectives 
Algorithm 

Mean St Dev Mean St Dev Mean St Dev 

S2 9.692000 2.987000 33.740000 5.610000 46.520000 6.510000 

CO 0.016100+ 0.013250 0.033040+ 0.027840 0.032420+ 0.031640 

CK10 2.306000+ 0.782000 3.247000+ 1.034000 3.910000+ 1.711000 

CK20 1.619000+ 0.818000 1.817000+ 0.974000 3.194000+ 2.004000 

CK30 1.948000+ 1.529000 1.666000+ 0.947000 2.566000+ 1.446000 

CK40 1.619000+ 2.002000 1.439000+ 0.563000 2.190000+ 0.900000 

CK50 1.309000+ 1.124000 1.212600+ 0.533600 1.614000+ 0.842000 

CK60 1.114000+ 0.868000 1.301000+ 0.722000 1.575000+ 1.053000 

CK70 1.394000+ 1.642000 1.399000+ 0.854000 1.659000+ 1.305000 

CK80 1.046000+ 1.114000 1.113000+ 0.847000 1.402000+ 0.828000 

CK90 0.725600+ 0.428700 0.851700+ 0.533500 1.401000+ 1.000000 
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Table 5 Summarization of mean and standard deviation of generational distance (GD)  
between SPEA2, SPEA2-CC and SPEA2-CE-KR for DTLZ2 test problem with 3 to 5  
objectives 

3 Objectives 4 Objectives 5 Objectives 
Algorithm 

Mean St Dev Mean St Dev Mean St Dev 

S2 0.003689 0.001755 0.062900 0.012560 0.141180 0.009030 

CO 0.001734+ 0.002298 0.006845+ 0.002789 0.012570+ 0.002200 

CK10 0.002249+ 0.000264 0.006647+ 0.000544 0.015267+ 0.001333 

CK20 0.002051+ 0.000193 0.006527+ 0.000626 0.013589+ 0.001257 

CK30 0.002007+ 0.000212 0.006280+ 0.000628 0.013094+ 0.000968 

CK40 0.002036+ 0.000265 0.006388+ 0.000612 0.013241+ 0.001240 

CK50 0.001973+ 0.000219 0.006352+ 0.000515 0.012942+ 0.000957 

CK60 0.001942+ 0.000224 0.006105+ 0.000427 0.012947+ 0.000829 

CK70 0.001948+ 0.000218 0.006107+ 0.000381 0.013064+ 0.001247 

CK80 0.001964+ 0.000227 0.006164+ 0.000443 0.012837+ 0.000919 

CK90 0.001886+ 0.000256 0.006066+ 0.000429 0.012938+ 0.000924 

Table 6 Summarization of mean and standard deviation of generational distance (GD)  
between SPEA2, SPEA2-CC and SPEA2-CE-KR for DTLZ3 test problem with 3 to 5  
objectives 

3 Objectives 4 Objectives 5 Objectives 
Algorithm 

Mean St Dev Mean St Dev Mean St Dev 

S2 19.110000 5.381000 73.000000 7.870000 118.610000 5.700000 

CO 0.060900+ 0.060000 0.056520+ 0.049800 0.059380+ 0.049440 

CK10 6.941000+ 4.228000 7.842000+ 2.849000 13.03100+ 5.146000 

CK20 7.545000+ 4.646000 5.356000+ 2.584000 8.401000+ 4.094000 

CK30 5.625000+ 4.256000 4.178000+ 2.129000 5.783000+ 3.705000 

CK40 6.056000+ 4.071000 4.459000+ 2.777000 5.627000+ 3.746000 

CK50 7.120000+ 5.740000 3.533000+ 1.701000 5.793000+ 3.216000 

CK60 6.262000+ 4.028000 3.222000+ 1.696000 5.331000+ 2.950000 

CK70 6.673000+ 5.469000 2.374000+ 1.451000 4.089000+ 2.540000 

CK80 7.371000+ 4.611000 4.371000+ 3.957000 8.040000+ 6.340000 

CK90 7.569000+ 5.444000 3.154000+ 2.405000 4.422000+ 3.528000 
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Table 7 Summarization of mean and standard deviation of generational distance (GD)  
between SPEA2, SPEA2-CC and SPEA2-CE-KR for DTLZ4 test problem with 3 to 5  
objectives 

3 Objectives 4 Objectives 5 Objectives 
Algorithm 

Mean St Dev Mean St Dev Mean St Dev 

S2 0.003235 0.001623 0.047410 0.029130 0.125830 0.038940 

CO 0.003257 0.003263 0.014550+ 0.007080 0.026360+ 0.007950 

CK10 0.001949+ 0.000512 0.006746+ 0.001131 0.015870+ 0.003744 

CK20 0.001778+ 0.000435 0.006551+ 0.001080 0.016043+ 0.002673 

CK30 0.001937+ 0.000424 0.006018+ 0.001097 0.016413+ 0.004181 

CK40 0.001758+ 0.000395 0.006022+ 0.001062 0.015638+ 0.003222 

CK50 0.001917+ 0.000387 0.005852+ 0.001155 0.016380+ 0.003657 

CK60 0.001799+ 0.000389 0.006244+ 0.001189 0.015299+ 0.002971 

CK70 0.001870+ 0.000327 0.005869+ 0.001108 0.015377+ 0.003034 

CK80 0.001903+ 0.000336 0.006196+ 0.001285 0.015659+ 0.003024 

CK90 0.001823+ 0.000350 0.006131+ 0.001036 0.015561+ 0.003229 

Table 8 Summarization of mean and standard deviation of generational distance (GD)  
between SPEA2, SPEA2-CC and SPEA2-CE-KR for DTLZ5 test problem with 3 to 5  
objectives 

3 Objectives 4 Objectives 5 Objectives 
Algorithm 

Mean St Dev Mean St Dev Mean St Dev 

S2 0.000378 0.000105 0.137610 0.003870 0.168450 0.005550 

CO 0.000021+ 0.000002 0.077180+ 0.012320 0.082630+ 0.014660 

CK10 0.000503- 0.000102 0.067310+ 0.009430 0.140890+ 0.009030 

CK20 0.000407 0.000081 0.055040+ 0.008940 0.131820+ 0.012600 

CK30 0.000492 0.000290 0.056210+ 0.016760 0.133220+ 0.012570 

CK40 0.000356 0.000067 0.080160+ 0.039710 0.128740+ 0.013820 

CK50 0.000413 0.000142 0.078390+ 0.040110 0.128630+ 0.016290 

CK60 0.000349 0.000065 0.078030+ 0.038570 0.123830+ 0.014280 

CK70 0.000364 0.000062 0.088880+ 0.044920 0.127430+ 0.013990 

CK80 0.000385 0.000151 0.083890+ 0.034450 0.124230+ 0.016860 

CK90 0.000371 0.000085 0.070140+ 0.035950 0.125510+ 0.013660 
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Table 9 Summarization of mean and standard deviation of generational distance (GD)  
between SPEA2, SPEA2-CC and SPEA2-CE-KR for DTLZ6 test problem with 3 to 5  
objectives 

