
Natural Computing Series

Anthony Brabazon
Michael O'Neill
Seán McGarraghy

Natural
Computing
Algorithms

Natural Computing Series

Series Editors: G. Rozenberg
Th. Bäck A.E. Eiben J.N. Kok H.P. Spaink

Leiden Center for Natural Computing

ttp://www.springer.com/series/More information about this series at h 4190

˘

Advisory Board: S. Amari G. Brassard K.A. De Jong C.C.A.M. Gielen
T. Head L. Kari L. Landweber T. Martinetz Z. Michalewicz M.C. Mozer
E. Oja G. Paun J. Reif H. Rubin A. Salomaa M. Schoenauer

 H.-P. Schwefel C. Torras D. Whitley E. Winfree J.M. Zurada

http://www.springer.com/series/4190

Anthony Brabazon • Michael O’Neill
Seán McGarraghy

Natural Computing Algorithms

ISSN 1619-7127
Natural Computing Series
ISBN 978-3-662-43630-1 ISBN 978-3-662-43631-8 (eBook)
DOI 10.1007/978-3-662-43631-8

Library of Congress Control Number: 20159 1433

Springer Heidelberg New York Dordrecht London
© Springer-Verlag Berlin Heidelberg 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein
or for any errors or omissions that may have been made.

Printed on acid-free paper

Springer-Verlag GmbH Berlin Heidelberg is part of Springer Science+Business Media (www.springer.com)

Anthony Brabazon Michael O’Neill

Seán McGarraghy

Series Editors
G. Rozenberg (Managing Editor)

Th. Bäck, J.N. Kok, H.P. Spaink
Leiden Center for Natural Computing
Leiden University
Leiden, The Netherlands

A.E. Eiben
VU University Amsterdam
The Netherlands

Natural Computing Research
& Applications Group

School of Business
University College Dublin
Dublin, Ireland

Natural Computing Research
& Applications Group

School of Business
University College Dublin
Dublin, Ireland

Natural Computing Research
& Applications Group

School of Business
University College Dublin
Dublin, Ireland

5

http://www.springer.com

To Maria, Kevin and Rose
Tony

To Gráinne, Aoife, Michael, Caoimhe, my father John & to the
memory of my mother Jane

Mike

To Milena, Martin and Alex, and my mother Mary; and to the
memory of my father Michael

Seán

Preface

The field of natural computing has been the focus of a substantial research ef-
fort in recent decades. One particular strand of this concerns the development
of computational algorithms using metaphorical inspiration from systems and
phenomena that occur in the natural world. These naturally inspired comput-
ing algorithms have proven to be successful problem solvers across domains as
varied as management science, telecommunications, business analytics, bioin-
formatics, finance, marketing, engineering, architecture and design, to name
but a few. This book provides a comprehensive introduction to natural com-
puting algorithms.

The book is divided into eight main parts, each of which provides an inte-
grated discussion of a range of related natural computing algorithms. The first
part covers a family of algorithms which are inspired by processes of evolution
(evolutionary computing) as well as introducing pivotal concepts in the design
of natural computing algorithms such as choice of representation, diversity
generation mechanisms, and the selection of an appropriate fitness function.
The second part illustrates a selection of algorithms which are inspired by
the social behaviour of individuals (social computing) ranging from flocking
behaviours to the food foraging behaviours of several organisms, including
bats, insects and bacteria. The third part introduces a number of algorithms
whose workings are inspired by the operation of our central nervous system
(neurocomputing). The fourth part of the book discusses optimisation and
classification algorithms which are metaphorically derived from the workings
of our immune system (immunocomputing). The fifth part provides an intro-
duction to developmental and grammatical computing, where the creation of
a model or structure results from a development process which is typically
governed by a set of rules, a ‘grammar’. Physical computing is described in
the sixth part of the book, with the primary emphasis being placed on the
use of quantum inspired representations in natural computing. Two emerging
paradigms in natural computing, chemical computing and plant inspired al-
gorithms are introduced in part seven of the book. The closing chapter of the
book looks towards the future of natural computing algorithms.

VII

VIII Preface

Of course, given the diverse range of natural computing algorithms which
have been developed, we have had to make difficult decisions as to which
algorithms to include and which to omit from our coverage. We have generally
focussed on the better known algorithms in each part, supplemented by some
less known algorithms which we personally found interesting!

This book will be of particular interest to academics and practitioners
in computer science, informatics, management science and other application
domains who wish to learn more about natural computing. The book is also
a suitable accompaniment for a course on natural computing and could be
used with graduate and final-year undergraduate students. More generally, the
book will be of interest to anyone interested in natural computing approaches
to optimisation, clustering, classification, prediction and model induction.

In order to make the book as accessible as possible, no prior knowledge
of natural computing is assumed; nor do we assume that the reader has an
extensive background in mathematics, optimisation or statistics. In discussing
each family of algorithms we concentrate on providing a clear description of
the main components of each algorithm and we also include material on the
relevant natural background so that readers can fully appreciate the hidden
computation that takes place in nature. As the book is intended to provide
an introduction to a wide range of algorithms we do not focus on an exhaus-
tive theoretical discussion concerning each of the algorithmic families, as a
comprehensive discussion of any of them would require a book in its own
right.

Anthony Brabazon
Michael O’Neill

Dublin, March 2015 Seán McGarraghy

Acknowledgment

When first conceived, we had little idea that the project of writing this book
would take nearly eight years to complete. Over the course of that time, the
field of natural computing has seen multiple advances and many people have
consequently influenced this work. In particular, we would like to acknowledge
a number of people who have directly, and indirectly through their encour-
agement, contributed to this project.

The greatest single influence has come from our students over the years,
both those taking courses that we have taught, and our graduate research stu-
dents. Students on the Natural Computing (COMP30290), Natural Comput-
ing Applications (COMP41190), Numerical Analytics and Software (MIS40530),
Network SoftwareModelling (MIS40550), DataMining &Applications (MIS40970),
and Advanced Specialist Course (Finance) (FIN40960) modules at University
College Dublin helped to road test material from the book and many changes
were made as a result of their feedback.

The countless conversations and interactions with members of the UCD
Natural Computing Research & Applications Group (http://ncra.ucd.ie)
have continually challenged and informed our understanding of the world of
natural computing and we wish to thank all members (past and present) of
this amazing team of researchers who have kept us inspired.

We would also like to thank the School of Business at University College
Dublin (http://www.smurfitschool.ie/), and our colleagues in the School,
for their support during this project. The Complex & Adaptive Systems Lab-
oratory (http://casl.ucd.ie) at University College Dublin also provided
support for this project by fostering the interdisciplinary environment in
which our group collaborates and through the provision of physical space
for our research team. Anthony Brabazon and Michael O’Neill also acknowl-
edge the support of their research activities provided by Science Foundation
Ireland (Grant number 08/SRC/FM1389 – Financial Mathematics and Com-
putation Research Cluster, Grant number 08/IN.1/I1868 – Evolution in Dy-
namic Environments with Grammatical Evolution (EDGE), and Grant num-
ber 13/IA/1850 – Applications of Evolutionary Design (AppED)).

IX

http://ncra.ucd.ie
http://www.smurfitschool.ie/
http://casl.ucd.ie

X Acknowledgment

We are very grateful to the anonymous referees for their thorough review of
drafts of this book and for their insightful, thought provoking comments. They
have notably strengthened this work. For their proof reading, we acknowledge
the assistance of Drs. Eoin Murphy, Miguel Nicolau and James McDermott,
and we also acknowledge the assistance of Dr. Wei Cui for the production of
some of the diagrams in the book. Despite the valiant efforts of all the proof
readers and ourselves, errors and omissions will undoubtedly occur, and we
accept responsibility for these.

We thank Diego Perez and Miguel Nicolau for their research on the ap-
plication of Grammatical Evolution (GE) to the Mario AI challenge, which
was adapted as a working example of a GE mapping in Chap. 19. We thank
Margaret O’Connor for sharing her knowledge on plants, and Owen, Niall and
Peggy for listening and keeping Mike sane and firmly grounded at all times.
Thanks also to those who in their various ways encouraged our journey into
natural computing including Eamonn Walsh and Robin Matthews.

We especially extend our thanks to Ronan Nugent of Springer-Verlag for
his on-going support of this project, for his advice on drafts of the manuscript,
and especially for his patience with a project that took far longer than we
originally planned.

We each extend a special thank you to our families. Without your love,
support, patience, and understanding, this project would never have been
completed.

Anthony Brabazon
Michael O’Neill

Seán McGarraghy

Contents

1 Introduction . 1
1.1 Natural Computing Algorithms: An Overview 2

1.1.1 Biologically Inspired Algorithms . 2
1.1.2 Families of Naturally Inspired Algorithms 9
1.1.3 Physically Inspired Algorithms . 10
1.1.4 Plant Inspired Algorithms . 11
1.1.5 Chemically Inspired Algorithms . 11
1.1.6 A Unified Family of Algorithms . 11
1.1.7 How Much Natural Inspiration? . 12

1.2 Structure of the Book . 12

Part I Evolutionary Computing

2 Introduction to Evolutionary Computing 17
2.1 Evolutionary Algorithms . 18

3 Genetic Algorithm . 21
3.1 Canonical Genetic Algorithm . 21

3.1.1 A Simple GA Example . 23
3.2 Design Choices in Implementing a GA . 24
3.3 Choosing a Representation . 25

3.3.1 Genotype to Phenotype Mapping . 26
3.3.2 Genotype Encodings . 26
3.3.3 Representation Choice and the Generation of Diversity . 28

3.4 Initialising the Population . 29
3.5 Measuring Fitness . 29
3.6 Generating Diversity . 31

3.6.1 Selection Strategy . 31
3.6.2 Mutation and Crossover . 35
3.6.3 Replacement Strategy . 39

XI

XII Contents

3.7 Choosing Parameter Values . 40
3.8 Summary . 41

4 Extending the Genetic Algorithm . 43
4.1 Dynamic Environments . 43

4.1.1 Strategies for Dynamic Environments 44
4.1.2 Diversity . 44

4.2 Structured Population GAs . 48
4.3 Constrained Optimisation . 50
4.4 Multiobjective Optimisation . 53
4.5 Memetic Algorithms . 57
4.6 Linkage Learning . 59
4.7 Estimation of Distribution Algorithms . 61

4.7.1 Population-Based Incremental Learning 62
4.7.2 Univariate Marginal Distribution Algorithm 63
4.7.3 Compact Genetic Algorithm . 65
4.7.4 Bayesian Optimisation Algorithm 66

4.8 Summary . 71

5 Evolution Strategies and Evolutionary Programming 73
5.1 The Canonical ES Algorithm . 74

5.1.1 (1 + 1)-ES . 74
5.1.2 (μ+ λ)-ES and (μ, λ)-ES . 75
5.1.3 Mutation in ES . 75
5.1.4 Adaptation of the Strategy Parameters 76
5.1.5 Recombination . 78

5.2 Evolutionary Programming . 80
5.3 Summary . 82

6 Differential Evolution . 83
6.1 Canonical Differential Evolution Algorithm 83
6.2 Extending the Canonical DE Algorithm . 88

6.2.1 Selection of the Base Vector . 88
6.2.2 Number of Vector Differences . 88
6.2.3 Alternative Crossover Rules . 89
6.2.4 Other DE Variants . 89

6.3 Discrete DE . 90
6.4 Summary . 92

7 Genetic Programming . 95
7.1 Genetic Programming . 95

7.1.1 GP Algorithm . 97
7.1.2 Function and Terminal Sets . 98
7.1.3 Initialisation Strategy . 100
7.1.4 Diversity-Generation in GP . 102

Contents XIII

7.2 Bloat in GP . 105
7.3 More Complex GP Architectures . 105

7.3.1 Functions . 105
7.3.2 ADF Mutation and Crossover . 108
7.3.3 Memory . 108
7.3.4 Looping . 109
7.3.5 Recursion . 111

7.4 GP Variants . 112
7.4.1 Linear and Graph GP . 112
7.4.2 Strongly Typed GP . 112
7.4.3 Grammar-Based GP . 112

7.5 Semantics and GP . 113
7.6 Summary . 113

Part II Social Computing

8 Particle Swarm Algorithms . 117
8.1 Social Search . 118
8.2 Particle Swarm Optimisation Algorithm . 118

8.2.1 Velocity Update . 120
8.2.2 Velocity Control . 123
8.2.3 Neighbourhood Structure . 124

8.3 Comparing PSO and Evolutionary Algorithms 125
8.4 Maintaining Diversity in PSO . 127

8.4.1 Simple Approaches to Maintaining Diversity 129
8.4.2 Predator–Prey PSO . 130
8.4.3 Charged Particle Swarm. 132
8.4.4 Multiple Swarms . 134
8.4.5 Speciation-Based PSO . 135

8.5 Hybrid PSO Algorithms . 136
8.6 Discrete PSO . 137

8.6.1 BinPSO . 137
8.6.2 Angle-Modulated PSO . 138

8.7 Evolving a PSO Algorithm . 139
8.8 Summary . 139

9 Ant Algorithms . 141
9.1 A Taxonomy of Ant Algorithms . 142
9.2 Ant Foraging Behaviours . 142
9.3 Ant Algorithms for Discrete Optimisation 144

9.3.1 Graph structure . 144
9.3.2 Ant System . 147
9.3.3 MAX -MIN Ant System . 151
9.3.4 Ant Colony System . 152

XIV Contents

9.3.5 Ant Multitour Systems . 153
9.3.6 Dynamic Optimisation . 154

9.4 Ant Algorithms for Continuous Optimisation. 155
9.5 Multiple Ant Colonies . 157
9.6 Hybrid Ant Foraging Algorithms . 159
9.7 Ant-Inspired Clustering Algorithms . 160

9.7.1 Deneubourg Model . 161
9.7.2 Lumer and Faieta Model . 162
9.7.3 Critiquing Ant Clustering . 166

9.8 Classification with Ant Algorithms . 167
9.9 Evolving an Ant Algorithm . 169
9.10 Summary . 170

10.1 Honeybee Dance Language . 171
10.2 Honeybee Foraging . 172

10.2.1 The Honeybee Recruitment Dance 172
10.3 Designing a Honeybee Foraging Optimisation Algorithm 173

10.3.1 Bee System Algorithm . 174
10.3.2 Artificial Bee Colony Algorithm . 175
10.3.3 Honeybee Foraging and Dynamic Environments 178

10.4 Bee Nest Site Selection . 180
10.4.1 Bee Nest Site Selection Optimisation Algorithm 182

10.5 Honeybee Mating Optimisation Algorithm 184
10.6 Summary . 186

11 Bacterial Foraging Algorithms . 187
11.1 Bacterial Behaviours . 187

11.1.1 Quorum Sensing . 187
11.1.2 Sporulation . 188
11.1.3 Mobility . 188

11.2 Chemotaxis in E. Coli Bacteria . 189
11.3 Bacterial Foraging Optimisation Algorithm 190

11.3.1 Basic Chemotaxis Model . 191
11.3.2 Chemotaxis Model with Social Communication 192

11.4 Dynamic Environments . 198
11.5 Classification Using a Bacterial Foraging Metaphor 198
11.6 Summary . 199

12 Other Social Algorithms . 201
12.1 Glow Worm Algorithm . 201
12.2 Bat Algorithm . 206

12.2.1 Bat Vocalisations . 206
12.2.2 Algorithm . 207
12.2.3 Discussion . 210

10 Other Foraging Algorithms . 171

Contents XV

12.3 Fish School Algorithm . 211
12.3.1 Fish School Search . 212
12.3.2 Summary. 214

12.4 Locusts . 215
12.4.1 Locust Swarm Algorithm . 216

12.5 Summary . 218

Part III Neurocomputing

13 Neural Networks for Supervised Learning 221
13.1 Biological Inspiration for Neural Networks 221
13.2 Artificial Neural Networks . 222

13.2.1 Neural Network Architectures . 222
13.3 Structure of Supervised Neural Networks 224

13.3.1 Activation and Transfer Functions 226
13.3.2 Universal Approximators . 228

13.4 The Multilayer Perceptron . 228
13.4.1 MLP Transfer Function . 230
13.4.2 MLP Activation Function . 230
13.4.3 The MLP Projection Construction and Response

Regions . 231
13.4.4 Relationship of MLPs to Regression Models 233
13.4.5 Training an MLP . 234
13.4.6 Overtraining . 237
13.4.7 Practical Issues in Modelling with and Training MLPs . 239
13.4.8 Stacking MLPs . 243
13.4.9 Recurrent Networks . 244

13.5 Radial Basis Function Networks . 246
13.5.1 Kernel Functions . 246
13.5.2 Radial Basis Functions . 247
13.5.3 Intuition Behind Radial Basis Function Networks 248
13.5.4 Properties of Radial Basis Function Networks 249
13.5.5 Training Radial Basis Function Networks 250
13.5.6 Developing a Radial Basis Function Network 251

13.6 Support Vector Machines . 252
13.6.1 SVM Method . 258
13.6.2 Issues in Applications of SVM . 258

13.7 Summary . 259

14 Neural Networks for Unsupervised Learning 261
14.1 Self-organising Maps . 262
14.2 SOM Algorithm . 264
14.3 Implementing a SOM Algorithm. 266
14.4 Classification with SOMs . 271

XVI Contents

14.5 Self-organising Swarm . 272
14.6 SOSwarm and SOM . 275
14.7 Adaptive Resonance Theory . 276

14.7.1 Unsupervised Learning for ART . 277
14.7.2 Supervised Learning for ARTs . 279
14.7.3 Weaknesses of ART Approaches . 279

14.8 Summary . 279

15 Neuroevolution . 281
15.1 Direct Encodings . 282

15.1.1 Evolving Weight Vectors . 282
15.1.2 Evolving the Selection of Inputs . 283
15.1.3 Evolving the Connection Structure 283
15.1.4 Other Hybrid MLP Algorithms . 286
15.1.5 Problems with Direct Encodings . 287

15.2 NEAT . 289
15.2.1 Representation in NEAT . 290
15.2.2 Diversity Generation in NEAT . 291
15.2.3 Speciation . 292
15.2.4 Incremental Evolution . 296

15.3 Indirect Encodings . 297
15.4 Other Hybrid Neural Algorithms . 297
15.5 Summary . 297

Part IV Immunocomputing

16 Artificial Immune Systems . 301
16.1 The Natural Immune System . 302

16.1.1 Components of the Natural Immune System 302
16.1.2 Innate Immune System. 302
16.1.3 Adaptive Immune System . 304
16.1.4 Danger Theory . 309
16.1.5 Immune Network Theory . 309
16.1.6 Optimal Immune Defence . 310

16.2 Artificial Immune Algorithms . 310
16.3 Negative Selection Algorithm . 310
16.4 Dendritric Cell Algorithm . 315
16.5 Clonal Expansion and Selection Inspired Algorithms 320

16.5.1 CLONALG Algorithm . 320
16.5.2 B Cell Algorithm . 322
16.5.3 Real-Valued Clonal Selection Algorithm 323
16.5.4 Artificial Immune Recognition System 325

16.6 Immune Programming . 330
16.7 Summary . 331

Contents XVII

Part V Developmental and Grammatical Computing

17 An Introduction to Developmental and Grammatical
Computing . 335
17.1 Developmental Computing . 335
17.2 Grammatical Computing . 336
17.3 What Is a Grammar? . 337

17.3.1 Types of Grammar . 338
17.3.2 Formal Grammar Notation . 340

17.4 Grammatical Inference . 341
17.5 Lindenmayer Systems . 341
17.6 Summary . 343

18 Grammar-Based and Developmental Genetic

18.1 Grammar-Guided Genetic Programming . 346
18.1.1 Other Grammar-Based Approaches to GP 351

18.2 Developmental GP . 351
18.2.1 Genetic L-System Programming . 351
18.2.2 Binary GP . 352
18.2.3 Cellular Encoding . 354
18.2.4 Analog Circuits . 354
18.2.5 Other Developmental Approaches to GP 354

18.3 Summary . 356

19 Grammatical Evolution . 357
19.1 A Primer on Gene Expression . 358
19.2 Extending the Biological Analogy to GE 360
19.3 Example GE Mapping . 361
19.4 Search Engine . 368

19.4.1 Genome Encoding . 368
19.4.2 Mutation and Crossover Search Operators 368
19.4.3 Modularity . 370
19.4.4 Search Algorithm. 371

19.5 Genotype–Phenotype Map . 372
19.6 Grammars . 372
19.7 Summary . 373

20 Tree-Adjoining Grammars and Genetic Programming
20.1 Tree-Adjoining Grammars . 377
20.2 TAG3P . 377
20.3 Developmental TAG3P . 379
20.4 TAGE . 379
20.5 Summary . 381

Programming . 345

375.

XVIII Contents

21 Genetic Regulatory Networks . 383
21.1 Artificial Gene Regulatory Model for Genetic Programming . . . 383

21.1.1 Model Output . 385
21.2 Differential Gene Expression . 386
21.3 Artificial GRN for Image Compression . 389
21.4 Summary . 389

Part VI Physical Computing

22 An Introduction to Physically Inspired Computing 393
22.1 A Brief Physics Primer . 393

22.1.1 A Rough Taxonomy of Modern Physics 393
22.2 Classical Mechanics . 395

22.2.1 Energy and Momentum . 395
22.2.2 The Hamiltonian . 396

22.3 Thermodynamics . 398
22.3.1 Statistical Mechanics . 400
22.3.2 Ergodicity . 402

22.4 Quantum Mechanics . 402
22.4.1 Observation in Quantum Mechanics 403
22.4.2 Entanglement and Decoherence . 404
22.4.3 Noncommuting Operators . 405
22.4.4 Tunnelling . 406
22.4.5 Quantum Statistical Mechanics . 406

22.5 Quantum Computing . 407
22.5.1 Two-State Systems and Qubits . 407
22.5.2 Digital Quantum Computers . 408
22.5.3 Quantum Information . 409
22.5.4 Adiabatic Quantum Computation 410

22.6 Annealing and Spin Glasses . 411
22.6.1 Ising Spin Glasses . 412
22.6.2 Quantum Spin Glasses . 414

22.7 Summary . 415

23 Physically Inspired Computing Algorithms 417
23.1 Simulated Annealing . 417

23.1.1 Search and Neighbourhoods . 419
23.1.2 Acceptance of ‘Bad’ Moves . 419
23.1.3 Parameterisation of SA . 420
23.1.4 Extensions of SA . 421
23.1.5 Concluding Remarks . 421

23.2 Simulated Quantum Annealing . 422
23.2.1 Implementation of SQA . 424
23.2.2 SQA Application to TSP-Type Problems 424

Contents XIX

23.3 Constrained Molecular Dynamics Algorithm 426
23.4 Physical Field Inspired Algorithms. 429

23.4.1 Central Force Optimisation . 429
23.4.2 Gravitational Search Algorithm and Variants 431
23.4.3 Differences Among Physical Field-Inspired Algorithms . 435

23.5 Extremal Optimisation Algorithm . 436
23.6 Summary . 437

24 Quantum Inspired Evolutionary Algorithms 439
24.1 Qubit Representation . 439
24.2 Quantum Inspired Evolutionary Algorithms (QIEAs) 440
24.3 Binary-Valued QIEA . 440

24.3.1 Diversity Generation in Binary QIEA 443
24.4 Real-Valued QIEA . 446

24.4.1 Initialising the Quantum Population 446
24.4.2 Observing the Quantum Chromosomes 447
24.4.3 Crossover Mechanism . 448
24.4.4 Updating the Quantum Chromosomes 449

24.5 QIEAs and EDAs . 449
24.6 Other Quantum Hybrid Algorithms . 450
24.7 Summary . 452

Part VII Other Paradigms

25 Plant-Inspired Algorithms . 455
25.1 Plant Behaviours . 455
25.2 Foraging . 456

25.2.1 Plant Movement and Foraging . 457
25.2.2 Root Foraging . 459
25.2.3 Predatory Plants . 461

25.3 Plant-Level Coordination . 462
25.4 A Taxonomy of Plant-Inspired Algorithms 464
25.5 Plant Propagation Algorithms . 464

25.5.1 Invasive Weed Optimisation Algorithm 464
25.5.2 Paddy Field Algorithm . 467
25.5.3 Strawberry Plant Algorithm . 468

25.6 Plant Growth Simulation Algorithm . 469
25.6.1 The Algorithm . 472
25.6.2 Variants on the Plant Growth Simulation Algorithm . . . 474

25.7 Root-Swarm Behaviour . 475
25.7.1 Modelling Root Growth in Real Plants 476
25.7.2 Applying the Root-Swarm Metaphor for Optimisation. . 476

25.8 Summary . 477

XX Contents

26 Chemically Inspired Algorithms . 479
26.1 A Brief Chemistry Primer . 479
26.2 Chemically Inspired Algorithms . 481

26.2.1 Chemical Reaction Optimisation (CRO) 481
26.2.2 Artificial Chemical Reaction Optimisation Algorithm

(ACROA) . 482
26.3 The CRO Algorithm . 483

26.3.1 Potential and Kinetic Energy and the Buffer 483
26.3.2 Types of Collision and Reaction . 484
26.3.3 The High-Level CRO Algorithm . 485
26.3.4 On-wall Ineffective Collision . 489
26.3.5 Decomposition . 489
26.3.6 Intermolecular Ineffective Collision 490
26.3.7 Synthesis . 492

26.4 Applications of CRO . 493
26.5 Discussion of CRO. 494

26.5.1 Potential Future Avenues for Research 496
26.6 Summary . 498

Part VIII The Future of Natural Computing Algorithms

27 Looking Ahead . 501
27.1 Open Issues . 501

27.1.1 Hybrid Algorithms . 501
27.1.2 The Power and the Dangers of Metaphor 502
27.1.3 Benchmarks and Scalability . 502
27.1.4 Usability and Parameter-Free Algorithms 503
27.1.5 Simulation and Knowledge Discovery 503

27.2 Concluding Remarks . 503

References . 505

Index . 547

1

Introduction

Fig. 1.1. The three facets of natural computing: 1) natural systems as computa-
tional media (e.g., DNA and molecular computing), 2) simulation of natural systems
with the potential for knowledge discovery, and 3) algorithms inspired by the natural
world

Although there is no unique definition of the term natural computing, most
commonly the field is considered to consist of three main strands of enquiry:
see Fig. 1.1. The first strand concerns the use of natural materials and phe-
nomena for computational purposes such as DNA and molecular computing
(computing in vivo); the second strand concerns the application of computer
simulations to replicate natural phenomena in order to better understand
those phenomena (e.g., artificial life, agent based modelling and computa-
tional biology); and the third strand, which forms the subject matter of this
book, is concerned with the development of computational algorithms which
draw their metaphorical inspiration from systems and phenomena that occur
in the natural world. These algorithms can be applied to a multiplicity of

© Springer-Verlag Berlin Heidelberg 2015 1
A. Brabazon et al., Natural Computing Algorithms, Natural Computing Series,
DOI 10.1007/978-3-662-43631-8_1

2 1 Introduction

real-world problems including optimisation, classification, prediction, cluster-
ing, design and model induction. The objective of this book is to provide an
introduction to a broad range of natural computing algorithms.

1.1 Natural Computing Algorithms: An Overview

Natural computing is inherently multidisciplinary as it draws inspiration from
a diverse range of fields of study including mathematics, statistics, computer
science and the natural sciences of biology, physics and chemistry. As our un-
derstanding of natural phenomena has deepened so too has our recognition
that many mechanisms in the natural world parallel computational processes
and can therefore serve as an inspiration for the design of problem-solving
algorithms (defined simply as a set of instructions for solving a problem of
interest). In this book we introduce and discuss a range of families of natu-
ral computing algorithms. Figure 1.2 provides a high-level taxonomy of the
primary methodologies discussed in this book which are grouped under the
broad umbrellas of evolutionary computing, social computing, neurocomput-
ing, immunocomputing, developmental and grammatical computing, physical
computing, and chemical computing.

1.1.1 Biologically Inspired Algorithms

An interesting aspect of biological systems at multiple levels of scale (ecosys-
tems, humans, bacteria, cells, etc.) which suggests that they may provide good
sources of inspiration for solving real-world problems is that the very process
of survival is itself a challenging problem! In order to survive successfully or-
ganisms need to be able to find resources such as food, water, shelter and
mates, whilst simultaneously avoiding predators. It is plausible that mecha-
nisms which have evolved in order to assist survivability of organisms in these
settings, such as sensing, communication, cognition and mobility could prove
particularly useful in inspiring the design of computational algorithms. Virtu-
ally all biological systems exist in high-dimensional (i.e., many factors impact
on their survival), dynamic environments and hence biologically inspired al-
gorithms may be of particular use in problem solving in these conditions.

Although many aspects of biological systems are noteworthy, a few charac-
teristics of biological systems which provide food for thought in the design of
biologically inspired algorithms include: the importance of the population; the
emphasis on robustness (survival) rather than on optimality; and the existence
of multilevel adaptive processes.

Populational Perspective

In many biologically inspired algorithms the search for good solutions takes
place within a population of potential solutions. As in biological settings, indi-

1.1 Natural Computing Algorithms: An Overview 3

R
ad

ia
l B

as
is

D
ev

el
op

m
en

ta
l &

G
ra

m
m

at
ic

al
G

en
et

ic
 P

ro
gr

am
m

in
g

A
lg

or
it

hm
s

N
at

ur
al

 C
om

pu
ti

ng

Si
m

ul
at

ed
A

nn
ea

lin
g

C
om

pu
ti

ng
P

hy
si

ca
l

C
on

st
ra

in
ed

 M
ol

ec
ul

ar
D

yn
am

ic
s

E
vo

lu
ti

on
ar

y
C

om
pu

ti
ng

E
vo

lu
ti

on
St

ra
te

gi
es

E
vo

lu
ti

on
ar

y
P

ro
gr

am
m

in
g

D
if

fe
re

nt
ia

l
E

vo
lu

ti
on

G
en

et
ic

P
ro

gr
am

m
in

g
G

en
et

ic
A

lg
or

it
hm

s

C
om

pu
ti

ng
C

he
m

ic
al

G
ra

m
m

at
ic

al
E

vo
lu

ti
on

P
er

ce
pt

ro
ns

M
ul

ti
−

la
ye

r

G
ra

m
m

at
ic

al
 C

om
pu

ti
ng

F
un

ct
io

n
N

et
w

or
ks

Se
lf

O
rg

an
is

in
g

M
ap

s

A
da

pt
iv

e
R

es
on

an
ce

T
he

or
y

G
ra

m
m

at
ic

al
E

vo
lu

ti
on

E
vo

lu
ti

on

E
vo

lu
ti

on
G

ra
m

m
at

ic
al

D
if

fe
re

nt
ia

l
E

vo
lu

ti
on

Sw
ar

m
G

ra
m

m
at

ic
al

B
ac

te
ri

al
 F

or
ag

in
g

A
lg

or
it

hm

P
ar

ti
cl

e
Sw

ar
m

O
pt

im
is

at
io

n

C
ol

on
y

A
nt

O
pt

im
is

at
io

n

G
lo

w
 W

or
m

 A
lg

or
it

hm

B
at

 A
lg

or
it

hm

F
is

h
Sc

ho
ol

 A
lg

or
it

hm

H
on

ey
 B

ee
 A

lg
or

it
hm

L
oc

us
t

Sw
ar

m
 A

lg
or

it
hm

N
eg

at
iv

e
Se

le
ct

io
n

A
lg

or
it

hm
D

en
dr

it
ic

 C
el

l
A

lg
or

it
hm

C
lo

na
l E

xp
an

si
on

 &
Se

le
ct

io
n

A
lg

or
it

hm
s

E
vo

lu
ti

on
ar

y
A

lg
or

it
hm

s
Q

ua
nt

um
−

in
sp

ir
ed

G
ra

m
m

ar
−

gu
id

ed
 G

P
 (

G
3P

)
D

ev
el

op
m

en
ta

l G
P

T
A

G
3P

D
T

A
G

3P

N
eu

ro
co

m
pu

ti
ng

So
ci

al
 C

om
pu

ti
ng

T
A

G
EG
en

et
ic

 R
eg

ul
at

or
y

N
et

w
or

ks

Im
m

un
oc

om
pu

ti
ng

L
−

sy
st

em
s

G
ra

m
m

at
ic

al

G
ra

m
m

at
ic

al
by

π

Fig. 1.2. A taxonomy of the nature inspired algorithms discussed in this book

4 1 Introduction

viduals in a population can be considered an individual hypothesis (or learn-
ing trial) in the game of survival. From a species point of view, maintaining
a dispersed population of individuals reduces the chance that environmental
change will render the entire species extinct.

In contrast, in many traditional (non-natural-computing) optimisation al-
gorithms, the paradigm is to generate a single trial solution and then itera-
tively improve it. Consider for example, a simple random hill-climbing opti-
misation algorithm (Algorithm 1.1) where an individual solution is iteratively
improved using a greedy search strategy. In greedy search, any change in a
solution which makes it better is accepted. This implies that a hill-climbing
algorithm can find a local, but not necessarily the global, optimum (Fig. 1.3).
This makes the choice of starting point a critical one. Note that this is so for
all hill-climbing algorithms, including those that exploit information found so
far (e.g., Newton’s algorithm uses slope information, while the Nelder–Mead
algorithm does not need slopes but uses several previous points’ objective
function values).

Algorithm 1.1: Hill Climbing Algorithm

Randomly generate a solution x;
Calculate the objective function value f(x) for the solution;

repeat

Randomly mutate solution;
if new solution is better than the current solution then

Replace the current solution with the new one
end

until terminating condition;

Many of the biologically inspired algorithms described in this book main-
tain and successively update a population of potential solutions, which in the
ideal case provides a good coverage (or sampling) of the environment in which
we are problem-solving, resulting in a form of parallel search. This of course
assumes the process that generates the first population disperses the individ-
uals in an appropriate manner so as to maximise coverage of the environment.
Ideally as search progresses it might be desirable to maintain a degree of dis-
persion to avoid premature convergence of the population to local optima.
It is the existence of a population which allows these bioinspired algorithms
the potential to achieve global search characteristics, and avoid local optima
through the populational dispersion of individuals.

Dispersion and Diversity

It is important to highlight this point that we should not confuse the no-
tions of diversity (of objective function values) and dispersion. Often we

1.1 Natural Computing Algorithms: An Overview 5

Starting point

Global
maximum

Local
maximum f(x)

xi

Fig. 1.3. A hill-climbing algorithm will find a local optimum. Due to its greedy
search strategy it cannot then escape from this as it would require a ‘downhill’ move
to traverse to the global optimum

(over)emphasise the value of diversity within a population. From a compu-
tational search perspective it is arguably more valuable to focus on the dis-
persion (or coverage) of the population. It is possible to have an abundance
of diversity within a population; yet, at the same time, the population could
be converged on a local optimum. However, a population which has a high
value of dispersion is less likely to be converged in this manner. Figure 1.4
illustrates the difference between dispersion and diversity. The importance of
dispersion is brought into sharp focus if we expose the population to a chang-
ing environment where the location of the optima might change/move over
time. A population which maintains dispersion may have a better chance to
adapt to an environment where the global optimum moves a relatively far
distance from its current location.

Communication

Another critical aspect of most of the algorithms described in this book is that
the members of the population do not search in isolation. Instead they can
communicate information on the quality of their current (or their previous)
solution to other members of the population. Communication is interpreted
broadly here to mean exchange of information between members of the pop-
ulation, and so might take various forms: from chemical signals being left in
the environment of a social computing algorithm, which can be sensed by
individuals in the population; to the exchange of genes in an evolutionary
algorithm. This information is then used to bias the search process towards
areas of better solutions as the algorithm iterates.

6 1 Introduction

Fig. 1.4. An illustration of the difference between a dispersed (top) and a diverse
(bottom) population. It is possible to have a large amount of diversity (e.g., a wide
range of objective function values) but still be converged on a local optimum

Robustness

‘Survival in a dynamic environment’ is the primary aim in many biological
systems. Therefore the implicit driver for organisms is typically to uncover and
implement survival strategies which are ‘good enough’ for current conditions
and which are robust to changing environmental conditions. Optimality is a
fleeting concept in dynamic environments as (for example), the location of
good food resources last week may not hold true next week.

Adaptiveness

Adaptiveness (new learning) occurs at multiple levels and timescales in bio-
logical systems, ranging from (relatively) slow genetic learning to (relatively)
fast lifetime learning. The appropriate balance between speed of adaptation
and the importance of memory (or old learning) depends on the nature of

1.1 Natural Computing Algorithms: An Overview 7

the dynamic environment faced by the organism. The more dynamic the en-
vironment, the greater the need for adaptive capability and the less useful is
memory.

An interesting model of adaptation in biological systems is outlined in
Sipper et al. [581] and is commonly referred to as the POE model. This model
distinguishes between three levels of organisation in biological systems:

i. phylogeny (P),
ii. ontogeny (O), and
iii. epigenesis (E).

Phylogeny concerns the adaptation of genetic code over time. As the
genome adapts and differentiates, multiple species, or phylogeny, evolve. The
primary mechanisms for generating diversity in genetic codes are mutation,
and, in the case of sexual reproduction, recombination. The continual gener-
ation of diversity in genetic codings facilitates the survival of species, and the
emergence of new species, in the face of changing environmental conditions.
Much of the research around evolutionary computation to date exists along
this axis of adaptation.

Ontogeny refers to the development of a multicellular organism from a zy-
gote. While each cell maintains a copy of the original genome, it specialises to
perform specific tasks depending on its surroundings (cellular differentiation).
In recent years there has been increasing interest in developmental approaches
to adaptation with the adoption of models such as artificial genetic regulatory
networks.

Epigenesis is the development of systems which permit the organism to
integrate and process large amounts of information from its environment. The
development and working of these systems is not completely specified in the
genetic code of the organism and hence are referred to as ‘beyond the genetic’
or epigenetic. Examples include the immune, the nervous and the endocrine
systems. While the basic structure of these systems is governed by the or-
ganism’s genetic code, they are modified throughout the organism’s lifetime
as a result of its interaction with the environment. For example, a human’s
immune system can maintain a memory of pathogens that it has been exposed
to (the acquired immune system). The regulatory mechanism which controls
the expression of genes is also subject to epigenetic interference. For exam-
ple, chemical modification (e.g., through methylation) of regulatory regions
of the genome can have the effect of silencing (turning off or dampening) the
expression of a gene(s). The chemical modification can arise due to the en-
vironmental state in which the organism lives. So the environment can effect
which genes are expressed (or not) thereby indirectly modifying an organism’s
genetic makeup to suit the conditions in which it finds itself.

In complex biological organisms, all three levels of organisation are inter-
linked. However, in assisting us in thinking about the design of biologically
inspired algorithms, it can be useful to consider each level of organisation
(and their associated adaptive processes) separately (Fig. 1.5). Summarising

8 1 Introduction

Fig. 1.5. Three levels of organisation in biological systems

1.1 Natural Computing Algorithms: An Overview 9

the three levels, Sipper et al. [581] contends that they embed the ideas of
evolution, structural development of an individual, and learning through en-
vironmental interactions.

Most biologically inspired algorithms draw inspiration from a single level
of organisation but it is of course possible to design hybrid algorithms which
draw inspiration from more than one level. For example, neuroevolution, dis-
cussed in Chap. 15, combines concepts of both evolutionary and lifetime learn-
ing, and evolutionary–development (evo–devo) approaches (e.g., see Chap. 21)
hybridise phylogenetic and ontogenetic adaptation.

1.1.2 Families of Naturally Inspired Algorithms

A brief overview of some of the main families of natural computing algorithms
is provided in the following paragraphs. A more detailed discussion of each of
these is provided in later chapters.

Evolutionary Computing

Evolutionary computation simulates an evolutionary process on a computer
in order to breed good solutions to a problem. The process draws high-level
inspiration from biological evolution. Initially a population of potential solu-
tions are generated (perhaps randomly), and these are iteratively improved
over many simulated generations. In successive iterations of the algorithm,
fitness based selection takes place within the population of solutions. Better
solutions are preferentially selected for survival into the next generation of
solutions, with diversity being introduced in the selected solutions in an at-
tempt to uncover even better solutions over multiple generations. Algorithms
that employ an evolutionary approach include genetic algorithms (GAs), evo-
lutionary strategies (ES), evolutionary programming (EP) and genetic pro-
gramming (GP). Differential evolution (DE) also draws (loose) inspiration
from evolutionary processes.

Social Computing

The social models considered in this book are drawn from a swarm metaphor.
Two popular variants of swarm models exist, those inspired by the flocking
behaviour of birds and fish, and those inspired by the behaviour of social
insects such as ants and honey bees. The swarm metaphor has been used to
design algorithms which can solve difficult problems by creating a population
of problem solvers, and allowing these to communicate their relative success
in solving the problem to each other.

10 1 Introduction

Neurocomputing

Artificial neural networks (NNs) comprise a modelling methodology whose
inspiration arises from a simplified model of the workings of the human brain.
NNs can be used to construct models for the purposes of prediction, classifi-
cation and clustering.

Immunocomputing

The capabilities of the natural immune system are to recognise, destroy and
remember an almost unlimited number of foreign bodies, and also to protect
the organism from misbehaving cells in the body. Artificial immune systems
(AIS) draw inspiration from the workings of the natural immune system to
develop algorithms for optimisation and classification.

Developmental and Grammatical Computing

A significant recent addition to natural computing methodologies are those
inspired by developmental biology (developmental computing) and the use
of formal grammars (grammatical computing) from linguistics and computer
science. In natural computing algorithms grammars tend to be used in a gen-
erative sense to construct sentences in the language specified by the grammar.
This generative nature is compatible with a developmental approach, and con-
sequently a significant number of developmental algorithms adopt some form
of grammatical encoding. As will be seen there is also an overlap between
these algorithms and evolutionary computation. In particular, a number of
approaches to genetic programming adopt grammars to control the evolving
executable structures. This serves to highlight the overlapping nature of nat-
ural systems, and that our decomposition of natural computing algorithms
into families of inspiration is one of convenience.

1.1.3 Physically Inspired Algorithms

Just as biological processes can inspire the design of computational algorithms,
inspiration can also be drawn from looking at physical systems and processes.
We look at three algorithms which are inspired by the properties of interacting
physical bodies such as atoms and molecules, namely simulated annealing,
quantum annealing, and the constrained molecular dynamics algorithm. One
interesting strand of research in this area is drawn from a quantum metaphor.

Quantum Inspired Algorithms

Quantum mechanics seeks to explain the behaviours of natural systems that
are observed at very short time or distance scales. An example of a system is a

1.1 Natural Computing Algorithms: An Overview 11

subatomic particle such as a free electron. Two important concepts underlying
quantum systems are the superposition of states and quantum entanglement.
Recent years have seen the development of a series of quantum inspired hybrid
algorithms including quantum inspired evolutionary algorithms, social com-
puting, neurocomputing and immunocomputing. A claimed benefit of these
algorithms is that because they use a quantum inspired representation, they
can potentially maintain a good balance between exploration and exploitation.
It is also suggested that they could offer computational efficiencies.

1.1.4 Plant Inspired Algorithms

Plants represent some 99% of the eukaryotic biomass of the planet and have
been highly successful in colonising many habitats with differing resource po-
tential. Just like animals or simpler organisms such as bacteria (Chap. 11),
plants have evolved multiple problem-solving mechanisms including complex
food foraging mechanisms, environmental-sensing mechanisms, and reproduc-
tive strategies. Although plants do not have a brain or central nervous system,
they are capable of sensing environmental conditions and taking actions which
are ‘adaptive’ in the sense of allowing them to adjust to changing environmen-
tal conditions. These features of plants offer potential to inspire the design
of computational algorithms and a recent stream of work has seen the de-
velopment of a family of plant algorithms. We introduce a number of these
algorithms and highlight some current areas of research in this subfield.

1.1.5 Chemically Inspired Algorithms

Chemical processes play a significant role in many of the phenomena described
in this book, including (for example) evolutionary processes and the workings
of the natural immune system. However, so far, chemical aspects of these pro-
cesses have been largely ignored in the design of computational algorithms.
An emerging stream of study is beginning to remedy this gap in the litera-
ture and we describe an optimisation algorithm inspired by the processes of
chemical reactions.

1.1.6 A Unified Family of Algorithms

Although it is useful to compartmentalise the field of Natural Computing
into different subfields, such as Evolutionary and Social Computing, for the
purposes of introducing the material, it is important to emphasise that this
does not actually reflect the reality of the natural world around us. In na-
ture all of these learning mechanisms coexist and interact forming part of a
larger natural, complex and adaptive system encompassing physical, chemical,
evolutionary, immunological, neural, developmental, grammatical and social
processes, which, for example, are embodied in mammals. In much the same

12 1 Introduction

way that De Jong advocated for a unified field of Evolutionary Computa-
tion [144], we would favour a unification of all the algorithms inspired by the
natural world into the paradigm of Natural Computing and Natural Comput-
ing Algorithms. Increasingly we are seeing significant overlaps between the
different families of algorithms, and upon real-world application it is common
to witness their hybridisation (e.g., neuroevolution, evo–devo etc.). We antic-
ipate that the future of natural computing will see the integration of many
of these seemingly different approaches into unified software systems working
together in harmony.

1.1.7 How Much Natural Inspiration?

An obvious question when considering computational algorithms which are
inspired by natural phenomena is how accurate does the metaphor need to
be? We consider that the true measure of usefulness of a natural computing
algorithm is not its degree of veracity with (what we know of) nature, but
rather its effectiveness in problem solving; and that an intelligent designer of
algorithms should incorporate ideas from nature — while omitting others —
so long as these enhance an algorithm’s problem-solving ability. For example,
considering quantum inspired algorithms, unless we use quantum computers,
which to date are experimental devices and not readily available to the general
reader, it is not possible to efficiently simulate effects such as entanglement;
hence such algorithms while drawing a degree of inspiration from quantum
mechanics must of necessity omit important, even vital, features of the natural
phenomenon from which we derive inspiration.

1.2 Structure of the Book

The field of natural computing has expanded greatly in recent years beyond its
evolutionary and neurocomputing roots to encompass social, immune system,
physical and chemical metaphors. Not all of the algorithms discussed in this
book are fully explored as yet in terms of their efficiency and effectiveness.
However, we have deliberately chosen to include a wide range of algorithms
in order to illustrate the diversity of current research into natural computing
algorithms.

The remainder of this book is divided into eight parts. Part I starts by pro-
viding an overview of evolutionary computation (Chap. 2), and then proceeds
to describe the genetic algorithm (Chaps. 3 and 4), evolutionary strategies
and evolutionary programming (Chap. 5), differential evolution (Chap. 6),
and genetic programming (Chap. 7). Part II focusses on social computing
and provides coverage of particle swarm optimisation (Chap. 8), insect al-
gorithms (Chaps. 9 and 10), bacterial foraging algorithms (Chap. 11), and
other social algorithms (Chap. 12). Part III of the book provides coverage
of the main neurocomputing paradigms including supervised learning neural

1.2 Structure of the Book 13

network models such as the multilayer perceptron, recurrent networks, radial
basis function networks and support vector machines (Chap. 13), unsuper-
vised learning models such as self-organising maps (Chap. 14), and hybrid
neuroevolutionary models (Chap. 15). Part IV discusses immunocomputing
(Chap. 16). Part V of the book introduces developmental and grammati-
cal computing in Chap. 17 and provides detailed coverage of grammar-based
approaches to genetic programming in Chap. 18. Two subsequent chapters
expose in more detail some of grammar-based genetic programming’s more
popular forms, grammatical evolution and TAG3P (Chaps. 19 and 20), fol-
lowed by artificial genetic regulatory network algorithms in Chap. 21. Part VI
introduces physically inspired computing (Chaps. 22 to 24). Part VII intro-
duces some other paradigms that do not fit neatly into the earlier categories,
namely, plant-inspired algorithms in Chap. 25, and chemically inspired com-
puting in Chap. 26. Finally, Part VIII (Chap. 27) outlines likely avenues of
future work in natural computing algorithms.

We hope the reader will enjoy this tour of natural computing algorithms
as much as we have enjoyed the discovery (and in some cases rediscovery) of
these inspiring algorithms during the writing of this book.

Part I

Evolutionary Computing

2

Introduction to Evolutionary Computing

‘Owing to this struggle for life, variations, however slight and from
whatever cause proceeding, if they be in any degree profitable to the
individuals of a species, in their infinitely complex relations to other
organic beings and to their physical conditions of life, will tend to
the preservation of such individuals, and will generally be inherited
by the offspring. The offspring, also, will thus have a better chance
of surviving, for, of the many individuals of any species which are
periodically born, but a small number can survive. I have called this
principle, by which each slight variation, if useful, is preserved, by the
term Natural Selection’. (Darwin, 1859 [127], p. 115)

Biological evolution performs as a powerful problem-solver that attempts to
produce solutions that are at least good enough to perform the job of survival
in the current environmental context. Since Charles Darwin popularised the
theory of Natural Selection, the driving force behind evolution, molecular biol-
ogy has unravelled some of the mysteries of the components that underpinned
earlier evolutionary ideas. In the twentieth century molecular biologists un-
covered the existence of DNA, its importance in determining hereditary traits
and later its structure, unlocking the key to the genetic code. The accumu-
lation of knowledge about the biological process of evolution, often referred
to as neo-Darwinism, has in turn given inspiration to the design of a family
of computational algorithms known collectively as evolutionary computation.
These evolutionary algorithms take their cues from the biological concepts of
natural selection and the fact that the heritable traits are physically encoded
on DNA, and can undergo variation through a series of genetic operators such
as mutation and crossover.

© Springer-Verlag Berlin Heidelberg 2015
A. Brabazon et al., Natural Computing Algorithms, Natural Computing Series,
DOI 10.1007/978-3-662-43631-8_

17

2

18 2 Introduction to Evolutionary Computing

2.1 Evolutionary Algorithms

Evolutionary processes represent an archetype, whose application transcends
their biological root. Evolutionary processes can be distinguished by means of
their four key characteristics, which are [57, 92]:

i. a population of entities,
ii. mechanisms for selection,
iii. retention of fit forms, and
iv. the generation of variety.

In biological evolution, species are positively or negatively selected depending
on their relative success in surviving and reproducing in the environment.
Differential survival, and variety generation during reproduction, provide the
engine for evolution [127, 589] (Fig. 2.1).

Population

Selection

Replacement

Variety GenerationInitialisation

Offspring

Parents

Fig. 2.1. Evolutionary cycle

These concepts have metaphorically inspired the field of evolutionary com-
putation (EC). Algorithm 2.1 outlines the evolutionary meta-algorithm. There
are many ways of operationalising each of the steps in this meta-algorithm;
consequently, there are many different, but related, evolutionary algorithms.
Just as in biological evolution, the selection step is a pivotal driver of the algo-
rithm’s workings. The selection step is biased in order to preferentially select
better (or ‘more fit’) members of the current population. The generation of
new individuals creates offspring or children which bear some similarity to
their parents but are not identical to them. Hence, each individual represents
a trial solution in the environment, with better individuals having increased
chance of influencing the composition of individuals in future generations.
This process can be considered as a ‘search’ process, where the objective is to
continually improve the quality of individuals in the population.

2.1 Evolutionary Algorithms 19

Algorithm 2.1: Evolutionary Algorithm

Initialise the population of candidate solutions;
repeat

Select individuals (parents) for breeding from the current population;
Generate new individuals (offspring) from these parents;
Replace some or all of the current population with the newly generated
individuals;

until terminating condition;

Evolutionary Computation in Computer Science

The idea of a (computer) simulated evolutionary process dates back to the very
dawn of digital computing, being introduced in the writings of Alan Turing
in 1948–1950 [636, 637]. One of the earliest published works on the imple-
mentation of an evolutionary-like algorithm was by Friedberg in 1958 [203]
and followed by [171, 204]. In the earlier of these studies, random and rou-
tine changes were made to binary strings representing machine code, with
the performance of individual instructions being monitored in a credit assign-
ment form of learning. Friedberg’s studies were subsequently compiled into an
edited collection providing a snapshot of the seminal papers that gave rise to
the field of Evolutionary Computation [192]. Friedberg’s work represents the
origin of what is now known as Genetic Programming, which was later popu-
larised via the work of Cramer [119], Dickmans et al. [157] and Koza [339] in
the 1980s.

During the 1960s and 1970s two significant, independent, lines of re-
search developing evolutionary algorithms were undertaken in Europe and the
US. The Europeans (Rechenberg and Schwefel) developed Evolution Strate-
gies [530, 531, 560, 561] and the Americans (Fogel et al. and Holland) devel-
oped Evolutionary Programming [194] and Genetic Algorithms [281]. More
recently, Storn and Price have added Differential Evolution [600] to the fam-
ily of evolutionary algorithms.

Evolutionary
Algorithms

Genetic
Algorithm

Evolutionary
Strategies

Differential
Evolution

Genetic
Programming

Evolutionary
Programming

Fig. 2.2. Main branches of evolutionary computation

20 2 Introduction to Evolutionary Computing

Although the above strands of research were initially distinct, with each
having their own proponents, the lines between all of these evolutionary in-
spired approaches is becoming blurred with representations and strategies be-
ing used interchangeably between the various algorithms. As such, today it is
common to use the term evolutionary algorithm to encompass all of the above
approaches [144, 175]. Figure 2.2 provides a taxonomy of the more common
branches of evolutionary computation.

In the following chapters in Part I of the book, we will introduce three
of the main families of evolutionary inspired algorithms in turn, namely, the
genetic algorithm (Chaps. 3 and 4), evolutionary strategies (Chap. 5), and
differential evolution (Chap. 6). Following these, genetic programming is then
discussed in Chap. 7.

3

Genetic Algorithm

While the development of the genetic algorithm (GA) dates from the 1960s,
this family of algorithms was popularised by Holland in the 1970s [281]. The
GA has been applied in two primary areas of research: optimisation, in which
GAs represent a population-based optimisation algorithm, and the study of
adaptation in complex systems, wherein the evolution of a population of
adapting entities is simulated over time by means of a pseudonatural selec-
tion process using differential-fitness selection, and pseudogenetic operators
to induce variation in the population.

In this chapter we introduce the canonical GA, focussing on its role as an
optimising methodology, and discuss the design choices facing a modeller who
is seeking to implement a GA.

3.1 Canonical Genetic Algorithm

In genetics, a strong distinction is drawn between the genotype and the phe-
notype; the former contains genetic information, whereas the latter is the
physical manifestation of this information. Both play a role in evolution as
the biological processes of diversity generation act on the genotype, while the
‘worth’ or fitness of this genotype in the environment depends on the survival
and reproductive success of its corresponding phenotype. Similarly, in the
canonical GA a distinction is made between the encoding of a solution (the
‘genotype’), to which simulated genetic operators are applied, and the pheno-
type associated with that encoding. These phenotypes can have many diverse
forms depending on the application of interest. Unlike traditional optimisation
techniques the GA maintains and iteratively improves a population of solu-
tion encodings. Evolutionary algorithms, including the GA, can be broadly
characterised as [193]:

x[t+ 1] = r(v(s(x[t]))) (3.1)

© Springer-Verlag Berlin Heidelberg 2015
A. Brabazon et al., Natural Computing Algorithms, Natural Computing Series,
DOI 10.1007/978-3-662-43631-8_ 3

21

22 3 Genetic Algorithm

where x[t] is the population of encodings at timestep t, v(.) is the random
variation operator (crossover and mutation), s(.) is the selection for mating
operator, and r(.) is the replacement selection operator. Once the initial pop-
ulation of encoded solutions has been obtained and evaluated, a reproductive
process is applied in which the encodings corresponding to the better-quality,
or fitter, solutions have a higher chance of being selected for propagation of
their genes into the next generation. Over a series of generations, the better
adapted solutions in terms of the given fitness function tend to flourish, and
the poorer solutions tend to disappear. Just as biological genotypes encode
the results of past evolutionary trials, the population of genotypes in the GA
also encode a history (or memory) of the relative success of the resulting
phenotypes for the problem of interest.

Therefore, the canonical GA can be described as an algorithm that turns
one population of candidate encodings and their corresponding solutions into
another using a number of stochastic operators. Selection exploits information
in the current population, concentrating interest on high-fitness solutions. The
selection process is biased in favour of the encodings corresponding to bet-
ter/fitter solutions and better solutions may be selected multiple times. This
corresponds to the idea of survival of the fittest. Crossover and mutation per-
turb these solutions in an attempt to uncover even better solutions. Mutation
does this by introducing new gene values into the population, while crossover
allows the recombination of fragments of existing solutions to create new ones.
Algorithm 3.1 lists the key steps in the canonical genetic algorithm.

An important aspect of the algorithm is that the evolutionary process
operates on the encodings of solutions, rather than directly on the solutions
themselves. In determining the fitness of these encodings, they must first be
translated into a solution to the problem of interest, the fitness of the solution
determined, and finally this fitness is associated with the encoding (Fig. 3.1).

Encoded string
(genotype)

Solution
(phenotype)

Fitness value

Decoding step

Fig. 3.1. Decoding of genotype into a solution in order to calculate fitness

3.1 Canonical Genetic Algorithm 23

Algorithm 3.1: Canonical Genetic Algorithm

Determine how the solution is to be encoded as a genotype and define the
fitness function;
Create an initial population of genotypes;
Decode each genotype into a solution and calculate the fitness of each of the
n solution candidates in the population;

repeat
Select n members from the current population of encodings (the parents)
in order to create a mating pool;
repeat

Select two parents randomly from the mating pool;
With probability pcross, perform a crossover process on the encodings
of the selected parent solutions, to produce two new (child) solutions;
Otherwise, crossover is not performed and the two children are
simply copies of their parents;
With probability pmut, apply a mutation process to each element of
the encodings of the two child solutions;

until n new child solutions have been created ;
Replace the old population with the newly created one (this constitutes a
generation);

until terminating condition;

3.1.1 A Simple GA Example

To provide additional insight into the workings of the canonical GA, a simple
numerical example is now provided. Assume that candidate solutions are en-
coded as a binary string of length 8 and the fitness function f(x) is defined
as the number of 1s in the bit string (this is known as the OneMax problem).
Let n = 4 with pcross = 0.6 and pmut = 0.05. Assume also that the initial
population is generated randomly as in Table 3.1.

Table 3.1. A sample initial random population

Candidate String Fitness

A 10000110 3
B 01101100 4
C 10100000 2
D 01000110 3

Next, a selection process is applied based on the fitness of the candidate
solutions. Suppose the first selection draws candidates B and D and the second

24 3 Genetic Algorithm

draws B and A. For each set of parents, the probability that a crossover (or
recombination) operator is applied is pcross. Assume that B and D are crossed
over between bit position 1 and 2 to produce child candidates E and F (Table
3.2), and that crossover is not applied to B and A.

Table 3.2. Crossover applied to individuals B and D from Table 3.1, after the first
element of each binary string, to produce the offspring E and F

Initial Parent Candidate B Candidate D

0 1101100 0 1000110

Resulting Child Candidate E Candidate F

0 1000110 0 1101100

Crossover is not applied to B and A; hence the child candidates (G and H)
are clones of the two parent candidates (Table 3.3).

Table 3.3. No crossover is applied to B and D; hence the child candidates G and
H are clones of their parents

Initial Parent Candidate B Candidate A

01101100 10000110

Resulting Child Candidate G Candidate H

01101100 10000110

Finally, the mutation operator is applied to each child candidate with
probability pmut. Suppose candidate E is mutated (to a 1) at the third locus,
that candidate F is mutated (to a 1) at the seventh locus, and that no other
mutations take place. The resulting new population is presented in Table
3.4. By biasing selection for reproduction towards more fit parents, the GA
has increased the average fitness of the population in this example from 3
(= 3+4+2+3

4) to 4 (= 4+5+4+3
4) after the first generation and we can see that

the fitness of the best solution F in the second generation is better than that
of any solution in the first generation.

3.2 Design Choices in Implementing a GA

Although the basic idea of the GA is quite simple, a modeller faces a number
of key decisions when looking to apply it to a specific problem:

3.3 Choosing a Representation 25

Table 3.4. Population of solution encodings after the mutation operator has been
applied

Candidate String Fitness

E 01100110 4
F 01101110 5
G 01101100 4
H 10000110 3

• what representation should be used?
• how should the initial population of genotypes be initialised?
• how should fitness be measured?
• how should diversity be generated in the population of genotypes?

Each of these are discussed in the following sections.

3.3 Choosing a Representation

In thinking about evolutionary processes, two distinct mapping processes can
be distinguished, one between the genotype and the phenotype, and a second
between the phenotype and a fitness measure (Fig. 3.2). In applying the GA,
the user must select how the problem is to be represented, and there are two
aspects to this decision. First, the user must decide how potential solutions
(phenotypes) will be encoded onto the genotype. Secondly, the user must
decide how individual elements of the genotype will be encoded.

Genotypic
space

Phenotypic
space

Fitness
metric

Fig. 3.2. Mapping from genotypic to phenotypic space with each phenotype in
turn being mapped to a fitness measure

26 3 Genetic Algorithm

3.3.1 Genotype to Phenotype Mapping

Suppose a modeller is trying to uncover the relationship between a dependent
variable and a set of explanatory variables and that she has collected a dataset
of sample values. Let us assume that the relationship between the variables
is known to be linear of the form y = β0 + β1x1 + β2x2. The object is now to
uncover the best values for the model coefficients so that the model fits the
dataset as well as possible.

In order to apply the GA for this task, a decision is required as to how
these parameters should be represented on the genotype. In this case the
genotype can simply consist of three elements, each of which encodes a real
number (the values for β0, β1, and β2) and the GA’s task is then to uncover
the optimal values for these three parameters. In this case, the mapping from
the genotype to the phenotype (Fig. 3.3) is straightforward, with three values
being plugged directly into the linear model.

1 23.12 23.11 3.93y x x= − + +

-3.12 23.11 3.93

 Fig. 3.3. Mapping from real-valued genotype to produce a linear model

The mapping from genotype to phenotype can of course be more complex.
Suppose the task was to evolve a classifier of the form:

IF [xi (<,>) VALUE1]

(AND, OR) [xj (<,>) VALUE2]

THEN (Class 1) ELSE(Class 2)

Here the phenotype takes the form of a compound conditional statement and
the task of GA in uncovering the best classifier is to decide which two explana-
tory variables to include from the dataset, whether each of these needs to be
greater than or less than a trigger value, and how the two logic statements
should be compounded. The number of (integer) choices for xi and xj depend
on the number of explanatory variables in the dataset. Hence, the genotype
will need to allow the generation of a series of integer and real values (Fig.
3.4).

3.3.2 Genotype Encodings

In early research on GAs, the canonical GA used binary-valued encodings
for genotypes (0101 . . . 1). Although this seems very limiting at first glance,
binary-valued encodings can be easily used to produce real (or integer) valued

3.3 Choosing a Representation 27

xi < > Value1 AND /

OR
xi < > Value1

Integer Integer Real Integer Integer Integer Real

Fig. 3.4. Mixed integer/real genotype, consisting of seven elements, which could
encode a classification rule

outputs, thereby allowing the application of a binary-valued GA to a wide
range of problems.

The simplest decoding method is to convert the binary string to an integer
value, which can in turn be converted into a real value if required. A binary
genotype of length n can encode any integer from 0 to 2n − 1 (Table 3.5).
More generally, it is possible to encode any integer in the range 0, . . . , L− 1,
even when there is no n such that L = 2n.

If a real-valued output is required, the integer value obtained by decoding
the binary string can be divided by 2n − 1 to obtain a real number in the
interval [0,1]. A real number in any interval1 [a, b] can be obtained by taking
the result of the last calculation and rescaling it using the formula a+x(b−a).
Taking an example, a binary string which is eight bits long can encode any
integer between 0 and 255. If we consider the binary string (00000111), reading
from right to left, this can be decoded into the integer value 7 (calculated as:
20 × 1 + 21 × 1 + 22 × 1 + 23 × 0 + 24 × 0 + 25 × 0 + 26 × 0 + 27 × 0). If
instead of an integer value in the range 0 to 255, a real value in the range
[0, 5] were required, the integer value could be converted into a real value as
follows: 0 + 7

255 × (5 − 0) = 0.027451.
Although the above decoding scheme for a binary string is easy to un-

derstand, it can suffer from Hamming cliffs, as sometimes a large change in
the genotype is required to produce a small change in the resulting integer
value. Looking at the change in the binary value required to move from an
integer value of 3 to 4 in Table 3.5, it can be seen that the underlying geno-
type needs to change in all three bit positions. Hamming cliffs can potentially
create barriers that the GA could find difficulty in passing.

An alternative encoding system that has been used in some GA systems
is that of Gray coding. In Gray coding a single integer change only requires
a one bit change in the binary genotype. This means that adjacent solutions
in the integer search space will be adjacent in the (binary) encoding space as
well, requiring fewer mutations to discover. The Gray coding rule starts with
a string of all 0s for the integer value 0. To create each subsequent integer
in sequence the rule successively flips the right-most bit that produces a new
string.

1Recall that the shorthand [a, b] denotes the interval of all real numbers x ∈ R

such that a ≤ x ≤ b, while [a, b) denotes the interval of all x ∈ R such that a ≤ x < b.

28 3 Genetic Algorithm

Table 3.5. Integer conversion for standard and Gray coding

Canonical

Integer Value Binary Code Gray Code

0 000 000
1 001 001
2 010 011
3 011 010
4 100 110
5 101 111
6 110 101
7 111 100

For many problems, a real-valued genotype encoding is the most natural
representation and most current optimisation applications of the GA use real-
valued encodings (for example, 2.13, . . . ,−14.56).

3.3.3 Representation Choice and the Generation of Diversity

The choice of representation is crucial as it determines the nature of the search
space traversed by the GA. The choice also impacts on the appropriate design
of diversity generation processes such as crossover and mutation.

Ideally, small (big) changes in the genotype should result in small (larger)
changes in the phenotype and its associated fitness. This feature is known
as locality. For example, if there is a good pairing of representation and di-
versity operators, minor mutations on the genotype will produce relatively
small changes in the phenotype and its fitness, whereas a crossover between
two very different parents will lead to a larger change in the phenotype. This
means that the operators of mutation and crossover will perform distinctly
different search processes.

Going back to the previous example of Gray coding, it can be observed
from the integer to Gray mapping in Table 3.5, that a small change in the
phenotype corresponds to a small change in the genotype. However, the reverse
is not true. A single bit-flip in the genotype can lead to a large change in the
phenotype (integer value). Hence, even a Gray encoding has poor locality
properties and will not necessarily produce better results than the canonical
binary coding system.

Raidl and Gottlieb [525] emphasise three key characteristics for the design
of quality evolutionary algorithms (EAs):

i. locality,
ii. heritability, and
iii. heuristic bias.

Locality refers to the case where small steps in the search space result in
small steps in the phenotypic space. Strong locality increases the efficiency of

3.5 Measuring Fitness 29

evolutionary search by making it easier to explore the neighbourhood of good
solutions, whereas weak locality means that evolutionary search will behave
more like random search.

Heritability refers to the capability of crossover operators to produce chil-
dren that utilise the information contained in their parents in a meaningful
way. In general, good heritability will ensure that each property of a child
should be inherited from one of its parents, and that traits shared by both
parents should be inherited by their child. Crossover operators with weak
heritability are more akin to macro-mutation operators.

Heuristic bias occurs when certain phenotypes are more likely to be cre-
ated by the EA than others when sampling genotypes without any selection
pressure. In an unbiased case, each item in the phenotypic space has the same
chance of occurring if a genotype is randomly generated.

Obviously, inducing heuristic bias can be good if it tends to lead to better
solutions (in contrast, random search will tend to have lower heuristic bias),
but inducing bias tends to reduce genotypic diversity, which can hinder the
search for a global optimum. Heuristic bias arises from the choice of represen-
tation and the choice of variation operators.

3.4 Initialising the Population

If good starting points for the search process are known a priori, the efficiency
of the GA can be improved by using this information to seed the initial pop-
ulation. More commonly, good starting points are not known and the initial
population is created randomly. For binary-valued genotypes, a random num-
ber between 0 and 1 can be generated for each element of the genotype, with
random numbers ≥ 0.5 resulting in the placing of a 1 in the corresponding
locus of the genotype. If a real-valued representation is used, and boundary
values for each locus of the genotype can be determined, each element of the
genotype can be selected randomly from the bounded interval.

3.5 Measuring Fitness

The importance of the choice of fitness measure when designing a GA cannot
be overstressed as this metric drives the evolutionary process. The first step
in creating a suitable fitness measure is to identify an appropriate objective
function for the problem of interest. This objective function often needs to be
transformed into a suitable fitness measure via a transformation (for example,
to ensure that the resulting fitness value is always nonnegative); hence:

F (x) = g(f(x)) (3.2)

30 3 Genetic Algorithm

where f is the objective function, g transforms the value of the objective
function into a nonnegative number, and F is the fitness measure. A sim-
ple example of a transformation is the linear rescaling of the raw objective
function value:

g(x) = af(x) + b (3.3)

where a is chosen in order to ensure that the maximum fitness value is a
scaled multiple of the average fitness and b is chosen in order to ensure that
the resulting fitness values are nonnegative. Using rescaled fitnesses rather
than raw objective function values can also help control the selection pressure
in the algorithm (Sect. 3.6.1).

In addition to absolute measures of fitness as just described, it is also
possible to define fitness in relative rather than absolute terms, thus avoiding
having to calculate explicit fitness values for each population member. For
example, if our aim is to evolve a chess player we could evaluate the population
by allowing individuals to play tournaments against each other where the
winner of the tournament is deemed the fittest.

Estimating Fitness

Evaluating the fitness of individual members of the population is usually the
most computationally expensive and time-consuming step in a GA. In some
cases it is not practical to obtain an exact fitness value for every individual
in each iteration of the algorithm.

A simple initial step is to avoid retesting the same individuals, so before
testing the fitness of a newly created individual, a check could be made to
determine if the same genotype has been tested in a prior generation. If it has
been, the known fitness value can simply be assigned to the current individual.

More generally, in cases where fitness function evaluation is very expensive,
we may wish to use less costly approximations of the fitness function in order
to quickly locate good search regions.

One method of doing this is problem approximation, where we replace the
original problem statement (fitness function) with a simpler one which approx-
imates the problem of interest, the assumption being that a good solution to
the simpler problem would be a good starting point in trying to solve the real
problem of interest. An example of this would be the use of crash simulation
systems where designs that perform well in computer simulations could then
be subject to (expensive) real-world physical testing.

A second approach is to try to reduce the number of fitness function eval-
uations by estimating an individual’s fitness based on the fitness of other
‘similar’ individuals. Examples of this include fitness inheritance, where the
fitness of a child is inherited from its parent(s), or fitness imitation, where all
the individual solutions in a cluster (those close together as defined by some
distance metric) are given the same fitness (that of a representative solution
of the cluster). Hence, an approximate fitness evaluation is used for much of

3.6 Generating Diversity 31

the EA run, with the population, or a subset of the better solutions in the
population, being exposed to the real (expensive) fitness function periodically
during the run. This process entails a trade-off, with the gains from the reduc-
tion in the number of fitness evaluations being traded off against the risk that
the search process will be biased through the use of fitness approximations.

A practical problem that can arise in applying GAs to real-world problems
is that the fitness measures obtained can sometimes be noisy (for example,
due to measurement errors). In this case, we may wish to resample fitness
over a number of training runs, using an average fitness value in the selection
and replacement process.

3.6 Generating Diversity

The process of generating new child solutions aims to exploit information from
better solutions in the current population, while maintaining explorative ca-
pability in order to uncover even better regions of the search space. Too much
exploitation of already-discovered good solutions runs the risk of convergence
of the population of genotypes to a local optimum, while too much exploration
drives the search process towards random search.

A key issue in designing a good GA is the management of the explo-
ration vs. exploitation balance. The algorithm must utilise, or exploit, already-
discovered fit solution encodings, while not neglecting to continue to explore
new regions of the search space which may contain even better solution en-
codings. Choices for the selection strategy, the design of mutation and re-
combination operators, and the replacement strategy, determine the balance
between exploration and exploitation. Selection and crossover tend to pro-
mote exploitation of already-discovered information, whereas mutation tends
to promote exploration.

3.6.1 Selection Strategy

The design of the ‘selection for mating’ strategy determines the selection pres-
sure (the degree of bias towards the selection of higher-fitness members of the
population) of the algorithm. If the selection pressure is too low, information
from good parents will only spread slowly through the population, leading to
an inefficient search process. If the selection pressure is too high, the popula-
tion is likely to get stuck in a local optimum, as a high selection pressure will
tend to quickly reduce the degree of genotypic diversity in the population.
Better-quality selection strategies therefore, encourage exploitation of high-
fitness individuals in the population, without losing diversity in the population
too quickly.

Although a wide variety of selection strategies have been designed for the
GA, two common approaches are fitness proportionate selection and ordinal
selection.

32 3 Genetic Algorithm

Fitness Proportionate Selection

The original method of selection for reproduction in the GA is fitness-
proportionate selection (FPS) and under this method the probability that
a specific member of the current population is selected for mating is directly
related to its fitness relative to other members of the population. The selection
process is therefore biased in favour of ‘good’ (i.e., fit) members of the current
population. Given a list of each of the n individuals in the population and
their associated fitnesses fi, a simple way to implement FPS is to generate a

random number r ∈
[
0,
∑n

j=1 fj

)
, then select the individual i such that:

i−1∑
j=1

fj ≤ r <

i∑
j=1

fj. (3.4)

As a numerical example, suppose n = 4, f1 = f2 = 15, f3 = 10 and f4 =
20. Therefore,

∑4
j=1 fj = 60. Assume a random draw from [0, 60) produces

29.4. This value falls in the range [15, 30) and hence results in the selection
of individual 2. The FPS selection process can be thought of as spinning a
roulette wheel, where the fitter individuals are allocated more space on the
wheel (Fig. 3.5).

Selection
pointer

1

32

4

Fig. 3.5. Fitness-proportionate selection with the area on the roulette wheel cor-
responding to the fitness of each member of the population. Here individual 2 is
selected

Although this method of selection is intuitive, it can produce poor results
in practice as it embeds a high selection pressure in the early stage of the
GA. Under FPS, the expected number of offspring for each encoding in the
population is given by Pobs

Pavg
, where Pobs is the observed performance (fitness) of

the corresponding solution and Pavg is the average performance of all solutions
in the current population.

3.6 Generating Diversity 33

Commonly, in the early stage of the search process there is a high variance
in the fitness of solution encodings, with a small number of encodings being
notably fitter than the others. When FPS is used, these encodings and their
descendants can quickly overrun the entire population (better-quality solution
encodings may be chosen for replication several times in a single generation),
and lead to the premature convergence of the population and stagnation of
the algorithm in a local optimum.

Conversely, FPS can result in low selection pressure later in the GA run,
as the population and the associated fitness values of individuals converge.
When fitness values of individuals are very similar, each individual has an
almost uniform chance of selection, and hence, slightly better solutions find it
difficult to strongly influence future populations.

Ordinal Selection

One approach to overcome the problems of fitness-proportionate selection is
to use rank-based selection. In rank-based selection, individuals are ranked
from best to worst based on their raw fitness and this rank information is
used to calculate a rescaled fitness for each individual. The rescaled fitness
values rather than the original fitness values are used in the selection process.
An example of a linear ranking process is provided by [25]:

frank = 2− P + 2(P − 1)
(rank− 1)

(n− 1)
. (3.5)

In (3.5) rank is the ranking of an individual member of the population (the
least fit individual has a rank of 1, and the most fit has a rank of n), there
are n members of the population, and P is a scaling factor ∈ [1.0, 2.0] which
determines the selection pressure.

To illustrate the operation of the linear ranking process, assume that n = 5
and let P = 2. Table 3.6 lists five members of a sample population in order
of their raw fitness (the least fit individual is ranked number 1), and also lists
their rescaled fitnesses and their selection probabilities. These fitness values
are then used in the roulette wheel selection process described above and
higher ranking individuals are clearly more likely to be selected.

Table 3.6. Rank ordering and selection fitness

Ranking 1 2 3 4 5

Rescaled fitness 0 0.5 1 1.5 2
Selection probability 0 0.10 0.20 0.30 0.40

An advantage of rank-based selection is that it lessens the risk of biasing the
search process as a result of too-intensive selection of the better solutions in
the early generations of the GA. Another advantage of rank-based selection

34 3 Genetic Algorithm

is that it only requires relative (as distinct from absolute) measures of fitness.
This could be an advantage if fitness measures are noisy.

Another rank-based method of selection is truncation selection. In this
scheme, the top 1

n

th
of the n individuals in the population each get n copies

in the mating pool. For example, if there are 100 members of the current
population and the truncation rate is set at 1

2 , then the 50 fittest members of
the population are each copied twice to create the mating pool.

A commonly used, and computationally efficient, rank-selection method
is tournament selection (Fig. 3.6). Under tournament selection, k members
are chosen randomly without replacement from the population. The fittest of
these is chosen as the tournament winner and is ‘selected’ to act as a parent.
Assuming a population of size N , the value of k can be varied from 2, . . . , N .
Lower values of k provide lower selection pressure, while higher values provide
higher selection pressure. For example, if k = N , the fittest individual in the
current population is always the tournament winner.

f5=4 f4=12

Contestants f6=7
f1=9

f5=4

f6=7

f1=9

f7=2

f2=5

f6=7

f3=1

Population

f1=9 Winner

Fig. 3.6. Tournament selection where k = 4. Four individuals are randomly chosen
from the population with the fittest of these individuals winning the tournament
and being selected for reproduction

3.6 Generating Diversity 35

As selection works on phenotypes (and their related fitness) it is ‘represen-
tation independent’. This is not the case for the diversity generating operators
of mutation and crossover.

3.6.2 Mutation and Crossover

The mutation operator plays a vital role in the GA as it ensures that the
search process never stops. In each iteration of the algorithm, mutation can
potentially uncover useful novelty. In contrast, crossover, if applied as a sole
method of generating diversity, ceases to generate novelty once all members
of the population converge to the same genotype.

The rate of mutation has important implications for the usefulness of se-
lection and crossover. If a very high rate of mutation is applied, the selection
and crossover operators can be overpowered and the GA will effectively re-
semble a random search process. Conversely, if a high selection pressure is
used, a higher mutation rate will be required in order to prevent premature
convergence of the population. In setting an appropriate rate of mutation, the
aim is to select a rate which helps generate useful novelty but which does not
rapidly destroy good solutions before they can be exploited through selection
and crossover. In contrast to mutation, crossover allows for the inheritance of
groups of ‘good genes’ or building blocks by the offspring of parents, thereby
encouraging more intensive search around already discovered good solutions.

There is a close link between the choice of genotype representation and
the design of effective mutation and crossover operators. Initially, mutation
and crossover mechanisms for binary encodings are discussed, followed by the
consideration of what modifications should be made to these for real-valued
encodings.

Binary Genotypes

The original form of crossover for binary-valued genotypes was single point
crossover (Fig. 3.7). A value pcross is set at the start of the GA (say at 0.7)
and for each pair of selected parents, a random number is generated from
the uniform distribution U(0, 1). If this value is < 0.7, crossover is applied
to generate two new children; otherwise crossover is bypassed and the two
children are clones of their parents. Crossover rates are typically selected from
the range pcross ∈ (0.6, 0.9) but, if desired, the rate of crossover can be varied
during the GA run.

One problem of single point crossover, is that related components of a
solution encoding (schema) which are widely separated on the string tend
to be disrupted when this form of crossover is applied. One way of reducing
this problem is to implement two point crossover (Fig. 3.8), where the two
cut positions on the parent strings are chosen randomly and the segments
between the two positions are exchanged.

36 3 Genetic Algorithm

0 1 0 1 1 1 0 0

0 0 1 1 0 1 0 1

0 1 0 1 0 1 0 1

0 0 1 1 1 1 0 0

Parent 1

Parent 2

Child 1

Child 2

Fig. 3.7. Single point crossover where the cut-point is randomly selected after the
third locus on the parent genotypes. The head and tail of the two parents are mixed
to produce two child genotypes

0 1 0 1 1 1 0 0

0 0 1 1 0 1 0 1

0 1 1 1 0 1 0 0

0 0 0 1 1 1 0 1

Parent 1

Parent 2

Child 1

Child 2

Fig. 3.8. Two-point crossover

a random selection of gene value is made from each parent when filling each
corresponding locus on the child’s genotype. The process can be repeated a
second time to create a second child, or the second child could be created
using the values not selected when producing the first child (Fig. 3.9). To im-
plement the latter approach, a random number r is drawn from the uniform
distribution U(0, 1) for each locus. If r < 0.5, child 1 inherits from parent 1;
else, it inherits from parent 2, with child 2 being comprised of the bit values
not selected for child 1.

For binary genotypes, a mutation operation can be defined as a bit-flip,
whereby a ‘0’ can be mutated to a ‘1’ or a ‘1’ to a ‘0’. Figure 3.10 illustrates

Another popular form of crossover is uniform crossover. In uniform crossover,

3.6 Generating Diversity 37

0.71 0.22 0.34 0.67 0.93

1 0 1 0 1

1 1 0 0 0

1 1 0 0 1

1 0 1 0 0

Parent 1

Parent 2

Child 1

Child 2

Fig. 3.9. Uniform crossover where a random choice is made as to which parent
donates a bit to child 1. Child 2 is then constructed using the bits not selected for
inclusion in child 1

an implementation of the mutation process, where pmut = 0.1. Five random
numbers (corresponding to a genotype length of five bits) are generated from
U(0, 1) and if any of these are < 0.1 then the value of that bit is ‘flipped’. This
mutation process is repeated for all child solutions generated by the crossover
process.

Typical mutation rates for a binary-valued GA are commonly of the order
pmut = 1

L where L is the length of the binary string. Of course, there is no
requirement that the mutation rate must remain constant during the GA run
(Sect. 3.7).

0.45 0.69 0.23 0.09 0.86

1 0 0 0 0

1 0 0 1 0

Fig. 3.10. Illustration of mutation, with the bit at the fourth locus being ‘flipped’

38 3 Genetic Algorithm

Real-Valued Genotypes

The crossover operator can be modified for real-valued genotypes so that (for
example) elements from the string of each parent are averaged in order to
produce the corresponding value in their child(ren) (Fig. 3.11). Figure 3.12
illustrates this geometrically in two dimensions.

More generally, the real values in each locus of the child may be calculated
as P1+α(P2−P1), where P1 and P2 are the real values for that locus in each of
the two parents, and α is a scaling factor randomly drawn from some interval
(say [−1.5,+1.5]). This crossover operator defines a hypercube based on the
location of the parents (Fig. 3.13).

3 -2 8

1 -4 9

(3+1)/2 (-2 -4)/2 (8+9)/2

Parent 1

Parent 2

Child

Fig. 3.11. Simple real-valued crossover with two parents producing a single child

 (1,1)

(1.5,1.5)

(2,2)

Fig. 3.12. Simple real-valued intermediate crossover with two parents (1,1) and
(2,2) producing a single child at (1.5,1.5)

Many alternative mutation and crossover schemes for real-valued encod-
ings exist. For example, a simple strategy for modifying mutation for real-
valued encodings is to implement a stochastic mutation operator, where an
element of a real-valued string can be mutated by adding a small (positive or
negative) real value to it. Each element of the string xi could be mutated by
adding a random number drawn from the normal distribution N(0, αi), where

3.6 Generating Diversity 39

 (1,1)

(2.5, 2.5)

(2,2)

(-0.5, -0.5)

(2.5, -0.5)

(-0.5, 2.5)

Fig. 3.13. Hypercube defined by crossover operator where parents are (1,1) and
(2,2), with α ∈ [−1.5, 1.5]

the standard deviation αi is defined by the user. This mutation scheme will
produce relatively small mutations most of the time, with occasional larger
mutation steps.

3.6.3 Replacement Strategy

In deciding which parents and children survive into the next generation a wide
variety of replacement strategies can be applied, including:

i. direct replacement (children replace their parents),
ii. random replacement (the new population is selected randomly from the

existing population members and their children),
iii. replacement of the worst (all parents and children are ranked by fitness

and the poorest are eliminated), and
iv. tournament replacement (the loser of the tournament is selected for re-

placement).

In the canonical GA, a generational replacement strategy is usually adopted.
The number of children produced in each generation is the same as the cur-
rent population size and during replacement the entire current population is
replaced by the newly created population of child encodings.

The ratio of the number of children produced to the size of the current
population is known as the generation gap. Hence, the generation gap is typ-
ically 1.0. It is also possible to create more offspring than members of the
current population (generation gap > 1), and then select the best n (where n
is the population size) of these offspring for survival into the next generation.

Many variants on the replacement process exist. As already seen, the num-
ber of children produced need not equal the current population size, and the
automatic replacement of parents by children is not mandatory. A popular

40 3 Genetic Algorithm

strategy is steady state replacement, where only a small number of children
(sometimes only one) are created during each generation, with only a small
number of the current population, usually the least fit, being replaced during
each iteration of the GA. For example, the worst x members of the current
population could be replaced by the best x children. Adopting a steady state
replacement strategy ensures that successive populations overlap to a signifi-
cant degree (parents and their children can coexist), requires less memory, and
allows the GA to exploit good solutions immediately after they are uncovered.

Generally, fitness-based selection is implemented for either parent selection
or replacement selection, not both. If fitness-based selection is implemented
for both, very strong selection pressure will be created, leading to very rapid
convergence of the population and poor search of the solution space.

Another common replacement strategy is elitism, whereby the best mem-
ber (or several best members) of the current population always survive into
the next population. This strategy ensures that a good individual is not lost
between successive generations.

Some GA applications use crowding operators to supplement their replace-
ment strategy. In order to encourage diversity in the population of solution
encodings, a new child solution is only allowed to enter the population by re-
placing the current member of the population which is most similar to itself.
The objective is to avoid having too many similar individuals (crowds) in the
new population.

3.7 Choosing Parameter Values

When applying the GA to real-world problems the user has to choose values
for several parameters including the rate of mutation, the rate of crossover,
and the size of the population, in addition to selecting the form of selection,
the replacement strategy, etc. Even if attention is restricted to the choice of
good crossover and mutation rates, the modeller faces a nontrivial problem
in selecting these. A common approach in tuning the parameters for a GA
application is to undertake a series of trial and error experiments before mak-
ing parameter choices for the final GA runs (computer simulations). However,
this approach is problematic as it can be time-consuming and good choices
for these parameters are unlikely to remain constant over the entire GA run.

Rather than selecting static parameter values, an alternative approach is
to dynamically adapt the parameters during the run. There are three broad
methods of dynamically adapting parameter settings (Fig. 3.14) [175].
Deterministic methods of parameter control vary parameter settings during
the GA run, without using any feedback from the search process. An example
of a deterministic rule for adapting the mutation rate is:

α(t) = α(t0)(1− 0.8t/T) (3.6)

3.8 Summary 41

Dynamic Parameter Control

Deterministic Feedback Adaptive Evolve the Parameters

Fig. 3.14. Taxonomy of adaptive parameter control

where t (0 ≤ t ≤ T) denotes the current generation, α(t0) is a fixed value
and α(t) is the adaptive mutation rate. This rule will reduce the value of the
mutation rate during the run, biasing the GA towards increasing exploitation
of current solutions as the run progresses.

Under a feedback adaptive process, the parameter values are altered based
on feedback from the algorithm. If the composition of the population has
converged (perhaps measured using the entropy of the population of binary
strings) to a threshold level, the mutation rate could be increased by a pre-
specified rate.

Another possibility is to have the GA evolve good choices for its param-
eters. Under this idea, the GA is double-tasked: both to self-calibrate and to
find a good solution to the problem at hand. A comprehensive description of
dynamic parameter adaption is provided in [175].

3.8 Summary

This chapter presented an introduction to the best-known evolutionary algo-
rithm, the genetic algorithm. The canonical GA is based on a very simpli-
fied abstraction of evolutionary processes, usually employing fixed-size pop-
ulations, unisex individuals, stochastic mating, and ignoring the child-adult
development process [144].

GAs, since their introduction, have been shown to be powerful problem
solvers and have been successfully applied to solve a large number of real-
world optimisation problems. The methodology has particular utility when
traditional techniques fail, either because the objective function is ‘hard’ (for
example, noncontinuous), or because the landscape is highly multimodal. The
parallel nature of a GA search process makes it less vulnerable to local optima
than traditional hill climbing optimisation methods. However, it is important
to note that the GA is not a ‘black box’ optimiser. While a canonical GA may
obtain good results when applied to a real-world problem, obtaining the best
results usually requires a careful design of the algorithm and the careful use
of any domain knowledge available.

Despite the good properties of GAs, they, like all optimisation techniques,
are subject to limitations. There is no guarantee that an optimal solution

42 3 Genetic Algorithm

will be found in finite time and progress towards better solutions may be
intermittent rather than gradual. Consequently, the time required to find a
high-quality solution to a problem is not determinable ex ante. The GA, and
indeed all evolutionary optimising methodologies, rely on feedback in the form
of fitness evaluations. For some problems, measuring fitness can be difficult
(perhaps fitness can only be assessed subjectively by a human) or expensive
in terms of cost or computation time. In these cases, GA may not be the most
suitable choice of optimising technique.

In this chapter, we have outlined the primary components and principles
upon which the GA is based. The next chapter describes a number of exten-
sions of the GA model.

4

Extending the Genetic Algorithm

The previous chapter provided an overview of the main concepts behind the
GA. Since the introduction and popularisation of the GA, a substantial body
of research has been undertaken in order to extend the canonical model and to
increase the utility of the GA for hard, real-world problems. While it is beyond
the scope of any single book to cover all of this work, in this chapter we intro-
duce the reader to a selection of concepts drawn from this research. Many of
the ideas introduced in this chapter have general application across the mul-
tiple families of natural computing algorithms and are not therefore limited
to GAs. The chapter concludes with an introduction to Estimation of Dis-
tribution Algorithms (EDAs). EDAs are an alternative way of modelling the
learning which is embedded in a population of genotypes in an evolutionary
algorithm and have attracted notable research interest in the GA community
in recent years.

4.1 Dynamic Environments

Many of the most challenging problems facing researchers and decision-makers
are those with a dynamic nature. That is, the environment in which the so-
lution exists, and consequently the optimal solution itself, changes over time.
Examples of dynamic problems include trading in financial markets, time
series analysis of gene expression data, and routing in telecommunication net-
works. Biological organisms inhabit dynamic environments and mechanisms
have arisen to promote the ‘survivability’ of biological creatures in these en-
vironments. These mechanisms are useful sources of inspiration in helping
us to design computer algorithms to attack real-world problems in dynamic
environments.

© Springer-Verlag Berlin Heidelberg 2015
A. Brabazon et al., Natural Computing Algorithms, Natural Computing Series,
DOI 10.1007/978-3-662-43631-8_4

43

44 4 Extending the Genetic Algorithm

4.1.1 Strategies for Dynamic Environments

In designing an evolutionary algorithm for application in a dynamic environ-
ment, the nature of the environmental changes will determine the appropriate
strategy. For example, if change occurs at a slow pace, adapting the rate of
mutation in a GA may be sufficient to allow the population to adjust to a
slowly changing location for the global optimum. If the environment alters
in a cyclic fashion, a memory of good past solutions may be useful. On the
other hand, if the environment is subject to sudden discontinuous change then
more aggressive adaptation strategies will be required. Hence, we can adopt
a variety of strategies, including [302]:

• restart of the learning process,
• generation of more genotypic diversity if environmental change is detected,
• maintenance of genotypic diversity during the GA run,
• use of a memory mechanism to retain good past solutions (assumes cycling

solutions), and
• use of multiple populations.

In an extreme case, it may be necessary to restart the learning process as past
learning embedded in the population is no longer useful. More generally, if
past learning still provides some guide to finding good solutions in the current
environment, the focus switches to how best to adapt the current population
in order to track the optimal solution as it changes. The following subsections
discuss various aspects of diversity generation and maintenance. The use of
multiple populations is discussed in Sect. 4.2.

4.1.2 Diversity

Maintaining diversity in the population of genotypes is important in all EC
applications. Even in static environments, a population needs diversity in
order to promote a good exploration of the search space. The role of diversity is
even more important when faced with a dynamic environment. In the absence
of any countermeasures, the canonical GA will tend to lose genotypic diversity
during its run as selection and crossover will tend to push the population to
a small set of genotypic states; hence the canonical algorithm needs some
modification when it is applied in a dynamic environment.

Depending on the expected rate of environmental change, the modeller
may decide to maintain a high degree of populational diversity at all times
(useful if the environment has high rate of change), or generate it ‘on demand’
when a change in the environment is detected. At first glance it may appear
that the better option is to maintain populational diversity at all times. How-
ever, maintaining diversity has a cost, either in terms of having a larger pop-
ulation, or in terms of less intensive exploitation of already discovered good
regions. If the environment only changes occasionally, generation of diversity
when environmental change is detected may be the better option.

4.1 Dynamic Environments 45

Diversity Generation if Change Is Detected

Cobb’s hypermutation strategy [115] was one of the earliest approaches to
varying the rate of diversity generation as changes in the fitness landscape are
detected. In this approach, if a change in the fitness landscape is detected, the
base mutation rate of the GA is multiplied by a hypermutation factor. The
size of the factor determines its effect; so if it is very large, it is equivalent to
randomly reinitialising the entire population.

A common approach in the detection of environmental change is to use a
sentry strategy. In a sentry strategy the fitness of a number of fixed genotypes
(a form of memory) is monitored throughout the run. If the environment
changes, the fitness of some or all of the locations of these sentries will alter
and this provides feedback which is used to set the rate of mutation of the
GA. If a large change in fitness occurs, indicating that the environment has
changed notably, the rate of mutation is increased.

The sentry strategy can be applied in a number of ways. The sentries can
remain outside the adapting population of solutions or they can be available
for selection and crossover. In the latter case, while the sentries can influence
the creation of new child solutions, they remain ‘fixed’ in location and are not
mutated or replaced. Morrison [420] provides a discussion of quality strategies
for sentry location, finding that random location often provides good results.
In addition to providing information on whether the environment is changing,
a sentry strategy can also provide information on where it is changing, thereby
providing feedback on whether the changes are local or global.

Diversity Maintenance During Run

Rather than waiting for environmental change to occur and then playing
‘catch-up’, a strategy of maintaining continual diversity in the population
can be followed. A wide variety of methods can be used for this purpose,
including:

• weakening selection pressure,
• continual monitoring of populational diversity,
• restricted mating/replacement,
• fitness-sharing/crowding, and
• random immigrants.

Strong selection pressure implies that the GA will intensively sample current
high fitness individuals, leading, if unchecked, to a rapid convergence of the
population to similar genotypic forms. This can make it difficult for the pop-
ulation to adapt if environmental change occurs, particularly if the change
occurs in a region of the landscape which is not currently being sampled by
the population of solutions. Hence, the use of a lower selection pressure will
help maintain diversity in the population of genotypes. Another related con-
sideration when implementing a GA in a dynamic environment is what form

46 4 Extending the Genetic Algorithm

of selection and replacement strategy to implement. The steady-state GA can
offer advantages over the canonical generational GA. It allows a quicker re-
sponse to a shift in the environment, as high-quality, newly created children
are immediately available for mating purposes.

The degree of diversity of a population can be continually monitored in real
time as the GA runs. Populational diversity can be defined on many levels,
including diversity of fitness values and diversity of phenotypic or genotypic
structures. Multiple measures of diversity can be defined for each of these. For
example, diversity in a collection of real-valued fitnesses could be measured
using the standard deviation of those values. However measured, if population
diversity falls below a trigger level, action can be taken to increase diversity
by raising the level of mutation or by replacing a portion of the population
by newly created random individuals.
Under a restricted mating or restricted replacement strategy, individuals
which are too similar are not allowed to mate, and in a restricted replacement
strategy a newly created child is precluded from entering the population unless
it is sufficiently different to existing members of the population. The object
in both cases is to avoid convergence of the population to a small subset of
genotypes.

A fitness-sharing mechanism [213] aims to reduce the chance that a mul-
titude of similar individuals will be selected for reproduction, thereby reduc-
ing the genetic diversity of subsequent generations. An example of a fitness-
sharing mechanism is:

f ′(i) =
f(i)

n∑
j=1

s(d(i, j))
(4.1)

where f(i) represents the original raw fitness of individual i. If there are a
number of individuals which are similar to i in the population, its fitness
for use in the selection process is reduced. The shared (reduced) fitness of
individual i is denoted as f ′(i), and this corresponds to i’s original raw fitness,
derated or reduced by an amount which is determined by a sharing function.

The sharing function s as in (4.2) provides a measure of the density of the
population within a given neighbourhood of i. For any pair of individuals i, j
in the population, the sharing function returns a value of ‘0’ if i and j are
more than a specified distance t apart (Fig. 4.1), and a value of ‘1’ if they are
identical.

s(d) =

{
1−

(
d
t

)α
if d < t;

0 otherwise.
(4.2)

where d is a measure of the actual distance between two solutions and α is a
scaling constant. To provide intuition on the sharing formula, if two individu-
als in the current population are virtually identical, the distance between them
is close to zero. Consequently, the raw fitness of each individual is reduced by
50%, reducing each individual’s chance of being selected for reproduction.

4.1 Dynamic Environments 47

1.0

d(i,j)

s(d(i,j))

0.0
t

Fig. 4.1. Sharing function where α = 1. As the distance between two solutions
increases, the degree of fitness sharing between them decreases

In a random immigrants strategy [219] a portion of the population is replaced
by new randomly created individuals in each generation. This ensures that
there is a constant inflow of diverse individuals into the search process. Usually
either the worst, or random, members of the current population are replaced
by the immigrants.

Memory

If the environment is thought to switch between a number of different ‘states’
then a sensible adaptation strategy is to build up and maintain a memory
of good past solutions. These can be injected into the population if an en-
vironmental change is detected. An interesting biological example of this is
provided by our acquired immune system, which has the capacity to remem-
ber the molecular signature of past invading pathogens, thereby enabling it to
respond quickly if the pathogen is subsequently reencountered (Sect. 16.1.3).

Measurement of Performance

An important open question in EAs (and other methods for optimisation) is
how best to measure performance in a dynamic environment. Ideally, we want
a solution that performs well under the expected environment but which will
not fail completely if the environment changes slightly. For example, suppose
we are developing a delivery schedule for a large truck fleet. The resulting
schedule should be reasonably robust to truck breakdowns or unexpected
traffic delays. Similarly, a control program for a machine should be robust
to changes in environmental conditions such as temperature or humidity.

A simple way of assessing the brittleness of a proposed solution is to under-
take sensitivity analysis on the solution by perturbing it slightly and observing
the resulting effect on fitness. Solutions which produce large changes in fitness

48 4 Extending the Genetic Algorithm

when perturbed slightly could therefore be assigned a lower ‘adjusted fitness’,
with this value being used to drive the selection process in the EA.

Summary

The application of GAs, and other natural computing algorithms to dynamic
problems has become a major area of natural computing research in recent
years and many open issues remain. As noted in the last subsection, the
appropriate definition of performance measures for these problems is not a
trivial issue. Another open issue is the appropriate definition of diversity.

4.2 Structured Population GAs

Most evolutionary algorithms including the GA are panmictic in that any two
members of the population can potentially mate with each other. The pop-
ulation consists of a single pool of individuals and the operators of selection
and crossover act on the entire pool. An alternative approach is to imple-
ment a structured population GA where the population is partitioned and
mating is constrained to the individuals within each partition. Two popular
versions of structured evolutionary algorithms exist, distributed EAs (dEAs)
and cellular EAs (cEAs). Implementing a structured GA can lead to com-
putational efficiencies as the evolutionary process can be parallelised across
multiple computers or processors (a good overview of parallelisation tech-
niques in evolutionary algorithms is provided in [11]) and it can also help
maintain population diversity.

Distributed EA

The dEA is inspired by the concept of species which are simultaneously evolv-
ing on geographically dispersed islands in an ocean. It is also known as the
island model because of this. In dEA, several separate subpopulations are
created and each commences its own evolutionary process. Periodically, fit in-
dividuals are allowed to migrate between the subpopulations. The migrations
promote the sharing of information from already-discovered good solution en-
codings, while maintaining genotypic diversity between the subpopulations.
Island versions of the GA are natural candidates for parallel implementation
as the evolutionary process on each island can be assigned to an individual
processor.

In implementing the island model, decisions must be made concerning how
often migration events occur between subpopulations, how individuals are se-
lected for migration, how many individuals are selected for each migration
event, and what replacement process is applied to refill the subpopulation
when members of it migrate to another subpopulation. A variety of migration

4.2 Structured Population GAs 49

Population 1

Population 2

Population 3

Population 4

Population 1

Population 2 Population 4

Population 3

Fig. 4.2. Two examples of an island topology. The top network has unrestricted
migration between all islands and the bottom network has a ring migration topology,
where individuals can only migrate to one adjacent island

strategies can be used. For example, migration of individuals from one popu-
lation to another may be unrestricted, or it may be confined to a predefined
neighbourhood for each population (Fig. 4.2).

Illustrating one implementation of an island model, suppose there are four
subpopulations with an unrestricted migration structure. A migration pool
can be created for each subpopulation consisting of individuals selected from
the other three subpopulations (perhaps their most fit individual). For each
subpopulation in turn, a random selection is then made from its migration
pool, with this individual replacing the worst individual in the subpopulation
it enters.

Cellular EA

In cEA each individual genotype is considered as occupying a cell in a lattice
(or graph) structure (Fig. 4.3). The operations of selection and recombination
are constrained to take place in a small neighbourhood around each individual.
When a cell is being updated, two parents are selected from its surrounding

50 4 Extending the Genetic Algorithm

neighbourhood, and genetic operators are applied to the two parents to pro-
duce an offspring, with this offspring replacing the current genotype stored in
that cell.

Each cell has its own pool of potential mates and in turn is a member of
several other neighbourhoods, as the neighbourhoods of adjoining cells over-
lap. Therefore, in contrast to dEA, which typically has a few relatively large
subpopulations, there are typically many small subpopulations in cEA.

Fig. 4.3. A grid structure where a neighbourhood is defined around an individual
(here the shaded cell)

In implementations of cEAs, updates of the state of each cell can be syn-
chronous, where all cells are updated simultaneously using the cell contents in
the current lattice. As the new genotypes are created, they are copied across to
the next generation’s lattice one at a time. Alternatively, the update process
can be asynchronous, where the lattice is updated one cell at a time so that
new genotypes can influence the update process as soon as they are created.
One method of asynchronous update is to update all cells sequentially from
left to right, and from line to line, starting from the top left corner (fixed line
sweep). Another method of asynchronous update is to randomly select (with
uniform probability and with replacement) which cell to update during each
time step (uniform choice).

4.3 Constrained Optimisation

Many important problems consist of attempting to maximise or minimise an
objective function subject to a series of constraints. The constraints serve to
bound the feasible region of valid solutions, possibly to a very small subset of
the entire (unbounded) search space (Fig. 4.4).

More formally, a constrained optimisation problem (assuming that the
objective function is to be maximised) can be stated as follows: find the vector
x = (x1, x2, . . . , xd)

T , x ∈ Rd in order to:

Maximise f(x) (4.3)

4.3 Constrained Optimisation 51

Constraints

Feasible
region

Fig. 4.4. Feasible region for a maximisation problem bounded by the x and y axes
and three other constraints

subject to

inequality constraints: gi(x) ≤ 0, i = 1, . . . ,m (4.4)

equality constraints: hi(x) = 0, i = 1, . . . , r (4.5)

boundary constraints: xmin
i ≤ xi ≤ xmax

i , i = 1, . . . , d. (4.6)

The boundary constraints can be used to enforce physical conditions such as
mass ≥ 0, etc. There are several approaches that can be taken when using a
GA for constrained optimisation. A simple approach is to apply the GA as
normal and assign zero fitness to any genotypes which generate an illegal so-
lution which breaches one or more constraints. This strategy can be poetically
referred to as the death penalty [409]. A problem with this approach is that
even with low-dimensional problems it can produce a highly inefficient search
process. If the problem is highly constrained, many generated genotypes may
be illegal (for example, none of the initially randomly generated solutions
might be feasible); hence much of the GA’s effort is wasted. There is also a
risk that there could be over-rapid convergence on the first feasible solution
found. As the dimensionality of the problem increases, the above problems
are worsened as ratio of invalid solutions outside the feasible area to valid
solutions inside the feasible area will rapidly increase. Two key issues arise
when applying the GA to a constrained optimisation problem:

i. it may be difficult to generate an initial population of feasible genotypes,
and

ii. crossover and mutation may act to convert a legal solution into an illegal
one.

52 4 Extending the Genetic Algorithm

Three approaches which can ameliorate these issues include the use of penalty
functions, the use of repair operators, and the creation of tailored diversity
generation operations.

Penalty Functions

Rather than assign a zero fitness to genotypes which generate infeasible solu-
tions, the objective function from which the fitness value is calculated may be
supplemented by appending a penalty function to it. The greater the number
of constraints breached, or the further the solution is from the feasible region,
the lower the fitness assigned to it.

Obj∗(s) = Obj(s)− pen(s) (4.7)

pen(s) =

m∑
i=1

wibi (4.8)

where bi =

{
1, if s breaches constrainti;

0, otherwise.

In (4.7) the initial value of the objective function (assuming a maximisation
problem) for solution s is reduced by a penalty function pen(s). This penalty
is determined by the number of the i constraints that are breached by s, where
each of these constraints can have a different weight (wi) (4.8).

This approach can help the GA to guide the population back to the feasible
region. A penalty approach is most likely to work if there are relatively few
constraints, as the greater the number of constraints, the harder it is to design
an appropriate penalty function. Choices of weight values are important as, if
weights are set too low, solutions may violate multiple constraints, if they are
set too high, only feasible solutions will effectively be considered. This could
lead to a collapse of populational diversity early in the algorithm, resulting in
convergence to a locally optimal solution.

In order to overcome the latter problem, an adaptive penalty system could
be implemented where low penalty weights are initially applied to facilitate
explorative search, with the penalty weights being increased later in the GA
run in order to force feasibility.

Repair Operators

Another approach is to attempt to repair infeasible solutions by moving them
back into the feasible region. The ‘repaired’ solution then replaces the ille-
gal solution in the population. Unfortunately, the design of an efficient repair
mechanism can become tricky, particularly as the number of constraints in-
creases (a simple repair operation in order to satisfy one constraint may pro-
duce a breach of another constraint). Generally, effective repair mechanisms
are problem-specific.

4.4 Multiobjective Optimisation 53

Tailored Diversity-Generation Operators

A problem when canonical crossover and mutation operations are applied to
a genotypic encoding is that they do not respect the context of the problem
domain. Hence, a crossover operation on two parents drawn from the feasible
region may produce a child which is infeasible. Similarly, the application of
a canonical mutation operator to a feasible genotype may produce one which
results in an infeasible solution. One solution to this is to design problem-
specific versions of crossover and mutation. An example of this is provided by
the NEAT system in Sect. 15.2, which shows how populations of feedforward
multilayer perceptrons (neural networks) can be evolved.

4.4 Multiobjective Optimisation

Decision-makers are often faced with having to make trade-offs between multi-
ple, conflicting, objectives. There are usually also constraints on the solutions,
such that not all solutions will be considered feasible (Sect. 4.3). Examples
of multiobjective problems abound in the real world, ranging from finance
to engineering. In the former case, investors typically seek to maximise their
return whilst minimising a risk measure (for example, the variability of their
return). Hence, the decision faced by the investor is how to allocate her invest-
ment funds across multiple assets, so as to attain the highest possible return
for a given level of risk. As we would expect, there is no unique solution to
this problem, as higher expected returns will typically come at the cost of
higher risk. In the case of engineering design problems, there is often a re-
quirement to trade off (for example) the durability of a component and its
weight/performance.

The multiobjective problem can be generally formulated as follows. As-
sume that there are n objectives f1, . . . , fn and d decision variables x1, . . . , xd

with x = (x1, . . . , xd), and that the decision-maker is seeking to minimise the
multiobjective function y = f(x) = (f1(x), . . . , fn(x)). The problem therefore
is to find the set (region) R ⊆ Rd of vectors x = (x1, x2, . . . , xd)

T , x ∈ Rd in
order to:

Minimise y = f(x) = (f1(x1, . . . , xd), . . . , fn(x1, . . . , xd)) (4.9)

subject to

inequality constraints: gi(x) ≤ 0, i = 1, . . . ,m (4.10)

equality constraints: hi(x) = 0, i = 1, . . . , r (4.11)

boundary constraints: xmin
i ≤ xi ≤ xmax

i , i = 1, . . . , d. (4.12)

Any specific member x of R (corresponding to a set of decision variable val-
ues) will produce a unique y (vector of objective values in objective space)

54 4 Extending the Genetic Algorithm

and the above formulation aims to determine the members of R which are
nondominated by any other member of R. This set is termed a Pareto set. For
example, in the investor’s problem the aim is to find the investment weights
for each of the k possible assets that the investor can include in her port-
folio, such that the resulting expected risk-return outcome for that portfolio
is nondominated by the expected risk-return output from any other possible
portfolio. A member of the Pareto set is nondominated when (in the above
example) for a given level of risk no other portfolio with a higher rate of return
exists, or for a given level of return no other portfolio with a lower level of
risk exists. Once the Pareto set is uncovered, the final choice of investment
portfolio is determined by the individual investor’s risk preference. Graphi-
cally, the Pareto set corresponds to a Pareto frontier (usually referred to as
the efficient frontier) in objective space (Fig. 4.5).

Risk

Return Pareto frontier

Fig. 4.5. Pareto frontier. The frontier corresponds to the set of investment port-
folios that are Pareto optimal

Generally, a solution is termed Pareto optimal if an improvement on any
one component of the objective function implies a disimprovement on an-
other component. Hence, all solutions on the Pareto front are nondominated.
Therefore, unlike single criterion problems, a multiobjective problem has mul-
tiple, usually an infinite number of, solutions, rendering the calculation of the
entire Pareto set infeasible. Typically instead, the object is to find a good
approximation of the Pareto set given limited computational resources.

Approaches to Multiobjective Optimisation

A simple approach to multiobjective problems is to attempt to convert them
into a single objective problem, to which regular optimisation techniques (in-
cluding the GA) can be applied. One approach is to assign weights to each
objective and then compute a single value for the entire objective function

4.4 Multiobjective Optimisation 55

using a weighted linear combination of the individual components of the ob-
jective function for any given solution vector.

Clearly this method is subjective in that it requires the decision-maker to
supply the relevant weights. Depending on the problem, the solution obtained
can be sensitive to even small changes in these weightings. For a given set of
weightings a single solution is obtained; hence, this approach will not identify
all nondominated solutions.

Another way of converting a multiobjective problem to a single objective
one is to move all but one component of the objective function to the constraint
set, again obtaining a single solution for each specification of the constraints.

Multiobjective Optimisation with a GA

In using the GA for multiobjective optimisation, we are trying to closely
approximate the true (but unknown) Pareto frontier and this requires that
we generate a diverse set of nondominated solutions. A large literature has
emerged over the past 20 years on the application of EC methods for multi-
objective optimisation.

While a canonical GA can be directly applied to solve a multiobjective
problem, a practical issue that arises is that typically the population will
converge to a single solution (or small set of solutions) and hence will not
uncover a representation of the entire Pareto frontier. One way to overcome
this is to restart the GAmultiple times and keep a record of the solutions found
in each run. While this approach may eventually approximate the Pareto
frontier, it is likely to prove computationally expensive as multiple runs may
uncover the same points.

Hajela and Lin [239] proposed an alternative approach known as the
weight-based genetic algorithm (WBGA) which uses a weighted sum approach
to convert the multiobjective optimisation problem into a single objective
problem. In WBGA each member of the population uses a different weight
vector, which is generated randomly at the start of the run (with all weights
summing to 1,

∑n
i=1 wi = 1) and is then fixed. This weight vector is then

applied in determining the fitness of each solution. An advantage of this ap-
proach is that it allows a standard GA to search for multiple solutions in a
single run.

One of the earliest published multiobjective GA applications, called vec-
tor evaluated GA (or VEGA), was proposed by Schaffer [554]. This algo-
rithm employs a ‘switching objective approach’ which aims to approximate
the Pareto optimal set by a set of nondominated solutions. In the algorithm,
the population Pt is randomly divided into K equally sized subpopulations
P1, P2, . . . , PK , assuming that there are K objectives. Then, each solution
in subpopulation Pi is assigned a fitness value using the objective function
zi corresponding to that subpopulation. Hence, each subpopulation is evalu-
ated using a different objective — thereby removing the difficulty in trying to
determine the value of a solution under multiple objectives simultaneously.

56 4 Extending the Genetic Algorithm

Solutions are then selected from these subpopulations, using fitness-based
selection, for crossover and mutation. Crossover and mutation are performed
on the new population in the same way as for a single objective GA (Algorithm
4.1).

Algorithm 4.1: VEGA Algorithm drawn from [336]

Let the subpopulation size be NS = N/K;
Generate a random initial population P0;
Set t = 0;
repeat

Randomly sort population Pt;
repeat

for i = 1 + (k − 1)NS , . . . , kNS do

Assign fitness value f(xi) = zk(xi) to the ith solution in the
sorted population;
Based on the fitness values assigned, select NS solutions between
the (1 + (k − 1)NS)

th and (kNS)
th solutions of the sorted

population to create subpopulation Pk;

end

until complete for each objective k = 1, . . . ,K;
Combine all subpopulations P1, . . . , Pk and apply crossover and mutation
on the combined population to create Pt+1 of size N ;
Let t = t+ 1;

until terminating condition;
Return Pt;

The VEGA approach is relatively easy to implement but suffers from the draw-
back that it tends to produce solutions which perform well on one objective
but poorly on others.

While early approaches to the application of GAs for multiobjective opti-
misation relied on conversion of the problem into a single objective problem,
later algorithms have been developed which directly tackle the multiobjective
nature of the problem. In Pareto ranking approaches the fitness of a solution
depends on its ranking within the current population (in other words, how
many individuals is a specific individual dominated by), rather than on its
actual objective function value; hence solutions are iteratively improved by
focussing on the nondominated solutions in the current population. One of
the earliest applications of this idea was Goldberg [211]. See Algorithm 4.2.
Note that, here, a lower rank corresponds to a better quality solution. The
set Fi are the nondominated fronts, and F1 is the nondominated front of the
population.

Related studies which further developed this method included Fonseca
and Fleming’s [196] Multiobjective Genetic Algorithm (MOGA), Srinivas and

4.5 Memetic Algorithms 57

Algorithm 4.2: Pareto-ranking Algorithm from [336]

repeat

Set i = 1 and TP = P ;
Identify nondominated solutions in TP and assign them to the set Fi;
Set TP = TPFi;
repeat

i = i+ 1;
Identify nondominated solutions in TP and assign them to the set Fi;
Set TP = TPFi;

until TP = ∅;
for every solution x ∈ P at generation t do

Assign rank r1(x, t) = i if x ∈ Fi;
end

until terminating condition;
Return Fi;

Deb’s Nondominated Sorting Genetic Algorithm (NSGA) [590] and NSGA-
II [136]. Zitzler and Thiele’s Strength Pareto Evolutionary Algorithm (SPEA
and SPEA-2) [683, 684] uses a ranking procedure to assign better fitness values
to nondominated solutions in sparser regions of the objective space, thereby
encouraging the uncovering of a dispersed set of nondominated solutions.

An excellent concise introduction to evolutionary multiobjective optimisa-
tion is provided by Zitzler, Laumanns and Bleuler [682] and Konak, Coit and
Smith [336]. Detailed coverage of the field can be found in [116] and [135].

4.5 Memetic Algorithms

Learning in populations of individuals takes place at several levels. At one
extreme, the effects of long-term evolutionary learning is encoded in the pop-
ulation of genotypes which make up a species. On a shorter time frame, in-
dividuals are also capable of lifetime learning based on their own and on
observed experience. In populations of social individuals, learning can also be
transmitted by means of a shared culture (e.g. via education systems, legal
systems, etc.).

In his famous book, The Selfish Gene [134], Richard Dawkins coined the
term ‘meme’ to refer to ‘the basic unit of cultural transmission, or imitation’.
Dawkins suggested that these memes were selected and processed by individ-
uals and could be improved by the person holding them. As memes could also
be passed from person to person, Dawkins argued that they displayed the key
characteristics of an evolutionary process, namely, inheritance, variation and
selection, thereby leading to a process of cultural evolution, akin to biological
evolution.

58 4 Extending the Genetic Algorithm

The concept of a dual evolutionary/lifetime learning mechanism could of
course be included in a computational algorithm and the term memetic algo-
rithm was first used by Moscato in 1989 [421] to describe an algorithm which
combined both genetic (population-based) and individual (or cultural) learn-
ing. Early memetic algorithms (MAs) typically consisted of an evolutionary
algorithm that included a stage of individual optimisation/learning as part of
the search strategy [257, 345, 346, 422]. For example, a local search step could
be added to a canonical GA. The local search process could be as simple as pe-
riodically performing a hill-climb around a subset of the better solutions in the
current population in order to improve these solutions further. Improvements
from the local search would be encoded on that individual’s genotype and
would therefore be potentially transmissible to other members of the pop-
ulation in subsequent generations. Practical design issues in creating these
algorithms include choices as to how often individual learning takes place,
which members of the population engage in individual learning, how long the
individual learning process lasts, and what individual learning method should
be used.

These forms of MA are known by a variety of names, including hybrid
genetic algorithms, genetic local search algorithms and Lamarckian genetic
algorithms. A practical motivation for these hybrid evolutionary algorithms
is that while evolutionary algorithms such as the GA tend to be useful in
identifying a good (high-fitness) region of a search space, they can be less
effective in efficiently searching within this region [452, 486].

Although the early versions of these algorithms were loosely inspired by
memetic concepts, they did not explicitly embed the notion of a population
of memes which is adapting over time. Over the two decades since the intro-
duction of MAs a wide body of literature has developed on this topic with a
variety of algorithms being developed which explicitly include memetic adap-
tation. In the multimeme MA, memes are directly encoded on an individual’s
genotype, and determine the nature of the local refinement process which that
individual applies. An alternative approach is that a pool of candidate memes
compete for survival based on the degree of their past success in producing
improvements during the local refinement step with better memes having a
higher chance of survival into future generations. Hence, in both of the above
approaches, there may be multiple local refinement (individual learning) ap-
proaches encoded in the memes. Interested readers are referred to [488]. More
generally, a significant body of literature has developed on memetic computa-
tion defined by [487] as “a paradigm that uses the notion of meme(s) as units
of information encoded in computational representations for the purpose of
problem solving”. A detailed introduction to this field is provided by [487].

4.6 Linkage Learning 59

4.6 Linkage Learning

In genetics, multiple genes can interact in producing an effect at the phe-
notypic level. This is known as epigenesis. Unfortunately, when individual
elements of a genotype interact in this manner, it becomes much harder to
find good gene values, as the GA implicitly needs to tease out the linkages
between the relevant genes and then coevolve good sets of values for them.
A particular problem of the canonical GA is that the selection and crossover
operators can easily break up promising solutions, where there are epistatic
links between dispersed elements of the genotype (Fig. 4.6).

As an example, consider a binary string encoding which is n bits long,
where the first and the last bit must both be ‘1’ if the string is to have high
fitness. If basic single-point crossover is applied to two parents, one of which
already has the correct (‘1’) value in these locations, it is quite possible that
neither child will inherit the good genes from that parent. In other words, be-
cause no attention has been paid to the linkage structure between the elements
of the string, the crossover operator has acted in a destructive manner.

Recognition of this problem led to the development of literature on linkage
learning, where the object is to design crossover operators which do not disrupt
important emerging partial solutions (building blocks) but which still ensure
an effective mixing of partial solutions.

Messy GA

One approach to this problem is to attempt to reorganise the representation of
the solution encoding so that functionally related elements will be (re)located
close together on the reordered genotype. This reduces the chance that impor-
tant links between genes will be broken by the crossover operator (Fig. 4.7).
GA variants which have employed reordering operators include messy GA
(mGA) and the linkage learning genetic algorithm. While the idea is sensible,
a general problem with reordering approaches is that they tend to scale poorly
as the length of the genotype increases.

Competent GA

An important direction in GA research stems from the recognition of the
limited scalability of the canonical GA when it is applied to problems of in-
creasing difficulty. It has been recognised that the success of a GA is dependent
upon facilitating the proper growth and mixing of building blocks, which is
not achieved by problem-independent recombination operators [212, 621]. The
algorithms emerging from this area of research are dubbed competent GAs.
Competent GAs seek to perform a more intelligent search by respecting the
functionally important linkages between the constituent components of a so-
lution in order to prevent the disruption of potentially useful building blocks.
More recently, the GP community has applied ideas from competent GA in
designing GP algorithms [552, 572].

60 4 Extending the Genetic Algorithm

x1 x2 x3 x4 x5 x6 x7 x8

0 1 0 1 1 1 0 0

0 0 1 1 0 1 0 1

0 1 0 1 0 1 0 1

0 0 1 1 1 1 0 0

Parent 1

Parent 2

Child 1

Child 2

Epistatic linkage

Fig. 4.6. Three of the genes are epistatically linked (x1, x7 and x8). As the genes
are widely separated on the genome, application of a single-point crossover will tend
to disrupt sets of good choices for these genes

x1 x7 x8 x4 x5 x6 x2 x3

 Fig. 4.7. The three epistatically linked genes (x1, x7 and x8) are reordered so they

are grouped together at the beginning of the genome. By grouping them together,
there is less chance that the linked genes will be broken up by a single-point crossover
operator

4.7 Estimation of Distribution Algorithms 61

4.7 Estimation of Distribution Algorithms

Estimation of distribution algorithms (EDAs) are an alternative way of mod-
elling the learning which is embedded in a population of genotypes in an evo-
lutionary algorithm. EDAs are a rapidly growing subfield within evolutionary
computing and have several names, including probabilistic model building al-
gorithms (PBMAs) and iterated density estimation evolutionary algorithms
(IDEAs) [361, 500, 504]. Recent years have seen the application of EDAs to
a range of problem domains, including multiobjective optimisation [329, 622],
and dynamic optimisation [668].

001100

110101

100100 100100

001100

110101

100100

100101

001100

Probabilistic
model

Population (tx+1) Population (tx) Selection

Fig. 4.8. Illustration of EDA with sampling from a probabilistic model replacing
the crossover and mutation operators of canonical GA

Rather than maintaining a population of solution encodings from one
generation to the next, and manipulating this population using selection,
crossover and mutation, global statistical information is extracted from pre-
vious iterations of the algorithm. This information is used to construct a
posterior probability distribution model of promising solutions, based on the
extracted information. New solutions are then sampled from this probabil-
ity distribution (Fig. 4.8). Hence, EDAs maintain the selection and variation
concepts from EAs but generate variation in a different way. Particular ad-
vantages of EDAs over genetic algorithms include their lack of multiple pa-
rameters (such as crossover and mutation rates) that require tuning and the
transparency of the underlying probabilistic model used to guide the search
process [360].

Examples of EDAs include population-based incremental learning (PBIL)
[26, 27], the compact genetic algorithm (cGA) [252], and the Bayesian Opti-
misation Algorithm (BOA) [503].

The general EDA methodology can be operationalised in many ways. For
example, the design of the model update step depends on the assumptions
made concerning the nature of the problem being addressed. Three main
groups of EDAs exist; algorithms that assume that all variables are inde-
pendent (univariate EDA models), those that assume restricted interactions
between the variables (for example, bivariate dependencies between variables),

62 4 Extending the Genetic Algorithm

and those that allow unrestricted interactions between the variables. Initially
we will consider univariate EDA PBIL and cGA models. Algorithm 4.3 illus-
trates pseudocode for a canonical univariate EDA.

Algorithm 4.3: Canonical Estimation of Distribution Algorithm

Initialise a probability vector P of length l (assume an l-dimensional
problem);

repeat

Generate n trial solution vectors, using P ;
Evaluate the n trial solutions;
Select x < n of the better solutions from the population;
Adapt P using these x solutions;

until terminating condition;

Table 4.1. Illustration of probability vectors P1, P2, P3 associated with three dif-
ferent binary-valued populations. The ith component of a probability vector specifies
the probability that a bit in position i contains ‘1’ in that particular population

Population 1 Population 2 Population 3

0101 0100 0000
1010 1010 0000
1010 1110 0000
0101 0010 0000

vector P1 vector P2 vector P3

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0.0 0.0 0.0 0.0

4.7.1 Population-Based Incremental Learning

Population-based incremental learning (PBIL) was one of the earliest EDAs
developed [26, 27]. Although PBIL can be applied to nonbinary representa-
tions, for ease of exposition we will concentrate on the case where the so-
lution encoding is represented as a fixed-length binary string. In PBIL, the
algorithm’s learning is embedded in a probability vector which describes the
probability that a given bit position contains a ‘1’. Table 4.1 illustrates how
a probability vector can embed the information in a population of bit strings.
Here, three distinct populations, each consisting of four bit strings, are tab-
ulated along with a probability vector which summarises the information on
the relative distribution of 0s and 1s in each population of binary strings. In
the case of population 3, it can be seen that the population has converged to

4.7 Estimation of Distribution Algorithms 63

all 0s; hence its probability vector consists of all zeros. Algorithm 4.4 describes
a canonical PBIL algorithm.

Algorithm 4.4: PBIL Algorithm

Select the population size n, the probability of mutation pmut, the mutation
size sizemut and the learning rate R;
Initialise all components of the probability vector P to 0.5;

repeat
Construct a population of n strings, by undertaking n samplings using
the probabilities in P ;
Decode each string into a solution;
Calculate the fitness of each of the n solutions in the population;

Determine which solution xbest has the highest fitness;
Update each component Pi of P using the binary encoding corresponding
to the best solution, as follows: Pi(t) = Pi(t− 1)(1−R) + xbest

i R;
Apply a mutation process, with probability pmut, to each component of P ;

until terminating condition;

From the description of the algorithm it is evident that unlike the canonical
GA, there is no explicit crossover operator in PBIL. One interesting aspect of
PBIL is that learning is competitive as only the best encoding in each iteration
of the algorithm impacts on the probability vector P . Of course, alterations
to the components in the probability vector need not be solely undertaken
using xbest. An alternative formulation of the vector update step would be
to move the vector towards the complement of the least-fit encoding in the
current evaluation step, or towards the dominant bit-values of the best ‘m’
individuals in the current population. When generating the new population
of binary strings, a random number r is drawn from [0, 1], and, if r < Pi, then
locus i in the binary string is set to ‘1’.

4.7.2 Univariate Marginal Distribution Algorithm

The univariate marginal distribution algorithm (UMDA) was introduced by
Mühlenbein [423]. UMDA works with a binary representation and acts to
uncover a vector of probabilities P which govern the probability that a ‘1’ will
be generated in the corresponding component in a binary genotype. Initially,
all components of the probability vector P are initialised to 0.5.

In each iteration of the algorithm, a population of n individuals are sam-
pled from the probability vector using the same approach as in PBIL. The pop-
ulation is evaluated and the best m of these individuals are selected (m < n).
The probability vector P is then updated by calculating the average of the
values in each locus of the m selected binary strings (Table 4.2). The generate

64 4 Extending the Genetic Algorithm

population and update probability vector steps are iterated until a termina-
tion condition is met.

Table 4.2. Update of the probability vector P using the four fittest binary strings
from the current population

m = 4

1101
1110
1010
0101

P

0.75 0.75 0.5 0.5

Unlike PBIL, several members of the current population, not just the best one,
influence the adaptation of the probability vector. More complex variants of
the UMDA exist which include mechanisms such as mutation and memory.

Continuous Univariate Marginal Distribution Algorithm

The UMDA can be easily extended to work with real-valued encodings. As-
sume that we wish to maximise an n-dimensional function f and denote a
single solution vector x ∈ Rn. Initially, a population of potential (real-valued)
encodings is generated randomly within the feasible solution region. A fitness-
based selection of m of the individuals is performed. The mean and variance
of the values in each locus of the selected solutions is then calculated using
these individuals.

An assumption is made that the joint distribution of the selected individ-
uals is multinormal and that it can be factorised into n univariate normal
distributions. Therefore, all covariances between components of the solution
vectors are assumed to be zero. In the next generation, the individual normal
distributions corresponding to each individual component of the solution are
sampled in order to generate a new population.

Table 4.3 illustrates the calculation of the values used to parameterise the
normal distributions used in the sampling process. The four fittest members
of the population have been selected and the mean and standard deviation
of each of the four loci on their genotypes have been calculated. The mean
value for the first locus is 17.75 with a standard deviation of 1.89. When a
value is subsequently being generated for the first locus of each individual
in the new population, a random sample is drawn from N(17.75, 1.89). The
algorithm iterates the sampling, selection and probability distribution updates
until termination criteria are met.

Although the workings of the above algorithm are relatively straightfor-
ward, real-valued EDAs based on the normal distribution can be prone to

4.7 Estimation of Distribution Algorithms 65

Table 4.3. Calculation of parameters for normal distributions using four fittest
binary strings from the current population

Genotype Locus 1 Locus 2 Locus 3 Locus 4

1 18 220 10 2
2 19 201 11 8
3 15 189 10 23
4 19 178 10 6

Mean 17.75 197.00 10.25 9.75
Std. Dev. 1.89 17.98 0.50 9.18

premature convergence as the value of the parameter for standard deviation
can shrink too fast. Alternative variants of the algorithm using adaptive vari-
ance scaling seek to control the shrinkage of the standard deviation in order
to prevent premature convergence [217].

4.7.3 Compact Genetic Algorithm

The compact genetic algorithm (cGA), developed by Harik, Lobo and Gold-
berg [252], is another univariate EDA. Like PBIL and UMDA it assumes that
the variables are independent of each other and it ignores the possibility of
epistatic relationships between the variables. It also assumes, in its canonical
form, that the solutions are encoded as a binary string.

In implementing the cGA, a probability vector P of length n, where the
problem is n-dimensional, is created. As with PBIL and UMDA, this vector
represents the probability that a bit in a trial solution will take the value
‘1’. In generating each individual, n random numbers are generated in the
range [0,1]. If a random number is less than the corresponding value in the
probability vector P , a ‘1’ is inserted into the corresponding locus of the trial
solution being generated. The cGA differs from PBIL and UMDA in the way
that the probability vector update is performed.

In updating the probability vector, two trial solutions are sampled using
the current values in the probability vector and their fitnesses are calculated.
Each component of the probability vector is then adapted in order to make
the generation of the better trial solution more likely in the future. Hence, if
the better trial solution has a ‘1’ and the worse solution has a ‘0’ in locus i,
the value of Pi is adjusted by adding 1/K to it. On the other hand, if the
better trial solution has a ‘0’ and the worse solution has a ‘1’ in locus i, the
value of Pi is adjusted by subtracting 1/K from it. If both trial solutions
have the same value in locus i, the value of Pi is left unchanged. During the
adaptation process, the value of Pi is constrained to lie in the range [0,1] as
only these values have meaningful interpretation. The size of the adjustment
step depends on the value of K and typical values for this parameter are
a function of the dimensionality of the problem. A simple choice suggested
by [252] is to set K = n. The cGA iterates until all the components of the

66 4 Extending the Genetic Algorithm

probability vector are either 0 or 1, or until a run-time terminating condition
is triggered.

Shortcomings of Univariate EDAs

While univariate EDAs (including PBIL, UMDA and cGA) can work well for
problems where there are no significant interactions amongst the individual
variables, this performance does not carry over to more complex problem set-
tings where such interactions exist. Univariate EDAs only consider building
blocks of order 1, and the joint probability distribution that they develop to
model the solution vectors consists of the product of the univariate marginal
probabilities of all the individual variables. In order to overcome this sig-
nificant limitation, more complex EDAs have been created which can model
multivariate fitness interactions. These include the Bayesian Optimisation Al-
gorithm.

4.7.4 Bayesian Optimisation Algorithm

The Bayesian optimisation algorithm (BOA) [500, 501, 502, 503] is designed
to search discrete (including binary) valued spaces in an effort to uncover the
dependency structure (epistatic links) between individual elements of the solu-
tion. Like univariate EDAs, BOA uses a probability distribution, drawn from
the promising solutions uncovered so far, in order to generate new solutions
for testing.

The probability distribution is estimated using Bayesian network tech-
niques for modelling the joint distribution of multinomial data. The use of
this approach allows the uncovering of interaction effects between elements of
the solution and is independent of the ordering of elements in the genotype
representing the solution. This is in contrast to the canonical GA which, as
outlined in Sect. 4.6, can find it hard to maintain building blocks which are
widely separated on the genotype. Another feature of BOA is that it allows
for the incorporation of prior information (if any) about likely regions of good
solutions into the algorithm. The combination of prior information about the
structure of the problem and the set of current solutions is used to guide the
search process. The relative importance attached to each set of information
can be varied during the algorithm’s run.

A Bayesian network is an acyclic, directed graph where the nodes corre-
spond to elements of genotype (for example, a bit) and the edges correspond to
the conditional dependencies between the elements. Hence, the network struc-
ture encodes the nature of the dependencies or linkages between the elements
of the genotype and the parameters of the network encode the conditional
probabilities corresponding to the linkages between the elements. Hence, if
the value of element y of the genotype depends on the value of element x, the

4.7 Estimation of Distribution Algorithms 67

conditional distribution on the directed edge x → y will describe the distri-
bution of values for y given any value of x. Figure 4.9 illustrates a series of
nodes with a specific linkage structure.

In applications of Bayesian networks to some real-world problems, for ex-
ample, the modelling of a medical diagnostic procedure, expert knowledge may
exist to identify the nature of the links between variables representing risk
characteristics, disease symptoms and the resulting clinical diagnosis. Hence,
an expert may be able to identify the structure of the network (the links be-
tween the variables) based on domain knowledge. The task is then to identify
the conditional probabilities on the edges connecting the nodes, representing
for example the conditional probability that a person has disease y given the
presence of multiple symptoms or based on the results from diagnostic tests.

More generally, in the context of binary-encoded genotypes, it may not be
possible to clearly identify the nature of the links between the elements of a
genotype. Hence, the object in applying BOA is to uncover both the correct
linkage structure and the conditional probability distributions between the
elements of the genotype.

As the algorithm runs, initial networks which attempt to uncover this
linkage structure are generated, and the resulting Bayesian models are used
to generate new members of the population. In turn, the fitness information
in the new population is used to iteratively improve the Bayesian network
(by altering it). The power of the Bayesian network approach is that, unlike
univariate EDA approaches, it is capable of uncovering and modelling very
complex linkage structures between the elements of the genotype. In contrast,
a univariate EDA corresponds to a Bayesian network with no edges as all
components of the solution vector are independent.

