Alessandro Agnetis

Jean-Charles Billaut
Stanistaw Gawiejnowicz
Dario Pacciarelli
Ameur Soukhal

Multiagent
Scheduling

Models and Algorithms



Multiagent Scheduling






Alessandro Agnetis ¢ Jean-Charles Billaut ¢
Stanistaw Gawiejnowicz ¢ Dario Pacciarelli ¢
Ameur Soukhal

Multiagent Scheduling

Models and Algorithms

@ Springer



Alessandro Agnetis Jean-Charles Billaut

Dipartimento di Ingegneria Ameur Soukhal
dell’Informazione Laboratoire d’Informatique

e Scienze Matematiche Université Francois Rabelais Tours
Universita di Siena Tours, France

Siena, Italy

Stanistaw Gawiejnowicz Dario Pacciarelli

Faculty of Mathematics and Dipartimento di Ingegneria
Computer Science Universita Roma Tre

Adam Mickiewicz University Roma, Italy

Poznan, Poland

ISBN 978-3-642-41879-2 ISBN 978-3-642-41880-8 (eBook)
DOI 10.1007/978-3-642-41880-8
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014930231

© Springer-Verlag Berlin Heidelberg 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)


www.springer.com

To Silvia, Walter and Gaia
Alessandro Agnetis
To my parents
Jean-Charles Billaut
To Mirostawa and Agnieszka
Stanistaw Gawiejnowicz
To my parents
Dario Pacciarelli
To my parents
Ameur Soukhal






Preface

Scheduling problems are combinatorial optimization problems in which some
activities have to be executed using resources that they need. A feasible allocation
of the resources to the activities over time is called a schedule. The quality of a
schedule is measured by various optimality criteria that are functions of completion
times of the activities and the amounts of resources that have been used. Problems
in the construction of different classes of schedules with required properties are
considered in the theory of scheduling that originated approximately 60 years ago.

The theory of scheduling is a very active research area containing a great number
of scheduling models. Several books (see, e.g., Blazewicz et al. 2007; Brucker
2007 or Pinedo 2008) present classical models of scheduling problems in which all
data are described by numbers, and schedules are evaluated by a single optimality
criterion. Some other books present more specific models such as scheduling
problems in just-in-time manufacturing systems (Jozefowska 2007), scheduling
problems when the quality of a schedule is measured by several optimality criteria
(T’Kindt and Billaut 2006) or scheduling problems in which job processing times
depend on when the jobs are started (Gawiejnowicz 2008).

The book presented to the reader is devoted to multiagent scheduling. Research
on this scheduling model was started approximately 10 years ago, after publication
of Baker and Smith (2003) and Agnetis et al. (2004), in which two-agent scheduling
was introduced. In multiagent scheduling problems, activities share resources but
are maintained by two or more agents that use their own optimality criteria. These
agents may or may not compete, and the final schedule is evaluated by several
optimality criteria. Though multiagent scheduling is intensively studied in view of
many applications, it was not presented earlier in a monograph.

This book is organized into six chapters that can be divided into two parts.

The first, introductory part of the book is composed of two chapters. Chap-
ter 1 gives a general introduction to multiagent scheduling, introducing general
definitions and notation, several resolution approaches for multicriteria problems
and different scenario when considering several agents. Chapter 2 recalls basic ele-
ments of complexity theory and resolution methods. Algorithms with performance
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guarantees, approximation schemes, implicit enumeration algorithms and relaxation
techniques are presented.

The second, main part of the book is composed of four chapters. Chapter 3
deals with single machine multiagent scheduling problems with fixed job processing
times. Problems presented in the chapter are divided into groups with respect to the
optimality criteria used by agents. Chapter 4 concerns single machine scheduling
problems with batching constraints. For these problems, jobs of one agent can be
gathered into batches that are processed in parallel or in series. Chapter 5 deals
with parallel machines environments. Problems with and without preemption are
considered. Finally, Chap.6 deals with variable job processing times; it means
scheduling problems where the processing times depend on the job starting times,
their positions in schedule or are changing in some interval between a minimum and
a maximum value.

In all the chapters, the literature of the subject is reviewed and a lot of problems
are presented with complexity results and different resolution methods. In order to
make the book as compact and actual as possible, references discussed in the book
concern only agent scheduling problems with regular optimality criteria listed in
Chap. 1 and published not later than June 30, 2013. The authors also decided to
include in the book numerous examples to illustrate the most important aspects of
considered problems and to make the contents as clear as possible. Moreover, at the
end of Chaps. 3—6, some tables are given that summarize the main results.

The book is intended for researchers and Ph.D. students working in the theory
of scheduling and other members of scientific community who are interested in
recent scheduling models. Since prerequisites for reading this book are only the
basic knowledge of discrete mathematics, algorithmics, complexity theory and a
high-level programming language, this book can also serve students of graduate
studies.

Multiagent scheduling is still in development. Hence, though the authors made a
substantial effort to give the reader a complete presentation of the subject, it is not
excluded that some issues or references have been missed. Therefore, the authors
will welcome any comments on the book.

Ending, the authors wish to express their gratitude to Christian Rauscher, who
on behalf of Springer was responsible for work on this book. Thank you very much,
Christian, for your patience and cooperation!

Siena, Italy Alessandro Agnetis
Tours, France Jean-Charles Billaut
Poznan, Poland Stanistaw Gawiejnowicz
Roma, Italy Dario Pacciarelli

Tours, France Ameur Soukhal
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Chapter 1
Multiagent Scheduling Fundamentals

This chapter gives a general introduction to multicriteria and multiagent scheduling.
Basic concepts from the two research areas are presented and a classification of
considered problems, illustrating the presentation by examples, is proposed.

The chapter is composed of seven sections. In Sect. 1.1, basic concepts
and notions related to multicriteria and multiagent scheduling are introduced.
In Sect. 1.2, the main parts of formal statement of any scheduling problem
considered in the book are introduced. In Sect. 1.3, we present the possible solution
approaches to multiagent scheduling problems. In Sect. 1.4, a classification of
multiagent scheduling problems introduces the several scenario that are considered.
Notations for multiagent scheduling problems are given in Sect. 1.5. In Sect. 1.6,
examples illustrate the introduced concepts and the important notions. The chapter
ends by Sect. 1.7 with bibliographic remarks.

1.1 Main Concepts and Notions

In this section, we introduce main concepts and notions used in the book. In
Sect. 1.1.1 we recall a few definitions of main notions in single- and multiagent
scheduling. In Sect. 1.1.2 we give several examples of applications of multiagent
scheduling problems. In the book, we use a standard mathematical notation. If a
notation is introduced ad hoc, it is clarified at the place of its first appearance.
Theorems, lemmas, properties, examples and figures are numbered separately
in each chapter. Proofs and examples are ended by box ‘]’ and diamond ‘¢’,
respectively. Algorithms are presented in a pseudocode in which standard control
statements are used and comments start with symbol ‘//’.

A. Agnetis et al., Multiagent Scheduling, DOI 10.1007/978-3-642-41880-8_1, 1
© Springer-Verlag Berlin Heidelberg 2014



2 1 Multiagent Scheduling Fundamentals
1.1.1 Basic Definitions of Multiagent Scheduling

Since multiagent scheduling uses the same background and notions as other research
domains in the theory of scheduling, we only briefly recall some facts. In the book,
by scheduling we mean all actions that have to be done in order to determine when
each activity of a set is to start and to complete. In the theory of scheduling, the
elements of the set are called jobs and we will use this name hereafter.

Each job is in competition with the others for the use of time and of resources
capacity. The resources are understood as everything what is needed for a job for its
completion. Therefore, in scheduling we also deal with allocation of resources to
each job. A schedule is determined by a set of start times and of assigned resources,
which respect some predefined requirements, called constraints, such as arrival
times or due dates of jobs, precedence constraints among the jobs, etc.

A problem in which, given some input data, one has to find a schedule is called
a scheduling problem. A schedule that satisfies all requirements of the considered
scheduling problem is called a feasible schedule. Unless otherwise stated, we denote
feasible schedules by small Greek characters, e.g. o, 7, etc.

The quality of a schedule is measured by a function called optimality criterion or
objective function that is generally based on the jobs completion times. Sometimes,
for brevity, we call an optimality criterion and objective function as criterion and
objective, respectively.

In multiagent scheduling problems, schedules are evaluated by two or more
criteria. In the book, we denote by f (o), f2(0), ..., fX(o) the evaluation of
o by acriterion !, f2, ..., X, respectively. Moreover, we assume that functions
f* where 1 <k < K, have to be minimized.

Among all feasible schedules there exists at least one that is optimal, i.e. the
best one with respect to the applied criteria. There are known different kinds of
optimality for multiagent scheduling problems, and the most popular among them
are the following two.

Definition 1.1. A feasible schedule o is a strict Pareto optimal or strictly nondomi-
nated schedule with respect to the optimality criteria f!, f2,..., X, if there is no
feasible schedule 7 such that f*(x) < f*(o) forall 1 < k < K, with at least one
strict inequality.

The set of all strict Pareto optimal schedules defines the Pareto set.

Definition 1.2. A feasible schedule o is a weak Pareto optimal or weakly nondomi-
nated schedule with respect to the optimality criteria f!, f2,..., X, if there is no
feasible schedule 7 such that f*(r) < f*(0) forall1 <k < K.

Remark 1.1. These definitions are formulated in context of scheduling problems,
but they may gain a more general form if we replace word ‘schedule’ by ‘solution’.
Hence, throughout the book both the words are used interchangeably if a scheduling
problem is discussed.
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Fig. 1.1 Strict Pareto
solutions vs. weak Pareto
solutions

fl

The set of weak Pareto optimal schedules defines the tradeoff curve, called also
Pareto curve. Since this curve may be non convex, we distinguish supported Pareto
optimal schedules if the solutions are on the convex hull of the Pareto set and the
non supported Pareto optimal schedules otherwise.

The position of strict and weak Pareto optimal solutions and the notion of
supported and non supported Pareto solution are illustrated in Fig. 1.1 for K = 2.
In the figure, strict Pareto optimal solutions are represented by a cross (07, 04, 05,
06, 07), while weak Pareto optimal solutions are represented by a circle (o1, 03, 03).
Solutions o7, 07, 07 and oy are supported, while solutions o3, 04, 05 and 0 are non
supported.

Notice that given above definitions can be easily extended to the case of more
than two optimality criteria. In the following, for simplicity, a Pareto schedule will
denote a strict Pareto schedule.

1.1.2 Multiagent Scheduling Applications

In the multicriteria scheduling literature, several objective functions are used to
measure the performance of a schedule, and all the jobs that are scheduled contribute
to each performance measure.

In order to make a distinction between the jobs that will share the same resources,
one generally associate a weight to each job. This weight allows us to give more
or less importance to a job, in comparison to the others, and helps in scheduling
decisions. However, this distinction may not be sufficient.

In some cases, it may happen that some jobs have to be evaluated by a
specific performance measure and that other jobs have to be evaluated by another
performance measure. This is the subject of multiagent scheduling.
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In a multiagent scheduling problem, there are several agents, each interested in a
subset of jobs. Each agent has its own performance measure which depends on the
schedule of its jobs only. However, all the jobs have to share common resources, so
the problem is to find a schedule of the jobs of all agents, which constitutes a good
compromise solution. Below we give several examples of multiagent scheduling
problems.

1.1.2.1 Rescheduling Problems

Workshop of Medium Deep Groove Ball Bearings group (Pessan et al. 2008)
describes a problem in which the principle objective is the minimization of the
total flow time. Some jobs to be scheduled cannot be performed during the day
because the production demand exceeds the workshop load. In such a case, the jobs
that have not been performed during the day become urgent the next day. These
particular jobs receive a deadline and their early production is mandatory. Here,
an agent corresponds to the job subset that has to be completed early. Notice that
here, all the jobs contribute to the global objective value which is the total flow
time.

1.1.2.2 Aircraft Landings

A classical problem in air traffic management is to schedule aircraft landings
on a given set of runways, accounting for both safety and quality of service.
In collaborative decision making, these decisions are made allowing information
exchange among the airlines. Each airline is obviously interested in maximizing
the satisfaction of its passengers only, which in turn is related to the delay of the
corresponding flights. Here, one agent corresponds to one airline, which is interested
to a subset of all flights. Notice that because of code sharing, the subsets of flights
may not be all disjoint, although the same flight may have different relevance for
two airlines.

1.1.2.3 Project Scheduling

In a firm, multiple projects may compete for the usage of shared renewable resources
such as people and machinery over time (Knotts et al. 2000). Each project manager
is responsible for the performance of a project, and must therefore negotiate the use
of the resources with the other managers. In this case, a manager is an agent, the set
of activities of one agent contains the tasks of his/her project. Typically, in this case,
all sets of activities are disjoint.
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1.1.2.4 Railway Scheduling

Brewer and Plott (1996) describe a problem arising in railroad management. The
central rail administration sells access to the tracks to private companies, enforcing
safety rules according to which an overall timetable is feasible. For example, no two
trains can use the same block section at the same time. Hence, a feasible schedule
of all trains (jobs) must be devised properly with respect to the objectives of each
company (agent). Notice that also in this case, the jobs of agents are disjoint and the
agents compete to perform the jobs on shared resources.

1.1.2.5 Cross-Docking Distribution

Multi-agent scheduling problems can be encountered in optimizing product con-
solidation operations of a cross-docking distribution center. The center receives
various products from the suppliers and fulfills demands of these products from
the customers, by using a fleet of vehicles of various capacities. A product to be
delivered to a customer is a collection of items placed in a standard container, e.g.
a box or a pallet. Items intended for specific customers are a priory assigned to
specific warehouses and transportation terminals associated with them. Consider
customers of the same warehouse. For a planning period, each customer places
an order of the required products to be consolidated and delivered by truck of an
appropriate capacity. Due to the limited resources of the warehouse, operations on
different products are performed sequentially. Each customer takes care of delivery
times of its own products by means of specifying an objective function based on
the dispatching times of its products. If there are two customers, one of which can
specify an upper bound on the value of its objective function, then this situation
can be modeled as a problem in which an agent is a customer and a job is a set of
operations related to preparing a product from the order of a given customer. Product
preparation operations include unloading from the warehouse, labeling, packaging,
loading into a truck and documenting of the required number of items.

1.1.2.6 Communication Networks

Competing scheduling problems occur in integrated-services packet-switched net-
works such as ATM (Asynchronous Transfer Mode) networks, and in soft real-time
systems (Peha 1995). Integrated-services networks are networks that carry several
traffic types such as voice, video, image transfer, and various kinds of computer
data. These different traffic involve different performance objective functions. For
example, for most types of computer data, the performance is typically measured
in mean queueing delay, which is equivalent to minimizing the weighted total
completion time. For voice and video, however, packets that are queued for a too
long time will not reach their destination in time for playback and will be lost. It
corresponds to minimizing the weighted number of tardy jobs.
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In general, in these systems, it is useful to classify jobs in two categories: time-
constrained, for jobs which should be processed any time before their deadlines;
and non-time-constrained, for jobs which should simply be processed as early
as possible. In fact, in any packet-switched network, information carried by the
network is first divided into smaller packets. Packets are queued in a buffer at
the network access point, awaiting transmission into the network, and a scheduling
algorithm orders these packet transmissions.

1.2 Multiagent Scheduling Problem Description

In this section, we describe main parts of formal statement of any scheduling
problem considered in the book. In Sects. 1.2.1, 1.2.2 and 1.2.3 we describe, respec-
tively, main data concerning job, machine environment and optimality criterion that
together compose a scheduling problem formulation.

1.2.1 Job Characteristics

In what follows, we denote by 7 the set of jobs, and by n = | 7| the number of
jobs. K is the number of agents, i.e., the number of subsets of jobs. In case of two
agents, the agents will be denoted by A and B instead of 1 and 2.

J¥ is the subset of agent k, and n; = | 7¥| is the number of jobs in 7*. It may
appear in the following that a job belongs to more than one agent. In this case, J*
denotes the jobs that only belong to agent k and /iy = |J*|. In the following, a
schedule o which is optimal for agent k, is denoted by o* and is called reference
schedule for agent k. Since we only address regular objective functions, in ¥ the
jobs of J* are scheduled before all other jobs, so the value f* (o) can be computed
without considering the jobs of the other agents.

We denote by J; the job number j. When necessary, J jk will denote the job

number j in subset J¥. Reversely, J~'(J ;) will denote the agent or the set of
agents that own job J;. The main data associated to a job concern its processing
time, due date and weight.

The processing time of job J; (J ]k ) we denote by p; ( p]j? ). The total processing
time of the activities of agent k and the total processing time of all activities will be
denoted by P, = > ek p]j? and P = ) J,eg Pj- respectively. The due date of

job J; (JJ].‘) we denote by d; (dj]?). When a due date is associated to a job, at least
one performance measure is related to the respect of the due dates. The weight of
job J; (JJ’F) we denote by w; (w’;).

We will use brackets [i] to denote the job in position i in the sequence. py,
dy;) and wy;) are respectively the duration, the due date and the weight of the job in
position i.
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Some additional job characteristics may also be considered. Following the three-
field notation introduced by Graham et al. (1979), these characteristics are indicated
in the B-field. This field may contain several characteristics, also called constraints,
and we refer the reader to Brucker (2007) or Blazewicz et al. (2007) for a detailed
description of this field. We only mention here the fields that will be considered in
the following:

* The release date r; (r}‘ ) that means that a job cannot start its processing before
this release date,

e pi=p( p]j? = p¥)in case of identical job processing times or equal length jobs,
if p = 1 (p* = 1) we talk about unitary processing times,

e pmtn indicates that the preemption of jobs is allowed what means that it is
possible to interrupt a job and to resume its processing at a later time, eventually
on another machine,

e prec indicates some precedence relations between jobs, given by a directed
acyclic graph.

In multiagent scheduling, the particularity is that the job environment may be
different for all the agents. Thus, for a formal problem description, the B-field has
to be split between the agents. By default, if there is only one S-field, it is assumed
that the job characteristics are the same for all the jobs.

We illustrate now some job data introduced earlier.

Example 1.1. (a) Symbol rf in the B field indicates that the jobs of agent B are
subject to release dates, whereas it is not the case for the jobs of the other agents.
Symbol r; in the 8 field indicates that the jobs of all agents are subject to release
dates.

(b) Notation pmtn; pf = 1 in the B field indicates that the preemption is allowed
for the jobs of agent A only and that all the jobs of agent B have unitary
processing times.

o

1.2.2 Machine Environment

We denote by M the set of machines and m = | M| is the number of machines. The
machine number i is denoted by M;. Following the three-field notation, the machine
environment is described in the «-field by a string of two parameters, ¢ = ooy,
where o) denotes the type of machine(s) and o is the number of the machines. In
case of a single machine oy = @ and o, = 1, otherwise o; € {0, P, O, R, F, J, O}
and o, is a positive integer. In most of cases, an, € {1,2,3,m, @}, with oy, = m
when the number of machines is supposed to be known and fixed. «; = @ when
the number of machines is unknown and it is a parameter of the problem instance.
Notice also that not all combinations of «; and &, are possible.
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Ifa; € {P, Q, R}, then jobs have to be scheduled on parallel machines and each
of the jobs is composed of a single operation. If &) = P, the machines are identical
and the processing time of a job is the same for all the machines. If «; = Q, the
machines are uniform and a coefficient of speed s; is associated to each machine
M; so that the processing time of a job depends on the performing machine, i.e.,
pji = ~L.If @ = R, the machines are unrelated and the processing time of a JOb
depends on the performing machine, i.e. the speeds are job dependent.

If oy € {F, J, O} we deal with a shop environment. In this case, to each job J;
is associated a set of o; operations denoted by O; 1, O, ...0j, ;» while to each
operation O, is associated a performing machine p;; and a processing time p; .
In case of multiagent scheduling, the agent number can be easily introduced in the
notation: 0’;, 0}"1, ,u’j‘.’h, etc.

In shop problems, precedence relations among operations of every job J;, 1 <
J < n, are in the form of

Oj,l < Oj’z <o < quaj,

where O < O’ means that the completion time of operation O precedes the starting
time of operation O’. Itis also assumed that ;4 # ;s forh # h',1 < h,h’ <o;.
The precedence relations between the operations of a job are not given and are a part
of the problem.

The succession of machines required for the processing of a job in a shop
problem is called the routing of the job. In the general case, when the routings are
different, the workshop is called a jobshop, denoted by a; = J. The flowshop case
is denoted by o; = F. In this case, the jobs require the m machines in the same
order for being processed: 0; = m and u;; = M;,Vj, 1 < j < n.If the routings
are not specified, we deal with the openshop case denoted by o; = O.

1.2.3 Optimality Criteria

Following the three-field notation, the field y contains the expression of the
objective function, also called optimality criterion.

The completion time of a job J; is denoted by C;. The cost associated to job
Jj is a function of its completion time denoted by f;(C;). In the multiagent case,
we assume that all the jobs associated to an agent contribute to the evaluation for
this agent and we denote by C Jk the completion time of job J jk e J% and f* the
objective function related to the jobs of 7* if it is not job dependent.

The most classical functions fjk that are used generally for job J jk € J* are the
following:
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the completion time C ]k s

the flow time F;‘ = le-‘ —rk,

the lateness L]; =C ]k — d]/-‘,

the tardiness T;‘ = max {Cjk — dj/-‘, 0},

the tardiness penalty U /" =1ifC j" >d f , 0 otherwise.

Each function fjk leads to four possible objectives:

kK _ k
max ]I],}lea;k {fJ } ’ (.1)
k _ k rk
meax - ]?lea;k {ijj } s (12)
Sri- ¥ i 05
Tkegk
dowkslb= > whrk (1.4)
Jj'.‘ejk

The most important objective functions are:

the makespan C*

max?

the maximum lateness L’r‘nax,

the maximum tardiness TX
the total (weighted) completion time Z(w]]‘-)C k.
the total (weighted) tardiness Z(wlj)Tk,

the (weighted) number of tardy jobs z:(w]]c )14 ]k

For some particular applications, other criteria may be defined, e.g. the maximum

; k
earliness E;,,

where the earliness Ej‘ = max {djk — Cj"‘, O}.

All objective functions can be divided into regular and non regular ones. A
regular objective function is an objective function which is nondecreasing with
respect to variables C;. For example, functions F; and T are regular functions,
whereas function E; is not regular. When the objective function is regular, it is
always better to shift the jobs to the left, i.e. to schedule the jobs as early as
possible. However, in case of a non regular objective function, it may be necessary
to introduce idle times in the schedule for having a better solution. In this book, we

consider only regular objective functions.
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1.3 Solution Approaches to Multiagent Scheduling Problems

Multiagent scheduling problems can be solved in a multicriteria context using the
following approaches:

* Finding one Pareto optimal schedule,
* Finding the whole set of strict Pareto optimal schedules and
* Counting the number of Pareto optimal schedules.

In case of finding one Pareto optimal schedule, we usually are interested only
in the strict Pareto optimal ones. The whole set of Pareto optimal schedules can
be obtained by finding strict Pareto optimal schedules one by one and iteratively,
or by using population based algorithms. Finally, in counting the number of Pareto
optimal schedules, the aim is to count the number of nondominated schedules or to
give an approximation of their number.

Several methods exist for finding one of or all the Pareto optimal solutions. These
methods are described in details in T Kindt and Billaut (2006). We report here the
most classical approaches used in the multicriteria scheduling literature. The nota-
tion is given for K = 2 criteria, but they can be easily extended to the general case.

1.3.1 Feasibility Problem

This approach means that no particular objective function has to be minimized and
the problem is to find a feasible solution. We denote the approach by ‘—’ in the y
field. If we consider the example “Rescheduling Problem” described in Sect. 1.1.2.1,
it is possible to consider that the late jobs belong to agent B. This agent has to find
a feasible schedule, i.e. a schedule where each job satisfies its deadline. For agent
A, who has the whole set of jobs, the notation of the objective function is Y C jA
and suppose that this agent has a goal to reach denoted by Q. The constraints that
C jA <d ;‘ and Y. C jB < Q are inserted in the field B of the problem notation and
the objective function is denoted by ‘—’.

1.3.2 Linear Combination of Criteria

This method consists in defining a linear combination of objective functions,
af4 + (1 —a)f8if K = 2, which has to be minimized. We denote the approach
by af4 + (1 — a) 2 in the y field. In case of K agents, the notation becomes
Zle o f*.The solutions that can be obtained by this approach constitute a subset
of the set of strict Pareto optimal solutions (Geoffrion 1968). In other words, it may
be impossible to fix weights to the criteria so that all the Pareto optimal solutions
are obtained. This is due to the shape of the tradeoff curve, which can be nonconvex
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Algorithm 1 for the enumeration of Pareto optimal solutions with the e-constraint
approach

I R:=0

2: for Q, := ub, downto Ib, step §, do

3: for Q; := ub; downto Ib; step 53 do

4: :

5: for Qg := ubg downto bk step §x do

6: x:=lex-min{f : f¥(x) < 0,2 <k <K}
7: if not exists x’ € R such that f(x") < f(x) then
8: R:=TRU{x}

9: end if

10: end for

11: :

12: end for

13: end for

14: return R

for scheduling problems and therefore, the non supported Pareto optimal solutions
cannot be returned by such a method.

1.3.3 Epsilon-Constraint Approach

This method is often used in the literature. For example, in case of two objective
functions, the first of them is minimized and the other one is bounded. In case of
more than two objectives, the scheduling problem becomes: Find o, such that /(o)
is minimized and f2(0) < Q», ..., fX(0) < Q. This method leads to one weak
Pareto optimal solution. For obtaining a strict Pareto optimal solution, a symmetric
problem has to be solved. In the case of two agents, we denote the approach by
putting £ in the y field and f? < Q in the B field.

By modifying the vector Q iteratively, it is possible to obtain the whole set of
strict Pareto optimal solutions. Notice that several algorithms have been proposed
in the literature for improving the implementation of such a process (Laumanns
et al. 2006; Mavrotas 2009). Algorithm 1 illustrates this method in the case of
K objective functions. The values §; denote the predefined decrement of Qy, /by
and ub;, denote the bounds for objective function f* and the function lex-min( f)
returns the solution with minimum lexicographic value, i.e. with minimum f' and
then minimum f2, etc.

1.3.4 Lexicographic Order

With this method, an order is defined between the objective functions. The primary
objective function is minimized first. Then, a new solution is searched, which
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Fig. 1.2 Linear combination vs. e-constraint approaches

minimizes the second objective function under the constraint that this solution is
optimal for the primary objective function, and so on. We denote this approach by
Lex(f, f2,..., f%).

If S denotes the set of feasible schedules and f!, f2 and f3 are three objective
functions to consider in this order, the method consists in finding a sequence = € S;
with:

Si={mes: £ =minif @),
§ = {m e S f2(x) = min{ o).
S={res: fim) = g;gaz{f?’(o)}}.

The linear combination and the e-constraint approach are illustrated in Fig. 1.2
for K = 2. The solutions returned by a lexicographic order are o if the primary
objective is f4 and o7 if the primary objective is f 2.

In Fig. 1.2a are depicted the solutions that can be obtained by using a linear
combination of criteria are 0, and o7. The dotted line represents the linear
combination that allows finding both 0, and o7.

In Fig. 1.2b is depicted solution o5 obtained with the e-constraint approach with

fE=<o.

1.3.5 Pareto Set Enumeration

This approach means that we are interested in finding the whole set of strict Pareto
optimal solutions. We denote the approach by P(f4, f ) in the y field.
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1.3.6 Counting

This approach means that our aim is to count the number of strict Pareto optimal
solutions. We denote the approach by #( f4, £ ) in the y field.

1.4 Classification of Multiagent Scheduling Problems

Scheduling problems in which agents (customers, production managers, etc.) have
to share the same set(s) of resources are at the frontier of combinatorial optimization
and cooperative game theory (Agnetis et al. 2004). The key assumption of our
models is that each agent (denoted A and B in case of two agents) has a set of jobs
to perform (denoted by 74 and J ). The complexity of a multiagent scheduling
problem depends on the intersection structure of the job sets J*. Therefore, we
introduce a classification of multiagent problems based on the relationship among
the subsets 7*. Below we briefly describe different scenarios of the classification.

1.4.1 Competing Agents

In this case, the agents have no job in common, i.e., all jobs in each of the K job sets
exclusively belong to one agent. This means that 7" N 7% = @ for any two agents
h and k. In this situation, agents purely compete with each other to use system
resources. The notation of the COMPETING scenario in the B-field is ‘CO’. Note
that in this case the notation of the agents is symmetric, i.e. problems with objective
functions f“ and g? are the same as problems with objective functions g# and 2.

1.4.2 Interfering Sets

In this case, the job sets are nested, and we will always assume that they are
numbered so that 7 = J! 2 J? > ... 2 JX (in case of two agents we have
J=J4> jB). The notation of the INTERFERING scenario in the 8-field is ‘IN’.
Note that this case is asymmetric, e.g., both problems 1|IN| f4, g? and 1|IN|g"*, 8
can be considered, often having different complexity status.

1.4.3 Multicriteria Optimization

This is the classical multicriteria scheduling case, i.e., in which 7 l=—g2= . =
JK = 7. The notation of the MULTICRITERIA scenario in the 8-field is ‘MU’ and
the notation in case of two criteria is ‘BI’ for BICRITERIA.
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MULTICRITERIA
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Fig. 1.3 Possible scenario for multiagent scheduling problems for K = 2 agents

1.4.4 Nondisjoint Sets

This is the most general case, in which any two job sets may or may not intersect
each other. In this case, the notation J jk indicates a job J; that belongs to J * only.
The notation for jobs belonging to more than one set is introduced when needed. In
the case of K = 2 agents, it is assumed that a job in 7“4 N 72 has only one possible
processing time, whatever the agent it belongs to. However, concerning the other
parameters such as due dates or weights, it is assumed that it depends on the agent.
Thus, toa givenjob J; € J 4N 78, can be associated a due date d ]A and a due date
df, d;‘ # ij. The notation of the NONDISJOINT scenario in the S-field is ‘ND’.
All these cases, for K = 2 agents, are illustrated in Fig. 1.3.

1.5 Notation of Multiagent Scheduling Problems

It should be apparent from the previous section that multi-agent problems involve
multiple issues, which have to be compactly recorded into an appropriate notation
to quickly refer to a specific combinatorial problem.

Since it is the most widely used notation tool in scheduling, we will stick as
much as possible to the classical «| 8|y notation of scheduling problems, introduced
by Graham et al. (1979); we refer the reader to Blazewicz et al. (2007) for further
details on the notation in classical scheduling.

In classical scheduling problems, the field « indicates the machine environment
and y the objective function. The field B contains all additional features required
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to completely specify the problem, e.g. the presence of deadlines, release dates, the
possibility of preemption etc. In most of our problems, we introduce a new field S,
within the field 8, with B, € {CO, IN, BI, MU, ND} that specifies the scenario, i.e.,
the intersection structure of the job sets J¥.

In this book, we often group the results on the basis of the scheduling criteria
adopted. When referring to all problems arising for a given pair f, g (or, more
generally, K-tuple) of scheduling criteria, we use the following notation

alplf.g

The only asymmetric scenario is INTERFERING, since [J B < 4. In this case
we need to distinguish

alIN, Bl f. g8

and

alIN, Blg?, f5.

In a two-agent setting, in general a job J; may belong to both J4 and [J2.
Hence, if for instance agent B wants to minimize the total weighted completion
time, its objective function is denoted by

Z chj'.

JjGJB

However, in the two-agent COMPETING scenario, in which each job belongs to
only one agent, for the sake of clarity we write:

Z waJB.

J/-BEJB

Nonetheless, to keep notation simple, in the «|8|y problem description we use
the simplified notation Y- w?C# to mean 3=, ¢ 75 w} C;, in all scenarios. In other
words, we tend to use superscripts A and B (or, more generally, k) whenever this
helps identifying the problem, even if it can result a bit redundant.

Example 1.2. Consider the two-agent problem in which agent A wants to minimize
the number of tardy jobs and the total weighted completion time for agent B must
not exceed a value Q. In the NONDISJOINT scenario, the objective functions of the
two agents are denoted by

Y U and ) Wi,

JiegA Jiegk
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while, in the COMPETING case, we write:

YUt and )Y wPcP.

JlegA JPeg?®

However, we denote the two corresponding problems as

IND, Y “wlcCP < 0> U} and 11C0.> whCF <0l U}
<&

If ajob J; only belongs to agentk, i.e., J; € J*¥, then it is sometimes convenient
to denote its related quantities as J jk and p’]‘.. Also, we tend to use the superscript
when considering its completion time.

Example 1.3. For instance, if agent A wants to minimize total weighted completion
time in the INTERFERING scenario (in which 78 ¢ J4, so that 74 = J4 \ IB,
we can write the objective function of agent A as:

ZW?C/'A: Z W?Cf—f_ Z W?C/'A

Jjegh JitegA

<

The notation for multiagent scheduling problems used in the book is summarized
in Table 1.1.

1.6 Examples of Single- and Multiagent Scheduling Problems

In this section, we illustrate the introduced earlier concepts of Pareto optimal
solution, Pareto front, optimality criteria, solution approaches and scenario for
multiagent scheduling problems.

We begin with two examples of single-agent scheduling problems.

Example 1.4. Problem 1|| )" C; is the problem of scheduling jobs on a single
machine such that the sum of completion times is minimized. Let us consider the
following 3-job instance:

The solution of this problem corresponding to the sequence (J>, Ji, J3) is
illustrated in Fig. 1.4 and has an objective function value equal to 17. Notice that
in this case, with only three jobs, it is easy to evaluate all the possible sequences
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Table 1.1 Summary of multiagent scheduling notation

Notation of data

Total number of jobs

Subset of jobs of agent k

Subset of jobs that only belong to agent k
(Set of) agent(s) that own J;

Number of jobs in 7% (J%)

Job j of agent k

Processing time of J ]k

Sum of processing times

Sum of processing times of jobs of agent k
Release date of J ]k

Due date of J ;‘

Weight of J§

Notation of variables

\1 \[::\\1 \(.1

S
-

Completion time of J ]k
Flow time of J ;‘

Lateness of J ]k

Tardiness of J ;‘

Indicator of tardiness of J jk

Notation of approaches

aff+ (1 —a)ft 0er=1akfk
fE<Olftor f2< 0o, f5 < Okl S!
Lex(f4, f8or Lex(f!, f2,..., f%)
P By or PO 2, )

Feasibility problem
Linear combination
Epsilon-constraint
Lexicographic order
Pareto set enumeration

#fA B o #(f 2 ) Counting
Notation of scenario

co COMPETING

IN INTERFERING
MU MULTICRITERIA
BI BICRITERIA

ND NONDISJOINT

(here n! = 6) and to find that the optimal solution is sequence (J3, J», J;) with a

value of 12.

<

Example 1.5. Problem 1|| L,y is a single machine scheduling problem, where jobs
have to respect release dates and the objective is to minimize the maximum lateness,
which is the maximum difference between the completion time and the due date
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Fig. 1.4 Solution (J3, Jy, J3) 7 7.
for the 1|| Y~ C; problem JI2 : '1| : 3 — "
0 5 10
>C; =17
Fig. 1.5 Solution (J;, Jy, J3) 7
J J.
for the 1|| L yax problem 2 ! 3 ¢
T T T T | T T T | T T T | T T T
0 5 10 15

Lmax = max(5, _674) =5

for all the jobs (this value may be negative). Let us consider the following 3-job
instance:

The solution of this problem corresponding to the sequence (J>, Ji, J3) is
illustrated in Fig. 1.5 and has an objective function value equal to 5. As for the
previous example, a simple enumeration shows that the optimal solution is given by
sequence (Ji, J, J3) with a value of 4.

o

Now, we pass to examples of multiagent scheduling problems.

Example 1.6. Notation 1|BI| )" C;, Lyax is used to indicate that we consider a
single machine bicriteria scheduling problem where the objective functions are
> C; and L. This notation does not refer to a specific approach.

o

Example 1.7. Problem 1|BI|P(}_Cj, Lma) is a bicriteria scheduling problem,
where all the jobs have a processing time and a due date. The problem is to give
the list of solutions covering all the strict Pareto optimal solutions. Let us consider
the following 6-job instance:
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Fig. 1.6 Set of solutions in Limax
the criteria space
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Table 1.2 Whole Pareto set

o Z Cj (o) Lpax (0) o Z Cj (0) Lax(0)

(J3, J2, Jg, J1, J5, J4) 70 18 (J3, J2, J1, J6, Ja, J5) 71 14

(J3, J2, J1, Js5, J4, Jg) 73 13 (S5, J2, I, Ju, J5, J1) 74 9

(J3, J2, J1, J4, I5, Jg) 74 12 (S5, J2, I5, I, Jg, J1) 76 8

(J3, J2, Iy, I5, Jg, J1) 77 7 (J2, I3, Ju, 5, Jg, J1) 78 7

(J3, Iy, J2, Js5, Jg, J1) 82 7 (J2, Iy, I3, 5, Jg, J1) 84 7

(J3, Js, Iy, J2, T, J1) 85 7 (S5, Jo, J4, I5, T2, J1) 86 7

(Jy, I3, S, J5, Jg, J1) 88 7 (J3, Js5, J4, Jo, J2, J1) 88 6

(J3, Iy, Is5, Jg, J2, J1) 89 5 (J3, J4, I5, I, J1, J2) 92 5

(Jy, I3, Js5, Jg, J2, J1) 95 5 (Jy, I3, 5, Jg, J1, J2) 98 5

(Js, Iy, I3, Jg, Jo2, J1) 99 5 (J4, Is, I3, J6, 2, J1) 100 5

(Js, Iy, 3, Js, J1, Jo) 102 5 (4, I5, I3, Jg, J1, Jo) 103 5

(Js, J4, I, Jo, J3, J1) 104 5 (J4, I5, Js, J3, Jo, J1) 104 4

(Jy, Js5, I, Jo, I3, J1) 105 4 (J4, Is, I, I3, J1, o) 107 4

(Jy, I5, I, 2, J1, J3) 109 4 (4, I5, I, J1, I3, o) 111 4

(Jy, I5, Js, J1, Jo, J3) 112 4

In the criteria space, the set of all the possibles solutions (here the n! =
720 solutions have been enumerated) is represented in Fig. 1.6 (notice that some
solutions may have the same vector of criteria (}_ C s Lmax))-

The Pareto set is composed by the sequences given in Table 1.2 (only one
sequence is given per vector () C;, Liax))-

Among these Pareto optimal sequences, some of them are strict Pareto opti-
mal solutions (sequence (J3, J2, Ji, Js, J4, J5) with vector (71,14) or sequence
(J3, J2, J4, J5, Js, J1) with vector (77,7) for instance), some of them are weak
Pareto optimal solutions (sequence (J4, J3, Js, Jg, J2, J1) with vector (95,5) or
sequence (Jy, Js, Jg, J2, J1, J3) with vector (109,4) for instance). Generally, the
weak Pareto optimal solutions are not considered as interesting solutions. Notice
that sequence (J3, Ja, J1, Js, Ju, Jg) with vector (74,12) and (J3, J5, J4, Js, J2, J1)
with vector (88,6) (for instance) are not supported.

o
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Example 1.8. Problem 1|BI,Y C; < QL. is to find a sequence of jobs
minimizing the maximum lateness but also satisfying the constraint that the sum
of completion times is less than or equal to a given value Q.