3 Objectives 4 Objectives 5 Objectives 
Algorithm 

Mean St Dev Mean St Dev Mean St Dev 

S2 0.105450 0.034230 0.516590 0.049630 0.806390 0.005660 

CO 0.000409+ 0.001718 0.202600+ 0.079100 0.253740+ 0.052970 

CK10 0.015030+ 0.001044 0.092410+ 0.028960 0.728800+ 0.060900 

CK20 0.014478+ 0.001036 0.078690+ 0.009460 0.485100+ 0.150900 

CK30 0.014149+ 0.001120 0.070310+ 0.010540 0.437000+ 0.140900 

CK40 0.014515+ 0.001231 0.070240+ 0.009010 0.374600+ 0.095900 

CK50 0.014206+ 0.000972 0.069210+ 0.010440 0.352300+ 0.123500 

CK60 0.013800+ 0.001118 0.068540+ 0.007930 0.340600+ 0.139300 

CK70 0.013869+ 0.001069 0.065610+ 0.008830 0.325100+ 0.124800 

CK80 0.014164+ 0.001340 0.067870+ 0.009310 0.327900+ 0.124300 

CK90 0.013555+ 0.000732 0.069020+ 0.006420 0.291700+ 0.108200 

Table 10 Summarization of mean and standard deviation of generational distance (GD)  
between SPEA2, SPEA2-CC and SPEA2-CE-KR for DTLZ7 test problem with 3 to 5  
objectives 

3 Objectives 4 Objectives 5 Objectives 
Algorithm 

Mean St Dev Mean St Dev Mean St Dev 

S2 0.021630 0.015890 0.670800 0.138700 1.571800 0.148600 

CO 0.005040+ 0.019080 0.028000+ 0.071300 0.135900+ 0.143500 

CK10 0.001613+ 0.000451 0.006187+ 0.000827 0.024740+ 0.010030 

CK20 0.001646+ 0.000846 0.005505+ 0.000789 0.021870+ 0.009090 

CK30 0.001419+ 0.000488 0.005266+ 0.000930 0.023990+ 0.010150 

CK40 0.002002+ 0.001753 0.005358+ 0.001250 0.018890+ 0.009220 

CK50 0.001692+ 0.001306 0.005376+ 0.000776 0.023730+ 0.010280 

CK60 0.002886+ 0.002978 0.005342+ 0.000761 0.021530+ 0.009880 

CK70 0.002132+ 0.001894 0.005464+ 0.001020 0.021100+ 0.010060 

CK80 0.001952+ 0.001602 0.005124+ 0.000923 0.021520+ 0.009880 

CK90 0.002731+ 0.002518 0.005265+ 0.001200 0.023100+ 0.010140 
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Table 11 Summarization of mean and standard deviation of spacing (SP) between SPEA2, 
SPEA2-CC and SPEA2-CE-KR for DTLZ1 test problem with 3 to 5 objectives 

3 Objectives  4 Objectives  5 Objectives  
Algorithm 

Mean St Dev Mean St Dev Mean St Dev 

S2 9.964000 5.157000 25.372000 4.639000 39.550000 8.690000 

CO 0.085000+ 0.077700 0.101950+ 0.052190 0.142200+ 0.128000 

CK10 9.519000 4.736000 13.18000+ 5.550000 12.14800+ 4.196000 

CK20 6.225000+ 3.949000 8.590000+ 5.520000 11.34600+ 4.244000 

CK30 7.748000 5.287000 7.904000+ 4.832000 10.91400+ 4.268000 

CK40 5.677000+ 4.375000 8.019000+ 4.281000 10.38900+ 3.195000 

CK50 5.791000+ 4.235000 6.780000+ 3.958000 8.201000+ 4.702000 

CK60 4.890000+ 4.263000 7.552000+ 5.101000 8.030000+ 5.760000 

CK70 5.255000+ 5.456000 7.025000+ 4.762000 7.173000+ 4.842000 

CK80 3.684000+ 3.363000 5.832000+ 4.625000 6.866000+ 4.012000 

CK90 3.486000+ 4.046000 3.990000+ 3.556000 6.195000+ 4.347000 

Table 12 Summarization of mean and standard deviation of spacing (SP) between SPEA2, 
SPEA2-CC and SPEA2-CE-KR for DTLZ2 test problem with 3 to 5 objectives 

3 Objectives 4 Objectives 5 Objectives 
Algorithm 

Mean St Dev Mean St Dev Mean St Dev 

S2 0.025130 0.002828 0.105250 0.016970 0.188760 0.018550 

CO 0.027560 0.013850 0.060860+ 0.021290 0.082100+ 0.016820 

CK10 0.056490- 0.006580 0.107560 0.011310 0.159290+ 0.021840 

CK20 0.057880- 0.009250 0.106140 0.011250 0.154670+ 0.016860 

CK30 0.053980- 0.007510 0.105410 0.012680 0.141060+ 0.019560 

CK40 0.058720- 0.010500 0.102490 0.013380 0.149950+ 0.013820 

CK50 0.055440- 0.007620 0.103920 0.010090 0.151160+ 0.016610 

CK60 0.056230- 0.007960 0.101030 0.012330 0.147530+ 0.013810 

CK70 0.054930- 0.007000 0.100560 0.012550 0.142850+ 0.017940 

CK80 0.055560- 0.009810 0.100240 0.010830 0.144540+ 0.021450 

CK90 0.053190- 0.007890 0.096240+ 0.013010 0.136720+ 0.018290 
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Table 13 Summarization of mean and standard deviation of spacing (SP) between SPEA2, 
SPEA2-CC and SPEA2-CE-KR for DTLZ3 test problem with 3 to 5 objectives 

3 Objectives 4 Objectives 5 Objectives 
Algorithm 

Mean St Dev Mean St Dev Mean St Dev 

S2 19.650000 8.920000 64.150000 10.360000 103.780000 9.920000 

CO 0.2239000+ 0.325600 0.3590000+ 0.387400 0.3163000+ 0.214400 

CK10 21.280000 7.800000 23.910000+ 7.340000 33.260000+ 8.470000 

CK20 20.240000 10.850000 21.290000+ 8.960000 27.340000+ 11.530000 

CK30 16.460000 10.330000 18.430000+ 9.130000 20.450000+ 8.580000 

CK40 16.830000 10.420000 17.910000+ 9.260000 22.400000+ 13.090000 

CK50 20.680000 9.640000 19.010000+ 11.840000 20.780000+ 9.710000 

CK60 18.440000 9.180000 15.940000+ 10.480000 21.660000+ 11.800000 

CK70 19.740000 10.910000 11.150000+ 8.300000 19.580000+ 12.840000 

CK80 19.120000 10.130000 16.240000+ 11.350000 24.010000+ 11.930000 

CK90 18.630000 9.130000 13.550000+ 10.160000 20.650000+ 18.050000 

Table 14 Summarization of mean and standard deviation of spacing (SP) between SPEA2, 
SPEA2-CC and SPEA2-CE-KR for DTLZ4 test problem with 3 to 5 objectives 

3 Objectives 4 Objectives 5 Objectives 
Algorithm 

Mean St Dev Mean St Dev Mean St Dev 

S2 0.020280 0.011180 0.077580 0.042130 0.170310 0.046350 

CO 0.031080- 0.018570 0.057850 0.015020 0.089900+ 0.018510 

CK10 0.039890- 0.022820 0.035320+ 0.025380 0.019710+ 0.018860 

CK20 0.036810- 0.026750 0.035830+ 0.025080 0.016780+ 0.014820 

CK30 0.048220- 0.022330 0.046900+ 0.021310 0.017550+ 0.015340 

CK40 0.038040- 0.026630 0.040350+ 0.020760 0.022970+ 0.021730 

CK50 0.050300- 0.024360 0.047040+ 0.024660 0.026470+ 0.022980 

CK60 0.042800- 0.025890 0.038070+ 0.026050 0.018260+ 0.015630 

CK70 0.051110- 0.024040 0.047170+ 0.025620 0.020430+ 0.018760 

CK80 0.044430- 0.024800 0.036720+ 0.024380 0.017460+ 0.016090 

CK90 0.043890- 0.024900 0.044530+ 0.024310 0.016910+ 0.016340 
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Table 15 Summarization of mean and standard deviation of spacing (SP) between SPEA2, 
SPEA2-CC and SPEA2-CE-KR for DTLZ5 test problem with 3 to 5 objectives 