1 2

3

Fig. 4.9. Illustration of Bayesian network between eight variables. The rightmost
node (variable) is not dependant on the value of any other variable (it is not linked
to any other node). Other nodes display various interdependencies. Node 1 is inde-
pendent of node 2. Node 3 is dependent on both nodes 1 and 2 (nodes 1 and 2 are
parents of node 3)

Formally, a Bayesian network encodes a joint probability distribution of
the form:

68 4 Extending the Genetic Algorithm

p(X) =
n∏

i=1

p(Xi|Πi) (4.13)

where X = (X1, . . . , Xn) is a vector of all the variables in the genotype (Xi is
the value at the ith position in the genotype), Πi is the set of all the parents
of Xi in the network (i.e., the set of all nodes that have a directed edge to
Xi), and p(Xi|Πi) is the conditional probability of Xi given its parents Πi.

The Algorithm

The canonical Bayesian optimisation algorithm is described in Pelikan, Gold-
berg and Cantú-Paz [502] (Algorithm 4.5). Initially, a random set of genotypes
is generated and a selection process is undertaken to obtain a set S(t) of the
better-quality genotypes. A Bayesian network is fitted to these genotypes and
a set of new solutions O(t) is generated by sampling from the joint distribu-
tion encoded in the Bayesian network. These newly generated solutions are
combined with the existing population P (t) and a selection process is used to
select the population for the next time step P (t+ 1) (Fig. 4.10).

Algorithm 4.5: Bayesian Optimisation Algorithm

Set t = 0;
Randomly generate an initial population of solutions P (0);

repeat

Randomly select a set of promising solutions S(t) from P (t);
Construct a Bayesian network B that best fits the selected solutions;
Generate a set of new strings O(t) according to the joint distribution
encoded by the Bayesian network B;
Create a new population P (t+ 1) by replacing some strings from P (t)
with O(t);
Let t = t+ 1;

until terminating condition;

Learning a Bayesian Network

There are two key steps in learning a Bayesian network, the learning of its
structure and the discovery of the appropriate parameters (the conditional
probabilities on the edges) for that structure. The learning of the structure is
driven by the calculation of a quality metric or score for a network. The score
depends both on the structure of the network and on how well it models the
data. The score can also incorporate prior knowledge about the problem, if
such knowledge exists. Typical scoring metrics include the Akaike Information

4.7 Estimation of Distribution Algorithms 69

 x1 x2 x3 fitness
1 1 1 1 0.93
2 1 1 0 0.54
 : : : : :
P 1 0 0 0.78

 x1 x2 x3 fitness
1 1 1 1 0.93
2 1 0 1 0.91
 : : : : :
n 1 0 0 0.78

 x1 x2 x3 fitness
1 0 0 1 0.94
2 0 1 1 0.82
 : : : : :
P 1 1 1 0.93

x1 x2

x3

Selection

Construct
Bayesian network

Sample from Bayesian
network to create new
population

Repeat selection,
construction and
sampling steps until
terminating
condition

Fig. 4.10. After the initial population is generated (top), n items are randomly
selected and used to induce the Bayesian network. A series of solutions is generated
from this network; they are then combined with the existing population, and P
members are selected to form the next generation. The selection, network induction
and sampling steps are iterated until a terminating condition is triggered

70 4 Extending the Genetic Algorithm

Criterion (AIC) and Bayesian–Dirichlet metrics and the minimum description
length, which seeks to minimise the number of bits used to describe the net-
work and its associated parameters. Readers are referred to [500, 502] for
further details of these.

The learning of the optimal network structure is a difficult problem, as the
number of possible networks grows at the rate of O(n!2n(n−1)/2) [534]. A six
variable problem could therefore produce in excess of 3.7 million networks,
making enumerative search for the best network in high-dimensional problem
an impractical task. A common practical approach is to adopt a heuristic such
as greedy search.

Having selected the scoring metric, an initial network is constructed, start-
ing with an empty network or a randomly generated network. A local search
process, employing basic graph operations such as edge additions, removals, or
reversals is then applied to the network in an effort to improve its score, using
greedy search. In other words, any valid alteration to the network which im-
proves its score is accepted and the search proceeds onwards from the altered
network. The graph operations are constrained in order to ensure that the re-
sulting network is acyclic. The network construction process is stopped when
the current network cannot be further improved. Once the network structure
is determined, the conditional probabilities are calculated for each variable
(node) given its parents. The probabilities are calculated using the training
data.

Having learnt both the structure and the conditional probabilities, new
members of the population can be generated by sampling from the network.
In this step, the nodes are ordered so that values for parent nodes (which do
not themselves have parents) are generated first. Then the values for nodes
with parents are generated using the learnt conditional probabilities and the
values already selected for their parent nodes. Table 4.4 illustrates an example
of a set of conditional probabilities for the value of binary variable y based on
the value of the binary variable x. Therefore, a value for y can be sampled,
given a value of x and these conditional probabilities. In subsequent iterations
of the BOA, the current network can act as the starting point for learning the
network or the network can be constructed from scratch.

Table 4.4. Conditional probabilities for the value of y given the value for x

x p(y|x) y

0 0.99 0
0 0.01 1
1 0.91 1
1 0.09 0

More powerful versions of BOA which can uncover and exploit hierarchi-
cal decomposition in solutions have been developed. The interested reader is

4.8 Summary 71

referred to [500] for a detailed treatment of Hierarchical BOA (hBOA). BOA
has also been extended to encompass real-valued problem domains [5].

4.8 Summary

This chapter introduced a range of extensions to the canonical genetic al-
gorithm. Many of these were inspired by the difficulties posed by real-world
problems such as dynamic environments, constrained regions of feasibility
and/or multiple objectives. Many of the concepts introduced in this chapter
have general application across multiple families of natural computing algo-
rithms and are not therefore limited to GAs.

In the following chapters we explore a range of other evolutionary in-
spired algorithms, including evolution strategies (Chap. 5), differential evolu-
tion (Chap. 6), and the automatic programing methodology of genetic pro-
gramming (Chap. 7).

5

Evolution Strategies and Evolutionary
Programming

In this chapter, two significant evolutionary algorithms, evolution strategies
and evolutionary programming, are presented.

Evolution strategies (ES) was developed by Rechenberg and Schwefel
[530, 531, 560, 561] in the 1960s and attracted a large following amongst
researchers and practitioners, particularly in Europe. ES has been extensively
used as a tool for solving real-valued optimisation problems and has also been
successfully applied for combinatorial optimisation, for constrained optimisa-
tion and for multiobjective optimisation.

Two notable characteristics of ES are that it typically uses a real-valued
representation (although binary and integer versions of ES exist) and that it
relies primarily on selection and mutation to drive the evolutionary process.
Most applications of ES embed self-adaptation, in that the algorithm alters its
rate of diversity-generation in response to feedback during the optimisation
process. Although the idea of adaptive EAs has become widespread in recent
years, ES was the first family of EAs to embed self-adaptation as an integral
part of its algorithm. A comprehensive history of the development of ES and
its theory is provided in [53] and [54].

Evolutionary Programming (EP) has its origins in the work of Fogel during
the 1960s [195]. EP adopts a general evolutionary framework and is indepen-
dent of any particular representation. Unlike the GA there is no concept of a
genotype. Instead emphasis is placed on the phenotype, which is iteratively
adapted in order to improve its fitness. Consequently, in standard EP there
is no concept of ‘genetic’ crossover, unlike GA where crossover is used to ex-
change useful building blocks between candidate solutions. Although EP was
not initially developed for optimisation applications, it has subsequently been
applied for real-valued and combinatorial optimisation.

© Springer-Verlag Berlin Heidelberg 2015
A. Brabazon et al., Natural Computing Algorithms, Natural Computing Series,
DOI 10.1007/978-3-662-43631-8_

73

5

74 5 Evolution Strategies and Evolutionary Programming

5.1 The Canonical ES Algorithm

Although people often refer to ES (or indeed the GA) as if it were a single
algorithm, it is more accurate to view ES as a family of algorithms. Initially,
in Algorithm 5.1 we describe a basic (non-self-adaptive) form of ES, with a
number of variants on this algorithm being described in the following sections
(see Algorithm 5.2 later in this chapter). Assume that the object is to find
the vector of real numbers x = (x1, . . . , xn) ∈ Rn which is associated with the
extremum of a function f : Rn → R : x �−→ f(x).

Algorithm 5.1: Non-Self-adaptive Evolution Strategies (μ+ λ)

Randomly create an initial population {x1, . . . , xμ} of parent vectors, where
each xi is of the form xi = (xi

1, . . . , x
i
n), i = 1, . . . , μ;

Evaluate each member of the population;

repeat

repeat

Randomly select (individual) parent from {xi : i = 1, . . . , μ};
Create child vector by applying a mutation operator to the parent;

until λ children are generated ;
Rank the μ+ λ parents and children from best (those producing least
error on the training dataset) to worst;
Select the best μ of these to continue into the next generation;

until terminating condition;

There are many ways that the above pseudocode can be adapted in order
to produce alternative ES algorithms. The population can be initialised in
different ways (random or not) and the generation of variety when creating
children could arise solely from mutation or could also employ a recombination
operator. Multiple selection and replacement strategies could also be applied.
The following subsections discuss a number of these possibilities.

5.1.1 (1 + 1)-ES

In the initial studies of evolution strategies [530, 560] attention was focussed
on a single parent, single child, scheme known as (1+1)-ES. In this scheme the
entire population consists of a single parent which gives rise to a single child.
The parent and its child then compete to survive into the next generation,
with the poorer solution being eliminated. Hence, this scheme consists of a
point-to-point search of the solution space. A practical problem with this
approach is that it can result in slow progress towards better regions of the
solution space.

5.1 The Canonical ES Algorithm 75

5.1.2 (μ + λ)-ES and (μ, λ)-ES

After initial experimentation with the (1 + 1) scheme, attention was focussed
on single parent, multiple children, schemes (1, λ) and (1 + λ). In these ap-
proaches, the single parent produces λ children. Each of the children are gen-
erated by mutating the individual elements of the parent’s vector using a
random draw from N(0, σ), a normal distribution with a mean of 0 and a
user-defined standard deviation of σ. In the case of (1, λ) the fittest of the λ
children survives into the next generation, whereas in the case of (1 + λ), the
original parent is only replaced if one of its λ children is fitter than it.

More generally, there can be multiple parent, multiple children, ES schemes,
denoted as (μ + λ)-ES and (μ, λ)-ES. In both of these schemes, parents are
randomly selected (with replacement) from μ. After these parents are mutated
to produce λ children (λ � μ), a selection process is implemented to decide
which of the parents and children survive into the next generation. As the
value of λ increases the selective pressure of the ES algorithm also increases.

The nature of the selection step depends on which of the schemes is being
used. In the first scheme, (μ+λ), the entire population of parents and children
compete for survival into the next generation, with the best μ succeeding. In
the second scheme, all survivors are selected from the set of children λ so each
individual has a single-period life span.

Therefore, (μ+λ) corresponds to an elitist replacement strategy, as a good
solution in the initial population can only disappear if replaced by a better
child, whereas the generational (μ, λ) scheme does not guarantee the survival
of a good parent into the next generation. Despite this, the (μ, λ) replacement
scheme is more commonly used in ES applications as the discarding of all
parents makes it easier for the population to migrate away from local optima
(a temporary reduction in fitness may be required to allow this).

Another potential problem of the (μ+λ) replacement scheme is that it can
hinder effective self-adaptation of the mutation rate in an ES (Sect. 5.1.3),
as under a (μ + λ) scheme, individuals with good current fitness but poor
strategy parameters (for example, mutation rates) can persist for a long time
in the population, slowing down the rate of population fitness improvement.

5.1.3 Mutation in ES

Each individual in ES is typically represented as a vector of real values, x =
(x1, . . . , xn). Associated with this vector is a set of strategy parameters. This
set may contain a single value, or alternatively, one or more values for each
element in the solution vector. The elements of the strategy vector guide the
mutation process in ES and are endogenous in that they can themselves self-
adapt as the algorithm runs.

In the simplest case of mutation, initially ignoring self-adaption, a single
strategy vector value σ could be set. In applying the mutation step to a
parent’s solution vector, a child vector is then formed by additively applying

76 5 Evolution Strategies and Evolutionary Programming

a random number r drawn from a Gaussian distribution N(0, σ) (where the
value of σ is chosen by the user) to each element of the parent vector. Hence,
the vector x(t), becomes x(t+ 1) = x(t) + r. Assuming that the value of σ is
relatively small, most mutations will be correspondingly small, with occasional
larger mutations. The parameter σ is referred to as the mutation step size as
it plays a critical role in determining the effect of the mutation operator.

While this mutation mechanism is easy to implement, it suffers from two
obvious problems:

i. it fails to consider the scaling of each dimension in the solution space, and
ii. the mutation step size is not sensitive to the stage of the search process.

The first problem arises as differing elements of an individual’s solution vector
may have widely varying scale. Hence, a suitable value of σ for one dimension
may not be suitable for another. The second problem also arises due to the
fixed value for σ. Early in the search process a large value of σ may be useful in
promoting explorative search in order to find a good region of the search space,
whereas later in the search process when finer-grained search is required, a
smaller value would be preferred. Hence, as discussed in Sect. 3.7, it is likely
that the optimal mutation values along each dimension will alter during the
optimisation run.

5.1.4 Adaptation of the Strategy Parameters

Two basic approaches can be used in adapting strategy parameters (here
governing the mutation size) as the algorithm runs. A deterministic scheme
such as the 1/5 success rule can be applied, or the strategy parameter(s) can
be allowed to evolve.

The 1/5 Success Rule

In an early attempt at dynamically varying the mutation parameter, Rechen-
berg [531] proposed the 1/5 success rule for the (1 + 1) scheme. Under this
rule the ratio (denoted as φ) of successful mutations (ones which produce a
child of higher fitness than its parent) to the total number of mutations is
measured periodically during the optimisation run, with σ being altered as
necessary in order to approach a ratio of 1/5. If φ was greater than 1/5, the
standard deviation of the mutations was increased, and vice versa if φ was
less than 1/5.

The rationale behind this approach was that if many successful mutations
are being created, the current solution is poor, and hence larger step sizes in
the search space are warranted. Conversely, if most mutations lead to poorer
results, the current solution is at least locally good; hence a finer-grained
search around the current solution is indicated. Hence, the adaptive rule for
the variance of mutations is:

5.1 The Canonical ES Algorithm 77

σ =

⎧⎪⎨
⎪⎩
σg if φ(k) < 1/5

σ/g if φ(k) > 1/5

σ if φ(k) = 1/5

(5.1)

where k is the number of generations between each adaptation of σ, and φ(k) is
the portion of successful mutations in the population (here a single individual)
over the last k iterations of the ES algorithm. The choice of a suitable value of
g depends on the problem at hand. If N (number of dimensions of the solution
space) is large (≥ 30), then values of k = N and 0.85 < g < 1 may be a good
starting point [54].

This approach leads to the self-adaptation of mutation step sizes based
on global feedback from the performance of the algorithm. However, the ap-
proach, while simple, does have drawbacks. It is restricted to the case where
there is one strategy parameter, it is designed for the (1 + 1) scheme, and
it does not consider that each dimension of the solution vector may have a
different scaling.

Self-adaptive Mutation Step Size

Rather than using a deterministic scheme to alter the mutation step size,
the step size can instead be coevolved along with the solution vector as the
algorithm iterates [22, 561]. This allows the mutation step to vary in size at
different times during the run.

Single-Step-Size Mutation

In the simplest case, each individual in the population is represented as a
vector v = ((x1, . . . , xn), σ) where (x1, . . . , xn) are the real values correspond-
ing to the solution variables and σ is a real-valued strategy parameter which
governs the mutation process for that individual.

In each iteration of this version of ES, the strategy value for each individ-
ual is initially mutated using a multiplicative process. This ensures that the
resulting value of σ(t) is positive. The new value for this parameter, σ(t+1),
is then additively used to create the new solution values for the child. The
updated solution and strategy values for a child (denoted (x(t+1), σ(t+1)))
can be created as follows:

σ(t+ 1) = σ(t) · e(τr) (5.2)

xi(t+ 1) = xi(t) + σ(t+ 1)ri, i = 1, . . . , n (5.3)

where i = 1, . . . , n are the n elements making up the child, and r and r1, . . . , rn
are independent identically distributed standard Gaussian random variables
(that is, drawn from N(0, 1)). The value of τ is defined by the user and this
learning parameter critically affects the rate of self-adaptation. Typically, the
learning rate is inversely proportional to the square root of the problem size:

78 5 Evolution Strategies and Evolutionary Programming

τ ∝ 1√
n
. (5.4)

In allowing the mutation step size to coevolve with the solution vector, it
is important to keep the above ordering of the two steps in the mutation
process. First the value of σ is mutated and then this new value is used to
create the new solution vector (x1, . . . , xn). Hence, the fitness evaluation of
the new solution vector also indirectly evaluates the utility of the mutated
strategy vector.

n-Step-Size Mutation

Under the above approach the mutation step size is the same for each dimen-
sion. As already discussed, this is likely to produce an inefficient search as the
fitness landscape can have different slopes in each direction and hence suitable
step sizes along each dimension will usually not be identical.

A solution to this problem is to use a separate strategy parameter for each
dimension, so v = ((x1, . . . , xn), σ1, . . . , σn) such that a different σ value can
be set for each dimension. A similar mutation approach is then applied as in
the single step size case, where:

σi(t+ 1) = σi(t) · e(τ
′r′+τr) (5.5)

xi(t+ 1) = xi(t) + σi(t+ 1)ri, i = 1, . . . , n (5.6)

where τ ′ ∝ 1/
√
n and τ ∝ 1/

√
2
√
n; and r′, r and r1, . . . , rn are all indepen-

dent identically distributed random variables drawn from a standard normal
distribution (with mean 0 and standard deviation 1). More complex methods
of adapting the mutation size have been studied and the interested reader is
referred to [562].

5.1.5 Recombination

Although initial implementations of ES concentrated on using a mutation
operator for generating diversity, ES can also include a recombination or
crossover operator. In this case, the canonical algorithm is altered in that
λ children are initially created by iteratively applying the recombination op-
erator and these children are then subject to a mutation operator as already
described. The recombination operator in ES typically produces a single child.

ES do not impose a requirement that a child must have two parents. In
order to denote the number of parents used, the standard ES notation (μ+λ)-
ES and (μ, λ)-ES can be extended to (μ/ρ,+λ)-ES and (μ/ρ, λ)-ES where ρ ≤
μ (ρ is known as the mixing number) is the number of parents that combine to
produce a single child. In applying the recombination operator repetitively to
generate μ children, parents can be selected using a fitness-based methodology
such as ranking (Sect. 3.6.1), but usually parents are selected randomly.

5.1 The Canonical ES Algorithm 79

Two approaches to recombination are commonly seen in ES, discrete and
intermediate. In discrete recombination, one of the parent values is randomly
selected for each locus on the string of real values making up the child solution
vector. In intermediate recombination, the parental values are averaged in
creating the value for each locus on the child. More generally, intermediate
recombination can be any linear combination of the two parent values. Figure
5.1 illustrates each form of recombination in the case where a child has two
parents.

In Fig. 5.1 it is assumed that two parents (ρ = 2) are chosen from the
population in order to produce a child. This is referred to as local recombina-
tion. A second form of recombination called global recombination is also used
in ES. In global recombination, for each locus of the child’s vector, two (or
more) parents are randomly drawn from the population and the child’s value
is obtained using the values from the random parents as already discussed.
The process of drawing two random parents is repeated for each locus of the
child, until the child vector is filled. Global recombination is commonly used
in ES.

0.80 3.60 4.10 1.30 Parent 1 0.80 3.60 4.10 1.30

2.70 2.50 6.70 1.20 Parent 2 2.70 2.50 6.70 1.20

0.80 2.50 6.70 1.30 Child 1.75 3.05 5.40 1.25

Fig. 5.1. Discrete (left) and intermediate (right) recombination with two parents

Recombination can also be applied to the strategy vectors of individuals.
Typically, discrete recombination is applied to the solution variables, with
intermediate recombination being applied to the strategy elements of the in-
dividual. The rationale for this is to smooth the adaptation of the strategy
parameters, rather than having substantial changes in mutation step sizes
from one generation to the next. If a recombination operator is added to the
ES algorithm, the pseudocode is as presented in Algorithm 5.2.

Covariance Matrix Adaptation Evolution Strategies

One notable variant of ES, developed by Hansen, Ostermeier and Gawelczyk
[246, 490], which has produced excellent results in real-valued optimisation
problems, is Covariance Matrix Adaptation Evolution Strategies. The essence

80 5 Evolution Strategies and Evolutionary Programming

Algorithm 5.2: Evolution Strategies with Self-adaptation and Recom-
bination (μ+ λ)

Create an initial population {x1, . . . , xμ} of parent vectors, each xi being of
the form xi = (xi

1, . . . , x
i
n), i = 1, . . . , μ;

repeat

repeat

Select ρ parents from {xi : i = 1, . . . , μ};
Recombine the ρ parents to form a child, forming both a new
solution vector and a new strategy vector;
Mutate the strategy vector for the child;
Mutate the solution vector of the child using its newly mutated
strategy vector;

until λ children are created ;
Rank the μ+ λ parents and children from best (those producing least
error on the training dataset) to worst;
Select the best μ of these to continue into the next generation;

until terminating condition;

of the CMA approach is that it allows for correlated mutations in real-valued
search spaces. The mutation distribution is generated from a covariance ma-
trix which itself adapts during the evolutionary process. This allows the mu-
tations to better adapt to the fitness landscape, thereby facilitating the opti-
misation process. For further details readers are referred to [244, 245, 246].

5.2 Evolutionary Programming

Evolutionary programming (EP) was developed by Lawrence Fogel in the early
1960s [195]. The initial application of EP was to simulate an evolutionary pro-
cess in a population of finite state machines in order to study the development
of intelligent, problem-solving behaviour [193]. Hence, unlike ES, the early fo-
cus of EP was the adaption of an individual’s set of behaviours rather than
the evolution of a set of solution variables for an optimisation problem.

While EP does bear similarities with other EAs, it adopts a more abstract
view of the evolutionary process. Rather than considering the evolution of an
underlying genetic code, EP focusses on applying an evolutionary process di-
rectly to the structures of interest (i.e. the phenotypes). EP does not require
the use of a specific form of representation (for example, real-valued or integer
strings), allowing the user to select the most suitable representation for the
problem at hand. In applications of EP these representations have included
(amongst many others) finite state machines and graphs [194]. Whatever the
choice of representation, EP uses an iterative improvement process whereby

5.2 Evolutionary Programming 81

a population of parent structures are perturbed using a suitably defined mu-
tation operator, with a selection process taking place to see which structures
survive into the next iteration of the algorithm. An overview of the canonical
EP algorithm is provided in Algorithm 5.3.

Algorithm 5.3: Evolutionary Programming Algorithm

Select the representation for the structures which are being evolved;
Let t := 0;
Randomly create an initial population of parent structures P (t);
Evaluate each member of the population;

repeat
Apply a mutation operator to members of P (t) to create a set of child
structures P ′(t);
Evaluate fitness of all members of P ′(t);
Apply selection process to obtain P (t+ 1) from P (t) ∪ P ′(t);
Let t := t+ 1;

until terminating condition;

A critical aspect in applying EP to a problem is the design of an ap-
propriate mutation operator. For example, consider the travelling salesman
problem (TSP) (further background on the TSP is provided in Sect. 9.3.2). In
the TSP there is a network of n cities. Each route, or arc, between two cities
has a distance or cost associated with it and the object is to find the tour
which minimises the distance travelled in visiting all the cities, returning to
the starting city. A TSP tour therefore consists of an ordered list of n integers
where each integer corresponds to the index for a city (each integer appears
only once on the list). For any ordered list the quality of that solution can
be determined by summing the distance between each city pair on the list,
including the distance from the last city on the list back to the starting city.

1 3 4 6 2 5 1 3 4 6 2 5
 X X X X
1 3 2 6 4 5 1 2 6 4 3 5

Parent

Child

Fig. 5.2. Two forms of mutation in a six city TSP, pair swapping (left) and inversion
(right)

In order to apply the EP framework to this problem, a mutation operator
must be defined. An example of a mutation operator is one that switches pairs
of cities in an ordered list; another is to allow route inversion (Fig. 5.2). In pair

82 5 Evolution Strategies and Evolutionary Programming

switching, two cities are randomly chosen and they are swapped in the tour
ordering. In tour inversion, two cities are randomly selected, and the ordering
of cities between the two selected points is reversed.

EP implements a very general evolutionary framework and is not closely
bound to a biological metaphor. There is no requirement that the population
size must remain constant, or that each parent can only generate a single
child. As there is no concept of a genotype, crossover is not typically used in
EP.

Numerical Optimisation with EP

A stream of literature has emerged over the years applying EP to a wide va-
riety of problems including combinatorial and real-valued optimisation ([193]
lists a sample of these studies). If the general EP framework is adapted in
order to be applied to real-valued optimisation, the resulting algorithm bears
strong similarities with ES without recombination. Individual solution vectors
are encoded as real-valued vectors and a natural choice of mutation mecha-
nism for these is a multivariate, zero-mean Gaussian distribution. In contrast
to the deterministic, rank-based, selection typical of ES, real-valued optimi-
sation applications of EP often use stochastic, tournament selection. Hence,
even poorer solutions have some chance of survival into the next iteration of
the algorithm.

5.3 Summary

Evolution strategies and evolutionary programming, along with the genetic
algorithm, are amongst the oldest families of evolutionary algorithms. Each
of the methodologies has been extensively studied and they have been ap-
plied to solve a wide range of real-world problems. While ES and EP bear
substantial comparison with the GA, they place emphasis on evolution at a
phenotypic rather than at a genotypic level. Canonical versions of ES and EP
place emphasis on mutation rather than on crossover as a means of generating
diversity.

In Chap. 6, the Differential Evolution algorithm, which also draws from
an evolutionary metaphor, is introduced.

6

Differential Evolution

Differential evolution (DE) [520, 599, 600, 601] is a population-based search
algorithm. It bears comparison with evolutionary algorithms such as the GA
as it embeds implicit concepts of mutation, recombination and fitness-based
selection. Like the GA, DE iteratively generates good solutions to a problem
of interest by manipulating a population of solution encodings. DE also bears
comparison with evolutionary strategies (Chap. 5), as its mutation step, when
generating diversity in its population of solution encodings, is self-adapting.

6.1 Canonical Differential Evolution Algorithm

Although several variants of the DE algorithms exist, initially we will describe
the canonical real-valued version of the algorithm based on theDE/rand/1/bin
scheme [600].

At the start of the algorithm, a population of n d-dimensional vectors
{xj = (xj

1, x
j
2, . . . , x

j
d) : j = 1, . . . , n}, each of which encodes a solution, is

randomly initialised (assuming there is no domain knowledge which would
suggest where the global optimum lies) and evaluated using a fitness function
f . (Superscripts indicate the index of vector xj in the population, while sub-
scripts indicate the component.) During the search process, each individual
xj of the n members of the population is iteratively refined. The modification
process has three steps:

i. create a variant vector which encodes a solution, using randomly selected
members of the population (similar to a mutation step);

ii. create a trial vector, by combining the variant vector with xj ’s vector
(crossover step); and

iii. perform a selection process to determine whether the newly created trial
vector replaces xj ’s current solution vector in the population.

The canonical DE algorithm is outlined in Algorithm 6.1 and is illustrated in
Fig. 6.1.

© Springer-Verlag Berlin Heidelberg 2015
A. Brabazon et al., Natural Computing Algorithms, Natural Computing Series,
DOI 10.1007/978-3-662-43631-8_

83

6

84 6 Differential Evolution

.

.

.

n

1
2

Child

P1 P2*

Parent P1
(each member of the
population in turn)

Base vector + Mutation
(parent P2) (vector difference)

Crossover

Fig. 6.1. DE variety-generation process

Algorithm 6.1: Differential Evolution Algorithm

Create an initial population {x1, . . . , xn} of n random real-valued vectors;
Decode each vector into a solution;
Evaluate fitness of each solution;

repeat

for each vector xj ∈ {x1, . . . , xn} do

Select three other vectors randomly from the population;
Apply difference vector to base vector to create variant vector;

Combine vector xj with variant vector to produce new trial vector;
Evaluate the fitness of the new trial vector;

if trial vector has higher fitness than xj then

Replace xj with the trial vector;
end

end

until terminating condition;

Mutation Operator

In the mutation step, a variant vector vj(t + 1) is created from each vector
xj(t) as follows:

vj(t+ 1) = xm(t) + F · (xk(t)− xl(t)) (6.1)

where k, l,m ∈ 1, . . . , n are mutually distinct, randomly selected indices (all
�= j), xm is referred to as the base vector, and xk(t) − xl(t) is referred to as
a difference vector. The variant vector is therefore a mutated version of an
existing parent (or base) vector. Selecting the three indices randomly implies
that all members of the current population have a chance of acting as a parent

6.1 Canonical Differential Evolution Algorithm 85

and also have a chance of playing a role in the mutation process. The difference
between vectors xk and xl is multiplied by a scaling parameter F (typically
F ∈ (0, 2]). The scaling factor controls the amplification of the difference
between xk and xl and is used to avoid stagnation of the search process.

Index

Number
Xj(t) Vj(t+1) Uj(t+1)

1 a q rand>CR a
2 b w rand CR w
3 c e rand CR e
4

d

r rnbr=4 r

Fig. 6.2. An example of crossover in DE

A notable attribute of the mutation step in DE is that it is self-scaling.
The size of mutation along each dimension stems solely from the location of
the vectors in the current population. The mutation step self-adapts in size
(and direction) as the population converges leading to a finer-grained search.

In contrast the mutation process in the canonical GA is typically based
on draws from a separately defined, fixed probability density function. The
effective size of the mutation step will usually therefore be different for each
element of the solution chromosome, corresponding to the scaling of that
element.

Trial Vector

Following the creation of the variant vector, a trial vector uj(t + 1) =
(uj

1, u
j
2, . . . , u

j
d) is obtained using:

uj
k(t+ 1) =

{
vjk(t+ 1), if (r ≤ rcross) or (j = irand) ;

xj
k(t), if (r > rcross) and (j �= irand).

(6.2)

where k = 1, 2, . . . , d, the term r is a random number generated in the range
(0,1), rcross is a user-specified crossover constant from the range (0,1), and
irand is a randomly chosen index from the range 1, 2, . . . , d. The random index
is used to ensure that the trial solution differs in at least one locus from xj(t).

The crossover rate rcross can be considered as a form of mutation rate, as
it controls the probability that a component will be inherited from a variant
(mutant) vector. Figure 6.2 provides an illustration of the crossover operator
in DE.

86 6 Differential Evolution

Selection

As per (6.3) the resulting child (or trial) solution replaces its parent if it has
higher fitness (a form of greedy selection which also ensures ‘elitism’ in that
the best solution so far is always retained). Otherwise the parent survives
unchanged into the next iteration of the algorithm. Figure 6.3 illustrates the
diversity-generation process in DE.

xj(t+ 1) =

{
uj(t+ 1), if f(uj(t+ 1)) > f(xj(t));

xj(t), otherwise.
(6.3)

�������	x̂j �������	xk �������	vj

�������	xj

��
��

�� �������	x̂j

�������	x1

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
� �������	xm

��
����������������������

Fig. 6.3. A representation of the differential evolution variety-generation process.
The value of F is set at 0.50. In a simple 2-d case (as here), the child of particle xj

can end up in any of three positions. It may end up at either of the two positions
x̂j , or at the position of particle vj = vj(t+ 1)

Example of DE

Figure 6.4 provides a simple numerical example of DE. The parent vector is
i = 1, three other vectors are randomly chosen to create the variant vector,
and F = 1 is assumed. When crossover is applied between the parent and
the variant vector, the first and the third elements of the variant vector are
assumed to combine with the second element of the parent vector to create the
trial vector. Finally, it is assumed that the fitness of the trial vector exceeds
that of its parent and therefore it replaces its parent.

Parameters in DE

The DE algorithm has a small number of key parameters: the population
size n, the crossover rate rcross, and the scaling factor F . Higher values of

6.1 Canonical Differential Evolution Algorithm 87

Fig. 6.4. Numerical example of the canonical DE algorithm

rcross tend to produce faster convergence of the population of solutions. As
would be expected for any algorithm, good choices of parameter values will be
application-specific, but as a starting point, typical values for these parameters
are in the ranges, n=50–100 (or five to ten times the number of dimensions in
a solution vector), rcross=0.4–0.7 and F=0.4–0.9 for the DE/rand/bin scheme
[600]. See [131] for a general discussion on parameter setting in DE. More
generally, just as for the GA, it is possible to design variants of the canonical
DE algorithm which ‘self-adapt’ their parameter settings as the algorithm
iterates [679].

88 6 Differential Evolution

6.2 Extending the Canonical DE Algorithm

The different variants of the DE algorithm are described using the shorthand
DE/x/y/z, where x specifies how the base vector (of real values) is chosen
(rand if it is randomly selected, or best if the best individual in the popula-
tion is selected), y is the number of difference vectors used in generating a
variant vector, and z denotes the crossover scheme (bin for crossover based
on independent binomial experiments, and exp for exponential crossover).

6.2.1 Selection of the Base Vector

In creating the variant vector, a vector difference is applied to a base vector.
There are a multitude of ways that the base vector can be selected. One
alternative is to use the highest-fitness member of the current population
(DE/best/1), for example:

vj(t+ 1) = xbest(t) + F · (xk(t)− xl(t)). (6.4)

This bears similarity with the use of gbest in the particle swarm algorithm
(Chap. 8), as the current best member of the population has an impact on the
generation of all trial vectors. This implicitly increases the selection pressure
in the algorithm and tends to decrease the diversity of the pool of trial vectors.
Other selection methods, for example tournament selection, could be used in
order to bias the selection of the base vector towards better members of the
current population without forcing the selection of the best vector.

6.2.2 Number of Vector Differences

More than one vector difference could be used in the creation of the variant
vector. For example, if the DE/rand/2 scheme is applied, two vector differ-
ences and five randomly generated indices are used in calculating the variant
vector.

vj(t+ 1) = xm(t) + F · (xk(t)− xl(t)) + F · (xq(t)− xp(t)). (6.5)

Alternatively, if the DE/best/2 scheme is applied, the calculation of the vari-
ant vector becomes:

vj(t+ 1) = xbest(t) + F · (xk(t)− xl(t)) + F · (xq(t)− xp(t)). (6.6)

Increasing the number of vector differences will tend to increase the diversity
of the trial vectors generated. A variant on this approach is DE/current-to-
best/1, where the randomly selected parent is combined with the best vector
to create a vector difference, which is then added to a second vector difference

6.2 Extending the Canonical DE Algorithm 89

arising from two randomly selected members of the population (K and F are
scaling constants).

vj(t+ 1) = xm(t) +K(xbest(t)− xm(t)) + F · (xr(t)− xs(t)). (6.7)

Hence, in this variant of DE, the best member of the population influences
the ‘mutation’ step in the creation of all child solutions.

6.2.3 Alternative Crossover Rules

Instead of using binary crossover, an exponential crossover operator could be
applied (DE/best/1/exp). Under this scheme a series of sequential elements
are copied from the variant vector to the trial vector, starting from a randomly
chosen point in the variant vector. The sequential copying process continues
as long as a series of numbers randomly drawn from U(0, 1) is ≥ rcross (a
threshold value). In Table 6.1, an integer is randomly selected in the range
1 to 4 (say 1). For each indexed element i after this, a random number ri is
drawn from U(0, 1). While this number ri ≤ rcross (or until the end of the
vector is reached), uj(t+ 1) is selected from the variant vector.

Index No xj(t) vj(t+ 1) Comment uj(t+ 1)

1
2
3
4

⎛
⎜⎜⎝

a
b
c
d

⎞
⎟⎟⎠

⎛
⎜⎜⎝

q
w
e
r

⎞
⎟⎟⎠

from xj(t)
r2 ≤ rcross
r3 ≤ rcross
r4 > rcross

⎛
⎜⎜⎝

a
w
e
d

⎞
⎟⎟⎠

Table 6.1. Exponential crossover

6.2.4 Other DE Variants

Das et al. [132] suggested that rather than holding the value of F constant
as the DE algorithm iterates, it could be allowed to vary. This could be done
randomly, for example, F = 0.5(1 + r), where r is a random number drawn
from the uniform distribution U(0, 1) (known asDE with random scale factor).
Alternatively, it could be decreased linearly during the optimisation run from
an upper to a lower bound (known as DE with time varying scale factor), for
example,

F = Fmax − Fmin ·
itermax − itercurrent

itermax
.

The first approach aims to reduce the chance of the search process stagnating
at a local optimum, while the second aims to encourage diverse searching early

90 6 Differential Evolution

in the optimisation run, with a finer degree of search later in the optimisation
run. In the Das study, both approaches were found to outperform canonical
DE across a range of test functions.

Norma and Iba [453] proposed Fittest Individual Refinement (FIR), where
the canonical form of DE is supplemented by a crossover-based local search
step (XLS) in order to assist in finding the optimum solution. In essence,
this results in a memetic variant (see Sect. 4.5) of DE as a local search is
undertaken around the best individual after each iteration of the algorithm by
selecting it as breeding stock, mating it with a number of newly created variant
vectors, and then determining whether any of the child vectors generated have
higher fitness.

As for other EAs, it is possible to create many DE variants such as:

• multiple-population DE, whereby several subpopulations search indepen-
dently, with periodic migration of information between the subpopulations,
and

• hybrid DE algorithms which embed (for example) elements taken from
other search algorithms.

6.3 Discrete DE

DE was initially developed for real-valued optimisation and the variety-
generating operators in the algorithm assume that real-valued encodings are
being employed.

DE can be modified and applied to discrete binary or integer-valued prob-
lems. One approach to tackling integer-encoded problems is to use quantisa-
tion techniques. A simple example of a quantising function is the floor function
� , which converts a real value to an integer by dropping all values to the
right of the decimal point, e.g., floor(9.36) = �9.36 = 9. This is an example
of uniform quantisation, as continuous values are transformed into a series of
evenly spaced integers. Price et al. [521] provide a detailed discussion of how
DE can modified and applied to optimise functions with discrete or mixed
parameters.

Angle-Modulated DE

An alternative approach, which extends DE to binary encodings, has been
developed by Pampara and Engelbrecht [491, 493]. This uses a generating
function which produces a binary output from real-valued inputs. The design
of the generating function is inspired by the concept of angle modulation,
which is used in electronic engineering. A trigonometric function can be used
to perform angle modulation:

g(x) = sin(2π(x − a)b cos(A)) + d (6.8)

6.3 Discrete DE 91

where
A = 2πc(x− a) (6.9)

The values of the coefficients a, b, c, d determine the precise shape of the gen-
erating function, a represents the horizontal shift of the function, b controls
the maximum frequency of the sin function, c controls the frequency of the cos
function and d controls the vertical shift of the function. Figure 6.5 illustrates
a generating function for the values a = 0, b = 1, c = 1 and d = 0.

-1

-0.5

 0

 0.5

 1

-3 -2 -1 0 1 2 3

g(
x)

x

Fig. 6.5. Generating function from (6.9) and (6.8) where a = 0, b = 1, c = 1 and
d = 0

The value x is taken from evenly spaced intervals drawn from a real number
range (say [−3, 3]). If the problem of interest requires (for example) binary
strings of length 30 bits, then 30 evenly spaced sample values for x are taken
from [−3, 3]. Each of these values in turn is inserted into (6.9) and (6.8)
in order to generate a single output g(x). If the output value g(x) for an
individual value of x is positive, a bit value of 1 is assigned. If the output
value is negative, the bit value is 0. The binary string is therefore built up, one
term at a time, by taking the 30 real values of x and passing them sequentially
through the generating function. Once the entire binary string of 30 bits has
been generated, its fitness is determined.

Hence, for a specific set of real-values for a, b, c, d, a single binary string is
generated. In essence therefore, the original (high-dimensional) binary-valued
search space is mapped to a lower-dimensional (4-d) real-valued search space

92 6 Differential Evolution

and DE is applied to the population of four-dimensional tuples, each of which
decodes into a binary string. The pseudocode for the algorithm is provided in
Algorithm 6.2.

Algorithm 6.2: Angle-Modulated Differential Evolution

Create an initial population of m four-dimensional real-valued tuples
randomly from the range [−1, 1];
Select n equally spaced values x1, . . . , xn from the range (say) [−3, 3];
Use the n values of x and the generating function to transform the m
four-dimensional real-valued tuples into m binary strings of length n;
Evaluate fitness of each binary string and associate this fitness with its
real-valued tuple;

repeat
Select individuals from population of four-dimensional real-valued tuples
for generation of a trial vector;
Produce the (real-valued) trial vector;
Generate the corresponding binary string;
Evaluate the fitness of this string;
if trial tuple has higher fitness than parent tuple then

Replace parent tuple with the trial tuple;
end

until terminating condition;

Angle modulation transformation is an interesting way of permitting the
general application of real-valued optimisation algorithms to binary-valued
problems. Thus far, the reported results from using the approach are promis-
ing; however, further investigation across a range of binary and discrete opti-
misation problems is required to fully test the utility of the method. In par-
ticular the locality of the real-to-binary transformation in angle modulation
needs to be further explored, in order to assess the efficiency of the approach.

6.4 Summary

DE is a simple yet powerful optimising algorithm. It uses a population-based
search process to iteratively improve a population of solution encodings by
mutating base vectors with scaled population-derived difference vectors. A
critical aspect of the algorithm is that these differences adapt during the
algorithm to the natural scaling of the problem. Readers interested in further
details on the family of differential evolution algorithms are referred to [131].

In the next chapter we continue our development of evolutionary algo-
rithms by introducing genetic programming. In contrast to GA, ES and
DE, which are primarily used for optimising purposes, genetic programming

6.4 Summary 93

focusses on the evolution of high-quality ‘structures’. These structures are
problem-specific and may be as diverse as a computer program, an electronic
circuit, a mathematical model, or an engineering design.

7

Genetic Programming

Genetic programming (GP) was initially developed to allow the automatic
creation of a computer program from a high-level statement of a problem’s
requirements, by means of an evolutionary process. In GP, a computer pro-
gram to solve a defined task is evolved from an initial population of random
computer programs. An iterative evolutionary process is employed by GP,
where better (fitter) programs for the task at hand are allowed to ‘reproduce’
using recombination processes to recombine components of existing programs.
The reproduction process is supplemented by incremental trial-and-error de-
velopment, and both variety-generating mechanisms act to generate variants
of existing good programs. Over time, the utility of the programs in the pop-
ulation improves as poorer solutions to the problem are replaced by better
solutions. More generally, GP has been applied to evolve a wide range of
‘structures’ (and their associated parameters) including electronic circuits,
mathematical models, engineering designs, etc.

7.1 Genetic Programming

Genetic programming (GP) [514] bears similarity with other evolutionary al-
gorithms such as GA and ES in that it operates with a population of potential
solutions which are iteratively improved using the mechanisms of selection,
crossover/mutation, and replacement. However, there are two critical distinc-
tions between GP and GA:

i. the form of representation used, and
ii. the more open-ended nature of the evolutionary process in GP.

Representation in GP

In the GA a clear distinction is drawn between the genotype and the phe-
notype, with the evolutionary search process being applied to the population

© Springer-Verlag Berlin Heidelberg 2015
A. Brabazon et al., Natural Computing Algorithms, Natural Computing Series,
DOI 10.1007/978-3-662-43631-8_

95

7

96 7 Genetic Programming

of genotypes. In GP, this distinction is lost, and the evolutionary search pro-
cess, and its associated diversity-generation process, are applied directly to
the phenotypes (the solutions).

In the form of GP popularised by John Koza [340, 341, 342, 343] these take
the form of Lisp S-expressions. In Lisp, operators precede their arguments
(known as a prefix notation), so the expression 2+1 is written as + 2 1.
Similarly, 9∗((2−1)+4) is written as ∗ + − 2 1 4 9. More generally, Lisp
contains a variety of standard programming operators which also adopt a
prefix notation; for example, (setf x 5) assigns the value 5 to the variable
x. S-expressions can be visually represented as a syntax tree, which is a graph
structure where the nodes correspond to values or operators (Fig. 7.1).

x

(+ (sin x) (* x 3.14) (/ y x))

x

sin

+

*

x 3.14

/

y

Fig. 7.1. Example S-expression (left) and corresponding syntax tree (right). The
syntax tree decodes into the expression (sin x) + (x ∗ 3.14) + (y/x), where x and y
are predefined constants

Taking another example, the following simple C program could be repre-
sented as the S-expression (+(∗ 2 sin y)(cos z)) or as a tree (Fig. 7.2).

#include<stdio.h>

#include<stdlib.h>

int main(int argc, char*argv) {

float x=0.0, y=0.0, z=0.0, retval;

x=atof(argv[0]); y=atof(argv[1]); z=atof(argv[2]);

retval = 2.0*sin(y) + cos(z);

printf("The answer is: \%f\n", retval);

return retval;

}

Open-Ended Nature of Evolution in GP

The second fundamental difference between algorithms such as GA, ES, DE
and GP is that the evolutionary process in GP is more open-ended. Tradition-
ally, with GA (and in DE) we adopt a fixed-length encoding, whereby we fix
the number of genes (or bits) that will comprise an individual at the outset
of a run. Hence, the maximum complexity of what can be evolved is fixed a
priori.

7.1 Genetic Programming 97

z

*

sin2.0

y

+

cos

Fig. 7.2. Syntax tree representation of S-expression (+(* 2 sin y)(cos z))

By contrast, GP uses a variable-length representation in that the size of
the structure of a solution may not be known. Hence, the number of elements
used in the final solution, as well as their interconnections, must be open to
evolution. This property allows GP to evolve a simple or a complex structure,
depending on the nature of the problem being solved. The ability of GP to
evolve structures of differing size will be illustrated in Sect. 7.1.4.

7.1.1 GP Algorithm

Algorithm 7.1 outlines the high-level pseudocode for the GP algorithm. Each
of the elements of this is discussed below.

Algorithm 7.1: Genetic Programming Algorithm

Define terminal set, function set and fitness function;
Set parameters for GP run (population size, probabilities for mutation,
crossover, selection/replacement strategy, etc.);
Initialise population of solutions;
Calculate fitness of each solution;

repeat

Select parents;
Create offspring;
Calculate fitness of each solution;
Update population;

until terminating condition;
Output optimal solution;

98 7 Genetic Programming

7.1.2 Function and Terminal Sets

When evolving programs or structures in GP, the user must first define the
basic building blocks which GP can use. The programs are generated using
elements from two sets, namely, the function set and the terminal set.

The terminal set contains items which have an arity of 0, meaning that
they do not require any inputs, or — in programming terms — arguments,
for their evaluation. Examples of terminals could include constants (say π) or
a defined variable in a computer program. In looking at a GP tree, terminals
correspond to the leaf nodes on the syntax tree.

In contrast, the function set contains items that have an arity greater than
0. Hence, function nodes in a GP tree require one or more inputs so that they
can be evaluated. For example, the function sin requires a single real-valued
input and hence has an arity of 1, whereas the function AND requires two
Boolean inputs and therefore has an arity of 2.

The inputs to a GP function can in turn be other GP functions once these
meet the closure requirement (see below) or they can be terminals. The ability
of GP to nest functions within each other enables the creation of programs of
varying sizes and shapes.

Terminals

*

2.0

+

cos

zx

Functions

Fig. 7.3. Terminals correspond to the leaves of the tree. Functions can have differing
arities and can take either other functions or terminals as inputs

The choice of items for inclusion in the function and terminal sets is user-
determined and will be problem-specific. Ideally, the items should be chosen
such that together they are sufficient for the problem of interest, that is, they
are powerful enough to represent a complete solution to the problem at hand.
There may be multiple definitions of the function and terminal sets which are
sufficient (Fig. 7.4).

The function and terminal sets must also have the property of closure. That
is, each function should be able to handle gracefully all values it might ever

7.1 Genetic Programming 99

2

+

a a

*

a

Fig. 7.4. Example of two equivalent solution trees, generated by different terminal
and function sets. The left-hand side tree is generated from F = {+}, T = {a}, and
the right-hand side tree is generated from F = {∗}, T = {a, 2}

receive as inputs. To ensure this, all terminals must be allowable inputs for all
functions, and the output from any function must in turn be a permitted input
to any other function. Closure is important as it ensures that the generated
programs will be syntactically correct. For example, a viable function set F
and terminal set T for a Boolean problem with three input variables is:

F = {and, not}
T = {input0, input1, input2}

The function and terminal sets hold the property of sufficiency, as it can
be shown that all possible Boolean functions on the three input variables
can be constructed from the Boolean and and Boolean not operators alone.
Similarly, Boolean function sets { or, not }, { nand } or { nor } are possible
alternatives for satisfying the property of sufficiency. The closure property is
satisfied because the Boolean input values (input0, input1, input2) can all
be passed as inputs to each of the functions in the function set F , and the
output from each function in F is also a Boolean value that can be passed in
turn as input to another function from this set.

Generating Numerical Values

As most real-world solutions will include numerical values, GP needs to be
able to generate a variety of values for constants. This gives rise to a practical
issue in that it is clearly impossible to include all real numbers in the terminal
set. The standard approach to the provision of constants in GP is through
ephemeral random constants (ERCs). A number of ERCs are generated within
a prespecified range at the outset of a run of the GP algorithm. When a node
in the growing program is determined to have become a constant, a random
value from the set of ERCs is generated. After the initial generation, new
constants are created through the recombination of existing ERCs through
arithmetic expressions. Even a fairly compact set of functions and ERCs can
be used to generate whatever real number is required. Figure 7.5 illustrates
how a model parameter of 4.909 (for example) could be generated using the
functions sin (calculated in radians here), + , ∗ and three real values from an
ERC set. Other methods of constant generation for GP also exist.

100 7 Genetic Programming

2.0

*

+

sin

1.722.32

Fig. 7.5. Illustration of the generation of the value 4.909 from a compact set of
terminals and ERCs

Incorporating More Complex Structures

In addition to the input variables, constants, and primitive operators speci-
fied in the function and terminal sets, it is possible to incorporate standard
programming constructs such as conditional statements, parameterised func-
tions, iterations, loops, storage/memory, and recursion into a GP individual.
An example GP program containing a conditional expression in both a prefix
Lisp-like S-expression and a syntax tree can be seen in Fig. 7.6. Note that the
conditional expression, denoted by the if function at the root of the subtree,
is comprised of three components. The first, left-most component is the con-
dition itself, which can be comprised of a complex logical expression which
will return either one of the Boolean true or false values. In this example,
depending on the outcome of the logical expression returning either true or
false, the second (the value of x) or third component (value of y) of the con-
ditional expression will be returned, respectively, and subsequently added to
the result of sin(x).

x

sin

+

(+ (sin x) (if (> x 3.14) x y)) if

>

x 3.14

x y

Fig. 7.6. Example GP individual containing a conditional S-expression (left) and
its corresponding syntax tree (right)

7.1.3 Initialisation Strategy

Once the function and terminal sets are specified, individuals in the popula-
tion must be generated using an initialisation strategy. There are two main
methods (Grow and Full). GP implementations typically use both in order to
ensure diversity of both structure and content in the initial population. This
provides the evolutionary process with initial diversity with regard to tree

7.1 Genetic Programming 101

(solution) complexity and content in order to help facilitate the efficient un-
covering of good solutions. The most common form of initialisation is known
as ramped-half-and-half initialisation, where half of the initial population of
solutions is created using the grow method, and half is created using the full
method (Fig. 7.7).1

x

x

sin *

x 3.14

/

y x

+

y

cos * sin

+

1.27 y x

*

x y

+

+

x y 3.14

sinFull

Grow

x

sin x /

y x

+

*

x

+

y

y

x

+

3.14 y

Fig. 7.7. Sample trees from the full method (here depth = 3) and the grow method

Full Method

In the Full method, trees are grown by selecting only functional primitives
until a prespecified depth (maxdepth−1) is reached on all branches, at which
point only terminals are selected to complete the tree.

Grow Method

In the Grow method, trees are grown randomly with a terminal or func-
tional primitive being selected randomly at each step, until a branch reaches
(maxdepth− 1). At this point, only terminals are selected in order to ensure
that the maxdepth limit is not breached.

Comparing the two methods, the Full method produces trees where all
branches extend to the predefined maximum depth, whereas the Grow method
produces trees of irregular shapes and sizes. Hence, combining both ap-
proaches will produce an initial population of trees of varying sizes and internal
structure. The structural diversity of the initial population is usually further
enhanced during the ramped-half-and-half process by varying the maxdepth
limit during initialisation from 2 to n− 1.

1In explaining the process of initialisation (and the operation of evolutionary
search operations such as mutation and crossover), we illustrate these processes
visually on the relevant syntax trees, although they actually take place on the un-
derlying S-expressions.

102 7 Genetic Programming

7.1.4 Diversity-Generation in GP

Just as for GA, there are many ways that the selection, diversity-generating
and replacement operators can be defined in GP. Typically crossover (two
parents selected, producing two children) is applied about 90% of time, mu-
tation (one parent selected, one child produced) around 0-1% of time, cloning
(one parent selected, one child produced) around 8% of the time. Replacement
strategies can vary from generational replacement to steady-state, where only
a few children (or in the limit, a single child) are produced in each generation.

Crossover

In the standard crossover operator in GP (subtree crossover), two individuals
are selected from the population and copied to become two parents. A subtree
in each parent is identified as the crossover site. The subtree in the first parent
is replaced with the subtree from the second parent, and vice versa, with the
result that two children are created.

Consider, for example, two GP individuals (+ x y) and (+ z (∗ 1.0 z)),
and assume a crossover point of y is selected in parent 1 and ∗ in parent 2.
Figure 7.8 provides an illustration of one of the two children created.

subtree

+

z

z

*

1.0yx

+

+

z

z

*

1.0yx

+

z

*

1.0

x

(v)

+

(ii)(i)

(iii) (iv)

crossover

Fig. 7.8. Example syntax trees, (i) and (ii), are copied to become parent 1 and
parent 2 respectively. Subtrees are selected as crossover sites on each parent (iden-
tified by hashed lines), with the subtree from parent 1 (iii) being replaced with the
subtree from parent 2 (iv) to produce a child (v). In this diagram, we only show one
child

One issue that arises in GP is that the application of the crossover opera-
tor on two identical (or very similar) parents in GP does not usually produce

7.1 Genetic Programming 103

two identical children (unlike the canonical GA). Figure 7.9 provides an illus-
tration of this, where a randomly chosen cut-point in the two identical parents
produces a child which is different from both parents. As can be seen in this
simple example, crossover in GP is capable of generating diversity in solution
form, even when parents are similar.

(iv)

+

* sin

3.14x1.47

+

* sin

3.14x1.47

crossover

subtree

sin

3.14

(i) (ii)

+

* sin

x1.47

+

*

x1.47

3.14

(iii)

Fig. 7.9. Two identical parent trees (top) producing a different child tree (bottom)
as a result of a crossover operation

Another aspect of crossover in GP is that if the terminal set is much larger
than the function set (which is common), solution trees will tend to contain
a high proportion of leaf (or terminal) nodes. Hence, if the crossover point is
chosen randomly in both parents, it can produce ‘leaf-node swapping’, with
children being very similar to their parents. One way to boost the level of
diversity generated by the crossover process is to bias the selection of the
crossover points so that crossovers occur at function rather than terminal
nodes. A common scheme is to select functions 90% of the time, choosing
terminal nodes 10% of the time.

104 7 Genetic Programming

In order to enable unrestricted crossovers between parents, the function
and terminal set must have the property of closure. Alternatively, if functions
can return different data types, then the crossover operator must be restricted
such that subtrees can only be swapped when they output the same data type
[417]. As will be seen in Chap. 17, grammars can be employed to overcome
the problem of closure when functions can return different data types.

Mutation

Historically, mutation was not afforded a significant role in GP, largely because
crossover is capable of generating significant diversity on its own, and also
because pioneers of the field, such as Koza, wanted to distance themselves from
notions of random search that mutation invokes. Koza’s early research [340,
341] demonstrates that mutation is not always necessary to solve problems
using GP, although in recent years it is more common for researchers to adopt
mutation.

Two types of mutation are found in GP systems. In the first type (subtree
mutation), a random nonterminal is selected, and is deleted along with its
subtree. A new subtree is then grown at this point. As an example, consider
the S-expression (+(exp z) (∗ 2 x)). Suppose the nonterminal selected for
mutation is ∗, and the new randomly created subtree is (+(sin x) (2)). The
resulting expression after the tree mutation is (+(exp z) (+(sin x)(2))) (Fig.
7.10).

sin

mutation

subtree

*

x2

+

exp

z z

y

+

exp +

2

Fig. 7.10. Subtree mutation. A random subtree is selected and deleted, and a new
subtree is grown at that cut point

In the second form of mutation operator (point mutation), a single function
is replaced by another function of the same arity, or alternatively, a single
terminal is replaced by another terminal. Take the S-expression from the last
example (+(exp z) (∗ 2 x)), and assume a point mutation where ‘∗’ is replaced
by another function of the same arity, ‘+’. The resulting expression after the
point mutation is (+(exp z) (+ 2 x)) (Fig. 7.11). As noted for crossover,

7.3 More Complex GP Architectures 105

mutation can produce a child with a tree depth which is greater than that of
its parent.

2

mutation

point

*

x2

+

exp

z z

+

exp +

x
Fig. 7.11. Point mutation. A random terminal/function (here a function) is selected
and deleted, and a new terminal/function is inserted at that point

7.2 Bloat in GP

One issue that can arise in GP is that the chromosomes representing individu-
als tend to grow in size during a GP run without a corresponding improvement
in fitness. This can lead to very complex tree structures or bloat, which can
contain redundant code fragments, and which can be difficult to simplify in
order for us to understand the structure of the evolved solution.

Ways of counteracting bloat in GP encompass the inclusion of a penalty
term in the fitness function which discourages large trees, and the limiting
of the maximum tree depth by forbidding the application of mutation or
crossover where the result would produce a tree exceeding these limits. A
large number of studies exist in the GP literature on the topic of bloat, and
to this date this remains an open issue for the field.

7.3 More Complex GP Architectures

In the illustrative GP individuals we have seen so far in this chapter, the
programs are comprised of a single, result-producing function comprised of
the whole tree. Most programming languages contain several additional con-
structs, including functions, memory, looping and recursion. These can be
easily incorporated into GP, and each is discussed below.

7.3.1 Functions

In programming, and more generally in problem solving, it is useful to de-
compose the task at hand into a series of smaller and simpler subtasks, which
can be reused to solve the problem as a whole. The ability to reuse parts of

106 7 Genetic Programming

solutions can be incorporated into GP individuals using constructs such as
functions, iterations, loops and recursion. To this end it is necessary to intro-
duce a more complex program architecture comprised of multiple branches,
including the result-producing branch (RPB). The other branches define, for
example, the functions and iterations that the RPB can utilise in the genera-
tion of the resulting program output.

The typical method to include functions or subroutines in a GP individual
is through automatically defined functions (ADFs). ADFs are parameterised
functions that can be called in a hierarchical manner, either by the RPB or by
another ADF. When ADFs are included in the function and terminal specifi-
cation of a GP system, the evolutionary process is free to decide whether the
main program uses ADFs at all, and to decide what included ADFs actually
do. The practical advantage of ADFs is that they allow for the easy (multiple)
reuse of good code/solution modules. ADFs also permit the adaptation of the
function set in GP ‘on-the-fly’ during the solution search process.

If ADFs are to be used, they must be defined in a function-defining branch
comprised of the function’s name, the list of its parameters, and the body of
the function. Figure 7.12 outlines the architecture of a GP individual com-
prised of a single ADF called ADF0 that receives three parameters and sums
the parameter values that are passed to it. An ADF is defined using the DEFUN
function, and VALUES is a function that returns whatever value its subtree eval-
uates to. DEFUN simply returns the name of the function to its parent function
(PROGN). The PROGN function evaluates all of its subtrees in succession, return-
ing the result of evaluating the last (the right-most) subtree, which is referred
to as the RPB. The RPB can use any of the previously defined ADFs when
evaluating the result of the program.

+ ADF0

*

x y

x

z

(PROGN (DEFUN ADF0
(LIST ARG0 ARG1 ARG2)
(VALUES + ARG0 ARG1 ARG2)

(VALUES
(* (ADF0 x y z) x))

)

)

PROGN

DEFUN

VALUESLISTADF0

ARG1

VALUES

ARG2ARG1ARG0

ARG0 ARG2

Fig. 7.12. The architecture of an automatically defined function represented in
terms of an S-expression (top) and corresponding syntax tree (bottom). The syntax
tree decodes to (x+ y + z) ∗ x

7.3 More Complex GP Architectures 107

An ADF may nonrecursively call any previously defined ADF from within
its own body, thus allowing hierarchical ADF evaluation. A succession of ADFs
can thus precede the main RPB in an individual, as outlined in Fig. 7.13.

..

LIST

..............

DEFUN

VALUESADF0 LIST

..............

PROGN

RPBDEFUN

VALUESADFN

Fig. 7.13. The architecture of a GP individual including a hierarchy of automat-
ically defined functions (ADF0 to ADFN) and the result-producing branch (RPB)
represented as a syntax tree

To ensure that architecturally correct (i.e., only permit nonrecursive and
hierarchical ADF calls to previously defined ADFs) individuals are generated
in the initial population, separate function and terminal sets must be specified
for the ADFs and RPBs. Taking an example we could define two ADFs (ADF0
and ADF1), with the following function sets for the RPB, ADF0 and ADF1,
respectively.

FRPB = {if, ∗,+,−, /,ADF0,ADF1}
FADF0 = {if, ∗,+,−, /}
FADF1 = {if, ∗,+,−, /,ADF0}

The corresponding terminal sets for a problem with three variables might take
the following form where ADF0 is a three-argument function and ADF1 has
two arguments.

TRPB = {x, y, z}
TADF0 = {ARG0,ARG1,ARG2}
TADF1 = {ARG0,ARG1}

Why Use ADFs?

A particular advantage of using ADFs is that they allow for the easy (multiple)
reuse of an already discovered good code module, i.e., GP does not have to
‘discover’ the same subtree multiple times. For example, suppose that GP is
being applied to a symbolic regression problem where one of the terms of the
underlying data-generating model is x40, and the function and terminal set
are as follows:

F = {+,−, ∗}
T = {x,ERCs}

108 7 Genetic Programming

The only way that this function and terminal set can uncover the term x40 is
by creating a large (deep) tree comprising x’s and ∗’s. In contrast, if ADFs
are used, the creation of (say) a module which evaluates to x10 can be reused
efficiently to create a syntax tree which produces x40.

Another advantage of ADFs, particularly in a dynamic environment, is
that they can provide an implicit ‘memory’ structure, whereby good solution
fragments captured in an ADF can be maintained and reused as the environ-
ment changes.

7.3.2 ADF Mutation and Crossover

A critical aspect of ADFs is that, just like a simple syntax tree, the content
of an ADF can be evolved during the GP run. In typical implementations of
ADFs, each individual in the population evolves its own ADF(s), i.e., they are
not shared across multiple members of the population, although it is certainly
possible to create a GP system which uses a library of shared ADFs — akin
to the concept of a gene library in the immune system (Sect. 16.1.3).

In implementations of GP which contain ADFs, the regular mutation and
crossover operations need to be amended slightly in order to ensure that they
operate correctly for ADFs.

Mutation

i. Select parent probabilistically based on fitness.
ii. Pick a mutation point from either the RPB or an ADF.
iii. Delete the subtree rooted at the picked point.
iv. Grow a new subtree at this point composed of the allowable functions /

terminals appropriate for the picked point.

Crossover

i. Select two parents probabilistically based on fitness.
ii. Pick a crossover point from either RPB or an ADF of the first parent.
iii. The choice of crossover point in the second parent is restricted to either

its RPB or its ADF (depending on the random choice in the first parent).
iv. Swap the subtrees.

7.3.3 Memory

Memory is implemented in GP in a manner similar to ADFs, using automati-
cally defined storage (ADS), with the addition of two branches to an individual
that allow reading and writing to a memory location. Effectively, the addi-
tions of a storage writing branch (SWB) and a storage reading branch (SRB)
are equivalent to adding a new element to an individual’s function set which

7.3 More Complex GP Architectures 109

allows a newly added memory location to be written to as well as read from
(Fig. 7.14). The type (e.g., named memory, stack, queue, two-dimensional
array, or list) and dimensionality (number of arguments to address it) are de-
termined (usually randomly) upon creation of the ADS. In Fig. 7.14 a named
memory location (ADS0) with zero dimensionality (i.e., the SRB function
requires no arguments to retrieve the data stored in ADS0) is created.

x

SWB0

PROGN

SRB0

+

y

Fig. 7.14. Fragment of an example GP individual containing automatically defined
storage (ADS0)

7.3.4 Looping

Iterations and more generally loops can be incorporated into a GP individual
using automatically defined iterations (ADIs) and automatically defined loops
(ADLs). Similar to ADFs, ADIs and ADLs are defined using a multiple branch
architecture, where their branches occur before the RPB. It is common for a
simplified form of ADIs and ADLs to be adopted where the defined iterations
or loops are invoked only once and prior to the evaluation of the RPB. The
result of evaluating the ADI/ADL branch is made available to the RPB indi-
rectly through storage in a named memory location. There may be multiple
ADIs and ADLs within an individual, and they can refer to previously defined
ADFs.

In the case of ADIs, they are implemented to iterate once over a predefined
data structure such as an array, vector or sequence. As such, the size of the
data structure to iterate over is known and the possibility of infinite loops
is eliminated. A sample ADI in Fig. 7.15 has no arguments, and returns the
result of its evaluation indirectly to the result-producing branch by writing
to the named memory location M0. The number of elements contained in the
data structure being iterated over (V) is built into the ADI function. ADI0
is evaluated as a result of its invocation in the result-producing branch, with
the RPB using the result of evaluating ADI0 by accessing M0.

ADLs implement a general form of iteration comprised of loop initialisation
(LIB), loop condition (LCB), loop body (LBB), and loop update branches
(LUB). Figure 7.16 outlines an example ADL where the LIB sets the memory
location M1 to 0; the LCB determines how many iterations over the data

110 7 Genetic Programming

x

M0 V

*

PROGN

VALUESLISTADI0

VALUESDEFITERATE

ADI0 +

PROGN

M0

SETM0

Fig. 7.15. Example GP individual containing an automatically defined iteration
(ADI). The result of evaluating ADI0 (multiplying all the values contained in the
vector V) is available to the result-producing branch through the named variable
memory location M0, which the body of ADI0 wrote to using SETM0

0 +

M0 x

VALUES

SETM0

*

READVM0

M1

+

M1 x

SETM1

LENM1

<

IF

PROGN

VALUESDEFLOOP

ADL0

PROGNADL0 LIST SETM1

Fig. 7.16. Example GP individual containing an automatically defined loop (ADL).
As in the ADI example in Fig. 7.15 the result of evaluating ADL0 is available to the
result-producing branch through the named memory location M0, which the body
of ADL0 wrote to using SETM0

structure should be conducted. After the LBB is evaluated on each iteration,
the LUB is evaluated, which increments the value of M1 (in this example this
ensures that an infinite loop will not arise as the LCB is checking the value
of M1 to determine when to terminate the loop). In the LBB, (READV M1)

reads the M1th value of the data structure (V) being looped over. The result
of evaluating ADL0 is available to the RPB through the value stored in the
named memory location M0. To prevent infinite loops from occuring, generally
a timeout strategy is adopted whereby the evaluation of an individual is halted
after a predetermined time limit (or a maximum number of iterations) has
been reached.

7.3 More Complex GP Architectures 111

RGB

PROGN

LIST

VALUESDEFRECURSION

ADR0

ARG0

RCB RBB RUB
ADR0

7

Fig. 7.17. The architecture of automatically defined recursion (ADR)

7.3.5 Recursion

Recursion is made possible in GP through an automatically defined recursion
(ADR) architecture (Fig. 7.17). There are four components to ADRs, namely
recursion condition (RCB), recursion body (RBB), recursion update (RUB),
and recursion ground (RGB) branches. To prevent infinite recursion a limit is
placed on the number (or depth) of the recursive calls that are allowed within
an individual. When timeout limits in the case of ADIs and ADLs, or depth
limits in the case of ADRs, are violated the individual can be selected against
by punishment with a large fitness penalty. Figure 7.17 outlines ADR in an
individual where the DEFRECURSION function is used to define the recursive
function ADR0 that takes a single parameter (ARG0). The RCB determines if
recursion is continued by returning a positive value, or by returning a negative
value recursion is halted. In the event that recursion is halted, the fourth
(right-most) RGB branch is evaluated. The RBB branch normally contains
a recursive call to the function itself, and when the evaluation of the RBB
finishes the RUB branch is evaluated.

During initialisation of a GP population either the architecture of the
program is prespecified, that is the presence (or absence) of ADFs, ADSs,
ADIs/ADLs and ADRs and their quantities are predetermined, or their incor-
poration (deletion) can be left open to evolutionary search. In order to allow
the search process to add, delete or modify these constructs, architecture-
altering operations were introduced specifically for each architecture type
[342]. For example, in the case of ADFs, it is possible to create, duplicate
or delete an ADF, and even to create, duplicate or delete arguments to an
existing ADF. Special attention must also be paid to the crossover operator,
which must be implemented to ensure that legal architectures are generated
as a consequence of a crossover event.

112 7 Genetic Programming

7.4 GP Variants

A great deal of literature exists on GP and the evolution of programs in
general. The interested reader is referred to the following as a good starting
point for further investigations: [31, 340, 341, 342, 343, 354, 355, 359]. In this
section we outline some of the common variants of GP.

7.4.1 Linear and Graph GP

Earlier in the chapter we introduced a popular form of tree-based GP [340].
However, prior to its introduction a number of alternative representations had
been adopted (for example see [119, 203, 204]) and since then a large vari-
ety of representations has been examined including graphs, linear structures,
grammars and even hybridisations of these. Notable examples include linear
GP [30, 454], PADO (Parallel Algorithm Discovery and Orchestration) [618],
graph and linear-graph GP [312, 313], Cartesian GP [413], and grammar-based
GP systems (e.g., [231, 276, 472, 656, 662]). While the issue of choice of rep-
resentation is not unique to GP, indeed more broadly it transcends machine
learning as a whole, the question as to what makes a good representation for
EC is an open one and some attempts are now being initiated to formalise
this research [540]. In recent years there has been a great deal of research
on schema theories for genetic programming, and it is being recognised that
these theories demonstrate a commonality between the various representa-
tions adopted in EC, with GP schema theories being considered supersets of
GA schema theory [359].

7.4.2 Strongly Typed GP

A variation of basic GP called strongly typed GP (STGP) can be used to
remove the limitation of closure, that all variables, constants, arguments of
functions and values returned by functions must be of the same data type. In
STGP, variables, arguments and so on can be of any data type, but STGP
requires that each function be strongly typed, in other words that it specify ex-
actly the data types of its arguments and of its returned values. The practical
effect of using STGP is that the initialisation strategy of basic GP is altered
so that the element chosen at each node of the growing tree must return the
data type expected by its parent node. Similarly, the mutation and crossover
operators are restricted. For example, if the mutation operator is applied, the
new subtree must return the same data type as the tree it replaced. Interested
readers are referred to [417] for further details on this variant of GP.

7.4.3 Grammar-Based GP

When one has to deal with the evolution of executable entities, in particular
computer code, it is impossible to escape the issue of syntax. As we observed

7.6 Summary 113

in strongly typed GP, this approach adopts a tree encoding which explicitly
handles data types, as it is necessary to ‘manage’ the syntax appropriately
in order to ensure the property of closure. Grammars provide a formalism
through which syntax can be expressed and ultimately controlled. Grammars
can be explicitly employed to control syntax when they are used in a generative
sense to construct sentences in the language defined by the grammar. Gram-
mars have been used in GP for many years, and even standard tree-based GP
implicitly adopts grammars via the specification of the function and termi-
nal sets. Grammar-based GP is an important area of research within the GP
community, and it also represents another aspect of the natural world which
computer scientists have taken inspiration from to develop problem solving
algorithms [403]. Grammar-based GP is discussed in more detail in Chap. 18.

7.5 Semantics and GP

The concept of syntax has played a pivotal role in the field of GP, and lies
at the heart of how programs are encoded as individuals in an evolving pop-
ulation. Aside from the use of a fitness measure, the notion of semantics of
programs has largely been overlooked by GP until recent years, and now a
growing body of research is emerging which focuses on how semantics can be
exploited by GP algorithms to improve their performance (e.g., [43, 348, 350]).

At least part of the motivation for the adoption of semantics in GP is to
address the credit assignment issue. That is, until recently, in the majority
of GP algorithms, a single measure (fitness) has been used to assign credit
to the entire GP individual. A GP individual is a complex organism which
might be comprised of many branches, and subtrees within each branch, with
functional dependencies existing between subtrees in different branches (e.g.,
with ADFs). Yet few attempts have been made to ascertain how components of
an individual contribute to overall fitness. It may be possible to use semantics
to measure the contribution of individual subtrees and branches to the overall
fitness measure, and direct search towards these fruitful substructures.

Much research in semantics of GP has been directed towards ‘semantic
aware’ search operators (e.g., [42, 44, 349, 440, 419, 441]), whereby opera-
tions such as mutation and crossover are applied having taken account of the
semantics of the underlying GP ‘tree’. This can improve the generalisation
properties of the evolving solutions, and improve the efficiency of the GP run.

7.6 Summary

GP is a powerful natural computing algorithm. It is capable of model in-
duction, that is, uncovering and optimising the structure, parameters and
contents of the evolving candidate solutions. It is impressively general in its

114 7 Genetic Programming

application, and perhaps this is not surprising given the underlying represen-
tation is that of computer programs or functions. Therefore, if the solution to
a problem of interest can be cast in the form of a program or function, then
GP can potentially be applied in that domain.

A particularly impressive aspect of GP is its success at producing human-
competitive performance [344]. The literature presents an ever-increasing list
of examples where GP has been used to produce solutions to problems which
have either confounded human experts, or produced superior solutions to prior
state of the art. In some instances the evolved solutions have been sufficiently
novel to be patentable. Notwithstanding the advances in GP over the past
couple of decades, there are still many open research areas as outlined in [484].
Part V of this book continues the discussion on GP and its developmental and
grammatical variants.

Part II

Social Computing

8

Particle Swarm Algorithms

In this part of the book we discuss algorithms which are metaphorically in-
spired by a variety of social behaviours. The essence of these behaviours is
that individuals can learn from both their own experience and from the ex-
perience of others. Hence a group can solve complex tasks which are beyond
the capability of any of the individuals in the group. Crucially, this does not
occur merely because the task is divided up amongst multiple individuals;
rather it occurs because they can communicate with each other and thereby
create a shared understanding of the problem. Even populations of individu-
als with limited information-processing abilities may be able to solve difficult
problems, if the individuals communicate and cooperate.

One model of social learning which has attracted particular interest in
computer science in recent years is drawn from a swarm metaphor. Three
popular variants of swarm models exist, those inspired by:

i. the flocking behaviour of birds or the sociological behaviour of a group of
people;

ii. food foraging behaviours; and
iii. behaviours of social insects such as ant colonies.

The essence of these systems is that they exhibit flexibility, robustness and self-
organisation [68]. Although the systems can exhibit remarkable coordination
of activities between individuals, this coordination does not stem from a centre
of control or a directed intelligence; rather it is self-organising and emergent.

This chapter introduces the particle swarm optimisation (PSO) algorithm.
The next two chapters (Chaps. 9 and 10) introduce a range of algorithms which
are inspired by the behaviours of two social insects, namely ants and honey
bees. Next follows a chapter (Chap. 11) which introduces a range of algo-
rithms inspired by bacterial behaviours, which metaphorically embed a com-
munication mechanism. The final chapter in this part of the book (Chap. 12)
introduces a range of emerging algorithms which are inspired by a variety of
social communication mechanisms in insects, mammals, and fish.

© Springer-Verlag Berlin Heidelberg 2015
A. Brabazon et al., Natural Computing Algorithms, Natural Computing Series,
DOI 10.1007/978-3-662-43631-8_

117

8

118 8 Particle Swarm Algorithms

8.1 Social Search

Suppose we are interested in using a populational search algorithm to find the
global optimum in a search space but the individual members of the popu-
lation do not communicate with each other and do not learn from their past
experience. If the ‘moves’ of the individuals are selected randomly in each it-
eration of the search algorithm, a random search process results (Fig. 8.1). An
obvious drawback of this algorithm is that no use is made of the information
gained by any member of the population in order to direct future search ef-
forts. In contrast, the particle swarm algorithm makes use of this information
by embedding both a memory of previous search outcomes, and social com-
munication between the particles with regard to the success of their search
efforts, in order to bias the future search efforts of all members of the swarm.

Fig. 8.1. Illustration of a swarm of five individuals (searchers) which have been
initialised with random locations and random velocities in the search space

8.2 Particle Swarm Optimisation Algorithm

The particle swarm optimisation algorithm (PSO) was introduced by Kennedy
and Eberhart [326] and is described in detail in [177] and [328]. PSO has been
applied for two main purposes, as a real-valued optimisation algorithm and as
a model of social interaction. In this chapter we concentrate on the application
of PSO as an optimisation algorithm.

In PSO a swarm of particles, each of which encodes a solution to a problem
of interest, move (fly) around an n-dimensional search space in an attempt to
uncover ever-better solutions to the problem of interest. Each of the particles
has two associated properties, a current position and a velocity. Each particle

8.2 Particle Swarm Optimisation Algorithm 119

i also has a memory of the best location in the search space that it has found
so far (pbesti), and knows the best location found to date by all the particles
in the population (gbest). At each iteration of the algorithm, particles are
displaced from their current position by applying a velocity (or ‘gradient’)
vector to them. The magnitude and direction of their velocity is influenced by
their velocity in the previous iteration of the algorithm, thereby simulating
momentum, and the location of a particle relative to the location of its pbest

and the gbest. Therefore, the size and direction of each particle’s move is a
function of its own history (experience) and the social influence of its peer
group. Pseudocode for the canonical version of PSO is provided in Algorithm
8.1.

Algorithm 8.1: Canonical Particle Swarm Algorithm

for each particle i in the population do

Initialise its location by randomly selecting values;
Initialise its velocity vector to small random values close to zero;
Calculate its fitness value;

Set initial pbesti to the particle’s current location;

end

Determine the location of gbest;

repeat

for each particle i in turn do

Calculate its velocity using (8.1);
Update its position using (8.2);
Measure fitness of new location;

if fitness of new location is greater than that of pbesti then

Revise the location of pbesti ;
end

end

Determine the location of the particle with the highest fitness;

if fitness of this location is greater than that of gbest then

Revise the location of gbest;
end

until terminating condition;

Synchronous vs. Asynchronous Updates

In the canonical PSO algorithm the update of the position of gbest (if required)
is performed at the end of each iteration of the algorithm. An alternative ap-
proach is to update gbest immediately when a particle finds a position with

120 8 Particle Swarm Algorithms

higher fitness (an asynchronous update). One advantage of asynchronous up-
dating is that updates in the position of gbest are immediately available for
use by other particles.

8.2.1 Velocity Update

Each particle i in the swarm has an associated current position in search
space xi, a current velocity vi, and a personal best position in search space
yi. During each iteration of the algorithm, the velocity and location of each
particle are updated using (8.1) and (8.2). Assuming that a function f is to be
maximised, that the swarm consists of n particles, and that r1d, r2d are drawn
(separately for each dimension in particle i’s velocity vector) from a uniform
distribution in the range (0,1), the velocity update for each dimension d is:

vid(t+ 1) = vid(t) + c1r1d(p
best
id (t)− xid(t)) + c2r2d(g

best
d (t)− xid(t)) (8.1)

where gbest(t) is the location of the global best solution found by all the
particles up to iteration t.

Examining the velocity update equation, it is comprised of three parts. The
term vid(t) represents momentum, as a particle’s velocity on each dimension
at time t + 1 is partly a function of its velocity on that dimension at time
t. The term (pbestid (t) − xid(t)) represents individual learning by particle i, in
that it encourages the particle to return to the location of its pbest, the best
solution it has found to date. The term (gbestd (t) − xid(t)) represents social
learning as the particle is also encouraged to move to the location of the best
solution found by any member of the swarm thus far. Hence, the velocity
update is a blend of momentum, a tendency to revert to pbest and a tendency
to move towards gbest.

At the start of the algorithm, the pbest for each particle is set at the initial
location of that particle, and gbest is set to the location of the best pbest. In
each iteration of the algorithm, particles are stochastically accelerated towards
their previous best position and towards the global best position, thereby
forcing the particles to search around the most promising regions found so far
in the solution space.

Once the velocity update for particle i is determined, its position is up-
dated (8.2). The location of pbesti for particle i is also updated if necessary
using (8.3–8.4).

xid(t+ 1) = xid(t) + vid(t+ 1) (8.2)

pbesti (t+ 1) = pbesti (t), if f(xi(t)) ≤ f(pbesti (t)) (8.3)

pbesti (t+ 1) = xi(t), if f(xi(t)) > f(pbesti (t)) (8.4)

After all particles have been updated a check is made to determine whether
gbest needs to be updated: choose

p̂best(t+ 1) ∈ {pbest0 (t+ 1), . . . , pbestn (t+ 1)} (8.5)

8.2 Particle Swarm Optimisation Algorithm 121

such that

f(p̂best(t+ 1)) = max{f(pbest0 (t+ 1)), . . . , f(pbestn (t+ 1))}. (8.6)

Then

gbest(t+ 1) = gbest(t), if f(gbest(t)) > f(p̂best(t+ 1)), (8.7)

gbest(t+ 1) = p̂best(t+ 1), if f(gbest(t)) ≤ f(p̂best(t+ 1)). (8.8)

Figure 8.2 provides visual intuition on the workings of the algorithm. A par-
ticle i is located at position xi(t) at time t and has a velocity of vi(t). The
position of the particle at time t+ 1 is determined by xi(t) + vi(t + 1), with
vi(t + 1) being obtained by a stochastic blending of vi(t), an acceleration
towards gbest and an acceleration towards pbesti .

v(t)

v(t+1)

x(t+1) Actual
global

optimum

X

Y

x(t)

vpbest

vgbest

Fig. 8.2. Diagram of the particle position update process

Decomposing the Velocity Update Equation

The core of the PSO algorithm is the way that individual particles move from
one iteration of the algorithm to the next. This is governed by the velocity
update equation. An interesting aspect of this equation is that none of the
component terms of the update equation produces a particularly interesting

122 8 Particle Swarm Algorithms

search process when considered in isolation. However, when they are combined
together a powerful search algorithm results.

For example, if the velocity update equation is reduced to vid(t+1) = vid(t)
the search trajectory of individual particles will continue in the same direction
that its velocity vector was randomly initialised to in the first iteration of the
algorithm, uninfluenced by particle or swarm learning. This will not produce
a sensible search process.

If the velocity update equation is reduced to vid(t+ 1) = c1r1d(p
best
d (t) −

xid(t)), then each particle moves towards the location of its own pbest. Again,
this produces a very limited search process.

If, instead, the velocity update equation is reduced to vid(t + 1) =
c2r2d(g

best
d (t)− xid(t)), each particle will move stochastically in the direction

of gbest. While this will produce a degree of search activity in the swarm, it is
likely to produce a very rapid convergence of the swarm to a single location,
before an adequate exploration of the search space has taken place.

When the three terms are combined a much more complex search dynamic
is produced. The weight coefficients c1 and c2 (and an implicit weight coef-
ficient of 1 before the prior-period velocity) control the relative impacts of
prior-period velocity and the pbest and gbest locations on the search trajec-
tory of particles. Low values for c1 and c2 encourage particles to explore far
away from already uncovered good points as there is less emphasis on past
learning. High values of these parameters encourage more intensive search of
regions close to these points. If the prior-period velocity term is excluded from
the velocity update equation, the remaining two terms act to move each par-
ticle i towards a line connecting pbesti and gbest (Fig. 8.3), the exact velocity
update depending on the values for the random coefficients r1d and r2d, and
the weight coefficients c1 and c2. The addition of the prior period velocity
term causes the particle to oscillate back and forth beyond this line.

Fig. 8.3. If the prior period velocity term is excluded from the velocity update
equation, the pbest and gbest terms act to move particle i towards a line connecting
pbesti and gbest

8.2 Particle Swarm Optimisation Algorithm 123

8.2.2 Velocity Control

If the canonical PSO algorithm as described above is applied, particles which
are a long distance from pbest and gbest will tend to produce very large ve-
locity updates and therefore there will be large position oscillations from one
iteration of the algorithm to the next. While this facilitates the exploration of
wide areas of the search space, large oscillations in particle position will make
it difficult for the swarm to intensively search already-discovered high-quality
regions of the search space. In order to overcome this problem, a number of
methods can be applied to constrain the magnitude of the velocity vector.

Velocity Clamping

In order to limit the velocity that a particle i can attain, on each dimen-
sion d the component vid of its velocity vector can be restricted, or clamped,
to a range [−vmax

d , vmax
d]. The value chosen for vmax

d can have an important
effect on the efficiency of the algorithm. Small values can result in insuffi-
cient exploration of the search space, while large values can result in particles
moving past good solutions. The value of vmax

d is typically set in the range
k · (xmax

d − xmin
d), where 0 < k < 1 and xmax

d and xmin
d are, respectively, the

maximum and minimum allowable values on dimension d.
Related to the issue of velocity clamping, work by Engelbrecht [178] sug-

gests that, particularly in the case of constrained optimisation problems, ve-
locities of particles should be initialised at the start of the PSO algorithm to
random values close to 0 (or even to 0) rather than to random values from
the entire domain of the optimisation problem as the latter can produce large
particle movements in early iterations of the algorithm, resulting in many
infeasible solutions and wasted search effort.

Momentum Weight

Another means of controlling particle velocity is to implement a momentum,
or inertia, coefficient. In this approach, equation (8.1) is altered by adding an
additional coefficient:

vid(t+1) = Wvid(t)+ c1r1d(p
best
d (t)−xid(t))+ c2r2d(g

best
d (t)−xid(t)). (8.9)

Here, the coefficient W represents an inertia, or friction, weight which controls
the impact of a particle’s prior-period velocity on its current velocity. Higher
values of the weight term encourage the search of diverse regions.

From (8.9) it can be seen that the impact of a given choice of value for
W on the velocity of a particle also depends on the values of c1 and c2. The
choice for these parameters determines whether the swarm concentrates on
exploration (encouraged by selecting a high value of W relative to the values
of c1 and c2), or on exploitation of already discovered good solution regions

124 8 Particle Swarm Algorithms

(encouraged by selecting a low value of W relative to the values of c1 and c2).
A common approach is to decrease the value of W gradually during the search
process. The effect of dampening the value of W over time is to increase the
effective influence of pbest and gbest on the velocity update calculation in an
effort to encourage the swarm to converge, leading to more intensive local
search of already discovered good regions. A simple method to achieve this is:

W = wmax −
wmax − wmin

itermax
· itercurr (8.10)

where wmax and wmin are the initial and final weight values, respectively (for
example, 0.9 and 0.4), itermax is the maximum number of iterations of the
PSO algorithm, and itercurr is the current iteration number.

The methods of velocity clamping and inertia weight are not mutually
exclusive. For example, a weight term can be supplemented with velocity
clamping in order to encourage the swarm to converge and engage in fine-
grained exploration around gbest.

Constriction Coefficient Version of PSO

Another method for controlling the magnitude of the velocity update step,
the constriction coefficient, was proposed in [114]. In this approach, the mo-
mentum weight term is dropped and the velocity update for each dimension
d is altered to:

vid(t+1) = χ(vid(t)+c1r1d(g
best
id (t)−xid(t))+c2r2d(g

best
id (t)−xid(t))) (8.11)

where χ is the constriction coefficient. The value of the constriction coefficient
is calculated as χ = 2

|2−c−
√

(c2−4c)| , where c = c1 + c2, and c > 4, the choice

of these values being made to help ensure that the swarm converges to a small
region of the search space. A common choice of value for χ is 0.7298, resulting
from values of c1 = c2 = 2.05.

8.2.3 Neighbourhood Structure

A variant on the canonical particle swarm algorithm is to use a local best
location (lbest) rather than a global best location when performing the velocity
updates in (8.1).

In the local best version of the PSO algorithm each particle is notionally
linked to a subset of the population of particles at the beginning of the algo-
rithm. This linkage structure then remains unchanged during the optimisation
process. The term lbest replaces gbest in (8.1), with lbest representing the best
location found so far by any particle in that linked group. In defining the
nature of the linkages between the particles, a wide range of connection struc-
tures could be employed. Figure 8.4 illustrates a three-particle neighbourhood

8.3 Comparing PSO and Evolutionary Algorithms 125

topology, where each particle is linked to two other particles. Although a sub-
set of the particles are defined as being ‘linked’ this does not imply that the
particles will be spatially proximate throughout the algorithm. It is quite pos-
sible, particularly in the early iterations of the algorithm, that the particles
could be a considerable distance from each other.

Information Flow in Neighbourhood Structures

The neighbourhood size and structure plays a critical role in determining the
flow of information between particles and therefore it impacts directly on the
search process itself. At one extreme, if neighbourhood size is set at 1, each
particle communicates only with itself. Consequently, the swarm acts as N
independent searchers, each of which is anchored by its own pbest (lbest=pbest

for all particles in this case). On the other hand, if the neighbourhood size
is defined as being all N particles, all particles can communicate with each
other and we have the gbest version of the PSO algorithm (Fig. 8.5). If the
neighbourhood regions are defined so that they do not overlap, the swarm be-
haves as multiple subswarms which simultaneously, and independently, search
for good solutions. If the neighbourhoods are defined so that they do overlap,
information about high-fitness regions can flow gradually between one neigh-
bourhood and another. When the lbest version of the PSO is implemented with
a neighbourhood size < N , and with overlapping neighbourhood regions, the
swarm will tend to maintain more diversity and convergence will be slower
than in the gbest version.

8.3 Comparing PSO and Evolutionary Algorithms

The PSO algorithm bears some similarity to evolutionary algorithms such as
the GA. PSO is population-based, particles encode solutions, search proceeds
by updating these encodings over multiple generations (iterations), and the
population of particles is typically initialised randomly.

In both algorithms information is shared between members of the popula-
tion. In the GA, the information-sharing mechanism is between two selected
individuals (the parents). In PSO the communication is between an individual
and gbest or lbest. The location of the highest quality solution discovered by
any member of the group is broadcast to all members of the population.

Unlike the GA, PSO has no explicit crossover or mutation process. How-
ever, the velocity and position update processes can be considered as providing
an implicit crossover, as the locations of pbest and gbest influence the velocity
update step. These locations, along with the prior period velocity, are blended
in producing the current period velocity update. In other words, pbest and
gbest provide a form of ‘parent influence’ in PSO. The memory embedded in
pbest and gbest can also be thought of as implementing a form of elitism, as

126 8 Particle Swarm Algorithms

Neighbourhood around particle P4

P1

P5

P2 P3

P4

Neighbourhood around particle P5

Fig. 8.4. Swarm topology where lbest is defined using a three particle, overlapping,
neighbourhood. Each particle communicates with itself and with two other particles

P1

P5

P2 P3

P4

Fig. 8.5. Star topology for swarm. All particles can communicate with one another
via gbest

knowledge of the best locations found so far in the search space is maintained
between iterations of the algorithm.

Although there is no explicit selection or birth and death process in PSO,
the attraction of particles towards gbest acts as an implicit selection mecha-
nism as it influences the velocity of all particles. Selection pressure in the GA
directly impacts on the rate of convergence of the population. Similarly, in
PSO, the relative values of W, c1 and c2 control the rate of convergence.

8.4 Maintaining Diversity in PSO 127

8.4 Maintaining Diversity in PSO

Generally, there are three reasons for maintaining diversity in populational
search algorithms:

i. to avoid premature convergence of the population,
ii. to cope with a dynamic environment, and
iii. to uncover multiple, equally good, solutions when they exist.

Premature Convergence

Premature convergence arises when a search algorithm stagnates. Highly mul-
timodal environments can pose considerable difficulties for a search algorithm
unless it is capable of generating sufficient diversity to allow the population
to escape from local optima.

In PSO the potential problem of populational stagnation runs deeper as
inspection of the velocity and position update equations of the canonical PSO
algorithm points out that the swarm is not guaranteed to converge to a global,
or even a local, optimum [177, 640]. If a swarm converges so that for all i we
have xi = pbesti = gbest, and for all i, d we have vid = 0, then the swarm will
cease moving and freeze. While the swarm will have converged to the best
location uncovered during its search there is no guarantee that this location
is either a local or a global optimum (Fig. 8.6).

f(x)

x

Fig. 8.6. Swarm has converged to a local rather than the global optimum (assuming
the objective is maximisation)

One way to gain insight into the degree of convergence of the swarm during
a run is to construct a swarm activity graph. Swarm activity can be measured
in many ways but an intuitive approach is to take the distance moved by each
particle in the swarm between two successive iterations of the algorithm and

128 8 Particle Swarm Algorithms

plot this over time [378]. Hence, if the swarm has substantially converged, the
degree of swarm activity will be small (Fig. 8.7).

Swarm activity =

∑n
i |xi(t)− xi(t− 1)|

nk
. (8.12)

In order to make the metric roughly comparable across swarms of different
sizes, and problems of differing dimensionality, the Euclidean distance between
the location xi of each particle i at time t and t+ 1 is divided by nk, where
n is the swarm size and k is the dimensionality of the problem of interest.

3

2

1

0

Sw
ar

m

ac
tiv

ity

Generations
0 100 200 300 400 500 600 700

Fig. 8.7. Sample activity graph where the swarm is converging to a small region
of the search space

While convergence to a local optimum can be easily guaranteed by mod-
ifying the canonical PSO to undertake a local search around the final gbest

location, there is no simple fix which will ensure that a swarm will efficiently
find the global optimum in all search spaces.

Dynamic Environments

Dynamic environments (Sect. 4.1) pose challenges for all optimisation meth-
ods, including PSO. If the environment alters substantially, past learning as
captured in the memory of the locations of pbest and lbest or gbest can be
worthless in guiding the search process in the altered environment. Addition-
ally, if the swarm has collapsed into a compact region of the search space,
and the inertia weight has decayed to a low value, the swarm will find it diffi-
cult to escape from that region, even if the global optimum moves elsewhere
(Fig. 8.8).

8.4 Maintaining Diversity in PSO 129

f(x)

x

f(x)

x

Fig. 8.8. Swarm has successfully uncovered the global optimum (above) but due to
loss of diversity it is unable to track the global optimum as the environment changes
(below)

Multiple Solutions

In some scenarios, there will be multiple, equally good, solutions, with the
aim being to identify all or a subset of these (for example, multiobjective
optimisation). Canonical PSO is not suitable for application to these problems
due to its convergent nature. The following sections describe a number of
approaches for maintaining diversity in PSO.

8.4.1 Simple Approaches to Maintaining Diversity

The simplest approaches to maintaining diversity during a PSO run include
deterministic strategies such as random immigrants (Sect. 4.1.2) which help
ensure that continual diversity is generated in the population of particles, and
the careful choice of PSO parameter settings which encourage exploration
rather than exploitation.

130 8 Particle Swarm Algorithms

Another approach which is suitable for dynamic environments is to use
adaptive strategies which boost the level of diversity generation when envi-
ronmental change is detected. For example, a set of sentry particles (Sect.
4.1.2) at dispersed, fixed locations in the search space can be maintained in
memory. Periodically, the fitness of these particles is reassessed and when en-
vironmental change is detected via a change in the fitness of these particles,
steps can be taken to increase swarm diversity.

For example, the position or pbest information of some particles could
be reinitialised to new, randomly selected, values. In effect, this implements a
‘forgetting’ mechanism whereby the past learning of the particle is abandoned.
Another approach would be to turn on a mutation mechanism in an effort to
generate positional diversity in the swarm’s particles. In either case, it may
be necessary to reset the value of the inertia weight (W) if it has decayed to
a small value during the algorithm.

In addition to simple methods for maintaining diversity in populations of
PSO particles, a number of more sophisticated methods, drawing inspiration
from a number of metaphors, have also been developed. These are discussed
in the following sections.

8.4.2 Predator–Prey PSO

In the canonical PSO algorithm all particles have identical properties. Silva et
al. [578] introduce a predator–prey metaphor into PSO and split the popula-
tion of particles into two mutually exclusive groups. A subset of the particles
are considered as predators with the remaining particles being classed as prey.
The predators are attracted to the best individuals in the swarm, whereas the
prey particles are repelled by predator particles, thereby generating movement
in the swarm (Fig. 8.9).

The biological motivation for the predator–prey model is that prey tend
to gather around locations with good resources such as places with plentiful
food or water. Prey, who are located at resource-rich locations, therefore have
little motivation to seek out alternative resource locations. However, if the
flock of prey is attacked and scattered by predators they will be forced to seek
out alternative (possibly diverse) predator-free locations. These new locations
may turn out to offer even richer resources than the original location. In terms
of optimisation, good resource locations can be considered as local optimia.

The predator–prey metaphor could be implemented in a variety of ways.
The approach taken in Silva et al. [578] is to have a single predator which is
attracted towards the current gbest location. The velocity update equation for
the predator particles is:

vpredator(t+ 1) = α(gbest(t)− xpredator(t)) (8.13)

xpredator(t+ 1) = xpredator(t) + vpredator(t+ 1) (8.14)

8.4 Maintaining Diversity in PSO 131

Fig. 8.9. Two predator particles chasing the gbest prey particle

where vpredator(t+ 1) and xpredator(t+ 1) are the velocity and location of the
predator respectively. The parameter α controls how fast the predator moves
towards the gbest location.

The influence of the predator on each prey particle depends on how close
the predator is to the prey particle. The closer the predator the more the
prey particle reacts by changing its velocity in order to avoid the predator.
To capture this effect, a repulsion term D(d) is added to the velocity update
equation for prey particles. Therefore, for each dimension j for each prey
particle i, the velocity and position update equations are:

vij(t+ 1) =Wvij(t) + c1r1j(t)(p
best
ij (t)− xij(t))

+ c2r2j(t)(g
best
j (t)− xij(t)) + c3r3jD(d)(t) (8.15)

xij(t+ 1) = xij(t) + vij(t+ 1) (8.16)

where the repulsion is calculated using an exponentially decreasing function,
defined as D(d) = ae−bd. The parameter d is the Euclidean distance between
the predator and the prey, a controls the maximum effect the predator can
have on the prey’s velocity along any dimension, and b is a scaling factor. The
repulsion term produces a more violent reaction by the prey if the predator
is very close. For example, if the predator and prey are in the same location,
distance=0, and the repulsion effect is a (as e0 = 1). As the distance tends to
∞, the repulsive effect tends to 0 (since e−x → 1 as x → ∞).

Equation 8.15 is used to update each element of a prey’s position vector
based on a ‘fear’ threshold, Pf . For each dimension, if U(0, 1) < Pf , then
(8.15) is used to update xij(t). Otherwise the standard PSO velocity update
without the repulsion component is used.

132 8 Particle Swarm Algorithms

In the early iterations of the PSO algorithm, most particles will not be
close to the predator; hence, the predator–prey term in the velocity update
vector will tend to have limited effect. As the swarm starts to converge towards
the best-so-far gbest, the repulsion term helps ensure continued diversity in
the swarm. Later in the search process, the influence of the predator should
be decreased by reducing the fear threshold (Pf) or by reducing the value of
a in order to permit finer search around gbest.

A variant on the above predator–prey approach was proposed by [272], in
which there are multiple predators which behave as ‘normal’ PSO particles
in that they are both drawn to the gbest location and are also influenced by
their own pbest location. Predator particles employ the standard PSO velocity
update equation. In contrast, the velocity update equation of prey contains a
repulsion term, whereby a prey particle responds to its nearest predator by
moving away from it. Both predators and prey use the same gbest informa-
tion and both particles can update the position and value of gbest. Predators
therefore tend to search around gbest, with the prey particles engaging in more
diverse exploration of the search space. The predator–prey model will promote
more populational diversity than the canonical PSO model and therefore will
offer advantages in multimodal and dynamic environments.

Threshold
distance

Repulsion
forces

Fig. 8.10. Charged swarm, showing repulsion effect and threshold distance for
repulsion effect

8.4.3 Charged Particle Swarm

Charged particle swarm, developed by Blackwell and Bentley [60, 61], rep-
resents a synthesis of both social and physical metaphors. In the charged

8.4 Maintaining Diversity in PSO 133

particle swarm model, a notional electrostatic charge is assigned to each par-
ticle. This results in a repulsion force between particles, governed by an inverse
square law relationship, reducing the propensity of the swarm to converge and
thereby helping to maintain diversity in the population of particles (Fig. 8.10).
Charged swarm, like predator–prey PSO, helps ensure that diversity is main-
tained throughout the algorithm’s run, rather than merely reacting to envi-
ronmental change by attempting to boost populational diversity after it has
occurred.

The main alteration required to the equations governing PSO in order to
implement charged PSO is to the velocity update equation (8.9) to include a
repulsion term ri, resulting in the update equation:

vij(t+1) = Wvij(t)+ c1r1j(p
best
ij −xij(t))+ c2r2j(g

best
j −xij(t))+ rij (8.17)

The repulsion term is calculated at every iteration t for each particle i in the
swarm of n particles, using:

rij =

n∑
j=1,j �=i

QiQj

|dij |3
dij , pcore < dij < p (8.18)

where dij = xi − xj and each particle i has a charge Qi. If the particles have
no charge (Qi = 0 for all particles), then the repulsion term becomes 0, and
the velocity update equation reverts to the standard update equation.

Once particles have a positive charge they are repelled from all other par-
ticles that are within a threshold distance p. Particles that are more than p
apart do not influence one another. A second parameter is also defined by the
modeller, pcore, and if particles are within this distance of one another, the
repulsion effect is capped at

ri =
n∑

j=1,j �=i

QiQjdij
p2core|dij |

(8.19)

in order to avoid extreme repulsions if the particles are very close together. In
empirical testing of the charged swarm model, parameter values of pcore = 1,
p =

√
3xmax and Q = 16 were suggested by [60].

While the charged swarm concept is successful in maintaining diversity
in the swarm, it can be less effective in carrying out detailed exploration
around the current gbest due to the repulsion effects between particles. A
variant on the idea of a charged swarm is to split the swarm in two, where
half the particles are charged and therefore repel one another and half are
neutral particles which carry no change (the atomic swarm model) [62]. This
combines the benefits of ensuring that there is always diversity in the swarm
whilst allowing exploitation around the current gbest by the neutrally charged
particles. Charged swarm PSO, by promoting diversity, will offer advantages
over the canonical PSO in multimodal and dynamic environments.

134 8 Particle Swarm Algorithms

Charged PSO provides an example of an algorithm whose inspiration is
drawn from both a social and a physical metaphor. Later, in Chaps. 22 to 24,
we introduce a range of physically inspired natural computing algorithms.

8.4.4 Multiple Swarms

Similarly to the island model in GA (Sect. 4.2), a cooperating multiple swarm
system can be implemented where several swarms search independently of
each other (Fig. 8.11). Occasionally, particles and/or information is migrated
between the swarms. The use of multiple swarms can help encourage popula-
tional diversity, which can provide obvious benefits in environments which are
dynamic, in environments which have many local optima, or in multiobjective
problems where the aim is to uncover a diverse set of potential solutions (for
example, a Pareto front). The downside of this approach is that the compu-
tational cost of the algorithm increases as the total population size increases.

Fig. 8.11. Three independent swarms. Two swarms are separately converging on
the same local optimum with the third swarm finding an alternative local optimum

In designing multiple swarm systems, the key decisions include the number
of swarms that will be used and how information is to be passed between the
individual swarms. One approach is to pass information on gbest between
the swarms at periodic intervals. Another variant is to periodically replace
the p worst particles from swarm A with the p best particles from swarm B
(assuming the particles entering the swarm A are better than those they are
replacing) and vice versa. An alternative approach is simply to swap randomly
selected particles between each swarm.

When the number of swarms is increased beyond two, a migration strategy
is required to govern these information flows. Possible strategies include a

8.4 Maintaining Diversity in PSO 135

sequential migration scheme where each swarm exchanges information and/or
particles bilaterally with a predefined swarm, or a random migration scheme
where the exchange occurs between two randomly chosen swarms at each
migration event.

P1

P5

P2 P3

P4

Pl

Pm

Pi

Pk

Pj

Fig. 8.12. Migration between swarms can be sequential (left) or random (right). In
random migration, the value of the indices i, j, k, l, m for the order of migration are
randomly selected without replacement at each migration event. Here, it is assumed
that there are five swarms. This is an exemplar of a migration strategy between
swarms where the order of migration between all swarms is random

8.4.5 Speciation-Based PSO

In some applications the object is to find multiple solutions rather than a
single solution. For example, there may be more than one global optimal
solution. The standard PSO is not well suited for this task as the algorithm
is not specifically designed to capture and maintain information on multiple
optima. The easiest way to try to uncover the locations of multiple optima is
to undertake multiple sequential PSO searches, and record the gbest found by
each search. However, this method will not be particularly efficient, as it is
possible that several searches will produce the same gbest.

An established approach for dealing with the problem of multiple solutions
in evolutionary algorithms is to use niching (or speciation) strategies. The
objective of these strategies is to permit the optimisation algorithm to uncover
multiple optimal solutions. Another approach to locating multiple niches is
to undertake parallel niching. In parallel niching, a single swarm is initialised
and begins searching. As soon as a promising region is identified, a subswarm
of the particles which are close to that region is split off the main swarm.
The subswarm then behaves as an independent swarm and undertakes its
own search in that region in order to uncover the local or possibly the global
optimum. Over time, the main swarm shrinks as subswarms are split from it.

136 8 Particle Swarm Algorithms

Once the subswarms have substantially converged, the gbest for each swarm is
recovered to form a list of possible solutions. One example of a parallel-niching
PSO model is NichePSO [74, 177].

8.5 Hybrid PSO Algorithms

Search algorithms have their individual strengths and weaknesses and hybrid
algorithms can be employed to improve search quality and efficiency. Two
basic approaches to hybridisation are:

i. the operation of multiple algorithms on the same problem either in parallel
or sequentially, and

ii. the blending of elements from multiple algorithms in order to design an
improved algorithm.

Multiple Algorithm Hybrids

Illustrating the first case, a GA and a PSO could be run in parallel on the
same problem, with a periodic exchange of high-quality individuals between
the two subpopulations. This corresponds to an island model (Sect. 4.2) where
different search strategies are being employed on each island.

Alternatively, different search algorithms could be sequentially applied to
the population of solution encodings. For example, Hendtlass [267] describes a
PSO-DE system where periodically the population of solution encodings being
operated on by the PSO is passed to a DE algorithm. The DE algorithm is
then executed for a number of iterations, with the updated locations of each
particle being passed back to the PSO algorithm. A variant on this is to design
a memetic verison of PSO, where a subset of the solutions in the current
population, or perhaps just gbest, is refined using local search (Sect. 4.5). The
local search step could be employed periodically during the PSO algorithm or
alternatively as a final refinement step at the end of the PSO process.

Blended Hybrids

Concepts from PSO can also be blended with other search algorithms. For
example, a selection-for-replacement mechanism drawn from the GA could be
incorporated into PSO. A simple selection strategy would be to drop the poor-
est x% of particles after each iteration of the algorithm, replacing them with
newly created, randomly located, particles. A more sophisticated approach is
to periodically drop low-fitness particles, replacing their location and velocity
vectors with those of higher-fitness particles in the current population, while
leaving the pbest information for the replaced particle unchanged [16]. This has
the effect of intensifying the search in a current good region, while maintaining
a memory of historic high-fitness locations uncovered by that particle.

8.6 Discrete PSO 137

Another hybridisation possibility includes the implementation of a mu-
tation operator. This could assist in maintaining diversity in the swarm of
particles, thereby reducing the chance that the swarm gets trapped in a local
optimum. An illustration of a mutation mechanism is provided by Higashi and
Iba [271], where a particle selected for mutation has the value xid of one of its
d position dimensions altered using the function mutate(xid) = xid ·(1+g(σ)),
where g(σ) is a random number drawn from a Gaussian distribution with a
mean of 0 and a standard deviation of σ. In their study, Higashi and Iba sug-
gest using a value of σ of 0.1 times the range of the particle being mutated.
This range can be decreased over time, allowing wider exploration early in
the optimisation process and finer-grained search thereafter. The mutation
process could implemented stochastically after either the velocity or the po-
sition update step. A detailed review of the literature on hybrid PSO models
is provided in [177].

8.6 Discrete PSO

So far in this chapter it has been assumed that we are interested in real-valued
optimisation. Of course, many real-world problems have integer or binary
representations and PSO can be modified and applied to these problems. A
simple modification to the PSO in order to apply it to an integer-valued
problem is to discretise the position vectors by rounding each element in the
vector to the nearest integer.

A number of more sophisticated approaches for applying PSO to binary-
encoded problems have been developed. Two of these, BinPSO and Angle
Modulated PSO, are discussed in the following sections. A third method,
which draws inspiration from quantum mechanics, Quantum Binary PSO,
is described in Sect. 24.6.

The first and last of the three binary PSO approaches redesign the veloc-
ity update process so that it is appropriate for binary encodings, while the
second approach transforms the binary-encoded problem into one which has
a continuous encoding. As described in Sect. 3.3, binary encodings can easily
be transformed into any desired integer range. Hence versions of the PSO that
operate on binary encodings can also be employed for discrete optimisation.

8.6.1 BinPSO

The best-known version of binary PSO, BinPSO [327], converts the continuous
PSO algorithm to one which operates on binary representations. In BinPSO,
the location xi of each particle i is represented as a binary vector of 0s and
1s, and the search process takes place in binary-valued space. The adapted
velocity update equation is virtually unchanged in appearance from (8.1):

vij(t+ 1) = vij(t) + c1r1j(p
best
ij − xij(t)) + c2r2j(g

best
j − xij(t)) (8.20)

138 8 Particle Swarm Algorithms

where xij is the value (0 or 1) in dimension j of particle i’s location vector. All
of the other terms in the update equation are as defined in (8.1). To ensure
that each element of the vector vi(t+1) is binary, a sigmoidal transformation,
sig, is performed on each element j of vi(t+ 1):

sig(vij(t+ 1)) =
1

1 + exp(−vij(t+ 1))
. (8.21)

(The sigmoid used here is the logistic function (Sect. 13.4.1).) The value of
xij(t+1) is determined by comparing sig(vij(t)) with a random number drawn
from U(0, 1):

xij(t+ 1) =

{
1 if U(0, 1) < sig(vij(t+ 1));

0 otherwise.
(8.22)

Although (8.22) looks similar to the standard velocity update equation for
continuous PSO, it has a quite different interpretation in BinPSO. The ve-
locity update vector vij is interpreted as particle i’s predisposition to set the
value in dimension j of its position vector to ‘1’. The higher the value of vij
for an individual element of i’s position vector, the more likely that xij = 1,
with lower values of vij favouring the choice of xij = 0. sig(vij) represents
the probability of bit xij taking the value 1 [327]. Therefore, if sig(vij) = 0.3
there is a 30% chance that xij = 1 and a 70% chance it is 0.

One point to note is that the use of an inertia weight may not be appro-
priate in BinPSO as it can have unexpected consequences. For example, if W
decays towards 0 as the algorithm executes, this will tend to push vij towards
0, resulting in sig(0) which produces 0.50. This in turn implies that each bit
position has a 50:50 chance of change, turning the algorithm into a random
search.

Another related issue that can arise is saturation of the sigmoid function.
This will occur if velocity values are either very large or very small. In ei-
ther case, the probability of a bit change becomes very small and exploration
will effectively cease. A simple way of reducing this problem is to implement
velocity clamping such that |vid| < Vmax. Therefore, in BinPSO, Vmax acts
to limit the probability that bit xid takes a value of 0 or 1. If a low value
is set for Vmax, this will increase the (random) generation of diversity in the
algorithm, even once the population has started to converge. For example, if
Vmax is clamped to 3, the values for sig(vij) will be limited to the range 0.047
to 0.952. Consequently, there is still a good chance that diverse binary vec-
tors will be generated even once the population has substantially converged.
Hence, Vmax acts as a mutation control knob in BinPSO, with smaller values
allowing a higher mutation rate.

8.6.2 Angle-Modulated PSO

An alternative methodology for applying PSO to binary-encoded problems,
Angle Modulated PSO, is outlined in [493]. In this approach the problem is

8.8 Summary 139

transformed so that the real-valued version of the PSO algorithm can be
applied. The key step is the use of a generating function which produces a
binary output from a real-valued input. PSO is used to tune the real-valued
parameters of the generating function, rather than to search directly in the
binary-valued problem space. This methodology has also been used to ex-
tend differential evolution to binary-encoded problems and a discussion of the
approach is provided in Sect. 6.3.

8.7 Evolving a PSO Algorithm

While the canonical PSO algorithm has proven useful for a wide variety of
real-world problems, the design of the algorithm should ideally be tailored to
the specific problem at hand. Although a multitude of PSO variants exist it
is not always apparent which variant should be used for a given application.
An interesting alternative to making this decision via trial and error testing
of PSO variants is to breed a good PSO algorithm for the problem of interest.

Work by Poli and Langdon [512, 513] illustrates how genetic programming
(GP) (Chap. 7) can be used to evolve the velocity update equation for PSO.
In these studies the function set for the GP system included the functions +,
−, ∗ and % (protected divide). The terminal set consisted of the position xi of
particle i, its velocity vi, the best location pbesti previously visited by particle
i, and the best location gbest uncovered by the entire swarm. The terminal
set also included a set of numerical constants and a zero-arity function which
returns a real number in the range [−1, 1]. Even with this compact function
and terminal set, a wide variety of velocity update equations can be evolved.
Figure 8.13 illustrates a tree representation of the velocity update equation
vid(t+ 1) = vid(t) + c1(p

best
id (t)− xid(t)) + c2(g

best
d (t)− xid(t)).

A standard GP approach is taken whereby each member of the GP pop-
ulation is decoded into a PSO velocity update equation, the utility of that
update equation is tested using some or all of the available data and the re-
sulting measure of fitness is used to drive the evolutionary GP process. The
ultimate output from the GP run is a problem-specific PSO update equation.

More complex function and terminal sets could be defined, including addi-
tional location memory structures and alternative local neighbourhood struc-
tures. This opens up the possibility of crafting highly tailored PSO algorithms.
More generally, it is of course possible to apply an evolutionary methodology
to ‘evolve’ other (i.e., non-PSO) natural algorithms [160].

8.8 Summary

The key learning mechanisms in the PSO algorithm are driven by a social
learning mechanism so that good solutions uncovered by one member of a

140 8 Particle Swarm Algorithms

Fig. 8.13. Illustration of a tree representation of a velocity update equation

population are observed by, or communicated to, other members of the pop-
ulation that imitate them. Despite the simplicity of the PSO algorithm, it
has shown itself to be a powerful, robust optimisation algorithm, having been
successfully applied to a wide range of real-world problems. Particular advan-
tages of the algorithm include its simplicity, its speed, and the relatively small
number of parameters that the user is required to set.

PSO is a very active research area at present. Research efforts are clustered
into the following areas: investigation of extensions to the basic PSO algo-
rithms (for example, PSO for multiobjective optimisation, extending PSO to
binary and integer encodings, developing PSO algorithms for dynamic envi-
ronments), investigation of differing swarm topologies, investigation of hybrid
PSO algorithms, and novel applications of PSO.

9

Ant Algorithms

At first glance the activities of insects do not appear to be an obvious source of
inspiration for natural computing algorithms. However, on closer inspection
it becomes apparent that many insects are capable of exceedingly complex
behaviours. They can process a multitude of sensory inputs, modulate their
behaviour according to these stimuli, and make decisions on the basis of a
large amount of environmental information. Yet the complexity of individual
insects is not sufficient to explain the complexity that many societies of insects
can achieve [68]. Although only 2% of all insect species are social, these species
have been remarkably successful at earning a living in their environment and
comprise more than 50% of the global total insect biomass [19]. This suggests
that the social nature of these species could be contributing to their relative
success in colonising the natural world.

Three primary mechanisms of communication are observed in social in-
sects:

i. indirect or stigmergic communication,
ii. direct interaction of individuals, where the actions of one individual influ-

ence those of another, and
iii. direct (nonphysical) communication between individuals.

Stigmergic communication arises where individual members of a group com-
municate indirectly, by altering the environment faced by their peers. This
alteration in the environment has the effect of influencing the subsequent
behaviour of other members of the group. Direct interaction occurs via mech-
anisms such as touch (for example, antennation, in which insects rub antennae
against each other in order to communicate information about food sources,
hunger levels, nestmate recognition and sexual identification etc. [46]) or phe-
nomena such as stridulation, whereby individual ants can use sound signals to
communicate with other ants, for example to recruit them for a specific task
[282]. Ants of the species Aphaenogaster cockerelli and Atta cephalotes [535]
use this mechanism to recruit other ants in order to facilitate prey retrieval
when large prey are found.

© Springer-Verlag Berlin Heidelberg 2015
A. Brabazon et al., Natural Computing Algorithms, Natural Computing Series,
DOI 10.1007/978-3-662-43631-8_

141

9

142 9 Ant Algorithms

The best developed family of insect-inspired algorithms are drawn from
a variety of ant behaviours and these form the focus of this chapter. More
recently, the range of insect-inspired algorithms has been extended to encom-
pass communication mechanisms of other species such as honeybees and these
are described in the next chapter (Chap. 10).

9.1 A Taxonomy of Ant Algorithms

Ant algorithms [68, 165, 168, 169] constitute a family of population-based
optimisation and clustering algorithms that are metaphorically based on the
activities of social ants. Many species of social ants live in colonies. Despite
the high degree of organisation of these colonies, there is no overt top-down hi-
erarchial structure. Each individual insect follows a fairly limited set of rules,
usually with only local awareness of its environment. In spite of this, the inter-
action of the activities of these individuals gives rise to a complex emergent,
self-organised structure and provides the colony with the ability to adapt to
changes in its environment. Ant algorithms emphasise the importance of com-
munication (or distributed learning) between the individuals in a population
by permitting the population to adapt successfully over time. In general, ant
algorithms are derived from four metaphors of ant behaviour (Fig. 9.1). The
first, foraging, inspires optimisation algorithms, while the next two, brood
sorting and cemetery formation, inspire clustering algorithms. In this chap-
ter we limit attention to ant food foraging algorithms and to ant-clustering
algorithms.

Fig. 9.1. Taxonomy of ant colony algorithms

9.2 Ant Foraging Behaviours

Foraging behaviour, a subfield of behavioural ecology [594], can encompass
the activities of a single animal, or, more generally, the cooperative activities
of a group of animals (predators), searching an environment for food (prey)
or other resources.

9.2 Ant Foraging Behaviours 143

Food foraging can be considered as an optimisation process. Broadly
speaking, organisms seek to maximise the net energy they obtain from for-
aging (the energy obtained from food less the energy expended in finding it)
per unit of time, subject to constraints such as the physical limitations of the
organism. Foraging organisms must decide how to search for food. In other
words they must design and implement a food-foraging strategy (see [29] for a
good overview of a selection of these strategies). These food foraging strategies
can serve as a source of inspiration for the design of optimisation algorithms
[524].

Many examples of food foraging behaviours can be found in the natural
world, ranging from those of herbivores to those of carnivores. Typically food
is distributed in regions or patches. Hence food foraging entails searching for
good regions on a landscape. For example, the area around a water hole in
an arid environment is likely to be a rich hunting ground for carnivores. Of
course, the resource endowment of specific regions can change over time in
response to environmental conditions, or indeed in response to the success of
predator activities.

Food foraging behaviour can be individual, where each individual in a
species forages on its own, or social, where foraging is a group behaviour
which involves cooperation and direct or indirect communication between in-
dividuals.

Many species of social ants use indirect communication mechanisms to
assist in their food foraging efforts, for example by providing chemical ‘sign-
posts’ to discovered food sources. During food foraging some species of ant
such as the Argentine ant Linepithema humile lay down a trail of chemical
attractant known as pheromone and subsequent foraging ants are inclined to
follow these trails during their own foraging efforts. This simple trail-following
behaviour acts to ensure that the ant colony’s foraging activities are efficient.

If a group of ants searches randomly around its nest for food, pheromone
trails from the nest to close-by food sources will tend to grow more quickly in
strength than those to far-away food sources as ants travelling to the closest
food source will return quickly to the nest leaving both an outward and inward
trail of pheromone. The quality of the food source may also affect the amount
of pheromone deposited, with better food sources resulting in higher levels
of pheromone deposit. Once subsequent foraging ants tend to follow stronger
rather than weaker pheromone trails, auto-catalytic behaviour will emerge
with an increasing portion of the foraging ants travelling along the strong
trail, reinforcing it further (Fig. 9.2). This creates a positive feedback loop
between the ants in the search for food. The effect of the pheromone-following
behaviour is to create an indirect communication mechanism between ants.
As trails emerge over time a collective memory, chemically embedded in the
environment, is created of the route to the food source. One feature of this
communication mechanism is that it is scalable as an individual ant does not
need to directly communicate with every other ant in the colony in order to
pass on the knowledge it uncovers during its foraging travels.

144 9 Ant Algorithms

Of course, one potential drawback of such a positive feedback learning
mechanism is that it can lead to lock-in, whereby a heavily pheromone-
reinforced path continues to be used, even if a rich food source subsequently
becomes available closer to the nest.

 Food source

 Nest

Obstacle

Fig. 9.2. Foraging ants reinforcing the shorter trail to a food source

Although most optimisation applications of ant foraging algorithms rely
on positive reinforcement of routes to high quality solutions via a simulated
pheromone deposit process, real-world ant foraging pheromone signals can be
more complex. For example, Pharaoh’s ants (Monomorium pharaonis) can
deposit repellant pheromone as a ‘no entry’ signal to mark an unrewarding
foraging path [533]. Real-world foraging behaviours may also be influenced
by both indirect and direct communication (see [46] for an example of an ant
colony optimisation algorithm which uses a combination of concepts including
pheromone deposit and antennation).

9.3 Ant Algorithms for Discrete Optimisation

9.3.1 Graph structure

Ant foraging behaviours can be used to inspire the design of algorithms for
discrete optimisation. This class of problem can be represented using a graph
structure where nodes (or vertices) are connected by arcs (or edges). The first

9.3 Ant Algorithms for Discrete Optimisation 145

step in applying ACO for discrete optimisation is to map the problem onto a
suitable construction graph so that a path through the graph (corresponding
to an ant foraging route) represents a solution to the problem. The task is
then to find the optimal path through the graph.

As an example of a construction graph, suppose the objective is to create
a timetable, whereby a series of classes (events) are to be assigned to specific
time slots. One way to represent this problem as a graph structure is to
consider each class (or other event to be scheduled) as a node, and each
time slot as an arc (Fig. 9.3). A walk through this graph over specific arcs
produces a timetabling of each class to a specific time slot and the object is
to produce a timetable which is at least feasible (for example, no more than
k classes assigned to a particular time slot), and preferably a timetable which
maximises some measure of ‘goodness’. In many combinatorial problems, each
arc in the graph has some cost associated with it and the object of the problem
is to find a low-cost route across the graph.

Start

t1

Stop

t2

tm

cn c1 c2

Fig. 9.3. Construction graph for a timetabling problem. Each arc corresponds to
a choice of time slot (m time slots exist), and each node corresponds to a class (n
classes in total)

Once a construction graph has been designed for the combinatorial optimi-
sation problem of interest, a computer simulation of the activities of artificial
ants can be used to uncover a good route across the graph. These artificial
ants are released one at a time at the start node. Each ant builds a complete
solution to the problem by traversing arcs from one node to the next until a
terminating node is reached.

At each node the ant will typically have a choice of several outgoing arcs.
In canonical ant colony algorithms the ant has access to two pieces of infor-
mation when making its decision as to which arc to select. The first piece of
information is the quantity of pheromone deposited on each arc, which acts
as a guide as to how many previous ants have traversed that arc, and some
information concerning the quality of each arc (usually based on a heuristic
such as ‘pick the outgoing arc with the lowest cost value’). The ant stochas-
tically selects its next arc based on a blending of these pieces of information,

146 9 Ant Algorithms

tending to favour arcs which are heavily reinforced with pheromone and arcs
which are considered good using the heuristic guide to arc quality.

After each ant in the population has constructed a solution by walking
across the construction graph, the quality of each of these solutions is assessed.
The pheromone trails on the arcs are then updated, with arcs on the highest-
quality solutions having additional pheromone deposited on them. Over mul-
tiple iterations of the algorithm, the arcs belonging to the better solutions
become more heavily reinforced with pheromone, and consequently more ants
tend to follow them. This leads to an intensification of search around those
solutions.

The pheromone trails on arcs are also subject to an evaporation process
during each iteration of the algorithm. This guides the ants by ensuring that
defunct, less travelled solution fragments are forgotten over time. The high
level pseudocode for an ant foraging algorithm is outlined in Algorithm 9.1.

Algorithm 9.1: Ant Foraging Algorithm

Initialise pheromone trails to positive value;

repeat

for each ant in turn do

Construct a solution;
Measure quality of solution;

end

Update pheromone trails via pheromone deposit and evaporation;

until terminating condition;

Pheromone Matrix as a History

The pheromone information associated with each arc in a construction graph
is stored in a pheromone matrix (9.1). The entries in the matrix correspond
to the quantity of pheromone on the edges between each node, with 0 values
on the diagonal of the matrix. The matrix is updated in each iteration of the
algorithm, and the values represent a form of memory for the ant system. In
(9.1) it is assumed that the pheromone levels are the same regardless of the
direction that the arc is traversed. More generally, this need not be the case.

⎛
⎜⎜⎝

Nodes 1 2 . . . n

1 0 0.23 . . . 0.5
2 0.23 0 . . . 0.33
...

...
...

. . .
...

n 0.5 0.33 . . . 0

⎞
⎟⎟⎠ (9.1)

9.3 Ant Algorithms for Discrete Optimisation 147

There is a crucial distinction between the role of memory in ant foraging
algorithms and the role of memory in other population-based natural comput-
ing algorithms such as the GA or PSO. In the latter algorithms, memory of
the learning that has occurred during the search process is embedded in the
multiple solution encodings stored in the population. As complete encodings
are stored, this allows the preservation of interdependencies between solution
components.

In contrast, in ant foraging algorithms the memory of past learning does
not reside in the individual ants; instead it resides in the pheromone matrix.
In addition, the nature of this memory is different from that in GA, PSO, etc.
as the matrix does not maintain information on multiple individual solutions
found by individual ants. Instead it integrates information from many solu-
tions, over multiple iterations of the algorithm, into a single memory. Hence,
the memory structure in ant foraging algorithms has the advantage of durabil-
ity but it is poorer at capturing interdependencies between solution elements.

Table 9.1. Correspondence between ant systems and the optimisation process

Ant System Component Optimisation

Complete ant trail Solution
Choosing arcs at each node Search process
Pheromone trail Memory of good solution fragment
Updating of pheromone trails Learning via reinforcement and forgetting

9.3.2 Ant System

The original ant foraging algorithm, known as the ant system (AS), was de-
veloped by Dorigo [164]. In operationalising the general framework in Algo-
rithm 9.1, a number of decisions must be addressed by the modeller:

i. How are pheromone trails initialised?
ii. How do the ants construct protosolutions?
iii. How are the pheromone trails updated?
iv. Which solutions participate in the deposit of pheromone?

Pheromone Initialisation

Choosing the appropriate levels of pheromone to initialise arcs at t0 is im-
portant as there is a link between the level of pheromone on the arcs of the
construction graph at the start of the algorithm and the rate of convergence
of the algorithm to a single solution. If the initial levels of pheromone are
very low the algorithm will tend to quickly converge on the first good solution
which is uncovered, before adequate exploration has occurred. This occurs

148 9 Ant Algorithms

because the first solution to receive reinforcing pheromone deposits will be
highly favoured by subsequent foraging ants. On the other hand, if the level
of pheromone used to initialise arcs is very high, early update steps will have
little effect and useful search will be delayed until sufficient evaporation has
occurred to decrease pheromone levels to the point where the pheromone de-
posit can begin to bias the search towards good solutions. Dorigo and Stützle
[169] provide guidelines for appropriate parameter settings, including initial
pheromone values, for a variety of forms of ant system.

Constructing Protosolutions

The key issue faced by ants when constructing a route through the graph,
is which outgoing arc should be selected at each node. The simple approach
would be to select the outgoing arc which has the highest pheromone level
associated with it. However, this would result in rapid convergence to a single
solution, usually producing a poor result.

A more sensible approach would be to allow the ant to stochastically chose
from the set of available arcs. For example, the probability of choosing arc ij
from amongst the K possible feasible arc choices at a particular construction
step could be determined using:

Pij =
τij∑K
k=1 τik

(9.2)

where τik is the quantity of pheromone associated with arc ik. Suppose there
were three arc choices facing an ant at node i, with Pi1 = 0.3, Pi2 = 0.4 and
Pi3 = 0.3. A random draw from U(0, 1) producing (say) 0.2 falls into the range
(0 → 0.29), implying that the ant follows the arc (i, 1). This approach ensures
that while arcs which have been part of good solutions in the past are more
likely to be selected, an ant still has the potential to explore any arc with a
nonzero pheromone value. However, even with the addition of this stochastic
choice mechanism, ants tend to quickly lock in on a single route, resulting in
poor exploration of the search space.

To combat this problem, the AS algorithm combines pheromone informa-
tion with a heuristic a priori estimate of the likely quality of each arc when
making the choice of which arc to add to the solution being constructed.
Adding heuristic information to guide the solution construction process is
known as adding visibility, or look-ahead, to the construction process.

An illustration of how heuristic information can be used is provided by
the well-known travelling salesman problem (TSP). The TSP was one of the
earliest applications of AS and is a standard benchmark problem for combina-
torial optimisation techniques, as it is an NP-complete problem. In the TSP
there is a network of n cities. Each route, or arc, between two cities has a
distance or cost associated with it, and the object is to find the tour which
minimises the distance travelled in visiting all the cities and returning to the
starting city.

9.3 Ant Algorithms for Discrete Optimisation 149

In the case of the TSP a simple heuristic for assessing the possible utility
of each arc choice facing an ant when it leaves city i is the distance between
city i and all other cities to which it is connected, with shorter distances being
preferred to longer ones. The ant weighs up both the information from this
heuristic and the pheromone information on each arc when selecting which
city to visit next.

As the objective is to visit each city once, and once only, during a tour,
the choice of which city to visit next should exclude cities already visited. The
ant maintains a memory of all cities it has already visited for this purpose.
Hence, for the TSP, (9.2) is adapted to produce (9.3). Thus, the probability of
ant k travelling from city i to city j at time t, where Ck

i is the set of feasible
cities reachable from city i and not yet visited by ant k, is:

P k
ij(t) =

[τij(t)]
α · [ηij(t)]β∑

c∈Ck
i
[τic(t)]α · [ηic(t)]β

, j ∈ Ck
i (9.3)

The term ηij = 1/dij where dij is the distance between the cities i and j,
and the parameters α and β represent the weight attached to pheromone and
heuristic information respectively.

Examining the form of this arc choice rule, if the term β = 0, then (9.3)
effectively reduces to (9.2) and only pheromone information is used in deter-
mining the ants’ movements. Conversely if α = 0, the pheromone information
is ignored and only heuristic information is used to guide the search, resulting
in a greedy search by ants. While good choices for α and β are problem-
specific, parameters of 2 and −2 respectively are not unusual [46].

Commonly in TSP applications, the number of ants is equal to the number
of cities, and during each iteration of the algorithm, an ant is started from
each city in turn in an effort to ensure that tours starting from all cities are
investigated.

1

2

3

4

c13

c12 c34

c24

c23

c14

Fig. 9.4. A construction graph for a TSP with four cities. The routes correspond
to the arcs/edges of the graph and the four cities are the nodes/vertices

150 9 Ant Algorithms

Updating Pheromone Trails

After each of the ants has traversed the graph and has constructed its individ-
ual solution to the problem, the quality of each of these solutions is assessed
and this information is used to update the pheromone trails. The update pro-
cess typically consists of an evaporation step and a pheromone deposit step:

τij(t+ 1) = τij(t)(1 − p) + δij . (9.4)

In the evaporation step the pheromone associated with every arc is degraded
or weakened. The evaporation rate p crucially controls the balance between
exploration and exploitation in the algorithm. If p is close to 1 then the
pheromone values used in the next iteration of the algorithm are highly de-
pendent on good solutions found in the current iteration, leading to local
search around those solutions. Smaller values of p allow solutions from earlier
iterations of the algorithm to influence the search process.

The amount of pheromone δij deposited on each arc ij during the phero-
mone update process depends on how the deposit step is operationalised in
the algorithm. The deposit step can be performed in many ways depending on
which solutions are chosen to participate in the deposit process, what weight is
applied to each of these solutions in the deposit process, and how pheromone
is deposited on each arc participating in the deposit process. One design of
the deposit mechanism for the TSP (called the ant-cycle version of AS) is:

τij(t+ 1) = τij(t)(1 − p) +

m∑
k=1

Δτkij(t). (9.5)

Δτkij(t) =

{
Q

Lk(t) , if (i, j) ∈ T k(t);

0, otherwise.
(9.6)

where m is the number of ants, (i, j) is the arc from city i to city j, T k is
the tour done by ant k at iteration t and Lk(t) is the length of this tour. The
term Δτkij(t) represents the pheromone laid on arc (i, j) by ant k, and Q is a
positive constant.

Hence, in (9.6) the amount of pheromone laid on an arc by an ant varies
inversely with the length of the tour undertaken by that ant. Arcs on longer
tours get less reinforcement than arcs on higher-quality, shorter tours. In the
ant-cycle version of AS, every ant lays pheromone at the end of each complete
iteration of the algorithm and the total of all these deposits influences ants in
the next iteration of the algorithm. Over multiple iterations of the algorithm,
solution construction is the result of community learning by all the ants.

If the object is to maximise, rather than minimise an objective function,
(9.6) can be recast as:

Δτkij(t) =

{
Qf(xk(t)), if (i, j) ∈ path xk(t);

0, otherwise.
(9.7)

where f(xk(t)) is the fitness or quality of ant k’s solution.