We suppose that the limit for the sum of completion times is Q@ = 75. The
maximum value for the sum of completion times could be represented in Fig. 1.6
by a vertical line at abscissa 75, all the vectors being at the right of this line
corresponding to forbidden solutions.

It is not difficult to see that one solution which respects the bound on the
total completion time and which minimizes the maximum lateness is sequence
(J3, J2, J6, Ju, J5, J1), with a total completion time of 74 and an L.« value equal
to 9.

o

Example 1.9. In problem 1|BI|o )" C; + (1 — &) Limax, We search for a sequence
of jobs minimizing a linear combination of criteria. This solution belongs to the set
of strict Pareto optimal solutions which are given in Table 1.2.

With ¢ = 0,3 (we give more importance to the L), the solution which is
returned is sequence (J3, J», J4, Js, Jo, J1) with )" C; = 77 and Ly = 7.

With « = 0,5, the best solution is now sequence (J3, J2, Jo, J4, Js5, J1) with
> C; =74and Ly = 9.

We can notice that there is no possible value for « that allow to find sequence
(J3, J2. Js, J4, Jg, J1) with )~ C; = 76 and Ly, = 8, even if this solution may be
of interest. This is why this sequence is called non-supported.

o

Example 1.10. Problem 1|/CO,Y " C;'! < Q|LpZ, corresponds to a multiagent
scheduling problem with two agents in the COMPETING scenario. It means that
JA N JB = @. The problem is to find a solution which minimizes the maximum
lateness of the jobs of agent B, and such that the total completion time of the jobs
of agent A do not exceed a given value Q. Let us consider the following instance
with three jobs per agent.

Agent A Agent B
VA O S S
pios 2 1 7 6 5
ac - - - 8 12 14

As an illustration of the evaluation in this case, the sequence (J3A, JZA, J lB s JZB s
J3B ,J IA) is represented in Fig. 1.7 and evaluated.

In the case of multiagent, the jobs which are taken into account for
computing the objective function of one agent are only the jobs of this
agent. All the solutions corresponding to the given instance are represented
in the criteria space in Fig.1.8. In this set of solutions, there are only four



1.6 Examples of Single- and Multiagent Scheduling Problems 21

I I3 JE JB JE J
T T | T T T T T T T T | T T T | T T T | t

YOA=26+1+3=30, L5, =max{2,4,7} =7

max

Fig. 1.7 Solution (J5!, J;', JB, 7B, JE J1) for the 1|CO, Y C# < Q|LE, problem
LB

max

20 +

10 +

Fig. 1.8 Set of solutions in the criteria space for the multiagent case

strict Pareto optimal solutions: (J3A, JZA, JIA, JIB , JZB, J3B ) with values (12,12),
A I I aE IR T with values (30,7), (J5, JE, 0B JE I8 T with
values (48,5) and (JIB, JZB, J3B, J3A, JZA, JIA) with values (66,4).
If we take for example O = 40, the best solution is given by sequence
(O A E R E i FO )
o

Example 1.11. The problem denoted by 1IN, L}, < Q| >~ C;! corresponds to a
multiagent scheduling problem with two agents in the INTERFERING scenario. It
means that for the evaluation of agent 4, Y C jA in this case, all the jobs are taken

5 . here, only the jobs of agent B are

into account. For the evaluation of agent B, L
considered.

Let us consider the instance described in Example 1.10 and the sequence
A I TE JB JB J{) represented in Fig.1.7. The values of the objective

functions for this sequence are ) C/! = 77and L, = 7.

For the problem denoted by 1|IN, LA < Q] >.C jB , we need a due date for each

max
job, and the L« function is evaluated considering all the jobs. If we consider the
values reported in Example 1.8, the values of the objective functions for the same
sequence are ) CP =47 and L}, = 7.
o
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1.7 Bibliographic Remarks

The basic concepts and notions of the theory of scheduling are presented in
Blazewicz et al. (2007), Brucker (2007) and Pinedo (2008). The three-field notation
of scheduling problems has been introduced in the survey (Graham et al. 1979). The
descriptions of different extensions to the notation are described in mentioned above
monographs.
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papers such as Dileepan and Sen (1988), Lee and Vairaktarakis (1993), Nagar et al.
(1995) and Hoogeveen (2005). A more detailed discussion of the topics is given in
T’Kindt and Billaut (2006).



Chapter 2
Problems, Algorithms and Complexity

In this chapter, the basic notions related to problems, algorithms and complexity
are recalled. Some topics related to approximability, problem relaxation and simple
reductions between scheduling problems are also discussed.

The chapter is composed of eight sections. Basic notions of complexity theory are
recalled in Sect. 2.1, and Sect. 2.2 focus on properties of NP-complete and NP-hard
problems. In Sect. 2.3, exact and enumerative algorithms are discussed. In Sects. 2.4
and 2.5, approximation algorithms and approximation schemes are considered.
Methods of problems relaxation are presented in Sect. 2.6. Some reductions between
scheduling problems are described in Sect.2.7. The chapter ends by Sect. 2.8 with
remarks on references.

2.1 Basic Notions of Complexity Theory

A computational problem is a mathematical problem, defined by some parameters
and one or more questions, that a computer has to solve, i.e., for which we want to
find a solution. For solving efficiently a problem, an algorithm has to be designed,
understood as a finite procedure expressed in terms of predefined elementary
operations.

The efficiency of an algorithm is given by the amount of resources required to
execute it, as time and memory. The most crucial efficiency measure is the running
time needed by an algorithm for finding a solution for any instance of a problem,
that is given on the input of the algorithm. This time depends on the size of the input,
denoted as /. If the input size is size(/) = n, it means that n elements are required
to describe the problem parameters. The size can be expressed in bytes or bits, but
in general it is given informally.

The time required by an algorithm to solve any instance of a problem of size
n is a function of n, which is called the algorithm complexity. The big-O notation

A. Agnetis et al., Multiagent Scheduling, DOI 10.1007/978-3-642-41880-8_2, 23
© Springer-Verlag Berlin Heidelberg 2014



24 2 Problems, Algorithms and Complexity

is commonly used to describe this function. An algorithm for which this function
can be bounded from above by a polynomial in n (O(n), O(nlogn), O(n?), etc.)
is called a polynomial time algorithm. An algorithm for which this function cannot
be bounded by such a polynomial function (2", n!, n", etc.) is called an exponential
time algorithm.

A problem which is so hard that no polynomial time algorithm can possibly solve
it is called intractable.

Algorithms that have running times polynomial in n and the maximum of the
elements of the instance, denoted max(1), are called pseudopolynomial.

The complexity class of a problem indicates its intrinsic difficulty, and this
information is crucial for being able to solve the problem properly. This is the
object of the theory of NP-completeness, presented in the seminal book of Garey
and Johnson (1979).

The Theory of NP-completeness applies on several types of problems. We
distinguish the following two main classes of problems:

» Decision problems that are defined by a name, an instance, which is a description
of all the parameters, and a question for which the answer belongs to the set
{yes, no},

» Optimization problems that are defined by a name, an instance, and in which the
aim is to find a solution with minimum value of a given function.

Example 2.1. Let us consider the following decision problem, called PARTITION
(Garey and Johnson 1979).

PARTITION
Instance: A finite set A of k integersa;, j = 1,...,k, such that
k
Y a;=2E
j=t

Question: Is there a subset A’ € A such that

Z(IJ': Z aj:E?

aj €A’ aj eA\A’

This problem is very important for scheduling theory with fixed (constant) job
processing times. o

Example 2.2. The single machine problem presented in Sect. 1.4 is an optimiza-
tion problem. Its name is ONEMACHINETOTALCOMPLETIONTIME, denoted by
1/ 3" C;. An instance is defined by a number n of jobs and a vector (p;)i<;<n
of processing times. The aim is to find a sequence of jobs that minimizes the sum of
the completion times. o
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There exist two main classes of decision problems. The class P is the class of
decision problems that can be solved by a polynomial time algorithm running on a
deterministic computer in which at any time there may be done at most one action,
contrary to non-deterministic computer in which more actions may be done. These
problems are said to be ‘easy’ to solve, in the sense that large instances can possibly
be solved in a reasonable computation time. The class NP is the class of decision
problems that can be solved by a polynomial time algorithm running on a non-
deterministic computer. It is equivalent to say that the class NP is the class of
decision problems for which a response ‘yes’ can be verified in polynomial time on
a deterministic computer. It is clear that P C N'P.

2.2 NP-Completeness and NP-Hardness

In the section, we consider basic issues related to NP-completeness and NP-
hardness.

2.2.1 NP-Completeness

Some relationships between problems can be established and the principal technique
which is used is the polynomial reduction, defined as follows.

Definition 2.1. We say that a decision problem P; polynomially reduces to a
decision problem P, if and only if there exists a polynomial time algorithm f,
which can build, from any instance I, of Py, an instance I, = f(I;) of P, such
that the response to problem P; for instance /; is ‘yes’ if and only if the answer to
problem P, for instance I is ‘yes’.

If such an algorithm f* exists, it proves that any instance of problem P; can be
solved by an algorithm for problem P,. We say that P, is at least as difficult as P;.
If a polynomial time algorithm exists for solving P,, then P; can also be solved in
polynomial time.

The fact that a decision problem P; polynomially reduces to a decision problem
P, is denoted by Py < P,.

The next definition introduces an important subclass of the class N'P.

Definition 2.2. A problem P is NP-complete if P belongs to A'P and any problem
of N'P polynomially reduces to P.

The first problem proven to be NP-complete was SATISFIABILITY problem
(Cook 1971).
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SATISFIABILITY
Instance: A set U of variables and a collection C of clauses over U.
Question: Is there a satisfying truth assignment for C ?

The NP-complete problems create a subset of AP and we say that NP-
complete problems are the ‘difficult’ problems of A/P. Indeed, let us suppose that
an NP-complete problem can be solved in polynomial time. Then, according to
Definition 2.1, any problem in AP can be solved in polynomial time, which implies
that NP C P and thus P = NP. Therefore, unless P = NP, the NP-complete
problems cannot be solved in polynomial time, which make these problems more
‘difficult’ that those from the class P.

There exist many NP-complete problems, two examples of such problems are
SATISFIABILITY and PARTITION. For more detailed list of NP-complete problems
we refer the reader to Garey and Johnson (1979).

The class of NP-complete problems can also be divided into two parts. We
distinguish problems that are NP-complete in the strong sense and problems that are
NP-complete in the ordinary sense or in the weak sense. For purposes of the book,
it is sufficient to state that a problem P is NP-complete in the strong sense if P
cannot be solved by a pseudo-polynomial time algorithm, unless P = NP. The NP-
complete problems that can be solved by a pseudo-polynomial time algorithm are
said to be NP-complete in the ordinary sense. For more detailed discussion of strong
and weak NP-complexity, we refer the reader to monographs Garey and Johnson
(1979) or Papadimitriou (1994).

2.2.2 NP-Hardness

The notion of NP-completeness concerns problems that belong to NP. It has been
extended to the problems that are outside AP, for proving that these problems
are also hard. Any decision problem P, member of A'P or not, to which an NP-
complete problem can be transformed, has the property that it cannot be solved in
polynomial time, unless P = NP. Therefore, such a problem is called NP-hard, i.e.
as hard as NP-complete problems.

This definition applies for instance to search problems that constitute the third
main class of problems, apart decision and optimization ones. A search problem
consists in either returning the answer ‘no’ if the problem has no solution or
returning some solution to the problem otherwise. Moreover, this definition applies
also to optimization problems.

Let us consider two problems, P; and P,, and let A; and A, be two algorithms
for solving these problems, respectively, with the property that A; calls A, as a
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subprogram. If A; runs in polynomial time if A, runs in polynomial time, we say
that problem P; is Turing reducible to problem P,, denoted by P; oz P,. The
Turing reduction can be used for proving NP-hardness results. Notice that from the
above we may deduce that all NP-complete problems are NP-hard.

Example 2.3. Let us consider the following decision problem.

TWO PROCESSORS

Instance: A set J of n jobs, {p;} e N,Vj,1<j<n Y eN

Question: Is there a two-processor schedule for (7 such that the jobs complete
on both machines not later than Y ?

We show that this problem is NP-complete by reduction from PARTITION
problem. First, we may notice that problem TWO PROCESSORS is in NP, since
any response ‘yes’ can be verified in polynomial time.

Then, considering an arbitrary instance of PARTITION, we define the following
instance for problem TWO PROCESSORS: n = |A|, p; = a;, Vj, 1 < j < n,
Y =3 Za,» <4 @ ;. This construction can be done in polynomial time. If the answer
to PARTITION problem is ‘yes’, it is sufficient to schedule the jobs of A’ on machine
M and the jobs of A\ A’ on machine M, and the makespan of the schedule is exactly
equal to Y. Therefore, the answer to TWO PROCESSORS is ‘yes’. If the answer to
TwO PROCESSORS is ‘yes’, the jobs assigned to M; and the jobs assigned to M,
constitute a partition of the jobs, each of size % > a;eadj and therefore the answer
to PARTITION is ‘yes’.

Hence, TWO PROCESSORS is NP-complete.

Let us consider now the scheduling problem denoted by P2||Cpax. This problem
can be solved by calling iteratively the algorithm for problem TWO PROCESSORS,
by changing the value of Y. A binary search can be designed to ensure that
the number of calls is bounded by »n. This method gives a Turing reduction and
therefore, P2||Cpax is NP-hard and cannot be solved in polynomial time, unless
P = NP. <

The following NP-complete problems will be used in the following.

KNAPSACK
Instance: Two sets of nonnegative integers {a, as, ..., a,} and
{wi,ws,...,w,} and two integers b and W.
Question: Is there a subset S € {1,2,...,n} such that

Zai < b and Zw,- > W?

i€eS i€eS
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3-PARTITION

Instance: An integer E, a set A of 3r nonnegative integers {a, as, ..., as },
with £/4 <ap < E/2,Vk,1 <k <3n,

3r
Z ap = rE
k=1

Question: Can A be partitioned into r disjoint subsets Aj, ..., A, such that
forl <h<r,
> @ =E?
kedy,

2.3 Enumeration and Exact Algorithms

For combinatorial optimization problems, it can be tempting to enumerate the
whole set of potential solutions, and to keep the best solution. For example, finding
the best sequence of a scheduling problem with n jobs can be done by enumerating
the n! possible sequences. Such an enumeration, however, is only possible on current
supercomputers and if the value of n, in most of the problems, is not greater than,
say, 20.

In this section, we describe enumeration algorithms and exact algorithms. We
begin with implicit enumeration algorithms based on dynamic programming and
branch-and-bound approach. In these cases we explore implicitly the whole set of
possible solutions, i.e., we explore only the solutions which can potentially lead to
an optimal solution.

2.3.1 Dynamic Programming

Dynamic Programming (DP) is an implicit enumeration method, based on the
Bellman’s principle of optimality (Bellman 1957). The main idea of the DP is that
a problem — satisfying certain conditions — can be decomposed into subproblems
of the same nature, and the optimal solution of the problem can be obtained from
the optimal solutions of the subproblems, by using recursive relations. Each step
of the recursion is called a phase. The problem is in a given state at the beginning
of the phase, and after some decisions, enters into another state. A final state of
the DP corresponds to an optimal solution. Depending on the number of states and
phases, the running time of a DP algorithm can be polynomial, pseudopolynomial
or exponential.
We illustrate application of the DP method with the following problem.
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Problem 1|| >~ w; U;

In the problem, there is a single machine, to each job is associated a due date and
a weight and the objective is to minimize the weighted number of tardy jobs. This
problem is ordinary NP-hard (Karp 1972). We assume that all jobs are numbered in
EDD order. This renumeration can be done in O(n log(n)) time if necessary.

There are n phases in the DP algorithm. A phase j corresponds to job J;,
assuming that the first j — 1 jobs have been scheduled. A state at phase j is 7,
the date at which completes the last early job. A decision at phase j is to schedule
job J; early or tardy.

Let us denote by F;(¢) the minimum cost of scheduling job J; at phase j,
assuming that the j — 1 first jobs are scheduled, and that the last early job completes
at time ¢ (Lawler and Moore 1969).

If the decision is that J; is early (only possible if ¢+ < d;), then J; does not
generate any cost, and the cost is the same as before scheduling J;, when the last
early job completed at time —p; . In this case, F; (t) = F;_i(t—p;). If the decision
is that J; is tardy, then J; generatesa costof w;. In this case, F; (1) = F;_(t)+w;.

The recursive relation is given by:

min{Fj_l(t—pj),Fj_l(Z)—i—wj} Vi, 1 <j<n,
Vl‘,Oflfdj

Fj(d)) Vjl1<j<n,
Vl‘,dj—i-lflfP

Fj(l) =

. n
with P =3, p;.
The initial conditions of the recursion are:

Fy(t) =0, Vt>0
Fi(t)=00,Yj€0,...,n,Vt <0

The value of F,(P) gives the optimal value of the objective function. In order to
find the corresponding solution, a backward procedure has to be implemented. This
algorithm runs in O (nP) time.

Example 2.4. Let us the following 4-job instance of problem 1| >~ w; U;:

Dj 5 2 4
d; g§ 10 11 12
wj 13 7 9

Details of solution of the problem by the DP are given in Table 2.1. The value of
the optimal solution is equal to 5. The corresponding solution can be find by using
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Table 2.1 Solution details of problem 1||>_w;U; by dynamic program-
ming

t <0 0123456 7 8 9 10 11 12 13 14
Fo(t) oo 0 0 0 00 O0OO0OO0ODOO O 0O 0 0 0
Fi(t) oo 1313131313 0 0 0 [0]

Fa(t) oo 20201313137 7 0 0 0 [0]

F3(t) oo 2525181818 1212 5 5 5 0 [0] 0.
Fu(t) oo 3434272725211814 1412 9 5 [5] 5 5

a backtrack procedure: F4(12) = 5 because it is the minimum between F3(12) + 9
and F3(8). Therefore, job J4 doesn’t generate a cost, and it is an early job. F3(8) = 5
because it is the minimum between F»(8) + 5 and F»(5). Job J; generates a cost,
this job is tardy. Then, F,(8) = 0, it means that the remaining jobs are early. At the
end, the optimal sequence is equal to (Ji, J2, Ju, J3). o

2.3.2 Branch-and-Bound Algorithms

Another method of implicit enumeration is used in so-called branch-and-bound
algorithms. In this case, the enumeration is done by a tree search procedure, it
means a procedure where the elements are nodes of a tree, which are explored in
a special order. Each node is equivalent to a state of the DP algorithm and an arc
corresponds to a decision. The ending node of an arc is equivalent to a final state of
the DP algorithm.

A branch-and-bound procedure is an implicit enumeration method, characterized
by two elements: the branching and the bound. The branching is the way the
problem is decomposed. It is related to the definition of nodes and arcs. For example,
a branching process can suppose that a sequence for a scheduling problem is
developed from the first job to the last job of the schedule. It means that the root node
of the tree is empty, the terminal nodes (leaves of the tree) are complete sequences,
and each node is completed by one job in each of its child nodes.

Two sorts of bounds are considered. For a minimization problem, an upper bound
UB is generally the value of a feasible solution, therefore greater than or equal to
the value of an optimal solution. During the search process, this quantity is the
value of the best known solution. A lower bound LB(0) is a quantity associated to
anode o of the tree. It is an under estimation of the value of the best solution which
can be reached from this node, i.e. no feasible solution under this part of the tree
has a solution less than this quantity. Therefore, if LB(0) > UB, this part of the
tree cannot help improving the best known solution value and there is no need to
continue the enumeration of these solutions. Node o is pruned or cutted and we can
consider that this part of the tree has been implicitly explored.
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The nodes can be explored using several procedures. The three most often used
methods to explore the search tree are:

» The breath first search — nodes are managed in a First-In, First-Out list;

» The depth first search — nodes are managed in a Last-In, First-Out stack;

* The best first search — nodes are sorted in non-decreasing order with respect to
their lower bounds.

The algorithm stops when all the nodes have been implicitly explored.
We illustrate the application of the branch-and-bound algorithm with the follow-
ing problem.

Problem 1|| Y " w; T;

There is a single machine, to each job is associated a due date and a weight and
the objective is to minimize the total weighted tardiness. This problem is strongly
NP-hard (see Lawler (1977) among others). The upper bound that we consider is
the value of the objective function for the EDD sequence. The lower bound at node
o is equal to the value of the jobs already scheduled plus the smallest possible cost
of the last job scheduled, i.e.

LB(o) =Y w;T; + m¢in wj max(0, ) pi —d,)
N J¥FO
j€o k=1

We assume that the nodes of the tree are explored using the depth first search
strategy. We illustrate the application of the branch-and-bound algorithm on the
following numerical example.

Example 2.5. 'We consider the problem 1| )" w; T; and the following instance:

w
S}
(98]
~

Pj

The EDD sequence is (Ji, J», J3, J4) and the total weighted tardiness is equal to
UB = 37 (only job J4 is late). The initial lower bound is equal to LB(o) = 7, where
o denotes the root node (see Fig.2.1).

The nodes are created in the following order: 1 (LB = 18); 12 (LB = 25); 123
(LB = 37) is pruned because it cannot improve the solution; 124 (LB = 33); 1243
is a leaf with evaluation 33, which allows to update the upper bound (UB = 33); 13
(LB = 18); 132 (LB = 38) is pruned; 134 (LB = 34) is pruned; 14 (LB = 18); 142
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Fig. 2.1 Search tree for Example 2.5

(LB = 34) is pruned; 143 (LB = 33) is pruned; 2 (LB = 7); 21 (LB = 25); 213
(LB = 37)is pruned; 214 (LB = 33); 23 (LB = 7); 231 (LB = 35) is pruned; 234
(LB = 7); 2341 is a leaf with evaluation 7, which allows to update the upper bound
(UB = 7). The search can stop, this upper bound is equal to the lower bound of the
root node, therefore, no better solution can be found.

Solution (J2, J3, J4, J1) is optimal. o

The efficiency of a branch-and-bound algorithm is related to several parameters.
The strength of the lower bound is a key point. If the lower bound is strong (near to
the optimal), it will allow us to cut a lot of branches. But this efficiency may assume
a higher computational complexity and a compromise has to be found between
quality and computation time. The size of the search tree is another parameter that
has to be considered and the application of some dominance conditions in a pre-
processing phase can help in decreasing its size. Finally, the search strategy has also
an impact on the number of nodes that are explored. For instance, in Example 2.5,
the best-first strategy will only explore nodes 2, 23, 234 and 2341.

2.3.3 Mathematical Programming Algorithms

Integer Linear Programming (ILP) or Mixed Integer Linear Programming (MILP)
are two variants of mathematical programming that sometimes are used for solving
scheduling problems. In both cases, first we formulate the problem to be solved in
terms of variables, restrictions and functions, and next, using commercial or open
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source solvers, look for solutions. The resolution methods for solving ILP or MILP
problems are generic methods using sophisticated variants of branch-and-bound
algorithms.

In the section, we describe three basic ways of formulation a scheduling problem
using mathematical programming. The models often involve arbitrarily large values
called “big-M”. As we will explain, these models are generally difficult to solve in
practice.

2.3.3.1 Positional Variables

We define binary variables x; x equal to 1 if job J; is in position k and O otherwise.
This type of variable can be used when the considered scheduling problem is
equivalent to finding a sequence of jobs. Notice that it is not the case for job shop
problems of for non-permutation flow shop problems. This sort of model has been
introduced in Wagner (1959).

The following constraints insure that there is exactly one job per position and one
position per job:

Y xjk=1.Vk1<k<n

J=1

n
Y oxpk=1Vjl<j<n
k=1

The processing time, the due date and the release date of the job in position
k become variables equal to py; = >\, pjxjk, dg = Yi_;d;x;x and

Tk = Z'j’:l rjX;k, respectively. The expression of the completion time of the
job in position k is given by:

k n
Coiy =YY PiXiq
g=1j=1

For example, let consider the 1| ) 7; problem and let 7} be the tardiness of the
job in position k. Then, an MILP model for the 1|| ) 7; problem is given by:

Minimize ) Tk 2.1)
k=1
subjectto Y xjx =1, Vk. 1<k <n (2.2)

Jj=1
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n
Soxu=1Vjil<j<n 2.3)
k=1

k n n
TkZZijXj’q—Zdej’k, Vk,1<k<n 2.4

g=1j=1 j=l1
variables Ty >0, Vk,1 <k <n (2.5)
Xjk€{0,1}, Vj,1<j<nVk1<k<n (2.6)

Notice that using positional variables it is difficult to consider objective functions
with weighted functions such as the ) w;T;, without using additional big-M
constraints. Indeed, it is not possible to simply replace in the model T} by wy Ty,
because wy, is also a variable, which makes the model nonlinear.

2.3.3.2 Precedence Variables

We define binary variables y; ; equal to 1 if job J; precedes job J; and O otherwise.
This sort of model has been introduced in Manne (1960) for the job shop scheduling
problem. In this case, we generally introduce a continuous variable C; for the
completion time of job J; and the expression of the disjunctive constraint (only
one job at a time on a machine) requires “big-M " as follows:

C; 2Ci+p;,—M(A -y ;) Vi, 1 <i<nVjl<j=<n 2.7)

G =Citp—Myy. Vill<i<nVjl<j<n 2.8)

If J; precedes J;, y;; = 1. In this case, constraints (2.7) ensure that
C; > C; + p; and constraints (2.8) are deleted because C; s always greater than
C; + pi — M, with M a big value. If J; precedes J;, y;; = 0. In this case,
constraints (2.7) can be deleted because C; is always greater than C; + p; — M and
constraints (2.8) ensure that C; > C; + p;.

For problem 1|| ) T;, we introduce n continuous variables 7’; for the tardiness
of job J; and an MILP model is given by:

n
Minimize Z T (2.9)
j=l1

subjecttoC; > C; +p; —M( —y;;), Vi,1<i <n,Vj1<j=<n (210
Ci>Cj+pi—My;;, Vi,1<i<nVjl=<j=<n (2.11)
T)>C;j—d;,Vj,1<j<n (2.12)
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variables T; >0, Vj, 1< j <n (2.13)
C;>0,Vj1=<j=<n (2.14)
yij €10,1}, Vi,1<i<n,Vj1=<j<n (2.15)

2.3.3.3 Time-Indexed Variables

There are several possible definitions for time-indexed variables (see the initial
paper Bowman (1959)). We define binary variables z;, equal to 1 if job j is being
performed at time ¢ and equal to 0 otherwise. Another possibility is to say that it is
equal to 1 if job j starts its processing at time 7.

The disjunctive constraint is simply given by Z’; —1 %j+ < 1. With such variables,
a job can be easily preempted. To prevent this, the following constraints are
introduced:

T
P X (2 —zja+1) + Z Zjy = Pj
t/=t+2

For problem 1|| }" 7; we introduce n continuous variables T; for the tardiness
ofjobJ;,1 < j <nandwith P = Zj‘:l p; an MILP model is given by:

n
Minimize ZT]» (2.16)
j=1
P
subjectto » "z;, = p;. ¥j €{l.....n} (2.17)
=0
n
Yz <l Vee{l,... P} (2.18)
j=1
T
Pj X(Zj,t _Zj,t+1)+ Z Zjt’ = Dj,
t'=t+2
Vjefl,....n}, Vte{l,..., P} (2.19)
T, >txz,—d;, Vje{l,...,n}),Vte{l,..., P} (2.20)
variables 7; > 0, Vj € {l,...,n} (2.21)
zjs €40,1}, Vj e{l,....n}, Ve e{l,..., P} (2.22)

This model has a pseudo-polynomial number of variables, depending on the
duration P of the schedule.
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2.4 Approximation Algorithms

An NP-hard problem cannot be solved to optimality by a polynomial time algorithm,
unless P = ANP. As we have shown in the previous section, exact resolution
methods require a pseudo-polynomial or exponential computation time. However,
some polynomial time approximation algorithms can be used in order to find
approximate solutions. Moreover, for many of such algorithms it is possible to give
a performance guarantee ensuring a certain quality of the solutions the algorithm
returns.

In the section, we recall basic definitions and notions related to approximation
algorithms, separately for single and multiple objectives.

2.4.1 Problems with One Objective Function

Let us denote by f*(/) the value of an optimal solution of a given minimization
problem, for the instance / and by H (/) the value of the solution returned by the
heuristic H. Let ¢ > 0 and set p = ¢ 4+ 1. We say that algorithm H has a relative
performance guarantee of p, or that algorithm H is a p-approximation algorithm
(or (1 + &)-approximation algorithm), if for any instance /, we have

H(I) — f*(I) =ef*(I)

or, equivalently,

H(I) < pf*()
or, equivalently,

H(I) <
AP
We say that H has an absolute performance guarantee of c, if for any instance
I, we have:

p-

H(I) < f*(I) +c

Example 2.6. Let us consider the problem P2||Cy,ax. We propose algorithm H (see
Algorithm 2) to solve this problem. Notice that algorithm H can be applied for an
arbitrary number of machines.

We are going to study this algorithm, in order to see if a performance guarantee
can be derived.

Let us denote by Ji the last job of the schedule, i.e. the job which gives the
maximum completion time of the schedule. We have
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Algorithm 2 for problem P2||Cyax
1: while there are jobs to be scheduled do
2:  Schedule the next job on the first available machine
3: end while
4: return Cp,

Cmax(H) = tk(H) + Pk,

where Cpox(H), pr and t; (H) denote the makespan of the schedule given by H,
the duration of job J; and the starting time of job Ji, respectively.

We can establish that the optimal makespan is greater than or equal to the average
sum of processing times, i.e.

1 n
5 Y pj < Coa
j=1
and thus we have
LS )= py = |
2 jzlp] pk — max zpk
Because k was assigned to the first available machine, we have
1 n
tw(H) < E(Z Pj = Pr)-

j=1

This implies that

1
— 5Dk

tk(H) = CI:ax )

and hence

1
Cmax(H) =< C[:ax + Pk — Epk

Because py < C*

max> We have finally

3
Cmax(H) = _C*

—_ 2 max*

Therefore, we can say that algorithm H is a %-approximation for P2||Crax-
o
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Fig. 2.2 Illustration of the
definition of an
approximation algorithm
(type I)

2.4.2 Problems with Multiple Objective Functions

When the solutions are evaluated by multiple objective functions, several approxi-
mation methods can be defined. We refer to Ruzika and Wiecek (2005) and to Zitzler
et al. (2008) for a survey on such methods.

Some measures have been proposed, extending the definition of performance
guarantee to the case of multiple objectives. We only introduce in this section two
basic extensions of the notion of e-approximation that we call approximation of type
I and approximation of type I1.

2.4.2.1 Approximation of Type I

In Ehrgott et al. (2011), the authors use the concept of e-efficient solution and
e-nondominated point to measure the quality of approximation.

Given a scalar ¢ > 0, a schedule o and a vector in the objective space
f(0) = (fY o), f%(0),..., fK(0)), schedule o is e-nondominated if there is no
other schedule 7 such that Vk,1 <k < K,

(1+&) [ () < fH0).

Notice that this is equivalent to say that there is no other schedule & such that
Vk. 1<k =K, ff(m) < (1-2)f*(0).

An algorithm H is called a (14 ¢)-approximation if it returns solutions satisfying
this condition. This is illustrated in Fig. 2.2 in the case of two criteria.

2.4.2.2 Approximation of Type I1
Let us denote by f*¥(I) the minimal value of objective f* for instance I. The

point with coordinates ( f*'(1), f*2(I), ..., f*K(1)) is called the reference point
for the instance /.
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Fig. 2.3 Illustration of the !
definition of an p
approximation algorithm
(type II)
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Let consider a set of real numbers (g1, &2, ..., £x) with g > 0 for any k and set

B = i + 1 for any k. We denote by H an algorithm and H¥ (1) is the value of the
solution returned by algorithm H for the instance I for the function f*.

An algorithm H is called a (81, B2, . . ., Bx)-approximation algorithm iff for any
instance /,

HM(I) < (14 &) (1)

or

H (1)
() <B.Vk,1<k <K

This definition is illustrated in Fig. 2.3 in the case of two criteria.

2.5 Approximation Schemes

An approximation scheme is a familly of (1 4 ¢)-approximation algorithms H.,
over all &, 0 < & < 1. A polynomial-time approximation scheme (PTAS) is an
approximation scheme whose time complexity is polynomial in the input size. A
fully polynomial-time approximation scheme (FPTAS) has time complexity that is
polynomial in the input size and also polynomial in % (Schuurman and Woeginger
2011).

These definitions imply that a PTAS may have a time complexity bounded in
O(n'/#), but this is not possible for an FPTAS.

Two types of results can be given in terms of approximation schemes. The first
type of result is the proposition of a (fully) polynomial-time approximation scheme.
The second type of result is the proof that such an approximation cannot exist unless

P=NP.
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Several approaches allow us to obtain an approximation scheme. In the follow-
ing, we illustrate the technique called adding structure to the input data with the
P2||Cppax problem.

In the following, Cpax (S, I) denotes the makespan of solution S for instance /.

2.5.1 Simplifying

The first step of the technique is called simplifying and the aim is to simplify in
polynomial time the instance / into another instance I¥. The simplification depends
on ¢ (the closer ¢ to zero, the closer I* to I).

For the P2||Cax problem, we introduce the following notations.

n
Psum = ZP]
j=1

and
n
Pmax = ma)l( Pj
j=

We denote by [ the initial instance and S* the optimal solution of the problem. We
know that:

1
LB = max(zpmm, pmax) < Cmax(S*v I)

For constructing instance I#, we split the jobs into two disjoint sets:

* The big jobs with a processing time greater than LB are not changed,

* If we denote by X' the sum of processing times of all the small jobs, for which
the processing time is smaller than or equal to LB, we introduce L%J jobs of
duration eLB in instance I*.

We want to estimate the deviation between Cpa(S™, I%), the value of the
optimal solution of the problem with instance I# (denoted S**) and Cpax(S*, I),
the optimal solution of the problem with the original instance /. We denote by X
and ¥, the total processing time of the small jobs on machine M, and M, in S*.
On machine M|, suppose that we keep unchanged the big jobs and that small jobs
are gathered together and replaced by [i—‘B jobs of length eLB. We do the same on
machine M. It is clear that [i—%] + [i—ZB] > L% .

We have an increase of the makespan on M; at most equal to:

2
(——|5LB — ¥, <¢LB
eLB
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Js

Jo J3 Js

J7 Jg J1 J4 J2

*
CYm ax

= 100

Fig. 2.4 Optimal solution for the P2||Cpax problem

and the same on M,. Therefore, we have Cpu(S*,I¥) > Cpax(S*,1) and
Crax(8*, I*) < eLB 4 Cpax (S*, 1) < €Crax(S*, 1) + Crmax(S*, I). We deduce

that Conax (S*, I#) < (1 4 &) Crax (S*, I). Because Crax (S¥*, I*) < Cprax (S*, I7),
we have:

Cmax(S#*s I#) = (1 + 5)Cmax(S*v 1)

Example 2.7. Let us consider the following 9-job instance I of the P2||Cpax
problem:

For this instance, LB = max{100, 50} = 100. An optimal solution S$* to this
instance has a makespan equal to Cr,. = 100 (see Fig.2.4).

Suppose that we take ¢ = 0.10. Therefore, jobs Jg, J7, Jg and Jg are small jobs
and o = 23. These small jobs do not belong to /* and two dummy jobs of length

eLB = 10 are introduced. The new instance is the following: o

J 1 2 3 4 5 6 7

p; 18 30 39 40 50 10 10

2.5.2 Solving

The second step is to solve the problem with the simplified instance in polynomial
time.

For the P2||Cmax problem, the total processing time has not increased. The
total processing time of the small jobs is at most pg,, < 2LB. Each job in I* has
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a processing time greater than or equal to ¢LB, thus the total processing time is
greater than or equal to |I#|eLB. So |I*|eLB < pg,, < 2LB, and thus |I*| < 2/e.
So the number of jobs in /# only depends on &, and can be considered constant
(it does not depend on 1). Therefore, the total enumeration of all the 2%/ possible
schedules can be done in “constant” time. It is clear that in practice, this time is
strongly related to €.

Example 2.8. An optimal solution to the P2||Cpax problem for instance 7# has a
makespan of 100, with jobs J4, J5 and Jé’ on M|, the other jobs on M,. o

2.5.3 Translating Back

The third step of the technique is to translate the optimal solution S** for instance
I*# into an approximate solution S’ for the original instance /.

We denote by X and X¥ the duration of the dummy jobs on M; and M, in S**.
We have:

»)
I+ 5 =elB| —|> X —¢LB
o5t =eth| 2| > o
We denote by C{* and C§* the completion time on machine M; and on machine
M, for solution S**. We construct a solution S’ for instance I as follows. The big
jobs are not changed, they keep the same assignment as in S#*. On machine M,
the small jobs are scheduled greedily so that the load does not exceed C{™* + 2¢LB.

Therefore, if Cl/ denotes the completion time of solution S’ on machine M|, we
have:

C/* +2¢LB> C| > C/* + ¢LB

The unscheduled jobs can be scheduled on machine M, and the total length of
the unscheduled jobs is at most X' — X' f —¢elB < Eg . Therefore, the unscheduled
small jobs can be put on M, after the big jobs and complete before C5*. We have
C, < Cj*.

We know that C{ < C{* + 2¢LB and because C{* < Cpux(S™,I%) <
(1 4+ &)Crax(S*, I), and LB < Cpox(S™*, I) we have:

€l < (1 + 36) Cunax(S*, T)
Because C; < Cf* < (1 4 &)Crax(S™, I), we deduce finally that:
Cinax(S", 1) < (1 +38)Crax (8™, I)

Example 2.9. Solution S* is the following: The jobs J4 to Jg are scheduled on M|,
jobs J; to Js are scheduled on M,. The makespan is equal to 113. o
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The complexity of this PTAS is in O(n + 21/¢).
We refer to the tutorial of Schuurman and Woeginger for a more detailed
description of approximation schemes (Schuurman and Woeginger 2011).

2.6 Relaxation of Problems

A relaxation is a way to simplify the problem. Of course, the optimal solution of
the relaxed problem is just an approximated solution of the original problem. In
the section, we present two classical relaxation methods, called linear programming
relaxation and Lagrangian relaxation.

2.6.1 Linear Programming Relaxation

The linear programming relaxation consists in replacing the integrity constraints
of an MILP model by weaker constraints: each binary variable belongs to interval
[0,1] and each integer variable may be real. By using this relaxation, also called
linear relaxation, the NP-hard MILP is transformed into a linear program, i.e. a
related problem which can be solved in polynomial time. In case of a minimization
problem, the value of the linear relaxation can be used as a lower bound for the
corresponding MILP.

Example 2.10. To illustrate the relaxation, we consider two integer variables x and
y and the following MILP. The advantage with this example is that the constraints
can be represented in the plan.

Minimize Z = x + y
subject to 11x — 12y > —23
6x —8y > —14
x>1
variables x,y € N
The solution space is represented in Fig. 2.5, where bullets represent the integer
solutions.
The solution of the MILP is x* = 3, y* = 4 and Z* = 7 whereas the solution
of the linear programming relaxation is x* = 1, y* = 2.5 and Z* = 3.5. For

more complex problems, the linear relaxation can be arbitrarily far from the optimal
solution of the MILP problem. 3
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llz—12y+23=0

6z —8y+14=0

Solution of the MILP: z* = 3, y* =4, Z* =7

Solution of the linear relaxation:
T z* =1,y*=25,2"=35

Fig. 2.5 Solution space for the Example 2.10

The linear relaxation of a model is generally used to provide a global lower bound
at the root node of the search tree, but also a local lower bound at any node. The
better the relaxation, the better the algorithm convergence.