3 Objectives 4 Objectives 5 Objectives 
Algorithm 

Mean St Dev Mean St Dev Mean St Dev 

S2 0.005045 0.000556 0.087290 0.023240 0.153300 0.034530 

CO 0.004684 0.000520 0.053480+ 0.012000 0.091490+ 0.026050 

CK10 0.015992- 0.005078 0.086360 0.012440 0.135960 0.032300 

CK20 0.016060- 0.008690 0.070680+ 0.012950 0.135090 0.026560 

CK30 0.018090- 0.010840 0.072470+ 0.016850 0.130680+ 0.016560 

CK40 0.015450- 0.007410 0.075970 0.024600 0.122080+ 0.021270 

CK50 0.016158- 0.004952 0.068730+ 0.016130 0.123490+ 0.016690 

CK60 0.015590- 0.006710 0.072170+ 0.019250 0.122920+ 0.024530 

CK70 0.016270- 0.011220 0.072260 0.023260 0.119010+ 0.024650 

CK80 0.014040- 0.005860 0.078800 0.028770 0.115720+ 0.017900 

CK90 0.016820- 0.007700 0.068610+ 0.014970 0.125250+ 0.028930 

Table 16 Summarization of mean and standard deviation of spacing (SP) between SPEA2, 
SPEA2-CC and SPEA2-CE-KR for DTLZ6 test problem with 3 to 5 objectives 

3 Objectives 4 Objectives 5 Objectives 
Algorithm 

Mean St Dev Mean St Dev Mean St Dev 

S2 0.047210 0.013340 0.329610 0.040750 0.533700 0.056900 

CO 0.008510+ 0.017160 0.167100+ 0.106300 0.292900+ 0.116100 

CK10 0.029610+ 0.008310 0.125610+ 0.030270 0.788100- 0.126100 

CK20 0.026600+ 0.007370 0.103040+ 0.017620 0.683500- 0.212400 

CK30 0.029700+ 0.016570 0.097870+ 0.018060 0.646300 0.241600 

CK40 0.025280+ 0.004798 0.094650+ 0.016940 0.514200 0.125600 

CK50 0.024665+ 0.004728 0.100610+ 0.021540 0.501600 0.198200 

CK60 0.025970+ 0.010340 0.094400+ 0.016750 0.498100 0.212400 

CK70 0.025350+ 0.006090 0.090630+ 0.018780 0.454800 0.200300 

CK80 0.024084+ 0.004731 0.097290+ 0.018670 0.470100 0.188200 

CK90 0.024180+ 0.005930 0.094290+ 0.014670 0.396500+ 0.144000 
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Table 17 Summarization of mean and standard deviation of spacing (SP) between SPEA2, 
SPEA2-CC and SPEA2-CE-KR for DTLZ7 test problem with 3 to 5 objectives 

3 Objectives 4 Objectives 5 Objectives 
Algorithm 

Mean St Dev Mean St Dev Mean St Dev 

S2 0.046800 0.022270 0.164590 0.029300 0.294940 0.026320 

CO 0.066000 0.180000 0.148700 0.410200 0.994000- 1.000000 

CK10 0.060870- 0.018470 0.101470+ 0.054240 0.038600+ 0.065400 

CK20 0.068610- 0.013110 0.109700+ 0.044780 0.032790+ 0.047390 

CK30 0.068020- 0.013500 0.099190+ 0.043070 0.035700+ 0.054800 

CK40 0.066900- 0.011590 0.108500+ 0.042540 0.054100+ 0.059500 

CK50 0.067150- 0.012790 0.095710+ 0.048720 0.033130+ 0.043700 

CK60 0.063200- 0.013920 0.100220+ 0.045890 0.038870+ 0.050960 

CK70 0.065690- 0.014890 0.112270+ 0.053140 0.038200+ 0.041560 

CK80 0.070240- 0.011120 0.125730+ 0.033250 0.036680+ 0.048520 

CK90 0.064500- 0.017210 0.118580+ 0.044200 0.032510+ 0.042730 

 

Table 18 Summarization of mean and standard deviation of coverage (C) between SPEA2 
and SPEA2-CE-KR with 90 opponents for DTLZ test problems with 3 to 5 objectives. 
C( X ′ , X ′′ ) > C( X ′′ , X ′ ), then X ′  is better than X ′′  

3 Objectives 4 Objectives 5 Objectives 
DTLZ C Metric 

Mean St Dev Mean St Dev Mean St Dev 

C(CK,S2) 0.072100 0.060500 0.355200 0.098800 0.867600 0.105400 
1 

C(S2,CK) 0.069700 0.174600 0.029000 0.158800 0.001670 0.009130 

C(CK,S2) 0.018670 0.015480 0.029670 0.021730 0.113330 0.050330 
2 

C(S2,CK) 0.021330 0.022700 0.002670 0.006910 0.000000 0.000000 

C(CK,S2) 0.335000 0.227800 0.441300 0.229600 0.899300 0.107300 
3 

C(S2,CK) 0.179300 0.189700 0.000000 0.000000 0.000000 0.000000 

C(CK,S2) 0.038670 0.036360 0.132300 0.075900 0.354700 0.096400 
4 

C(S2,CK) 0.050670 0.052650 0.013000 0.036020 0.000000 0.000000 

C(CK,S2) 0.032330 0.022080 0.052670 0.025720 0.034670 0.029560 
5 

C(S2,CK) 0.100000 0.041850 0.085300 0.100600 0.151000 0.105900 

C(CK,S2) 0.368700 0.056700 0.474000 0.084100 0.568300 0.133500 
6 

C(S2,CK) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

C(CK,S2) 0.063330 0.033150 0.094700 0.114400 0.506000 0.277000 
7 

C(S2,CK) 0.046700 0.078800 0.000667 0.002537 0.000000 0.000000 
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Table 19 Summarization of mean and standard deviation of coverage (C) between SPEA2 
and SPEA2-CC for DTLZ test problems with 3 to 5 objectives. C( X ′ , X ′′ ) > C( X ′′ , X ′ ), 
then X ′  is better than X ′′  

3 Objectives 4 Objectives 5 Objectives 
DTLZ C Metric 

Mean St Dev Mean St Dev Mean St Dev 

C(CO,S2) 0.299000 0.122900 0.758800 0.103100 0.996200 0.010100 
1 

C(S2,CO) 0.005330 0.029210 0.002000 0.010950 0.000000 0.000000 

C(CO,S2) 0.184330 0.053800 0.237000 0.072000 0.565300 0.106300 
2 

C(S2,CO) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

C(CO,S2) 0.190300 0.067300 0.729700 0.101900 0.983330 0.030890 
3 

C(S2,CO) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

C(CO,S2) 0.136300 0.085500 0.265700 0.182200 0.518000 0.230900 
4 

C(S2,CO) 0.005000 0.009740 0.024670 0.025960 0.011000 0.028330 

C(CO,S2) 0.216000 0.052630 0.190000 0.065900 0.357300 0.135100 
5 

C(S2,CO) 0.000000 0.000000 0.047670 0.022690 0.004670 0.007300 

C(CO,S2) 0.533300 0.082400 0.786300 0.104200 0.988000 0.009970 
6 

C(S2,CO) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

C(CO,S2) 0.146300 0.060500 0.159330 0.037870 0.128700 0.069500 
7 

C(S2,CO) 0.000667 0.002537 0.001667 0.005307 0.005000 0.011370 

Table 20 Summarization of mean and standard deviation of coverage (C) between SPEA2-
CC and SPEA2-CE-KR with 90 opponents for DTLZ test problems with 3 to 5 objectives. 
C( X ′ , X ′′ ) > C( X ′′ , X ′ ), then X ′  is better than X ′′  