9.3 Ant Algorithms for Discrete Optimisation 151

Which Solutions Participate in the Update Process?

In choosing which solutions participate in the update process, one method
(as seen above) is to allow all solutions in the current population to play a
role in the deposit process. Another approach is to restrict the number of
ants participating and, in the limit, only allow the best solution to deposit
pheromone.

Elitist Ant System (EAS) [164] combines these approaches so that while
each ant deposits pheromone, the best-so-far (elite) tour discovered is also
reinforced in each iteration of the algorithm. In this case, the update step
in (9.5) is amended to (9.8) through the addition of an extra term Δτ∗ij (see
(9.9)), which increments the pheromone on edge (i, j) if it is on the tour
traversed by the elite ant. The tour found by this ant is denoted T ∗, the
length of this tour is L∗ and σ is a scaling constant which controls the degree
of reinforcement of the best tour. As the value of σ increases, the ants are
encouraged to search intensively around the best-so-far solution, increasing
the risk of premature convergence on a locally optimal solution.

τij(t+ 1) = τij(t)(1 − p) +

m∑
k=1

Δτkij(t) +Δτ∗ij (9.8)

Δτ∗ij =

{
σ Q

L∗ , if (i, j) ∈ T ∗;
0, otherwise.

(9.9)

The rank-based ant system (ASrank) developed by Bullnheimer et al. [82]
adopts a different approach. Before the pheromone deposit process, all ants
are ranked according to the quality of their solution and the amount of
pheromone deposited by each ant decreases with its rank. As with elitist ant
systems, the best-so-far ant also participates in the pheromone deposit step.
The pheromone update (and evaporation) rule is therefore:

τij(t+ 1) = τij(t)(1 − p) +

w−1∑
k=1

(w − k)Δτkij(t) + wΔτ∗ij (9.10)

where only the best (w−1) ranked ants participate in the update process, along
with the tour of the best-so-far ant (on tour T ∗). The value of τkij(t) = 1/Lk

and the value of Δτ∗ij = 1/L∗, where L∗ is the length of the best-so-far tour.
Thus, the best-so-far tour receives a weight of w in the update process with
the successive ranked tours receiving a lower weighting.

9.3.3 MAX -MIN Ant System

In order to reduce the risk of premature convergence of the optimisation
process to a single solution, and in order to ensure that every arc has a
nonzero chance of being selected during the solution construction process,

152 9 Ant Algorithms

the pheromone τij associated with each arc ij may be constrained so that
after the pheromone update process 0 < τmin ≤ τij ≤ τmax (the values of τmin

and τmax are set by the user). The bounds prevent the relative differences
between the pheromone trails on each arc from becoming too extreme.

A variant of AS which adopts this idea is the MAX -MIN ant system
(MMAS) [604]. In MMAS all arcs are initialised with τmax pheromone. During
the update process only arcs on the global best solution, the best-so-far (or the
best solution found in the current iteration, the iteration best), are updated
and pheromone levels are constrained to 0 < τmin ≤ τij ≤ τmax. As MMAS
strongly exploits the information in the best tour found so far it is necessary
to constrain the deposit of pheromone along this tour in order to ensure that
the search process does not stagnate too quickly. Another mechanism often
implemented in MMAS in order to encourage continued diversity in the search
process is to periodically reinitialise the pheromone levels on all arcs in the
network. This step is usually undertaken when stagnation of the optimisation
process is detected.

9.3.4 Ant Colony System

The Ant Colony System (ACS) algorithm was developed by Dorigo and Gam-
bardella [166, 167] in order to improve the scalability of the canonical AS
algorithm. ACS differs from AS as it uses:

• a different construction rule,
• a different pheromone update rule, and
• a local pheromone update process.

Construction Rule in ACS

In comparison with AS the transition rule in ACS is altered so that an ant
(k) at city i moves to city j according to the rule:

j =

{
argmaxl∈Jk

i
(τil(t)[ηil(t)]

β), if q ≤ q0;

J, otherwise.
(9.11)

where q is a random variable drawn from a U(0, 1) distribution and 0 ≤ q0 ≤
1 is a threshold parameter. Hence with probability q0, the ant exploits the
information in the pheromone trails and the decision heuristic, selecting the
best possible next arc based on this information. With probability 1− q0, the
ant selects its next arc (J ∈ Jk

i) from the set of cities yet to be visited (or
from a candidate list) randomly according to the probability distribution in
(9.3) (where α = 1).

Therefore, q0 is a tuning parameter which determines the degree to which
the system focusses search attention on exploiting already-discovered good
arcs.

9.3 Ant Algorithms for Discrete Optimisation 153

Pheromone Update in ACS

In ACS, only the best-so-far ant updates the pheromone trails at the end of
each iteration of the algorithm (an offline pheromone update). In contrast, in
canonical AS, all ants participate in the update process. The pheromone evap-
oration step is also adjusted so that arcs on the best-so-far trail are subject to
an evaporation process. Hence, the level of pheromone at t+ 1 is a weighted
average of the pheromone level at t and the new pheromone deposited, with
the parameter p governing the relative importance of both. The deposit and
evaporation steps are governed by:

τij(t+ 1) = τij(t)(1 − p) + pΔτ∗ij (9.12)

where only the arcs traversed by the best-so-far ant (on tour T ∗) participate in
the pheromone deposit/evaporation process. The term Δτ∗ij(t) = 1/L∗, where
L∗ is the length of the best-so-far tour. As in AS, this pheromone update step
is performed after all ants in the population have constructed their solutions.

Local Update in ACS

In addition to the offline pheromone update process on the best-so-far solution,
a real-time local update is performed by each ant after it traverses an arc.
Each ant applies this update only to the last arc traversed. Hence, if an ant
traverses an arc (i, j), then the pheromone level on that arc is immediately
adjusted as follows:

τij(t+ 1) = (1− α)τij(t) + ατ0 (9.13)

where 0 < α < 1 is an evaporation parameter. The parameter τ0 is typically
set to the same value as was used to initialise the pheromone trails at the
start of the algorithm. The intent of the local updating rule is to reduce the
value of τ0 each time an arc is traversed by an ant so that subsequent ants are
encouraged to try other arcs. Implementing this mechanism also discourages
the algorithm from stagnating.

Considering the three ACS mechanisms in their totality, they create a dy-
namic interplay of exploitation and exploration. Depending on the parameter
settings chosen for each mechanism, ACS is capable of a wide range of search
behaviours. Although the algorithm does place considerable focus on the best-
so-far solution, it counterbalances the convergent effect of this by means of
the local updates and through the stochastic transition rule.

Readers interested in studying the ACS algorithm in greater depth are
referred to [166, 167, 169].

9.3.5 Ant Multitour Systems

Both of the previous algorithms replace all ants after each iteration and hence
there is no concept of internal learning by individual ants in the population.

154 9 Ant Algorithms

A contrasting algorithm, the ant multitour system (AMTS) [268] embeds a
concept of ‘prior learning’ by individual ants (corresponding to ‘learning by
experience’) in which ants can remember previous choices that they have
made. In this algorithm, the ants remember the number of times they have
traversed each edge in the previous q tours (q is a user-defined parameter).
In order to promote exploration, each ant becomes increasingly unlikely to
follow edges that it has previously traversed. Hence the attractiveness of an
individual edge (i, j) for ant k is given by:

Attractivenessij(t) =
[τij(t)]

α · [ηij(t)]β
Fi,j

(9.14)

where Fi,j is determined by priori,j , the number of times that the specific ant
K has traversed the edge i, j. A sample relationship between Fi,j and priori,j
is as follows [46]

Fi,j = 1 +
√
priori,j (9.15)

The term (9.14) replaces the numerator in (9.3).

9.3.6 Dynamic Optimisation

If an ant algorithm has substantially converged before an environmental
change occurs, the canonical versions of the algorithms will usually find it
difficult to track the new optimum. This arises as the pheromone reinforce-
ment process encourages the population of ants to converge and lock in to
a single solution. Hence, applications of ACO to dynamic problems usually
require careful design in order to overcome this problem.

As discussed in Sect. 4.1, the optimal response depends on the nature
and scale of the environmental change. If a drastic change has occurred in
the environment, for example, multiple new cities need to be inserted on a
delivery route, it may be necessary to reinitialise the pheromone matrices to
their starting values, and then rerun the algorithm, remembering to update
the heuristic values for each arc if these have changed.

If the environmental changes are less drastic, one possibility is to main-
tain parameter settings which promote continued exploration by the ants. For
example, by placing higher weight on heuristic information (β) in (9.3), adap-
tion to the altered environment is facilitated. Alternatively, parameter settings
(the rate of pheromone evaporation, the values of α and β, etc.) could be
adapted dynamically during the execution of the algorithm in response to the
detection of environmental change. Another approach which is investigated
in Mavrovouniotis and Yang [395] is to use immigrant schemes (Sect. 4.1.2)
whereby either random immigrants (randomly created ants) or elitism-based
immigrants (immigrants created by mutating the best ant found in the pre-
vious iteration of the algorithm) are used to maintain an exploration of the
search space. Dorigo and Stützle [169] discuss a variety of other strategies for
applying ant algorithms for dynamic environments (also see Sect. 9.5).

9.4 Ant Algorithms for Continuous Optimisation 155

9.4 Ant Algorithms for Continuous Optimisation

Although the canonical version of the ant algorithm was designed for discrete
optimisation, many optimisation problems involve real-valued parameters. Of
course, real-world ant foraging behaviour takes place in a continuous space
with pheromone trails diffusing on the landscape once they are laid down.

The earliest approaches applying an ant colony metaphor to continuous
optimisation used discretisation whereby the (continuous) range of possible
options at each node is reduced to a discrete number using defined grid inter-
vals. A refinement of this approach is to undertake an initial course-grained
search, switching to a finer-grained search once a promising solution region is
identified [55].

More recently, a number of algorithms for continuous optimisation have
been developed which are designed to work directly with real values. One of
these is the continuous ant colony system (CACS) [517]. In CACS a contin-
uous pheromone model is defined. Pheromone is not considered to be laid
along a single discrete ‘track’; rather it is laid down spatially. For example, a
food source surrounded by multiple ants would be expected to show a high
pheromone concentration, with this concentration dropping off as distance to
the food source increases.

One way of modelling this phenomenon is to use a normal probability
density function (PDF) where the probability of observing a (real-valued)
sample point x is defined as:

Pheromone(x) = e
−(x−xmin)2

2σ2 (9.16)

where xmin is the location of the best point (assuming that the object is to
minimise a function) found so far in the range [a, b] during the search, and σ
is a measure of the ants’ clustering (density) around the best point.

Initially at the start of the algorithm’s execution, xmin is randomly chosen
from the range [a, b] and σ is set to 3(b − a) in order to ensure that the
real-valued strings corresponding to each ant are well distributed in the range
[a, b]. When the solution vector is made up of multiple elements (real values),
each element will have its own normal PDF and the values of xmin and σ for
each of these individual PDFs will alter during the optimisation run.

Applying the CACS Algorithm

Suppose a problem of interest requires that optimal values for three real-
valued parameters are to be uncovered and that a range in which the optimal
values lie is known for each of the parameters. Initial values for xmin and σ
are selected for each of the three parameters as above. Each ant in turn then
completes a ‘tour’ by generating three random numbers and using each of
these in turn to generate a sample value x using the PDFs corresponding to

156 9 Ant Algorithms

Algorithm 9.2: Continuous Ant Foraging Algorithm

Select value of xmin randomly from the range of allowable values for each
element (1, . . . , n) of the real-valued solution encoding;
Set σ for each element (1, . . . , n) of the solution encoding;

repeat

for each ant k in turn do
Construct a solution (x1, . . . , xn) by making a random draw from
PDF1, . . . ,PDFn;
Measure quality of solution;

end

Update the xmin values for each PDF if a new best-so-far solution has
been found;
Update the σ values for each PDF;

until terminating condition;

each locus of the solution vector. To do this, each PDF is first converted into
its corresponding Cumulative Distribution Function (CDF):

(9.17)

where b and a are the upper and lower limits of the probability distribution.
By generating a random number r from (0,1), the CDF can be used to obtain
a value x, where x = CDF−1(r).

After all ants have completed a tour, the quality of each ant’s solution is
found using the objective function for the problem. If any of these solutions is
better than that found by the best-so-far ant, the value of xmin for each PDF
is updated using the values from the best-so-far ant. The value of σ for each
PDF is also updated:

σ2 =

∑k
j=1

1
fi−fmin

(xj − xmin)
2∑k

j=1
1

fi−fmin

(9.18)

where k is the number of ants and fj/fmin are the objective function values
for each ant j, and the best-so-far ant respectively. As the solutions encoded
by each ant converge, the value of σ2 reduces.

Another way of updating the value of σ for each PDF is to calculate
the standard deviation of the values of that parameter across the population
of ants during the last iteration of the algorithm [643]. As good solutions are
uncovered, a positive reinforcement cycle builds up. More ants are attracted to
the best solution string and as the population of ants converges to similar sets
of real values, the value of σ automatically decreases, leading to intensification
of search in the region of the best solution found so far.

CDFj(x) =

∫
a

PDFj()d
x

t t

9.5 Multiple Ant Colonies 157

The algorithm iterates until predefined termination criteria are reached,
such as a maximum number of iterations, a time limit, or after a set number
of iterations without any improvement in the solution.

In order to discourage premature convergence of the population of ants to
a single solution vector, an explicit pheromone evaporation mechanism can
be applied. Evaporation can be simulated by increasing the value of σ for
each PDF, thereby increasing the ‘spread’ of pheromone in the environment.
One method for achieving this suggested by Viana et al. [643] is to apply the
following rule to each PDF’s σ the end of each iteration:

σt+1 = ασt (9.19)

where α > 1 is the evaporation rate. As the value of α is increased, the level
of evaporation also increases.

CACS Algorithm and EDAs

The CACS bears strong similarities with estimation of distribution algorithms
(Sect. 4.7) in that both build a probability distribution model of promising
solutions based on feedback to earlier solutions (see also the real-valued quan-
tum evolutionary algorithm in Sect. 24.4) [509]. CACS, like univariate EDAs,
does not explicitly consider interactions amongst the individual variables.

A good discussion of the links between real-valued ant colony optimisation
and EDAs is provided by Socha and Dorigo [583]. This paper also introduces a
new algorithm for ant colony optimisation in continuous domains which uses a
Gaussian kernel PDF. One advantage of using this method of representing the
distribution of a variable is that it allows the description of a case where two
(or more) regions of the search space are promising. In contrast, a drawback
of using a single Gaussian function to represent a variable’s distribution is
that the function is unimodal.

A range of other approaches to the design of continuous-valued ant colony
optimisation algorithms exist, and the reader is referred to [338] for a short
review of some of these.

9.5 Multiple Ant Colonies

As already noted, canonical discrete ant algorithms will tend to converge on
a single solution due to the nature of the pheromone reinforcement process.
If the environment is multimodal or dynamic this can lead to a suboptimal
outcome. One way of promoting solution diversity is by implementing multiple
ant colonies [318, 603]. This approach maintains diversity at the level of the
colony rather than at the level of individual ants.

In implementing multiple, or parallel, ant colonies, one extreme would be
to allow each colony to search independently of others, with each colony main-
taining its own pheromone matrix. Alternatively, the ants from each colony
could be allowed to interact with each other.

158 9 Ant Algorithms

Parallel Implementation

ACO algorithms can be parallelised in two broad ways. Fine-grained paral-
lelisation occurs where a few ants are assigned to each subpopulation with
frequent exchanges of information between each island. In contrast, coarse-
grained parallelisation occurs where each island has a larger subpopulation
and exchanges of information between islands is infrequent. Fine-grained
schemes can impose significant communication overhead and consequently
course-grained schemes are more commonly used.

Implementations of multiple ant colonies are amendable to parallelisation
as each individual colony can be assigned to a single processor, with a master
processor controlling the periodic transfer of information between individual
colonies. This permits each colony to engage in independent search whilst
allowing the periodic dissemination of good solutions found by other colonies.
It also permits the use of different parameter settings in each colony. The key
decision choices when using parallel ant colonies are:

i. How often do migration events take place?
ii. How is the migration event structured?

Migration Frequency

There is no simple way to decide how often migration events should occur. If
they are very frequent they will tend to produce rapid convergence of the entire
population of the colonies to a narrow region of the search space. Conversely,
if migration events are very infrequent, knowledge of already discovered good
solutions will only slowly disseminate across the colonies.

Migration Structure

Although it is possible to transfer complete pheromone matrices between
colonies (for example, where colony A has found a better solution than colony
B), a simpler, and an often better, approach is to just transfer information on
the best-so-far tour between colonies [410]. In this case, the original pheromone
matrices of each colony are left unchanged but subsequent pheromone updates
(assuming an elitist strategy is applied where some pheromone is always de-
posited on the best-so-far solution) are influenced by the transferred informa-
tion on the best-so-far tour.

In addition to passing information on global and local best-so-far solutions,
individual ants can be migrated between colonies. For example, in a migration
event, colony A could compare its best nbest ants with the nbest ants of colony
B (A’s successor colony on the directed ring), with the nbest of these 2nbest

ants being used to update the pheromone matrix of colony B.
A variety of migration topologies could be employed between the colonies

including the fully connected model, where the global best solution found

9.6 Hybrid Ant Foraging Algorithms 159

across all the colonies is periodically broadcast to every colony. A variant on
this strategy is to establish a virtual neighbourhood between colonies so that
they form a directed ring. In each migration event, a colony sends its best-
so-far solution to the next colony in the ring, and that colony’s best-so-far
solution is updated.

Colony Birth and Death

If a multiple colony approach is adopted there is no requirement that each
colony exists for the entire algorithm. One observed phenomenon in nature is
that ant colonies can sometimes split due to the birth of a new queen or be-
cause of overpopulation of the colony. This fission mechanism bears similarity
with the idea of cloning, whereby a copy of the original colony is made, altering
some parameters associated with the clone to ensure it is not an identical copy.
It is also observed in nature that colonies in resource-poor environments can
become extinct. This idea could be used in a multicolony optimisation system
to cull poorly performing colonies, or to cull a colony which is too similar to
another colony. Hara et al. [247] proposed a multicolony system which embed-
ded mechanisms of colony fission and extinction in order to promote diversity
in the search process.

9.6 Hybrid Ant Foraging Algorithms

A common serial hybridisation of ant algorithms is to include a local search
phase. Although ant algorithms can hone in on promising solutions, their
efficiency can usually be significantly enhanced by adding a local search step.
This aims to locally optimise the solutions that the ants have constructed by
examining a set of ‘neighbouring’ solutions and picking the best of these if
they are better than the original solution.

Typically, the local search will be undertaken after the population of ants
has constructed a set of tours but before the pheromone deposit and evapo-
ration process. In the pheromone update step, pheromone is laid on the arcs
of the locally optimised tours, rather than on the arcs of those tours before
the local search step was performed.

Although the idea of adding a local search stage is straightforward, there
are practical issues in determining how locality and neighbourhoods can be
defined for a specific problem. For example, suppose we are considering the
TSP. One possible definition of neighbours around a current tour is a k-
exchange (or k-opt) neighbourhood, where this is defined as being all the
tours which could be constructed from the current tour by exchanging k arcs.
For example, to carry out a 2-exchange (or 2-opt move) we delete from the
tour two arcs (that are not incident with the same node), giving four vertices
of degree 1; we then adjoin two new arcs incident with the degree 1 vertices

160 9 Ant Algorithms

to reconnect the parts into a new tour.1 Figure 9.5 illustrates one member of
the set of two-exchange neighbours that could be created from an initial tour.

a

b c

d

e a

b c

d

e

A B

Fig. 9.5. Tour B is obtained by removing arcs (a,e) and (b,c) from tour A, and
replacing them with arcs (a,c) and (b,e). Hence, tour B is a two-exchange neighbour
of tour A

A parallel hybridisation approach uses multiple search strategies in paral-
lel. Each optimisation technique runs independently, but periodically, infor-
mation is migrated between each search algorithm. For example, both a GA
and ACO could be separately executed on a combinatorial problem of inter-
est. Periodically, the best ACO solution could be migrated to replace one of
the GA’s solutions if it had higher fitness than the solution being replaced.
Conversely, good solutions found by the GA could be allowed to participate
in the pheromone deposit process, embedding information uncovered by the
GA in the pheromone matrix of the ant algorithm.

A third possibility in developing hybrid ant algorithms is to use another
search process to uncover good parameter settings such as α, β and p for the
ant algorithm.

9.7 Ant-Inspired Clustering Algorithms

Cluster analysis involves the grouping of similar objects into the same clusters
and dissimilar objects into different clusters based on the values of attributes
of the objects (see Chap. 14 for a more extensive discussion of clustering).
Several behaviours of ants have been used as metaphorical inspiration for the
design of clustering algorithms, including the brood sorting behaviour of the
ant species Leptothorax unifasciatus, where ant larvae are sorted by size and
clustered at the centre of the brood area in the colony. Another important set
of behaviours concern hygiene tasks related to waste disposal as social insects

1In the case of 2-opt, there is only one way to do this that gives a valid tour of
all nodes, rather than two disconnected subtours; for 3-opt and higher, there will be
multiple ways to generate a valid new tour.

9.7 Ant-Inspired Clustering Algorithms 161

living in high density colonies (particularly when they are closely genetically-
related) are sensitive to pathogen attack [159]. Instances of these behaviours
include the spatial segregation of corpses, waste, and diseased individuals.
Surprisingly large numbers of social insects can be engaged in these tasks,
with some 20% of honey bees and in excess of 30% of ants of the species
Acromyrmex versicolor being engaged in colony or nest hygiene duties. One
example of this is the cemetery formation behaviour of the ant species Lasius
niger, where dead ants are collected from the colony and deposited together.
Although these behaviours are not fully understood, a number of models have
been created in an attempt to better understand them.

Two clustering models inspired by ant behaviours have been widely ex-
amined, the model of Deneubourg et al. [152] and the model of Lumer and
Faieta [382]. The idea behind these models is that objects should be picked up
if they are not already beside similar objects. They should then be relocated
and dropped beside other items of the same type.

9.7.1 Deneubourg Model

Based on their observations of ant corpse clustering and brood sorting phe-
nomena, Deneubourg et al. [152] derived a simple pick-drop model which they
believed captured the essence of the ants’ clustering behaviour.

In the model, ants traverse an x × y 2-D grid, randomly moving from
their current site to one of four neighbouring sites (up-down-left-right) at
each iteration of the algorithm. If an unladen ant encounters an object (for
example, a dead ant), it picks it up with probability Ppick, and in subsequent
iterations may drop the corpse with probability Pdrop. Assuming there is only
one type of object (all other items are classed as dissimilar to this item) in
the environment, the pick and drop probabilities can be defined as:

Ppick =

(
k1

k1 + f

)2

(9.20)

Pdrop =

(
f

k2 + f

)2

(9.21)

where f is the perceived fraction of all the objects in the neighbourhood of
the ant (providing an estimate of the local density of dead ants or equivalently
an estimate of the size of the local cluster), and k1 is a threshold constant.

When an ant encounters a corpse, and f � k1, the ant is not considered to
be in the vicinity of a large cluster, and therefore should pick up the corpse in
order to drop it on a cluster somewhere else (therefore, Ppick should be close
to 1). Conversely, if an ant encounters a corpse and f � k1, the ant is close
to a large existing cluster and should not move the corpse as it is already in
a large cluster of corpses (therefore Ppick should be close to 0).

The probability Pdrop that a randomly moving loaded ant drops an object
is governed by a second threshold constant k2. When f � k2, the ant carrying

162 9 Ant Algorithms

a corpse is not close to a cluster of other corpses, and therefore should continue
to carry the corpse until a cluster is found (Pdrop is close to 0).

The value of f is an important parameter in the algorithm as it directly
impacts on the probability of both picking up and depositing a corpse. In the
Deneubourg et al. algorithm, the value of f is calculated by each ant, based
on its personal history. It is assumed that each ant has a T period memory. If
we assume that an ant can only encounter zero or one object per time unit,
and letting N represent the total number of objects encountered during T
time periods, f is calculated as = N/T .

The algorithm leads to ant behaviour such that small clusters of dead
ants (perhaps of size 1) are emptied, and large clusters grow. In turn, the
large clusters will tend to merge. Extending this algorithm to cases where
there is more than one object type, f is replaced by a series of f values, each
representing the fraction of a type of object encountered during the last T
time units [68].

9.7.2 Lumer and Faieta Model

The Deneubourg model was generalised by Lumer and Faieta [382] to en-
compass objects of more than one type through the inclusion of a distance
or dissimilarity measure. This resulted in a model which was capable of be-
ing applied to complex real-world data clustering problems. Algorithm 9.3
provides the pseudocode for the Lumer and Faieta algorithm.

The algorithm acts by mapping the n-dimensional data objects onto a 2-D
grid. The ants traverse this 2-D grid and engage in pick-drop behaviour so as
to cluster like items together. Let d(oi, oj) be the distance between two objects
oi and oj in the space of object attributes. Assume that an ant is located at
site r on a 2-D grid at time t, and it finds an object oi at that site. The local
density f(oi) with respect to object oi at site r is given by:

f(oi) = max

⎧⎨
⎩0,

1

s2

∑
oj∈Nbd(s×s)(r)

[
1− d(oi, oj)

α

]⎫⎬
⎭ (9.22)

where f(oi) (similar to f in the model of Deneubourg et al.) is a measure of
the average similarity of oi with other objects which are present in its neigh-
bourhood Nbd(s×s)(r), defined as the s× s positions on the 2-D grid around
the grid location r of oi which the ant can ‘see’. Therefore, in comparison with
the Deneubourg algorithm, which uses a memory to calculate f , the Lumer
and Faieta algorithm allows each ant to have a direct perception of the area
surrounding its current location. α is a tuning knob for the degree of dissimi-
larity discrimination between objects. If α is large, even quite dissimilar items
may be clustered together; if it is small, distances between vectors in the at-
tribute space are amplified, and even similar vectors may end up in different
clusters.

9.7 Ant-Inspired Clustering Algorithms 163

Algorithm 9.3: Lumer and Faieta Clustering Algorithm

Randomly distribute the data vectors (Oi) on the grid;
Locate the ants randomly on the grid;

repeat

for each ant i do
if ant is not loaded and the ant’s location is occupied by data vector
Oi then

Compute f(Oi) and Ppick(Oi);
Draw random real number R between 0 and 1;
if R ≤ Ppick(Oi) then

Pick up data vector Oi;
end

else

if ant carrying data vector Oi and site is empty then

Compute f(Oi) and Pdrop(Oi);
Draw random real number R between 0 and 1;
if R ≤ Pdrop(Oi) then

Drop data vector Oi;
end

end

end

Move to randomly selected neighbouring site not occupied by other
ant;

end

until terminating condition;

Taking two extreme cases to demonstrate the calculation of local density,
if all the sites around oi are occupied by objects which are similar to it then
f(oi)=1 and oi should be picked up with a low probability. If all sites around
oi are occupied by objects which are very dissimilar to it then f(oi) is small
and oi should be picked up with a high probability. Under the Lumer and
Faieta model, the pick and drop probabilities of the Deneubourg et al. model
are altered to:

Ppick(oi) =

(
k1

k1 + f(oi)

)2

(9.23)

Pdrop(oi) = 2f(oi), if f(oi) < k2 (9.24)

Pdrop(oi) = 1, if f(oi) ≥ k2 (9.25)

In an application of the Lumer and Faieta methodology, each item i is defined
by a vector of data, Datai = (r1, . . . , rn), where n is the number of elements
of the vector.

Each item i is symbolised by an object oi on the 2-D grid. Initially, these
objects are randomly scattered over the 2-D grid, and during the execution
of the algorithm they are clustered into heaps of similar items. The distance

164 9 Ant Algorithms

between two objects is calculated by the Euclidean distance between the two
items’ data vectors in Rn. There is no direct link between the position of an
object on the 2-D plane and its vector in R

n.
At the start of the algorithm, a fixed number of ants are placed on the 2-D

grid. During each iteration of the algorithm, an ant may either be carrying
an object or not. In the first case, the ant may:

• drop the object on a neighbouring empty location,
• drop the object on a neighbouring object, if both are similar, or
• drop the object on a neighbouring heap, if the object is similar to other

members of the heap (a heap arises when there are multiple objects on a
single grid location).

If the ant is not already carrying an object, it may:

• pick up a single object from a neighbouring location, or
• pick up the most dissimilar object from a heap on a neighbouring location.

The algorithm acts to construct clusters, such that the distances between
objects of the same cluster are small in comparison with the distances between
objects in different clusters. As the algorithm runs, and clusters start to form,
the probability of objects being picked up diminishes and limt→∞ Ppick = 0,
as similar objects are grouped together. When applying the algorithm, the
modeller must define the grid size and the number of ants. If the grid is
excessively large, clustering will be slow and many small clusters are likely
to result. The number of ants must be less than the number of data vectors.
If too many ants are used, they may carry the data vectors around for long
periods of time as the density of deposited objects will be low. Conversely,
if too few ants are used, clustering may be slow. An improved version of the
Lumer and Faieta algorithm is described in Handl et al. [243].

Classification Using Ant Clustering Algorithms

Like self-organising maps (SOMs) (Chap. 14.1), ant clustering is unsupervised
in that it does not make use of a priori group memberships during the training
process. Therefore, once the training process is complete and a number of
clusters have been created by the algorithm, the modeller must assign a class
label to each cluster if the cluster results are to be used for classification
purposes (Sect. 14.4).

A simple scheme is to initially assign the known labels to each training
item after clustering has taken place. Then items in each cluster are relabelled
based on a majority voting scheme. By comparing these assigned classification
labels with the known classification labels for the training data, the in-sample
accuracies for the training data used to create the clusters can be obtained.

The out-of-sample data can then be classified by determining which cluster
each out-of-sample item is closest to. For example, Fig. 9.6 illustrates an out-
of-sample item being labelled as Class 1 as the nearest labelled item to it

9.7 Ant-Inspired Clustering Algorithms 165

(based on Euclidean distance) is from Class 1. However, the nearest neighbour
approach can break down if there is noisy or errorful training data. In Fig. 9.7,
the unclassified item is labelled as Class 2, due to an outlier training item
which has been incorrectly assigned a Class 2 label.

A more robust method of labelling out-of-sample items is to use a k nearest
neighbour approach where the labelling of the item depends on the predom-
inant label tag amongst its ‘k’ nearest neighbours. Figure 9.8, illustrates the
classification of the out-of-sample item based on its six nearest neighbours.

Class 1

Class 2

Unclassified item

d1
d2

Fig. 9.6. Two class case with one out-of-sample item being classified as Class 1
based on the nearest labeled item

Class 1

Class 2

Unclassified item

d1

d2

Fig. 9.7. Out-of-sample item being classified incorrectly

166 9 Ant Algorithms

Class 1

Class 2

Unclassified item

6 nearest neighbourhood

Fig. 9.8. Out-of-sample item being classified based on a k = 6 neighbourhood. As
four of these neighbours are Class 1, the out-of-sample item is designated as Class 1

The efficiency of the resulting classification and the number of clusters
which are identified in the data depend on the choices of the parameters for
the algorithm which the user selects. For example, choosing a large grid size
will tend to increase the run-time of the algorithm as the ants spend much time
traversing empty grid positions. A large grid size will also tend to produce a
greater number of clusters, particularly in the earlier stages of the algorithm.
Using too few ants results in a very slow clustering process.

9.7.3 Critiquing Ant Clustering

Although the activities of ants in creating cemeteries and in brood sorting
have inspired a series of clustering and classification algorithms, the efficiency
of these algorithms has come under attack in recent times. Martin et al. [391],
in an examination of the Deneubourg model, found that similar clustering
behaviour could be produced by a simple model where individual ants had no
memory and therefore no ability to calculate the local density of dead ants.
The study’s results also suggested that there was no collective effect in the
Deneubourg model as an individual ant working alone could also create the
cemetery, albeit more slowly. Tan et al. [614], based on an examination of other
ant inspired clustering models such as Lumer and Faieta, Ant Q and ATTA,
suggest that although the algorithms can produce clustering effects, the re-
sults do not stem from true collective intelligence in the algorithms. Hence,
it remains an open question as to whether efficient, effective, ant-clustering
algorithms which embed true collective intelligence can be developed. Inter-
ested readers are also referred to [243], which demonstrates that although the
ATTA model can produce good clustering solutions, these are only weakly
topology-preserving.

9.8 Classification with Ant Algorithms 167

9.8 Classification with Ant Algorithms

Although a classification system can be developed using an ant clustering
model, a more direct method which follows from ACO is to construct a clas-
sification rule by having ants walk across a graph of rule choice fragments.
The set of arcs traversed by the ant corresponds therefore to a complete clas-
sification rule. The best known example of this constructivist approach is
AntMiner, developed by Parpinelli, Lopes and Freitas [494]. In AntMiner the
object is to uncover a series of rules that explain the training dataset as well
as possible. The rules have the following format:

IF < condition > THEN < Class >

where the condition can contain multiple subparts which are linked using the
AND operator. Hence, a classification rule will take the form IF condition1

AND condition2 . . . THEN Class = 1.
In the canonical version of AntMiner each of the included conditions are

constrained to be equalities, each data attribute (explanatory variable) is con-
strained to only appear once in the classification rule, and the possible values
for each data attribute are constrained to be discrete sets. Attributes which
take continuous values require preprocessing to be discretised.

Therefore, every attribute in the dataset corresponds to a node on a con-
struction graph and each arc corresponds to a specific state of that attribute.
For example, suppose one attribute in the dataset is gender. There will be
three arcs corresponding to choices for this attribute which could appear in
a classification rule, namely, Gender=Male, Gender=Female and, to allow
a classification rule which was not gender specific, Gender=Any. Figure 9.9
illustrates a sample construction graph.

The entire (finite) set of possibilities for a classification rule can be de-
scribed as a directed, symmetric graph. This formulation allows the classifica-
tion problem to be recast into a standard ant colony optimisation framework
as it produces a combinatorial optimisation problem. Algorithm 9.4 provides
an overview of the AntMiner algorithm.

AntMiner Algorithm

In contrast to some classification methodologies, AntMiner develops a set of
classification rules which explain, or cover, most or all of the training data.
During each iteration of the while loop in Algorithm 9.4, an additional clas-
sification rule is uncovered and is added to the set of already discovered clas-
sification rules. The data which is explained by this rule is then removed from
the training dataset and the pheromone levels on all arcs are returned to their
initial values. The process is repeated on the remaining data until either all
(or a user-determined portion based on the value chosen for Max uncovered
cases) of the data is covered by the developed set of classification rules.

168 9 Ant Algorithms

Start

A1= A2= Ap=

Fig. 9.9. The ant commences at the start node and walks across the (bidirec-
tional) arcs. Each arc corresponds to a choice of value for a specific data attribute
(A1, . . . , Ap). All nodes are connected and the series of arcs traversed by the ant
corresponds to a classification rule

Each ant in turn constructs a rule, the rule is pruned and the pheromone
trails on the arcs are updated. At the end of the loop the best of the rules
uncovered by the t ants (Rbest) is added to the set of discovered rules.

Each ant starts the construction process with an empty rule. As an ant
walks from one node to the next the classification rule builds up, one term
at a time. In selecting an outgoing arc at a node an ant is guided both by
the quantity of pheromone on each arc (τij) and by a problem-dependent
heuristic (ηij) which estimates the quality of arc (i, j). The probability that
an ant selects the arc between nodes (i, j) is given by:

Pij(t) =
τij(t) · ηij∑n

k=1 xk

∑pk

l=1(τkl(t) · ηkl)
(9.26)

where n is the number of attributes in the dataset, pi is the number of possible
values for attribute Ai, and xi is a binary variable which is set to 1 if attribute
Ai is not already included in the rule being constructed by antt.

The ant continues to add terms to its growing classification rule until all
the data attributes are included in its rule, or until the addition of a term
which would make the ant’s rule cover fewer than a user-specified number
of cases in the dataset (this constraint reduces the chance of overfit). The
majority class of all training data covered by the rule is assigned to it.

Next the rule is pruned in order to simplify it and in order to further reduce
the chance of overfit. Finally, pheromone is deposited on the arcs chosen by
that ant with evaporation occurring on the other arcs. The process is then
iterated with the next ant being released to traverse the graph.

During each iteration of the loop three key steps are undertaken.repeat

9.9 Evolving an Ant Algorithm 169

Algorithm 9.4: AntMiner Classification Algorithm

Let training set = set of all training data;
Initialise Discovered Rule List (initially empty);

while training set size > max uncovered cases do

Let t = 1 (ant index);
Let j = 1 (convergence test);
Initialise pheromone levels on arcs;
repeat

Antt starts with an empty rule and traverses graph from source to
sink, incrementally building a rule Rt one term at a time;
The majority class of all training data covered by the rule is assigned
to it;
Prune rule Rt;
Increase the pheromone along arcs followed by Antt (in proportion to
quality of rule) and decrease pheromone on other arcs;
if Rt = Rt−1 then

Let j = j + 1 (consecutive ants are creating the same rule);
else

Let j = 1;
end

Let t = t+ 1;

until t ≥ number of ants or j ≥ threshold value;
Select best rule (Rbest) from all rules Rt;
Add rule Rbest to Discovered Rule List;
Let Training set = Training set � set of cases correctly covered by Rbest;

end

Evaluate performance of extracted rules on out-of-sample data;
Rules are applied in their discovered order and the first rule that covers the
out-of-sample case determines its classification;
Any unclassified out-of-sample data vectors are assigned to a default class;

Several studies have extended the original AntMiner model, including [374,
375] (AntMiner 2 and 3) and [390] (AntMiner+).

9.9 Evolving an Ant Algorithm

A critical component of all discrete ant algorithms is how learnt information
is encoded on the edges of the construction graph, in other words how the
pheromone trails are updated. Earlier, in Sect. 8.7, an application of genetic
programming (GP) to evolve the velocity update equation for a PSO algo-
rithm was illustrated [512, 513]. Of course, this approach has more general
application and Tavares and Pereira [617] describe how GP can be used to
evolve pheromone trail update strategies. In this study, GP is used to evolve

170 9 Ant Algorithms

individuals that encode a trail update strategy, with the fitness of these being
tested in an Ant System framework.

9.10 Summary

The communication mechanisms of social insects provide a rich milieu for the
development of natural computing algorithms. A key feature of the commu-
nication mechanisms is that they enable the societies or swarms of insects
to engage in complex, decentralised problem-solving. This facility to solve
complex problems is particularly notable given the relative simplicity of the
information-processing capabilities of individual insects.

10

Other Foraging Algorithms

Ants are not the only species of insect that use social communication to gather
and process information from their environment in order to shape their be-
haviour. In this chapter we consider a range of mechanisms drawn from the
behaviour of a variety of insects, including honeybees, glow worms and lo-
custs, and see how these can stylistically inspire the design of optimisation
algorithms.

10.1 Honeybee Dance Language

Honeybees are one of the most studied branches of the insect family. Just as
in the case of certain species of ants, their ability to self-organise in complex
ways has long attracted the attention of researchers who have examined the
question of communication in honeybee societies. Some species of honeybee
exhibit a symbolic system of communication based on the performance of a
dance to transmit information on (amongst other things) the location and
quality of resources around the vicinity of the hive. This dance language has
been extensively studied by ethologists, most notably by Nobel Laureate Karl
von Frisch and also by Martin Lindauer and Thomas Seeley. It has been
suggested that the dance language of bees “. . . is on a higher level than the
means of communication amongst birds and mammals with the exception of
man” [645, p. 540].

Stemming from the ability of individual honeybees to communicate in-
formation, a bee colony possesses sophisticated information-gathering and
information-processing capabilities. Like ant colonies, decision making is
decentralised and parallel, and patterns of bee colony behaviour are self-
organising. However there are notable distinctions between the information-
sharing mechanisms of ants and those of bees. In the ant foraging models
described in Chap. 9.3, communication between ants is primarily indirect and
is based on stigmergy. In contrast, the honeybee dance language enables bees
to engage in direct communication whereby information is communicated to

© Springer-Verlag Berlin Heidelberg 2015
A. Brabazon et al., Natural Computing Algorithms, Natural Computing Series,
DOI 10.1007/978-3-662-43631-8_

171

10

172

peers symbolically by means of a dance [654]. Direct communication mech-
anisms offer advantages in the real world as they permit quick reaction to
changing environmental conditions. In the following sections we concentrate
on three behaviours of honeybees and illustrate how they can provide inspira-
tion for the design of computational algorithms. As will be seen, the first two
of these rely heavily on honeybee communication via the dance language.

i. Bee foraging
ii. Nest site selection
iii. Bee mating behaviour

10.2 Honeybee Foraging

Foraging activities of bees involve searching for exploitable resources such as
pollen (a source of protein), water, waxy materials for hive building, or nectar
from flowers. Nectar is a source of carbohydrate and is converted by bees
into honey. It is their most important food resource. A honeybee colony can
monitor a large region around a hive for potential food sources (up to several
kilometres) and can quickly reallocate its foragers to collect food from new
sources which emerge [563]. A particular feature of bee foraging is that the
supply of nectar is highly dynamic. The availability and quality of nectar varies
with local weather conditions, the foraging activities of the bees themselves
(as they exhaust resources), and the blooming cycle of local flora. Seeley notes
that the quantity of nectar harvested by a colony of bees can vary by a factor
of 100 from one day to the next [563]. Hence, a colony faces a fast-changing
allocation problem, whereby foragers need to be dynamically allocated to
different food sources so that food intake is maximised.

10.2.1 The Honeybee Recruitment Dance

Most work in a hive is undertaken by the female honeybees. Female bees have
four main roles during their lives: cleaner, nurse, food-storer and forager;
and they progress through these roles as they age. Forager bees are broadly
split between scouts who discover resources around the hive and foragers who
transport material from an already-discovered site back to the hive. Typically,
scouts account for about 10% of the forager bee population [563].

When a scout or explorer bee discovers a food source of sufficient quality
it may undertake a dance on its return to the hive once it has unloaded its
nectar into empty honeycomb cells. The objective of the dance is to recruit
other foragers who will travel to the food source and exploit it. In turn, the
foraging bees may also undertake a dance when they return to the hive if the
food resource is of sufficient quality.

The dance language consists of repetitive patterned movements that are in-
tended to communicate information about the exact location and desirability

10 Other Foraging Algorithms

10.3 Designing a Honeybee Foraging Optimisation Algorithm 173

of the food source. In essence, the dance can be considered as a reenactment
of the flight from the hive to the location of interest. The dance is undertaken
in a specific location of the hive near the entrance called the dance floor. The
dance floor consists of a vertical comb in the hive and typically this area of
the hive contains multiple potential foraging recruits. The dance is social in
that it is never undertaken without an audience [120].

The nature of the dance movements depends on the location of the food
source relative to the hive. If the food source is close by (up to about 100 me-
tres from the hive), the bees undertake round dances with circular movements
predominating. If the food source is further away a waggle dance resembling a
figure eight is undertaken. The direction to the resource (relative to the sun) is
indicated by the angling of the bee’s body during the dance. The desirability
of the location is communicated by the dance’s liveliness or enthusiasm, with
more desirable locations corresponding to livelier dances [564]. The duration
of the waggle portion of the dance is a proxy for the distance to the location
of food sources.

At any point in time there may be several bees dancing on the dance
floor; hence the hive can simultaneously harvest several food sources. This
permits quick adaptation by the hive in the event that a particular food
resource becomes exhausted and therefore needs to be abandoned. Recruited
foragers tend to travel to richer food sources in greater numbers as dances
for high-quality food sources tend to be more conspicuous and longer, thereby
creating a positive feedback loop and amplification of the exploitation of those
food sources. It is also interesting that the dance contains information which
allows the relative merits of different food patches to be assessed in terms of
both their quality and the energy needed to harvest them, the latter being
proxied by the distance the food patch is from the hive. Other forms of dance
communication also exist. For example, if it takes a foraging bee too long to
unload its nectar, it may start a tremble dance which is designed to recruit
storer bees to assist with the unloading process. The above description of
foraging behaviour is stylised and omits aspects of the recruitment process
such as the role of odours and sounds. Readers requiring details on these
aspects are referred to [563, 619, 644].

10.3 Designing a Honeybee Foraging Optimisation
Algorithm

Changes in weather, the exhaustion of current food sources and the emergence
of new ones ensure that food foraging is a continuous and a dynamic task. A
variety of related optimisation algorithms have been designed in recent years
which are drawn from a honeybee foraging metaphor, including (as a small
sample) [110, 432, 508, 672]. Broadly speaking, a honeybee foraging algorithm
can be decomposed into three iterated activities:

i. explore the environment for good food locations

174

ii. recruit foragers to the better of the discovered locations
iii. harvest these locations

Typically a random search element is also added to the algorithm in order to
prevent premature convergence of the search process. A general algorithmic
framework that encompasses these steps and applies them for optimisation
purposes is outlined in Algorithm 10.1. This basic framework could be oper-
ationalised in a wide variety of ways.

Foragers are
recruited

Scout returns to
hive and performs

dance

Scout explores
environment and
finds resources

Foragers
harvest the
resource

Fig. 10.1. Stylised representation of honeybee foraging behaviour

10.3.1 Bee System Algorithm

One of the earliest papers drawing inspiration from the behaviour of honeybees
in order to contribute to the design of a computational algorithm was that
of Sato and Hagiwara (1997) [553], which developed an algorithm called Bee
System. The algorithm applied a two-stage global/local populational search
process, with the global search phase drawing heavily on a GA framework.

Initially in the algorithm, a global search step is undertaken using a sim-
ple GA. When the best solution found by the GA remains unchanged for x
generations, the solution is termed a superior chromosome and it is written
to memory. At this point, the entire GA search process is restarted from the
beginning (with a new random population) and begins searching again. The
process iterates until a total of n solutions are stored in the memory.

Then, a ‘local’ search step is undertaken around each of the n solutions.
In this step, a new population of p members is randomly created around
each of the n individuals (i.e. n new populations are created). For each of

 10 Other Foraging Algorithms

10.3 Designing a Honeybee Foraging Optimisation Algorithm 175

Algorithm 10.1: Canonical Honeybee Foraging Optimisation Algo-
rithm

Randomly locate n foraging bees in the search space;
Evaluate the fitness of each of these locations;
Store location of best solution;

repeat

Select the m best locations (patches) for neighbourhood search (m ≤ n);
Recruit foragers to search in the vicinity of these locations (number of
foragers assigned to each location is proportional to the fitness of the
location) and evaluate the fitness for each forager;
Select the fittest bee for each patch;
Assign the remaining bees to search randomly and evaluate their fitness;
Update location of best solution if necessary;

until terminating condition;

the populations, all of the members of that population are crossed over with
their associated superior chromosome, thereby generating p variants on their
superior chromosome, simulating search around it. The resulting p child chro-
mosomes are evaluated. Following this, a standard GA process is applied to
the population of child chromosomes using regular crossover. Periodically, a
migration step is applied whereby one individual is migrated from a popula-
tion to its neighbouring population in a ring migration topology (Sect. 4.2).
As the search process proceeds, the location of the best solution found thus
far is updated as it changes.

From the above description we can see that although the algorithm is a
GA variant, it also bears a loose correspondence with the process of honeybee
foraging. The initial global search process generates n good candidate solu-
tions, akin to scout bees uncovering a variety of good resource locations in
the environment. Following a ‘recruitment’ process (here all n locations re-
cruit the same number of foragers, p) a second local search process takes place
around these locations. This corresponds to the process by which foragers can
stochastically locate an even better resource location in the vicinity of the
location to which they were originally recruited.

One important feature of real-world honeybee foraging which is omitted
from Bee System is that of fitness-differential recruitment of foragers. Several
subsequent algorithms including [456, 457] and [508] implemented this step,
as does the artificial bee colony algorithm [314], which is described next.

10.3.2 Artificial Bee Colony Algorithm

The artificial bee colony algorithm (ABC) was proposed by Karaboga in 2005
[314]. In this algorithm the population of bees is divided into employed bees
(those who are currently exploiting an already discovered food resource) and

176

unemployed bees (those who are looking for a food resource). The latter group
can be further decomposed into scout bees and onlookers, where scout bees
search around the nest for new food sources, and onlooker bees wait at the
nest for recruitment to food resources. As before, a specific location in the
search space represents a solution to the optimisation problem of interest.

The pseudocode for the artificial bee colony algorithm is outlined in Al-
gorithm 10.2. The search process is undertaken by a population of 2 × SN

artificial bees, where SN of these are termed employed bees and the remainder
are onlooker bees. Initially, each of the SN employed bees is located on a ran-
domly selected location in the search space (simulating the process whereby
these initial food resources have been found by scout bees from the hive),
corresponding to the starting food locations from which the search process
develops. Each of these locations (or potential solutions) is a D-dimensional
vector. The quality of each of these locations is then assessed using (10.2)
where fiti is the fitness of the ith location (i ∈ {1, . . . , SN}). The effect of
(10.2) is to scale the fitness into the range [0, 1] and it is assumed that all raw
fitness values are positive (fi ∈ [0,∞)). Next, the search process commences.

Initially, each of the SN employed bees seeks to locate a better food source
in its vicinity, simulating the process of a bee using visual cues in order to
uncover even better sources of nectar. In this process, assuming that the bee
is initially located at xi,j , it then takes a randomly generated ‘step’ from this
location to a new location vi,j . The taking of this step could be operationalised
in a variety of ways. For example, in [317] the process is governed by (10.1)
where for i ∈ {1, . . . , SN}, j is a randomly generated integer in the range
1, . . . , D where D is the number of dimensions, φi,j is a randomly generated
number ∈ [−1, 1], and k ∈ {1, . . . , SN} is the index of a randomly chosen
solution (k �= i). Hence, in essence, the new solution is obtained by ‘mutat-
ing’ the current solution using a stochastic difference vector (φi,j(xi,j − xk,j))
[492]. The difference vector is obtained by comparing the current solution with
another solution in the population.

The quality of the resulting vi is compared with that of xi and the bee
exploits the better location. If the new location (vi,j) is better than the old
one (xi,j) then the new location replaces the old one in the memory of SN

food sources. Otherwise, the location remains unchanged in the memory. A
critical aspect of this search process is that as the positions of the best food
patches begin to converge as the algorithm runs (and therefore xi,j and xk,j

get closer together), the step size in the search process self-adapts, becoming
smaller in order to promote more intensive exploitation around the already
discovered better solutions.

vi,j = xi,j + φi,j(xi,j − xk,j) (10.1)

After all the employed bees have undertaken a local search step, the on-
looker bees are recruited to the SN food patches and in turn they search
around the food patch for which they have been recruited (using (10.1)).
In choosing which food patch to investigate, each onlooker bee is driven by

10 Other Foraging Algorithms

10.3 Designing a Honeybee Foraging Optimisation Algorithm 177

Algorithm 10.2: Artificial Bee Colony Algorithm [314, 316, 317]

Randomly assign each of SN employed bees to initial food sources (locations)
in the search space;
Evaluate the quality of each of these locations;

Let i = 1;
while i < itermax do

for each employed bee ∈ {1, . . . , SN} in turn do
Search for better solutions in the vicinity of its current location (food
patch) using (10.1);
Evaluate the quality of the new solution;
if the new solution is better then

The bee is relocated to the new position;
else

It stays at its current location;
end

Calculate the probability of an onlooker bee choosing each of the SN

food patches to harvest using (10.3);
for each onlooker bee i ∈ {1, . . . , SN} in turn do

Select a food patch to harvest using (10.3) (this chooses a value
for j);
Randomly select k ∈ SN ;
Search for better solutions in the vicinity of that food patch using
(10.1);
Evaluate the quality of the new solution using (10.2);
if the new solution is better then

The bee is relocated to the new position;
else

It stays at its current location;
end

end

if the location of any of the SN food patches has remained unchanged
for more than l iterations of the algorithm then

Abandon that location and replace it with a new randomly
generated location;

end

Record location of best solution found so far;
Let i = i+ 1;

end

Return best solution found;

end

178

(10.3), simulating a dance process, where pi is the probability that any given
onlooker bee is recruited to food patch i where i ∈ (1, . . . , SN). This roulette
wheel selection mechanism implies that the best food patches are more likely
to recruit onlooker bees. If a food source is not improved after a predetermined
number of iterations (parameterised as a limit l), it is abandoned and replaced
by a new randomly created food source, thereby maintaining an exploration
capability in the algorithm and helping to prevent premature convergence.
This simulates the explorative search behaviour for new food sources by scout
bees.

fiti =
1

1 + fi
(10.2)

pi =
fiti∑SN

n=1 fitn
(10.3)

The critical parameters of the algorithm include the value of SN , the limit
number of iterations l before an unchanged food source location is abandoned,
and the maximum number of iterations of the algorithm, itermax.

10.3.3 Honeybee Foraging and Dynamic Environments

One interesting aspect of real-world bee foraging behaviour is that it does not
necessarily produce optimal foraging results, in terms of maximising nectar
collection per unit of time in a static environment [34] where food resources are
not depleted via consumption. Nakrani and Tovey [432] note that real world
bee colonies operate in a highly dynamic environment, and based on the results
of their study suggest that bee foraging strategies are therefore designed to
produce best results in dynamic environments rather than in static ones. This
reminds us that the application of algorithms inspired by dynamic biological
processes to static problems is not necessarily appropriate.

Critiquing the Algorithms

In most honeybee algorithms, and indeed in most discrete ant colony algo-
rithms, the core concept is that of recruitment, whereby bees or ants which
have found good food sources recruit conspecifics which travel to and harvest
the food resource. In order to maintain some diversity in the search process
to avoid premature convergence, ‘forgetting’ mechanisms, such as pheromone
evaporation in ant colony optimisation or continual random search by some
foragers, are typically included in algorithm implementations. Whilst the re-
sulting algorithms have proven to be highly effective, it can be noted that their
design architectures are far simpler than the real-world foraging behaviours
of these insects. In the next paragraph we detail some of the foraging process
which is omitted in the canonical honeybee algorithm.

10 Other Foraging Algorithms

10.3 Designing a Honeybee Foraging Optimisation Algorithm 179

Honeybees typically have quite good visual sensory capabilities and are
able to identify promising food sources at a distance and alter their flight
trajectory to forage at the new resource. The issue of ‘in-flight’ perception
is important as the search process does not likely commence only when a
honeybee reaches an ‘advertised’ patch but is ongoing during the bee’s flight.

A second issue is that the recruitment process is much ‘noisier’ in the real
world than is typically suggested in honeybee algorithms, and dances only
recruit to an approximation of the location of the food resource. Repeated
dances for the same resource often vary in both directional and distance in-
formation [8, 233] and a recruit may have to undertake several trips before
finding the advertised food source. A side effect of this is that foragers who
have been newly recruited to a foraging location may not be sure of the ex-
act distance and therefore of the energy requirements of the foraging flight.
Honeybee foragers take small amounts of honey from nestmates via trophal-
laxis before leaving the hive in order to have food resources for their flight. A
study by [248] indicated that dance followers carried a larger amount of honey
than dancers but this differential reduced over repeated trips to the same food
location. This could be a physical manifestation of the location uncertainty
faced by newly recruited foragers. Although, prima facie, a noisy communi-
cation mechanism would appear suboptimal, it has been suggested that the
imprecision in the honeybee dance could be adaptive as it would allow for the
discovery and exploitation of nearby food sources [218]. In essence, it would
inject a stochastic element into the foraging process.

A third issue is that the recruitment propensity of a honeybee depends on
the quality of its current foraging location. If a foraging honeybee has already
found a profitable food source, it is unlikely to be recruited to an alternative
food source. Experimental evidence indicates that the majority of foraging
bees at any point in time are actually using private rather than social infor-
mation [233, 664], indicating that while social information and recruitment
is important, it does not have the dominant role to which it is assigned in
most honeybee algorithms. A more complete picture is that honeybees forage
at favoured locations until they become unprofitable, at which time they are
more likely to follow dances. In other words they employ a flexible strategy
(‘copy if dissatisfied’) which combines both personal and social learning. This
strategy is also relatively simple to implement as it does not require complex
cognition such as comparison of the relative costs and benefits of several al-
ternatives. There is also evidence that at least some forager bees maintain
a memory of past food sources from which they have previously harvested.
These ‘inspector bees’ continue to make occasional trips to the source to check
on its quality and will resume foraging if it again becomes profitable. Hence,
these inspector bees act as short-term memory for the bee colony and facilitate
the quick reactivation of previously abandoned food sources.

From the discussion above, it is evident that the use of individual percep-
tion, social information and private information is nuanced in real honeybee
foraging behaviour. This provides several interesting avenues for the design of

180

new honeybee algorithms which incorporate elements inspired by these mech-
anisms.

10.4 Bee Nest Site Selection

Another example of cooperative problem solving by honeybees is provided
by nest site selection. Typically, in late spring or early summer as a colony
outgrows its current hive, the colony will fission or ‘divide’ whereby the queen
bee and about half of the population of worker bees will leave the hive and
seek to establish a colony at a new nest site, leaving behind a young queen
bee and the remainder of the worker bees in the existing hive. Having left the
current hive, the swarm usually does not fly far and within about 20 minutes it
forms a football-sized cluster of bees, often on the branch of a tree [45]. From
this location scout bees begin a search for a new nest site and the search
process can last for some days. An ideal home for a bee colony is located
several metres off the ground, has a cavity volume of more than 20 litres, and
has a south-facing entrance hole smaller than 30 square centimeters which is
located at the floor of the cavity [566] (p. 222).

During the site selection process, scout bees leave the cluster and search
for a new nest site. These scout bees are the most experienced forager bees
in the swarm and usually the swarm will have several hundred scouts. As
potential nest sites of satisfactory quality are uncovered, the returning scout
bees communicate their location to other scout bees by doing a waggle dance
on the surface of the swarm. The length of the dance depends on the quality
of the site found, with longer dances being undertaken for better-quality sites.
If a bee finds a good site, it becomes committed to it and will visit it several
times. However, the length of its recruitment dance for the site will decrease
after each visit. This phenomenon is known as dance attrition [566].

A scout bee will only dance for a location if its quality exceeds a threshold
value; hence a scout may undertake several trips before uncovering a site of
desired quality. Alternatively, a scout bee may be ‘recruited’ by a returned
‘dancing’ scout bee and may therefore visit a promising location found by
another scout bee. In turn, if the recruited bee also considers the location
to be of satisfactory quality, she will dance for that location on her return
to the swarm. The net effect of the recruitment and the dance attrition phe-
nomena is that higher-quality sites attract more attention from the searching
scouts, creating a positive reinforcement cycle. Dance attrition facilitates the
‘forgetting’ of nest site locations that are not continually reinforced, akin to
pheromone evaporation in ant colony foraging (Sect. 9.3). While multiple nest
sites (if several of sufficient quality exist) will be considered in the early stage
of the search process, these will be quickly whittled down to a limited number
of choices (which could be up to several kilometers from the swarm) from
which one is finally chosen. Unlike the foraging process whereby several food

 10 Other Foraging Algorithms

10.4 Bee Nest Site Selection 181

locations may be harvested simultaneously, the nest site selection problem
produces a single ‘winner’.

The final decision as to nest site location results from a quorum sensing
process [566]. Once scout bees at a potential nest site sense that the number
of other scout bees there has reached a threshold (of approximately 20 bees)
they undertake ‘buzzing runs’ at the new nest site, which triggers the return
of all the scouts to the swarm [565]. The scouts then excite the swarm into
getting ready to move by doing buzzing runs across the swarm’s surface and
by moving through the swarm, producing a high-pitched acoustic signal from
their wing vibrations (known as piping).

When the swarm lifts off, an evident practical problem is that only about
5% of the swarm has previously visited the new nest site [565]; hence most of
the swarm do not know the new site’s location. The swarm is guided to the
correct location by the scout bees who have visited the new site and they signal
the correct trajectory by flying rapidly through the swarm in the direction of
the new nest site [45]. In addition, some scouts shoot ahead to the nest site
where they release marker pheromones.

The nest site selection process of honeybees presents an interesting ex-
ample of a high-stakes exploration-exploitation trade-off [296]. If ‘too fast’ a
decision is made (thereby exploiting information acquired early in the search
process) the swarm runs the risk of selecting a poor location. On the other
hand, if the decision-making process is too slow, the swarm is left exposed to
the risk of bad weather (for example, rain) and/or to the risk of predation. The
selection process also presents an example of decentralised decision making as
the final site selection is determined by the actions of multiple, independent,
agents (bees). Even where a scout bee is recruited for a potential nest site
location, she will travel to the site and inspect it for herself in order to decide
whether she will dance (or vote) for it. As noted by Passino and Seeley [498],
it is plausible that evolution has tuned the process of nest-site selection in
order to balance its speed-accuracy trade-off, balancing the chance that the
swarm selects a poor site against the energy and time cost associated with
searching for a new site.

Recent years have seen a number of studies such as [498] which have used
simulation in order to examine the relative importance of various elements
of the nest site selection process in determining the success of the search
process. As would be expected, values for parameters such as the number of
scout bees, the quorum threshold required to make a site decision, the decay
rate of dance length following revisits to a site by scouts, and the propensity
of bees to search by themselves as opposed to being recruited by other scouts,
are all found to be important. The potential for drawing inspiration from the
bee nest site selection process in order to design general-purpose optimisation
algorithms was indicated by [162]. This framework was further developed and
applied in [163] with the creation of the bee nest site selection optimisation
algorithm (BNSO). The next subsection outlines this algorithm.

182

Algorithm 10.3: Bee Nest Algorithm (from [163])

Place swarm on random location p (pswarm = p);
Let counter = 0;
Set value for dscout, dfollower, and number of scouts and followers;

repeat

Set value of frange using (10.4);
for each scout in turn do

Choose new location ps with a maximum distance of dscout × frange to
the nest;
fits = max{0, (F (pswarm)× fq)− F (ps)};

end

for each follower in turn do

Choose a scout s according to (10.5);
Choose a new location pfollower with a maximum distance of dfollower

to chosen scout’s position ps;
Sample search space between ps and pfollower in m equally-spaced
flight steps;

end

if a new location p was found which is better than pswarm then

Relocate swarm to p (pswarm = p);
else

if counter ≥ maxcount then
Place swarm on new random location p (pswarm = p);
counter = 0;

else

counter = counter + 1;
end

end

until termination condition is satisfied ;
Return location of nest (best solution found);

10.4.1 Bee Nest Site Selection Optimisation Algorithm

The essence of the algorithm is that the ‘swarm’ of bees searching for a new
nest seeks to iteratively improve the quality of its location. The swarm is
comprised of two types of bees, namely scouts and followers. The scouts seek
new potential nest sites in the vicinity of the swarm’s current location and if
a scout succeeds, it recruits a number of followers based on the fitness of the
location that it has found. The followers then go to the location found by the
scout and then search locally around that location. If a better site is found
than the swarm’s current location, the swarm moves to the new location and
the search process begins anew. See Algorithm 10.3.

In the algorithm, there is a swarm of n bees comprised of nscout and nfollower

bees (n = nscout + nfollower). These are searching in a real-valued space and

 10 Other Foraging Algorithms

10.4 Bee Nest Site Selection 183

the location pswarm of the swarm in this space corresponds to a solution to
the maximisation or minimisation problem of interest. During the algorithm,
the swarm is initially placed at a random location, and each scout s chooses
a random location ps which is within dscout × frange of the swarm’s current
location (hence, | pswarm − ps |≤ dscout × frange for all scouts). This simulates
the real-world phenomenon that scouts are more likely to search within a few
minutes’ flight time of the swarm’s current location.

In order to encourage convergence of the search process, frange ∈ [0, 1] is
decreased as the algorithm iterates. A simple mechanism for implementing this
is presented in (10.4) whereby itermax is the maximum number of iterations
that the algorithm will run and iter is the current iteration number. If the new
location found by a scout is of sufficient quality (i.e., assuming a minimisation
problem, F (ps) ≤ F (pswarm)× fq, where fq ∈ [0, 1] is a quality ‘improvement’
factor), then the location is a candidate for recruitment of follower bees.

frange = 1− iter

itermax
(10.4)

The relative fitness of each scout is calculated using fits = max{0, (F (pswarm)×
fq)−F (ps)}. Each follower then selects one scout to follow using (10.5); hence
the fitter locations uncovered by the scouts will tend to recruit a greater
number of followers. Each follower then proceeds to choose a random location
pf in the neighbourhood of the scout’s location (ps) subject to the constraint
that the selected location is not greater than dfollower away from ps so that
| ps − pf |≤ dfollower. As for dscout, the value of the parameter dfollower is set
by the user of the algorithm. The follower bee then samples the search space
between ps and pf in m equal-sized steps (calculating the fitness at each of
the m steps) on a straight-line flight between the two locations.

During the scout and follower search phase, a record of the location of the
fittest point found (pbest) is maintained and if this is better than the fitness
of the current location of the swarm (pswarm), then the swarm moves to the
new location and restarts the process. Otherwise the nest search process is
restarted from the swarm’s current location. If the swarm cannot improve its
location after maxcount attempts, it is moved to a new random location in
the search space and the search process recommences from that location.

Ps =
fits∑nscout

k=1 fitk
(10.5)

The Bee Nest algorithm as described above was applied in [163] for the molec-
ular docking problem. The paper compared the results from the algorithm
against those of PSO and random search on the same problem, finding that
the Bee Nest algorithm was reasonably competitive. Further development of
the algorithm and further testing will be required before its utility can be fully
assessed. However the algorithm does represent an interesting new avenue for
honeybee inspired algorithmic research.

184

10.5 Honeybee Mating Optimisation Algorithm

The mating flight behaviour of honeybee queens has also been used as the
inspiration for the design of an optimisation algorithm [1, 2]. This algorithm
is also referred to as the marriage in honeybees optimisation algorithm. Before
outlining the algorithm a brief introduction to the honeybee mating process
is provided.

A normal honeybee colony consists of a queen bee, drones and workers.
The queen bee is the only egg-laying female in the colony. Drones are male
bees whose primary task is to mate with the queen. Worker bees (which are all
female) undertake all of the day-to-day activities of the colony including food
foraging and storage, cleaning of the colony, guarding of the colony and feeding
the queen, drones and larvae. The mating process commences when the queen
performs a dance in the hive after which a mating flight occurs. During this
flight, the queen departs from the hive followed by drones who attempt to
mate with the queen in mid-air. During each mating, sperm from the drone
is accumulated in the queen’s spermatheca. When the queen subsequently
lays eggs in the hive these are fertilised using randomly drawn sperm from
her spermatheca. In the adaptation of this process to create an optimisation
algorithm, the genome of each bee (queen and drone) corresponds to a location
in the search space.

An overview of a general honeybee optimisation algorithm is provided
in Algorithm 10.4. In this algorithm the queen is initialised with a random
genotype (or ‘location’), an energy level and a speed. The drones are also
initialised in random locations. The probability that a specific drone mates
with the queen is governed by (10.6), where P (Q,D) is the probability of
adding the sperm of drone D to the spermatheca of queen Q, in other words
the probability of successful mating. As the queen mates with several drones
in turn, her spermatheca fills up with the genotypes of the drones with whom
she has mated. The parameter d is the absolute difference between the fitness
of the drone and that of the queen, and s(t) is the speed of the queen at time
t. From the structure of (10.6), a form of annealing function (Sect. 23.1), it
can be observed that the mating probability is higher in the earlier stages of
the queen’s mating flight (when her speed is higher), and when the drone has
a good level of fitness (vs. that of the queen). During each iteration of the
algorithm, the energy level E and speed of the queen are decreased as given
by (10.7) and (10.8), where α ∈ [0, 1] and β ∈ [0, 1] represent step sizes to
control the reduction of each property.

P (Q,D) = e−d/s(t) (10.6)

s(t+ 1) = αs(t) (10.7)

E(t+ 1) = βE(t) (10.8)

10 Other Foraging Algorithms

10.5 Honeybee Mating Optimisation Algorithm 185

Algorithm 10.4: Honeybee Mating Optimisation Algorithm

Generate the initial population of bees at random;
Evaluate the fitness of the location of each bee;
Select the best of these bees to be the queen;
Select the number of mating flights (M);
Let i = 1;

repeat

Initalise energy E, speed s and spermatheca size of queen;
Set value for α ∈ [0, 1] and β ∈ [0, 1];
while E > 0 and queen’s spermatheca is not full do

Select a drone at random;
if drone passes the probabilistic condition for mating (10.6) then

Add sperm of drone to queen’s spermatheca;
end

Let s(t+ 1) = αs(t);
Let E(t+ 1) = βE(t);

end

Generate broods using crossover and mutation;
For each brood member, randomly select a worker from the population
W of workers who will apply a local search heuristic in an attempt to
improve that brood member’s fitness;
if the fitness of the best brood member is greater than that of the queen
then

Replace the queen by that brood member and remove the brood
member from the brood list;
Generate an additional member for the brood population;

end

i = i+ 1;

until i = M ;
Replace population of drones by the current brood (these will be the drones
in the next iteration of the algorithm);
Return location of queen (best solution found);

When the mating flight is complete the breeding process commences. In
this process a sperm is randomly selected from the queen’s spermatheca and
this is crossed over with the queen’s genome to produce a ‘brood’. This
crossover need not be restricted to take place between the queen’s genotype
and that of a single drone as the process in real life can utilise genetic ma-
terial from multiple drones in creating the new brood. A mutation process is
then applied to the new genome. In an analogue of the role of worker bees in
the colony which look after the brood as they mature, a total of W ‘worker
bees’ exist in the algorithm. Each of these worker bees corresponds to a local
search heuristic rather than to a genotype. In the algorithm they are used in
an attempt to further improve the quality of each brood or protosolution, by

186

selecting a worker bee and applying its corresponding local search heuristic
to the individual brood solution. This step can be loosely considered as corre-
sponding to the process of brood care by the workers in a hive, with the time
devoted to brood care forming an analogue with the ‘depth’ of a local search
process [41]. The choice of local search heuristic to be applied to an individual
brood member is made stochastically.

After all the brood members have been locally improved, their fitnesses
are compared and the best of them is compared with the fitness of the queen.
If the best resulting brood is better than the queen, the best brood member
replaces the queen and a new mating flight commences using the new queen.
Depending on the variant of the algorithm the drones in the new mating flight
may be chosen randomly [1], or may consist of the members of the brood
in the previous iteration of the algorithm, corresponding to a generational
replacement strategy in a GA.

As can be seen from the above discussion, the algorithm can be imple-
mented in a multiplicity of ways depending on the user’s choice of the various
parameter settings (including the number of queens, the number of drones,
the number of mating flights and the size of the spermatheca for each queen),
the mechanism for choosing which drones get to mate with the queen, the
precise mechanisms for undertaking crossover and mutation, and the form of
the ‘local improvement’ step. A significant body of literature has developed
wherein a wide variety of design choices for this algorithm have been tested,
and the reader is referred to [315]. Applications of the algorithm have also
been extended beyond real-valued optimisation to encompass combinatorial
optimisation. Whilst good quality parameter settings will be problem-specific,
parameters from [389], including one queen, 200 drones, number of mating
flights = 1500, size of spermatheca = 50, number of broods = 50 and α = 0.9,
may provide a starting point. The algorithm bears some similarity with the
GA, where the mating system embeds polyandry (the queen mates with sev-
eral males) along with a local search phase.

10.6 Summary

Honeybee behaviours are a rich source of inspiration for the design of com-
putational algorithms and this area is a rapidly growing subfield of natural
computing. Thus far, most algorithms incorporate a limited number of fea-
tures from the full repertoire of behaviours of honeybees. Scope exists to
refine these algorithms further and to more fully test their utility on real-
world applications. In addition to real-valued optimisation, there have been
applications of honeybee-inspired algorithms for binary-valued optimisation
problems [492], for combinatorial optimisation and for clustering purposes.
Readers are directed to [41] and [315] for relevant references.

10 Other Foraging Algorithms

11

Bacterial Foraging Algorithms

Bacteria are amongst the oldest and most populous forms of life on earth (a
human typically has about 1014 bacteria in the gastrointestinal tract [499]).
Despite possessing a relatively simple physical structure in comparison with
mammals or insects, bacteria are capable of sophisticated interactions with
their environment and with each other. Even though an individual bacterium
has limited information processing power, colonies of bacteria can solve com-
plex problems such as those of survival in a dynamic environment. This capa-
bility arises in part as bacteria are metaphorically capable of ‘communication’
with each other by means of chemical molecules, a process which has parallels
with the use of pheromone trails by ants. While no claim is made that bacteria
are consciously communicating with each other, or that they are intentionally
guiding their behaviours, the chemical signalling mechanisms produce emer-
gent outcomes which are functionally equivalent to problem-solving strategies.
In this chapter we describe a number of bacterial behaviours and demonstrate
how these can be used to design optimisation algorithms.

11.1 Bacterial Behaviours

In this chapter we concentrate on three bacterial behaviours, namely:

i. quorum sensing,
ii. sporulation, and
iii. mobility.

The first two of these behaviours provide illustrative examples of chemical
communication between bacteria. The third behaviour (mobility) is metaphor-
ically used to develop an optimisation algorithm in Sect. 11.2.

11.1.1 Quorum Sensing

Commonly, bacteria can emit and detect chemicals known as autoinducers
which allow them to sense whether more bacteria of their own (or other)

© Springer-Verlag Berlin Heidelberg 2015
A. Brabazon et al., Natural Computing Algorithms, Natural Computing Series,
DOI 10.1007/978-3-662-43631-8_

187

11

188 11 Bacterial Foraging Algorithms

kind are around [37]. The greater the concentration of peer bacteria in close
proximity, the greater the concentration of autoinducer chemical. If a suffi-
cient density of bacteria is present (a quorum), some phenomenon may occur,
such as the formation of a biofilm (an assembly of bacteria that is attached
to a surface) or bioluminescence. An interesting example of quorum sensing
behaviour is that a bacterial colony, for example the culprit in many food poi-
soning cases, salmonella, may wait until a critical mass of bacteria is present
before releasing a toxin to poison its host. This makes the bacterial colony
more resistant to attack from the host’s immune system.

11.1.2 Sporulation

Sporulation of bacteria occurs in response to starvation. If environmental con-
ditions become too stressful, individuals in some bacterial species can trans-
form themselves into inert, enduring spores (thick-coated cells which are re-
sistant to heat, desiccation, and long-term starvation). These spores can then
be dispersed (for example, via the wind) to a more benign environment. The
sporulation process commences when starving bacteria emit chemical mes-
sages which act metaphorically to convey their stress to their peers. On re-
ceiving these messages, neighbouring bacteria compare the strength of these
messages with their own state and vote (chemically) for or against sporula-
tion. If a sufficiently strong concentration of the voting chemical is emitted by
the members of the bacterial colony, the individual bacteria enter a dormant,
or spore, state. When more abundant environmental conditions occur the cells
emerge from their dormant state and reactivate.

11.1.3 Mobility

Many species of bacteria are able to move in response to external stimuli (this
phenomenon is called taxis) and this provides them with a powerful adaptive
capability. Examples of such movement include chemotaxis, where bacteria
move towards or away from certain chemical concentrations; phototaxis, where
they move in response to light; thermotaxis, where they move in response to
different temperatures; aerotaxis, where they move in response to different
levels of oxygen concentration; and magnetotaxis, where they align themselves
in response to magnetic lines of flux.1 Depending on the environment occupied
by a bacterium, movement can be through a medium (for example, movement
through a fluid) or along a surface.

1Magnetotactic bacteria contain nanoparticles of magnetite or greigite which are
assembled into linear arrays. These arrays create a magnetic dipole in the bacterium
that forces orientation, and therefore travel, along geomagnetic field lines [580].

11.2 Chemotaxis in E. Coli Bacteria 189

11.2 Chemotaxis in E. Coli Bacteria

Escherichia (E.) coli are amongst the most-studied species of bacteria, partly
because of their prolific ability to reproduce. An E. coli cell can reproduce in
approximately 20 minutes under ideal conditions. Given sufficient food and
ideal environmental conditions, a single E. coli bacterium could give rise to a
bacterial colony with a total population exceeding the number of humans on
earth within 11 hours!

A simplified diagram of an E. coli cell is shown in Fig. 11.1. Each E. coli
cell is approximately 1-2 μm in length, with approximately eight flagella (only
one is shown in Fig. 11.1) which allow it to swim through a liquid medium.
Each flagellum is approximately 10 μm long, has a rigid left-handed corkscrew
shape, and forms a propeller. The propeller is powered by a tiny biological
‘electric’ rotary motor. The power source for the motor is the electromotive
gradient arising from proton-sodium ion flows across the cell’s membrane [153].
The motor is highly efficient and in an E. coli cell can reach approximately
18,000 RPM [153], or around the same number of RPM as a Formula One
racing car engine.

The motor and hence the propeller shaft is capable of turning both clock-
wise (CW) and counter-clockwise (CCW). If the flagella are rotated CCW in
tandem they produce a force against the E. coli cell and it moves (swims) for-
ward (termed a run). If the flagella switch from a CCW to a CW rotation, the
cell tends to rotate randomly (termed a tumble) to point in a new direction.

E. coli cells are rarely still but instead are engaged in continual run-and-
tumble behaviours [52]. The two modes of movement alternate. Runs tend to
last for about one or two seconds, whereas tumbles take less time to com-
plete (circa 0.1 to 0.2 s). Even this brief time span is sufficient to orient the
bacterium in a random direction, causing successive runs to occur in nearly
random directions (there is a slight bias in the tumbling process towards con-
tinuing in the same direction as before). Therefore, a bacterium runs, tumbles
to face a new direction, and runs again (Fig. 11.2). The cell is also subject to
Brownian movement as it is moving through a liquid medium and it has very
little mass. This causes the cell to tend to drift off course every 10 seconds or
so, even when it is following a strong chemical trail.

In spite of the tumbling process and the effects of Brownian movement,
the movement of a bacterium is not completely random. When a bacterium
finds stronger concentrations of a chemically attracting item, the mean length
of its runs increases. This effect biases its movement towards the climbing of
attractive chemical gradients, and therefore the process can be considered as
a stochastic gradient search for chemical attractants.

The running and tumbling behaviours of bacteria result from the stimu-
lation of receptors on the cell for the chemicals of interest to it. Increasing
concentrations of chemical attractants increase CCW rotation. Repellant stim-
uli have the opposite effect. The behavioural response of the cell is temporal
rather than spatial as E. coli cells are too short to enable differences in chem-

190 11 Bacterial Foraging Algorithms

DNA, RNA, proteins
etc.

Outer cell membrane

Inner cell membrane Porin

Flagellum

Fig. 11.1. A simplified diagram of an E. coli cell, showing one flagellum (not
to scale) and two porins (protein channels which allow the entry of water-soluble
nutrients). Typically a cell will have hundreds of porins

ical concentrations between receptors at each end of the cell to be significant.
Hence, a cell cannot directly sense and use (chemical) gradient information
from its environment. Instead, it has an implicit short-term memory [78, 383]
lasting up to about 3s which allows it to detect whether the concentration of
a chemical is changing over time.

Fig. 11.2. A sample movement track for an E. coli cell. The track consists of a
series of runs punctuated by tumbles (directional changes)

11.3 Bacterial Foraging Optimisation Algorithm

The idea that chemotactic behaviour in bacteria could be considered as an
optimisation process was originally proposed by Bremermann in 1974 [76].
However, the idea did not attract substantial attention when published and
it is only in recent times that it has been revisited. In this section we describe
one genre of real-valued bacterial foraging optimisation algorithms (BFOA)
which are loosely derived from the foraging strategy of E. coli bacteria. This
genre of algorithm was described by Passino [496, 497] and has been applied
in a series of papers including [377, 415] and [416].

11.3 Bacterial Foraging Optimisation Algorithm 191

This family of BFOAs draws its inspiration from four aspects of E. coli
behaviour, namely:

i. chemotaxis,
ii. swarming,
iii. reproduction, and
iv. elimination-dispersal.

Chemotaxis refers to the tumble and run behaviour of an individual bac-
terium in response to chemical gradients. Swarming refers to the capability of
E. coli bacteria to emit the chemical attractant aspartate when they uncover
nutrient-rich environments. In turn, other E. coli bacteria respond by moving
(swarming) towards bountiful regions which are marked with attractant. The
emission of attractant produces an indirect social communication mechanism
between bacteria. Under selection for reproduction, the healthiest bacteria
are more likely to survive and divide, thereby creating more bacteria which
are similar to themselves and which are colocated in nutrient-rich environ-
ments. Bacterial elimination and dispersal events, a form of randomisation
and movement, occur frequently in the real world. The former occur when a
local environmental event kills a bacterial colony, and the latter occur when
bacteria are transported to a new location, for example via wind dispersal.

A wide variety of BFOAs can be created from the above highly stylised
aspects of bacterial foraging. For example, an algorithm could be developed
solely based on a metaphor of chemotatic mobility or an algorithm could be
developed by combining all of the above elements. In addition, the individual
characteristics such as reproduction or swarming could be operationalised in
many ways.

11.3.1 Basic Chemotaxis Model

The pseudocode in Algorithm 11.1 describes a search process which solely
employs the chemotaxis concept. A population of S bacteria is created and
distributed randomly in the search space, assumed to be a domain in RD. The
position (vector) of each bacterium i is stored as θi ∈ RD. We assume that
there is a cost J i = J(θi) associated with each location that a bacterium can
occupy and that the intention is to find the location in the search space with
minimum cost.

The fitness of each bacterium is calculated, after which each bacterium
seeks to move. The bacterium tumbles to face a random direction and then
continues to take equal-sized steps in this direction while this improves its fit-
ness, up to a maximum of Ns steps. The best location found by any bacterium
is stored and is returned at the algorithm’s termination.

Although this algorithm does produce a search process, it is not particu-
larly effective or efficient as it amounts to a population of bacteria engaging
in a series of biased random walks across the environment. Each bacterium

192 11 Bacterial Foraging Algorithms

Algorithm 11.1: Basic Chemotactic Bacterial Foraging Algorithm

Randomly distribute initial values for the position vectors θi, i = 1, 2, ..., S
across the optimisation domain;

Compute the initial cost function value J i = J(θi) for each bacterium i;

repeat

for each bacterium i do
Tumble: Apply random tumble to bacterium to face it in a new
direction;
Take a step in this direction;
Measure fitness of new location;
while number of swim steps < Ns do

if fitness of new position > fitness of previous position then
Take another step in current direction and calculate fitness of
new location;

else

Let number of swim steps = Ns − 1;
end

Increment number of swim steps;

end

end

until terminating condition;

searches individually and there is no social communication between bacteria.
Hence, information about nutrient-rich or nutrient-poor regions is not passed
amongst the members of the population.

11.3.2 Chemotaxis Model with Social Communication

Passino [496, 497] describes a more complex BFOA which includes social com-
munication (swarming and reproduction) along with an elimination dispersal
process which promotes diversity. Initially, an overview of the algorithm (Al-
gorithm 11.2) is provided, followed by a discussion of how it can be opera-
tionalised.

Initialisation of the Algorithm

As above, each bacterium i is initially randomly located in the search space
with its position being stored as θi ∈ RD. Let J i = J(θi) be the cost associated
with the bacterium’s location. Assume that the intention is to find the location
in the search space with minimum cost.

11.3 Bacterial Foraging Optimisation Algorithm 193

Algorithm 11.2: BFO Algorithm with Social Communication

Randomly distribute initial values for θi, i = 1, 2, ..., S across the
optimisation domain;

Compute the initial cost function value for each bacterium i as J i = J(θi),
and the initial total cost with swarming effect as J i

sw;

for Elimination-dispersal loop do

for Reproduction loop do

for Chemotaxis loop do

for Bacterium i do

Tumble: Generate a unit length vector φ ∈ R
D in a random

direction;

Move: Let θnew = θi + cφ and compute corresponding Jnew;
Let Jnew

sw = Jnew + Jcc(θ
new, P);

Swim: Let m = 0;
while m < Ns do

Set m = m+ 1;

if Jnew
sw < J i

sw then

Let θi = θnew and compute corresponding J i and J i
sw;

Let θnew = θi + cφ and compute corresponding Jnew;
Let Jnew

sw = Jnew + Jcc(θ
new, P);

else

Let m = Ns;
end

end

end

end

Sort bacteria in order of ascending cost Jsw;
The Sr = S/2 bacteria with the highest J value (the ‘least healthy’)
die and the remaining Sr bacteria split;
Update value of J and Jsw accordingly;

end

Eliminate and disperse individual bacteria to random locations on the
optimisation domain with probability ped;
Update corresponding values for J and Jsw;

end

Select highest fitness location from final population (or the best location
found during the algorithm);

194 11 Bacterial Foraging Algorithms

Notation Used

The ordered S-tuple of positions of the entire population of S bacteria at
the jth chemotactic step, the kth reproduction step and the lth elimination-
dispersal event is denoted by P (j, k, l) = (θi(j, k, l)|i = 1, 2, . . . , S). As the al-
gorithm executes, P (j, k, l) is updated immediately once any bacterium moves
to a different location. The cost associated with location θi(j, k, l) is denoted
as J i(j, k, l). Each bacterium has a lifetime Nc, measured as the maximum
number of chemotactic cycles it can undertake.

Chemotaxis Loop

At the start of each chemotactic loop, the ‘swarm-effect inclusive’ (SEI) cost
corresponding to each bacterium’s current location is calculated as follows:

J i
sei(j, k, l) = J i(j, k, l) + J i

cc(θ
i(j, k, l), P (j, k, l)) (11.1)

Hence, the SEI cost is comprised of both the underlying cost of the bacterium’s
location (as given by J i(j, k, l)) and a value for the cell-to-cell attraction and
repelling (swarming) term Jcc(θ(j, k, l), P (j, k, l)). In the swarming behaviour
of the bacteria, each individual is trying to minimise J i

sei(j, k, l), so they will
try to find low-cost locations and move closer (but not too close) to other
bacteria.

The effect of the cell-to-cell attraction and repelling term is to create a
time-varying SEI cost function which is used in the chemotaxis loop. As each
bacterium moves about on the landscape, its J i

sei(j, k, l) alters, as it depends
not just on the bacterium’s own current location but also on the simultaneous
locations of all other bacteria in the population. Another way of thinking
about this is that the landscape being searched is dynamic and it deforms as
the bacteria traverse it.

Once J i
sei(j, k, l) is calculated, it is stored in J i

curr for each bacterium. This
value is used later in the chemotaxis loop to determine whether a bacterium’s
movement is improving its fitness.

The calculation of J i
cc(θ

i(j, k, l), P (j, k, l)) depends on the proximity of
each bacterium to its peers. Each bacterium is attracted to its peers, loosely
mimicking the effect of the chemical attractant aspartate. Bacteria are also
repelled from one another, mimicking the real-world problems of too-close
location, as the bacteria would then compete for the same nutrients. Each of
these mechanisms is included in (11.3).

11.3 Bacterial Foraging Optimisation Algorithm 195

Jcc(θ, P (j, k, l)) =

S∑
i=1

J i
cc(θ, θ

i(j, k, l) (11.2)

=
S∑

i=1

[
−dattract exp

(
−wattract

p∑
b=1

(θb − θib)
2

)]
(11.3)

+
S∑

i=1

[
hrepel exp

(
−wrepel

p∑
b=1

(θb − θib)
2

)]

In (11.3), the parameter p is the dimensionality of the real vector space Rp

being searched by the bacteria (here p = 2 is assumed). The first additive
component of (11.3) acts to reduce the SEI cost of each bacterium, as it is
restricted to returning a nonpositive value. In the limit, if all bacteria converge
to the same location, the exponential term in this component will tend towards
its maximum value of 1 and the SEI costs of all bacteria will be reduced by
−dattractS. Metaphorically, the terms represent the depth of the attractant
released by a bacterium and the width of the attractant signal respectively.
The second additive component of (11.3) repels the bacteria from one another.
If the bacteria swarm to such a degree that they colocate, the SEI costs of all
bacteria will be increased by hrepelS.

The values of the parameters dattract, wattract, hrepel and −wrepel therefore
control the strength of the swarming effect and repulsion effect relative to
each other, and relative to the impact of the cost function J i(j, k, l).

In order to move a bacterium in the search space, a tumble followed by
run behaviour is simulated. The tumble acts to orientate the bacterium in a
random direction, with the bacterium then continuing to move in that direc-
tion until either it has taken the maximum number of chemotactic steps (Ns)
or its cost function stops declining. In generating a tumble, a vector of unit
length and random direction φi(j) are used. The bacterium is then moved a
step (C(i) > 0) in this direction:

θi(j + 1, k, l) = θi(j, k, l) + C(i)φi(j) (11.4)

The term φi(j) in (11.4) is obtained by generating a vector Δ(i) ∈ R2 (assum-
ing the search space is of two dimensions), where each element of the vector
is randomly drawn from the interval [−1, 1], using:

Δ(i)√
ΔT (i)Δ(i)

(11.5)

For example, if (0.6, 0.3) were drawn randomly to be Δ(i), the resulting unit
vector would be (0.894, 0.447), calculated as 0.6√

0.62+0.32
and 0.3√

0.62+0.32
. Once

the bacterium has moved in a random direction, its SEI cost is updated:

J i
sei(j + 1, k, l) = J i(j + 1, k, l) + Jcc(θ

i(j + 1, k, l), P (j + 1, k, l)) (11.6)

196 11 Bacterial Foraging Algorithms

Then, if J i
curr < J i

sei(j + 1, k, l) (the location after the tumble and move has
lower SEI cost than the bacterium’s location before the tumble), run behaviour
is simulated. The bacterium iteratively takes a further step of the same size
in the same direction as the tumble, checks whether this has lowered its cost
value further, and if so, continues to move in this direction until it has taken
its maximum number of chemotactic steps, Ns.

Tumble

Tumble

Swim
Swim

Swim

Unit walk

Chemotactic step with tumbling and swimming

Fig. 11.3. Chemotactic step

Reproduction Cycle

After Nc chemotactic steps have been undertaken for the complete population
of bacteria, a reproduction cycle is undertaken. In each reproduction cycle the
‘health’ of each bacterium is calculated as the sum total of its location costs
during its life (over all its chemotactic steps), J i

health =
∑Nc

j=1 J
i
sei(j, k, l). All

the bacteria in the population are then ranked in order of their fitness with
higher costs corresponding to lower health. The x% (where x is a user se-
lected parameter) healthiest bacteria split in two (reproduce) at their current
location and a corresponding number of less healthy bacteria are eliminated,
keeping the total population of bacteria constant. The reproduction cycle is
repeated Nre times during the algorithm’s execution.

Elimination-Dispersal Events

The entire population is subject to a total of Ned elimination-dispersal events.
In each of these events, individual bacteria in the population are killed with
a probability of ped. If a bacterium is killed, a new bacterium is randomly
located in the search space. If a bacterium is not selected for elimination
(probability of 1− ped), it remains intact at its current location.

11.3 Bacterial Foraging Optimisation Algorithm 197

Elimination – Dispersal Loop (1 : 2)

 Reproduction Loop (1 : 4)

 Chemotaxis Loop (1 : 100)

 Bacterium Loop (1 : 50)

Fig. 11.4. The key loops in the BFOA algorithm

Parameter Values for the BFOA

The BFOA described above has a number of parameters which the modeller
must select. While good choices of parameters will vary depending on the prob-
lem to which the algorithm is being applied, Passino [496] used the following
in a sample application: S = 50 (number of bacteria), Nc = 100 (chemotactic
cycles per generation), Ns = 4 (number of steps per run), Nre = 4 (number
of generations), Ned = 2 (number of elimination-dispersal cycles), ped = 0.25
(dispersal probability per bacterium in an elimination-dispersal cycle) and
C(i) = 0.1 : i = 1, . . . , S (step size).

In selecting parameter values a few issues should be borne in mind. As
values of S, Nc, Nre, etc. increase, the computational cost of the algorithm in-
creases proportionately. The choice of C(i) will be domain-specific, depending
on the scaling of the solution space that the algorithm is searching. Decreas-
ing the value of C(i) during the run will encourage convergence (see [133] for
a discussion of a number of schemes for chemotactic step adaptation). The
value for Ns determines the maximum number of steps that a bacterium can
take in a single run. If Ns = 0, the search process becomes a random walk,
and as Ns increases, the search tends towards a gradient-descent. Interme-
diate values trade off the exploration-exploitation balance of the algorithm.
The value of Nre and the way that bacterial eliminations are implemented
impacts on the convergence properties of the algorithm. If a heavy-handed
selection process occurs in each reproduction-elimination cycle, the algorithm
will tend to converge more quickly but may get trapped in a local minimum.
Similarly, if a low value of Nc is chosen, the algorithm will be more prone to
getting stuck in a local optimum. The values of Ned and ped also impact on
the exploration-exploitation balance. If both values are large, the algorithm
tends towards exploration (random search). The values selected for wattract,
hrepel, wrepel and dattract, impact directly on the value of Jcc(θ, P (j, k, l)) and
therefore define the tendency of the bacteria to swarm. If the attractant width

198 11 Bacterial Foraging Algorithms

and depth parameters are set to high values, the bacteria will tend to swarm
easily, and if extreme values are set for these parameters, bacteria may prefer
to swarm rather than to search for nutrients. On the other hand, if very low
values are set for these parameters bacteria will search individually and will
ignore communications from other bacteria.

11.4 Dynamic Environments

Real-world bacteria inhabit a dynamic environment and it is plausible that
their survival strategies, including their foraging mechanisms, have evolved in
order to cope with the difficulties of surviving in such environments. In apply-
ing the BFOA to static problems the rate of the algorithm’s convergence, like
that of all search algorithms, depends in large part on the choice of parameter
settings. In dynamic problems, there is obvious utility to maintaining diver-
sity in the population; hence these settings can be chosen in order to promote
this. The objective of slowing down the rate of convergence is to promote
the continual exploration of new regions by the population of bacteria. As
for other natural computing optimisation algorithms, multiple strategies for
dealing with dynamic environments could be added to the canonical BFOA.
These could include the use of multiple species of bacteria (multiple popula-
tions), the maintenance of a memory of good past solutions and the use of
sentries to flag the occurrence of environmental change.

Another approach to maintaining diversity in the population of bacteria
would be to implement hybrid versions of the BFOA. For example, Tang et al.
[615] describe a hybrid GA-BFOA. In this hybrid the dispersion and elimina-
tion loop of the canonical BFOA is removed and a more complex reproduction
mechanism is implemented at the end of each chemotactic loop. In this re-
production mechanism, the bacteria which will make up the next generation
of the population are determined using a selection process which is based on
a weighted ranking of the bacterial fitnesses. The key element of this process
is that all bacteria have some possibility of survival into the next genera-
tion. This contrasts with the hard threshold selection process in the canonical
BFOA where the least fit y% of the population is automatically eliminated in
the reproductive step.

11.5 Classification Using a Bacterial Foraging Metaphor

Another application of bacteria inspired algorithms which has not yet received
much attention in the literature is the design of classification systems. A BFOA
could be used to uncover good coefficients for a classification model as well as
to uncover features for inclusion in the model.

More sophisticated model construction possibilities exist using multiple
species of bacteria, each attracted to a different ‘food’ corresponding to a

11.6 Summary 199

different class of data item. For example, by allowing bacteria of a single
species to swarm to a region of feature space which corresponds to a particular
class, a net of detectors corresponding to the individual bacteria could be
created. Each species of bacteria would be trained using a sample of data
from a specific class. Once the swarm of bacteria is trained, out-of-sample
data could be classified by determining which species’ detection range it fell
into. The data item would be assigned the class label corresponding to that
species of bacteria.

Another possibility is to hybridise the BFOA with concepts from the neg-
ative selection algorithm in artificial immune systems (Chap. 16.3). In a two-
class case, self examples could be designated as toxins and nonself examples
as food. The bacteria would then move around avoiding the toxins and seeking
the food. Just as for the negative-selection algorithm, the bacteria would act
as detectors of nonself.

Toxins

Food

Bacteria moving
towards food

Fig. 11.5. Bacteria moving towards examples of nonself (denoted as food), away
from examples of self (denoted as toxins)

11.6 Summary

This chapter has described the BFOA, an optimisation algorithm based on the
foraging strategy of a single species of bacteria, E. coli. Clearly, considerable
scope exists to design a wide array of related algorithms. In common with
many other biologically inspired algorithms, bacterial foraging algorithms are
an example of a populational, nongradient based optimisation method. The
BFOA embeds concepts such as selection, reproduction and social communi-
cation which are also found in various other algorithms.

12

Other Social Algorithms

In the final chapter in this part of the book, we introduce four emerging
families of algorithms which have been inspired by various processes of social
communication, in insects, bats and fish. Although these algorithms are not
as fully developed or explored as ant or honey bee algorithms, they provide
interesting examples of the diversity of natural computing algorithms that can
be developed from real-world social behaviours.

12.1 Glow Worm Algorithm

The glow worm belongs to the Lampyridae family of beetles. These beetles
can produce light by means of bioluminescence. This light is typically used to
attract resources, either mates or prey. In the first instance, bioluminescence
acts as a communication mechanism alerting glow worms to the location of
potential mates. In the second case, curious prey are attracted to the light
source — and to their doom. The glow worm swarm algorithm (GWSA),
loosely inspired by the phenomenon of bioluminescence, was introduced by
Krishnanand and Ghose [351, 352, 353] as a general optimiser which may
have particular potential for multimodal environments. In the algorithm, each
agent (glow worm) has an associated luminescence which indicates the quality
of its current location. It also has a sensor range within which it can detect the
location of other light-emitting glow worms. The essence of the algorithm is
that glow worms in the best locations shine most brightly and thereby attract
other glow worms towards them. This leads to more intensive searching of
regions around the brighter glow worms. Algorithm 12.1 describes the GWSA
presented in [353].

Sensor Range

Each glow worm i has two ranges defined around its current location, its local
decision range rid and its sensor range ris, where 0 < rid ≤ ris. The size of

© Springer-Verlag Berlin Heidelberg 2015
A. Brabazon et al., Natural Computing Algorithms, Natural Computing Series,
DOI 10.1007/978-3-662-43631-8_ 12

201

202 12 Other Social Algorithms

Algorithm 12.1: Glow Worm Algorithm

Select number of glow worms and radius of sensor range;
for each glow worm do

Place glow worm randomly in search space;
Initialise each glow worm’s luminescence level and the radius of its
local-decision domain;

end

repeat

for each glow worm i do

Update glow worm’s luminescence value;
Find set of each glow worm’s brighter neighbours;
Calculate probability of glow worm moving towards each of these
neighbours;
Stochastically select which peer glow worm to move towards;
Update glow worm’s position;
Update glow worm’s local decision range;

end

until terminating condition;

the sensor range remains fixed during the algorithm but the size of each glow
worm’s local decision range varies as the algorithm executes. Each of these
ranges is illustrated in Fig. 12.1.

Sensor range of glow
worm i (ri

s)

Sensor range of
glow worm j (rj

s) Local-decision
domains (ri

d and rj
d)

Fig. 12.1. Glow worms i and j have a sensor range with radii of (ris, r
j
s) and each

have their own local decision domains defined with radii of (rid, r
j
d). The size of the

local decision domain for each glow worm adapts during the course of the algorithm

The local decision range defines a neighbourhood around each glow worm
which is used to control how the glow worm moves through the search space.
In each iteration of the algorithm every glow worm stochastically selects one

12.1 Glow Worm Algorithm 203

of its neighbours which is brighter than it and moves towards that neighbour.
One particular feature of using a local decision range is that the size of the
neighbourhoods can be tuned in order to facilitate the use of GWSA for the
detection of multiple local optima.

At the start of the algorithm the individual glow worms are initially lo-
cated randomly in the search space, each is given an equal quantity of lumi-
nescence, τi(0), and each is given the same initial local decision range rid(0).
Subsequently, in each iteration of the algorithm, the location and the lumines-
cence value of each glow worm are updated. This location update rule implies
that the brightest glow worm in the population in a given iteration of the al-
gorithm will not move; hence the algorithm embeds elitism as the best-so-far
solution cannot be lost between iterations of the algorithm.

Luminescence Update

The luminescence update depends on the value of the objective function at
the current location of the glow worm. The previous luminescence value of the
glow worm is updated by adding a component which is proportional to the
objective function value at the glow worm’s current position. Just as in the
case of ant foraging algorithms, an evaporation mechanism is also implemented
such that a portion of the luminescence value at the end of the previous
iteration is eliminated:

τj(t+ 1) = max{0, (1− p)τj(t) + γJj(t+ 1)} (12.1)

where p is the evaporation or decay constant (0 < p < 1) and γ is the fixed
portion of the value of the objective function Jj(t) at glow worm j’s current
position which is added to its luminescence value. If the glow worm moves
towards ever-improving regions of the search space, its luminescence value
will tend to increase (assuming that the value of p is not excessive). On the
other hand, if it moves away from a good region, its objective function value
will decrease, as will its luminescence.

The term τj(t)(1 − p) can be considered as playing a smoothing role, as
once p < 1 the luminescence value at t+1 is influenced by its previous value,
embedding an implicit memory of the quality of past locations visited by the
glow worm. If p = 1 this memory is ‘turned off’. The term γ determines
the contribution the quality of the glow worm’s current location makes to its
luminescence update. Once again, setting γ = 0 turns off this component of
the update. Hence, the values of p and γ control the balance between current
and past information about the glow worm’s trajectory in influencing the
search process.

Location Update

The location update is driven by the relative luminescence of nearby peers.
A glow worm can only move in the direction of peers which are within its

204 12 Other Social Algorithms

local-decision radius rid and which are brighter than it. The choice as to which
of these neighbours a glow worm tries to move towards is made stochastically.
The probability that glow worm i moves towards a brighter neighbour j is
given by:

Pj(t) =
τj(t)− τi(t)∑

k∈Ni(t)
(τk(t)− τi(t))

(12.2)

where j ∈ Ni(t), Ni(t) = {j : di,j(t) < rid(t) and τi(t) < τj(t)}. The parameter
t denotes the iteration number, τi(t) is the luminescence of glow worm i at
iteration t, and Ni(t) denotes the neighbourhood set of all glow worms which
are brighter than i and which are within a threshold distance rid of i (measured
using Euclidean distance). By generating a random number and associating
this with the calculated probability ranges, a decision is made as to which of
its brighter peers to move towards.

For example, suppose glow worm i has three neighbours, a, b and c, all
of which are brighter than it (Fig. 12.2) and that τa(t) = 30, τb(t) = 70,
τc(t) = 30 and τi(t) = 10. Plugging these values into (12.2) produces Pa(t) =
0.2, Pb(t) = 0.6 and Pc(t) = 0.2. If a random variable of 0.31 is drawn from
U(0, 1), this falls into the range 0.20 → 0.79; hence, the glow worm i moves
towards neighbour b.

Three neighbours within
the local decision range of
glow worm i (ri

d)

Glow worm i

Fig. 12.2. Glow worm i has three neighbours which are brighter than it within its
local decision range

The glow worm takes a step of size s from its current locationXi(t) towards
the location of this peer Xj(t), leading to a ‘line of sight’ move towards a
neighbouring glow worm,

Xi(t+ 1) := Xi(t) + sdij(t) (12.3)

where dij(t) is the distance between glow worms i and j, calculated as:

12.1 Glow Worm Algorithm 205

dij(t) =
Xj(t)−Xi(t)

‖Xj(t)−Xi(t)‖
(12.4)

If a glow worm uncovers a very good location it may remain at that location
for several iterations of the algorithm. As other neighbouring glow worms
converge on that location, the fixed step size ensures that there will be local
search around the location of the best neighbourhood glow worm. Although
not implemented in the canonical form of the GWSA, the step size could be
altered dynamically during the algorithm in order to bias the exploration-
exploitation balance of the search process.

Local Decision Range Update

The local decision range, in effect the visual range, for each individual glow
worm i does not stay constant during the algorithm, rather it adapts:

rid(t+ 1) = min{rs,max{0, rid(t) + β(nt − |Ni(t)|)}} (12.5)

Looking at (12.5), rs is the fixed range of a luminescence sensor and this
acts as a hard limit on the possible size of the local-decision domain. The
parameter β is a constant which parameterises the relationship between the
size of rid(t+1) and the number of neighbours a glow worm has, and nt (a user-
chosen parameter) is used to control the number of neighbours. The higher
the value of nt, the larger the local decision range.

Considering specific values of the terms in (12.5), setting β = 0 implies
that the radius of the local-decision domain cannot change over time. If β > 0
and there are many neighbouring glow worms (nt < Ni(t)), then the value of
rid(t + 1) is reduced, tending to reduce the number of close-by neighbours in
subsequent iterations of the algorithm. On the other hand, if β > 0 and there
are few neighbouring glow worms (nt > Ni(t)), then the value of rid(t+ 1) is
increased, typically leading to an increase in the number of neighbours.

Comparison with Other Swarm Algorithms

A number of parallels can be drawn between the GWSA and other swarm
algorithms such as ACO (Chap. 9) and PSO (Chap. 8). All the algorithms are
based on population search and they are critically dependent on interagent
communication.

Both the GWSA and the particle swarm algorithm have been primarily
applied to real-valued problems. The neighbourhood concept in the glow worm
algorithm is somewhat similar to that of lbest in PSO in that a good location,
once uncovered, acts as an attractor for neighbouring individuals. Each glow
worm uses its luminescence to communicate information about the objective
function’s value at its current location to its neighbours. However, lbest is
implemented using a memory in PSO whereas individual glow worms do not
maintain a memory of previously visited locations.

206 12 Other Social Algorithms

Another distinction between the neighbourhood concepts in both algo-
rithms is that the neighbourhood topology is usually fixed in PSO, whereas
it adapts dynamically during the GWSA. This feature makes the GWSA po-
tentially useful for detection of multiple local optima, as well as for general
optimisation purposes.

In comparison with ant foraging algorithms, the GWSA also uses the idea
of depositing and evaporating an attractant. In the case of ants, the attractant
is chemical (pheromones); in the case of glow worms the attractant is light.
Despite this similarity, there is a clear distinction in the manner in which the
mechanisms operate in each algorithm. In ant foraging algorithms, pheromone
values are deposited on a construction graph rather than being associated with
particular ants. In contrast, luminescence is a property of each individual glow
worm.

Recently, a variation on the glow worm algorithm has appeared called the
Firefly algorithm [567, 673], which also adopts bioluminescence.

12.2 Bat Algorithm

A recent addition to the family of foraging algorithms in the natural com-
puting literature is the bat algorithm developed by Yang (2010) [674]. As its
name suggests it draws inspiration from elements of the foraging processes of
bats in order to design an optimisation algorithm.

Although it was documented as long ago as 1793 by the Italian scientist
Lazzaro Spallanzani that bats could avoid obstacles whilst flying in the dark,
it was only in relatively recent times that the underlying mechanism of echolo-
cation, or active biosonar, was identified (Griffin 1944 and 1958) [224, 225].
In echolocation, bats transmit pulses of acoustic energy (a bat ‘call’) and re-
solve the resulting echoes into an acoustic ‘image’ of their environment. This
is used to detect objects and to locate food resources such as flying insects.
In essence, the brain of echolocating bats produces ‘images’ of their surround-
ings by comparing the outgoing pulse with the returning echo. In contrast to
popular belief, no species of bat is blind and many have good vision [188]. It
is speculated that echolocation arose as a result of an evolutionary adaptation
to hunt at night rather than compete for food during the day [188, 308].

12.2.1 Bat Vocalisations

Different species of bat produce echolocation calls in various ways, but broadly,
they can be split into two groups, Microchiroptera (bat species that produce
echolocation calls using vocal chords in their larynx) and Megachiroptera (bat
species which produce echolocation calls by other means such as tongue click-
ing).

The nature of the echolocation calls produced by bats vary with some
being broadband signals (typically of short duration but having a wide range

12.2 Bat Algorithm 207

of frequencies with bandwidths of up to 100 kHz) and others being narrowband
signals (typically of relatively long duration and consisting of a narrow range
of frequencies with a bandwidth of circa 5 kHz) [18, 306]. Narrowband signals
are good for ranging distant items (or prey) and broadband signals are well
adapted for the fined-grained localisation of items. This leads to a phenomenon
whereby as insectivorous bats home in on their aerial prey, they switch from
narrowband to broadband signals. The broadband signals are then emitted at
an increasingly rapid rate as the bat approaches their prey target, resulting
in what is known in the bat literature as the ‘feeding buzz’.

As bat call echoes (reflections from objects including prey) are strongly
attenuated while travelling in air, bats can hear the calls produced by other
bats from much further away that they can detect echoes from their own calls.
Individuals approaching feeding groups, and eavesdropping on their calls, can
therefore increase their effective prey detection range between 10 to 50 times,
depending on species, over that provided by their own echolocation ability.
Eavesdropping therefore creates a mechanism akin to a recruitment process
wherein successful foragers implicitly communicate information which allows
other bats to home in on resource rich locations.

12.2.2 Algorithm

Algorithm 12.2 describes a variant on the canonical bat algorithm as presented
in [674]. In essence, the virtual bats in the algorithm commence by flying
randomly in the search space, and each bat has a different initial call frequency,
loudness and rate of pulse emission. The bats move around the search space,
using a mix of social information and random search. Search is also intensified
around good solutions using a local search step.

The algorithm consists of a number of discrete elements, namely: initial-
isation; generation of new solutions; stochastic local search around existing
good solutions combined with the stochastic generation of randomly-created
solutions; and finally, an updating of the location of the current best solution.

The objective function is denoted by F : Rd −→ R, which we seek to
minimise. At each iteration (timestep) t, each bat i has a location vector
xi(t) = (xi

1(t), . . . , x
i
d(t))

T and a velocity vector vi(t) = (vi1(t), . . . , v
i
d(t))

T in
the d-dimensional search space Rd. The current best location of all bats is
denoted by x∗. The general relationship between wavelength λ and frequency
f for echolocation calls in air is λ = v/f , where the speed of sound v is
approximately 340 metres per second. As noted above, bats can adjust the
wavelength or equivalently, the frequency of their calls. In the algorithm the
frequency is varied.

Generate New Solution

As the bat searches, the frequency of its echolocation calls at time step t is
generated using:

208 12 Other Social Algorithms

Algorithm 12.2: Bat Algorithm

Define an objective function F (x) where x = (x1, . . . , xd)
T ∈ R

d;
Set t := 0;
for each bat i = 1, 2, . . . , n do

Randomly initialise the location xi(0) and velocity vi(0);

Define pulse frequency f i(0) ∈ [fmin, fmax] at x
i(0);

Initialise pulse rate ri(0);

Initialise loudness Ai(0);

end

Let x∗ := the xi with best fitness;
while t < maximum number of iterations do

for each bat i = 1, 2, . . . , n do

Adjust frequency to f i(t+ 1) using (12.6);

Update velocity to vi(t+ 1) using (12.7);

Generate new solution xi
new(t+ 1) for bat i by updating location

using (12.8);

if rand > ri(t) then
Generate a local solution around x∗ and store it in xi

new(t+ 1);
end

Generate a random solution in a bounded range about xi(t) and
store it in xi(t+ 1);

if (rand < Ai(t) and F (xi
new(t+ 1)) < F (xi)) then

Set the location of bat i, xi(t+ 1) := xi
new(t+ 1);

Increase ri(t) and reduce Ai(t);

end

end

Rank the bats in order of fitness and update the location of the best
solution found by the algorithm so far (x∗) if necessary;
Set t := t+ 1;

end

Output best location found by the bats;

f i(t) = fmin + (fmax − fmin)β (12.6)

where fmin and fmax are the minimum and maximum frequencies of bat calls
respectively, and β is randomly drawn from a uniform distribution on [0, 1].
Initially, each bat i is assigned a random frequency f i(0) drawn uniformly
from [fmin, fmax].
The velocity update of each bat in each iteration of the algorithm is given by

vi(t+ 1) = vi(t) + (xi(t)− x∗)f i(t+ 1) (12.7)

and the position update is given by:

xi
new(t+ 1) = xi(t) + vi(t+ 1). (12.8)

12.2 Bat Algorithm 209

In essence therefore, the value of f i(t) controls the pace and range of the
movement of bat i in each iteration and the precise value of f i(t) is subject
to a random influence due to β.

Local Search

The local search component of the algorithm is operationalised as follows. If
the condition rand > ri(t) is met for an individual bat i (note that rand is
drawn from a uniform distribution whose range depends on the scaling of r as
discussed below), the current best solution (or a solution from the set of the
better solutions in the population) is selected, and a random walk is applied
to generate a new solution. The random walk is produced using:

xi
new = x∗ +A(t)ε (12.9)

where x∗ is the location of the best solution found so far, ε is a vector where
each component results from a random draw on [−1, 1], and A(t) is the average
loudness of all bats in the population at time step t.

The rate of local search during the algorithm depends on the values of ri(t)
(the rate of pulse emission) across the population of bats. If this rate increases,
the degree of local search activity will decrease. The average loudness A(t)
will tend to decrease as the algorithm iterates (discussed below), hence the
step sizes in the local search will reduce to become finer-grained. In order to
enhance the explorative capability of the algorithm, the local search step is
complemented by a random search process.

In real world bat foraging, the loudness of calls reduces when a bat ap-
proaches a prey target, while the rate of pulse emission from the bat increases.
This can be modelled using:

Ai(t+ 1) = αAi(t) and ri(t) = (1− e−γt)ri(0) (12.10)

where α (similar in concept to a cooling coefficient in simulated annealing)
and γ are constants. For any value 0 < α < 1, γ > 0, the following is obtained:

Ai(t) → 0, ri(t) → ri(0), as t → ∞. (12.11)

The loudness and pulse emission rate of individual bats are only updated if
a solution is found by a bat which is better than its previous solution. The
update process is stochastic as it only takes place if a random draw from
a uniform distribution, bounded by the maximum and minimum allowable
values for loudness, is less than Ai(t). As the algorithm iterates, the values for
loudness will tend to decay to their minimum, hence reducing the probability
that an update will occur. A side effect of this process is that it makes the
algorithm less ‘greedy’.

210 12 Other Social Algorithms

Parameters

In setting parameters for the algorithm, [675] suggests values of α = γ = 0.9,
with each bat having a different initial random value for loudness Ai(0) ∈
[1, 2], with Amin = 0. A value of Amin = 0 indicates that a bat has just
found prey and therefore stops emitting sound. Initial values for pulse rate
ri(0) ∈ [0, 1], if using (12.10), and values of fmin = 0 and fmax = 100 (these
values are domain specific and each bat is assigned a random value in this
range at the start of the algorithm) are also suggested. The performance of
the algorithm will be critically impacted by these parameters, and trial and
error will be required in order to adapt the algorithmic framework to a specific
problem.

Yang and Gandomi (2012) [675] point out that there is some similarity
between the bat algorithm as outlined above and PSO as, if the loudness is
set to 0 (Ai = 0) and the pulse rate is set to 1 (ri = 1), the bat algorithm
becomes similar to a variant of PSO algorithm (without pbesti), since the ve-
locity updates are governed by prior-period velocity and a noisy attraction to
gbest.

12.2.3 Discussion

The bat algorithm has produced competitive results on a series of bench-
mark optimisation problems. Despite the relatively recent development of the
algorithm it has also been successfully used in a variety of applications, en-
compassing constrained optimisation [207, 675], multiobjective optimisation
[69, 451], binary-valued representations [431], and clustering [544]. A detailed
review of applications of the bat algorithm is provided in [676].

There are multiple open areas of research concerning bat inspired algo-
rithms. The canonical version of the algorithm does not explicitly include a
personal detection mechanism (i.e., a bat can ‘see’ any prey in an arc around
its head) or a personal memory as to good past foraging locations. These
mechanisms could be included in a variation of the canonical algorithm. An-
other area of potential research is to embed a more complex processing of
social influences (feeding buzzes) in the bat algorithm. Plausibly, a bat will
be more influenced on hearing many feeding buzzes coming from a small area
(indicating a heavy concentration of prey in that area) than a solitary feeding
buzz coming from elsewhere.

Apart from the processes of echolocation in flight, it is also noted that there
is research in the foraging literature which claims that information transfer
between bats can occur at roost sites [658]. This study suggested that evening
bat species at nursery colonies transfer information by following each other
to feeding sites, with unsuccessful foragers leaving a roost and following pre-
viously successful foragers. Similar findings were reported for Phyllostomus
hastatus, a frugivore bat species [143, 659]. Such information transfer at roosts
bears parallel to the colony-based information transfer of other central place

12.3 Fish School Algorithm 211

foragers such as honey bees, and the mechanisms of this process could inspire
the design of an optimisation algorithm.

12.3 Fish School Algorithm

Another example of grouping or swarming behaviour is provided by fish shoal-
ing and schooling. Shoaling occurs when fish group together, with schooling
arising when these aggregations move in a coordinated manner. These be-
haviours are common with about half of all fish displaying shoaling behaviour
at some stage in their life cycle, and some species such as tuna, herrings and
anchovy are obligate shoalers and shoal for their entire life cycle. Fish shoals
can be very large with group sizes of up to a billion herring being reported
[495].

Shoaling behaviour carries certain costs including oxygen and food deple-
tion in the vicinity of the shoal, so the behaviour must also offer some benefits
to fish as gregarious behaviour would only have evolved if it enhanced surviv-
ability. These benefits include enhanced defence against predators (the mul-
tiple eyes in a shoal provide a higher vigilance and the many moving targets
overload the visual channel of predators), increased hydrodynamic efficiency
in moving through water and enhanced foraging success [598]. This latter ben-
efit has inspired the development of a series of search algorithms, drawing on
a fish school metaphor.

In common with the population of ‘agents’ in other swarm inspired algo-
rithms, shoals of fish have no leader and their aggregate behaviour is the re-
sult of individuals acting on local information (including information gleaned
from the behaviour of their neighbouring conspecifics), leading to emergent
self-organisation and problem-solving capabilities [598].

One of the better-known fish school algorithms, Fish School Search (FSS)
was developed by [38]. In this algorithm, fish swim (search) to find food (can-
didate solutions) in an aquarium (search space). Unlike PSO, no explicit mem-
ory of the best locations found to date in the search process is maintained;
rather the weight of each fish acts as a memory of its individual success to
date during the search process, and promising areas in the search space can
be inferred from regions where larger ensembles of fish gather. The ‘barycen-
tre’ (or the location of the ‘centre of gravity’) of the whole school of fish is
considered to provide a proxy for this. In designing the algorithm, the authors
considered six design principles to be important, namely:

i. simple computation at each agent,
ii. creative yet simple means of storing distributed memory of past compu-

tations in the fish weights,
iii. local computations (preferably in small radiuses centred on each fish),
iv. simple communication between neighbouring individuals,
v. minimum centralised control (preferably only the barycentre information

is exchanged), and

212 12 Other Social Algorithms

vi. simple diversity-generating mechanisms among individuals.

Considering the impact of each of the above on a resulting algorithm, item
(i) reduces overall computation cost, item (ii) allows adaptive learning, items
(iii), (iv) and (v) keep computation costs low and allow some local knowledge-
sharing promoting convergence, and item (vi) speeds up search and is a useful
mechanism in a dynamic setting.

12.3.1 Fish School Search

Fish School Search (FSS) [38, 39] has two primary operators which are in-
spired by fish behaviour. These are feeding, inspired by natural instinct of
fishes to feed (food here is a metaphor for the evaluation of candidate so-
lutions in the search space), and swimming, which aims at mimicking the
coordinated movement of fish in a school and guiding the actual search pro-
cess. The operationalisation of each of these behaviours in the algorithm is
discussed below.

Individual Movement

A swim direction is randomly chosen. Along each dimension of the search
space, a variable r randomly drawn from a uniform distribution U(−1, 1) is
multiplied by a fixed step size (stepind). If the food density (fitness) at the
resulting location is greater than at the fish’s current location, and the new
location is within the feasible search space, then the fish moves to the new
location (12.12); otherwise no move is made.

xj(t+ 1) = xj(t) + rstepind (12.12)

In order to promote exploitation as the algorithm progresses, the parameter
stepind decreases linearly as the algorithm iterates (up to max iter).

stepind(t+ 1) = stepind(t)−
(stepinitialind − stepfinalind)

max iter
(12.13)

Feeding

As a fish moves in the search space, it gains ‘weight’ in proportion to its
success in finding food (fitness). Weight is gained if the fitness at the current
location of a fish is better than the fitness at its previous location; weight
is lost otherwise. The value of weight is constrained to lie in the range 1 to
max value and all fish are initialised to a weight of max value

2 at the start of
the algorithm. The starting positions for all fish are chosen randomly at the
start of the algorithm:

wi(t+ 1) = wi(t) +
Δfi

max(Δf)
(12.14)

12.3 Fish School Algorithm 213

where wi(t) is the weight of the fish i, Δfi is the difference of the fitness
between the previous and the new location, and max(Δf) is the maximum
fitness gain across all the fish. As discussed above, Δfi = 0 for any fish which
do not undertake individual movement in that iteration.

Collective-Instinctive Movement

After the individual movement step is completed for all fish (as above, not
all fish will actually move), a weighted average of all movements in the school
is computed. Fish with successful moves influence the resulting direction of
movement of the entire school and fish which did not update their position
under the individual movement step are ignored.

m(t) =

∑N
i=1 ΔxiΔfi∑N

i=1 Δfi
(12.15)

When the overall direction is computed, all fish are repositioned, including
those which did not undertake an individual movement:

xi(t+ 1) = xi(t) +m(t) (12.16)

Collective-Volitive Movement

After the individual and collective-instinctive movements, a final positional
adjustment is made based on the overall weight variation of the school as a
whole. If the school is putting on weight collectively (it is engaging in successful
search) then the radius of the school is contracted in order to concentrate the
search. Otherwise the radius of the school of fish is increased in order to
enhance the diversity of the school. The expansion or contraction occurs by
applying a small step drift to the position of every fish in the school with
respect to the location of the barycentre for the entire school.

First, the barycentre b (centre of mass) needs to be calculated:

b(t) =

∑N
i=1 xiwi(t)∑N
i=1 wi(t)

(12.17)

If the total weight of the school has increased during the current iteration,
all fish update their position (including those which did not undertake an
individual movement) using:

xi(t+ 1) = xi(t)− stepvolrand(0, 1)
(x(t) − b(t))

d(x(t), b(t))
(12.18)

or, if total weight has decreased:

xi(t+ 1) = xi(t) + stepvolrand(0, 1)
(x(t) − b(t))

d(x(t), b(t))
(12.19)

214 12 Other Social Algorithms

where d() is a function which returns the Euclidean distance between xi and
b. The parameter stepvol is a predetermined step size used to control the
displacement from/to the barycentre.

Looking at each of the swimming mechanisms above, individual movement
is a mix of a stochastic search and personal cognition (as the fish needs to
be able to assess the worth of each location). Collective-instinctive movement
embeds an element of social learning, as fish are assumed to move based on
the success of their conspecifics in finding new high-quality feeding locations.
Collective-volitive movement embeds an exploration-exploitation adaptation
based on the collective success of the school. Therefore this also embeds an
element of social learning.

Algorithm 12.3: Fish School Search Algorithm

Initialise all fish randomly;

repeat

for each fish in turn do

Evaluate fitness function;
Implement individual movement;
Implement feeding;
Evaluate fitness function;

end

for each fish in turn do

Implement instinctive movement;
end

Calculate barycentre;
for each fish in turn do

Implement volitive movement;
end

Update step size;

until termination condition is satisfied ;
Return the location of the best solution found;

12.3.2 Summary

The FSS can be considered as a swarm algorithm as the search process embeds
bottom-up learning via information flow between searching agents. The results
from the algorithm have been found to be competitive with those from other
swarm algorithms such as PSO. Other work which has developed FSS includes
[39], which analyses the importance of the swimming operators and shows
that all the operators have important impact on the results obtained; [295],
which examines a variety of alternative weight update strategies for FSS; [96],

12.4 Locusts 215

which develops a PSO-FSS hybrid called ‘volitive clan PSO’; and [373], which
describes a parallel GPU implementation of FSS.

Other approaches to the design of fish school algorithms have been taken.
Another related strand of literature concerns the Artificial Fish Swarm Algo-
rithm (AFSA) [367, 259]. This embeds a number of fish behaviours includ-
ing preying, swarming, and following so that the behaviour of an artificial
fish depends on its its current state, its local environmental state (including
the quality of its current location), and the states of nearby companions. A
good review of the recent literature on AFSA, including a listing of some
applications, is provided in [436] and the reader is referred there for further
information.

12.4 Locusts

Another interesting example of foraging behaviour is exhibited by some species
of locust. Locusts are a member of the grasshopper family of insects. Per-
haps the best-known, and indeed infamous, species of locust is the desert
locust (Schistocerca gregaria), which inhabits some 60 countries encompass-
ing Africa, Asia and the Middle East. Given that a locust can eat its own
body weight of vegetation in a single day, a large swarm of locusts, which in
extreme cases can include billions of individuals, can be highly destructive.
Locust plagues have even resulted in famines.

A desert locust lives for three to five months, going through three primary
life cycle stages. Initially, female locusts lay eggs which take a few weeks to
hatch into wingless larvae or nymphs (also called ‘hoppers’). These in turn
mature over about a month via five or six moults, eventually resulting in
mature adults which are capable of flight. Adult locusts can live for several
months, depending on environmental conditions.

One curious aspect of desert locust behaviour is that it exhibits two dis-
tinct social states, being either solitary or gregarious depending on external
stimuli. Typically, locusts live in a solitary fashion but certain environmental
conditions can encourage them to congregate en masse and become gregari-
ous. For example, desert locust populations tend to flourish after rainstorms
cause plant growth and create good conditions for egg laying. As drought
returns and food resources become scarce for the now enlarged population,
locusts congregate in the remaining food patches. As they crowd together and
the locust population becomes densely packed, sensory stimuli including the
touch, smell and sight of other locusts cause the serotonin levels of individual
locusts to rise [17], in turn resulting in the triggering of a gregarious state. In
this state the locusts give off a pheromone that causes them to be attracted
to each other and their colouring also changes. As smaller groups coalesce,
huge swarms can form.

Adult locusts are highly mobile and can travel long distances in search
of food resources. In a daily cycle, locusts will roost overnight on vegetation,

216 12 Other Social Algorithms

before moving down to ground level to bask and warm up in the morning.
By mid-morning, the locust swarm takes to the air and flies for several hours,
typically landing and settling an hour before sunset. Locusts tend to fly with
the wind and can cover over 100 km in a day, sometimes reaching heights
of up to 1,800 metres [613]. Some notable long-distance locust migrations
have occurred, including, for example, from West Africa to the Caribbean, a
distance of 5,000 km, in about ten days in 1988.

12.4.1 Locust Swarm Algorithm

Several aspects of locust behaviour could potentially inspire the design of
optimisation algorithms, but thus far, attention has only been focussed on the
‘devour and move on’ behaviour which characterises locust plagues. The locust
swarm algorithm which was developed by Chen (2009) [103, 104] is loosely
inspired by this idea and also draws inspiration from a variant of particle
swarm optimisation (PSO) called ‘Waves of Swarm Particles (WoSP)’ [269].

The locust swarm algorithm is specifically designed for application to mul-
timodal problems as it uses multiple swarms in order to explore wide expanses
of the search space. The essence of the algorithm is that it explores multiple
optima using a ‘devour and move on strategy’ [103]. The algorithm is non-
convergent, making it useful for the exploration of non-globally-convex search
spaces (i.e., search spaces which are deceptive).

The algorithm blends a coarse search phase with a greedy search phase.
The coarse search is operationalised using a PSO variant and this is intended
to generate good starting points for the greedy search process. After the greedy
search process has ‘devoured’ a region around these starting points and found
the local optimum, scouts are then deployed in order to find new promising
locations from which to initiate a new search. The process is iterated over a
series of searches and the best result found is returned as the final result.

Pseudocode for the algorithm, drawn from [103], is provided in Algorithm
12.4. The workings of the algorithm can be divided into two stages. In the first
stage, a large number R of random points are generated in the search space
and the best S of these are selected to form an initial swarm. Next, a variant
on the standard PSO algorithm is run for a set number n of iterations, and
the resulting gbest is obtained. In this phase of the algorithm, the objective
is to generate a coarse-grained search process, with little convergence of the
swarm of particles (locusts). In order to achieve this, the particle position and
velocity update processes of the canonical PSO (Chap. 8.2) are altered [103].
The position update is generated from:

xid(t+ 1) = xid(t) + 0.95vid(t+ 1) (12.20)

and the velocity update is given by:

vid(t+ 1) = Mvid(t) +G(gbestd (t)− xid(t)) (12.21)

12.4 Locusts 217

Algorithm 12.4: Locust Swarm Algorithm

Generate R points in the search space at random;
Select the best S of these to form the initial particle swarm;
Assign a random velocity to each of these particles;
Run a particle swarm algorithm for n iterations using update equations
(12.20) and (12.21);

Locally optimise the resulting gbest using a local search algorithm to get xopt;

for swarms 2, . . . , N do

Stochastically generate r points around the last xopt;
Select the best S of these to form a particle swarm;
Assign initial outward velocity to each particle using (12.22);
Run the particle swarm algorithm for n iterations using update equations
(12.20) and (12.21);

Optimise the resulting gbest found by this swarm using a local search
algorithm in order to produce a new xopt;

end

Return the location of the best solution found;

Hence, in each iteration, the location of particle xi is updated along each of its
d dimensions by applying a velocity vector to it (12.20), where the magnitude
and direction of the velocity vector (generated using 12.21) is a function of the
prior period velocity of that particle and the particle’s position relative to the
gbest of the swarm. Unlike the canonical version of PSO, the velocity update
equation (12.21) does not include a pbest term and the momentum coefficient
is given much greater weight than that assigned to gbest (values of M = 0.95
and G = 0.05 are used in [103]). This formulation of the velocity update
promotes continued exploration of the search space rather than encouraging
exploitation of information gained thus far during the search process, thereby
producing a coarse-grained search. At the end of the PSO phase, the gbest

solution is (locally) optimised using a local search method such as gradient
descent.

In the second stage of the algorithm, the best location found in the first
stage acts as the launch point for the second swarm. For each of the 2, . . . , N
swarms in turn, a total of r points (or scouts) are generated from the optimum
point found by the previous swarm by applying a mutation operator to that
point. In [103] the mutation step is operationalised so that newly generated
points must be at least a threshold distance from the previous optimum point
in order to ensure that there is a suitable balance between exploitation of
the information contained in the previous optimum and exploration of other
regions of the search space.

Unlike the first stage of the algorithm, the initial velocities of the particles
in each swarm are not assigned randomly. Instead the velocity is set in order

218 12 Other Social Algorithms

to promote exploration of the search space by launching the particles away
from the optimum point found by the last swarm. Hence, in (12.22) the initial
(t = 0) velocity for each particle i on dimension d (i.e., vid(0)) is set using
parameter p = 0.8, the location of particle i relative to the position of the
optimal point found by the previous swarm, xid(0)−xopt

d (0), and a stochastic
component rd which is chosen depending on the scaling of the search space
on dimension d [103].

vid(0) = p(xid(0)− xopt
d (0)) + rd (12.22)

After the velocity and location of each particle in the swarm are initialised,
the update equations (12.20) and (12.21) are applied. At the conclusion of n
iterations of the PSO for that swarm, the resulting xopt is locally improved
and becomes the optimum point for the next swarm launch. At the conclusion
of all N − 1 swarms, the location of the best result found by the algorithm is
returned.

The foraging behaviour of locusts offers another interesting example from
the biological world of a phenomenon which can be used to inspire the design
of optimisation algorithms, and the work of Chen [103, 104] opens the door
to this area. Whilst the locust swarm algorithm relies heavily on a modified
particle swarm framework, it should be noted that the modifications result in
a blend of nonconvergent and stochastic search which differs from a canonical
PSO or indeed pure random search. Further work is required in order to fully
determine the utility and computational efficiency of the resulting algorithm.
It is also evident that scope exists to design other locust behaviour inspired
algorithms which embed more complex models of swarm communication and
decision making.

12.5 Summary

The core of most swarm-based algorithms lies in the mechanisms of social
communication and the resulting diffusion of information between the in-
dividual agents in the swarm. In this chapter we introduced four emerging
families of algorithms which are not yet as fully developed or explored as ant
or honey bee algorithms, providing interesting examples of the diversity of
natural computing algorithms that can be developed from real-world social
behaviours.

Part III

Neurocomputing

13

Neural Networks for Supervised Learning

Quite commonly, we are faced with the problem of taking a vector x =
(x1, . . . , xn) of inputs and producing a vector y = (y1, . . . , ym) of outputs.
For example, in a classification problem, the x1, . . . , xn may be characteristics
of an item to be classified, and the corresponding output could be a single y,
the class label for that item. Hence, the task is to uncover a function g such
that y = g(x). Of course, the mapping g may be nonlinear. Generally, we are
satisfied if we can approximate the ‘true’ function g sufficiently accurately by
a function f of some particular form, e.g., polynomial in several variables,
where f has coefficients or parameters whose values we need to determine.
This is known as the function approximation problem.

Different approaches to finding f (e.g., regression modelling) amount to
assuming particular functional forms for f . Typically, we need a dataset of
examples, called training data, to allow us to find a suitable mapping f . This
problem is complicated for at least two reasons:

i. we try to derive f from a finite dataset; this generalisation is an inherently
difficult problem;

ii. the y1, . . . , ym or x1, . . . , xn may be noisy.

In this chapter we introduce a family of algorithms, artificial neural networks,
which can be used for function approximation.

13.1 Biological Inspiration for Neural Networks

The human brain may be considered as a vast, interconnected parallel-
processing system. It receives inputs from its environment, can encode and
recall memories, and can integrate inputs to produce a thought or an action
(an output). The brain has the capability to recognise patterns and to pre-
dict the likely outcome of an event based on past learning. The brain consists
of about 100 billion nerve cells or neurons . Each of these is connected to

© Springer-Verlag Berlin Heidelberg 2015
A. Brabazon et al., Natural Computing Algorithms, Natural Computing Series,
DOI 10.1007/978-3-662-43631-8_1

221

3

222 13 Neural Networks for Supervised Learning

a few thousand other neurons and is constantly receiving electrical signals
from them along fibres, called dendrites, that emanate from the cell body
(Fig. 13.1). If the total signal coming into an individual neuron along all its

Axon
Cell body

Dendrites

Output Input

Synapse

Fig. 13.1. A simplified diagram of a nerve cell

dendrites exceeds a threshold value, the neuron fires and produces an outgoing
signal along its axon which is in turn transmitted to other neurons.

Connections between neurons occur at synapses and signals cross the
synaptic gap by means of a complex electrochemical process. When a synapse’s
electrical potential is raised sufficiently due to signals from the axon, it releases
chemicals known as neurotransmitters, which in turn chemically activate gates
on the dendrite, which allow charged ions to flow. Each dendrite can have mul-
tiple synapses acting on it, with some of these serving to amplify signals along
the dendrite and others serving to inhibit (weaken) them.