Notice that the MILP models that use big-M formulations are generally difficult
to solve, because in this case, the linear relaxation is weak and does not allow to cut
branches.

Example 2.11. Let consider the model with precedence variables presented in
Sect. 2.3.3 from Egs. (2.9)—(2.15) and consider that the processing times of jobs are
comprised between 1 and 100. The completion times are necessarily smaller than
100n. If M is arbitrarily big, for instance M = 10, constraints (2.10) and (2.11)
are simply canceled in the linear relaxation because always respected, whatever the
values of the variables y; ;. At the end, the only constraints in the linear relaxation
are given by Eq. (2.12) and the value of the objective function of the relaxed linear
program is generally equal to 0. Therefore, in case of “big-M ” formulations, there
is a real need to set M as small as possible. o

2.6.2 Lagrangian Relaxation

Let consider the general formulation of a combinatorial optimization problem (CO)
with variables x;, 1 < j < n.

Minimize cx

subjectto Ax > b

variables x > 0
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which is equivalent to:

n
Minimize E CjXj
J=l1

n
subject to Za,-,jxj > b, Vi,1<i<m
j=1

variablesx; >0, Vj, 1 <j <n

This problem is equivalent to its dual version with variables u;, 1 < i < m called
dual(CO):

m
Maximize E u;b;

i=1

m
subject to Zujaj,i <c¢, Vjl=<j<n

i=1

variablesu; >0, Vi, 1 <i <m

If the variables are integer or binary variables, the problem and its dual version
are difficult to solve. The Lagrangian relaxation is a generic technique which is used
to compute lower bounds, but it can also be used for obtaining upper bounds. The
idea is to relax some constraints in order to make the problem easier to solve. The
constraints that are relaxed are put in the objective function, each one multiplied by
a parameter called the Lagrangian multiplier, that can be viewed as a penalty for
violating the constraint.

The Lagrangian version of problem (CO) with all the constraints in the objective
function can be formulated by:

Minimize cx + A(b — Ax)
variables x > 0

A=>0

which is equivalent to L(CO):

Minimizeic;x; + i/\f(bi - Xn:ai,jxj)

j=1 i=1 Jj=1
variables x; >0, Vj, 1 <j <n

Ai >0, Vi, 1 <i<m
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We denote by L(A, x) = cx + A(b — Ax) the Lagrangian function. We have:

L(A,X)ZZC]‘X]‘+Zli(bi—zai'jx]‘) (2.23)

Jj=1 i=1 j=1

S LX) =Y kb =Y x;) (hiar;)—c))
j=1

i=1 i=1

The optimal solution of L(CO) is a lower bound of problem (CO). Therefore,
the problem is to find a set of variables A so that the optimal solution of L(CO) is
as close as possible to the optimal solution of (CO), therefore maximizing L(CO).

This problem is called the Lagrangian dual of (CO). The problem is to find the
vector A which maximizes L(A, x) for x > 0, which can be written as follows: Find
A* such that:

L(3) = max { min{L(1. x)}} (2.24)

Suppose that x is fixed. Then, L(A, x) is a linear function depending only on A.
For each possible value of x, min,>o{L (4, x)} is a lower envelope of a finite set
of linear functions, i.e., a concave, piecewise linear function. The points where this
envelope changes its slope are called breakpoints. A* is the value of A for which this
envelope reaches its maximal value. This is illustrated by the following example.

Example 2.12. To illustrate the Lagrangian relaxation and the envelope of linear
functions, we use the following (simple) integer programming problem.
Minimize Z = x + y
subjectto 3x —2y > 2
variables (x, y) € X with X = {(0,0), (1,0),(0,1),(1,1),(1,2),(2,1),(2,2)}
The Lagrangian functionis L(A, x) = x4+ y +A(2—3x+2y). For each possible
value of (x, y), we obtain one linear equation as follows.
(0,0) :L(A) =2A (1,0):L(A) =1—-2 (0,1) :L(A) =14 41
1, D):LA)=24+1 (1,2):L(A) =3+31 (2,1):L(A) =3-2A
(2,2):L(A) =4
The dual function is presented in Fig. 2.6, the optimal value of A is equal to A* =
1/3 and the optimal objective value is L(1/3) = 2/3. It is clear that the optimal
solution of the initial problem is given by (x, y)* = (1, 0) with an objective value

of 1. The difference between the value of the Lagrangian relaxation and the optimal
value is called the duality gap, equal to 1/3 for this example. o



2.6 Relaxation of Problems 47

Fig. 2.6 Dual function L(\) L(\)

maximum

v

Algorithm 3 General Lagrangian relaxation

: Determine the constraints to relax
: Choose an initial value of the dual variables 1
: fori :=1tomdo
Compute G;
end for
UB := HighValue
LB := — HighValue
k=0
: while stopping condition not met do
10:  Solve L(CO) with A = A(®
11:  Denote by x® the solution
12:  Denote by L(A®)) the value of x®
13:  if x® is a feasible solution to (CO) then
14: UB := min{UB, L(A%))}
15: end if
16:  Define step size t®
17:  fori :=1tom do
18: AETD =30 g,
19: end for
20 k:=k+1
21: end while
22: return the last L(A(®))

A o e

Nl

The Lagrangian relaxation lies in two crucial points: which constraints to relax
and how to solve the Lagrangian dual. The subgradient method is the most used
and generally the best method for solving the problem. Remember the expression of
L(A, x) given in Eq. (2.23). We define the subgradient of multiplier A; by:

LA, x) !
G,‘ = T :bi —Za,‘!]‘x]‘

Jj=1

The general Lagrangian relaxation procedure is depicted in Algorithm 3.
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We refer the reader to Geoffrion (1974) and to Van de Velde (1991) for a detailed
presentation of the Lagrangian relaxation method.

2.7 Complexity of Basic Scheduling Problems

In this section, we give a list of algorithms and problems complexities, which
constitute the basic elements in scheduling theory. The elements from the list will
be used in the rest of the book.

2.7.1 Single Machine Scheduling Problems

2.7.1.1 Problem 1]||L ax

This problem can be solved optimally by sorting the jobs in their ¢; non decreasing
order in O(nlog(n)) time. This sorting rule is called EDD for Earliest Due Date
first or Jackson’s rule (Jackson 1955).

2.7.1.2 Problem1|| > w;C;

This problem can be solved optimally by sorting the jobs in their p;/w; non
decreasing order in O(nlog(n)) time. This sorting rule is called “WSPT” for
Weighted Shortest Processing time first or Smith’s rule (Smith 1956). This problem
can be solved in O(n log(n)) time. Notice thatif w; = 1 for all the jobs, the problem
becomes the 1| )~ C;, which is solved by sorting the jobs in their p; non decreasing
order. In this case, the rule is called “SPT” for Shortest Processing time first.

2.7.1.3 Problem 1|| > U;

The problem is to minimize the number of tardy jobs. The Moore-Hodgson’s
algorithm (Moore 1968), reported in Algorithm 4, returns the best sequence for this
problem.

2.7.1.4 Problem 1|prec| fimax

To each job J; is associated a non decreasing cost function f;(C;) with C; the
completion time of J;. This problem, presented in Lawler (1973), can be solved
optimally in O(n?) time by Algorithm 5. This algorithm builds a solution backward
starting by the end of the schedule. At each iteration, there is a job J; that has
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Algorithm 4 for problem 1|| Y U;

1: Number the jobssothatd; < d, <---<d,
2: §:=0

3:1t:=0

4: for j :=1ton do

5. ift+ p; <d; then
6

7

8

S:=85U{J;}
t:=t+p;
else

9: Choose as Jmax the longest job in S U {J;}
10: S =8\ {Vmax} U{J;}
11: t:=1— pmax + P
12: end if
13: end for

14: return jobs in S in EDD order, then jobs in 7 \ S in any order

Algorithm 5 for problem 1|prec| fmax
S P=3 p;
S={J11—vj=@}
o := () // initial empty schedule
while S # @ do
Choose Ji € S such that fi(P) = minjes{f;(P)}
Schedule J; at the end of schedule o
P:=P— Pk
8:  Update S
9: end while
10: return o

A

no successors (the set y; of successors of J; is empty) with the smallest cost if it
completes at time P.

2.7.1.5 Problem1||> T;

The problem concerns the minimization of the total weighted tardiness with
agreeable weights, i.e. p; < p; implies w; > w;. This problem has been proved
NP-hard in the ordinary sense in Du and Leung (1990).

For the problem, Lawler (1977) proposed a pseudo-polynomial time algorithm.
Before we formulate this algorithm, we need some preliminaries.

Let 7 denote an optimal sequence. Let C; (;r) denote the completion time of job
J; in sequence . We suppose that the jobs are numbered in EDD order. We define
arbitrary due dates d ]’ such that

min{dj,Cj} < d]/ < max{dj,Cj}
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Proposition 2.1. Any optimal sequence ' regarding due dates d j/ is also an
optimal sequence regarding due dates d;.

Proof. We denote in the following 7' the total tardiness regarding due dates d;, T’
the total tardiness regarding due dates d ]’ and C; (") the completion time of J;
in 7r’. We want to prove that T'(z") = T'(;r). We know that T'(z’) > T (i), we have
to prove that T'(x") < T (7).

We have:

T(m)—T'(m) =) A
j=1

with the following definition of 4 ;:

» If J; is tardy regarding d;, C; > d;, then because d; < d]’. < C; we have
Aj:dj/»—dj,
« If J;isearly, C; <d;, then C; fd]’.fdjandAij.

Similarly, we have:
n
T(x')~T'(x') =) B
j=1

with the following definition of B;:
* IfC; >d;,wehaved; < d]’. < C;j. There are three possibilities for Cj’.:

1. Cj <dj, then B; = max{0,C} —d;} + max{0,C; —d}} =0,
2.d; < Cj’. < d]’.,then B; = C; —dj,
3.d; <Cj,thenB; =C; —d; —-C/ +d; =d; —d;
Therefore we have B; = max{0,min{C; — d;.d; — d;}}. We can see that
ijAj.
» IfC; <dj,wehave C; < dj’. < d;. Again, three possibilities:

1. C]{ < dj/.,thenBj =0,
2. d} < C; <dj, then B; = 0—(ij —d;),
3. d} < Cj, thenitcomes B; = —(d; —d}).

Therefore we have B; = — max{0, min{Cj/», di}— d]’} and again we can see that
Bj < Aj .

In both cases, A; > B and thus > =1 A; = 3i_, Bj. Because 7’ is optimal
regarding d, we have T'(z") < T'(7) and thus:

T'(x'y+Y By <T'(m)+ Y A; & T(x') < T(m)
j=1 j=1

what is equivalent to inequality T'(z”) < T'(x). O
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Proposition 2.2. Let Ji be the job with maximum processing time. There exists a
job Jjx with j* > k such that all the jobs in {Jy, J», ..., Jj+} \ {Ji} are scheduled
before Ji, the other jobs after Ji.

Proof. Let C/ be the maximum possible completion time of J; in an optimal
sequence. We define the following due dates: d; = d; if j # k and d] =
max{C;,di}. Let = be an optimal sequence regarding due dates d} and Cy
the completion time of J; in m. Because the condition min{d;,C;} < d ]’ <
max{d;,C;} of Proposition 2.1 applies, & is also optimal regarding due dates d;.
Because C; is the maximum possible completion time of J; in an optimal sequence,
Cr < C; < max{C/, dy}. There is no job J; before J; with a greater due date. By
choosing j* as the greater index such that d ;= < d,i, then because dj; < d,i, j* >k
and the proposition is proved. O

Proposition 2.2 leads to a dynamic programming algorithm, with O (n* pmax)
complexity. A phase j is the number of jobs to schedule. A state at phase j is
the subset of jobs to schedule and the start time. A decision at phase j is the job to
put in position k. We denote by F; ({1,2, ..., j},t) the minimum cost of scheduling
jobs J, with r € {1,2,..., j}, starting at time ¢.

The recursive relation (see also Pinedo (2008) for a similar presentation of the
algorithm) is given by:

F12,, j30 = min {E._l({l,z,...,r}\{k},t)

+max{0.1 + Y pe — di}
(=1

+F_(r + 1,r+2,...,j},t+2pz)}
(=1

with k such that py = max;<¢<; pe.
The initial conditions of the recursion are:

Fo(@.1) =0, V¥t
Fi({j}. 1) = max(0,7 + p; —d;), Vi,V

We search for F({1,2,...,n},0).

2.7.1.6 Problem 1|L,,. < Q|> C;

In Van Wassenhove and Gelders (1980), the authors consider the problem of
enumerating the Pareto solutions for the 1|| >~ C;, T,uq problem. Let consider that
Tnax 1s bounded by a given quantity Q. Then, for any job j, one has T; < Q and
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Algorithm 6 for problem 1|L,.c < Q] C;

. P = Z’]l.=l Dj

cJ:={1,2,..., n}

tki=n

o := () // initial empty schedule

while k # 0 do
Find index i such that £Z > Pand p; = max{p; : j € J}
Assign job with index i to position k in o
P:=P—p,
J:=J\{i}

10 k:=k—1

11: end while

12: return o

PRI RLD

b

therefore C; < Q + d;. By defining d i = d; + Q, the problem is to minimize
>~ C; under the constraints that C; < d ; for any job J;.

The algorithm uses a backward procedure that assigns at each step at the last
position, the longest possible job (see Algorithm 6).

The following result can be proved (Lawler 1977).

Theorem 2.1. Problem 1|| Y. T; can be solved in O(n*P) time.

2.7.2 Multimachine Scheduling Problems

2.7.2.1 Problem P||) C;

The problem with m = 1 machine can be solved by sorting the jobs in SPT order
(see problem 1|| Y w;C;). It can be proved that this method is also optimal for
the P|| }_ C; problem. The jobs are sorted in SPT order. Then, the smallest job is
assigned to machine M, the second to machine M; and so on until machine M,,
and then the (m + 1)th job to machine M, the (m + 2)th job to machine M5, etc.
Notice that problems Q|| C; and R|| ) C; can also be solved in polynomial
time. However, problem P2|| ) w;C; is ordinary NP-hard and P||} w;C; is
strongly NP-hard.

2.7.2.2 Problem F2||Cpax

This problem is the two-machine flow shop scheduling problem with minimisation
of the makespan. It is optimally solved in O(nlogn) time by the Johnson’s
algorithm (Johnson 1954), presented by Algorithm 7.
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Algorithm 7 for problem F2||Cyax

: LetU = {‘I]/pjl =< sz}

s LetVi={J;/pj1 > pj2}

: Sort the jobs of U in non-decreasing order of p;; values
: Sort the jobs of V' in non-increasing order of p;, values
: 0 := U|V // concatenation of U and V

. return o

DA W=

Table 2.2 Some polynomially solvable scheduling problems

Problem Notation Time complexity  References
Single machine 1| Linax O(nlogn) Jackson (1955)

1> U; 0(n?) Moore (1968)

X w;C; O(nlogn) Smith (1956)

lprec| fpax ~ O(n?) Lawler (1973)
Parallel machines  R||)_ C; Horn (1973) and

Bruno et al. (1974)

Flow shop F2||Cpax O(nlogn) Johnson (1954)

2.7.3 Reductions Between Scheduling Problems

We recall in this section the complexity status of some basic scheduling problems.
The interested reader can refer to Blazewicz et al. (2007), Brucker (2007) or
Pinedo (2008) for a wide overview of scheduling problems. The web site at www.
informatik.uni-osnabrueck.de/knust/class/ contains an updated list of complexity
status.

Some reductions must be known in order to deduce easily the complexity of some
problems. These reductions are also presented.

2.7.3.1 Complexity of Basic Scheduling Problems

The complexity of the most classical scheduling problems without preemption is
summarized in the following tables. In Table 2.2 we list problems that can be solved
in polynomial time. In Table 2.3 we list some NP-hard problems.

2.7.3.2 Simple Reductions Between Scheduling Problems

The reductions between problems can be depicted by a graph, called a reduction
graph. An arc between problem P; and problem P, indicates that P; o P;.

In the theory of scheduling, simple reductions can be established between
problems, using several ways. Concerning the machine environment, it is clear
that single machine scheduling problems are less complicated than parallel machine
problems and less complicated than flow shop scheduling problems, which are less


www.informatik.uni-osnabrueck.de/knust/class/
www.informatik.uni-osnabrueck.de/knust/class/
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Table 2.3 Some NP-hard

. Problem Notation References
scheduling problems - -
Single machine HIXT; Lawler (1977)
> w;U; Lawler and Moore (1969)
Parallel machines  P2||Cax Lenstra et al. (1977)
P||Cpax Garey and Johnson (1979)

P2|r;|>-C;  Simple reduction
P[|>-w;C;  Brunoetal. (1974)
Flow shop F2|r;|Cpax Lenstra et al. (1977)
F2||Lmax Lenstra et al. (1977)
F2||X-C; Garey et al. (1976)
F 3| Crnax Garey et al. (1976)

> w;Ty > w;Uj

e

> w;Cj 2T S U;

=y

Q

T
o

@] > Cj Liax

\'/

1 Cm ax

Fig. 2.7 Simple reductions between problems according to the machine environment and the
objective function (Brucker 2007)

complicated than job shop scheduling problems. Considering the constraints, one
can say, for instance, that a problem with unitary processing times is less com-
plicated than the same problem with identical processing times, which is less
complicated than the one with arbitrary processing times. And simple reductions
can also be derived on the objective functions. The reduction trees reported in
Fig.2.7 concern simple reductions between problems according to the machine
environments and objective functions.

We can establish general relationships and simple relations among the scenarios
which are considered in the multiagent case (see Sect. 1.4).

» MULTICRITERIA is a special case of INTERFERING in which 72 = J' = J.
Therefore, for the same reasons, we have | MU, 8|y x «|IN, B|y.

» INTERFERING is a special case of NONDISJOINT in which J2 \ J' = 0.
Therefore, we have «|IN, B|y o« «|ND, B|y.

These relationships are summarized in Fig.2.8. Depending on the specific
objective functions of the agents, further reductions may hold, as it will be illustrated
in detail in the next sections.
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Fig. 2.8 Simple reductions NON DISJOINT

between scenario in the
multiagent case / \

INTERFERING COMPETING

|

MULTICRITERIA

An important observation concerns the three symmetric scenarios, i.e., COMPET-
ING, NONDISJOINT and MULTICRITERIA. Suppose that, for any of these cases,
we have a polynomial algorithm solving 1|B,., 2 < Q|g®. Then, under the mild
assumptions that g4 and f 2 are regular, rational-valued and that an upper bound
ubp is known for f 2, it turns out that also the symmetric problem 1|B;., g4 <
R| f8 is polynomially solvable. In fact, in order to solve the latter, one can solve
a logarithmic (logubp) number of instances of 1|, f2 < Q|g?, for various
values of Q. If g%"(¢) denotes the optimal value of 1|8, f2 < ¢|g*, the value
of the optimal solution of 1|B,., g4 < R|f? is given by the smallest g for which

g (@) <R
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Chapter 3
Single Machine Problems

This chapter is devoted to single-machine agent scheduling problems. We present
most of the results for the case of two agents (K = 2), for simplicity and because
most of the results found so far in the literature apply to this case. Whenever it is
possible, we illustrate how these results can be extended to scenarios with a larger
number of agents.

In the chapter, we use the following scheme of presentation of the results. First,
at the top level, we categorize the results on the basis of scheduling criteria. Next,
for each pair of scheduling objectives, we illustrate the results separately for each
solution approach. Finally, for each solution approach, we present the results for the
various scenarios.

The chapter is composed of 17 sections. In Sects. 3.1-3.15 we present results
concerning scheduling problems with particular pairs of objective functions. First,
in Sects. 3.1-3.8, we consider the cases that include one or two objective functions
of ‘max’ type. Next, in Sects.3.9-3.15, we discuss the cases in which both
objective functions are of ‘sum’ type. We end the chapter with Sects. 3.16 and 3.17
that include, respectively, tables with summary of problems complexities and
bibliographic remarks.

3.1 Functions fiax, fmax

In this section, we consider the case in which each job J; has (in general) two
functions associated, namely fjA (C;) and ij (C;), both of which are supposed to
be nondecreasing with C;. The agents A and B are interested in minimizing the
maximum value reached by a function f;* and f} respectively.

In this case (Fig. 3.1), the reduction NONDISJOINT — BICRITERIA holds, since
NONDISJOINT can be seen as a special case of BICRITERIA in which fjk (C)) =

—oo for each job J; € J \ Tk ke {A, B}, so the three cases NONDISJOINT,
INTERFERING and BICRITERIA collapse into a single case. On the other hand,

A. Agnetis et al., Multiagent Scheduling, DOI 10.1007/978-3-642-41880-8_3, 57
© Springer-Verlag Berlin Heidelberg 2014
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COMPETING does not. Therefore, in this section, we provide results for NONDIS-
JOINT and COMPETING scenarios.

3.1.1 Epsilon-Constraint Approach

3.1.1.1 Problem 1|ND, fB < Q|f4.

We next present an algorithm that solves 1|ND, £ < Q|f4 | hence the most
general scenario. The algorithm has complexity O(n?), and can be seen as a
generalization of the classical Lawler’s algorithm (see Algorithm 5, page 49) for
the single-agent problem 1|prec| fimax With frna = maxXi<j<, fj(C;). In what
follows, therefore, we consider the problem in which agent A wants to minimize
i = MaXjeza f1(C) sothat f7 = max;ezs f°(C;) does not exceed Q.

Given a schedule o for the overall job set 7 = J4 U J2, we indicate, as
usual, with C; (o) the completion time of the job J;. We next introduce a solution
algorithm which can be applied even if precedence constraints may exist among
jobs, possibly across the job sets 74 and J . Practical situations in which this
can occur include for instance aircraft scheduling problems. An incoming flight
may carry some passengers that have to take a certain departing flight, and this
introduces a precedence constraint among the jobs, even if they are run by different
airlines (agents).

The idea of the algorithm is simple, and consists in building the schedule from
right to left, hence first deciding which jobs must be scheduled in the last positions,
and then proceeding backwards towards the beginning of the schedule. Since it does
not imply any additional complexity, we present the algorithm in the general case in
which precedence constraints exist, i.e., for problem 1|ND, prec, f,E < Q|f4 .In
what follows, welet P =3, ¢ 7 p;.

More precisely, the algorithm first decides which is the last job to be processed.
Let L be the set of jobs that can be processed last, i.e., J; € L if and only if it has
no successors in the precedence graph. Thanks to the fact that all functions f; are
regular, we know that whatever the last job, its completion time is P. So, if there is
ajobJ; € Land J; € 7% = 78\ J such that fP(P) < 0, scheduling it as
the last job is certainly the best choice, since this can only favor the remaining jobs.
Otherwise, we consider a job J, € L for which th(P) is minimum among the jobs
which are either in 74 = J4\ J% orin 74 N 7% and have £,2(P) < Q. Once
the last job has been selected, the same procedure is repeated to select the second
last job, after P has been decreased by the length of the job in the last position, and
L has also been updated accordingly. At the j-th iteration of the algorithm, the j-th
last job is selected, and so on until either all jobs are scheduled or an infeasibility is
detected. The latter occurs if only candidates from J B are left, and for all of them

2Py > 0.
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More formally, consider an instance of the single-agent problem 1|prec| fiax,
having jobset 7 = J 4y J8, where the objective function is defined as:

fmax = I,nea? fj (C] (0))
and for each ¢ > 0, let

[ ifJ; e g4

[ it J; e gAn g and fE(1) < 0
+oo ifJ; € JFand fE(1) > O

—oo if J; € J%and [P (1) < Q.

Ji@) = (3.1

With these positions, if an optimal schedule o* for problem 1 |prec| fmax has finite
objective function value f*, then o* is also feasible and optimal for 1|ND, f,B <
Q| fA . and achieves the same optimal objective function value f4 = f* .
Otherwise, if f,¥ . = oo, then no feasible solution exists for the two-agent problem.

In view of the above reduction, Algorithm 8 details Lawler’s algorithm for
this special case. At each step, L contains the jobs that can be scheduled in the
current last position, and P denotes its completion time (the latter equals the total
processing time of unscheduled jobs). Succ(j) and Pred(j) respectively denote
the sets of successors and predecessors of J; in the precedence graph. Under the

hypothesis that each fjA (t) value can be computed in constant time, Algorithm 8
requires time O (n?).

3.1.1.2 Problem 1|ND, L2 < Q|LA

max — max

For some specific agents’ cost functions, the analysis seen for problem 1|ND, nﬁx <

0|, fI{l‘aX can be simplified and, correspondingly, complexity can be decreased. This
is in particular the case if fp. = Lmax. For simplicity we describe the approach
omitting precedence constraints, which can however be easily taken into account
with no increase in complexity. A simple but useful property of this problem is the
following.

Theorem 3.1. There is an optimal solution to problem 1|ND, L5 < Q|LA in

w_hich the jobs in jA = J4 \ TE are scheduled in EDD order, and the jobs in
JE =78 \ JA are scheduled in EDD order:

Note that, when considering the problem 1|ND, L2 < Q|L4 . each job in

max

JA N T8 has length p ; but two distinct (and possibly unrelated) due dates d f’ and
d ]B , respectively for agents A and B. As observed by Hoogeveen (1996) for problem
1|BI, LB < Q|LA , also problem 1|ND, LB < Q|LA can be solved more

max max? max max
efficiently than in the case with general fi.x. More precisely, consider the three sets
JA, T8 and 74 N T8 of size ii4, ip and n 4p respectively. Sort the first two sets
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Algorithm 8 for problem 1|ND, prec, fE < Q| f4

max — max
L P:i=3crpj
2: for j € J do
3 Construct the set L of jobs that can be scheduled in the current last position
4 Construct the set Succ(j) of successors of job J;
5 Construct the set Pred(;j) of predecessors of job J;
6: end for
7
8

o Jy i=argmin{ f;(P) : J; € L}
 foas o= fo(P)

9: while (7 # @) and (fou < 00) do

10: Cy(o):=P

11: P:=P—p

122 L:=L\{J}

13 T:=7\{}

14:  for J; € Pred(h) do

15: Suce(j) := Succ(j) \ {/n}
16: if Succ(j) = @ then

17: L:=LU{J;}

18: end if

19:  end for

20:  Set Jj := argmin{ f;(P): J; € L}
210 fonax 2= max{ foax, fi(P)}

22: end while

23: return values Cj (o)

in EDD order, while for the third we have two different orderings, with respect to
the first and the second set of due dates respectively, call them EDD,4 and EDDp. In
what follows, suppose that the jobs of 74 N J# are numbered according to EDD,.
During the execution of Algorithm 8, for a given current value P of the total duration
of unscheduled jobs, we have a set of jobs in 74 N J% such that d]B + Q0 > P.
These are the feasible jobs, i.e., the jobs that can be feasibly scheduled to complete
at P. Hence, at each step the set of candidates for the last available position in the
schedule consists of:

(i) The job having largest due date among unscheduled jobs of 74,
(ii) The job having largest due date among unscheduled jobs of 77, and
(iii)) The feasible job having largest index (and therefore smallest lateness with
respect to d /') among unscheduled jobs of 74 N 77,

To efficiently select the appropriate job in case (iii), we must keep the feasible
jobs ordered with respect to their indices (and hence, with respect to EDD},), so
that the job having largest index can be extracted in constant time. When a job is
scheduled and P is updated, new jobs may be added to the set of feasible jobs, and
hence inserted in the ordered list of feasible jobs.

Note that, similar to the algorithm for general 1|ND, .8 < Q|, f4 , if there
is ajob J; € J? such that d f + Q > P, itis certainly convenient to schedule
it. Otherwise, we must resort to either the job in 74 having largest due date, or the
feasible job in 74 N J2 having largest due date with respect to EDD,.
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Fig. 3.1 Reduction graph for 1|| f2 , f.B

max’ J max

While the jobs from 74 and 7% are considered exactly once during the
algorithm, those in J AN 78 are also inserted in the ordered list of feasible jobs. The
latter operation requires complexity O(logn), so the overall algorithm complexity
is O(nlogn).

In conclusion, we obtain Algorithm 9. In the algorithm, with a slight abuse of
notation, we let 4, hp and h4p be the indices of the currently unscheduled jobs
(from 74, 7% and 74NJ® respectively) having largest index, and consequently:

* dj, is the largest due date of the unscheduled jobs from j_ 4
* dp, is the largest due date of the unscheduled jobs from J B

. dhAw is the largest due date (with respect to A) of the unscheduled jobs from

Jtngk
Example 3.1. Let consider the following 6-job instance, where jobs J; to J4 belong
to J4 and jobs J3 to Jg belong to JE.

J, L L L T T
D, 4 2 3 5 7 4
dd 14 18 19 10

dt 13 16 17 21

We have 74 = {1,2}, 14 = 2, J% = {5,6}, i =2and 74 N T = (3,4},
P = 25. Suppose that we fix Q = 2, i.e. we want LB < 2. The sequence
(J3, Ja, Js, Js, J1, J2) is represented in Fig.3.2. The constraint on Lflax < 2is
satisfied, but the value of L2 = 9 is not minimal.

Let us illustrate the execution of Algorithm 9 on this example. At the beginning
of the algorithm, no job from 72 can be feasibly scheduled at the end of the
schedule, so we have to schedule the job in JA having largest due date, i.e., J>.
The makespan of unscheduled jobs is therefore 25 — 2 = 23. Now job Js from
J?8 can be scheduled (with a lateness of 2), so the current makespan decreases to
19. This allows scheduling job Js, also from J? (and also with a lateness of 2).
Since the current makespan is now 12, F becomes non empty, in fact at this point
F = {J3,J4}. Considering 74 U F, the job having largest due date is J3, that

can therefore be scheduled to complete at 12. This brings the current makespan to
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Algorithm 9 for problem 1|ND, L3, < Q|LA

max max

: Partition the jobs into the three sets 74 (of size 714), J? (of size 1) and 74 N T8
: Sort sets 74 and 7% in EDD order

: Sort 74 N 78 according to EDD 4 and EDD

J=J4u7g"

Pi=3 jeg Pj

hA = ﬁA

hB = 1713

: if there exist jobs in J4N T8 such that ij + Q > P then
Construct the ordered set F of these jobs

10: else

1. F:=0

12: end if

13: while N # @ do

14:  if (hp > 0) and (dj,, + Q > P) then

A e

0

15: Cpy(0):=P

16: Ni=N\{J2}

17: hB = hB —1

18: P:=P—pp,

19: else

20: if F # 0 then

21: hap 1= largest index of a job in F

22: else

23: hAB =0

24: end if

25: if (b4 > 0) and (h4p > 0) and (d,jfw > dj,) then
26: Cp(0):=P

27: N :=N\{Jiy,}

28: Fi=F\{Jnyt

29: P:=P—ph,

30: Update F by adding all jobs in 74 N 7& such that df +Q0>P
31: else

32: if 14 > 0 then

33: Cp(0):=P

34: J =T \{Jji}

35: hA = hA —1

36: P:=P— Dhy

37: else

38: if iz > 0 then

39: return ‘The problem is infeasible’
40: end if

41: end if

42: end if

43:  endif

44: end while
45: return values Cj,, (0), Cp, (0) and Cp,,, (0)
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J3 J4 J5 J6 Jl J2
L 1 L] I T T T I T T T T T T T l T T T T T 7

0 5 10 15 20 25
LA, = max(9,7,—16,-2) = 9, LB = max(—10, -8, -2, —2) = —2

max max

Fig. 3.2 Solution (J3, Ju, Js, Js, J1, J») for problem 1|ND,LE < Q|L

max

J4 J1 J3 J5 J6 J2
L] L} L] L] L] L] L] | L] T L] I T T T | T T L] L] L)

0 5 10 15 20 25
LA, = max(—5,7,—7,—5) =7, LB, = max(—1,-11,2,2) =2

max max

Fig. 3.3 Optimal solution for problem 1|ND, LZ < Q|LA

max — max

9, so that J; can be scheduled, and finally J4. In conclusion, the optimal solution
represented in Fig.3.3 is (Jy4, J1, J3, Js5, Jg, J2), for which LA = 7 (attained by

max

job J»). o

3.1.1.3 Problem1|CE < Q|CA

max
Let us now consider the case in which each agent is interested in minimizing its own

makespan. In the COMPETING scenario, the following simple property holds Baker
and Smith (2003).

Proposition 3.1. In any Pareto optimal solution to problem 1|CO,CE < Q|C4 |
the jobs of each agent are scheduled consecutively.

In view of this property, 1|{CO,CE < Q|C2 is trivial. In fact, if 0 < P, in
the optimal schedule the whole set 7 B is scheduled before the whole set 74, and
viceversa if O > P. However, if release dates are present, the problem turns out to

be NP-hard (Ding and Sun 2010).
Theorem 3.2. Problem 1|CO,r;,CE < Q|CZA . is NP-hard.

max

Proof. Given an instance of PARTITION (see definition page 24), define an instance
of problem 1|CO, r;|CE < Q|C, as follows. Agent A has n jobs, of length a;

max —

and release date r;‘ =0,V € {1,...,n}. Agent B has a single job, of length 1,
having release date r? = R = % >_; a;j- A solution such that CAy <2R+ land

max

CB < R + 1 exists if and only if the instance of PARTITION is a yes-instance. In

fact, in such a solution, the job of agent B must start exactly at time R and complete
at R + 1. Hence, one has C!__ = 2R + 1 if and only if it is possible to partition all

max

the jobs in 74 into two sets of length R. O
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Theorem 3.2 implies the NP-hardness of 1|CO, r;, f.E < Q|fA . Leung et al.
(2010) show that the preemptive version of the problem can be solved in polynomial
time. Specifically, 1|CO, r;, pmtn| fB < Q|fA. can be solved in O(n?), while
1|CO, rj,pmin|LE < Q| fA canbesolvedin O(nylogn, + nglogng).

max

3.1.1.4 Extension to K Agents

The results illustrated so far can be easily extended, even for the NONDISJOINT
scenario, to the case of K agents and each agent k is interested in minimizing an
objective function of the form fX, = max, ez f In what follows, let 7~'(J;)
denote the set of agents that own job J;, i.e.

T NI =tk J; € Tl

Let us first consider the feasibility problem (see Sect. 1.3), i.e., given K values
Ql, 0s,..., 0k, the problem of finding, if it exists, a schedule o such that
'k (0) < Qk, k =1,..., K. Since the functions fjk are nondecreasing, in order

to have fjk (Cj) < Ok, C; must not exceed a certain deadline d ;, defined as
d; = max{t| f}(t) < Q. ke T'(J))h (3.2)

Assuming to have an explicit expression for the inverse function ( fjk cn, d g
can be computed in time O(K). Hence, the feasibility problem consists of finding
a schedule o such that C;(0) < d;. Once all values d; have been computed (in
O(nK)), we simply order all jobs by nondecreasing values of d i, and schedule them
in this order. If no contraint is violated, a feasible schedule is found. Otherwise,
no schedule exists for the values Q1, O, ..., Q. Hence, the feasibility problem
LND, 1 <01, f2, < 02 ..., [K < Qk|—canbesolvedin O(nK +nlogn).
Notice that the complexity of 1|CO, f1. < Oy, f2, < Qa,..., fK < Qk|—is
O(nlogn), since in the COMPETING scenario, each job belongs to exactly one agent
and its deadline can be computed in constant time.

Also, the K-agent problem 1|ND, f2 < Q,,..., fK < Qk|fL. preserves
the complexity of the two-agent case. In fact, notice that we only need to replace, in
the positions (3.1), the role of agent B with agents 2, ..., K. More precisely, we let:

fl@) iENTH(I)) = {13
fHe) NI D {1and 1 < d;

(1) =
fi® +o00 1fj\/_l(J)D{1}andt>d
—oo if1 gNT(Jj)andr < d;.
The same complexity considerations done for 1|ND, .8 < Q|fA apply,

implying that also in the K-agent setting the NONDISJOINT problem can be solved
in O(n?).
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3.1.2 Computing the Pareto Set

3.1.2.1 Problem 1[ND|P(fA., f.E)

Let us now turn to problem 1|ND|P(f4.. f.B.). As shown in Sect. 1.3, each Pareto
optimal solution can be found by solving a logarithmic number of instances of the ¢-
constraint problem. However, in this case the problem is even easier In fact, suppose
that F) is the value of the optimal solution of 1|ND, £ < Q|fA4. for some
Q. To obtain a Pareto optimal solution, we only need to solve one instance of the
symmetric problem, i.e., [|ND, fA < Fi|f.B If F, is the optimal value of such
an instance, the pair (F 1, F2) is Pareto optimal. Similarly, the next Pareto optimal
solution can be generated by solving 1|ND, f.B < F, —¢|f4 (for sufficiently
small ¢) and thereafter one instance of the symmetric problem. In this way, the
whole Pareto set can be obtained. Hence, the complexity of this task is essentially
related to the size of the Pareto set.

It turns out that the Pareto set has a polynomial number of solutions. This can be
shown following an approach originally proposed in Hoogeveen (1996) for problem
UBI|P(f,} f:25), which in this case subsumes also problem 1|ND|P(f2 ., .5 )
(Fig.3.3).

One Pareto optimal schedule is a reference schedule (defined in Sect. 1.2.1) for
agent A. This can be found solving an instance of problem 1|ND, f.B < Q| o
with O = +o0. Let F}* be the optimal value. The corresponding value F can
be found by solving the symmetric problem 1|ND, fA < F¥|f.E . (F}, FZO) is a
Pareto optimal pair.

Consecutive Pareto optimal schedules are related by a structural property which
allows showing that the Pareto set has polynomial size. Consider a Pareto optimal
schedule o having values (F1, F»), and consider the next Pareto optimal schedule
o', of values (F/, F;), with F; < F,. There must be in o at least one critical job,
i.e., a job J; such that ij (Cj(0)) = F,. For each critical job J; there exists at
least one job J; that precedes J; in ¢ and follows it in o’. More precisely, for each
critical job J; consider the set J; of jobs J; that precede J; in ¢ and are such that
f2(C;(0)) < F».Note that 7; cannot be empty, otherwise one cannot get F; < F.
Let now

Fi(j) = min {f(C; (o)}

and consider a job J;+ such that F1(j*) = max{F(j)} among all critical jobs. It
can be shown Hoogeveen (1996) that there can be no Pareto optimal value for agent
Abetween F and F;(j*), and thatif J; and J; are such that £;(C;(0)) = Fi(j*),

in the optimal solution ¢’ to 1|BI, fmax < F ()] fmax, Ji completes at C;=(0).

The schedule ¢’ is Pareto optimal if fj (Cj(a) < f] (Cj(0)). Moreover, it can
be shown that as we further increase the bound on agent B, the same two jobs cannot
overtake each other again. As a consequence, going from the ideal solution for agent
A to the ideal solution for agent B, each pair of jobs can overtake each other at most
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once, so there are at most O(n?) Pareto optimal solutions. Since each Pareto optimal
point can be found by solving two instances of the e-constraint problem, and each
requires O(n?) (Sect. 3.1.1), the whole Pareto set can be computed in O (n*).