3 Objectives 4 Objectives 5 Objectives 
DTLZ C Metric 

Mean St Dev Mean St Dev Mean St Dev 

C(CO,CK) 0.999000 0.004030 0.957700 0.167300 0.761000 0.398800 
1 

C(CK,CO) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

C(CO,CK) 0.110330 0.054300 0.074000 0.045070 0.058330 0.036210 
2 

C(CK,CO) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

C(CO,CK) 0.574300 0.304400 0.921000 0.133600 0.598700 0.447700 
3 

C(CK,CO) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

C(CO,CK) 0.108300 0.086300 0.011000 0.031220 0.001000 0.004030 
4 

C(CK,CO) 0.000000 0.000000 0.001670 0.005310 0.025000 0.025560 

C(CO,CK) 0.228300 0.060200 0.153300 0.117300 0.316300 0.095000 
5 

C(CK,CO) 0.000000 0.000000 0.061670 0.043870 0.006330 0.010330 

C(CO,CK) 1.000000 0.000000 0.914700 0.097800 0.985000 0.021770 
6 

C(CK,CO) 0.000000 0.000000 0.001330 0.004340 0.000330 0.001830 

C(CO,CK) 0.060000 0.083500 0.027330 0.038680 0.001330 0.007300 
7 

C(CK,CO) 0.000000 0.000000 0.000000 0.000000 0.009330 0.013370 
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Evolutionary Optimization for Multiobjective
Portfolio Selection under Markowitz’s Model
with Application to the Caracas Stock Exchange

Feijoo Colomine Duran, Carlos Cotta, and Antonio J. Fernández

Abstract. Several problems in the area of financial optimization can be naturally
dealt with optimization techniques under multiobjective approaches, followed by
a decision-making procedure on the resulting efficient solutions. The problem of
portfolio optimization is one of them. This chapter studies the use of evolutionary
multiobjective techniques to solve such problems, focusing on Venezuelan market
mutual funds between years 1994 and 2002. We perform a comparison of different
evolutionary multiobjective approaches, namely NSGA-II, SPEA2, and IBEA, and
show how these algorithms provide different optimization profiles. The subsequent
step of solution selection is done using Sharpe’s index as a measure of risk premium.
We firstly show that NSGA-II provides similar results to SPEA2 on mixed and fixed
funds, and better (according to Sharpe’s index) solutions than SPEA2 on variable
funds, indicating that NSGA-II provides a better coverage of the region contain-
ing interesting solutions for Sharpe’s index. Furthermore, IBEA outperforms both
NSGA-II and SPEA2 in terms of index value attained. Finally, we also show that
this procedure results in a more profitable solution than an indexed portfolio by the
Caracas Stock Exchange.

1 Introduction

Finance is a branch of Economics that studies the flow of money and other assets,
their acquisition and management by a company, individual or state, and the markets
in which they are traded. In other words, it comprises studies concerning the collec-
tion and management of money and other valuables such as securities, bonds, etc.
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One of the main challenges for the administration of financial resources is to main-
tain the profitability and liquidity at times in which the simple act of leaving the
money deposited in a bank makes it lose value.

This work focuses on the study of the components that promote an acceptable
(above inflation) economic return, as well as the need to obtain better risk diver-
sification as determined by the degree of abhorrence of each investor [15]. Plainly
speaking, diversifying amounts using a mechanism by which all eggs are not put in
one basket, that is, investing in a range of financial sectors whose economic activi-
ties result in some benefit and whose economic cycles behave differently from each
other. In this context, the risk diversification is achieved by creating a portfolio of
investments in several of these financial instruments or sectors.

The area of financial management encompasses a number of theoretical elements
and field studies regarding the risk/performance relationship. There is no static op-
timal solution, and the best portfolio always depends on market evolution. In very
general terms, this implies that simultaneous risk minimization and performance
maximization are the obvious desired goals. Needless to say, these goals are par-
tially opposed to each other. Several proposals can be found in the literature in this
regard. For example, Markowitz’s model [18] has become an essential theoretical
reference for portfolio selection. However, its practical application has not been as
broad as it could, mostly due to the complexity of the method: on one hand, being
a quadratic parameterized model its resolution is not trivial; on the other hand, the
number of variables involved is high.

The topic addressed by Markowitz relates to the selection of investments, namely
the problem of allocating resources among the various options available for that
purpose. Prior to the popularization of Markowitz’s approach, investment selection
involved a costly process of collecting and processing a wide range of informa-
tion about the companies issuing the assets (primarily shares). This information
included, among other things, balance sheets and financial statements, status of the
company within the industry and within the market as a whole, the quality of com-
pany management, dividend policy, and so on. Markowitz’s approach significantly
simplified the selection problem by considering asset performance as a stochastic
process, focusing solely on the historical log of returns of the issuing companies,
and more precisely on three statistical measures of these data: mean, variance and
covariance of return rates.

Markowitz developed the model based on the rational behavior of the investor. In
other words, the investor wants to maximize her profit and rejects the risk. There-
fore, a portfolio will be efficient for her if it provides the highest possible return
for a given risk, or equivalently, if it presents the least possible risk for a given
level of profitability. The collection of portfolios offering such a combination of
risk/profitability is termed the efficient frontier, and once known the investor can
select her optimal portfolio according to her preferences.

If no additional considerations are made and a specific risk/profitability profile is
known, the optimization problem can be solved using quadratic programming. How-
ever, this is not usually the case. On one hand, several constraints such as cardinality
constraints (i.e., a limit on the number of different investments in the portfolio) or
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minimum transaction lots can be considered, thus making quadratic programming
or other exact techniques infeasible. On the other hand, if no profitability target is
fixed a priori (or if a more general investment strategy is sought) the task of finding
(or approximating as much as possible) the whole efficient frontier in an efficient
way requires the use of powerful optimization techniques. In this scenario the use of
metaheuristic techniques is the general norm [3]. These techniques cannot provide
optimality proofs for the solutions they obtain, but if adequately crafted, they will
likely provide optimal or near-optimal solutions to a wide range of continuous and
combinatorial optimization problems.

We consider the particular case of nature-inspired metaheuristics, or more pre-
cisely, evolutionary algorithms. Not only do these techniques hold an impressive
successive-record on different hard optimization tasks; they have also been shown
to be extremely effective in solving multiobjective optimization problems. As such,
they are quite appropriate to deal with the combined risk/performance optimization.
We consider several state-of-the-art second generation approaches for evolutionary
multiobjective optimization, and compare them on the basis of sound performance
metrics defined in the literature. We also address the subsequent selection step: once
the efficient frontier has been identified, there remains the problem of selecting one
particular solution according to the risk profile determined by the investor. This lat-
ter approach is considered here, and as it will be shown, using Sharpe’s index as a
guiding measure we are able to identify solutions better than those currently used
in indexed portfolios by the Caracas Stock Exchange, a Latin American exchange
operating in Venezuela.

2 Background

The work presented in this chapter deals with real investments that are conditioned
by two main parameters: (i) profitability, i.e., the returns on the investment, and
(ii) risk, i.e., the chances of low (or even negative) returns. Obviously, profitability
is a positive element for the investor whereas risk is a negative one. This means
that an investor wishes to maximize profitability and minimize risk 1. This will be
formalized within Markowitz’s model in Section 2.2. Before that, a brief overview
of mutual funds will be provided first in Section 2.1.