13.2 Artificial Neural Networks

Artificial neural networks (ANNs), usually shortened to Neural Networks
(NNs), are a family of computational methodologies whose design is inspired
by stylised models of the workings of the human brain and central nervous
system. NNs can be used for a wide variety of tasks including the construction
of models for the purposes of prediction, clustering and classification.

13.2.1 Neural Network Architectures

At a basic level, a NN is just a network of simple processing units called
nodes or neurons. Signals or influences can only pass in one direction along a

13.2 Artificial Neural Networks 223

given connection (also called arc or edge). Furthermore, the effect of the signal
along a connection may be adjusted by a weight on that edge. This means
that NNs are weighted directed graphs. Each node processes the combination
of weighted signals presented to it, in a manner that varies according to the
type of NN.

NNs can exhibit complex emergent global behaviour, determined by the
connections (arcs) between the processing units (nodes) and network param-
eters (weights). NNs are inductive, data-driven modelling tools which do not
require an explicit a priori specification of the relationship between model
inputs and outputs. They have the ability to learn in the sense that they use
a set of data (observations), so as to find a function from a predetermined
class C of functions which solves the problem at hand in an optimal — or
at least feasible — way. The class C is restricted to functions which may be
expressed in terms of a basis of certain building block functions: the choice of
basis function is one of the distinguishing characteristics of a NN. NNs provide
a very general and powerful framework for representing nonlinear mappings
from several input variables to several output variables, where the form of
the mapping is controlled by a number of parameters (whose values may be
adjusted). In NN terms, the unknown function parameters sought are usually
called weights, since they are weights on graph edges. Learning the weights is
also called training the NN.

The capabilities of NNs stem from their connection architectures, the pro-
cessing that takes place at each node, and the way that the network learns
from data. NNs can be differentiated from each other along four main axes:

i. connection topology,
ii. basis function,
iii. training method, and
iv. learning algorithm.

The connection topology defines how the processing units or nodes are
connected to each other.

The basis function defines what processing each node carries out on the
combination of all its inputs, in order to generate its output value.

The training method is concerned with how the NN learns. In supervised
learning, the NN is provided with training data (input data for which the
output is already known); over multiple iterations, the learning algorithm
discovers how to link the inputs to the associated known outputs, and how
to predict the correct output for inputs not given in the training data. Here,
the aim is to find a function that matches or fits the training data (or at
least minimises an error measure such as least squared error). Examples of
supervised learning tasks include classification and regression. In contrast,
unsupervised learning occurs when the NN is not provided with outputs, but
rather is left to uncover patterns in the input data without a priori information
as to what these patterns may be. An example of unsupervised learning would

224 13 Neural Networks for Supervised Learning

be the uncovering of previously unknown patterns in databases of customer
information, such as clustering, segmentation or density estimation.

The learning algorithm defines how error is measured during the training
process, and how the NN model is updated during training in order to reduce
this error.

Many forms of NNs can be developed by making different choices for the
above items.

In this chapter, we concentrate on the two most common forms of su-
pervised NN, the multilayer perceptron (MLP) and the radial basis function
network (RBFN). We also introduce support vector machines, which, although
not derived from a neurocomputing metaphor, bear similarities to radial basis
function networks. In Chap. 14, we examine self-organising maps, the most
popular unsupervised NN algorithm, and adaptive resonance theory, a family
of NNs most of which are unsupervised but some of which may be used in
supervised learning. We conclude this part of the book with a chapter on neu-
roevolutionary hybrids, illustrating how evolutionary processes can be applied
to generate NNs (Chap. 15).

13.3 Structure of Supervised Neural Networks

A supervised NN aims to address the function approximation problem by
building up an internal model of a function which is a good fit to the training
data provided. The model has the form of a weighted directed graph, where
each node constructs a weighted sum (linear combination) of building block
(or basis) functions (from the nodes of the previous level, which feed into
this node). The NN parameters are the arc weights, which are learned from
provided training data.

We discuss in detail below the two most common supervised NNs, Multi-
layer Perceptrons (MLPs) and Radial Basis Function (RBF) networks (RBFNs).
In this section, we note that they have much more in common than might be
gleaned from a quick review of the NN literature. The MLP and RBFN ar-
chitectures are actually quite closely related, in that each is a basis function
network, that is, a network of nodes, all nodes having identical basis functions
which convert the input data to an output. In fact, all NNs may be viewed as
basis function networks [58]. Recall that a basis of a vector space V is a set
B which is both linearly independent and spans V . If V is a vector space of
functions, typically infinite-dimensional, the definition of basis is more compli-
cated (because infinite sums need not converge) but under certain conditions
can be shown to work. Then a basis of V consists of basis functions, i.e.,
building blocks: we can write other functions as linear combinations (that is,
weighted sums) of the basis. Basis functions should provide maximum flex-
ibility in the contours they can represent, together with a small number of
tunable parameters. Large NNs with simple nodes may have the same power
as small networks with more complex nodes.

13.3 Structure of Supervised Neural Networks 225

Figure 13.2 shows a standard feedforward network architecture typical of
both MLP and RBFN. There are multiple layers or levels of nodes, including

b0, ..., bn

a0, ..., am

Fig. 13.2. An example of a three-layer ANN (a tripartite graph), e.g., a feedforward
MLP or RBFN. All arcs go from left to right. The leftmost layer, b0, b1, . . . , bn, of
nodes is the input layer, the middle layer, a0, a1, . . . , am, is a hidden layer, and the
rightmost node is the output node. The shaded nodes are bias nodes

an input layer, an output layer and one or more hidden layers that are not
directly visible or modifiable from outside the NN. The input layer serves
as a holding layer for the data being input to the NN. Nodes in the final
hidden layer are connected in turn to an output layer which represents the
processed output from the model. Hidden and output nodes process the data
using activation and transfer functions (Sect. 13.3.1). Input layer nodes do
not carry out real calculations, since all they do is distribute the inputs to
hidden layer neurons. Also, offsets or biases can be fed into each hidden or
output neuron. The inclusion of a bias node serves a similar purpose as the
inclusion of a constant term in a regression equation and also has a parallel
with the idea of a threshold value in biological neuron firing processes. The
input value of the bias node is usually held constant at 1, and is automatically
rescaled as necessary as the weights on its outgoing connections change.

NNs provide an example of parallel, distributed computing, since each hid-
den layer node acts as a local processor of information yet also acts concur-
rently and in parallel with the other nodes in its layer. Although the processing
which takes place at individual nodes is relatively simple, the linkage of these

226 13 Neural Networks for Supervised Learning

nodes gives rise to emergent global capabilities for the network, permitting
complex nonlinear mappings from input to output.

13.3.1 Activation and Transfer Functions

In the NN context, each basis function h : Rn −→ R at a node is actually a
composition of two functions:

i. an activation1 (or likeness or similarity) function a : Rn −→ R, which
measures similarity between the current input and the NN weight param-
eters, composed with

ii. a transfer function σ : R −→ R, of saturation type in the MLP case, of
radial symmetry type in the RBFN case.

That is, h = σ ◦ a, with the output of the activation function being the
input to the transfer function. Every NN transfer function is a function of
one argument (a scalar), that argument being constructed by the activation
function out of several input variables. However, MLPs, RBFNs, etc., have
different particular forms of the transfer and activation functions.

Typically, the transfer function is a squashing function, so as to keep the
output values within specified bounds. The three major possibilities are:

i. a sigmoidal nonlocal transfer function (saturation type, used in MLPs: see
Sect. 13.4.1);

ii. a transfer function localised around a single centre (radially symmetric
type, used in RBFNs: see Sect 13.5.2);

iii. a semicentralised transfer function that has either many centres or hard-
to-define centres.

Examples of activation function include the following. Each of these measures
how ‘alike’ are the input vector and the vector of weights on the arcs into the
current node.

• A weighted combination of the input signals:2 this is the most com-
mon activation function, sometimes called a fan-in function; it is used
in MLPs (Sect. 13.4). Suppose that a given node j receives input vec-
tor x = x0, . . . , xn along arcs whose weights make up the weight vector
wj = (w0j , w1j , . . . , wnj). Then the activation is

a(x,wj) :=

n∑
i=0

xiwij = xtwj = x · wj (inner or dot product). (13.1)

1There appears to be no standard term in the NN literature for the input to the
transfer function; in the MLP context, [170] calls it the net activation, netj , while
[58] simply calls it the ‘sum’ aj . Furthermore, some texts give the name ‘activation
function’ to the transfer function. The activation functions are linear in the case of
linear NN models.

2This approach is biologically inspired, mimicking the inputs from multiple den-
drites to a neuron.

13.3 Structure of Supervised Neural Networks 227

For fixed wj , this gives hyperplanes as the contours of a(x,w) = const,
illustrated in Fig. 13.6.

• A distance (norm3) based activation function: a(x, c) := ‖x − c‖, used to
calculate distance from x to a ‘centre’ vector c. Here the weights are viewed
as the components of the centre c. This is used in RBFNs.

• A linear combination of the above two approaches: a(x,wj) := αx · wj +
β‖x− wj‖.

The fundamental difference between MLPs and RBFNs is the activation func-
tion, i.e., the way in which hidden units combine values coming from preceding
layers in the network:

• an MLP uses a dot product, a weighted combination of the input signals,
giving a projection; this means it considers how alike in direction are the
input vector and weight vector; while

• an RBFN uses a Euclidean or other distance function (metric); the RBFN
measures how far apart are the input and weight (centre) vectors and
responds less strongly to input vectors further away.

Arising from this fundamental difference come the commonly known differ-
ences:

• the MLP is a global network where every input data vector can influence
potentially every parameter in the network;

• the RBFN by contrast is local, with a given node only reacting to input
data from a small local region of the input data space.

The local nature of the RBFN means it is quicker to train but suffers
from the curse of dimensionality: the number of hidden nodes required grows
exponentially with the number of inputs. This happens because in an RBFN
there must be a certain number of receptors per unit length in every dimen-
sion, just to give reasonable coverage of the input data set. This is the case
no matter how many input data are relevant. This effect may be mitigated
somewhat by the training strategy used and/or by clustering. The main ways
to address the effect are to incorporate domain knowledge about the func-
tion to be approximated, and/or to ensure the function is smooth by careful
network design. The global nature of the MLP means it can use fewer nodes
internally to achieve equal quality of approximation at a faster running speed
by avoiding the curse of dimensionality.

The standard methods for training MLPs and RBFNs differ too, although
most MLP training methods can also be used on RBFNs (Sect. 13.4.5).

3The notation ‖v‖ denotes the norm or length of a vector v = (v1, . . . , vn). There
are many possible definitions of norm; one of the most common is the Euclidean norm
‖v‖ =

√
v21 + · · ·+ v2n.

228 13 Neural Networks for Supervised Learning

13.3.2 Universal Approximators

It can be shown [58, 125, 285, 556] that MLPs have universal approximator
capabilities, in that under general conditions (sigmoidal transfer function,
one or more hidden layers) they are capable of approximating to arbitrary
accuracy any continuous function on a compact (closed and bounded) domain,
and thus any given classification or decision boundary. Similarly [58], RBFNs
are universal approximators. These universal approximator results follow from
Kolmogorov’s theorem (Theorem 13.1) and related results in approximation
theory.

Theorem 13.1 (Kolmogorov, 1957). Let U be a compact subset of Rn and
let f : Rn −→ R. Then f may be represented as a superposition (i.e., linear
combination) of a ‘small’ number of functions of one variable.

That is, f may be represented as a superposition of relatively few transfer
functions. Although Kolmogorov’s theorem shows NNs can work perfectly
in theory, it is necessary to use modifications to show we can approximate
as closely as desired if we restrict consideration to particular kinds of basis
function.

In NN terms, developments of these results say that any continuous func-
tion f : Rn −→ R : x = (x1, . . . , xn) �−→ f(x) can be represented exactly by
a four-layer NN having n(2n + 1) nodes in the first hidden layer and 2n+ 1
nodes in the second hidden layer.

13.4 The Multilayer Perceptron

The canonical (artificial) multilayer perceptron (MLP) draws metaphorical
inspiration from the brain process described in Sect. 13.1. MLPs are the stan-
dard, and most used, neural networks. Since the MLP is often trained using
the (error) backpropagation training algorithm, it is sometimes (incorrectly)
referred to as a ‘backpropagation network’.

The MLP consists of three (typically) or more layers of interconnected
nodes (Fig. 13.2). It has one or more hidden layers, in addition to the input
and output layers. The optimal size(s) of the hidden layer(s) is (are) not
known a priori and is (are) usually determined heuristically by the modeller.
Topologically, MLPs are directed multipartite graphs, tripartite in the case
of three layers. The standard architecture is feedforward in that the pattern
of activation of the network flows in one direction only, from the input to the
output layer. That is, the standard MLP is a directed acyclic graph. Recurrent
MLPs (Sect 13.4.9) have feedback loops and so are not acyclic.

In an MLP, the signal or value passing along an arc is modified by mul-
tiplying it by the weight on that arc before it reaches the next node. The
weight therefore serves to amplify or dampen the strength of a signal along
that arc. An MLP weight is similar in concept to a regression coefficient. The

13.4 The Multilayer Perceptron 229

processing carried out at each node in the hidden and output layers consists
of passing the weighted sum of inputs to that node (its activation, a scalar)
through a nonlinear transfer function (Fig. 13.3).

w1

w2

w3

Input 1

Input 2

Input 3

Output
Transfer
function

Fig. 13.3. A single processing node in an MLP. The arc weights are denoted by w1,
w2 and w3 (if this is node j, we would more correctly denote them by w1j , w2j and
w3j , as below). The weighted sum of the inputs to the node, or activation, shown as∑

, is passed through a transfer function, to produce the node’s output

The general form of a single output y from a three-layer MLP (that is, a
single hidden layer) is:

y = σ

⎛
⎝w′

0 +

m∑
j=1

w′
jσ

(
n∑

i=0

xiwij

)⎞
⎠ (13.2)

where:

• xi represents input i (x0 is a bias node, the leftmost shaded node in
Fig. 13.2);

• wij represents the weight between input node i and hidden node j, with
w0j being the bias input to hidden node j: typically, w0j = 1. We say that
hidden node j has weight vector wj = (w0j , w1j , . . . , wnj);

• w′
0 is the bias node (rightmost shaded node in Fig. 13.2) weight fed to the

output layer;
• w′

j , j = 1, . . . ,m, represents the weight between hidden node j and the
output node;

• y denotes the output produced by the network for input data vector x =
(x1, . . . , xn); and

• σ represents a nonlinear transfer function.

It is possible to have different transfer functions σ1 and σ2 at different layers,
or indeed for different nodes in the same layer, but this is rarely done.

230 13 Neural Networks for Supervised Learning

13.4.1 MLP Transfer Function

The MLP transfer function is usually of saturation type, sometimes called a
squashing function. A saturation function is one with finite upper and lower
bounds.

The usual choice of transfer function is a sigmoidal (S-shaped) response
function, such as the logistic and hyperbolic tan functions, which transform an
input in the range (−∞,+∞) to the range (0, 1) and (−1, 1) respectively. They
thus keep the response of the MLP bounded. Alternatives are the Heaviside
step function,4 and piecewise linear (ramp) function but the former is not
continuous and the latter not differentiable, so each gives rise to mathematical
difficulties when training the network using gradient-based algorithms such as
the standard backpropagation algorithm (Sect. 13.4.5).

The logistic function, lgt, and hyperbolic tangent, tanh, have the forms:

lgt(x) =
1

1 + e−x
and tanh(x) =

ex − e−x

ex + e−x
=

1− e−2x

1 + e−2x
. (13.3)

Each is related to its derivative, which is useful in the optimisation required
for training by backpropagation (Sect. 13.4.5):

d

dx
lgt(x) = lgt(x)(1 − lgt(x)), while

d

dx
tanh(x) = 1− tanh2(x). (13.4)

Geometrically, all of these MLP transfer functions (step, ramp, sigmoid) are
threshold response functions, which change from min to max value over a
narrow interval. Outside this interval, the output is saturated at either the
max or min value. As can be seen in Fig. 13.4, the sigmoidal functions saturate
as their input values go to −∞ or +∞ and the functions are most sensitive at
intermediate values. A piecewise linear ramp saturates at all values outside a
finite interval (Fig. 13.5, left). The step function saturates at all input values
(Fig. 13.5, right) and so has limited use.

13.4.2 MLP Activation Function

In an MLP, by (13.2), the transfer function at hidden node j receives as input
a dot product activation, the weighted sum (a scalar)

wj · x = w0jx0 + w1jx1 + w2jx2 + · · ·+ wnjxn. (13.5)

It can be shown that wj · x = ‖wj‖‖x‖ cos θ where θ is the angle between x
and wj . Thus, this dot product gives the length of the projection of the vector
x along the direction wj . It has a maximum with respect to θ when x and
wj are parallel and is 0 when they are orthogonal. Thus, the weighted sum∑n

i=1 xiwij = x · wj fed to the transfer function may be viewed as a measure

4Rosenblatt’s original perceptron [539] used a step transfer function.

13.4 The Multilayer Perceptron 231

−1

−0.5

0

0.5

1

−6 −4 −2 0 2 4 6

si
g
m
o
id
a
l
fu
n
ct
io
n
s

x

tanh(x)
lgt(x)

Fig. 13.4. tanh (dotted) and logistic (continuous) sigmoidal functions

-0.5

0

0.5

1

1.5

-3 -2 -1 0 1 2 3
-0.5

0

0.5

1

1.5

-3 -2 -1 0 1 2 3

Fig. 13.5. Piecewise linear ramp function (left); Heaviside step function (right)

of similarity between x and wj . Hence, our use of the term ‘likeness function’
for activation.

The dot product wj · x is a bilinear form, that is, it is linear in each
argument separately when the other is held constant. Thus, in the case of
MLPs, the activation function at neuron j is linear when viewed as a function
of the weights, Rn+1 −→ R : wj �−→ wj · x. This linear functional form,
together with the saturation type sigmoidal transfer functions, distinguish
the MLP from other NNs.

13.4.3 The MLP Projection Construction and Response Regions

Since wj · x is the length of the projection of x along the direction wj , the
weight vector wj controls the direction of a ‘plateau’ in Rn+1. Then (Fig. 13.6)
the transfer function responds to how well x points along this direction. The
transfer function does not respond to the component of x in any direction

232 13 Neural Networks for Supervised Learning

-6 -4 -2 0 2 4 6
-6

-4
-2

0
2

4
6

-0.5

0

0.5

1

1.5

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Fig. 13.6. The output from a single sigmoidal basis function is a plateau. Here,
f(x, y) = 1/(1 + e−x).

orthogonal to wj ; that is, there in only one direction in the n-dimensional
input data space along which the transfer function value changes.

A combination (superposition) of two parallel sigmoids acting on n in-
puts, which overlap but slope oppositely, gives a ridge-shaped activation area
(Fig. 13.7); the combination of two such ridges which intersect but are not
parallel, gives a localised ‘hillock’ (Fig. 13.8). This means that an MLP with
sufficiently many neurons is able to detect local variations, and so approxi-
mate any smooth function. For further details on the theory and geometrical
intuition behind MLPs, see [58, 435].

The aim of this projection construction is to project the input data onto
some smaller number of dimensions that still captures much of the important
information in the data and so avoid the curse of dimensionality. If the weights
are well chosen, we can preserve much of the information in the vector, de-
spite collapsing it to a single dimension. Other statistical methods, such as
Principal Components Analysis, and NN approaches such as Self-organising
Maps (Sect. 14.1), also attempt to compress data in this way.

As sigmoidal functions are monotonic, the MLP tends to interpolate mono-
tonically. This leads to a very smooth output function. Because sigmoidal
functions saturate, the MLP tends to extrapolate to a constant value over
the long range, but can extrapolate linearly over short ranges; however, it is
difficult to predict since it may be unclear in which region of the sigmoidal

13.4 The Multilayer Perceptron 233

-6 -4 -2 0 2 4 6 8 10
-6

-4
-2

0
2

4
6

0.5

1

1.5

2

2.5

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

Fig. 13.7. The output from two overlapping parallel sigmoidal basis functions is a
ridge. Here, f(x, y) = 1/(1 + e−x) + 1/(1 + ex−4).

response the MLP is working for a given input. Locality is very limited, since
a change in one weight can significantly influence a model output for a large
region of the space.

13.4.4 Relationship of MLPs to Regression Models

The MLP is an elaboration of the original single layer perceptron (no hidden
layer) [539], which was shown to be sufficient for linearly separable patterns
but not for nonlinear ones [414]. It is easy to show that a simple two layer MLP
with no hidden layer and a single output node with a linear transfer function
is equivalent to a linear regression model, where the arc weights correspond to
regression coefficients. For example, the regression equation y = a+ bx1+ cx2

can be represented as in Fig. 13.9. Similarly, a logistic regression model can
be recast as a two-layer MLP with a sigmoidal transfer function at the output
node. A multilayer MLP with nonlinear transfer functions can therefore be
considered as a nonparametric, nonlinear regression model. An MLP of three
or more layers using exclusively linear transfer functions can always be recast,
using linear algebra, as a two-layer MLP with linear transfer functions.

In contrast to ordinary linear least squares regression models, which pro-
duce a line, plane or hyperplane depending on the number of independent
variables, MLPs which use nonlinear transfer functions can produce com-

234 13 Neural Networks for Supervised Learning

-6 -4 -2 0 2 4 6 8 10
-6

-4
-2

0
2

4
6

8
10

0.5
1

1.5
2

2.5
3

3.5
4

4.5

2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6

Fig. 13.8. The output from two overlapping nonparallel ridges is a hillock. Here,
f(x, y) = 1/(1 + e−x) + 1/(1 + ex−4) + 1/(1 + e−y) + 1/(1 + ey−4).

������1

a

���
��

��
��

��

�������	x1
b �� �������	∑ �� y

�������	x2

c

�����������

Fig. 13.9. Linear equation as a node-arc structure, y = a+ bx1 + cx2.

plex (but smooth) response surfaces with peaks and troughs in n dimensions.
Changing the weights during the learning process tunes this response surface
to more closely fit the training data.

13.4.5 Training an MLP

MLPs are trained using a supervised learning paradigm. In supervised learning
a set of input data vectors for which the output is already known are presented

13.4 The Multilayer Perceptron 235

to the MLP. The MLP predicts an output for each input vector and the error
between the predicted and the actual value of the output is calculated. The
weights on each connection in the network are then adjusted in order to reduce
this error. By altering the weights, the network can place different emphasis
on each input and differing emphasis on the output of each hidden layer node
in determining the final output of the network. The knowledge of the network
is therefore embedded in its connection weights. Once the network has been
trained, it can be used to predict an output for an input data vector which it
has not previously seen.

The hidden layer weights may be learned by several methods, the most
common being (error) backpropagation, as described below. It is important to
distinguish between the NN model — in this case an MLP — and the training
method used for that model — typically, but not necessarily, backpropagation.

Because of the high dimensionality and projection construction, hidden
layer parameters are not easily visualised or interpreted, and thus are difficult
to initialise using prior knowledge. The simplest approach is random choice of
weights. However, care must be taken to avoid having neurons in a saturated
state, as these will give effectively the same response for all inputs. Thus, a
reasonable initialisation should try to have neuron activation values lying in
an interval around 0.

The Backpropagation Algorithm

The most common way of altering the weights in response to an error in the
network’s prediction is through use of the backpropagation algorithm [81, 545,
655]. It is applicable when the transfer functions are twice differentiable, as is
the case with the standard sigmoidal transfer functions (tanh and the logistic
function).

At the start of the learning process the weights on all arcs are initialised
to small random values. The network is presented with an input data vector
and proceeds to predict a value for the output. Total squared error is defined
as:

E =

P∑
p=1

S∑
q=1

(ypq − zpq)
2 (13.6)

where P is the number of input–output vectors, S is the number of output
neurons, and ypq and zpq are respectively the target and predicted values of

component q of the pth output vector. The aim is to minimise this ‘sum of
squares’ (quadratic) error function.

The backpropagation algorithm seeks to reduce the total error by calcu-
lating the gradient of the error surface at its current point (corresponding to
the current weight vector for the network) and adjusting the weights in the
network in order to descend the error surface. This is achieved by making a
backward pass through the network, from the output to the input layers, in
which weight changes are propagated back through the arcs of the network, so

236 13 Neural Networks for Supervised Learning

as to make the prediction of the network better agree with the actual output
value(s). The bigger the error, the more the arc weights are adjusted. The total
error of the network is a function of the values of all of its weights. From (13.6),

we can minimise total error by sequentially minimising Ep :=
∑S

q=1(y
p
q − zpq)

2

for p = 1, . . . , P .
Consider the arc ij from node i to node j. Let wij(t) denote the weight on

this arc at iteration t. Let ui be the amplitude output by i (for example, ui

is just xi if i is an input node). Then the activation function fed into node j
is aj =

∑n
i=0 wijui; and the output of node j is σ(aj) where σ is the transfer

function. When altering the individual weights during the backpropagation
step, in order to minimise the error Ep, we consider the partial derivative
∂Ep

∂wij(t)
of Ep with respect to each individual weight wij(t): this is just the

contribution of that weight to the total network error for input data vector p.
A standard gradient descent gives the correction to weight wij at iteration

t as

Δwij(t) := wij(t+ 1)− wij(t) = −α

(
∂Ep

∂wij(t)

)
. (13.7)

Here, α is the learning rate (α > 0) which controls the strength of response
to errors. By the chain rule for partial derivatives,

∂Ep

∂wij(t)
=

∂Ep

∂aj(t)

∂aj
∂wij(t)

. (13.8)

Since each ui is fixed, and aj =
∑n

i=0 wijui, we have that

∂aj
∂wij(t)

= ui. (13.9)

If we denote
∂Ep

∂aj(t)
by δj (the ‘error’ at j), (13.8) gives

∂Ep

∂wij(t)
= δjui. (13.10)

Thus the required partial derivative is got by multiplying the amplitude fed
into arc ij by the δ value at the output of arc ij. It is only necessary to
calculate the value of δ for each output node, then ‘propagate’ these ‘back’ to
get the δ values at the hidden layer nodes, then backpropagate these to the
input layer. Specifically, at an output node q, the error for data item p is

δq = ypq − zpq . (13.11)

At a hidden node j, using the chain rule again,

δj =
∂Ep

∂aj(t)
=

S∑
q=1

∂Ep

∂aq(t)

∂aq(t)

∂aj(t)
. (13.12)

13.4 The Multilayer Perceptron 237

Then for any nonoutput node j, (13.12) and the fact that aj =
∑n

i=0 wijσ(ai)
gives the backpropagation formula

δj = σ′(aj(t))
n∑

i=0

wij(t)δi, (13.13)

which allows efficient calculation of each
∂Ep

∂wij(t)
since the derivative σ′ of a

sigmoidal transfer function σ is easily expressed in terms of σ itself (see (13.3)
and subsequent text).

This step is performed repetitively over the entire training dataset (that
is, update weights after each individual training vector is presented to the
network), until the network reaches a stable minimum error. It is also pos-
sible to use a batch mode method, in which case the results are based on
the total error accumulated over the entire training set. The gradient descent
may be replaced by the Conjugate Gradients method, which is well suited to
optimising quadratic functions such as the error E.

A basic algorithm for training a single-hidden-layer MLP is presented in
Algorithm 13.1. In this algorithm,

• t is the current time step;
• there are m hidden nodes and we denote their outputs by s1, . . . , sm; the

s1, . . . , sm are fed to the output node(s)’ activation(s);
• Equation (13.16) is first used on the hidden to output layer weights wjq ,

and then on the input to hidden layer weights wij .

13.4.6 Overtraining

Any sufficiently powerful machine learning approach is, if given enough time
to learn, capable of explaining everything it sees in the training dataset —
including noise. If the MLP training algorithm is applied as is, there is a
good chance that overtraining (or overfitting) will occur, giving rise to poor
predictive performance when applied to new data (Fig. 13.10). That is, the
network fails to capture the true statistical process generating the data and
will not generalise well. For example, if there were too few training examples,
or learning was carried out for too long, the network may incorporate particu-
lar random features of the training data that are not related to the function f
to be learned. Overtraining usually occurs when a network is overly complex
relative to the quantity of data, e.g., having too many degrees of freedom.
On the other hand, if there are too few degrees of freedom, the MLP will not
be able to adequately learn from the training data. In the MLP context, the
number of degrees of freedom is essentially the number of weights. As a rough
rule of thumb from statistics, there should be at least five to ten data vectors
for each weight estimated, to reduce the chance of overfitting the training
data. A more theoretically justifiable approach is to modify the NN complex-
ity according to the training data: for example, by beginning with a large

238 13 Neural Networks for Supervised Learning

Algorithm 13.1: MLP Training Algorithm

Let n be the number of input nodes;
Initialise each connection weight to a small random value in the range [0, 1];

repeat
Present an input vector x = (x1, . . . , xn) and its associated target output
z;
Calculate the output from each hidden layer node j using

sj = σ

(
n∑

i=0

wijxi

)
, (13.14)

and then from each output layer node q using

yq = σ

(
m∑

j=0

wjqsj

)
. (13.15)

Let the total error be E =
∑P

p=1

∑S

q=1(y
p
q − zpq)

2;
Adjust the weights on the connections between the nodes, by setting

wij(t+ 1) = wij(t)− α

(
∂E

∂wij(t)

)
, (13.16)

commencing with the output layer and working back to the input layer;
Update weights in batch mode or after each individual training vector is
presented to the network;

until training error reaches a steady state or an acceptable minimum;

Error

Training iterations

Training

Test

Fig. 13.10. As training continues on the same set of training data, the MLP
performs better on that data set. However, it eventually starts to perform more
poorly on out-of-(training) sample test data, which indicates possible overfitting

13.4 The Multilayer Perceptron 239

number of hidden layer nodes and ‘pruning’ or eliminating weights methodi-
cally [170, Sect. 6.11 and Chap. 9]. In addition, the training process should be
controlled using, for example, the method of early-stopping. In this method,
the dataset is divided into three components: training data, validation data,
and out-of-sample (test) data. The MLP is constructed using the training
dataset; but, periodically during this process, the performance of the network
is tested against the validation dataset. The network’s performance on the
validation dataset is used to determine when the learning process is stopped,
and the best network is defined as that which produces the minimum error on
the validation dataset. Once the best network is found, the weights are fixed
and the network is ready for application to out-of-sample data. Early-stopping
enhances the robustness (against fitting noise) of the MLP. Another approach
which reduces overtraining is regularisation of the error measure (see (13.18)).

13.4.7 Practical Issues in Modelling with and Training MLPs

A number of practical problems arise in using MLPs for modelling:

i. what measure of error should be used?
ii. what parameters should be chosen for the backpropagation algorithm?
iii. how many hidden layers (or nodes in each hidden layer) should there be?
iv. is the data of sufficient quality to build a good model?

Measure of Error

Many different error criteria can be applied in determining the quality of fit of
a NN model. Most applications use traditional criteria drawn from statistics
such as the sum of the squared errors, or mean squared error (MSE):

MSE =
1

P

P∑
p=1

S∑
q=1

(ypq − zpq)
2 (13.17)

in the notation of (13.6), where: ypq is the value predicted by the NN model for
component q of the output vector, given input vector p; zpq is component q of
the actual output vector, given input vector p; and there are P output vectors,
each Q-dimensional and each corresponding to an input vector. Although this
is a common error metric it can lead to poor generalisation, as one way of
reducing MSE is to build a large NN which learns the noise in the training
dataset. This can be discouraged by using a regularised performance function
(error measure), where the performance function is extended to include a
penalty term which gets larger as network size grows. As an example, the
MSE error term could be adjusted to give:

Regularised Error Measure = γ ·MSE + (1− γ) ·MSW (13.18)

240 13 Neural Networks for Supervised Learning

where MSW is a penalty term, calculated as the mean sum of the squared
weights in the network. The values of γ and 1 − γ represent the relative
importance that is placed on the MSE and the penalty term respectively. The
penalty term will tend to discourage the use of large weights in the network,
and will tend to smooth the response of the network.

Parameters for the Backpropagation Algorithm

The essence of training an MLP is the determination of good values for the
individual weights in the network. If there are N weights in the network, the
task of uncovering good weights amounts to a nonlinear optimisation problem
where an error surface exists in (N +1)-dimensional space. Unfortunately, no
general techniques exist to optimally solve this problem. The backpropagation
training algorithm is a gradient-descent, local search algorithm, and so is prone
to becoming trapped in local optima on the error surface. A number of steps
can be taken to lessen the chance of this happening.

Typically, during the training process, the network weights are altered,
based on the current model error and a modeller-tunable parameter (the learn-
ing rate) which governs the size of weight change in response to a given size
of error. Usually the value of the learning rate will decay, from a higher to
a lower value during the training run with fairly rapid learning in the initial
training stages and smaller weight adjustments later in the training run. The
object in varying the learning rate during the training process is to enable the
MLP to quickly identify a promising region on the error surface and later to
allow the backpropagation algorithm to approach the minimum error point in
that region of the error surface.

However, there is no easy way to determine a priori what learning rates will
produce the best results. The learning process will typically have an element
of momentum built in, whereby the direction and size of weight change at each
step is influenced by the weight changes in previous iterations of the training
algorithm. Therefore the weight change on iteration t+ 1 is given by:

wij(t+ 1) = λwij(t)− (1− λ)α

(
∂E

∂wij(t)

)
(13.19)

where λwij is the momentum term and α is the learning rate. By varying
the value of the momentum coefficient λ in the range 0 to 1, the importance
of the momentum coefficient is altered. Under the concept of momentum, if
the MLP comes across several weight updates of the same sign, indicating
a uniform slope on the error surface, the weight update process will gather
momentum in that direction. If later weight updates are of different signs,
the effect of the momentum term will be to reduce the size of the weight
updates to below those which would occur in the absence of the momentum
component of the weight update formula. The practical effect of momentum
is to implement adaptive learning, by speeding up the learning process over
uniform or shallow gradient regions of the error surface.

13.4 The Multilayer Perceptron 241

The backpropagation learning algorithm can be likened to jumping around
an error surface on a pogo stick. If the jumps are too small (corresponding
to a low learning rate) the pogo stick jumper could easily get stuck in a local
minimum, if the jumps are too large, the pogo stick jumper could overshoot
the global minimum error. This analogy also underlines the importance of the
initial weight vector. The initial weight vector determines the starting point on
the weight-error surface for the backpropagation algorithm. If a poor starting
point is chosen, particularly if the learning rate is low, the algorithm could
descend into an inescapable local minimum (Fig. 13.11). To reduce the chance

Error

Weight value

Starting point

Local error
minimum

Global error minimum

Fig. 13.11. Given this starting point on the weight surface, a gradient-descent
algorithm will only find a local error minimum

that a bad initialisation of the weight vectors will lead to poor performance
of an MLP, performance should be assessed across several training runs using
different initialisations of the connection weights (Fig. 13.12).

Selecting Network Structure

Although a three-layer MLP is theoretically capable of approximating any
continuous function to any desired degree of accuracy, there is no theory to
decide how large the hidden layer needs to be in order to achieve this [125].
Typically the size of this layer is determined heuristically by the modeller.
However, as the hidden layer gets larger, the number of degrees of freedom
(weights) consumed by the MLP rises. Thus, the amount of data needed to
train it increases by five to ten data vectors per weight (Sect. 13.4.6). For
example, a fully connected 20–10–1 MLP (input layer nodes–hidden layer
nodes–output node) contains (20 × 10) + (10 × 1) = 210 weights. Therefore
the above network will require a fairly large dataset of at least 1,000 to 2,000
data vectors for training purposes. The selection of the size of the hidden layer

242 13 Neural Networks for Supervised Learning

Error

Weight value

Starting point

Local error
minimum

Global error minimum

Fig. 13.12. Altering the initial weights moves the starting point on the weight
surface, making the global error minimum point accessible

entails a trade-off between increasing the power of the MLP (more nodes) and
avoiding overfitting (fewer nodes).

In designing MLPs, there is no restriction that they must have a fully
connected (or complete) feedforward connection structure. Each input need
not be connected to each hidden layer node, and nodes can be connected to
nodes which are more than one layer ahead in the network (a jump connection
network) (Fig. 13.13).

1

4

3

2

5

Fig. 13.13. Input 2 is connected to only one hidden layer node, and also has a
jump connection directly to the output node

Multiple Hidden Layers

The use of several hidden layers makes the network more complex and is an
alternative to having more neurons in one hidden layer. While single hidden

13.4 The Multilayer Perceptron 243

layer networks are most common, very occasionally two (or more) hidden
layers are used. Use of more hidden layers makes training more difficult, be-
cause of stronger nonlinearity and more complicated gradients. However, fewer
weights may be required to achieve the same approximation capability.

One case where a second hidden layer is useful is when trying to learn
complicated target functions g, particularly multimodal functions (those with
multiple local maxima (peaks) and local minima (valleys)). The first hidden
layer learns local features: some nodes in this layer divide the function into
regions while others learn the small-scale features of that region. The second
hidden layer learns global features: each node here allows the MLP to fit a
separate peak or valley by combining the outputs of the first hidden layer
nodes corresponding to that region, while ignoring other nodes in the first
hidden layer. The result is that a two hidden layer MLP can use fewer weights
than a single hidden layer MLP, while giving an equally good approximation
to g [106]. However, the use of two hidden layers may lead to a very spiky
landscape, making the problem of local optima in the total squared error
surface (13.6) worse, even when the total number of weights is much less than
the size of the training dataset. De Villiers et al. [156] conclude that ‘there
seems to be no reason to use four layer networks in preference to three layer
nets in all but the most esoteric applications’.

Data Quality and Predictive Ability

The quality of the dataset also plays a key role in determining the quality of
the MLP. Obviously if important data is not included, perhaps because it is
not available, the results from the MLP are likely to be poor.

Another data-related issue is how representative the training data is of the
whole dataset. If the training data is not fully representative of the behaviour
of the system being modelled, out-of-sample results are likely to be poor. The
dataset should be recut several times to produce different training and out-of-
sample datasets and the stability of the results of the developed MLPs across
all of the recuts should be considered.

Furthermore, in any dynamic environment, the predictive ability of the
MLP (or indeed any predictive model) may be compromised by the ‘shelf
life’ effect: every model is trained on past data but in some cases the patterns
learned during training may go out of date (in other cases, behaviour patterns
may be stable over time). This means regular retraining may be necessary.

13.4.8 Stacking MLPs

The predictive ability of an individual MLP is critically affected by the choice
of network weights. Since the canonical back-propagation algorithm is a local
search technique, the initial weights can have a significant impact on the
quality of the final MLP. A stacking process can be used to reduce this problem

244 13 Neural Networks for Supervised Learning

and to combine the predictive abilities of individual models which may possess
differing pattern-recognition capabilities.

In an idea similar to the combination of the outputs of multiple nonlinear
processing elements in an individual MLP, the outputs of individual MLPs
can be combined (stacked) to form a committee decision. The overall output
of the stacked network of MLPs is a weighted combination of the individual
network outputs:

F (xin) =

r∑
i=1

wifi(xin) (13.20)

where F (xin) is the output from the stacked network for input vector xin,
fi(xin) represents the output of network i, and wi represents the stacking
weight. In this example, the outputs are combined on an equally weighted,
linear basis. Figure 13.14 provides an illustration of a stacked MLP. More

wr

sum

F(xin)

f1(xin)

w1

Fig. 13.14. The outputs of multiple MLPs being combined to produce a single
stacked output

complex aggregation methodologies could be applied, including the imple-
mentation of another MLP at the stacking stage. The input data may also be
split between each of the initial MLPs so that each MLP is trained using a
different subset of the training data.

13.4.9 Recurrent Networks

The inspiration for recurrent networks, which allow feedback connections be-
tween the nodes, is the observation that the human brain is a recurrent net-

13.4 The Multilayer Perceptron 245

work. The activation of a particular neuron can initiate a flow of activations
in other neurons which in turn feed back into the neuron which initially fired.
The feedback connections in a recurrent network imply that the output from
node b at time t can act as an input into node a at time t+ �. Nodes b and a
may be in the same layer, or node a may be in an earlier layer of the network.
A node may also feed back into itself (a = b). Of course, positive feedback
may lead to instability, and techniques from Control Theory may be required
to bring the system back into a stable domain of operation.

Recurrent networks can be useful when modelling time series data, as the
recurrent connections allow the network to store processing results (or raw
input data) from previous time steps, and later feed it back into the network.
In contrast, a standard feedforward network has a data window of a fixed
size, and associations in the data that extend beyond this window cannot be
uncovered by the network.

A practical benefit of recurrent network designs is that they can be com-
pact. Consider the case where a modeller wishes to provide a neural network
with information on the past N values of n input variables. If a canonical
feedforward MLP were used, this would require Nn inputs, possibly a large
number, leading to a large number of weights which require training. In con-
trast, as recurrent networks can embed amemory, their use can notably reduce
the number of input nodes required.

An example of a simple recurrent network is an Elman network [176]. This
includes three layers, with the addition of a set of context nodes which repre-
sent feedback connections from hidden layer nodes to themselves (Fig. 13.15).
The connections to the hidden layer from these context nodes have trainable
weights. The context nodes act to maintain a memory of the previous period’s
activation values of the hidden nodes. The output from the network depends
therefore on both current and previous inputs. An implication of this is that
recurrent networks operate on both an input space and an internal state space.
Generalising the context layer concept, it is possible to implement more than
one context layer, each with a different lag period. Time is represented im-
plicitly as a result of the design of the network, rather than explicitly through
the use of a large number of time-lagged inputs.

Several methods exist to train Elman networks. The original method pro-
posed [176] was to treat each of the feedback inputs from the context layer
as an additional input to the network at the next time step. A standard
backpropagation algorithm was then used to train all the weights in the net-
work. Training of recurrent networks using gradient-based methods can be
time-consuming, and alternative methods using evolutionary, particle swarm
or hybrid approaches exist [569].

246 13 Neural Networks for Supervised Learning

Input nodes x(t)

Hidden nodes y(t)

Output nodes z(t)

Context nodes y(t-1)

Copy of y(t-1)

Fig. 13.15. An Elman network. The output of each of the hidden layer nodes at
time t − 1 is stored in individual context nodes, and each of these is fed back into
all the hidden layer nodes as an input at time t. The context layer nodes are empty
during the first training iteration.

13.5 Radial Basis Function Networks

Another common form of supervised neural network which can be used for
classification and prediction is the radial basis function network (RBFN).
While these networks can be used for the same purposes as an MLP and
nominally have a three-layer feedforward structure, their internal workings
and their training processes are quite different from those of MLPs. Another
feature of RBFNs is that the training process is fast, typically only requiring
a single pass of the training data through the network, in contrast to the
multiple iterations of the training dataset which is required when training an
MLP.

In RBFNs the processing at hidden layer nodes is carried out using as
transfer function a radial basis function rather than a sigmoidal function.
The radial basis function is usually chosen to be local in nature, and have a
maximum at x = c, its centre. It is a kernel function. Typical choices include
the Gaussian and inverse multiquadric functions.

13.5.1 Kernel Functions

Intuitively, we think of the kernel of a function f as the equivalence relation
on the domain of f that says ‘equivalent as far as f can tell’.

Definition 13.2. Let f : X −→ Y where X and Y are sets. Call elements
x1, x2 ∈ X (f -)equivalent if f(x1) = f(x2). Then the kernel of f is the set of
all equivalent pairs in X: ker f = {(x1, x2) ∈ X ×X : f(x1) = f(x2)}.

13.5 Radial Basis Function Networks 247

For example, the kernel of a linear map is the set of vectors the map sends
to 0: as far as this map can tell, all of these vectors are the same (by linearity,
this also works for preimages of any nonzero image vector). Thus, a kernel
can help in measuring ‘similarity’ of two objects.

More commonly, we define a kernel function as a symmetric real-valued
function k of two objects, with no f directly used. Such a kernel k is simply
taken as a measure of similarity of two objects, with the real number it returns
giving the degree of similarity. In this sense, a kernel may be regarded as a
generalisation of a dot (or inner) product and in particular must be symmetric
and positive definite. Kernels first arose in this way in the study of integral
operators.

A critical aspect of kernel functions is that basic operations such as addi-
tion and multiplication (or linear combinations of kernel functions) preserve
their properties.

One approach to giving a distance-based measure of similarity of two vec-
tors v1 and v2 is to centre a (kernel) density function on one of them (by
symmetry, the choice of v1 or v2 as centre does not matter), and examine the
value of the density function on v1 − v2. This kind of kernel is called a radial
basis function.

13.5.2 Radial Basis Functions

Radial basis functions [518] are radially symmetric functions concentrated
about a ‘centre’. That is, they have the same form no matter what direction
is taken from the centre. Originally, radial basis functions came from the
mathematical topics of approximation theory and interpolation.

In applications such as Radial Basis Function Networks, they are typically
smooth functions and monotonically decreasing along any direction from the
centre.

Definition 13.3. Given a centre c ∈ Rn, a function ϑ : Rn → R is called
radial if ϑ(x) = ϕ(‖x− c‖) for some ϕ : R → R.

Writing r := ‖x−c‖ for simplicity, some examples of radial basis functions
include:

• Gaussian: ϕ(r) = e−r2/(2πσ2), where σ is a parameter which determines
the bandwidth, or effective width, or sensitivity, of the radial basis function.
It is analogous to the standard deviation of the normal distribution.

• Multiquadratic: ϕ(r) =
√
r2 + a2 for some a > 0

• Multiquadric: ϕ(r) = (rk + ak)1/k for some a > 0
• Inverse multiquadric: ϕ(r) = (rk + ak)−1/k for some a > 0

• Polyharmonic spline: ϕ(r) =

{
rk, k = 1, 3, 5, . . . ,

rk ln(r), k = 2, 4, 6, . . .

248 13 Neural Networks for Supervised Learning

Among radial basis functions, the Gaussian function is unique in that for
Euclidean (and some other) metrics it is separable, i.e., it can be written as
a product of independent factors, one factor for each input component. The
Gaussian radial basis function will produce an output value of 1 if the input
and weight vectors are identical, falling towards 0 as the distance between
the two vectors gets large. Such a smooth local response function is some-
times called a bump function. In the case of the multiquadratic function, its
activation level increases as the distance between the vectors increases.

A radial basis function may be used to provide a distance-based measure
of the ‘similarity’ of a vector x to another vector c, the centre of the function.
Thus, the RBFs are kernel functions: the response is weighted according to
the distance from the RBF centre, and measures similarity of the vectors in
the sense of closeness.

13.5.3 Intuition Behind Radial Basis Function Networks

A radial basis function network is best motivated by viewing the design as a
surface/curve-fitting (function approximation) problem in a high-dimensional
space. Alternatively, this may be viewed as classification, with the surface
being the interclass boundary. As with MLPs, learning with an RBFN means
finding a function f : Rn −→ Rm that provides a best (or simply good) fit to
the training data, with the criterion for ‘best’ measured in some appropriate
statistical sense. This high-dimensional surface may then be used to interpo-
late the test data. As with other neural networks, the hidden nodes implement
a set of functions that make up a basis for the distribution of input vectors
(Fig. 13.16).

In RBFNs, each basis function is a radial basis function, typically a bump
function. We think of an RBFN hidden layer neuron as representing a detector,
which ‘fires’ to a greater or lesser degree, as the input vector is ‘closer to’ or
‘further from’ the centre of the detector. Its operation can be split into two
parts. First, the distance r of the input vector x to the centre vector c with
respect to a norm matrix5 is calculated. Second, this scalar distance r is
transformed by the radial transfer function ϕ(r).

We view the ‘detector’ neurons as being distributed through the pattern
(input) space — rather like weather balloons distributed through the atmo-
sphere — and detecting conditions locally. If many input vectors are close to
a given detector, it will fire more often: thus, the RBFN has the potential
to ‘learn’ the distribution of the input. The function or distribution f to be
learned can be thought of as being made up of a weighted sum of bump func-
tions: these bump functions are the building blocks of f ; they are a basis in
terms of which we describe f .

5Given any positive definite n× n real matrix, we may define an inner product
(positive definite symmetric bilinear form) on R

n by 〈x, y〉 := xtAy for all x, y ∈ R
n.

Then ‖x‖ :=
√〈x, x〉 = √

xtAx defines a norm on R
n.

13.5 Radial Basis Function Networks 249

�������	h0

w0

���
��

��
��

��
��

��
��

��
��

�������	i1 ��

		�
��

��
��

��
��

��
��

��
��

�
�������	h1

w1

��
��

��
��

��
��

��

�������	i2

��														

��
��

��
��

��
��

��
... �������	∑ �� Output

�������	i3 ��

��

 �������	h5

w5

��														

Fig. 13.16. A radial basis function network. The output from each hidden node (h0

is a bias node, with a fixed input value of 1) is obtained by measuring the distance
between each input pattern and the location of the centre represented by that hidden
node, and applying the radial basis function to that distance. The final output from
the network is obtained by taking the weighted sum (using w0, w1, . . . , w5) of the
outputs from the hidden layer and from h0.

The transformation from the input layer to the hidden layer is nonlin-
ear, while the transformation from the hidden layer to the output layer is
linear. This is motivated by Cover’s Theorem on the separability of patterns
[118]: complex pattern classification problems are more likely to be linearly
separable if the patterns are initially mapped nonlinearly (but injectively) into
a higher dimensional space. This leaves open the nontrivial question as to
what mapping function should be used in a particular case. An alternative,
simpler, approach which approximates this is to use a kernel function as de-
scribed above. Such kernel functions allow the computation of dot products
in high-dimensional spaces, without having to explicitly map the vectors into
these spaces (this is known as the kernel trick). Thus, using a kernel function
eliminates the need to uncover an explicit nonlinear mapping function for the
input data vectors in order to make them linearly separable. RBFNs explicitly
adopt a kernel function approach, as they usually use a radial local response
Gaussian kernel as transfer function at each hidden node.

13.5.4 Properties of Radial Basis Function Networks

In a NN such as an RBFN, the components of a node’s centre c are imple-
mented as the weights on the arcs entering the node, so the centre is regarded
as the ‘weight vector’. Unlike the case of the MLP, multiple hidden layers do
not make any sense for an RBFN, as the extra layer(s) cannot be interpreted
and so their parameters cannot be chosen by prior knowledge.

250 13 Neural Networks for Supervised Learning

Interpretation of the centres, bandwidths, and heights is possible if the
basis functions are local and their widths are chosen small. However, the
interpretability in high-dimensional spaces is limited. Incorporation of con-
straints and of prior knowledge is possible in RBFNs because the parameters
can be interpreted, and the local nature allows one to drive the network to-
ward a desired behaviour in a given operating regime. Again because of the
locality of the basis functions, online adaptation in one operating regime does
not appreciably influence the others.

An RBF Network consists of three types of parameter, all of which need
to be determined or optimised during training.

i. Output layer weights are linear parameters. They determine the heights
of the basis functions and the bias value.

ii. Centres are nonlinear parameters of the hidden layer neurons. They de-
termine the positions of centres of the basis functions.

iii. Bandwidths (and possibly off-diagonal entries in the norm matrices) are
nonlinear parameters of the hidden layer neurons. They determine the
widths (and possibly rotations) of the basis functions.

The total number of parameters of an RBF Network is 2mn+m+1 where m is
the number of hidden layer neurons (centres) and n is the number of inputs.
Since n is given by the problem, m allows the user to control the network
complexity, that is, the number of parameters.

The interpolation behaviour may have dips (be too bumpy) if the band-
widths are too small, and overshoot if they are too large. The wider the basis
functions are, the slower the extrapolation behaviour decays towards 0.

13.5.5 Training Radial Basis Function Networks

The radial construction approach gives the hidden layer parameters of RBFNs
a better interpretation than for the MLP, and so allows faster training meth-
ods: typically, we only require a single pass of the training data through the
network, in contrast to the multiple iterations of the training dataset which
is required when training an MLP.

During the training process, each hidden layer centre is initially located at
a fixed location in the input feature space and this location is designated as
the weight vector for that hidden node. Therefore, unlike in MLPs, there are
no trainable weights between the input and the hidden layer as the locations
of the centres do not change as the RBFN algorithm runs.

The only trainable weights in an RBFN are those between the hidden and
the output layers. In a basic RBFN implementation where there is only one
output node, these weights can be trained using linear regression in a single
pass through the training dataset. Linear regression can be used to determine
the weights between the hidden layer and the output node; as the output from
each hidden node will correspond to a set of xis, the correct (known) output
for each training data vector j is the set of yjs, and the connection weights,

13.5 Radial Basis Function Networks 251

which correspond to the regression coefficients, are the βis. In essence, in
developing an RBFN the object is to locate a set of detectors (centres) in
the input pattern space and then during the training process determine what
weight to attach to the output from each detector in order to compute the final
predicted output from the RBFN. Algorithm 13.2 outlines the pseudocode for
the canonical RBFN.

Algorithm 13.2: RBFN Training Algorithm

Select the initial number of centres (m) and the form of the radial basis
function;
Select the initial location of each of the centres in the data space;

for each pairing of input data vector x and centre c do
Calculate the activation value ϕ(‖x− c‖), where ϕ is a radial basis
function and ‖ ‖ is a distance measure in the data space;

end

Calculate the weights for the connections between the hidden and output
layers using linear regression;

13.5.6 Developing a Radial Basis Function Network

As with MLPs, the development process for RBFNs is iterative as the perfor-
mance of an RBFN is influenced by a number of modeller choices, including:

i. the number of centres,
ii. the location of centres, and
iii. the choice of radial basis function and its parameters.

As the number of centres increases, the RBFN will tend to improve fit on
the training data but this could occur at the expense of poor out-of-sample
generalisation. Hence, the object is to choose a sufficient number of centres
to capture the essential features in the training data, without overfitting that
data. A simple approach is to use a validation dataset. Initially, the RBFN is
developed using a small number of centres and its performance on the training
and validation dataset is monitored. The number of centres is then increased
gradually, with the RBFN being retrained each time the number of centres is
changed, until validation set performance degrades.

In initially positioning the centres, they can be located by placing them
on randomly selected members of the training dataset or by attempting to
distribute them uniformly throughout the input space. The former approach
has the advantage that if the training data is truly representative, the distri-
bution of the centres will be determined by the distribution of the underlying
data. Centres could also be located using more sophisticated approaches.

252 13 Neural Networks for Supervised Learning

Unless the problem has special structure, the choice of radial basis function
is not usually critical and most common applications use a Gaussian kernel.
This function requires the choice of a bandwidth parameter and the results
obtained from a network will be sensitive to this value. As the RBFN relies
on the calculation of a distance metric, it is usual to standardise input data
vectors before training.

If the unit’s bandwidth parameter is learned, its ‘footprint’ — the region it
responds to — can be grown or shrunk, and so can adapt to give fine-grained
coverage of subsets of inputs which are locally very dense, or alternatively to
cover much or all of the training data set.

The region of response of an individual node can be adjusted to be non-
radial (an elliptical rather than circular footprint), with a chosen or trained
long axis, by applying a linear transformation to the input data vectors before
presenting them to the nonlinear hidden layer. This has the effect of rotating
the response region and expanding it in certain directions (thus enhancing
the response in those directions), while contracting it in other directions (so
suppressing the response in those directions). A motivation for building this
flexibility into an RBFN is if we suspect there are irrelevant input variables
or directions. Such an RBFN is known as an elliptical basis function network
or EBFN. This can be implemented by incorporating an extra linear hidden
layer feeding into the radial hidden layer. If irrelevant data are considered
very probable, the number of units in the linear hidden layer can be made
smaller than the number in the nonlinear (RBF) layer.

The selection of the number of centres, their location, and the parameters
for the RBF is a combinatorial problem and there is potential to automate
the process by creating a hybrid algorithm. The idea of neuroevolution is
discussed in Chap. 15.

13.6 Support Vector Machines

Support vector machines (SVMs) [71, 117, 642], although drawn from statis-
tical learning theory rather than a biological inspiration, are another popular
supervised learning methodology. They bear some similarity with RBFNs.
Like RBFNs, SVMs can be used for classification, regression and prediction
and are particularly suited to binary classification, that is, where there are
two classes (though this is not essential). They aim to fit the training set
data well, while avoiding overfitting, so that the solution generalises well to
new instances of data. In this section, we briefly outline the application of
SVMs for classification. More detailed introductions to SVMs, including their
application for prediction purposes, are provided in [121, 559, 647].

Classifiers are simpler to deal with and have better properties if the in-
terclass boundaries are linear (Fig. 13.17). Thus, linear boundaries between
classes are preferable. In general, these are called hyperplanes : linear or affine

13.6 Support Vector Machines 253

Fig. 13.17. A linearly separable two-class dataset (left) compared with a nonlin-
early separable two-class dataset (right).

subspaces of dimension n − 1, where n is the dimension of the space of lin-
early separable classes. Examples of hyperplanes include a line in 2-D space,
a plane in 3-D space, or a 3-D space in 4-D space. Thus a hyperplane splits
the n-dimensional space into two parts, in the positive and negative direc-
tions along the nth dimension either side of the hyperplane. The separating
hyperplane theorem (a special case of the famous Hahn-Banach theorem for
Banach spaces) says:

Theorem 13.4 (Hahn-Banach). Let V be a finite-dimensional Banach
space and let A and B be disjoint closed convex subsets of V . Then there
exists a hyperplane H in V such that A lies on one side of H and B lies on
the other, and H does not intersect either A or B.

Separating hyperplanes may exist even if one or both subsets are nonconvex.
In this context, the input data items are often called patterns. Denote

the input data space or pattern space by X . In X , the class boundaries may
be nonlinear. Cover’s theorem [118] states that under certain assumptions,
nonlinearly separable patterns in X can be mapped nonlinearly to another,
possibly high-dimensional, vector space F , in which their images are linearly
separable. F is called a feature space. However, finding an explicit nonlinear
map ϕ : X −→ F is computationally expensive. Assuming we have such a
map ϕ, the dot product in X is now transformed as xi · xj �−→ ϕ(xi) · ϕ(xj).
This mapping to F is carried out in order to make input data corresponding
to two classes separable using a hyperplane (Fig. 13.18).

Figure 13.19 shows a simple example of a dataset of items with two char-
acteristics divided into two classes in R2 (with class labels × and +) which
are not linearly separable. However, when mapped into the higher dimensional
‘feature space’ R3 via the mapping f : R2 −→ R3 : (x, y) �−→ (x, y, x2 + y2),
the two classes are now linearly separable; the separating plane is z = 12.5
(Fig 13.20).

Although many possible separating hyperplanes exist, a SVM aims to find
the maximally separating hyperplane in the feature space in order to generate
a classifier which will generalise to out-of-sample data. The maximally sep-
arating hyperplane is defined as the hyperplane which separates the nearest

254 13 Neural Networks for Supervised Learning

Mapping from input to
feature space

Fig. 13.18. In constructing a SVM classifier the object is to find a mapping, using
a suitable kernel function, from the input space to the higher-dimensional feature
space so that the resulting injection of the data is (ideally) linearly separable. For
ease of illustration, a stylised mapping is shown here from a 2-D input space to a
2-D (rather than to a 2-D+) feature space.

-4

-2

0

2

4

-4 -2 0 2 4

+

+
+

+

+ +
+

+

+
+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+
+

+

+

+

+

+ +

××
××

××

××

×
×

×

×

×

×

×

× ×
×

× ×

×

×

×

×

×

×

××

×

×

×
×

×
××

×

×

×

×

×

×
×

×

Fig. 13.19. A two-class dataset which is not linearly separable: the class labels are
× and +

13.6 Support Vector Machines 255

-6 -4 -2 0 2 4 6
-6

-4
-2

0
2

4
6

0

10

20

30

40

50

0
5
10
15
20
25
30
35
40
45
50

Fig. 13.20. The two-class dataset from Fig. 13.19 when transformed to higher
dimension is now linearly separable: the separating plane is the horizontal plane
z = 12.5, and the class labels are × and +. The × and + points are actually on the
paraboloid surface but for clarity are shown slightly away from it.

transformed data points in each distinct class as much as possible. In defining
this hyperplane, not all of the transformed input data vectors are equally im-
portant. Some vectors will be critical in defining the class boundaries and these
are termed support vectors. Support vectors are critical in that their removal
from the dataset would alter the location of the maximally separating hy-
perplane. Figure 13.21 illustrates four support vectors and the corresponding
maximally separating hyperplane. The distance between the support vectors
of each class is known as the margin and consequently SVMs are also known
as maximum margin classifiers. One interesting aspect of SVMs is that the
complexity of the resulting classifier is characterised by the number of sup-
port vectors rather than by the dimensionality of the transformed space. This
tends to make SVMs robust with respect to overfitting.

Maximising the margin gives rise to a constrained optimisation problem
with a quadratic objective function: a quadratic programming problem. Its
dual problem is phrased using Lagrange multipliers. It turns out that in this
dual problem, the objective function and constraints are built entirely from
inner products of unknown feature space vectors.

Thus, the formalism of SVMs only requires that the inner products of vec-
tors in the higher dimensional feature space be computable. It is not actually

256 13 Neural Networks for Supervised Learning

Separating hyperplane

Support vectors

Margin

Fig. 13.21. Illustration of a maximally separating hyperplane. This maximises the
distance between the support vectors associated with each class. In this case, the
maximally separating hyperplane neatly splits the two data classes. This will not
always occur, and more generally, the object is to trade off margin separation and
misclassified training vectors.

necessary to have an explicit map ϕ : X −→ F : we can do the same job if we
can find a function k which satisfies k(xi, xj) = ϕ(xi) ·ϕ(xj) for all xi, xj ∈ X .
Then the required computations will only use k. The core idea behind this
and other kernel methods such as RBFNs is that a lot of computation can be
avoided if we can find a proxy function k of the original input data patterns
that does the same work as transforming to F composed with the inner prod-
uct on F . This proxy function k is in fact a kernel function. It generally has
a far lower computational cost than that of explicitly mapping vectors to the
feature space followed by computing inner products there (the kernel trick)
(Sect. 13.5.2). The kernel is the magic in SVM: implicitly, it transforms the
messy pattern or input vector space to the higher dimensional feature space by
a nonlinear mapping and saves computation; the classes in the feature space
may be linearly separable even if they were not so in the original pattern
space.

To be useful, a kernel must satisfy certain criteria, such as symmetry
(k(xi, xj) = k(xj , xi) for all xi, xj ∈ X) and positive semidefiniteness.6 For
positive semidefinite kernels, Mercer’s Theorem gives an absolutely uniformly
convergent representation of k in terms of an orthonormal basis, which can

6A kernel k is called positive semidefinite if for any positive integer p, and any
x1, . . . , xp ∈ X, the n × n (Gram) matrix K with k(xi, xj) as the (i, j) entry is a
positive semidefinite matrix, that is, vtKv ≥ 0 for all v ∈ R

n.

13.6 Support Vector Machines 257

provide information about the feature space. Also, new kernels can be built
out of existing kernels in defined ways. Determining the ‘best’ kernel function,
according to some measure of quality of fit to the input pattern dataset, is
a difficult problem and the subject of ongoing research. The most commonly
used kernels are:

i. Dot (inner) product kernel: k(xi, xj) = xi · xj = xT
i xj ;

ii. Polynomial kernel: k(xi, xj) = (1 + xi · xj)
p;

iii. Gaussian kernel: k(xi, xj) = e−(‖xi−xj‖)2/σ2

, also called radial basis kernel
because of its use in RBFNs;

iv. Sigmoidal kernel: k(xi, xj) = tanh(kxi · xj − δ); however, this satisfies
Mercer’s theorem only for some values of k and δ.

Other standard kernels include multiquadric and inverse multiquadric kernels.
Depending on the choice of kernel, the value of a number of associated pa-
rameters such as σ in the case of Gaussian kernel, is required. The choice of
a kernel may be viewed as any or all of:

• choosing a linear ‘feature space’ representation of the data;
• choosing a measure of similarity for the data;
• choosing a basis function space for learning: the kernel determines the

functional form of the solutions;
• choosing a covariance measure;
• choosing a distribution capturing prior probabilities of functions.

Thus, the choice of kernel should reflect domain knowledge about the problem.
In applications of SVMs there may be no hyperplane that cleanly splits

the various class-labelled items, even in the feature space. For example, the
training data may be noisy and/or may contain incorrectly labelled items. The
algorithm’s effectiveness would be decreased if an outlier such as an individual
mislabelled input datum were able to significantly affect the hyperplane. It
is preferable to be able to tolerate or ignore a proportion of outliers. Hence,
in applying a SVM methodology, the objective function is altered to allow a
trade-off between margin maximisation and a penalty for misclassifying some
training data vectors. In calculating the penalty, the further a data item is
away from a support vector for that class (on the wrong side), the greater
the penalty. This is implemented by introducing slack variables which relax
separation constraints in the quadratic programme, and then penalising these
slacks in the objective function. The result is called a soft margin classifier, and
can be shown to also depend only on inner products in the feature space, and
so works with kernels. Soft margin methods are generally used in preference
to the original maximum margin approach.

The next step is to determine the location of the optimally separating
hyperplane. This is done using an iterative training algorithm which seeks to
minimise an error function which combines margin separation and a penalty
for misclassifications.

258 13 Neural Networks for Supervised Learning

13.6.1 SVM Method

Algorithm 13.3 provides a generic overview of the (soft margin) SVM method.

Algorithm 13.3: Support Vector Machine Algorithm

Select a value for C. This is the penalty function applied when training data
vectors are misclassified;
Select the kernel function and any associated parameters, using domain
knowledge;
Solve the dual quadratic program derived the objective function;
Use the support vectors to determine the value of the primal threshold
variable b;
Classify a new data vector x using f(x) = sign(

∑
i yiαik(x, xi)− b), where

each yi is the label for pattern i (a coefficient in the quadratic program), and
each αi is a Lagrange multiplier;

13.6.2 Issues in Applications of SVM

SVMs have become widely used classification tools and have produced excel-
lent results on many real world problems. With improvements in the optimi-
sation algorithms used, they also exhibit good scaling properties. SVMs are
also robust with respect to noisy training data. As with all methods, however,
SVMs have acknowledged drawbacks.

i. It is difficult to incorporate domain knowledge into an SVM, other than
in the data preprocessing or kernel selection steps.

ii. The rationale for the resulting classification decisions can be hard to
reverse-engineer, as the support vectors provide limited information to
the modeller.

iii. SVMs were originally designed to work with real-valued vectors, so there is
no unique way to incorporate noncontinuous data (for example, categorical
data) into an SVM.

iv. The SVM methodology also requires that data vectors be scaled, and
different methods of scaling can produce different results.

However, many of these drawbacks also apply to other methodologies, includ-
ing MLPs and RBFNs, and hence are not unique to SVMs.

An important issue in implementing SVMs is choosing an appropriate ker-
nel function and choosing good values for its associated parameters. This can
be undertaken using a combination of domain knowledge and trial and error.
However, an interesting line of recent research concerns the hybridisation of
EC and SVM whereby EC methodologies have been used to uncover good pa-
rameters for a specific kernel function. More generally, genetic programming
(Chap. 7) has been used to evolve problem-specific kernel functions [286, 605].

13.7 Summary 259

13.7 Summary

NNs consist of a family of robust, data-driven modelling methodologies. How-
ever, the earlier comments regarding the clarity of NN models should be borne
in mind. A charge which is sometimes levelled against NN techniques is that
they result in a black box model as it can be difficult to interpret their internal
workings and understand why the model is producing its output. However,
this criticism generally fails to consider that any truly complex, nonlinear
system is unlikely to be amenable to simple explanation. Despite the power-
ful modelling capabilities of NNs, they do suffer from a number of practical
drawbacks:

i. it is difficult to embed existing knowledge in the model, particularly non-
quantitative knowledge,

ii. care must be taken to ensure that the developed models generalise beyond
their training data,

iii. results from the commonly used MLP methodology are sensitive to the
choice of initial connection weights, and

iv. the NN model development process entails substantial modeller interven-
tion, and can be time-consuming.

The last two of these concerns can be mitigated by melding the methodology
with an evolutionary algorithm. The resulting hybrid models are discussed in
Chap. 15.

14

Neural Networks for Unsupervised Learning

In Chap. 13, a series of NN models were described which can be used for
supervised learning. In supervised learning the output for an associated input
vector is already known and is used to guide the learning process. For example,
in training a multilayer perceptron (MLP) the weights on arcs are adjusted
in response to the difference which arises at the output node(s) between the
MLP’s output and the correct, known, output for a given training vector. The
network is therefore trained using a feedback mechanism.

An alternative form of learning is unsupervised learning . This occurs when
there are no clear outputs available to provide feedback for the training pro-
cess. A common example of this is data clustering in poorly understood
datasets, where the number of clusters and their structure is not known in
advance. The underlying assumption in clustering is that ‘similar’ objects are
defined as data items that share common features. Hence, objects which are
close together in the input, or feature, space should be grouped into the same
clusters, with dissimilar items being grouped into different clusters. The num-
ber of clusters may arise naturally from the data. If it is too large — more
than about ten — then the ability of a human being to understand the clus-
tering may be diminished. In this case, an additional segmentation step may
be applied, where ‘similar’ clusters are combined into a segment, e.g., using
decision trees, until there are 10 or fewer segments.

Real-world applications of clustering include the mining of customer
databases, the classification of plants and animals, gene clustering, fraud de-
tection, data compression and image analysis.

Clustering presupposes that there is a measure of the ‘similarity’ of inputs,
effectively, a distance measure or metric on the space of inputs. As clustering
methods aim to identify which objects are most similar to each other, a criti-
cal issue is how similarity or distance between items is measured. Clustering
methods therefore seek to assign cluster labels to data vectors so that intra-
cluster distances (those between members of the same cluster) are small and
intercluster distances (those between distinct clusters) are large. For example,
in Fig. 14.1, the data form three natural clusters.

© Springer-Verlag Berlin Heidelberg 2015
A. Brabazon et al., Natural Computing Algorithms, Natural Computing Series,
DOI 10.1007/978-3-662-43631-8_1

261

4

262 14 Neural Networks for Unsupervised Learning

Cluster 1

Cluster 3

Cluster 2

Feature 1

Feature 2

Fig. 14.1. Example where data splits neatly into three clusters, based on the two
input features of each item

A wide variety of algorithms have been developed for clustering purposes
including k-means [384], fuzzy C-means [172], fierarchical clustering [304], and
mixture of Gaussians [151]. With the growth of the field of natural comput-
ing, a multitude of naturally inspired clustering algorithms have been de-
veloped, including algorithms based on evolutionary processes and brood-
sorting behaviours (Chap. 9.7). Perhaps the best-known family of naturally
inspired clustering algorithms is the self-organising map (SOM), first intro-
duced by Teuvo Kohonen [332, 333]. They are also called Kohonen Maps or
self-organising feature maps (SOFMs).

14.1 Self-organising Maps

Self-organising maps are loosely inspired by the self-organising capability of
neurons in the cortex. Experimental evidence has shown that certain parts of
the brain perform specific tasks such as processing touch, sound and visual
stimuli. In these regions neurons spatially self-organise, or cluster, depend-
ing on their function. Inspired by these processes of self-organisation, SOMs
are artificial neural nets which use unsupervised learning to adapt (organ-
ise) themselves in response to signal inputs. SOMs have been utilised for a
large variety of clustering and classification problems in domains as diverse
as speech recognition, medical diagnosis and finance [138, 238, 334]. Kohonen
describes the main principle of SOMs [332] as follows

. . . in a simple network of adaptive physical elements which receives
signals from a primary event space, the signal representations are au-
tomatically mapped onto a set of output responses in such a way that

14.1 Self-organising Maps 263

the responses acquire the same topological order as that of the primary
events.

A SOM consists of two layers,

(a) an input layer which serves as a holding point for the input data; this
layer has as many nodes as there are input variables;

(b) a mapping layer which makes up a low-dimensional grid, typically two-
dimensional, of models of the data.

The two layers are fully connected to each other; each mapping layer node
has an associated weight vector, with one weight for each connection with the
input layer, as well as a position in the map space (Fig. 14.2).

Input Layer Mapping Layer
weights
on all
arcs

Fig. 14.2. A SOM with a 2-D mapping layer. On grounds of visual clarity, only the
connections between the input layer and two of the mapping layer nodes are shown

We can think of a mapping layer node as being a form of detector, with a
weight vector which is that node’s model of the input data: the weight vector
‘points to’ a location in the space (usually Rn) of input data. A SOM acts to
project (compress) the input data vectors onto the mapping layer. The aim of
the SOM is to group ‘like’ input data vectors close together on the mapping
layer. The method is therefore topology preserving or locality preserving, since
items which are close in the input space are also close in the mapping space.

264 14 Neural Networks for Unsupervised Learning

An input vector will be mapped to the mapping layer node whose weights
are most similar to those of the input vector. Thus, the SOM is a similarity
graph and also a clustering diagram. This compression onto two dimensions
has the extra advantage of aiding visualisation and interpretation and this
is one of the main uses of SOMs. Of course, as with any projection, there is
some information loss but the SOM acts as a nonlinear Principal Components
Analysis (PCA). It picks out the directions of greatest dispersion in the data,
minimising the information lost by reducing the number of dimensions.

14.2 SOM Algorithm

Algorithm 14.1 outlines the general training algorithm for the SOM. In this
algorithm:

Algorithm 14.1: Self-organising Map Algorithm

Choose the number m of mapping layer nodes;
Initialise the weight vectors for each of these nodes;

repeat

for each vector x = (x0, x1, . . . , xn−1) in the training dataset do

for each mapping layer node i ∈ {1, . . . ,m} do
Calculate the distance between the training vector x and the
weight vector wi using

di =

n−1∑
j=0

(xj −wij(t))
2 (14.1)

end

Select the mapping node i∗ that has the minimum value of di;
for each neighbouring mapping node k of i∗, including i∗ itself do

Update the weight vector for node k using

wk(t+ 1) := wk(t) + α(t)hi∗,k(t)(x− wk(t)) (14.2)

end

end

until weight vectors stabilise;

• n is the dimension of the input data vectors: x = (x0, x1, . . . , xn−1), so
there are n input nodes;

• there are m mapping layer nodes: m is determined during the initialisation
phase;

• each node i ∈ {1, . . . ,m} in the mapping layer has a weight vector wi =
(wi0, wi1, . . . , wi,n−1), so there are n×m weights in total;

14.2 SOM Algorithm 265

• α is the learning rate of the map; and
• hi∗,k defines a neighbourhood function from mapping layer centre i∗ to

neighbour k, e.g., a radially symmetric Gaussian

where ‖rk − ri∗‖ is the distance between node k and the BMU i∗ in the
two-dimensional grid (rk is the position vector of mapping node k in R

2).

Note that (14.2) is a vector equation: all n components of wk are updated.
Both the neighbourhood size and the learning rate decay during the train-
ing run, in order to fine-tune the developing SOM. The neighbourhood size
controls how many mapping layer nodes are adjusted (learn) for each data
vector.

Initially most mapping layer nodes respond to every data vector, enhancing
exploration and reducing the chance of getting stuck in a local minimum; as
the neighbourhood size decreases, fewer mapping layer nodes respond (but
may respond more strongly, depending on the rate of decrease of α), enhancing
exploitation. In the early stages of the algorithm, a broad brushstroke picture
of the input data distribution is learned with finer details being filled in as the
neighbourhood size shrinks in later iterations of the algorithm. A slow rate of
neighbourhood shrinkage reduces the danger of premature convergence to a
locally optimal representation.

As the calculation of a distance metric is required in SOM training, input
data vectors are typically standardised. Methods of standardisation include
dividing each column of input variables by its standard deviation, or the
standardisation of each column of inputs based on their range (e.g., x∗ =

x−miny∈X{y}
maxy∈X{y}−miny∈X{y}). During training, a sample vector is drawn randomly

from the input data set. The nodes in the mapping layer compete for the input
data vector and the winner is the mapping node whose vector of incoming
connection weights most closely resembles (is nearest to) the input data vector.
The winner, or best-matching unit (BMU), has the values of its weight vector
adjusted to move them towards the values of the input data vector, thereby
moving the location of the BMU towards the location of the input data item.
The training process is unsupervised as it does not use any explicit outputs.
The process is based solely on measures of similarity between the input data
vectors and weight vectors associated with each of the nodes on the SOM’s
mapping layer.

An important component of the training process is that not only the BMU,
but also its neighbouring nodes on the mapping layer are adjusted in each
training iteration. These neighbouring nodes also have their weight vectors
altered to become more like the input data vector, resulting in a form of
cooperation between these nodes. This is the local learning/plasticity referred
to earlier.

As more input data vectors are passed through the network, the weight
vectors of the mapping layer nodes will self-organise. By the end of the training
process, different parts of the mapping layer will respond strongly to specific

hi∗,k(t)= exp
(
−‖rk−ri∗‖2

2σ(t)2

)

266 14 Neural Networks for Unsupervised Learning

regions of input space. The self-organisation process also encourages the map-
ping layer weight vectors to congregate to regions of the input space where the
training data is concentrated, with relatively few (if any) weight vectors being
located in sparsely populated regions of the input space. The self-organising
map therefore tends to approximate the probability density function of the
input data.

Figure 14.3 provides a stylised illustration of a trained SOM for the three
data clusters in Fig. 14.1. The 12 (in this simple example) mapping layer
nodes have self-organised so that the weight vectors for four nodes have moved
towards each cluster of data in the feature space (only the weight vectors have
changed, not the nodes’ locations in the two-dimensional map).

Once training of the network is complete, the clusters obtained can be ex-
amined in order to gain insight into the underlying data. Although the original
dataset may have been of high dimension, with complex nonlinear relation-
ships between individual variables, its compression into a two-dimensional
visual map allows the user to consider, for example, what data items have
been grouped together and what are the typical values for each input in a
specific cluster.

Mapping layer nodes

Feature 1

Feature 2

Fig. 14.3. A stylised illustration of a trained net (in the data space, not the
mapping layer). Four mapping nodes have migrated to each data cluster during the
training process

14.3 Implementing a SOM Algorithm

When implementing the general algorithm outlined above the modeller faces
a number of choices, including the choice of method of weight initialisation

14.3 Implementing a SOM Algorithm 267

for mapping layer nodes, the choice of topology of the mapping layer, the
choice of neighbourhood function, the choice of distance measure used when
determining which mapping node is closest to a training vector, and the choice
of learning method used to update the weight vectors of the mapping layer
once a winning node is determined. Each of these is discussed in following
subsections.

Initialisation of Weight Vectors

Three common methods exist for initialisation of the weight (also known as
‘codebook’ or ‘model’) vectors:

i. random,
ii. grid, and
iii. input data.

Under random initialisation, each element of each weight vector is assigned
a random value, typically in the range [−1, 1] or [0, 1] (depending on the
range of normalised input variables). While this is a simple method of weight
initialisation it will tend to slow down the training of the SOM if in fact the
input data is highly clustered in the input space. In an extreme case, if the data
is highly clustered in small regions of input space and nodes in the mapping
layer are initialised randomly, many of the mapping nodes may remain unused
in the forming of the topological map (as they, and their neighbours, are never
chosen as the BMU).

A grid approach can also be used whereby the weights are assigned in a
grid pattern which is designed to give a uniform coverage of the input space.
However, this can result in problems similar to those of random initialisation
if the training data is densely clustered in certain regions of input space.

An input data-based approach is to assign each mapping layer node an
initial weight by randomly sampling from the training vectors. Assuming that
the random sample is representative, this method has the advantage that
weight vectors will be located in the denser areas of the input space when
training begins, which should help speed up the training process.

Other methods of initialisation use statistical properties of the input data
to get better initial values for the weight vectors. One such approach is to use
Principal Component Analysis (PCA).

PCA is the application of an orthogonal (i.e., length-preserving) change of
basis to the vector space Rn of input data, so that in the new basis the data’s
greatest variance lies along the first axis (called the first principal component),
its second greatest variance lies on the second coordinate, and so on. Since we
are changing basis so that the new basis vectors point along the directions of
greatest dispersion, we must first centre the data on the zero vector, that is,
subtract off the sample’s vector mean to make the zero vector the centre of
gravity of the sample.

268 14 Neural Networks for Unsupervised Learning

PCA amounts to diagonalising the n×n covariance matrix of the data, with
the transformed variances placed on the main diagonal in descending order.
The variances in this new basis are the eigenvalues of the original covariance
matrix and the principal components are the corresponding eigenvectors. PCA
is a kind of factor analysis. The first few principal components capture most
of the variance of the sample and often the later ones are just ignored as not
contributing much to dispersion. Figure 14.4 shows an example of the first
two principal components of a dataset.

-4

-3

-2

-1

0

1

2

3

4

-10 -5 0 5 10

Fig. 14.4. First two principal components of a dataset.

Under the PCA approach to mapping layer weight initialisation,

• find the first two principal components of the input data, that is, the two
directions in Rn which account for most variance in the training sample;

• then use a grid approach on the two-dimensional subspace spanned by
these principal components, that is, choose the initial weight vectors to lie
in the ‘fattest’ two-dimensional slice of the data.

This approach of weight initialisation has two advantages:

i. the SOM is partly organised to start with;
ii. the algorithm can begin with a narrower neighbourhood function h and a

smaller learning rate α.

These can lead to an order-of-magnitude speedup in the SOM runtime.

Topology of the Mapping Layer

In selecting the topology of the mapping layer, three key choices are faced:

i. how many dimensions should the mapping layer have?
ii. how many mapping nodes should there be?

14.3 Implementing a SOM Algorithm 269

iii. what neighbourhood structure should mapping layer nodes have?

Typically SOM mapping layers are two-dimensional, as this assists in the
visualisation of the resulting map. The selection of the number of nodes trades
off the granularity of the resulting map against its generalisation capability.
Larger maps will produce finer-grained clustering detail but they tend to
generalise less well because of this. Larger maps also take longer to train
as a greater number of mapping nodes must be examined in order to find the
BMU in each training iteration. The number of nodes is also constrained by the
number of data observations available for training purposes, and typically for
clustering applications, the number of mapping nodes will only be a fraction
of the number of training data samples.

In the organisation of the mapping layer, the most common approach when
the map is two-dimensional, is to use a rectangular or a hexagonal topology
(Fig. 14.5). A hexagonal grid of nodes is generally preferable to the naked

Fig. 14.5. Two forms of SOM topology, rectangular (left) and hexagonal (right)

eye, for ergonomic reasons. The grid of map nodes must be oriented along
the distribution of the inputs x. Since the models are to approximate the
distribution of the inputs, the width and height of the grid should more or
less correspond to the major dimensions (e.g., the eigenvalues [variances] of
the two principal components) of the distribution of input data.

Distance Measure

The distance measure is used when determining which mapping node the
BMU is. The simplest metric to use is the Euclidean distance, with the BMU
being the mapping node whose weight vector is closest to the input vector
under this distance metric. The formula for calculating Euclidean distance in
a two-dimensional case, for vectors x and y, is:

dist(a, b) =
√

(x2 − x1)2 + (y2 − y1)2 (14.3)

In earlier chapters, some algorithms including the GA employed a binary
string representation. For these representations, a natural distance metric be-
tween two binary strings is the Hamming distance, or the number of bit-flips
required to make two binary strings equivalent. The two distance metrics are

270 14 Neural Networks for Unsupervised Learning

of course linked if the input vectors have binary form, as in this case the
Euclidean distance metric is equivalent to the square root of the Hamming
distance metric.

Neighbourhood Function

The size of the neighbourhood and the form of the neighbourhood function
impact on the computational effort required in training the SOM. The larger
the neighbourhood, the greater the number of nodes that must be updated in
each iteration; and the more complex the neighbourhood function, the greater
the computational effort in performing each update.

A basic, and often effective, approach is to define a bubble neighbourhood
function around each mapping node. If a particular mapping node is the BMU,
the weight vectors of all its neighbours within this bubble are updated using
the same update equation as the BMU. Weight vectors for nodes outside the
bubble are not updated.

The size of the neighbourhood need not be kept constant during the train-
ing process and is usually reduced as the algorithm runs in order to produce
a finer-grained map. If the neighbourhood is large, many mapping nodes will
have their weight vectors altered on each training iteration: the self-organising
occurs on a global scale. The effect of this, if all neighbours receive the same
update, is that each element of the mapping node weight vectors will initially
tend towards the average values of that element in the training data. Hence,
viewed as models of the data, the mapping nodes will tend to cluster together
in the data space. As the neighbourhood shrinks over time, fewer mapping
nodes are involved in each weight update, and the mapping nodes will tend
to separate in order to approximate the distribution of the training data: the
weights converge to local estimates.

A more complex approach is to define a neighbourhood function using a
Gaussian kernel, whereby the weight vectors of the closest neighbours to the
BMU receive a greater update than those of neighbours which are further
away. This can be formulated as:

hBMU,k(t) = α(t) exp

(
−‖rk − rBMU‖2

2σ(t)2

)
(14.4)

where k is a neighbour of a specific BMU and ‖rk − rBMU‖ is the distance
between node k and the BMU in the two dimensional grid (rk is the position
vector of mapping node k in R

2).

Learning Rate

The learning rate is usually formulated as a decreasing function of the number
of iterations of the SOM algorithm. A simple formulation is to apply a linear
function such as:

14.4 Classification with SOMs 271

(14.5)

where t is the current iteration of the algorithm and maxits is the maximum
number of iterations that the algorithm will run for. The parameter α(0) is the
initial learning rate, and this is usually set above 0.5. The object in adapting
the learning rate as the algorithm runs is to allow larger weight changes in the
early training of the nodes in the mapping layer in order to form a reasonable
quality course-grained mapping from the inputs to the mapping layer. This
initial mapping is then fine-tuned using smaller weight vector adaptations.

In some applications, we may not have a large set of training data. How-
ever, for good statistical accuracy, the learning process may need a significant
number of training steps. The solution is that if the number of available train-
ing data is small, they can be reused during training. The data may be used
cyclically or in a random order; in practice it is typically found that ordered
cyclic use of the available data is not noticeably worse than statistically robust
sampling approaches.

Forming Clusters

In large SOMs, we may perform cluster operations on the map itself. After
the training of the map is complete, the mapping layer nodes will have self-
organised so as to approximate the probability density function of the input
data. In most data mining applications, the number of useful clusters in the
data is not known in advance; hence a clustering algorithm must be applied to
the map in order to uncover these. A common approach is to use a hierarchi-
cal agglomeration clustering algorithm such as Ward’s method [649]. In this
approach, each mapping node is initially considered to be a discrete cluster.
At each step in the clustering algorithm, the union of every possible cluster
pair is considered, and the two clusters whose merging results in the smallest
increase in ‘information loss’ (defined as the sum of errors squared between
each node and its cluster centroid) are combined. This will iteratively tend
to produce larger cluster groups and therefore a smaller number of clusters
in the mapping layer. Additional information on the quality of the clusters
produced by the algorithm is used to fine-tune the clusters and to decide when
to terminate the clustering process.

14.4 Classification with SOMs

Although SOMs are clustering algorithms, they can be used to create classi-
fiers. Before this can be done, each mapping node needs to be labelled once
the clustering process has been completed, using training data for which the
class outputs are already known or by using human expertise to assign class
labels to the generated clusters.

α(t) = α(0)

(
1.0− t

)
iter-max

272 14 Neural Networks for Unsupervised Learning

If the first approach is taken, the map is initially created using only the
input component of the training data vectors. Once this is done, each training
data vector is shown to the map again, and the winning node is assigned
the known label of that training vector. Once all the training data have been
shown to the map, each mapping node will have zero, one, or more (possibly
conflicting) labels associated with it. In the former case, if the user wishes to
ensure that all nodes are labelled, a k nearest neighbours approach can be
applied so that each unlabelled node is assigned the class label of its k nearest
labelled node neighbours. In the case where a mapping node has conflicting
labels associated with it, a majority voting decision could be applied in order
to decide the final class label for that node. Once the mapping nodes are
labelled, out-of-sample data vectors for which the classification is not known
can be classified by presenting them to the map and determining the class
label of the mapping node to which the input vector is closest.

Learning Vector Quantisation

Once the initial assignment of class labels has been made, it is possible to
fine-tune the labelling using learning vector quantisation (LVQ), a supervised
learning methodology [333]. Under LVQ, the weight vectors for mapping nodes
are iteratively updated using:

Δwj =

{
η(xi − wj) if xi is classified correctly,

−η(xi − wj) if xi is classified incorrectly
(14.6)

where xi is each input data vector in turn, and wj is the weight vector for the
mapping node j which is closest to xi. Typically a small value is set for η in
the range (0.01 → 0.02), and it reduces to 0 as the algorithm runs. The object
of the fine-tuning step is to pull weight vectors of mapping nodes in separate
classes away from each other in order to improve the delineation of the class
boundaries on the map.

14.5 Self-organising Swarm

The design and implementation of algorithms for unsupervised learning is
not limited to a neural metaphor. A recent extension of the particle swarm
algorithm (PSO) (Chap. 8) has produced another methodology for self-
organisation, and, like a SOM, this can be applied for unsupervised learn-
ing and classification purposes. This methodology is known as self-organising
swarm (SOSwarm) [464, 466].

The self-organising swarm bears some similarity to a SOM with the
adoption of a two-dimensional mapping layer and an unsupervised learning
methodology. However, in SOSwarm, the nodes in the mapping layer are con-
sidered to be particles which possess position and velocity components. The

14.5 Self-organising Swarm 273

particles adapt over time using variants on the velocity (14.7) and position
update (14.8) equations governing the canonical particle swarm algorithm (see
Chap. 8.2 for a discussion of these equations):

vi(t+ 1) = vi(t) + c1r1(yi − xi(t)) + c2r2(ŷ − xi(t)) (14.7)

xi(t+ 1) = xi(t) + vi(t+ 1) (14.8)

The canonical form of the PSA update embeds two key elements:

i. a history, and
ii. a social influence.

Recall that history is embedded in the PSA via the momentum term and
the pbest components of the velocity update equation. The social influence
is embedded via the influence of either gbest or lbest in the velocity update
(gbest also embeds a swarm ‘history’). These two elements can be embedded
in SOSwarm in a number of ways.

A simple initial approach in adapting (14.7) for SOSwarm is to embed
particle history using the momentum term only, omitting the explicit social
influence term gbest. In its place, drawing on the SOM, a neighbourhood
topology is defined for all the particles in the mapping layer, such that each
particle is affected if any of its neighbouring particles moves. This results in
a form of social learning in that neighbouring particles influence each other.
During the training of the map in each iteration of the particle swarm algo-
rithm, the swarm is perturbed using the current training data vector as lbest.
Just as for the SOM, the training process is unsupervised. By labelling the
mapping nodes after the unsupervised learning process is complete, the final
mapping layer can be used for classification purposes. Algorithm 14.2 provides
an outline of the SOSwarm algorithm for a classification application.

In order to determine the firing particle (the particle that is the closest
match to an input vector) a distance measure is calculated. A number of
alternative error functions could be adopted, such as Euclidean distance:

Firing particle = argmini

⎧⎨
⎩
√√√√ d∑

j=1

(xj − rij)
2

⎫⎬
⎭ (14.9)

where x corresponds to the input vector, ri is the ith particle’s position vector
(of which rij is the j

th component), m is the number of particles in the swarm,
and d corresponds to the dimension of the vector or particle.

A visual representation of SOSwarm is presented in Fig. 14.6. The map-
ping layer is two dimensional and the nodes (particles) in the mapping layer
are arranged a priori into a fixed grid neighbourhood topology. The firing
particle, that is the particle whose position vector is closest to the current in-
put vector (designated as gbest), updates its position vector according to the
canonical PSO velocity and position update equations. In addition, particles

274 14 Neural Networks for Unsupervised Learning

Algorithm 14.2: Self-organising Swarm Algorithm

Initialise particles in mapping layer randomly;

repeat

for each training vector x0, x1, ..., xn−1 in turn do

Set gbest to be the input vector;

Set pbest of each particle at its current position;

Find particle with closest match to gbest;
Denote this particle as the firing particle;
Update firing particle and its neighbour’s velocity and position
vectors;

end

until terminating condition;
Assign class to each particle using known labels of training data;
Calculate classification accuracy using test data;

lying within a fixed neighbourhood of the firing particle also adjust their po-
sition vectors using the same equations, implicitly embedding a form of social
communication between neighbouring particles.

(Input Layer)

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

lbest

to lbest
closest match

neighbourhood

Fig. 14.6. A self-organising swarm (SOSwarm) with a two-dimensional mapping
layer.

Once the map has been trained, each node in the mapping layer is assigned
a class label using, for example, a simple majority voting scheme. In calcu-
lating the in-sample and out-of-sample classification accuracy, the distance
between each input data vector and each mapping node is calculated, with
the input data vector being assigned the class label of the closest mapping
layer node.

14.6 SOSwarm and SOM 275

14.6 SOSwarm and SOM

A close examination of the formulation of the PSA and the SOM suggests
that there are links between the two paradigms. In the canonical SOM, the
update of a firing node’s weight vector is governed by:

xi(t+ 1) = η(t)h(t)(βi − xi(t)) (14.10)

where xi is the firing node’s weight vector, η is the time-varying learning rate
and βi is the input vector. Hence, after firing, the weight vector of the relevant
node in the mapping layer and those of its neighbours which are defined by the
neighbourhood function h(t) are adjusted in order to more closely resemble
the input vector. Ignoring the update of neighbouring nodes, and thinking of
(14.10) in particle swarm terms, it is apparent that it can be written as a
velocity update:

vi(t+ 1) = η(t)(β − xi(t)) (14.11)

The component η(t) in (14.11), in effect a weight parameter, is similar in con-
cept to the weight parameter c1 in (14.7). Hence, the canonical SOM update
equation can be closely approximated by a reduced (nonmomentum) version
of the canonical PSA update equation.

SOM-PSA Hybrids

The parallels between a SOM and a reduced form PSA suggest multiple pos-
sibilities for the creation of new hybrid algorithms for self-organisation. For
example, the PSA embeds momentum, a form of personal particle history
which is not included in the canonical version of SOMs. Like the learning rate
in SOMs, the momentum term in the PSA velocity update is time-varying and
it reduces over time in order to encourage particle convergence. The SOSwarm
algorithm described above includes momentum.

Another interesting possibility, drawing on the use of peer learning in
the PSA, is the incorporation of an additional ‘peer-learning’ term into the
SOSwarm velocity update. For example, a topology consisting of a series of
small overlapping neighbourhoods could be defined between the particles be-
fore the algorithm started, with (14.7) being extended by the addition of the
term c3r3(ylocal − xi(t)), where ylocal is the location of a randomly selected
neighbouring particle of xi(t). This social learning would tend to lessen the
disruptive impact of an anomalous input vector during the learning process.
This could prove especially useful in environments where training data is noisy
or errorful.

Another approach is to recognise that SOSwarm extends SOM by including
not only position but velocity, the time derivative of position. On the principle
that including extra terms in a Taylor series enhances accuracy, it is reasonable
to ask whether including acceleration (time derivative of velocity) terms as
well as velocity and position terms could give a more effective or self-adapting
algorithm. However, initial studies show mixed results [402].

276 14 Neural Networks for Unsupervised Learning

14.7 Adaptive Resonance Theory

Adaptive Resonance Theory (ART), developed by Stephen Grossberg, Gail
Carpenter and others [94, 95, 227, 228], describes a series of self-organising
neural network (NN) architectures for problems such as pattern recognition,
clustering, classification and prediction. Its original focus was the study of
biological systems. It is based on physiological theories of cognitive abilities of
humans and animals — in particular, how the brain learns over time — which
may incorporate such things as the effects of changing ion concentrations
on neurotransmitter operation. Typically, ARTs use unsupervised learning
methods, though supervised methods are sometimes used, e.g., ARTMAP
[95].

The main intuition behind ART models is that when an animal encounters
an object, its brain tries to process it as follows. First, it compares the object to
each of its stock of known categories. If the encountered object is ‘reasonably’
similar to one of its known categories, the object is considered to be known
and is assigned to that category; otherwise, the object is considered to be
novel, and a new category is created for it.

ARTs self-organise with the purpose of addressing the ‘stability/plasticity’
dilemma. This dilemma arises because any learning system must be able to
adapt to important new information (exhibit plasticity) while not forget-
ting already learnt relationships (exhibit stability). In particular, the stability
property means that previous learning should not be affected by irrelevant
new information. The ART adaptively switches between plasticity and sta-
bility according to whether it detects novelty in the input. Of course, similar
issues arise in the SOM, with the plasticity-stability dilemma being typically
handled through a gradual reduction in the learning rate in the SOM, which
in essence limits the plastic period of the map.

The various versions of ART are online learning approaches; that is, data
items are presented to the system one at a time. Over time, the ART develops
a memory of these inputs and which inputs should be assigned to the same
category/cluster. When a new item is presented, its effect depends not only
on its own characteristics (the ‘bottom-up’ current sensory experience of the
learner) but also on the accumulation of previous learning (the ‘top-down’
expectation derived from previous learning and categorisation). The learn-
ing algorithms follow the ‘leader follower clustering’ approach. A cluster is
represented by its centre (mean); only the cluster centre most similar to the
new data item is adjusted; the adjustment is to make the ‘resonating’ cluster
centre more like the new data item.

There are similarities to SOMs, but also significant differences. The main
purpose of ARTs is to model cognition in humans and animals. Thus, the
terminology used is very much inspired by biology, and less so by standard
machine learning or mathematical terminology.

14.7 Adaptive Resonance Theory 277

14.7.1 Unsupervised Learning for ART

Structure of ART Neural Network

In the basic unsupervised learning approach, an ART is a neural network
containing two connected layers of neurons (nodes), called the comparison
layer and the recognition layer, along with a vigilance parameter ρ and a
reset function. The layers are also called the fields of the ART. Together, they
make up the attentional subsystem. The reset function makes up the orienting
subsystem of the ARTs.

The comparison layer corresponds to the SOM input layer while the recog-
nition layer corresponds roughly to the SOM mapping layer, except that it is
variable in size and behaves differently. Each recognition layer neuron i has a
vector of weights wi and has a connection to each of the other recognition layer
neurons 1, 2, . . . , i − 1, i + 1, . . . ,m, allowing it to inhibit the other recogni-
tion neurons’ outputs. This is called lateral inhibition and distinguishes ART
approaches from SOM approaches, which actually reinforce learning of neigh-
bouring neurons. The weight vector of a neuron is the centre of the cluster
represented by that neuron. Initially, no recognition layer neurons are trained
or ‘committed’. As time goes on, and a new cluster is recognised, a new recog-
nition layer neuron is committed to that cluster. In a sense, the ART NN
starts with no active recognition layer neurons and builds them up one at a
time.

The vigilance parameter ρ ∈ [0, 1] is a threshold below which training
is prevented. Its purpose is to address the ‘stability/plasticity’ dilemma. It
controls whether already learnt relationships should be modified — and so
partially forgotten — by the new item of information, or whether a new cluster
should be created to represent that new item. It also controls the cluster
granularity, as explained below.

The reset function (orienting subsystem) detects novelty and controls
training, by comparing the recognition quality to the chosen value of the vig-
ilance parameter ρ; based on this, it switches the ART between its stable and
plastic modes. Thus, the orienting subsystem controls the overall dynamics of
the attentional subsystem when a mismatch occurs between the comparison
and recognition layers.

Working of ART Neural Network

The ART NN works as follows. The comparison layer is presented with an
input vector x (as with the MLP input layer), for a period of time dependent
on the type of ART and the training method used. Each recognition layer neu-
ron i outputs a negative signal, proportional to the quality of match between
wi and x, to each of the other recognition neurons 1, 2, . . . , i− 1, i+ 1, . . . ,m
and so laterally inhibits the outputs w1, w2, . . . , wi−1, wi+1, . . . , wm. Then x
is mapped to its ‘best match’ in the recognition layer, that is, the recogni-
tion layer neuron j whose weight vector wj matches x most closely. The best

278 14 Neural Networks for Unsupervised Learning

matching unit (BMU) is typically taken as the neuron with smallest Euclidean
distance ‖x− wj‖ from x, though other measures of goodness of match may
be used. This BMU j is thought of as the currently ‘firing’ recognition layer
neuron. Thus, each recognition neuron can represent a category/cluster, and
the input vectors are clustered into these categories.

Once x has been classified, the reset function compares the recognition
match quality (the distance ‖x − wBMU‖ between the BMU’s cluster centre
and the input datum) to the vigilance parameter ρ. If ‖x − wBMU‖ < ρ, x is
considered to match the BMU; the BMU is updated or ‘committed’ to that
input x, and training begins; that is, the BMU’s weights are adjusted to be
closer to x.

If ‖x − wBMU‖ ≥ ρ, the BMU is inhibited until a new input vector is
presented; a search procedure is started. During this search, the reset function
disables recognition layer neurons one by one, until ‖x − wi‖ < ρ for some
neuron i (the vigilance threshold is met by a recognition match). Training
begins only when the search completes.

Otherwise (that is, ‖x−wi‖ ≥ ρ for all neurons i, or no neuron is commit-
ted, as would happen on the first iteration) a new neuron is committed, with
its cluster centred on the datum: wnew := x. Thus, the number of clusters in
the data is not predetermined but is itself discovered from the data.

Fig. 14.7. Generic adaptive resonance network. The first (comparison) layer re-
ceives inputs from the environment and from the second (recognition) layer (medi-
ated by a set of top-down weights). The second layer receives inputs from the first
layer, mediated by a set of bottom-up weights. Note: not all bottom-up/top-down
connections are shown here.

14.8 Summary 279

Choice of Vigilance Parameter

The choice of the vigilance parameter ρ crucially influences the behaviour of
the ART. Its effect is to control the level of detail of the ART’s memories.
A large ρ gives fewer, more general categories, which can be thought of as
‘broader brush stroke’ memories. Conversely, a smaller ρ leads to more and
higher precision categories, which can be thought of as memories with a higher
level of detail. A very small value of ρ may give a cluster for each datum, an
outcome of no benefit. Thus, a good value of ρ needs to be determined by the
user, by trial and error, on an application-specific basis.

ART Training

ART training consists of the adjustment of the ‘firing’ recognition neuron’s
weights towards the input data vector x. It may be either slow, using differen-
tial equations, or fast, using algebraic equations. In slow training, the degree
of training depends on the length of time for which the input vector is applied
and is computed as a real number vector. In fast training, binary values are
used. Fast learning is fast, efficient and works for many applications. However,
slow learning is considered closer to what happens in brain processes (a major
motivation for the developers) and has the advantage that it can be used with
a continuously varying input vector.

14.7.2 Supervised Learning for ARTs

A supervised ART-based learning system may be obtained by combining two
basic ARTs (each of the same type, either real number or binary), to give a
structure known as ARTMAP or Predictive ART [95]. Here, the first ART
takes the input data and the second ART takes the associated output data.
The system then makes the smallest possible modification of the first ART’s
vigilance parameter that suffices to classify the data correctly.

14.7.3 Weaknesses of ART Approaches

ART NNs have been criticised for having several undesirable properties, in-
cluding: being strongly dependent on the presentation order of the input data;
not giving consistent estimates of the best cluster centres; and having high
sensitivity to noise.

14.8 Summary

Unsupervised learning is a powerful approach for uncovering structures in
populations of objects when little is known about the relationship between

280 14 Neural Networks for Unsupervised Learning

these objects. In this chapter we have introduced a variety of NN models
which adopt an unsupervised learning approach, including the well-known
SOM algorithm. A short introduction to Adaptive Resonance Theory is also
provided. Of course, other natural metaphors can be applied for the purposes
of unsupervised learning, and a clustering methodology drawn from a particle
swarm inspiration (self-organising swarm) was also introduced in this chapter.

One practical drawback of the neural net models discussed in the last
two chapters is that the user must select both a model structure and the
values of a number of parameters in order to apply the model. This presents a
nontrivial problem given the huge number of combinatorial possibilities facing
the user when making these choices. The results obtained from the networks
are usually sensitive to these choices. Although rules of thumb exist to assist in
this task, the construction of a quality neural network can be time-consuming,
requiring substantial trial and error. This opens up the possibility of creating
a hybrid model in order to automate these choices. The next chapter provides
an introduction to neuroevolution, the use of evolutionary methodologies for
this task.

15

Neuroevolution

In this chapter we discuss neuroevolution — the application of an evolutionary
process to uncover quality neural network models. While the chapter will focus
on the evolution of MLPs, the concepts can be carried over to the evolution
of other NN structures as well.

The construction of an MLP entails the determination of the appropriate
model inputs, model structure and connection weights. In all but toy prob-
lems this results in a huge search space of model possibilities which cannot be
efficiently examined using a modeller-driven trial and error process. An evo-
lutionary algorithm (EA) such as the GA provides scope to automate some
or all of the MLP model generation process, by blending the model induction
capabilities of an MLP with the optimising capabilities of an evolutionary
algorithm (or more generally, any other optimisation algorithm).

There are several ways that a neuroevolutionary hybrid can be constructed.
The first possibility is to use an EA to uncover a subset of good-quality model
inputs from a possibly very large set of potential inputs. A second use of an EA
is to evolve the node-arc structure of an MLP network. Weight optimisation in
MLPs is also problematic, particularly for large networks with many weights.
Even if attention is restricted to a specific learning algorithm (for example,
backpropagation) a modeller is still required to make good choices for the
parameters of the learning algorithm. An EA could be used to evolve the
choice of learning algorithm and associated parameters. Of course, for a given
(fixed) MLP structure, an EA could also be used to directly evolve good
connection weights for each arc in the MLP. In summary, an EA can be used
to select from choices for any or all of the following:

i. model inputs,
ii. number of hidden layers in the MLP,
iii. number of nodes in each hidden layer,
iv. nature of transfer functions at each node,
v. connection structure between each node, learning algorithm and associ-

ated parameters, or

© Springer-Verlag Berlin Heidelberg 2015
A. Brabazon et al., Natural Computing Algorithms, Natural Computing Series,
DOI 10.1007/978-3-662-43631-8_1

281

5

282 15 Neuroevolution

vi. connection weights between each node.

The first step, as with all EC applications, is to develop a suitable represen-
tation of the problem. Two main approaches are used in neuroevolution, a
direct encoding where the structure of the MLP can be read directly from the
genotype, or an indirect encoding which specifies a set of construction rules
that are iteratively applied to produce the MLP (Sect. 15.3). In this chapter
we concentrate on the use of direct encodings.

15.1 Direct Encodings

A direct encoding means that the MLP structure and/or its weights can be
directly read from the genotype. The following sections illustrate how various
aspects of an MLP structure could be directly encoded on a genotype and
then evolved using an EA.

15.1.1 Evolving Weight Vectors

Suppose the objective is to uncover a good set of weights for a fixed MLP
structure with two input, two hidden and one output node. This structure
has six possible connections and therefore six weights. These weights can
be directly encoded onto a chromosome. Figure 15.1 provides an example of
how the weights for each of the six possible connections can be encoded as a
binary chromosome. Each individual weight is encoded using a block of five
bits, giving a total chromosome length of 30 bits. The first bit in each five-bit
block indicates whether that weight is negative (a value of 0) or positive (a
value of 1), with the remaining four bits (reading from left to right) encoding
the weight value. A weight value of ‘00000’ or ‘10000’ indicates that there is no
connection between two nodes. Of course, many other encodings of the weights
could be used, including a higher-precision binary encoding or, preferably as
it forms a more natural representation in this case, a real-valued encoding of
the weights (producing a real-valued genotype).

Regardless of how the weights are encoded, the general evolutionary search
process to find a high-quality set of weights for the MLP is the same. At the
commencement of the training process each chromosome in the population of
genotypes is decoded into a set of weights for the fixed MLP structure. An
error measure for this network is obtained by passing the training data through
the MLP and comparing the MLP’s output with the known actual outputs for
the training data. Lower errors represent higher fitness. An EA then acts on
the population using fitness-based selection and the usual diversity-generation
operators such as crossover and mutation in an effort to uncover better sets
of weights over multiple generations.

Although the above method can be used to evolve weights for an MLP,
it will not necessarily outperform specialist weight-adjustment techniques for

15.1 Direct Encodings 283

training MLPs such as quickprop [186]. Weight evolution does offer advantage
in certain cases where backpropagation methods cannot be used, for exam-
ple when a specialist error measure is required which is not a differentiable
function, or in cases which backpropagation finds hard, for example highly
multimodal error surfaces.

Encoding Weight

10100 +2
11000 +1
00000 no connection
10010 +4
00100 −2
10001 +2

�������� 2 ��

1

���
��

��
��

��
��

��
��

��
�

��������
−2

��
��

��
��

��
��

�

��������

�������� 4 ����������

8

��

Fig. 15.1. Binary encoding of weights in an MLP. The first bit indicates whether
the weight is negative (0) or positive (1) with the remaining four bits (reading from
left to right) encoding the weight value. The weight 00000 indicates no connection
between two nodes

15.1.2 Evolving the Selection of Inputs

Figure 15.2 and Algorithm 15.1 illustrate the general form of an EA-MLP
hybrid when the MLP’s structure and/or choice of inputs (as distinct from
the MLP’s weights) are being evolved. The elements of the MLP’s structure
are encoded onto a genotype. The weights for the connections in the MLP
are obtained using a backprop (or other) learning algorithm and the resulting
error measure is used to drive the evolutionary process.

If the intention is solely to evolve good sets of inputs for an MLP of
otherwise fixed structure, a simple choice of representation is to use a binary
string of length N where each element of the string is an indicator (0,1) as
to whether each of the N inputs is excluded or included in the MLP. For
each chromosome, corresponding to a specific selection of inputs, the MLP is
trained using backprop and an error measure obtained which is then used to
guide the evolutionary process in its search for the best set of inputs. While
this process is intuitive, it does suffer from the noisy fitness problem. This
issue is discussed in Sect. 15.1.5.

15.1.3 Evolving the Connection Structure

A slightly more complex task is to use an EA to evolve an MLP’s connection
structure. In this case the modeller must design a representation which is ca-
pable of encoding a broad range of possible network connection structures.

284 15 Neuroevolution

Genotype

MLP structure

MLP training

Decoding Fitness
information

Selection, crossover & mutation

Fig. 15.2. Illustration of one form of a GA-MLP hybrid. The hybrid uses evolu-
tionary learning to uncover a good structure but the weights are obtained using the
backpropagation algorithm

Algorithm 15.1: Neuroevolutionary Hybrid Algorithm

Select genotypic representation for the MLP structure;
Generate an initial random population of n genotypes;

repeat

for each genotype in turn do

Decode the string into an MLP structure;
Initialise the connection weights;
Train the MLP using the backpropagation algorithm;
Determine the fitness of the resulting MLP;

end

repeat

Perform fitness-based selection of two parents;
Apply crossover and mutation operators to generate new child
solution;

until a new population of size n is created ;
Replace the old population with the new one;

until terminating condition;

15.1 Direct Encodings 285

One way of directly encoding the connection topology is by means of a con-
nection matrix or adjacency matrix of size N ×N , where N is the maximum
number of possible nodes in the network (Figs. 15.3 and 15.4). The connection
matrix consists of (0,1) values, each indicating whether that connection is used
or turned on in the network. This representation implicitly allows the EA to
select the number of hidden nodes, as a hidden node which is not connected
to any input or output nodes is effectively redundant.

One drawback of this representation is that as N becomes large, the fea-
sibility of employing a direct encoding declines, as the storage requirement
of a connection matrix for N nodes scales at a rate of O(N2). Use of this
representation also requires the modeller to define the maximum size of the
MLP structure beforehand. A further problem is that if N is large, some of the
initially generated networks could be complex, with many hidden layer nodes,
even though the problem may not actually require this level of complexity.
This could raise issues of poor performance generalisation out of sample.

1

4

3

2

5

0 0 1 1 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 1

0 0 0 0 0

From
node:

To node:

00110 010 01 1

 1 2 3 4 5

1

2

3

4

5

Fig. 15.3. A feedforward MLP connection matrix. The matrix can be concatenated
into a binary string. Due to the feedforward architecture, the binary string only needs
to contain the upper-right triangle of the matrix

286 15 Neuroevolution

1

4

3

2

5

0 0 1 1 0

0 0 0 1 0

0 0 1 0 1

0 0 0 0 1

0 0 0 0 0

From
node:

To node:

00110 00010 00101 00001 00000

Time-delayed feedback

1 2 3 4 5

1

2

3

4

5

Fig. 15.4. A recurrent architecture encoded as a binary string. As feedback arcs
are permitted, the binary string must encompass the entire connection matrix. The
chromosome is formed by concatenating the matrix row by row

15.1.4 Other Hybrid MLP Algorithms

While the above discussion is framed in the context of using an EA to ‘evolve’
aspects of a neural network it is clear that many alternative optimising al-
gorithms could be substituted for an EA in order to uncover good solution
encodings. For example, if the object was to uncover a good connection struc-
ture (which can be represented as a binary-valued search problem) any op-
timisation algorithm capable of working with a binary representation such
as BinPSO (Chap. 8) could be applied. Alternatively, if the objective was
to uncover a good set of real-valued weights for a fixed MLP structure, any
real-valued optimisation algorithm including, PSO, DE, ES, etc., could be
used. For example, in using PSO to uncover good weight vectors for a fixed
network structure, each particle could encode the weights for an entire MLP
structure. Initially, the location of the particles in the swarm could be gen-
erated randomly and the fitness of each particle determined by passing the

15.1 Direct Encodings 287

training data through the MLP associated with that set of weights. The usual
PSO velocity and location update equations could then be applied in order to
undertake a search of the weight space [236]. Eberhart et al. [173] illustrate
a comprehensive application of a PSO-MLP hybrid in which PSO is used to
search for good inputs, for good network structures, and for good slope values
for the transfer functions in an MLP structure.

15.1.5 Problems with Direct Encodings

Although the concept of evolving MLP structures using direct encoding
schemes is quite intuitive, a number of problems arise in practice with the
simple methods outlined in the above sections. These can reduce the effi-
ciency and effectiveness of hybrid algorithms which use a direct encoding.
Three issues are particularly troublesome:

i. noisy fitness,
ii. designing efficient crossover mechanisms, and
iii. generating over-elaborate MLP structures.

Noisy Fitness

When an evolutionary process is used to generate an MLP’s structure and this
is followed by the application of (for example) a backprop training process in
order to determine the structure’s fitness, the resulting fitness depends on
both the MLP’s structure and on the initialisation of the weights at the start
of the (nonevolutionary) training process. Hence, a good network architecture
could obtain a low fitness, and therefore be eliminated from the population,
just because of an unlucky weight initialisation. One work-around for this
problem is to train each MLP using several different weight initialisations
and use the average or best of these results as the fitness of the genotype. A
drawback of this approach is the extra run time required due to the multiple
retrainings of each MLP.

Designing Efficient Crossover Mechanisms

While applications of directly encoded MLP-EA hybrids often produce good
results, the efficiency of these hybrid algorithms can be lower than expected
because of poorly designed crossover mechanisms. To illustrate this, assume
that we are evolving the weights for a fixed MLP structure and that we have
selected two parents for crossover (Fig. 15.5). Although the chromosomes for
each parent will ‘look different’ in that not all the elements of each chromosome
are identical in each locus (Fig. 15.6), in fact they represent the same MLP
structure with the two hidden layer nodes permuted. This could produce an
inefficient search process as the population of chromosomes starts to converge
on a good region of the search space as crossover starts to produce children

288 15 Neuroevolution

which are less fit than their parents. This is known as the permutation problem
or the competing conventions problem [242, 418].

In general, for a network with N hidden layer nodes, there are N ! func-
tionally equivalent networks. To make matters worse, two MLPs with differing
topologies can actually represent the same network (the equivalent convention
problem).

a

d

c

b

e

f

b

c

d

a

f

e

Fig. 15.5. Two identical MLPs with the same weights and structure, except their
two hidden layer nodes are permuted

A number of different approaches to overcoming the permutation problem
have been investigated with varying degrees of success (see Yao (1999) [677]).

More generally, this problem illustrates the issue of redundant represen-
tations which can arise in applications of natural computing methods. Rep-
resentations are redundant if the number of possible genotypes exceeds the
number of possible phenotypes (i.e. there is a many-to-one mapping between
genotypes and phenotypes). Rothlauf and Goldberg [541] draw a distinction
between synonymously and nonsynonymously redundant representations.

The former arise when genotypes that represent the same phenotype are
similar to one another; the latter arise when the genotypes that represent a
specific phenotype are different from one another. Nonsynonymously redun-
dant representations make it difficult for variation operators such as crossover
to work efficiently.

15.2 NEAT 289

Fig. 15.6. Suppose the (identical) connection weights of parent A and parent
B are in fact the optimal ones for the MLP (hidden layer nodes are permuted).
Applying uniform crossover to the real-valued chromosomes produces children which
are inferior to their parents

Over-elaborate MLP Structures

As mentioned in Sect. 15.1.3, over-elaborate MLPs can be generated when
attempting to evolve good connection structures using representations such
as an N×N matrix. This in turn can result in overfit of the training data and
poor generalisation of the resulting MLP. One way of lessening this problem
is to implement a penalty function in determining an MLP’s fitness, whereby
a network’s fitness is reduced as its size increases.

15.2 NEAT

One approach, developed in 2002 by Stanley and Miikkulainen [591, 592,
593], which attempts to overcome the problems of evolving MLPs using a
direct encoding, is NEAT (neuroevolution of augmenting topologies). NEAT
simultaneously evolves both topology and weights. Proponents of NEAT claim
that it:

i. applies a principled method of crossover (i.e. attempts to overcome the
permutation problem),

ii. protects structural innovations (i.e. attempts to overcome the noisy fitness
problem), and

iii. grows MLPs from a minimal structure (i.e. attempts to ensure that the
final MLP is no more structurally complex than necessary).

290 15 Neuroevolution

In order to achieve this, NEAT uses three mechanisms, a novel MLP encoding
which allows for ‘sensible crossover’, a speciation concept which offers some
protection for structural innovations, and a seeding process whereby all initial
MLP structures are of miminal size. Algorithm 15.2 provides an overview of
NEAT. The algorithm is described in more detail in the following sections.

Algorithm 15.2: NEAT Algorithm

Generate an initial population of n (identical) genotypes of minimal
structure;
Decode one genotype into an MLP structure and assess fitness of all
members of the population;

repeat

Select a random member of each species to represent that species;
for each genotype in turn do

Calculate shared fitness of genotype;
end

for each species in turn do

Calculate number of members of that species in the next generation;
Insert best current member of that species automatically into the
next generation;
Select best x% of each species for mating pool;
repeat

Randomly select parents from the mating pool and apply
crossover to obtain a child;
Apply mutation to newly-created child;
Assign new child to an existing or a new species;

until required number of children are generated ;

end

until terminating condition;

15.2.1 Representation in NEAT

The genetic encoding used in NEAT is illustrated in Fig. 15.7. Each gene
encodes an individual connection between two nodes; therefore the genotype
encodes an entire MLP structure and its associated weights. Each connection
gene has four pieces of information, the index number of the input and output
nodes for that connection, the connection’s real-valued weight, an indicator
as to whether that connection is ‘enabled’ (on) or ‘disabled’ (off), and the
innovation number for the connection. Innovation numbers are assigned in se-
quence when a new connection is first created in the population of genotypes
(when two nodes are linked for the first time), and all subsequent instances of
that connection in the population have the same innovation number. Hence,

15.2 NEAT 291

a connection gene between (say) nodes 1 and 4 will have the same innovation
number for all members of the population of genotypes. The innovation num-
ber helps ensure that genotypes can be lined up sensibly during the crossover
process.

Fig. 15.7. A genotype in NEAT. This genotype has six connection genes (one of
which is disabled) and encodes an MLP with two hidden layer nodes

15.2.2 Diversity Generation in NEAT

As in canonical ECs, new generations of genotypes are created using a se-
lect, reproduce and replace cycle. Each of these processes is described in the
following sections.

Crossover in NEAT

The crossover operation in NEAT is based on the idea that nature only al-
lows sensible, not random, crossover during reproduction. In contrast to the
random crossover process in simple neuroevolutionary algorithms, NEAT en-
codes and uses information on the genotype’s historical development (via its
innovation numbers) in order to allow proper pairing of parent genotypes for
crossover of their MLP structures.

292 15 Neuroevolution

Each connection gene representing a connection between two specified
nodes will have the same innovation number for all genotypes in the popula-
tion. Hence, genotypes can be lined up, and their common connection genes
identified. The parents may also have disjoint and/or excess genes (genes
which occur either inside or outside the overlapping range of the two parents’
sets of innovation numbers), where one parent has a connection gene which the
other does not. Figure 15.8 provides an illustration of the matching process
highlighting matching and excess genes between two parent genotypes.

During the crossover process with two parents producing a single child, the
child genotype inherits all connection genes which are common to both parents
with the weight value being randomly selected from one of the parents. Dis-
joint and excess genes are inherited from the fitter parent. If a gene is enabled
in one parent and disabled in the other, it is stochastically enabled/disabled in
the child. A relatively strong selection pressure is typically applied in NEAT
whereby the top 40% in each species (Sect. 15.2.3) are placed in a mating pool,
with random selection from this pool in order to select parents. In generating
children, a 25% cloning and a 75% crossover rate is suggested by Stanley and
Miikkulainen (2002) [591].

One item of note in the operation of crossover in NEAT is that it does not
usually play as significant a role as mutation in generating structural diversity
in the population. As a child inherits all the disjoint and excess genes from its
fitter parent, its basic structure will resemble that of the fitter parent. Hence,
crossover primarily acts as a search of weight space around the fitter parent.
In contrast, crossover in traditional neuroevolution, while running into the
issue of competing conventions, does generate substantial structural diversity
(akin to macromutation).

Mutation in NEAT

Three types of mutation are possible in NEAT, mutation of a real-valued con-
nection weight, an ‘add connection’ mutation, and an ‘add node’ mutation. In
an add connection mutation, a new connection gene is appended to a genotype
which creates a connection between two existing nodes in an MLP. The weight
for this new connection is generated randomly (Fig. 15.9). In the case of an
add node mutation, a randomly selected existing connection is broken and a
new node is placed at the break point. The connection into this new node is
given a weight of 1 and the connection out of the node retains the old weight
from the broken connection (Fig. 15.10). Typically, the weight mutation rate
is higher than that for connections or node additions. Over time, the mutation
process will tend to produce longer genotypes and hence more complex MLP
structures.

15.2.3 Speciation

In evolving MLP structures, newly created topologies will often have limited
fitness as their connection weights are not optimised when the new structure is

15.2 NEAT 293

Fig. 15.8. Crossover in NEAT. Parent 2 is assumed to be the fitter; hence all its
excess genes are inherited by the child. Stochastically, the connection between nodes
2 and 3 is turned on in the child, despite it being disabled in parent 2

294 15 Neuroevolution

Fig. 15.9. An add connection mutation. Here a new connection is added between
nodes 2 and 4 and a corresponding connection gene is inserted in the genotype

initially created. Hence the new structures may be promptly deselected before
they have a chance to discover good weights.

To overcome this problem, NEAT uses speciation [385] in order to help
protect new structures. The concept is similar to that of speciation in na-
ture, where species compete in different ecological niches and the most direct
competition for resources is between members of the same species. In NEAT,
speciation is undertaken using the structural information contained in each
genotype. The object is to determine which genotypes are most “similar” and
therefore should be considered to belong to the same species. The degree of
similarity between two genotypes is determined by looking at their connection
genes: how many genes match, how many excess and disjoint genes are there,
and what is the degree of similarity in the connection weights on the matching
genes? A metric is calculated using:

c1E

N
+

c2D

N
+ c3W (15.1)

where N is the number of genes in the larger of the two chromosomes being
compared, E and D are the number of excess and disjoint genes respectively,

15.2 NEAT 295

Fig. 15.10. An add node mutation. Here a new node is inserted between nodes 2
and 3 resulting in the addition of two new connection genes to the genotype

W is average weight difference of matching genes, and c1, c2, c3 are the relative
weights on each element of the metric.

When a new child genotype is created, the value of the above metric is
calculated by comparing the similarity of the new genotype to a randomly
chosen member of each species in the last generation of the NEAT algorithm.
The new child is then assigned to the first species where the calculated distance
is within a predetermined threshold value δ. If no species is found to be within
this threshold distance, the genotype forms a new species.

Fitness-Sharing

In the selection step in NEAT, a fitness-sharing mechanism is used in order to
encourage diversity in the population of genotypes. The use of fitness-sharing
is driven by the observation that individuals within a species compete for
the same resources and each species occupies a niche in the wider ecological
environment. Shared fitness is calculated using:

f ′(i) =
f(i)∑n

j=1 s(d(i, j))
(15.2)

296 15 Neuroevolution

where f(i) represents the original (unadjusted) fitness of genotype i and f ′(i)
represents the shared (reduced) fitness of genotype i. The sharing function s
provides a measure of the density of other species members within a given
neighbourhood of a specific genotype i. In NEAT, a simple neighbourhood
definition is used, namely the number of members of the species to which
genotype i belongs. Hence, the shared fitness of a species member is its original
fitness divided by the population size of that species. The use of fitness-sharing
makes it difficult for any species to take over the population and helps protect
and promote structural diversity.

The size of an individual species alters over time depending on whether
the adjusted fitness of individuals in that species is higher or lower than
the populational average fitness. The number of individuals in each species
changes from one generation to the next according to:

N
′
j =

∑Nj

i=1 fij

f
(15.3)

where N
′
j and Nj are the new and old number of individuals in species j, fij is

the adjusted fitness of individual i in species j and f is the average adjusted
fitness of the entire population. In the reproduction process, each species
is therefore assigned a different number of offspring in the next generation.
Species reproduce by first eliminating the lowest performing members from the
population. The best-performing x% of each species are then randomly mated
to generate N

′
j offspring, replacing the entire population of that species. An

elitist selection process is also used whereby the best individual in each species
automatically survives into the next generation, once the population has at
least five members [591]. Species can become extinct, either when the number
of new individuals in the species falls below 1, or when there is no change in
the fitness of the best member of the species over multiple generations [591].

15.2.4 Incremental Evolution

NEAT begins with a uniform population of networks which have no hidden
layer nodes and where all inputs are connected to the output node(s). Ad-
ditional complexity in the form of hidden layer nodes or new connections is
introduced as necessary via structural mutations. This approach implies that
in earlier generations of the evolutionary process, search and optimisation is
performed on small MLP structures, which makes weight optimisation within
those structures easier.

Of course, a variety of other methods of initialisation could be used and
the above approach will need to be altered for cases where the problem has
a large number of input and/or output nodes. For example, using the above
approach, a network with 40 inputs and 10 output nodes would require 400
connections, resulting in a high-dimensional search space. In contrast, initial-
isation of the population using, say, a hidden layer with three nodes would
reduce the number of connections to 150.

15.5 Summary 297

15.3 Indirect Encodings

Apart from using direct encoding schemes it is possible to use an indirect
encoding to generate and evolve MLPs. Examples of this approach include
grammatical or cellular encoding [231, 331] (Chap. 18.2.3). In these methods
the basic building blocks of the network are encoded in the form of a grammar
(a set of rules which can be applied to produce a structure, in this case a
complete MLP), and MLPs are developed by stringing together the building
blocks defined in the grammar. These systems are generative in the sense that
they do not assume the form of the MLP structure a priori.

A detailed discussion of grammars, and how they can be used to develop
diverse structures, is provided in Chap. 17.

15.4 Other Hybrid Neural Algorithms

MLPs are only one family of neural networks, and concepts similar to those
discussed in this chapter can be applied in order to automate the process of
generating other forms of neural networks. Considering RBFNs for example,
the modeller faces a number of design choices including:

• the number of model inputs,
• the locations of centres,
• the nature of RBF at each centre,
• the bandwidth of each RBF, and
• the weight on each centre’s output.

While typically the final choices for the above parameters are made based
on trial and error, there is no reason that the design process could not be
automated. As for MLPs, the trick is to select an appropriate representation
while minimising the effect of issues such as competing conventions and noisy
fitness.

15.5 Summary

A practical difficulty in developing neural networks is that the creation of a
quality network for a specific application can be a time-consuming process.
Consequently, there has been significant interest in the possibility of automat-
ing some or all of this development process by creating hybrid algorithms for
neural network construction. This chapter concentrates on the application of
an evolutionary metaphor for the purposes of creating MLP networks, al-
though the general principles can be applied to the creation of any form of
neural network, and other optimisation algorithms could also be employed. A
key issue arising is the need to carefully match the design of the diversity-
generating operator to the choice of representation for the neural network.

298 15 Neuroevolution

In Chap. 16 we introduce another natural computing paradigm, immuno-
computing, which draws inspiration from the workings of the immune system
in order to create natural computing algorithms for optimisation and classifi-
cation.

Part IV

Immunocomputing

16

Artificial Immune Systems

The immune system of vertebrates is comprised of an intricate network of
specialised tissues, organs, cells and chemical molecules. The capabilities of the
natural immune system include the ability to recognise, destroy and remember
an almost unlimited numbers of pathogens (foreign or nonself objects that can
enter the body, such as viruses, bacteria, multicellular parasites and fungi),
and also to protect the organism from misbehaving self cells.

Two main strands of research comprise the field of artificial immune sys-
tems (AIS); namely, the modelling and simulation of the immune system in
order to develop and test theories as to how it works, and the use of immune
system metaphors in order to develop computational algorithms. This chapter
concentrates on the latter.

The most common AIS algorithms can be broadly grouped into four cate-
gories (Fig. 16.1). This chapter concentrates on three of the most widely ap-
plied of these, the negative selection algorithm, which can be used for anomaly
detection/classification, algorithms inspired by the clonal expansion process,
which can be used for optimisation and classification, and danger theory, which
gives rise to the dendritric cell algorithm which can be used for anomaly de-
tection. A short introduction to natural immune systems is provided in the
next section before these families of algorithms are examined.

Artificial Immune
Systems

Negative/Positive
Selection

Clonal Expansion
and Selection

Network Theory
Algorithms

Danger Theory

Fig. 16.1. Taxonomy of main AIS algorithms

© Springer-Verlag Berlin Heidelberg 2015
A. Brabazon et al., Natural Computing Algorithms, Natural Computing Series,
DOI 10.1007/978-3-662-43631-8_1

301

6

302 16 Artificial Immune Systems

16.1 The Natural Immune System

The human natural immune system has multiple-level defenses. The first lines
of defence are barriers, such as skin and nasal hair, which physically block in-
gestion of pathogens. These barriers are supported by physiological defenses,
including fluids secreted by the body (saliva, sweat and tears) which move
pathogens out of the body and/or contain disruptive enzymes. In addition,
humans have both an innate (or nonspecific) and an adaptive (or specific) im-
mune system [48]. The innate immune system is present at birth and it does
not adapt over a person’s lifetime. In contrast, adaptive immunity is directed
against specific pathogens and is modified by exposure to them, resulting in
lifetime modification of the immune system. Thus a memory of previous in-
vaders, and how to deal with them, is created and maintained by the adaptive
immune system.

16.1.1 Components of the Natural Immune System

The immune system is comprised of a variety of molecules, cells and tissues.
The most important cells are leukocytes (white blood cells) which can be
divided into two major categories: phagocytes and lymphocytes. The first
group belongs to the innate immune system while the latter group mediates
adaptive immunity.

16.1.2 Innate Immune System

For a long time immunological research was dominated by the study of the
adaptive immune system and it is only in recent years that we have begun
to unravel the activities of the innate immune system, and its critical links
with the adaptive immune system [405, 459]. The innate immune system uses a
number of reliable signatures of foreign or nonself, such as pathogen-associated
molecular patterns (PAMPs), to identify pathogens. PAMPs are molecular
patterns that are broadly shared by pathogens but not by self molecules. If
a nonself signature is detected the innate system triggers an inflammatory
response in which components of the immune system attempt to wall off the
invader and halt its spread. The inflammatory response results in symptoms
such as redness and swelling that can occur at points of injury, as well as the
fever and aches that can accompany infections. The inflammatory response is
initiated by Toll-like receptors (TLRs) [458].

A total of ten TLRs are currently thought to exist in humans [458]. These
recognise PAMPs, which are vitally important to the survival of pathogens
such as bacteria, viruses, fungi and parasites. For example, TLR5 recognises a
protein in the flagella used by bacteria to swim, TLR2 recognises a molecule
which exists in the cell wall of bacteria and TLR3 binds to double-stranded
viral DNA. It appears that TLRs have evolved over time to recognise molecules

16.1 The Natural Immune System 303

that are fundamental components of a wide range of pathogens, and the ability
to recognise these molecules has become encoded in our genome.

Therefore, TLRs play a key role in identifying the type of invading
pathogen and mobilise the appropriate part of the immune system when
required. The alarm sounded by the innate immune system when foreign
molecules are detected is signalled by proteins known as cytokines that not
only induce the inflammation response of the innate immune system but also
activate the B and T cells that are needed for the adaptive response (see
Sect. 16.1.3).

Cytokines are produced by various innate system cells including macrophages
and dendritic cells, both of which are studded with TLRs. Macrophages cir-
culate in the body looking for signs of infection. If they detect this they set off
the inflammatory response, engulf the invader, and secrete cytokines which
raise a general immune system alarm to recruit other cells to the site of infec-
tion. Dendritic cells (Sect. 16.1.4) ingest and subsequently present fragments
of a pathogen’s antigen to T cells in the lymph nodes and release signalling
cytokines which indicate the level of danger associated with that antigen.

Innate immune systems (and TLRs) are not unique to humans. They also
exist in many other species including insects and fish. Even plants are rife
with TLRs [458].

Plant Immune Systems

Just like humans and other animals, plants have a wide range of potential
pathogens to deal with, including viruses, bacteria, fungi, and nematodes
(worms). In the first instance plants rely on physiological barriers (for ex-
ample, the bark on a tree, thorns, or chemical secretions which are toxic to
other organisms). These defenses can be overcome with plant pathogens such
as bacteria gaining entry via wounds, or via water/gas pores, fungi gaining
entry via plant epidermal cells, and insects invading via puncturing of the
plant. The second layer of the plant’s immune system is an innate immune
system and this operates in a similar fashion to the innate immune system
found in animals.

Unlike higher animals, plants do not have an adaptive immune system.
They depend on the innate immunity of each cell and on systemic signals
emanating from infection sites [307]. Pathogens are typically recognised either
at the cell surface or inside the cell. In similar fashion to aspects of the innate
immune systems in animals, individual plant cells can express receptors which
recognise molecular structures (patterns) which are conserved over a broad
range of pathogens. On the detection of pathogen molecules, a number of
responses can be triggered in cells including cell wall thickening, production
of anti-microbial compounds and host cell death (in an effort to stop the
infection spreading to other cells) [307]. Defensive metabolites can also be
transported within the plant in an effort to enhance resistance in tissue not
yet affected by attack. Long-distance signalling in a plant may activate de

304 16 Artificial Immune Systems

novo expression of resistance mechanisms in response to an attack elsewhere
in a plant [260].