3.1.2.2 Problem 1||P(L4, ., L2 )
It is now interesting to analyze the special case in which both agents want to
minimize the maximum lateness. In this case, problem 1|ND|P(LA LB ) can
be solved in O(n®logn), since each instance of the e-constraint problem can be
solved in O(n log n) instead of O(n?).

In turn, problem 1|CO|P(LA,,, LE,) can be solved even more efficiently, by
exploiting the property in Theorem 3.1. Notice that, in this case 74 N 72 = 0, and
hence we can restrict to Pareto optimal solutions in which the jobs of the two agents
are EDD-ordered. Given any Pareto optimal solution in the COMPETING scenario,
consider the completion time of the job that determines the maximum lateness for
agent A (critical job), and call such lateness value y. As observed in Yuan et al.
(2005), if the critical job is J,, such lateness value equals

y=Y p'+) -

i=1 i=1

for some v, and can therefore assume at most O(n?) different values. Hence, we
can compute a priori (and very simply) all values for y, letting 1 < u < ny4 and
0 < v < np. Foreach y, we can then solve the corresponding e-constraint problem
1|Cco, LB < y|L4 ., and generate a Pareto optimal solution (Algorithm 10).
Notice that we did not include the sorting phase in Alg. 10, which requires
O(nlogn). However, such phase is done once for all, so indeed, after the jobs are
sorted, solving problem 1|CO LB < y|LA onlytakes O(n) time. Therefore, the

problem 1|CO|P (LA ) can be_solved in O(n%).

max’ de

Example 3.2. To illustrate Algorithm 10, let consider the following 6-job instance,
where jobs JIA to J3A belong to 4 and jobs JIB to J3B belong to 7 &:

R S S
p;i 5 4 2 6 7 4
d; 7 9 16 9 12 17

We have P = 28, hy = ny = hp = np = 3. The Pareto optimal solutions
for this instance are S; (for y = 5) and S, (for y = 9) represented in Fig.3.4.
With sequence Sy = (J&, JZ, JA, JE, J1, J), onehas L = max(18 —7,26—
9, 28—16) = 17 and Lffmx = max(6—9,13—-12,22—17) = 5 < y. With sequence

=M IE IR T JE T, onehas LA = max(5—7,22—9,28—16) = 13
andLB —max(11—9 18—12,26—17)=9<y.0¢

max
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Algorithm 10 for problem 1|CO, L3 < y|LA

max — max
I: P:=3 hecq P

4: while 7 % @ do

5:  if (hp > 0)and (dy, + h > P) then
6: Cpy(0) =P

7 J = J\{"hg}

8: hB = hB -1

9: P:=P—pp,

10:  else

11: if 14 > 0 then

12: Cp(o):=P

13: T =T\ {n,}

14: hA = ]’lA —1

15: P:=P—pp,

16: else

17: return ‘The problem is infeasible’
18: end if

19:  endif

20: end while
21: return values Cj, (o) and C;,; (0)

S
JE JE Ji JE J3 Jg
T L T T T T T T L T L T T T T L T t
[ [ [ [ [
0 5 10 15 20 25
Sa
Jit JP J3 J3 g3 g3
T T T T T T T T I T T T I T T T I T T T I T t
0 5 10 15 20 25

Fig. 3.4 Optimal solutions for the 1|CO, LB < y|L4  problem with y = 5and y =9

max —

3.1.3 Linear Combination

Let us first consider the K -agent, linear combination problem denoted 1|CO| )", o

k . Cheng et al. (2008) have proved that this problem is strongly NP-hard when

K is not fixed and for general fX . In particular, the problem is strongly NP-hard

when fk = max Jjegk {w];- C ]’.‘} for each agent k. From the reduction graph in
Fig. 3.3, this implies the NP-hardness of all the other scenarios. Notice however

that the unweighted problem, i.e., when fX = max 1eqiiC ]]-‘}, denoted by

11CO| Y., ax Ck ,is indeed very easy. In fact, we can restrict to solutions in which
each agent’s jobs are performed consecutively, since only the completion time of
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the last job of an agent contributes to the objective function of that agent (i.e.,
Proposition 3.1 can be extended to K agents). So, we can indeed aggregate each
agent’s jobs into a single job of length P, = > Jiegk Pj- The problem is therefore

reduced to an instance of the classical, single-agent problem 1|| > w;C; in which
each job has length P and weight o, and is therefore solved by Smith’s rule (see
Sect.2.7.1) in time O(n + K log K).

Let us turn to problem 1|{CO| )", o Lfnax. In the two-agent case, the problem can
be solved in O(n 41 gn) as shown by Yuan et al. (2005). If K is not fixed, Cheng et al.
(2008) prove that the problem is at least binary NP-hard, and it is open as for strong
NP-hardness. However, if K is fixed, the situation is simpler. We next show that the
problem 1|CO| )", o Lﬁlax can be solved in polynomial time for fixed K. In this

situation, the same property already stated for the two-agent problem 1|CO, LB <

max —
Q|LA . (Theorem 3.1) holds, i.e., we can restrict ourselves to considering solutions
in which the jobs of each agent are scheduled in EDD order. As a consequence, in
any such solution, the completion time of any job equals the sum of the processing

times of the first u, u», ..., ux jobs for the K agents respectively:

K u
2.7
k=1j=1
Because of this, the number of different values LX can take is at most [, 7. To
solve problem 1/CO| )", akLﬁlax, one can therefore check the feasibility of each
K-tuple (Q1, Q», -+, Ok), where each Qj corresponds to one possible value of
Lfnax. Such feasibility problem can be solved in O(n logn), as already discussed in

Sect. 3.1.1.4. In conclusion, the optimal value of the objective function is

K
min{ Y " Ok : (Q1. Q2. -+ Q) is feasible

k=1

Since each Qy takes at most [[, nx values, the linear combination problem
1|col >, oszkmax can be solved in O(n(nin,---ng)X logn). An open problem is
to provide an algorithm for problem 1|CO| Y, o Lkmax having lower complexity.

Indeed, the same approach can be used for the 1/CO| Y, ax fX  problem,
i.e., solving a feasibility problem for each possible K-tuple (Q1, Q2.+, Qk)-.
However, since Theorem 3.1 does not apply, the number of K-tuples to be tried
out is not polynomially bounded, and this indeed results in a pseudopolynomial
complexity.

Let us now turn to the NONDISJOINT scenario. The simplest case is the two-
agent problem 1|ND|af,2 + Bf.E .. Since (see Sect. 3.1.2) the whole Pareto set can

be generated in at most O(n*), this problem can be solved in polynomial time. One
only needs to compute the value of the objective function for all Pareto optimal
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solutions, and select the best. Actually, it is an open problem to determine a more
efficient algorithm for the general problem 1|ND|af,2 + Bf.E .

In some special cases, such more efﬁcient algorlthm can be devised. For instance,
consider the two-agent problem 1|ND|aCA + BCE . It is easy to show that the
following property holds.

Theorem 3.3. In any optimal solution to 1|ND|aC
following conditions holds:

1. First all jobs in J* are scheduled, followed by J: B
2. First all jobs in J® are scheduled, followed by J*

+ BCE , one of the two

max

Proof. Let us first rule out the trivial cases « = 0 or 8 = 0, for which conditions (2)
and (1) hold respectively. Hence, @ # 0 and 8 # 0. Given an optimal schedule o,
suppose that max(cr) < max(cr) In this case, we next show that condition (1)
holds. Suppose by contradiction that in ¢ there is a job J; € JP? such that
Cij(0) < CA (o). This implies that J; is not the last scheduled job of agent B
in 0. Consider a new schedule ¢’ obtained by postponing J; so that it completes at

max(o) Therefore, CA (0') = CA (o) — p;, while Cmax(a’ ) = CB (o). Then
o’ is strictly better than o, a contradiction. A symmetric discussion shows that if

CE (o) < CA. (0), condition (2) holds. O

On the basis of this result, 1|ND|aCA + BCE can be solved by simply
comparing the values of the objective function in the two solutions obtained by
scheduling first 74 or J? respectively. (Clearly, scheduling within each set is
immaterial.). Theorem 3.3 can be generalized to K agents, by using the very same
arguments.

Theorem 3.4. Given any optimal solution o to 1|ND| )", ax Ck ., there exists an
ordering ki, ks, ... kg of the K agents such that, in o, first all jobs in J* are
scheduled, followed by all jobs in J% \ J%1, followed by all jobs in J% \ (JF U

T*),..., followed by all jobs in T \ | )X ' 7%

If K is ﬁxed this theorem allows to devise a polynomial algorithm for
LIND| Y, ot C mdx In fact, given any ordering ki, k3,...,kx of the K agents,
we can build a solution by scheduling the agents as prescribed by Theorem 34, 1e.,
first 7%1, then J%2 \ J*1, etc. The solution to problem 1|ND| Y, a, Ck . therefore
consists in finding the optimal ordering of the agents.

To this aim, one can use the following dynamic programming approach. Let S
be any subset of the K agents, and consider the problem restricted to the set 7 (S)
of jobs belonging to at least one agent of S:

J(S)ZUJk

keS
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and define 7'(S) as the total processing time of these jobs, i.e.

TS)= Y p;

JE€T(S)

Let F(S) be the optimal value of the objective function in such restricted problem.
If the last completing agent in S is agent k, its contribution to the optimal cost is
a; T (S), and the total cost is therefore

a T(S) + F(S\ {k}).
As a consequence, F'(S) can be computed as

F(§) = min{e T(S) + F(S \ {k})} (3.3)

The recursive formula (3.3) must be initialized letting F(#) = 0. When S
includes all agents (|[S| = K), we get the last completing agent in the optimal
solution as

ki = argmin{o T(S) + F(S\ {k})}
the second last agent k x—; will be obtained as
kg-1 = arg Hgn{akT(S \ ki) + F(S \{kk.k})}

and so on, backtracking the whole optimal solution.

Let us now consider complexity issues. Each 7(S) can be computed a-priori in
O(n). Each F(S) can be computed through Eq. (3.3) in O(K). Since the number of
possible agent subsets is 2%, the complexity is dominated by the computation of all
values T'(S), i.e., O(n2X).

Let us now turn to the case in which K is not fixed. In this case, somewhat
surprisingly, the problem turns out to be hard. We employ the following problem,
which has been proved strongly NP-hard in Arbib et al. (2003).

Problem 3.1 (MIN FLOW TIME GRAPH ORDERING (MFTGO)). Given an
undirected graph G = (V, E), let p be an ordering of the nodes, and foreachu € V
denote by p(u) the position of u in the ordering p. Let e; (p) denote the number of
arcs adjacent to the i-th node of the ordering p that have a position smaller than 7,
i.e., the quantity

ei(p) = {w.v) € E : p(u) < p(v) = i}
Given an integer H , is there an ordering p such that

14

flp) =" ieip) < H? (3.4)

i=1
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In the following theorem, we show that MTFGO can be reduced to the decision
version of 1|ND| ", ax Ck . i.e. to the feasibility problem:

ax?

K
1IND. ) i Cproy < Q1=
k=1

Theorem 3.5. If K is not fixed, problem 1|ND| ", o;C, k is strongly NP-hard,

max
even if all jobs have unit length and each agent owns exactly two jobs.

Proof. Given an instance of MFTGO, we build a corresponding instance of
1ND, Y, axCk. < Q|- as follows. There are K = |E| agents and n = |V|
jobs. For each node u € V we define one job, J,. For each edge (u,v) € E, we
define one agent A,,, with corresponding job set 7, = {J,, Jy,}. All jobs have unit
duration, p, = 1 for all u. We denote by C". the makespan of agent A,,. Moreover,
let Q = H and all o, = 1.

Consider an ordering p in MFTGO. As observed, e;(p) is the number of arcs
having one endpoint in the i -th node of p and the other endpoint in a node having a
smaller position than 7 in p. Such value is multiplied by i to obtain the contribution
of the i-th node to f(p). Now, let us identify the arcs with the agents and the nodes
with the jobs. Also, order the jobs in 1|ND, 211;1 axCk < Q|- as the nodes in
MFTGO, i.e., let 0 = p. Then, e;(p) = e;(0) equals the number of agents who
have both of their jobs completed when the i -th job in ¢ is processed. Since all jobs
have unit duration, the i-th job is indeed completed at time 7, i.e., C = i for all

max
A,y such that 0 (4) < o(v) = i. Therefore, since «,, = 1, we can write ¢ (o) as

Vi
p)= Y. Cuo =) ie0) (3.5)
uv:(u,v)EE i=1
and hence )", ax CX . < O if and only if (3.4) is verified. O

Concerning the INTERFERING scenario, we observe that, as a consequence of
Theorem 3.4, an optimal solution to problem 1|/ N |}, ax Ck,. is trivially obtained
by sequencing the agents from the innermost to the outermost, i.e., first Jk, then
JKk—1 \ Jk, then Jx_» \ JKk—1,..., then jA.

All the problems addressed in this section assumed that all jobs are available
at the beginning of the schedule. If nonzero release dates are present, even the two-
agent problem 1|CO, r;|aC2 +BCE is NP-hard (Ding and Sun 2010). The proof
is almost identical to that of Theorem 3.2, where one defines 8 >> «.

3.2 Functions Cpay, Y C;

In this section we address the first problem in which one agent holds a max-type
and the other agent a sum-type objective functions. The simplest such case is when
agent A wants to minimize the total completion time, and agent B the makespan
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NONDISJOINT

N

INTERFERING I | COMPETING

Fig. 3.5 Reduction graph for 1|| 3~ C;, Cpax

of its jobs. Throughout this section, with no loss of generality we can suppose that
the jobs in 7% are scheduled consecutively in any Pareto optimal solution. Hence
we assume that 77 consists of a single job JZ of length Pg, equal to the total
processing time of the jobs in 7 5.

In this case, the reductions in Fig. 3.5 hold. Notice that BICRITERIA is not shown
since the Cyy,x criterion is not relevant when applied to all jobs. In what follows we
therefore illustrate the results for the NONDISJOINT scenario.

3.2.1 Epsilon-Constraint Approach

max
numbered in SPT order, are denoted by J*, J5, ..., J,{f1 and have processing times
pf‘, pf, ceey pg‘A. A simple pairwise interchange argument allows one to establish
the following theorem.

Let us consider problem 1|ND,C2 < Q|>" C ]A. In what follows, jobs in J* are

Theorem 3.6. In an optimal solution to problem 1|ND,CE < Q| CjA, jobs in

max —
T4 are sequenced in SPT order.

As a consequence of Theorem 3.6, problem 1|ND,CE < Q|Y C ]A can be
solved very efficiently. In fact, observe that an optimal solution has the following
three-block structure. The first block contains all the jobs in J 4N 78 as well as the

first j* jobs in J* sequenced in SPT order. Job J ;’* is the job such that:

J* J*H1
Yoo m+dpt=0-Pr< > p+ D> P (0
JiegAngE i=1 JeTANTE i=1

The second block consists of job JZ. Finally, the third block contains the
remaining jobs in 74, again sequenced in SPT order. Once the jobs in J* are
sorted in SPT order and the index j* is computed by the (3.6), the optimal solution
is found. The complexity is therefore O(n4logn 4 + np).
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J3 J1 Ja Js Je Ja

0 5 10 15 20 25 t

max —

Fig. 3.6 Solution for problem 1|ND,CE < O[3 C/!

Example 3.3. Let us consider an example with n = 8 jobs and the following
instance where 74 = {J\, J», J3, J4} and T8 = {J3, J4, J5, Jo ).

Ji J] J2 J3 J4 JS J6

J
A R o A D)
pf 4 6 3 5
p¥ 3 5 2 4

If we impose Cn]fax < 19, we will first sequence J3_and then J; and J4. After
these jobs, one has to schedule the remaining jobs of 72, and finally job J,. The
solution is represented in Fig.3.6. We obtain CZ = 18 < 19and ) CjA =3+

74 12 4 24 = 4e6. o

3.2.2 Computation of the Pareto Set

Let us turn to problem 1|ND|P(}_ C;, Cimax). To generate the whole Pareto set,
one may think of starting from a very large Q, so that, from (3.6), j* = 14, and
decrease it. This yields a reference schedule for agent A, in which all jobs of agent
A are SPT ordered, followed by JZ. Decreasing Q, this solution remains optimal
until Q becomes smaller than

74
DN IE DI
j=1

JeTing®

At this point, j* = 14 — 1, i.e., the new optimal schedule is obtained from the
previous one by postponing job J; , after job JE.

We can therefore continue decreasing Q in this way, considering that, from (3.6),
for each index i, 1 < h < fn4 — 1, the optimal schedule is the same for all values of
Q such that

h h+1
Y miHpi=Pr=0< ) p'+) pi-Ps G
I, eTANTE j=1 I, eTANTE j=1

At each new Pareto optimal solution, the only difference between the new and the
previous solution is that J 2 swaps its position with the job Jh"l € J4 immediately



74 3 Single Machine Problems

NONDISJOINT

2 e

INTERFERING COMPETING |

™~

| BICRITERIA |

Fig. 3.7 Reduction graph for 1|| £, . > C/
preceding it. Therefore, the new solution can be computed in constant time and we
obtain the following result.

Theorem 3.7. There are exactly ng + 1 Pareto optimal solutions, that can be
computed in O(n4logny + npg) time.

3.2.3 Linear Combination

Problem 1|NDla )~ C'+BC.J, can be obviously solved in time O (14 logn4+n3p),
since, from Theorem 3.7, there are only 714 + 1 Pareto optimal solutions, that can
be easily enumerated.

3.3 Functions fmax, ) C;

Now let us turn to the case in which one agent has a general max-type cost
function. Notice that in this case, problem 1|ND|f4 > C ]B reduces to problem

HIN|fA > C]B. In fact, in the NONDISJOINT scenario, we can easily extend 74

to include all jobs, simply by attaching to each job J; € J% a trivial function
fjA = —o00. Such jobs can be feasibly scheduled in any position and will never

contribute to f;A . The situation is depicted in Fig.3.7.
Note however that the situation is different if we consider the problem
1IN|Y.C#, fB . In this case, INTERFERING reduces to BICRITERIA (see

max*
Fig. 3.8).

3.3.1 Epsilon-Constraint Approach

Let us consider the problem 1|ND, nﬁx <Q0|X.C jA. In the literature, some efficient

algorithms have been given for the BICRITERIA scenario (see Hoogeveen and van
de Velde 1995) and the COMPETING scenario (see Agnetis et al. 2004). We present
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Fig. 3.8 Reduction graph for 1[N |} C/, £,5

here an algorithm that generalizes both of them to solve the NONDISJOINT case,
maintaining the same complexity.
As usual, P = ) Jieg Pi is the total processing time of all jobs. Similar to

what done in Sect. 3.1, let us define a deadline d ; for each job J; € J# so that
fE(C)) = Qfor C; < djand fF(Cj) > Q for C; > d;. As usual, in the
following we suppose that each deadline d ; can be computed in constant time, i.e.,
that an inverse function is available for each ij (). If this is not the case, then

to determine d ; one must perform a binary search, which may require O(log P)
evaluations of each f”(-).

In order to solve problem 1|£,2 < Q| C jA, we can still adopt a similar
reasoning to Lawler’s algorithm (Algorithm 5), as follows. We build the schedule
from right to left. At the k-th iteration, we decide which is the k-th last job to
be scheduled. Let ¢ denote the total processing time of unscheduled jobs, i.e., the
completion time of the next job to be scheduled. The candidates are all jobs in 7
(i.e., jobs that do not have a deadline) and the jobs in J B that can complete at ¢
without violating the deadline, i.e., such thatz < d;.

From the viewpoint of agent A, the best candidate is a job from 7 2. Only if
there are no candidates in 7% that can feasibly complete at 7, we must select the
longest job from 74 that can be feasibly scheduled to complete at ¢. The algorithm
proceeds in this way until either all jobs are scheduled, or an infeasibility is detected
(because the constraint on £, is too strict).

The procedure is detailed in Algorithm 11, in which we indicate by Lp the set
of the jobs in JB that can be scheduled to complete at the current time ¢, i.e.,
Lp=1{J; € I8 :t <d;}, while Ly C J* is the set of jobs belonging to agent A
that can be feasibly scheduled attime #, i.e., Ly = JAU{J; e TANTE 11 < c?j}.

Algorithm 11 computes the optimal solution in time O(nlogn). In fact, the
complexity of the algorithm is dominated by the phase in which the jobs in J4
are sorted in SPT order and the jobs in 72 and sorted by nondecreasing deadlines
(which we assume can be computed in constant time). Thereafter, at each step the
last jobs from the two lists are considered to determine the next job to be scheduled.
This is because at the lines 5 and 8 of the algorithm, ties are broken arbitrarily.
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Algorithm 11 for problem 1|ND, f,2 < Q|- C}!

max

I Ly:=J4u{J;eg*ng?:d; > P}
2 Lg:={J;€T?:d; > P}

3:t:=P

4: while L, U Ly # @ do

5. if L # @ then

6: Choose as Jj, any jobin Ly

7 Lp:= Lp\{J;}

8:  else

9: Choose as Jj, any job such that p, = max{p; : J; € L4}
10: Ly:= LA\{J},}

11:  endif

12: Cp(o) =t

13: t:=t—py

4: Ly:=L,U{J;€eg'ngl:r<
15 Lp:=LgU{J,egB\gt:ir<
16: end while

17: if t > O then

18:  return ‘The problem is infeasible’
19: else

20:  return values Cj(0)

21: end if

‘Nij <t+ pi}
d;j <t+ pp}

However, it can be shown that giving a tie-breaking rule for the two above cases,
the same algorithm generates a strict Pareto optimal solution. More precisely, at
line 5, instead of picking any job in L g, we can decide, in particular, to choose the
candidate J; € Lp for which ij (t) is minimum. Similarly, at line 8, if there is
more than one longest job in L 4, we choose one belonging to 74, if any, or else,
one from 74 N J* for which £} (¢) is minimum.

These modifications are shown in Algorithm 12. The only price we have to pay to
have a strict Pareto optimal solution is that the overall complexity of the algorithm is
now O(n?), since the selection of the next scheduled job now requires O(n), due to
the computation of ij (t). Notice that Algorithm 12, in the BICRITERIA case and
when fB = LB _isthe well-known Van Wassenhove-Gelders algorithm (Van
Wassenhove and Gelders 1980).

With minor modifications, Algorithm 11 also solves the K-agent problem
denoted 1|ND, f2.. < 02, fru < Q3. fux = Qx| ) C} (with no guarantee
of finding a strict Pareto optimal solution) (Agnetis et al. 2007). The only difference
is that the role of agent B is now played by the set of agents 2, 3, ..., K. In
fact, we can treat all the jobs from 72 U J° U ... U JX as if they belonged to
a single agent, and thereafter apply Algorithm 11. The deadline d; of each job
Ji € J*UJ?U...U JX can be computed as in (3.2), where J~'(J;) is now
defined as

Ty =tk:J e Tk #1}
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Algorithm 12 for finding a strict Pareto optimal solution for problem
1IND| Y C ]A B

? J max

I: Ly:=J40{J; €7 ng?:d; > P}

2 Lp:={J;€F%:d; > P}

3:t:=P

4: while L, U Lz # @ do

5.  if Lp # 0 then

6: Choose as J, any job such that £,2(r) = min{ij (t):J; € Lp}
T Lg:=Lg\{/}

8: else

9: A={Jr : pr =max{p; : J; € Li}}

10: if A\ J% # 0 then

11: Choose as Jj, any job from 4 \ J5

12: else

13: Choose as J, any job such that f,5(r) = min{ij (r): J; € A}
14: L,:= LA\{Jh}

15: end if

16: Cy(o) =1t

17: t:=t—p,

18: Lp:=LgU{J; € J8\J P <d; <t + py}
19: Lii=L,U{J, €T NT8:1<d; <t+ pu}
20: end if
21: end while
22: if t > O then
23:  return ‘The problem is infeasible’
24: else
25:  return values Cj(0)
26: end if

In conclusion, the deadlines of all jobs can be computed in time O(nK) and the
overall complexity then becomes O(nK + nlogn).

Wan et al. (2013) consider the preemptive version of the problem when release
dates are present, i.e., 1|CO,r;,pmm, fE < Q| CjA, and show that it is NP-
hard.

3.3.2 Computing the Pareto Set

Let us now consider problem 1|ND|P( fmax. 2 C;). For simplicity, and with no loss
of generality, we slightly modify the instance of 1|ND|P( fmax. »_ C;), attaching
a dummy function f# = —oo to each job J; € J*. In this way, 7% = J.
We follow a similar approach to Hoogeveen and van de Velde (1995) for problem
llBllp(fmaxs Z C])

As we have seen in the previous section, a strict Pareto optimal solution can be
generated by means of Algorithm 12 in O(n?). To generate the whole Pareto set,
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one can employ Algorithm 1, which consists in solving instances of 1|ND, fnﬁx <
o|>.¢C ]A for decreasing values of Q. Hence, to determine the complexity of
problem 1|ND|P( fmax, y_ C;), we need to investigate the size of the Pareto set.
Note that the interval of values of interest for Q can be found as follows. First, an
upper bound QU2 on the largest value of nﬁx in a strict Pareto optimal solution can

be obtained by sequencing all jobs in 74 in SPT order, followed by the jobs in 7 &
in any order. Hence, we apply Algorithm 12 to 1| .2 < QUB|Y"C jA and obtain a

max
strict Pareto optimal schedule o577, Note that it is a reference schedule for agent
A. Similarly, the minimum value Q7 of interest for O can be found by solving an
instance of the single-agent problem 1|| fiax, including all jobs. The corresponding
schedule o7} is a reference schedule for agent B.
Given any schedule o, we can associate with any two jobs J; and J;, an indicator
function §;; (0') defined as follows:

1 if J; € J4 precedes J; € 4 and p; > p;
§ij(l0) =191 ifJ; € T8 precedes J; € J4 (3.8)
0 otherwise

and we also define

Al)= ) 8;(0)

J,‘,J/'EJ

Notice that whenever §;;(0) = 1, jobs J; and J; are sequenced in o in reverse
order than in o577 . Therefore, we can view A(c) as a “measure” of the distance
between schedules o and 0577 . More formally, we want to show that A(o) is strictly
decreasing as we move across Pareto optimal schedules, going from o to oSPT,

Let us introduce an operation that transforms a schedule into another.

Definition 3.1. Operation move(i, j) transforms a schedule & in which J; pre-
cedes J; into a schedule o such that:

(@) If J; € J4, Jj € J* and p; > pj, 0 is obtained by swapping jobs J; and J;
inmw
(b) If J; € 7%, 0 is obtained by postponing .J; immediately after J jinmw
Notice that the operation move(i, j) is not defined if J;, J; € J4but p; < p;
orif J; € 4 and J iedJ B The following lemma holds for any schedule obtained

from another schedule by means of a move operation.
In what follows, for ease of notation, we write Y C ;4(0) to indicate

ZJ]‘GJA C] (U)

Lemma 3.1. If o is obtained from w performing move(i, j), then either
e A(o) < A(m) andZCjA(o) < ZCJA(N), or

s A(o) = A(m) andZCjA((f) = ZCJA(JT).
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Proof. Consider a schedule 7 in which J; precedes J;. We consider separately cases
a and b of Definition 3.1.

In case a, J; € J4 J; € J4 and p; > p;. In this case, §;(mw) =
if p = pj,and §;;(w) = 1if p; > p;. The operation move(i, j) swaps J;
and J;. Therefore, the difference between A(w) and A(o) only depends on J;,
J; and the jobs scheduled between them. Notice that §;;(c) = 0. If J, is an
arbitrary job scheduled between J; and J;, it follows from the definition of § that
8ir(mw) + 8;j(m) = §;:(0) + 8;i(0). Hence A(o) < A(rr), and the equality holds if
and only if p; = p;, in which case 3~ C/(0) = }_ C;!(n).

Let us now consider case b, i.e., J; € JB. In this case, the operation move(i, j)
postpones J; immediately after J;, yielding §;; (o) = 0 and also, if J; is an arbitrary
job scheduled between J; and J; in m, §,;(0) = O for all . Since the relative
ordering of all other jobs is unchanged, A(o) < A(x). In particular, A(c) = A(x)
if and only if only jobs from 7% have been involved, ie., J, € J% for all .
However, in this case no job from 74 has changed its completion time, and therefore

Y Cjl(o) = X Cf (). o
We are now in the position of establishing the key result, which relates Pareto
optimal schedules to function A.

Theorem 3.8. Consider two arbitrary distinct Pareto optimal schedules o and 7.
Ifwe have ) CjA(cr) <> CjA (), then A(o) < A(r).

Proof. Since o and 7 are strictly Pareto optimal, £.2 (o) > £ (7). We will show
that o can be obtained from schedule 7 by a sequence of move operations.

Compare the two schedules o and 7, starting from the end. Suppose that the first
difference between the schedules occurs at the k-th position; J; occupies the k-th
position in o, whereas job J; occupies the k-th position in 7. We distinguish three
subcases.

1. J; € g4 J; € J4. Since f.B (0) > f.B (), when Algorithm 12 is run with
0= mM((f) both jobs J; and J; could be feasibly scheduled in k-th position.
If J; is preferred to J; in 0, it means that p; > p;. We can then apply move(i, j)
to 7 and obtain a schedule 7’ in which jobs J; and J; are swapped. Note that
Ci(0) = C;('), while all other jobs between J; and Jj in 7r have decreased
their completion time with respect to 7. Hence, f,2 (o) > s B ().

2. J; € JB. Applying move(i, j) to m we obtain a schedule 7’ in which J; is
moved after J;. Note that C;(0) = C;(n’), while all other jobs between J;
and J; in 7’ have decreased their completion time with respect to 7. Hence,

mdx(o-) = mdx(n/)

3. J;i € g4, J; € JB. This subcase cannot occur. In fact, since f,8 (o) > f.B (7),
it would have been feasible to select J; to complete at C; (o) when running
Algorithm 12 with Q@ = f2 (o), and hence, J; would have been selected
instead of J;.

max

In all cases, we obtain a schedule 7’ which is identical to o for the jobs in
k-th, k + 1-th,..., n-th position, and such that f,2 (o) > f2 (x). Moreover,
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from Lemma 3.1, A(x') < A(x). The above argument can therefore be repeated
replacing = with 7/, and so on until we reach schedule o. Note that going from 7
to g, the values of A are nonincreasing, and since Y  C jA(o) <yC jA(rr), from
Lemma 3.1 at least one move operation causes a strict decrease in A, and the thesis
follows. O

At this point we are in the position of proving a result on the number of Pareto
optimal schedules. In fact, from Theorem 3.8 it turns out that two Pareto optimal
solutions must have different values of A. We only need therefore to compute the
maximum value A(c) can attain, given that the minimum value is A(037T) = 0. It
is easy to verify that the maximum value is attained when, in a reference schedule
for agent B, all jobs in 7 # are sequenced first, followed by jobs in 7* in LPT order.
In this case

A= naiip + M +1 (3.9)
and hence there are O(n?) Pareto optimal solutions. In conclusion, the following
result holds.

Theorem 3.9. Problem 1|ND|P( fmax, Y C;) can be solved in O(n*).

Hoogeveen and van de Velde (1995) show that the bound is tight, even in the case
of BICRITERIA (for whichny = ng = nandng = 0).

It is interesting to observe that the discussion done for two agents does not
trivially extend to the case of K agents. In fact, consider three agents, one holding
> C; and the other two fiax. The structure of any strict Pareto optimal solution is
such that jobs of J4 are interleaved with blocks of jobs of 72 U J3. Depending
on how are the latter jobs sequenced within each block, we can get various distinct
Pareto optimal solutions. So, even for a fixed position of the jobs in 74, there can
be a large number of Pareto optimal solutions.

3.3.3 Linear Combination

As a consequence of the results in Sect. 3.3.2, for two agents the linear combination
problem 1|ND|afmax + B> C; is solvable in O(n*), since Algorithm 12 runs in
O(n?) and, from (3.9), there are O(n?) Pareto optimal solutions.

3.4 Functions ) w;C;, Cax

Let us now consider the situation arising when agent A wants to minimize the
weighted sum of completion times.
We observe that in this problem, 1|ND,CE < Q| Zw‘;‘C ; can be seen

as a special case of 1|/IN,CJ, < Q|> w/C; in which all jobs in J?® have

max —
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Fig. 3.9 Reduction graph for 1| Y- w; C;, Cinax

w; = 0. (This reduction actually holds, more generally, for 1IN,
0] Zw C;). Obviously, 1|IN, ZWJCB < Q|CA . reduces to the single-agent
problem 1|| > w;C;, as well as 1|BI,CE. < Q| Y w; C]A, so BICRITERIA is not

reported in the reduction graph for 1|| Y~ w; C;, Cmax (Fig.3.9).

Il'lch

3.4.1 Epsilon-Constraint Approach

We next address problem 1|CO, C max < Q| ZWAC 4 and show that even this
special case is NP-hard.

A key result for the unweighted case is that the jobs in J* are SPT ordered in
any optimal solution (Theorem 3.6). One might think that, similarly, in any optimal
solution to 1|CO,C..,, < 0| ZWAC 4 the jobs in J* are ordered according to
Smith’s rule, i.e., by nondecreasing values of the ratios p;‘ / w;‘. Unfortunately, it is
easy to show that this is not the case in general. Consider the following example.

Example 3.4. Let consider an instance of 1|{CO,C2 < Q| WACA Set J4 con-

tains four jobs J/4, J2 , J3 LA 4 with processing times and We1ghts below Set 78
consists of a single job JIB having processing time pf = 10, and let Q = 20. The
best solution in which the jobs of 74 are WSPT-ordered is obtained by sequencing
the jobs of J* by Smith’s rule and then inserting J2BI1 in the latest feasible
position. By doing so, one obtains the sequence o = {J/, JIB, JzA, J3A, Jf}, with
> wlCH(0) = 9%6+7 21 +4%24 4 5% 28 = 437. The optimal solution is in
turn o* = {JA, I JE, IS I, with Zw;’C]A(o*) =9%6+5%x10+7 %25+
4 %28 = 391. 3

ma
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Indeed, we next show that 1|CO,CE < Q|Y w;‘ C ]A is binary NP-hard. The

max —

reduction uses the well-known NP-hard KNAPSACK problem (see Sect. 2.2.2).
Theorem 3.10. Problem 1|/CO,CE < Q| ZWACA is binary NP-hard.

Proof. The details can be found in Agnetis et al. (2004), we give here a sketch of
the proof. Given an instance of KNAPSACK, we define an instance of 1|CO, C2_ <

max

0] Zw;‘CjA as follows. Agent A has n jobs, having processing times p! = a;

and weights wl’-‘1 = w;,i = 1,...,n. Agent B has only one very long job, having
processing time C = (3__, w])(zn_la]) Also, we set Q = b + C. Now,
consider a feasible schedule o for 1|/CO,CE < QY w;C jA, and let S denote
the jobs of 74 scheduled before J in o. Note that job J? affects the objective
function of agent A by the amount

Z WjC

JjGJA\S

Since C is very large, in the optimal solution the total weight of the jobs
scheduled after J IB is minimum, i.e., the problem consists in maximizing » Jes Wi
Since such jobs have to be scheduled in the interval [0, C], this is equivalent to
solving the original instance of KNAPSACK. O

We next show that 1|ND,CE < 0|} w;‘ C jA can be solved in pseudo-
polynomial time by means of a dynamic programming algorithm. For illustration
purposes, we consider all jobs in J4 numbered in WSPT order. Also, we first
suppose that 7% = @ and later on, we show how to modify the algorithm to account
for the case in which 7% = @ (i.e., for the problem 1|[IN,C2 < Q| Zw;‘ CjA).

It is easy to verify that in general the structure of an optimal solution to
1IND,C.. < Q| Zw;‘C jA consists of three blocks, as follows. The first block

contains all jobs in 74 N 7% plus some jobs from J4, sequenced in WSPT order.
The second block is formed by all jobs in 7 Z (in any order). Finally, the third block
contains the remaining jobs from J4, sequenced in WSPT order. Since the jobs in
J % only contribute to C_, we can regard them as a single job J ZB of length

max?
B
Z Dj

JjEjB

de

Note that the completion time of J, ZB is CB . We adopt a dynamic programming
approach described in the following. Let F'(k,?,%;) be the optimal value of a
subproblem restricted to the first k jobs in 74 plus job J. (B, in which the machine
continuously works between 0 and 7, it is idle from #; to #,, and JZB starts at 7,
(Fig.3.10). Note that this means that each job in J* is either processed within 0
and 11, or after t, + pf. In particular, because of the WSPT ordering, in an optimal

solution to such restricted problem, either job J; € J A completes at time #1, or it is
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JAN JE plus remaining jobs
some jobs from J 4/ from J47
JP
0 ty ta cB t

max

Fig. 3.10 Tllustration of the dynamic programming algorithm for 1|ND,CE < Q|3 w;l C jA

max —

the last job in the schedule. Clearly, certain boundary conditions must be enforced,
namely:

e F(0,0,) =0
e F(0,1;,1;) = 4ooift; > 0, since the machine must be working between 0 and ¢,
e F(k,t,h) = +0ifty <Oort; >t

o Fk,t1,t) = +o0ift, > Q — pf, since in this case C 2

ax Would exceed Q.

If none of the above boundary conditions hold, the value F(k,t,t,) can be
computed by means of a recursive formula. Here we must distinguish two cases,
depending on whether (i) J; € J4 N 7 or (i) J; € J*. Let us first consider case
(). Jx can only be scheduled in the first block. Due to WSPT, J; is the last job of
the block, completing at #;, and therefore:

F(k,ti,h) = F(k — 1,0t — pi, 12) + witty (3.10)

Consider now case (ii). In this case, Jj is scheduled as the last job of either the
first or the second block. In the latter case, it completes at time pf 4+ (t—1)+

lezlpj, so that:

Fllkotr 1) =min {F( = 1,1 = pe, ) + wit,

k
F(k—l,tl,t2)+wk(pf+(tz—t1)+2pj)} G.11)

J=1

Since the optimal schedule has no idle time, it must be searched among solutions
corresponding to values of F(k,1, 1) having t; = t,. In conclusion, the optimal
value of the total weighted completion time for agent 4 is

U}in{F(”,ll,ll)}
1

So far we assumed J B # 0. 1f JE = @, we call J; the job in g8 having
smallest ratio w; / p; (i.e., the largest index). This job plays the same role that was
played by the block 7 ? in the previous case, and this is why we use the same index
£. In fact, J is the job scheduled last among the jobs of 7 in an optimal solution,
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max- HHOWEVET, since now J® = @, we must pay attention to
the fact that J; also contributes to the objective function of agent A. Since it starts
at 1, its contribution to the objective of agent A is wy(f; + p¢). In conclusion, when
JP = @, we can apply the same dynamic programming approach (3.10)—(3.11),
provided that:

 The job J; ranges in 74\ {J¢},
* F(0,0,12) = welt2 + po).

thus completing at C 2

Let us now turn to complexity issues. Once the jobs in J* are ordered, the
computation of each value F(k,t,t,) can be done in constant time. Considering
that for all ¢, 1, it holds t; < t, < Q — p¢, we have the following result.

Theorem 3.11. The DP algorithm (3.10)—(3.11) solves problem 1|ND,CE <
0| Zw;’CjA in O(n4Q?) time.

A different exact approach to 1|ND, C2, < Q] Y- w/ C;" exploits the properties

max

of a Lagrangian bound. This is illustrated in the following section.