2.1 Mutual Funds

Mutual funds are instruments that combine the money invested by a group of per-
sons. They are handled by a management office specializing in the administration
of investment portfolios, which takes decisions on the purchase of shares, bonds,
and other instruments of the market. By combining the money of several investors,

1 Other parameters such as liquidity or political control of a company might be considered
as well.
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mutual funds allow them to participate in larger portfolios than those they could buy
individually. There are several types of mutual funds:

1. Fixed revenue: The aim of these funds is to invest in state bonds, private bonds,
and other instruments that offer a predictable performance if they are maintained
up to their expiration. Fixed funds are a way of adjusting to different investment
horizons, e.g., they tend to specialize in investments on assets that operate in
either a short term, a middle term, or a long term basis. Purchasing assets that
participate in fixed funds has diverse advantages such as risk diversification, pro-
fessional administration, (management), and accessibility (i.e., small investors
have access to high investments).

2. Variable revenue: These funds try to maximize the profit by investing in shares
of companies that quote in the Stock exchange. Because of the very nature of the
assets in which they are invested in, these funds have the highest risk associated
with them. From a conceptual point of view, the investments in shares, if correctly
chosen, is the most profitable in the longer term. However, this also implies a
higher volatility of the investments (i.e., increased risk).

3. Mixed revenue: These funds represent a combination of fixed revenue and vari-
able revenue. They aim to diversify the investment in stocks of both fixed and
variable revenue. Their composition is thus a combination of the different types
of assets, and their risk / profitability ratio is intermediate between that of fixed
funds and variable funds. The risk obviously depends on the proportion of the
investment made on the different mutual funds.

Whichever type of fund considered, the investor and/or manager is faced with an
optimization problem regarding the composition of the portfolio. One of the most
widely used and conspicuous method of addressing this problem is Markowitz’s
model, described in next section.

2.2 Markowitz’s Model and Sharpe’s Index

Markowitz’s model [18] is a pioneering model in the selection of assets to construct
an ideal portfolio. It assumes that the future performance a specific investment can
offer can be determined from both experience and investigation. This model is thus
applied with the aim of obtaining an optimal portfolio selection. The basic idea is
that by analyzing the expected profitabilities of the individual financial assets one
can make a correct portfolio selection. Two main components have to be taken into
account: profitability and the risk to be assumed by the investor. The investor needs
to know the risk level, that is to say, the degree of profitability variation which is
measured by the variance defined as:

σ2
i (R) =

T

∑
t=1

[Rit −E(Ri)]2

n
(1)

where R = {Rit}, 1 � i � n, 1 � t � T , is a matrix containing the profitability of
each asset at each time interval t, E(Ri) is the mean profitability of the i-th asset,
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and T is the number of intervals in the time horizon. The overall risk of the portfolio
is then defined as a weighted quadratic combination of the covariances of the assets
included in it, i.e.,

σ2(R|W) =
n

∑
i=1

n

∑
j=1

wiwjσi j(R) (2)

where W = {wi}, 1 � i � n, is a vector comprising the fraction of the budget allo-
cated to each asset (wi � 0), and σi j(R) is the covariance of the performance of the
i-th asset and the j-th asset, defined as:

σi j(R) =
T

∑
t=1

[Rit −E(Ri)] [R jt −E(R j)]
T

(3)

Similar to the risk, the profitability E(R|W) of a portfolio is defined as the
weighted average of the assets involved, i.e.,

E(R|W) =
n

∑
i=1

wiE(Ri) (4)

Generally speaking, the investor looks for the curve of utility with E(R|W) = ∞
and σ2(R|W) = 0, but this not a realistic option as this curve is limited by the
existing assets that never have this nature. We note that for the assets without risk
(i.e., those with null profit-variance), the utility is equal to the expected profitability
because there is no penalization due to the risk.

To evaluate the quality of a portfolio we have to define a measure that accounts
for both the profitability and the risk of the assets involved. Such a measure can also
allow the comparison between different portfolios. To this end, we have considered
Sharpe’s index [25], that determines the performance according to the ratio of excess
profitability and risk. More precisely,

S(R|W) =
E(R|W)−R0

σ(R|W)
(5)

where R0 is the performance of a portfolio without risk. E(R|W)−R0 is therefore
the excess performance (that is, the extra profit obtained by taking some risks),
which is divided by the risk of the portfolio (measured as the standard deviation
of returns). Basically, the index indicates how much performance is expected with
respect to the risk. The higher the value returned is, the higher the success of the
fund management is.

2.3 Related Work

An early reference on portfolio optimization with MOEAs is the work of Verada-
jan et al. [29]. They describe the use of NSGA (non-dominated sorting genetic
algorithm) [26] to optimize investment portfolios, as an alternative to quadratic
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programming techniques. In addition to the typical objectives of increasing perfor-
mance and decreasing risk, a third objective involving the costs of the transactions is
also considered. Several variants of the problem involving the presence of additional
constraints can be also found in the literature. For example, Chang et al. [5] consider
limits on the number of assets and their proportion within the portfolio, and use dif-
ferent metaheuristics (tabu search, genetic algorithms, and simulated annealing) to
solve the problem. Busetti [4] also consider tabu search and genetic algorithms, in
this case for solving the problem with cardinality constraints and transaction costs.
Streichert et al. [27] deal with a cardinality constrained portfolio selection problem
too, using NSGA and evolution strategies. They actually compare different repre-
sentations of solutions (pure binary, gray binary, and real-valued). Fieldsend et al.
[11] also deal with this variation of the problem, and more specifically with the
case in which the analyst does not know a priori how many instruments should be
included in the portfolio, or the degree of risk-performance that can be accepted.
They also propose the addition of the cardinality constraints as a third objective to
be minimized. Lin et al. [17] consider a variant of the problem with fixed transac-
tion costs and minimum transaction lots. They demonstrated that in this case, the
selection of the portfolios becomes more complicated because the problem model
has to manage mixed integer variables and nonlinear objectives.

From a more general point of view, Mukerjee et al. [20] utilize NSGA-II to im-
plement a decision-making multicriteria model used in the risk/performance nego-
tiation by a bank loan manager. Two models with respect to this negotiation were
considered. Also in a bank context, Schlottmann and Seese [23] present a survey
of different financial applications that can be handled via MOEAs, and encourage
the use of specific problem knowledge and hybridization techniques to obtain better
algorithms. A more recent perspective on multiobjective evolutionary optimization
of portfolios can be found in [21].

3 Material and Methods

Once the problem scenario has been presented, this section is devoted to providing a
more precise formulation of the optimization task. Subsequently, the data used in the
experiments (corresponding to real market data from a Latin American exchange),
as well as the algorithms considered will be described.