While the immune system in plants is clearly functional, the ‘hard-wiring’
of the immune system into plant genes causes problems when new pathogens
emerge to which a plant species has no resistance. The only way for a plant
species to obtain resistance to a new disease which the plant’s innate immune
system cannot deal with is via an evolutionary process (mutation) which can
be slow. In contrast, vertebrates possess another line of immune defence, the
adaptive immune system.

16.1.3 Adaptive Immune System

If a vertebrate’s innate immune system cannot not swiftly remove a pathogen,
the adaptive immune system swings into action. A key role is played in this
process by lymphocytes which circulate constantly through the blood, lymph
and tissue spaces. A major component of the population of lymphocytes is
made up of B and T cells which are produced in the bone marrow. After their
production in bone marrow, B cells remain there and mature whereas T cells
migrate to the thymus for maturation.

B and T cells are capable of recognising and responding to certain nonself
antigen (foreign molecules) patterns presented on the surface of pathogens
(in the case of T cells) or antigen which has been expressed by an invading
pathogen (in the case of B cells). A major role in the T cell recognition pro-
cess is played by molecules of the major histocompatibility complex (MHC)
[280]. These molecules act to transport peptides (fragments of protein chains)
from the interior regions of a cell and present these peptides on the cell’s
surface. This mechanism enables components of the immune system to detect
infections inside cells without having to penetrate the cell’s membrane.

The control of adaptive immunity can be divided into two branches: hu-
moral immunity which is controlled by B cells, and cellular immunity which is
controlled by T cells. Humoral immunity is mediated by specially designed im-
munoglobulin proteins or antibodies contained in bodily fluids (or ‘humors’),
and it involves the interaction of B cells with antigens. Humoral immunity
is aimed against extracellular foreign substances and micro-organisms [291].
Cellular immunity is aimed at intracellular micro-oganisms and plays an im-
portant role in the killing of virus-infected cells and tumours.

B Cells and T Cells

B cells and T cells have receptors on their surfaces which are capable of
recognising antigens via a binding mechanism. The surface of a B cell contains

16.1 The Natural Immune System 305

Table 16.1. Key immune system terms

Immune System

Component Definition

Pathogens Foreign bodies including viruses, bacteria, multicellular
parasites, and fungi.

Antigens Any molecule that the immune system can recognise.
Antigens may be nonself, for example, foreign molecules
expressed by a pathogen. Antigens may also correspond
to self molecules.

Leukocytes White blood cells, including phagocytes and lymphocytes
(B and T cells), for identifying and killing pathogens.

Antibodies Glycoproteins (protein+carbohydrate) secreted into the
blood in response to an antigenic stimulus that
neutralise the antigen by binding specifically to it.

Y-shaped receptors (or antibodies). Antibody molecules possess two paratopes
(each arm of the Y-shaped receptor, see Fig. 16.2). Paratopes consist of two
regions, namely a constant region and a variable region. The constant region
performs a number of functions, including the attachment of the antibody
to the surface of the B cell and the variable region of the paratope is the
part which can recognise and attach to specific antigens, or more precisely, to
molecules such as proteins or fragments of proteins making up an antigen on
the surface of a pathogen.

The regions on an antigen that a paratope can attach to are called epitopes.
Identification of the antigen is achieved by a complementary matching between
the paratope of the antibody and the epitope of the antigen. The match
between the paratope and epitope need not be perfect. To increase the number
of pathogens that the immune system can detect, individual lymphocytes can
bind to a variety of antigens. This enhances the power of the immune system,
as multiple lymphocytes will bind to an invading pathogen; therefore there
will be multiple signals created in the immune system that an invader has been
detected. The closer the match between paratope and epitope, the stronger
the molecular binding between the antibody and the antigen, and the greater
the degree of stimulation of the B cell.

A complex antigen can possess multiple epitopes and the T cell response
against the antigen may focus on a subset of the antigen’s epitopes (this phe-
nomenon is known as immunodominance). The epitope on a molecule that
provokes the most intense immune system response is considered to be im-
munodominant. Immunodominance can occur not only during infection but
also following vaccination [536]. Ideally, a vaccine should circumvent immun-

306 16 Artificial Immune Systems

Constant
region

Variable
region

Fig. 16.2. Illustration of an antibody, showing the variable (paratope) and constant
regions

odominance, thereby inducing responses to all epitopes, dominant and sub-
dominant.

T Cell-Dependent Humoral Immune Response

When an antibody of a B cell binds to an antigen, the B cell becomes stim-
ulated. The level of stimulation depends on the closeness or affinity of the
match between the antibody and the antigen; high levels of affinity and stim-
ulation corresponding to a close match. Once a threshold level of stimulation
is reached, the B cell is activated. Before activation takes place, the B cell
must be costimulated by a variant of the T cell population called helper T
cells. When helper T cells recognise and bind to an antigen, they secrete cy-
tokines which act as a signalling mechanism between the cells of the immune
system. In addition to the cell-cell interaction, where the T cell can bind to a
B cell, the secreted cytokines act on B cells to costimulate them.

Once the stimulation level of a B cell has reached a threshold level, the B
cell is transformed into a blast cell and completes its maturation in the lymph
nodes where a clonal expansion and affinity maturation process occurs. The
object of the clonal expansion process is to generate a large population of
antibody-secreting cells and memory B cells which are specific to the antigen.
In the lymph nodes, activated B cells begin to clone at a rate proportional
to their affinity to the antigen that stimulated them. These clones undergo
a process of affinity maturation in order to better tune the cloned B cells
to the antigen which initiated the immune system response. When new B
cells are generated, the DNA strings that encode their antibody receptors
(Fig. 16.2) are selected from gene libraries (Fig. 16.3) and are then subject
to rearrangement via mutation and insertion processes. These processes mean
that new forms of receptors are constantly created.

When a tailor-made detector is required for a specific novel antigen, the
ability of the immune system to generate diversity is enhanced by means of
a high mutation rate in the cloning process for the genes which encode the B
cell’s Y-shaped receptors (this process is known as somatic hypermutation).
It is further enhanced by the preferential selection of the clones which best
match the antigen. The evolutionary process of creating diversity and the
subsequent selection of the variants of lymphocyte that become increasingly
specific to an antigen is referred to as clonal selection.

16.1 The Natural Immune System 307

N1 N2 N3 N4 B1 B2 B3 B4 A1 A2 A3 A4

A3 B1 ….. N1

Attribute string for immune receptor

 …..

Gene libraries

Fig. 16.3. Creation of an antibody molecule from gene libraries. The encoding of
receptor molecules occurs through the concatenation of gene fragments from each
gene library. Gene libraries act as a reservoir of gene fragments that have been found
useful in the past for generating antibodies. Even with a relatively small number of
genes in each library, a large number of distinct receptor molecules can be created.
Somatic hypermutation increases the range of potential receptor molecules further.

In summary, the T cell-dependent humoral immune response is a series
of complex immunological events. It commences with the interaction of B
cells with antigens. The B cells which bind to the antigen are costimulated
by helper T cells leading to proliferation and differentiation of the B cells to
create B plasma and memory cells (Fig. 16.4). The new plasma B cells secrete
antibodies (immunoglobulins) which circulate in the organism and mark the
antigens by binding to them. These antigens and the associated pathogen are
then targeted by the immune system for destruction. The steps in the process
are:

i. Antigen-secreting pathogen enters the body.
ii. B cells are activated by the foreign antigen.
iii. B cells undergo cloning and mutation.
iv. Plasma B cells secrete immunoglobulins which attach to the antigen.
v. Marked antigens are attacked by the immune system.
vi. Memory of the antigen is maintained by B memory cells.

T Cell Tolerogenesis

A major challenge for the immune system is to ensure that only foreign or
misbehaving self cells are targeted for destruction. In the normal creation of
T cells their receptors are randomly generated and these cells could poten-
tially bind to either self or nonself. To avoid auto-immune reactions where
the immune system attacks its host organism, it is theorised that the cells are
self-tolerised. In the case of T cells, this process of tolerogenesis takes place in
the thymus. One mechanism for conferring self-tolerance to the lymphocytes

308 16 Artificial Immune Systems

Antigen

Plasma Cells

Antibodies

Co-Stimulated B-Cell

Memory
Cells

Helper T-Cell

 B-Cell
 Maturation

Fig. 16.4. B cell stimulation and differentiation

as they are maturing is exposure to a series of self-proteins. Any lymphocyte
that binds to self-proteins is killed and only self-tolerised cells are allowed into
the circulation system for lymphocytes. This represents a negative selection
process as only nonself reactive T cells are permitted to survive.

Immune System Memory

If the immune system encounters an antigen for the first time, a primary
response is provoked in the adaptive immune system and the organism will
experience an infection while the immune system learns to recognise the anti-
gen. In response to the invasion, a large number of antibodies will eventually
be produced by the immune system which will help eliminate the associated
pathogen from the body. After the infection is cleared, a memory of the suc-
cessful receptors is maintained to allow much quicker secondary response when
the same or similar pathogens invade thereafter. The secondary response is
characterised by a much more rapid and more abundant production of the
relevant antibody than the primary response. If a similar, but not identical,
variant of the pathogen is later encountered a secondary response can be pro-
voked by an antibody to the original antigen, which is a sufficiently close
match for the antigens on the new pathogen. Therefore if a mutated version
of the original pathogen is encountered, the immune system is already partly
adapted to deal with it based on its previous learning. This is the concept
underlying the process of immunisation against a disease using a nonharm-
ful variant of that disease. Although there is debate as to the precise nature
of how immune system memory is maintained, in broad terms the immune
system maintains a population of long-lived lymphocytes or memory cells.
Both T and B cells have memory variants. The creation of memory cells en-

16.1 The Natural Immune System 309

sures that the results of past learning are physically encoded into the current
population of lymphocytes.

16.1.4 Danger Theory

Although the concept of self and nonself provides a fertile ground for the de-
velopment of algorithms for anomaly detection, a variety of alternative views
of the working of the immune system exist. The Danger Theory proposed
by Matzinger [393, 394] challenges the traditional self vs. nonself view of the
immune system. A problem with the self vs. nonself perspective is that there
are many instances of nonself that do not automatically trigger an immune
reaction such as breathing air or ingesting food. The danger theory proposes
that the immune system is activated by chemical signals of ‘danger’.

As discussed in Sect. 16.1.3, T helper cells play a critical role in stimulat-
ing B cells when faced with an invading pathogen. In turn, it is known that T
helper cells themselves require a costimulation signal from non-antigen-specific
APCs (an antigen-presenting cell (APC) is a cell that displays foreign anti-
gens complexed with major histocompatibility complexes (MHCs) on their
surfaces). Under the danger theory, it is thought that APCs are activated
by danger or alarm signals, such as molecular signals emitted by an injured
cell (known as ‘DAMPs’, damage-associated molecular patterns), or the de-
tection of the release of intracellular contents due to uncontrolled (necrotic)
cell death. While there are several types of APCs, one of the most important
are dendritic cells. These cells are able to collect an antigen along with any
danger signals from their local environment and then integrate the signals to
determine whether the environment is dangerous. If it is safe, on presenting
the antigen to T cells, the T cells are tolerised to the antigen. On the other
hand, if the environment is dangerous, the dendritic cell causes the T cell to
become reactive when presented with the antigen.

While there is ongoing debate as to whether danger theory is a compre-
hensive framework of what drives immune system responses, there is no doubt
that APCs play an important role in T cell stimulation. Many of the concepts
of danger theory have become widely discussed in immunology [7]. The con-
cept of danger theory has been applied to inspire computational algorithms,
particularly the dendritic cell algorithm (DCA), which can be used for classi-
fication [223, 362]. The DCA is described in Sect. 16.4.

16.1.5 Immune Network Theory

Jerne [297] initiated the theoretical development of immune network theory
in 1974. This views the immune system as a network of molecules and cells
that can recognise each other and act in a self-organising manner to produce
memory. In this theory, B cells interact to stimulate and suppress each other.
Accordingly, the identification of antigens is not done by a single recognising
set, but rather by a system-level network reaction. A variety of algorithms,

310 16 Artificial Immune Systems

inspired by immune network theory have been developed, including aiNet
[141], a modified version of CLONALG (Sect. 16.5.1) which incorporates a
mechanism of suppression amongst the B cells.

16.1.6 Optimal Immune Defence

It is clear from even a brief description of the immune system that it is mul-
tilayered and complex. Shudo and Iwasa [577] point out that immune system
defence activities have a cost to the organism, as does damage resulting from
invading pathogens and harmful self cells. One way of thinking about the mul-
tiple mechanisms of the immune system is that the system seeks to minimise
the sum of the damage caused by pathogens and the cost of defence activities.
As the threat posed to the organism by a pathogen increases, more complex
and costly modes of defence are called into action. The cost of maintaining
a complex immune system may also help explain the variation in design of
immune systems in different organisms. For example, only vertebrates possess
adaptive immunity which relies on lymphocytes, and somatic hypermutation
is found only in warm-blooded vertebrates [291].

16.2 Artificial Immune Algorithms

Even from the brief description of the natural immune system it is apparent
that it is intricate, complex, and as yet imperfectly understood by immunol-
ogists. From a high-level perspective, it can be considered as a sophisticated
information-processing system which possesses powerful pattern recognition
and classification abilities. It also has the capability to adapt to new circum-
stances (problems) and can remember solutions to problems it has previously
encountered. Hence, the immune system can serve as a metaphorical inspira-
tion for the design of algorithms for optimisation and for pattern recognition.

Although a multitude of metaphors could be drawn from natural immune
systems for the purposes of designing AIA, we will focus on three familes of
these algorithms: negative selection algorithms, clonal expansion and selection
inspired algorithms, and algorithms arising from a danger theory metaphor.

16.3 Negative Selection Algorithm

The negative selection algorithm is usually applied for classification purposes
or to detect anomalies in the behaviour of a system. The basis of the neg-
ative selection algorithm is the ability of the immune system to discrimi-
nate between self and nonself, or more broadly to distinguish between two
system states, normal or abnormal. Forrest et al. [199] developed a binary-
valued negative selection algorithm analogous to the negative selection or self-
tolerogenesis process during T cell maturation in the thymus. Later this was

16.3 Negative Selection Algorithm 311

extended to a real-valued representation. We concentrate on the real-valued
algorithm in this chapter.

Canonical Real-Valued Algorithm

In implementing the algorithm, training data is usually normalised into the
range [0,1] and a predetermined number of detectors are created at random
positions in the input data space. During the training process (akin to tolero-
genesis) any detector that falls within a threshold distance rs of any member
of the set of self-samples is discarded and replaced with another randomly
generated detector. The replacement detector is also checked against the set
of self-samples. The process of detector generation iterates until the required
number N of valid detectors is generated. The ‘rejection sampling’ method
attempts to ensure that all of the resulting detectors are potentially useful
detectors of nonself. A variant on this training process occurs when a newly
generated detector is discarded where the median distance between it and its
k nearest self vectors is less than the threshold distance. The use of k nearest
neighbours rather than just the nearest self vector makes the algorithm less
susceptible to noise in the training data [214].

The pseudocode for the algorithm is described in Algorithm 16.1, where S
is the set of self-samples, rs is a predefined self-radius (a threshold distance)
and it is assumed that the search space is bounded by an n-dimensional hy-
percube [0, 1]n (Fig. 16.5).

Algorithm 16.1: Negative Selection Algorithm

Initialise the detector set D to be the empty set;

repeat

Create a random vector x, drawn from [0, 1]n;
for every si in S, i = 1, 2, ..., m do

Calculate the Euclidean distance di between si and x;
end

if di > rs for all i then
Add x (a valid nonself detector) to set D;

end

until D contains the required number N of valid detectors;

Once a population of detectors has been created they can be used to
classify new data observations. To do this the new data vector is presented
to the population of detectors and if it does not fall within a hypersphere of
radius rs of any detector, the data vector is deemed to be nonself. Otherwise,
the new data vector is deemed to be self. A crucial point in the negative
selection process is that the immune system does not require specific examples

312 16 Artificial Immune Systems

r

(0,0)
‘Non-self’

detectors of
radius r

(1,0)

(0,1)

‘Self’
zone

Normalised
vector of self

data

Fig. 16.5. Example of location of self/nonself zones

of nonself in creating its detectors. Potentially, the detectors can uncover any
instance of nonself, even those never before encountered.

In using the negative selection algorithm, a choice must be made about
the value of self-radius rs and the number of detectors employed. The choice
of value for rs seeks to balance the detection rate and the false alarm rate of
the system. If a small value of rs is used the detection rate for nonself will be
low and if a high value of rs is set the false alarm rate will be high. Recent
work by Gonzalez and Cannady [215] illustrates a hybrid AIS system which
embeds an evolutionary algorithm for the purposes of automating parameter
selection.

The selection of an appropriate distance or affinity measure is an important
decision when designing an AIA. In real-valued applications of the negative
selection algorithm, Euclidean distance is commonly used but there are many
variants, including normalised Euclidean distance and Manhattan distance.
Hamming distance can be used for applications requiring a binary representa-
tion. Another possibility when working with binary representations is to use
r-contiguous bits, where two strings of length l are said to match if they have
at least r contiguous bits in common. The value of r is set in order to balance
the generalisability and the specificity of the detector. As r → l, the detector
becomes more specific, in that a smaller number of binary strings (and in the
limit, only one type) will ‘match’ with it. A good discussion of different forms
of representation and affinity measures is provided in [202, 300].

16.3 Negative Selection Algorithm 313

Fig. 16.6. The two binary strings have a maximum contiguous length of four.
Hence, if r is set at 3, the strings are considered as matching. The strings have a
Hamming distance of 4 as four bit-flips are required to convert one string into the
other

Efficiency of the Algorithm

While the negative selection algorithm can produce an immune inspired clas-
sification system, it is known that the canonical algorithm scales poorly to
high-dimensional problems [256, 596, 597, 620]. Intuitive reasons explaining
the low efficiency of the algorithm include [102]:

i. It ignores the fact that examples of nonself may exist in some applications.
ii. The task of generating a population of valid detectors will grow rapidly

as the size of self increases.
iii. In high-dimensional problems, a large number of detectors may be required

in order to get adequate coverage of nonself space.
iv. Generated valid detectors may overlap, reducing the effective coverage of

nonself space.

While not overcoming the above issues entirely, a number of attempts have
been made to improve the canonical negative selection algorithm. For example,
in real-world applications of AIS there may be historical examples of nonself
available and these can be used to seed the detector creation process, thereby
speeding it up.

Another approach is to use variable-size detectors [299]. In the canonical
real-valued negative selection algorithm described above, the detectors have a
fixed radius of detection whereas in the variable detector algorithm, the radius
of each detector is permitted to vary. This allows areas of nonself which are
far removed from any self vectors to be covered with a relatively small number
of large radii detectors, and also allows for the insertion of smaller detectors
to cover any gaps or holes in the nonself space between the large detectors
(Fig. 16.7). Allowing the generation of irregularly-shaped detectors can also
be useful in generating efficient coverage of nonself space.

314 16 Artificial Immune Systems

(0,0)
Holes in non-self

space

(1,0)

(0,1)

Fig. 16.7. The detectors do not cover the entire nonself region (here assumed to
be the right-hand side of the square), leaving holes where nonself items could be
incorrectly classed as self, in error

General Issues in Negative Selection

Negative selection algorithms are an example of ‘one class’ learning algo-
rithms, where the classifier/anomaly detection system is constructed using
only examples of one class. The concept of single class learning is not unique
to negative selection and can be used with other classification algorithms, for
example, one-class NNs [387], SVMs [558] and one-class GP [123]. One-class
learning approaches have obvious application in cases where there there are
few (or no) examples of one class available but there is a plentiful supply of
examples of the other class (for example, detection of financial fraud [665]).

An obvious practical drawback (in addition to the efficiency concerns men-
tioned above) of the negative selection algorithm is that it is limited to a single
class of nonself while many real-world classification problems are multiclass.
Another potential drawback in applications of negative selection is that it is
difficult to extract meaningful domain knowledge as to how classifications are
being made or what the ‘meaning’ of specific detectors are.

Natural immune systems are capable of much more powerful classifica-
tion behaviour than self/nonself. As already described, TLRs in the innate
immune system are capable of distinguishing between multiple pathogenic
signatures (Sect. 16.1.2) and triggering an appropriate immune defense. This
provides ideas for the design of more powerful, multilayered, immune inspired
classification algorithms. It should also be noted that natural immune systems
typically look for a confirming (or second) signal before taking action against a

16.4 Dendritric Cell Algorithm 315

possible pathogen. A more comprehensive model of the immune system which
explicitly considers this confirmation process has given rise to the dendritic
cell algorithm, which is discussed next.

16.4 Dendritric Cell Algorithm

The potential to develop AIS algorithms using a danger theory metaphor was
first identified by Aickelin et al. [7, 6]. The essence of danger theory is that the
immune system does not respond naively to all nonself, but rather is triggered
by danger, and in particular by chemical signals which occur when a cell dies
an unnatural death (necrosis) due to cell stress or attack by a pathogen. A
key role in the triggering of an immune system response is played by antigen-
presenting cells (APCs) which can collect antigens, including potentially anti-
gens from a harmful pathogen, in the vicinity of a damaged cell. These APCs
can stimulate T cells, which in turn can stimulate the B cell clonal expansion
process.

One of the key types of APC are dendritic cells (DCs), and the activities
of these cells has inspired the dendritic cell algorithm (DCA) which can be
applied for anomaly detection [223, 222]. Dendritic cells are able to collect
antigen along with any danger signals arising in their local environment, and
then integrate these signals to determine whether or not the environment is
in fact dangerous.

DCs have three states, immature, semimature and mature. In their imma-
ture state, DCs collect antigen and monitor signals from local cells, danger
signals from necrotic cells and safe signals from cells dying in a controlled
fashion (apoptosis). Depending on the concentration of these signals, the DCs
become either semimature (safe signals dominate) or mature (danger signals
dominate), and migrate to the lymph nodes. At the lymph nodes they in-
teract with helper T cells presenting antigen to them, and either tolerise the
T cells to the antigen (if semimature) or sensitise the T cells to the antigen
(if mature), thereby producing an immune system response. The antigen is
presented in a context, being associated with either a safe or a dangerous
environment. Hence, the DCs police tissue for signs of damage in the form
of signals and also for potential culprits (antigens), which are found in the
vicinity of the damage [221]. In considering the activities of DCs, it is more
appropriate to consider them as a population rather than individually, as a
significant immune system response only results when a multitude of DCs
trigger T cells.

In the algorithm, four classes of signals are typically considered, and each
is broadly inspired by mechanisms in the immune system.

i. PAMPS : in the natural immune system these are molecular signatures
of bacteria and they can be recognised by TLRs (Sect. 16.1.2) on the
surface of DCs. In the DCA, they are predefined patterns which indicate

316 16 Artificial Immune Systems

the likely presence of an anomaly. The pattern is either present or not. In
the DCA, the detection of PAMPS, in addition to generating a warning
signal itself of the presence of an anomaly, also amplifies the expression
of danger signals (see below).

ii. Danger signals : these indicate the likely presence of danger, drawing par-
allel with the presence of chemical signals of unplanned cell death in the
natural immune system. In the DCA the signals are usually real-valued,
and therefore can vary in strength depending on the local environment of
the dendritric cell. The stronger the signal, the greater the likelihood of
an anomaly being present.

iii. Safe signals : as for danger signals, these are usually real-valued, and there-
fore can vary in strength depending on the local environment of the den-
dritric cell. Safe signals result in a suppression of the immune system, and
high levels of safe signals indicate the absence of an anomaly.

iv. Inflammation: In natural immune systems, inflammation is a response
of the innate immune system to injury. In the DCA, the presence of an
inflammatory signal (typically real-valued) amplifies the other categories
of signal but is not itself an indicator of the presence or absence of an
anomaly.

The DCs act as a population of multisensors [220] which can fuse the above
signals in their local environment and produce differing output signals de-
pending on the input signals they receive. Antigens in the DCA may be a
string of numbers, bits or letters. As the algorithm runs, it learns to associate
differing groups of antigens with specific signals. This allows it to label an
antigen as normal or anomalous.

Operationalising the Algorithm

To operationalise the algorithm, problem-specific attributes must be mapped
to the concepts of PAMPs, danger signals, safe signals, inflammatory signals,
and antigens. There is no restriction that only one PAMP or danger/safe
signal can be used and [221] provides an example which uses two PAMPS,
two danger signals, two safe signals and one inflammatory signal. In order
to ensure that all input signals have an equal chance to influence the output
signals from the DC, they are preprocessed via normalisation into the range
[0, 1].

The output signals from a DC are of three types, costimulatory (CSM),
danger concentration, and safe concentration. Each cell is assigned a random
migration threshold on creation and the CSM values are incremented each
time the cell receives an input signal. Once the cumulative CSM value of a cell
exceeds its migration threshold the DC ceases to be immature and becomes
either semimature or mature. As the migration threshold varies by cell, this
implies that each cell samples inputs for differing periods of time; in other
words, the lengths of their lifetimes vary.

16.4 Dendritric Cell Algorithm 317

A signal processing function C (16.1) must be defined for any specific
application. A simple approach is to use a weighted average of PAMP (P),
safe signal (S) and danger signal (D) concentration values. This average is
multiplied by a factor depending on an inflammation value I ∈ [0, 2] [222].
Weights are applied to each signal, denoted by WP , WS , WD respectively.

C[CSM, danger, safe] =
WPCP +WSCS +WDCD

WP +WS +WD
· 1 + I

2
(16.1)

In the original implementations of the DCA for intrusion detection on com-
puters, the signals were determined from a continuous time series of computer
activity, with features such as number of data packets per second being used as
a danger signal. Antigens in the algorithm are a stream of symbolic items (for
example, process ID numbers in computer security cases) occurring alongside
the time series of signals. In this representation, each data item (analogue to
a tissue in the natural immune system) used for the learning process contains
signal information from a time window, or at an instant, and an associated
antigen type.

When a tissue ‘sample’ is presented to an individual DC, the relevant
inputs are supplied, and each of the three outputs of the DC is calculated,
and these outputs are cumulated in each signal category over the lifetime
of the cell in its immature state. The associated antigen is then added to
the antigen store of the DC. Over multiple time slots (multiple sample tissue
presentations) the DC will collect multiple examples of antigens.

Input signals can interact with, for example, safe signals in a tissue acting
to dampen the effect of danger signals in the same tissue. A user-defined weight
matrix is required for any specific implementation, and as an exemplar, the
weights in Table 16.2 were used for the signal processing function in [222]. We
can see that, in this example, a safe signal suppresses the impact of a danger
signal as this interaction has a negative coefficient.

W CSM Safe Danger

PAMPs (P) 2 0 2

Danger signals (D) 1 0 1

Safe signals (S) 2 3 -3

Table 16.2. Sample weights for signal processing function

If the CSM threshold limit is reached for an individual DC, it is removed
from the process of tissue sampling and becomes (semi)mature. Each DC
therefore, only samples a subset of the total set of tissues and associated
antigen available in the environment over time. When the DC transitions
from the immature state, its cumulative output signals are assessed to form
the context of all the antigen that it has collected. A higher total ‘danger’
output signal (cumulative danger signal > cumulative safe signal) results in

318 16 Artificial Immune Systems

the assignment of context ‘1’ to the DC, whereas a higher ‘safe’ output signal
results in the assignment of ‘0’ to the cell’s context. All of the antigen sampled
by the DC during its immature phase are assigned the same context.

A critical issue here is that the structure of the antigen itself does not deter-
mine the context; rather this is determined based on signal information from
the tissue in which the antigen is found. As identical antigens may be found
in different tissue samples, it is possible that different DCs will encounter
varying local signals in these tissue samples and therefore assign a different
context to the same antigen. Hence, the information in DCs is assessed at
a populational level and when the tissue presentation stage of the algorithm
terminates, a mean context value, in other words an anomaly coefficient value,
for each antigen type is calculated using

MCAVx =
Zx

Yx
(16.2)

where MCAVx is the mature context antigen value (MCAV) coefficient for
antigen type x, Zx is the number of mature context antigen presentations for
antigen type x and Yx is the total number of antigen presented for antigen
type x. The closer this value is to 1, the more likely it is that the antigen is
associated with the danger signals as values of close to 1 indicate that the
antigen is typically found in tissue which is exhibiting danger signals.

The resultant algorithm is population-based, with each cell in the popu-
lation assigned a remaining life span value, which reduces as it is presented
with more tissue samples. Different cells process signals acquired over dif-
ferent time periods, generating individual ‘snapshots’ of input information.
When aggregated across the population, antigens are classified on the basis
of the consensus opinion of whether a particular type of antigen is normal or
anomalous. Pseudocode for the DCA is provided in Algorithm 16.2.

Summary

The DCA utilises a more nuanced view of immune system response than
the traditional self/nonself framework, and is inspired by the process of T
cell stimulation by antigen-presenting cells. The DCA has been applied in a
number of areas, including computer intrusion detection [220, 221], and has
produced good results. Although the DCA is a simplification of the underlying
natural immune process, the algorithm is quite complex and requires definition
of the relevant input signals, the signal processing function and the weight
matrix in each problem instance. More recently, work by [595] indicates that
the classification by a single agent in the DCA is equivalent to a statically
weighted linear classifier, and this has cast doubt on the ability of the canonical
DCA to fully capture classification problems which have complex, nonlinear
decision boundaries in the signal space. Research on the theoretical analysis
of the DCA, and on designing more powerful variants of the DCA, is ongoing
[235, 234].

16.4 Dendritric Cell Algorithm 319

Algorithm 16.2: Dendritric Cell Algorithm

Initialise population of DCs and parameters for algorithm;
Set time step to zero;

repeat

Sample data from time series (generate tissue sample);
for each dendritic cell DCi in turn, i = 1, . . . , n do

repeat

Get antigen;
Store antigen;
Get signals;
Calculate interim output signals;
Update cumulative output signals;

until CSM output signal from DCi > migration threshold for DCi;
Migrate DCi to lymph node;
if safe output signal > danger output signal then

Cell context is set to 0;
else

Cell context is set to 1;
end

Store cell information (list of its antigens and associated context) in
S;
Kill cell;
Reset and replace DCi in the population of DCs;

end

Increment time step to sample additional time series of signals and
antigen;

until until time series of training data is exhausted ;
for all antigens in store S do

Increment antigen count for this antigen type;
if antigen context = 1 then

Increment antigen type mature count;
end

end

for all antigen types do

Set MCAV of antigen type := mature count/antigen count;
end

Output list of antigens and their MCAVs;

320 16 Artificial Immune Systems

16.5 Clonal Expansion and Selection Inspired
Algorithms

The primary idea underlying clonal selection theory is that when an antigen
is detected, the antibodies that best recognise (match) it will proliferate via
a cloning process, thereby greatly increasing the quantity of antibodies which
can recognise the relevant antigen. In the cloning process, the newly generated
antibodies are mutated in an attempt to better tune them to detect the anti-
gen. The processes of clonal expansion and affinity maturation of B cells can
be used to inspire the design of a family of algorithms which can be applied
for optimisation and classification. Initially we outline three of the better-
known algorithms from this family, which are primarily used for optimisation
purposes, namely

i. the CLONALG algorithm,
ii. the B cell algorithm, and
iii. the real-valued clonal selection algorithm.

Following this we describe the artificial immune recognition system (AIRS)
which is primarily used for classification purposes.

16.5.1 CLONALG Algorithm

In CLONALG there are two populations, a population of antigens (Ag) which
corresponds to the environment, and a population P of antibodies (Ab) which
corresponds to the population of current solutions. Each solution pi is repre-
sented as a vector of attributes pi = (pi1, pi2, . . . , pim) which correspond to
a ‘point’ in the m-dimensional attribute space. After a random initialisation
of the starting population of antibodies, an affinity value (a measure of how
well an individual antibody ‘fits’ the antigen population) is calculated for each
member of the antibody population.

In some cases, the creation of a function to measure ‘fit’ will be straight-
forward, in others it may require a good deal of thought. Taking a simple
example of model calibration, the antibody could correspond to a vector of
real numbers which parameterise or ‘calibrate’ a prespecified mathematical
model, and the antigen environment could correspond to a set of test data,
with a single antigen being a data vector, xj = (xj1, xj2, . . . , xjn). In this
application, the quality of an antibody, which can be ‘decoded’ to produce a
specific instance of a mathematical model, can be assessed using a metric such
as the mean squared error of the model fit to the entire test dataset (note: a
low MSE value indicates a good fit and therefore a high level of affinity).

Next, n members from the population of antibodies are selected, preferen-
tially members which have higher affinity (fitness), and clones are generated
from these n items. The number of clones generated for each selected antibody
is proportional to its fitness; thereby the fitter items generate a greater num-
ber of clones of themselves. This results in a new population P clone. Then a

16.5 Clonal Expansion and Selection Inspired Algorithms 321

hypermutation operator is applied to each clone, in order to simulate an affin-
ity maturation process, resulting in an altered population of clones P hyper.
The degree of mutation applied to each clone is inversely proportional to the
clone’s fitness; thereby the poorer quality clones are subject to higher levels
of mutation and better clones are mutated less. The members of P hyper then
compete with P to determine the composition of the new population of an-
tibodies at time step t + 1. In order to maintain diversity in the population
of antibodies, a small number d of new antibodies are randomly generated,
replacing the poorest d items in the new population P . The algorithm then
iterates until a terminating condition is triggered. Algorithm 16.3 presents an
outline of the CLONALG algorithm [140, 142].

Algorithm 16.3: CLONALG Algorithm

Create an initial random population P of solution vectors (antibodies);

repeat
Select a set F of parents, F ⊆ P , biasing the selection process towards
better solutions;
for each member of F do

Create a population P clone of clones from F , with better members of
F producing more clones (clonal expansion step);
Mutate each of these clones, in inverse proportion to their parent’s
fitness (the hypermutation step), giving population P hyper;

Select S, a subset of the better newly generated solutions P hyper;
Create R, a set of new random solutions;
Replace poorer members of P with better solutions from S and R;

end

until terminating condition;

Although CLONALG derives from an immune system metaphor, it em-
beds population-based search guided by selection and diversity generation.
Hence, it bears some similarity to evolutionary algorithms. The most obvious
difference between the algorithmic families is the method they use for gen-
erating variety when seeking to iteratively improve solutions. In addition to
affinity (fitness) proportionate selection, CLONALG also uses (inverse) affin-
ity proportionate mutation, affinity proportionate cloning, and does not use
crossover.

Just as is the case for most heuristics described in this book, the general
CLONALG framework can be implemented using different representations of
antibody/antigen format, and therefore can be applied for a wide variety of
real-world problems. Examples of the use of binary and integer-valued anti-
body representations in CLONALG are provided in [142].

322 16 Artificial Immune Systems

16.5.2 B Cell Algorithm

Although CLONALG can be applied for function optimisation, a variant
called the B Cell algorithm (BCA) was designed by Kelsey and Timmis [325]
which is claimed to be particularly computationally efficient for function opti-
misation. Like CLONALG, the BCA is inspired by the clonal selection process
but implements the mutation step in a notably different way, using a mutation
operator called contiguous somatic hypermutation. This operator is inspired by
a claim that mutation events tend to be concentrated in clusters or regions of
genetic material rather than occurring at completely random locations [325].

In function optimisation there is no explicit antigen population which re-
quires recognition; rather the aim is to uncover a vector of real numbers which
optimises (maximises or minimises) the value of a function of interest. The
BCA uses a binary (bit string) representation, with a double-precision (real)
number being encoded using a 64-bit string. The total length of the binary
string (antibody) will depend on the dimensionality of the search space. The
affinity of a binary string is found by decoding it into a real-valued vector (a
‘point’ in the input space) and then determining the value of the objective
function at this point in the input space.

In the algorithm, an initial population of P binary strings is randomly
generated and their affinity is then determined using the objective function.
Each B cell is then cloned to produce its own clonal pool C, with the size
of this clonal pool being typically similar to P (i.e. each B cell gives rise to
about P clones of itself). One clone is then selected randomly from this clonal
pool and each element of its binary vector is subject to mutation (bit flipped)
with a modeller-determined probability. The mutated clone then replaces its
original version in the clonal pool.

Next, all other B cells in the clonal pool are subject to the contiguous
somatic hypermutation operator. Under this operator, a random position (or
hotspot) on the bitstring corresponding to that B cell clone is selected, along
with a random length. The elements of the bitstring from the hotspot to the
end of the selected length of contiguous region are then mutated (bit flipped)
with a modeller-determined probability (0 ≤ r ≤ 1). In the case where the
random length selected is longer than the number of elements remaining from
the hotspot to the end of the bitstring, the mutation operation stops at the end
of the string and does not wrap around to the beginning. Having completed
the hypermutation step for all clones in C, if the best clone in the clonal pool
has higher affinity than its parent B cell, it replaces the parent. The process
iterates until a predetermined stopping condition is reached. Algorithm 16.4
outlines the pseudocode for the B cell algorithm.

In comparison with CLONALG, the processes of selection for clonal expan-
sion, mutation, and selection for replacement, are quite different. In CLON-
ALG, only the better antibodies in P are selected for cloning, whereas in
the BCA, all members of P are selected. The mutation process in the two
algorithms is distinct, with mutation being applied stochastically along the

16.5 Clonal Expansion and Selection Inspired Algorithms 323

Algorithm 16.4: B Cell Algorithm

Create an initial random population P (the parent set, typically three to five
members) of solution vectors (antibodies or B cells);

repeat

for each member of P do

Calculate its affinity (fitness);
Create a clonal pool C (clonal expansion step);
Select a clone c ∈ C randomly;
Randomise the vector of c;
Replace c in C by the newly randomised clone;
for all members of C other than c do

Apply the contiguous somatic hypermutation operator;
end

Calculate the affinity of each clone in C;
if the best clone in C has higher affinity than the parent B cell then

Replace the parent B cell with the best clone in C;
end

end

until terminating condition;

antibody bitstring in CLONALG, in contrast to the contiguous mutation op-
eration in the BCA. Finally, a variant of elitism applies in the replacement
process in BCA (as a parent is only replaced by a clone if the clone is better),
whereas in CLONALG, the selection of survivors into the next interation of
the algorithm is from the current population, a set of newly generated clones,
and a set of randomly generated new antibodies.

In essence, the hypermutation operator in BCA applies a search process
of varying locality around a ‘parent’ B cell depending on the selected length
of the contiguous region. This capability to take steps of varying size on the
search landscape enables the BCA to obtain good results with relatively small
population sizes, with a typical size in the range [3, 5] being suggested by [325].
However, in dynamic, or multimodal problems, a study by [634] shows that
larger population sizes, and a relatively smaller number of clones in each clonal
pool, are required.

16.5.3 Real-Valued Clonal Selection Algorithm

As seen above, the antibodies in the BCA use a binary string representation.
An alternative approach for real-valued optimisation would be to use antibod-
ies with a real-valued representation, and a paper by [93] introduces a variant
of CLONALG, the real-valued clonal selection algorithm (RCSA), which does
this. As for the general CLONALG algorithm, the best n antibodies are se-
lected, and ranked in order of affinity (highest to lowest), for clonal expansion.

324 16 Artificial Immune Systems

Each of these antibodies is allocated a number of clones in proportion to its
ranking using [93]

N i
clone = round

(
β · npop

i

)
(16.3)

where N i
clone is the number of clones allocated to the antibody ranked in

position i (where 1 ≤ i ≤ n), npop is the size of the total population of
antibodies, β is the multiplication factor for the cloning process, and the
function round() ensures that the output number is an integer. The generated
clones then undergo a hypermutation process and this is implemented in [93]
by applying a Gaussian mutation to at least one element of the clone’s vector
(element(s) being selected stochastically), using

x∗
j = xj(1 + p · S(xj) · r) (16.4)

where p is a small number, r is a Gaussian random variable drawn from
N(0, 1) with mean of 0 and standard deviation of 1, and the parameter S(xj)
is a scaling parameter, depending on the range of the input space on dimension
j.

In the real-valued clonal selection algorithm, the population replacement
step is modified from that of CLONALG, in that each selected antibody and
its clones form a subpopulation, and only the best member of this subpopula-
tion passes into the next generation, implementing an elitist selection process.
Hence, n individuals survive from the clonal expansion and hypermutation
steps. The remaining individuals required to fill out the population in the next
generation, a total of npop − n individuals, are generated randomly, thereby
injecting diversity into the search process. The process iterates until a termi-
nation condition is met.

Parallels with Evolutionary Algorithms

There is an ongoing debate concerning the degree of similarity between the
families of evolutionary and clonal selection algorithms. The distinctions typ-
ically drawn between clonal selection algorithms and evolutionary algorithms
are summarised as follows in [79]:

i. each draws on a different source of inspiration and they have differing
abstractions and terminology, and

ii. clonal selection algorithms and evolutionary algorithms employ differing
diversity-generating and selection mechanisms.

It is apparent that clonal selection inspired algorithms also have similarities
with the general evolutionary computation framework. All employ a popula-
tion, and operate via a diversity-generation and fitness-preferential selection
process. However, they do not have a crossover operator and the solutions
therefore do not explicitly share information with each other.

16.5 Clonal Expansion and Selection Inspired Algorithms 325

16.5.4 Artificial Immune Recognition System

The clonal selection process has also inspired the design of classification algo-
rithms. One of the best known of these is the artificial immune recognition sys-
tem (AIRS) algorithm [651, 652] which uses a supervised learning paradigm.
This approach takes inspiration from the adaptive immune system wherein
after the immune system has been exposed to a pathogen, some B cells dif-
ferentiate into memory cells, allowing swift recognition of that pathogen if
it is subsequently encountered again. In essence, each of the memory cells is
a ‘detector’ for an antigen which is associated with the relevant pathogen.
At any point in time, a wide array of different B memory cells will be in
circulation in the body, and as a population they are capable of multitarget
detection/classification.

In AIRS the object is to create a population of memory cells using su-
pervised learning, which can then be used to assign the correct class labels
when presented with new data vectors. This is inspired by the capability of B
memory cells to react to previously seen pathogens.

Typically, for a real-valued feature space, each memory cell will be a real-
valued vector corresponding to a point in the feature space and will have an
associated class label. The training process in the AIRS algorithm determines
the location and associated class labels of the memory cells. Unlike the one-
class learning of the T cell tolerogenesis inspired negative selection algorithm
(Sect. 16.3), AIRS can be applied to multiclass classification problems.

AIRS Algorithm

The operationalisation of the AIRS algorithm is complex, but a high-level
overview of the process is as follows [651]:

i. present the training data (antigens) one at a time to the system,
ii. generate a candidate memory cell, and implement a cloning, mutation and

affinity maturation process to refine memory cell candidates,
iii. determine whether the candidate memory cell is added into the final mem-

ory cell pool,
iv. repeat above steps until all training instances are presented,
v. output is a population of memory cells, which can then be used, via a k

nearest neighbour approach, to produce out-of-sample classifications.

A number of versions of the AIRS algorithm have been developed. One of
the more common variants is AIRS2 [653, 650], which slightly simplified the
original AIRS algorithm. Below we outline the relevant pseudocode for AIRS2
(Algorithm 16.5) and then describe this version of the algorithm, as outlined
by [80], in some more detail.

In the pseudocode, each training data vector (antigen) is denoted as ai, C
is the memory cell pool, and ARB is an Artificial Recognition Ball. In AIRS,
an ARB has exactly the same representation as a B cell, a real-valued feature

326 16 Artificial Immune Systems

vector, along with an associated class label. The term is used to denote a
representative of a set of clones or a group of similar B cells.

After training is complete, the created memory cell pool can be used for
classification. The data vector to be classified is presented to each memory
cell in the pool in turn, and the class label assigned to the data vector is that
of the majority label of the k most simulated memory cells in the pool.

Algorithm 16.5: AIRS2 Algorithm

Normalise the training dataset;
Seed the memory cell pool C;
Set algorithm parameters;

for each training instance ai do
Select the memory cell cmatch in C which has the highest stimulation
when exposed to ai;
Clone cmatch in proportion to its stimulation value for ai;
Mutate each clone and add all mutated clones to newly created ARB
pool along with cmatch;
repeat

Calculate stimulation value for each member of ARB pool when
exposed to ai;
Allocate limited resources to members of ARB pool;
Rank ARBs by resource level and remove ARBs with zero assigned
resources;
Clone and mutate a random selection of ARBs;

until mean normalised stimulation values of ARBs ≥ affinitythreshold;
Select the ARB with the highest stimulation and call it ccand;
if ccand has higher stimulation than cmatch then

Add ccand to C;
if cmatch and ccand are sufficiently similar then

Remove cmatch from C;
end

end

end

Output final memory cell pool C which can be used for out-of-sample
classification;

Normalisation and Initialisation

To begin, all feature vectors are normalised so that all distances between
antigens (training data vectors) and/or any memory cells are in the range
[0, 1]. This can be achieved by normalising each vector component into the
range [0, 1]. A Euclidean distance measure is usually adopted (assuming that

16.5 Clonal Expansion and Selection Inspired Algorithms 327

the feature space is real-valued). In order to ensure that the maximum distance
between any two antigens or memory cells is in the range [0, 1], the following
step is added to the data normalisation process:

Valuenormalised := Valuenormalised ·
√
1/n. (16.5)

The affinity measure can then be calculated as the normalised Euclidean dis-
tance between any two antigens or ARBs; so the smaller the distance between
two items, the greater their affinity. Note, this means that in the AIRS algo-
rithm, small affinity values indicate strong affinity, and values for affinity are
also bounded in the range [0, 1]. The choice of normalisation process is not
restricted to the above and any procedure which ensures that all distances are
bounded within [0, 1] can be used.

The next step is to seed the memory cell pool which will eventually contain
the collection of recognition detectors that make up the final classifier. Typi-
cally, this is done by randomly selecting a subset of the antigens and adding
them to the initial memory cell pool.

An affinity threshold affinitythreshold is then calculated which is used later
in the algorithm in order to determine whether a new memory cell is suffi-
ciently close to an existing cell to replace it. The affinity threshold is calculated
as the average affinity, calculated pairwise, over all training instances,

affinitythreshold =

∑n−1
i=1

∑n
j=i+1 affinity(ai, aj)

n(n− 1)/2
(16.6)

where ai and aj are a pair of antigens, and affinity is measured as Euclidean
distance in the normalised feature space.

Antigen Training

The training process involves a single pass through the training data. Each
antigen in turn is individually exposed to the memory cell pool and a stim-
ulation value is calculated between the antigen and each cell in the memory
pool, with low affinity values (corresponding to high affinity) indicating high
stimulation,

stim = 1− affinity. (16.7)

The memory cell of the same class as ai with the highest stimulation is iden-
tified as the best match (cmatch) for use in the affinity maturation process. If
the set of memory cells with the same class as ai is empty, then ai is added
to the set of memory cells, and is itself the cmatch.

A number of mutated clones are created from cmatch and, along with cmatch,
are added to a newly created ARB pool, with the number of mutated clones
being calculated as

Nclone = stim · rateclonal · ratehypermutation. (16.8)

328 16 Artificial Immune Systems

The ARB pool therefore is a grouping of cells which are derived from the
original (cmatch) and is created anew as each antigen is presented during the
training process. The terms rateclonal and ratehypermutation are user-defined
parameters. The rateclonal is the number of clones that are created from a B
cell (here, the best matching memory cell) and ratehypermutation determines
the number of mutated clones that are derived from these (a scaling factor).
These variant clones seed the ARB pool and are then refined in the next step
of the algorithm. The object of this process is to develop a candidate memory
cell which is most effective in correctly classifying the antigen.

Competition for Limited Resources

After the mutated clones of the best matching memory cells are added to
the ARB pool a competition for resources, akin to survival of the fittest, is
implemented in order to prune the size of the pool while maintaining the
ARBs with greater stimulation to the training antigen. After the competition
step, the surviving ARBs in the pool generate additional mutated clones using
a similar process to that outlined for cloning cmatch. The number of clones
generated for each ARB in the pool is calculated using

Nclone = stim · rateclonal. (16.9)

When these have been generated, the competition for resources begins and
the aim of this is to reduce the number of ARBs that coexist in the ARB
pool. First, the level of resource allocation to each ARB is calculated as

lresource = stimnorm · rateclonal (16.10)

where stimnorm is the normalised stimulation value for that ARB and rateclonal
is as already defined above. The normalised stimulation value for an ARB can
be calculated using

stimnorm(ARBi) =
stimARBi

− stimmin

stimmax − stimmin
(16.11)

where stimARBi
is the stimulation level when exposed to ai for the ARB of

interest, and stimmax and stimmin are the maximum and minimum stimulation
levels across all ARBs in the pool.

Low levels of resources indicate that the ARB does not have a high stim-
ulation when presented with the antigen. The members of the ARB pool are
sorted by allocated resources in descending order. A maximum resourcetotal,
a user-defined parameter, is available to the population of the pool, and re-
sources are removed from ARBs at the end of the list until the total number
of allocated resources across the pool is below the maximum limit. All ARBs
with zero allocated resources after this step are removed from the pool. The
surviving ARBs are then subject to a cloning and mutation process in order

16.5 Clonal Expansion and Selection Inspired Algorithms 329

to generate populational diversity and to refine their affinity to the antigen.
The mutation process is designed so that more stimulated ARBs are mutated
less.

The ARB refinement process continues until the mean normalised stim-
ulation value across all ARBs is greater than a user-defined parameter
(stimthreshold). This parameter is in the range [0, 1], and as higher values are
chosen, the ARBs are further refined, and become closer to the training anti-
gen. Hence, the competition and ARB refinement process is as in Algorithm
16.6.

Algorithm 16.6: Competition and ARB Refinement

Starting from initial ARB pool;
repeat

Stimulate each member of the ARB pool with the training antigen;
Normalise ARB stimulation values;
Allocate limited resources based on stimulation level of each ARB;
Rank ARBs in descending order based on resource allocations;
Prune ARBs with zero resources;
Generate mutated clones of surviving ARBs

until mean normalised stimulation values of ARBs ≥ stimthreshold;

Memory Cell Selection

Once the ARB refinement process is completed, the ARB with the greatest
normalised stimulation score is selected to become a memory cell candidate
(ccand). If the new candidate for the memory cell pool is a better fit (has
higher stimulation) for the presenting antigen than the best existing memory
cell (cmatch) it is added to the pool. If the affinity between ccand and cmatch,
is less than

affinitythreshold · paramscale (16.12)

where affinitythreshold is calculated as above and paramscale is a user-defined
scale parameter, then ccand replaces cmatch in the memory pool and cmatch

is discarded. Otherwise cmatch remains in the memory pool. This avoids the
generation of a new memory cell which is very close to an existing memory
cell. At this point, the training for this single antigen is complete, and system
training recommences with the next antigen.

After all antigens have been presented and training is complete, the final
pool of memory cells is the AIRS classifier and can be applied to determine
the class of previously unseen data.

330 16 Artificial Immune Systems

Summary

AIRS is an interesting algorithm in that it is one of the few examples of the
use of an AIS for classification which uses a supervised learning approach.
The algorithm has produced results which are competitive relative to other
established classifiers [652, 650]. AIRS also has the feature that it does not
require the user to preselect a model architecture as the architecture is evolved
via mechanisms of diversity-generation and resource-based selection during
the training process [80]. A drawback of the AIRS algorithm is that it has quite
a complex implementation and also has multiple user-defined parameters.

16.6 Immune Programming

Niels Jerne [298] noted that there were similarities between the generative
capabilities of the immune system and the generative capacity of linguistic
grammars (an interesting aside on this point is provided by the title of his
lecture on winning the 1984 Nobel Prize in Physiology or Medicine, namely
‘The Generative Grammar of the Immune System’). In language, an infinite
number of syntactically correct sentences can be generated and understood
even where a person has never heard that precise sentence before. In the case
of an immune system, the ‘rules’ governing the physical components and their
workings can be considered as a grammar. This grammar, like the structures
of language, is not fixed but can adapt over time.

Some work has been undertaken to develop hybrid AIS which combine con-
cepts from immune systems, genetic programming and related grammatical
computing methodologies (Chap. 17), such as grammatical evolution, giving
rise to immune programming algorithms. Starting with the immune-GP (iGP)
paper of Nikolaev, Iba and Slavov [450] there have been several explorative
studies investigating these hybrids.

For example, Johnson [303] illustrated how a clonal-based optimisation
algorithm could be combined with GP in order to generate programs to solve
symbolic regression problems. In this study, a population of programs were
generated from a function and terminal set in the usual manner using a
ramped half-and-half procedure, and the quality of the initial population was
assessed using a set of test data. Metaphorically, this step corresponds to a
measurement of the affinity between the generated programs (the antibodies)
and the test data (the antigens). The best programs were then selected for hy-
permutation, and multiple mutated versions of the programs were generated.
The mutation step was implemented by selecting a random node in the GP
program tree, and replacing the subtree below that node with a new randomly
generated subtree. The selection and mutation steps could be performed in a
large variety of ways. In Johnson’s implementation, the top 20% of the popu-
lation was selected for hypermutation and four mutated children were created

16.7 Summary 331

for each individual selected. In the next iteration of the algorithm, the popula-
tion consisted of all the selected programs plus their mutated children. Unlike
the case of traditional GP, a crossover step was not used.

While the study did produce interesting results, it did not attempt to
explicitly embed immune concepts such as gene libraries or investigate alter-
native ways of implementing the selection and mutation process. The potential
for further research was noted by the author. More recent, related work in [430]
applies the clonal selection and expansion metaphor to generate stack-based
assembly instruction computer programs.

16.7 Summary

The mechanisms of natural immune systems provide a rich metaphorical in-
spiration for the design of pattern-recognition and optimisation algorithms.
In this chapter we have discussed how three of these metaphors, the negative
selection process for T cells, the clonal selection and expansion of B cells,
and danger theory, can be applied. While a large body of literature has al-
ready developed on these families of algorithms there is scope to extend the
boundaries of AIS further.

Despite the powerful, multilevel learning capacity in natural immune sys-
tems, most AIS algorithms have drawn quite simplistic metaphorical inspira-
tion from individual elements of the adaptive immune system. Natural immune
systems display learning at all three levels of the POE (phylogeny, ontogeny,
epigenesis) framework (Sect. 1.1.1). For example, the basic framework of the
immune system (its major structures, etc.) is genetically determined and hence
is subject to an evolutionary process (phylogenetic learning). Components of
the system display the ability to differentiate during their maturation, or de-
velopment, a form of ontogenetic learning. Finally, the adaptive immune sys-
tem displays a capacity to respond in real time to changes in its environment
(epigenetic learning), for example an invading pathogen. A key differentiating
factor between the immune system metaphor and other biological metaphors
such as evolution is that the immune system naturally operates over multiple
timescales.

Future extensions of AIS will likely focus increased attention on the mul-
tilayered nature of the immune system and on the synergistic links between
the innate immune system and the adaptive immune system [256].

Another challenging area for future development is the design of AIS specif-
ically for application in dynamic environments. Given the highly dynamic en-
vironment faced by natural immune systems, a premium is placed on their
being able to adapt rapidly. This suggests that well-designed AIS may be
particularly relevant in solving dynamic rather than static problems.

However, it must also be noted most existing AIS algorithms are quite
complex in structure, and as a result are not easy to analyse theoretically.

332 16 Artificial Immune Systems

Constructing algorithms which draw on a more complete picture of the natural
immune system will compound this issue further.

As we have seen in this chapter, immune systems starting from the innate
immune system of a new-born infant are capable of considerable adaptation
and development over time, with this development process being governed
by a ‘set of rules’ (or a grammar) as to how parts of the immune system
interact. In Chap. 17, we introduce general concepts of development processes
and grammars, leading to a discussion of developmental and grammatical
computing.

Part V

Developmental and Grammatical Computing

17

An Introduction to Developmental and
Grammatical Computing

To say that the knowledge uncovered by developmental biologists has been
under-exploited in natural computing is perhaps an understatement. Curi-
ously, despite the relative lack of research attention that has been paid to
these important biological processes, one of the fathers of Computer Science,
Alan Turing, recognised the power of developmental systems and developed
reaction-diffusion models to understand the mechanisms behind morphogene-
sis (the development of biological form) [638]. In recent years it is heartening
to see researchers beginning to close this gap and start to explore the power
of developmental processes such as genetic regulatory networks for problem
solving, and the use of approaches such as self-modification of phenotypes and
developmental evaluation. The surge in interest in developmental computing
is illustrated by the creation of a new track dedicated to Generative and Devel-
opmental Systems which began in 2007 at the ACM Genetic and Evolutionary
Computation Conference [72, 321, 347, 526, 586, 623] and which has run every
year since. A special issue of the journal IEEE Transactions on Evolutionary
Computation was also dedicated to this topic in 2011 [639]. In this chapter the
concept of developmental computing is introduced with particular emphasis
on grammatical computing, which uses grammars as a generative process in
order to create structures of interest.

17.1 Developmental Computing

Developmental Computing refers to computational methods that have been
inspired by developmental processes which occur in biology, that is the devel-
opment of an embryo to a multicellular adult organism.

The simplest, and most common manner in which developmental systems
have been adopted in natural computing is through the use of genotype–
phenotype maps. Many of these approaches are developmentally so simple
that perhaps it is an abuse of the term to call them developmental systems.
However, the genotype–phenotype mapping is at the heart of developmental

© Springer-Verlag Berlin Heidelberg 2015
A. Brabazon et al., Natural Computing Algorithms, Natural Computing Series,
DOI 10.1007/978-3-662-43631-8_1

335

7

336 17 An Introduction to Developmental and Grammatical Computing

biology. In one sense, we could then consider the simple genetic algorithm
as being a form of developmental computing, as the genotype encodes the
parameters of the problem under investigation and these are decoded into a
‘solution’ via the phenotype. Of course, this simple mapping omits virtually
all of the critical aspects of real-world development processes. It has been ob-
served that much of the diversity observed in the natural world can be traced
to three features of developmental biology, namely, interactions between gene
products, the temporal nature of gene expression, and shifts in the location of
gene expression [32]. The first item highlights the significance of feedback loops
to developmental processes. Related to this, a key feature of developmental
systems in nature, and of all organisms in general, is that they are embedded
in an environment. Interactions occur between a developing organism and its
environment. Environment here can mean the state of the cell in which the ge-
netic material is located, or the neighbouring cells and intracellular signaling
events, and also the outward environment or habitat in which the organism is
physically located. Feedback loops exist at all these levels of interaction with
each playing a significant role in the outcome of the developmental process
[210].

17.2 Grammatical Computing

Developmental and Grammatical Computing tend to go hand-in-hand, that
is, a significant number of algorithms inspired by developmental systems have
tended to adopt a grammatical representation. This arises because grammars
are a natural representation for a generative model. They represent a set of
production rules and the contexts in which those production rules (or transfor-
mations) are allowed to occur. Grammatical Computing refers to algorithms
which have been inspired by the underlying formal representation of a gram-
mar. As well as the obvious languages of communication as studied in linguis-
tics, humans have also designed programming languages as problem-solving
tools. Consequently, the formal concept of a grammar is widely adopted in
the fields of linguistics and computer science [107].

In contrast to optimising algorithms such as the GA (Chap. 3) or PSO
(Chap. 8) which generally attempt to optimise parameters within a specific
predefined model structure, the generative approach of Grammatical Comput-
ing allows the automatic generation of both the model structure in addition to
the appropriate parameters for that model. In other words, these algorithms
are generally capable of model/structure induction.

Grammatical computing covers a spectrum of ‘generative methods’ includ-
ing Lindenmayer Systems and the grammar-based approaches to genetic pro-
gramming (GP) (Chap. 7) such as grammar-guided GP (G3P), grammatical
evolution (GE), and tree-adjoining G3P (Chaps. 19 and 20).

Grammars have also been studied from a linguistic standpoint to under-
stand the nature of spoken languages, how these languages and underlying

17.3 What Is a Grammar? 337

grammars originated, and how they subsequently evolved over time and use.
In Evolutionary Computation grammars have also been used in the reverse
sense, that is to evolve or find a grammar to fit a particular set of sentences or
structures. This evolutionary approach to grammar learning will not be exam-
ined here. Instead we will focus on algorithms which exploit and incorporate
grammars to solve problems, and in particular on grammar-based approaches
to GP. This chapter will provide a short general introduction to the underly-
ing concepts of Grammatical Computing largely focusing on the notion of a
formal grammar.

17.3 What Is a Grammar?

A linguistic grammar can be loosely considered as a set of words and symbols
of a language, together with a set of rules that specify the legal arrangements
of these words and symbols in sentences of the language. In contrast to the
standard or traditional use of grammars within Computer Science during com-
pilation, as tools to parse sentences in programming languages to determine if
they are syntactically correct, Grammatical Computing (GC) generally adopts
a generative approach to their use. That is, a grammar provides a set of rules
that is used to govern the generation of some structure. The use of the term
structure is deliberately vague here, as grammars can represent all man-
ner of different things, and it is this feature of grammars that makes them a
particularly powerful formalism as a problem-solving device.

More generally then, a grammar can be considered as a set of components
and the permissible ways that those components can be assembled in order
to create a structure. These structures can range in complexity from a simple
sequence of letters, to such things as a linear equation which fits a set of
input–output data, a graph rewriting system, or an entire computer program.

Formally, a grammar can be defined as G = (T ,N ,S,P) where T is
an alphabet (or a set of terminal symbols), N is a set of intermediate or
nonterminal symbols, S is a root or start symbol, and P is a set of production
rules, which govern how elements of the alphabet and the set of nonterminals
can be converted into structures which are comprised solely of elements from
the alphabet. The set of all structures (the language) which the grammar can
give rise to is denoted by L(G).

Hence, a formal grammar defines a language, which is a (possibly infinite)
set of sequences of symbols that may be constructed by applying production
rules to a sequence of symbols which initially contains just the start symbol. In
generating a structure in the language, production rules are applied iteratively
from left to right by replacing an occurrence of any nonterminal symbols with
either other nonterminal or terminal symbols. A sequence of rule applications
is called a derivation, and the resulting structure is referred to as a sentence
in the language.

338 17 An Introduction to Developmental and Grammatical Computing

Taking a linguistic example to illustrate these ideas, Fig. 17.1 shows how
a subset of production rules drawn from an English grammar can produce a
syntactically correct sentence. The sentence commences from a root symbol
(<sentence>) which is expanded into a <noun-phrase> and a <verb-phrase>
(nonterminals), each of which in turn can be expanded further to produce
lower levels in the derivation tree. Eventually, terminals (or words) are gen-
erated giving rise to a valid sentence. The process of expanding nonterminals
into other nonterminals or into terminals is governed by a set of production
rules which determine which expansions are syntactically valid or permissible.
The infinitely large set of all possible sentences in the English language can
therefore be specified by a relatively compact grammar.

The <adjective> <noun−phrase>

<sentence>

<verb−phrase>

<verb> <adverb><adjective>

<noun−phrase>

<noun−phrase>

fell suddenly

big <noun−phrase>

<noun−phrase>

rock

Fig. 17.1. A sample derivation tree illustrating how a subset of English grammar
can produce a string of English words starting from a root symbol (sentence)

17.3.1 Types of Grammar

The foundations of the formal study of grammars were laid down in 1956
and 1957 by Noam Chomsky [107, 108]. Four different types of grammar were
defined in his taxonomy, based on differing assumptions on the nature of the
production rules, namely:

i. free grammars (also known as a type 0 grammar),
ii. context-sensitive grammars (also known as a type 1 grammar),
iii. context-free grammars (also known as a type 2 grammar), and
iv. regular grammars (also known as a type 3 grammar).

Each of these grammars is described below.

17.3 What Is a Grammar? 339

Regular Grammars

A regular grammar is one where every production rule is of the form:

κ → χγ or κ → γ

where κ and γ are nonterminals and χ is a terminal.

Context-Free Grammars

A grammar is context-free if every production rule is of the form:

I → ψ

where I is a nonterminal symbol and ψ is a string which is made up of
nonterminal and/or terminal symbols.

Context-Sensitive Grammars

A context-sensitive grammar is one where the effect of a given production rule
depends on the context in which it is applied. For example, a production rule
in a context-sensitive grammar may have the form:

αIβ → αψβ

where α and β are strings made up of terminal and/or nonterminal symbols, I
is a nonterminal, and ψ is a string made up of terminals and/or nonterminals.
Hence, I is transformed into ψ in the context of β on its right and α on its
left. Thus, in a different context the nonterminal I could transform into a
different string.

Free Grammars

Free grammars impose no restrictions on the nature of production rules and
hence they provide no restrictions on the sentences they produce. A production
rule will therefore have the form:

α → ψ

where α and ψ are strings made up of terminal and/or nonterminal symbols,
and there must, of course, be at least one nonterminal in α.

Any language generated by a grammar of type x is called a type x language. A
hierarchy of grammars exists, as the set of all grammars of type x also includes
all grammars of type x+1. For example, the set of all type 0 grammars includes
grammars of all the other types.

340 17 An Introduction to Developmental and Grammatical Computing

Within GC, and in particular grammar-based Genetic Programming, a
number of different types of grammars have been adopted, ranging from the
common context-free to the less common but more powerful context-sensitive
Logic and Attribute grammars. In more recent years Tree-adjoining and Tree-
adjunct grammars have also been exploited to directly manipulate tree-based
GP structures. Graph grammars [231] and Shape grammars [481] are examples
of other grammars which have been employed in areas such as evolutionary de-
sign. Examples of some of these grammars, and the corresponding algorithms
that adopt them, follow in the remainder of Part V of this book.

17.3.2 Formal Grammar Notation

When tackling a problem with GC, a suitable grammar definition must ini-
tially be defined. The grammar can be either the specification of an entire
language or, perhaps more usefully, a subset of a language geared towards the
problem at hand.

The standard notation adopted is known as BNF (Backus–Naur form). In
GC, a BNF definition is used to describe the output language to be produced
by the system. BNF is a notation for expressing the grammar of a language in
the form of production rules. BNF grammars consist of terminals, which are
items that can appear in the language, e.g., binary Boolean operators and,
or, xor and nand, unary Boolean operators not, constants, true and false,
etc., and nonterminals, which can be expanded into one or more terminals
and nonterminals.

For example the grammar below can be used to generate Boolean expres-
sions, and <expr> can be transformed into one of three rules. It can become
either (<expr> <biop> <expr>), <uop> <expr>, or <bool>. As stated ear-
lier, a grammar (G) can be represented by G = (T ,N ,S,P), where T is the
set of terminals, N is the set of nonterminals, S is a start symbol which is a
member of N , and P is a set of production rules that map the elements of
N to T . When there are a number of productions that can be applied to one
element of N the choice is delimited with the ‘|’ symbol. For example,

• N = {<expr>,<biop>,<uop>,<bool>},
• T = {and,or,xor,nand,not,true,false,(,)},
• S = {<expr>},

17.5 Lindenmayer Systems 341

And P can be represented as:

<expr> ::= (<expr> <biop> <expr>) (0)

| <uop> <expr> (1)

| <bool> (2)

<biop> ::= and (0)

| or (1)

| xor (2)

| nand (3)

<uop> ::= not

<bool> ::= true (0)

| false (1)

The code produced will consist of elements of the terminal set T . The
grammar is used in a developmental approach whereby the search process
generates the choice of production rules to be applied at each stage of a
mapping process, starting from the start symbol, until a complete program is
formed. A complete program is one that is comprised solely of elements from
T .

17.4 Grammatical Inference

As noted in the introduction to this chapter, the concept of a grammar can
also be applied in reverse, whereby we can attempt to uncover a grammar from
looking at a series of sample sentences. An example of this occurs when we
attempt to create general rules for some phenomenon given our observations of
examples of that phenomenon. This is a tricky task as multiple grammars can
produce the same sentence and if we only have a limited number of samples
to examine, it may not be possible to recover the unique grammar which
underlies our observations. Examples of these approaches in the literature
include Koza [340, p. 442–445] and Araujo [20].

17.5 Lindenmayer Systems

One of the first biologically inspired uses of grammars was that of the biologist
Lindenmayer in 1968, to model the development of multicellular systems [370].
This work was popularised in Prusinkiewicz and Lindenmayer’s book The
Algorithmic Beauty of Plants [523]. Lindenmayer developed his formalism,

342 17 An Introduction to Developmental and Grammatical Computing

L-systems, which is effectively a grammatical representation encoding a set
of rules governing the development of a plant from an embryo. The primary
difference from a grammar as defined by Chomsky and an L-system is that
the rewrite rules of an L-system are executed in parallel.

A B B A B A A B

A B B A

A B
A −> AB

B −> BA

L−system(ii)(i)

Fig. 17.2. An illustration of the string rewriting process as implemented in L-
systems. The L-system (ii) is applied to the embryo string AB in (i). Both symbols in
the embryo are simultaneously rewritten according to the rules of the L-system. The
rules of the L-system can be applied iteratively to the current state of the developing
string, so that ABBA is later rewritten as ABBABAAB

.

For example, given the seed string AB and the rules

A -> AB

B -> BA

AB becomes ABBA in one derivation step, that is the rule to replace A and the
rule to replace B are executed at the same time. Fig. 17.2 further illustrates
this rewrite or developmental process. A graphical interpretation of the L-
system symbols is then required to visualise the simulated plant development.
Typically this is achieved using turtle graphics as adopted in the programming
language LOGO.

Later L-systems were extended to include cycles to model cell layers using
map L-systems [371]. A number of applications of L-systems exist in the lit-
erature in addition to generating plant-like structures (e.g., [292, 523]), from

17.6 Summary 343

protein folding prediction [179], designing virtual creatures [284], pylons [543],
and logos [467], to modelling of blood vessels [335].

As L-systems are primarily a formalism to study or model multicellular
biological systems we will turn our attention to those forms of grammatical
computing that have adopted grammars as algorithmic problem-solving de-
vices. To this end, L-systems and map L-systems will be revisited later in
this book from the perspective of genetic programming and developmental
computing in Chaps. 18, 19 and 20. We will also later see an application of
concepts from L-systems to design an optimisation algorithm based on the
growth processes of plants (Sect. 25.6).

17.6 Summary

This chapter presented an introduction to developmental and grammatical
computing, which are inspired by developmental biology, and the language
communication devices of biological organisms as studied in the disciplines of
linguistics and computer science.

The following chapters in this part of the book introduce the develop-
mental and grammatical approaches to genetic programming, such as devel-
opmental GP inspired by Gruau’s cellular encoding, grammar-guided genetic
programming, grammatical evolution, and developmental TAG, in addition to
algorithms inspired by genetic regulatory networks.

18

Grammar-Based and Developmental Genetic
Programming

The use of grammars in genetic programming (GP) has a long tradition, and
there are many examples of different approaches in the literature representing
linear, tree-based and more generally graph-based forms. McKay et al. [403]
presented a survey of grammar-based GP in the 10th Anniversary issue of the
journal Genetic Programming and Evolvable Machines. In this and subsequent
chapters, we highlight some of the more influential forms of grammar-based
and developmental GP.

In grammar-based GP, the sets of GP terminals and GP functions are
replaced by a grammar. This provides a significant advantage over standard
GP as the grammar can be used to ensure the property of closure. That is,
the GP practitioner is no longer restricted to the use of a single data type,
or forced to use encodings such as strongly-typed GP. The grammar allows
multitype GP, where the evolving structures can, for example, be comprised
of both Booleans and reals sitting comfortably side by side.

Grammars in GP are traditionally adopted in a generative sense. That
is, they provide the rules by which a sentence in the language defined by
the grammar is expanded. As is characteristic of the natural world by which
these algorithms are inspired, there are of course always exceptions. Banzhaf
and colleagues have used grammars in the more traditional parsing approach
common in computer science and compilers. In their developmental GP al-
gorithm [30, 322, 323], the genome of each individual is used to specify a
sequence of programming language primitives. During initialisation of the in-
dividual no attention is paid to the syntax of the represented primitives. As
such, it is highly probable that each individual will represent a syntactically
invalid program (i.e., sentence). The grammar is then used to parse the in-
valid sentence identifying where and how repairs should be applied to create
a syntactically correct sentence.

The first popular grammar-based approach to GP was called grammar-
guided GP (often referred to as G3P). A number of variations exist in the liter-
ature, with perhaps the most influential body of work being byWhigham [656].

© Springer-Verlag Berlin Heidelberg 2015
A. Brabazon et al., Natural Computing Algorithms, Natural Computing Series,
DOI 10.1007/978-3-662-43631-8_1

345

8

346 18 Grammar-Based and Developmental GP

In the following section we describe this tree-based approach to the use of
grammars in GP.

Algorithm 18.1: Grammar-Guided Genetic Programming Algorithm

Define terminal set, function set and fitness function;
Define a grammar specifying the problem-specific language defined on the
elements of the function and terminal sets;
Set parameters for GP run (population size, probabilities for mutation,
crossover, etc., selection/replacement strategy, etc.);
Initialise population of solutions;
Calculate fitness of each solution;

repeat

Select parents;
Create offspring;
Calculate fitness of each solution;
Update population;

until terminating condition;

18.1 Grammar-Guided Genetic Programming

Grammar-guided genetic programming (G3P) is a tree-based form of GP,
where each individual in the population is a derivation tree. A modified GP
algorithm (see Chap. 7 Algorithm 7.1) incorporating a grammar definition is
provided in Algorithm 18.1. In terms of implementation, the impact of adopt-
ing a grammar is that we need to have a special instance of the initialisation
and create offspring steps, which take the rules of the grammar into consid-
eration. To create each individual the user-defined grammar is consulted, and
a path is selected through the grammar commencing from the start symbol.
As per standard GP, it is possible to impose structural diversity onto the
population during initialisation by adopting a ramped-half-and-half strategy
where we impose limits on the depths of the derivation tree structures.

Let us walk through an example to visualise the process of initialisation,
and to introduce the concept of a derivation tree. Taking the grammar in
Fig. 18.1, encoded in BNF (see Chap. 17), which might be used to generate
a simple PacMan controller, the start symbol is <pacman>. The start symbol
<pacman> can be replaced with either a single <line> of code, or multiple lines
of code <line><pacman>. During a random tree initialisation process there is
a 50% chance either option is selected. For our purposes let us say <pacman>

is replaced with <line><pacman>. The derivation tree of our expanding indi-
vidual is presented in Fig. 18.2 (i).

18.1 Grammar-Guided Genetic Programming 347

<pacman> ::= <line>

| <line><pacman>

<line> ::= <ifstmt>

| <operator>

<ifstmt> ::= if (<condition>, <operator>, <operator>)

<condition> ::= isGhostAhead()

| isGhostBehind()

| isGhostRight()

| isGhostLeft()

| isWallAhead()

| isWallBehind()

| isWallRight()

| isWallLeft()

<operator> ::= turnLeft()

| turnRight()

| moveForward()

| moveBackward()

Fig. 18.1. An illustrative grammar which might be used to create a simple PacMan
controller

The process of replacing a nonterminal symbol with the symbols on the
right-hand side of a production rule is called a derivation step, and hence we
use the term derivation tree for the tree which represents the state of the
derivation at any point in time. Both <line> and <pacman> must now be
expanded again randomly, and both of these nonterminals have two possible
replacements. In the case of <line> there is a 50% chance that it will be-
come either an if statement (<ifstmt>) or an <operator>. Flipping a coin in
each case results in <line> replaced with <operator> and <pacman> being
replaced with <line>. Fig. 18.2 (ii) and (iii) illustrates these two derivation
steps. <operator> is replaced with turnLeft() (see step (iv)) and <line> is
replaced with <operator> and finally moveForward() in steps (v) and (vi).
The resulting program is trivial with PacMan trying to turn left and then
move forward. Typically in a game like PacMan the program will be con-
tained in a wrapping function which in this case is executed in a loop until a
game termination state is reached.

348 18 Grammar-Based and Developmental GP

F
ig
.
1
8
.2
.
A
n
o
u
tl
in
e
o
f
a
n
ex

a
m
p
le

d
er
iv
a
ti
o
n
se
q
u
en

ce
in

th
e
cr
ea
ti
o
n
o
f
a
g
ra
m
m
a
r-
g
u
id
ed

G
P

in
d
iv
id
u
a
l

18.1 Grammar-Guided Genetic Programming 349

A more interesting PacMan controller would contain conditional state-
ments. An example individual comprised of an <ifstmt> is illustrated in
Fig. 18.3. In this case the individual is comprised of a single conditional state-
ment which employs the isGhostAhead() function as the <condition>. If
a ghost is detected directly in front of PacMan then this function returns a
Boolean value of true and PacMan will attempt to moveBackward(), other-
wise PacMan will take a step forward invoking the moveForward() function.

Fig. 18.3. A example PacMan controller which is comprised of a conditional IF
statement

Once a population of derivation trees is created the fitness of each indi-
vidual can be calculated in a normal GP-like manner. Fitness values can then
be used to inform the selection stage of the evolutionary engine with genetic
operators such as mutation and crossover being applied to generate new indi-
viduals. These genetic search operators are applied directly to the derivation
trees.

In terms of subtree crossover this means that a crossover site is selected
from the set of nonterminal symbols contained in the derivation tree of the first
parent. The crossover site in the second parent is then selected from the subset
of nonterminal symbols in the derivation tree of the second parent, which have
the same value as the nonterminal symbol at the crossover site in the first
parent. This process guarantees that when a derivation subtree is swapped
from the second parent into the first parent a syntactically valid individual
is created. Fig. 18.4 illustrates an example derivation subtree crossover in
operation. In a similar manner, a mutation site is selected from the set of
nonterminal symbols in the derivation tree. Legal mutants/replacements can
then be selected from the grammar as per the derivation tree initialisation
process.

350 18 Grammar-Based and Developmental GP

F
ig
.
1
8
.4
.
A
n
il
lu
st
ra
ti
o
n
o
f
d
er
iv
a
ti
o
n
su
b
tr
ee

cr
o
ss
ov

er

18.2 Developmental GP 351

This representation has been extended to assign probabilities to each pro-
duction rule in the grammar, allowing a bias to be explicitly introduced dur-
ing the creation of the initial population, and during mutation events. In a
further extension of this approach the probabilities can be modified/evolved
during a run, allowing the population to develop a global model of a biased
language [572].

18.1.1 Other Grammar-Based Approaches to GP

There are a large number of grammar-based approaches to GP [403]. In addi-
tion to those outlined earlier in this chapter some notable examples illustrat-
ing the diversity of grammars adopted include Logenpro [662], which utilises
logic grammars. In later chapters we will revisit some of the most popular
forms of grammar-based GP and their variants, including grammatical evolu-
tion (Chap. 19) with context-free, attribute, logic, meta and shape grammar
variants. Also in Chap. 20 we will investigate tree-adjoining grammar (TAG)
forms of GP, including TAG3P and an alternative form of grammatical evo-
lution (TAGE).

18.2 Developmental GP

In this section we provide an overview of a sample of the primary GP methods
which have been inspired by developmental systems. In the first example we
provide an introduction to genetic L-system programming [292]. The second
approach (binary GP) represents an algorithm which coevolves the underlying
genetic code. The third, cellular encoding, is a neuroevolutionary algorithm
which inspired the fourth highly successful algorithm outlined here, Koza’s
approach to the evolution of analog circuits. It is worth highlighting again
that many of these approaches explicitly adopt grammars in their underly-
ing representation. Specifically, genetic L-system programming, binary GP
and cellular encoding adopt L-system grammars, context-free grammars, and
graph grammars respectively.

18.2.1 Genetic L-System Programming

Jacob [292, 293] described an approach to GP based on L-systems, where
he considers L-systems as ‘rule-based, developmental programs’, and uses a
turtle graphics interpretation of the L-system to evolve 3-D images of plants.
Fig. 18.5 outlines an illustration of how an L-system might be interpreted as
a 2-D turtle graphic. A grammar is used to specify the legal construction of
L-systems by the GP search engine. Typed mutation and subtree crossover
operators are designed to manipulate the evolving L-systems.

A number of applications of L-systems and GP have appeared in the lit-
erature since Jacob’s work. For example, an approach that used L-systems,

352 18 Grammar-Based and Developmental GP

Fig. 18.5. An illustration of a turtle graphics interpretation of L-systems. F is the
rule which results in a line being drawn in the direction specified by δ. The length
of the line and δ are parameters of the system. On the left side of the image we see
three examples of L-systems (i.e., F, F+F and F+FF−FF) drawn where δ = 15.
Another parameter is the number of iterations (n) or the number of developmental
steps for which the rules of the L-system are executed. On the right we see the rule
which states how each F in the developing image is replaced with F+FF−FF

similar to grammatical evolution (GE), tackled the problem of inferring pro-
tein secondary structures [179]. In another application of GE, L-systems were
used to design logos [467]. Later in Chap. 20, we will see how L-systems have
been used in an alternative, more flexible, developmental approach to GP.

18.2.2 Binary GP

Banzhaf introduced an approach to GP named Binary GP [30], and later
studies provided a more in-depth analysis of its behaviour [322, 323]. As we
will see in the following description the algorithm adopts a grammar in a
repair process.

In Binary GP each primitive symbol of the programming language is as-
signed a binary code (its genetic code). A member of the population is a
binary string with the individual being parsed into groups of bits referred to

18.2 Developmental GP 353

as codons. Each codon is a predetermined fixed number of bits. Table 18.1
outlines an example Binary GP genetic code.

Symbol Binary Code

+ 000
− 001
∗ 010
/ 011
w 100
x 101
y 110
z 111

Table 18.1. An example Binary GP genetic code comprising four problem-specific
variables (w, x, y and z) and a set of arithmetic operators

A grammar for infix expressions utilising the primitive symbols presented in
Table 18.1 might look as follows:

<expression> ::= <expression> <binaryoperator> <expression>

| <variable>

<binaryoperator> ::= + | - | * | /

<variable> ::= w | x | y | z

Fig. 18.6. A binary GP mapping from a randomly generated binary string divided
into codons of three bits

For any randomly generated binary string individual we can then parse
groups of three-bit codons at a time, in each case decoding the binary codon
into its equivalent language primitive according to the lookup table. Fig. 18.6
outlines a sample mapping from a binary string to primitive symbols and
its subsequent repair into a legal expression according to the infix grammar.

354 18 Grammar-Based and Developmental GP

The repair process operates by detecting an illegal symbol, and subsequently
replacing it with a legal primitive symbol chosen by calculating the Hamming
distance of the genetic codes for all the available legal symbols which can be
utilised legally in this context. The repaired Binary GP individual can then
be evaluated in the usual GP manner and a fitness assigned to it.

Keller and Banzhaf extended the Binary GP system to evolve the genetic
code itself [322, 323]. In a related study, Grammatical Evolution was adapted
to evolve its genetic code using a metagrammar [474]. Both sets of studies
found that it was possible to coevolve the code with the evolving solutions.

18.2.3 Cellular Encoding

A large number of papers which appear in the Generative and Developmental
Systems track at recent GECCO conferences have focused on developmental
approaches to neuroevolution (see Chap. 15 for an exposition of these methods
such as NEAT). In earlier work in this area, Gruau developed a novel and
influential representation which allowed GP to evolve the topology and weights
of the edges of artificial neural networks.

Gruau’s approach adopted graph grammars and was dubbed cellular en-
coding [231]. Effectively the graph grammar represented rules by which an
embryonic graph (e.g., a single node) could be transformed into a mature
neural network. The topology, edge weights and threshold functions could
all be evolved using this representation. The GP individual (a tree) encodes
the transformations which are to be applied to the embryonic ancestor cell.
Fig. 18.7 outlines an example of how a simple graph grammar can be used to
generate a multilayer perceptron.

Cellular encoding served as inspiration for a developmental approach to
GP which is used to evolve analog circuits.

18.2.4 Analog Circuits

The application of GP to the evolution of analog circuits is one of its most
noteworthy success stories, resulting in solutions which have been patented in
their own right. As noted above, the approach is heavily inspired by Cellular
Encoding, and applies a set of transformations encoded in a GP tree to a
developing embryonic circuit initially comprised of a single wire. A large pro-
portion of Koza’s third [342] and fourth [343] books on GP are dedicated to
analog circuit evolution, and a recent article in the 10th anniversary issue of
the Genetic Programming and Evolvable Machines journal outlines the broad
spectrum of human-competitive results which had been achieved by GP up
to 2010 [344].

18.2.5 Other Developmental Approaches to GP

Other examples of developmental approaches to GP include those which adopt
self-modification, such as ontogenetic programming [588] and self-modifying

18.2 Developmental GP 355

Fig. 18.7. An example Cellular Encoding mapping from a GP tree and embryonic
ancestor cell to an ANN. Note a simplified GP tree is presented, additional functions
available as part of the GP function set can, for example, modify the threshold of
each node and the number of edges from each node

Cartesian GP [250, 251]. The aim here is to allow an executing program to
modify its behaviour over the lifetime of its execution in order to enable the
program to react to a changing problem environment.

Spector and Stoffel describe ontogenetic programming which uses a linear
stack-based language, including a set of operators which can ‘self-modify’ the
resulting program phenotypes [588]. For example, the operator segment-copy
copies a part of the linear program over another part of the program, the
operators shift-left and shift-right rotate the program to the left or the
right. Spector and Stoffel also describe how a similar approach can be applied
to tree-based GP using a subtree-copy function.

Self-modifying Cartesian GP (SMCGP) [250] is a similar approach to Spec-
tor and Stoffel, except the self-modification operators are applied to a different
underlying representation, namely that of Cartesian GP [412], a graph-based
encoding. SMCGP differs from CGP in that the nodes within the graph adopt

356 18 Grammar-Based and Developmental GP

relative addressing. This allows subgraphs to effectively become modules by
maintaining their semantics. At runtime, self-modification occurs due to the
fact that nodes within the graph can be replaced with subgraphs. SMCGP is
shown to have performance gains on a number of problems over the standard
CGP.

The use of tree-adjoining grammars has been a significant step forward in
grammatical and developmental approaches to GP, and in Chap. 20 we de-
scribe the TAG3P, DTAG3P and TAGE approaches. Tree-adjoining grammars
are effectively grammars which describe tree-transformation rules and as such
represent a self-modifying encoding for GP where each step of development is
a valid, executable sentence/program.

18.3 Summary

This chapter presented an overview of both grammatical and developmental
approaches to genetic programming. However, this is not the complete picture.
In Chaps. 19 and 20 we introduce one of the most popular approaches to GP,
namely grammatical evolution, and another influential grammar-based ap-
proach, tree-adjoining grammar-based genetic programming (TAG3P) which
was recently expanded to include an advanced developmental process (devel-
opmental TAG3P).

19

Grammatical Evolution

Grammatical Evolution (GE), a form of grammar-based genetic programming
(Chap. 18), is an algorithm that can evolve computer programs, rulesets or,
more generally, sentences in any language [150, 460, 470, 472, 547]. Rulesets
could be as diverse as a regression model, a set of design instructions, or a
trading system for a financial market. Rather than representing the programs
as syntax trees, as in GP (Chap. 7) [340, 514], a linear genome representation
is used in conjunction with a grammar.

In addition to the standard set of evolutionary principles adopted in evolu-
tionary computation, as described in Chap. 2, GE further extends inspiration
taken from the biological analogy by employing neo-Darwinian principles of
genetics that have been uncovered by molecular biologists. The most sig-
nificant of these is the adoption of a distinction between the genotype and
phenotype, similar to that which exists in nature. That is, through a mapping
process, the genetic material (the genotype) contains the instructions that are
used to control the development and day-to-day operation of a living organ-
ism (the phenotype). The molecules making up the genetic material (DNA)
are distinct from the molecules responsible (proteins) for the phenotype. Each
individual in GE, a variable-length linear structure, contains in its genome the
information to select production rules from a grammar. Typically, each codon
is either a group of bits (e.g., a byte, that is, eight bits) or an integer [288].
The primitive components of a GE genome are referred to as codons to re-
flect more closely their biological counterparts. A gene then is a collection of
codons (Sect. 19.1).

It is in the notion of a genotype–phenotype mapping that the use of a
grammar is exploited. The grammar contains the rules governing how the
development of the phenotype is conducted, and as such can contain do-
main knowledge biasing the form a phenotypic solution can take. It is this
use of grammars that provides GE with enormous flexibility in what it
is capable of representing in an evolving population. Reflecting this is the
wide range of application domains to which GE has been applied: high-
lights include architecture and engineering design [87, 399, 481, 485], fi-

© Springer-Verlag Berlin Heidelberg 2015
A. Brabazon et al., Natural Computing Algorithms, Natural Computing Series,
DOI 10.1007/978-3-662-43631-8_1

357

9

358 19 Grammatical Evolution

nance [75, 122, 447], music and art [396, 397, 444, 467, 573], computer
games [506, 507, 570, 571], animation [428, 429], ecosystem modelling [448],
and autonomous networks [264, 265, 266].

Another particular benefit of GE is that the separation of the search and
solution spaces allows the implementation of generic search algorithms without
a requirement to tailor the diversity-generating operators to the nature of
the phenotype. This removes one of the problems which can arise in genetic
programming, that of closure (Chap. 7.1.2). It also separates GE from the
evolutionary search engine, which can be replaced with any search algorithm
which is capable of manipulating an encoding of rule choices (e.g., integers,
reals, and bits). Examples of alternative search engines include PSO [461, 463]
and DE [465].

In the remainder of this chapter we will introduce the GE methodology
and illustrate how it might be applied to different problem domains. Later
we will discuss some of the recent developments in GE. But first we will set
the stage and provide background on the original inspiration for GE, with a
short primer on the process of gene expression in eukaryotes (organisms each
of whose cells contains a nucleus).

19.1 A Primer on Gene Expression

The GE system is inspired by the biological process of generating a protein
from the genetic material of an organism. Proteins are fundamental in the
proper development and operation of living organisms and are responsible for
traits such as eye colour and height [366].

The genetic material (usually DNA, deoxyribonucleic acid) contains the
information required to produce specific proteins. DNA encodes information
using a four-letter alphabet (adenine, guanine, cytosine and thymine — A,
G, C, T). In human chromosomes, roughly 3 billion nucleotides (letters) are
strung together on two complementary strands which form a double helix.

When a gene’s instructions are to be expressed, the double helix structure
of DNA is opened to allow a single-strand copy of the gene’s sequence to be
transcribed onto RNA (ribonucleic acid). During this transcription process,
thymine (T) is replaced by uracil (U). Not all portions of DNA encode pro-
teins. In fact, only about 1-2% of human DNA does so, with the remaining
portions of DNA being historically referred to as ‘junk’ DNA. Initially it was
thought that junk DNA did not serve a useful function; however, it is now
known that it encodes important cell-regulatory information and current esti-
mates are that over 80% of DNA in the human genome “serves some purpose,
biochemically speaking” [505].

Sequences of DNA and their corresponding RNA are comprised of exons
or coding sequences, and introns or noncoding sequences. The RNA strand
is spliced, or edited, into mRNA (messenger RNA) in a cell structure known
as the spliceosome. In this process the intronic RNA is snipped out, and

19.1 A Primer on Gene Expression 359

the remaining exonic RNA is combined. Next, the mRNA carries the genetic
instructions out of the cell nucleus into a structure called the ribosome in
the cell’s cytoplasm, which translates the instructions into amino acids. The
mRNA is read one codon (which is made up of a group of three letters) at a
time in the ribosome, and the amino acids specified by these letter sequences
are fetched by tRNA (transfer RNA). The amino acids are strung together to
produce a protein. The sequence of amino acids is very important as it plays a
large part in determining the final three-dimensional structure of the protein,
which in turn has a role to play in determining its functional properties.

A U G U U U U C A A A A G C A C C C C C A U A A

A U G …. U U U A A A C C C U A A

Strand of RNA

Exons spliced
into mRNA in
the spliceosome

Ribosome

Protein

Phenylalanine ……. Proline Stop codon Start codon

Fig. 19.1. Illustration of RNA to protein mapping. Initially, the strand of RNA
is spliced and edited in the spliceosome. During this process, introns are edited
out. Next, mRNA carries the genetic instructions to the ribosome where tRNA is
generated in order to assemble the required amino acids (molecules). These molecules
are then combined to form the protein

As the protein forms, it folds into a 3-D shape. Folding is at least partly deter-
mined by the affinity of the amino acids for water; in particular, hydrophobic
amino acids fold towards the inside of the protein, away from the cell’s cyto-
plasm. Thus, in summary, the genotype to phenotype mapping process is as
follows:

DNA → RNA → Protein

The above description is a much-abbreviated version of the process of gene
expression. A significant amount of research is currently taking place in an

360 19 Grammatical Evolution

effort to better understand the processes of gene expression, and how the con-
stituent amino acid sequence of a protein folds into its native conformation.
It has to be stressed that the process illustrated above of DNA transcrib-
ing to RNA and translated to protein was known as the Central Dogma of
Molecular Biology, with a unidirectional flow of information being a defining
characteristic. It has since been established that the information flow is not
unidirectional: information can flow back through this chain of molecules.

The Translation Grammar

An important step in the genotype–phenotype map is the decoding of seg-
ments of mRNA into amino acids. Each codon of three letters specifies one
of 20 standard amino acids, or one of three ‘stop translating’ signs — UGA,
UAG or UAA — which in turn form the building blocks of proteins. If we
consider that there are 43 = 64 possible codons (since we are dealing with a
base-4 alphabet where the primitives are A, U, G and C, and there are three
available positions in a codon), it is clear that codons could encode more than
20 amino acids. There is not a one-to-one correspondence between codons and
amino acids, and multiple codons can actually specify the same amino acid.
Generally, the different codons which specify the same amino acid only differ
in their last letter. For example, UCU, UCC, UCA and UCG all encode the
amino acid, serine.

A key point to note is that the rules governing the decoding of codons
into specific amino acids, and subsequently into proteins, can be considered
as a grammar. Interestingly, although many organisms have the same basic
genetic alphabet and generate the same amino acids, not all have the same
mapping from specific codons to specific amino acids. For example, although
most organisms read the RNA codon CTG as the amino acid leucine, many
species of the fungus Candida translate this codon as serine [201].

There have been some studies in genetic programming where researchers
have attempted to (co)evolve the underlying genetic code of their represen-
tation with some success [323, 324], including a study using metagrammars
with GE [474].

19.2 Extending the Biological Analogy to GE

Through the adoption of a genotype–phenotype mapping process coupled to
the use of a grammatical representation, GE can take advantage of its modular
framework in a number of ways. Potential benefits of adopting genotype–
phenotype maps are highlighted by O’Neill [460], and include:

i. A separation of the search (binary strings) and solution spaces (sentences)
which removes the necessity to exclusively adopt a variable-length genetic
algorithm (or even any evolutionary algorithm!) as is standard in GE

19.3 Example GE Mapping 361

as the search engine. The search operators of the evolutionary algorithm
themselves (e.g., the genetic operators of crossover and mutation) operate
on an abstraction of the phenotype and as such do not have to take into
consideration issues such as syntactic correctness of the phenotype, as the
mapping process can be used to ensure this occurs automatically.

ii. An abstraction of a program’s representation (a grammar) which can be
used in a pluggable manner to generate sentences in arbitrary languages.

iii. Efficiency gains for an evolutionary search are possible through the adop-
tion of a many-to-one mapping and a degenerate genetic code. This can
be achieved by allowing neutral evolution to occur. Neutral evolution oc-
curs when there are changes at the genotype level which are neutral or
nearly neutral with respect to the fitness of the phenotype. For exam-
ple, by allowing the functionality of the phenotype to be preserved while
changes to the genotype occur, the population can potentially traverse
otherwise infeasible regions of the search space. A further consequence of
the many-to-one mapping is the maintenance of genetic diversity within
a population by allowing many different genotypes to represent the same
phenotype, thus helping to prevent loss of genetic material and premature
convergence.

We will see later, in Chap. 21, how another desirable feature [460], alternative
gene expression control — where feedback loops to the environment influence
the development of the output phenotype — is implemented through Genetic
Regulatory Networks when coupled to a tree-adjoining grammar in the TAGE
algorithm (Chap. 21.2). We will now present an overview of how the genotype–
phenotype mapping process occurs in GE through the mapping of a sample
individual.

19.3 Example GE Mapping

When applying a grammar-based form of GP to any problem, first we must
specify the grammar. The grammar dictates the language (or the structures)
which the evolving population is searching. Each individual in the population
typically represents a single sentence in that language. With GE, a BNF
grammar definition is commonly employed to specify the language. As outlined
in Sect. 17.3.2, BNF is a notation which specifies the rules by which a sentence
may be constructed.

Adapting the example of evolving behaviours for the computer game Super
Mario [506], we illustrate the mapping process of GE. The two inputs to the
mapping are:

i. the genome (Fig. 19.3); and
ii. the grammar (Fig. 19.4).

362 19 Grammatical Evolution

Fig. 19.2. A screen capture from the implementation of Mario as used for the Mario
AI competition.

The grammar specifies a language which defines a controller called a be-
haviour tree. The output sentences of this language are therefore instances
of behaviour trees which determine the behaviour of the Mario character as
he navigates the platform world which he inhabits. Figure 19.2 provides a
screen capture from the Mario game as implemented for the Mario AI compe-
tition [624]. The goal of Mario is to reach the end of the level by successfully
navigating the platforms and enemies as fast as possible, and collecting as
many additional points along the way as possible. Points are collected for
killing enemies and collecting bonuses such as gold coins. Behaviour trees
(BTs) are a convenient way to organise behaviours in a hierarchical manner
such that higher-level behaviours appear towards the roots of the trees with
more primitive behaviours towards the leaves. As specified in Fig. 19.4, a BT
in this case is comprised of one or more nodes (<Node>), where each node
can be one of two types, a condition (<Condition>) or action (<Action>).
Actions include the primitive behaviours moveLeft, moveRight, jump and
shoot. Mario in this case can ‘sense’ two environment states, namely whether
there is an obstacleAhead or an enemyAhead, and so we specify two kinds of
<Condition> statements which handle detection of these states and then we
must evolve an appropriate response by expanding the corresponding condi-
tions <Action> component.

34 42 74 15 12 76 62 2 27 6 111 57 2

Fig. 19.3. The genome used to illustrate GE’s mapping process. Note for simplicity
we specify integer codon values directly. Some implementations of GE use binary
codons which are first transcribed into their corresponding integer values

19.3 Example GE Mapping 363

<StartSymbol> ::= sequence <BT> | selector <BT>

<BT> ::= <BT> <Node> | <Node>

<Node> ::= <Condition> | <Action>

<Condition> ::= if(obstacleAhead) then <Action>;

| if(enemyAhead) then <Action>;

<Action> ::= moveLeft; | moveRight; | jump; | shoot;

Fig. 19.4. A grammar which could be used to generate behaviours for the computer
game Mario. The grammar specifies a language which defines a controller called a
behaviour tree. The output sentences of this language are therefore instances of
behaviour trees which determine the behaviour of the Mario character

The start symbol (<StartSymbol>) for the grammar from which the map-
ping process commences is either a sequence or selector behaviour tree,
where the content of the behaviour tree is defined through the expansion of
the nonterminal <BT>, which has two possible rules which can be applied to
it. A sequence behaviour tree executes all the child subtrees in sequence from
left to right until one returns a fail (similar to logic AND of the subtrees),
whereas a selector behaviour tree executes subtrees until one succeeds (sim-
ilar to logic OR). To decide what production rule we use to replace the ini-
tial <StartSymbol> symbol with, we read the next available codon from the
genome (i.e., the first integer value in Fig. 19.3), and plug the number of rule
choices and the codon integer value into GE’s mapping function below, which
applies the mod operation (%), i.e., calculates the remainder of the division
of the codon value (c) by the number of rule choices (r).

Rule# = c % r

This results in 34%2 = 0, so <StartSymbol> is rewritten as sequence<BT>.
The mapping process continues by expanding the nonterminal <BT>.

Reading the second codon on the genome, this results in 42%2 = 0, so
<BT> is now replaced with <BT> <Node>. The mapping process continues by
reading the leftmost nonterminal in the developing phenotype and consulting
the next available codon on the genome when a choice of production rules is
available. The developing sentence (or phenotype) can be represented using
a derivation tree. The remainder of the mapping process which results in a
behaviour tree for Mario is outlined in Figs. 19.5 and 19.6. The corresponding
derivation tree for each developmental step is also provided.

364 19 Grammatical Evolution

S
te

p
0)

<
S

ta
rt

S
ym

bo
l>

<
S

ta
rt

S
ym

bo
l>

<
S

ta
rt

S
ym

bo
l>

<
S

ta
rt

S
ym

bo
l>

<
S

ta
rt

S
ym

bo
l>

<
S

ta
rt

S
ym

bo
l>

se
qu

en
ce

 <
B

T
>

se
qu

en
ce

 <
B

T
>

se
qu

en
ce

 <
B

T
>

se
qu

en
ce

 <
B

T
>

se
qu

en
ce

 <
B

T
>

74
%

 2
 =

 0

15
%

 2
 =

 1

12
%

 2
 =

 0

76
%

 2
 =

 0

62
%

 4
 =

 2

42
%

 2
 =

0

34
%

 2
 =

0

<
B

T
>

<
B

T
>

<
B

T
>

<
B

T
>

<
B

T
>

<
N

od
e>

<
N

od
e>

<
N

od
e>

<
N

od
e>

<
B

T
>

<
B

T
>

<
N

od
e>

<
N

od
e>

<
N

od
e>

<
C

on
di

tio
n>

ju
m

p

if
(o

bs
ta

cl
eA

he
ad

)
th

en
 <

A
ct

io
n>

<
N

od
e>

<
N

od
e>

S
te

p
1)

S
te

p
 4

)
S

te
p

 5
)

S
te

p
 6

)

S
te

p
2)

S
te

p
3)

F
ig
.
1
9
.5
.
A
n
o
u
tl
in
e
o
f
th
e
st
a
rt

o
f
th
e
G
E

m
a
p
p
in
g
p
ro
ce
ss

w
h
ic
h
g
en

er
a
te
s
a
b
eh

av
io
u
r
tr
ee

co
n
tr
o
ll
er

fo
r
M
a
ri
o

fr
o
m
 t
h
e
g
ra
m
m
a
r
in

F
ig
.
1
9
.4

a
n
d
u
si
n
g
th
e
g
en

o
m
e
fr
o
m

F
ig
.
1
9
.3
.
T
h
e
m
a
p
p
in
g
is

co
n
ti
n
u
ed

in
F
ig
.
1
9
.6

19.3 Example GE Mapping 365

<
S

ta
rt

S
ym

bo
l> <

S
ta

rt
S

ym
bo

l>

<
S

ta
rt

S
ym

bo
l>

se
qu

en
ce

 <
B

T
> se

qu
en

ce
 <

B
T
>

se
qu

en
ce

 <
B

T
>

<
B

T
>

<
B

T
>

<
B

T
>

<
B

T
>

<
B

T
>

<
B

T
>

<
N

od
e>

<
N

od
e>

<
N

od
e>

<
N

od
e>

<
N

od
e>

<
N

od
e>

<
N

od
e>

<
N

od
e>

<
N

od
e>

<
C

on
di

tio
n>

<
C

on
di

tio
n>

<
C

on
di

tio
n>

m
ov

eR
ig

ht

<
C

on
di

tio
n>

<
C

on
di

tio
n>

if
(o

bs
ta

cl
eA

he
ad

)
th

en
 <

A
ct

io
n>

if
(o

bs
ta

cl
eA

he
ad

)
th

en
 <

A
ct

io
n>

if
(e

ne
m

yA
he

ad
)

th
en

 <
A

ct
io

n>

if
(e

ne
m

yA
he

ad
)

th
en

 <
A

ct
io

n>

if
(o

bs
ta

cl
eA

he
ad

)
th

en
 <

A
ct

io
n>

ju
m

p
ju

m
p

57
 %

 4
 =

 1

11
1

%
 2

 =
 1

<
A

ct
io

n>

ju
m

p

ju
m

p

ju
m

p

2
%

 2
 =

 0

27
 %

 2
 =

 1

6
%

 4
 =

 2

S
te

p
 7

)
S

te
p

 8
)

S
te

p
 9

)

S
te

p
 1

0)

S
te

p
 1

1)

F
ig
.
1
9
.6
.

A
co
n
ti
n
u
a
ti
o
n
o
f
th
e
m
a
p
p
in
g
p
ro
ce
ss

st
a
rt
ed

in
F
ig
.
1
9
.5
.
T
h
e
re
su
lt
in
g
b
eh

av
io
u
r
tr
ee

w
o
u
ld

ca
u
se

M
a
ri
o
 t
o
 j
u
m
p
 i
f
it
 d
et
ec
ts

a
n
o
b
st
a
cl
e
a
h
ea
d
,
el
se

ju
m
p
if
it

d
et
ec
ts

a
n
en

em
y
a
h
ea
d
,
el
se

it
m
ov

es
to

th
e
ri
g
h
t

366 19 Grammatical Evolution

During the genotype to phenotype mapping process, it is possible for indi-
viduals to run out of codons and still have outstanding nonterminal symbols
which have not been completely mapped to terminals (language primitives).
In order to resolve this issue the early versions of GE proposed the wrap op-
erator. When applied, the codon reading head is returned to the first codon in
the genome. As such, codons are reused when wrapping occurs. This is quite
an unusual approach in evolutionary algorithms as it is entirely possible for
certain codons to be used two or more times.

The technique of wrapping the individual draws inspiration from the gene-
overlapping phenomenon that has been observed in many organisms [366].
It is possible that an incomplete mapping could occur, even after several
wrapping events, and typically in this case the mapping process is aborted
and the individual in question is given the lowest possible fitness value. The
selection and replacement mechanisms then operate accordingly to increase
the likelihood that this individual is removed from the population.

One potential complication is that any one codon can be used in different
contexts (i.e., for different nonterminal symbols) and so create complex func-
tional dependencies. A number of alternative strategies have been proposed,
from a mapping function which removes the functional dependencies [320], to
repair strategies which guarantee completely mapped individuals (e.g., [485]).
For example, recursive rules which have the effect of expanding the number
of nonterminals in a developing phenotype are temporarily removed from the
grammar, thus restricting the selection of production rules which map non-
terminals to terminals when reusing the genome with a wrap operation.

Algorithm 19.1: Grammatical Evolution Algorithm

Define terminal set, function set and fitness function;
Define a grammar specifying the problem-specific language defined on the
elements of the function and terminal sets;
Define the fitness function;
Set parameters for GE run (population size, probabilities for mutation,
crossover, wrapping, etc., selection/replacement strategy, etc.);
Initialise population of solutions;
Apply genotype–phenotype map;
Calculate fitness of each solution;

repeat

Select parents;
Create offspring;
Apply genotype–phenotype map;
Calculate fitness of each solution;
Update population;

until terminating condition;

19.3 Example GE Mapping 367

An outline of grammatical evolution is provided in Algorithm 19.1, which
is a variant of the GP (Algorithm 7.1) and grammar-guided GP (Algorithm
18.1) algorithms presented earlier, in that it incorporates a genotype–mapping
step. The primary difference to the grammar-guided GP algorithm is the
application of the genotype–phenotype map to construct the program tree
from the user-defined grammar and genome. In the canonical form of GE
the initialisation and create offspring steps adopt (variable length) genetic
algorithm style strategies on linear genome structures, which are typically
comprised of either binary or integer values.

Grammatical evolution has received considerable attention since its intro-
duction and there is a wide literature on the topic. Some of the more recent
developments are focused on the various components (Fig. 19.7) of the GE
approach, including the search engine, the grammar, and the mapping pro-
cess itself. Rather than provide a comprehensive review of all research in this
area, we will signpost some of the significant advances in the remainder of
this chapter.

Fig. 19.7. Modular structure of grammatical evolution

Grammar

GE
Mapper

Output
sentence

Search Engine

Fitness Function

368 19 Grammatical Evolution

19.4 Search Engine

The search engine in GE is responsible for generating the order of produc-
tion rule choices by manipulating the genetic encoding of each member of the
population. This is achieved using the diversity-generation operators of the
search algorithm which need to be capable of exploring a variable dimension
space whilst maintaining a balance between exploitation and exploration, in
order to ensure effective search towards a target (e.g., the global optimum)
without suffering from premature convergence towards local optima. Research
directed towards the search engine component of GE has included replacing
the standard variable-length genetic algorithm-like algorithm with alterna-
tives such as differential evolution and particle swarm optimisation. Another
vein of research has examined the behaviour (e.g., locality) of the evolution-
ary algorithm’s search operators, in particular mutation when applied to both
binary and integer genome encodings. Research has also focused on the im-
pact of crossover on search performance when applied to both the genome and
derivation trees. In this section we highlight some of this research.

19.4.1 Genome Encoding

The earlier studies on GE typically adopted 8-bit binary codons as the un-
derlying genetic encoding of a rule choice (e.g., [470]), which must then be
transcribed to their corresponding integer value. Alternative implementa-
tions of GE quickly arose which encoded codons directly using integer val-
ues (e.g., [319]). A study comparing binary and integer encodings and their
corresponding bit-flip and integer mutations found that on the problems ex-
amined the integer encoding had a statistically superior performance [288].
Consequently implementations of GE such as GEVA [480] now adopt integer
encoding as standard.

19.4.2 Mutation and Crossover Search Operators

A detailed analysis of GE’s one-point crossover on variable-length genomes
has found that it is superior to random search in the form of headless chicken
crossover operators [482]. However, it has the undesirable consequence of pro-
ducing so-called ripple events, as codons when moved during crossover from
one parent to the other can be placed into a different nonterminal context,
with the result that their meanings change. Because of this, GE’s one-point
crossover is referred to as ripple crossover. To avoid this issue, Harper and
Blair investigated the application of more traditional grammar-based GP
crossover operators which are applied to the derivation trees produced during
GE’s genotype–phenotype mapping. A number of alternatives were examined
with great success [253, 254].

A number of studies have focused on GE’s mutation operator. Oetzel and
Rothlauf [542] examined the locality property of mutation events, finding that

19.4 Search Engine 369

<e> ::= <o><e><e> (0)

| <v> (1)

<o> ::= + (0)

| * (1)

<v> ::= x (0)

| y (1)

Fig. 19.8. A simple binary choice grammar to illustrate the impact of different
types of mutation events in GE in Figs. 19.9 and 19.10

Fig. 19.9. An illustration of nodal and structural mutation events on the derivation
tree for the first two codon choices. When mutating from 00 to 10, or from 01 to 11,
we see structural changes, whereas mutating between 00 and 01, or between 10 and
11, results in only a single node value being modified

about 10% of events have poor locality. They also confirmed earlier observa-
tions [460] that a large number of mutations were neutral. Studies later anal-
ysed the different types of changes which can occur to the derivation trees as a
result of integer mutation [84, 86]. Integer mutation events were decomposed
into two different types, nodal and structural. Nodal events have the effect of
changing terminal node values (i.e., nodes on the derivation tree which contain
primitive symbols of the language). Structural events can change a derivation
tree’s size and structure due to their occurrence at nodes containing nonter-
minal symbols and the subsequent replacement of the underlying subtree of
a different size. The impact of structural and nodal components of mutation
when employing a simple binary choice grammar (Fig. 19.8) is illustrated in
Figs. 19.9 and 19.10 for all possible genome instances of 2 and 3 codon lengths
respectively. Here codons are simplified to be a single binary number (either

<e>

<e>

<e> <e><o>

*

<e>

<e>

<v>

x

<e>

<v>

y

<e><o>

+

00 10

1101

370 19 Grammatical Evolution

Fig. 19.10. An expansion of the illustration of nodal and structural mutation
events on the derivation tree when considering three codon choices

0 or 1). These different types of mutation events which can arise were later
exploited by designing separate mutation operators, a nodal mutation and a
structural mutation, where it is was possible to more directly control the step-
size of change which would occur. As a result, more predictable behaviours
arose, which proved useful in improving the performance of an interactive ar-
chitectural design environment [85, 88]. Adaptive forms of mutation operators
have also been proposed [185].

19.4.3 Modularity

Mechanisms which allow modularity to develop in the evolving population
have been shown to have performance gains when problems are nontriv-
ial [341]. Researchers have explored different approaches to modularity in GE,
ranging from static grammar-defined functions (a variation on ADFs) [469] to

<e>

<e>

<e>

<e><e>

<e><o>

+ <o>

<v>

x

<e>

<e>

<e>

<e>

<e>

<e> <e><o>

<v>

<v>

x

<e>

<e> <e><o>

<o>

*

*

<v>

y

100 110

111
010

011001

000
101

<e>

<v>

y
<e>

<e> <e><o>

<v>+

19.4 Search Engine 371

dynamically defined variants using dynamic grammars (i.e., grammars which
automatically update to incorporate new ADFs) [255] and metagrammar-
defined ADFs [263]. More recently, Swafford et al. have examined a number
of different approaches to identify and then incorporate subderivation trees as
modules [608, 609, 610, 611, 612, 607]. In all of the above approaches, modu-
larity is found to provide performance gains on problems which have sufficient
‘difficulty’ to warrant the overhead of increasing the search space by including
mechanisms for modularity. McDermott has also investigated with success the
use of higher-order functions when applied to evolutionary design [397].

19.4.4 Search Algorithm

The utility of alternative search engines, apart from variable length GA,
has been examined in a number of studies. For example, particle swarm
and differential evolution algorithms have been used to create grammatical
swarm [463] and grammatical differential evolution algorithms [465], respec-
tively. The grammatical swarm (GS) algorithm has shown particular promise
and demonstrates a social learning approach to program generation referred
to as social programming.

Grammatical Swarm

The grammatical swarm (GS) algorithm replaces the standard GA search en-
gine in GE with a particle swarm algorithm. In GS each particle or real-valued
vector represents choices of program construction rules specified as production
rules of a Backus–Naur form grammar. The particle update equations are as
described earlier for the continuous particle swarm algorithm (Sect. 8.2) with
additional constraints placed on the velocity and dimension values. Velocities
are bound to the range [−Vmax, Vmax] with Vmax = 255, and each dimension
is bound to the range [0, 255]. The real-valued dimension values are rounded
up or down to the nearest integer, and the standard GE mapping function
(R = c % r, where R is the selected production rule, c is the codon integer
value, and r is the number of production rules to choose from) is used.

Unlike its GE or GP counterparts, which predominantly use crossover-
driven search coupled with selection, GS does not use explicit crossover or
selection to generate programs. Instead the search process is driven by the
movement of particles which are influenced by personal and social knowledge
in the form of the positions of the gbest (or lbest) particle and the particle’s
own pbest position. The performance of GS has been compared to GE across a
number of benchmark problems with encouraging results, suggesting that pro-
gram generation using a social programming approach such as GS is a viable
alternative to more traditional (GA-driven) genetic programming algorithms.

372 19 Grammatical Evolution

Grammatical Differential Evolution

Grammatical differential evolution (GDE) [465] adopts a differential evolution
(see Chap. 6) learning algorithm coupled to a grammatical evolution (GE)
genotype–phenotype mapping to generate programs in an arbitrary language.

The standard GE mapping function is adopted for the mapping process,
with the real-valued vector components being rounded up or down to the near-
est integer value. In the current implementation of GDE, fixed-length vectors
are adopted within which it is possible for a variable number of elements to
be required during the program construction genotype–phenotype mapping
process. A vector’s components may be used more than once if the wrapping
operator is used, and in the opposite case it is possible that not all elements
will be used during the mapping process if a complete program comprised
only of terminal symbols is generated before reaching the end of the vector.
In this latter case, the extra element values are simply ignored and considered
introns that may be switched on in subsequent iterations. A diverse selec-
tion of benchmark programs from the literature on genetic programming are
tackled using GDE to demonstrate proof of concept for the method.

19.5 Genotype–Phenotype Map

The genotype–phenotype map of GE has itself been the focus of research. One
of the first variations studied an alternative mapping function to the straight
modulo function when selecting production rules from the grammar. Dubbed
the ‘bucket rule’ this results in every codon encoding a unique set of produc-
tion rules, one for each nonterminal in the grammar [320]. On the problems
examined, it was found that the bucket rule facilitated the exploitation of
GE’s property of intrinsic polymorphism (the same codon can have different
meanings when applied to different nonterminal contexts). However, there was
no clear performance gain on the problems examined when compared to the
standard mod rule.

Other research has examined the importance of the mapping order, that
is, the order in which nonterminals are selected for expansion in the growing
derivation tree. The standard GEmapper adopts a depth-first expansion of the
available nonterminals. A number of variations including breadth-first, ran-
dom and evolved orders have been examined [182, 183, 184, 206]. An evolved
order approach, named πGE, was particularly effective, resulting in perfor-
mance gains over the standard depth-first mapping order [183, 477, 181, 180].

19.6 Grammars

Grammars play a central role in GE and it is not surprising that there has
been considerable research in this area as a consequence. Given the flexibil-
ity of what can be represented with a grammar, GE has been applied to

19.7 Summary 373

a diverse array of problem environments and using many different gram-
mars (e.g., context-free [468], attribute [479, 489], logic [319], shape [481],
L-system [467], map L-system [485], graph [396], meta [462, 474], and tree-
adjoining [426, 427, 424]).

The role of the grammar on the performance of GE has also been exam-
ined [261, 262, 442, 446], and a number of extensions and ‘tricks’ have been
proposed including subtree-deactivation [478], grammar-defined functions (see
Sect. 19.4.3), constants [147, 148, 149, 445], and introns [483]. Also, two special
grammar symbols were introduced by Nicolau and Dempsey [445]. The first
symbol <GECodonValue> is used to specify constant values within a predefined
range. For example, to allow integer values between zero and five one would
specify <GECodonValue-0+5>. The second symbol allows the explicit control
of crossover sites. The <GEXOMarker> symbol is placed in the grammar by
the user where it marks the positions where a crossover operation can take
place at the genotypic level. When two genomes are selected for crossover, a
crossover site corresponding to a <GEXOMarker> is chosen from each parent.
The use of this approach allows the convenient implementation of two-point
or even multipoint crossover operators, and even the evolution of crossover
point locations.

19.7 Summary

This chapter presented an introduction to grammatical evolution, an influen-
tial form of grammar-based genetic programming, and one of the methodolo-
gies inspired by developmental systems and grammars. In Chap. 20 we outline
a number of grammar-based GP algorithms which adopt the powerful tree-
adjoining grammar representation, including a variant on GE called TAGE.
Later, in Chap. 21, we will see how the TAGE approach has been adapted to
a genetic regulatory network approach to GP. Tree-adjoining grammars are
a particularly attractive proposition from a developmental GP perspective as
they guarantee that at each stage of development, from the embryo to the full
adult phenotype, the structure is complete and therefore executable.

20

Tree-Adjoining Grammars and Genetic
Programming

A significant recent addition to the repertoire of grammar-based approaches
to genetic programming (GP) is the use of tree-adjunct and tree-adjoining
grammars (TAG). A TAG is a tree-generating grammar, and as such is a nat-
ural representation for GP and for computer programs. One of the primary
benefits of a TAG is that the application of any rule within a TAG to an
existing tree results in an executable tree, which overcomes the possibility of
creating invalid programs (incomplete programs which cannot be executed).
The creation of invalid phenotypes can occur in methods such as grammat-
ical evolution without enforcing some sort of repair-like strategy during the
genotype–phenotype mapping process.

It is this tree-generating (i.e., generative) property coupled with each
transformation resulting in a valid phenotype that makes a TAG an espe-
cially interesting representation for developmental approaches to GP, as at
each stage of development the emerging phenotype can be executed and there-
fore evaluated. In this chapter we illustrate how TAGs have been combined
with G3P (Chap. 18) and GE (Chap. 19) to produce new approaches to GP,
and also present a developmental approach to G3P based on TAG (DTAG3P).

Developmental (or at least evo–devo) approaches to GP are attractive at
least partly because they potentially allow adaptation to occur faster than
phylogenetic timescales typical of their purely evolutionary counterparts. In
the ideal case, these algorithms work with genomes that encode a spectrum of
phenotypic potential, the expressed phenotype being a function of the envi-
ronmental state in which the genome finds itself at the outset of (and during)
the development process. Another potential benefit from adopting develop-
mental approaches to GP is due to the structural search space in which GP
operates, in conjunction with the optimisation of the content (or parameters)
of the structures. Navigating such a complex structural search space is a non-
trivial problem, and the developmental processes which exist in nature are
capable of producing impressive examples of complex, yet functional form.
Developmental approaches to GP seek to tap into some of that potential to
allow it to scale up to ever more challenging real-world problems.

© Springer-Verlag Berlin Heidelberg 2015
A. Brabazon et al., Natural Computing Algorithms, Natural Computing Series,
DOI 10.1007/978-3-662-43631-8_

375

20

376 20 Tree-Adjoining Grammars and GP

F
ig
.
2
0
.1
.

T
h
e
el
em

en
ta
ry

tr
ee
s
o
f
a
si
m
p
le

T
A
G

w
h
ic
h

d
es
cr
ib
es

a
la
n
g
u
a
g
e
w
h
ic
h

p
er
m
it
s
th
e
a
d
d
it
io
n

o
f
tw

o
 v
a
ri
a
b
le
s,
 a
n
d
 e
x
a
m
p
le
s
o
f
th
e
co
m
p
o
si
ti
o
n
o
p
er
a
ti
o
n
s
o
f
a
d
ju
n
ct
io
n
a
n
d
su
b
st
it
u
ti
o
n

S E

(α
0)

V x

(α
1)

(β
0)

E

O
E

+
V
⬇

E
*

(β
1)

E

O
E

+

E
*

(β
2)

V y

(β
3)

V
⬇

S E V y

V x

Ad
ju

nc
tio

n
of

 (α
1)

 a
nd

 (
β 0

)
S

(γ
0)

S E V y

E

O
E

+
V
⬇

E
*

E

O
E

+
V
⬇

V y

Su
bs

tit
ut

io
n

of
 (γ

0)
 a

nd
 (
β 2

)
S

(γ
1)

E

O
E

+
V

V y

S E

O
E

+
V
⬇

V y

V x

x

20.2 TAG3P 377

20.1 Tree-Adjoining Grammars

Joshi et al. [309, 310, 311] introduced tree-adjunct and tree-adjoining gram-
mars (TAG) which describe tree-generating systems. The set of languages pro-
duced by TAGs are a superset of those produced by context-free grammars
(CFGs); in addition, TAGs are capable of representing some context-sensitive
languages [311]. Context-free grammars (Sect. 17.3.2) are represented by a
four-tuple G = (T ,N ,S,P), comprised of a set N of nonterminal symbols of
which one, S, is the start symbol, a set T of terminal (or alphabet) symbols,
and a set P of production rules that map the elements of N to T . TAGs
are similar in that they are also comprised of nonterminal, start and terminal
symbols; however, as they are tree-rewriting systems, the equivalent of their
production rules (P) are called elementary trees which are comprised of two
types, initial (I) and auxiliary (A, also referred to as β). TAGs are therefore
described as a five-tuple (T ,N ,S, I,A).

The defining behaviour of TAG centres around the two types of elemen-
tary trees, and the tree composition operators, adjunction and substitution,
which manipulate them. All internal nodes in elementary trees are comprised
of nonterminals, with leaf nodes either being a terminal or nonterminal. Aux-
iliary trees must contain a leaf node which has the same nonterminal symbol
as the root of the auxiliary tree; this special leaf node is called the foot node
and is critical to the operation of the TAG tree-rewriting system. All other
leaf nodes in an auxiliary tree are labeled as substitution nodes.

The substitution operator of TAG replaces a nonterminal node on the
frontier of an elementary tree with an initial tree rooted in the same non-
terminal type. Adjunction works by generating a new derived tree γ through
the composition of a β tree and an α tree (an α tree can be either an initial,
auxiliary β or derived γ tree). Examples of adjunction and substitution are
illustrated in Fig. 20.1 for a very simple grammar which permits the addition
of the variables x and y.

20.2 TAG3P

A form of grammar-guided genetic programming (G3P: see Chap. 18) which
exploits Tree-adjunct and Tree-adjoining grammars was proposed by Hoai et
al. [274, 275, 276, 277]. TAG3P referred to the original tree-adjunct form [275],
which was later improved upon by TAG3P+ [274] which adopts tree-adjoining
grammars, and consequently includes the use of the substitution operator. The
‘+’ label has since been dropped from the name and the tree-adjoining form is
now also referred to as TAG3P. Conveniently, the CFG for a problem can be
automatically converted to an equivalent TAG. Joshi et al. [311] have shown
that for certain CFGs (those which are finitely ambiguous and which do not
generate the empty string) there is an equivalent lexicalised TAG (LTAG)
which describes the same language, and they also provide an algorithm to

378 20 Tree-Adjoining Grammars and GP

Fig. 20.2. Adopting the same TAG and the same derivation sequence as in Fig. 20.1
we can see the TAG3P derivation tree which results in a derived tree (labeled γ1 in
Fig. 20.1) and the corresponding S-expression which can be executed

convert from CFG to LTAG. An LTAG is a special type of TAG where each
elementary tree must have at least one terminal/alphabet symbol.

When initialising the population, the depth of each derivation tree is deter-
mined randomly from some range and then, starting from the start symbol,
elementary trees are randomly selected along with the index of adjunction
sites. Figure 20.2 illustrates the derivation and derived trees which result from
the application of composition operators to some of the elementary trees of an
illustrative sample TAG. The standard derivation tree-based search operators
of crossover and mutation as per G3P are employed. These genetic operators
are designed to ensure that the syntactic integrity of the derivation trees are
preserved after their application. As such, the standard grammar-guided GP
algorithm outlined earlier in Algorithm 18.1 is employed by TAG3P. Later,
duplication and truncation operators were added [277], which improved the
performance of TAG3P.

Derivation Tree Derived Tree

α1

β0
1.0

S

E

(α0)

V

x

(α1) (β0) E

O E

+ V⬇

E*

(β1) E

O E

+

E*

(β2)

V

y

(β3)

V⬇

S

E

V

y

V

x

TAG Elementary Trees

β2

S

E

O E

+ V

V

y

x

S-Expression

(+ y x)

0.0

20.4 TAGE 379

20.3 Developmental TAG3P

TAG3P has been combined with L-systems to produce a developmental form
DTAG3P [278]. A grammar is defined which specifies the construction of a
D0TL-system. The L-system is then executed one iteration at a time. Each
iteration of the L-system results in a TAG derivation tree which can subse-
quently be sent for evaluation (see Sect. 20.2 and Fig. 20.2 on how a TAG3P
derivation tree is mapped for execution). This is one of the key properties of
a developmental system which has been captured by DTAG3P, that is, each
stage of development of the phenotype is open to evaluation. In DTAG3P,
successive iterations of the L-system result in successively more complex ver-
sions of the phenotype, each iteration being evaluated on increasingly complex
instances of the problem environment in a form of layered learning.

D0TL-systems are an extension of D0L-systems, which are a special in-
stance of a deterministic L-system (DL-system) where only one production
is permitted for each symbol from the L-system alphabet. The ‘T’ in D0TL-
systems refers to the specialisation of the L-system to manipulate trees as
the language primitives as opposed to the standard strings. In other words,
the alphabet (primitive symbols) of a standard L-system are characters which
result in sentences comprised of characters, whereas in a TL-system elemen-
tary trees of a TAG make up the alphabet. The execution of a D0TL-system
results, therefore, in the development of tree structures.

TAG3P starts by prespecifying a finite number of production rules which
will make up the D0TL-system. Each rule of the L-system is then evolved
according to a D0TL-system grammar, and it must always contain at least
one initial (I) elementary tree as the axiom from which development can
commence. As the right-hand side of the production rules of the L-system
may not contain the left-hand-side symbol of some of the productions, it is
possible that some production rules of the L-system are never used during
development.

20.4 TAGE

The G3P algorithms which adopt TAGs generate an initial population of
programs in the form of TAG derivation trees (see Fig. 20.2). The derivation
tree is the genotype of TAG3P. Recall that, in TAG3P, we first select the size
of an individual’s derivation tree from some range and then either randomly
grow the tree or use a strategy like ramped-half-and-half.

An alternative grammar-based Genetic Programming approach to adopt-
ing Tree-adjoining Grammars is proposed with Grammatical Evolution (TAGE)
[427, 425]. In TAGE there is a linear genome (as per GE) which encodes the
construction of the TAG derivation tree. It is the genome (rules for construct-
ing the TAG derivation tree) which is exposed to the genetic search operators
of, for example, crossover and mutation.

380 20 Tree-Adjoining Grammars and GP

F
ig
.
2
0
.3
.

A
n

o
u
tl
in
e
o
f
th

e
T
A
G
E

a
lg
o
ri
th

m
m
a
p
p
in
g
p
ro
ce
ss

fr
o
m

li
n
ea

r
g
en

o
m
e
to

a
d
er
iv
a
ti
o
n

a
n
d

d
er
iv
ed

tr
ee
.

tr
ee

is
eq
u
iv
al
en
t
to

th
e
S
-e
x
p
re
ss
io
n
(
+
(
+

y
x
)
y
).

N
ot
e
th
e
sh
or
th
an

d
u
se
d
,
fo
r
ex
am

p
le
,
in

th
e
T
A
G

el
em

en
ta
ry

tr
ee
s

w
h
er
e
th
ey

a
re

re
p
re
se
n
te
d
a
s
a
si
n
g
le

tr
ee

w
it
h
tw

o
ch

o
ic
es

fo
r
th
e
ri
g
h
t-
m
o
st

E
(e
it
h
er

x
o
r
y
)

β
0
a
n
d
β
1
,

T
h
e
d
er
iv
ed

20.5 Summary 381

TAGE is similar in operation to the πGE algorithm (a variant of GE,
Sect. 19.5) in that during the mapping process which creates the derivation
tree, first a site of application of the next grammar rule is selected and then
an appropriate rule (tree adjunction in TAGE, string replacement in πGE)
is selected. In each case the site of application and the rule which is applied
is determined by the genome. A list of all the possible adjunction sites in
the growing phenotype is maintained, and when selecting a site from this
list we read the next gene value and ‘mod’ it by the number of adjunction
sites available. Figure 20.3 illustrates the TAGE mapping process. TAGE has
been shown to significantly outperform standard grammatical evolution on a
number of benchmark problems [427].

In Chap. 21 we will outline a developmental approach to GP (differential
gene expression) which combines TAGE with genetic regulatory networks.

20.5 Summary

This chapter presented three forms of grammar-based Genetic Programming
which employ tree-adjoining grammars (TAGs), namely TAG3P, DTAG3P
and TAGE. The TAG formalism is particularly attractive for two main rea-
sons. Firstly, it is a more powerful representation than context-free grammars
as it is possible to represent some context-sensitive languages with TAGs.
Secondly, as a TAG describes a tree-generating system at each stage of the
development of the phenotype (solution), the intermediary phenotypes are ex-
ecutable entities in their own right. This allows TAG forms of grammar-based
GP to adopt a developmental approach more closely related to their biolog-
ical counterpart. In turn this potentially allows faster rates of adaptation to
occur over a developmental (rather than solely phylogenetic) timescale, and
also more effective structural search algorithms allowing these GP methods
to be scaled up to ever more challenging real-world problems.

21

Genetic Regulatory Networks

It has been observed that much of the diversity in the natural world can be
traced to three features of developmental biology, namely, interactions be-
tween gene products, the temporal nature of gene expression, and shifts in
the location of gene expression [32]. The first item highlights the significance
of feedback loops in developmental processes. In terms of developmental ap-
proaches adopted in Natural Computing, it is those algorithms which imple-
ment genetic regulatory networks (GRN) that capture the first two of these
features (i.e., feedback loops regulating gene expression, and the temporal na-
ture of gene expression). Much of the literature to date in the area of GRN
algorithms represents attempts to examine GRN variants and tries to under-
stand how they might operate [33, 249, 294, 364]. In this chapter we describe
GRNs and outline examples of some of their practical uses including their
potential as an approach for genetic programming [426, 449] and for image
compression [629].

21.1 Artificial Gene Regulatory Model for Genetic
Programming

Adapting an earlier genetic regulatory network (GRN) model [32, 33], Nico-
lau et al. [449] enable the model to include explicit input and output signals
in the form of proteins. The inputs correspond to the problem variables and
the output genes correspond to the model response to the input. The input
proteins are allowed to interact with the GRN model as they are incorporated
into the calculation of the regulation of each gene’s expression. Specific genes
are then identified as potentially producing the output signal/protein. The
GRN model is allowed a period of time to ‘react’ to each set of input values
before measuring the output signal which is then fed into the problem simu-
lator/fitness calculation. Specifically, the algorithm is studied in the context
of the pole balancing problem [35, 657]. The output signal is used to deter-
mine whether or not a force is applied to move the pole to the left-hand or to

© Springer-Verlag Berlin Heidelberg 2015
A. Brabazon et al., Natural Computing Algorithms, Natural Computing Series,
DOI 10.1007/978-3-662-43631-8_21

383

384 21 Genetic Regulatory Networks

the right-hand side. The inputs to the model are the four problem variables,
namely, the position of the cart, the angle of the pole, the velocity of the cart,
and the angular velocity of the pole.

Let us examine the model in more detail to understand the encoding and
its operation. Each individual is comprised of a binary genome comprised of
multiple genes. Each gene is made up of four regions: an enhancer site (32
bits), an inhibitor site (32 bits), a promoter site (32 bits), and finally the exon
or expressed region (160 bits, i.e., five sets of 32 bits). A protein is produced
from a gene by calculating each of the 32 bits which make up a protein using
a majority vote for each bit position from the five sets of 32 bits in the exon.

The expression of a gene is regulated using the bit signatures of the en-
hancer and inhibitor sites and the concentration of each protein which cur-
rently exists in the model. The enhance (ei) and inhibit (hi) signals of gene i
are calculated using (21.1) and (21.2):

ei =
1

N

N∑
j=1

cj exp(β(uj − umax)) (21.1)

hi =
1

N

N∑
j=1

cj exp(β(uj − umax)) (21.2)

where cj is the concentration of protein j, uj is the number of complemen-
tary bits between the protein j and either the enhancer or inhibitor site of
gene i, and umax is the maximum observed number of complementary bits
between proteins and regulatory sites. N is the total number of proteins in
the model, and β is a scaling factor which controls the significance of the
protein/regulatory site match difference.

The expression of a protein at any point in time (pi) is then calculated
according to (21.3):

dci
dt

= δ(ei − hi)ci − φ(1.0) (21.3)

where φ(1.0) is a term that scales protein production such that the sum of all
protein concentrations is equal to 1.0, andδ is a scaling factor.