3.4.1.1 A Lagrangian Bound

In what follows we assume that the problem has a feasible solution (i.e., we assume
that Z,/_GJB pj < Q), and we number the jobs in J4 according to Smith’s rule,
i.e., for each pair of jobs J4, J]A € J4 suchthati < j, it holds pi/wi < p;’/w‘;.

Denoting by S the set of permutations of all jobs in 7, we can formulate problem
1IND,CE < Q] Zw‘]f‘C]A as follows:

Find z* = min{ 3 w;‘c,(a)} (3.12)
T peq
subject to C2 (o) < Q (3.13)
Ci(o)<CE (0), VJ; € T®

variableso € S

Relaxing constraint (3.13) in problem (3.12), we get the Lagrangian problem:

L) =min{ 3 wiCi(0) +A(Chu(0) = 0):
JiegA

Cj(0) = CL\(0). J; € 7% (3.14)
The Lagrangian dual of problem (3.12) is the following:

L") = max{L(A); (3.15)
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Fig. 3.11 Lagrangian function L(A)

In this section we will see that Problem (3.15) can be solved very efficiently.

As recalled in Sect.2.6.2, L(A) is a concave piecewise linear function in the
variable A > 0, and the values of A in which the slope of L(A) changes are called
breakpoints. Note when A = 0, the optimal schedule o (0) to (3.14) is obtained
by scheduling all jobs of 7 in WSPT order, followed by the jobs in 7% in any
order. If L(A) is a monotonically nonincreasing function, its maximum is achieved
for A = 0, which means that the schedule ¢ (0) is feasible, and therefore optimal,
for the original problem (in fact, the slope of L(1) implies that C2 _(5(0)) < Q).
Hence, we rule out this trivial case from further consideration.

In the non-trivial case, the optimal value A* is obtained at a breakpoint in which
the slope of L(A) turns from increasing to non-increasing (see Fig. 3.11). Moreover,
for all values of A between two breakpoints, the same schedule o (1) is optimal for
the Lagrangian problem (3.14). Therefore, the slope of each segment is given by
(CE (5(1)) — Q). In other words, a positive slope corresponds to a solution of the
Lagrangian problem (3.14) that is infeasible for the original problem (3.12), while
a nonpositive slope is corresponds to a feasible solution. Notice that in a breakpoint
A, one has two different schedules (A — ) and (X + €) achieving the same
optimal value L(A) of the Lagrangian problem. Since, for increasing A, the quantity

CB (o(1)) is nonincreasing, the optimal solution A* of the Lagrangian dual is
achieved at a breakpoint in which there are two optimal schedules of the Lagrangian
problem (3.14), achieving L(A*). One of these schedules (the optimal schedule for
the Lagrangian problem with A = A* — ¢) is infeasible for (3.12), while the other
(the optimal schedule for the Lagrangian problem with A = A* 4+ ¢) is feasible
for (3.12). This condition is, in fact, necessary and sufficient for characterizing A*,
as we next show.
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The Lagrangian problem (3.14) is in the format of the 1|ND|o > w;‘ C jA +BCE
problem, with @ = 1 and § = A. As it will be shown in Sect.3.4.3, an optimal
solution to this problem has the following structure. There is a job J, hA e J4 such
that first all jobs in {JjA e J4:j <hyu(J4nJP) are scheduled in WSPT order,
then all jobs in 7 (in any order), and finally all the remaining jobs in 7 * in WSPT
order. Clearly, such schedule is feasible if and only if:

dopi+ ) p<0 (3.16)
JhegA Jjegs
Jj<h

Recalling that the optimal value A* for the Lagrangean dual is obtained at a
breakpoint in which the slope of L(A4) turns from increasing to non-increasing, in
order to find A* one only needs to find the job J, hA € J* such that:

opt 2 p=0< 3 o pt )b (3.17)

J/AejA JieJgh 1;46«7’4 Jjegh
Jj<h Jj=h

Let 0j, and o, be the two schedules associated with the breakpoint A*. The
feasible schedule o; is obtained from the infeasible schedule oy, by simply extracting
job J hA and inserting it immediately after J 2. This way, C2 (o) < Q. Since both
schedules are optimal for the Lagrangian problem with A = A*, 1* can be simply
obtained by solving the equation:

D wiCi(on) + A (Ch(0n) — Q) = Y wiCi(o}) + A*(CE (o)) — Q)

JiegA JjegA
i.e., observing that C2 (o)) — CE (o4) = pi,

A A
_ ZJ./EJA w;Cj (03) — ZJ,EJA w; Cj(on)

Ph

/X*

Algorithm 13 summarizes the steps necessary for the computation of A*.
In Algorithm 13 we assume that problem (3.12) has a feasible solution (i.e.,
3 Jegn Pj < Q) and it is not trivially solvable (i.e., 0(0) is infeasible for the
original problem (3.12)).

Algorithm 13 can still be used, with minor modifications, even if some jobs of
J4 are constrained to precede and some other jobs are constrained to follow the
last job in 7B, In Agnetis et al. (2009b), such modified algorithm is used to derive
lower bounds at the nodes of the branch-and-bound tree, in an exact approach to
the solution of 1|/CO,C.,, < Q| Y w/C;'. In this approach, the branching rule

max —
constrains the jobs in 74 to either precede or follow the jobs in 72 (which, in the
COMPETING case, can be treated as a single job).
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Algorithm 13 for the Lagrangean dual of 1|ND|C B < o w;’ C;

max —
I hi=min{j : J; € T4 Y cqm pi + X ezt pi > O}
i<j

2: Create schedule oy, by scheduling first all jobs in {J; € JA:j<h}u (71N J%) in WSPT
order, followed by jobs in 72 in any order, and by the remaining jobs in 74 in WSPT order
: Create schedule o] from o, by moving J;, immediately after the last job in 72

A= (g eqa wiCi(op) = Xy e qa wiCion)
D L) 1= Xy e qa Wi Ci07) + A (Ci(07) — Q)
: return L(1*)

o v AW

3.4.2 Computing the Pareto Set

Let us now consider the problem of enumerating Pareto optimal solutions.
We next show that the number of Pareto optimal solutions is in general not
polynomially bounded, even in the COMPETING scenario, problem denoted by
1|C0|P(ZW4C;1,CB

J max/*

Example 3.5. Let consider an instance of 1|CO| )" w;‘ CJA, CcB

max?

in which agent B
has a single job J IB of unit length, while agent A has n 4 jobs. For each job J; € J4

(i =1,2,...,n4), pft =w =271 We first observe that for every schedule, the
quantity
na
cf+> wich (3.18)

i=1

is constant and does not depend on the schedule. In fact, in (3.18) the completion
time of job JlB is summed to the other completion times with coefficient 1, which
can therefore be regarded as a unit weight. Since p# = 1, we have that p; /w; = 1
for all jobs, including J 2, and as a consequence any schedule yields the same value
of the sum of (3.18). This value can be computed, for example, by considering the
sequence J2, J, J3', ..., JA  In this sequence, the completion time of each job
J#is 2/, and therefore C# + Y /4 wiACA =1+ )74 2%,

Now, observe that for each integer x from 1 to 2"4, there is a subset S(x) of J 4
having total length x — 1. Consider the schedule consisting of S(x) followed by J}
and thereafter by 74 \ S(x). In this schedule, CZ = x, and hence ) /2, w/CA =
1+ 374,271 — x. Clearly, for each x = 1,...,2"4 we obtain a different Pareto
optimal solution. o

3.4.3 Linear Combination

Let us now turn to the linear combination problem. The COMPETING case
1|COla Y- wiC/ + BCJ | is easy. In fact, since all jobs in J” are scheduled
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consecutively in an optimal solution, we can merge them into a single job J lB of

length > pf , completing at leax. The problem then reduces to an instance of the

single-agent problem 1|| Y~ w; C; in which w; = ocw;.1 forJ; € J4and w; = B
for J; = J . The complexity is therefore O(n logn).

We next analyze the INTERFERING case 1[N o) w;‘ CjA + BCE , and then
discuss how the approach can be generalized to the NONDISJOINT scenario
1|NDla Y- wiC 4 BCE ..

Consider an instance of 1|/ N |o ) w‘]f’ C]A + BCE (remember that 72 € J4).
In what follows, we assume that the jobs in J B are numbered in WSPT order from
Ji to J,,; and that the jobs in J* are numbered in WSPT order from J,, s+1t0 Jy,.
Observe that J,, is the last scheduled job from 72 in an optimal solution, so that
its completion time equals C2_. In what follows we let

max*

np
Wi =Y w (3.19)
h=j

np
Pj:ZPh

h=j

The values W; and P; represent the total weight and, respectively, total processing
time of the last (np — j + 1) jobs of 72 in the WSPT order.

Theorem 3.12. [n an optimal solution o for problem 1|IN|a ) w;l CjA +pCE

1. All jobs scheduled up to J,, (including J, ) are in WSPT order
2. All jobs scheduled after J,, are in WSPT order
3. All jobs in J* are in WSPT order throughout the schedule.

Proof. A simple interchange argument allows to establish points 1 and 2. We next
prove point 3.

Given an optimal schedule o, let J; € J* be the job following J,, , Ino. Let J
be the last job in 74 before J,, - Between Ji and J,, there are in general other jobs
from 75, all consecutively scheduled. Let J r be the first such job. Now consider
the block of jobs [J/, ..., Ju,] (all belonging to J®), having total processing time
P and total weight Wy, and let ¢’ be a schedule obtained from ¢ by moving Jj
after J,, ,. Going from o to ¢’, the completion time of Jj increases by Py, while the
completion time of each job in the block decreases by pi. The difference between
the objective 1values of ¢’ and ¢ is therefore

aw Py — (@Wy + B)pi
Since o is optimal, such difference must be nonnegative, i.e.:

Pk Py
aWy + p

3.20
v (3.20)
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Similarly, consider a schedule o” obtained from o by moving J; before J.
Going from o to ¢”, the completion time of J; decreases by Py, while the
completion time of each job in the block increases by p;. The difference between
the two objective values is therefore

(Ole + ﬁ)pj - aw;‘ Pf

again, since o is optimal, it must hold:

P .
U (3.21)
aWy +B = aw’
and hence, from (3.20) and (3.21),
P Pr_p (3.22)

awd T aWr+B T Ole»l

which shows that also the jobs in 7* are WSPT ordered throughout the whole
schedule. O

Theorem 3.12 completely describes the structure of an optimal solution. In fact,
all we need to decide is the position of J,,, within the jobs of J*, ordered by WSPT.
This allows to solve 1|/ N|a ) w;-‘ C jA + BCE by means of the following simple
algorithm, in which we let f(0) =a ) ;¢ 74 w;‘ CjA (0) + BCE (o).

Let oy be the schedule in which all jobs of J# (in WSPT order) precede all
jobs of JA (in WSPT order), and let o7 be the schedule obtained from oy inserting
job Jy, 41 between Ji and J,, according to WSPT. Now leto; (i = 2...714) be
the schedule obtained from o;_; inserting job J,,4; between J,,4+;—1 and J,,,
according to WSPT. If J ;s denotes the job of J B that immediately follows J,, , +; in
oi, the value of f(o;) can be computed as:

floi) = f(oi-1) + Ol(I/prnB+i - W,:lB_q_i Pf) + ,Bpn3+l (3.23)

Once all values f(o0;) are computed, one simply needs to pick the best. The
procedure is summarized in Algorithm 14, in which J4 and J2 are supposed
WSPT-ordered, and where “|” indicates the concatenation of two subsequences.

Theorem 3.13. Given the WSPT-ordered sets J* and J B Algorithm 14 correctly
solves problem 1|ND|a w;-‘ CjA +BCE in O(n). If 74 and J® are not ordered,
the complexity is O(nlogn).

Proof. Theorem 3.12 specifies the structure of an optimal schedule. Schedules
00,01, ...,0,, are the only schedules having such structure. Since Algorithm 14
selects the best among them, its correctness follows. Note that if p,,+i/ w;’B >
Dng/ w,fB, schedule o; (and hence also 0i41,...,07,) is certainly worse than 0,1,
so one can avoid generating it (line 6 in Algorithm 14).
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Algorithm 14 for problem 1|/ N 3~ ;¢ 74 wiC/ + BCE

1: oy := T8

2: oy := g4

3: Compute all values W;, P; via (3.19)

4: 0¢ := oyxloy

5: 0% :=o0y

6: fori = 1tony do

T if p}'lB*‘rl'/Wt{‘1 = an/WﬁB then

8: Remove J,,,1; from oy

9: ifi = 1 then

10: Insert J, ;4 between J; and J,,, in oy, according to WSPT
11: else

12: Insert J,,4+; between J,,1;—; and J,,, in oy, according to WSPT
13: end if

14: Choose as J the job in J8 following Jugti

15: o; :=oyloy

16: f©0:) := f0i—1) + @Ws pugti = wio i Pr) + BPug+i
17: if f(0;) < f(c*) then

18: o* = o0;

19: end if
20: end if
21: end for

22: return final schedule

Turning to complexity issues, we observe the following two facts.

* Considering that W; = W, + w;‘ and P; = P;41 + pj, at line 2 all these
values can be computed in O(np).

* The main cycle of Algorithm 14 is executed 71 4 times. In order to correctly insert
job Jyz+i in oy (lines 9 and 11), and hence find J 7, ox is scanned starting from
Jug+i—1,so that all jobs of J B are considered at most once throughout the whole
algorithm. Hence, the complexity of the whole cycle is O(ii4 + np).

Considering that, at line 15, each f(o0;) can be computed in constant time
through (3.23), and that n4 + np = n, we conclude that, once the two sets J4
and J? are WSPT-ordered, the optimal schedule can be found in O(n). Hence,
if 74 and 7% are not ordered, the whole complexity is dominated by the sorting
phase, O(n logn). O

Finally, we observe that 1|ND|o )" w;‘C ]A + BCE can be easily reduced to
1[IN|a )" w;’ C ]A + BCE . Simply, all the jobs in JZ (which only contribute to
CB ) can be scheduled contiguously, and therefore behave as a single job of J%
of length given by the sum of their processing times, and weight zero. Actually,
the same approach can be used to solve the K-agent case in O(nlogn), in which
H agents hold the weighted sum of completion times, and the other K — H the
maximum completion time.
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3.4.4 Approximation

Here we report on some approximation results for 1|ND, C max < Q] ZWAC 4
We refer to the basic concepts about approximation introduced in Sect. 2 4. 2
more specifically we make use of the type II approximation concept. First of all,
we recall that the schedule o produced by Algorithm 13 in Sect. 3.4.1.1 solves the
Lagrangean dual and is feasible for 1|ND,CEZ < Q| wA C; 4. One may therefore
question how good is o, for the two agents. In what follows recall that the jobs of

J 74 are numbered in WSPT order, and /4 is such that

h:min{j:JjAGjA,PB+ Z pi > 0}

Jdeg
i<j

Also, we recall that Pg and Pp denote the total processing time of the jobs in
J® and T2 respectively. In particular, the quality of a schedule for agent k can be
expressed with respect to a reference schedule o* (Sect. 1.2.1) for that agent. From
the viewpoint of agent B, since o;, is feasible, Cmdx(crh) < Q, while in the reference
schedule o2, obviously CZ_(08) = Pg. Hence, letting B3 = Q/ P, the schedule
is B p-approximate for agent B.

Let us now consider agent A, for which the reference schedule o is obtained
sequencing all jobs in 74 in WSPT order. For each job in J*, we next compare
Cj(0}) with C; (). If J; € TANJTE,C;(0}) < C;(c™), since all jobs preceding
J; in o}, certainly precede it also in the reference schedule o (while viceversa may
not be true). Consider now J; € JA. If j < h,ie., Cj (CIA) < Q — Pp, then
its completion time is the same as in the reference schedule, C;(0;) = C; (o). If
j =h,Cj(0}) = C;(0) + Pp. Since, by (3.16),

Cj(C’A) > Q- Py
one has

GO _yy Py P Q.
Cj(0?) Cjle?) Q—-Psy Q-—Pp

so that, in conclusion, the following result is proved.

Theorem 3.14. The feasible schedule o, found by Algorithm 13, that solves the
Lagrangean dual of problem 1|ND,CE < Q| Zw;leA, is (B1, B2)-approximate,
where
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NONDISJOINT

// \\x

INTERFERING COMPETING

T
.

e

BICRITERIA

Fig. 3.12 Reduction graph for 1|| }-w; C;, Luax

and

Finally, another approximation result has been given for the COMPETING case
11co,cE < 0> w‘]f’ C ]A. For this case, a strongly polynomial FPTAS is provided

in Kellerer and Strusevich (2010). It is based on a quadratic knapsack formulation
of the problem, and has complexity O(n®/e?).

3.5 Functions ) w;Cj, Lyax

In this case, NONDISJOINT is a special case of BICRITERIA. In fact, if we attach a
due date d; = +oo0 to all jobs in J*, one can incorporate them in 7 2. Similarly,
one can define a weight w; = 0 for all jobs in J, and hence incorporate them in
J*. We therefore obtain the reduction graph in Fig. 3.12.

3.5.1 Epsilon-Constraint Approach

Throughout this section we focus on the COMPETING scenario. We suppose that the
jobs in J* are numbered according to non-decreasing p# /w? (WSPT order), and

jobs in 7B are numbered according to non-decreasing due dates (EDD order).
Let us consider the problem 1|CO, L3 < Q|Y" w;lC jA. We observe that it

max —

strictly generalizes 1|/CO,CE < Q| Zw;‘ C jA, since the latter can be seen as a

special case of the former in which all jobs belonging to agent B have due date
d? =o0.
J
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Ax
dq do d,

Fig. 3.13 Schedule in the NP-hardness proof for 1|CO, L8 < 0| > wACA

While problem 1/CO,C2E Q|>-w{C;" is binary NP-hard, problem
1co, L}, < 01> w/!C/" is strongly NP-hard.

As observed in Cheng et al. (2008), this result is a consequence of a result in
Lawler (1977). In fact, Lawler showed that problem 1|| ) w;T; is strongly NP-
hard. In the reduction, an instance of 1|| ) w;T; is defined in which the job set
is partitioned into two subsets. The jobs in the first subset have due date equal to
zero, and therefore their completion time coincides with their tardiness. The jobs
in the second subset have a very large weight, so that, in any feasible solution,
none of them is ever tardy. Therefore, the total weighted tardiness indeed equals the
total weighted completion time of the first subset so that no job of the second set
is late. Identifying the two subsets with 74 and [J? respectively, this implies that
11CO, LY, < 01> w/C} is strongly NP-hard.

However, a direct proof of this result is given by Tuong (2009). Such proof will
be useful also later on (Theorem 3.17). We make use of the strongly NP-complete
problem 3-PARTITION (see Sect.2.2.2).

Theorem 3.15. Problem 1|CO, L3 < Q| WACA is strongly NP-hard.

Proof. Given an instance of 3-PARTITION, we build an instance of problem

1|co,LE < Q| Zw;‘ CjA as follows. Set 7 consists of 3r jobs, having p/! =

wid = a;,i = 1,...,3r. Let now K be a very large integer, say K > EZ2. Set

1
J® consists of r jobs, JB,JE, ..., JB with pf = K and df = j(K + E) for
j = 1,...,r. Moreover, let Q = 0. We want to show that the instance of 3-

PARTITION has a solution if and only if there is a feasible schedule such that

ZWACA < Z Zr:p, pil+ KEr(r—1)/2 (3.24)

i=1j=1

We first illustrate the key idea, and then work out the details. In the instance
of 1|CO,LE < O] ZWACA the jobs of J2 are very long. Therefore, it is
convenient to process each of them as close as possible to its due date. This leaves
r intervals of length E. If and only if it is possible to perfectly fill these intervals
with triples of jobs from 74, then the instance of 3-PARTITION is a yes-instance
(see Fig.3.13).

(Only if.) First observe that if there is a 3-PARTITION, then we can schedule the
jobs so that each job in 7 completes at its due date, and we can schedule the triple
of jobs in J4 corresponding to each set A, between two jobs of J%. Let us now
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compute the total weighted completion time for 74. Indicating by &, h; and h3 the
indices of the three jobs in Ay, after some computation one gets:

3r 3r 3r r—1
SowiCH =33 pitot + YK + i+ pi)
h=1

j=1 i=1j=1

3r 3r

r—1
=Y lef 4 KEY
h=1

i=1j=1

3r 3r

=Y > pip}+KEr(r—1)/2 (3.25)

i=1j=1

(If.) Suppose now that a feasible schedule o exists such that (3.24) is satisfied.
Let Gy, be the set of jobs of 74 scheduled consecutively between the (h — 1)-th and
the /-th job of 72 in o, and let p(Gy,) denote their total length. It is easy to see that
the value of the total weighted completion time for agent A is given by:

3r 3r 3r r
DwiCHo) = pip! + Y (h=DKp(Gy) (3.26)
j=1 h=1

i=1j=1

where p(Gy) + p(Gz) + ...+ p(G,) = rE. Moreover, due to the constraint on
maximum lateness, and recalling that df = h(E + K), the total length of the jobs
from J* scheduled before d/ cannot exceed hE.

Now, in order to obtain a lower bound on er: ! w‘]f’ C jA (0), we can therefore find
r values for p(Gy), h = 1,...,r that minimize the function >, _,(h — 1) p(Gy),
subject to the constraints

p(G) < E
p(G1) + p(Gy) <2F

p(G1) + p(Gy) + ...+ p(Gy) < hE

p(G) + p(Gy) + ...+ p(G—)) < (r —1E

p(G) + p(G2) + ...+ p(Gr—1) + p(Gy) =TE
it is easy to check that the minimizer is p(G,) = E,h = 1,...,r, so that we get
the lower bound

3r 3r

3r
> owico) =Y > pitpt 4+ KEr(r—1)/2 (3.27)

j=l1 i=1j=1
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hence, from (3.24), o satisfies (3.24) at equality. But this can only occur if p(Gp) =
E for all A, i.e., if the instance of 3-PARTITION is a yes-instance. O

As a consequence of this result, in view of the reduction graph in Fig.3.12,
all problems are strongly NP-hard, and one is led to consider effective solution
approaches. As we have already seen for 1|ND,CE < Q] Zw;‘C jA, also in
this case a viable approach is to pursue lower bounds by means of a Lagrangian
relaxation of the problem. It turns out that even in this case the Lagrangian dual can
be solved very efficiently, and the quality of the bound is sufficient to solve instances
of the problem of reasonable size. We next illustrate this approach for COMPETING.

Details can be found in Agnetis et al. (2009b).

3.5.1.1 The Lagrangian Approach for 1|CO, LE, < 0|} w;.‘ CjA

max

To start with, let us perform a “shaving” of the due dates of the jobs in J B Let
dp, = dnzB and recursively, for j = (np—1),...1,letd; =_rnin{d]2, dj+1—p§+1}.
For each job in 72 we define a shifted due date Q j = d; + Q, for which the
following holds

Q; <Qj+1—Pj4 j=1,...,ng—1 (3.28)

With no loss of generality, from now on we regard Q ; as a deadline for job J ,B .

Note that, with no loss of generality, we can always assume that the jobs in J5
are scheduled in EDD order in an optimal solution, and hence formulate problem
11CO, LY, < Q1 X wiC/ as:

max

ny
Find z* = min > o wici (o) (3.29)
j=1

subject to C{(0) < 0,

CY(0) < 0»

Cnl; (0) = QﬂB

Relaxing the 3 constraints on the completion times of the jobs in 72 in (3.29),
we get the Lagrangian problem:

L(A) = min { iw;‘cf‘(o) + XB:A,» (Co) - Q,-)} (3.30)
j=1

i=1
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and the corresponding Lagrangian dual:

LAY = max ngn% Zw;“cf‘(o) + ij(cf?(o) -0/ (3.31)

i=1 j=1

A key role is played by the ratios between the weight of a job in (3.30) and its
processing time (Smith’s ratio). Notice that for jobs in J* such ratio is given by:

5 =wi'/pf
and is therefore part of problem input. For jobs in 72,
87 =A;/pj

and it therefore depends on the vector of Lagrangian multipliers. We denote with
84,88 and § the vectors (8i!,....8; ), BF,....88 ) and (§{'..... 87 . 68.....8)
respectively. We can rewrite the Lagrangian problem (3.31) as:

16" = min| Y51 p/C@) + SOTHCICREI RGeS
<

i=1

Note that in (3.32) only the & f are variables, whereas the 8;4 are given. The dual
problem (3.31) becomes

L% = ?;a)((){L(SB)} (3.33)

3.5.1.2 The Algorithm for the Lagrangian Dual

For convenience of exposition, we introduce a (long) dummy job, Jnﬁ 1 1» Such that
p,fA 41 = Qun, and w,fA 11 = 0. Clearly, such job will be always scheduled last
in an optimal solution to (3.29) and (3.32). We next consider the Lagrangian Dual
Algorithm (LDA) for (3.33).

The algorithm is fairly simple. The schedule is built from left to right. At each
step, either a job Jl-A € J4orajob J ]B € J% is scheduled. In the latter case, a
value is assigned to § f . In particular, the algorithm considers the current makespan
T augmented by piA, where J iA is the first unscheduled job from 74, and the latest
start time for the first unscheduled job J jB from 75, ie., Q i pf . If such latest start
time falls between T and 7 + p!, then J jB is scheduled, and receives the value §;!.
Otherwise, J/ is scheduled. This goes on until all jobs are scheduled, as reported in
Algorithm 15.

We denote with o}, and 82, the schedule and, respectively, the values of
the Smith’s ratios of jobs in 7% produced by LDA. We also denote with 7 the
set of the jobs in J” whose 67 is set equal to &, and call cluster J; the set
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Algorithm 15 (LDA) for the Lagrangian dual of 1/CO, L3 < Q| > wiCA

1:i:=1

2 ji=1

3: T:=0

4: while i <nA+1d0

5:  while (T + p{! > Q; —pf)and (j <ng)do
6: 8f =8

7 Schedule J jB

8: T:=T+p!

9: ji=j 41

10: end while

11:  Schedule J;

122 T:=T+ pf
13: i=i+1

14: end while

15: return final schedule

JiB ) {J,.A}. Note that the jobs in 7 # belonging to the same cluster are scheduled
consecutively, followed by the corresponding job JiA € J4 at the end of the cluster.
In the remainder of this section, we show that LDA optimally solves problem (3.33).
To this aim, we first need to establish some preliminary results.

Proposition 3.2. If(3.29) is feasible then, for each J ]B ,

(@) Q;—CP(ofpy)=0and
(b) Q;— CJB (07 p4) < P, where J; is the cluster JjB belongs to.

Proof. For the sake of simplicity, in this proof we omit o}, , from the completion
times notation (so we write C JB for C ]B (07 pa))- We prove the thesis by induction.

From the feasibility of (3.29) immediately follows that Q1 — p8 > 0. Then J# will

i—1
be scheduled starting at time 7 = ) p]f, where i is such that T < Q| — pfg <
k=1
T + pA (T =0ifi = 1). Hence, CZ = T + p8 < Q8 proving (a) for j = 1,
and Q) —CE = Q,—T — pB < p, proving (b) for j = 1.
Now, suppose that (a) and (b) hold for job J JB. Note that, after J ]B has been
scheduled, T is set equal to C ,B . Two cases can occur:

() CP + p > Q41— p}y, Inthis case J P, is scheduled immediately after
the end of JjB, and

B _ (B B

Cim =G +rin
<0+ ij 1 by the induction hypothesis
<0+ for (3.28)

proving (a). Moreover, Qj+1 —CP | = Q11— C/ —p},, < p{', proving
(b). (Note that, in particular, for cluster J,,+1 this holds because p,fA 11 =

Ony)
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(ii) C]B +p < Q41— pfﬂ. In this case, after the end of job JZ, the jobs
JA, ..., J will be consecutively scheduled, being i’ such that

i’—1 i’

Cl+ md = Q=i <CP+ ) ¢
k=i k=i

Then J jB 1 18 scheduled to start at the end of J, 1.1,5_1, and so

i’—1

C]B-i-l = C]B + Zp]? + pJB+1 E Qj+ls
k=i

proving (a). Moreover,

i’—1

Qi1 —Cly=0Q;m—CP =Y pit—pl <pf,
k=i

proving (b) (again, for 7, ,+1 this holds because p;’ 1= Onp)
This completes the proof. O

Note that schedule o}, , is feasible as a consequence of ().
The following is a well known general property that holds for all scheduling
problems, and can be easily proved by a simple pairwise interchange argument.

Proposition 3.3. Let 0 be a single-machine schedule of the jobs {J1, ..., J,} with
durations {pi,..., pn}, and let T < {Jy,...,J,} be a subset of consecutively
scheduled jobs. The quantity

> piCi(o) (3.34)

Ji€l

does not depend on the ordering of the jobs in L.

Lemma 3.2. Given o}, and any cluster [J;, let G be any schedule obtained
from o}, by arbitrarily reordering the jobs within cluster J;. Also, denote with
Jfff, e J75—1 , J;i, J75+1’ e Jfﬁji‘ the jobs of [J:, ordered according to their
position in the schedule 6. Then

h
Y opE(CE@E)-0n) <0 Vh=1....£-1 (3.35)
k=1
|7
Y opE(CEGE)-0r) >0  Vh=L+1.... .|F] (3.36)

k=h
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Proof. Let 0 be the schedule obtained reordering the jobs of o, , within cluster J;

as follows: schedule in EDD order the jobs J2. ..., J,fL » then schedule JA, then
schedule in EDD order the jobs J,5+1, . Jﬁjl. Note that C.2 (6) < C2 (o] p,)

for any k < £. Then, from Proposition 3.2(a), it follows that C;i (0) — Qn =<
CE(ofpy)—Oxn < Oforanyk < {.Symmetrically, C2 (5) > CZ (o] ,)+ p;' for
any k > £, and from Proposition 3.2(b) it follows that C.2 (5)— Qx, = C2 (0] p,)—
QO + pt > 0forany k > £. Hence, for schedule & it holds

h
Y opE(CE@)-0n) <0 Vh=1....6-1 (3.37)
k=1
|7
Yo pE(CEG)-0r) >0  Vh=L+1.... .|F] (3.38)
k=h

Any schedule & differs from & only in the order of the jobs of 7 # within the two
blocks, before and after JiA respectively. Then, in view of Proposition 3.3, the thesis
holds. ]

We are now in the position of proving the correctness of Algorithm LDA.

Theorem 3.16. Algorithm LDA correctly solves the Lagrangian dual prob-
lem (3.33) in O(n).

Proof. We first show that the vector §7,, of Smith’s ratios produced by the
algorithm LDA is optimal for (3.33). Due to the concavity of L(§%) (Sect.2.6.2),
it is sufficient to prove that §2,,, is locally optimal. To this aim, let us consider
an arbitrary perturbed vector §7,,, + A, where A is an arbitrary real vector with
np components and ¢ > 0 is small enough to preserve relative ordering, i.e., if
§F > 88, then 8F + A, > 8P + eAy. By resequencing all jobs by the Smith’s
rule, we obtain an optimal schedule & for the Lagrangian problem (3.32) in which
the jobs that belong to the same cluster in o}, are still sequenced consecutively
(in nonincreasing order of A ;). The value of the perturbed Lagrangian function can
be expressed as a summation over all clusters:

4

L6ty et = (stptciar+ Y (3 +ea))p2(CP@) - 0)

i=1 Jiegp
ny

- ZS?(p{“CiA(éH S PG - Qn)
i=1 JBeg?

#1

+sZ( Y 4 pPCkE) - Q;))

= Be 7B
=1 “ykeyg,

#2
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From Proposition 3.3, it follows that the term #1 is equal to the unperturbed value,
L(8%,,,). So, the variation of the Lagrangian function is given by the term #2. We
next show that all terms in square brackets in the summation #2 are non-positive.
Each of such terms can be split into two parts, taking into account the jobs in 75
for which A; > 0 and A; < 0 respectively. Note that the jobs in 7% for which A
is strictly positive are scheduled before J/* in & and the jobs in 7# for which A; is
strictly negative are scheduled after J in &.

Aj>0

L(Fy, +ea)— LEPy) =3 ( Y 4 p5CPE) - 0)

i=l1 IBegf

Aj<0
+ ) Ajpf(C,B(Er)—Qj)) (3.39)

B B
IPeyg,

. B A B . .
For any cluster J;, denote with Jm AU Jw, e ijl_l the jobs belonging to 7;,
ordered according to their position in the schedule & (i.e., by nonincreasing values
of Aj). Letting A,, = 0 for uniformity of notation, the two summations for A; > 0

and A; < 0in (3.39) can be respectively rewritten as

-1 -1 h
Y A pE(CEGE) = 0n) =) (A, — Any) D PE(CEG) — Qn)
k=1 h=1 T}c:l
#2
(3.40)
|Ti |Ti | Ti |
Y AnpE(CEE)-0m) = ) (Am —4n_) Y P2 (CEG)-0x)
k=0+1 h=£+lTk=h
#2
(3.41)

Since Ay, > Ay, 41 all the coefficients #1 in (3.40) are non-negative, and from
Lemma 3.2, all the terms #2 in (3.40) are non-positive. Similarly, all the coefficients
#1 in (3.41) are non-positive, while from Lemma 3.2 all the terms #2 in (3.41) are
strictly positive. Then L(82,, + eA) — L(8.p4), being the sum of non-positive
terms, is non-positive, which implies that L (8 f p4) 18 @ local maximum.

As for the complexity of LDA, we observe that each job is considered exactly
once throughout the algorithm. Assuming that the jobs in 74 have preliminarily
been ordered according to WSPT and jobs in J2 according to EDD, the thesis
follows. O
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Example 3.6. Let consider an instance of 1|CO, L3 < Q|Y wAC/, with the

max
following data, in which the values Q ; are shifted due dates.

R S S R
P14 3 3 2 2
who 4 10 3
s 4 25 1
0, 6 9 13

Algorithm LDA schedules J;! first, completing at 7 = 1. The latest start time
of job JB is Oy — pf = 6 — 3 = 3, larger than T'. Then, we schedule the second
job from 74, i.e., J;', and T = 5. Since 5 > 3, we assign to §¥ the same Smith’s
ratio value of the last scheduled job from J4, ie., §# = §; = 2.5. Hence, we
schedule job J# and update T to 8. Considering now job JB, its latest start time is
0, — pf = 9—2 = 7. Again, being it smaller than the current value of 7', we also
set 82 = 2.5, schedule J# and increase T to 10. Now Q3 — p# = 11 > 10, so job
J3! is scheduled, to complete at 13. Since 13 > 11, job J£ gets §% = 8 = 1. In
conclusion, an optimal solution of the Lagrangian dual is given by

O WA O S TP A g

where we highlighted the three clusters. The corresponding value of the bound is
117. In this example, it can be seen that the optimal solution is

{JIB’ JZA’ J2B’ JIA’ ‘]38’ J3A}

having value 155. o

Note that LDA computes a bound at the root node of the enumeration tree. If a
set of branching constraints is added, LDA has to be suitably adapted. In particular,
an effective branching strategy in this case consists in fixing the jobs in 74 from
left to right. Details and computational experiments can be found in Agnetis et al.
(2009b).

3.5.2 Computing the Pareto Set

Since 1|CO, LB < Q|Zw;‘CjA generalizes 1|/CO,CE < Q|Zw;‘CjA, the

max —

resultin Sect. 3.4.2 applies, so also in this case there can be a nonpolynomial number
of Pareto optimal solutions.
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3.5.3 Linear Combination

Now consider 1|{CO|a > w;.‘ CjA + BLB . As stated by Baker and Smith (2003), the

problem is strongly NP-hard. In fact, the NP-hardness of this problem can be shown
by slightly modifying the construction in the proof of Theorem 3.15.

Theorem 3.17. Problem 1|CO|o > W;l CjA + BLE _is strongly NP-hard.

max

Proof. Given an instance of 3-PARTITION, we build an instance of problem
1|COla Y w;-‘ C jA + BLB  asin Theorem 3.15, with the only addition of a dummy
job Jrlj_l to J? having pﬂ_l = d,.B+1 = 0. The presence of such job ensures that
LB > 0.Moreover, leta = 1 and  a sufficiently large number, to ensure that in a

yes-instance of 1| > w‘]f’ C]A + BLE . no job from J2 completes late. With these

positions, the same proof of Theorem 3.15 shows that the instance of 3-PARTITION
has a solution if and only if there is a feasible schedule such that

3r 3r

3r
ad wiCH+BLY, <Y D plpt+ KEr(r—1)/2.

j=l1 i=1j=1

3.6 Functions ) w;C;, fmax

This setting is clearly a generalization of 1|| Y w;C;, L, hence the same NP-
hardness results hold.

For the linear combination approach, Nong et al. (2011) provide a PTAS for the
case in which f4 = maxw/C;'. Actually, their scheme is polynomial only for
fixed n 4, since it has time complexity which grows exponentially with 7 4.

Moreover, they give a 2-approximation algorithm for the same problem. This
exploits a well-known result by Queyranne (1993) concerning the convex hull Q
of all feasible completion time vectors {C4, C JB } in a single-machine scheduling
problem. In particular, the algorithm consists in minimizing the function U +
ijejﬁ wf CJB, over the points of Q such that U > w‘]f’ C]A for all JjA e J4. This
LP can be solved in polynomial time using the ellipsoid algorithm. Let C jLP denote
the value of C; in the optimal solution of the LP. Nong et al. show that sequencing
the jobs by increasing values of C jLP , one obtains a 2-approximate schedule.

3.7 Functions ) U;, fmax

Let us now turn to the case in which agent A wants to minimize the total number of
tardy jobs, while agent B holds a general max-type objective function.
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NONDISJOINT

e

INTERFERING COMPETING

™~

BICRITERIA

Fig. 3.14 Reduction graph for 1|| }- U;, fiax

As in Sect. 3.5, also in this case NONDISJIOINT — BICRITERIA. In fact, if we
attach a due date d; = +oo to all jobs in 7 (which only contribute to .2 ), one
can incorporate them in 4. Similarly, one can set f; = —oo for j € J4 (since
these jobs only contribute to the number of tardy jobs), and hence incorporate them

in 7 2. We therefore have the situation of Fig. 3.14.

3.7.1 Epsilon-Constraint Approach

In this section we consider the problem 1/CO, f2 < Q| U ;4_ As we will see,
this problem can be solved in O(nlogn) by a suitable generalization of Moore’s
algorithm (Sect. 2.7.1) (Agnetis et al. 2004)..

As in Sect. 3.1, we define a deadline d,f for each job JkB € J% such that
FE(CE)Y < QforCF < df and fE(CE) > O for CF > dP.1n what follows, we
call the latest start time (denoted LSy) of job J, kB the maximum value the starting
time of J, kB can attain in a feasible schedule (i.e., a schedule respecting all deadlines).
The values LS can be computed as follows. Order the jobs of 72 in nondecreasing
order of deadline. Start from the last job, J. B and schedule such job to start at time

dni — pr. Continue backwards, letting LS := min{d®, LSx4+1} — pf. for all
k =np—1,...,1. Clearly, if job J,2 starts after time LSy, at least one job in J%

violates its deadline, i.e., 2 > Q.

Consider now, for each job JkB € JB, the latest processing interval [L Sy, d ,f I
Let I = UZZI[LSk,j;f]- Set I consists of a number 8 < np of intervals,
LipsInhysees Ihﬁ—lsnB’ call them reserved intervals. Each reserved interval [, ,
ranges from LS, to chB . Note that, by construction, the length ||, ,|| of interval I, ,,
equals d? — LS, = Y u_, pE. We say that jobs J, J2 |, ..., JF are associated
with I, .