3.1 Problem Setting

As stated before, Markowitz’s model is based on the assumption that the investor ab-
hors risk, which can be represented as the variability of returns for a certain invest-
ment. At the same time, she wants to maximize her profits. Hence, we can consider
a portfolio as efficient if it achieves the profit sought by the investor at the mini-
mum risk. The set of efficient portfolios can be calculated by solving the following
parametric nonlinear equation:
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minσ2(R|W) =
n

∑
i=1

n

∑
j=1

wiwjσi j(R) (6)

subject to:

E(R|W) =
n

∑
i=1

wiE(Ri) = V ∗ (7)

n

∑
i=1

wi = 1 (8)

Note that by varying the parameter V ∗ the optimal solution in each case min-
imizes the risk of the portfolio for a given target profit. This consideration leads
naturally to a multiobjective scenario in which the whole efficient frontier is sought
rather than just solving the above equations for different target profits. This efficient
frontier comprises Pareto-optimal portfolios, i.e., portfolios whose profitability can-
not be increased without increasing the risk as well (and vice versa, the risk cannot
be reduced without decreasing the expected return). This bi-objective problem is
thus formulated as

minσ2(R|W) =
n

∑
i=1

n

∑
j=1

wiwjσi j(R) (9)

maxE(R|W) =
n

∑
i=1

wiE(Ri) (10)

subject to:
n

∑
i=1

wi = 1 (11)

This basic model corresponds to unconstrained portfolios, in which the investor
can allocate any number of investments she desires, and these can be as large or
small as wanted. Additional constraints can at any rate be posed on the composition
of the portfolio, e.g., cardinality constraints (at most K assets can be included in
the portfolio), or size constraints (the fraction of the portfolio allocated to an asset
is bounded 2). We are interested in analyzing carefully the performance of different
multiobjective optimizers on the problem, in particular with respect to finding highly
desirable solutions according to Sharpe’s index. For this reason, we will focus ini-
tially on the case of unconstrained portfolios since they provide a more unbiased
arena for performance evaluation, and will pave the way for subsequent experimen-
tation with other variants of the problem.

2 Michaud [19] considers that the use of historical data to estimate risk and expected returns
introduces an important bias: efficient portfolios can be composed of few, largely uncorre-
lated assets. Such a portfolio can be unattractive for some investors. However, this problem
can be solved by considering constraints on the maximum percentage of the portfolio that
a certain asset can represent.



496 F. Colomine Duran, C. Cotta, and A.J. Fernández

3.2 Data: Venezuelan Mutual Funds

The data used in the experiments is taken from the Caracas Stock Exchange (Bolsa
de Valores de Caracas - BVC), the only securities exchange operating in Venezuela.
More precisely, we have considered data corresponding to the last five years. This
time interval is large enough to be representative of the evolution of shares, and
not too large to include irrelevant –for prediction purposes- data (the status of funds
can fluctuate in the long term, commonly making old data useless for forecasting the
future evolution of shares). According to this, our sample – ∼ 35,000 daily prices of
different mutual funds: fixed, variable, and mixed– comprises those funds no older
than five years and still available in the BVC [1]. To be precise, we have used weekly
market data from year 1994 to year 2002, corresponding to 26 Venezuelan mutual
funds: 12 fixed funds, 7 variable funds, and 7 mixed funds. Data up to year 2001 is
used for training purposes, whereas data corresponding to the year 2002 will be used
for testing the obtained portfolios with respect to an investment portfolio indexed
in the BVC. The relative ratio of share values in successive weeks is calculated
to compute the profitability of each fund. This is done for each week in the year,
and subsequently averaged to yield the annual weekly mean and thus obtain the
annual profit percentage. The covariance matrix of these profitability values is also
computed, as a part of Markowitz’s model.

3.3 Evolutionary Multiobjective Approaches

The multiobjective portfolio optimization problem posed in this section will be
solved via multiobjective evolutionary algorithms (MOEAs). Indeed, multiobjective
evolutionary optimization nowadays provides powerful tools for dealing with this
kind of problems. A detailed survey of this field is beyond the scope of this work. We
refer the reader to [6, 7, 8, 9, 12, 30, 36] among other works for more comprehen-
sive information about this topic. Let us anyway note for the sake of completeness
that MOEA approaches can be classically categorized under three major types [36]:
(i) aggregation/scalarization, (ii) criterion-based, and (iii) Pareto-dominance based.
A fourth class has been defined more recently, namely indicator-based, and will be
discussed later. Firstly, let us describe the basis of the three classical approaches.

Aggregation approaches are based on constructing a single scalar value using
some function that takes the multiple objective values as input. This is typically
done using a linear combination, and the method exhibits several drawbacks, e.g.,
the difficulty in determining the relative weight of each objective, and the inadequate
coverage of the set of efficient solutions, among others. As to the criterion-based ap-
proaches, they try to switch priorities between the objectives during different stages
of the search (Schaffer’s VEGA approach [22] pioneered this line of attack, using
each objective to select a fraction of solutions for breeding). This does not consti-
tute a full solution to the problem of approximating the whole efficient front though.
Such a solution can be nevertheless obtained via Pareto-based approaches. These are
based on the notion of Pareto-dominance. Let fi, 1 � i � n, represent each of the n
objective functions, and let fi(x) ≺ fi(y) denote that x is better than y according to



Evolutionary Optimization for Multiobjective Portfolio Selection 497

the i-th objective value. Then, abusing of the notation we use x ≺ y to denote that x
dominates y when

x ≺ y ⇔ [(∃i : fi(x) ≺ f j(y))∧ (�i : fi(y) ≺ f j(x))] (12)

The Pareto front (i.e., the efficient front) is therefore the set of non-dominated so-
lutions, i.e., P = {x | �z : z ≺ x}. Pareto-based MOEAs use the notion of Pareto-
dominance for determining the solutions that will breed and/or the solutions that
will be replaced.

In this work we consider three state-of-the-art MOEAs, namely NSGA-II (Non-
dominated Sorting Genetic Algorithm II) [10], SPEA2 (Strength Pareto Evolution-
ary Algorithm 2) [34] and IBEA (Indicator-Based Evolutionary Algorithm) [31].
The first two fall within the Pareto-based class, and are the second-generation ver-
sion of two previous algorithms –NSGA [26], and SPEA [33] respectively. As such,
they rely on the use of elitism (an external archive of non-dominated solutions in
the case of SPEA2, and a plus-replacement strategy –keeping the best solutions
from the union of parents and offspring– in the case of NSGA-II). More precisely,
the central theme in these algorithms is assigning fitness to individuals according
to some kind of non-dominated sorting, and preserving diversity among solutions
in the non-dominated front. NSGA-II does this by sorting the population in non-
domination levels. First of all, the set of non-dominated solutions is extracted from
the current population P; let this set be termed F1, and let P1 = P \F1. Subse-
quently, while there exist solutions in Pi, i � 1, a new front Fi+1 is extracted, and
the procedure repeated. This way, each solution is assigned a rank, depending on
the front it belongs to (the lower, the better). Such a rank is used for selection. To be
precise, a binary tournament is conducted according to the domination level, and a
crowding distance is utilized to break domination ties (thus spreading the front).

As to SPEA2, it uses an external archive of solutions that is used to calculate the
“strength” of each individual i (the number of solutions dominated by or equal to
i, divided by the population size plus one). Selection tries to minimize –via binary
tournaments– the combined strength of all individuals not dominated by competing
parents. This fitness calculation is coarse-grained, and may not always be capable
of providing adequate guidance information. For this reason, a fine-grained fitness
assignment is used, (i) taking into account both the external archive and the cur-
rent population, and (ii) incorporating a nearest-neighbor density estimation tech-
nique (to spread the front). As a final addition with respect to SPEA, a sophisticated
archive update strategy is used to preserve boundary conditions (see [34]).