In addition to the proteins which are encoded on the genome, additional
input proteins are added to the model. These extra proteins represent the
problem variables, and they can also impact the expression of genes by ex-
tending (21.3) to become:

dci
dt

= δ(ei − hi)ci − φ

⎛
⎝1.0−

Nep∑
j=N+1

cj

⎞
⎠ (21.4)

where cj is the concentration of the extra input protein j, and N +1, . . . , Nep

are the indices of these input proteins.

21.1 Artificial Gene Regulatory Model for Genetic Programming 385

Algorithm 21.1: Artificial Genetic Regulatory Model for GP

Initialise population;
for each generation do

for each individual do
Execute GRN model until it reaches a steady state;
for each input do

Set values of input gene(s);
Execute GRN model for time period t;
Read values of output gene(s);
Update fitness;

end

end

Select parents;
Apply genetic operators;
Carry out replacement;

end

21.1.1 Model Output

In this model (see overview in Fig. 21.1), each gene encodes one of two types
of protein, either (i) a transcription factor or (ii) a product. Transcription
factor proteins are used to regulate the expression of other proteins. The
output signal(s) of the model are determined by the product proteins. The
state of the product proteins, which determines the output signal, is itself a
function of the expressed transcription factors and the problem-specific input
proteins. In the Nicolau approach the GRN model is allowed to stabilise to a
steady state before any attempt is made to read an output signal. How these
product proteins are interpreted to produce the model output is an open
problem. Nicolau et al. examined two approaches where either the relative
concentration of a particular product protein was used or the tendency of a
protein concentration (amounting to the derivative of protein concentration).
In terms of the pole-balancing problem, the first approach interpreted the
relative concentration of a product protein which was above or below the
value of 0.5 to be a push right or push left signal. In the tendency approach, if
the derivative is positive the cart is pushed right, otherwise it is pushed left.

Another issue faced when using an artificial gene regulatory model is the
synchronisation of the regulatory model to the problem domain. Signals (input
proteins) from the problem environment need to be absorbed quickly enough
by the GRN model to produce an output signal in time, so the speed of
response of the GRN model must be evolved to match the environment.

386 21 Genetic Regulatory Networks

Fig. 21.1. An overview of the genetic regulatory network model as presented by
Nicolau et al. [449]. In the bottom part of the figure we zoom in to reveal the de-
tailed structure of each gene. The bit signature of the promoter region determines
the gene type (i.e., product or transcription factor (TF) in this case). At any point
in time the degree of enhancement/inhibition of any gene is a function of the num-
ber and strength of matches of input-proteins and TF-proteins to the enhancer

and inhibitor bit sequences. A gene which is ‘switched on’ produces a protein,
and the type of the protein is determined by the signature in the promoter re-
gion. Product-proteins can be used to provide output signals for the model, and
TF-proteins regulate the expression of P-genes and TF-genes. Input-proteins cor-
respond to variables of the problem domain

21.2 Differential Gene Expression

Building upon the earlier work which developed a computational model of
genetic regulatory networks and their subsequent application to genetic pro-
gramming, Murphy et al. [426] adapted the tree-adjunct grammar approach
to grammatical evolution (TAGE) and coupled it to a form of genetic reg-
ulatory network which adopts differential gene expression. Differential gene
expression is an important feature of biological development because from the
same genotypic repertoire it is possible to express many different phenotypic
states. When applied to genetic programming this allows the same genome

enhancer inhibitor promoter gene

32 bits 32 bits 32 bits 160 bits

protein

32 bits

TF-geneP-gene

vs.

TF-protein

Prod
uct-

prot
ein

output
signal

input-protein

input
signal

(problem variables)

.........gene1 gene2 gene3 gene4 gene5 geneN{

21.2 Differential Gene Expression 387

to encode different phenotypic programs, allowing temporal adaptation of the
expressed phenotype to a changing environment.

Fig. 21.2. An illustration of the differential gene expression approach combining
GRNs and grammars (TAGE) [426]. The GRN produces product-proteins which
at each problem time-step are sampled, and a relative ordering of their states de-
termined. The ordered product-proteins states are then interpreted by the TAGE
mapping process to select rules from a tree-adjoining grammar resulting in the con-
struction of a pole-balancing control program. At each time step of the problem
environment, the state variables are passed back to the GRN model which is al-
lowed to adjust to the new environmental state before the product-protein states
are reinterpreted

We outline this approach to developmental and grammatical genetic pro-
gramming in Fig. 21.2, focusing in particular on the mechanism for differential
gene expression. The ‘trick’ to effectively combine TAGE with GRNs is the use
of the product-proteins expressed by the GRN as mapping inputs to TAGE.
As in the earlier study by Nicolau et al. [449] it is not immediately obvious how
best to interpret the product-proteins as inputs to the TAGEmapping process,
and a number of alternative strategies have been examined. Product-proteins
are sorted based on either their concentration or concentration tendency, and

Pr
od
uc
t-
pr
ot
ei
ns

output
signal

input-proteins

input
signal

(problem state
variables)

.........gene1 gene2 gene3 gene4 gene5 geneN

(Ordered set of Product-proteins)

TAGE

pole-balancing
control
program

GRN

388 21 Genetic Regulatory Networks

the protein ordering determines the order in which the state of the protein is
used to select rules from the TAGE grammar to generate a phenotypic GP
expression tree.

When applied to the pole-balancing problem, the environment variables
are passed to the GRN at each time step and the GRN is allowed to stabilise
for a finite number of steps, at which point a product-protein ordering is
determined and a new GP expression tree is generated to determine the force
applied to the pole.

Fig. 21.3. An overview of the multicellular genetic regulatory network model
as presented by Trefzer et al. [449]. In the bottom right-hand corner we zoom in
to a cell and see the various proteins which can be expressed (structure, sensory,
plasmodesma and diffusion). Expression of an (East-facing) plasmodesma protein in
Cell 1 and the corresponding expression of a (West-facing) plasmodesma protein in
Cell 2 results in a protein tunnel allowing transfer of proteins between cells. When
a (South-facing) plasmodesma protein is expressed in Cell 2 the previously empty
space will be used to grow a new cell (a copy of Cell 2). Proteins emitted into the
diffusion layer can be ‘sensed’ by any cell which has expressed the correct sensory
protein

cell 1

cell 3

cell 2

new cell
diffusion-layer-protein

plasmodesma-protein

sensory-protein

structure-protein

Diffusion Layer

Genome/GRN Core

21.4 Summary 389

21.3 Artificial GRN for Image Compression

It is noteworthy that all of the GRN models presented in this chapter to this
point are unicellular in their instantiation, and it will be interesting to see
how these methods develop as they expand to multicellular models. Multi-
cellularity allows parallel computing and the specialisation of functionality.
This specialisation would correspond to a GRN model’s ability to decompose
a problem, and will be a critical step in the scalability of these algorithms to
harder real-world problems [155, 187, 216].

Trefzer et al. [629] have proposed a multicellular form of artificial gene reg-
ulatory networks and applied it to the image compression problem (Fig. 21.3).
A simplified model of regulation is adopted where the binding sites which ac-
tivate the expression of a gene match only a single unique protein. Cell com-
munication can occur via diffusion of protein signals emitted from a cell into
a diffusion layer between the cells, and through a direct tunneling mechanism
between cells, which is inspired by plasmodesmata protein tunnels in plants.
If a plasmodesma tunnel is opened to an ‘empty/dead’ cell, cell growth oc-
curs by replicating the contents of the plasmodesma’s origin cell. Each cell
contains a GRN, and each cell represents a single pixel of the output image,
where the pixel is a coefficient for a frequency component of the image. The
resulting solutions can provide better compression rates than JPEG for the
images examined.

21.4 Summary

We have presented computational tools inspired by biological genetic regula-
tory networks and illustrated how they have been applied to problems such as
image compression and genetic programming. As our knowledge of develop-
mental biology deepens we would expect that there will be many extensions
on the approaches presented here.

Part VI

Physical Computing

22

An Introduction to Physically Inspired
Computing

Physical systems and processes, just like biological ones, can inspire the design
of computer algorithms. In this chapter we provide a short introduction to a
range of physical phenomena, and in Chaps. 23 and 24 we outline a range
of algorithms which draw inspiration from aspects of these phenomena. The
nature of this material is necessarily somewhat technical, so readers who are
looking for a high-level overview of physically inspired algorithms may wish to
initially skip to Chap. 23, and then return to this chapter for a more detailed
discussion of the physical principles which underlie the algorithms.

22.1 A Brief Physics Primer

This section gives a quick introduction to some major areas of physics and
outlines how they fit together. Subsequent sections in the chapter look in a
little more detail at classical mechanics, thermodynamics, quantum mechan-
ics, and models of annealing. Of course, it is not possible to provide a highly
detailed discussion of all of these topics in a single chapter, so we emphasise
the aspects of each area which are most important in helping to understand
the range of physically inspired algorithms which have been developed thus
far.

22.1.1 A Rough Taxonomy of Modern Physics

Figure 22.1 gives a rough taxonomy of modern physics, with continuous ar-
rows showing which areas arise from others by relaxation of assumptions, or
introduction of new principles to existing theories. The diagram also shows
the sources of inspiration for the best-known physically inspired algorithms.

Classical Mechanics: As developed by Galileo and Newton, particles/bodies
are acted on by (vector) forces which are thought of as instantaneously act-
ing at a distance. Equivalent formulations in terms of the scalar energy were
developed by Euler, Laplace, Lagrange, Hamilton and others.

© Springer-Verlag Berlin Heidelberg 2015
A. Brabazon et al., Natural Computing Algorithms, Natural Computing Series,
DOI 10.1007/978-3-662-43631-8_

393

22

394 22 An Introduction to Physically Inspired Computing

Classical
Mechanics

����
��
��
��
��

�� ����
Constrained

Molecular

Dynamics

Field
Theory

��

�� Quantum
Mechanics

��

��

��

Quantum

Inspired

EAs

Thermo-
dynamics

��
Special

Relativity

��

��
Relativistic
Quantum
Mechanics

��

Simulated

Quantum

Annealing

Statistical
Mechanics

��

�� ��
General

Relativity

��

Quantum
Field Theory

Simulated

Annealing

Extremal

Optimisation

Fig. 22.1. Connections among areas of physics and algorithms

Field Theory: Due to Maxwell and others. An object may generate a (scalar)
potential field V which gives rise to a vector field ∇V , e.g., gravitation and
electromagnetism (the ‘classical’ fields). Other bodies are then influenced by
this field. Maxwell showed that a field can carry energy through space in the
form of waves: this leads to a finite speed of signal propagation, removing
instantaneous ‘action at a distance’ of forces. In particular, Maxwell’s electro-
magnetism equations show that light has a constant finite speed in vacuo.
Special Theory of Relativity: Developed by Einstein (and, independently,
by Poincaré and Lorentz), derived by adding the axiom of equivalence of
inertial reference frames to the constant speed of light derived from Maxwell’s
equations of electromagnetism.
General Theory of Relativity: Also due to Einstein, derived by adding
to the Special Theory the principle of equivalence between a uniform gravi-
tational field and an acceleration (i.e., the equivalence of inertial and gravita-
tional mass).
Quantum Mechanics: Due to Planck, Bohr, Schrödinger, Heisenberg,
Pauli, Einstein, and others. Quantisation means the replacement of phys-
ical quantities (or observables) such as position, momentum, or energy by
operators on a Hilbert (vector) space of wavefunctions.
Relativistic Quantum Mechanics: Dirac reformulated Schrödinger’s
equation for the electron in a relativistically invariant form such that the
wavevectors have extra degrees of freedom, which turn out to exactly model
the spin of the electron: hence the wavevectors are called spinors in this set-
ting. It was from this equation that Dirac predicted the existence of antimatter
(specifically, the positron).

22.2 Classical Mechanics 395

Quantum Field Theory (QFT): Due to Feynman and others, inspired
by Dirac’s work. Here, the fields themselves, including the wavefunction, are
quantised (called second quantisation): thus the force carriers are particles.
The first example was Feynman’s Quantum Electrodynamics (QED), derived
using a form of least action principle for path integrals.
Thermodynamics: Due to Carnot, Boltzmann and others. Deals with
macroscopic measurable properties, e.g., pressure and temperature, of a sys-
tem composed of microscopic components (e.g., a gas of molecules), and the
ideas of thermodynamic equilibrium, thermodynamic processes and entropy.
It explains why physical systems seek the lowest state of free energy, for ex-
ample, in annealing of metals.
Statistical Mechanics: A modern approach to thermodynamics, explaining
macroscopic measurable quantities in terms of statistics of distinguishable
particles. The statistical physics Ising model of spin lattices is used to describe
frustrated spin glass states of magnetic materials and inspires the Simulated
Annealing and Simulated Quantum Annealing algorithms.

In the following sections, we explain some terms from these areas of physics
that arise in the physically inspired algorithms we consider.

22.2 Classical Mechanics

In Chap. 23 we will describe the simulated annealing, simulated quantum
annealing and constrained molecular dynamics algorithms. For all of these
algorithms, ‘energy’ is a core concept. Hence, we now introduce the ideas of
energy and the Hamiltonian. The construction of an artificial Hamiltonian
to suit a particular problem is often at the heart of the design of a physi-
cally inspired algorithm. The Hamiltonian will also prove useful in Chap. 24
on quantum inspired evolutionary algorithms, since quantum mechanics is
derived from classical mechanics by constructing a quantum Hamiltonian in
terms of operators, and the Schrödinger Equation describes the evolution of
a quantum wavefunction in terms of this quantum Hamiltonian.

22.2.1 Energy and Momentum

Energy is the ability to perform work, e.g., move an object.1 The energy of
a system may be regarded as being made up of two parts: the kinetic energy
K, which is due to motion; and the potential energy, or energy of interaction,
V , which is stored in the forces between objects. Strictly speaking, potential
energy is the energy of position, i.e., the energy an object has because of its
position x = (x1, x2, x3) relative to other objects in space. Energy is a scalar
nonnegative quantity. The total of kinetic and potential energy is a conserved

1An object of negligible size is called a particle; otherwise, it is called a (rigid)
body.

396 22 An Introduction to Physically Inspired Computing

or invariant quantity: it remains the same even if the internal configuration
of the system changes (assuming no outside influences).

The velocity (vector) of an object is v := ẋ := d
dtx, the time derivative2 of

the position vector x.
A particle of massm and velocity v hasmomentum p := mv. Momentum is

a vector quantity, since velocity is a vector. The total momentum of a system is
the vector sum of the individual momenta in the system: it is also a conserved
quantity in that it cannot change in the absence of influences from outside the
system (Newton’s First Law). There are other conserved quantities in classical
mechanics, such as angular momentum of rigid bodies.

In Newtonian terms, a force is any influence which can accelerate (change
the velocity of) an object. Newton’s second law, F = ma, relates the force
vector F applied to an object, the object’s mass m and the resulting accelera-
tion a := v̇. Since a force changes the velocity of a particle or body, it changes
its kinetic energy, and so does work. A conservative force is one for which the
amount of work (e.g., in moving a particle) done is independent of the path
taken. Such processes are reversible; the same cannot be said of nonconserva-
tive forces. Examples of conservative forces are gravity and electromagnetism.

Given an arrangement of particles in space, a conservative force can be
represented by a (scalar) potential field V = V (x1, x2, x3) (i.e., a number
defined at each point in space) whose gradient ∇V :=

(
∂

∂x1
V, ∂

∂x2
V, ∂

∂x3
V
)

is a vector field giving the force between particles; if there is no other force
opposing this, the particles will move in response to this force, reducing the
potential energy and converting the excess potential energy to kinetic energy,
but keeping the sum K + V constant. For example, if an apple is held at a
height above the surface of the earth and then released, gravitational forces
will pull the earth and apple together, converting the potential energy to
kinetic energy (manifested as heat energy of the constituent atoms of the
earth and apple).

22.2.2 The Hamiltonian

We now introduce the Hamiltonian or total energy of a system. It is impor-
tant in optimisation algorithms such as Simulated Annealing and Simulated
Quantum Annealing, where it (or, rather, an analogue of it) is constructed
from a potential energy term, namely the objective function, and a kinetic en-
ergy term, representing some modification to the objective function. In both
Simulated and Simulated Quantum Annealing, the kinetic term is gradually
reduced to zero as the algorithm progresses (respectively by reducing temper-
ature or the strength of a quantum field), so that by the end of the algorithm’s
run, the total energy which the algorithm has minimised is in fact equal to
the objective function.

2Note that differentiation with respect to time t is commonly denoted by a dot
over the variable, a notation introduced by Newton.

22.2 Classical Mechanics 397

As noted above, Newton’s dynamical laws are vector laws of the form
F = ma, relating the acceleration vector a of an object of mass m to the
force vector F acting on it. These laws were reformulated by Euler, Lagrange,
Hamilton and others in terms of the scalar, energy, leading to unifying views
of mechanics. The most important of these views for us is the Hamiltonian
approach, closely related to the Lagrangian approach.

In both of these views, given a system of particles and bodies, we consider
the configuration space S of the system: each point of S represents an arrange-
ment in space of all the particles and bodies, that is, all the locations of all
parts of the system. S will have some high dimension N . For example, for n
particles, S will have N = 3n dimensions since it captures the three position
coordinates of each of the n particles. As time goes on, the single point q of
S which represents the system will move around in S according to some law
which completely describes the classical behaviour of the system.

This law can be obtained from a single scalar function. In the Lagrangian
view, the function is also called the Lagrangian L and is defined on the 2N -
dimensional tangent bundle T (S) of S. The Lagrangian is the kinetic energy
minus the potential energy. Though less relevant to us, the Lagrangian is
important for the following reason. As our system evolves, the point q rep-
resenting it in S will move along some curve C; the (Hamilton) principle of
least action says that the motion of q through S will be such that the action
(the integral of L along C) will be a minimum. Thus, if we regard the action
as a measure of curve length, C is a geodesic.

In the Hamiltonian view, the function is called the Hamiltonian H and is
defined on the phase space P , which is another name for the 2N -dimensional
cotangent bundle3 T ∗(S) of S. The Hamiltonian is the sum of kinetic and po-
tential energy, that is, the total energy of the system, expressed not in terms
of position and velocity but rather in terms of position and momentum. Let
the coordinates of a point x in S be x1, . . . , xN , sometimes called generalised
position coordinates. Let p1, . . . , pN be the corresponding generalised momen-
tum coordinates. Then the point P in the phase space P corresponding to
x ∈ S has coordinates (x, p) = (x1, . . . , xN , p1, . . . , pN) and the value of the
Hamiltonian at this point is H(x, p) = H(x1, . . . , xN , p1, . . . , pN).

The Hamiltonian H gives rise to Hamilton’s dynamical equations,

dpi
dt

= −∂H
∂xi

,
dxi

dt
=

∂H
∂pi

, i = 1, . . . , N (22.1)

which describe the time evolution of our original system as the trajectory in
the phase space of the point P .

The phase space P has the important property that it is a symplectic
manifold, equipped with a Poisson bracket, { , }, which takes two scalar fields

3The cotangent bundle (and tangent bundle) are in general manifolds. They are
not linear spaces, nor do they even possess a single coordinate system for the whole
space.

398 22 An Introduction to Physically Inspired Computing

A and B defined on P and returns a third such scalar field, {A,B}. The time
evolution of any scalar physical quantity A = A(x, p) is given by its Poisson
bracket with the Hamiltonian: Ȧ = {A,H}. It can be shown that {H,H} = 0,
the principle of conservation of energy in another guise. The Poisson bracket
has very useful properties, and it is this symplectic or canonical structure
arising from the Poisson bracket which is generalised in the construction of
Quantum Mechanics.

To give intuition on this point, consider the case of a single particle of
mass m, moving in a field given by a potential V = V (x1, x2, x3, t) depending
on position and time. V defines the potential energy of the particle due to the
field. The kinetic energy of a particle of mass m and velocity v is 1

2m‖v‖2 =
1
2m‖p‖2 which in this case gives 1

2m(ẋ1
2+ ẋ2

2+ ẋ3
2) = 1

2m (p21+p22+p23). Thus

H =
p21 + p22 + p23

2m
+ V. (22.2)

For example, if the particle is in the earth’s gravitational field, with position
coordinates x1, x2, x3 where x3 is its distance from the earth, we can take
V = mgx3 where g ≈ 9.8 ms−2 is the acceleration due to gravity. (22.2) gives

H =
p21 + p22 + p23

2m
+mgx3. (22.3)

22.3 Thermodynamics

(Simulated) Annealing (introduced in Sect. 23.1) may be thought of as min-
imising, through a slow cooling, the (Helmholtz) free energy of a system, in
the sense of the thermodynamic principle that every system seeks to achieve a
minimum of free energy. It may also be thought of as entropy maximisation,
in that the system is relaxed to thermal equilibrium. We now explain these
basic terms.

A thermodynamic system is taken to consist of a large number of distin-
guishable particles (typically of the order of Avogadro’s number, 6.022×1023).
In a gas or liquid, the particles are free to move; in a solid they are more or less
fixed but can vibrate about their mean positions. Thermal energy generally
has two components, the kinetic energy of random motion of particles and the
potential energy of their mutual positions. Each particle has several degrees
of freedom in which energy can reside, translational degrees (which generally
dominate — these are the velocity components in each of the three coordinate
directions), along with any rotation or vibration the particle may have.

As before, we consider the system at a given time as being in a state (often
called a microstate) in phase space P . We ‘roughly’ divide P into subsets
called macrostates. The meaning of two states x and y lying in the same
macrostate is that macroscopically we cannot distinguish between them: the
temperature, pressure, etc., of x and y may be identical to the best precision

22.3 Thermodynamics 399

of our measuring instruments. This division into macrostates is somewhat
arbitrary but is adequate for our purposes, including the definition of entropy.

The entropy S of a system microstate x ∈ P is kB lnΩ, where kB is
Boltzmann’s constant and Ω is the volume in P of the macrostate containing
x. The definition of entropy is relatively robust because of the log function,
and the fact that the macrostates generally have very different volumes.

Thermal equilibrium (or thermodynamic equilibrium) is the overwhelm-
ingly most likely macrostate (of volume almost equal to that of P itself) and
thus the state of maximum entropy. At thermal equilibrium, the principle of
equipartition of energy4 holds, i.e., the energy of the system is (statistically)
dispersed equally among all the degrees of freedom of the system.

The temperature T of the system is a measure of the (average) energy
per degree of freedom. If the system is not in thermal equilibrium, then the
temperature is different at different locations in the system (more energy at
some locations), giving a temperature potential and resulting temperature
gradient vector field. This causes a flow of heat energy in the system and the
ability to perform useful work. Since only temperature differences (gradients)
can provide useful work, a system in thermal equilibrium cannot provide any
useful work, regardless of the actual quantity of (heat) energy in the system. A
disturbance to a system not in thermal equilibrium is likely to disperse energy
more uniformly among degrees of freedom and so increase entropy, bringing
the system closer to thermal equilibrium.

Because random allocation of units of energy among degrees of freedom is
combinatorially much more likely to result in an even distribution of energy
among degrees of freedom, we see that large-volume macrostates correspond
to more evenly spread energy, while smaller-volume macrostates correspond
to unevenly-distributed (very peaked) distributions of energy among degrees
of freedom. Thus, low entropy means high energy (temperature) differences in
the system, high temperature gradient, and high useful work; while high en-
tropy means low energy differences in the system and low useful work. Hence,
entropy may be viewed as a measure of the unavailability of a system’s energy
to do work. This leads to the interpretation of low entropy as availability of
‘high-quality’ energy and vice versa.

The Helmholtz free energy5 A is a thermodynamic potential which mea-
sures the ‘useful’ work obtainable from a closed system at a constant temper-
ature. A = U −TS where U is the internal or total energy of the system (i.e.,
the Hamiltonian). It attains a minimum at thermal equilibrium, that is, when

4The Statistical Mechanics Theorem of Equipartition of Energy, which can be
derived from Newton’s Laws, states that the total energy of a system of a large
number of particles, exchanging energy among themselves through collisions, is, on
average, shared equally among all the particles’ degrees of freedom.

5The Gibbs Free Energy G = U −TS+PV is the same concept, with the added
requirement that the system’s volume remain unchanged (here, P is pressure, while
V is the system’s volume). As we rarely have an equivalent of volume in our annealing
or indeed chemical reaction algorithms, it is less relevant to us.

400 22 An Introduction to Physically Inspired Computing

entropy S is maximised. Hence, at nonzero temperatures, free energy is the
quantity minimised in natural processes such as annealing: this is discussed
in more detail below.

The First Law of Thermodynamics is just the Principle of Conservation
of Energy, applied to heat energy.

The Second Law of Thermodynamics states that, statistically, entropy in-
creases over time; i.e., the system’s energy, which may originally have been
concentrated in relatively few degrees of freedom, tends to spread itself among
all degrees of freedom.6 Thus the system tends towards thermal equilibrium:
differences in temperature, pressure, and density all tend to even out; and
entropy measures how far this evening out process has progressed.7 This law
explains the irreversible nature of physical processes involving large numbers
of components. From a Statistical Mechanics viewpoint, this law arises be-
cause, combinatorially, even distributions of energy across degrees of freedom
are much more likely (i.e., bigger phase space volumes) than those having
energy concentrated in relatively few degrees of freedom.

22.3.1 Statistical Mechanics

Given the large numbers of particles and possible degrees of freedom in any
physical system, we describe macroscopic measurable quantities in terms of
statistics of distinguishable particles.

For each microstate x of a classical thermodynamical system, denote its
energy (Hamiltonian) by Hx. Let β = 1

kBT where kB ≈ 1.38 × 10−23JK−1

is Boltzmann’s constant.8 The probability P (x) that the system occupies mi-
crostate x is proportional to the Boltzmann factor e−βHx . The constant of pro-
portionality is Z :=

∑
x e

−βHx (the sum being over all microstates), known as
the partition function of the system. That is, the probability P (x) = 1

Z e
−βHx :

the energy of state x is proportional to the natural log of its probability. The
partition function is central in statistical mechanics because all the other
thermodynamic properties of the system can be expressed in terms of Z or
its derivatives. For example, the free energy is A = − 1

β lnZ and the entropy

is S = −∂A
∂T = ∂

∂T (
1
β lnZ) = ∂

∂T (kBT lnZ).

Simulated Annealing and Quantum Annealing (see Sects. 23.1 and 23.2)
both use at their core a Monte Carlo sampling approach due to Metropolis
et al. [408] which incorporates controlled uphill steps, as well as downhill

6Because of this, it is sometimes phrased ‘Heat flows from a hotter to a colder
place’.

7There is an information-theoretic interpretation of entropy as a measure of our
uncertainty about a system. Thermal equilibrium maximises entropy because we
lose all information about the initial conditions except for the summary statistics:
temperature, etc. Maximising entropy maximises our ignorance about the details of
the system: it is only in this sense that entropy measures ‘disorder’.

8β is often called the inverse temperature, though its dimension is inverse energy.

22.3 Thermodynamics 401

steps, in the search for a minimum. This Metropolis(–Hastings) algorithm
(Algorithm 22.1) can draw samples from any probability distribution P (x),
and generates a Markov chain in which each state xt+1 depends only on the
previous state xt. It uses a proposal density Q(x′|xt), which depends on the
current state xt, to generate a new proposed sample x′.9 This proposal x′ is
‘accepted’ as the next value xt+1 if a number a drawn10 from the uniform
distribution on [0, 1] satisfies (see [258]):

a <
P (x′)Q(xt|x′)
P (xt)Q(x′|xt)

. (22.4)

Otherwise (the proposal is not accepted), the current value is retained: xt+1 :=
xt.

Algorithm 22.1: Metropolis Algorithm

Choose starting x0;
repeat

Generate proposed x′ based on xt;

Let α := P (x′)Q(xt|x
′)

P (xt)Q(x′|xt)
;

if α > 1 then

xt+1 := x′;
else

xt+1 := xt with probability 1− α;
end

Increment t;

until terminating condition;

Because P only occurs in the ratio P (x′)
P (xt)

, we require only that a function

proportional to the density can be calculated. In our case, the function is usu-
ally (though not necessarily) taken as the Boltzmann factor e−βHx .11 If Q is
symmetric, that is, Q(xt|x′) = Q(x′|xt), as in Metropolis’s original algorithm

[408], then it suffices to compute P (x′)
P (xt)

. If Q is not symmetric then the more

complicated formula P (x′)Q(xt|x′)
P (xt)Q(x′|xt)

(as in [258]) must be used.

9For example, the proposal density could be a Gaussian function centred on the
current state xt.

10This is the ‘Monte Carlo’ aspect of the algorithm.
11The proportionality constant is then, of course, the partition function Z, though

the Metropolis algorithm does not need to compute it.

402 22 An Introduction to Physically Inspired Computing

22.3.2 Ergodicity

A system’s evolution or process is called ergodic if, over a long period, the
time spent by the system in some region of the phase space is proportional to
the volume of the region.

More precisely, a weakly ergodic evolution (weak ergodicity) means that the
system forgets its initial state during the process of evolution, while a strongly
ergodic evolution (strong ergodicity) means that the system converges to a
stationary distribution regardless of the initial state. From the point of view
of algorithm design, we prefer a search algorithm to be as ergodic as possible,
and (for a strongly ergodic evolution) the state to which the system converges
to be the state we seek (e.g., an optimum).

It will be seen later that certain physical systems such as magnets or spin
glasses are not very ergodic but that the type of fluctuations introduced by
annealing or quantum annealing can make them more so, so that they more
easily reach the ground (lowest) energy state. The Simulated Annealing and
Simulated Quantum Annealing algorithms based on these processes try to
mimic this enhancement of ergodicity for objective functions.

22.4 Quantum Mechanics

Quantum mechanics is an extension of classical mechanics that models be-
haviours of natural systems that are observed at very short time or distance
scales. An example of such a system is a subatomic particle, such as a free
electron or photon (a particle of light); but a quantum system may consist of
many particles.

Quantum mechanics arises from classical (nonrelativistic) mechanics by
applying a formal quantisation procedure:12 variables representing observ-
able physical quantities such as position, momentum, energy, spin, etc., are
replaced by linear operators on a suitable vector space. Such operators are
called observables. The vector space is actually a Hilbert space, a complete
inner product space, over the complex numbers C; its elements are complex-
valued (deterministic) functions of time and space coordinates.

This Hilbert ‘phase’ space plays a role analogous to that of classical phase
space.13 An element ψ of the Hilbert space is associated with the system. It
describes the quantum state the system is in; ψ is variously called the system’s
state vector or wavefunction or wavevector. The only values that may be ob-
served for a physical quantity are the eigenvalues of the corresponding linear

12In an analogous way, quantum field theories arise from classical field theories.
13In a classical phase space for n particles, we deal with real-valued functions of 6n

dimensions (each particle giving three spatial and three momentum coordinates). In
quantum Hilbert ‘phase’ space (really a configuration space) we deal with complex-
valued functions on a 3n-dimensional space. However, much of the mathematical
structure carries over.

22.4 Quantum Mechanics 403

operator on the Hilbert space. When an eigenvalue is observed, the system’s
state vector ψ must be a corresponding eigenvector14 of the operator. The op-
erator’s eigenstates form a basis for the Hilbert Space: thus, any wavefunction
may be written as a linear combination of these eigenstates.15

22.4.1 Observation in Quantum Mechanics

The standard ‘Copenhagen’ interpretation of Quantum Mechanics is that this
abstract wavefunction allows us to calculate probabilities of outcomes of con-
crete experiments. The squared modulus |ψ|2 of the wavefunction ψ is a proba-
bility density function (PDF). It describes the probability that an observation
of, for example, a particle will find the particle at a given time in a given region
of space. The wavefunction ψ satisfies the linear Schrödinger equation:16

i�
∂

∂t
ψ = Hψ (22.5)

where i =
√
−1, � = h

2π and h ≈ 6.62 × 10−34 Js is Planck’s constant. This
differential equation describes the time evolution (the dynamical behaviour17)
of the wavefunction, and so the PDF, at each point in space: as time goes on,
the PDF becomes more ‘spread out’ over space, and our knowledge of, say, the
position of the particle becomes less precise. This spreading continues until
an observation is carried out; then, the wavefunction collapses nonlinearly to
a particular classical state (eigenstate), in this case a particular position, and
the spreading out of the PDF starts all over again.18

Before the observation we regard the system as being in a linear combi-
nation of all possible classical states (called superposition of states); then the
act of observation causes one such classical state to be chosen, with probabil-
ity given by the PDF. This random element in any measurement means we
cannot infer the initial state of the system from the measurement result.

The essentially complex nature of the wavefunction means that even if
its amplitude is constant, it has a varying phase.19 Thus, the wavefunction
may interfere with itself, e.g., if a barrier with slits is placed in a particle’s

14Also called an eigenfunction or eigenstate: we think of it as a ‘classical state’.
15Converting from representing a wavefunction ψ in terms of position eigenstates

to writing ψ in terms of momentum eigenstates (and vice versa) is done by Fourier
transform.

16The basic (dynamical) equation of motion: the quantum Hamiltonian of the
wavefunction is equal to an (imaginary) constant times the time derivative of the
wavefunction. The Schrödinger equation is a diffusion equation.

17The Hamiltonian contains all dynamical information: we get the wavefunction
at time t+ δt (for δt small) by operating on the wavefunction at time t with 1

i�
H.

18This collapse is called state vector reduction.
19The phase of a wave is the argument or angle of a complex number: it is unre-

lated to phase space.

404 22 An Introduction to Physically Inspired Computing

‘path’. This interference may be constructive or destructive, the probability
of detecting a particle in a given position may go up or go down.

The probability of finding a particle is greatest at locations where the
modulus (or absolute value) |ψ| of the complex wavefunction ψ is largest;
the probability is 0 if |ψ| = 0. Since the probability of finding a particle
somewhere in space should be 1, we commonly restrict attention to normalised
wavefunctions ψ, namely, those whose integral over all of space,

∫
R3 |ψ(x)|2 =

1. That is, we restrict attention to the unit ball (the set of all vectors of norm
1) in our Hilbert space. Then allowable operators on the Hilbert space are the
unitary operators, that is, the norm-preserving ones.

Observables may be either continuous (e.g., position of a particle) or dis-
crete (e.g., the energy of an electron in a bound state in an atom). Some
discrete observables may take only finitely many values, e.g., there are only
two possible values for a given particle’s spin in a given direction (‘up’ or
‘down’).20

22.4.2 Entanglement and Decoherence

A crucial distinction between classical and quantum physics (perhaps the
crucial distinction) is the phenomenon of quantum entanglement : the wave
function of a system composed of many particles cannot be separated into
independent wave functions, one for each particle. There is one wavefunction
for the whole system, which evolves according to the Schrödinger equation
until a measurement occurs. A measurement made on one particle produces,
through the collapse of the total wavefunction, an instantaneous nonlocal ef-
fect on other particles with which it is entangled, no matter how far apart
they are: all are forced to immediately adopt a particular eigenstate. Entan-
glement leads to an explosion of the dimension of the relevant Hilbert space.
The correct Hilbert space for a quantum system of m particles, each of which
can be in n distinct locations, is the m-fold tensor product, rather than the
m-fold direct sum. Its dimension is mn, rather than mn as would happen
classically. This is a crucial difference between quantum and classical physics,
and is one reason for the better performance of quantum computers on certain
problems [576]. Since the 1980s, physicists have come to view the nonlocal cor-
relations of entangled quantum states as a new kind of nonclassical resource
to be exploited, e.g., in quantum computers.

The issue of what exactly constitutes a ‘measurement’ is a thorny one.
A modern viewpoint is that the ‘quantumness’ of a system is in the non-
local entanglement effects among particles. Then, when a quantum system
interacts with a macroscopic system (e.g., its environment, or a measuring
device) the quantum nature of the system ‘leaks’ into the environment in a

20Spin is incorporated by necessity in Dirac’s relativistic wave equation, an ex-
tension of the Schrödinger equation which is consistent with Special Relativity. In
fact, spin is one of the arguments of the wavefunction in Dirac’s formalism.

22.4 Quantum Mechanics 405

thermodynamically irreversible way: the phase relations are spread so ‘thinly’
among the many possible degrees of freedom that different elements of the
combined wavefunction of system and environment can no longer effectively
interfere with each other; we say they have decohered. This decoherence shows
up as an apparent collapse of the wavefunction: decoherence causes superpo-
sitions of states to decay; and the faster the decay, the larger the scale of the
superposition. Thus, quantum collapse is not, in this view, some effect of a hu-
man observer but rather a consequence of the enormous number of degrees of
freedom (that is, dimensions in the Hilbert space) in any macroscopic system.

22.4.3 Noncommuting Operators

The symplectic or canonical structure arising from the Poisson bracket in
phase space is generalised in the construction of Quantum Mechanics: a com-
mutator [,] with similar properties is defined by [A,B] := AB − BA for
any two operators A and B. The momentum operator associated with the kth

coordinate direction xk is defined as the differential operator:21

pk := i�
∂

∂xk
. (22.6)

Then [x, p] can be shown to be nonzero (in fact [x, p] = i�1, where 1 is the
identity operator), telling us that the momentum p and position x operators
do not commute: they are complementary and there are eigenvalues of each
which are not eigenvalues of the other. From this, via Fourier analysis, comes
Heisenberg’s Uncertainty Principle, dpdx ≥ �/2: noncommuting observables
cannot simultaneously be measured to arbitrary precision.22

Identifying pk = i� ∂
∂xk

thus, and recalling (22.2) for the energy of a single

particle, we may rewrite the (quantum) Hamiltonian of a particle as

H =
p21 + p22 + p23

2m
+ V

= − �2

2m

[(∂

∂x1

)2
+
(∂

∂x2

)2
+
(∂

∂x3

)2]
+ V

= − �2

2m

(∂2

∂x1
2
+

∂2

∂x2
2
+

∂2

∂x3
2

)
+ V

= − �2

2m
∇2 + V. (22.7)

Here, multiplication of operators is just composition, so (∂
∂xk

)2 = ∂
∂xk

(∂
∂xk

) =
∂2

∂xk
2 ; and we have used the standard notation ∇2 for the div operator ∂2

∂x1
2 +

21This is the correspondence principle: the key point of (canonical) quantisation.
22Classical mechanics is the limiting case of quantum mechanics as h → 0. In this

case, all commutators are 0 so all operators commute, and there is no uncertainty.
It is also the limiting case of special relativity as c → ∞, where c is the speed of
light.

406 22 An Introduction to Physically Inspired Computing

∂2

∂x2
2 + ∂2

∂x3
2 . Then the particle’s Schrödinger equation i� ∂

∂tψ = Hψ becomes:

i�
∂

∂t
ψ = − �

2

2m
∇2ψ + V ψ. (22.8)

Apart from the imaginary factor i, this recalls other equations arising in
physics: the time rate of change of a quantity (ψ) is described by a diffu-
sion term (the second spatial derivative23) and a drift term (the potential
V).

22.4.4 Tunnelling

In quantum tunnelling a particle can jump from one side of a physical or energy
barrier to another, without having to occupy all intermediate positions. This
can be explained by the wave nature of the particle.24 Its wavefunction is
spread through space and, in particular, is nonzero on the opposite side of
the barrier, giving a finite probability of observing the particle there. The
narrower the barrier the greater the probability of tunnelling. From this it
follows that the expected time to tunnel through a barrier depends not only
on the height of the barrier, but also on its width. For a fixed height, the mean
tunnelling time is shorter for a narrower barrier.

Such situations arise when a particle is trapped in a potential well of fi-
nite height, for example, an electron in an atom. Another physical example
of tunnelling as a mechanism is where a neutron may be spontaneously emit-
ted from a 238U Uranium nucleus in radioactive decay. In this example, the
potential well is caused by the strong nuclear force among nucleons,25 which
is repulsive at very short distance scales but becomes strongly attractive as
nucleon separation increases.

22.4.5 Quantum Statistical Mechanics

The formal description of partition function carries over to quantum physics,
where H becomes an operator: then Z =

∑
x e

−βHx is often written as the
basis-independent trace, Z = Trace(e−βH). The exponential of an operator is
defined using the Taylor series et = 1+ t+ 1

2 t
2+ 1

3! t
3+ · · · for the exponential

function. Here, we regard the product of operators as meaning composition,
so AB is defined by (AB)(ψ) := A(B(ψ)). Thus, in a quantum setting,

23If this were the only term we would get the classical Heat Equation ∂u
∂t

=

k ∂2u

∂x2 , which also arises in finance as the Black–Scholes(–Merton) equation for option
pricing.

24The tunnelling effect is a property of any wave and can be observed, for example,
when light waves hit, at a glancing angle, a boundary where the refractive index
changes.

25Nucleon is a generic term for nuclear particles, namely, protons and neutrons.

22.5 Quantum Computing 407

Z = Trace(e−βH) = Trace
(
1+H+

1

2
H2 +

1

3!
H3 + · · ·

)
. (22.9)

In applications to algorithms, a cost function to be optimised is commonly
mapped to a quantum Hamiltonian H = Hpot +Hkin consisting of two parts,
the objective function Hpot, and a ‘kinetic’ perturbation term Hkin. Thus the
Suzuki-Trotter formula for the exponential of the sum of two operators A+B
becomes important for estimating the partition function:

eA+B = lim
M→∞

(
eA/MeB/M

)M
(22.10)

This formula is applicable even if the commutator [A,B] �= 0.

22.5 Quantum Computing

The special properties of quantum systems have been used to construct com-
puters based on principles beyond those of classical computing machinery;
these computers are provably able to attack certain problems more efficiently
than classical computers. Digital quantum computers use qubits, a quantum
version of bits, while Adiabatic quantum computers slowly evolve a quantum
system to optimise some quantity such as (free) energy.

We discuss quantum computers briefly here, because their workings are
the inspiration for quantum inspired evolutionary algorithms (Chap. 24) and
simulated quantum annealing (SQA: Sect. 23.2).

A good overview of quantum computing, including more detail on the
underlying physics than is given here, can be found in [273].

22.5.1 Two-State Systems and Qubits

A quantum particle’s spin has only two possible values relative to a direction
of measurement: “up” or “down”. This is an example of a two-state system.26

In such a system, the quantum state ψ is a linear superposition of just two
eigenstates, say |0〉 and |1〉, in the standard Dirac bra-ket notation; that is,

ψ = α|0〉+ β|1〉. (22.11)

Here, |0〉 and |1〉 are orthogonal basis vectors for a two-dimensional complex
Hilbert space, and α, β ∈ C, with |α|2 + |β|2 = 1 for ψ normalised.

A two-state system where the states are normalised and orthogonal, as
here, may be regarded as a quantum bit or qubit .27 It is thought of as being in

26Realisations using multiple particles have also been used.
27Geometrically, a qubit is a projective two-dimensional complex Hilbert space

PC
2: it is a compact two-dimensional complex manifold, called the Riemann (or

Bloch) sphere.

408 22 An Introduction to Physically Inspired Computing

eigenstates |0〉 and |1〉 simultaneously, until a measurement projects ψ onto
the basis {|0〉, |1〉}: the state vector collapses to |0〉 (with probability |α|2) or
|1〉 (with probability |β|2). The normalisation relation |α|2+ |β|2 = 1 captures
the fact that precisely one of |0〉, |1〉 must be observed, so their probabilities
of observation must sum to 1.

22.5.2 Digital Quantum Computers

A digital (or standard or circuit theory) quantum computer is one which
uses qubits instead of the (classical) bits used by usual computers. Paul Be-
nioff [50] first considered a Turing machine which used a tape containing the
equivalent of qubits. Richard Feynman [189], in the course of trying to simu-
late quantum systems on classical computers, developed examples of physical
(quantum) computing systems that are not equivalent to the (deterministic)
Turing machine. He showed that, because of entanglement, no classical com-
puter (not even a probabilistic one) can efficiently simulate quantum systems,
as it would need exponential time or resources to do so. For example, an n-bit
classical system is characterised by n times the amount of information needed
to characterise a one-bit system. However, the amount of information needed
to characterise a general entangled state of n qubits is O(2n): the Hilbert space
has 2n dimensions, so an entangled state is a superposition of 2n n-qubit basis
(eigen)states, and a complex coefficient is needed for each basis vector. Benioff
and Feynman were the first to point out that quantum systems can be used
to compute, and Feynman noted that they could efficently do computations
that a classical computer could not (e.g., simulate themselves!).

In a digital quantum computer, computations are performed by applying
a sequence of unitary operators, called gates, to a system of qubits, without
performing a measurement until the end of the computation.28 In the 1990s,
interest in these “standard” qubit-based computers was stimulated by the
publication of algorithms which were provably faster than classical algorithms
could be for the same problem: Shor’s algorithm [574, 575] for factorising a
large integer of n bits in O(n2) time — compared to O(exp(n1/3)) time classi-
cally — for which he received the Nevanlinna Prize in 1998; and Grover’s un-
structured database search algorithm [229, 230] which reduced the complexity
quadratically from O(n) classically to O(

√
n). The only other applications (so

far) for which quantum computers have been proven to outperform classical
computers are simulation of quantum systems, and computation of discrete
logarithms. Note that quantum computers are not known to be able to solve
NP problems in polynomial time (in fact, it is widely believed that they are
not able to); in particular, factorisation is not an NP problem.

28These ideas are described further in Chapter 24, where they are used in new
types of evolutionary algorithms.

22.5 Quantum Computing 409

22.5.3 Quantum Information

A crucial difference between a qubit and a (classical) bit is that multiple qubits
can exhibit entanglement. This allows a set of qubits to be highly correlated.
Entanglement also allows many states to be acted on simultaneously, unlike
bits that can only have one value at a time, and so the quantum computer
can extract global (nonlocal) information. This is sometimes called quantum
parallelism [154], and gives a possible explanation for the power of quantum
computing: because the state of the quantum computer (i.e., the state of
the system considered as a whole) can be a quantum superposition of many
different classical computational states, these classical computations can all
be carried out at the same time. For more information on quantum algorithms
and entanglement, including its possible use in cryptography, see [91].

Much of the art of designing quantum algorithms is in finding ways to
make efficient use of the nonlocal correlations. There are quantum algorithms
that achieve an exponential speedup over any possible classical algorithm.
A quantum computer is usually taken to be globally phase coherent, that is,
having every qubit entangled with every other qubit (global phase coherence
is, for example, assumed in Grover’s proof of unstructured database search
speedup).

However, quantum information has properties that make it more difficult
to deal with, in some ways, than classical information:

• The uncertainty principle says that if A and B are noncommuting (comple-
mentary) observables, then measuring A will necessarily affect the result
of any subsequent measurement of B. The act of acquiring information
about a quantum system unavoidably disturbs the system: the disturbance
principle.

• Quantum information cannot be copied with perfect fidelity (this is the
no-cloning principle [663, 158]); for, if it could be, then we could measure
the copy without disturbing the original, thus defeating the disturbance
principle.

• John Bell [47] showed that quantum information is, because of entangle-
ment, typically encoded in nonlocal correlations among different parts of
the system: something without any analogy in classical systems, and the
main reason that we cannot efficiently simulate a quantum system with a
classical computer.

• These nonlocal correlations are extremely unstable in practice, because of
decoherence: the system interacts with its environment and its information
becomes entangled with the information in the environment; since most
of the information is in the nonlocal interactions, we lose the ability to
recover our original system’s information. Shor discovered quantum error
correction techniques to counteract this leakage, essentially reducing the
decoherence rate to acceptable levels.

Standard quantum computers have been built: one of seven qubits, imple-
mented using nuclear magnetic resonance (NMR) applied to seven chosen

410 22 An Introduction to Physically Inspired Computing

nuclei of 1018 identical molecules, has used Shor’s algorithm to factorise 15 as
3× 5 (see [641]). The record size so far of an NMR digital quantum computer
is 12 qubits [434].

It is now an engineering problem to develop globally phase coherent quan-
tum computers of 100 qubits or more (which could break current encryption
standards in an acceptable time); however, decoherence makes this problem
very difficult. Analogies of these, implemented on classical machines, form the
basis of Quantum-Inspired Genetic Algorithms, described in Chap. 24.

22.5.4 Adiabatic Quantum Computation

More generally, we can build quantum computation systems which are not
made up of qubits. Such quantum computers are not necessarily “digital”: they
evolve with time and are closer in spirit to the original analogue computers,
in that a physical system modelling the computation to be performed is set
up, and then allowed to evolve with time.

The quantum adiabatic theorem [70] describes the behaviour of a quantum
system when its Hamiltonian (total energy) varies slowly in time:

Theorem 22.1 (Born, Fock). A perturbed system remains in its instanta-
neous eigenstate if the perturbation is applied sufficiently slowly, and if there is
a gap between that state’s eigenvalue and the Hamiltonian’s other eigenvalues.

Intuitively, this says that a quantum system subjected to sufficiently slowly
varying external conditions can modify its functional form so as to remain in
the same relative (pure) eigenstate of the system Hamiltonian at all times;
however, if the conditions change rapidly, the functional form of the state has
insufficient time to adapt, so it stays unchanged, ending in a linear superpo-
sition of states, i.e., not an eigenstate, of the final Hamiltonian. A quantum
adiabatic evolution is one where the system is varied slowly enough that The-
orem 22.1 applies, and the system stays in the same eigenstate of H; often
this is the ground (lowest energy) state. These evolutions are the main idea
of Adiabatic Quantum Computing (AQC):

• the Hamiltonian is regarded as a multivariate cost function to be opti-
mised;

• if energy landscape barriers are high but very narrow, quantum mechanical
fluctuations in an observable because of its noncommuting with the Hamil-
tonian can help in tunnelling through them: so a high strength “tunnelling”
field is applied which adds a noncommuting quantum kinetic term;

• roughly speaking, this gives a very flat energy landscape for which the
Hamiltonian easily reaches its ground state;

• then the field strength is slowly reduced to 0, allowing the Hamiltonian to
find the ground state of the desired system (provided there is no crossing
of energy levels with the ground state during the evolution).

22.6 Annealing and Spin Glasses 411

Because of the similarity to heat annealing of metals (Sect. 22.6), ACQ is also
known as Quantum Annealing (QA). The adiabatic theorem guarantees that
the result of the computation will be correct, provided that the computation
(perturbation) is carried out slowly enough.

It has been shown [4] that an Adiabatic Quantum Computer can perform
any computation achievable by a “standard” qubit-based quantum computer:
they are polynomially equivalent in power. As with classical analogue com-
puters, devices based on AQC generally need to be tailored to the specific
problem they are being applied to.

22.6 Annealing and Spin Glasses

In the process of annealing, as used by smiths for centuries, a material (for ex-
ample, a metal alloy) is initially heated. By injecting energy into the material
during the heating phase, its component atoms are able to assume random
or disordered states. If the metal is cooled sufficiently slowly, it remains ap-
proximately in thermodynamic equilibrium.29 It will settle or freeze into a
minimum energy crystalline structure with the individual atoms arranging
themselves into a regular array. This has desirable physical characteristics as
it produces a strong and malleable or ductile structure. If the cooling is per-
formed too quickly (quenching), the metal will freeze into a local, rather than
global, minimum energy state and the atoms will not form a regular array.
This can produce a metastable state with fault lines and defects in the metal,
leading to fractures if the metal is stressed. This state or phase30 of the metal
is analogous to the disordered yet solid structure of glass. The annealed phase
is analogous to a regular, ordered crystal.

A particular case of annealing, used as inspiration in Simulated Annealing
(see Sect. 23.1), is where a ferromagnetic alloy is slowly cooled to give a
magnet. Physically, magnetism is caused by rotating particle charges (spins).
Each such spin gives rise to a microscopic dipole which may be aligned either
up or down along a given axis. Above a critical Curie temperature, Tc, the
minimum of free energy A = H− TS occurs at states with no magnetisation:
the spins are completely disordered. As the temperature is reduced below Tc, a
phase change occurs. Ordered clusters start to appear and the material begins
to show magnetism; the minimum of A shifts towards states with higher order
of magnetisation. Finally, at T = 0, the global minimum of free energy, and
hence that of energyH = A+TS, occurs at the highest order of magnetisation;
the microscopic spins have all become aligned.

Spin glasses are a phase of magnetic alloys which bear the same rela-
tion to magnets as glasses do to crystals; hence the name. In rapidly cooled
or quenched spin glasses, different spin-spin interactions are randomly ferro-
magnetic or antiferromagnetic and frozen in time, which is known as frozen

29When thermodynamic equilibrium is maintained, the process is called adiabatic.
30This use of ‘phase’ is not related to either phase space or the phase of a wave!

412 22 An Introduction to Physically Inspired Computing

disorder. This disorder leads to competing interactions among the spins, called
frustration; none of the spin states is able to satisfy all of the interactions.
Thus the potential energy landscape becomes very rugged, with local and
global minima separated by potential energy barriers. This disorder and frus-
tration is reminiscent of the search landscapes occurring in applications, such
as combinatorial optimisation problems; hence it seems worthwhile to adapt
features of the physics of spin glasses to search algorithms for these appli-
cations. In particular, the frustration effect is analogous to the conflicting
constraints often encountered in optimisation applications. There is a large
body of work on the physics of spin glasses, which has enhanced our under-
standing of the structure of the spin glass energy landscape, and of the slow
(glassy) dynamics of many-body systems in the presence of frustration and
disorder: consequently, it can aid our understanding of computationally diffi-
cult problems. Indeed, research has found annealing approaches particularly
useful for combinatorial optimisation problems and this is described in more
detail in Sects. 23.1 and 23.2.

In [330], it is noted that slow annealing of a material may avoid the frus-
trated spin interactions of a quenched spin glass, by allowing the material
to adopt a regular noncompeting pattern of spins, settling into a ferromag-
net phase rather than a spin glass phase. However, Hamiltonians encountered
in applications may have a spin glass phase, even at low temperatures, with
many degenerate near-to-ground states of nearly equal energy. This phase is
very stable at low temperatures, leading [330] to conclude:

• even with frustration present, one can make clear improvements over a
random starting configuration;

• there will be many good near-optimal solutions; a good search algorithm
should find some;

• no one of these near-equal low-energy states is significantly better than
the others, so seeking the global optimum may not be productive.

22.6.1 Ising Spin Glasses

A common Statistical Mechanics model used for (among other things) spin
glasses is the Ising model, named after the physicist Ernst Ising. It models a
discrete collection of spins, each of which can take the value 1 or −1. Typically,
the spins are the lattice points in a regular grid of dimension 1, 2 or 3. The
spins Si are considered to interact in pairs, with an interaction (i.e., potential)
energy Jij which has one value when the two spins are the same (aligned),
and another value when the spins are different (anti-aligned). The product of
two aligned spins is 1 and the product of two anti-aligned spins is −1. The
energy of a configuration of N such spins is modelled as:

H : {−1, 1}N −→ R with H = −
N∑
i>j

JijSiSj . (22.12)

22.6 Annealing and Spin Glasses 413

Thus the configuration space (of order 2N) is a Cartesian product of N copies
of {−1, 1} and is isomorphic as a set to the search space of an EA using a bit
representation, with H playing the same rôle as a fitness function.

The spins can be modelled as vertices of a weighted graph, with an edge
(of weight Jij) connecting vertices i and j if and only if Jij �= 0. This weighted
graph completely specifies the Ising model.

When the Ising model is applied to a spin glass, the Jij interactions are
quenched variables which vary randomly both in magnitude and sign, accord-
ing to some distribution ρ(Jij), which in the standard models is taken to be
normal about 0:

ρ(Jij) = A exp

(−J2
ij

2J2

)
. (22.13)

In two or more dimensions, the Ising model undergoes a phase transition
between an ordered and a disordered phase. This transition occurs at a critical
temperature, Tc, above which the spins are disordered and below which is the
ordered (“spin glass”) phase. Below Tc, freezing occurs.

There are two competing pictures of the physics of spin glasses. The mean-
field picture applies to infinite-range models such as the SK spin glass, while
the droplet picture applies to short-range models. The mean-field picture may
not be valid for physical spin glasses, where the interactions are effectively
short range, but may still be of use in applications of such models to optimi-
sation problems, where interactions may be long range.

The Ising model is a statistical model and, as in Sect. 22.3.1, the proba-
bility of a given configuration x of spins is the Boltzmann factor with inverse
temperature β:

P (x) = 1
Z e−βH . (22.14)

To generate configurations for simulation using this probability distribution,
a variant of the Metropolis Algorithm (Algorithm 22.2) may be used.

Algorithm 22.2: Metropolis Algorithm for Ising Spin Models

repeat

Randomly pick a spin;
Calculate the contribution to the energy due to this spin;
Flip the value of the spin and calculate the new contribution;
Let ΔH = new energy − previous energy;
if ΔH < 0 then

Keep the flipped value;
else

Keep the flipped value with a probability e−βΔH;
end

until terminating condition;

414 22 An Introduction to Physically Inspired Computing

The change in energy only depends on the value of the spin and its nearest
neighbours in the Ising model graph. Thus, if the graph is sparse (that is, on
average, a vertex is not connected to many other vertices), the algorithm is
fast. This process will eventually produce a choice from the distribution.

22.6.2 Quantum Spin Glasses

A quantum spin glass is a classical spin glass with the addition of a kinetic
(quantum tunnelling) term to the Hamiltonian. In quantum spin glasses, both
thermal and quantum fluctuations can cause the order-disorder phase change.
There are two types of quantum spin glass: vector spin glasses, where the
fluctuations cannot be affected by adjusting a laboratory field; and classical
spin glasses perturbed by a quantum tunnelling term (the useful type), where a
transverse laboratory field Γ can affect the fluctuations. This transverse Ising
spin glass (TISG) model is the most studied [99]. The term quantum annealing
is used for this ‘annealing’ by reduction of the transverse field (by analogy with
thermal annealing). As well as being able to penetrate very high but narrow
barriers (which makes the energy landscape more accessible to local moves),
quantum annealing has the ability to ‘sense’ the whole configuration space
simultaneously via a delocalised wave function.

Experimental results [3, 77] on a TISG (a sample of LiHo0.44Y0.56F4) have
shown that the relaxation behaviour depends on the path taken. The sample
was brought from a high temperature paramagnetic phase to a low tempera-
ture glassy phase along two paths from (0.8, 0) to (0.02, 7) in the T -Γ plane.
Along the classical annealing path, the transverse field Γ was kept at 0 while
T was slowly reduced; then Γ was switched on. Along the quantum annealing
path, Γ was kept high, then T was reduced, with Γ being reduced (slowly,
i.e., adiabatically) only on reaching the final temperature. It was found that
the quantum approach gave states with relaxation up to thirty times faster
than thermal annealing. This indicates that quantum annealing is much more
effective at exploring the configuration space in the glassy ‘disordered’ phase
than thermal annealing. Crucially, it has been found [557] that even in the
presence of all three ingredients of a spin glass — frustration, randomness
and long-range dipolar interactions — the spin glass phase of LiHoxY1−xF4 is
destroyed by any nonzero transverse field, which shows the ability of quantum
tunnelling to explore a rugged potential energy landscape with high barriers.

The Hamiltonian of this model (based on (22.12) with spins aligned in the
z direction and a kinetic term in the x direction added) is:

H = −
N∑
i>j

JijS
z
i S

z
j − Γ

N∑
i=1

Sx
i = Hpot +Hkin (22.15)

where Γ is the tunnelling strength and the weights Jij are randomly dis-
tributed as in (22.13). Γ is thought of as the ‘strength’ of the quantum kinetic

term Hkin = −Γ
∑N

i=1 S
x
i .

22.7 Summary 415

It was first pointed out by Feynman (see [550]) that a quantum-mechanical
system may, in many ways, be regarded as a classical system embedded in a
world with one extra dimension, called imaginary time. The Suzuki-Trotter
formalism maps a d-dimensional quantum Hamiltonian to an effective (d+1)-
dimensional classical Hamiltonian, with the extra time-like dimension (called
the Trotter dimension) discretised into M steps. At each index k = 1, . . . ,M
along this new dimension, there is a d-dimensional Trotter slice, and the Ham-
iltonian now represents a system of spins in a (d+1)-dimensional lattice. Now
the Suzuki-Trotter formula, (22.10), can be used to compute the partition
function

Z = Trace(e−H/T) = Trace(e−(Hpot+Hkin)/T) (22.16)

and this eventually gives the effective classical Hamiltonian in the M th Trotter
approximation as

H =

N∑
i>j

M∑
k=1

KijSikSjk −K

N∑
i=1

M∑
k=1

SikSik+1 (22.17)

where Kij = Jik/(MT), K = 1
2 ln coth(Γ/(MT)), k is the index in the extra

Trotter dimension, i is the position in the original Ising model, and Sik is the
Ising spin on the lattice site (i, k). In principle, this equivalence of quantum
Hamiltonian with a one-dimensional higher classical Hamiltonian only holds
exactly as M → ∞, but in practice there is an optimum M . In units where
� = 1, M should be of the order of 1/T (of course, M → ∞ as T → 0).

One then proceeds to study and optimise the equivalent classical Hamil-
tonian using Monte Carlo techniques, as in Algorithm 22.2, which leads to
Simulated Quantum Annealing (SQA) as described in Sect. 23.2.

Recently [550, 584] it has been shown that it is possible to study the
thermodynamics of a d-dimensional classical system by reducing it to the
study of the ground state(s) of a d-dimensional quantum system, the reverse
of the above use of equivalent classical Hamiltonian. In [585] it is shown that
SA itself can be ‘simulated’ using a quantum algorithm, Quantum Simulated
Annealing (QSA);31 and that when SA requires 1/δ steps to get within a
certain error bound of the optimum, then QSA will only require 1/

√
δ steps.

22.7 Summary

Physically inspired computing algorithms draw on our understanding of the
properties of physical processes. In this chapter we provide a short primer on
aspects of these processes as well as the basic physics needed to develop an
appreciation of them. In the next two chapters we outline a range of algorithms
whose design has been inspired by these processes.

31QSA is a quantum algorithm, very different from the classical algorithm, SQA.

23

Physically Inspired Computing Algorithms

Following the introduction to a range of physical phenomena in the last chap-
ter, this chapter describes a number of algorithms which are metaphorically
inspired by these. As was the case with biologically inspired algorithms, the
degree of faithfulness of each of these metaphors to the original natural process
varies, and multiple algorithms could be devised depending on which aspect
of the underlying phenomenon is chosen.

Initially, we introduce the simulated annealing algorithm (Sect. 23.1) and
the simulated quantum annealing algorithm (Sect. 23.2). This is followed by
a discussion of the constrained molecular dynamics algorithm (Sect. 23.3),
physical field-inspired algorithms (Sect. 23.4), and the extremal optimisation
algorithm (Sect. 23.5).

23.1 Simulated Annealing

Simulated annealing (SA) [97, 98, 330, 510] is a global optimisation algorithm
whose workings are loosely inspired by the physical process of the thermal
annealing of metals or glass (Sect. 22.6). In the context of designing a search
algorithm, the physical process of thermal annealing can be considered as
being the search for the global minimum of an energy landscape. By analogy,
the SA algorithm tries to find the global minimum of an objective function,
which could be defined on Rn or, more generally, on a space of ‘states’ (or
candidate solutions), e.g., valid tours of the network in a TSP (see Sect. 9.3.2
for an introduction to the travelling salesman problem).

A simulated annealing algorithm can be run using a single trial solution
which is modified randomly during each iteration of the algorithm. The search
process usually proceeds ‘downhill’, metaphorically from a higher to a lower
energy state, assuming the goal is minimisation of the objective function.
Modifications which improve the existing trial solution are always accepted.
However, occasional ‘wrong-way’, or uphill, moves are accepted with a nonzero

© Springer-Verlag Berlin Heidelberg 2015
A. Brabazon et al., Natural Computing Algorithms, Natural Computing Series,
DOI 10.1007/978-3-662-43631-8_ 3

417

2

418 23 Physically Inspired Computing Algorithms

probability. This can allow the search process to escape a local minimum,
which would trap a standard hill-climbing or other greedy approach.

The SA algorithm is based on the Metropolis algorithm of statistical me-
chanics given as Algorithm 22.1 in the previous chapter, with the addition of
a temperature schedule which controls the probability of uphill moves. This
permits a gradual tuning of the exploration-exploitation balance away from
exploration towards more intensive exploitation as the search progresses. A
basic SA algorithm is provided in Algorithm 23.1.

Algorithm 23.1: Simulated Annealing Algorithm

Set initial temperature and determine the annealing schedule;
Generate an initial feasible solution and assess the cost of this solution;
repeat

Randomly generate new solution within a neighbourhood of the current
solution;
Assess cost of new solution;
if cost of new solution < cost of previous solution then

Accept the new solution;
else

Accept the new solution with a probability p;
end

Adjust temperature;

until terminating condition;

This approach, with suitable parameter modification, allows for discrimi-
nation between the objective function’s large-scale behaviour (at higher tem-
peratures, near the start of the algorithm’s run) and its finer-scale behaviour
(at lower temperatures, later in the run). Early in the run, gross features of the
system appear. The algorithm finds a broad area in the search space where
a global optimum should exist, following the large-scale behaviour without
regard to small local optima found on the way. At lower temperatures, the
finer details of this area emerge and, with high probability, the algorithm will
find a near-global optimum, or even the global optimum.

As noted earlier (Sect. 22.3), thermodynamic equilibrium corresponds to
minimising (Helmholtz) Free Energy, A = H − ST , with S being entropy
and T being temperature. When T = 0, this reduces to the Hamiltonian.
Since SA reduces a temperature parameter to 0, it may be thought of as
minimising either (or both) the free energy or the Hamiltonian. Of course, in
search algorithms such as SA or Simulated Quantum Annealing (SQA) (Sect.
23.2), we may modify the Hamiltonian, e.g., by adding extra terms.

23.1 Simulated Annealing 419

23.1.1 Search and Neighbourhoods

As with any search algorithm, the way in which moves are made from one state
(or ‘point’ in the search space) to another is crucial. In SA, as in Simulated
Quantum Annealing (SQA) (Sect. 23.2) and Extremal Optimisation (EO)
(Sect. 23.5), a neighbourhood structure is defined. Let X denote the set of
all possible states (assumed finite). For each state x ∈ X , there is a set Nx

of states to which transitions from x may happen. Nx is called the set of
neighbours or neighbourhood of x. We require that the neighbour relation be
symmetric, i.e., x ∈ Ny if and only if y ∈ Nx. In general, the neighbours of x
(the possible moves) are specified by the user of the algorithm, in a way that
depends on the particular problem. This neighbourhood structure defines a
graph on the search space: the vertex set is the set of states X ; and there
exists an edge xy if and only if x ∈ Ny (or, equivalently, y ∈ Nx); thus, the
graph is undirected. The performance of the SA algorithm depends crucially
on the choice of neighbourhood structure. If the neighbourhoods are too small,
the diameter of the corresponding graph will be too large and the simulated
process will not be able to move around the set X sufficiently quickly to reach
the optimum in reasonable time. Conversely, if the neighbourhoods are too
large, with sizes of the same order as the size of X , then the process effectively
carries out a random search through X , with a distribution close to uniform.
Usually in SA (and in SQA and EO), the neighbour of x is generated by
making a small change (perturbation) to x: thus these algorithms are generally
perturbative in nature.

The neighbour() method that generates the next state should be biased
towards states of roughly the same cost/energy as the current one, since after
a few iterations the SA algorithm is probably at a state of much lower cost
than the average state. For example, in the TSP, a state is just a particular
tour: we may use Lin’s k-optimality idea [369] to define the neighbours of a
tour x as those tours that can be obtained from x by a ‘k-opt’ move, namely,
removing k edges of x and reassembling the k resulting sections of the tour
in a different order, using k new edges. For example, a special case of 2-opt is
exchanging a pair of consecutive cities in the tour x (Sect. 9.6 illustrates an
example of this).

23.1.2 Acceptance of ‘Bad’ Moves

A key component of the algorithm is the acceptance rule for ‘wrong way’
moves, those in which the solution disimproves during an iteration of the
algorithm. Traditionally1 in SA the acceptance probability for these cases is
taken to be:

pi = e−Δf/Ti (23.1)

1By analogy with the Boltzmann factor described in Sect. 22.4.5, with Boltz-
mann’s constant kB scaled to 1.

420 23 Physically Inspired Computing Algorithms

where Ti is the temperature at iteration i and Δf is the difference in the
objective function value between the current and the previous trial solutions
(this is positive if the current solution is poorer than the previous one). In
determining whether to accept a poorer solution, two factors are relevant:
how much worse the current solution is than the previous one (much poorer
solutions are less likely to be accepted); and the value of the temperature
parameter. For given values of Ti and Δf , the value pi is calculated and a
random number is generated uniformly on the interval (0, 1). If the generated
random number is less than pi, the move to a poorer solution is accepted.
Thus SA (and, as will be seen later, SQA and EO) is a stochastic local search
algorithm.

The higher the value of Ti, the higher the likelihood that a poorer solu-
tion will be accepted. Hence, T is a tuning parameter and its value is varied
during the algorithm’s run according to an annealing or cooling schedule. The
cooling schedule determines the probability with which a poorer solution will
be accepted at each stage of the algorithm. The slower the rate of cooling,
the more likely the algorithm is to find a good quality solution. However,
slower cooling schedules also increase the algorithm’s run time. A common
cooling schedule is exponential cooling, where the initial temperature value is
decreased to a fixed lower value over n discrete steps according to Ti+1 = αTi,
where 0 < α < 1. That is, Ti+1 = αiT1.

23.1.3 Parameterisation of SA

The crucial choices in SA are the methods of neighbourhood generation, and
temperature adjustment (the annealing schedule). There exist convergence
theorems [209] that say that if the temperature parameter is reduced suffi-
ciently slowly, namely, no faster than N/ log i, where N is the system size and
i the time so far, then the system state will remain ‘close’ to the minimum
energy possible for that temperature, and will asymptotically converge to the
optimum. The analogy from thermodynamics is that if cooling is sufficiently
slow, then the system will remain very close to thermodynamic equilibrium
at all times. Thus, if Ti+1 is of the logarithmic form T1/ log i, for T1 suffi-
ciently large, then the system will converge to the global optimum and will
not be trapped at a local optimum. This schedule can be very slow to con-
verge and sometimes, for reasons of expediency, faster annealing schedules are
used. In this case, convergence is not guaranteed and the algorithm might be
more properly called Simulated Quenching (SQ) by analogy with the idea of
quickly cooling (quenching) a magnetic alloy.

Usually, a fixed number of moves must be accepted at each temperature
before proceeding to the next (lower) temperature. This is done to give rea-
sonable sampling statistics for the current temperature.

Values for α, and the initial and final temperature values are problem-
dependent and the efficiency of the algorithm is sensitive to the choice of
values. As a rough rule of thumb, an α value of 0.9, and a choice of initial

23.1 Simulated Annealing 421

temperature T1 such that there is an initial acceptance probability of poorer
solutions of around 0.8, are commonly used.

23.1.4 Extensions of SA

The choice of neighbourhood system may be regarded as another way in which
SA may be parameterised, and much research has addressed the question of
how to choose a neighbourhood system that will allow the SA algorithm to
perform well. In combinatorial optimisation problems, the structure of the
problem often leads to a ‘natural’ choice of neighbours, e.g., the 2-opt or
3-opt criterion for a ‘close’ tour in the TSP. In continuous optimisation prob-
lems, there may be less (obvious) structure to make use of, and so more
freedom in neighbourhood generation. Even after having chosen a neighbour-
hood system, new trial solutions need not be generated purely randomly: the
distribution may be weighted (possibly with weight depending on progress
of the algorithm) to favour certain trial solutions, e.g., those ‘close’ to the
current solution.

For example, in Adaptive Simulated Annealing (ASA), also called Very
Fast (Simulated) Reannealing (VFR) [289, 290], the algorithm parameters
such as temperature, neighbourhood radius, step size, etc., are adjusted by
the algorithm during its run, with the intention that the user need not choose
precise starting values of these (SA performance can be very sensitive to initial
choice of the parameter values). At the beginning of the algorithm’s run, the
whole of the search space is explored to a coarse resolution. Later in the run,
there is more exploitation and the state is directed towards favourable areas
found so far. This changing of the resolution is analogous to multigrid or
variable mesh approaches used in, for example, finite difference algorithms for
solving partial differential equations.

Additionally, the algorithm need not be restricted to a single trial solution.
For example, the SA paradigm could be used with a populational approach,
whereby a population of trial solutions are maintained with diversity being
generated using recombination and mutation. In the latter case, parents can
be selected randomly from the current population, with the resulting child
competing against its parents for survival in a Boltzmann trial. Other hybrid
SA possibilities are outlined in [145, 386]. One interesting combination of SA
and neural nets is described in [105], where transiently chaotic dynamics are
introduced into neural networks, giving rise to an optimisation process similar
to simulated annealing (not stochastic but rather deterministically chaotic).
This new method is called chaotic simulated annealing and has been applied
to the TSP and other problems.

23.1.5 Concluding Remarks

SA is a popular optimisation algorithm as it is relatively easy to code, makes
few assumptions regarding the function to be optimised, is capable of handling

422 23 Physically Inspired Computing Algorithms

a variety of boundary conditions and constraints, gives a statistical ‘ergodic’
guarantee of finding an optimum (provided the cooling is done slowly enough)
and is quite robust. However, the effectiveness of the algorithm does depend
on several factors, including the methodology for selecting neighbours of the
previous solution, the annealing schedule, the design of the probability tran-
sition function, and the choice of parameters.

Criticisms of SA and related algorithms centre on: its slowness (if the
proven convergent logarithmic annealing schedule is used); loss of ergodicity
if a faster annealing schedule is used; the difficulty of tuning the parameters
α, T1, etc., to suit particular problems; and other implementation difficulties,
such as often there being no obvious free parameter in the application problem
which is analogous to the temperature T .

23.2 Simulated Quantum Annealing

The simulated quantum annealing (SQA) optimisation algorithm2 takes inspi-
ration from the physical process of adiabatic quantum computing or quantum
annealing (Sect. 22.6.2). It uses quantum fluctuations rather than the ther-
mal fluctuations of SA to explore the landscape. Again, a candidate solution
is regarded as a system ‘state’ and the objective function value is regarded as
‘energy’, i.e., the Hamiltonian. Simulated quantum annealing was proposed
by Finnila et al. in 1994 [190].

SQA is loosely based on the phenomenon of quantum tunnelling (Sect. 22.4.4).
In optimisation terms, this corresponds to making a jump on a landscape and
this capability can allow a solution to ‘tunnel’ through a (narrow) barrier on
the landscape in one jump, rather than having to climb over the barrier via
a succession of wrong-way moves as in SA. In some landscapes (Fig. 23.1),
such as those that commonly arise in combinatorial optimisation, thermal an-
nealing inspired algorithms such as SA can find it difficult to escape from
poor-quality local minima, as they may be surrounded by high, though possi-
bly narrow, barriers. Thermal fluctuations only see the height of the barrier.
There is also the problem of entropy: the number of configurations grows ex-
ponentially with the number of variables: 2n configurations for n Ising spins.
A classical algorithm can only examine one configuration at a time; if there
is no ‘guiding’ gradient to roughly steer the algorithm from any start point
towards the global optimum (as happens, e.g., in golf course or deceptive
landscapes), the algorithm must visit a significant fraction of the 2n possible
configurations. In this case, SA is not much better than random search.

In the SQA algorithm, as in SA, the current state x is replaced by a
randomly selected neighbour state x′ if x′ has lower energy. The process is

2We refer to this algorithm as the Simulated Quantum Annealing (SQA) algo-
rithm, to avoid confusion with the physical quantum annealing process; but, par-
ticularly in the physics literature, the name ‘Quantum Annealing’ seems to be used
for both meanings.

23.2 Simulated Quantum Annealing 423

Objective
function value

Configuration

Quantum tunneling

A

B

Fig. 23.1. Illustration of quantum tunnelling on a landscape. SA would require
several ‘wrong way’ moves to jump over the barrier between the local (A) and the
global optimum (B) basins. With a quantum tunnelling mechanism, this movement
can potentially occur in one step

controlled by the tunnelling field strength, a parameter which controls the
size of the neighbourhood explored by the algorithm. The field strength begins
high, so the neighbourhood extends through the full search space. This permits
long jumps on the landscape, facilitating explorative search. The tunnelling
field strength is slowly reduced during the run, promoting local exploitation.
Eventually the neighbourhood shrinks to just a few states close to the current
state.

It is important to note that both SA and SQA are based on the physics
of adiabatic processes, that is, on systems which remain at or near thermody-
namic equilibrium throughout their evolution. Furthermore, SA and SQA are
both based on the Metropolis algorithm, with the SA temperature parameter
playing a role similar to that of the SQA tunnelling strength. Thus they are
both stochastic local search algorithms and both generally use a perturba-
tive approach to neighbour selection. However, in standard SA (as opposed to
adaptive SA) the neighbourhood radius remains the same during the search,
and the temperature determines the probability of moving to a higher en-
ergy state, whereas in SQA, the tunnelling field strength controls instead the
neighbourhood radius, i.e., the average distance between the current state x
and the next x′. The possibility of tunnelling through barriers can be shown
to enhance the ‘ergodicity’ (Sect. 22.3.2) of SQA (compared to SA, which
relies on thermal fluctuations) and so improve landscape exploration [130].
The appropriate definition of the tunnelling field depends on the nature of
the problem being considered.

SQAs have been applied to a variety of combinatorial problems and [40,
392] illustrate their application to the TSP. A comprehensive discussion of

424 23 Physically Inspired Computing Algorithms

these algorithms, along with several applications, can be obtained in [129]
and [130].

23.2.1 Implementation of SQA

Implementing SQA means using adjustable quantum fluctuations in the prob-
lem rather than thermal ones. For a given optimisation problem, the main
tasks in developing an SQA approach are:

i. how to describe (and, usually, simplify) the Hilbert space for the prob-
lem. Real-world optimisation problems generally involve enormously large-
dimension Hilbert spaces, so an alternative Quantum Monte Carlo ap-
proach, often using path integrals, is required; and

ii. how to formulate a quantum Hamiltonian H = Hpot + Hkin, where the
potential energy term Hpot is typically the cost or other objective function
to be minimised, and the kinetic energy term is a perturbation term: a
noncommuting operator analogous to the physical transverse field. It is
useful to write H = Hpot + Γ (t)Hkin, thus explicitly showing the time
dependence of the tunnelling field strength: Γ (t) → 0 as t → ∞.

Thus SQA is more flexible than SA since not only can the ‘annealing schedule’
be chosen, but there may be a range of choices for the kinetic term which is
then multiplied by Γ (t).

23.2.2 SQA Application to TSP-Type Problems

An instance of the TSP is an (undirected) graph G = (V,E) with |V | = n,
together with a set of weights {dij : i, j = 1, . . . , n} some of which may be
infinite in general. The problem is to find a tour of minimum length which
starts and ends at the same vertex, and visits each vertex exactly once. This
can be phrased as minimising an Ising Hamiltonian, as follows (see [392, 549]
for further details).

A given tour can be represented by an n×n matrix T = (tij) with: tij = 1
if edge ij is on the tour (i.e., city j is visited immediately after city i); and
tij = 0 otherwise. Thus a valid tour has a T matrix with exactly one 1 in each
row and in each column, all other entries being 0. For an undirected graph,
a tour and its reverse have the same length, and we consider the undirected
tour matrix U = (uij) = T +T ′ where T ′ (representing the reverse tour of T)
is the transpose of T . U is a symmetric matrix with precisely two 1s in each
row and column. The length of a tour is:

Hpot =
1

2

n∑
i,j=1

dijuij (23.2)

Defining Ising spins by Sij = 2uij − 1, we can rewrite this Hamiltonian in
terms of Sij as:

23.2 Simulated Quantum Annealing 425

Hpot =
1

2

n∑
i,j=1

dij
1 + Sij

2
(23.3)

which is similar to the Hamiltonian of noninteracting Ising spins on an n× n
lattice, with fields dij on the lattice points. The frustration is caused by the
global constraints on the spin configurations that force them to conform with
the structure of U .

Hkin is then chosen (with a high degree of arbitrariness) to induce fluc-
tuations generating the important elementary moves of the problem, namely,
changing a valid tour into another valid tour. Deciding which configurations
are to be neighbours of which others is crucial, since it determines the prob-
lem’s effective landscape. The 2-opt perturbation can be used as it is guar-
anteed to transform a valid tour into another valid tour. Here, if ab and cd
are edges not incident with a common vertex, then they are deleted and re-
placed in the tour by ac and bd. The whole 2-opt move can be represented (in
U -matrix terms) by four spin-flip operators:

S+
〈c,a〉S

+
〈d,b〉S

−
〈b,a〉S

−
〈d,c〉 (23.4)

where each S±
〈i,j〉 is defined to flip an Ising spin variable (defined as S〈i,j〉 =

2uij − 1 = ±1) at position (i, j) and at the symmetric position (j, i); that is,
S±
〈i,j〉 = S±

i,jS
±
j,i. Then we get a (time-dependent) TSP quantum Hamiltonian

implementing the 2-opt moves:

HTSP = Hpot(U) +Hkin (23.5)

=

n∑
〈ij〉

dij
1 + Sij

2
− 1

2

∑
〈ij〉

∑
〈i′,j′〉

Γ (i, j, i′, j′; t)S+
〈i,i′〉S

+
〈j,j′〉S

−
〈j,i〉S

−
〈j′,i′〉

Γ is real and positive and depends not only on the edges but also on time.
An actual Schrödinger annealing evolution is computationally impractical,

because of the large Hilbert space, so Metropolis-type Monte Carlo methods
as mentioned earlier are used. The kinetic part of the quantum Hamiltonian as
given requires calculation of very many matrix entries of exponential operators
in the Trotter discretised system, which is computationally very expensive.
For this reason, it is replaced by a standard transverse Ising form, which is
trivially Trotter-discretised:

H̃TSP =

n∑
〈ij〉

dij
1 + Sij

2
− Γ (t)

∑
〈ij〉

[S+
〈j,i〉 +H.c.] (23.6)

As it stands, this simpler kinetic term is not guaranteed to move from a
valid tour to another valid tour in the search space, but this can be ensured
by exclusively using 2-opt moves to generate new states in the Monte Carlo
algorithm. It can be shown that this simplification still gives a working SQA.

426 23 Physically Inspired Computing Algorithms

In testing on the pr1002 instance of the standard benchmark TSPLIB
[392, 549], SQA is found to anneal more efficiently than SA. However, SQA
does not appear to be uniformly superior to SA. SA outperforms SQA on
the Random Boolean Satisfiabilty (3-SAT) problem [549]; and recent research
[516] investigating extensions of the approach to the multivisit TSP and bot-
tleneck TSP appear to show sensitivity of SQA to the particular flavour of
TSP addressed, and to the network structure.

The conclusion seems to be that SQA has the potential to outperform SA,
but may require domain knowledge in order to build the kinetic energy term.

23.3 Constrained Molecular Dynamics Algorithm

The constrained molecular dynamics (CMD) algorithm was introduced by Poli
and Stephens in 2004 [515]. It is related to the field-based algorithms discussed
in Sect. 23.4 below in that it explicitly uses (a model of) a gravitational field
as one of the influences in the algorithm. However, it models other effects as
well.

This optimisation algorithm was inspired by the area of molecular dynam-
ics which seeks to gain understanding of the properties of interacting physical
bodies such as atoms and molecules.3 A multitude of physical forces act on
these bodies, which are generally treated as particles (i.e., of negligible size).
The theoretical analysis of these systems is difficult, because of the number
of particles involved: even in classical mechanics the three-body problem has
no analytical solution, because solving the Lagrangian dynamical equations
would involve 18 integrations.4 Instead, in molecular dynamics, the properties
of these systems are typically studied using computer simulations. In imple-
menting these simulations, differing levels of fidelity to real-world interactions
of particles (for example, classical forces of molecular mechanics, quantum
effects, etc.) can be employed, depending on the objective and the desired
accuracy of the simulation.

In CMD, the physics of masses and forces, that is, classical (Newtonian)
mechanics, is used to guide a search process on a landscape. A population of
particles is allowed to move across a landscape and their movement and inter-
actions are governed by a small subset of possible real-world forces, namely
gravity, friction, and coupling forces (springs). The movement of the particles
is constrained so that they slide across the fitness landscape. Thus the CMD

3It uses the tensor formalism of Grassmann as applied by Einstein and Gross-
mann to gravitation, and also appears to derive inspiration from the ‘rubber-sheet’
geometry of spacetime deformed by the presence of massive bodies. Thus it seems to
be one of the few algorithms in the literature to be influenced by (general) relativity,
though there is no equivalent of the concept of bodies’ speeds in a reference frame
being bounded by the speed of light.

4There are five special cases, found by Lagrange, where an analytic solution (in
elementary functions) is possible.

23.3 Constrained Molecular Dynamics Algorithm 427

algorithm is one of the few optimisation algorithms that explicitly use the
concept of a physical field.

The particles are acted upon by gravity, which tends to pull them to lower
points on the landscape, assuming that the goal is to find the global minimum
point on the landscape. However, if the only force acting on each particle were
gravity, this would produce a local optimising algorithm where each particle
could only walk downhill in its base of attraction. To avoid this, each particle i,
of mass mi and position vector xi (where i = 1, . . . , n), is given a momentum5

mivi = miẋi, and thus a resulting kinetic energy 1
2miv

2
i , which can help it to

escape local optima. It is also linked to a set of other particles via a spring
mechanism. Hence, the movement of one particle affects the movement of
others, as linked particles are accelerated towards one another. This can help
particles to escape from low fitness areas of the landscape. Each particle is
subject to friction as it moves over the landscape and this acts to retard its
movement, promoting focussed search. Hence, different friction values can be
used to promote or inhibit a particle’s exploration of the landscape.

As mentioned, an analytic solution is generally impossible, so numerical
approaches are used. In such approaches, derivatives are approximated by
finite differences. The CMD algorithm uses forward differences, for example,
the time derivative ẋ(t) = v(t) of position x(t) at time t (that is, the velocity
at time t) is approximated by the forward finite difference:

v(t) ≈ x(t+ δt)− x(t)

δt
(23.7)

where δt is the size of the timestep in the discretisation. Rearranging this
gives x(t+ δt) = x(t)+ v(t) · δt, which is used in an iteration of the algorithm.
A similar approximation is used for acceleration6 a(t) = v̇(t) = ẍ(t), which
gives the iteration step for v(t+ δt) = v(t)+ a(t) · δt. Algorithm 23.2 provides
a high-level outline of the CMD algorithm.

In each iteration of the algorithm, each particle i is moved from its current
position xi by applying to it a position change vector, namely vi · δt, the
current velocity vector multiplied by the time step. In turn, this velocity
vector is changed by an amount ai · δt. Here, ai is the particle’s acceleration;
by Newton’s third law, this is the ratio Fi/mi (of the force Fi acting on the
particle to the particle’s mass mi). Fi may be a vector sum of forces from
several broad classes:

• no external forces (that is, the force on the particle arises purely from
the constraints on its motion; in other words, from the geometry of the
landscape);

5Recall that differentiation with respect to time t is commonly denoted by a dot
over the variable, so that ẋi denotes the velocity of particle i.

6Newton’s dot notation is extended to denote the second derivative with respect
to time t by a double dot over the variable, so that ẍi denotes the acceleration (that
is, the time derivative of velocity) of particle i.

428 23 Physically Inspired Computing Algorithms

Algorithm 23.2: Constrained Molecular Dynamics Algorithm

Randomly generate an initial population of n solutions;

repeat

for i = 1 to n do

ai = Fi(fitness surface, x1, . . . , xn, vi)/mi;
vi = vi + ai · δt;
xi = xi + vi · δt;

end

until terminating condition;

• forces due to particle-particle interactions (i.e., tensions in connecting
‘springs’, or fields generated by other particles, which depend on all the
particles’ positions);

• forces due to interactions with an external field, dependent on this parti-
cle’s position; and

• friction/viscosity/damping type forces: generally a function of, and in the
direction opposite to that of, the particle’s velocity.

To indicate this, Fi is written above as Fi(fitness surface, x1, . . . , xn, vi). The
precise calculation of each particle’s acceleration is described in [515] and
interested readers are referred there for a full description (in tensor notation)
of this step.

The fact that CMD searches the space using a population of particles
makes it a global search algorithm. Other than the initial random choice of
population, its action is deterministic (as are Newton’s laws, on which it is
based). There are some similarities between CMD and PSO in that both algo-
rithms conduct a search of a space using concepts such as velocity, momentum
and particle interaction. However, their source of inspiration differs (social in-
teractions vs. molecular interactions) and particles in CMD have no memory
and no explicit intelligence.

The CMD algorithm is an example of an optimisation algorithm whose
design is inspired by properties of physical systems at a molecular level. Initial
results from applying the algorithm to a series of test functions [515] indicate
that it can solve optimisation problems and future work is awaited to further
test the effectiveness and efficiency of the approach on other problems. So
far, the only types of force considered in CMD appear to be ‘square-law’
fields (where the force decreases as the square of the distance; as do, for
instance, the electromagnetic and gravitational forces), linear forces (the type
of tension arising in a spring) and viscous/friction forces (proportional to the
speed of movement). A future research direction would be to widen the scope
to emulate other types of interaction arising in physics, e.g., the strong nuclear
force (hadron colour force).

23.4 Physical Field Inspired Algorithms 429

In addition to CMD, there have appeared in recent years a number of other
approaches inspired by physical fields; some of these are discussed in the next
section.

23.4 Physical Field Inspired Algorithms

A number of other approaches inspired by physical fields, some loosely, some
more closely, have been introduced in the last decade or so; we look at some
of these now. Their uses to date seem to be quite tightly coupled with the
application domain; it is not clear whether it is possible to separate out the
domain-specific processing into well-defined modules (as can be done, for ex-
ample, in SA, where the neighbour generation routine is domain-specific),
which would warrant describing these approaches as metaheuristics. Three
examples are outlined in this section to illustrate this family of algorithms,
namely central force optimisation, the gravitational search algorithm and the
binary gravitational search algorithm.

23.4.1 Central Force Optimisation

Central Force Optimisation (CFO) [197, 198] is a nature inspired determin-
istic metaheuristic for multidimensional search and optimisation, based on
the metaphor of gravitational kinematics. It seeks to locate the global optima
of an objective or fitness function f : Rn −→ R in a bounded search space
X ⊆ Rn. This f may be smooth, continuous or discontinuous, unimodal or
highly multimodal, and may be subject to a set of constraints on the decision
variables x1, . . . , xn. CFO ‘flies’ a set of Np ‘probes’ through the space during
an interval of discrete time steps: the analogy is to particle masses moving
in a gravitational field. Each probe’s trajectory is governed by its initial po-
sition and the equations of motion arising from the total force on the probe.
The probes are attracted to high mass regions of the space, which are anal-
ogous to regions of high fitness (high objective function value). CFO allows
some decoupling and parameterisation of fitness and mass, since the mass is
a user-defined function of the objective function value.

CFO is a populational algorithm, but is closer to particle swarm ap-
proaches than evolutionary algorithms, since CFO uses concepts of position,
velocity and acceleration, and the information exchanged among probes is
about the (phenotypical) fitness each sees, rather than any equivalent of ge-
netic information. However, CFO’s deterministic nature distinguishes it from
PSO.

The location of probe i at time step t is given by its position vector xi(t) =
(xi

1(t), . . . , x
i
n(t)). Then its velocity vi(t) = 1

Δt (x
i(t) − xi(t − 1)) where Δt is

the time interval from t− 1 to t. The fitness (‘mass’) at a particular probe i’s
location at time step t is

430 23 Physically Inspired Computing Algorithms

M i(t) = f(xi(t)) = f(xi
1(t), . . . , x

i
n(t)).

By partial analogy with Newton’s law of gravitational attraction, the ‘gravi-
tational’ acceleration aij(t) of probe i caused by another probe j at time t is
given by a user-defined function of M i(t) and M j(t):

aij(t) = G · U(M j(t)−M i(t)) · (M j(t)−M i(t))α

‖xj(t)− xi(t)‖β (xj(t)− xi(t)) (23.8)

Here, G is a ‘gravitational constant’, α and β are user-chosen parameters, and
U is the Heaviside step function U : R −→ R, where U(x) = 1 for x ≥ 0 and
U(x) = 0 otherwise (see Chap. 13, Fig. 13.5). Then the total acceleration of
probe i at time t is the vector sum

ai(t) =

Np∑
j=1,j �=i

aij(t) (23.9)

of the accelerations due to each other probe in the space. This gives the new
position at the next time step as xi(t+ 1) = xi(t) + vi(t)Δt+ 1

2a
i(t)(Δt)2.

The rationale given in [197] for using fitness differences M j(t) − M i(t),
rather than the actual fitness values, is “to avoid excessive gravitational ‘pull’
by other very close probes”. However, this use of the difference M j(t)−M i(t)
is physically unrealistic, and can lead to negative masses and thus repulsive
forces: to avoid this possibility, the Heaviside step function is used. In Newto-
nian gravity, the values of the exponents α and β are 1 and 3 respectively, but
the user of CFO may choose to modify these and so depart from a physically
realistic setup. CFO’s convergence is found to be sensitive to the exponent val-
ues, and the values α = β = 2 are used in [197], because they give reasonable
performance.

The main steps of the CFO algorithm are given in Algorithm 23.3. In the
algorithm, the time step Δt is taken to be 1 for simplicity, and all initial
velocities are set to 0. Initially, the probes are uniformly distributed across
the search space, though this may be adjusted based on domain knowledge.
During the run, any errant probe whose velocity takes it outside the search
space is returned to a location within the search space.

In [197], CFO is compared to other standard approaches on a number
of test problems. It is found to give similar quality of solution, but requires
fewer function evaluations. CFO may be susceptible to becoming trapped in a
local optimum, but adaptive approaches may address this. In [527], evidence
is presented that CFO does not perform well with random initialisation, and
the population size and initial population have a significant effect on the
results obtained. As the difficulty and dimension of the problem increases,
CFO will be more sensitive to the population size and initialisation criteria:
to obtain acceptable results, CFO must start with a large population size.
The implication is that to set a suitable population size, we must either have
some a priori information about the problem difficulty, or carry out a number
of trial runs with different population sizes.

23.4 Physical Field Inspired Algorithms 431

Algorithm 23.3: CFO Algorithm

t := 0;

Initialise the probes’ position vectors at time 0, x1(0), . . . , xNp(0), to a
uniform or similar distribution over the search space;
for each probe i ∈ {1, . . . , Np} do

Set initial velocity vi(0) := 0;

Set initial acceleration ai(0) := 0;

Compute initial fitness M i(0) = f(xi(0));

end

repeat

for each probe i ∈ {1, . . . , Np} do
Compute new probe position
xi(t+ 1) = xi(t) + vi(t)Δt+ 1

2
ai(t)(Δt)2;

if xi(t+ 1) is outside the search space X then

Adjust xi(t+ 1) to relocate probe i within X;
end

Update fitness M i(t+ 1) = f(xi(t+ 1));

Set velocity vi(t+ 1) = xi(t+ 1)− xi(t);

Compute acceleration ai(t+ 1) using Eqs. (23.8) and (23.9);

end

until t > maximum time or other terminating condition is met ;

23.4.2 Gravitational Search Algorithm and Variants

The Gravitational Search Algorithm (GSA) was introduced in [527] and a
binary-valued variant, Binary Gravitational Search Algorithm (BGSA), was
presented in [528]. These are stochastic algorithms inspired by Newton’s law
of gravitational attraction.

GSA works on an isolated system ofN masses or agents, which are particles
in the search space Rn, and attract each other by the gravitational force:
thus, masses directly communicate. Each particle has four attributes: position,
inertial mass, active gravitational mass, and passive gravitational mass (all
masses are taken to be equal, by the Principles of Equivalence from General
Relativity). The position xi = (xi

1, . . . , x
i
n) corresponds to a solution of the

problem, and a fitness function determines and adjusts the masses. Heavy
particles correspond to good solutions and move more slowly than lighter ones.
Over time, particles are attracted by the heaviest mass(es), which represents
an optimum solution. Particles obey the following laws:

Law of gravity: Each particle i attracts each other particle j by a gravita-
tional force between the two particles; this force is directly proportional
to the product of their masses and inversely proportional to the Euclidean
distance Rij = ‖xj − xi‖2 between them. (Rij is used instead of the more

432 23 Physically Inspired Computing Algorithms

physically realistic R2
ij , because Rij provides better results in all experi-

ments.)
Law of motion: The acceleration, or (rate of) change in the velocity, of a

particle is equal to the force acting on it divided by its inertial mass.

Suppose there are N particles (agents). The position of each particle i is
written as a function of time, xi = xi(t). At time t, the force acting on mass
i from mass j is defined as follows:

F ij(t) = G(t)
Mi(t)Mj(t)

Rij + ε
(xj(t)− xi(t)) (23.10)

where Mj is the (active) gravitational mass of agent j, Mi is the (passive)
gravitational mass of agent i, G(t) is the gravitational constant at time t, and
ε is a small constant. Then the total force acting on i is:

F i(t) =

N∑
j=1,j �=i

F ij(t) =

N∑
j=1,j �=i

G(t)
Mi(t)Mj(t)

Rij + ε
(xj(t)− xi(t)) (23.11)

To give a stochastic characteristic to GSA, the authors scale each summand
F ij(t) of the total force acting on agent i by a (different) random number rj
drawn from the interval [0, 1]:

F i(t) =
N∑

j=1,j �=i

rjF
ij(t) =

N∑
j=1,j �=i

rjG(t)
Mi(t)Mj(t)

Rij + ε
(xj(t)− xi(t)) (23.12)

Hence, by Newton’s laws, the acceleration of agent i at time t is ai(t) =
F i(t)/Mi(t). The new velocity of agent i is then defined as its current velocity
plus its acceleration. The current velocity is multiplied by a random number
ri in the interval [0, 1] to give a randomised characteristic to the search. This
gives the position and velocity of i as follows:

vi(t+ 1) = riv
i(t) + ai(t); xi(t+ 1) = xi(t) + vi(t). (23.13)

The gravitational constant, G = G(G0, t), is initialised to G0 and is reduced
over time to control the search accuracy. This is analogous to the temperature
parameter in SA.

A heavier mass is interpreted as a fitter and so more efficient agent. Thus,
better agents have higher gravitational attractions and move more slowly. The
masses are calculated using the fitness, as follows:

mi(t) =
fi(t)− worst(t)

best(t)− worst(t)
; Mi(t) =

mi(t)∑N
j=1 mj(t)

(23.14)

where fi(t) is the fitness value of agent i at time t, and worst(t) and best(t)
are, respectively, the worst and best fitness of any agent at time t.

23.4 Physical Field Inspired Algorithms 433

To enhance performance, GSA follows the approach that towards the be-
ginning of the run, exploration should predominate, but as the run proceeds,
the effort spent on exploration must decrease, and that on exploitation must
increase. GSA controls the exploration-exploitation balance by allowing only
the top |Kbest| agents to attract the others, where Kbest is an ordered set
containing agents ranked in decreasing order of fitness (mass). The set size
|Kbest| is chosen to be a linearly decreasing function of time, with initial value
K0. To begin, all agents gravitationally attract all others, but as time passes,
Kbest decreases in size, and, at the end, only one agent gravitationally attracts
the others. Thus, (23.12) can be written as:

F i(t) =
∑

j∈Kbest,j �=i

rjF
ij(t) (23.15)

The main steps of the Gravitational Search Algorithm are given in Algo-
rithm 23.4.

Algorithm 23.4: Gravitational Search Algorithm

Identify search space;
Perform randomised initialisation;
repeat

Perform fitness evaluation of agents;
for i = 1 to N do

Update G(t), best(t), worst(t) and Mi(t);
Calculate the total force on agent i;
Calculate acceleration and velocity;
Update agent’s position;

end

until terminating condition;

GSA is noted to have the following characteristics [527]:

• higher performing agents have greater mass, so other agents tend to move
towards the best agent(s);

• GSA is a memory-less algorithm;
• distinguishing between gravitational and inertial masses, though nonphys-

ical, allows flexibility in GSA. A bigger inertial mass means less response
to outside forces, a slower motion of the agent in the search space and so
a more precise search. A bigger gravitational mass leads to greater forces
on other agents, allowing faster convergence.

GSA contrasts with PSO [527]:

• In PSO, the direction of agent i is determined using only two best positions,
pbesti and gbest. However, in GSA, agent i’s direction is determined using
the overall force applied by all other agents;

434 23 Physically Inspired Computing Algorithms

• In PSO, updating is performed without considering solution quality or dis-
tance between agents, and fitness values are not important. However, in
GSA the force is proportional to the fitness value, and inversely propor-
tional to the distance between solutions, allowing the agents to perceive
the search space around themselves through the force;

• PSO uses pbesti and gbest as a memory for updating the velocity. However,
GSA is memory-less.

GSA also contrasts with CFO [527]:

• In both algorithms, the positions and accelerations of the probes (agents)
are inspired by particle motion in a gravitational field, but the precise
formulations differ;

• CFO is deterministic while GSA is stochastic;
• GSA’s and CFO’s expressions for acceleration, motion and calculation of

masses differ;
• The gravitational parameter G varies in GSA but is constant in CFO.

GSA is found to perform well compared to PSO and a real-valued GA
(RGA), particularly on unimodal high-dimensional functions and multimodal
functions [527].

The Binary Gravitational Search Algorithm (BGSA)

The Binary Gravitational Search Algorithm (BGSA) [528] was developed be-
cause it is natural to encode solutions as binary vectors in many problem
types, such as feature selection, dimensionality reduction, data mining, unit
commitment, and cell formation. The binary search space is considered as a
hypercube ⊆ {0, 1}n: in this space, an agent may move to other corners of the
hypercube by flipping various bits.

In the binary version of GSA, moving through a dimension means that
the corresponding variable changes from 0 to 1 or vice versa. In BGSA, the
updating procedures for force, acceleration and velocity are as for GSA, with
the difference that in BGSA, position updating means switching between val-
ues 0 and 1. BGSA updates the velocity as in (23.13), and sets the current bit
of the new position to be either 1 or 0 with a probability dependent on this
velocity.

BGSA uses the principles that:

• a large absolute value of velocity means a nonoptimal position, so we
must provide a high probability of changing the position of the agent with
respect to its previous position (from 1 to 0 or vice versa);

• a small absolute value of the velocity indicates that the current position
of the agent is close to optimal, so we must provide a small probability
of changing the position. The agent’s position is good and should not be
changed.

23.4 Physical Field Inspired Algorithms 435

Thus, we require a transfer function S : R −→ [0, 1] to map each velocity
component (dimension) d to the probability of updating position, with the
properties that for small |vid|, the probability of changing xi

d must be ≈ 0,
and for a large |vid|, the probability of changing xi

d must be high. Thus, S(vid)
must increase with increasing |vid|. To achieve this, S is defined as the absolute
value of tanh, the hyperbolic tangent:7

S(vid) = | tanh(vid)| (23.16)

Once S(vid) is computed, a random number r ∈ [0, 1] is generated. Then the
agent moves as follows:

xi
d(t+ 1) =

{
xi
d(t) if r ≥ S(vid(t+ 1))

1− xi
d(t) otherwise.

(23.17)

The second case is simply complementing the bit xi
d(t). To achieve a good

rate of convergence, the velocity |vid| is limited to at most vmax, with vmax

chosen to be 6, based on experimental work.
On a suite of 25 test functions, BGSA obtains competitive results com-

pared to a GA and Binary PSO [528].

23.4.3 Differences Among Physical Field-Inspired Algorithms

In [527] GSA explicitly avoids using a ‘square-law’ field, where the force de-
creases as the square of the distance, as occurs in nature in the electromag-
netic and gravitational forces. Instead, it uses a field where the force decreases
linearly with distance, because this is found to give better performance, ex-
perimentally. Furthermore, in [527], the difference of the position vectors of
the two bodies is divided by its own norm: thus, it is normalised to a unit
vector in that direction, so the magnitude of the force only depends on the
masses of the two particles. In addition, only the k particles of greatest mass
are considered, which is an arbitrary choice and departs from physical be-
haviour. Similarly, in sample applications, [197] chose to emphasise the role
of mass (by raising the mass difference to the power α = 2 rather than 1)
and de-emphasise the role of separation (by raising the norm of the difference
of position vectors to the power β = 2 rather than 3 as is physically more
realistic).

Thus, the degree of agreement with nature of CFO, GSA and related
algorithms is much looser than that of CMD (Sect. 23.3) or the approaches
of [546], each of which uses a ‘square-law’ of the separation distance.

7Note that tanh is also used as a squashing function in multilayer perceptrons:
see Chap. 13, Fig. 13.4.

436 23 Physically Inspired Computing Algorithms

23.5 Extremal Optimisation Algorithm

Extremal Optimisation (EO) is an optimisation (meta)heuristic which uses lo-
cal search. It is based on the statistical physics idea of self-organised criticality
(SOC), in particular the Bak-Sneppen model [23, 24]. This idea describes a
class of dynamical systems that have a critical point as an attractor. This
class consists of nonequilibrium systems which evolve by way of sudden large
changes (‘avalanches’). This use of ideas from nonequilibrium physics marks
this approach as distinctly different from equilibrium physics approaches such
as SA and SQA. The Bak-Sneppen model of SOC has been applied to such di-
verse phenomena as the dynamics of sand piles, natural evolution via punctu-
ated equilibrium (mass extinction events) and earthquakes. In the application
to evolution, a number of species in a given environment are thought of as
coevolving, with the weakest (most poorly adapted) species becoming extinct.
The species are thought of as vertices in a graph, with an edge indicating that
the fitness values of the two vertices connected are dependent on each other
(e.g., the two species may compete for resources in the environment).

Boettcher and Percus [63, 64, 65] initially developed EO to attack combi-
natorial optimisation problems, based on the observation that critical points
exist in NP-complete problems, while there exist many widely dispersed near-
optimum solutions which are separated by barriers, causing hill-climbing algo-
rithms to become trapped. EO attempts (as do SA and SQA) to escape such
local optima. EO outperforms SA on certain graph partitioning problems (for
example, bipartitioning problems) [63]. It has since been applied to (among
other things) general optimisation [66] and spin glasses [411].

EO is an iterative approach that works with a single candidate solution at a
time, unlike population-based approaches. A solution in EO is a configuration
of n components, analogous to the set of species coevolving (interacting) in
a given environment; the components may be thought of as ‘building blocks’
of the solution. The initial candidate solution may be randomly generated, or
may be based on domain knowledge or the result of a previous search process.
EO’s main idea is to make local modifications to the ‘worst’ components.
Thus EO is a perturbative local search. The worst component is replaced by
a randomly selected component, which is accepted whether or not this is a
good move.

Algorithm 23.5 gives an overview of EO (assuming a minimisation objec-
tive function). Here, a configuration (solution) S is made up of n components
(variables) x1, . . . , xn, and 0 ≤ fi ≤ 1 stands for the fitness of variable xi.
C(S) is the cost of S and is usually, though not necessarily, taken to be a
linear function of f1, . . . , fn. NS is the set of neighbours of S (valid moves
from S), as in SA.

Thus, EO uses a fitness measure, but the measure must be applicable
to individual components of the configuration. This requires an appropriate
encoding of the problem. This assignment of varying quality measures to par-
ticular components is a major difference between EO and algorithms such as

23.6 Summary 437

Algorithm 23.5: Extremal Optimisation Algorithm

Generate initial configuration S of n components;
Set Sbest := S;

repeat

for i = 1 to n do

Evaluate fi for each variable xi;
Find j satisfying fj ≤ fi for all i, i.e., xj has the ‘worst fitness’;
Choose S′ ∈ NS such that xj must change;
Set S := S′;
if C(S) < C(Sbest) then

Set Sbest := S;
end

end

until terminating condition;

Return Sbest and C(Sbest);

EAs and ACO. In particular, EAs only ever judge components indirectly, by
evaluating the individual consisting of those components; while EO measures
components directly and is a fine-grained search.

This approach gives a robust hill-climbing-like exploitation behaviour,
with an exploration behaviour similar to multiple-restart search. Overall, so-
lution quality plotted with time shows punctuated equilibrium-like effects,
giving periods of gradual improvement interspersed with large drops in qual-
ity (crashes). These crashes allow the algorithm to escape local optima, and
are an emergent effect of EO’s random modification of the worst component.
In [67], EO is compared to other optimisation metaheuristics such as SA, GAs,
and Tabu Search; and there it is noted that

by persistent selection against the worst fitnesses, EO quickly ap-
proaches near-optimal solutions. Yet, large fluctuations remain at late
runtimes (unlike in SA . . .) to escape deep local minima and to access
new regions in configuration space.

23.6 Summary

This chapter presented an introduction to a number of algorithms which are
inspired by the properties of physical systems. These algorithms illustrate
how physical, as distinct from biological, phenomena can inspire the design
of optimisation algorithms. In addition to algorithms which are solely derived
from a physical inspiration, research has also emerged on a series of hybrid
algorithms which draw loose inspiration from both physical and evolution-
ary processes. In the next chapter (Chap. 24) we introduce the best-known
example of this, the quantum inspired evolutionary algorithm.

24

Quantum Inspired Evolutionary Algorithms

In this chapter we introduce a family of algorithms whose workings draw inspi-
ration from aspects of quantummechanics in order to develop a series of hybrid
quantum evolutionary algorithms. Initially, the chapter provides a short in-
troduction to quantum systems and then describes the design of both hybrid
binary-valued and hybrid real-valued quantum evolutionary algorithms.

It is appropriate to here reiterate that an algorithm designer may choose
the degree of faithfulness to nature of an algorithm, so as to result in an
algorithm which is efficient on the problems to which it is applied, while
not necessarily being a perfect copy of nature. As described in Sect. 22.5.2,
Feynman [189] showed that, because of entanglement, no classical computer
can efficiently simulate quantum systems, as it would need exponential time or
resources to do so. Thus, the degree of inspiration we can take from quantum
mechanics is perforce limited; and all algorithms in this chapter are at best
partial approximations of nature. However, as our criterion of usefulness is
not fidelity to nature but rather effectiveness in problem solving, we discuss
them here: despite their physical incorrectness (particularly in working with
a space of dimension 2n rather than the 2n dimensions of the Hilbert space),
they have given rise to a rich thread in the literature.

24.1 Qubit Representation

In the language of evolutionary computation a system of m qubits (Sect. 22.5.1)
may be referred to as a quantum chromosome, and written as a matrix with
two rows, [

α1 α2 . . . αm

β1 β2 . . . βm

]
, (24.1)

where (for a normalised system) we require that for each i, α2
i + β2

i = 1.
A key point about such quantum systems is that they can compactly convey
information on a large number of possible system states. In classical bit strings,

© Springer-Verlag Berlin Heidelberg 2015
A. Brabazon et al., Natural Computing Algorithms, Natural Computing Series,
DOI 10.1007/978-3-662-43631-8_

439

24

440 24 Quantum Inspired Evolutionary Algorithms

a string of length m can represent 2m possible states; but a quantum space of
m qubits has 2m dimensions (as a complex manifold).

Thus, a single qubit register of length m can simultaneously represent all
possible bit strings of length 2m, e.g., an eight-qubit system can simultane-
ously encode 256 distinct strings.

This suggests that it may be possible to modify standard evolutionary al-
gorithms to work with very few or even a single quantum individual, rather
than having to use a large population of solution encodings. The qubit rep-
resentation can also help to maintain diversity during the search process of
an evolutionary algorithm, due to its capability to represent multiple system
states simultaneously.

The use of a qubit representation also opens up the possibility of creating
hybrid quantum evolutionary algorithms which scale well while also having
good diversity maintenance characteristics.

However, it must be noted that because a classical computer cannot ef-
ficiently simulate entanglement (Sect. 22.5.3), the degree of fidelity of the
algorithms of this chapter to quantum computing algorithms is partial at
best.

24.2 Quantum Inspired Evolutionary Algorithms
(QIEAs)

The application of quantum concepts to design optimisation algorithms is
currently an area of active research interest. For example, quantum in-
spired concepts have been applied to the domains of evolutionary algorithms
[240, 241, 433, 671, 670], grammatical evolution [401], social computing [669],
neurocomputing [208, 363, 635], and immunocomputing [301, 368]. A claimed
benefit of these algorithms is that because they use a quantum inspired rep-
resentation, they can maintain a good balance between exploration and ex-
ploitation. It is also suggested that they offer computational efficiencies as
use of a quantum representation can allow the use of smaller population sizes
than typical evolutionary algorithms. However, as noted above, they are not
true quantum algorithms, cannot simulate entanglement, and must not be
regarded as carrying over all of the abilities of quantum computing, such as
quantum parallelism (Sect. 22.5.3).

This chapter concentrates on two distinct forms of quantum inspired evo-
lutionary algorithms, the first working with binary encodings and the second
working with real-valued encodings. The binary encoding version bears more
fidelity to the quantum metaphor, though neither is completely faithful.

24.3 Binary-Valued QIEA

There are many ways that a quantum system could be defined in order to
encode a set of binary (solution) strings. For example, in the following three-

24.3 Binary-Valued QIEA 441

Natural Computing

Evolutionary
computing

Quantum
computing

Quantum evolutionary
computing

Fig. 24.1. Quantum inspired evolutionary computing

qubit quantum system, the quantum chromosome is defined using the three
pairs of (probability) amplitudes below:[

1√
2

√
3
2

1
2

1√
2

1
2

√
3
2

]
. (24.2)

The squared moduli of these numbers are the probabilities that a qubit will
be observed in a particular eigenstate rather than another. Taking the first
qubit, the occurrence of either state 0 or 1 is equally likely as both α1 and β1

have the same absolute value. From the definition of the three-qubit system,
the (quantum) state of the system is given by:

√
3

4
√

2
|000〉+ 3

4
√

2
|001〉+ 1

4
√

2
|010〉+

√
3

4
√

2
|011〉+

√
3

4
√

2
|100〉+ 3

4
√

2
|101〉+ 1

4
√

2
|110〉+

√
3

4
√

2
|111〉.

(24.3)
For intuition on this point, consider the system state |000〉. The associated
probability amplitude for this state is derived from the probability amplitudes

of the 0 state for each of the three individual qubits: 1√
2
·

√
3
2 · 1

2 =
√
3

4
√
2
.

The associated probability of this state is then
(√

3
4
√
2

)2
= 3

32 . Working

in this way, the associated probabilities of each of the individual states
|000〉, |001〉, |010〉, |011〉, |100〉, |101〉, |110〉, |111〉 are 3

32 ,
9
32 ,

1
32 ,

3
32 ,

3
32 ,

9
32 ,

1
32 ,

3
32

respectively.
Algorithm 24.1 provides an example of a canonical binary QIGA [240].

Initially, the population of quantum chromosomes (which could be of size 1)
is created as

Q(t) = {q1(t), q2(t), . . . , qn(t)},

where n is the population size, and each member of the population consists
of m individual qubits (the superscripts here are just labels, not exponents).
The α and β values for each qubit are set to 1√

2
initially, in order to ensure

442 24 Quantum Inspired Evolutionary Algorithms

Algorithm 24.1: Binary Quantum Inspired Genetic Algorithm

Set t = 0;
Initalise Q(t), the population of quantum chromosome(s);
for j = 1 to n do

Create pj(t) by undertaking an observation of Q(t);
end

Evaluate P (t) and select the best solution from this population;
Store the best solution in B(t);
while t < tmax do

t = t+ 1;
Create P ∗(t) by undertaking observations of Q(t− 1);
Evaluate the population of solutions P ∗(t);
Compare the best solution in P ∗(t) with that of B(t− 1) and store the
better of these in B(t);
Update Q(t) using B(t);

end

that the states 0 and 1 are equally likely for each qubit (i.e., the probability

of either state 0 or 1 is
(

1√
2

)2
= 0.50). If there is domain knowledge that

some states are likely to lead to better results, this can be used to seed the
initial quantum chromosome(s). Once a population of quantum chromosomes
is created, these can be used to create a population

P (t) = {p1(t), p2(t), . . . , pn(t)}

of binary strings (solution encodings) by performing ‘observations’ on the
quantum chromosomes. One way of performing the observation step on qubit i
of the jth individual pj(t) is to draw a random number r ∈ [0, 1]. If r > |αi(t)|2,
the corresponding bit pji (t) in the observed individual pj(t) is assigned state
1; otherwise, it is assigned state 0.

Because of the stochastic nature of the observation step, the QIGA could
be implemented using a single quantum chromosome, where this chromo-
some is observed multiple times in order to generate the population P (t) =
{p1(t), p2(t), . . . , pn(t)}. Alternatively, a small population of quantum chro-
mosomes could be maintained, with each chromosome being observed a fixed
number of times in order to generate P (t).

In the while loop of Algorithm 24.1, an update step is performed on the
quantum chromosome(s). This update step could be performed in a variety
of ways, for example by using pseudogenetic operators, or by using a suitable
quantum gate (see below). How ever the step is undertaken, its essence is that
the quantum chromosome is adjusted so as to make it more likely that the
best solution found so far will be generated in the next iteration of the algo-
rithm. As the optimal solution is approached by the QIGA system, the values
of each element of the quantum chromosome tend towards either 0 or 1, cor-

24.3 Binary-Valued QIEA 443

responding to a high probability that the quantum chromosome will generate
a specific solution vector pj when observed. For example, a quantum chromo-

some

[
1 1 1
0 0 0

]
will generate an observed solution chromosome of [0 0 0] with

probability 1, regardless of the choice of the parameter r in the observation
step.

24.3.1 Diversity Generation in Binary QIEA

Unlike the canonical GA, the binary QIGA does not typically employ distinct
crossover and mutation operators. Instead a single diversity-generation step
is used. There are two common approaches to this, the first drawing greater
inspiration from quantum mechanics than the second. Each is described below.

Quantum Gates

The quantum equivalent of a classical operator on bits is a quantum gate or
evolution (not to be confused with the concept of evolution in Evolutionary Al-
gorithms). It transforms an input to an output, e.g., by a rotation, Hadamard
or CNOT (controlled NOT) gate [576], and operates without measuring the
value of the qubit(s). Thus, it effectively does a parallel computation on all
the qubits at once and gives rise to a new superposition. Since the Hilbert
space of a system of n qubits has finite dimension 2n, an operator on the
space (such as a gate) may be represented by a 2n × 2n matrix. As before,
we require that the matrix be unitary (in particular, self-adjoint), so that the
updated coefficients α′

i, β
′
i for the ith qubit will still satisfy |α′

i|2 + |β′
i|2 = 1.

|0〉

|1〉

−1 1

−1

1

Δθi (αi, βi)

(α′
i, β

′
i)

Fig. 24.2. Quantum rotation gate

444 24 Quantum Inspired Evolutionary Algorithms

This idea of quantum gate has been used successfully in QIEAs. However,
to date, researchers appear to exclusively use real coefficients (as, for exam-
ple, in Fig. 24.2), rather than the complex coefficients arising in Quantum
Mechanics; therefore, a possible extension of these algorithms would be to use
complex coefficients and take absolute values during an observation.

In the mutation step, the intent is to adjust the values on the quantum
chromosome (the quantum probability amplitudes) so that fitter individuals
are more likely to be observed from the quantum chromosome in the next iter-
ation of the algorithm. This adjustment is undertaken using information from
the best-performing individual in the (nonquantum) population and the prob-
ability amplitudes on the quantum chromosome are altered using a quantum
rotation gate as per (24.4).[

α′
i

β′
i

]
=

[
cos(Δθi) − sin(Δθi)
sin(Δθi) cos(Δθi)

] [
αi

βi

]
(24.4)

In order to determine the appropriate value for Δθ so that mutation is steered
towards the best current member of the observed population, a look-up table
is used. One simple way of implementing this is to create a binary chromosome

x, using the current quantum chromosome q. Hence, q =

[
α1 α2 . . . αm

β1 β2 . . . βm

]
and

for each element qi in turn, if α2
i ≤ 0.5, then xi = 0; otherwise xi = 1.

Table 24.1 provides the look-up table for Δθ. The parameter a determines

Table 24.1. A look-up table for Δθ

xi bi Δθ

1 1 0
0 1 a
0 0 0
1 0 −a

the mutation step size. If a bit has the same value in both xi and bi, the
best element, then the quantum chromosome is not altered. To illustrate this,
consider the case where there is a single element in the quantum chromosome

q =

[
0.7
0.3

]
. As α2

1 > 0.5, x1 = 1 and assume b1 = 1. Therefore, Δθ = 0

according to the look-up table. Applying the quantum gate (24.4), the values

for

[
α1

β1

]
remain unchanged, since

[
0.7
0.3

]
=

[
cos(0) − sin(0)
sin(0) cos(0)

] [
0.7
0.3

]
.

Alternatively, if xi > bi, the corresponding value of the quantum chromo-
some is reduced by −a, making the observation of a ‘1’ when looking at the
quantum chromosome less likely in the future. While Table 24.1 illustrates a

simple quantum gate, it does not explicitly consider the quadrant that

[
αi

βi

]
is

24.3 Binary-Valued QIEA 445

in (αi and/or βi could be negative). Therefore, a variant on the above method

for updating the ith qubit value

[
αi

βi

]
is as follows:

[
α′
i

β′
i

]
=

[
cos(ξ(Δθi)) − sin(ξ(Δθi))
sin(ξ(Δθi)) cos(ξ(Δθi))

] [
αi

βi

]
, (24.5)

where ξ(Δθi) = s(αi, βi) ∗Δθi. The terms s(αi, βi) and Δθi are the rotation
direction and the angle respectively. A sample lookup table is illustrated in
Table 24.2.

In order to provide some intuition on the table, consider the case where xi

and bi are 1 and 0 respectively, and the condition f(x) > f(b) is false. If the
qubit is located in the second or the fourth quadrant, the adjustment s(αi, βi)∗
Δθi should be positive in order to increase the probability of occurrence of the
state ‘0’. Conversely, if the qubit is located in the first or the third quadrant,
the adjustment s(αi, βi) ∗ Δθi should be negative in order to increase the
probability of occurrence of the state ‘0’. In cases where xi = bi, the value
of s(αi, βi) ∗Δθi is set to 0. The step size for Δθi is problem-specific and it

Table 24.2. A rotation gate lookup table

xi bi f(x) > f(b) Δθi s(αi, βi)
αiβi > 0 αiβi < 0 αi = 0 βi = 0

0 0 False 0 0 0 0 0
0 0 True 0 0 0 0 0
0 1 False Delta +1 −1 0 ±1
0 1 True Delta −1 +1 ±1 0
1 0 False Delta −1 +1 ±1 0
1 0 True Delta +1 −1 0 ±1
1 1 False 0 0 0 0 0
1 1 True 0 0 0 0 0

controls the speed of convergence of the algorithm. The step size is usually
set to a small value, for example, [240, 648] suggest Δ = 0.01π, although trial
and error may be required to set a good value.

Quantum Mutation

A simpler form of mutation (24.6) and (24.7) which draws more inspiration
from the standard GA mutation operator than from an ‘evolution’ in quantum
systems is defined by [671, 670]:

Qpointer(t) = a ∗Bbest(t) + (1− a) ∗ (1−Bbest(t)) (24.6)

Q(t+ 1) = Qpointer(t) + b ∗ r (24.7)

446 24 Quantum Inspired Evolutionary Algorithms

where Bbest(t) is the best solution found by iteration t and Qpointer(t) is a
temporary quantum chromosome which is used to guide the generation of
Q(t + 1) towards the form of Bbest. The term r is a random number drawn
from a N(0, 1) normal distribution. The parameters a and b control the bal-
ance between exploration and exploitation, with a governing the importance
attached to Bbest(t) and b governing the degree of variance generation, centred
on Qpointer(t). Values of a ∈ [0.1, 0., 5] and b ∈ [0.05, 0.15] are suggested by
[670, 671]. Another simple method for adapting in the quantum chromosome
[670] is as follows:

α(t+ 1) = [2−Bbest(t)] ∗ 0.5 (24.8)

Under this mechanism, the bits in the current best individual will be more
likely to be generated during observation of the quantum chromosome in the
next iteration of the algorithm.

24.4 Real-Valued QIEA

An alternative, real-valued, QIEA methodology was suggested by da Cruz et
al. [126]. Like the binary-valued QIGA, real-valued QIGA maintains a distinc-
tion between a quantum population and an observed population of, in this
case, real-valued solution vectors. However, in this approach, the quantum
populationQ(t) is comprised ofN quantum individuals qi with i = 1, 2, . . . , N ,
where each individual i is comprised of G genes qij with j = 1, 2, . . . , G. Each
of these genes is a pair qij = (pij , σij) of real values where pij and σij respec-
tively represent the mean and the width of a square pulse. Representing a gene
in this manner has a loose parallel with the quantum concept of superposition
of states as a gene is specified by a range of possible values, rather than by a
unique value, and the act of observing a particle (here, periodically sampling
from an associated distribution) can be regarded as a wave function (quantum
state) collapsing to a classical state upon observation. The real-valued QIEA,
assuming that a single quantum chromosome is employed, is outlined in Al-
gorithm 24.2. Note that the population C(t) is maintained between iterations
of the algorithm.

24.4.1 Initialising the Quantum Population

A quantum chromosome, which is observed to give a specific solution vector
of real numbers, is made up of several quantum genes. The number of genes is
determined by the required dimension of the solution vector. At the start of
the algorithm, each quantum gene is initialised by randomly selecting a value
from within the range of allowable values for that dimension. A gene’s width
value is set to the range of allowable values for the dimension. For example, if
the known allowable values for dimension j on the solution vector are [−75, 75]
then qij (dimension j in quantum chromosome i) is initially determined by

24.4 Real-Valued QIEA 447

Algorithm 24.2: Real-Valued Quantum Inspired Genetic Algorithm

Set t = 0;
Initialise the quantum chromosome Q(t);
while t < tmax do

Create the PDFs and corresponding CDFs for each gene locus using the
quantum individual;
Create a temporary population E(t) of K real-valued solution vectors
through a series of ‘observations’ via the CDFs;
if t = 0 then

C(t) = E(t);
else

Let E(t) = outcome of crossover between E(t− 1) and C(t− 1);
Evaluate E(t);
Let C(t) = K best individuals from E(t) ∪ C(t− 1);
Evaluate C(t);

end

With the N best individuals from C(t);
Q(t+ 1) = Output of translate operation on Q(t);
Q(t+ 1) = Output of resize operation on Q(t+ 1);
t = t+ 1;

end

randomly selecting a value from this range, (say) −50. The corresponding
width value will be 150. Hence, qij = (−50, 150). The square pulse need not
be entirely within the allowable range for a dimension when it is initially
created as the algorithm will automatically adjust for this as it executes. The
height of the pulse arising from a gene j in chromosome i is calculated using

hij =
1/σij

N
(24.9)

where N is the number of individuals in the quantum population (of course, N
could be set at 1). This equation ensures that the probability density functions
(PDFs) (see next subsection) used to generate the observed individual solution
vectors will have a total area equal to 1. Figure 24.3 provides an illustration
of a quantum gene where N = 4.

24.4.2 Observing the Quantum Chromosomes

In order to generate a population of real-valued solution vectors, a series of ob-
servations must be undertaken using the population of quantum chromosomes
(individuals). A pseudointerference process between the quantum individuals
is simulated by summing up the square pulse for each individual gene across
all members of the quantum population. This generates a separate probability
density function (PDF) — just the sum of the square pulses — for each gene

448 24 Quantum Inspired Evolutionary Algorithms

-150 -100 -50 0 50 100 150

0.00498

0.00332

0.00166

0.0000

Fig. 24.3. A square pulse, representing a quantum gene, with a width of 150,
centred on −50. The height of the pulse is 1

150
= 0.001666̇.

and (24.9) ensures that the area under this PDF is 1. Hence, the PDF for
gene j on iteration t is:

PDFj(t) =

j∑
i

qij (24.10)

where qij is the square pulse of the jth gene of the ith quantum individual
(of N). To use this information to obtain an observation, the PDF is first
converted into its corresponding Cumulative Distribution Function (CDF):

(24.11)

where Uj and Lj are the upper and lower limits of the probability distribution.
By generating a random number r from the interval (0,1), the CDF can be
used to obtain an observation of a real number x, where x = CDF−1(r).
If the generated value x is outside the allowable real-valued range for that
dimension, the generated value is limited to its allowable boundary value. A
separate PDF and CDF is calculated for each of the G gene positions. Once
these have been calculated, the observation process is iterated to create a
temporary population with K members, denoted E(t).

24.4.3 Crossover Mechanism

The crossover operation takes place between C(t) and the temporary popula-
tion E(t). This step could be operationalised in a variety of ways with [126]
choosing to adopt a variant of uniform crossover. After the K crossover op-
erations have been performed, with the resulting children being copied into
E(t), the best K individuals ∈ C(t− 1) ∪E(t) are copied into C(t).

CDFj(x) =

∫
Lj

PDFj()dt
x

t

24.5 QIEAs and EDAs 449

24.4.4 Updating the Quantum Chromosomes

The N quantum chromosomes are updated using the N best individuals from
C(t) after performing the crossover step. Each quantum gene’s mean value is
altered using:

pij = cij (24.12)

so that the mean value of the jth gene of the ith quantum chromosome is
given by the corresponding jth value of the ith ranked individual in C(t) (the
‘translate’ step in Algorithm 24.2).

The next step is to update the corresponding width value of the jth gene
(the ‘resize’ step in Algorithm 24.2). The objective of this process is to vary the
exploration/exploitation characteristics of the search algorithm, depending
on the feedback from previous iterations. If the search process is continuing
to uncover many new better solutions, then the exploration phase should
be continued by keeping the widths relatively broad. However, if the search
process is not uncovering many new better solutions, the widths are reduced
in order to encourage finer-grained search around already discovered good
regions of the solution space. There are multiple ways this general approach
could be operationalised. For example, [126] suggests use of the 1

5 mutation
rule from Evolutionary Strategies [531] (Sect. 5.1.4), whereby we set:

σij =

⎧⎪⎨
⎪⎩
σijg if φ < 1/5

σij/g if φ > 1/5

σij if φ = 1/5

(24.13)

where σij is the width of the ith quantum chromosome’s jth gene, g is a
constant in the range [0, 1] and φ is the proportion of individuals in the new
population that have improved their fitness.

24.5 QIEAs and EDAs

Although the real-valued QIEA can claim a parallel with the quantum con-
cepts of superposition of states and wave function collapse to a classical state
upon observation (sampling from a gene’s PDF), it draws less inspiration from
quantum mechanics than its binary cousin as it does not use an analogue to
a qubit representation. Also, the real-valued QIEA uses uniform distributions
(which do not arise physically); and it only allows for constructive (not de-
structive) interference: furthermore, that interference is among wave functions
of different individuals.

A key distinction between quantum inspired algorithms and other natu-
rally inspired algorithms such as GA and PSO is that in quantum inspired
algorithms, a probability vector (or a small population of these) rather than
a population of individual solution vectors is manipulated by the algorithm
and used to guide the exploration of the search space.

450 24 Quantum Inspired Evolutionary Algorithms

This approach has similarities to those in binary and continuous estimation
of distribution algorithms (EDAs) (Sect. 4.7). Real-valued QIEAs in particu-
lar are strongly similar in design to univariate continuous EDAs, suggesting
that the canonical real-valued QIEA would struggle in cases where there are
substantial epistatic relationships between variables. There are also similar-
ities between the binary-valued QIEA and binary EDAs (Sect. 4.7) such as
population-based incremental learning (PBIL) [26] and the compact genetic
algorithm (cGA) [252]. However, the mechanisms for generating diversity in
the quantum chromosome, particularly the use of a pseudoquantum gate,
are different from the typical diversity-generating mechanisms used in EDAs.
Readers are referred to [509] for a good discussion of some of the linkages and
differences between EDAs and quantum inspired algorithms.

24.6 Other Quantum Hybrid Algorithms

As already noted, quantum concepts have been applied to a number of differ-
ent families of natural computing algorithms. An illustration of one of these
hybrids, quantum binary PSO, is described now.

Quantum Binary PSO

Two versions of binary PSO, BinPSO and Angle Modulated PSO, were de-
scribed in Sect. 8.6. An alternative version of binary PSO has been proposed
by Yang et al. [669]. This approach draws inspiration from quantum mechan-
ics in that the population of binary particles which encode the solutions is
generated through observations of an underlying quantum particle.

The primary quantum concepts employed are the superposition of states
and the collapse of the quantum state of a particle to a single classical state
via the process of observation. Unlike many applications of quantum concepts
to evolutionary algorithms, two populations of the same size are maintained:
one population of binary encodings (the solutions); and a corresponding pop-
ulation of the same size of quantum particles. The population of quantum
particles is updated from one iteration of the algorithm to the next by ap-
plying a variant of the PSO velocity update equation to the population of
quantum particles. Each of the quantum particles is then observed in turn,
in order to generate a corresponding binary particle whose fitness can be as-
sessed.

The Algorithm

In the algorithm, a population of N quantum particle vectors, each of length
m, is created, defined as follows:

Q(t) = {q1(t), q2(t), . . . , qN(t)}, (24.14)

24.6 Other Quantum Hybrid Algorithms 451

where
qj(t) = (qj1(t), q

j
2(t), . . . , q

j
m(t)), j = 1, 2, . . . , N (24.15)

and qji (t) denotes the probability of the ith bit of the jth particle being 0 at
time t, for each i = 1, 2, . . . ,m, and each j = 1, 2, . . . , N . Therefore, the range
of possible values for each qji (t) is the closed interval [0, 1]. The population of
binary particles is of the same size and dimensionality as the population of
quantum particles; therefore:

X(t) = {x1(t), x2(t), . . . , xN (t)}, (24.16)

where
xj(t) = (xj

1(t), x
j
2(t), . . . , x

j
m(t)) (24.17)

and xj
i (t) ∈ {0, 1} represents the binary value of particle j in position

i corresponding to an observation of the quantum particle qji (t), for each
i = 1, 2, . . . ,m and each j = 1, 2, . . . , N .

After the quantum population has been created, or updated as the al-
gorithm executes, a population of binary-encoded particles is created by ob-
serving the corresponding quantum particle. Hence, an observation of the
first quantum particle is used to generate the first binary particle, etc. The
observation mechanism is as follows. For each qji (t) where i = 1, 2, . . . ,m,
j = 1, 2, . . . , N , generate a random number r in the range [0, 1]. If the random
number is greater than qji (t), then xj

i (t) = 1; otherwise, xj
i (t) = 0.