Consider now problem 1|CO, pmtn, nﬁx < QYU 4 je., the preemptive
variant of 1|CO, f8 < Q] ZU]-A.

max
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Lemma 3.3. Given an optimal solution to 1|CO,pmn, fB < Q|3 U4, there

max —
exists an optimal solution to problem 1|CO, f5 < Q| UjA with the same number

max
of late jobs from J4.

Proof. Clearly, the optimal nonpreemptive schedule has at least the number of tardy
jobs of an optimal preemptive schedule. Now observe that if in an optimal schedule
o* for 1|CO,pmin, fE < Q| UJA there is a job J; (of any agent), ending at
C;, which is preempted at least once, we can always schedule the whole J; in
interval [C; — p;, C;], moving other (parts of) jobs backwards, without increasing the
completion time of any job. Repeating this for each preempted job, we eventually
obtain a nonpreemptive solution having a number of tardy jobs not greater than ¢*,

and the proof follows. O

Lemma 3.4. There exists an optimal solution to the 1|CO, pmin, fE < Q|3 U JA

problem in which each job from J% is nonpreemptively scheduled in the reserved
interval it is associated with.

Proof. Tn an optimal solution to 1|CO, pmm, fE < Q|> U#, all the jobs from

JB associated with an interval I «v complete within c?f . Hence, if we move all the
pieces of JMB , JLfH, e, JUB to exactly fit the interval [, ,, we obtain a solution in

which the completion time of no job from 74 has increased, since we only moved
pieces of such jobs backwards. O

Lemma 3.4 allows one to fix the position of the jobs from 72 in an optimal
solution to 1|CO, pmm, fE < 0|} UJA. The schedule of the jobs from J4 can
then be found by solving an auxiliary instance of the well-known single-agent,
nonpreemptive problem 1|| Y~ U;, solvable by Moore’s algorithm (see Chap.2.7.1).

Given an instance of 1|CO, pmin, fB < Q|> U4, the auxiliary instance includes
the jobs from J# only, with modified due dates as follows. For each job J4, if d/
falls outside of any reserved interval, we subtract from d hA the total length of all the
reserved intervals preceding d/, i.e., we define the modified due date D,;4 of job

A e
J;}as:

Dt =di' = > Ll (3.42)

.IB A
uvidy <d;

If d }f‘ falls within the reserved interval /,,, we do the same, but instead of d }f‘ we
use the left extreme of 1, ,:

D =LS,— Y |l (3.43)

uv:dB<d!

We can now prove the main result of this section.
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Algorithm 16 for problem 1|CO, f,2 < Q> U/

max

: for JB € 7% do

Compute deadlines D,f

: end for

: Arrange all jobs in 72 in non-decreasing order of deadlines D ,f

LS,, = JfB
for k :=ng — 1 downto 1 do
LSy := min{dkB, LSk+1}
: end for
: Compute reserved intervals Iy p,, Ip, pys - - - Ihy—y np and associated job sets from 72
: for J € J4 do
if d}f’ € I, , for some p, g then
Dt =18, — %70 2t | sl
else
D;;l = d};l - Zu.v:tiUBSd,f ||1u,v|
end if '
: end for
: Solve an instance of problem 1|| > U jf" with due dates D;!
: Denote by o the optimal schedule
: Insert in o the jobs from J2 in the corresponding reserved intervals, producing an optimal
schedule o” for problem 1|CO, pmm, £, < 0|3 U}
: Consolidate preempted jobs from 74 by moving the jobs from 7% backwards, constructing
an optimal schedule o for problem 1|CO, f.B < Q|> U ]-A

max —
21: return ¢”

AN A R ol h e

il e e e el

(3]
(=]

Theorem 3.18. Problem 1|CO, f,5. < Q| Y- U can be solved in O(nlogn +
nplognp) time.

Proof. Given a schedule o for the auxiliary instance of 1|| Y_ U4, it is possible to

define a solution ¢’ to 1|CO, pmim, 5 < Q|3 U} by re-inserting the reserved

intervals (with the associated jobs from J BY in the schedule, one at a time, from the
first to the last, every time shifting everything forward. Each reinsertion can possibly
preempt one job from J4. From the definition of the modified due dates in the
auxiliary instance, it follows immediately that each job from J4 is early in o’ if and
only if it is early in . Hence, from an optimal solution to the auxiliary instance we
obtain an optimal solution to 1|CO, pmm, £ < Q|3 U jA. Applying Lemma 3.3,

jobs from J“4 that had been preempted during the reinsertion phase. Let us now
turn to complexity issues. The jobs from J# are ordered first; the complexity for
this is O(nplognp). Then, the computation of the reserved intervals takes time
O(np). The auxiliary instance can be defined in time O(n4) and solved in time
O(n4logn4) by Moore’s algorithm. The optimal solution to 1|CO, pmin, f,B <

o> U jA can be reconstructed in time O(n 4 + n ). Finally, the optimal solution to
1|CO, fi, < Q| XU is obtained in time O(114 + np). The overall complexity is

max —

therefore dominated by the ordering steps and the theorem follows. O

we can obtain an optimal solution to 1|CO, £.2 < Q|Y U jA by rearranging the
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The polynomiality result for the two-agent problem 1|CO, nﬁx < QYU jA
can be generalized to the case with K agents in which p agents hold an objective
function frax and K — p hold > U; (Agnetis et al. 2007). In fact, the p agents
holding fn.x are essentially treated as a single agent, since the only relevant
information of each job is its deadline. In the wake of Lemma 3.4 and Theorem 3.18,
the problem reduces to an instance of a problem with K — p agents, each interested in
minimizing the number of tardy jobs. This can be solved by dynamic programming,
suitably modifying the algorithm that will be shown in Sect. 3.14.1.1.

On the basis of the above results, the COMPETING case appears indeed sig-
nificantly easier than the other cases. In fact, we next show that the problem
BILLE <0} UjA is NP-hard, and as a consequence so are also 1|/ N, LB <

max — max
Q| YU A|IN, Y UP < Q| fi, and 1IND, LE, < Q| X US

A result by Lawler (1982) establishes the (ordinary) NP-hardness of the follow-
ing single-agent, single-machine problem (denoted by 1|d;, d A3 Uj). A set of
n jobs is given, each having processing time p;, due date d; and deadline d i A
schedule is feasible if all deadlines are respected. The problem consists in finding
the feasible schedule that minimizes the number of tardy jobs (with respect to due

dates). To see why this result implies the NP-hardness of 1|BI, LE_ < Q|Y U4,

max

just suppose that foreach J; € J weletd! = d;,d} = d; and Q = 0. Finding an

optimal solution for 1|d, d i1 >_ U; is then equivalent to finding an optimal solution
to 1|BL, LY, < 0| U

Notice that in the above observation it is of critical importance to assume that
deadlines and due dates are independent of each other. A different problem is when
the maximum tardiness of a job is computed with respect to the same due date
used to compute the number of tardy jobs. In other words, 1|BI, d ;‘ =d ]’3 ,TE <
o> U jA consists in minimizing the number of tardy jobs when none of them is
allowed to have a tardiness larger than Q. The complexity of this problem still
stands out as one of the most prominent open issues in theoretical scheduling (Huo
et al. 2007a).

In spite of the above results, we note that the complexity of problems
1|/IN,CE < Q] ZUJA and 1|ND,CE2 < Q| ZUJA is still open.

Leung et al. (2010) address the problem in the COMPETING scenario with the
addition of release dates and preemption, i.e., 1|CO,r;,pmin, fE < Q|3 UjA.
They provide an algorithm of complexity O(n”), which exploits an algorithm by
Lawler (1990) for the (weighted) single-agent problem 1|r;, pmtn| Y~ w;U;. In the
unweighted case, the complexity of Lawler’s algorithm is O(n°). In what follows,
we show that also the two-agent problem can be solved in O(n°), by combining the
decomposition approach of Algorithm 16 with the unweighted version of Lawler’s
algorithm.

Similar to what already done for problem 1|CO, f.E < Q|3 U jA, for each
JkB € J? we compute a deadline J,f such that, as usual, ka (CkB) < Q for CkB <
c?,f and ka(CkB) > Q for CkB > c?,f Next, for the jobs in J? we define a set
of reserved intervals. These can be computed by reversing the time axis, viewing
the deadlines as release dates and scheduling the jobs according to the preemptive
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earliest-due-date rule (where the earliest due date corresponds indeed to the latest
release date). In the reserved interval 7, 4, the jobs J 2, J f  1o-... J B are entirely
(preemptively) scheduled. We let S(/, ) and F (1, ,) denote the start time and finish
time of the interval I, , respectively. When doing so, if a job cannot be entirely
scheduled between its release and due date, the instance of 1|CO, f,E < Q|> U jA
is infeasible.

Thereafter, the jobs of J 4 are to be scheduled. To this aim, we define an auxiliary
instance of the single-agent problem 1|r;, pmtn| ) U; in which only the jobs of
agent A appear, with suitably defined release and due dates. Precisely, if r,f‘ ord hA
fall outside a reserved interval, similarly to (3.42) we define

Ri=rt= " > |l (3.44)
wviF (L) <rf!
Dt =di'= Y Ll (3.45)

u:F (1) <dj!

whereas, if they fall within reserved interval 1, ,, similarly to (3.43) we define

Rl =SUp)— Y. |l (3.46)
u,v:F(IL,_U)fr}f
D' =SUp)— Y |l (3.47)

uaU:F(lu.U)fd;f

In conclusion, the problem can be solved by Algorithm 17.

3.7.2 Computing the Pareto Set and Linear Combination

Obviously, if agent A holds Y U#, there are O(n4) Pareto optimal solutions.
Hence, in the COMPETING scenario, in view of Theorem 3.18, problems
1COIP(_ UL, £.5)) and 1|COla YU + Bf,5, can be solved in polynomial
time. In view of view of the observation in Sect. 2.7.3, also the e-constraint problem
1jco, fE < o|>U jA can be solved in polynomial time and hence the problem
of finding a single single Pareto optimal solution, namely O(nlognlog UB),

where UB is an upper bound on f.2 . consequence, 1|CO|P(>_ U4, £.B ) and

max* max

1|COla Y UjA + Bf.B can both be solved in O(n 4nlognlog UB) time. However,
the complexity of the corresponding problems in INTERFERING and NONDISJOINT
scenarios is still open, even for fjax = Cpax-

Similarly, the complexity of the linear combination problem is open in the
K-agent case (K fixed), even in the COMPETING scenario, when some agents
hold Cy,x and others > U ;. However, when the number of agents holding Cpax
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Algorithm 17 for problem 1|CO, r;, pmin, 2 < QY UjA

1: for /2 € 7% do
2:  Compute deadlines d kB
3: end for B
4: Arrange all jobs in 72 in non-decreasing order of deadlines dkB
5: Compute reserved intervals Iy 5., I, nys - - - » Ihy—y np and associated job sets from 72
6: for J' € 74 do
7. if d}f € I, , for some p, g then
8: Djl == S(,4) — Zu,u:F(lu_v)sd,j’ 2,011
9:  else
10: D i=dj - Zu.u:F(l,A_U)Sd,‘f [ 10ll
11:  endif
12: if r,f € I, , for some p, g then
13: R}? = S(Ip,q) - z:u,v:F(I,,_v)sr,‘l4 ||1u,v||
14:  else
15: R}? = r;lq_zub F(IM)<r, ||Iub||
16:  end if
17: end for
18: Solve an instance of problem 1|r;, pmin| U jf" with release dates Rfl‘ and due dates D;:’
19: Denote by o the obtained optimal schedule
20: Insert in o the jobs from 72 in the correspondmg reserved intervals, producing an optimal
schedule CT for problem 1|CO, r;, pmin, £ < 0> U
21: return o’

is not fixed, the problem is strongly NP-hard. In fact, one can easily reduce
1|COla Y- w!C/'+p Z U P (which is shown to be strongly NP-hard in Sect. 3.13.2)
to 1|CO| Zk_l aCk +ak Y UK, in which K = ny + 1, there is one agent
(holding a single job) for each orlglnal jobof J4, o = w]f fork =1,....,K—1
and ax = B.

3.8 Functions ) T, fmax

As in the previous section, NONDISJOINT — BICRITERIA, setting a very large due
date d; = oo for all jobs in 7% and f; = —oc for J; € J* (Fig.3.15).

3.8.1 Epsilon-Constraint Approach

Note that even the simplest scenario for problem 1|CO, £, < 0|} TA is at
least NP-hard, since so is the classical single-agent problem 1||) 7} (Du and
Leung 1990). In fact a pseudopolynomial pseudopolynomial algorithm can be
given for 1|CO, .2 < 0% TA (Leung et al. 2010). Such algorithm exploits
the construction presented in Sect. 3.7.1. Also here, for each job J ]B € JEB we
compute a deadline D? such that if C? > D?, then F(CP) > Q. Hence, we
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Fig. 3.15 Reduction graph for 1|| 3 T/, f,.5

NONDISJOINT

T

INTERFERING COMPETING

Fig. 3.16 Reduction graph for 1|}~ C;,>"C;

can compute a set of reserved intervals for the jobs in 7 2. The reserved intervals
are used to define an instance of the single-agent problem 1|| ) 7; in which only
jobs in 4 appear. In this instance, the due dates of the jobs are modified to account
for the reserved intervals, using relations (3.42) and (3.43). By applying the same
arguments of Lemma 3.4 (page 104) and Theorem 3.18 (page 104), it can be shown
that the optimal solution to this instance of 1|| >_ 7 allows to derive an optimal
solution to the original problem. Hence, in view of algorithm (Lawler 1977) for
problem 1|| Y~ 7; (Theorem 2.1 in Sect.2.7.1), letting P denote the total processing
time of all jobs, the following results holds.

Theorem 3.19. Problem 1|CO, f2 < 0|} T].A can be solved in time O(n% P +
nplognp).

Notice that the term O(npglognpg) in the complexity is due to the computation
of reserved intervals, which only involves jobs of J 2.

3.9 Functions ) C;, ) C;

Let us now turn to problems in which both objective functions are of sum-type.
The simplest such case is when the two functions are the sum of completion times.
In this case, no further reductions hold in general besides those in Fig.2.8. Since
BICRITERIA does not make sense in this case, we get Fig. 3.16.
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3.9.1 Epsilon-Constraint Approach
3.9.1.1 Problem 1|CO, )" CJB <0l C].A

Let us consider the problem 1|CO, )" CJB <Q0l> CjA.

First of all, it is easy to show that, with no loss of generality, we can suppose that
both agents order their jobs in SPT order. Hence, for simplicity we number the jobs
of each agent accordingly.

In the following proof, we use the NP-complete problem PARTITION (Sect. 2.1).
With no loss of generality we assume that the k integers in the instance of
PARTITION are all different. For the sake of simplicity, we number the k integers

in increasing order, i.e., a1 < a; < ... < a;. Remember that Z];:l a; =E.

Theorem 3.20. Problem 1|CO, Y CJB <0|> CjA is binary NP-hard.

Proof. Given an instance of PARTITION, define an instance of 1|/CO, >  C jB <
0|3 C;" as follows. The two job sets 7 and 7 are identical, and each contains k

jobs, having length p; = a;,i = 1,2,...,k. Letting Q = 3E+2(Zf=l(k—i)pi),
we want to establish whether there is a schedule o such that ) C jA (o) < Q and
Y Cko) < 0.

Consider any schedule o in which the jobs are sequenced in SPT order. Such
a schedule has the following structure: the two jobs of length p; are scheduled
first, followed by the two jobs of length p,, ..., followed by the two jobs of
length p;. Note that there exist exactly 25 SPT schedules, obtained by choosing
in all possible ways the agent who has the precedence in a pair of jobs having
the same length. Also, note that the sum of the two agents’ objective functions,
i.e., the quantity > C jA +>.C jB is the same for all SPT schedules, and it equals
T =6E +4Y_ (k—i)p;. Note that Q = T/2.

Now let us consider the cost of an SPT schedule for each agent. We denote by
J[i] the pair of jobs J* and JB (both of length p;). Given an SPT schedule, the
notation 4 <; B means that in this schedule J precedes J in J[i]. Given an SPT
schedule, observe that the contribution to the total completion time of the jobs in
J[1] is p; for one agent and 2 p; for the other, the contribution of the jobs in J[2] is
2 p1+ p, for one agent and 2 p; +2 p, for the other, etc., the contribution of the jobs in
J[h)is2p1+2py+...+2pp—1+ py forone agentand 2 p; +2pr+. .. +2pp—1+2pp
for the other. Hence, in a given SPT schedule, the contribution of J[h] to Y C jA can
be obtained by adding to 2p; + 2p> + ... 4+ 2pp— + pj, either O or p;, depending
on whether agent A precedes agent B in J[h] or viceversa, foreach h = 1,... k.
For agent B the opposite holds, i.e., if B <; A, then the value pj is added to the
objective function of agent A. Given an SPT schedule, let x (0, p,) = 0if A <, B
and x(0, pp) = pn if B <;, A in the solution, and let x = 22=1 x(0, pp). Hence,
in any SPT schedule, the total completion time for agent A is:
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p1+x(0, p1)
+2p1 + p2 + x(0, p2)
+2p1 4+ 2p2 + p3 + x(0, p3)

+2p1 +2pr+ -+ 2pu—1 + pn + x(0, pi)

+2p1+2p2 + -+ 2pr—1 + pr + x(0, pr)

k
=2E+20) (k—i)p) +x (3.48)

i=1
whereas for agent B the total completion time equals

k
2E +20) (k—i)pi) + 2B — x). (3.49)

i=1

We next call feasible a schedule o such that ) C ]A (6) <T/2and ) C ]B (0) <
T /2. We want to show that a schedule o is feasible, then it is an SPT schedule.

Suppose in fact that a feasible schedule o’ exists that is not SPT. Then, there
must be at least two consecutive jobs in ¢”, say J,.A and J, {B , such that J,.A precedes
J (B and p; > py. Now if we swap the two jobs, we obtain a new schedule o”
such that CjA(cr”) =3 C]-A(a’) + prand Y C]B(a”) =3 CJ»B(CT/) — pi. Since
pi > pe, one has 3" CH(o") + X CP(o') > Y- Co") + 2. CP(0”), i, the
overall total completion time > C ]A +>C jB has decreased of the amount p; — py.
So, each job of J# following a longer job of J4 can be swapped with it, hence
decreasing the overall total completion time of the solution. This can be repeated
until no such pair of jobs exists. A symmetrical discussion could be done for each
job JA € J4 following a longer job J& € 72. This time, if we swap them, the
agent A gains p, and the agent B loses p,, and so the overall total completion time
of the solution decreases by p, — p,. By repeatedly applying the above swaps, we
eventually find an SPT solution o”. However, since the solution we started with,
o’, was feasible, the overall total completion time of ¢” cannot exceed T = 6F +
4 Zf;l(k — 1) p;. At each swap, the overall total completion time of the solution
actually decreased. However, we ended up with an SPT schedule, whose weight
is exactly 6E + 4 Zle(k — 1) pi, a contradiction. Therefore only SPT schedules
can be feasible. For a schedule to be feasible, the total completion time for each
agent must be 7'/2. Recalling the expressions (3.48) and (3.49) of the completion
times for the two agents in an SPT solution, we observe that a feasible solution may
exist if and only if x = E, i.e., if and only if there is a solution to the instance of
PARTITION. 0
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3912 Problem 1|IN,Y.C¥ < 0|y C}

Now let us consider 1|IN,Y C jB < Q0|>Y.C jA. The following properties can be
easily established by a pairwise interchange argument

Lemma 3.5. Given a feasible instance of problem 1|IN, C]B <0l C]-A, there
is always an optimal solution such that:

e All jobs in J* are ordered in SPT
 All jobs in J® are ordered in SPT
 Ifpi <pj, J,-EJBandeEJA,thenJiprecedest

Note that this lemma does not imply that a job in 74 must precede a longer job
in 7 2. One can deduce the following result (Tuong et al. 2012).

Theorem 3.21. Problem 1|IN,Y CJB <0l CjA is binary NP-hard.

Proof. Let 78 C J. Given an instance of PARTITION, in which we suppose that
a; < ay < --- < ay, we define an instance of 1|IN,2:C;5 < Q|2:C]f4 in a
similar way as in Theorem 3.20, but with some relevant differences. Consider the
two disjoint job sets 74 and 7 2. For each integer a; in the instance of PARTITION,
we define a pair of jobs, namely job Jy;—; € JA of length py;i—y = Ma; and
Joi € JB of length py; = aMa;, where « = 1 4+ 1/M, and M is a sufficiently
large integer that guarantees that p,; < p»;+1 and all processing times are integer.
To this aim, one can choose any integer M such that

k—1 a;
M > max{ ———
i=l (di+1—a;

Note that the jobs are numbered in SPT order, and there is a single SPT schedule
Ji, Ja, ..., Jor. Note that the SPT schedule is the best possible schedule for agent
A. We let X4 and X g be the costs for the two agents of the SPT sequence:

k

Xg=M) (aj +a;(1+ )2k —j)+ 1) (3.50)
j=1
k

Xp=MY aj(l+a)k—j+1) (3.51)
j=1

We then address the question of whether there exists a schedule such that the cost
to agent A is at most X 4 + (¢ — 1) M E and the cost to agent B is at most Xp — M E.
We call feasible such a schedule if it exists. We next show that a feasible schedule
exists if and only if the instance of PARTITION is a yes-instance. We observe that if,
in the SPT sequence, we swap jobs J,;—| € J4 and Joi € JB, the cost of agent
B reduces by p,;—;1 = Ma; while the cost of agent A increases by py; — pai—1 =
(¢« —1)Ma,;.
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Given a yes instance (4, 4\ A’) of PARTITION, we build a schedule as follows.
We start from the SPT sequence and, for each a; € A’, we swap jobs J;— € J A
and J,; € J8. The cost for the two agents in the resulting schedule is therefore:

agent A: X, + » (@—DMa; = X4+ (@« — )ME

a; €A’

agent B: Xp — Z Ma;, = Xp — ME.

a; €A’

i.e., the obtained schedule is feasible.

Viceversa, consider a feasible schedule 0. Lemma 3.5 implies that there is a
feasible schedule obtained from the SPT schedule by swapping jobs J,;—; and Jy;
for a subset A C {aj,a, ...,ar}. Since o is obtained from the SPT sequence by
swapping jobs J,; and J,;—; foreach a; € A and the cost for the two agents is:

agent A: X4+ Y (¢ —1DMa; < X, + (@ — )ME (3.52)
a,-eff

agent B: X5 — Y Ma; < X, — ME. (3.53)
a,'E/f

From (3.52), Za,-e/fai < E, while from (3.53), Za,-e/fa" > E. Hence

Y sciti = E and we can build a solution to PARTITION letting ¢; € A’ if and

only if g; € A. ]

3.9.13 Problem1IND,} C? < Q|3 C}!

In view of these two NP-hardness results, one is led to question whether the
problems are weakly or strongly NP-hard. We next show that the most general
problem, i.e., 1|ND,Y  C jB < Q|>.C jA can be solved by a pseudopolynomial
dynamic-programming algorithm. In what follows we will consider the three
disjoint sets j 4 j B and J4 N J&, and assume that the jobs are numbered
in SPT order within each of these three sets. In fact, it is easy to prove (by a
simple pairwise interchange argument) that in any optimal solution to problem
1|ND, Y CJB < Q| > C4, the jobs are SPT ordered within each set.

We denote by A(i, j, h) the set consisting of the first i jobs of J4, the first j
jobs of 75 and the first & jobs of 74 N J5. Here we denote as J A% the ¢-th job of
JANJB andnp = |TJANTE|. Let P(i, j, h) be the sum of the processing times
of the jobs in A(i, j, h). Let F(i, j, h,q) denote the value of an optimal solution
to the instance of 1|ND, )" C? < ¢| 3~ C; in which only jobs from A(i, j, h) are
considered, with ¢ < Q. In an optimal solution to this problem, the last job is either
JA T jB, or JA8 In the first case, the contribution of the last job to the objective
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function is given by P (i, j, h), and this must be added to the optimal solution up to
that point. In the second case, the completion time of J ]B is P(i, j, h). In the third
case, the completion time of J, hAB is P(i, j, h), and this quantity must be added to
the objective function. Therefore we can define the following dynamic programming
formula:

F(i,j.h,q) =min{ F(i —1,,h,q)+ PG, j,h); (3.54)
F@G,jh—=1,9—P(@,j h)+ P(@, jh)}

Formula (3.54) must be suitably initialized, by setting F(0,0,0,g) = 0 for all
q=0,...,0and F(i, j,h,q) = +ooforgq < 0.

Note that F(ng,np,nsp, Q) gives the optimal solution value. Since each
quantity F(i, j,h,q) can be computed in constant time, the following theorem
holds.

Theorem 3.22. Problem 1|ND, ZC]B < 0| ZC]A can be solved in O(fignip
nap Q) time.

The pseudopolynomial algorithm can in principle be extended to any number K
of agents, each holding Y C ]k as objective function. The recursive formula (3.54)
must consider all possible subsets of K agents, since a job may contribute to the
cost of any subset of objective functions. Since in this case the number of possible
job subsets is 2K — 1, one would get a complexity of O(n2* =10, ... Q). Though
such complexity grows rapidly with K, it shows that the problem is still solvable
in pseudopolynomial time for a fixed number of agents. Of course, in many cases
some of these subsets may be empty. In particular, for both COMPETING and
INTERFERING one has only K disjoint subsets. For COMPETING these subsets
coincide with 7', 72,..., 7%, and in the INTERFERING case, the subsets are
TV = NI TN\T3, ete., K\ TK, K. Therefore in both these scenarios the
problem is solvable by formula (3.54) in O(n* Q, ... Qk). However, all K-agent
problems are open as for strong NP-hardness if K is not fixed.

3.9.2 Computing the Pareto Set

3.9.2.1 Problem 1||P(} C;‘ Y Cf)

We next address problem 1||P(3°C/!, 3~ CF). Even in the COMPETING scenario,
we show that the size of the Pareto set may not be polynomial.

Example 3.7. Let consider an instance of problem 1|COIP(3_C/, 3> C/) in
which the sets J4 and J2 are identical. Each set consists of k jobs of size
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po=1Lpr=2,pp=4,p3=8,...,pk—1 = 2k=1_Consider now a subset of all
possible schedules, namely those in which the two jobs of length pg are scheduled
first, then the two jobs of length p;, the two of length p, etc. Let o be one such
schedule. In o, for each pair of jobs having equal length, either the job of agent A
or of agent B is scheduled first. Call A’ the set of job pair indices in which the job
of J4 precedes the job of 72 having the same length in o, and N2 the set of pair
indices in which the opposite holds in ¢. Consider job J hA. If it is scheduled before
J;B, its contribution to the cost function of Agent 1 is 2" + 2(2" — 1), otherwise it
is 2(2") + 2(2" — 1). Hence, the total completion time for the Agent 1 is given by

dYogt= > @ 42—+ > @2 (3.55)

JheTA heN4 heNB
=Y 6@h-2+ > ¢@H-2 (3.56)
heNA heNB
k—1
=) 32" —2k+ > 2" (3.57)
h=0 heNB

Note that only the last term in expression (3.57) depends on the actual schedule o.
This expression shows that the quantity seq4 € hA may attain 2* different values,

one for each possible set V2. Symmetrically, the same analysis for Agent 2 yields
k—1
dYoof=) 302" -2+ > 2" (3.58)
JhegB h=0 heN4

Since obviously Y ,cpa 2 + X ,ens 2! = 28 — 1, for each choice of the set N4
we find a Pareto optimal solution. Hence, the size of the Pareto set is 2. o

3.9.3 Linear Combination

3.9.3.1 Problem 1|ND|a )" CJ?‘ +B8Y C].B

The linear combination problem 1|ND|o )  C ]A + B8>Y.C ]B can be solved in
O(nlogn) by the Smith’s rule. In fact, it is equivalent to an instance of the single-
agent problem 1|| > w; C; in which:
— i 7A
w; =a for jeJ
w; =B for j e JB
wi=a+p for j e JAnJ"h
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NONDISJOINT
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INTERFERING COMPETING

TR

BICRITERIA

Fig. 3.17 Reduction graph for 1|| Y- w;C;, > w;C;

3.10 Functions ) w;Cj,> w;C

Let us now turn to the more general problem in which both agents want to minimize
the weighted sum of the completion times of their respective jobs. This is actually
one of the scenarios that has received most attention in the literature.

In this case, NONDISJOINT — BICRITERIA. In fact, it is a special case of
BICRITERIA in which we simply set w? = 0if J; ¢ 7% and w = 0if J; ¢ J*.
We have therefore the reduction graph of Fig.3.17.

3.10.1 Epsilon-Constraint Approach

We next show that problem 1|CO, > wB C; B<oIy w‘]f’ C ]A is strongly NP-hard. In
view of the reduction graph in Fig. 3. 17 thls implies the strong NP-hardness of the
other cases, including 1|BI, )" wf C;<0l|XY w;’ C;. To the best of our knowledge,
so far only the binary NP-hardness of the BICRITERIA problem 1|BI, wa C; <
o1 w;’ C; had been established (Hoogeveen 2005).

Theorem 3.23. Problem 1/CO, wf C]B <0|Y w;-‘ CjA is strongly NP-hard.

Proof. Given an instance of 3-PARTITION, we build an instance of problem
1|CoO, waCjB < Q0] Zw;‘CjA as follows. Set J4 consists of 3r jobs, having
piA = wiA =a;,i = 1,...,3r. Set 75 consists of r jobs, JIB, JZB, . ..,JrB with
pf = E and wf = E3U=) for j = 1,...,r. We want to show that the instance
of 3-PARTITION has a solution if and only if there is a schedule such that, for the

objective functions of the two agents, one has:

ZWACA < Zp 1) =Y, (3.59)
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> 1
0 B 2B 3B 4B 5B (2r—2)B (2r—1)B
Fig. 3.18 Schedule in the NP-hardness proof for 1|CO, Y wBCB <0|Y wACA
and
Y owlcP <3 @2j - DETIT =y (3.60)

The key idea is similar to the one used in Theorem 3.15. In the instance of
11CO, Y WB CB <0|Y WACA the jobs of 7 & have “large” weights. In particular,
their wei ghts and the value YB are defined in such a way that job J JB cannot complete
after (2j — 1)E, foreach j = 1,...,r. On the other hand, in order for agent A not
to exceed Yy, it is convenient to process each J JB as close as possible to (2j — 1)E.
This leaves r intervals of length E. If and only if it is possible to perfectly fill these
intervals with triples of jobs from 74, then the instance of 3-PARTITION is a yes-
instance (see Fig. 3.18).

(Only if.) First observe that if there is a 3-PARTITION, then we can schedule the
jobs so that each job in J# completes at (2j — 1) E, and we can schedule the triple
of jobs in 74 corresponding to each set A, between two jobs of J5. Let us now
compute the total weighted completion time for 74. Indicating by &1, h, and h3 the
indices of the three jobs in Ay, after some computation one gets:

3r 3r

Y owict =33 plpt + Y (hE(p; + pit + pil)
h=1

i=1j=1

3r 3r

=53 pipt WH) _ (3.61)

i=1j=1

Similarly,

r

,
> wAC =3 =y
=1

j=1

So, the schedule is feasible.

(If.) Suppose now that a feasible schedule o exists such that (3.59) and (3.60) are
satisfied. We claim that in o the first job of J B je.,J lB , cannot complete after E.
In fact, in this case its completion time would be

wlCP <(E+1)EY™
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since £ > 3, it holds

r
E3r—3 > Z(ZJ _ 1)E3r—3j+l
j=2

and this implies that the total weighted completion time for agent B would exceed
Y, hence contradicting the fact that o is feasible. So, the first job JlB of 78 must
complete at time E (i.e., it starts at time 0). By a very similar argument, one can
show that JZB cannot complete after 3E, and so on, so that J jB does not complete
after 2j — 1)E.

Now let G;, be the set of jobs of J* scheduled consecutively between JhB and
JhB+1 ino forh = 1,...,r — 1, while G, denotes the jobs of J4 scheduled after
JrB . Let p(Gj) denote the total length of the jobs in Gy. It is easy to see that the
value of the total weighted completion time for agent A is given by:

3r 3r  3r r
Y owiChoy =33 pi'p} + ) hEp(G) (3.62)

j=1 i=1j=1 h=1

Since, from the previous discussion, job J, hB cannot complete after (24 — 1)E,
the total length of the jobs from J* scheduled before time (2h —1)E cannot exceed
(h — 1)E. Now, in order to obtain a lower bound on Z _w/C/(0), we can
reason exactly as in the proof of Theorem 3.15, and compute r ﬁgures for p(Gy),

h = 1,...,r that minimize the function ), _, hp(Gy). It is easy to verify that the
minimizeris p(G,) = E,h = 1,...,r, so that we get the lower bound:
3r 3r 3r r(r + 1)
> wicio) = > > pitps (3.63)
j=1 i=1j=1

since o is feasible, both (3.59) and (3.63) hold, and therefore
3r
Y wiCHo) = Y4 (3.64)
ji=1

but this can only occur if p(G;) = E for all h, i.e., if the instance of 3-PARTITION
is a yes-instance. O

3.10.1.1 Problem 1|BI, > w?C/ < Q| X wiC}!

As we have already seen for problem 1|ND, C2, . < Q] Y- w/C/!and 1|CO, L}, <

0| ZWACA also in this case a viable approach to build an exact algorithm is to
pursue 1ower bounds by means of a Lagrangian relaxation of the problem. It turns
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out that even in this case the Lagrangian dual can be solved very efficiently, and the
quality of the bound is sufficient to solve instances of the problem of reasonable size.
We next illustrate this approach for 1|BI, }_w?C? < Q| 3w/ C! (since the other
scenarios can be reduced to it setting the appropriate weights to zero), and give an
efficient algorithm to solve the Lagrangian dual. In what follows, we let §! and § f
denote the ratios wi'/p; and wf / p; respectively. Recalling (Sect.3.4.1.1) that S
denotes the set of all job permutations, the original problem is

&= min Z;W;lci(o) : lefcj(o) <0 (3.65)
i= j=

Relaxing the constraint on the jobs of agent B in (3.65), we get the Lagrangian
problem:

L(2) = min > wiCi(o) + A lefc,»(a)—Q (3.66)
iz

i=1

Note that for each value of A > 0, the problem (3.66) is in the format of a
classical, single-agent problem 1|| Y~ w;C;, in which the weights are defined as
wy = wg’ + Aw,f . The optimal schedule o (A) for this problem can be found by the
Smith’s rule, i.e., scheduling the jobs in non-increasing order of their ratios 8,:’ +
A8P. For each A, the solution of (3.66) is a lower bound for the original problem.
The Lagrangian dual is therefore:

L") = max gg{;wfci(a) n A(;wfcj(o) . Q)} (3.67)

Recall that L(A) is a concave, piecewise linear function (see Fig. 3.19), and that
the breakpoints of L(A) are the values of A in which the slope of L (1) changes. For
all values of A between two consecutive breakpoints, the optimal schedule for (3.66)
remains the same. If A is not a breakpoint, the slope of L(1) in A is

> whCi (o) -0 (3.68)
j=1
which represents the violation of the constraint Zj‘:l wf Cj (o) < Qin (3.65). If

A is a breakpoint, then, for sufficiently small ¢ > 0, the schedules a(/i — ¢) and
0 (A + ¢) are obtained one from the other simply swapping the jobs of all adjacent
pairs (J;, J;) for which

5+ A8P =681+ Xs”. (3.69)
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L}

A% — O;(_A_* + 8)
L(A*) -f------------ qg____g_)__":-- -7

infeasible
sqlutions

Amin A* Amax

Fig. 3.19 Shape of Lagrangian function

Note that there is at least one such pair. Both schedules oA — ¢) and oA +¢)
are optimal for problem (3.66), with A = A. Notice that if, for some pair (J;, J;),
sAh=34 ;1, then for any A, the job having higher ratio for Agent 2 will be sequenced
first in o/(1). Symmetrically, if §% = 815 , their relative ordering in o (1) is decided
by the ratios §;' and § ;’. Hence, any breakpoint in L(A) is associated with two jobs
(Ji, J;) such that 8 # 84 and §7 # §7. Now, with no loss of generality suppose
that 6 > 64, i.e., for Agent 1 job J; has a higher priority than J;. If also 67 > 67,
then for no A > 0 one has that (3.69) holds. Therefore, in this case, for any A, J;
will always precede J; in o (). If, on the other hand, 81.3 < (Sf , then J; precedes
Jiino(A) for A < )_k, and J; follows J; for A > /_\, where A is given by (3.69). In
conclusion, as A goes from 0 to oo, any two jobs overtake each other at most once
(see Fig. 3.20). As a consequence, the overall set A of breakpoints is given by:

§4 54
A: SZB 5;5;4>8}4’8f>813517]:1,,n
j Y

and the total number of breakpoints cannot exceed n(n — 1)/2.

The maximum L(A*) is attained in the breakpoint A* in which the slope of L(1)
switches from positive to non-positive, and therefore schedule o (A* + ¢) is feasible
for (3.65). The breakpoint A* can be efficiently found as follows.

First compute the set A and sort it by nondecreasing values. Then, compute
the schedule o (oco) obtained by ordering the jobs by nonincreasing ratios SiB . This
coincides with o(A) for sufficiently large A. As A decreases, the same schedule
o0(oo) remains optimal until the largest breakpoint A € A is encountered, i.e.,
0(A) = 0(00). The schedule o(A — ¢) can be generated from o (A1) by simply
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Fig. 3.20 Optimal schedules for problem (3.66) for decreasing values of A, where Ao = A,,;, and
Ak = Amax

swapping all job pairs J;, J; such that (8 — 8;‘)/(5? -8 = A. As A further
decreases, the schedule a(i—e) remains optimal up to the second largest breakpoint,
and the same argument applies. At each breakpoint, the value of (3.68) can be
updated by computing the contribution of each swap in constant time. The optimal
breakpoint A* is the first value for which the slope (3.68) computed in A* — ¢
is positive. Since the overall number of swaps cannot exceed n(n — 1)/2, the
complexity is dominated by the ordering of the breakpoints, and the following
theorem holds.

Theorem 3.24. The Lagrangian dual of problem 1|BI, ) wf CJB < 0|y wicH
can be solved in O(n*logn).

This result can be slightly refined for 1/CO, > w?C? < Q> wiC/". In
this case, it can be shown that the total number of breakpoints cannot exceed
nanp. Details can be found in Agnetis et al. (2009b), where it is also shown

how the Lagrangian bound can be embedded in a branch-and-bound scheme for
1|C0,waCJB < 0] Zw;’C]A.

3.10.2 Approximation

In this section we present an approximation result concerning problem 1|CO| > w;’
CH, > w?CP. In what follows we refer to the concept of (B4, f)-approximation
schedule, introduced in Sect. 2.4.2 as type II approximation. Also, we assume that
the jobs of each agent are numbered in WSPT order. For each agent k, k € {A, B},
consider the reference schedule o (Sect. 1.2.1), and let t}‘ denote the completion

time of job J Jk in such schedule. Note that this is simply the sum of the processing
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Algorithm 18 Approximation for 1|CO| Y w;’ C ]A, > wf C ]B

: Construct the reference schedule o via WSPT

: rj‘-" =C ]‘-4 ()

: Construct the reference schedule o? via WSPT

1} :=Cl(0?) .