The third algorithm considered is IBEA, which as its name indicates falls within
the indicator-based class. Algorithms in this class approach multiobjective optimiza-
tion as a procedure aimed at maximizing (or minimizing) some performance indica-
tor. Many such indicators are based on the notion of Pareto-dominance and hence,
this class of algorithms is in many respects related to these Pareto-based approaches.
Nevertheless, it is necessary to note that they deserve separate treatment due to the
philosophy behind them. Actually, in some sense, indicator-based algorithms can be
regarded as a collective approach, where selective pressure is exerted to maximize
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the performance of the whole population. Consider, for example, an IBEA approach
based on the hypervolume indicator. This indicator provides information on the hy-
pervolume of the fitness space that is dominated by a certain set of solutions. This
definition includes singletons (sets of a single solution), and therefore can be used to
compare two individuals. This way, it can be used for selection purposes. However
when it comes to replacement, a global perspective is used: the solution whose sub-
stitution results in the best value of the indicator for the whole population is taken
out. In this work, we have considered an IBEA based on the ε-indicator [35].

In all the algorithms considered, solutions, i.e., a vector of rational values in
the [0,1] range indicating the fraction of the portfolio devoted to each fund, are
represented as binary strings. Each fund is assigned 10 bits, yielding a raw weight
w̄i. These weights are subsequently normalized as wi = w̄i/∑ j w̄ j to obtain the actual
composition of the portfolio. Evaluation is done by computing the risk and return of
the portfolio using the formulation depicted before. As to reproduction, we consider
standard operators such as two-point crossover and bit-flip mutation.

4 Results

The experiments were conducted with the three algorithms described earlier, namely
NSGA-II, SPEA2 and IBEA. We have utilized the PISA library (A Platform and
Programming Language Independent Interface for Search Algorithms) [2], which
provides an implementation of these two algorithms. The crossover rate is Px = 0.8,
the mutation rate is Pm = 1/�, and the population size is 2�, where � is the total
number of bits in a solution. The algorithms run for a maximum number of 100
generations. The number of runs per data set is 30.

4.1 Front Analysis

The first part of the experimentation deals with the analysis of the Pareto fronts ob-
tained. The results obtained are graphically depicted in Figs. 1–3. As can be seen,
the grand fronts generated by either algorithm seem to be very similar, although the
grand front found by IBEA appears to be slightly more spread for fixed funds. To
analyze the extent of the significant difference in the performance more carefully
we have considered two well-known performance indicators: the hypervolume indi-
cator [32] and the R2 indicator [13]. As mentioned before, the first one provides an
indication of the region in the fitness space that is dominated by the front (and hence
the larger, the better). As to the second indicator, it estimates the extent to which a
certain front approximates another one (the true Pareto-optimal front if known, or a
reference front otherwise). We have considered the unary version of this indicator,
taking the combined NSGA-II/SPEA2/IBEA Pareto front as a reference set. Being
a measure of distance to the reference set, the lower a R2 value, the better.

Figs. 4 and 5 show the distribution of these two indicators for the experiments re-
alized. Let us first consider the hypervolume distribution. SPEA2 appears to provide
slightly worse values of this indicator with respect to NSGA-II. Actually, NSGA-II
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Fig. 1 Comparison of the
Pareto fronts found by
NSGA-II, SPEA2 and IBEA
on fixed funds
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Fig. 2 Comparison of the
Pareto fronts found by
NSGA-II, SPEA2 and IBEA
on mixed funds
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is better (with statistical significance at the standard 0.05 level, according to a
Wilcoxon ranksum test [16]) on fixed and mixed funds, and provides a negligible
difference on variable funds. On the other hand, IBEA exhibits an interesting be-
havioral pattern with notably better results than both NSGA-II and SPEA2 on fixed
funds, no difference on mixed funds, and clearly worse results on variable funds
(in all cases, with statistical significance as before). A similar pattern is observed
when the R2 indicator is considered. NSGA-II compares favorably to SPEA2 in all
the three types of funds, and IBEA varies from providing the best results on fixed
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Fig. 3 Comparison of the
Pareto fronts found by
NSGA-II, SPEA2 and IBEA
on variable funds
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Fig. 4 Boxplot of the hypervolume indicator for NSGA-II, SPEA2 and IBEA

funds to the worst ones on variable funds. Notice that all differences are statistically
significant, except SPEA2 vs IBEA on variable funds.

Among the three types of funds, it is clear that the front corresponding to variable
funds is the longest one, spreading from very low risk/low profit solutions to high



Evolutionary Optimization for Multiobjective Portfolio Selection 501

NSGA−II  SPEA2  IBEA

2

4

6

8

10

12

14

16

x 10
−3 fixed

R
2

NSGA−II  SPEA2  IBEA
4

5

6

7

8

9

10

11

12

13

14

x 10
−4 mixed

NSGA−II  SPEA2  IBEA

3

3.5

4

4.5

5

5.5

6

6.5

x 10
−3 variable
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risk/high profit portfolios. On the contrary, the front generated for mixed funds is
much more focused on a regime than can be described as low risk/moderate profit.
As to fixed funds, they cover a risk spectrum similar to that of variable funds, but the
extreme points of attainable profit are well within the range of profit values found
for variable funds. A more precise perspective of the particular risk/profit tradeoffs
attained by each of the algorithms on the different types of funds will be provided
in next section via the use of Sharpe’s index.

4.2 Use of Sharpe’s Index

Sharpe’s index has been used for decision-making purposes, enabling the selection
of a single solution out of the whole efficient front. Recall that this index measures
how much excess profit per risk unit is attained by a certain portfolio. Depending
on the particular shape of the observed front (which depends on the assets that can
be potentially included in the portfolio), this solution can correspond to different
risk/profit combinations.

This is illustrated in Figs. 6–8, where the best final solution (according to its
Sharpe’s index) provided by each algorithm on each of the 30 runs is shown for
each type of fund. Best solutions tend to be arranged close to a line whose slope
is the optimal value of Sharpe’s index. Moreover, solutions are generally clustered
in a relatively small range of risk/profit combinations. This indicates all algorithms
typically provide solutions with a stable risk/profit profile. Indeed, the composition
of portfolios tends to be stable as well, as shown in Figs. 9–10: NSGA-II, SPEA2
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Fig. 6 Best solution (fixed
funds) in each run (accord-
ing to Sharpe’s index) found
by NSGA-II, SPEA2 and
IBEA
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Fig. 7 Best solution (mixed
funds) in each run (accord-
ing to Sharpe’s index) found
by NSGA-II, SPEA2 and
IBEA
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and IBEA agree on which funds should be included in the portfolio in each situation,
and the variability of percentages (viz. the vertical size of boxes in the boxplot) is
small, particularly in variable funds (where investments are mainly concentrated
in fund #4, Mercantil) and mixed funds (where investments are stably distributed
among three funds, Ceiba, Mercantil, and Provincial). In the case of fixed funds
there seems to be a higher variability in the percentages of two funds (Exterior RF
and Primus RF) due to their similar profiles.
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Fig. 8 Best solution (vari-
able funds) in each run
(according to Sharpe’s in-
dex) found by NSGA-II,
SPEA2 and IBEA
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Fig. 9 Portfolio distribution (fixed funds) in solutions selected according to Sharpe’s index.
(Top) NSGA-II (middle) SPEA2 (bottom) IBEA.

Another interesting aspect concerns the distribution of Sharpe’s index values ob-
tained in each run. Fig. 12 shows a boxplot of Sharpe’s index values for the 30 runs
of each algorithm on each type of fund. NSGA-II and SPEA2 perform similarly
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Table 1 Comparison of the best solutions (according to Sharpe’s index) found by NSGA-II,
SPEA2 and IBEA

Fixed Funds Mixed Funds Variable Funds
NSGA-II SPEA2 IBEA NSGA-II SPEA2 IBEA NSGA-II SPEA2 IBEA

E(R|W) .2775 .2821 .2881 .1697 .1690 .1697 .4128 .4099 .4172
σ2(R|W) .0227 .0240 .0255 .0090 .0087 .0089 .8359 .8232 .8523

Sharpe’s index 1.034 1.036 1.041 .5067 .5060 .5084 .3183 .3175 .3200
E2002(R|W) .2367 .2457 .2365 .2455 .2468 .2453 .5392 .5342 .5432

except on variable funds, where NSGA-II is clearly better. However, IBEA outper-
forms both NSGA-II and SPEA2 on all types of funds (clear from visual inspection,
and further verified by a Wilcoxon ranksum test).