In order to drive the search process in the population of quantum particles
from one iteration of the algorithm to the next, a variant on the PSO velocity
update step is applied. Initially, anm-dimensional (quantum) particle denoted
as qgbest(t) is calculated using the global best binary particle xgbest (t),

qgbest(t) = αxgbest (t) + β(1 − xgbest(t)) (24.18)

and then qpbest is calculated for each individual member of the quantum pop-
ulation using the xpbest(t) of their associated binary vector:

qpbest(t) = αxpbest (t) + β(1− xpbest (t)) (24.19)

The numbers α, β, where α + β = 1, 0 < α, β < 1, are control parameters
which determine the speed of adaptation towards gbest and pbest. Finally, each
member of the quantum population is updated using:

q(t+ 1) = wq(t) + c1qpbest(t) + c2qgbest(t) (24.20)

where w + c1 + c2 = 1 and 0 < w, c1, c2 < 1. Algorithm 24.3 lists the steps in
the algorithm.

The quantum binary PSO algorithm is a hybrid of quantum and PSO
concepts. Unlike the canonical real-valued PSO algorithm, two populations
are maintained, and the hybrid algorithm replaces the two-step process of
calculating velocity updates and then moving the population of particle, with
a single (quantum) particle update step.

452 24 Quantum Inspired Evolutionary Algorithms

Algorithm 24.3: Quantum Binary Particle Swarm

Set t = 0;
Initialise the populations Q(t) of quantum particles and X(t) of binary
particles;
Evaluate the fitness of each (binary) individual in X(t);
Determine the binary particle with highest fitness, and store as xgbest ;

repeat

t = t+ 1;
Update all individuals in Q(t) using Eqs. (24.18)–(24.20);
Observe each individual in Q(t) in turn to get each individual in X(t);
for each i ∈ {1, . . . , N}, each j ∈ {1, . . . ,m} do

Generate a random number r in the range [0, 1];

if r > qji then

xj
i = 1;

else

xj
i = 0;

end

end

Evaluate fitness of each individual in X(t);
Update xgbest for X(t) and individual xpbests if necessary;

until terminating condition;

24.7 Summary

Quantum effects are a natural phenomenon and, just like evolution, or immune
systems, can serve as an inspiration for the design of computing algorithms.
Thus far, the primary quantum concept ‘borrowed’ in designing quantum
evolutionary algorithms is that of superposition of states. Although this has
produced some interesting results, there is particular opportunity to further
extend the range of quantum effects into hybrid algorithms. For example, it
would be interesting to investigate whether some analogy of local confinement
could be applied to nearby candidate solutions in a space being searched by an
EA. Preservation of locality of reference could possibly protect good building
blocks from damage by inhibiting mutation. A local confinement field could
also enhance local exploration once a rough location had been found for a
global optimum by an algorithm such as SA or an EA.

Part VII

Other Paradigms

25

Plant-Inspired Algorithms

In previous chapters we have introduced a wide array of natural computing
algorithms and have illustrated how these fit into a broad taxonomy of algo-
rithmic families. A recent addition to this taxonomy is a series of algorithms
which are derived from studies of plant behaviours. In this chapter we ini-
tially outline a variety of interesting plant behaviours, several of which offer
potential to inspire the design of computational algorithms. We then describe
an illustrative sample of plant-inspired algorithms.

25.1 Plant Behaviours

Plants represent some 99% of the eukaryotic biomass of the planet and
have been highly successful in colonising many habitats with differing re-
source potential. The success of plants in ‘earning a living’ suggests that they
have evolved robust architectures and problem-solving mechanisms. Typically
plants have a modular architecture (roots, branches, shoots and buds are mod-
ular) which makes them robust to damage. Just like animals or simpler organ-
isms such as bacteria (Chap. 11), plants have evolved multiple problem-solving
mechanisms including complex food foraging mechanisms, environmental-
sensing mechanisms, and reproductive strategies. Although plants do not have
a brain or central nervous system, they are capable of sensing environmen-
tal conditions and taking actions which are ‘adaptive’ in the sense of allowing
them to adjust to changing environmental conditions. Examples of plant adap-
tion to the environment include:

• foraging for light, water and other nutrients,
• an ability to defend against herbivores and other attackers, and the
• ability to ‘remember’ past events.

© Springer-Verlag Berlin Heidelberg 2015
A. Brabazon et al., Natural Computing Algorithms, Natural Computing Series,
DOI 10.1007/978-3-662-43631-8_ 25

455

456 25 Plant-Inspired Algorithms

25.2 Foraging

Plants, unlike animals, can create their own food. Most plants and algae use
photosynthesis to convert carbon dioxide and water into a variety of organic
compounds (particularly carbohydrates) using energy from sunlight, releasing
oxygen as a waste product. The basic equation for photosynthesis is

CO2 +H2O+ sunlight → (CH2O)n +O2, (25.1)

with nitrogen playing an important role in proteins, which help catalyse this
process. Despite the plentiful supply of nitrogen in the atmosphere (N2) plants
cannot directly use nitrogen in this form, and rely on absorbtion of nitrogen
compounds from the soil through their root network for their required supply.

Fig. 25.1. Illustration of plant transpiration

Virtually all of a plant’s water requirement is obtained through its root
network and passes upward from the roots to the leaves, where it evaporates

25.2 Foraging 457

through openings in the leaf surface called stomata. As water vapour diffuses
out of the stomata, CO2 diffuses in. The rate of exchange is some 400:1 (water
to CO2); hence, availability of water resources is a critical factor in determin-
ing plant growth. If a plant is enduring a water drought, its stomata will close
in order to avoid water loss, at the expense of carbohydrate production. The
movement of water and other nutrients from the soil upwards through the
plant is known as transpiration (Fig. 25.1).

Plants have developed a wide variety of mechanisms to ensure that they
can successfully capture the necessary raw materials for food generation, with
their leaves (and stem) capturing sunlight, and their root network capturing
water and other necessary nutrients. Hence we can loosely speak of plants
as ‘foraging’ from their environment, seeking good access to sunlight and to
nutrient-rich soil patches below ground.

25.2.1 Plant Movement and Foraging

One notable aspect of plants is that most are sessile, or fixed in place by their
root network, as a result of an evolutionary decision several hundred million
years ago to gather energy via photosynthesis rather than resource hunting
via movement around their environment [630]. As resource location is unlikely
to be static, even a sessile plant needs to be able to move to some degree in
order to acquire necessary minerals, light and water resources. Plants tend to
grow towards light and take actions such as accelerating the growth of stems or
branches to reacquire light if they are shaded by other plants or objects. Leaves
are placed and positioned by petioles to minimise self-shading, and leaves can
move in response to changing light conditions to face the optimal direction of
light [632]. Plants can change their morphology in response to changes in the
availability of resources [630], with plant growth and development continuing
throughout their lifecycle.

Although we do not usually think of plants as being able to move, this
is largely because plants typically move at much slower rates than animals.
Plants can move in response to a variety of stimuli including:

i. light (phototropism),
ii. gravity (geotropism),
iii. water (hydrotropism), and
iv. touch (thigmotropism).

The movement can be directionally towards the source of stimulation (positive
tropism) or away from it (negative tropism). Plant shoots typically forage for
(seek) light, whereas plant roots have a negative tropism for light. Other stim-
uli that can impact on plant root movements include neighbour competition
for resources and the nature of soil composition in and around the plant’s root
network. One of the earliest formal studies of plant movement in response to
these stimuli was undertaken by Charles Darwin and published in his famous
work The Power of Movement in Plants (1880) [128].

458 25 Plant-Inspired Algorithms

Phototropism

Plants monitor their visible environment continuously. Although it has long
been known that plants respond to light, the mechanism that was responsible
for this was unknown before Darwin’s experiments. His experiments found
that the tips of shoots respond positively to light (specifically to short wave-
length blue light) and the stem bends in order to orientate the plant towards
the light source. Somewhat surprisingly perhaps, plants have a greater number
of distinct photoreceptors than humans (11 in the case of plants and five in
the case of humans) [101], perhaps because of the direct importance of light to
plant survival. In addition to providing energy, plants use information gath-
ered from light as cues for growth, to regulate the timing of their circadian
clock and therefore their internal processes, and to regulate their flowering
process.

Not all plants exhibit the same degree of phototropism, and light foraging
mechanisms evolve in line with the challenges posed by the habitat faced by a
particular plant species [226]. Morphological plasticity such as plant growth or
plant bending is likely to be a high-cost foraging strategy and therefore may
be less common in resource-poor environments. As one example of environ-
mental influences, the majority of turf grasses exhibit low foraging precision,
as the basal meristems of the grasses are too remote from the leaves they sub-
tend to allow fine adjustments in leaf position. In other words, the plant has
poor directional control in attempting to forage for light. However, this plant
architecture confers a strong selective advantage in pasture environments as
it allows for rapid recovery following grazing and trampling by vertebrates,
producing a trade-off between precision in foraging for light and the capacity
to recover from defoliation [226].

Although it is widely known that plants can bend towards light, the process
by which plants move towards light is not immediately obvious. Typically
the bending process involves differential cellular elongation. The elongation
process is stimulated by the hormone auxin. Auxin triggers a chemical reaction
which weakens cell walls, thereby allowing them to elongate. Elongation of
cells on one side of the plant creates unequal growth leading to a bending of
the plant. As auxin levels tend to be higher on the shaded side of the plant,
the plant bends towards light. Plants can also ‘move’ via growth of their stem,
branches and roots.

Geotropism

The root network of a plant also moves, the root tips responding to gravity.
Cells in the root cap contain ball-like structures called statoliths which are
heavier than other contents of cells in the root cap, thereby falling to the
bottom of the cell under the influence of gravity. This allows the plant to
know which way is ‘down’ and thereby guide root growth [101]. The statolith
structures (called statocytes) found in some plant cells near the root tip bear

25.2 Foraging 459

close parallels to similar functioning structures in the human inner ear which
contribute to our balance. The inner ear contains semicircular, fluid-filled
canals which lie at right angles to each other. As we move around sensory
hairs are stimulated as the fluid moves. The fluid vestibules contain otoliths,
small crystalline stones that sink in response to gravity, which also stimulate
the sensory hairs, providing sensory inputs to let us know whether we are
upright or horizontal.

Hydrotropism

Hydrotropism is the response of plant growth to water. Roots are generally
positively hydrotropic, and as the root cap detects water, the root responds
by bending towards the moist soil by means of differential cellular elongation.

Thigmotropism

Many plants display a response to touch. For example, tendrils in climbing
plants such as vines or bindweed, will tend to coil around a supporting object
(with differential cellular elongation taking place on the side opposite the
supporting object leading to coiling behaviour). An interesting consequence
of this mechanism is that the plant is left with more resources for growth as
it does not need to invest as much energy in supportive tissue.

25.2.2 Root Foraging

While the most obvious plant growth occurs above ground, a significant com-
ponent of plant activity takes place out of sight below ground in its root
network. The root network of a plant serves a number of functions including
the provision of structural anchorage for the shoot and branches, in addition
to the capture of water and critical nutrients such as nitrogen and phospho-
rous from the soil. While a wide variety of root system architectures exist,
a common architecture consists of a primary root (or ‘radicle’) with lateral
roots branching off this (Fig. 25.2).

The structure and location of a plant’s root network has direct implica-
tions for its ability to obtain necessary resources. Critical decisions are faced
concerning the direction of root network growth and the level of resource in-
vestment in growth of the root network versus that of the stem and branch
network. Species of plants display diverse root network architectures, some
plants having narrow root networks with low branching angles (therefore fo-
cusing on exploitation of local resources) and other plants exhibiting widely
dispersed root networks (thereby having greater explorative capabilities). In
the same way that plant growth above ground is plastic and responsive to
environmental conditions, root growth varies in response to several factors
including [89]:

460 25 Plant-Inspired Algorithms

Fig. 25.2. Main and lateral roots

i. genetic factors (plants respond differently to environmental cues),
ii. soil conditions, including resource distribution,
iii. plant nutrient requirements, and
iv. the presence (or absence) of neighbouring plants.

We can consider that the root foraging process is a form of ‘search’ but the
nature of this search process is highly complex. As resources are not equally
distributed in the soil, plants will tend to place more root mass into areas
with higher resource concentrations. However, no single foraging strategy is
observed across all plant species. The degree of sensitivity of root placement
in response to resource availability varies by species and it is known that root
placement is also partially stochastic [89].

As plant root networks are simultaneously foraging for several resources
which will likely not all be found in the same place, the root network architec-
ture design problem faced by an individual plant is multifaceted. The current
evidence suggests that the tips of plant roots (the root apical meristem) have
the capability to ‘sense’ water and nutrients and use this information to di-
rect root growth. However we do not yet have a complete understanding of
the root foraging process [89].

Another aspect of root system development is that it takes place in a
complex ecological environment. As already mentioned, nitrogen is important
for plant growth as it plays a pivotal role in metabolic processes for energy
release in plants. In order to access required nitrogen supplies, plants can
form symbiotic relations with soil microorganisms such as bacteria and fungi
wherein the plant obtains nitrogen in exchange for photosynthate.

25.2 Foraging 461

Of course, soil contains many other organisms that can impact on an in-
dividual plant, including pathogens, herbivores and competitors. The latter
case is particularly interesting, with a variety of strategies being adopted by
plant root networks when a neighbouring root network is detected. In some
cases the response is avoidance but in others the response is competitive, with
a plant seeking to increase root growth in the vicinity of neighbouring roots
akin to the territoriality seen in some animal species.

There is evidence that plant roots can distinguish between encounters with
their own roots and alien roots of other plants, and in some cases between
roots of own-species plants and those of alien-species plants [101]. The pre-
cise mechanisms of self-recognition and own-species recognition are poorly
understood but it is thought that self-recognition is mediated internally, with
foreign roots being recognised via messenger molecules in the soil [579]. En-
hanced understanding of these mechanisms could lead to the development of
plant-inspired algorithms for classification.

25.2.3 Predatory Plants

There are a small number of plants that exhibit atypical foraging behaviours.
Two of the best-known examples are the ‘dodder plant’ (or Cuscuta pentag-
ona) and the ‘Venus flytrap’ (or Dionaea).

Dodder Plant

The dodder is unusual as it has no leaves and lacks chlorophyll, which is
necessary for photosynthesis. Therefore, the plant is incapable of generating
its own food supply. Instead this vine-like plant finds and attacks a host plant
by burrowing into its vascular system and draining off the nutrients it requires.
The dodder plant identifies potential targets by detecting volatile chemicals
released by its favoured host targets (particularly the tomato vine) akin to
‘smelling’ the host target [100]. When the dodder’s behaviour is examined
using time-lapse photography, the dodder shoot tip is seen to move in a circular
motion, initially randomly, and then growing and rotating in the direction of
the nearest preferred host.

More generally, plants can release a variety of volatile organic compounds
(VOCs) into the air in response to stimuli including insect attack and other
stressors. Plants can also detect a variety of airborne volatile chemicals and
produce a physiological response, for example, release chemicals to make their
leaves less palatable to attacking herbivores. Whilst these signals can some-
times be detected, and acted upon, by close-by neighbouring plants, the plants
are not communicating or ‘talking to each other’ per se, but rather neighbour-
ing plants can be considered as eavesdropping on chemical messages released
by the stressed plant which are intended for other leaves on the same plant
[100].

462 25 Plant-Inspired Algorithms

Venus Flytrap

Another example of predatory foraging behaviour is provided by the Venus
flytrap which typically lives in nitrogen-depleted areas [205] and which sup-
plements nitrogen resources by capturing and devouring small insects. In the
Venus flytrap, an action potential is generated (action potentials are momen-
tary changes in electrical potential that travel along the surface of a cell with
constant velocity and magnitude) whenever an upper trap hair is bent. For
the trap to close a second action potential must be generated within approx-
imately 40 seconds (corresponding to a second movement of the insect in the
trap). The requirement for the second (or costimulation) signal corresponds
to a form of memory. Other examples of processes akin to memory in plants
have been noted by plant researchers [101].

25.3 Plant-Level Coordination

Like all complex multicellular organisms, plants require a means of coordinat-
ing the activities of cells in different locations. Examples which illustrate in-
traplant coordination include downstream signalling of the availability of pho-
tosynthetic products (carbohydrates) to support plant growth, or upstream
signalling from the root network to the shoot. Studies looking at signaling
have examined how leaf or root damage, or resource stress (insufficient access
to water or light), can promote or retard growth and development elsewhere
in the plant. Leaf shading can result in the development of new branches or
leaves; a shortage of water can result in enhanced root growth in an attempt to
locate new water resources. The coordination of these actions indicate that in-
formation is transmitted from the leaves and roots to other parts of the plant.
A variety of communication processes have been uncovered in plants, includ-
ing chemical messaging, electrical signaling, and communication via volatile
organic compounds. Higher plants possess two key vascular transport systems,
with water and soluble nutrients being transported from root hairs to all parts
of the plant via a transport system called the xylem. A second transport sys-
tem called the phloem carries sugars (photosynthate) from the leaves to other
parts of the plant (including the roots) (Fig. 25.3).

Plant Neurobiology

The ability of plants to ‘communicate internally’ has led to a significant inter-
est in plant signaling mechanisms and in trying to better understand the mech-
anisms by which plants convert environmental information into actions. One
controversial area of this study is called plant neurobiology, which views plants
as information-processing organisms with complex processes of communica-
tion [73]. Plant neurobiologists point to the electrical excitability of plant cells
and also to the presence of several proteins (specifically, neurotransmitter-like

25.3 Plant-Level Coordination 463

Fig. 25.3. Cross-section of plant stem illustrating the vascular cambium (the tissue
that carries water and nutrients throughout the plant). Phloem layers form on the
outer surface and xylem layers form on the inner surface

chemicals) which play a role in animal neuron systems, and suggest that there
are some functional similarities between information processing activities in
plants and animals.

Critics of the plant neurobiology perspective point out that there is no
evidence for the existence of structures such as neurons, synapses or a ‘brain’
in plants [12, 191, 602] whereas other scientists, whilst agreeing with this per-
spective, note that metaphors can still have value in terms of assisting our
understanding of phenomena [630, 631, 633]. Trewavas (2007) [633] comments
that organisms do not necessarily need to have brains to exhibit problem-
solving capabilities, citing the cases of bacterial chemotaxis and the growing
literature on self-organising structures which examines the ability of locally
interacting elements or agents to solve complex problems in an emergent fash-
ion (swarm intelligence), or the ability of complex systems to ‘self-organise’.
Trewavas notes that [633]

This bottom-up approach would seem tailor-made to fit higher plant
organization with its multiple growing points and modular structure.
A ‘small world’ structure is evident in higher plants, consisting of
clumps of locally communicating cells within meristems, coupled via
longer-range simpler communication to the activities of others.

The debate as to whether plants are ‘intelligent’ is a very old one [372] and
it is interesting to note that Darwin himself used a ‘root-brain’ metaphor in
some of his writings [128]

. . . the tip of the root acts like the brain of one of the lower animals, the
brain being seated within the anterior end of the body receiving im-
pressions from the sense organs and directing the several movements.

464 25 Plant-Inspired Algorithms

As commented by [191], “. . . complexity of signaling molecules [mechanism]
does not necessarily imply complexity of message . . . ” so we need to cau-
tion against simplistic assumptions that the existence of complex processes in
plants automatically implies a deep problem solving capability.

25.4 A Taxonomy of Plant-Inspired Algorithms

While there is an active and continuing debate as to the level of cognition in
plants, it is evident that plants have evolved complex sensory and regulatory
systems that allow them to modify their growth and other internal processes
in response to changes in conditions [101]. Until recently, little attention was
paid to the possible utility of plant metaphors for the design of computational
algorithms but the last few years have seen the development of a range of plant
algorithms. Broadly speaking, the majority of these fall into three categories,
algorithms inspired by:

i. plant propagation behaviour,
ii. light foraging behaviour (branching algorithms), and
iii. purported swarm behaviour of plant root networks.

Examples of each of these are discussed in the following sections.

25.5 Plant Propagation Algorithms

Plants have a repertoire of processes by which they propagate themselves,
including seed dispersal and root propagation. Three algorithms which have
been inspired by these processes, the invasive weed algorithm [406], the paddy
field algorithm [519], and the strawberry plant algorithm [548], are discussed
below.

25.5.1 Invasive Weed Optimisation Algorithm

Effective seed dispersal plays an important role in ensuring the survival of
plant species, and in turn this depends on the ability of the plant to propa-
gate its seeds into resource-rich areas. Hence, this process can metaphorically
provide inspiration for the design of optimisation algorithms.

The invasive weed optimisation algorithm (IWO) (pseudocode provided in
Algorithm 25.1), based on the colonisation behaviour of weeds, was proposed
by Mehrabian and Lucas (2006) [406]. The inspiration for the algorithm arose
from the observation that weeds, or more generally, any plant, can effectively
colonise a territory unless their growth is carefully controlled. Two aspects of
this colonising behaviour are that weeds thrive in fertile soil and reproduce
more effectively than their peers in less fertile soil, and the dispersal of seeds
during plant reproduction is stochastic.

The three key components of the algorithm are:

25.5 Plant Propagation Algorithms 465

Algorithm 25.1: Invasive Weed Algorithm [406]

Generate pinitial seeds and disperse them randomly in the search space;
Determine the best solution in the current colony and store this location;
repeat

Each plant in the population produces a quantity of seeds depending on
the quality of its location;
Disperse these new seeds spatially in the search space, giving rise to new
plants;
If maximum number of plants (pmax > pinitial) has been exceeded, reduce
the population size to pmax by eliminating the weakest (least fit) plants,
simulating competition for resources;
Assess the fitness of new plant locations and, if necessary, update the
best location found so far;

until terminating condition;

i. seeding (reproduction),
ii. seed dispersal, and
iii. competition between plants.

Mehrabian and Lucas operationalised these mechanisms in the following way
in the IWO algorithm.

Seed Production

Each plant produces multiple seeds, based on its fitness relative to that of the
other plants in the current colony of weeds. A linear scaling system is used
whereby all plants are guaranteed to produce a minimum number N seeds

min of
seeds, and no plant can produce more than a maximum number N seeds

max of
seeds. The number of seeds produced by an individual plant x in the current
generation is calculated as:

N seeds
x =

fitnessx − colfitnessmin

colfitnessmax − colfitnessmin
(N seeds

max −N seeds
min) +N seeds

min (25.2)

where colfitnessmax and colfitnessmin are the maximum and minimum fitnesses
in the current population, and fitnessx is the fitness of the individual plant x.

Seed Dispersal

While the IWO algorithm employs the notions of fitness and reproduction,
unlike the GA, the IWO does not use genetic operators in the creation of
populational diversity. Exploration of the search space is obtained via a sim-
ulated seed dispersal mechanism. The seeds associated with each plant are
dispersed by generating a random displacement vector and applying this to

466 25 Plant-Inspired Algorithms

the location of their parent plant. The displacement vector has n elements
corresponding to the n dimensions of the search space, and is obtained by
generating n normally distributed random numbers, with a mean of 0 and a
standard deviation calculated using (25.3):

σiter =

(
itermax − itercurr

itermax

)n

(σmax − σmin) + σmin (25.3)

where itercurr is the current algorithm iteration number, itermax is the max-
imum number of iterations, σmax and σmin are maximum and minimum al-
lowable values for the standard deviation, n is a nonlinear modulation index,
and σiter is the standard deviation used in the current iteration in calculating
the seed displacements.

The effect of this formulation is to encourage random seed dispersal around
the location of the parent plant, with decreasing variance over time. This re-
sults in greater seed dispersal in earlier iterations of the algorithm, promoting
exploration of the search space. Later, the balance is tilted towards exploita-
tion as the value of σiter is reduced. The incorporation of the nonlinear mod-
ulation index in (25.3) also tilts the balance from exploration to exploitation
as the algorithm runs.

Depending on the scaling of the search space, the same value of σiter could
be applied when randomly drawing each element of the displacement vec-
tor. Alternatively, differing values of σinitial and σfinal could be set for each
dimension if required.

Competition for Resources

Competition between plants is simulated by placing a population size limit
pmax on the colony. The plant colony starts with a population of size pinitial.
The population increases as new plants grow in subsequent generations. Once
the pmax population limit is reached, parent plants compete with their children
for survival. The parent and child plants are ranked by fitness, with only pmax

plants surviving into the next generation. This mechanism ensures that the
best solution found to date cannot be lost between iterations (elitism).

Performance of the Algorithm

The IWO is a conceptually simple, numerical, non-gradient-based, optimisa-
tion algorithm. So far, due to its novelty, there has been limited investigation
of its effectiveness, scalability and efficiency. Mehrabian and Lucas [406] re-
port GA and PSO-competitive results from the IWO algorithm with settings
of 10 to 20 weeds, maximum and minimum numbers of seeds per plant of 2
and 0 respectively, and a nonlinear modulation index value of 3. Competitive
results for the IWO algorithm are also reported by [36, 407] and [568].

The algorithm requires that several problem-specific parameters be set by
the modeller, including the maximum and minimum number of seeds that a

25.5 Plant Propagation Algorithms 467

plant can produce, the values for σmax, σmin and itermax, and the initial and
the maximum population size. However, the determination of good values
for these parameters is not necessarily a trivial task, particularly in poorly
understood problem environments.

Recent work has extended the application of IWO into clustering where
each individual seed consists of a string of up to n real vectors of dimension
d, corresponding to n cluster centre coordinates (in d-dimensional space Rd)
[376]. Apart from the IWO algorithm, a number of other algorithms which
draw inspiration from seed dispersal behaviour have been proposed, including
the paddy field algorithm.

25.5.2 Paddy Field Algorithm

The paddy field algorithm was first proposed by Premaratne, Samarabandu
and Sidhu (2009) [519]. This algorithm (pseudocode provided in Algorithm
25.2) draws inspiration from aspects of the plant reproduction cycle, concen-
trating on the processes of pollination and seed dispersal.

Given a vector x = (x1, x2, . . . , xn) ∈ Rn, we view it as a location in an n-
dimensional space, and let y = f(x) be the ‘fitness’ or ‘quality’ of that location.
Each seed i therefore has a corresponding location xi, and a corresponding
fitness yi = f(xi). The paddy field algorithm manipulates a population of
these ‘seeds’ in an attempt to find a good solution to the optimisation problem
of interest. The algorithm consists of five stages, sowing, selection, seeding,
pollination, and dispersion [519]. Each of these are described below.

Sowing

An initial population P of p seeds is distributed (sown) at random locations
in the search space.

Selection

The seeds are assumed to grow into plants, and each plant i has an associated
fitness value yi determined by the output of the underlying objective function
when evaluated at the plant’s location. The plants are ranked by fitness, and
the best n plants are then selected to produce seeds.

Seeding

Each plant produces a number of seeds in proportion to its fitness. The fittest
plant produces qmax seeds and the other plants produce varying amounts of
seeds, with the number of seeds produced by plant i calculated using:

si = qmax
yi − yt

ymax − yt
. (25.4)

468 25 Plant-Inspired Algorithms

Here, the term ymax is the fitness of the best plant in the current population,
and yt is the fitness of the lowest ranked plant selected in the previous step.
Although the algorithm describes this step as ‘seeding’, it can more correctly
be considered as the process of growth of flower structures in order to enable
pollination.

Pollination

Only seeds which have been pollinated can become viable and, to determine
this portion, a simulated pollination process is applied, whereby the probabil-
ity that a seed is pollinated depends on the local density of plants around the
seed’s parent plant (as a greater density of plants locally increases chances of
pollination). A radius a is defined, and two plants are considered to be neigh-
bours if the distance between them is less than a (that is, each lies within a
hypersphere of radius a centred on the other). The pollination factor Ui of
plant i (where 0 ≤ Ui ≤ 1) is then calculated using:

Ui = evi/vmax−1 (25.5)

where vi is the number of neighbours of the plant i and vmax is the number
of neighbours of the plant with the largest number of neighbours in the pop-
ulation. The effective number of viable seeds produced by a plant i from the
inital si seeds it produced is therefore:

sviablei = Uisi. (25.6)

Dispersion

The sviablei pollinated seeds are then dispersed from the location of their parent
plant i such that the location of the new plant (grown from the dispersed seed)
is determined using N(xi, σ) where xi is the location of the parent plant and
σ is a user-selected parameter.

The above five steps are iterated until a termination condition is reached.
In summary, the fittest plants give rise to the greatest number of seeds, and
search is intensified around the better regions of the landscape uncovered thus
far. Variants on the paddy field algorithm include [337].

25.5.3 Strawberry Plant Algorithm

Although many plants propagate using seeds, some employ a system of ‘run-
ners’, or horizontal stems which grow outwards from the base of the plant
(Fig. 25.4). At variable distances from the parent plant, if suitable soil condi-
tions are found, new roots will grow from the runner and in turn produce an
offspring clone of the parent plant. An example of this behaviour is provided
by modern strawberry plants which can propagate via seeds and by runners.
This has inspired the development of an optimisation algorithm based on this
phenomenon [548]. The algorithm is based on the following ideas:

25.6 Plant Growth Simulation Algorithm 469

Algorithm 25.2: Paddy Field Algorithm [519]

Generate an initial population P of p plants, each located randomly in the
search space;
Choose values for itermax and n;
Set generation counter iter = 1;
repeat

Calculate fitness yi of each plant i = 1, . . . , p and add this fitness vector
y = (y1, . . . , yp) to the matrix containing the location of all p plants;
Using these fitnesses, sort the population in descending order of fitness
(assuming the objective is to maximise fitness);
for i = 1 to n (the top n plants) do

Generate seeds for each selected plant;
Implement pollination step;
Disperse pollinated seeds;

end

Replace old population with new plants;
Set iter := iter + 1;

until iter = itermax;
Output the best location found;

• healthy plants in good resource locations generate more runners,
• plants in good resource locations tend to send short runners in order to

exploit local resources,
• plants in poorer resource locations tend to send longer runners to search

for better conditions, and
• as the generation of longer runners requires more resource investment,

plants generating these will create relatively few of them.

The algorithm therefore seeks to balance exploration with exploitation, with
increasing local exploration over time as plants concentrate in the locations
with best conditions for growth. Salhi and Fraga (2011) [548] report competi-
tive results from this algorithm when it is applied to a number of real-valued
benchmark optimisation problems. Algorithm 25.3 presents an adapted ver-
sion of the algorithm based on [548].

25.6 Plant Growth Simulation Algorithm

Plants exhibit a considerable degree of phenotypic plasticity which can be
generally described as the ‘response of organisms to environmental conditions
or stimuli’ [455]. One aspect of this is ‘developmental plasticity’, which can be
generally defined as ‘the developmental changes that follow the perception and
integration of environmental information’. The ability of plants to adapt to
changing environmental conditions via direction of shoot, leaf and root growth

470 25 Plant-Inspired Algorithms

Algorithm 25.3: Strawberry Propagation Algorithm (adapted from
[548])

Generate an initial population {p1, . . . , pm} of m plants, each located
randomly in the search space;
Choose values for maxgen and y (see below);
Set generation counter gen = 1;
repeat

Calculate fitness of each plant and store in vector N where the ith

component of N is Ni = fitness(pi), i = 1, . . . ,m;
Sort the components N1, . . . , Nm of N into descending order (assuming
the objective is to maximise fitness);
for i = 1 to m/10: top 10% of plants do

Generate y/i short runners for each plant (y is a user-defined
parameter which defines the intensity of local search around each of
the fitter plants);
if any of the new locations has higher fitness than that of the parent
plant then

Move the parent plant to the new location with the highest
fitness (ri → pi);

else
Discard the new locations; the parent plant stays at its current
location;

end

end

for i = m/10 + 1 to m: indices for remaining plants do
Generate one long runner for each plant not in the top 10% and
select the location of the end-point ri for that runner randomly in the
search space;
if the new location has higher fitness than that of the parent plant
then

Move the parent plant to the new location (ri → pi);
else

Discard the new location; the parent plant stays at its current
location;

end

end

Set gen := gen + 1;

until gen = maxgen;
Output the best location found;

25.6 Plant Growth Simulation Algorithm 471

Fig. 25.4. Stawberry plant with runner stems

provides a rich vein of metaphorical inspiration for the design of optimisation
algorithms based on plant resource foraging behaviours. In this subsection we
describe an algorithm which is inspired by the light foraging process, the plant
growth simulation algorithm (PSGA).

A key aspect of plant growth is that the initial stem of the plant gives
rise over time to branches and leaves as it grows. The location and number
of branches and leaves is (at least in part) a function of the resources in
the plant’s environment. Plants can display different growth patterns above
ground. These can be broadly classified as being either monopodial or sym-
podial. Monopodial (from the Greek words for ‘one’ and ‘foot’) growth occurs
when the plant’s growth is led by the development of its stem. While lateral
branches and leaves can be expressed off the stem, these are subordinate to
the stem, which continues to grow upwards over time. In contrast, sympodial
growth occurs when plant growth is led by the new leader shoots which branch
off the original stem.

The actual process of growth is driven by the production of new cells in
meristem tissue (embryonic undifferentiated cells), which can be found just
below the shoot tip (shoot apical meristem) or at the tips of branches (lateral
meristems) or just inside the root cap in root tips (apical meristems). As the
new cells are produced, the stem, branch or root grows longer.

The Hungarian biologist Aristid Lindenmayer, in studying plant growth,
developed L-systems (Sect. 17.5) to model recursive growth patterns, and a
key item of L-systems is the notion of rewriting, whereby a complex structure
can be generated from a starting ‘seed’ by successively replacing parts of the
growing structure using a set of production or rewriting rules.

Metaphorically, the plant growth process can be considered as being the
exploration of an environment in a search for a good architecture which al-
lows the plant to capture resources effectively. Tong et al. (2005) [625] drew
inspiration from this idea to develop the PGSA. This initial work inspired
a number of follow-on studies and applications of the algorithm, including

472 25 Plant-Inspired Algorithms

[237, 616, 626, 646]. The PGSA constructs a virtual plant growth simulation
in which a simulated plant grows in the search space and attempts to find the
optimal solution (the light source) [626]. The growth of the plant is driven
by a pseudophototropic mechanism whereby the degree of growth of the main
shoot and branches depends on the quality of the solution at various points
on each (a proxy for the level of light). In essence, each branch metaphorically
undertakes a search in a local area of the search space, with the plant’s growth
pattern being biased towards regions which display higher fitness.

25.6.1 The Algorithm

The PGSA takes inspiration from L-systems in terms of growth and branching
system design. New branches are assumed to grow from nodes on the main
stem, or from nodes on previously generated branches. Each new branch is
assumed to have a turning angle of 90◦ (i.e. it grows perpendicularly to its
parent branch) and the definition of the length of the new branch (branching
length) is determined by the nature of the optimisation problem at hand. For
example, in the initial application of the algorithm to an integer programming
problem [625] the branch length was set as 1. The number of new branches
grown from a selected node (corresponding to a tip with meristem cells) in
each iteration of the algorithm is 2n, where n is the dimensionality of the
search space. Therefore, starting from a seed point (the initial solution), the
‘plant’ grows and branches at nodes on the growing plant.

The next issue is how to select a node for branching in each iteration of
the algorithm. This process is loosely based on elements of a morphogenetic
model of plant development in which the concentration of growth hormone
(morphactin) at a node determines whether the cells at that node will start to
grow and produce branches. In the design of the optimisation algorithm, the
concentration of the growth hormone at a node corresponds to the relative
fitness of the coordinates of the location of that node for the optimisation
problem of interest. The selection process for choosing the next branching
node, and therefore the next region of the search space to be explored, is
biased towards the location of the nodes of higher fitness. Hence, each node is
a possible solution to the optimisation problem and the best one found during
the simulated growth process is output by the algorithm.⎧⎪⎨

⎪⎩
CMi =

g(B0)−g(BMi)
Δ1

, (i = 1, 2, . . . , k);

Δ1 =
∑k

i=1 g(B0)− g(BMi).

(25.7)

Initially, the plant grows a stem from its root node (denoted B0) and the
stem is assumed to have k nodes which have a better environment (or fitness)
than the root node. The quality of the environment at each node is calculated
using the fitness function g and the morphactin concentration at each node
B (denoted CB) is calculated as the difference between the fitness of the

25.6 Plant Growth Simulation Algorithm 473

root of the plant (denoted by g(B0)) and the fitness of that node i (g(BMi))
(assuming a minimisation problem) divided by the sum of these differences for
all nodes i = 1, 2, . . . , k. Only the k nodes with fitness greater than the root are
considered in the calculation (25.7). The fitness of each node is calculated as
being relative to the root and relative to that of all other nodes. By inspection
of (25.7) the sum of the scaled fitnesses must be 1 (

∑k
i=1 CMi = 1).

To select the node from which the next branch will be grown, the fitnesses
for all nodes are laid out in the range 0 → 1 and a random draw is made from
this interval, with the node corresponding to that interval being selected as
the preferential node from which a branch will be grown in the next iteration
of the algorithm. Assume that there are q nodes on the new branch that have
a better environment than the root node (B0). The ‘originating node’ from
which the branch grew (node 2 in (25.8)) has its morphactin concentration
set to 0 and is ignored for the rest of the algorithm, and the morphactin
concentrations for all nodes on the plant are recalculated using (25.8). The
term Δ1 in (25.8) calculates the sum of the fitnesses of all nodes on the plant’s
stem (omitting node 2, from which the new branch grew) relative to that of
the root node, and Δ2 in (25.8) calculates the sum of the fitnesses of all nodes
on the new branch relative to that of the root node.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CMi =
g(B0)−g(BMi)

Δ1+Δ2
, (i = 1, 3, . . . , k)

Cmj =
g(B0)−g(Bmj)

Δ1+Δ2
, (j = 1, 2, . . . , q)

Δ1 =
∑k

i=1,i�=2(g(B0)− g(BMi))

Δ2 =
∑q

j=1(g(B0)− g(Bmj))

(25.8)

As before, the sum of the scaled fitnesses must be 1 (
∑k

i=1,i�=2 CMi +∑q
j=1 Cmj = 1). The branching process iterates until a preset terminating

number of branching iterations is reached.
In summary, the algorithm traverses a search space by implementing a

search process which is loosely modelled on plant growth mechanisms. The
plant covers a region of the search space, with the nodes on the plant rep-
resenting possible solutions to the problem, and the value g(Bi) being the
objective function value at a node i. The algorithm biases its search process
towards the regions of higher fitness (exploitation) whilst maintaining some
explorative capability.

While competitive results have been reported by a number of studies us-
ing the algorithm, one aspect of the algorithm that has received less attention
thus far is its computational efficiency. As each new branch is added, the mor-
phactin concentrations for all nodes must be recalculated as they depend on
relative measures (the fitness values need not be recalculated). Implementa-
tion of the algorithm also requires the definition of problem-specific branch

474 25 Plant-Inspired Algorithms

lengths and the implementation of a mechanism to determine the number and
placement of nodes on the main stem and subsequent branches.

Algorithm 25.4: Plant Growth Simulation Algorithm (adapted from
[625])

Choose values for maxgen and branch length;
Define a mechanism for node placement on the stem and subsequent
branches;
Set generation counter gen = 1;
Generate an initial root at location B0;
Define node locations on stem;
Calculate fitness of each node on stem using g(Bi) and store location of
highest-fitness node;
Calculate morphactin concentration at each node using (25.7);
repeat

Select branching node (stochastically but biased by concentration);
Add 2n lateral branches at this node;
Calculate fitness of new nodes on added branches;
If any of these locations have higher fitness than best found to date,
replace best location;
Update morphactin concentrations at each node on the plant using (25.8);
Set gen := gen + 1;

until gen = maxgen;
Output the best location found;

25.6.2 Variants on the Plant Growth Simulation Algorithm

There are many ways to operationalise the growth and phototropic mecha-
nisms in the PGSA and each choice gives rise to an optimisation algorithm
with different characteristics. A variable branch growth mechanism is imple-
mented by [680] with the rate of growth of an individual branch in each iter-
ation being determined by its level of photosynthesis activity, which in turn
is determined by the light intensity on the branch (proxied by its fitness) and
its rate of respiration. The higher the rate of simulated photosynthesis in the
branch, the faster its rate of growth. In this version of the algorithm, branches
also move in the search space towards increasing light intensity, simulating a
‘bending to light’. The effect of the two mechanisms is to promote greater
exploitation of higher-fitness regions of the search space.

A more complex set of growth and branching behaviours are adopted by
[90]. In this variant of the PGSA, the growth and branching behaviour at
nodes depends on their relative fitness, with sympodial branching occurring if
a node is of high fitness relative to other nodes on the plant (i.e., the stem or

25.7 Root-Swarm Behaviour 475

branch elongates from the node in the current direction of the stem/branch,
and child branches are grown from the node in a lateral direction), monopodial
branching occurring if the node is of moderate fitness (i.e., the current stem or
branch is extended in its current direction). If a node is of low relative fitness,
no growth or branching occurs at the node. This approach allows for more
intensive search via branching around the higher-fitness points, growth out
of moderate fitness regions for branches of moderate fitness and no growth
or branching at low fitness nodes. The differential branching mechanism is
supplemented by a simulated leaf growth process, whereby the region around
the end points of new branches is searched using a local search algorithm
(simulating leaf growth around the branch end point, with the location of the
highest fitness point in this region (denoted a ‘leaf point’) being recorded.

25.7 Root-Swarm Behaviour

As described in Sect. 25.2.2, plant roots forage for nutrients in a complex
and sometimes hostile underground environment. While each root acquires
environmental information locally to itself, an open question is whether (and
to what extent) the information gathered by each root is processed in any
collective sense. When we ponder the richness of root network structures, for
example Dittmer (1937) estimated that a winter rye plant possessed some
13.8 million roots / root hairs [161], this raises the question as to whether
root networks bear functional similarity to an integrated sensor array.

Baluska, Lev-Yadun and Mancuso (2010) [28] describe three possible com-
munication channels between root tips, namely:

i. secreted chemicals and released volatiles,
ii. electrical fields, and
iii. vertical signaling within the root (upwards).

The first two of these channels embed stigmergic communication (Chap. 9).
While each of these mechanisms are plausible, the degree to which each is used
and the degree to which signals from each mechanism can spread across a root
network and interact with each other is not known. It is known that the root
apex (tip) plays a critical role in directional growth decisions of a root and
that most of the environmental sensing of the root also takes place here [579].
However, the relatively low computational capacity of a plant cell makes it
difficult to envisage that any complex information-processing is taking place
in isolation in individual roots.

A number of authors, including [28], have drawn a parallel between root
systems and models of swarm intelligence, noting that each typically consist of
relatively simple agents, with local sensing capabilities, which solve complex
problems as a result of information dissemination between the agents. These
complex problems include [28]

476 25 Plant-Inspired Algorithms

where to grow, whether to grow at all, to fight or retreat in face of
competitive root systems, whether to enter into symbiotic relation-
ships with mycorrhiza fungi and Rhizobium bacteria

25.7.1 Modelling Root Growth in Real Plants

A number of studies have attempted to apply a root-swarm metaphor in
differing ways. Ciszack et al. (2012) [111] applied a swarm model in order to
simulate the real-world growth behaviour of a root network. The developed
model simulates the growth of a population of plants growing from initial
‘seeds’ (each seed growing at slightly different rates) in order to determine the
behaviour of the root network of the entire population.

A simplifying assumption was made in the model that each plant (seed)
produces a single main root, and each root tip is conceptualised as a ‘particle’
moving in an environment where the associated root length is the temporal
history of that particle’s movement or ‘growth’. Each particle has a position
and a velocity, and a series of simple rules are defined to govern the interactions
of roots with each other. These interactions can occur anywhere along the
length of the root and they include dynamics of spatial repulsion, attraction
and heading alignment between roots from individual plants.

The key findings from the simulation were that the developed model could
produce root growth patterns which were qualitatively similar to those ob-
served in the real-world growth of root networks for maize seeds, producing
realistic-looking root networks which exhibited trajectory alignment and root
clustering behaviours as seen in nature. In contrast, control results from a ran-
dom growth control model did not produce realistic-looking root networks.

25.7.2 Applying the Root-Swarm Metaphor for Optimisation

The results of [111] do not necessarily imply that plant root networks actually
engage in swarm-like behaviour. However, the work does indicate that it would
be interesting to investigate the potential for the development of robust swarm
optimisation algorithms, whose workings are loosely inspired by plant root
mechanisms, even if the mechanisms are as yet imperfectly understood. Simoes
et al. (2011) [579] take up this idea and observe that a root system can be
considered as attempting to explore an unknown environment or, in other
words, as searching for a solution to a complex multiobjective optimisation
problem. The study develops a swarm system based on simple root agents and
applies this as a decentralised control system for a swarm of robots performing
a collective exploration task.

Unlike ant pheromone pathways, it is ‘expensive’ and difficult for a plant to
change its root network architecture and this raises the question as to what
types of problems might be best suited to root inspired swarm algorithms.
An interesting conjecture in [579] is that ant systems may be better suited

25.8 Summary 477

for decision-making in dynamically changing environments whereas root in-
spired algorithms may be better suited for collective decision-making under
conditions of uncertainty.

25.8 Summary

Despite the vast array of plants and associated plant behaviours which are
exhibited in the natural world, little inspiration has been taken from these
mechanisms, as yet, for the design of computational algorithms. Most of the
algorithms developed thus far are relatively recent in design and further work
is required in order to assess their utility and to assess more fully whether
they represent truly novel problem-solving mechanisms or whether they are
qualitatively similar to existing natural computing algorithms. Given the lack
of research in this area to date, there is rich potential for future work.

26

Chemically Inspired Algorithms

An as yet relatively under-explored area of natural computing is the use of
chemical phenomena as a source of inspiration for the design of computational
algorithms. Of course, chemical processes play a significant role in many of
the phenomena already described in this book, including (for example) evolu-
tionary processes and the workings of the natural immune system. However,
so far, chemical aspects of these processes have been largely ignored in the
design of computational algorithms. In this chapter, we initially provide a
short primer on some concepts from chemistry and then — using these — de-
scribe a number of optimisation algorithms loosely inspired by the processes
of chemical reactions.

26.1 A Brief Chemistry Primer

Chemistry studies the way in which atoms of elements combine to produce
molecules, and the properties of such molecules. We now explain these terms.

An element is a pure chemically distinct substance (species of matter);
examples include hydrogen (chemical symbol H), carbon (C), oxygen (O),
gold (Au) and plutonium (Pu). An atom is the smallest chemically indivisible
unit of an element, and has a particular number of protons in its nucleus (its
atomic number) and when isolated and nonionised has the same number of
electrons in shells about the nucleus. Thus, an element is characterised by its
atomic number. For example, hydrogen has atomic number 1, while carbon
has atomic number 6.

Chemistry is interested in how the electron shells of atoms interact, but
not the nuclei; thus, there may exist different isotopes of an element having
different numbers of neutrons in the nucleus, such as Carbon-12, 12C, and
Carbon-14, 14C, but chemically they are the same. Thus, an atom has a type
(the element it is part of, characterised by its atomic number), mass, effective
radius, charge (normally uncharged), position, and momentum.

© Springer-Verlag Berlin Heidelberg 2015
A. Brabazon et al., Natural Computing Algorithms, Natural Computing Series,
DOI 10.1007/978-3-662-43631-8_

479

26

480 26 Chemically Inspired Algorithms

Amolecule is a chemically stable connected group of atoms. Some elements
occur naturally as individual atoms, e.g., helium; but most occur as molecules
of two or more atoms, e.g., hydrogen, which occurs as a molecule of two atoms,
H2, as does oxygen, O2. A compound is a chemical substance made up of two
or more elements; examples include water, H2O, methane, CH4, etc.

Chemically, a molecule is made up of a set of atoms connected by bonds: a
bond is created when one or more electrons are shared among several atoms,
allowing the electrons to fill lower energy states and so produce a more stable
structure — the molecule — than isolated atoms. The valency of an element
is the number of electrons an atom of it can provide to form bonds with other
atoms. There is often a distinction made between covalent and ionic bonds,
but this is somewhat arbitrary and is loosely based on the distribution of the
time the electrons spend about the different atoms. In a covalent bond it is
roughly even, while in an ionic bond it is more uneven, leading to one atom or
group of atoms having an effective negative charge (negative ion) and another
group having an effective positive charge (positive ion). A bond does not have
to be between two atoms, though the standard network diagrams of molecules
may make this appear to be so. For example, in benzene (C6H6), each C atom
has valency 4 and each H atom has valency 1; the six C atoms are arranged
in a ring, each C having an associated H atom; of the four electrons each C
atom can provide for bonding, one is shared with its associated H atom, one
with each of its two C neighbours, and the remaining fourth electron is shared
among all six C atoms (the six shared electrons are delocalised, forming two π
rings). Another example of electron delocalisation is any metal: the outermost
electrons may be viewed as being shared by all atoms in the piece of metal.

A molecule is characterised by the number and types of atom (elements) to-
gether with the interatomic bond lengths, angles, and torsions. Two molecules
are considered to be distinct when they contain different elements, numbers of
atoms, bond length, angle, or torsion; even if all of these are the same, mirror
images of molecules are considered to be distinct.1 A molecule viewed as a
particle also has physical attributes such as charge, position, momentum and
energy.

In a chemical reaction, reactants (input species to the reaction) chemically
react to form products (output species of a reaction) by the creation of bonds.
The rate of the reaction depends on the ambient temperature, typically dou-
bling for every 10 degree increase in temperature. Generally, reactants are not
completely converted to products, but an equilibrium is reached where the rel-
ative concentrations of chemical species depend on the initial concentrations
and ambient temperature. The kinds of reaction possible and the species of
products formed depend not only on the reactants but on what combinations

1In organic chemistry, the basis for life, molecules of the same type generally
have the same chirality or ‘handedness’; in the case of biologically active molecules,
for example, amino acids are almost always D (dexterous or right-handed) while
sugars are L (left-handed).

26.2 Chemically Inspired Algorithms 481

are energetically feasible: molecules must obey valency and other combination
rules.

Reactions are traditionally denoted by A+B → C or even A+B ↔ C or
A+B ⇔ C to indicate that reactions rarely use up 100% of the reactants, but
that to a small extent the products may react in reverse to give the reactants.

As described earlier, by equipartition of energy, physical systems such as
chemical reactions seek to minimise their free energy: the particular mecha-
nism here is the settling of electrons into lower energy states than they could
achieve in isolated atoms, the throwing off of excess energy, and the resulting
increased stability of the molecule. Thus, there is potential in principle to use
minimisation of energy during chemical reactions as a proxy for optimisation.

26.2 Chemically Inspired Algorithms

This idea of energy minimisation during chemical reactions is implemented
in chemical reaction optimisation (CRO), developed in a series of papers by
Lam, Li and collaborators, beginning with [356]. It is the main topic of this
chapter.

More recently, another chemically inspired algorithm appeared [9, 10],
which uses chemical inspiration in a somewhat different way. We treat this
briefly in Sect. 26.2.2.

26.2.1 Chemical Reaction Optimisation (CRO)

Chemical reaction optimisation (CRO) is an optimisation algorithm deriv-
ing inspiration from some principles of chemical reactions. The development
herein largely follows that of [356], the originators of CRO. Many of the con-
cepts from the previous chapters on physically inspired computing (especially
Chap. 22), such as potential energy and kinetic energy, are used here also.

In CRO, a molecule ω represents a candidate solution through its internal
‘molecular structure’: this incorporates both the molecule’s state of motion
and its chemical structure. The particular molecular structure is problem-
specific, in that the structure must be able to express a feasible solution to
the problem. For example, if the feasible solution set is the set of n-dimensional
vectors comprising positive real numbers Rn

+, then any vector with n elements
whose values are positive real numbers is a valid molecular structure, and
no valid molecular structure can contain numbers with nonpositive values.
A change in molecular structure is equivalent to moving to another feasible
solution [356].

In the kind of chemical reaction process modelled by CRO, the molecules
are viewed as being in a gaseous state, enclosed in a walled container. Each
molecule possesses both potential energy (PE) — associated with its molec-
ular structure — and kinetic energy (KE) — associated with its motion. The
algorithm manipulates molecules by a series of ‘collisions’ which may give

482 26 Chemically Inspired Algorithms

rise to ‘reactions’, modifying both the molecular structure and potential and
kinetic energy values. It improves the best-so-far solution, with the aim of
optimisation. Specifically, CRO loosely mimics the way molecules interact on
a microscopic level:

• physically: by collisions with a container wall or each other, only affect-
ing physical properties such as energy; the originators of CRO call these
collisions ‘ineffective’; and

• chemically: where new products (output species of a reaction) may be
chemically formed from the reactants (input species to the reaction); we
call these collisions ‘(chemically) effective’.

Although in a real chemical reaction, molecules cannot collide or react unless
they are in close physical proximity, CRO ignores physical locations: they have
no meaning in the algorithm. Any members of the population of molecules
may react together.

26.2.2 Artificial Chemical Reaction Optimisation Algorithm
(ACROA)

The artificial chemical reaction optimisation algorithm (ACROA) was in-
troduced in [9] and applications developed in [10]. In ACROA, atoms and
molecules may move and collide continuously in a viscous medium within a
two-dimensional bounded space. Time passes in discrete steps. The algorithm
can be thought of as a simulation of reactants in a vessel of fixed volume. The
vessel is thought of as containing a spatially uniform mixture of N species
R1, . . . , RN of chemical reactants interacting by way of M specified chemi-
cal reactions. The way the reactants for ACROA are encoded depends on the
particular problem of interest: binary, real, string encoding, etc. The encoding
scheme influences the formation of reaction rules, which define the interaction
among reactants which may lead to production of a new product.

Having defined the objective function and encoding, ACROA begins by
initialisation of the algorithm parameterNreac, denoting the number of species
of reactant. The initial state is a set of Nreac initial reactants in solution. Over
time, reactants are consumed and produced by chemical reactions; at each
time step, reactants are updated and the termination criteria checked. The
ACROA algorithm terminates when it reaches a state when no more reactions
can occur: this is termed an ‘inert solution’.

Reactants are selected probabilistically depending on their potentials and
concentrations in the solution. The product of one reaction may be a reactant
of other reactions. There are two main types of reaction:

Consecutive: consecutive reactions occur in serial (one after the other, for
example, A+B + C ↔ AB + C ↔ ABC ↔ A+BC)

Competing: competing reactions occur in parallel, and which occurs and to
what degree depends on a number of conditions.

26.3 The CRO Algorithm 483

For simplicity, there is an equal probability for monomolecular or bimolecular
reactions and their variants. The kind of reaction that can occur depends on
the type:

Monomolecular : possible reaction types areDecomposition and Redox (Reduction-
Oxidation);

Bimolecular : possible reaction types are Decomposition, Redox (Reduction-
Oxidation) and Synthesis.

In each case, the concept of enthalpy (a measure of total energy of a thermody-
namic system, useful for describing energy transfer, as in chemical reactions)
is used to decide if the reaction is reversible.

For further details of how these reaction types (Decomposition, Redox and
Synthesis) are implemented for binary, real and other encodings, and for how
the idea of enthalpy is used, see [9, 10].

In [10], ACROA was applied for classification rule discovery in data min-
ing. Here, a database is the search space and ACROA was used as a search
method for mining accurate and comprehensible classification rules. The per-
formance of ACROA was compared to GA on two data sets and was found to
be competitive with GA. The number of reaction species used was 50.

26.3 The CRO Algorithm

26.3.1 Potential and Kinetic Energy and the Buffer

All physical systems including chemical reactions seek to minimise their
free-energy. As with simulated annealing (SA) (Chap. 23.1) and similar ap-
proaches, CRO uses minimisation of energy as a proxy for optimisation: the
potential energy represents the objective function. Kinetic energy is energy
that could be converted to potential energy, and so captures a tolerance to
moving to states of higher potential energy, nominally a bad move, but pos-
sibly beneficial in escaping local minima (again as with SA). To enhance its
physical realism, CRO limits chemical reactions to those that respect conser-
vation of total energy:

PEafter ≤ PEbefore +KEbefore. (26.1)

As well as the molecules’ potential energy and kinetic energy, there is a central
buffer, which may be thought of as the energy associated with the container
walls; this buffer stores energy, and in some reactions, kinetic energy may
be drawn from this buffer if there is insufficient kinetic energy before the
reaction to allow the reaction to take place, for example, in a decomposition
reaction. Since this is usually the case with reactions where the products’
total PE, PEafter, exceeds the reactants’ total PE, PEbefore, that is, with a less
favourable solution after the reaction, we see that this mechanism allows for
‘wrong-way’ moves which — as in SA — may allow the algorithm to escape

484 26 Chemically Inspired Algorithms

local minima. The more total kinetic energy the reactants have, the more
potential energy the products may have, and so the greater is the tolerance
for ‘wrong-way’ moves, and so the greater the ability to escape from local
maxima.

CRO uses a system parameter, rateKE
loss, which controls the maximum per-

centage of kinetic energy lost in a given reaction. This lost energy is transferred
to the central energy buffer, and can be used to support the decomposition
operation (where one molecule breaks into two; see below). Over time, the
molecules’ kinetic energy is transferred to the central buffer, reducing the
amount of kinetic energy available in an individual reaction and so reduc-
ing the tolerance for ‘wrong-way’ moves. This reduces the molecules’ average
kinetic energy as the algorithm proceeds; clearly, this has the same net ef-
fect as temperature reduction in SA. This, along with preferential selection
of lower potential energy molecules, acts to reduce the potential energy of
the molecules over successive iterations. This effect is the driving pressure in
CRO to force convergence to lower potential energy and so to better objective
function values.

Lam and Li (2010) [356] provide a thesaurus between chemical terms in
CRO and mathematical optimisation (algorithmic) meaning, as in Table 26.1

Chemical Meaning Mathematical Meaning

Molecular structure Solution
Potential energy Objective function value
Kinetic energy Measure of tolerance of having worse solutions
Number of hits Current total number of moves
Minimum structure Current optimal solution
Minimum value Current optimal function value
Minimum hit number Number of moves when the current optimal solution is found

Table 26.1. CRO to mathematical optimisation thesaurus

26.3.2 Types of Collision and Reaction

A molecule may collide either:

• with another molecule; or
• with a wall of the container (this is called a unimolecular event).

A collision may be:

• ineffective, leading only to changes in motion of the molecule(s), that is,
only physical changes; or

26.3 The CRO Algorithm 485

• effective,2 leading to a genuine chemical reaction, in which both motion
and chemical constitution are altered, giving new products.

These four possible combinations are modelled as four mechanisms or opera-
tions in CRO, called elementary reactions, for potentially altering the energy
and/or internal molecular structure of one or more molecules:

i. on-wall ineffective collision (unimolecular ineffective),
ii. decomposition (unimolecular chemically effective),
iii. intermolecular ineffective collision (multimolecular ineffective), and
iv. synthesis (multimolecular chemically effective).

CRO allows conversion between potential energy and kinetic energy, within a
molecule or among molecules, via these four elementary reactions (or steps).

Although the overall framework of CRO is fixed, the particular implemen-
tations of these four elementary reactions vary according to the problem type,
although they always have the same high-level logical forms; thus, CRO may
be applied to a range of problem types (see Sect. 26.4) and so is a metaheuris-
tic.

Each elementary reaction may be thought of as generating new molecules
(candidate solutions) which are neighbours of the old in a neighbourhood
structure in the search space.3 Neighbouring states are expected to have sim-
ilar values of potential energy, that is, similar objective function values.

The two kinds of ineffective reactions are viewed as moving to nearby states
in the search space and so are analogous to micro-mutations in Evolutionary
Algorithms, while the two kinds of ‘effective’ chemical reactions are viewed as
moving to further away (structurally different) states in the search space and
so are analogous to crossover. In this way, the CRO algorithm at a high level
is analogous to SA, though it has the possibility of combining features of two
previous candidate solutions.

26.3.3 The High-Level CRO Algorithm

With these four kinds of elementary reaction introduced, we may now present
the high-level CRO algorithm. Subsequently, we will give more details on the
four elementary reactions, and so flesh out the CRO algorithm.

We assume a modelling exercise has been carried out to identify the objec-
tive function, the form of the search space, appropriate molecular structures
and other properties (such as the particular forms of the four kinds of ele-
mentary reaction), and appropriate stopping criteria. All of these depend on
the problem type. The stopping criterion may be defined based on one or

2This term is not actually used in [356] or other works by these authors, but
seems an appropriate complement to ‘ineffective’.

3In CRO, the search space is often referred to as the Potential Energy Space or
PES.

486 26 Chemically Inspired Algorithms

more of an upper bound on CPU time used, the maximum number of itera-
tions, an objective function value less than a predefined threshold obtained,
the maximum number of iterations performed without improvements or any
other relevant criteria.

The CRO run is then initialised. We choose values for CRO variables and
control parameters, including the initial population size, Npop.

4 Table 26.2,
after [356], shows the symbols used in CRO.

When starting the CRO run, Npop reactant molecules are metaphorically
placed in a closed container and initialised by assigning molecular structures
randomly. Thus, initially the molecules are distributed evenly over the search
space to enhance the chances of exploring all important areas. Variations of
this random initialisation are possible, where a proportion (such as 10%) of
the population may be generated based on the modeller’s domain knowledge;
see, for example, [357].

In the actual run of iterations, the molecules collide randomly, with each
other and the container walls. The time between collision events is not con-
sidered important: what is important is the changes in potential and kinetic
energy of each molecule (and the buffer) in each event. Different types of col-
lisions cause different types of elementary reactions depending on parameter
values and other conditions. For each collision, a random number t is gen-
erated uniformly in the interval [0, 1]. If t > pMoleColl, the collision will be
unimolecular; otherwise, the collision will be intermolecular. Having decided
upon the number of molecules to be involved in the reaction, we randomly
select a suitable number of molecules from Pop.

Next, we decide upon the type of reaction among the chosen molecules,
as ineffective (that is, on-wall or intermolecular ineffective collision as appro-
priate) or effective (decomposition or synthesis as appropriate, the former in
the case of one molecule, the latter for more than one). The details of these
are given later, and their implementation is generally problem-specific. The
iterations repeat until one of the stopping criteria is met.

An ongoing record is kept throughout of which molecule has the molecular
structure with the least potential energy found so far. The final solution ob-
tained by CRO is the molecular structure with lowest potential energy found
during the whole run of the algorithm, and this is output to the calling routine.

The pseudocode of CRO is given in Algorithm 26.1; there, and subse-
quently, Ebuffer denotes the quantity of energy in the central energy buffer.
The inputs to the algorithm are the problem-specific information: objective
function f , constraints, and dimension Nvars of the problem. The output is
the minimal solution and its objective function value. Success is a Boolean
variable.

We now give more details on the four elementary reactions.

4The population size in CRO is not fixed, since it changes during the decompo-
sition and synthesis events: it increases by 1 in the former, since a molecule splits
into two, and decreases by 1 in the latter, since two molecules combine to give one.

26.3 The CRO Algorithm 487

T
yp
e

S
ym

bo
l

A
lg
o
ri
th
m
ic

M
ea
n
in
g

C
h
em

ic
a
l
M
ea
n
in
g

F
u
n
ct
io
n

f
O
b
je
ct
iv
e
fu
n
ct
io
n

F
u
n
ct
io
n
d
efi

n
in
g
se
a
rc
h
sp
a
ce
S

N
b
h

N
ei
g
h
b
o
u
r
ca
n
d
id
a
te

g
en

er
a
to
r

N
ei
g
h
b
o
u
rh
o
o
d
st
ru
ct
u
re

o
n
S

V
a
ri
a
b
le

N
v
a
rs

N
u
m
b
er

o
f
va

ri
a
b
le
s
re
p
re
se
n
ti
n
g
so
lu
ti
o
n

n
u
m
b
er

o
f
m
o
le
cu

le
ch

a
ra
ct
er
is
ti
cs

d
im

en
si
o
n
o
f
th
e
p
ro
b
le
m

P
o
p

P
o
p
u
la
ti
o
n
(s
et
)
o
f
so
lu
ti
o
n
s

S
et

o
f
m
o
le
cu

le
s

2
-D

m
a
tr
ix

w
h
er
e
ea
ch

ro
w

ca
rr
ie
s
th
e
va

lu
es

o
f
a
so
lu
ti
o
n

P
E

V
ec
to
r
o
f
o
b
je
ct
iv
e
fu
n
ct
io
n
va

lu
es
;
P
E
=
f
(P
op

)
P
o
te
n
ti
a
l
en

er
g
y
o
f
a
ll
th
e
m
o
le
cu

le
s

K
E

V
ec
to
r
w
h
o
se

co
m
p
o
n
en

ts
m
ea
su
re

so
lu
ti
o
n
s’

to
le
ra
n
ce

to
K
in
et
ic

en
er
g
y
o
f
a
ll
th
e
m
o
le
cu

le
s

h
av

in
g
w
o
rs
e
o
b
je
ct
iv
e
fu
n
ct
io
n
va

lu
es

a
ft
er
w
a
rd

P
a
ra
m
et
er
N

p
o
p

In
it
ia
l
n
u
m
b
er

o
f
so
lu
ti
o
n
s
m
a
in
ta
in
ed

In
it
ia
l
n
u
m
b
er

o
f
m
o
le
cu

le
s
in

co
n
ta
in
er

n
u
m
b
er

o
f
ro
w
s
in

P
o
p

ra
te

K
E

lo
ss

P
er
ce
n
ta
g
e
u
p
p
er

li
m
it

o
f
re
d
u
ct
io
n
o
f
K
E

in
P
er
ce
n
ta
g
e
u
p
p
er

li
m
it

o
f
K
E

lo
st

to
o
n
-w

a
ll
in
eff

ec
ti
v
e
co
ll
is
io
n
s

en
v
ir
o
n
m
en

t
in

o
n
-w

a
ll
in
eff

ec
ti
v
e
co
ll
is
io
n
s

p
M

o
le
C
o
ll
F
ra
ct
io
n
o
f
a
ll
el
em

en
ta
ry

re
a
ct
io
n
s

S
a
m
e
a
s
th
e
a
lg
o
ri
th
m
ic

m
ea
n
in
g

co
rr
es
p
o
n
d
in
g
to

in
te
rm

o
le
cu

la
r
re
a
ct
io
n
s

K
E

in
it
ia
l
In
it
ia
l
va

lu
e
o
f
K
E

a
ss
ig
n
ed

to
ea
ch

K
E

o
f
th
e
in
it
ia
l
se
t
o
f
m
o
le
cu

le
s

el
em

en
t
in

in
it
ia
li
sa
ti
o
n
st
a
g
e

T
a
b
le

2
6
.2
.
S
y
m
b
o
ls

a
n
d
p
a
ra
m
et
er
s
u
se
d
in

C
R
O

488 26 Chemically Inspired Algorithms

Algorithm 26.1: CRO Algorithm

Assign values to parameters Npop, rate
KE
loss, pMoleColl and KEinitial;

Let Pop be the set of molecules {1, 2, . . . , Npop};
for each molecule ω do

Assign a random solution to the molecular structure ω;
Assess potential energy = f(ω);
Assign kinetic energy to ω using KEinitial;

end

Let Ebuffer := 0;
while terminating condition not met do

Choose random t in interval [0, 1];
if t > pMoleColl then

Randomly select molecule M from Pop;
if decomposition criterion met then

(M1,M2,Success) = decompose(M,Ebuffer);
if Success then

Remove M from Pop;
Add M1,M2 to Pop;

end

else

ineffCollOnWall(M,Ebuffer);
end

else

Randomly select molecules M1,M2 from Pop;
if synthesis criterion met then

(M ′,Success) = synthesise(M1,M2);
if Success then

Remove M1,M2 from Pop;
Add M ′ to Pop;

end

else

interIneffColl(M1,M2);
end

end

Check for new minimum solution
end

Output the overall minimum solution and its objective function value;

26.3 The CRO Algorithm 489

26.3.4 On-wall Ineffective Collision

An on-wall ineffective collision occurs when a molecule hits a container wall
and bounces off it. Some (physical) molecular attributes associated with mo-
tion change in this collision. However, as the collision is regarded as not being
very ‘vigorous’, the resultant molecular structure is not expected to be very
different from the original one: only its motion has changed, not its chemical
structure.

Suppose the current molecular structure is ω. The molecule will be altered
to a new structure ω′ = Nbh(ω) in its neighbourhood of the search space in
this collision. The change is energetically possible (that is, allowed) only if:

PEω +KEω ≤ PEω′ . (26.2)

Recalling that kinetic energy is lost to the buffer, we get KEω′ = (PEω +
KEω − PEω′) × q where q ∈ [rateKE

loss, 1], and 1 − q represents the proportion
of KE lost to the environment when it hits the container wall.

If (26.2) does not hold, the change is prohibited and the molecule retains
its original structure ω, including its potential energy and kinetic energy. The
pseudocode of the on-wall ineffective collision is given in Algorithm 26.2. The
inputs to the algorithm are a molecule M with its profile and the central
energy buffer Ebuffer. The outputs are the revised M and Ebuffer.

Algorithm 26.2: Ineffective Collision on Wall

Let ω′ = Nbh(ω);
Compute PEω′ := f(ω′);
if PEω +KEω ≥ PEω′ then

Select k randomly from interval [rateKE
loss, 1];

KEω′ = (PEω +KEω − PEω′)× k;
Update Ebuffer := Ebuffer + (PEω +KEω − PEω′)× (1− k);
Update profile of M by ω := ω′, PEω := PEω′ and KEω := KEω′

end

Output M and Ebuffer;

26.3.5 Decomposition

In a decomposition event, a molecule hits a container wall and decomposes into
two or more molecules (typically two is assumed in the CRO framework). The
collision is ‘vigorous’: not only the (physical) molecular attributes associated
with motion change in this collision; the resultant molecular structure is also
very different from the original one: it has changed chemically. Denote the
molecular structure of the original molecule by ω and those of the resultant

490 26 Chemically Inspired Algorithms

molecules by ω′
1 and ω′

2. If the original reactant molecule has sufficient total
energy (potential and kinetic energy) to meet the structural (potential energy)
requirements of the resultant product molecules, that is,

PEω +KEω ≥ PEω′
1
+ PEω′

2
, (26.3)

the change is energetically possible and is allowed. Let E1 = PEω + KEω −
PEω′

1
− PEω′

2
, the difference between the left-hand and right-hand sides of

(26.3): it is the amount of energy available for kinetic energy, over and above
the potential energy requirements of the two new molecules. To distribute this
excess between ω′

1 and ω′
2, let k be a random number generated uniformly from

the interval [0, 1]. Then we may let KEω′
1
= E1 × k and KEω′

2
= E1 × (1− k).

However, it is unusual for (26.3) to hold, since neighbours typically have
similar values of potential energy. For (26.3) to hold, we would need the kinetic
energy of ω to be comparable to its potential energy. Yet this rarely occurs,
because of the buffer effect: the kinetic energy of molecules tends to decrease
in a sequence of on-wall ineffective collisions over the evolution of the chemical
process. To make decomposition more energetically feasible, we allow the use
of energy stored in the central buffer (Ebuffer) to increase the chance of being
able to cover PEω′

1
and PEω′

2
. That is, should (26.3) not hold, we consider the

alternative:
PEω +KEω + Ebuffer ≥ PEω′

1
+ PEω′

2
(26.4)

If (26.4) holds, we allow the reaction to occur, and calculate:

KEω′
1
= (E1 + Ebuffer)×m1 ×m2 (26.5)

and
KEω′

2
= (E1 + Ebuffer −KEω′

1
)×m3 ×m4 (26.6)

where m1, m2, m3 and m4 are random numbers independently uniformly
generated from the interval [0, 1].5 Then Ebuffer is updated to E1 + Ebuffer −
KEω′

1
−KEω′

2
. If neither (26.3) or (26.4) holds, this decomposition operation

does not occur, and the molecule keeps its original ω, potential energy and ki-
netic energy. The pseudocode of the decomposition is given in Algorithm 26.3.
The inputs to the algorithm are a molecule M with profile ω and the central
buffer energy Ebuffer. The outputs are molecules M ′

1 and M ′
2, and Ebuffer.

26.3.6 Intermolecular Ineffective Collision

An intermolecular ineffective collision occurs when two molecules collide with
each other and then bounce apart without a chemical reaction.

5This approach of multiplication by two random numbers from [0, 1] in both
(26.5) and (26.6) is used in [356] to ensure that the energies KEω′

1
and KEω′

2
gain

from the buffer are not too large, because Ebuffer is usually large. There are other
ways to achieve this.

26.3 The CRO Algorithm 491

Algorithm 26.3: Decomposition

Create new molecules M ′
1 and M ′

2;
Generate ω′

1 and ω′
2 by decomposing ω;

Compute PEω′
1
:= f(ω′

1) and PEω′
2
:= f(ω′

2);

Let E1 = PEω +KEω − PEω′
1
− PEω′

2
;

Define a Boolean variable Success;
if E1 ≥ 0 then

Success := true;
Generate k randomly in interval [0, 1];
KEω′

1
= E1 × k;

KEω′
2
= E1 × (1− k);

Assign ω′
1, PEω′

1
and KEω′

1
to the profile of M ′

1, and ω′
2, PEω′

2
and KEω′

2

to the profile of M ′
2;

else if E1 + Ebuffer ≥ 0 then

Success := true;
Generate m1, m2, m3, m4 independently and randomly in interval [0, 1];
KEω′

1
= (E1 + Ebuffer)×m1 ×m2;

KEω′
2
= (E1 + Ebuffer −KEω′

1
)×m3 ×m4;

Update Ebuffer := Ebuffer + E1 −KEω′
1
+KEω′

2
;

Assign ω′
1, PEω′

1
and KEω′

1
to the profile of M ′

1, and ω′
2, PEω′

2
and KEω′

2

to the profile of M ′
2;

else

Success := false;
end

Output M ′
1, M

′
2 and Ebuffer;

As with an on-wall ineffective collision, some (physical) molecular at-
tributes associated with motion change in this collision. However, as the colli-
sion is regarded as not being very ‘vigorous’, the resultant molecular structures
are not expected to be very different from the original ones: only their motions
have changed, not their chemical structures. That is, the products should be
‘close’ to the reactants in the search space.

The main difference between this operation and an on-wall ineffective col-
lision is that this elementary reaction involves more than one molecule (two
molecules are assumed in this framework) and no kinetic energy is trans-
ferred to the central energy buffer. Denote the original molecular structures
by ω1 and ω2. We generate two new molecular structures ω′

1 and ω′
2 from the

neighbourhoods of ω1 and ω2, respectively. The changes to the molecules are
energetically possible only if:

PEω1 + PEω2 +KEω1 +KEω2 ≥ PEω′
1
+ PEω′

2
. (26.7)

Let E2 be the difference between the left-hand and right-hand sides of (26.7),
E2 = PEω1 + PEω2 + KEω1 + KEω2 − PEω′

1
− PEω′

2
. We let KEω′

1
= E2 × k

492 26 Chemically Inspired Algorithms

and KEω′
2
= E2 × (1 − k) where k is a random number uniformly generated

from the interval [0, 1]. The molecules retain their original values of ω1, ω2,
PEω1 , PEω2 , KEω1 and KEω2 if (26.7) does not hold.

An intermolecular ineffective collision allows the molecular structures to
change to a larger extent than an on-wall ineffective collision, since two
molecules are involved and the total of their kinetic energies is typically larger
than the kinetic energy of a single molecule. The pseudocode of the inter-
molecular ineffective collision is given in Algorithm 26.4. The inputs to the
algorithm are molecules M1 and M2 with their profiles. The outputs are the
revised molecules M1 and M2.

Algorithm 26.4: Intermolecular Ineffective Collision

Let ω′
1 = Nbh(ω1) and ω′

2 = Nbh(ω2);
Compute PEω′

1
:= f(ω′

1) and PEω′
2
:= f(ω′

2);

Let E2 = PEω1 + PEω2 +KEω1 +KEω2 − PEω′
1
− PEω′

2
;

if E2 ≥ 0 then

Select k randomly from interval [0, 1];
KEω′

1
:= E2 × k;

KEω′
2
:= E2 × (1− k);

Update profile of M1 by ω1 := ω′
1, PEω1 = PEω′

1
and KEω1 = KEω′

1
, and

profile of M2 by ω2 := ω′
2, PEω2 = PEω′

2
and KEω2 = KEω′

2
;

end

Output M1 and M2;

26.3.7 Synthesis

A synthesis operation occurs when more than one molecule (assume two
molecules) collide and chemically combine to give a single new molecule.

Denote by ω1 and ω2 the molecular structures of the two original molecules,
and by ω′ the molecular structure of the new molecule. We expect the product
ω′ to be quite different from the two reactants ω1 and ω2: synthesis is a
“vigorous” reaction and may move us far in the search space. We may use
any mechanism for synthesis which combines ω1 and ω2 in a reasonable way
to form ω′. The product ω′ is energetically possible only if:

PEω1 + PEω2 +KEω1 +KEω2 ≥ PEω′ . (26.8)

Then the amount of kinetic energy available for ω′ is the excess of the left-
hand side of (26.8) over the right-hand side: KEω′ = PEω1 + PEω2 +KEω1 +
KEω2 − PEω′ . If (26.8) does not hold, then we retain ω1, ω2, PEω1 , PEω2 ,
KEω1 , and KEω2 , instead of synthesising ω′, PEω′ and KEω′ .

26.4 Applications of CRO 493

Normally, the product’s kinetic energy, KEω′ , is large compared to KEω1

or KEω2 , because PEω′ commonly has a value similar to that of PEω1 or PEω2 ,
and so there is usually a substantial excess of the left-hand side of (26.8) over
the right-hand side. Because of this large kinetic energy, synthesis generally
gives the product molecule M with ω′ greater ability to escape from a local
minimum during subsequent elementary reactions in which M is involved.
Because of this excess kinetic energy effect, it is very rare to need to transfer
energy from the buffer to allow synthesis to proceed; thus, this possibility of
transference is not included in the synthesis operation. The pseudocode of the
synthesis collision is given in Algorithm 26.5. The inputs to the algorithm are
molecules M1, M2 with their profiles. The outputs are the single (sythesised)
molecule M ′ and the Boolean variable Success.

Algorithm 26.5: Synthesis Collision

Create new molecule M ′;
Construct ω′ from ω1 and ω2;
Compute PEω′ := f(ω′);
Define a Boolean variable Success;
if PEω1 + PEω2 +KEω1 +KEω2 ≥ PEω′ then

Success := true;
KEω′ := PEω1 + PEω2 +KEω1 +KEω2 − PEω′ ;
Assign ω′, PEω′ and KEω′ to profile of M ′;

else

Success := false;
end

Output M ′ and Success;

26.4 Applications of CRO

Given the relative recency of introduction of the CRO algorithm, there have
been a limited number of applications of it.

In Lam and Li [356], the authors introduce CRO, and apply it to some
classical problems: the quadratic assignment problem or QAP; the resource
constrained project scheduling problem or RCPSP; and the channel assign-
ment problem in wireless networks. On the quadratic assignment problem,
CRO is compared to fast ant, improved SA and tabu search. All the heuris-
tics are able to find the global minimum, but CRO outperforms the others in
terms of mean and maximum costs found. On the resource constrained project
scheduling problem, CRO finds the best makespan for 116 instances without
using any special RCPSP heuristics, and this result is reasonable when com-
pared to the 129 instances of the best-performing methods. On the channel

494 26 Chemically Inspired Algorithms

assignment problem in wireless networks, CRO is compared to tabu search
and outperforms it on all instances examined. In [667], CRO is applied to the
short adjacent repeat identification problem or SARIP, arising in mapping
DNA. It is compared to the best method so far, Bayesian approach for short
adjacent repeat detection, or BASARD. The four elementary reactions are
equipped with the five moves used in BASARD. Since this is a sequence or
order-based problem, the intermolecular reactions swap half of the starting
positions and structures between the two original molecules, analogous to GA
crossover for order-based problems. The algorithms are run on two synthetic
cases, single and multiple segments, as well as real data. In each case, CRO
on average finds better solutions than does BASARD, and is some 25 to 100
times faster in terms of computational time. In [357], CRO is applied to the
fuzzy rule learning problem, with the cooperative rules (COR) approach for
search space construction and selection of the most cooperative fuzzy rule set
incorporated, giving the COR-CRO algorithm. Here, a molecular structure ω
carries a vector of consequents for a given combination of antecedents. The
elementary reactions are set up as follows:

• on-wall ineffective collision: one component of ω is randomly selected and
modified to another one within its defined interval.

• decomposition: ω breaks into two pieces ω1 and ω2; each inherits half of
the components of ω, randomly but exclusively; the other noninherited
components are randomly generated.

• intermolecular ineffective collision between two molecules ω1 and ω2: ei-
ther one or two components (according to whether the variation COR1 or
COR2 is used) of each of ω1 and ω2 are modified.

• synthesis: if two molecules ω1 and ω2 are synthesised to get ω′, each com-
ponent of ω′ is chosen randomly from the corresponding component of ω1

and ω2, analogously to uniform crossover in GA.

The approach is tested on two problems, three-dimensional surface modelling
and electrical low-voltage line length estimation, against other approaches
such as NIT, WM, WM-ALM, I-method, I-ALM, COR-SA, COR-BWAS,
COR1-GA and COR2-GA, and others, depending on the problem. On each
problem, COR-CRO appears to be competitive with the other approaches
tested, though the results do not seem clear-cut.

The literature also includes some applications of chemical reaction optimi-
sation to computer network and other problems, for example, task scheduling
in grid computing [666] and population transition in peer-to-peer live stream-
ing [358]. Further work on real-valued CRO is presented in [678].

26.5 Discussion of CRO

As in other metaheuristics, the aim in CRO is to explore only the most rele-
vant and useful parts of the search space, in the sense that these parts are most

26.5 Discussion of CRO 495

likely to contain a global minimum. Exploration is achieved through collisions
among molecules and the container wall, namely, the four types of elemen-
tary reactions. [356] identifies two kinds of exploration: intensification and
diversification. Given a molecule at a point in the search space, intensification
explores the immediately surrounding area, analogous to micro-mutation in
an evolutionary algorithm (EA). Diversification allows jumps to relatively dis-
tant points in the search space, analogous to a crossover or macro-mutation in
an EA. In CRO, intensification is mainly achieved by the ineffective collision
types, both on-wall and intermolecular, while diversification is mainly achieved
by the operations decomposition and synthesis, which radically change molec-
ular structure.

Exploitation of previously gained information is achieved in CRO by the
gradual redistribution of kinetic energy from the molecules to the container
walls. The rate at which this occurs may be modified during the run, thus
altering the balance of exploration and exploitation.

In [356], Lam and Li state that, for certain problems at least (such as the
Quadratic Assignment Problem or QAP), the ineffective elementary reactions
act mainly as intensification operators (with some diversification), while the
other two chemical elementary reactions act almost completely as diversifi-
cation operators. As described by them, CRO thus differs somewhat from
algorithms such as EAs, where the operators have more clearly defined roles,
but is very close in spirit to SA (that is, SA with a number of neighbour
generation operators).

From the description of the CRO algorithm, the main idea seems to be
closely related to SA:

• The main chemical idea is the transformation of products to reactants,
with the rest being related to conservation of energy and other physi-
cal ideas, and an exploration/exploitation approach very reminiscent of
SA/quantum annealing.

• Lam and Li [356] state that the most distinguishable features of CRO
are “the central energy buffer and the concept of energy exchange”. The
‘buffer’ is effectively an absorber of kinetic energy and its action is equiva-
lent to reducing the temperature in SA, since temperature is just a measure
of the molecules’ average kinetic energy.

• The KEinitial parameter controls average molecule starting kinetic energy,
and so is a proxy for the initial temperature in SA.

• A solution is generated as a neighbour of the current solution, according
to certain legal neighbourhood operations (the four CRO elementary reac-
tions); this is the same Markov network paradigm used by SA and related
approaches.

• CRO allows ‘bad’ moves as in SA, by allowing borrowing of energy from
the buffer to give products with greater net energy than the reactants.

There are also similarities to EAs; for example:

496 26 Chemically Inspired Algorithms

• The operation ‘On-Wall Ineffective Collision’ is meant to change a molecu-
lar structure (solution) by a small amount, analagous to an EA mutation.

• Depending on the solution structure, the Decomposition operation is anal-
ogous to crossover of a given parent with a parent of random entries. This
occurs, for example, in the Fuzzy Rule Learning application in [357].

• Again, depending on the solution structure, the Synthesis operation is
analogous to crossover of two given parents to generate a single offspring.
This occurs, for example, in the Fuzzy Rule Learning application in [357],
where effectively uniform crossover is used.

However, although Lam et al. describe CRO as a populational algorithm [357],
the amount of interaction between individuals appears to be limited, and only
one or two molecules (depending on the operation chosen) are acted upon at
each iteration. Also, the population size may increase (by decomposition) or
decrease (by synthesis) and so is not fixed, as is usual in EAs.

There are also limited aspects of tabu search, since the outcome (products)
of an operation is not allowed to be the same as the input (reactants), even
in the ‘Ineffective Collision’ pair of operations.

26.5.1 Potential Future Avenues for Research

Further work needs to be done to establish the exact connection of CRO to
SA, in particular to determine whether CRO is equivalent to SA equipped
with several neighbour selection heuristics, allowing both micro and macro
moves in the search space, and whether convergence results for SA can be
carried over to CRO.

Lam and Li [356] have set up CRO so that “All the events are triggered
by collisions (on wall or among molecules)”. An extension of the method
could allow for spontaneous decay (independent of collisions) of an unstable
molecule into simple molecules, as occurs in nature.

Note that in the decomposition event of [356], “If the total energy of the
original molecule is not enough to support the change, additional energy can
be drawn from the central buffer”, which may violate the Second Law of
Thermodynamics, since the energy in the buffer may not be usable (insuffi-
cient thermal potential). This nonphysicality — adherence to the First Law
(Conservation of Energy) but not the Second — is the case in all of their
events and an algorithm more closely inspired by nature could be obtained by
enforcing the Second Law also. However, it is not clear a priori whether such
a revised algorithm would be more or less effective than CRO.

As mentioned previously, there are strong results for the asymptotic con-
vergence of SA and SQA and related algorithms based on Markov Chain
and/or Monte Carlo approaches. However, there do not appear to be equiv-
alent results for CRO. This may be a reflection of the relative newness of
CRO, or it may be that the connection to SA has not been formally made.
A possible avenue for research here is to view the buffer in CRO as reduc-
ing available kinetic energy to molecules, thus decreasing the average KE and

26.5 Discussion of CRO 497

thus the temperature. Then varying the buffer size systematically would be a
proxy for temperature reduction. Applying the equivalent of a known asymp-
totically convergent cooling schedule (such as logarithmic cooling) to derive
a buffer size modification schedule could then allow the results from SA to
carry across.

Further possibilities along these lines would include allowing the parameter
values rateKE

loss and pMoleColl to vary according to systematic rules, and so con-
trol the proportion of ineffective and other operations and thus of exploration
versus exploitation.

At a higher level, there are many aspects of chemistry as found in nature
that are, to date, not incorporated in chemically inspired algorithms. These
include the concepts of:

i. Individual atoms, each of a particular type of element, and what these
could mean in algorithmic terms; some atoms may form few bonds (e.g.,
sodium, which has only one electron in a relatively high energy level)
while others may form many (e.g., carbon, which may bond with up to
four other atoms). In particular, the atomic number gives the number of
electrons in an atom in its nonionised state; however, in practical terms,
only the electrons in the outermost atomic orbitals determine the atom’s
chemical properties; how could this translate to an algorithm?

ii. Bonds among two or more atoms (covalent, ionic, metallic, etc.) and al-
gorithmic analogies — what is meant by a bond in the problem domain,
what is meant by valency, and what could be meant by a shared electron?

iii. Reaction rates — in chemistry these are described by differential equa-
tions in variables such as time, temperature, and concentrations of reac-
tants and products; tuning these could allow more control of the explo-
ration/exploitation balance.

iv. The extra complexity of organic chemistry, the chemistry of compounds
of the carbon atom; here, enormous molecules (such as DNA) may be
formed because of the ability of carbon atoms to bond with up to four
other atoms; there are potential analogies to GP, with bond sites repre-
senting the attachment point of a subtree. Molecules could be mutated
at specific locations based on the natural process of an acid or base unit
being replaced by another acid or base; chemical potentials could be used
to make certain sites/bonds more or less susceptible to breakup.

v. Could semantics, an active area of research in GP, be realised by the above
chemical concepts such as atoms/molecules of different elements, different
valencies, or different molecular structures?

It is likely that the meaning of such analogies, should they be successfully
made, would be highly problem domain-specific. Investigation of the range
of applicability of algorithmic analogies of these concepts may well reward
further study.

498 26 Chemically Inspired Algorithms

26.6 Summary

In this chapter we have explored a new family of natural computing algo-
rithms, chemically inspired algorithms. They are analogous to classical physi-
cally inspired algorithms such as Simulated Annealing, but employ particular
neighbour generation routines that allow both small and large jumps in the
search space, in a way reminiscent of Evolutionary Algorithms. Thus far,
they lack the mathematical underpinning that Simulated Annealing, Simu-
lated Quantum Annealing and similar algorithms have; but, as considered
above, this may be achievable by analogy with Simulated Annealing. They
have shown promise in a number of applications.

Part VIII

The Future of Natural Computing Algorithms

27

Looking Ahead

In this book we have described natural computing algorithms in terms of seven
categories, namely, evolutionary computing (Part I), social computing (Part
II), neurocomputing (Part III), immunocomputing (Part IV), developmental
and grammatical computing (Part V), physical computing (Part VI), and
other paradigms (Part VII). One cannot but be impressed by the rich tapestry
of algorithms that have been developed thus far and we are confident that
many more algorithms will be proposed in the coming years taking new sources
of inspiration from the natural world.

27.1 Open Issues

While much progress has been made in advancing the field of natural com-
puting over the last two decades, the field is far from mature and many open
research avenues remain. Below we touch on a number of them.

27.1.1 Hybrid Algorithms

As noted in the first chapter of this book, the compartmentalisation of the
natural computing paradigm into lineages, such as we have undertaken in this
book, is somewhat artificial, as while it assists the construction of a structured
exposition of each family of algorithms, it runs the risk of obfuscating the deep
links and overlaps that exist in the natural world between the systems which
have served as their inspiration.

One trend which we expect in the future is that of hybridisation of al-
gorithms from the different forms of natural computing. It is quite common
for practitioners to combine elements of these approaches when faced with
challenging, real-world problems. These problems are often high-dimensional,
dynamic and noisy, and their solution requires an ability to adapt on multiple
time horizons. We expect future natural computing algorithms to combine
many (perhaps indeed all) levels of adaptation as outlined in the POE model

© Springer-Verlag Berlin Heidelberg 2015
A. Brabazon et al., Natural Computing Algorithms, Natural Computing Series,
DOI 10.1007/978-3-662-43631-8_ 27

501

502 27 Looking Ahead

(Sect. 1.1.1), resulting in truly complex and adaptive natural computing algo-
rithms capable of the kind of problem solving potential realised in the natural
world.

27.1.2 The Power and the Dangers of Metaphor

Computational processes abound in nature and natural phenomena have
proven to be a rich vein of inspiration for the design of computational al-
gorithms. Of course, as science advances and as we deepen our understanding
of natural systems, it is reasonable to expect that new salient features will
emerge which can be incorporated into novel natural computing algorithms.
One just has to look at the rapid advances which have been made in molecular
biology and genetics in the past 15 years to underscore this potential. We are
at the dawn of the age of systems biology which seeks to understand biological
systems as a whole, rather than through classical (silo) science perspectives.
Understanding and modelling the importance of the interactions which oc-
cur between the different levels of the traditional ‘omics’ (e.g., genomics and
proteomics) will develop our understanding of complex adaptive systems and
potentially give rise to the development new, powerful, algorithms.

On the other hand, we need to recognise the limits of natural metaphors.
For example, biological processes (for example, foraging strategies) occur in
specific ecological niches or settings, and there is no reason to suppose a priori
that a good strategy within one niche will necessarily be useful elsewhere. As
noted by [587], we also need to be careful to avoid proliferating and over-
claiming for ‘novel’ natural computing algorithms. There has been a tendency
to introduce algorithms which although being derived from different natu-
ral processes (or organisms) appear to bear notable similarities in terms of
their workings to previously developed algorithms. Employing greater rigour
in the testing and theoretical analysis of new algorithms will help differentiate
between “me too” algorithms and those which are truly useful and novel.

One of the weaker points of natural computing research to date has been
the variability of the depth of theory underpinning many of the developed
algorithms, especially for some of the most recently developed algorithms. The
theoretical basis varies from strong convergence results for some algorithms, to
purely experimental results on a limited set of examples (“toy problems”: see
Sect. 27.1.3). Advanced statistical and information theoretic methods should
help us open the door to a stronger theoretical foundation for the entire field,
in turn driving the creation of more efficient and effective natural computing
algorithms.

27.1.3 Benchmarks and Scalability

Given the rich diversity of natural computing algorithms, it is challenging
to compare and contrast their relative benefits and drawbacks. Often prob-
lems examined by researchers are small scale instances of a problem class and

27.2 Concluding Remarks 503

these do not provide insight as to how well an algorithm will scale to real-
world-sized problems. As has been demonstrated in the genetic algorithm
(GA) community, it is often the case that canonical versions of the algorithms
scale poorly, sometimes requiring exponentially increasing population sizes
to tackle linearly increasing problem difficulty (order). Scalability studies of
all new algorithms are required in order to assess their practical utility. Re-
searchers also need to pay more attention to the relative utility of algorithms
for different classes of problems, and identify those features which might best
be combined to create efficient and effective algorithms for specific problem
classes. The development of a set of robust benchmarks which proponents of
new algorithms are required to test against may go some way towards building
an understanding of the strengths and weaknesses of different algorithms.

27.1.4 Usability and Parameter-Free Algorithms

One practical issue in applying many natural computing algorithms is the
number of parameters which must be set in order to apply the solver to a
specific problem. Similarly, there can often be a myriad of design choices to
be made for any one algorithm, with choices between alternative strategies
for different steps within the algorithm. This complexity serves as a barrier to
entry for practitioners. From an ease-of-use perspective, practitioners would
prefer algorithms which will work “out-of-the-box”, and as such are either
parameter-free or which incorporate, so far as is possible, self-adapting set-
tings.

27.1.5 Simulation and Knowledge Discovery

Although the focus of this book has been on the drawing of inspiration from
the natural world for the design of computational algorithms, there is another
side to natural computing, that of seeking to better understand the natural
world itself. As we deepen our scientific understanding in various disciplines,
our ability to design algorithms which can serve as faithful simulation models
of the underlying systems will be enhanced. In turn, scientists may be able to
use these algorithms to produce a deeper understanding of the natural world.

27.2 Concluding Remarks

The preceding discussion does not contain an exhaustive list of open issues
in natural computing, but does serve to illustrate the breadth and depth of
issues currently facing researchers in this community. It is safe to say that
the natural computing paradigm is at an exciting phase in its history with
an increasing rate of discovery in the natural systems which serve as their
inspiration and an increasing maturity in terms of the rigor of testing being

504 27 Looking Ahead

applied to new algorithms. We hope that this book has served as a source
of inspiration to you the reader, and that if you are not already an active
researcher in this field or a practitioner of these methods, you will join us in
the inspiring adventure that is natural computing.

References

1. Abbass H A (2001a) A monogenous MBO approach to satisfiability. In: Pro-
ceedings of the International Conference on Computational Intelligence for
Modelling, Control and Automation (CIMCA 2001) Las Vegas, USA

2. Abbass H A (2001b) Marriage in honey-bee optimization (MBO): a haplomet-
rosis polygynous swarming approach. In: Proceedings of the IEEE Congress
on Evolutionary Computation (CEC 2001), pp 207–214, IEEE Press

3. Aeppli G, Rosenbaum T F (2005) Experiments on quantum annealing. In:
Das A, Chakrabarti B (eds) Quantum Annealing and Related Optimization
Methods, Lecture Notes in Physics 679, pp 159–169, Springer-Verlag

4. Aharonov D, van Dam W, Kempe J, Landau Z, Lloyd S, Regev
O (2007) Adiabatic quantum computation is equivalent to standard
quantum computation. SIAM J Comput 37(1): 166–194. Preprint at
http://arxiv.org/quant-ph/0405098.

5. Ahn C, Ramakrishna R, Goldberg D (2004) Real-Coded Bayesian Optimiza-
tion Algorithm: Bringing the Strength of BOA into the Continuous World.
In: Proceedings of the 6th Genetic and Evolutionary Computation Confer-
ence (GECCO 2004), Lecture Notes in Computer Science 3102, pp 840–851,
Springer

6. Aickelin U, Bentley P, Cayzer S, Kim J, McLeod J (2003) Danger theory:
The link between AIS and IDS. In: Proceedings of the Second International
Conference on Artificial Immune Systems (ICARIS 03), pp 147–155, Springer

7. Aickelin U, Cayzer S (2002) The Danger Theory and Its Application to Ar-
tificial Immune Systems. In: Proceedings of the 1st International Conference
on Artificial Immune Systems, pp 141–148, Canterbury, UK.

8. Al Toufailia H, Couvillon M, Ratnieks F and Gruter C (2013) Honey bee
waggle dance communication: signal meaning and signal noise affect dance
follower behaviour. Behavioral Ecology and Sociobiology 67:549-556

9. Alatas B (2011) ACROA: Artificial chemical reaction optimization algorithm
for global optimization. Expert Systems with Applications 38(10):13170–13180

10. Alatas B (2012) A novel chemistry based metaheuristic optimization method
for mining of classification rules. Expert Systems with Applications 39:11080–
11088

11. Alba E, Tomassini M (2002) Parallelism and Evolutionary Algorithms. IEEE
Transactions on Evolutionary Computing 6(5):443–461

© Springer-Verlag Berlin Heidelberg 2015
A. Brabazon et al., Natural Computing Algorithms, Natural Computing Series,
DOI 10.1007/978-3-662-43631-8

505

http://arxiv.org/quant-ph/0405098

506 References

12. Alpi A, Amrhein N, Bertl A et al. (2007) Plant neurobiology: no brain, no
gain? Trends in Plant Science 12(4):135–136

13. Amarteifio S (2005) Interpreting a genotype-phenotype map with rich repre-
sentations in XMLGE. MSc Thesis, University of Limerick

14. Amintoosi M, Fathy M, Mozayani N and Rahmani A (2007). A Fish School
Clustering Algorithm: Applied to Student Sectioning Problem. In Proceedings
of 2007 International Conference on Life System Modelling and Simulation
(LSMS 2007), Watam Press

15. Angeline P (1996) Two Self-Adaptive Crossover Operators for Genetic Pro-
gramming. In: Angeline P J, Kinnear K E Jr (eds) Advances in Genetic Pro-
gramming 2, pp 89–110, MIT Press

16. Angeline P (1998) Using selection to improve particle swarm optimization.
In: Proceedings of the 1998 IEEE International Conference on Evolutionary
Computation (CEC 1999), pp 84–89, IEEE Press

17. Anstey M, Rogers S, Ott S, Burrows M, Simpson S (2009) Serotonin Mediates
Behavioral Gregarization Underlying Swarm Formation in Desert Locusts. Sci-
ence 323(5914):627–630

18. Arita H, Fenton B (1997) Flight and echolocation in the ecology and evolution
of bats. Tree 12(2):53–58

19. Arnett R (1985) American Insects: A Handbook of the Insects of America
North of Mexico. New York: Van Nostrand Reinhold

20. Araujo L, Santamaria J (2010) Evolving natural language grammars without
supervision. In: Proceedings of the IEEE Congress on Evolutionary Compu-
tation (CEC 2010), pp 1–8, IEEE Press

21. Azad R M A (2003) A position independent representation for evolutionary
automatic programming algorithms: the chorus system. PhD Thesis, Univer-
sity of Limerick

22. Bäck T (1996) Evolutionary Algorithms in Theory and Practice. Oxford Uni-
versity Press

23. Bak P, Sneppen K (1993) Punctuated equilibrium and criticality in a simple
model of evolution. Phys Rev Lett 71(24):4083–4086

24. Bak P, Tang C, Wiesenfeld K (1987) Self-organized criticality: An explanation
of the 1/f noise. Phys Rev Lett 59(4):381–384

25. Baker J (1987) Reducing bias and inefficiency in the selection algorithm. In:
Grefenstette, J. (ed) Proceedings of the Second International Conference
on Genetic Algorithms, pp 14–21, Hillsdale, N.J., Lawrence Erlbaum Asso-
ciates

26. Baluja S (1994) Population-Based Incremental Learning: A Method for Inte-
grating Genetic Search Based Function Optimization and Competitive Learn-
ing. Technical Report CMU-CS-94–163, Pittsburgh, PA, Carnegie Mellon Uni-
versity

27. Baluja S, Caruana R (1995) Removing genetics from the standard genetic
algorithm. In: Proceedings of Twelfth International Conference on Machine
Learning, pp 38–46, San Mateo, CA: Morgan Kaufmann

28. Baluska F, Lev-Yadun S, Mancuso S (2010) Swarm intelligence in plant roots.
Trends in Ecology & Evolution 25:682–683

29. Banks A, Vincent J and Phalp K (2009) Natural strategies for search. Natural
Computing 8(3):547–570

References 507

30. Banzhaf W (1994) Genotype-phenotype-mapping and neutral variation – A
case study in genetic programming. In Proceedings of Parallel Problem Solving
from Nature III (PPSN III), Lecture Notes in Computer Science 866, pp 322–
332, Springer

31. Banzhaf W, Nordin P, Keller R E, Francone F D (1998) Genetic Programming
– An Introduction: On the Automatic Evolution of Computer Programs and
Its Applications. Morgan Kaufmann

32. Banzhaf W (2003) Artificial Regulatory Networks and Genetic Programming.
In: Genetic Programming - Theory and Applications, pp 43–61, Kluwer Aca-
demic Publishers

33. Banzhaf W (2004) On Evolutionary Design, Embodiment and Artificial Reg-
ulatory Networks. In Lecture Notes in Artificial Intelligence 3139, Embodied
Artificial Intelligence, pp 284–292, Springer

34. Bartholdi J, Seeley T, Tovey C, Vande Vate J (1993) The pattern and ef-
fectiveness of forager allocation among flower patches by honey bee colonies.
Journal of Theoretical Biology 160:23–40

35. Barto A G, Sutton, R S, Anderson C W (1983) Neuronlike adaptive elements
that can solve difficult learning control problems. IEEE Transactions on Sys-
tems, Man and Cybernetics 13:834–846

36. Basak A, Pal S, Das S, Abraham A, Snasel V (2010) A Modified Invasive Weed
Optimization Algorithm for Time-Modulated Linear Antenna Array Synthe-
sis. In Proceedings of the IEEE World Congress on Computational Intelligence
(WCCI 2010), pp 372–379, IEEE Press

37. Bassler B (2002) Small Talk: Cell-to-Cell Communication in Bacteria. Cell
109:421–424

38. Bastos Filho C, de Lima Neto F, Lins A, Nascimento A and Lima M (2008)
A Novel Search Algorithm Based on Fish School Behavior. In Proceedings
of IEEE International Conference on Systems, Man and Cybernetics (SMC
2008), pp 2646–2651, IEEE Press

39. Bastos Filho C, de Lima Neto F, Sousa M, Pontes M and Madeiro S (2009)
On the Influence of the Swimming Operators in the Fish School Search Al-
gorithm. In Proceedings of IEEE International Conference on Systems, Man
and Cybernetics (SMC 2009), pp 5012–5017, IEEE Press

40. Battaglia D, Stella L (2006) Optimization through quantum annealing: theory
and some applications. Contemporary Physics 47(4):195–208

41. Baykasoglu A, Ozbakir L, Tapkan P (2007) Artificial Bee Colony Algorithm
and Its Application to Generalized Assignment Problem. In: Swarm Intelli-
gence, Focus on Ant and Particle Swarm Optimization, Chan, F. T. S. and
Tiwari, M. K. (eds), pp 113–144, InTech Education and Publishing, Vienna

42. Beadle L, Johnson C G (2008) Semantically Driven Crossover in Genetic Pro-
gramming. In: Proceedings of the IEEE World Congress on Computational
Intelligence (CEC 2008), pp 111–116, IEEE Press

43. Beadle L, Johnson C G (2009) Semantic Analysis of Program Initialisa-
tion in Genetic Programming. Genetic Programming and Evolvable Machines
10(3):307–337

44. Beadle L, Johnson C G (2009) Semantically Driven Mutation in Genetic Pro-
gramming. In: Proceedings of the 2009 IEEE Congress on Evolutionary Com-
putation (CEC 2009), pp 1336–1342, IEEE Press

508 References

45. Beekman M, Fathke R, Seeley T (2006) How does an informed minority of
scouts guide a honeybee swarm as it flies to its new home? Animal Behavior
71(1):161–171

46. Beer C, Hendtlass T, Montgomery J (2012) Improving Exploration in Ant
Colony Optimisation with Antennation. In Proceedings of the IEEE World
Congress on Computational Intelligence 2012 (WCCI 2012), pp 2926–2933,
IEEE Press

47. Bell, J.S. (1964). On the Einstein-Podolsky-Rosen Paradox. Physics 1: 195–
200.

48. Bellanta J, Kadlec J (1985) Introduction to immunology. In: Bellanti J (ed)
Immunology: Basic Processes, pp 1–15, Philadelphia: W.B. Saunders

49. Bellman R E (1961) Adaptive Control Processes. Princeton, NJ: Princeton
University Press

50. Benioff P (1980) The Computer as a Physical System: A Microscopic Quan-
tum Mechanical Hamiltonian Model of Computers as Represented by Turing
Machines. Journal of Statistical Physics 22: 563–591.

51. Berdahl A, Torney C, Ioannou C, Faria J and Couzin I (2013) Emer-
gent Sensing of Complex Environments by Mobile Animal Groups. Science
339(6119):574–576

52. Berg H, Brown D (1972) Chemotaxis in Escherichia coli analysed by three-
dimensional tracking. Nature 239:500–504

53. Beyer H-G (2001) The Theory of Evolutionary Strategies. Springer
54. Beyer H-G, Schwefel H-P (2002) Evolution strategies: A comprehensive intro-

duction. Natural Computing 1:3–52
55. Bilchev G, Parmee I (1995) The ant colony metaphor for searching continuous

design spaces. In: Proceedings of AISBWorkshop on Evolutionary Computing.
Lecture Notes in Computer Science 993, pp 25–39, Springer-Verlag.

56. Birbil S I, Fang S C (2003) An electromagnetism-like mechanism for global
optimization. Journal of Global Optimization 25:263–282

57. Birchenhall C, Kastrinos N, Metcalfe S (1997) Genetic Algorithms in Evolu-
tionary Modelling. Journal of Evolutionary Modelling 7(4):375–393

58. Bishop C M (1995) Neural Networks for Pattern Recognition. Oxford: Oxford
University Press

59. Bishop C M (2007) Pattern Recognition and Machine Learning. New York:
Springer-Verlag

60. Blackwell T M, Bentley P J (2002) Dynamic search with charged swarms. In:
Spector et al. (eds) Proceedings of the 4th Genetic and Evolutionary Compu-
tation Conference (GECCO 2002), pp 19–26, Morgan Kaufmann

61. Blackwell T (2003) Swarms in Dynamic Environments. In: E. Cantú-Paz et
al. (eds) Proceedings of the 5th Genetic and Evolutionary Computation Con-
ference (GECCO 2003), Lecture Notes in Computer Science 2723, pp 1–12,
Springer-Verlag

62. Blackwell T M, Branke J (2004) Multi-swarm optimization in dynamic en-
vironments. In: Proceedings of EvoSTOC Workshop 2004, Lecture Notes in
Computer Science 3005, pp 489–500, Springer

63. Boettcher S (1999) Extremal optimization of graph partitioning at the percola-
tion threshold. Journal of Physics A: Mathematical and General 32(28):5201–
5211

References 509

64. Boettcher S, Percus A G (1999) Extremal optimization: Methods derived from
co-evolution. In: Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO 1999), pp 825–832, Morgan Kaufmann

65. Boettcher S, Percus A G (2000) Nature’s way of optimizing. Artif Intell 119(1–
2):275–286

66. Boettcher S, Percus A G (2001) Optimization with extremal dynamics. Phys
Rev Lett 86(23):5211–5214

67. Boettcher S, Percus A G (2002) Extremal optimization: an evolutionary local-
search algorithm. CoRR cs.NE/0209030

68. Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm Intelligence: From Natural
to Artificial Systems. Oxford: Oxford University Press

69. Bora T, Coelho L, Lebensztajn L (2012) Bat-inspired Optimization Approach
for the Brushless DC Wheel Motor Problem. IEEE Transactions on Magnetics
48(2):947–950

70. Born M, Fock V A (1928) Beweis des Adiabatensatzes. Zeitschrift für Physik
A Hadrons and Nuclei 51(3–4): 165-180.

71. Boser B, Guyon I, Vapnik V (1992) A training algorithm for optimal margin
classifiers. In: Proceedings of the 4th Workshop on Computational Learning
Theory, pp 144–152, ACM Press

72. Branke J et al. (eds) (2010) Proceedings of the 12th annual conference on
Genetic and evolutionary computation (GECCO 2010). 7–11 July, Portland,
OR, USA, ACM Press

73. Brenner E, Stahlberg R, Mancuso S, Vivanco J, Baluska F, Van Volkenburgh
E (2006) Plant neurobiology: an integrated view of plant signaling. Trends in
Plant Science 11(8):413–419

74. Brits R, Engelbrecht A, van den Bergh F (2002) A niching particle swarm
optimizer. In: Proceedings of the Fourth Asia-Pacific Conference on Simulated
Evolution and Learning (SEAL 2002), 2:692–696, IEEE Press

75. Brabazon A, O’Neill M (2006) Biologically Inspired Algorithms for Financial
Modelling. Springer

76. Bremermann H (1974) Chemotaxis and optimization. Journal of the Franklin
Institute 297(5):397–404

77. Brooke J, Bitko D, Rosenbaum T F, Aeppli G (1999) Quantum annealing of
a disordered magnet. Science 284(5415):779–781

78. Brown D, Berg H (1974) Temporal Stimulation of Chemotaxis in Escherichia
coli. Proc. Nat. Acad. Sci. (USA) 71(4):1388–1392

79. Brownlee J (2007) Clonal Selection Algorithms. Centre for Information Tech-
nology Research (CITR), Technical Report 070209A, pp 1–13, Faculty of In-
formation and Communication Technologies (ICT), Swinburne University of
Technology

80. Brownlee J (2005) Artificial Immune Recognition System (AIRS): A Review
and Analysis. Centre for Intelligent Systems and Complex Processes (CISCP),
Technical Report 1-02, pp 1–39, Faculty of Information and Communication
Technologies (ICT), Swinburne University of Technology

81. Bryson A E, Ho Y-C (1969) Applied optimal control: optimization, estimation,
and control. Blaisdell Publishing Company, Xerox College Publishing

82. Bullnheimer B, Hartl R, Strauss C (1999) A new rank-based version of the
Ant-System: A computational study. Central European Journal for Operations
Research and Economics 7(1):25–38

510 References

83. Byrne J (2012) Approaches to Evolutionary Architectural Design Exploration
Using Grammatical Evolution. PhD Thesis. University College Dublin

84. Byrne J, O’Neill M, McDermott J, Brabazon A (2009) Structural and Nodal
Mutation in Grammatical Evolution. In: Proceedings of the Genetic and Evo-
lutionary Computation Conference (GECCO 2009), pp 1881–1882, ACM Press

85. Byrne J, McDermott J, Galvan-Lopez E, O’Neill M (2010) Implementing an
Intuitive Mutation Operator for Interactive Evolutionary 3D Design. In: Pro-
ceedings of the 2010 IEEE World Congress on Computational Intelligence
(WCCI 2010), pp 2919–2925, IEEE Press

86. Byrne J, McDermott J, O’Neill M, Brabazon A (2010) An Analysis of the
Behaviour of Mutation in Grammatical Evolution. In: Proceedings of the 13th
European Conference on Genetic Programming (EuroGP 2010), Lecture Notes
in Computer Science 6021, pp 14–25, Springer

87. Byrne J, Fenton M, McDermott J, Hemberg E, O’Neill M, McNally C, Shotton
E (2011) Combining Structural Analysis and Multi-Objective Criteria for Evo-
lutionary Architectural Design. In: Proceedings of EvoMUSART 2011 the 9th
European Event on Evolutionary and Biologically Inspired Music, Sound, Art
and Design, Lecture Notes in Computer Science 6625, pp 200–209, Springer

88. Byrne J, Hemberg E, O’Neill M, Brabazon A (2012) A Local Search Interface
for Interactive Evolutionary Architectural Design. In: Proceedings of Evo-
MUSART 2012 European Conference on Evolutionary and Biologically In-
spired Music, Sound, Art and Design. Lecture Notes in Computer Science
7247, pp 23–34, Springer

89. Cahill J, McNickle G (2011) The Behavioral Ecology of Nutrient Foraging by
Plants. Annual Review of Ecology, Evolution and Systematics 42:289–311

90. Cai W, Yang W, Chen X (2008) A Global Optimization Algorithm Based on
Plant Growth Theory: Plant Growth Optimization. In: Proceedings of 2008
International Conference on Intelligent Computation Technology and Automa-
tion (ICICTA 2008), pp 1194–1199, IEEE Press

91. Calixto M (2009) Quantum computation and cryptography: an overview. Nat-
ural Computing 8(4): 663–679.

92. Campbell D (1969) Variation and Selective Retention in Socio-Cultural Evo-
lution. General Systems 14:69–85

93. Campelo F, Guimaraes F, Igarshi H (2005) A Clonal Selection Algorithm
for Oprimization in Electromagnetics. IEEE Transactions on Magnetics
41(5):1736–1739

94. Carpenter G, Grossberg S (1987) ART 2: Self-organization of stable category
recognition codes for analog input patterns. Applied Optics 26(23):4919–4930

95. Carpenter G, Grossberg S, Reynolds J (1991) ARTMAP: Supervised real-time
learning and classification of nonstationary data by a self-organizing neural
network. Neural Networks 4:565–588

96. Cavalcanti-Junior G, Bastos-Filho C and Lima-Neto F (2012) Volitive Clan
PSO - An Approach for Dynamic Optimization Combining Particle Swarm
Optimization and Fish School Search. In Theory and New Applications of
Swarm Intelligence R Parpinelli (ed), pp 69–86, Intech

97. Cerny V (1982) A thermodynamical approach to the travelling salesman prob-
lem: An efficient simulation algorithm. Technical report, Comenius University,
Bratislava, Czechoslovakia

References 511

98. Cerny V (1985) Thermodynamical Approach to the Travelling Salesman Prob-
lem: An Efficient Simulation Algorithm. Journal of Optimization Theory and
Applications 45:41–51

99. Chakrabarti B K, Dutta A, Sen P (1996) Quantum Ising Phases and Transi-
tions in Transverse Ising Models. Springer-Verlag

100. Chamovitz D (2012a) What a plant smells. Scientific American, May 2012, pp
48–51

101. Chamovitz D (2012b) What a Plant Knows. New York: Scientific American
Books.

102. Chen J (2002) A heuristic approach to efficient production of detector sets
for an artificial immune algorithm-based bankruptcy prediction system. In
Proceedings of the Congress on Evolutionary Computation 2002 (CEC 2002),
1:932–937, New Jersey: IEEE Press

103. Chen S (2009) Locust Swarms - A new multi-optima search technique. In:
Proceedings of IEEE Congress on Evolutionary Computation (CEC 2009), pp
1745–1752, IEEE Press

104. Chen S and Vargas Y (2010) Improving the performance of particle swarms
through dimension reductions - A case study with locust swarms. In: Proceed-
ings of IEEE Congress on Evolutionary Computation 2010 (CEC 2010), pp
1–8, IEEE Press

105. Chena L, Aihara K (1995) Chaotic simulated annealing by a neural network
model with transient chaos. Neural Networks 8(6):915–930

106. Chester D L (1990) Why Two Hidden Layers are Better than One. In: Pro-
ceedings of IJCNN 1990, Washington, DC, 1:265–268, Lawrence Erlbaum

107. Chomsky N (1956) Three models for the description of language. IRE Trans-
actions on Information Theory 2(3):113–124

108. Chomsky N (1957) Syntactic Structures. The Hague, Netherlands: Mouton
109. Chomsky N (1975) Reflections on Language. New York: Pantheon Books
110. Chong C, Low M, Sivakumar A, Gay K (2006) A Bee Colony Optimization

Algorithm to Job Shop Scheduling. In: Proceedings of the 2006 Winter Simu-
lation Conference (WinterSim 2006), pp 1954–1961, New Jersey: IEEE Press

111. Ciszack M, Comparini D, Mazzolai B, Baluska F, Arecchi F, Vicsek T, Man-
cuso S (2012) Swarming behavior in plant roots. PLOS One 7(1) e29759

112. Cleary R (2005) Extending grammatical evolution with attribute grammars:
an application to knapsack problems. MSc Thesis. University of Limerick

113. Cleary R, O’Neill M (2005) An Attribute grammar decoder for the 01 Multi-
Constrained Knapsack Problem. In: Proceedings of the European Conference
on Evolutionary Combinatorial Optimisation (EvoCOP 2005), Lecture Notes
in Computer Science 3488, pp 34–45, Springer

114. Clerc M (1999) The swarm and the queen: towards a deterministic and adap-
tive particle swarm optimization. In: Proceedings of the Congress of Evolu-
tionary Computation 1999 (CEC 1999), pp 1951–1957, IEEE Press

115. Cobb H (1990) An investigation into the use of hypermutation as an adap-
tive operator in genetic algorithms having continuous, time-dependent non-
stationary environments. Technical Report 6760, Naval Research Laboratory,
Washington, D.C.

116. Coello Coello C, Lamont G, and Van Veldhuizen D (2007) Evolutionary Al-
gorithms for Solving Multi-Objective Problems, 2nd ed. Springer

117. Cortes C and Vapnik V (1995) Support vector networks. Machine Learning
20:273–297

512 References

118. Cover T (1965) Geometrical and statistical properties of systems of linear
inequalities with applications in pattern recognition. IEEE Transactions in
Electron. Comput. EC-14:326–334

119. Cramer N L (1985) A representation for the adaptive generation of simple
sequential programs. In: Proceedings of the International Conference on Ge-
netic Algorithms and Their Applications, pp 183–187, Lawrence Erlbaum and
Associates

120. Crist E (2004) Can an insect speak? The case of the honeybee dance language.
Social Studies of Science (Sage Publications) 34(1):7–43

121. Cristianini N, Shawe-Taylor J (2000) An Introduction to Support Vector Ma-
chines and Other Kernel-based Learning Methods. Cambridge University Press

122. Cui W, Brabazon A, O’Neill M (2011) Dynamic Trade Execution: A Gram-
matical Evolution Approach. International Journal of Financial Markets and
Derivatives 2(1/2):4–31

123. Curry R, Heywood M (2009) One-class Genetic Learning. In: Proceedings
of the 12th European Conference on Genetic Programming (EuroGP 2009),
Lecture Notes in Computer Science 5481, pp 1–12, Springer

124. Cutello V, Nicosia G, Pavone M (2004) Exploring the capability of immune
algorithms: A characterization of hypermutation operators. In: Proceedings of
the Third International Conference on Artificial Immune Systems (ICARIS04),
pp 263–276, Springer.

125. Cybenko G (1989) Approximation by superpositions of a sigmoidal function.
Math. Control Signal Systems 2:303–314

126. da Cruz A, Vellasco M, Pacheco M (2006) Quantum-inspired evolutionary al-
gorithm for numerical optimization. In Proceedings of the 2006 IEEE Congress
on Evolutionary Computation (CEC 2006), pp 9180–9187, IEEE Press

127. Darwin C (1859) On the Origin of the Species by Means of Natural Selection,
or the Preservation of Favoured Races in the Struggle for Life. (reprinted 1985)
London: Penguin Books

128. Darwin, C (1880) The Power of Movement in Plants. London: John Murray
129. Das A, Chakrabarti B (eds) (2005) Quantum Annealing and Related Opti-

mization Methods. Lecture Notes in Physics 679, Springer
130. Das A, Chakrabarti B (2008) Quantum annealing and analog quantum com-

putation. Reviews of Modern Physics 80(3):1061–1081
131. Das S, Suganthan P N (2011) Differential Evolution: A survey of the state-of-

art. IEEE Transactions on Evolutionary Computation 15(1):4–31
132. Das S, Konar A, Chakraborty U (2005) Two Improved Differential Evolution

Schemes for Faster Global Search. In: Proceedings of the 7th Genetic and
Evolutionary Computation Conference (GECCO 2005), pp 991–998, ACM
Press

133. Dasgupta S, Das S, Abraham A, Biswas A (2009) Adaptive Computational
Chemotaxis in Bacterial Foraging Optimization: An Analysis. IEEE Transac-
tions on Evolutionary Computation 13(4):919–941

134. Dawkins R (1976) The Selfish Gene. Oxford University Press
135. Deb K (2001) Multi-Objective Optimization using Evolutionary Algorithms.

Wiley
136. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist mul-

tiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary
Computation 6(2):182–197

References 513

137. Debels D, De Reyck B, Leus R, Vanhoucke M (2006) A hybrid scat-
ter search/electromagnetism meta-heuristic for project scheduling. European
Journal of Operational Research 169(2):638–653

138. Deboeck G, Kohonen T (eds) (1998) Visual Explorations in Finance with self-
organizing maps. Berlin: Springer-Verlag

139. De Castro L, Timmis J (eds) (2002) Artificial Immune Systems: A New Com-
putational Intelligence Approach. Springer

140. De Castro L, Von Zuben F (2000) The clonal selection algorithm with engi-
neering applications. In: Workshop Proceedings of the 2nd Genetic and Evo-
lutionary Computation Conference (GECCO 2000), pp 36–37

141. De Castro L, Von Zuben F (2001) aiNET: An artificial immune network for
data analysis. In: Abbass H, Sarker R, Newton C (eds) Data Mining: A Heuris-
tic Approach, pp 231–259, Idea Group Publishing

142. De Castro L, Von Zuben F (2002) Learning and optimization using the
clonal selection principle. IEEE Transactions on Evolutionary Computation
6(3):239–251

143. Dechmann D, Kranstauber B, Gibbs D, Wikelski M (2010) Group Hunting -
A Reason for Sociality in Molossid Bats. PLoS One 5(2):e9012

144. De Jong K (2006) Evolutionary Computation: A unified approach. Cambridge,
MA: MIT Press

145. de la Maza M, Tidor B (1993) An Analysis of Selection Procedures with Par-
ticular Attention Paid to Proportional and Boltzmann Selection. In: Forrest S
(ed) Proceedings of the 5th International Conference on Genetic Algorithms,
pp 124–131, Morgan Kaufmann

146. Dempsey I (2007) Grammatical Evolution in Dynamic Environments. PhD
Thesis. University College Dublin

147. Dempsey I, O’Neill M, Brabazon A (2004) Grammatical constant creation.
In: Proceedings of the 6th Genetic and Evolutionary Computation Confer-
ence (GECCO 2004), Lecture Notes in Computer Science 3103, pp 447–458,
Springer

148. Dempsey I, O’Neill M, Brabazon A (2005) Meta-grammar constant creation.
In: Proceedings of the 7th Genetic and Evolutionary Computation Conference
(GECCO 2005), pp 1665–1672, ACM Press

149. Dempsey I, O’Neill M, Brabazon A (2007) Constant Creation with Grammat-
ical Evolution. International Journal of Innovative Computing and Applica-
tions 1(1):23–38

150. Dempsey I, O’Neill M, Brabazon A (2009) Foundations in Grammatical Evo-
lution for Dynamic Environments. Springer

151. Dempster A, Laird N, Rubin D (1977) Maximum Likelihood from Incomplete
Data via the EM algorithm. Journal of the Royal Statistical Society, Series B
39(1):1–38

152. Deneubourg J, Gross S, Franks N, Sendova-Franks A, Detrain C, Chretie, L
(1991) The dynamics of collective sorting robot-like ants and ant-like robots.
In: Meyer J, Wilson S (eds) Proceedings of 1st Conference on Simulation of
Adaptive Behavior: From Animals to Animats (SAB 90), pp 356–365, MIT
Press

153. DeRosier D (1998) The Turn of the Screw: The Bacterial Flagellar Motor. Cell
93:17–20

514 References

154. Deutsch D (1985) Quantum Theory, the Church-Turing Principle and the
Universal Quantum Computer. Proceedings of the Royal Society (London)
A400: 97–117.

155. Devert A, Bredeche N, Schoenauer M (2007) Robust Multi-Cellular Develop-
mental Design. In: Proceedings of the 9th Genetic and Evolutionary Compu-
tation Conference (GECCO 2007), pp 982–989, ACM Press

156. de Villiers J, Barnard E (1992) Backpropagation Neural Networks with One
and Two Hidden Layers. IEEE Transactions on Neural Networks 4(1):136–141

157. Dickmans D, Schmidhuber J, Winklhofer A (1987) Der genetische Algo-
rithmus: Eine Implementierung in Prolog. Institut fur Informatik, Technis-
che Universität München, Fortgeschrittenenpraktikum, http://www.idsia.

ch/juergen/geneticprogramming.html

158. Dieks D (1982) Communication by EPR Devices. Physics Letters A 92: 271–
272.

159. Diez L, Le Borgne H, Lejeune P, Detrain C (2013) Who brings out the dead?
Necrophoresis in the red ant, Myrmica ruba. Animal Behaviour 80:1259–1264

160. Diosan L, Oltean M (2009) Evolutionary Design of Evolutionary Algorithms.
Genetic Programming and Evolvable Machines 10:263–306

161. Dittmer H (1937) A quantitative study of the roots and root hairs of a winter
rye plant. American Journal of Botany 25:417–420

162. Diwold K, Beekman M, Middendorf M (2010) Bee nest site selection as an
optimization process. In: Proceedings of ALife XII Conference, pp 626–633,
MIT Press

163. Diwold K, Himmelbach D, Meier R, Baldauf C, Middendorf M (2011) Bonding
as a Swarm: Applying Bee Nest-Site Selection Behavior to Protein Docking. In:
Proceedings of the 12th Genetic and Evolutionary Computation Conference
(GECCO 2011), pp 93–100, ACM Press

164. Dorigo M (1992) Optimization, Learning and Natural Algorithms. PhD Thesis.
Politecnico di Milano

165. Dorigo M, DiCaro G (1999) Ant colony optimization: a new meta-heuristic.
In: Proceedings of IEEE Congress on Evolutionary Computation (CEC 1999),
pp 1470–1477, IEEE Press

166. Dorigo M and Gambardella L (1997) Ant Colony System: A cooperative Learn-
ing Approach to the Travelling Salesman Problem. IEEE Transactions on Evo-
lutionary Computation 1:53–66

167. Dorigo M and Gambardella L (1997) Ant colonies for the travelling salesman
problem. BioSystems 43:73–81

168. Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony
of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics
- Part B: Cybernetics 26(1):29–41

169. Dorigo M, Stützle T (2004) Ant Colony Optimization, Cambridge, Mas-
sachusetts, MIT Press

170. Duda R, Hart P and Stork D (2001) Pattern Classification, 2nd edn. NY:
Wiley

171. Dunham B, Fridshal D, North J H (1963) Design by Natural Selection. Syn-
these 15:254–259

172. Dunn J (1973) A Fuzzy Relative of the ISODATA Process and Its Use in
Detecting Compact Well-Separated Clusters. Journal of Cybernetics 3:32–57

173. Eberhart R, Dobbins R, Simpson P (1996) Computational Intelligence PC
Tools, Boston, MA: Academic Press

http://www.idsia.ch/juergen/geneticprogramming.html
http://www.idsia.ch/juergen/geneticprogramming.html

References 515

174. Edmonds B (1998) Meta-Genetic Programming: Co-evolving the Operators
of Variation. CPM Report 98–32, Centre for Policy Modelling, Manchester
Metropolitan University, UK

175. Eiben A, Smith J (2015) Introduction to Evolutionary Computing. Second
edition. Berlin: Springer-Verlag

176. Elman J (1990) Finding structures in time. Cognitive Science 14:179–211
177. Engelbrecht A (2005) Fundamentals of Computational Swarm Intelligence.

Chichester, UK: Wiley
178. Engelbrecht A (2012) Particle Swarm Optimization: Velocity Initialization. In:

Proceedings of the IEEE World Congress on Computational Intelligence 2012
(WCCI 2012), pp 70–77, IEEE Press

179. Escuela G, Ochoa G, Krasnogor N (2005) Evolving L-Systems to Capture
Protein Structure Native Conformations. In: Proceedings of the 8th European
Conference on Genetic Programming (EuroGP 2008), Lecture Notes in Com-
puter Science 3447. pp 74–84, Springer

180. Fagan D (2014) An Analysis of Genotype-Phenotype Mapping in Grammatical
Evolution. PhD Thesis, University College Dublin.

181. Fagan D, Hemberg E, O’Neill M, McGarraghy S (2013) Understanding Ex-
pansion Order and Phenotypic Connectivity in πGE. In: Proceedings of the
16th European Conference on Genetic Programming (EuroGP 2013), Lecture
Notes in Computer Science 7831, pp 37-48, Springer.

182. Fagan D, Nicolau M, O’Neill M, Galvan-Lopez E, Brabazon A (2010) Inves-
tigating Mapping Order in πGE. In: Proceedings of the IEEE Congress on
Evolutionary Computation 2010 (WCCI 2010), pp 3058–3064, IEEE Press

183. Fagan D, O’Neill M, Galvan-Lopez E, Brabazon A, McGarraghy S (2010) An
analysis of Genotype-Phenotype Maps in Grammatical Evolution. In: Pro-
ceedings of the 13th European Conference on Genetic Programming (EuroGP
2010), Lecture Notes in Computer Science 6021. pp 62–73, Springer

184. Fagan D, Nicolau M, Hemberg E, O’Neill M, Brabazon A, McGarraghy S
(2011) Investigation of the Performance of Different Mapping Orders for GE
on the Max Problem. In: Proceedings of the 14th European Conference on
Genetic Programming (EuroGP 2011), Lecture Notes in Computer Science
6621. pp 286–297, Springer.

185. Fagan D, Hemberg E, O’Neill M, McGarraghy S (2012) Fitness Reactive Mu-
tation in Grammatical Evolution. In: Proceedings of the 18th International
Conference on Soft Computing (Mendel 2012), Brno, Czech Republic

186. Fahlman S (1988) Faster-learning variations on back-propagation: An empiri-
cal study. Sejnowski T J, Hinton G E, Touretzky D S (eds) 1988 Connectionist
Models Summer School, pp 38–51, San Mateo, CA: Morgan Kaufmann

187. Federici D, Downing K (2006) Evolution and Development of a Multicellular
Organism: Scalability, Resilience, and Neutral Complexification. Artificial Life
12(3):381–409

188. Fenton B (2013) Questions, ideas and tools: lessons from bat echolocation.
Animal Behaviour 85:869–879

189. Feynman R (1982) Simulating Physics with Computers. International Journal
of Theoretical Physics 21 (6&7): 467–488.

190. Finnila A, Gomez M, Sebenik C, Stenson C, Doll J (1994) Quantum annealing:
A new method for minimizing multidimensional functions. Chem. Phys. Lett.
219:343–348

516 References

191. Firn R (2004) Plant Intelligence: an Alternative Point of View. Annals of
Botany 93:345–351

192. Fogel D (ed) (1998) Evolutionary Computation: The Fossil Record, IEEE
Press

193. Fogel D (2000) Evolutionary Computation: Towards a New Philosophy of Ma-
chine Intelligence, IEEE Press

194. Fogel L, Owens A, Walsh M (1966) Artificial Intelligence through Simulated
Evolution, New York: Wiley

195. Fogel L J (1962) Autonomous automata. Industrial Research 4:14–19
196. Fonseca C, Fleming P (1993) Genetic Algorithms for Multiobjective Opti-

mization. In: Proceedings of the 5th International Conference on Genetic Al-
gorithms, pp 416–423, San Mateo: Morgan Kaufmann

197. Formato R A (2007) Central force optimization: a new metaheuristic with ap-
plications in applied electromagnetics. Progress in Electromagnetics Research
77:425–491

198. Formato R A (2008) Central force optimization: a new nature inspired com-
putational framework for multidimensional search and optimization. Studies
in Computational Intelligence 129:221–238

199. Forrest S, Perelson A, Allen L, Cherukuri R (1994) Self-nonself discrimination
in a computer. In: Proceedings of the 1994 IEEE Symposium on Research in
Security and Privacy, pp 202–212, IEEE Press

200. Foster J A (2001) Evolutionary computation. Nature Genetics Reviews 2:428–
436

201. Freeland S, Hurst L (2004) Evolution encoded. Scientific American, April 2004,
pp 84–91

202. Freitas A, Timmis J (2007) Revisiting the Foundations of Artificial Immune
Systems for Data Mining. IEEE Transactions on Evolutionary Computation
11(4):521–540

203. Friedberg R M (1958) A Learning Machine: Part 1. IBM J. Research and
Development 2(1):2–13

204. Friedberg R M, Dunham B, North J H (1959) A learning machine: Part 2.
IBM J. Research and Development 3:282–287

205. Fromm J, Lautner S (2007) Electrical signals and their physiological signifi-
cance. Plant, Cell and Environment 30:249–257

206. Galvan-Lopez E, Fagan D, Murphy E, Swafford J M, Agapitos A, O’Neill
M, Brabazon A (2010) Comparing the Performance of the Evolvable PiGram-
matical Evolution Genotype-Phenotype Map to Grammatical Evolution in the
Dynamic Ms. Pac-Man Environment. In: Proceedings of the IEEE Congress
on Evolutionary Computation 2010 (WCCI 2010), pp 1587–1594, IEEE Press

207. Gandomi A, Yang X-S, Alavi A, Talatahari S (2013) Bat algorithm for con-
strained optimization tasks. Neural Computing and Applications 22:1239–1255

208. Garavaglia S (2002) A quantum-inspired self-organizing map (QISOM). In:
Proceedings of 2002 IEEE International Joint Conference on Neural Networks
(IJCNN 2002), pp 1779–1784, IEEE Press

209. Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions and the
Bayesian restoration of images. IEEE Transactions on Pattern Analysis and
Machine Intelligence 6:721–741

210. Gilbert S F (2006) Developmental Biology (8th edn). Sinauer Associates
211. Goldberg D (1989) Genetic Algorithms in Search, Optimization and Machine

Learning. Boston: Addison-Wesley

References 517

212. Goldberg D (2002) The Design of Innovation: Lessons from and for Competent
Genetic Algorithms. Kluwer Academic Publishers

213. Goldberg D, Richardson J (1987) Genetic algorithms with sharing for multi-
modal function optimization. In: Proceedings of the second international con-
ference on genetic algorithms, pp 41–49, L. Erlbaum Associates Inc.