: Schedule all jobs in non-decreasing order of §;7; values
: return &

DB W N

times of the first j jobs of agent k. For the sake of clarity, in this section we let
O} denote the optimal value of the objective function of agent k in its reference
schedule o*. This is a lower bound to the cost agent k will pay in any two-agent
feasible schedule.

Suppose we want to find a (84, f)-approximation schedule for given 84 > 1
and B > 1. This can be achieved by the simple Algorithm 18, as long as the
following condition holds:

1 1

5 + 5= 1 (3.70)

As shown in Algorithm 18, the algorithm consists in computing the two reference
schedules, multiplying each t;‘ by B4 and each tf by B, and then scheduling the

jobs by nondecreasing values of B r;.‘. We call 6 the schedule produced. Lee et al.
(2009) proved the following result.

Theorem 3.25. Given 4 > 1 and Bp > 1 satisfying (3.70), Algorithm 18
produces a (B 4, Bg)-approximation schedule.

Proof. The proposition holds if we show that in the schedule &, the completion time
of each job C ]k (6) does not exceed B r}‘ . The proof is by induction on the number

of jobs. At the beginning of the algorithm, the job with smallest B r;? is scheduled

first. In this case, C lk (0) = rf and since B > 1, the thesis obviously holds.
Now consider that p jobs from J4 and ¢ jobs from 72 have been scheduled
so far. By the inductive hypothesis, C ]k (0) < ,Bkrj.‘ for all jobs scheduled so far,

and suppose that the next job in the list is from J4, i.e., job J pA+l (a symmetric

discussion holds if it is from J%). Since the algorithm schedules the jobs by
nondecreasing S rj? , one has that

Brt, < Batiy, (3.71)

Now let us consider the completion time of J ]f’ +1- Recalling that r;‘ and rf equal
the total processing time of scheduled jobs from 74 and 7 respectively, one has

A (= B A
Cp_H(CT) =1, + 7,4
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From (3.71),
~ ﬂA A A 1 1 A
CA . (6)< =4 +1 = — 4+ — ) A,
p+1 ,BB p+1 p+1 IBA ,BA ,BB p+1

and hence, from (3.70), C;’H (04) < B ‘E;+l and the thesis holds. O

This theorem has interesting implications on the e-constraint problem, since it
allows to establish a relationship between the optimal value of 1|CO, Y wf C ]B <
o1 w;‘ C jA for a given Q and the value of the reference schedule of agent A. To
this aim, consider an instance of 1|CO, Y wf C ]B <0 w;‘ C jA. For the problem
to be feasible, clearly Q must be at least Q%. Consider now the optimal schedule &
for 11CO, - w#CP < Q| 3w/ C}. The value of the optimal solution for agent A
cannot be worse than what agent A could attain by Algorithm 18. Expressing Q as
0 = B O3, from (3.70) one has:

S ArAl= IBB *
;chj (0) < Bs—1 Qi
This allows to express the tradeoff between the two agents with respect to the
ideal values Q% and Q7. For instance, if we allow that agent B pays up to 1.5 times
its ideal cost, the cost to agent A will certainly not exceed 3 times its ideal cost.
For illustration purposes, we presented Theorem 3.25 for K = 2, but Lee et al.
(2009) indeed established the result for any number K of agents, given that:

=1 (3.72)

Example 3.8. Let us consider a three-agent instance, in which all jobs have unit
weight and unit length. Each of the three agents owns four jobs. We want to
find a (Bi, B2, B3)-approximation schedule, in which 81 = f, = f3 = 3,
so that Eq. (3.72) holds. Clearly, the reference schedules o', 0%, o3 have values
Q7 = 0> = Q7 = 10. When applying Algorithm 18, we obtain the following
vectors of modified completion times:

(i)'} =1{3. 6.9, 12}
(Bt} ={3. 6.9, 12}

{Bs7]} ={3. 6, 9, 12}

Since ties can be broken arbitrarily, suppose we always break them in favor of agent
1 and then agent 2, so that we obtain the schedule

eI T 1 O S A £ S S £ S SR ol



124 3 Single Machine Problems

and
fllo) =14+4+7+10=22
f204) =2+5+8+11=26
FH o) =3+6+9+12=30
we observe that
fl(o4) =22 <30 =807,
f2(04) =26 <30 = B,05,
f3(o4) =30 = B;05.

If we consider the same type of instance, in which each agent owns n/3 identical
unit time jobs, with arbitrary n, we get, for each agent k,

Of =n(n+3)/18 (3.73)
and, always solving the ties in favor of agent 1 and then 2,
flo4) =n(n—1)/6

fHo4) = n(n+1)/6
fo4) =nn +3)/6

Hence, for each agent k,

and this shows that the bound is indeed tight. o

As shown in Saule and Trystram (2009) and Lee et al. (2009), it turns out that
the simple Algorithm 18 is the best possible, i.e., if (81, B2, - . ., Bx) satisfies (3.72),
there cannot exist an approximation algorithm yielding a strictly better approxima-
tion than (81, B2, ..., Bk). We next show such tightness result considering again
Example 3.8. In this example the sum of the three agents’ costs is independent of
the actual schedule (since all schedules are SPT in this case), and equals

1
net 1) (3.74)
2
while the value of the reference schedule for each agent is given by (3.73). Now
suppose that we perfectly divide the cost (3.74) among the three agents. In this case,
the cost to each agent would be
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nn+1)

- (3.75)

and therefore, the ratio between (3.75) and (3.73) is

3n+1)
n+3

which approaches 3 as n — oo. This means that no algorithm can ensure to find a
(B1, B2, B3)-approximation schedule strictly better than (3, 3, 3)-approximation.

It is interesting to observe that Angel et al. (2005) give a fairly sophisticated
(2,2)-approximation algorithm for the more general scenario 1|BI, wa C jB <
o1 w;l C jA.

Finally, let us apply the above considerations to the two-agent problem
1jco.ct < 0|> w;leA (Sect.3.4.1), which can indeed be viewed as a special

max
case of 1|CO, waC]B < 0] Zw;‘C]A, in which, with no loss of generality,
agent B only has one job of length Pp and weight 1. Observing that in this case
Q% = Pg, one has that any feasible solution to 1|/CO,CE < Q| Zj w;le is
Bo-approximate, where

0
= = 3.76
Bs Py (3.76)
and hence, from (3.70), the best possible approximation for agent 4 is:
Y
4= . (3.77)
P 0—-p

We can compare these expressions with those in Theorem 3.14. When applied
to the COMPETING scenario, one has ISB = Pp, and we retrieve exactly (3.76)
and (3.77), thus showing that the optimal feasible schedule for the Lagrangean dual
provides the same approximation.

Moreover, notice that in the general NONDISJOINT scenario, 132 < P),andas a
consequence, the (B4, §)-approximation provided by Theorem 3.14 may be such
that

— + — > 1. (3.78)

Note that this does not contradict the tightness result above, since 1|ND,CE <
0] Zw;’Cj is not a special case of 1|ND,waCj < Q] Zw;’Cj. In other
words, (3.78) shows that 1|ND,CE < Q| wa’C ; can be better approximated

than 1/CO, CJ < Q| > wiC;.
We conclude this section on approximation observing that, since problem
1|C0,waCj < Q|Zw;’Cj is strongly NP-hard (see Theorem 3.23),

no FPTAS is likely to exist. In Levin and Woeginger (2006) the authors
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give a PTAS for problem 1|BI,ZW}3C ]B < Q|Zw;1C jA, of complexity
O (n*log? n(loglog WP)n3/2(2/e)1(2/¢)"/).

3.10.3 Computing the Pareto Set

In view of the result established in Sect. 3.9.2, in the worst case the size of the Pareto
set can be exponential.

3.10.4 Linear Combination

Problem 1|ND|a Y w‘]‘-1 Ci+B> wf C; is easily solved in O(n log n) by the Smith’s
rule (indeed, so does even the K-agent problem 1|ND| > oy > w’j C;). Notice that
this fact has been exploited by the Lagrangian approach to the ¢ constraint problem,
where the weights of the jobs in 72 are simply multiplied by A (Sect. 3.10.1).

3.11 Functions ) U;, ) C;

Let us now consider the case in which one agent wants to minimize total
(unweighted) completion time and the other wants to minimize the number of
tardy jobs.

The reduction graphs for this case reflect the asymmetry of the problem.
In fact, the scenario 1|IN|ZCA,ZUJB reduces to 1|BI|ZCA,ZUJB, by
simply associating a very large due date to the jobs of J4. This yields the
reduction graph in Fig.3.21. Similarly, the scenario 1|ND|Y_U#,>" C ,B reduces
to I{IN|Y U/',>"C} associating a very large due date to the jobs of J”
(see Fig. 3.22).

3.11.1 Epsilon-Constraint Approach

Problems 1|C0,ZC}B < Q|2UjA and 1|BI,ZUJB < Q|ZC;‘ have been
proved NP-hard in Leung et al. (2010) and Huo et al. (2007b) respectively. In
view of the reduction graphs in Figs.3.21 and 3.22, these NP-hardness results
imply the NP-hardness of all other scenarios. A pseudopolynomial algorithm
having complexity O(n4n% Pp) has been proposed in Ng et al. (2006) for problem
11C0, Y. U2 < Q|ZCJA.

In Meiners and Torng (2007), the authors address the problem in which the
jobs have release dates and preemptions are allowed, i.e., problem 1|CO, r;, prmt,
ZCJB < 0] ZU;‘. They show that even if | 74| = 1, the problem is NP-



3.11 Functions Y_U;, Y- C; 127

NONDISJOINT
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BICRITERIA

Fig. 3.21 Reduction graph for 1|| > C/, > U/

NONDISJOINT

T

INTERFERING COMPETING

™~

BICRITERIA

Fig. 3.22 Reduction graph for 1|| 3 U/, 3 C/

hard. Moreover, they consider the lexicographic approach for the weighted problem
1|CO, r;,pmin|Lex(d_ w;.‘ UjA, > C]B), and give a polynomial time algorithm for
the special case in which all jobs have unit length (in which case, preemption is

indeed immaterial).

3.11.2 Computing the Pareto Set

In all scenarios, as the cost function of agent k is the number of tardy jobs, there are
at most nx + 1 Pareto optimal solutions. Incidentally, we observe that this is one of
the few cases in which the Pareto set is polynomially bounded, but the e-constraint
problem is hard.

3.11.3 Linear Combination

Turning to problem 1|CO|a Y U jA + B " CB, it has been proved to be NP-hard by
Choi et al. (2009).
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The proof uses a variant of the PARTITION problem:

EVEN-ODD PARTITION
Instance: A finite set I of 27 integers a;, such that

D aj=2E
j=1
Question: Is there a partition of / into two sets /| and I, such that

Zaj=2aj=E

ajEIl ajEIz

where /| and I, each contains exactly one element from {a,;_;, as; }?

Theorem 3.26. The problem 1|COla Y- U* + B3 CF is NP-hard.

Proof. We reduce EVEN-ODD PARTITION to 1|CO|a Z Ut + B> CJ. We make
the following assumptions. Let 0; = ay; —azi—1, i = 1,...,n. Notlce that since
each pair of integers, ay;, az;—; must be put into two dlfferent sets, we can add
a constant ¢; to each pair without changing the problem instance. By carefully
choosing ¢;, we may assume that the given instance of Even-Odd Partition satisfies
the following properties:

1. a; > (2n +2) max{oy,...,0,}

2. azi—1 > Z =1 aj
3. a;/jis 1nteger

If this is not true, we can multiply each a; by n! without changing the problem
instance. Note that although the numbers a; may become exponential, the size of
the binary input remains polynomial.

Now given an instance of the EVEN-ODD PARTITION problem, we create the
instance of 1|COla )" C jA +BXU jB as follows. There are 2n “P-jobs”, each of
which corresponds to an integer in the EVEN-ODD PARTITION instance, and a large
“R-job” for Agent B. There are n “Q-jobs” for Agent A. The processing times and
due dates of these jobs are shown in the following table.

Job Processing time Due date

Pyi—1 azi—1(= pai—1) Z;';il D + Z};ll X + pai—i

Py; ar + (i = V)o; (= pai)  Ypmy Pok + Dy Xk + P2i

R L Yiixi FIE+IYI_ (i — Dol + L

0i Xi
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where:

e L is an integer larger than 2F

e x1=1,x; = Z iiéaz, sfori =2,...,n—1and x, = %azn_3 + aj,—5. Note
that x; < xz <,...,< Xx, and they are all integers
e liog = = z+1a21  fori = 1,...,n — 1. Note that by the third of the above

assumptions, /;0; is integer.

Also, let

TC = Z(l’l — i)[az,- + (Z, — 1)0,'] + Z(n -1+ 1))(?,‘ + %ZZ,’C&

i=1 i=1 i=1

and finally, let « = ¢ and B = 1 — ¢, where ¢ is a very small, positive value.
The problem consists in determining whether there exists a schedule such that the
objective function value is at most eTC + (1 — ¢)n.

In the instance of EVEN-ODD PARTITION, without loss of generality, we can
assume that

a; >2 and azi— — E ajz2

First of all we claim that in the instance of 1|COla }_ C jA +B8>U jB , there should
exist at least n tardy jobs of agent B in all schedules. In fact, consider two jobs of
agent B of length p,;—; and p,;. Then,

P2i—1 + P2i = Gzi—1 + a2

and

dy = ZPZk + Zxk + poi = Z n:]]z—ﬁ@k—1 + x

i i
n—k+1 n—k+3 n—k+1
_— — ;=1 — i
+k2=2n—k+2a2k 3+ D2 +k2=2(n—k+2+n—k+2)a2k 3+ p2

i
=1 +22a2k—3 + Pai
k=2

Incasei = 1, since a; > 2,

Pi+p—dr=a +a—(xi+a)=a—-1>0
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. . 2i—2
Incasei > 1, since azi—; > Zkl=1 ay and arr — ax—1 > 0,

i 2i—2 i
Prci+ i —doi = a1 —(142) an3)>Y ax—(1+2) ays)
k=2 k=1 k=2

i—1

= (ax —ay-1)—1=0

k=1

These two cases imply that one job among 2i — 1 and 2i should be tardy. Thus, there
should be at least n tardy jobs of Agent B in all schedules and the claim is proved.
Because of this claim and the small value of ¢, there exists an optimal schedule
with n tardy jobs of agent B. Moreover, it can be shown (Leung et al. 2010) that
the lower bound to total completion time for agent A is TC, and that a schedule
attaining such a bound exists if and only if there exists a partition [;, I in the
instance of EVEN-ODD PARTITION. This completes the proof. O

3.12 Functions ) T, C;

Now let us turn to the case in which one agent wants to minimize the total
unweighted completion time and the other wants to minimize the total tardiness.

It is easy to see that in this case the same reduction graphs of Figs. 3.22 and 3.21
hold, where ) T} replaces Y~ U;. The scenario 1|{IN|Y C#, 3> T/ reduces to
1|BI| Y. CB Y T#, by simply associating a very large due date to the jobs of T4,
while 1]CO| )" TjA, > CJB reducesto 1|IN|Y TjA, > CJB, associating a very large
due date to the jobs of NES

In Leung et al. (2010) the authors give a pseudopolynomial algorithm for
problem 1|CO, > C8 < 0|> TJA, which combines the ideas developed in Agnetis

et al. (2004) with the pseudo-polynomial time algorithm by Lawler for 1| )" 7}
(Sect.2.7.1). The following result holds:

Theorem 3.27. Problem 1|CO, )" CJB < 01> TjA can be solved in O(n*n%Q
(P + Py)) time.

3.13 Functions > _w;C;, Y U;

For this case, one has the reduction graph in Fig.3.23. In fact, problem

1|ND| Y w;‘CjA, > UJB reduces to 1|BI| Y’ w;leA, > U2B, by assigning a weight

w; =0toeachj € JP and setting a very large due date djtoeach j € T
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Fig. 3.23 Reduction graph
for 1| > w,;C;, 2 U; l NONDISJOINT |

e S

INTERFERING | | COMPETING

T~

| BICRITERIA |

3.13.1 Epsilon-Constraint Approach

As observed by Ng et al. (2006), a consequence of a result in Lawler (1977) is
that problem 1|/CO, Y UP < Q|3 w{C/ is strongly NP-hard. This implies the
NP-hardness of the e-constraint problem in all other scenarios.

3.13.2 Linear Combination

For what concerns the problem 1|COla Y w;-‘ C jA +B8>U jB , it is strongly NP-hard.
In fact, since (Lawler 1977) the problem 1|CO, LE < 0] Y w;.‘ C ]A is strongly NP-

max

hard, so is also 1|CO, Y UjB =0 w;.‘ C].A. The latter problem can be reduced to
1|COla Y w;‘ CjA +B8Y U]B just by setting a very large .

In view of the reduction graph of Fig. 3.23, also all other scenarios are strongly
NP-hard.

3.14 Functions ) U;, ) U;

In this section we turn to the case in which both agents want to minimize the
total number of tardy jobs. It is well-known that in the single-agent case, 1|| Y U,
is solved by Moore’s algorithm (Sect.2.7.1). When we address this problem in
the two-agent, NONDISJOINT setting, we must make an important distinction on
whether:

(i) AjobJ; € 74N J* has the same due date for both agents (we write d ! = d
in the f field of the problem notation to refer to this case)
(i) AjobJ; € 74N J® may have different due dates for the two agents.

In case (i), the reduction graph in Fig.3.24 holds. In this case, the BICRITERIA
setting makes no sense, and, as we will see, all problems in the NONDISJOINT
scenario can be solved in polynomial time.
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Fig. 3.24 Reduction graph
for NONDISJOINT
ld! =dP| > UMY UP
when the common jobs have
the same due dates for both
agents
INTERFERING COMPETING ‘

Fig. 3.25 Reduction graph
for 1]| Y UA, > U]B when l NONDISJOINT
the common jobs may have
different due dates for both
agents
INTERFERING | | COMPETING
| BicrRITERIA |

In case (ii), the reduction graph in Fig.3.25 holds. Actually, in this case the
COMPETING scenario is the same as with a single due date, since there are no jobs
in common between the two agents. However, we will see that all problems in the
remaining scenarios are hard.

3.14.1 Epsilon-Constraint Approach
3.14.1.1 Problem 1|ND,d# =d®, Y UP < Q| X U

Let us start by considering problem 1|ND, d;‘ = df, > UjB <0|> UjA when the
two agents apply the same due date to common jobs. We show that this problem can
be efficiently solved by dynamic programming. The following lemma relates to the
structure of an optimal schedule.

Lemma 3.6. There is an optimal schedule o* for problem 1|ND, d;l =
d]B, > UJB < 0> UjA in which all the late jobs are scheduled consecutively
at the end of the schedule, and all the early jobs are scheduled consecutively in
Earliest Due Date (EDD) order at the beginning of the schedule.

Proof. Consider an optimal schedule ¢* and move all the late jobs to the end of
the schedule, thus obtaining a new schedule ¢’. Clearly, > U JA o) =>XU jA (o*),
since we are moving backward the early jobs. Consider now all the early jobs in ¢”,
that are sequenced consecutively at the beginning of the schedule, and resequence
them in EDD order. This does not increase the number of late jobs, thus completing
the proof. O
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In the remaining part of this section we assume that the jobs in J are globally
numbered from J; to J,, in EDD order.

We next illustrate a recursion relation that can be exploited to design a poly-
nomial time dynamic programming algorithm for 1|ND,d/' = df,> U <
01X U}

Let C(i, h, k) be the minimum completion time of the last early job in a partial
schedule of the job set {Ji, ..., J;} in which agent A has at most % late jobs and
agent B at most k late jobs. By definition, we set C(i,h,k) = oo if no such
schedule exists. The following relations hold.

Boundary Conditions:

C(0,h,k) =0, forallh >0,k >0
C(i,h,k) =400, ifi <OQorh <0Oork <O0.

Recursion Relation:

400 ifC(i —1,h,k)+ p; > d;
0 otherwise.

fli h k)=

Ci,hk) =

min{C(i — 1,h,k) + p; + f(i.h.k);C(i —1,h —1,k)} if J; e J4
min{C(i — 1,h,k) + p; + f(i.h.k);C(i —1,h,k — 1)} ifJ; e 78
min{C(i — 1,h.k) + p; + f(.h,k);CGi —1,h—1,k=1)} if ; e TAN TE

In all three subcases of the recursion relation, the first term refers to job J; being
scheduled on time. If this occurs, the makespan increases by p;. The second term
equals the makespan when J; is late. This term is slightly different depending on
the subset J; belongs to.

Lemma 3.7. If C(i, h, k) is finite, then it is the minimum completion time of the
last early job over all feasible schedules for the job set {J, ..., J;}, with at most h
late jobs for agent A and k for agent B. If C(i, h, k) = 400, then there is no such
feasible schedule.

Proof. The proof is by induction on i. Clearly the property holds fori = 1, for any
h,k = 1,...,n. Now, assume that the property holds until (i — 1). We will show
that the property holds also for i and for any %, k.

Let o be a schedule for the job set {J1,..., J;}, such that the completion time
T of the last early job in o is minimum among all feasible schedules with at most
h late jobs for agent A and k for agent B. If J; is early in o then, again from the
inductive hypothesis, t = C(i — 1,h, k) + p;. If J; is late in o, we consider three
subcases.
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1. If J; only belongs to agent A, from the inductive hypothesis, T = C(i —
I,h—1,k). If CG —1,h — 1,k) = +o0, there can be no feasible schedule
of {Ji,..., J;} with at most & and k late jobs for the two agents respectively, and
the algorithm sets C(i, i, k) = +o0.

2. The argument is symmetrical if J; only belongs to agent B, so that t = C(i —
1, h, k—1) and the schedule attaining C (i, j, k) is infeasible if C(i —1, h,k—1) =
+00.

3. Finally, consider the case in which J; belongs to both agents. Now, from the
inductive hypothesis, 7 = C(i — 1,h — 1,k — 1).

In all three cases, the recursion relation correctly chooses the smallest between the
two quantities. O

Theorem 3.28. The value h* = min{h : C(n, h, Q) < +00} is an optimal solution
value to problem 1|ND, d;l = df, > U]B < Q|>_ U4, and it can be computed in
time O(n®).

Proof. Suppose that an optimal schedule o for 1|ND, d;’ = d ]B YU jB <
0| ZU].A exists in which ) UjA(a) = h < h*. In this case, by definition of
h*, it must hold C(n,};, Q) = +oo. On the other hand, since h < h*, in o
there is at least one early job for agent A. Without loss of generality, we can
assume that o has the structure illustrated in Lemma 3.6, and let J; be the last
scheduled early job in o. From Lemma 3.7, C¢(o) cannot be smaller than the
minimum completion time of an early job, i.e., C¢(c) = C(n,h, Q). But since
C(n,h, Q) = o0, this is a contradiction. Therefore, 2* is the optimal value for
LIND.dA = d®, Y UP < Q| L U,

Let us now turn to complexity. Computing each C (i, k, k) requires constant time.
Since &, k < n, computing all of them requires O (n*) time. The quantity 4* can be
computed O(n) time, and therefore the thesis holds. O

The dynamic programming approach can be extended to any number K of
agents, each holding " U Jk as objective function (k = 1,..., K). In this case,
C(i,hy, hy, ..., hg) will denote the smallest completion time of the last early job
in a schedule of the first i jobs, in which at most /; jobs are late for agent k,
k = 1,..., K. Although job J; can contribute to the number of late jobs of all
the agents it belongs to, the computation of C(i, iy, ha, ..., hg) can still be done
in constant time, since it only involves the comparison between two quantities.
Therefore, the K-agent problem in the NONDISJOINT scenario can be solved in
O(nX*1). The complexity status of the e-constraint problem in all scenarios when
K is not fixed is still open (Cheng et al. 2000).

The dynamic programming approach can also be extended to the problem with
release dates, as long as these are agreeable, i.e.,d; < d; if and only if r; < r;.In
fact, assuming with no loss of generality that d; > r; + p; for each J;, the algorithm
can still be applied, provided that the recursion relation is modified as follows:
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C@i,h k)=
min{max{C(i —1,h,k),r;} + pi + f(i,h,k); C(i —1,h—1,k)}
if J; € J4
min{max{C(i —1,h,k),r;} + pi + f(i,h,k); C(i —1,h,k —1)}
if Jy e 78
min{max{C(i — 1,h,k),ri} + pi + f(i,h,k); CG —1,h =1,k —1)}
ifl;eJANJE

In conclusion, the following result holds.

Theorem 3.29. An optimal solution value to problem 1|ND, r d]A = d]B, > UJB <
o> U jA when release and due dates are agreeable can be computed in time O (n>).

3.14.1.2 Problem 1|ND, Y. U? < Q| Y. U/

Let us now consider the case in which a job belonging to 74 N 72 may have
distinct due dates for the two agents. The problem 1|BI,}_U/' < Q|Y U} is

binary NP-hard. In fact, it reduces to the single-agent problem 1|d;, d 1> U;,
which has already been recalled in Sect.3.7.1, and that was proved binary NP-
hard by Lawler (1982). In fact, 1|d;,d;| > U, is a special case of 1|BI, ) UJA <
o> U jB in which deadlines d ; play the role of due dates for agent B, and
Q = 0. As a consequence, in view of Fig.3.25, also 1|IN, ) UJB < Q| UjA
and 1|ND, Y UjA <0l UJB are NP-hard.

3.14.2 Computing the Pareto Set and Linear Combination

From Lemma 3.7, it follows that a schedule with & late jobs from J 4 and k
late jobs from JB is Pareto optimal if C(n,h, k) is finite, while C(n,h — 1,k)
and C(n,h,k — 1) are both infinite. The proof of Theorem 3.28 shows that
all values C(n,h,k) can be computed in O(n?). Hence, one can conclude the
following.

Theorem 3.30. The problem 1|ND, d;l = ij PQ_UAY UJB) and the problem
1|ND, d;l = ij|Oé > U]-A +B8> UJB can both be solved in O(n?).

A corollary of this theorem is that problem 1|CO|P(>_ U4, > U jB ) and problem
1|COla Y UJA +8> UJ»B can also be solved in O(n?).
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Turning to the more general case in which the due dates of common jobs may be
distinct for the two agents, we have the following result:

Theorem 3.31. The problem 1|BI, o) UjA +B8> UjB < Q|- is NP-complete.

Proof. Membership in NP is obvious. Given a feasibility instance of the single-
agent problem 1|d;,d;, U i < Q]|—, we can define a feasibility instance
1B,y UjA +8> U]B < Q|—. The due dates d; are the due dates of the jobs for
agent A, while deadlines d ; play the role of due dates for agent B. Let alsoa = 1
and B = Q + 1. Hence, in a feasible instance for the BICRITERIA problem, no job
can be tardy with respect to d;, and therefore there is a schedule with at most Q
tardy jobs with respect to d; if and only if the original instance of the single-agent
problem is feasible. O

The above result implies the NP-hardness of 1[/N|a ) U/' + Y U and
IINDla U+ B3UP.

3.15 Functions ) w;U;,Y w;U;

The classical, single-agent problem 1| Y~ w; U; is well-known to be binary NP-hard
(Lawler and Moore 1969). This obviously implies that all multi-agent problems in
this scenario are at least binary NP-hard. As in the previous section, also here we
distinguish the two cases in which common jobs have the same due date for the two
agents, and, respectively, have different due dates.

3.15.1 Epsilon-Constraint Approach

3.15.1.1 Common Jobs Have the Same Due Date

Let us consider the general K-agent setting (Fig. 3.26). When the jobs belonging
to more than one set 7* have the same due date for all the sets they belong to,
one can still assume that all jobs are numbered in EDD order. Cheng et al. (2006)
show that the algorithm in Sect. 3.14.1.1 can be easily generalized to solve the K-
agent problem 1|/CO, > wiU? < Qs,..., X wkUK < Qx| wiU]. Here we
report the algorithm for the general, multi-criteriacase 1|M U, d jk =d;, ) w? sz <
Qz,...,ZWijK < QK| ZW}U}.

Let C(i, X1, X5, ..., Xk) be the minimum completion time of the last early job
in a partial schedule of the job set {Ji,...,J;} in which Zw’;Uj < X, k =
1,...,K and we set C(i, X1, X»,..., Xg) = 400 if no such schedule exists. The
following relations hold:
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Fig. 3.26 Reduction graph
for 1|d¥ = l NONDISJOINT
J
i1 w;U;, 2w, Uj / \
INTERFERING I I COMPETING ‘
I BICRITERIA |
Boundary Conditions:

C0,X,X,,...,Xg) =0, forall X; >0
C(, X1, X5,...,Xg) = +o0, ifi <0orsome X; < 0.

Recursion Relation:

4+oo ifCGi —1,X1,Xs,...,Xk)+ pi > d;

SO X0 X, Xp) = { 0  otherwise.

C(i’XI’ XZ""’XK) =

min{ Cli —1.X1, X ... Xg) + pi + fG. X1. Xon ... XK):
C(i—1,X1—w},Xz—w,-z,...,XK—wiK)}

In the recursion relation, the first term refers to job J; being scheduled on time.
If this occurs, the makespan of early jobs increases by p;. The second term equals
the makespan of early jobs when J; is late. An analogous result to Theorem 3.28
can be easily established.

Theorem 3.32. The value z* = min{z : C(n,z,Q,,...,0k) < +o0} is
optimal solution value to 1|M U, al]]-C = dj, Zw? sz < 0,,..., Zw;{UjK
Okl Zw} U!, and it can be computed in time O(nW,Q> ... Qk), where W;
>owh.

Cheng et al. (2006) provide an FPTAS for problem 1|CO, Zw? sz <
01,..., wa UJ»K < Okl Zw; Ujl for fixed K. Also, similar considerations to
those of Sect.3.14.1.1 can be done for what concerns the problem with release

dates, which can therefore be solved in pseudopolynomial time if release and due
dates are agreeable.

A8
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When the number K of agents is not fixed, they show that the problem
1|CO,ZW§U]-2 < Qz,...,waUjK < QK|ZW}UJ»1 is strongly NP-hard.
Figure 3.25 implies the strong NP-hardness of all the other scenarios.

3.15.1.2 Common Jobs Have Distinct Due Dates

Here we limit ourselves to observing that when the same job may have distinct
due dates, the dynamic programming algorithm of Sect.3.15.1.1 no longer holds
in general, since a unique EDD ordering of the jobs may not exist. Problem
1|ND, Y wf UjB < 03> w;‘ UjA is in fact open as for strong NP-hardness.

3.15.2 Computing the Pareto Set

We next address the problem of determining the size of the Pareto set. For
simplicity we refer to the COMPETING scenario with two agents, i.e., to problem
1|COIP(3_ w;l U]-A, > wf U]B). By means of a similar construction to Example 3.7,
we show that the size of the Pareto set may not be polynomial, even if all jobs have

the same due date.

Example 3.9. Let consider an instance of 1|CO|P(>_ w;-‘ UjA, > wf UJB) in which

the sets 74 and J 2 are identical. Each set consists of A jobs of size and weight
po=wo=1,pr=wi=2,pp=wr =4, p3 =w3 =8,...,pp_1 = wp_| =
2h=1_All jobs have the same due date, d = 2 _ 1. Notice that, in this example, for
any schedule the sum of the two agents’ objectives cannot be smaller than 2% — 1.
Hence, any schedule for which this sum equals 2 — 1 is Pareto optimal. One such
schedule can be obtained as follows. For each pair of jobs of equal size, schedule
the job of one (arbitrary) agent between 0 and d (i.e., early) and the job of the other
agent after d (i.e., tardy). By doing so, the makespan of the early jobs is exactly d.
Hence, if the cost to agent A is x, the cost to agent B is 2" — 1 — x. For each value
of x such that 0 < x < 2" — 1, we get a distinct Pareto optimal schedule. Hence,
there are at least 2 Pareto optimal solutions. o

3.16 Tables

This section summarizes the complexity results presented in this chapter in 13
tables. Tables 3.1-3.5 present the results in the COMPETING scenario, Tables 3.6—
3.9 present the results in the NONDISJOINT scenario, Tables 3.10 and 3.11 concern
the INTERFERING scenario and Tables 3.12 and 3.13 concern the BICRITERIA
scenario.
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Table 3.1 Complexity of two-agent, e-constraint COMPETING problems

Problem Complexity Section Page
1|co,CcE < olca, o(n) 3.1.1.3 63
11co,LE < Q|LA,. O(nlogn) 3.1.1.2 59
1|Co, prec, B < Ol f4, on?) 3.1.1 58
1lco.ck, <0l O(nylogng + ng) 3.2.1 72
1|co, 8 < Q| ZCA O(nlogn) 3.3.1 74
1/co.cE < Q|ZWACA bNPH, O(n40?%) 3.4.1 81
1|co, Lfm < Q| ZWACA sNPH 3.5.1 92
1jco, fE < Q|ZUA O(nalogns + nplogng) 3.7.1 103
1|co, fE < Q| ZTA bNPH, O(n4 P + nplognp) 3.8 108
1jco.>>c} < 0| ZCA bNPH, O(1n 413 0Q) 3.9.1 110
1|co,2wj3€}9 < QIZW;‘CJA sNPH 3.10.1 116
1lco.>>cf <0l U} bNPH 3.11.1 126
1lco.>>c? <ol T} bNPH, O(n4n% QP) 3.12 130
1|co, ZWBCB <o u/ sNPH 3.13.1 131
1|co, ZUB <olxuf o) 3.14.1.1 132
1|co, ZWBUB < Q|ZWAUA bNPH, O(nW?) 3.15.1.1 136
1CO, rj, pmm, fi < Ol frx o(n?) 311 63
1{co,r;,pmm, L8 < O|LA O(nylogng +nglognpg) 3.1.1 63
1|CO. 1y, pmim, f5 < Q|3 C}! bNPH 33.1 77
1/COo, rj,pmmn, £,E < 0| ZUA o) 3.7.1 106
11CO. ;. pmin,y_CE < Q| ZUA bNPH 3.11.1 126
‘bNPH’ for binary NP-hard

‘sNPH’ for strongly NP-hard

Table 3.2 Complexity of two-agent, linear combination COMPETING problems

Problem Complexity Section Page
1|COlaCA, + BCE Oo(n) 3.1.3 67
1|COlaLd, + ﬂLm o?) 3.1.3 67
1|COlafd + BfE. o 3.1.3 67
1|cola>-C + BC, m O(n4logn ) 3.2.3 74
11Cole Y CA + BfE. on*) 333 80
1|CO|a ZWACA + BCE, O(nlogn) 3.4.3 87
1|cola Y wACA + ,SLM sNPH 353 102
1/CO|o ZWACA + ,s B sNPH 3.5.3 102
11Cole Y UA + BfE. O(n 4nlognlog UB) 372 107
1|c0|aZCA +BXC/ O(nlogn) 393 115
11Cole Y w;‘CjA +Brwict O(nlogn) 3.10.4 126
1cole - CH+ B UP bNPH 3.11.3 127
1|COla - wiCi + XU} sNPH 3.13.2 131
1ol U+ B US o) 3.14.2 135
1|Cole o wiU + B wiUf NP-hard 3.15 136

‘bNPH’ for binary NP-hard
‘sNPH’ for strongly NP-hard
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Table 3.3 Complexity of two-agent, Pareto optimality COMPETING problems

Problem Complexity Size Section Page
1|colP(CA,. Crfax O(n) 2 3.1.1.3 63
1|C0|P(Lmdx, L on?) on?) 3.1.2.2 66
1|COIP(fA., rrﬁx) o O(nang) 3.1.2 65
1|c0|7>(z cit.ck, O(n4logn ) O(ny) 322 73
1|jcolp(f4 g ZCB) on* O(nnp) 332 77
1|COIP(CA, > wf C]-B) Nonpolynomial ~ 3.4.2 87
1COIP(L, . WP CP) Nonpolynomial ~ 3.4.2 87
1jcolPQ_ U4, max) O(m4nlognlogUB)  O(ny) 3.7.2 107
ljcolp(ct.ycf) Nonpolynomial ~ 3.9.2 114
1lcolP(Cwict. o whCP) Nonpolynomial ~ 3.9.2 114
11COIP( UM Y UP) on3) o®n) 3.14.2 135

Table 3.4 Complexity of K-agent COMPETING problems, K fixed. We let U = max;{f;(P)}

and Q = mangksK{Qk}

Problem Complexity Section  Page
11Co, f2, < Q. ..., fK < 0klfl. O(min{n?,nlognloglU}) 3.1.14 64
1|co, fnlm < 01 fom < Qz,-.-,fn{f,x < Qkl— O(nlogn) 3.1.14 o4
1|CO. 2, < Qa..... [K, < 0k 2 C} O(nlogn) 3.3.1 74
11CO. U} < Qs..... 2 U < Qk| XU onk+h 3.14.1.1 132
11CO. > wiU} < 0s..... 2 whUK < bNPH, O(nW,Q,...Qx) 3.15.1.1 136
Okl ZW}U}
11CO.3"C; < 05..... 2 CF < 0k X C} bNPH, O(nk 9X—1) 39.13 114
1|co| Zakax o) 3.1.3 67
1/co| ZakLmaX On*k+1) 3.13 67
1/co| Zk_l aCl, +ax(Cwkck) O(nlogn) 3.4.3 87
1|CO| Zk_l o Ck + ag(X; U ) Open 372 107
1lcol F 1ozk(z wh Ck)—i—aK ck. O(nlogn) 343 87
1|c0|zk a (O wh C") O(nlogn) 3.104 126
1|C0|Zk_1 (X chk) +ax YUK sNPH 3132 131
1|co| Zk_l a(X; UP) +ax CE, Open 3.7.2 107
11col ) a(X; Uj‘) +ax (X, wkCh) sNPH 3132 131
11COI Y e (X, UF) O(nk+h 3.142 135

‘bNPH’ for binary NP-hard
‘sNPH’ for strongly NP-hard

Tables 3.1, 3.6, 3.10 and 3.12 deal with the e-constraint approach. Tables 3.2, 3.7,
3.11 and 3.13 deal with the linear combination approach. Table 3.3 deals with the
enumeration of the Pareto set. Tables 3.4, 3.5, 3.8 and 3.9 concern the K-agent case.
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Table 3.5 Complexity of K-agent COMPETING problems, K not fixed. We let U denote

max; { f; (P)}

Problem Complexity Section Page
11CO, f2,. < Qs,..., fK < OxlfL. O(min{n® + nkK, 3.1.14 65
nlognlogU}
1CO, fl < 01, f2 < 02y, LX< Qkl— O(nlogn) 3.1.14 65
1|CO. f2, < Qa..... Sk, < 0k 2 C O(nlogn) 3.3.1 74
11CO.3> U} < Qs..... 2 UF < Qx| XU/} Open 3.14.1.1 132
1|C0,ZWJU2§Qz,...,waUijQKlZw}Ujl sNPH 31511 136
11C0.3"C} < 05..... 2. CF < 0kl X C} bNPH* 3.9.1 110
11Ol > o CK O(m+ KlogK) 313 67
1|co| ZakLmaX bNPh* 3.13 67
1|C0|Zk_1 oszmdx +ax (X, whCh) O(nlogn) 343 87
1|C0|Zk_1 aClo Fax(X; UK) sNPH 3.7.2 107
11Ol Y52} an (X, whCh) + ax K, O(nlogn) 343 87
1|co|zkak(z whCF) O(nlogn) 3.10.4 126
1|C0|Zk_1 (X, whCH) + ak Z, Uk sNPH 3.13.2 131
1|C0|Z,{_1 (X, UP) + axCK, bNPH 3.14.2 136
11col ) a(X; Uj‘ +ax (X, wkCh) sNPH 3.13.2 131
11COI Y e (X, UF) bNPH 3.14.2 135

‘bNPH’ for binary NP-hard
‘sNPH’ for strongly NP-hard
‘bNPH™’ for binary NP-hard, open as for strong NP-hardness

3.17 Bibliographic Remarks

This chapter has covered most of the literature on single-machine multi-agent
problems. Actually, several papers are coming out on this topic, mainly devoted
to developing exact and heuristic approaches for hard problems. We briefly point
out some of the most recent papers.