Finally, the best overall solutions found by each of the algorithms are compared
to an indexed portfolio in the Caracas Stock Exchange. To this end, we consider
data for the year 2002, which was not seen during the optimization process. Table 1
displays the objective values for the best evolved portfolios, and the profit projection
for 2002. As a reference, the mentioned indexed portfolio (IBC) achieves a profit of
.1988 for 2002. It can thus be seen that the evolved portfolios are notoriously better
that this latter portfolio.
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5 Conclusions

Portfolio optimization is a natural arena for multiobjective optimizers. In particu-
lar, MOEAs have both the power and the flexibility required to successfully deal
with this kind of problems. In this sense, this work has analyzed the performance
of three state-of-the-art MOEAs, namely NSGA-II, SPEA2, and IBEA on portfolio
optimization, using real-world mutual funds data taken from the Caracas Stock Ex-
change. Although the algorithms performed similarly from high level –with the ex-
ception of fixed funds, where IBEA provides a wider and deeper front– a closer look
indicates that they offer different optimization profiles for this problem. NSGA-II
is capable of advancing deeper towards some regions of the Pareto front (with sta-
tistical significance at the standard 0.05 level in the case of fixed funds and mixed
funds), and IBEA lags behind the other two algorithms on variable funds.

Quite interestingly, when the subsequent decision-making step is approached and
a single solution is selected from the Pareto front, the comparison turns out to be fa-
vorable to IBEA in all the cases. Furthermore, NSGA-II is better than SPEA2 on
the problem scenario –variable funds– on which it did not achieve better quality in-
dicators than the latter. More precisely, using Sharpe’s index –based on a profit/risk
ratio– to identify the best solution from the Pareto front provides significantly bet-
ter values when using NSGA-II than SPEA2 on variable funds. This indicates a
much better coverage of the region where such solutions lie. There is no statistically
significant difference in the case of fixed and mixed funds. Likewise, IBEA pro-
vides much better solutions in this latter case, even when the quality indicators were
worse than those of NSGA-II and SPEA2. This fact illustrates a recurrent theme in
multiobjective optimization, i.e., the extent of the usefulness of approximating the
whole Pareto front in practical problem scenarios. The fact that a deeper, wider, and
more complete the Pareto front returned by an algorithm is better for any problem is
based on a reasonable premise: providing the best set of solutions for the decision-
maker to make the final selection. However, in some situations the details of how
this decision-maker makes the decision cannot be ignored when evaluating the mul-
tiobjective optimizer. In other words, the best set of solutions is not necessarily the
largest or the most diverse set, but the set that achieves a better coverage of the
region in the search space that the decision-maker prefers. Portfolio optimization
under Markowitz’s model using Sharpe’s index for selection is a good example of
this situation.

Future work will be directed at analyzing other variants of the problem where ad-
ditional constraints are introduced, e.g., cardinality constraints, minimum/maximum
percentage of assets, etc. This analysis will pave the way for the development of ad
hoc MOEAs, where we plan to integrate specific knowledge on the problem and
on the subsequent decision-making procedure. Another line of future research con-
cerns the measure of risk. While we have focused on variance here, this is by no
means the unique available option. As an alternative, we may for example consider
value at risk, i.e., the maximum loss that can take place at a certain confidence level.
A related measure is the conditional value at risk, namely the expected shortfall in
the worst q% of cases, where q is a parameter. Other possible measures are Jensen
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index [14], Treynor index [28], or models emanating from capital asset pricing the-
ory (CAPM) [24], among others. An analysis of these alternatives is underway.
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Rodŕıguez, Ismael 333
Rubio, Fernando 333

Salomon, Ralf 77
Steer, Kent C.B. 51

Tan, Tse Guan 457
Tan, Ying 279
Tenne, Yoel 133
Teo, Jason 457
Tirronen, Ville 199

van Hemert, Jano 103

Wang, Yu 171
Weise, Thomas 1
Wirth, Andrew 51

Zapf, Michael 1
Zhang, Junqi 279


	Why Is Optimization Difficult?
	Introduction
	{\it Basic Terminology}
	{\it The Term “Difficult?}

	Premature Convergence
	{\it Introduction}
	{\it The Problem}
	{\it One Cause: Loss of Diversity}
	{\it Countermeasures}

	Ruggedness and Weak Causality
	{\it The Problem: Ruggedness}
	{\it One Cause: Weak Causality}
	{\it Countermeasures}

	Deceptiveness
	{\it Introduction}
	{\it The Problem}
	{\it Countermeasures}

	Neutrality and Redundancy
	{\it The Problem: Neutrality}
	{\it Evolvability}
	{\it Neutrality: Problematic and Beneficial}
	{\it Redundancy: Problematic and Beneficial}
	{\it Summary}

	Epistasis
	{\it Introduction}
	{\it The Problem}
	{\it Countermeasures}

	Noise and Robustness
	{\it Introduction ? Noise}
	{\it The Problem: Need for Robustness}
	{\it Countermeasures}

	Overfitting and Oversimplification
	{\it Overfitting}
	{\it Oversimplification}

	Multi-objective Optimization
	{\it Introduction}
	{\it The Problem}
	{\it Countermeasures}
	{\it Constraint Handling}

	Dynamically Changing Fitness Landscape
	The No Free Lunch Theorem
	Concluding Remarks
	References

	The Rationale Behind Seeking Inspiration from Nature
	References

	The Evolutionary-Gradient-Search Procedure in Theory and Practice
	References

	The Evolutionary Transition Algorithm: Evolving Complex Solutions Out of Simpler Ones
	References

	A Model-Assisted Memetic Algorithm for Expensive Optimization Problems
	References

	A Self-adaptive Mixed Distribution Based Uni-variate Estimation of Distribution Algorithm for Large Scale Global Optimization
	References

	Differential Evolution with Fitness Diversity Self-adaptation
	References

	Central Pattern Generators: Optimisation and Application
	References

	Fish School Search
	Introduction
	Background
	References

	Magnifier Particle Swarm Optimization
	References

	Improved Particle Swarm Optimization in Constrained Numerical Search Spaces
	References

	Applying River Formation Dynamics to Solve NP-Complete Problems
	Appendix
	References

	Algorithms Inspired in Social Phenomena
	References

	Artificial Immune Systems for Optimization
	References

	Ranking Methods in Many-Objective Evolutionary Algorithms
	References

	On the Effect of Applying a Steady-State Selection Scheme in the Multi-Objective Genetic Algorithm NSGA-II
	References

	Improving the Performance of Multiobjective Evolutionary Optimization Algorithms Using Coevolutionary Learning
	Introduction
	Related Works
	Multiobjective Optimization Problems
	Multiobjective Evolutionary Algorithm: SPEA2
	Proposed Algorithms
	{\it SPEA2-CE-KR}
	{\it SPEA2-CC}

	Test Problems and Performance Measures
	Parameters Used in the Experiments
	Optimization Results
	Discussion
	Conclusions and Future Work
	Appendix
	References

	Evolutionary Optimization for Multiobjective Portfolio Selection under Markowitz’s Model with Application to the Caracas Stock Exchange
	References