214. Gonzalez F, Dasgupta D (2003) Anomaly detection using real-valued negative
selection. Genetic Programming and Evolvable Machines 4(4):383–403

215. Gonzalez L, Cannady J (2004) A self-adaptive negative selection approach
for anomaly detection. In: Proceedings of the IEEE Congress on Evolutionary
Computation 2004 (CEC 2004), pp 1561–1568, New Jersey: IEEE Press

216. Gordon T G W, Bentley P J (2005) Bias and Scalability in Evolutionary De-
velopment. In: Proceedings of the 7th Genetic and Evolutionary Computation
Conference (GECCO 2005), pp 83–90, ACM Press

217. Grahl J, Bosman P, Rothlauf F (2006) The correlation-triggered adaptive
variance scaling IDEA. In: Proceedings of the 8th Genetic and Evolutionary
Computation Conference (GECCO 2006), pp 397–404, ACM Press

218. Granovskiy B, Latty T, Duncan M, Sumpter D and Beekman M
(2012) How dancing honey bees keep track of changes: the role
of inspector bees. Behavioral Ecology, published online 16 Febru-
ary 2012, http://beheco.oxfordjournals.org/content/early/2012/02/

16/beheco.ars002.full.pdf+html

219. Grefenstette J (1992) Genetic algorithms for changing environments. In: Pro-
ceedings of Parallel Problem Solving from Nature II (PPSN II), pp 137–144,
Elsevier Science Inc.

220. Greensmith J, Aickelin U, Cayzer S (2008) Detecting Danger: The Dendritic
Cell Algorithm. HP Laboratories Report HPL-2008-200, http://ima.ac.uk/
papers/cayzer2008.pdf, accessed 27 July 2013

221. Greensmith J, Feyereisl J, Aickelin U (2008) The DCA: SOMe Comparison: A
comparative study between two biologically-inspired algorithms. Evolutionary
Intelligence 1(2):85–112

222. Greensmith J, Twycross J, Aickelin U (2006) Dendritic Cells for Anomaly
Detection. In: Proceedings of IEEE Congress on Evolutionary Computation
(CEC 2006) pp 664–671, IEEE Press

223. Greensmith J, Aickelin U, Cayzer S (2005) Introducing dendritic cells as a
novel immune-inspired algorithm for anomaly detection. In: Proceedings of
4th International Conference on Artificial Immune Systems (ICARIS 2005),
Lecture Notes in Computer Science 3627, pp 153–167, Springer

224. Griffin D (1944) Echolocation by blind men, bats and radar. Science 100:589–
590

225. Griffin D (1958) Listening in the Dark. Yale University Press, New Haven, CT
226. Grime J, Mackey J (2002) The role of plasticity in resource capture by plants.

Evolutionary Ecology 16:299–307
227. Grossberg S (1976) Adaptive pattern classification and universal recoding, II:

Feedback, expectation, olfaction and illusions. Biological Cybernetics 23:187–
2l2

228. Grossberg S (1980) How does a brain build a cognitive code? Psychological
Review 1:1–51

229. Grover L K (1996) A fast quantum mechanical algorithm for database search.
In: Proceedings of the 28th ACM Symposium on the Theory of Computing,
Piscataway, NJ, Nov 1994. IEEE Press. 212–219.

http://beheco.oxfordjournals.org/content/early/2012/02/16/beheco.ars002.full.pdf+html
http://ima.ac.uk/papers/cayzer2008.pdf
http://beheco.oxfordjournals.org/content/early/2012/02/16/beheco.ars002.full.pdf+html
http://ima.ac.uk/papers/cayzer2008.pdf

518 References

230. Grover L K (1997) Quantum computers can search arbitrarily large databases
by a single query. Phys. Rev. Lett. 79: 4709–4712.

231. Gruau F (1994) Neural Network Synthesis Using Cellular Encoding and
the Genetic Algorithm. PhD Thesis. L’École Normale Supérieure de Lyon,
l’Université Claude Bernard Lyon 1

232. Grünbaum D, Viscido S and Parrish J (2004) Extracting interactive control
algorithms from group dynamics of schooling fish. Coop Control Lecture Notes
in Control and Information Sciences (LNCIS 309), pp 103–117, Springer

233. Gruter C, Segers F and Ratnieks F (2013) Social learning strategies in hon-
eybee foragers: do the costs of using private information affect the use of
social information? Animal Behaviour 85(6):1143–1449 http://dx.doi.org/

10.1016/j.anbehav.2013.03.041

234. Gu F, Greensmith J, Aickelin U (2013) Theoretical formulation and analysis
of the deterministic dendritic cell algorithm. Biosystems 111(2):127–135

235. Gu F, Feyereisl J, Oates R, Reps J, Greensmith J, Aickelin U (2011) Quiet
in class: classification, noise and the dendritic cell algorithm. In: Proceedings
of the 10th International Conference on Artificial Immune Systems (ICARIS
2011), pp 173–186, Springer

236. Gudise V, Venayagamoorthy G (2003) Comparison of particle swarm opti-
mization and backpropagation as training algorithms for neural networks. In:
Proceedings of the 2003 IEEE Swarm Intelligence Symposium (SIS ’03), pp
110–117, IEEE Press

237. Guney K, Durmus A, Basbug S (2009) A Plant Growth Simulation Algorithm
for Pattern Nulling of Linear Antenna Arrays by Amplitude Control. Progress
in Electromagnetics Research B 17:69–84

238. Gurney K (1997) An introduction to Neural Networks. London: University
College London Press

239. Hajela P, Li, C-Y (1992) Genetic search strategies in multicriterion optimal
design. Structural Optimization 4(2):99–107

240. Han K-H, Kim J-H (2002) Quantum-inspired evolutionary algorithm for a class
of combinatorial optimization. IEEE Transactions on Evolutionary Computa-
tion 6(6):580–593

241. Han K-H, Kim J-H (2004) Quantum-inspired evolutionary algorithms with a
new termination criterion, Hε gate and two-phase scheme. IEEE Transactions
on Evolutionary Computation 8(3):156–169

242. Hancock P (1992) Genetic algorithms and permutation problems: a compar-
ison of recombination operators for neural net structures. In: Proceedings of
International Workshop on Combinations of Genetic Algorithms and Neural
Networks (COGANN-92), pp 108–122, IEEE Press

243. Handl J, Knowles J, Dorigo M (2006) Ant-based Clustering and Topographic
Mapping. Artificial Life 12(1):35–62

244. Hansen N, Ostermeier A (1996) Adapting arbitrary normal mutation distribu-
tions in evolution strategies: the covariance matrix adaptation. In: Proceedings
of the IEEE International Conference on Evolutionary Computation (CEC
1996), pp 312–317, IEEE Press

245. Hansen N, Ostermeier A (2001) Completely derandomized self-adaptation in
evolution strategies. Evolutionary Computation 9(2):159–195

246. Hansen N, Ostermeier A, Gawelczyk A (1995) On the adaptation of arbi-
trary normal mutation distributions in evolution strategies: The generating

http://dx.doi.org/10.1016/j.anbehav.2013.03.041
http://dx.doi.org/10.1016/j.anbehav.2013.03.041

References 519

set adaptation. In: Eshelman L J (ed) Proceedings of the Sixth International
Conference on Genetic Algorithms, pp 57–64, San Mateo, CA: Morgan Kauf-
mann

247. Hara A, Ichimura T, Fujita N, Takahama T (2006) Effective Diversification
of Ant-based Search Using Colony Fission and Extinction. In: Proceedings
of the 2006 IEEE Congress on Evolutionary Computation (CEC 2006), pp
3773–3780, IEEE Press

248. Harano K-i, Mitsuhata-Asai A, Konishi T, Suzuki T and Sasaki M (2013)
Honeybee foragers adjust crop contents before leaving the hive: Effects of
distance to food source, food type, and informational state. Behavioral Ecology
and Sociobiology, published online 8 May 2013, DOI 10.1007/s00265-013-1542-
5

249. Harding S, Banzhaf W (2008) Artificial Development. In: Wurtz, R. (ed) Or-
ganic Computing, pp 201–220, Springer

250. Harding S, Miller J F, Banzhaf W (2007) Self-Modifying Cartesian Genetic
Programming. In: Proceedings of the 9th annual conference on Genetic and
evolutionary computation (GECCO 2007), pp 1021–1028, ACM Press

251. Harding S, Miller J F, Banzhaf W (2009) Evolution, Development and Learn-
ing using Self-Modifying Cartesian Genetic Programming. In: Proceedings
of the 11th annual conference on Genetic and evolutionary computation
(GECCO 2009), pp 699–706, ACM Press

252. Harik G, Lobo F, Goldberg D (1998) The compact genetic algorithm. In:
Proceedings of the International Conference on Evolutionary Computation
(CEC 1998), pp 523–528, New Jersey: IEEE Press

253. Harper R, Blair A (2005) A Structure Preserving Crossover in Grammati-
cal Evolution. In: Proceedings of the 2005 IEEE International Conference on
Evolutionary Computation (CEC 2005), pp 2537–2544, IEEE Press

254. Harper R, Blair A (2006) A Self-selecting Crossover Operator. In: Proceed-
ings of the 2006 IEEE International Conference on Evolutionary Computation
(CEC 2006), pp 5569–5576, IEEE Press

255. Harper R, Blair A (2006) Dynamically Defined Functions in Grammatical
Evolution. In: Proceedings of the 2006 IEEE Congress on Evolutionary Com-
putation (CEC 2006), pp 9188–9195, IEEE Press

256. Hart E, Timmis J (2008) Application areas of AIS: The past, the present and
the future. Applied Soft Computing 8(1):191–201

257. Hart W, Krasnogor N, Smith J (eds) (2004) Recent Advances in Memetic
Algorithms. Berlin: Springer-Verlag

258. Hastings W K (1970) Monte Carlo sampling methods using Markov chains
and their applications. Biometrika 57(1):97–109

259. He D, Qu L and Guo X (2009) Artificial Fish-school Algorithm for Integer Pro-
gramming. In Proceedings of IEEE International Conference on Information
Engineering and Computer Science (ICIECS 2009), pp 1–4, IEEE Press

260. Heil M and Ton J (2008) Long-distance signalling in plant defence. Trends in
Plant Science 13(6):264–272

261. Hemberg E (2010) An Exploration of Grammars in Grammatical Evolution.
PhD Thesis. University College Dublin

262. Hemberg E, McPhee N, O’Neill M, Brabazon, A (2008) Pre-, In- and Postfix
grammars for Symbolic Regression in Grammatical Evolution. In: Proceed-
ings of the IEEE Workshop and Summer School on Evolutionary Comput-

520 References

ing, pp 18–22, IEEE Press (also available from http://ncra.ucd.ie/papers/

HembergMcPhee_etal.pdf)
263. Hemberg E, O’Neill M, Brabazon A (2009) An investigation into automatically

defined function representations in Grammatical Evolution. In: Proceedings of
Mendel 2009, 15th International Conference on Soft Computing (also available
from http://ncra.ucd.ie/papers/mendel2009ADF.pdf)

264. Hemberg E, Ho L, O’Neill M, Claussen H (2011) A Symbolic Regression Ap-
proach To Manage Femtocell Coverage Using Grammatical Genetic Program-
ming. In: Proceedings of the Genetic and Evolutionary Computation SRM
Workshop at GECCO 2011, pp 639–646, ACM Press

265. Hemberg E, Ho L, O’Neill M, Claussen H (2012) Evolving Femtocell Algo-
rithms with Dynamic and Stationary Training Scenarios. In: Proceedings of
the 12th International Conference on Parallel Problem Solving from Nature
(PPSN XII), Lecture Notes in Computer Science 7492, pp 518-527, Springer

266. Hemberg E, Ho L, O’Neill M, Claussen H (2012) A Comparison of Gram-
matical Genetic Programming Grammars for Controlling Femtocell Network
Coverage. Genetic Programming and Evolvable Machines 14(1):65–93

267. Hendtlass T (2001) A Combined Swarm Differential Evolution Algorithm for
Optimization Problems. In: Proceedings of the Fourteenth International Con-
ference on Industrial and Engineering Applications of Artificial Intelligence
and Expert Systems, Lecture Notes in Computer Science 2070, pp 11–18,
Springer

268. Hendtlass T (2004) TSP Optimisation Using Multi Tour Ants. In: Proceedings
of 17th International Conference on Industrial and Engineering Applications
of Artificial Intelligence and Expert Systems (IEA/AIE 2004), Lecture Notes
in Computer Science 3029, pp 523–532, Springer

269. Hendtlass T (2005) WoSP: a multi-optima particle swarm algorithm. In: Pro-
ceedings of the IEEE Congress on Evolutionary Computation 2005 (CEC
2005), pp 727–734, IEEE Press

270. Hendtlass T (2007) TSP optimisation using multi tour ants. In: Proceedings
of IEA/AIE, Industrial and Engineering Applications of Artificial Intelligence
and Expert Systems, Lecture Notes in Computer Science 3029, pp 523–532,
Springer

271. Higashi N, Iba H (2003) Particle swarm optimization with Gaussian mutation.
In: Proceedings of the 2003 IEEE Swarm Intelligence Symposium (SIS ’03) pp
72–79, IEEE Press

272. Higashitani M, Ishigame A, Yasuda K (2006) Particle Swarm Optimization
Considering the Concept of Predator-Prey Behavior. In: Proceedings of the
2006 IEEE Congress on Evolutionary Computation (CEC 2006), pp 1541–
1544, IEEE Press

273. Hirvensalo, M. (2002). Quantum computing — Facts and Folklore. Natural
Computing 1: 135–155.

274. Hoai N X, McKay R I, Abbass H A (2003) Tree adjoining grammars, language
bias, and genetic programming. In: Proceedings of 6th European Conference
on Genetic Programming (EuroGP 2003), Lecture Notes in Computer Science
2610, pp 340–349, Springer

275. Hoai N X, McKay R I, Essam D (2002) Some Experimental Results with Tree
Adjunct Grammar Guided Genetic Programming. In: Proceedings of the 5th
European Conference on Genetic Programming (EuroGP 2002), Lecture Notes
in Computer Science 2278, pp 228–237, Springer

http://ncra.ucd.ie/papers/HembergMcPhee_etal.pdf
http://ncra.ucd.ie/papers/mendel2009ADF.pdf
http://ncra.ucd.ie/papers/HembergMcPhee_etal.pdf

References 521

276. Hoai N X, McKay R I, Essam D (2006) Representation and Structural Diffi-
culty in Genetic Programming. IEEE Transactions on Evolutionary Compu-
tation 10(2):157–166

277. Hoai N X, McKay R I, Essam D, Hoang T H (2005) Genetic Transposition in
Tree-Adjoining Grammar Guided Genetic Programming: The Duplication Op-
erator. In: Proceedings of the 8th European Conference on Genetic Program-
ming (EuroGP 2005), Lecture Notes in Computer Science 3447, pp 108–119,
Springer

278. Hoang T H, McKay R I, Essam D, Hoai N X (2011) On Synergistic Interactions
Between Evolution, Development and Layered Learning. IEEE Transactions
on Evolutionary Computation 15(3):287–312

279. Hochreiter S, Mozer M (2000) An electric approach to independent component
analysis. In: Proceedings of the 2nd International Workshop on Independent
Component Analysis and Signal Separation, Helsinki, pp 45–50

280. Hofmeyer S, Forrest S (2000) Architecture for an artificial immune system.
Evolutionary Computation 8(4):443–473

281. Holland J H (1975) Adaptation in Natural and Artificial Systems: An Intro-
ductory Analysis with Applications to Biology, Control, and Artificial Intelli-
gence. Michigan: University of Michigan Press

282. Hölldobler B and Wilson E (1994) Journey to the Ants: A story of scientific
exploration. Belknap Press/Harvard University Press

283. Hordijk W (1995) A Measure of Landscapes. Santa Fe Institute Working Paper
95–05–04, Santa Fe: Santa Fe Institute

284. Hornby G, Pollack J (2001) Evolving L-Systems to Generate Virtual Crea-
tures. Computers and Graphics 25(6):1041–1048

285. Hornik K, Stinchcombe M, White H (1990) Multi-layered feedforward neural
networks are universal approximators. Neural Networks 2:359–366

286. Howley T, Madden M (2005) The genetic kernel support vector machine: De-
scription and evaluation. Artificial Intelligence Review 24(3–4):379–395

287. Hu X, Shi Y, Eberhart R (2004) Recent advances in particle swarm. In: Pro-
ceedings of IEEE Congress on Evolutionary Computation (CEC 2004), pp
90–97, IEEE Press

288. Hugosson J, Hemberg E, Brabazon A, O’Neill M (2010) Genotype Represen-
tations in Grammatical Evolution. Applied Soft Computing 10(1):36–43

289. Ingber L (1989) Very fast simulated re-annealing. Mathl Comput Modelling
12(8):967–973

290. Ingber L (1993) Simulated annealing: Practice versus theory. Mathl Comput
Modelling 18(11):29–57

291. Ishida Y (2004) Immunity-Based Systems: A Design Perspective. Berlin:
Springer

292. Jacob C (1994) Genetic L-System Programming. In: Proceedings of the 3rd
International Conference on Parallel Problem Solving from Nature (PPSN
III), Lecture Notes in Computer Science 866, pp 334–343, Springer

293. Jacob C (1995) Genetic L-System Programming: Breeding and Evolving Ar-
tificial Flowers with Mathematica. In: Proceedings of the First International
Mathematica Symposium (IMS’95), pp 215–222, Computational Mechanics
Publisher

294. Jacob C, Burleigh I (2005) Genetic Programming Inside a Cell. In: Yu T,
Riolo R, Worzel B (eds) Genetic Programming Theory and Practice III, pp
191–206, Springer

522 References

295. Janecek A and Tan Y (2011) Feeding the Fish - Weight Update Strategies for
the Fish School Search Algorithm. In Proceedings of the Second International
Conference on Swarm Intelligence (ICSI 2011), pp 553–562, Springer

296. Janson S, Middendorf M, Beekman M (2007) Searching for a new home –
scouting behavior of honeybee swarms. Behavioral Ecology 18(2):384–392

297. Jerne N (1974) Towards a Network Theory of the Immune System. Ann. Im-
munol. (Inst. Pasteur), 125C, pp 373–389

298. Jerne N (1985) The Generative Grammar of the Immune System. EMBO J.
4:847–852

299. Ji Z, Dasgupta D (2004) Augmented negative selection algorithm with
variable-coverage detectors. In: Proceedings of IEEE Congress on Evolution-
ary Computation (CEC 2004), pp 1081–1088, IEEE Press

300. Ji Z, Dasgupta D (2007) Revisiting Negative Selection Algorithms. Evolution-
ary Computation 15(2):223–251

301. Jiao L, Li Y (2005) Quantum-inspired immune clonal optimization. In: Pro-
ceedings of 2005 IEEE International Conference on Neural Networks and Brain
(ICNN&B 2005), pp 461–466, IEEE Press

302. Jin Y, Branke J (2005) Evolutionary Optimization in Uncertain Environments:
A Survey. IEEE Transactions on Evolutionary Computation 9(3):303–317

303. Johnson C (2003) Artificial Immune System Programming for Symbolic Re-
gression. In: Proceedings of 6th European Conference on Genetic Program-
ming (EuroGP 2003), Lecture Notes in Computer Science 2610, pp 345–353,
Berlin: Springer-Verlag

304. Johnson S (1967) Hierarchical Clustering Schemes. Psychometrika 2:241–254
305. Jones T (1995) Evolutionary Algorithms, Fitness Landscapes and Search. PhD

Thesis. Department of Computer Science, University of New Mexico
306. Jones G (2005) Echolocation. Current Biology 15(13)R484–R488
307. Jones J, Dangl J (2006) The plant immune system. Nature 444:323–329
308. Jones G, Teeling E (2006) The evolution of echolocation in bats. Trends in

Ecology and Evolution 21(3):149–156
309. Joshi A K, Levy L S, Takahashi M (1975) Tree Adjunct Grammars. Journal

of Computer and System Sciences 10(1):136–163
310. Joshi A K, Schabes Y (1991) Tree-Adjoining Grammars and Lexi-

calised Grammars. Technical Report MS-CIS-91–22, Department of
Computer and Information Science, University of Pennsylvania, March
1991 http://repository.upenn.edu/cgi/viewcontent.cgi?article=

1463&context=cis_reports&sei-redir=1

311. Joshi A K, Schabes Y (1997) Tree Adjoining Grammars. In: Rozenberg G,
Salomaa A (eds) Handbook of Formal Languages, Beyond Words, pp 69–123,
Springer-Verlag

312. Kantschik W, Banzhaf W (2002). Linear-graph GP—A new GP Structure.
In: Proceedings of the 4th European Conference on Genetic Programming
(EuroGP 2002), Lecture Notes in Computer Science 2278, pp 83–92, Springer

313. Kantschik W, Dittrich P, Brameier M, Banzhaf W (1999) Meta-evolution in
graph GP. In: Proceedings of the European Conference on Genetic Program-
ming (EuroGP 1999), Lecture Notes in Computer Science 1598, pp 15–28,
Springer

314. Karaboga D (2005) An idea based on honeybee swarm for numerical opti-
mization. Technical Report TR06, Engineering Faculty, Computer Engineering

http://repository.upenn.edu/cgi/viewcontent.cgi?article=1463&context=cis_reports&sei-redir=1
http://repository.upenn.edu/cgi/viewcontent.cgi?article=1463&context=cis_reports&sei-redir=1

References 523

Department, Erciyes University, http://mf.erciyes.edu.tr/abc/pub/tr06_
2005.pdf

315. Karaboga D, Akay B (2009) A survey: algorithms simulating bee intelligence.
Artificial Intelligence Review 31:61–85

316. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numer-
ical function optimization: artificial bee colony (ABC) algorithm. Journal of
Global Optimization 39:459–471

317. Karaboga D, Ozturk C (2011) A novel clustering approach: Artificial Bee
Colony (ABC) algorithm. Applied Soft Computing 11:652–657

318. Kawamura H, Yamamoto M, Suzuki K, Ohuchi A (2000) Multiple Ant
Colonies Algorithm Based on Colony Level Interactions. Transactions of the
Institute of Electronics, Information and Communication Engineers E83-
A:722–741

319. Keijzer M, Babovic V, Ryan C, O’Neill M, Cattolico M (2001) Adaptive Logic
Programming. In: Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO-2001), pp 42–49, Morgan Kaufmann

320. Keijzer M, O’Neill M, Ryan C, Cattolico M (2002) Grammatical Evolution
Rules: The mod and the Bucket Rule. In: Proceedings of the 5th European
Conference (EuroGP 2002), Lecture Notes in Computer Science 2278, pp 123–
130, Springer-Verlag

321. Keijzer M et al. (eds) (2008) Proceedings of the 10th annual conference on
Genetic and evolutionary computation (GECCO 2008). 12–16 July, Atlanta,
GA, USA, ACM Press

322. Keller R E, Banzhaf W (1996) Genetic Programming using Genotype-
Phenotype Mapping from Linear Genomes into Linear Phenotypes. In: Pro-
ceedings of the First Annual Conference on Genetic Programming, pp 116–122,
MIT Press

323. Keller R E, Banzhaf W (1999) The Evolution of Genetic Code in Genetic
Programming. In: Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO 1999), 2:1077–1082, Morgan Kaufmann

324. Keller R E, Banzhaf W (2001) Evolution of Genetic Code on a Hard Problem.
In: Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO 2001), pp 50–56, Morgan Kaufmann

325. Kelsey J, Timmis J (2003) Immune Inspired Somatic Contiguous Hypermuta-
tion for Function Optimisation. In: Proceedings of Genetic and Evolutionary
Computation Conference (GECCO) 2005, pp 207–218, Springer.

326. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of
the IEEE International Conference on Neural Networks, pp 1942–1948, IEEE
Press

327. Kennedy J, Eberhart R (1997) A discrete binary version of the particle swarm
algorithm. In: Proceedings of the IEEE Conference on Systems, Man and
Cybernetics, pp 4104–4109, IEEE Press

328. Kennedy J, Eberhart R, Shi Y (2001) Swarm Intelligence. San Mateo, Cali-
fornia: Morgan Kaufmann

329. Khan N, Goldberg D, Pelikan M (2002) Multiobjective bayesian optimiza-
tion algorithm. In: Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO 2002), pp 684, San Mateo, California: Morgan Kaufmann

330. Kirkpatrick S, Gelatt C, Vecchi M (1983) Optimization by simulated anneal-
ing. Science 220(4598):671–680

http://mf.erciyes.edu.tr/abc/pub/tr06_2005.pdf
http://mf.erciyes.edu.tr/abc/pub/tr06_2005.pdf

524 References

331. Kitano H (1990) Designing neural networks using genetic algorithms with
graph generation. Complex Systems 4:461–476

332. Kohonen T (1982) Self-organized formation of topologically correct feature
maps. Biological Cybernetics 43:59–69

333. Kohonen T (1990) The Self-organizing map. Proceedings of the IEEE
78(9):1464–1480

334. Kohonen T (1998) The SOM Methodology. In: Deboeck G, Kohonen, T (eds)
Visual Explorations in Finance with Self-organizing Maps, pp 159–167, Berlin:
Springer-Verlag

335. Kokai G, Toth Z, Vanyi R (1999) Modelling Blood Vessels of the Eye with
Parametric L-Systems using Evolutionary Algorithms. In: Proceedings of the
Joint European Conference on Artificial Intelligence in Medicine and Medi-
cal Decision Making, Lecture Notes in Computer Science 1620, pp 433–443,
Springer-Verlag

336. Konak A, Coit D, Smith A (2006) Multi-objective optimization using genetic
algorithms: A tutorial. Reliability Engineering and System Safety 91:992–1007

337. Kong X, Chen Y-L, Xie W, Wu X (2012) A Novel Paddy Field Algorithm
Based on Pattern Search Method. In: Proceedings of the IEEE International
Conference on Information and Automation, pp 686–690, IEEE Press

338. Korosec P, Jurij S (2009) A Stigmergy-Based Algorithm for Continuous Op-
timization Tested on Real-Life-Like Environment. In: Proceedings of 2nd Eu-
ropean Workshop on Bio-inspired Algorithms for Continuous Parameter Op-
timisation (EvoNum), Lecture Notes in Computer Science 5484, pp 675–684,
Springer

339. Koza J (1989) Hierarchical genetic algorithms operating on populations of
computer programs. In: Proceedings of the 11th International Joint Conference
on Artificial Intelligence, pp 768–774, Morgan Kaufmann

340. Koza J R (1992) Genetic Programming. Massachusetts: MIT Press
341. Koza J R (1994) Genetic Programming II. Massachusetts: MIT Press
342. Koza J R, Andre D, Bennett (III) F H, Keane M (1999) Genetic Programming

III: Darwinian Invention and Problem Solving. Morgan Kaufmann
343. Koza J R, Keane M, Streeter M J, Mydlowec W, Yu J, Lanza, G (2003)

Genetic Programming IV: Routine Human-Competitive Machine Intelligence.
Kluwer Academic Publishers

344. Koza J R (2010) Human-competitive results produced by genetic program-
ming. Genetic Programming and Evolvable Machines 11(3–4):251–284

345. Krasnogor N (2002) Studies on the Theory and Design Space of Memetic
Algorithms. PhD thesis. Faculty of Computing, Engineering and Mathematical
Sciences, University of the West of England

346. Krasnogor N, Smith J (2005) A Tutorial for Competent Memetic Algorithms:
Model, Taxonomy, and Design Issues. IEEE Transactions on Evolutionary
Computation 9(5):474–488

347. Krasnogor N et al. (eds) (2011) Proceedings of the 13th annual conference on
Genetic and evolutionary computation (GECCO 2011). 12–16 July, Dublin,
Ireland, ACM Press

348. Krawiec K (2011) Semantically embedded genetic programming: automated
design of abstract program representations. In: Proceedings of the 13th an-
nual conference on Genetic and evolutionary computation (GECCO 2011), pp
1379–1386, ACM Press

References 525

349. Krawiec K, Lichocki P (2009) Approximating geometric crossover in semantic
space. In: Proceedings of the 11th Annual conference on Genetic and evolu-
tionary computation (GECCO 2009), pp 987–994, ACM Press

350. Krawiec K, Wieloch B (2009) Analysis of Semantic Modularity for Genetic
Programming. Foundations of Computing and Decision Sciences 34(4):265–
285

351. Krishnanand K, Ghose D (2005) Detection of Multiple Source Locations using
a Glowworm Metaphor with Applications to Collective Robotics. In: Proceed-
ings of 2005 IEEE Swarm Intelligence Symposium, pp 84–91, IEEE Press

352. Krishnanand K, Ghose D (2006) Glowworm swarm based optimization algo-
rithm for multimodal functions with collective robotics applications. Multia-
gent and Grid Systems 2(3):209–222

353. Krishnanand K, Ghose D (2006) Theoretical Foundations for Multiple Ren-
dezvous of Glowworm-inspired Mobile Agents with Variable Local-decision do-
mains. In: Proceedings of 2006 American Control Conference, pp 3588–3593,
IEEE Press

354. Langdon W B, Gustafson S (2005) Genetic programming and evolvable ma-
chines: five years of reviews. Genetic Programming and Evolvable Machines
6(2):221–228

355. Langdon W B, Gustafson S, Koza J R (2004) The Genetic Pro-
gramming Bibliography. http://liinwww.ira.uka.de/bibliography/Ai/

genetic.programming.html

356. Lam A Y S, Li V O K (2010) Chemical-reaction Inspired Metaheuristic for
Optimization. IEEE Transactions on Evolutionary Computation 14(3):381–
399

357. Lam A Y S, Li V O K, Wei Z (2012) Chemical Reaction Optimization for the
Fuzzy Rule Learning Problem. In: Proceedings of the 2012 IEEE Congress on
Evolutionary Computation (WCCI 2012), pp 1–8, IEEE Press

358. Lam A Y S, Xu J, Li V O K (2010) Chemical reaction optimization for popu-
lation transition in peer-to-peer live streaming. In: Proceedings of 2010 IEEE
Congress on Evolutionary Computation WCCI 2010), 1–8, IEEE Press

359. Langdon W B, Poli R (2002) Foundations of Genetic Programming, Springer-
Verlag

360. Larrañaga P (2010) Probabilistic Graphical Models and Evolutionary Compu-
tation. In: World Congress on Computational Intelligence 2010, Plenary and
Invited Lectures (WCCI 2010), pp 23–54, IEEE Press

361. Larrañaga P, Lozano J (eds) (2001) Estimation of Distribution Algorithms: A
New Tool for Evolutionary Computation. Kluwer

362. Lay N, Bate I (2007) Applying artificial immune systems to real-time embed-
ded systems. In: Proceedings of the Congress on Evolutionary Computation
2007 (CEC 2007), pp 3743–3750, New Jersey: IEEE Press

363. Lee C-D, Chen Y-J, Huang H-C, Hwang R-C, Yu G-R (2004) The non-
stationary signal prediction by using quantum NN. In: Proceedings of 2004
IEEE International Conference on Systems, Man and Cybernetics, pp 3291–
3295, IEEE Press

364. Leier A, Kuo P D, Banzhaf W, Burrage K (2006) Evolving Noisy Oscillatory
Dynamics in Genetic Regulatory Networks. In: Proceedings of the 9th Euro-
pean Conference on Genetic Programming (EuroGP 2006), Lecture Notes in
Computer Science 3905, pp 290–299, Springer

http://liinwww.ira.uka.de/bibliography/Ai/genetic.programming.html
http://liinwww.ira.uka.de/bibliography/Ai/genetic.programming.html

526 References

365. Levenik J (1995) Metabits: Generic Endogenous Crossover Control. In: Pro-
ceedings of the Sixth International Conference on Genetic Algorithms 1995,
Eshelman L J (ed), pp 88–95, Morgan Kaufmann

366. Lewin B (2000) Genes VII. Oxford University Press
367. Li X, Shao Z and Qian J (2002) An optimizing method based on autonomous

animats: fish swarm algorithm. Systems Engineering Theory and Practice
22(11):32–38 (in Chinese)

368. Li Y, Zhang Y, Zhao R, Jiao L (2004) The immune quantum-inspired evolu-
tionary algorithm. In: Proceedings of 2004 IEEE International Conference on
Systems, Man and Cybernetics, pp 3301–3305, IEEE Press

369. Lin S (1965) Computer solution of the traveling salesman problem. Bell System
Technical Journal 44:2245–2269

370. Lindenmayer A (1968) Mathematical Models for Cellular Interaction in De-
velopment, Parts I and II. Journal of Theoretical Biology 18:280–315

371. Lindenmayer A, Rozenberg G (1979) Parallel Generation of Maps: Develop-
mental Systems for Cell Layers. In: Graph Grammars and their Application to
Computer Science: First International Workshop. Lecture Notes in Computer
Science 73, pp 301–316, Springer-Verlag

372. Lindsay W (1876) Mind in Plants. The British Journal of Psychiatry 21:513–
532

373. Lins A, Bastos-Filho C, Nascimento D, Oliveira Junior M and Lima-Neto
F (2012) Analysis of the Performance of the Fish School Search Algorithm
Running in Graphic Processing Units. In Theory and New Applications of
Swarm Intelligence, R. Parpinelli (ed) pp 17–32, Intech

374. Liu B, Abbass H, McKay B (2002) Density-based heuristic for rule discovery
with ant-miner. In: Proc. 6th Australisia-Japan Joint Workshop in Intell. Evol.
Syst., pp 180–184

375. Liu B, Abbass H, McKay B (2003) Classification rule discovery with ant colony
optimization. In: Proceedings of the IEEE/WIC International Conference on
Intelligent Agent Technology (IAT 2003), pp 83–88, IEEE Press

376. Liu R, Wang X, Li Y (2012) Multi-objective Invasive Weed Optimization
Algorithm for Clustering. In: Proceedings of 2012 IEEE World Congress on
Computational Intelligence (WCCI 2012), pp 1556–1563, IEEE Press

377. Liu Y, Passino K (2002) Biomimicry of Social Foraging Bacteria for Dis-
tributed Optimization: Models, Principles, and Emergent Behaviors. Journal
of Optimization Theory and Applications 115(3):603–628

378. Liu Y, Qin Z, He X (2004) Supervisor-Student Model in Particle Swarm Op-
timization. In: Proceedings of 2004 IEEE Congress on Evolutionary Compu-
tation (CEC 2004), pp 542–547, IEEE Press

379. Lones M A, Tyrrell A M (2001) Enzyme Genetic Programming. In: Proceed-
ings of the 2001 Congress on Evolutionary Computation (CEC 2001), pp 1183–
1190, IEEE Press

380. Lones M A, Tyrrell A M (2002) Biomimetic Representation with Genetic Pro-
gramming Enzyme. Genetic Programming and Evolvable Machines 3(2):193–
217

381. Lones M A, Tyrrell A M (2004) Modelling biological evolvability: Implicit
context and variation filtering in enzyme genetic programming. BioSystems
76(1–3):229–238

References 527

382. Lumer E, Faieta B (1994) Diversity and adaptation in populations of cluster-
ing ants. In: Proceedings of Third International Conference on Simulation of
Adaptive Behavior, pp 501–508, Cambridge, MA, MIT Press

383. MacNab R, Koshland D (1972) The Gradient-Sensing Mechanism in Bacterial
Chemotaxis. Proc. Nat. Acad. Sci. (USA) 69(9):2509–2512

384. MacQueen J (1967) Some Methods for classification and Analysis of Multivari-
ate Observations. In: Proceedings of 5th Berkeley Symposium on Mathemat-
ical Statistics and Probability, 1:281–297, Berkeley, University of California
Press

385. Mahfoud S (1995) Niching Methods for Genetic Algorithms. PhD Thesis. De-
partment of General Engineering, University of Illinois at Urbana-Champaign

386. Mahfoud S, Goldberg D (1995) Parallel recombinative simulated annealing: A
genetic algorithm. Parallel Computing 21(1):1–28

387. Manevitz L, Yousef M (2007) One class document classification via neural
networks. Neurocomputing 70(7–9):1466–1481

388. Marijuán P C (1995) Enzymes, artificial cells and the nature of biological
information. BioSystems 35(2–3):167–170

389. Marinakis Y, Marinaki M (2011) A Honey Bee Mating Optimization Algo-
rithm for the Open Vehicle Routing Problem. In: Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO 2011), pp 101–108, ACM
Press

390. Martens D, De Backer M, Haesen R, Vanthienen J, Snoeck M, Baesens B
(2007) Classification with Ant Colony Optimization. IEEE Transactions on
Evolutionary Computation 11(5):651–665

391. Martin M, Chopard B, Albuquerque, P (2002) Formation of an ant ceme-
tery: swarm intelligence or statistical accident? Future Generation Computer
Systems 18(7):951–959

392. Martonak R, Santoro G, Tosatti E (2004) Quantum annealing of the traveling
salesman problem. Physical Review E 70(057701):1–4

393. Matzinger P (1994) Tolerance, danger and the extended family. Annual Review
of Immunology 12:991–1045

394. Matzinger P (2002) The Danger Model: a renewed sense of self. Science
296(5566):301–305

395. Mavrovouniotis M, Yang S (2010) Ant Colony Optimization with Immigrant
Schemes in Dynamic Environments. In: Proceedings of the 11th Parallel Prob-
lem Solving from Nature (PPSN XI), Lecture Notes in Computer Science 6239,
pp 371–380, Springer

396. McDermott J (2012) Graph Grammars as a Representation for Interactive
Evolutionary 3D Design. In: Proceedings of EvoMUSART 2012 European
Conference on Evolutionary and Biologically Inspired Music, Sound, Art and
Design, Lecture Notes in Computer Science 7247, pp 199–210, Springer

397. McDermott J, Byrne J, Swafford J M, O’Neill M, Brabazon A (2010) Higher-
order functions in aesthetic EC encodings. In: Proceedings of the 12th Annual
Congress on Evolutionary Computation (CEC 2010), pp 3018–3025, IEEE
Press

398. McDermott J, O’Reilly U-M (2011) An executable graph representation for
evolutionary generative music. In: Proceedings of the 13th annual conference
on Genetic and Evolutionary Computation (GECCO 2011), pp 403–410, ACM

528 References

399. McDermott J, Swafford J M, Hemberg M, Byrne J, Hemberg E, Fenton M,
McNally C, Shotton E, O’Neill M (2012) An Assessment of String-Rewriting
Grammars for Evolutionary Architectural Design. Environment and Planning
B: Planning and Design, 39(4):713–731

400. McDermott J, White D R, Luke S, Manzoni L, Castelli M, Vanneschi L,
Jaskowski W, Krawiec K, Harper R, De Jong K, O’Reilly U-M (2012). Genetic
Programming Needs Better Benchmarks. In: Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO 2012), pp 791–798, ACM

401. McGarraghy S, Phelan M (2011). Generating Supply Chain ordering policies
using Quantum Inspired Genetic Algorithms and Grammatical Evolution. In:
Minis I, Zeimpekis V, Dounias G, Ampazis N (eds) Supply Chain Optimiza-
tion, Design & Management: Advances & Intelligent methods. pp 125–154,
Hershey, PA: IGI Global

402. McGarraghy S, Williams P (2010). Extension of Self Organising Swarm to in-
clude Acceleration, with applications to an Insurance industry problem. Tech-
nical Report, University College Dublin: Centre for Business Analytics.

403. McKay R I, Nguyen X H, Whigham P A, Shan Y, O’Neill M (2010) Grammar-
based Genetic Programming: a survey. Genetic Programming and Evolvable
Machines 11(3–4):365–396

404. McKey D (1974) Adaptive patterns in alkaloid physiology. American Natural-
ist 108:305–320

405. Medzhitov R, Janeway C (1997) Innate immunity. New England Journal of
Medicine 343(5):338–344

406. Mehrabian A, Lucas C (2006) A novel numerical optimization algorithm in-
spired from weed colonization. Ecological Informatics 1:355–366

407. Mehrabian A R, Yousefi-Koma A (2007) Optimal positioning of piezoelectric
actuators on a smart fin using bio-inspired algorithms. Aerospace Science and
Technology 11:174–182

408. Metropolis N, Rosenbluth A, Rosenbluth M, Teller A, Teller E (1953) Equa-
tions of state calculations by fast computing machines. Journal of Chemical
Physics 21(6):1087–1092

409. Michalewicz Z, Schmidt M, Michalewicz M, Chiriac C (2007) Adaptive Busi-
ness Intelligence. Berlin: Springer

410. Middendorf M, Reischle F, Schmeck H (2002) Multi colony ant algorithms.
Journal of Heuristics 8:305–320

411. Middleton A A (2004) Improved extremal optimization for the Ising spin glass.
Phys Rev E 69(5):055701

412. Miller J F (ed) (2011) Cartesian Genetic Programming. Springer
413. Miller J F, Thomson P (2000) Cartesian genetic programming. In: Proceedings

of the European Conference on Genetic Programming (EuroGP 2000), Lecture
Notes in Computer Science 1802, pp 121–132, Springer

414. Minsky M L, Papert S A (1969) Perceptrons. Cambridge, MA: MIT Press
415. Mishra S (2004) A Hybrid Adaptive Bacterial Foraging and Feedback Lin-

earization Scheme based on D-STATCOM. In: Proceedings of the 2004 Inter-
national Conference on Power System Technology (POWERCON 2004), pp
275–280, IEEE Press

416. Mishra S (2005) A Hybrid Least Square-Fuzzy Bacterial Foraging Strategy
for Harmonic Estimation. IEEE Transactions on Evolutionary Computation
9(1):61–73

References 529

417. Montana D (1994) Strongly Typed Genetic Programming. Bolt, Beranek and
Newman Inc., Technical Report No. 7866

418. Montana D, Davis L (1989) Training feedforward neural networks using ge-
netic algorithms. In: Proceedings of the 11th International Joint Conference
on Artificial Intelligence, pp 762–767, Morgan Kaufmann

419. Moraglio A, Krawiec K, Johnson C G. (2012) Geometric Semantic Genetic
Programming. In: Proceedings of the 12th International Conference on Parallel
Problem Solving from Nature (PPSN XII), Lecture Notes in Computer Science
7491, pp 21-31, Springer.

420. Morrison R (2004) Designing Evolutionary Algorithms for Dynamic Environ-
ments. Berlin: Springer

421. Moscato P (1989) On evolution, search, optimization, genetic algorithms and
martial arts: Towards memetic algorithms. Caltech concurrent computation
program report 826, California Institute of Technology

422. Moscato P (1999) Memetic Algorithms: A short introduction. In: Corne D,
Dorigo M, Glover F (eds) New Ideas in Optimization, pp 219–234, Maiden-
head, UK: McGraw-Hill

423. Mühlenbein H, Paaß G (1996) From recombination of genes to the estimation
of distributions (i). Binary parameters. In: Proceedings of Parallel Problem
Solving from Nature IV (PPSN IV), Lecture Notes in Computer Science 1411,
pp 178–187, Berlin: Springer

424. Murphy E (2014) An Exploration of Tree-Adjoining Grammars for Grammat-
ical Evolution. PhD Thesis, University College Dublin.

425. Murphy E, Hemberg E, Nicolau M, O’Neill M, Brabazon A (2012) Grammar
Bias and Initialisation in Grammar Based Genetic Programming. In: Pro-
ceedings of the 15th European Conference on Genetic Programming (EuroGP
2012), Lecture Notes in Computer Science 7244, pp 85-96, Springer.

426. Murphy E, Nicolau M, Hemberg E, O’Neill M, Brabazon A (2012) Differential
Gene Expression with Tree-Adjunct Grammars. In: Proceedings of the 12th
International Conference on Parallel Problem Solving from Nature (PPSN
XII), Lecture Notes in Computer Science 7491, pp 377-386, Springer.

427. Murphy E, O’Neill M, Galvan-Lopez E, Brabazon A (2010) Tree-adjunct
Grammatical Evolution. In: Proceedings of the IEEE Congress on Evolution-
ary Computation (CEC 2010), pp 4449–4456, IEEE Press

428. Murphy J E (2011) Applications of Evolutionary Computation to
Quadrupedal Animal Animation. PhD Thesis. University College Dublin

429. Murphy J E, O’Neill M, Carr H (2009) Exploring Grammatical Evolution for
Horse Gait Optimisation. In: Proceedings of the 12th European Conference
on Genetic Programming (EuroGP 2009), Lecture Notes in Computer Science
5481, pp 183–194, Springer

430. Musilek P, Lau A, Reformat M, Wyard-Scott L (2006) Immune Programming.
Information Sciences 176(8):972–1002

431. Nakamura R, Pereira L, Costa K, Rodrigues D, Papa J, Yang X-S (2012)
BBA: A Binary Bat Algorithm for Feature Selection. In: Proceedings of XXV
SIBGRAPI Conference on Graphics, Patterns and Images, pp 291–297, IEEE
Press

432. Nakrani S, Tovey C (2004) On Honey Bees and Dynamic Server Allocation in
Internet Hosting Centres. Adaptive Behavior 12(3–4):223–240

530 References

433. Narayanan A, Moore M (1996) Quantum-inspired genetic algorithms. In:
Proceedings of IEEE International Conference on Evolutionary Computation
(CEC 1996), pp 61–66, IEEE Press

434. Negrevergne C., Mahesh T. S., Ryan C. A., Ditty M., Cyr-Racine F., Power
W., Boulant N., Havel T., Cory D. G. and Laflamme R. (2006). Benchmarking
Quantum Control Methods on a 12-Qubit System. Physical Review Letters
96(17): 170501.

435. Nelles O (2001) Nonlinear System Identification. Berlin: Springer
436. Neshat M, Sepidnam G, Sargolzaei M and Najaran Toosi A (2012) Artificial

fish swarm algorithm: a survey of the state-of-the-art, hybridization, combi-
natorial and indicative applications. Artificial Intelligence Review, available
online 6 May 2012 (DOI 10.1007/s10462-012-9342-2)

437. Nguyen Q U (2011) Examining Semantic Diversity and Semantic Locality of
Operators in Genetic Programming. PhD Thesis. University College Dublin

438. Nguyen Q U, Nguyen T H, Nguyen X H, O’Neill M (2010) Improving the Gen-
eralisation Ability of Genetic Programming with Semantic Similarity based
Crossover. In: Proceedings of the 13th European Conference on Genetic Pro-
gramming (EuroGP 2010), Lecture Notes in Computer Science 6021, pp 184–
195, Springer

439. Nguyen Q U, Nguyen X H, O’Neill M, McKay B (2010) The Role of Syntactic
and Semantic Locality of Crossover in Genetic Programming. In: Proceedings
of the 11th International Conference on Parallel Problem Solving From Nature
(PPSN 2010), Lecture Notes in Computer Science 6239, pp 533–542, Springer

440. Nguyen Q U, Nguyen X H, O’Neill M, McKay R I, Galvan-Lopez E (2011)
Semantically-based Crossover in Genetic Programming: Application to Real-
valued Symbolic Regression. Genetic Programming and Evolvable Machines
12(2):91–119

441. Nguyen Q U, Nguyen X H, O’Neill M, McKay R I, Dao N.P. (2013) On the
Roles of Semantic Locality of Crossover in Genetic Programming. Information
Sciences 235:195-213.

442. Nicolau M (2004) Automatic Grammar Complexity Reduction in Grammatical
Evolution. In: Proceedings of GECCO 2004 Workshop. Also available from
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2004/WGEW002.pdf

443. Nicolau M (2006) Genetic Algorithms using Grammatical Evolution. PhD
Thesis. University of Limerick

444. Nicolau M, Costelloe D (2011) Using Grammatical Evolution to Parameterise
Interactive 3D Image Generation. In: Proceedings of 9th European Event
on Evolutionary and Biologically Inspired Music, Sound, Art and Design
(EvoMUSART 2011), Lecture Notes in Computer Science 6625, pp 366–375,
Springer

445. Nicolau M, Dempsey I (2006) Introducing Grammar Based Extensions for
Grammatical Evolution. In: Proceedings of IEEE International Conference on
Evolutionary Computation (CEC 2006), pp 648–655, IEEE Press

446. Nicolau M, O’Neill M, Brabazon A (2012) Termination in Grammatical Evo-
lution: Grammar Design, Wrapping, and Tails. In: Proceedings of the 2012
IEEE Congress on Evolutionary Computation (WCCI 2012), pp 1–8, IEEE
Press

447. Nicolau M, O’Neill M, Brabazon A (2012) Applying Genetic Regulatory Net-
works to Index Trading. In: Proceedings of 12th International Conference on

http://www.cs.bham.ac.uk/~wbl/biblio/gecco2004/WGEW002.pdf

References 531

Parallel Problem Solving from Nature (PPSN XII), Lecture Notes in Com-
puter Science 7492, pp 428–437, Springer

448. Nicolau M, Saunders M, O’Neill M, Brabazon A, Osborne B (2012) Evolv-
ing Interpolating Models of Net Ecosystem CO2 Exchange Using Grammat-
ical Evolution. In: Proceedings of the 15th European Conference on Genetic
Programming (EuroGP 2012), Lecture Notes in Computer Science 7244, pp
134–145, Springer

449. Nicolau M, Schoenauer M, Banzhaf W (2010) Evolving Genes to Balance a
Pole. In: Proceedings of the 13th European Conference on Genetic Program-
ming (EuroGP 2010), Lecture Notes in Computer Science 6021, pp 196–207,
Springer

450. Nikolaev N, Iba H, Slavov V (1999) Inductive genetic programming with im-
mune network dynamics. In: Spector L, Langdon W B, O’Reilly U-M, Ange-
line, P (eds) Advances in Genetic Programming 3, pp 355–376, MIT Press

451. Niknam T, Azizipanah-Abarghooee R, Zare M, Bahmani-Firouzi B (2013)
Reserve Constrained Dynamic Environmental/Economic Dispatch: A New
Multiobjective Self-Adaptive Learning Bat Algorithm. IEEE Systems Jour-
nal 7(4):763–776. Digital Object Identifier: 10.1109/JSYST.2012.2225732

452. Ning Z, Ong Y S, Wong K, Lim M (2003) Choice of Memes in Memetic Al-
gorithm. In: Proceedings of 2nd International Conference on Computational
Intelligence, Robotics and Autonomous Systems (CIRAS 2003), Special Ses-
sion on Optimization using Genetic, Evolutionary, Social and Behavioral Al-
gorithms, December 15–18, 2003, Singapore

453. Noman N, Iba H (2005) Enhancing Differential Evolution Performance with
Local Search for High Dimensional Function Optimization. In: Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO 2005), pp
967–974, ACM Press

454. Nordin P (1997) Evolutionary Program Induction of Binary Machine Code
and its Applications. PhD Thesis. Technische Universität Dortmund

455. Novoplansky A (2002) Developmental plasticity in plants: implications of non-
cognitive behavior. Evolutionary Ecology 16:177–188

456. Olague G, Puente C (2006a) The Honeybee Search Algorithm for Three-
Dimensional Reconstruction. In: Proceedings of EvoIASP 2006, Lecture Notes
in Computer Science 3907, pp 427–437, Springer

457. Olague G, Puente C (2006b) Parisian Evolution with Honeybees for Three-
dimensional Reconstruction. In: Proceedings of the 8th Annual Conference
on Genetic and Evolutionary Computation (GECCO 2006), pp 191–198, New
York: ACM Press

458. O’Neill L (2004) TLRs: Professor Mechnikov, Sit on your hat. Trends in Im-
munology 25(12):687–693

459. O’Neill L (2005) Immunity’s Early warning system. Scientific American, Jan
2005, pp 38–45

460. O’Neill M (2001) Automatic Programming in an Arbitrary Language: Evolving
Programs with Grammatical Evolution. PhD thesis. University of Limerick,
Ireland

461. O’Neill M, Brabazon A (2004) Grammatical swarm. In: Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO 2004), Lecture
Notes in Computer Science 3120, pp 163–174, Springer-Verlag

532 References

462. O’Neill M, Brabazon A (2005) mGGA: The meta-Grammar genetic algorithm.
In: Proceedings of the European Conference on Genetic Programming (Eu-
roGP 2005), Lecture Notes in Computer Science 3447, pp 311–320, Springer

463. O’Neill M, Brabazon A (2006) Grammatical Swarm: The Generation of Pro-
grams by Social Programming. Natural Computing 5(4):443–462

464. O’Neill M, Brabazon A (2006) Self-Organizing Swarm (SOSwarm): A Particle
Swarm Algorithm for Unsupervised Learning. In: Proceedings of the IEEE
Congress on Evolutionary Computation (CEC 2006), pp 2649–2654, IEEE
Press

465. O’Neill M, Brabazon A (2006) Grammatical Differential Evolution. In:
Proceedings of the 2006 International Conference on Artificial Intelligence
(ICAI’06), Vol 1, pp 408–413, CSEA Press

466. O’Neill M, Brabazon A (2008) Self-organising Swarm (SOSwarm). Soft Com-
puting 12(11):1073–1080

467. O’Neill M, Brabazon A (2008) Evolving a Logo Design Using Lindenmayer
Systems, Postscript and Grammatical Evolution. In: Proceedings of the IEEE
Congress on Evolutionary Computation (CEC 2008), pp 3788–3794, IEEE
Press

468. O’Neill M, Ryan C (1999) Automatic Generation of Caching Algorithms. In:
Proceedings of EUROGEN 1999, Short Course on Evolutionary Algorithms
in Engineering and Computer Science, pp 127–134, Wiley

469. O’Neill M, Ryan C (2000) Grammar based function definition in Grammatical
Evolution. In: Proceedings of the 2nd Genetic and Evolutionary Computation
Conference (GECCO 2000), pp 485–490, Morgan Kaufmann

470. O’Neill M, Ryan C (2001) Grammatical evolution. IEEE Trans. Evolutionary
Computation 5(4):349–358

471. O’Neill M, Ryan C (eds) (2002). Grammatical Evolution Workshop 2002. In:
Barry A (ed) Proceedings of the Workshops of the Genetic and Evolutionary
Computation Conference GECCO 2002, New York, NY, USA, July 2002

472. O’Neill M, Ryan C (2003) Grammatical Evolution: Evolutionary Automatic
Programming in an Arbitrary Language. Boston: Kluwer Academic Publishers

473. O’Neill M, Ryan C (eds) (2003) Grammatical Evolution Workshop 2003. In:
Barry A (ed) Proceedings of the Workshops of the Genetic and Evolutionary
Computation Conference GECCO 2003, Chicago, IL, USA, July 2003

474. O’Neill M, Ryan C (2004) Grammatical Evolution by Grammatical Evolution:
The Evolution of Grammar and Genetic Code. In: Proceedings of the Euro-
pean Conference on Genetic Programming (EuroGP 2004), Lecture Notes in
Computer Science 3003, pp 138–149, Springer

475. O’Neill M, Ryan C (eds) (2004b) Grammatical Evolution Workshop 2004. In:
Poli R et al. (eds) Proceedings of the Workshops of the Genetic and Evo-
lutionary Computation Conference GECCO 2004, Seattle, WA, USA, June
2004

476. O’Neill M, Brabazon A, Adley C (2004) The automatic generation of programs
for classification problems with grammatical swarm. In: Proceedings of the
IEEE Congress on Evolutionary Computation (CEC 2004), Vol 1 pp 104–110,
IEEE Press

477. O’Neill M, Brabazon A, Nicolau M, McGarraghy S, Keenan P (2004)
πGrammatical Evolution. In: Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO 2004), Lecture Notes in Computer Science
3103, pp 617–629, Springer-Verlag

References 533

478. O’Neill M, Brabazon A, Hemberg E (2008) Subtree Deactivation Control
with Grammatical Genetic Programming. In: Proceedings of the IEEE World
Congress on Computational Intelligence (WCCI 2008), pp 3768–3744, IEEE
Press

479. O’Neill M, Cleary R, Nikolov N (2004) Solving Knapsack problems with at-
tribute grammars. In: Poli R et al. (eds) Proceedings of the Grammatical Evo-
lution Workshop, Genetic and Evolutionary Computation Conference GECCO
2004, Seattle, WA, USA, June 2004

480. O’Neill M, Hemberg E, Gilligan C, Bartley E, McDermott J, Brabazon A
(2008) GEVA: Grammatical Evolution in Java. SIGEVOlution 3(2):17–23

481. O’Neill M, McDermott J, Swafford J M, Byrne J, Hemberg E, Shotton E, Mc-
Nally C, Brabazon A, Hemberg M (2010) Evolutionary Design using Gram-
matical Evolution and Shape Grammars: Designing a Shelter. International
Journal of Design Engineering 3(1):4–24

482. O’Neill M, Ryan C, Keijzer M, Cattolico M (2003) Crossover in Grammatical
Evolution. Genetic Programming and Evolvable Machines 4(1):67–93

483. O’Neill M, Ryan C, Nicolau M (2001) Grammar Defined Introns: An Investi-
gation into Grammars, Introns, and Bias in Grammatical Evolution. In: Pro-
ceedings of the Genetic and Evolutionary Computation Conference (GECCO
2001), pp 97–103, Morgan Kaufmann

484. O’Neill M, Vanneschi L, Gustafson S, Banzhaf W (2010) Open Issues in
Genetic Programming. Genetic Programming and Evolvable Machines 11(3–
4):339–363

485. O’Reilly U-M, Hemberg M (2007) Integrating generative growth and evolu-
tionary computation for form exploration. Genetic Programming and Evolv-
able Machines 8(2):163–186

486. Ong Y-S, Keane A (2004) Meta-Lamarckian Learning in Memetic Algorithms.
IEEE Transactions on Evolutionary Computation 8(2):99–110

487. Ong Y-S, Lim M-H, Chen X (2010) Memetic Computation - Past, Present and
Future. IEEE Computational Intelligence Magazine 5(2):24–31

488. Ong Y-S, Lim M-H, Zhu N, Wong K-W (2006) Classification of adaptive
memetic algorithms: a comparative study. IEEE Transactions on Systems,
Man, and Cybernetics Part B 36(1):141–152

489. Ortega A, de la Cruz M, Alfonseca M (2007) Christiansen Grammar Evolution:
Grammatical Evolution With Semantics. IEEE Transactions on Evolutionary
Computation 11(1):77–90

490. Ostermeier A, Gawelczyk A, Hansen N (1994) A Derandomized Approach to
Self Adaptation of Evolution Strategies. Evolutionary Computation 2(4):369–
380

491. Pampara G, Engelbrecht A (2006) Binary Differential Evolution. In: Proceed-
ings of the 2006 IEEE Congress on Evolutionary Computation (WCCI 2006),
pp 6764–6770, IEEE Press

492. Pampara G, Engelbrecht A (2011) Binary Artificial Bee Colony Optimization.
In: Proceedings of 2011 IEEE Swarm Intelligence Symposium (SiS 2011), pp
170–177, IEEE Press

493. Pampara G, Franken N, Engelbrecht A (2005) Combining Particle Swarm Op-
timisation with Angle Modulation to Solve Binary Problems. In: Proceedings
of the 2005 IEEE Congress on Evolutionary Computation (CEC 2005), pp
89–96, IEEE Press

534 References

494. Parpinelli R, Lopes H, Freitas A (2002) Data mining with an ant colony opti-
mization algorithm. IEEE Transactions on Evolutionary Computing 6(4):321–
332

495. Parrish J, Viscido S and Grunbaum D (2002) Self-organized Fish Schools: An
Examination of Emergent Properties. Biol. Bull. 202:296–305

496. Passino K (2000) Distributed Optimization and Control Using Only a Germ
of Intelligence. In: Proceedings of the 2000 IEEE International Symposium on
Intelligent Control, pp 5–13, IEEE Press

497. Passino K (2002) Biomimicry of Bacterial Foraging for Distributed Optimiza-
tion and Control. IEEE Control Systems Magazine 22(3):52–67

498. Passino K, Seeley T (2006) Modeling and analysis of nest-site selection by
honeybee swarms: the speed and accuracy trade-off. Behavioral Ecology and
Sociobiology 59:427–442

499. Paton R, Vlachos C, Wu Q, Saunders J (2006) Simulated bacterially-inspired
problem solving — the bacterial domain. Natural Computing, 5:43–65

500. Pelikan M (2005) Hierarchical Bayesian Optimization Algorithm: Toward a
New Generation of Evolutionary Algorithms. Springer: Berlin

501. Pelikan M, Goldberg D, Cantú-Paz E (1998a) Linkage Problem, Distribution
Estimation, and Bayesian Networks. IlliGAL Report No.98013, Illinois Genetic
Algorithms Laboratory, University of Illinois at Urbana-Champaign, Urbana,
IL

502. Pelikan M, Goldberg D, Cantú-Paz E (1998b) BOA: The Bayesian Optimiza-
tion Algorithm. In: Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO 1999), Vol 1 pp 13–17, Morgan Kaufmann

503. Pelikan M, Goldberg D, Cantú-Paz E (2000) Linkage Problem, Distribution
Estimation and Bayesian Networks. Evolutionary Computation 8(3):311–340

504. Pelikan M, Sastry K, Cantú-Paz E (eds) (2006) Scalable Optimization via
Probabilistic Modeling. Berlin: Springer

505. Pennisi E (2012) Genomics. ENCODE project writes eulogy for junk DNA.
Science 337(6099):1159–1161

506. Perez D, Nicolau M, O’Neill M, Brabazon A (2011) Evolving Behaviour Trees
for the Mario Bros Game Using Grammatical Evolution. In: Proceedings of
3rd European Event on Bio-inspired Algorithms in Games (EvoGAMES 2011),
Lecture Notes in Computer Science 6624, pp 121–130, Springer

507. Perez D, Nicolau M, O’Neill M, Brabazon A (2011) Reactiveness and Naviga-
tion in Computer Games: Different Needs, Different Approaches. In: Proceed-
ings of the 2011 IEEE Conference on Computational Intelligence and Games
(CIG 2011), pp 273–280, IEEE Press

508. Pham D, Ghanbarzadeh A, Koc E, Otri S, Rahim S, Zaidi M (2006) The Bees
Algorithm – A novel tool for complex optimisation problems. In: Proceedings
of International Production Machines and Systems (IPROMS 2006), pp 454–
459, Elsevier

509. Platel M, Schliebs S, Kasabov N (2009) Quantum-inspired Evolutionary Algo-
rithm: A multimodal EDA. IEEE Transactions on Evolutionary Computation
13(6):1218–1232

510. Pincus M (1970) A Monte Carlo method for the approximate solution of
certain types of constrained optimization problems. Operations Research
18:1225–1228

511. Pinker S (1995) The language instinct: the new science of language and the
mind. London: Penguin Books

References 535

512. Poli R, Di Chio C, Langdon W B (2005) Exploring Extended Particle Swarms:
A Genetic Programming Approach. In: Proceedings of the Genetic and Evo-
lutionary Computation Conference (GECCO 2005), Beyer H-G et al. (eds),
pp 169–176, ACM

513. Poli R, Langdon W B, Holland O (2005) Extending Particle Swarm Opti-
misation via Genetic Progamming. In: Proceedings of the European Genetic
Programming Conference (EuroGP 2005), Keijzer M et al. (eds), pp 291–300,
Springer

514. Poli R, Langdon W B, McPhee N F (2008) A Field Guide to Ge-
netic Programming. Published via http://lulu.com and freely available at
http://www.gp-field-guide.org.uk

515. Poli R, Stephens C (2004) Constrained Molecular Dynamics as a Search and
Optimization Tool. In: Proceedings of the 7th European Conference (EuroGP
2004), pp 150–161, Springer-Verlag

516. Porowski J, Da M, McGarraghy S (2009) Quantum annealing in traveling
salesman related problems. Technical Report, University College Dublin

517. Pourtakdoust S, Nobahari H (2004) An Extension of Ant Colony System to
Continuous Optimization Problems. In: Proceedings of the 4th International
Workshop on Ant Colony Optimization and Swarm Intelligence, pp 294–301,
Springer

518. Powell M (1987) Radial basis functions for multivariable interpolation: a
review. In: Mason J, Cox M (eds) Algorithms for Approximation. Oxford:
Clarendon Press

519. Premaratne U, Samarabandu J, Sidhu, T (2009) A New Biologically Inspired
Optimization Algorithm. In: Proceedings of the Fourth International Confer-
ence on Industrial and Information Systems (ICIIS 2009), pp 279–284, IEEE
Press

520. Price K (1999) An introduction to differential evolution. In: Corne D, Dorigo
M, Glover F (eds) New Ideas in Optimization, pp 79–108, London: McGraw-
Hill

521. Price K, Storn R, Lampinen J (2005) Differential Evolution: A Practical Ap-
proach to Global Optimization. Berlin: Springer

522. Principe J, Fisher I, Xu D (2000) Information theoretic learning. In: Haykin
S (ed) Unsupervised adaptive filtering. New York: Wiley

523. Prusinkiewicz P, Lindenmayer A (1990) The Algorithmic Beauty of Plants.
Springer-Verlag

524. Quijano N, Passino K, Andrews B (2006) Foraging Theory for Multizone
Temperature Control. IEEE Computational Intelligence Magazine, November,
2006, pp 18–27, IEEE Press

525. Raidl G, Gottlieb J (2005) Empirical Analysis of Locality, Heritability and
Heuristic Bias. Evolutionary Computation 13(4):441–476

526. Raidl G et al. (eds) (2009) Proceedings of the 11th annual conference on
Genetic and evolutionary computation (GECCO 2009). 8–12 July, Montreal,
Canada, ACM Press

527. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: A Gravitational
Search Algorithm. Information Sciences 179:2232–2248

528. Rashedi E, Nezamabadi-pour H, Saryazdi S (2010) BGSA: binary gravitational
search algorithm. Natural Computing 9(3):727–745

529. Ray T (1995) An Evolutionary Approach to Synthetic Biology: Zen and the
Art of Creating Life. In: Artificial Life: An Overview, pp 179–209, MIT Press

http://lulu.com
http://www.gp-field-guide.org.uk

536 References

530. Rechenberg I (1965) Cybernetic Solution Path of an Experimental Problem.
Royal Aircraft Establishment, Farnborough, Library Translation No. 1122,
August

531. Rechenberg I (1973) Evolutionsstrategie: Optimierung technisher Systeme
nach Prinzipien der biologischen Evolution, Stuttgart: Frommann-Holzboog
Verlag

532. Reynolds C (1987) Flocks, Herds and Schools: A distributed behavioral model.
In Proceedings of the 14th annual conference on computer graphics and inter-
active techniques (SIGGRAPH 1987), pp 25–34

533. Robinson E, Jackson D, Holcombe M, Ratnieks F (2005) Insect communica-
tion: ‘No entry’ signal in ant foraging. Nature 438:442

534. Robinson R (1973) Counting labeled acyclic digraphs. In: Harary F (ed) New
Directions in the Theory of Graphs, pp 239–273, New York: Academic Press

535. Robson S, Traniello J (1998) Resource Assessment, Recruitment Behavior,
and Organization of Cooperative Prey Retrieval in the Ant Formica schaufussi
(Hymenoptera: Formicidae). Journal of Insect Behavior 11(1):1–22

536. Rodriguez F, Harkins S, Slifka M, Whitton L (2002) Immunodominance in
Virus-Induced CD8+ T-Cell Responses Is Dramatically Modified by DNA
Immunization and Is Regulated by Gamma Interferon. Journal of Virology
76(9):4251–4259

537. Rodriguez J, Garcia-Tuñón I, Taboada J, Basteiro F (2007) Broadband HF
antenna matching network design using a real coded genetic algorithm. IEEE
Trans. Ant. Propag. 55(3):611–618

538. Rosenberg R (1967) Simulation of Genetic Populations With Biochemical
Properties. PhD Thesis. University of Michigan

539. Rosenblatt F (1962) Principles of Neurodynamics: Perceptrons and the Theory
of Brain Mechanism. Spartan

540. Rothlauf F (2002) Representations for Genetic and Evolutionary Algorithms.
Physica-Verlag

541. Rothlauf F, Goldberg D (2003) Redundant Representations in Evolutionary
Computation. Evolutionary Computation 11(4):381–415

542. Rothlauf F, Oetzel M (2006). On the Locality of Grammatical Evolution.
In: Proceedings of the European Genetic Programming Conference (EuroGP
2006), Collet P et al. (eds), pp 320–330, Springer

543. Rudolph S, Alber R (2002) An Evolutionary Approach to the Inverse Problem
in Rule-based Design Representations. In: Proceedings of the 7th International
Conference on Artificial Intelligence in Design (AID’02), pp 329–350, Kluwer
Academic Publishers

544. Rui T, Fong S, Yang X-S, Deb S (2012) Nature-inspired Clustering Algorithms
for Web Intelligence Data. In: Proceedings of the IEEE, WIC, ACM Interna-
tional Conference on Web Intelligence and Intelligent Agent Technology, pp
147–153, IEEE Press

545. Rumelhart D E, Hinton G E, Williams, R J (1986) Learning representations
by back-propagating errors. Nature 323(6088):533–536

546. Ruta D, Gabrys B (2009) A framework for machine learning based on dynamic
physical fields. Natural Computing 8(2):219–237

547. Ryan C, Collins J J, O’Neill M (1998) Grammatical evolution: evolving pro-
grams for an arbitrary language. In: Proceedings of the First European Work-
shop on Genetic Programming, Lecture Notes in Computer Science 1391, pp
83–95, Springer

References 537

548. Salhi A, Fraga, E (2011) Nature-inspired Optimisation Approaches and the
New Plant Propagation Algorithm. In: Proceedings of 2011 International Con-
ference on Numerical Analysis and Optimization (ICeMATH 2011), pp K2–
1:K2–8

549. Santoro G E, Tosatti E (2006). Optimization using quantum mechanics: quan-
tum annealing through adiabatic evolution. J Phys A: Math Gen 39:R393-
R431

550. Santoro G E, Tosatti E (2007) Computing: Quantum to classical and back.
Nature Physics 3:593–594

551. Sarle W S (1994) Neural Networks and Statistical Models. In: Pro-
ceedings of the Nineteenth Annual SAS Users Group International
Conference, pp 1538–1550, Cary, NC, SAS Institute Inc. (online at
ftp://ftp.sas.com/pub/neural/neural1.ps)

552. Sastry K, Goldberg D E (2003) Probabilistic model building and competent
genetic programming. In: Riolo R L, Worzel B (eds) Genetic Programming
Theory and Practice, pp 205–220, Kluwer

553. Sata T, Hagiwara M (1997) Bee System: Finding Solutions by a Concentrated
Search. In: Proceedings of the IEEE International Conference on Systems,
Man and Cybernetics, pp 3954–3959, IEEE Press

554. Schaffer J (1985) Multiple objective optimization with vector evaluated genetic
algorithms. In: Proceedings of the 1st International Conference on Genetic
Algorithms (ICGA 1985), pp 93–100, Lawrence Erlbaum Associates

555. Schaffer J, Morishima A (1987) An Adaptive Crossover Distribution Mech-
anism for Genetic Algorithms. In: Grefenstette J J (ed) Proceedings of the
Second International Conference on Genetic Algorithms 1987 (ICGA 1987),
pp 36–40, Lawrence Erlbaum Associates

556. Schalkoff R (1992) Pattern Recognition - Statistical, Structural and Neural
Approaches, New York: Wiley

557. Schechter M and Laflorencie N (2006). Quantum spin glass and the dipolar
interaction. Physical Review Letters, 97(13):137204.

558. Schölkopf B, Platt J C, Shawe-Taylor J, Smola A J, Williamson R C (2001)
Estimating the Support of a High-Dimensional Distribution. Neural Compu-
tation 13(7):1443–1471

559. Schölkopf B, Smola A J (2002) Learning with Kernels: Support Vector Ma-
chines, Regularization, Optimization and Beyond. Cambridge, MA: MIT Press

560. Schwefel H-P (1965) Kybernetische Evolution als Strategie der experi-
mentellen Forschung in der Strömungstechnik. Diploma Thesis. Technical Uni-
versity of Berlin

561. Schwefel H-P (1981) Numerical Optimization of Computer Models. Chichester,
UK: Wiley

562. Schwefel H-P (1995) Evolution and Optimum Seeking. New York: Wiley
563. Seeley T (1995) The Wisdom of the Hive. Cambridge, MA: Harvard University

Press
564. Seeley T, Mikheyev A, Pagano G (2000) Dancing bees tune both duration

and rate of waggle-run production in relation to nectar-source profitability.
Journal of Comparative Physiology A 186:813–819

565. Seeley T, Morse R, Visscher P (1979) The natural history of the flight of honey
bee swarms. PSYCHE 86(2–3):103–113

566. Seeley T, Visscher P, Passino K (2006) Group Decision Making in Honey Bee
Swarms. American Scientist 94(3):220–229

ftp://ftp.sas.com/pub/neural/neural1.ps

538 References

567. Senthilnath J, Omkar S N, Mani V (2011) Clustering using firefly algorithm:
performance study. Swarm and Evolutionary Computation 1(3):164–171

568. Sepehri Rad, H S, Lucas C (2007) A recommender system based on inva-
sive weed optimization algorithm. In: Proceedings of the IEEE Congress on
Evolutionary Computation (CEC 2007), pp 4297–4303, IEEE Press

569. Settles M, Nathan P, Soule T (2005). Breeding swarms: A new approach to
recurrent neural network training. In: Beyer et al. (eds) Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO 2005), 1:185–
192, ACM Press

570. Shaker N, Nicolau M, Yannakakis G N, Togelius J, O’Neill M (2012) Evolving
Levels for Super Mario Bros Using Grammatical Evolution. In Proceedings of
IEEE Conference on Computational Intelligence and Games (CIG 2012), pp
304-311, IEEE Press

571. Shaker N, Yannakakis G N, Togelius J, Nicolau M, O’Neill M (2012). Evolving
Personalized Content for Super Mario Bros Using Grammatical Evolution. In:
Proceedings of Eighth AAAI Conference on Artificial Intelligence and Inter-
active Digital Entertainment (AIIDE-12), pp 75-80, AAAI

572. Shan Y, McKay R I, Baxter R, Abbass H, Essam D, Nguyen H. (2004).
Grammar model-based program evolution. In: Proceedings of the 2004 IEEE
Congress on Evolutionary Computation (CEC 2004), pp 478–485, IEEE Press

573. Shao J, McDermott J, O’Neill M, Brabazon A (2010) Jive: A Generative,
Interactive, Virtual, Evolutionary Music System. In: Proceedings of the 8th
European Event on Evolutionary and Biologically Inspired Music, Sound, Art
and Design (EvoMUSART 2010), Lecture Notes in Computer Science 6025,
pp 341–350, Springer

574. Shor P W (1994)Algorithms for quantum computation: Discrete logarithms
and factoring. In: Proceedings of the 28th ACM Symposium on the Theory of
Computing, Piscataway, NJ, Nov 1994. IEEE Press. 124–134.

575. Shor P W (1997) Quantum computing. SIAM J. Comput. 26: 1484.
576. Shor P W (1998) Quantum computing. Documenta Mathematica (Extra Vol-

ume) ICM(I):467–486
577. Shudo E, Iwasa Y (2001) Inducible defense against pathogens and parasites:

optimal choice among multiple options. J. Theoretical Biology 209:233–247
578. Silva A, Neves A, Costa E (2002) An empirical comparision of particle swarm

and predator prey optimisation. In: Proceedings of AICS 2002, Lecture Notes
in Artificial Intelligence (2464), pp 103–110, Springer

579. Simoes L, Cruz C, Ribeiro R, Correia L, Seidl T, Ampatzis C,
Izzo D (2011) Path Planning Strategies Inspired by Swarm Be-
haviour of Plant Root Apexes. Technical Report 09/6401 of Euro-
pean Space Agency, Advanced Concepts Team. Ariadna Final Re-
port. http://www.esa.int/gsp/ACT/doc/ARI/ARI\%20Study\%20Report/

ACT-RPT-BIO-ARI-09--6401-PathPlanningInspiredByRoots.pdf

580. Simpson M, Sayler G, Fleming J, Sanseverino J, Cox, C (2004) The Device
Science of Whole Cells as Components in Microscale and Nanoscale Systems
In: Amos M (ed) Cellular Computing, Oxford University Press

581. Sipper M, Sanchez E, Mange D, Tomassini M, Perez-Uribe A, Stauffer A
(1997) A phylogenetic, ontogenetic, and epigenetic view of bio-inspired hard-
ware systems. IEEE Transactions on Evolutionary Computation 1(1):83–97

http://www.esa.int/gsp/ACT/doc/ARI/ARI\%20Study\%20Report/ACT-RPT-BIO-ARI-09--6401-PathPlanningInspiredByRoots.pdf
http://www.esa.int/gsp/ACT/doc/ARI/ARI\%20Study\%20Report/ACT-RPT-BIO-ARI-09--6401-PathPlanningInspiredByRoots.pdf

References 539

582. Smith J, Fogarty, T (1996) Recombination Strategy Adaptation via Evolution
of Gene Linkage. In: Proceedings of 1996 IEEE International Conference on
Evolutionary Computation, pp 826–831, IEEE Press

583. Socha K, Dorigo M (2008) Ant colony optimization for continuous domains.
European Journal of Operational Research, 185(3):1155–1173

584. Somma R D, Batista C D, Ortiz G (2007a) Quantum approach to classical
statistical mechanics. Physical Review Letters 99(3):030603

585. Somma R D, Boixo S, Barnum H (2007b) Quantum simulated annealing.
http://arxiv.org/quant-ph/0712.1008v1

586. Soule T et al. (eds) (2012) Proceedings of the 14th annual conference on Ge-
netic and evolutionary computation (GECCO 2012). 7–11 July, Philadelphia,
USA, ACM Press

587. Sörensen K (2013) Metaheuristics — the metaphor exposed. International
Transactions in Operational Research, published online 8 Feb 2013, doi:10.
1111/itor.1200

588. Spector L, Stoffel K (1996) Ontogenetic Programming. In: Proceedings of the
First Annual Conference Genetic Programming 1996, pp 394–399, MIT Press

589. Spencer H (1864) The Principles of Biology, Volume 1. London and Edinburgh:
Williams and Norgate

590. Srinivas N, Deb K (1994) Multiobjective optimization using nondominated
sorting in genetic algorithms. Evolutionary Computation 2(3)221–248

591. Stanley K, Miikkulainen R (2002a) Evolving neural networks through aug-
menting topologies. Evolutionary Computation 10(2):99–127

592. Stanley K, Miikkulainen R (2002b) Efficient evolution of neural network
topologies. In: Proceedings of the 2002 IEEE Congress on Evolutionary Com-
putation (CEC 2002), pp 1757–1762, IEEE Press

593. Stanley K, Miikkulainen R (2002c) Efficient Reinforcement Learning Through
Evolving Neural Network Topologies. In: Proceedings of the 2002 Genetic and
Evolutionary Computation Conference (GECCO 2002), pp 569–577, Morgan
Kaufmann

594. Stephens D, Krebs J (1986) Foraging Theory. Princeton, New Jersey: Prince-
ton University Press

595. Stibor T, Oates R, Kendall G, Garibaldi J (2009) Geometrical insights into
the dendritic cell algorithm. In: Proceedings of the 11th Annual conference
on Genetic and evolutionary computation (GECCO ’09), pp 1275–1282, ACM
Press

596. Stibor T (2009) Foundations of r-contiguous matching in negative selection
for anomaly detection. Natural Computing 8:613–641

597. Stibor T, Timmis J, Eckert C (2005) A comparative study of real-valued neg-
ative selection to statistical anomaly detection techniques. In: Proceedings of
the 4th International Conference on Artificial Immune Systems, Lecture Notes
in Computer Science 3627, pp 262–275, Berlin: Springer

598. Stöcker S (2009) Models for tuna formation. Mathematical Biosciences
156:167–190

599. Storn R (1999) System design by constraint adaptation and differential evo-
lution. IEEE Transactions on Evolutionary Computation 3:22–34

600. Storn R, Price K (1995) Differential evolution: a simple and efficient adaptive
scheme for global optimization over continuous spaces. Technical Report TR-
95–012: International Computer Science Institute, Berkeley

http://arxiv.org/quant-ph/0712.1008v1

540 References

601. Storn R, Price K (1997) Differential evolution: a simple and efficient heuristic
for global optimization over continuous spaces. Journal of Global Optimization
11:341–359

602. Struik P, Yin X, Meinke H (2008) Perspective Plant neurobiology and green
plant intelligence: science, metaphors and nonsense. Journal of the Science of
Food and Agriculture 88:363–370

603. Stützle T (1998) Parallelization strategies for ant colony optimization. In:
Proceedings of Parallel Problem Solving from Nature (PPSN 1998), Lecture
Notes in Computer Science 1498, pp 722–741, Springer

604. Stützle T, Hoos H (2000) MAX-MIN Ant System. Future Generation Com-
puter Systems 16(8):889–914

605. Sullivan K, Luke S (2007) Evolving Kernels for Support Vector Machine Clas-
sification. In: Proceedings of the Genetic and Evolutionary Computation Con-
ference (GECCO 2007), pp 1702–1707, New York: ACM Press

606. Sumpter D, Krause J, James R, Couzin I and Ward A (2008) Consensus
Decision Making by Fish. Current Biology 18:1773–1777

607. Swafford J M (2013) Analyzing the Discovery and Use of Modules in Gram-
matical Evolution. PhD Thesis, University College Dublin.

608. Swafford J M, Hemberg E, O’Neill M, Brabazon A (2012) Analyzing Module
Usage in Grammatical Evolution. In: Proceedings of the 12th Int. Conf. on
Parallel Problem Solving from Nature (PPSN XII), pp 347-356, Springer

609. Swafford J M, Nicolau M, Hemberg E, O’Neill M, Brabazon A (2012) Compar-
ing Methods for Module Identification in Grammatical Evolution. In: Proceed-
ings Annual Conference on Genetic and Evolutionary Computation (GECCO
2012), pp 823-830, ACM

610. Swafford J M, O’Neill M, Nicolau M, Brabazon A (2011) Exploring Grammat-
ical Modification with Modules in Grammatical Evolution. In: Proceedings of
the 14th European Conference on Genetic Programming (EuroGP 2011), Lec-
ture Notes in Computer Science 6621, pp 310–321, Springer

611. Swafford J M, Hemberg E, O’Neill M, Nicolau M, Brabazon A (2011) A Non-
Destructive Grammar Modification Approach to Modularity in Grammatical
Evolution. In: Proceedings of the Annual Conference on Genetic and Evolu-
tionary Computation (GECCO 2011), pp 1411–1418, ACM

612. Swafford J M, O’Neill M (2010) An Examination on the Modularity of Gram-
mars in Grammatical Evolutionary Design. In: Proceedings of the IEEE
Congress on Evolutionary Computation 2010 (WCCI 2010), pp 1027–1034,
IEEE Press

613. Symmons P, Cressman K (2001) United Nations Food and Agricultural Or-
ganization (FAO) Desert Locust Guidelines (2001 edition). Chapter 1 - Biol-
ogy and behaviour, http://www.fao.org/ag/locusts/common/ecg/347_en_

DLG1e.pdf

614. Tan S, Ting K, Teng S (2006) Reproducing the results of ant-based clustering
without using ants. In: Proceedings of the 2006 IEEE Congress on Evolution-
ary Computation (CEC 2006), pp 6224–6231, IEEE Press

615. Tang W, Wu Q, Saunders J (2006) Bacterial foraging algorithms for dynamic
environments. In: Proceedings of the 2006 IEEE Congress on Evolutionary
Computation (CEC 2006), pp 6224–6231, IEEE Press

616. Tavakolian R, Charkari N (2011) Novel Hybrid Clustering Optimization Al-
gorithms Based on Plant Growth Simulation Algorithm. Journal of Advanced
Computer Science and Technology Research 1:84–95

http://www.fao.org/ag/locusts/common/ecg/347_en_DLG1e.pdf
http://www.fao.org/ag/locusts/common/ecg/347_en_DLG1e.pdf

References 541

617. Tavares J, Pereira F (2010) Evolving Strategies for Updating Pheromone
Trails: A Case Study with the TSP. In: Proceedings of the 11th Conference on
Parallel Problem Solving from Nature (PPSN XI), Lecture Notes in Computer
Science 6239, pp 523–532, Springer

618. Teller A, Veloso M (1995) PADO: A new learning architecture for object recog-
nition. In: Symbolic Visual Learning, pp 81–116, Oxford University Press

619. Tereshko V, Lee T (2002) How Information-Mapping Patterns Determine For-
aging Behavior of a Honey Bee Colony. Open Systems and Information Dy-
namics 9:181–193

620. Textor J (2012) Efficient Negative Selection Algorithms by Sampling and Ap-
proximate Counting. In: Proceedings of the 12th Parallel Problem Solving
from Nature 2012 (PPSN 2012), pp 32–41, Springer

621. Thierens D (1999) Scalability problems of simple genetic algorithms. Evolu-
tionary Computation 7(4):331–352

622. Thierens D, Bosman P (2001) Multi-objective mixture-based iterated density
estimation evolutionary algorithms. In: Proceedings of the Genetic and Evo-
lutionary Computation Conference (GECCO 2001), pp 663–670, San Mateo:
Morgan Kaufmann

623. Thierens D et al. (eds) (2007) Proceedings of the 9th annual conference on
Genetic and evolutionary computation (GECCO 2007). 7–11 July, London,
UK, ACM Press

624. Togelius J, Karakovskiy S, Koutnik J, Schmidhuber J (2009) Super Mario
Evolution. In: Proceedings of the IEEE Symposium on Computational In-
telligence and Games, pp 156–161, IEEE Press (also available from http:

//julian.togelius.com/Togelius2009Super.pdf)
625. Tong L, Wang C, Wang W, Su W (2005) A global optimization bionics al-

gorithm for solving integer programming-plant growth simulation algorithm.
Systems Engineering - Theory and Practice 25(1):76–85

626. Tong L, Zhong-tuo W (2008) Application of Plant Growth Simulation Algo-
rithm on Solving Facility Location Problem. Systems Engineering - Theory &
Practice 28(12):107–115

627. Torkkola K, Campbell W (2000) Mutual information in learning feature trans-
formations. In: Proceedings of the 17th International Conference on Machine
Learning, pp 1015–1022, Morgan Kaufmann

628. Torkkola K (2001) Nonlinear feature transforms using maximum mutual in-
formation. Proceedings of 2001 International Joint Conference on Neural Net-
works (IJCNN 2001), pp 2756–2761, IEEE Press

629. Trefzer M A, Kuyucu T, Miller J F, Tyrrell A M (2010) Image compression
of natural images using artificial gene regulatory networks. In: Proceedings
of the Annual Genetic and Evolutionary Computation Conference (GECCO
2010), pp 595–602, ACM

630. Trewavas A 2003) Aspects of Plant Intelligence (Invited Review). Annals of
Botany 92:1–20

631. Trewavas A (2004) Aspects of Plant Intelligence: an Answer to Firn. Annals
of Botany 93:353–357

632. Trewavas A (2005) Green Plants as intelligent organisms. Trends in Plant
Science 10(9):413–419

633. Trewavas A (2007) Response to Alpi et al.:Plant neuro-biology - all metaphors
have value. Trends in Plant Science 12(4):231–233

http://julian.togelius.com/Togelius2009Super.pdf
http://julian.togelius.com/Togelius2009Super.pdf

542 References

634. Trojanowski K (2007) B-Cell Algorithms as a Parallel Approach to Optimiza-
tion of Moving Peaks Benchmark Tasks. In: Proceedings of 6th International
Conference on Computer Information Systems and Industrial Management
Applications (CISIM’07), pp 143–148, IEEE Press

635. Tsai X-Y, Chen Y-J, Huang H-C, Chuang S-J, Hwang R-C (2005) Quantum
NN vs NN in Signal Recognition. In: Proceedings of the Third International
Conference on Information Technology and Applications (ICITA 05), pp 308–
312, IEEE Press

636. Turing A M (1948) Intelligent Machines, Reprinted in Ince D.C. (ed) (1992)
Mechanical Intelligence: Collected Works of A. M. Turing, pp 21–23, North-
Holland

637. Turing A M (1950) Computing Machinery and Intelligence. Mind 59(236):433–
460. Reprinted in Ince D.C. (ed) (1992) Mechanical Intelligence: Collected
Works of A. M. Turing, North-Holland

638. Turing A M (1952) The Chemical Basis of Morphogenesis. Philosophical
Transactions of the Royal Society B 237:37–72

639. Tyrrell A, Jin Y (eds) (2011) Special issue on Evolving Developmental Sys-
tems. IEEE Transactions on Evolutionary Computation 15(3)

640. van den Bergh F (2005) An Analysis of Particle Swarm Optimizers. PhD
Thesis. Department of Computer Science, University of Pretoria, South Africa

641. Vandersypen L M K, Steffen M, Breyta G, Yannoni C S, Sherwood M H,
Chuang I L (2001) Experimental realization of Shor’s quantum factoring al-
gorithm using nuclear magnetic resonance. Nature 414: 883–887.

642. Vapnik V, Golowich S, Smola A (1997) Support Vector Method for Function
Approximation, Regression Estimation, and Signal Processing. In: Mozer M,
Jordan M, Petsche T (eds) Neural Information Processing Systems, Vol. 9,
Cambridge, MA: MIT Press

643. Viana F, Kotinda G, Rade D, Steffan V (2006) Can Ants Design Mechanical
Engineering Systems. In: Proceedings of the 2006 IEEE Congress on Evolu-
tionary Computation (CEC 2006), pp 3173–3179, IEEE Press

644. von Frisch K (1967) The Dance Language and Orientation of Bees. Harvard
University Press

645. von Frisch K, Lindauer M (1996) The “Language” and Orientation of the
Honey Bee, In: Houck L, Drickamer L (eds) Foundations of Animal Behavior:
Classic papers with Commentaries, pp 539–552, University of Chicago Press

646. Wang C, Cheng H Z, Yao L Z (2008) Reactive Power Optimization by Plant
Growth Simulation Algorithm. In: Proceedings of Third International Confer-
ence on Electric Utility regulation and Restructuring and Power Technologies
(DRPT 2008), pp 771–774, IEEE Press

647. Wang L (2005) Support Vector Machines: Theory and Applications, Berlin:
Springer

648. Wang Y, Feng X Y, Huang Y X, Pu D B, Zhou W G, Liang Y C, Zhou C G
(2007) A novel quantum swarm evolutionary algorithm and its applications.
Neurocomputing 70(4–6):633–640

649. Ward J (1963) Hierarchical Grouping to optimize an objective function. Jour-
nal of the American Statistical Association 58(301):236–244

650. Watkins A, Timmis J, Boggess L (2005) Artificial Immune Recognition Sys-
tem (AIRS): An Immune-Inspired Supervised Learning Algorithm. Genetic
Programming and Evolvable Machines 5(3):291–317

References 543

651. Watkins A, Boggess L (2002a) A resource limited artificial immune classifier.
In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC
2002), pp 926–931, IEEE Press

652. Watkins A, Boggess L (2002b) A New Classifier Based on Resource Limited
Artificial Immune Systems. In: Proceedings of the IEEE Congress on Evolu-
tionary Computation (CEC 2002), pp 1546–1551, IEEE Press

653. Watkins A, Timmis J (2002c) Artificial Immune Recognition System (AIRS):
Revisions and Refinements. In: Proceedings of the First International Confer-
ence on Artificial Immune Systems (ICARIS 2002), pp 173–181, University of
Kent at Canterbury

654. Wedde H, Farooq M, Zhang Y (2004) BeeHive: An efficient fault-tolerant
routing algorithm inspired by honey bee behavior. In: Proceedings of ANTS
2004, Lecture Notes in Computer Science 3172, pp 83–94, Berlin: Springer-
Verlag

655. Werbos P J (1974) Beyond Regression: New Tools for Prediction and Analysis
in the Behavioral Sciences. PhD thesis. Harvard University

656. Whigham P A (1996) Grammatical bias for evolutionary learning. PhD Thesis.
University of New South Wales, Australian Defence Force Academy

657. Whitley D, Dominic S, Das R, Anderson C W (1993) Genetic reinforcement
learning for neurocontrol problems. Machine Learning 13(2–3):259–284

658. Wilkinson G (1992) Information transfer at evening bat colonies. Animal Be-
haviour 44(3):501–518

659. Wilkinson G, Boughman J (1998) Social calls coordinate foraging in greater
spear-nosed bats. Animal Behaviour 55:337–350

660. Wilson G C, McIntyre A, Heywood M I (2004) Resource review: three open
source systems for evolving programs—Lilgp, ECJ and Grammatical Evolu-
tion. Genetic Programming and Evolvable Machines 5(1):103–105

661. Wolpert D, Macready W (1995) No Free Lunch Theorems for Search. Santa
Fe Institute Working Paper 95–02–010, Santa Fe: Santa Fe Institute

662. Wong M L, Leung K S (2000) Data Mining Using Grammar Based Genetic
Programming and Applications. Kluwer Academic Publishers

663. Wootters W K, Zurek W H (1982) A Single Quantum Cannot be Cloned.
Nature 299: 802-803

664. Wray M, Klein B and Seeley T (2011) Honey bees use social information in
waggle dances more fully when foraging errors are more costly. Behavioral
Ecology, published online 1 October 2011, http://beheco.oxfordjournals.
org/content/early/2011/09/30/beheco.arr165.full.pdf+html

665. Wu S, Banzhaf W (2008) Combatting financial fraud: A co-evolutionary
anomaly detection approach. In: Proceedings of the Annual Genetic and Evo-
lutionary Computation Conference (GECCO 2008), pp 1673–1680, ACM Press

666. Xu J, Lam A Y S, Li V O K (2011) Stock portfolio selection using chemical
reaction optimization. In: Proceedings of the International Conference on Op-
erations Research and Financial Engineering (ICORFE 2011), Paris, France,
pp 458-463, World Academy of Science Engineering & Technology

667. Xu J, Lam A Y S, Li V O K, Li Q, Fan X (2012) Short adjacent repeat
identification based on Chemical Reaction Optimization. In: Proceedings of
the 2012 IEEE Congress on Evolutionary Computation (WCCI 2012), 1–8,
IEEE Press

http://beheco.oxfordjournals.org/content/early/2011/09/30/beheco.arr165.full.pdf+html
http://beheco.oxfordjournals.org/content/early/2011/09/30/beheco.arr165.full.pdf+html

544 References

668. Yang S (2005) Memory-enhanced Univariate Marginal Distribution Algo-
rithms for Dynamic Optimization Problems. In: Proceedings of 2005 IEEE
Congress on Evolutionary Computation (CEC 2005), pp 2560–2567, IEEE
Press

669. Yang S, Wang M, Jiao L (2004a) A Quantum Particle Swarm Optimization.
In: Proceedings of the 2004 IEEE Congress on Evolutionary Computation
(CEC 2004), pp 320–324, IEEE Press

670. Yang S, Wang M, Jiao L (2004b) A novel quantum evolutionary algorithm
and its application. In: Proceedings of 2004 IEEE Congress on Evolutionary
Computation (CEC 2004), pp 820–826, IEEE Press

671. Yang S, Wang M, Jiao L (2004c) A genetic algorithm based on quantum chro-
mosome. In: Proceedings of IEEE International Conference on Signal Process-
ing (ICSP 04), pp 1622–1625, IEEE Press

672. Yang X-S (2005) Engineering Optimization via Nature-Inspired Virtual Bee
Algorithms. In: Mira J, Álvarez, J (eds) Artificial Intelligence and Knowl-
edge Engineering Applications: A Bioinspired Approach: First International
Work-Conference on the Interplay Between Natural and Artificial Computa-
tion (IWINAC 2005), Lecture Notes in Computer Science 3562, pp 317–323,
Berlin: Springer

673. Yang X-S (2008) Nature-inspired metaheuristic algorithms. Luniver Press
674. Yang X-S (2010) A New Metaheuristic Bat-Inspired Algorithm. In: Proceed-

ings of Fourth International Workshop on Nature Inspired Cooperative Strate-
gies for Optimization (NICSO 2010), pp 65–74, Springer

675. Yang X-S, Gandomi A (2012) Bat Algorithm: A Novel Approach for Global
Engineering Optimization. Engineering Computations 29(5):464–483

676. Yang X-S (2013) Bat Algorithm: Literature Review and Applications. Inter-
national Journal of Bio-Inspired Computation 5(3):141–149

677. Yao X (1999) Evolving artifical neural networks. Proceedings of the IEEE
87(9):1423–1447

678. Yu J J Q, Lam A Y S, Li V O K (2012) Real-coded chemical reaction op-
timization with different perturbation functions. In: Proceedings of the 2012
IEEE Congress on Evolutionary Computation (WCCI 2012), pp 1–8, IEEE
Press

679. Zhang J, Sanderson A (2009) JADE: Adaptive differential evolution with
optional external archive. IEEE Transactions on Evolutionary Computation
13(5):945–958

680. Zhao, Z, Cui Z, Zeng J, Yue X (2011). Artificial Plant Optimization Algo-
rithm for Constrained Optimization Problems. In: Proceedings of 2011 Sec-
ond International Conference on Innovations in Bio-inspired Computing and
Applications, pp 120–123, IEEE Press

681. Zhou Y and Liu B (2009) Two Novel Swarm Intelligence Clustering Analy-
sis Methods. In: Proceedings of the 5th International Conference on Natural
Computation, pp 497–501, IEEE Press

682. Zitzler E, Laumanns M, Bleuler S (2004) A tutorial on evolutionary multiob-
jective optimization. Metaheuristics for Multiobjective Optimisation 535:3–38

683. Zitzler E, Laumanns M, Thiele L (2001). SPEA2: Improving the strength
Pareto evolutionary algorithm. In: Proceedings of Evolutionary Methods for
Design, Optimisation and Control with Application to Industrial Problems
(EUROGEN 2001), pp 95–100, International Center for Numerical Methods
in Engineering (CIMNE)

References 545

684. Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a compar-
ative case study and the strength Pareto approach. IEEE Transactions on
Evolutionary Computation 3(4):257–271

Index

(1 + 1)-ES, 74
(μ+ λ)-ES, 75
(μ, λ)-ES, 75
MAX -MIN , 152
πGE, 379
k-exchange neighbourhood, 159
1/5 success rule, 76

activation function, 226, 230
adaptive immune system, 301–309
adaptive resonance theory, 276
adaptive simulated annealing, 421
adiabatic, 411
aerotaxis, 188
affinity, 306
affinity maturation, 306, 320
AIC, 70
amino acid, 358
angle modulation, 90
annealing, 411

ant algorithms, 142
ant clustering algorithms, 160
ant foraging, 142
continuous optimisation, 155
multiple ant colonies, 157

ant colony system (ACS), 152
ant miner, 167
ant multitour systems, 153
ant system (AS), 147
antennation, 141
antibody, 304, 305, 320, 321, 323
antigen, 304, 305, 320

antigen-presenting cell, 309
apoptosis, 315
architecture-altering operation, 111
arity, 98
artificial chemical reaction optimisation

algorithm, 482
artificial immune recognition system

(AIRS), 325

artificial immune system (AIS), 10, 199,
301

artificial neural network, 10, 221–259
artificial neural networks, 222
artificial recognition ball, 325

asynchronous update, 120
atomic swarm, 133
attentional subsystem, 277
auto-catalytic, 143

auto-immune, 307
autoinducer, 187
automatically defined function (ADF),

106–108, 111
automatically defined iteration (ADI),

109–111
automatically defined loop (ADL),

109–111

automatically defined recursion (ADR),
111

automatically defined storage (ADS),
108, 111

Avogadro’s number, 398

B cell, 304, 305, 320
B cell algorithm, 322

© Springer-Verlag Berlin Heidelberg 2015
A. Brabazon et al., Natural Computing Algorithms, Natural Computing Series,
DOI 10.1007/978-3-662-43631-8

547

quantum, 411

548 Index

backpropagation, 228, 235, 240, 241,
245, 284

Backus–Naur form (BNF), 340
bacterial foraging, 187
bacterial foraging optimisation

algorithm
dynamic enviroments, 198

bacterial foraging optimisation
algorithm (BFOA), 190, 198

base vector, 88
basis function, 223
bat algorithm, 206, 208
bayesian optimisation algorithm (BOA),

66
Bayesian–Dirichlet metrics, 70
bee colony algorithm, 175
bee nest algorithm, 182
bee nest site selection, 180

optimisation algorithm (BNSO), 181,
182

bee system algorithm, 174
best matching unit (BMU), 265
bias node, 225
binary encoding, 27
binary gravitational search algorithm,

431, 434
binary PSO, 137–138
binary valued quantum inspired

evolutionary algorithm, 440
bioluminesence, 201
black box, 259
Black–Scholes(–Merton) equation, 406
blast cell, 306
bloat, 105
Boltzmann factor, 400, 419
brood sorting, 160
bubble neighbourhood function, 270
building block, 59

cell membrane, 304
cellular differentiation, 7
cellular EA (cEA), 48, 49
cellular encoding, 297
cellular immunity, 304
cemetery formation, 161
central force optimisation, 429
charged particle swarm optimisation,

132
chemical reaction optimisation, 481

chemically inspired algorithms, 479
chemotaxis, 188, 189
chromosome, 282
classical mechanics, 393, 395
classification, 301, 311
clonal expansion and selection, 306
CLONALG algorithm, 320
closure, 98, 99
clustering, 261, 262

clustering algorithm, 142, 266
codebook vector, 267
codon, 359
colony fission, 180
committee decision, 244
commutator, 405, 407
compact genetic algorithm (cGA), 65
comparison layer, 277
competent genetic algorithm, 59
competent genetic programming, 59
competing conventions problem, 288
compound, 480
computing

connection gene, 290
connection matrix, 285, 286
connection topology, 223
conservative force, 396
constrained molecular dynamics

(CMD), 426
constrained optimisation, 50
constriction coefficient, 124
construction graph, 145
context layer, 245, 246
context-free grammar, 339
context-sensitive grammar, 339
contiguous somatic hypermutation, 322
continuous ant colony system (CACS),

155
continuous univariate marginal dis-

tribution algorithm (UMDAc),
64

cooling schedule, 420
costimulated, 306
Cover’s theorem, 253
crossover, 22, 35, 59

in differential evolution, 83–87
in genetic programming, 102

crowding operators, 40
Curie temperature, 411

quantum adiabatic, 410

Index 549

cytokines, 303, 306

damage associated molecular patterns
(DAMPS), 309

dance attrition, 180
dance floor, 173
dance language, 172
danger theory, 309
decoherence, 405, 409
degenerate genetic code, 361
dendrites, 222
dendritic cell algorithm, 309, 315
dendritic cells, 309
derivation tree, 338, 346
developmental computing, 10, 335
developmental plasticity, 469
developmental tree-adjoining grammar-

based genetic programming,
375

difference vector, 84
differential cellular elongation, 458
differential evolution (DE), 83, 85, 86,

372
with random scale factor, 89
with time varying scale factor, 89

differential gene expression, 386
digital quantum computers, 408
direct encoding, 282
discrete recombination, 79
distributed EA (dEA), 48
distributed learning, 142
diversity, 40, 48, 88, 295, 361
DNA, 306, 357, 358
dodder plant, 461
DTAG3P, 379

early-stopping, 239
echolocation, 206
efficient frontier, 54
element, 479
elitism, 40
elitist ant system (EAS), 151
Elman network, 245
emergent, 142
encoding, 22
energy, 395
entanglement, 404, 409
enthalpy, 483

ephemeral random constants (ERCs),
99

epigenesis, 59
epitope, 305
equivalent convention problem, 288
ergodic, 402, 422

strongly, 402
weakly, 402

ergodicity, 402, 422
strong, 402
weak, 402

error surface, 235
estimation of distribution algorithms

(EDAs), 61, 450
Euclidean distance, 164, 273
evolution strategies, 73
evolutionary algorithm, 281
exons, 358
exploitation, 31, 150
exploration, 31, 150
exponential cooling, 420
exponential crossover, 88
extremal optimisation algorithm, 436

fear threshold, 131
feedforward, 242, 245
feeding buzz, 207
field theory, 394

quantum, 395
first law of thermodynamics, 400
fish school algorithm, 211
fish school search, 212
fish school search algorithm, 214
fitness, 4, 22, 32, 119
fitness function, 22
fitness imitation, 30
fitness inheritance, 30
fitness proportionate selection, 32
fitness sharing, 46, 295
fittest individual refinement (FIR), 90
fixed line sweep, 50
fixed-length encoding, 96
floor function, 90
food foraging strategy, 143
foraging for light, 456
force, 396
free grammars, 339
frustration, 412
full method, 100

550 Index

function approximation problem, 221
function set, 98

gbest, 88, 119, 120, 124
gene, 96
gene-overlapping, 366
general relativity, 394
generalisation, 237, 251
generation, 22
generation gap, 39
generational replacement, 39
genetic algorithm (GA), 22, 59
genetic programming (GP), 59, 95, 112,

345, 357, 373
genetic regulatory network, 383,

386–388
genotype, 21
geotropism, 457, 458
global recombination, 79
glow worm swarm algorithm (GWSA),

201
gradient-descent, 240
grammar, 10, 112, 297, 330, 337, 357

free, 339
grammar-based genetic programming,

345, 357
grammar-guided genetic programming,

346
grammatical computing (GC), 10, 335,

336, 343, 356, 381
grammatical evolution (GE), 357–373,

379
grammatical swarm, 371
gravitational search algorithm, 431
Gray code, 27, 28
greedy search, 4
grow method, 100

Hamiltonian, 396, 397, 400, 405, 407,
410, 412, 418, 422, 424

Hamming cliffs, 27
Hamming distance, 269
Heaviside step function, 230
helper T cell, 306, 307
heritability, 29
heuristic bias, 29
hidden layer, 225, 228, 241, 246
hierarchical BOA, 71
Hilbert space, 402

hill climbing algorithm, 4
honeybee dance language, 171
honeybee foraging, 172
honeybee mating optimisation

algorithm, 184, 185
honeybee optimisation algorithm, 173
humoral immunity, 304, 307
hydrotropism, 457, 459

immune programming, 330
immune system, 301–309
immune system grammar, 330
immunodominance, 305
immunodominant, 305
immunoglobulin, 307
indirect encoding, 282
initial weight vector, 241
innate immune system, 302
innovation number, 290
input space, 245
intermediate recombination, 79
internal state space, 245
introns, 358
invasive weed optimisation algorithm

(IWO), 464
Ising spin glasses, 412
island model, 48, 134, 136

jump connection network, 242

k nearest neighbour, 165
k nearest neighbours algorithm, 311
kernel function, 249, 256
Kolmogorov’s theorem, 228

Lagrangian, 397
lbest, 124
learning algorithm, 223, 281
learning rate, 236, 240, 265
learning vector quantisation (LVQ), 272
leukocyte, 302, 305
likeness function, 226
linear ranking, 33
linkage learning, 59
Lisp S-expressions, 96
local recombination, 79
locality, 28
locality preserving, 263
lock in, 144

Index 551

locust swarm algorithm, 216, 217
locusts, 215
logistic function, 230
lymph node, 306
lymphocyte, 302, 304, 305

magnetotaxis, 188
major histocompatibility complex, 304
mapping, 341
marriage in honeybees optimisation

algorithm, 184
maximally separating hyperplane, 256
mean squared error, 239
mechanics

classical, 393, 395
quantum, 394, 402
relativistic quantum, 394
statistical, 395, 400

memetic algorithms, 58
memetic computation, 58
memory, 22, 119, 143
memory in ant foraging algorithms, 147
meristem tissue, 471
messy GA (mGA), 59
Metropolis(–Hastings) algorithm, 401,

413, 418
migration, 48
minimum description length, 70
mixing number, 78
molecular biology, 357
molecule, 480
momentum, 240
momentum coefficient, 240
monopodial, 471
morphogenesis, 335
multilayer perceptron (MLP), 228, 243,

244, 297
multimodal, 216
multiobjective optimisation, 53
multiple swarms, 134
mutation, 22, 25, 35

in differential evolution, 84
mutation step size, 76

natural computing, 1
NEAT, 289
necrosis, 315
negative selection algorithm, 301, 310,

312

neighbourhood function, 265
neuroevolution, 281
neuroevolution of augmenting topolo-

gies, 289
neurons, 221
neutral evolution, 361
nondominated, 54
nondominated sorting genetic algorithm

(NSGA), 57
nonlinear modulation index, 466
nonself, 301, 302, 310
nonsynonymous redundancy, 288
nonterminal, 340

objective function, 29
onemax, 23
ontogeny, 7
optimisation, 142, 301
orienting subsystem, 277
otoliths, 459
out-of-sample, 164, 239
overfitting, 237, 242
overtraining, 237

paddy field algorithm, 467
panmictic, 48
parasitic plants, 461
paratope, 305
Pareto frontier, 54, 55
Pareto optimal, 54
Pareto ranking, 56
Pareto set, 54
particle, 118, 120
particle swarm algorithm, 88
particle swarm optimisation (PSO),

118–140, 272
pathogen, 301, 302, 304, 305
pathogen-associated molecular patterns,

302
pbest, 119, 120
penalty function, 52
peptide, 304
permutation problem, 288
phagocyte, 302
phenotype, 21, 361
phenotypic plasticity, 469
pheromone, 143, 144
pheromone evaporation, 146
pheromone matrix, 146

552 Index

pheromone trail, 143
phloem, 462
photosynthesis, 456
phototaxis, 188
phototropism, 457, 458
phylogeny, 7
physical computing (PC), 437
physical field inspired algorithms, 429
plant algorithms, 455
plant growth simulation algorithm, 469,

471, 474
plant immune systems, 303
plant neurobiology, 462
plant propogation algorithms, 464
POE model, 7
point mutation, 104
Poisson bracket, 397
population based incremental learning

(PBIL), 62
positive feedback, 144
predator–prey, 130
prefix notation, 96
premature convergence, 33, 151
primary response, 308
principal component analysis, 267
production rule, 340, 341, 377
protein, 304, 305, 357

quantum adiabatic computing (AQC),

quantum annealing, 414
simulated, 422

quantum annealing (QA),
quantum binary PSO, 450
quantum chromosome, 439, 441
quantum field theory, 395
quantum gate, 443
quantum information, 409
quantum inspired evolutionary

algorithms, 439, 440
quantum mechanics, 394, 402

relativistic, 394
quantum mutation, 445
quantum observation step, 442
quantum spin glass, 414
quantum swarm, 450
quantum tunnelling, 406, 414, 422
qubit, 407, 409, 439
qubit representation, 439, 440

quenching, 411
quickprop, 283
quorum sensing, 181, 187

r-contiguous bits, 312
radial basis function, 247
radial basis function network (RBFN),

246, 249
radicle, 459
ramped-half-and-half, 101
random immigrants strategy, 47
rank-based ant system (ASrank), 151
rank-based selection, 33
real-valued clonal selection algorithm,

323
real-valued quantum inspired evolution-

ary algorithm, 446
receptor, 304, 306, 307
recognition layer, 277
recruitment dance, 172
recurrent network, 244, 245, 286
recuts, 243
regular grammar, 339
regularisation, 239
relativistic quantum mechanics, 394
relativity

general, 394
special, 394

repair operator, 52
replacement strategy, 39
restricted mating strategy, 46
restricted replacement strategy, 46
result-producing branch (RPB), 106,

107
ribonucleic acid (RNA), 358
root foraging, 459
root-swarm behaviour, 475
round dance, 173

schema, 35
schema theorem, 112
Schrödinger equation, 403
search engine, 361, 371
second law of thermodynamics, 400
secondary response, 308
selection, 22
selection pressure, 31, 32, 34
self, 310
self-organisation, 117, 142

410

411

Index 553

self-organised criticality, 436
self-organising map (SOM), 164, 262,

263, 266
self-organising swarm (SoSwarm), 272
sentry particles, 130
sentry strategy, 45
sessile, 457
sharing function, 296
sigmoid transformation, 138
simulated annealing, 398, 417
simulated quantum annealing, 422
simulated quenching, 420
single point crossover, 35, 36
social insects, 142
social learning, 117
social models, 9
social programming, 371
somatic hypermutation, 306
special relativity, 394
spin glasses, 411
sporulation, 188
squashing function, 230
stability/plasticity dilemma, 276
stacking, 243, 244
start symbol, 340, 341
statistical mechanics, 395, 400
statoliths, 458
steady state, 40
stigmergy, 141
stomata, 457
strategy parameter, 75
strawberry plant algorithm, 468, 470
strength Pareto evolutionary algorithm

(SPEA), 57
stridulation, 141
strong ergodicity, 402
strong locality, 28
strongly ergodic, 402
strongly typed GP, 112
structured population GA, 48
subtree mutation, 104
sufficiency, 98, 99
sum of the squared errors, 239
superior chromosome, 174
superposition of states, 403
supervised learning, 223, 234, 261, 272
support vector machines (SVMs), 252
support vectors, 255
Suzuki-Trotter formalism, 415

Suzuki-Trotter formula, 407
switching objective approach, 55
symplectic structure, 405
sympodial, 471
synapses, 222
synonymous redundancy, 288
syntax tree, 96, 100, 102, 357
systems biology, 502

T cell, 304, 305, 310
TAG3P, 377
TAG3P+, 377
TAGE, 379, 380
taxis, 188
terminal, 340
terminal set, 98
test data, 239
thermodynamic equilibrium, 399
thermodynamics, 395, 398
thermotaxis, 188
thigmotropism, 457, 459
thymus, 307
tolerogenesis, 307, 310
topology preserving, 263
tournament selection, 34
trace, 406
training algorithm, 264
training data, 239, 259
training method, 223
transfer function, 226, 229, 230
transpiration, 457
transverse Ising spin glass, 414
travelling salesman problem (TSP),

148, 417, 419
tree-adjoining grammar (TAG),

375–378, 380
tree-adjunct grammar, 377
tremble dance, 173
Trotter dimension, 415
truncation selection, 34
two point crossover, 35, 36

uncertainty principle, 405
uniform choice, 50
uniform crossover, 36, 37
univariate marginal distribution

algorithm (UMDA), 63
universal approximator, 228
unsupervised learning, 164, 223, 261

554 Index

validation data, 239
variable-length, 97, 357
variable-size detectors, 313
vector evaluated GA (VEGA), 55
velocity clamping, 123
velocity update, 120, 124, 137
Venus flytrap, 462
very fast (simulated) reannealing, 421
vigilance parameter, 277, 279
volatile organic compound, 461

waggle dance, 173
wavefunction, 402
weak ergodicity, 402
weak locality, 29
weakly ergodic, 402
weight-based genetic algorithm

(WBGA), 55
wrapping operator, 366

xylem, 462

	Preface
	Acknowledgment
	Contents
	1 Introduction
	1.1 Natural Computing Algorithms: An Overview
	1.1.1 Biologically Inspired Algorithms
	Populational Perspective
	Dispersion and Diversity
	Communication
	Robustness
	Adaptiveness

	1.1.2 Families of Naturally Inspired Algorithms
	Evolutionary Computing
	Social Computing
	Neurocomputing
	Immunocomputing
	Developmental and Grammatical Computing

	1.1.3 Physically Inspired Algorithms
	Quantum Inspired Algorithms

	1.1.4 Plant Inspired Algorithms
	1.1.5 Chemically Inspired Algorithms
	1.1.6 A Unified Family of Algorithms
	1.1.7 How Much Natural Inspiration?

	1.2 Structure of the Book

	Part I Evolutionary Computing
	2 Introduction to Evolutionary Computing
	2.1 Evolutionary Algorithms
	Evolutionary Computation in Computer Science

	3 Genetic Algorithm
	3.1 Canonical Genetic Algorithm
	3.1.1 A Simple GA Example

	3.2 Design Choices in Implementing a GA
	3.3 Choosing a Representation
	3.3.1 Genotype to Phenotype Mapping
	3.3.2 Genotype Encodings
	3.3.3 Representation Choice and the Generation of Diversity

	3.4 Initialising the Population
	3.5 Measuring Fitness
	Estimating Fitness

	3.6 Generating Diversity
	3.6.1 Selection Strategy
	Fitness Proportionate Selection
	Ordinal Selection

	3.6.2 Mutation and Crossover
	Binary Genotypes
	Real-Valued Genotypes

	3.6.3 Replacement Strategy

	3.7 Choosing Parameter Values
	3.8 Summary

	4 Extending the Genetic Algorithm
	4.1 Dynamic Environments
	4.1.1 Strategies for Dynamic Environments
	4.1.2 Diversity
	Diversity Generation if Change Is Detected
	Diversity Maintenance During Run
	Memory
	Measurement of Performance
	Summary

	4.2 Structured Population GAs
	Distributed EA
	Cellular EA

	4.3 Constrained Optimisation
	Penalty Functions
	Repair Operators
	Tailored Diversity-Generation Operators

	4.4 Multiobjective Optimisation
	Approaches to Multiobjective Optimisation
	Multiobjective Optimisation with a GA

	4.5 Memetic Algorithms
	4.6 Linkage Learning
	Messy GA
	Competent GA

	4.7 Estimation of Distribution Algorithms
	4.7.1 Population-Based Incremental Learning
	4.7.2 Univariate Marginal Distribution Algorithm
	Continuous Univariate Marginal Distribution Algorithm

	4.7.3 Compact Genetic Algorithm
	Shortcomings of Univariate EDAs

	4.7.4 Bayesian Optimisation Algorithm
	The Algorithm
	Learning a Bayesian Network

	4.8 Summary

	5 Evolution Strategies and Evolutionary Programming
	5.1 The Canonical ES Algorithm
	5.1.3 Mutation in ES
	5.1.4 Adaptation of the Strategy Parameters
	The 1/5 Success Rule
	Self-adaptive Mutation Step Size
	Single-Step-Size Mutation
	Step-Size Mutation

	5.1.5 Recombination
	Covariance Matrix Adaptation Evolution Strategies

	5.2 Evolutionary Programming
	Numerical Optimisation with EP

	5.3 Summary

	6 Differential Evolution
	6.1 Canonical Differential Evolution Algorithm
	Mutation Operator
	Trial Vector
	Selection
	Example of DE
	Parameters in DE

	6.2 Extending the Canonical DE Algorithm
	6.2.1 Selection of the Base Vector
	6.2.2 Number of Vector Differences
	6.2.3 Alternative Crossover Rules
	6.2.4 Other DE Variants

	6.3 Discrete DE
	Angle-Modulated DE

	6.4 Summary

	7 Genetic Programming
	7.1 Genetic Programming
	Representation in GP
	Open-Ended Nature of Evolution in GP
	7.1.1 GP Algorithm
	7.1.2 Function and Terminal Sets
	Generating Numerical Values
	Incorporating More Complex Structures

	7.1.3 Initialisation Strategy
	Full Method
	Grow Method

	7.1.4 Diversity-Generation in GP
	Crossover
	Mutation

	7.2 Bloat in GP
	7.3 More Complex GP Architectures
	7.3.1 Functions
	Why Use ADFs?

	7.3.2 ADF Mutation and Crossover
	Mutation
	Crossover

	7.3.3 Memory
	7.3.4 Looping
	7.3.5 Recursion

	7.4 GP Variants
	7.4.1 Linear and Graph GP
	7.4.2 Strongly Typed GP
	7.4.3 Grammar-Based GP

	7.5 Semantics and GP
	7.6 Summary

	Part II Social Computing
	8 Particle Swarm Algorithms
	8.1 Social Search
	8.2 Particle Swarm Optimisation Algorithm
	Synchronous vs. Asynchronous Updates
	8.2.1 Velocity Update
	Decomposing the Velocity Update Equation

	8.2.2 Velocity Control
	Velocity Clamping
	Momentum Weight
	Constriction Coefficient Version of PSO

	8.2.3 Neighbourhood Structure
	Information Flow in Neighbourhood Structures

	8.3 Comparing PSO and Evolutionary Algorithms
	8.4 Maintaining Diversity in PSO
	Premature Convergence
	Dynamic Environments
	Multiple Solutions
	8.4.1 Simple Approaches to Maintaining Diversity
	8.4.2 Predator–Prey PSO
	8.4.3 Charged Particle Swarm
	8.4.4 Multiple Swarms
	8.4.5 Speciation-Based PSO

	8.5 Hybrid PSO Algorithms
	Multiple Algorithm Hybrids
	Blended Hybrids

	8.6 Discrete PSO
	8.6.1 BinPSO
	8.6.2 Angle-Modulated PSO

	8.7 Evolving a PSO Algorithm
	8.8 Summary

	9 Ant Algorithms
	9.1 A Taxonomy of Ant Algorithms
	9.2 Ant Foraging Behaviours
	9.3 Ant Algorithms for Discrete Optimisation
	9.3.1 Graph structure
	Pheromone Matrix as a History

	9.3.2 Ant System
	Pheromone Initialisation
	Constructing Protosolutions
	Updating Pheromone Trails
	Which Solutions Participate in the Update Process?

	9.3.3 MAX-MIN Ant System
	9.3.4 Ant Colony System
	Construction Rule in ACS
	Pheromone Update in ACS
	Local Update in ACS

	9.3.5 Ant Multitour Systems
	9.3.6 Dynamic Optimisation

	9.4 Ant Algorithms for Continuous Optimisation
	Applying the CACS Algorithm
	CACS Algorithm and EDAs

	9.5 Multiple Ant Colonies
	Parallel Implementation
	Migration Frequency
	Migration Structure
	Colony Birth and Death

	9.6 Hybrid Ant Foraging Algorithms
	9.7 Ant-Inspired Clustering Algorithms
	9.7.1 Deneubourg Model
	9.7.2 Lumer and Faieta Model
	Classification Using Ant Clustering Algorithms

	9.7.3 Critiquing Ant Clustering

	9.8 Classification with Ant Algorithms
	AntMiner Algorithm

	9.9 Evolving an Ant Algorithm
	9.10 Summary

	10 Other Foraging Algorithms
	10.1 Honeybee Dance Language
	10.2 Honeybee Foraging
	10.2.1 The Honeybee Recruitment Dance

	10.3 Designing a Honeybee Foraging Optimisation Algorithm
	10.3.1 Bee System Algorithm
	10.3.2 Artificial Bee Colony Algorithm
	10.3.3 Honeybee Foraging and Dynamic Environments
	Critiquing the Algorithms

	10.4 Bee Nest Site Selection
	10.4.1 Bee Nest Site Selection Optimisation Algorithm

	10.5 Honeybee Mating Optimisation Algorithm
	10.6 Summary

	11 Bacterial Foraging Algorithms
	11.1 Bacterial Behaviours
	11.1.1 Quorum Sensing
	11.1.2 Sporulation
	11.1.3 Mobility

	11.2 Chemotaxis in E. Coli Bacteria
	11.3 Bacterial Foraging Optimisation Algorithm
	11.3.1 Basic Chemotaxis Model
	11.3.2 Chemotaxis Model with Social Communication
	Initialisation of the Algorithm
	Notation Used
	Chemotaxis Loop
	Reproduction Cycle
	Elimination-Dispersal Events
	Parameter Values for the BFOA

	11.4 Dynamic Environments
	11.5 Classification Using a Bacterial Foraging Metaphor
	11.6 Summary

	12 Other Social Algorithms
	12.1 Glow Worm Algorithm
	Sensor Range
	Luminescence Update
	Location Update
	Local Decision Range Update
	Comparison with Other Swarm Algorithms

	12.2 Bat Algorithm
	12.2.1 Bat Vocalisations
	12.2.2 Algorithm
	Generate New Solution
	Local Search
	Parameters

	12.2.3 Discussion

	12.3 Fish School Algorithm
	12.3.1 Fish School Search
	Individual Movement
	Feeding
	Collective-Instinctive Movement
	Collective-Volitive Movement

	12.3.2 Summary

	12.4 Locusts
	12.4.1 Locust Swarm Algorithm

	12.5 Summary

	Part III Neurocomputing
	13 Neural Networks for Supervised Learning
	13.1 Biological Inspiration for Neural Networks
	13.2 Artificial Neural Networks
	13.2.1 Neural Network Architectures

	13.3 Structure of Supervised Neural Networks
	13.3.1 Activation and Transfer Functions
	13.3.2 Universal Approximators

	13.4 The Multilayer Perceptron
	13.4.1 MLP Transfer Function
	13.4.2 MLP Activation Function
	13.4.3 The MLP Projection Construction and Response Regions
	13.4.4 Relationship of MLPs to Regression Models
	13.4.5 Training an MLP
	The Backpropagation Algorithm

	13.4.6 Overtraining
	13.4.7 Practical Issues in Modelling with and Training MLPs
	Measure of Error
	Parameters for the Backpropagation Algorithm
	Selecting Network Structure
	Multiple Hidden Layers
	Data Quality and Predictive Ability

	13.4.8 Stacking MLPs
	13.4.9 Recurrent Networks

	13.5 Radial Basis Function Networks
	13.5.1 Kernel Functions
	13.5.2 Radial Basis Functions
	13.5.3 Intuition Behind Radial Basis Function Networks
	13.5.4 Properties of Radial Basis Function Networks
	13.5.5 Training Radial Basis Function Networks
	13.5.6 Developing a Radial Basis Function Network

	13.6 Support Vector Machines
	13.6.1 SVM Method
	13.6.2 Issues in Applications of SVM

	13.7 Summary

	14 Neural Networks for Unsupervised Learning
	14.1 Self-organising Maps
	14.2 SOM Algorithm
	14.3 Implementing a SOM Algorithm
	Initialisation of Weight Vectors
	Topology of the Mapping Layer
	Distance Measure
	Neighbourhood Function
	Learning Rate
	Forming Clusters

	14.4 Classification with SOMs
	Learning Vector Quantisation

	14.5 Self-organising Swarm
	14.6 SOSwarm and SOM
	SOM-PSA Hybrids

	14.7 Adaptive Resonance Theory
	14.7.1 Unsupervised Learning for ART Structure of ART Neural Network
	Working of ART Neural Network
	Choice of Vigilance Parameter
	ART Training

	14.7.2 Supervised Learning for ARTs
	14.7.3 Weaknesses of ART Approaches

	14.8 Summary

	15 Neuroevolution
	15.1 Direct Encodings
	15.1.1 Evolving Weight Vectors
	15.1.2 Evolving the Selection of Inputs
	15.1.3 Evolving the Connection Structure
	Algorithm 15.1:
	15.1.4 Other Hybrid MLP Algorithms
	15.1.5 Problems with Direct Encodings
	Noisy Fitness
	Designing Efficient Crossover Mechanisms
	Over-elaborate MLP Structures

	15.2 NEAT
	Algorithm 15.2:
	15.2.1 Representation in NEAT
	15.2.2 Diversity Generation in NEAT
	Crossover in NEAT
	Mutation in NEAT
	15.2.3 Speciation
	Fitness-Sharing
	15.2.4 Incremental Evolution

	15.3 Indirect Encodings
	15.4 Other Hybrid Neural Algorithms
	15.5 Summary

	Part IV Immunocomputing
	16 Artificial Immune Systems
	16.1 The Natural Immune System
	16.1.1 Components of the Natural Immune System
	16.1.2 Innate Immune System
	Plant Immune Systems

	16.1.3 Adaptive Immune System
	B Cells and T Cells
	T Cell-Dependent Humoral Immune Response
	T Cell Tolerogenesis
	Immune System Memory

	16.1.4 Danger Theory
	16.1.5 Immune Network Theory
	16.1.6 Optimal Immune Defence

	16.2 Artificial Immune Algorithms
	16.3 Negative Selection Algorithm
	Canonical Real-Valued Algorithm
	Efficiency of the Algorithm
	General Issues in Negative Selection

	16.4 Dendritric Cell Algorithm
	Operationalising the Algorithm
	Summary

	16.5 Clonal Expansion and Selection Inspired Algorithms
	16.5.1 CLONALG Algorithm
	16.5.2 B Cell Algorithm
	16.5.3 Real-Valued Clonal Selection Algorithm
	Parallels with Evolutionary Algorithms

	16.5.4 Artificial Immune Recognition System
	AIRS Algorithm
	Normalisation and Initialisation
	Antigen Training
	Competition for Limited Resources
	Memory Cell Selection
	Summary

	16.6 Immune Programming
	16.7 Summary

	Part V Developmental and Grammatical Computing
	17 An Introduction to Developmental and Grammatical Computing
	17.1 Developmental Computing
	17.2 Grammatical Computing
	17.3 What Is a Grammar?
	17.3.1 Types of Grammar
	Regular Grammars
	Context-Free Grammars
	Context-Sensitive Grammars
	Free Grammars

	17.3.2 Formal Grammar Notation

	17.4 Grammatical Inference
	17.5 Lindenmayer Systems
	17.6 Summary

	18 Grammar-Based and Developmental Genetic Programming
	18.1 Grammar-Guided Genetic Programming
	18.1.1 Other Grammar-Based Approaches to GP

	18.2 Developmental GP
	18.2.1 Genetic L-System Programming
	18.2.2 Binary GP
	18.2.3 Cellular Encoding
	18.2.4 Analog Circuits
	18.2.5 Other Developmental Approaches to GP

	18.3 Summary

	19 Grammatical Evolution
	19.1 A Primer on Gene Expression
	The Translation Grammar

	19.2 Extending the Biological Analogy to GE
	19.3 Example GE Mapping
	19.4 Search Engine
	19.4.1 Genome Encoding
	19.4.2 Mutation and Crossover Search Operators
	19.4.3 Modularity
	19.4.4 Search Algorithm
	Grammatical Swarm
	Grammatical Differential Evolution

	19.5 Genotype–Phenotype Map
	19.6 Grammars
	19.7 Summary

	20 Tree-Adjoining Grammars and Genetic Programming
	20.1 Tree-Adjoining Grammars
	20.2 TAG3P
	20.3 Developmental TAG3P
	20.4 TAGE
	20.5 Summary

	21 Genetic Regulatory Networks
	21.1 Artificial Gene Regulatory Model for Genetic Programming
	21.1.1 Model Output

	21.2 Differential Gene Expression
	21.3 Artificial GRN for Image Compression
	21.4 Summary

	Part VI Physical Computing
	22 An Introduction to Physically Inspired Computing
	22.1 A Brief Physics Primer
	22.1.1 A Rough Taxonomy of Modern Physics

	22.2 Classical Mechanics
	22.2.1 Energy and Momentum
	22.2.2 The Hamiltonian

	22.3 Thermodynamics
	22.3.1 Statistical Mechanics
	22.3.2 Ergodicity

	22.4 Quantum Mechanics
	22.4.1 Observation in Quantum Mechanics
	22.4.2 Entanglement and Decoherence
	22.4.3 Noncommuting Operators
	22.4.4 Tunnelling
	22.4.5 Quantum Statistical Mechanics

	22.5 Quantum Computing
	22.5.1 Two-State Systems and Qubits
	22.5.2 Digital Quantum Computers
	22.5.3 Quantum Information
	22.5.4 Adiabatic Quantum Computation

	22.6 Annealing and Spin Glasses
	22.6.1 Ising Spin Glasses
	22.6.2 Quantum Spin Glasses

	22.7 Summary

	23 Physically Inspired Computing Algorithms
	23.1 Simulated Annealing
	23.1.1 Search and Neighbourhoods
	23.1.2 Acceptance of ‘Bad’ Moves
	23.1.3 Parameterisation of SA
	23.1.4 Extensions of SA
	23.1.5 Concluding Remarks

	23.2 Simulated Quantum Annealing
	23.2.1 Implementation of SQA
	23.2.2 SQA Application to TSP-Type Problems

	23.3 Constrained Molecular Dynamics Algorithm
	23.4 Physical Field Inspired Algorithms
	23.4.1 Central Force Optimisation
	23.4.2 Gravitational Search Algorithm and Variants
	The Binary Gravitational Search Algorithm (BGSA)

	23.4.3 Differences Among Physical Field-Inspired Algorithms

	23.5 Extremal Optimisation Algorithm
	23.6 Summary

	24 Quantum Inspired Evolutionary Algorithms
	24.1 Qubit Representation
	24.2 Quantum Inspired Evolutionary Algorithms (QIEAs)
	24.3 Binary-Valued QIEA
	24.3.1 Diversity Generation in Binary QIEA
	Quantum Gates
	Quantum Mutation

	24.4 Real-Valued QIEA
	24.4.1 Initialising the Quantum Population
	24.4.2 Observing the Quantum Chromosomes
	24.4.3 Crossover Mechanism
	24.4.4 Updating the Quantum Chromosomes

	24.5 QIEAs and EDAs
	24.6 Other Quantum Hybrid Algorithms
	Quantum Binary PSO
	The Algorithm

	24.7 Summary

	Part VII Other Paradigms
	25 Plant-Inspired Algorithms
	25.1 Plant Behaviours
	25.2 Foraging
	25.2.1 Plant Movement and Foraging
	Phototropism
	Geotropism
	Hydrotropism
	Thigmotropism

	25.2.2 Root Foraging
	25.2.3 Predatory Plants
	Dodder Plant
	Venus Flytrap

	25.3 Plant-Level Coordination
	Plant Neurobiology

	25.4 A Taxonomy of Plant-Inspired Algorithms
	25.5 Plant Propagation Algorithms
	25.5.1 Invasive Weed Optimisation Algorithm
	Seed Production
	Seed Dispersal
	Competition for Resources
	Performance of the Algorithm

	25.5.2 Paddy Field Algorithm
	Sowing
	Selection
	Seeding
	Pollination
	Dispersion

	25.5.3 Strawberry Plant Algorithm

	25.6 Plant Growth Simulation Algorithm
	25.6.1 The Algorithm
	25.6.2 Variants on the Plant Growth Simulation Algorithm

	25.7 Root-Swarm Behaviour
	25.7.1 Modelling Root Growth in Real Plants
	25.7.2 Applying the Root-Swarm Metaphor for Optimisation

	25.8 Summary

	26 Chemically Inspired Algorithms
	26.1 A Brief Chemistry Primer
	26.2 Chemically Inspired Algorithms
	26.2.1 Chemical Reaction Optimisation (CRO)
	26.2.2 Artificial Chemical Reaction Optimisation Algorithm (ACROA)

	26.3 The CRO Algorithm
	26.3.1 Potential and Kinetic Energy and the Buffer
	26.3.2 Types of Collision and Reaction
	26.3.3 The High-Level CRO Algorithm
	26.3.4 On-wall Ineffective Collision
	26.3.5 Decomposition
	26.3.6 Intermolecular Ineffective Collision
	26.3.7 Synthesis

	26.4 Applications of CRO
	26.5 Discussion of CRO
	26.5.1 Potential Future Avenues for Research

	26.6 Summary

	Part VIII The Future of Natural Computing Algorithms
	27 Looking Ahead
	27.1 Open Issues
	27.1.1 Hybrid Algorithms
	27.1.2 The Power and the Dangers of Metaphor
	27.1.3 Benchmarks and Scalability
	27.1.4 Usability and Parameter-Free Algorithms
	27.1.5 Simulation and Knowledge Discovery

	27.2 Concluding Remarks

	References
	Index