A few paper consider tardiness-related objective functions. In particular,
Lee et al. (2012) address problem 1/CO,r;, T2 < O[> T#, Wu (2013)

max —

addresses problem 11CO, T <0/ TA and Yin et al. (2012c) address problem

max —

1|CO,r;, L max <0 TA In each of these papers a branch-and-bound algorithm
and various meta- heurlstlc algorithms are proposed. Wu et al. (2013a) address
problem 1|CO,r;,3" C ]B <Q|X.C jA and show that it is strongly NP-hard. They
also provide an exact algorithm and various meta-heuristic algorithms. For problem
1|co,r;, LE < Q] ZWACA Cheng et al. (2013) propose a branch-and-bound
algorithm and a simulated anneahng algorithm.

Khowala et al. (2009) propose a heuristic approach for generating Pareto optimal
solutions of the problem 1|CO|P(}_ U4, C]B).
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Table 3.6 Complexity of two-agent, e-constraint NONDISJOINT problems

Problem Complexity Section Page
IIND,CE < Q|CA, Oo(n) 3.1.1.3 63
1IND,LE < Q|LA O(nlogn) 3.1.12 59
1|ND, prec, fE_ < Q| f4d, 0on?) 3.1.1.1 58
1|ND, Crfax <90lXxc/ O(nylogn ) 3.2.1 72
1|ND, mdx <olxct O(nlogn) 3.3.1 74
1IND.CE, < Q| X wiC} bNPH, O (1 40%) 3.4.1 81
1ND, LE, < Q| ZWACA sNPH 3.5.1 92
1IND,CE < O] ZUA Open 3.7.1 103
1IND, LE < Q] ZUA bNPH 3.7.1 103
1IND,CE < O] ZTA bNPH 3.8.1 108
1IND, > CP < 0| 20;1 bNPH, O (1> Q) 3.9.1 110
1IND. > w#CP < Q| Y wicC] sNPH 3.10.1 116
1IND. > CP < 01X U/} bNPH 3.11.1 126
IND. > CP < QI T} bNPH 3.12 130
1IND, > w?CP < Q|3 U/} sNPH 372 107
IND.d}' =dP. > U} < 0| X U} on?) 3.14.1.1 132
1IND, > UP < 013U} bNPH 3.14.1.2 135
IND.d}' =d} . > wlUP < 0| X wiU}! bNPH, O(nW4 Q) 3.15.1.1 136
1|ND, ZWBUB < 0|y wU} bNPH* 3.15.1.2 138

‘bNPH’ for binary NP-hard

‘bNPH™’ for binary NP-hard, open as for strong NP-hardness

‘sNPH’ for strongly NP-hard

Table 3.7 Complexity of two-agent, linear combination NONDISJOINT prob-

lems

Problem Complexity Section  Page
1|ND|aCA o + BC max o(n) 3.1.3 67
LND|af A, + BfE, O(n*) 3.13 67
1INDla 3 C/' + ﬂCm O(nylogny) 323 74
1INDle Y CA + BfE, on*) 333 80
1|ND|a ZWACA +pCE O(nlogn) 343 87
1|ND|o ZWACA + BLE,, sNPH 353 102
1|ND|aZcA +BXxC/ O(nlogn) 3.9.3 115
1|ND|o ij*c;1 +8 wacﬁ O(nlogn) 3.10.4 126
INDla - C + B U} bNPH 3.11.3 127
1INDla: Y- wiCt + B UP sNPH 3.13.2 131
IND.d}' = dlla U+ B3 U O 3.14.2 135
1NDla Y} U+ B UP bNPH 3.14.2 135

‘bNPH’ for binary NP-hard
‘sNPH’ for strongly NP-hard
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Table 3.8 Complexity of K-agent, NONDISIOINT problems, K fixed. O denotes
maxzsksK{Qk}
Problem Complexity Section Page
1ND, f2.. < Qs...., fK < Qklfil, 3.1.1.4 65
1ND, f2, < Qa..... /K < 0k, C} O(nlogn) o 3.3.1 74
1IND, > C} < Q5.....2.Cf < Qx| X C]  bNPH, O(n* ~'Q¥™1) 3.9.1 110
IND.df =d;. > U} < Q,..... 2 UK < onk+h 3.14.1.1 132
QK| Z Ujl
1ND.df =d;. > wiU} < bNPH, OnW;Q>...0g) 3.15.1.1 136
0o,..., ZWKUJ-KSQIAZW}U;
1|ND| Zakcm 3.1.3 67
1IND| Y2 a (X wWhCH) + axCK, O(nlogn) 343 90
1|ND| Zk (X, whCh) O(nlogn) 3.10.4 126
1|ND| Zk—l ak(zj whCE) +ax Y, UK 3.13.2 131
1IND| Y2 a(X; UH + O whek) 3.13.2 131
1ND, d¥ = d;| Y, (3, UF) O(nk+h 3.14.2 135
‘bNPH’ for binary NP-hard
‘sNPH’ for strongly NP-hard
Table 3.9 Complexity of K-agent, NONDISJOINT problems, K not fixed
Problem Complexity Section  Page
1ND, f2,. < Qs,..., fmdx < Qklfil, O(n* + nk) 3.1.14 65
1ND. f2, < Qa..... f;E < 0k X C} O(nlogn +nkK) 3.3.1 74
1IND.>C} < Q5,.... 2. Cf < Ok |Zc} bNPH* 3.9.1 110
1ND.d¥ =d;. > U} < Qs..... YUK <Qk|>X U Open 3.14.1.1 132
UND.df =d;. > WiU? < 0,..... 2 whkUF < sNPH 3.15.1.1 136
Okl ZW Ul
1|ND| Zak cm sNPH 3.1.3 67
1IND| Zk_l akaaX +ag (3, whkCk) sNPH 3.13 67
1|ND|Zk_1 o, Ck +aK(Z Uk sNPH 3132 131
1|ND| Zk_l ar (32 wh C )—}-otKCmdX OnK +nlogn) 343 90
1ND| 3" o (3, wh Ck) O(mK +nlogn) 3.10.4 126
1|1\/D|Z,f_j1 ak(z whCH) +ax 3 UF sNPH 3132 131
1|ND|Zk_1 (Y Uk) +o¢,<cmx NP-hard 3.142 135
1IND| Y5 ) ak(zj Ujk) +ax (X, wkck) sNPH 3132 131
1IND| Y, o (3, UF) NP-hard 3.142 135

‘bNPH’ for binary NP-hard

‘bNPH*’ for binary NP-hard, open as for strong NP-hardness

‘sNPH’ for strongly NP-hard
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Table 3.10 Complexity of two-agent, e-constraint INTERFERING problems

Problem Complexity Section Page
1IN, LE < QILA. O(nlogn) 3.1.1.2 59
1IN, prec, £ < O|f4, on?) 3.1.1 58
1IN, 5 <ol¥c) O(nlogn) 3.3.1 74
1IN, CE < Q] ZWAC.A bNPH, O(n0?) 3.4.1 81
1IN, LE, < Q] ZWACA sNPH 3.5.1 92
1IN, CE < 0| ZUA Open 3.7.1 103
1IN, LE < Q] ZUA bNPH 3.7.1 103
1IN, CE < 0| TA bNPH 3.8.1 108
1IN, CP < 0| ZCA bNPH, O(n%Q) 3.9.1 110
1|1N,ij.”cjb’ < Q|wac;1 sNPH 3.10.1 116
1IN Y CP <ol X U/ bNPH 3.11.1 126
1IN UP <0l>C} bNPH 3.11.1 126
1IN CP<olXT) bNPH 3.12 130
1IN, X wiCP <013 U} sNPH 3.13.1 131
1IN d} =df .3 UP < Q| XU} o) 3.14.1.1 132
1IN UP < 0| U} bNPH 3.14.2 135
1|IN, ZWBUB < Q|ZWAUA bNPH, O(nW4 Q) 3.15.1.2 138

‘bNPH’ for binary NP-hard
‘sNPH’ for strongly NP-hard

Table 3.11 Complexity of two-agent, linear combination INTERFERING problems

Problem Complexity Section Page
HIN|afd, + BfE. o(n*) 3.13 67
1IN|a )} C + BC, max O(nlogn) 323 74
1IN o ZCA +BfE. omn*) 333 80
1IN|a Y wiCt 4+ BCE, O(nlogn) 343 87
1IN|aY WACA + BLE sNPH 353 102
1|1N|aZCA+ﬂZCB O(nlogn) 393 115
1|1N|azw;’c;‘ +ﬂzwfcf O(nlogn) 3.10.4 126
1INe}C}+BXUP bNPH 3.11.3 127
Nl X wiCt+ B3 U} sNPH 3.132 131
1IN, d} =dlla U+ B3 UP o(n*) 3.142 135
1INl Y UM +BYUP bNPH 3.14.2 135

‘bNPH’ for binary NP-hard
‘sNPH’ for strongly NP-hard

Yin et al. (2012a) analyze the complexity of the linear combination approach
for various COMPETING, two-agent due date assignment problems, i.e., problems in
which due dates must be assigned to individual jobs.

While throughout this book we consider regular cost functions, it is worth
noticing that in Mor and Mosheiov (2010) two-agent problems in the COMPETING
scenario have been analyzed in which the agents cost functions depending on job
earliness (and hence are non regular).
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Table 3.12 Complexity of two-agent, e-constraint BICRITERIA problems

Problem Complexity Section Page
1BI, LE, < Q|LA . O(nlogn) 3.1.1.2 59
1|BI, prec, f5 < Q| f4, 0n?) 3.1.1 74
1Bl [, <0l C) O(nlogn) 3.3.1 74
1|BI. LS, < Q| X w/C} sNPH 3.5.1 92
1BILE, < 0|>U} bNPH 3.7.1 103
1B, d}' =dP, TE < QI > U} Open 37.1 103
1BI.LE <0|XT} bNPH 3.8.1 108
1BL. Y w#CP < 01 wicC] sNPH 3.10.1 116
1B1.>-CP < 0| > U/ bNPH 3.11.1 126
1BL.YCP < 0|XT} bNPH 3.12 130
1BL. Y wiCP < 013> U}! sNPH 3.13.1 131
1Bl.d}' =d}. > U} < 0| XU} on?) 3.14.1.1 132
1BL.YUP < Q| XU} bNPH 3.14.1.2 135
1BL. Y w?UP < 9| > wiU}! bNPH 3.15.1.2 138

‘bNPH’ for binary NP-hard
‘sNPH’ for strongly NP-hard

Table 3.13 Complexity of two-agent, linear combination BICRITERIA problems

Problem Complexity Section Page
UBIafd, + BLE, O(n*) 3.1.3 67
1Bl > C! + BLE, O(n*) 333 80
11BlaY w;’ C;’ + BLE Strongly NP-hard 3.5.3 102
1Bl Y wiCt + B whCP O(nlogn) 3.10.4 126
1Bl Y wiCt + B3 UP Strongly NP-hard 3.13.2 131
1BIa Y U+ Y UP Binary NP-hard 3.14.2 135

Finally, we want to briefly mention that recently attempts have started to analyze
multi-agent scheduling problems through game-theoretical concepts. In Agnetis
et al. (2009a), the concept of Nash bargaining solution is applied to the two-
agent setting 1|CO| > w;’ C ]A, > wf C ]B , showing the hardness of its determination.
Moreover, in Agnetis et al. (2013) the situation is addressed in which two agents
submit their jobs one at a time, and each time the shortest is selected for processing.
Depending on an agent’s objective function, the problem of deciding the best
submission sequence may turn out to be easy or hard.



Chapter 4
Batching Scheduling Problems

In this chapter, we consider batching scheduling problems in the context of agent
scheduling. The main feature of these problems is the partition of the set of jobs into
a number of subsets of jobs called batches.

The chapter is composed of five sections. In Sect.4.1, we introduce basic
definitions and notions of batching scheduling. In Sects.4.2 and 4.3 we discuss
two-agent s-batching and two-agent p-batching problems, respectively. We end
the chapter with Sects. 4.4 and 4.5 including, respectively, complexity tables and
bibliographic remarks.

4.1 Introduction

In batching scheduling problems, the set of jobs is partitioned into a number of
subsets of jobs called batches. For each subset, jobs are executed jointly on the same
machine in a ‘compact’ time interval. It means that the starting time of all the jobs
in a given batch is given by the starting time of the first job in the batch and the
completion time of all the jobs in the batch is equal to the completion time of the last
job. A setup time is generally required before starting the execution of a batch. This
setup time is supposed to be independent of the jobs and to each batch of a given
agent is associated a constant batch setup time. The computation of the duration
of a batch depends on the problem type. More precisely, two types of batching
scheduling problems are distinguished in the literature, depending on the type of
machine. We distinguish serial batching machines (jobs are processed in sequence)
and parallel batching machines (jobs are processed in parallel) respectively denoted
by s — batch and p — batch.

In this chapter, we review multiagent batching scheduling problems in which
jobs from different agents cannot be assigned to the same batch, i.e., one processing
batch can only contain jobs from one specific agent. In the literature, we say that
the agents are incompatible or non compatible. Some papers in the literature also

A. Agnetis et al., Multiagent Scheduling, DOI 10.1007/978-3-642-41880-8_4, 147
© Springer-Verlag Berlin Heidelberg 2014
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S1 B
S Jl Jz J,j J4 J5 -]6
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SQ 81 BQ BB
s| N J2 s Js3 Ja s|Js|  Je
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0 5 10 15 20 25

Fig. 4.1 Two schedules for a serial batching problem

consider the case where agents are compatible (Fan et al. 2013; Li and Yuan 2012;
Sabouni and Jolai 2010) but these papers are not referred here.

A serial batching machine processes the jobs of one batch sequentially and the
length of each batch is equal to the sum of the job processing times in the batch,
plus a setup time. According to the three-field notation of scheduling problems, this
is generally noted by “s — batch” in the B-field.

A parallel batching machine processes the jobs of one batch in parallel and
the length of each batch is equal to the maximum of the job processing times in
the batch, plus a setup time. According to the three-field notation of scheduling
problems, this is generally noted by “p — batch” in the B-field.

For both types of batching models, the capacity of the batching machine can
be bounded or unbounded. If there is a limit on the size of a batch, the machine
is bounded. Otherwise, it is unbounded. A scheduling decision for the batching
machine deals with the composition of the batches and their sequencing.

Example 4.1. For the serial batching case, let consider the following instance with
n = 6 jobs:

Jj J1 J2 ./3 ./4 -/5 -16
p, 3 2 4 7 1 3
d; 9 11 13 14 18 19

We assume that s = 2 is the setup time. Two schedules S| and S, are represented
in Fig.4.1 with only one batch in §; and three batches in S, (the setup time
before a batch is represented by a triangle). The schedules are evaluated as follows:
Cnax(S1) = 22, Crax(S2) = 26, > C;(S;) = 132 (all jobs complete at time
22), > C;(S>) = 106 (jobs J; and J, complete at time 7, jobs J3 and J,
complete at time 20, and jobs Js and Jg complete at time 26), Ly (S1) =
max(22 — 9,22 — 11,22 — 13,22 — 14,22 — 18,22 — 19) = 13, and Lyax(S2) =
max(7—9,7—11,20— 13,20 — 14,26 — 18,26 — 19) = 7. o

Example 4.2. For the parallel batching case, let consider the same instance as in
Example 4.1 with n = 6 jobs. In this case, we do not consider setup times because
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Fig. 4.2 Two schedules for a parallel batching problem

they are supposed to be included in the processing time. Two schedules S; and S,
are represented in Fig.4.2 with only one batch in S; (containing all the jobs) and
two batches in S. The evaluation of the schedules are the following: Cp,.x(S1) = 7,
Crnax(S2) = 11, )" C;(S1) = 42 (all jobs complete at time 7), ) C;(S2) = 31 (all
the jobs except J4 complete at time 4, job J4 completes at time 11), Ly« (S1) =
max(7—9,7—11,7—13,7—-14,7—18,7—19) = =2, and Lmax(S2) = max(4 —
9,4—11,4—-13,11—-14,4—-18,4—-19) = -3. o

Single-agent batch scheduling models have been intensively studied in the last
decade. The application domains for these models include (but are not limited
to) temperature testing operations in computer chip manufacturing (Uzsoy and
Yang 1997), production of metal sheets on a multi-head hole-punching machine
(Gavranovic and Finke 2000), machine part manufacturing in containers such as
boxes, palettes, or carts (Cheng and Kovalyov 2001), manufacturing of computer
parts of different types (Cheng et al. 2004b), scheduling of chemical (photolytical,
galvanic) baths (Oulamara et al. 2005), vulcanization operations on press-machines
in tire manufacturing (see for instance Oulamara et al. (2009)), etc.

In this chapter, we consider that the jobs belong to two agents and that there is
a single batching machine. In the following, remember that we consider the non
compatible case, i.e. the jobs of one batch belong to only one agent. Moreover,
a constant batch setup time denoted by s; is associated to each batch of agent k,
k € {A, B}.

In the following sections, polynomial and pseudo-polynomial time dynamic
programming algorithms are derived for single machine s-batching and p-batching
scheduling problems with various combinations of the objective functions, except
the total weighted completion time, because minimizing this function is already
strongly NP-hard (Albers and Brucker 1993) in the single-agent case.
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4.2 Two-Agent s-Batching Problems

In the following, we consider two sets of jobs J* and J2, owned by the two
competing agents A and B, on a single serial unbounded batching machine. It means
that the batching processing machine can process any number of jobs in a batch.

We start this section by the definition of a mixed integer linear program, that is
able to model any type of single machine s-batching problem. The interest of this
model is that it requires positional variables (or assignment variables) as well as
precedence variables together in the same model (see Sect.2.3.3, page 32).

We define binary (assignment) variables xﬁl equal to 1 if job J jA is in the batch
number £ of agent A, and O otherwise, Vj, 1 < j < ny4, V¢, 1 < £ < ny and
similarly xf ¢ for agent B. These two sets of variables allow to assign the jobs to
batches and the following constraints ensure that each job is exactly in one batch.

nj
Y= LVilS ) sm.Vke{A B @1
=1

The binary variables z’g allow to know if a batch of agent k is empty or not, with
the following constraints.

=k, 4.2)
Vjl1<j<n,VL1<{L<nVke{A B}
nk
d < Dok, Ve 1 <0< Vke{A B} (4.3)

J=1

We denote by C Bé‘ the completion time of the batch £ of agent k (noted Bf ).
Then, we define binary (precedence) variables y; equal to 1 if the batch Bg‘
precedes 85 , and 0 otherwise. These variables allow to define a sequence of batches
between agent A and agent B through the following constraints.

ny
CBé4 > CB[I;} + SAZ? + Z p;’xﬁ[ — Myg’(/,
j=1 “4.4)

Ve, 1 <l<ny, VU, 1</l <ng
np
CBf = CB{' +spzf + Y _ pPxly — M1 = yop),
P (4.5)
Ve 1 <€<ng VU 1<l <ng

Then, we fix an order between the batches of each agent. We impose that batch
By precedes batch B, |, with the following constraints.
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n
CBf =i+ Y phak vk e {4, B} (4.6)
j=1

CB[>CB[ 1+SkZ(+ZPj jfy
e @.7)
Ve,2 <l <ni,Yk € {A, B}

These definitions can be used to define the value of various criteria. Let C ]k

denote the completion time of the job J ]k € J*. This value is given by the following
constraints.

Ck>CBF— M1 —x*)),
J ‘ st (4.8)
Vjil<j<m.,Ve1=<Lt=n,Vke{A B}

We terminate the definition of this model with the following objective functions.

Clﬁax = CB} .Yk € {A. B} (4.9)

Liy > CH—df Vj 1<) <n.Vke{A B} (4.10)

Y ock = Zc’f,wc € {A, B} 4.11)
j=1

4.2.1 Functions fyax, fimax

4.2.1.1 Problem 1|CO,s — batch, fB < Q|fA.

In the COMPETING scenario, let consider problem 1|CO, s — batch, f,E_ < Q|f4 .
We can derive an algorithm that determines whether or not there exists a solution
to the feasibility problem 1|CO, s — batch, fA < y, f.B < Q|—, where y €
[Iba,ub,], with by and uby for k € {A, B} a lower bound and an upper bound of

fk . given by:

— : k k

lbk—lg}lfnnk{fj (s1 + pj } (4.12)
— k

uby = max. {fj (T)} (4.13)

where T = n 54 + npspg + P with P the total processing time of jobs.
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For each value y and Q, one can compute deadlines d ;’(y) and d JB(Q) on
the completion times of jobs J jA and J JB, respectively. The idea is that 1|CO, s —
batch, fA. <y, f.B < Q|—hasafeasible solution if and only if there is a schedule
in which each job completes within its deadline.

We assume that we have an explicit expression for the inverse function
(f})7"(t), k € {A, B}. So d} can be computed in constant time such that

fjA(CjA) <y foerA < c?]A and fjA(CjA) >y foerA > cijA
and f7(CP)< QforCP <df and f(CP)> QforC} >dP.

Otherwise, the deadlines can be computed in O(n log T') time. Of course, for a
given value of 7', the deadline of a job can be calculated in O(logT) time by a
binary search in the interval [0, T'], because we have:

di(y) = max{z|f{(r) < y.sa+ pf <T < T} (4.14)

dP(0) = max{t|ff(r) < Q.sp + p¥ < < T} (4.15)

In what follows, we suppose that, given y, the jobs are numbered by nondecreas-
ing order of the deadlines, i.e., d{!(y) <--- < dnAA (y)anddf(Q)<--- < d,f;(Q).
The following property (Kovalyov et al. 2012b) can be easily established.

Lemma 4.1. If a feasible schedule exists for 1|CO,s — batch, fA < y, fB <

Q|—, there is one in which the jobs of each agent are processed in the Earliest
Deadline First (EDF) order.

The idea is that a schedule with values f4 < y and fB < O exists if
and only if, when regarding d ]A (y) and d jB(Q) as due dates, a schedule exists
such that the maximum lateness of all the n jobs is non-positive. Hence, we can
propose a dynamic programming algorithm to solve the problem of minimizing the
maximum lateness of all the n jobs with due dates d/'(y) and d(Q). However,
the problem is not precisely the same problem as the 1|s — batch|Ly,x, since
the jobs of different agents cannot be scheduled in the same batch. Therefore,
Webster and Baker’s algorithm (Webster and Baker 1995) for 1|s — batch|Lmax
cannot be used to determine an optimal solution. In Kovalyov et al. (2012b), a
new dynamic programming algorithm is proposed. In this dynamic programming
algorithm, L(i4, ip) is defined as the minimum value of maximum lateness when
the job subset {Jl.j, Jl.jﬂ, e Jnﬁ} U {szs JlﬁH, e Jn‘;} is scheduled from time
zero. Following a similar logic to Webster and Baker’s algorithm, a single batch
is appended to the beginning of a current schedule. An optimal solution value is
given by L(1,1). The recursive dynamic programming algorithm is described in
Algorithm 19.

For each i, and ip, L(i4,ip) can be computed in O(n) time. Hence, all values
L(i4,ip) can be computed in O(n npn) time. We use binary search to enumerate
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Algorithm 19 for problem 1|CO, s — batch, fE < Q|f4.
: for j :=1ton,do
Calculate d7(y) via (4.14)
: end for
for j ;= 1tong do

Calculate d ¥ (Q) via (4.15)
end for
L(I’IA + 1,]’!3 + 1) =0
foriy :=n, + 1 downto 1 do

for iz :=np + 1 downto 1 do

if (i4,ip) # (na + 1,n5 + 1) then
L(ia.ip) =

SOV RXIAIN RN T

—_—

A+Zh ,A[’h_N(J’)
L(j, lB)+YA+Zh ,A it
{SB‘FZh is Ph (Q)
L(ia ])+SB+Zh —ip P

min;,+1<;j<ns+1

MiN;,41<j<np+1

12: end if

13:  end for

14: end for

15: return the solution that minimizes L(1, 1)

the values of y € [lby,ub,], which requires O(logY},) iterations, where Y4 =
ub4 — b 4. In conclusion, the following result holds.

Theorem 4.1. An optimal solution to problem 1|CO, s —batch, f,B < Q|f4 can
be obtained in O((n npn)logY,) time.

4.2.2 Functions Cpax, Cmax

4.2.2.1 Problem 1|CO, s —batch, CE < Q|CA,
The problem considered here is denoted 1|CO,s — batch, CE < Q|CA . The
following property was established in Kovalyov et al. (2012b).

Lemma 4.2. [fan optimal schedule exists, there exists one in which the jobs of each
agent form a single batch.

Proof. Let LB = sa + ) jeqa P} + S8+ X jcqn P} = Sa+ S8+ icq P>
andlet LB =54+ ) ;c 74 p}. Itis clear that LB’ is a lower bound for C;1,, and

max
L B is a lower bound for the global Cy,,x. It is possible to build a feasible solutlon

for problem 1|s — batch, CE < Q|CA by using Algorithm 20.

This algorithm builds a feasible solution, if one exists, with CA = LB’ if

Q > LB, otherwise, we have CA = LB. So for problem 1|CO, s — batch, CEB <

max max
Q|CA , an optimal schedule can be obtained in O (n). O
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Algorithm 20 for problem 1|CO, s — batch, CE < Q|CA

max

1: o := () // initial empty schedule

2 Pyi=)jeqa P}

3 Pgi=Yjeqn P}

4: ifSA+SB+PA+PB < chen

5:  Schedule jobs of agent A in the first batch

6:  Schedule jobs of agent B in the second batch
7: o := J4|J% // concatenation of two job sets
8

: else
9: if spg + Pg < O then
10: Schedule jobs of agent B in the first batch
11: Schedule jobs of agent A in the second batch
12: o:=7J874
13:  endif
14: end if

15: if 0 # () then
16: return o

17: else
18: return ‘There is no solution’
19: end if
JB T4
sg PP JB JB N Ji J3 Ji
|' T T T T T T T | T T | T T | | T T | T t
0 5 10 15 Q=19 20 25

Fig. 4.3 Solution to the 1|CO, s — batch, CE < Q|CA . problem

max — max

In view of this property, problem 1|CO, s — batch, CE < Q|CA is trivial and
can be easily solved in polynomial time.

Example 4.3. Let consider the following 6-job instance, where jobs J{! to J5!
belong to J* and jobs JZ to J£ belong to J2:

We assume that s, = 2 and s = 4 and we fix Q = 19.

We have Py = 10and Pg = 10.s4+sp+ P4+ Pp =2+4+104+10 =26 > Q
and sp + Pp = 14 < Q. Therefore, the optimal solution is obtained by sequencing
the jobs of J B first in one batch and then the jobs of J 4 in another batch. The
corresponding schedule is represented in Fig. 4.3. o
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CB

max % ~max

4.2.2.2 Problem 1|CO, s — batch|P(C,

The problem 1|CO, s — batch|P(C, CE ) has only two Pareto optimal solutions:
one corresponds to the solution where 74 precedes 7 2, and the other corresponds
to the solution where 72 precedes J4.

4.2.3 Functions Cpax, L max

4.2.3.1 Problem 1|/CO,s —batch, LE, < Q|C4

We consider now the problem 1|CO, s — batch, LB < Q|CA . Without loss of
generality, we suppose that the jobs of 72 are numbered in EDD order, i.e. d lB <
df <... < de. Kovalyov et al. (2012b) present the following lemma.

Lemma 4.3. If an optimal schedule for problem 1|CO, s — batch, LB < Q|CA

exists, then there is one in which the jobs of T4 form a single batch and the jobs of
JEB are processed in EDD order:

Proof. Let us first show that the jobs of 74 form a single batch. If 7* is an optimal
schedule for which this does not hold, a new schedule 7 can be built by moving all
jobs in J4 into the last batch of agent A. This can only improve the value of L3
(since jobs of J & are moved backwards) as well as CA (since at least one setup s 4
is saved). So there is no interest in scheduling the jobs of agent A4 in several batches.

Let us now suppose that in such schedule 7 not all the jobs of J? are processed
in EDD order, i.e., there is a batch Bf scheduled before batch B with J# € Bf

and J € BP,and d} < d. Let n’ be the schedule obtained by moving job J;*

from BB to BE. Note that Cléax(n/ ) < CA. (). Moreover, the completion time
of batch Bf is reduced by pZ, while the completion time of batch BZ does not
increase. Therefore, the lateness of all jobs in J & except J# does not increase. On
the other hand, since d < df, the lateness of J” in 7" does not exceed that of
J ]B in 7, thus L2 (' ) < LB (7). Continuing this exchange process, we get an

optimal schedule with the desired property. O

Let now B be the only batch of agent A. According to Lemma 4.3, the optimal
schedule is of the form (g, B4, ]TB) where 7 and 713 are sequences of batches
of agent B, either of which can be empty. Note that Lmax < Q@ is equivalent to
CJB < ij, I1<j< nB,Wheredf = df + 0.

In the single-agent case, given jobs Ji, ..., J, with deadlines d~j, 1 <j <n,the
problem of determining a feasible schedule respecting the deadlines can be solved
by Algorithm 21 with # = 0 as input (Hochbaum and Landy 1994).

According to Algorithm 21, if job n is included in some batch, a feasible
schedule is obtained. Otherwise, some job cannot be included in a batch without
violating the earliest deadline of this batch, in which case no feasible schedule exists.



156 4 Batching Scheduling Problems

Algorithm 21 for problem 1|s — batch, d il=

1: Let ¢ be the start time of the schedule // ¢ is given on input of the algorithm
2: Renumber the jobs sothatd; < d, <--- <d,

3i=1

4: b:=1

5: repeat

6:  Denote by k the maximal job index such that 7 + s + le:i pj < d;
7:  if there exists a job with index k then

8: Build a batch B;, with the jobs (/;, ..., Jx)
9: b:=b+1

10: t:=l+x+21;:[pj

11: i=k+1

12:  else

13: return ‘There is no feasible solution’

14: end if

15: until (job 7 is included in some batch) or (there is no feasible solution)
16: return all batches

Algorithm 21 requires O(n logn) time for re-indexing the jobs, and O(n) time for
building the batches. Note that this algorithm, for any number of jobs, constructs
a feasible schedule with the minimum number of batches, thus, minimizes the
makespan.

This algorithm can be applied to solve 1|CO, s — batch, LB < Q|CA . In fact,
in view of Lemma 4.3, if we know after which job J kB is scheduled the batch B4 of
agent A, then we can solve the problem in O(n ) time by applying Hochbaum and
Landy’s algorithm twice: first for jobs J IB, o d kB , starting at time 0, and then for
jobs JkB+1, e, JnBB starting at CkB + 54 + P4 (k = 0 indicates that B4 precedes all

jobs in 7 8). In conclusion, the following result holds.

Theorem 4.2. Algorithm 22 solves the 1|CO, s — batch, LB, < Q|CA_ problem
in O(n + n%) time.

Note that CZ2 is nondecreasing with k, while L2, is nonincreasing with k.

Therefore, the optimal index k* can be found by a binary search over the range
0,...,np, and applying Algorithm 21 twice for each value of k. The smallest value
of k for which the algorithm provides a feasible solution yields the optimal schedule.
Therefore, the complexity of steps 15-31 of Algorithm 22 can be improved. In this
case, the complexity reduces to O(n4 + npglogng) time.

Example 4.4. Let consider the following 8-job instance withny = np = 4:

R R R L A S

P33 3 4 2 1 5 1 3

dp 115 19 23
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Algorithm 22 for problem 1|CO, s — batch, L3, < Q|CA
: Renumber the jobs of J 5 in EDD order

fori = 1tong do
df :=df + 0
: end for
: Apply Algorithm 21 to job set 7% witht := 54 + P4
: Denote by n;’ the sequence of batches obtained if any
. if there is no feasible solution then
10:  nofeasible := true
11: else )
12:  return (B4, 71;1) ) // optimal solution
13: end if
14: i :=1
15: while (nofeasible = true) and (i < ng) do
16:  Apply Algorithm 21 to job set {J, ..., JB} witht := 0
17:  if there is feasible solution then

A A ol s

Nl

18: Denote by ng) the sequence of batches obtained

19:  else

20: ng) =0

21:  endif )
22: Apply Algorithm 21 to job set {J% |..... J2 } with := Cf D)+ 54+ Py
23:  if there is feasible solution then

24: Denote by 71;(’) the sequence of batches obtained

25:  else

26: 71;(’) =0

27:  endif )

28:  if (7)) # @) and () # @) then

29: return (73, B4, 7))

30:  endif

31: end while
32: return ‘There is no feasible solution’

We assume that s, = 3 and sz = 1 and Q = 8. We represent in Fig. 4.4 a sequence
S1 where the jobs of agent A are scheduled first, and then the jobs of agent B in
EDD order. The makespan for 4 is C4 = 15 but the maximum lateness for the
jobs of agent B is LB, = max(15,11,7,3) = 15, which is not acceptable. In
Fig.4.5, a sequence S is presented. A first batch composed by the two first jobs of
agent B precedes the jobs of agent A, and the remaining jobs of agent B terminate
the schedule in a last batch. Here, CA, = 22 and L3 = max(—4,-8,8,4) = 8,
which is now acceptable. Let consider the following sequence S3: By = (J£); B, =
(T B; = (JZB); By = (J3B); Bs = (J4B). In S3, a first batch composed by the first
job of agent B precedes the jobs of agent A, and the three remaining jobs of agent
B terminate the schedule in three different batches. In S3, we have C, = 17 and

LB = max(—38, 8, 6,6) = 8, which is a Pareto optimal solution. >

max
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jA — BA SB jB = BlB
54| JP J3 Jg JA |/ UE JB uBl JP
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Fig. 4.4 Not a feasible solution for the 1|CO, s — batch, LE, < Q|CA problem

max — a

s B JA =pBA sp  BE
/ s B sa | g J3 g2 g |/bBl up
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0 5 10 15 20 25

Fig. 4.5 Feasible solution for the 1|CO, s — batch, LE,, < Q|C2  problem

max — ax

4.2.3.2 Problem 1|CO, s — batch, CA < Q|LE
max = Q |Lr€1ax‘ In
this case, Lemma 4.3 still holds. It means that the optimal schedule is of the form
(g, B4, ng) where g and rrjg are sequences of batches of agent B, eventually one
of them being empty.
Note that for the schedule (75, B4, ), the makespan for agent 4 is completely
determined by the number of jobs k preceding B4 and the number of batches b in
the sequence 7. It is given by:

Let us now turn to the symmetric problem 1|CO, s — batch, cA

k
Cok.b) =bsg + Y p? + 54 + Py
j=1

Hence, given k and b, the problem reduces to constructing two schedules:

« np = n*P), that minimizes the maximum lateness of jobs J, ..., J 2 starting
at time zero and forming b batches,
« mp = 7Y, that minimizes the maximum lateness of jobs JZ ..., JE

starting at time C4 _(k,b) (if k = np, )y is empty and in this case we define
Lﬁax(ﬂ(n8+l)) = —OO).

An optimal solution has the form (7%, B4, 7*+1) and the optimal value of
LB is given by:

max

LB — max {max{LﬁaX(n(/"b)),LB (n(k“))}:cnfax(k,b)fg}

max max
0<b<k=ng

For a given k, 0 < k < ng, determining an optimal schedule a*+D g
equivalent to solving the single-agent scheduling problem 1|s — batch|Lmayx. In
Webster and Baker (1995) it is shown that there exists an optimal schedule for this
problem in which jobs are sequenced in EDD order, and a keen backward dynamic
programming algorithm with batch insertion is proposed, working as follows.
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Given the job set {Ji, ..., J,,}, let L(i) be the minimum value of the maximum
lateness for the job subset {J;, ..., J,}, when the first batch contains job i and starts
after time s. We let L(n + 1) = —o0, and define the recursion function:

k—1 k—1
L@) = i<1k11§1£1+1 {max {L(k) + s+ Z DhsS + Z Ph— d,‘}} (4.16)
h=i h=i

Function (4.16) is computed for i = n,n — 1,..., 1. The optimal value is given
by L(1).

By applying Webster and Baker’s algorithm, we derive an optimal schedule
a*k*tV k =0,1,...,np — 1 in O(n%) time. All the schedules 7*?), 0 < b <k <

np, can be found in 0(n3B) time by a forward dynamic programming algorithm,
as follows (Kovalyov et al. 2012a). Let L(b, k) denote the minimum value of the
maximum lateness of the job subset {J IB, RO § kB} when these jobs are scheduled in
EDD order in b batches from time zero. The following recursion formula holds:

k
L(b.d) = min {max {L(b —Li)bsg+ Y pP— d,ﬁl}} 4.17)

<i<k— -
j=1

The recursion function (4.17) is evaluated for 1 < b < k < np. According
to (4.17), a single batch is appended at the end of a current schedule. Each
value L(b, k) can be calculated in O(k) time. Hence, all the values L(b, k) and
corresponding schedules 7%, 0 < b < k < np, can be found in O(n}) time.
The algorithm is initialized with L(0,0) = —oo and 7%? = @. In conclusion, the
following result holds.

Theorem 4.3. Problem 1|CO, s —batch, CA < Q|LE  can be solvedin O(n4 +
n3B) time.

4.2.3.3 Problem 1|CO, s — batch|P(CA,., LE

max

Let us now turn to problem 1|CO, s — batch|P(C2 ., LE ). Each Pareto optimal
solution can be found by solving a logarithmic number of instances of the &-
constraint problem. However, in this case, the problem is even easier. In fact,
suppose that Fp is the value of the optimal solution of 1|CO, s — batch, Cr;‘ax <
Q|LE  forsome Q. To obtain a Pareto optimal solution, we only need to solve one
instance of the symmetric problem, i.e., 1|CO, s — batch, LB, < Fg|CA . 1f F4 is
the optimal value of such an instance, the pair (F4, Fp) is Pareto optimal. Similarly,
the next Pareto optimal solution can be generated by solving 1|CO, s—batch, C4 <
F4—¢|LB (for sufficiently small &) and thereafter one instance of the symmetric
problem. In this way, the whole Pareto set can be obtained. Hence, the complexity
of this task is essentially related to the size of the Pareto set. In this case, the Pareto
set has a polynomial number of solutions. This is due to the fact that the structure

of any strict Pareto optimal solution is of the form (7 *?), B4, 7*+D) where jobs
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of J,4 are inserted after certain batches of jobs of Jp. The makespan for agent 4
is completely determined by the number of jobs k,0 < k < np preceding B4 and
thereafter the number of batches b,0 < b < k < np in the sub-sequence %),
Hence, the size of the Pareto set is bounded by O(n ).

In conclusion, the following result holds:

Theorem 4.4. Problem 1|CO, s —batch|P(Ci., LE, ) can be solved in O(n snp +
4
ng).

4.2.4 Functions fmax, Y Cj

4.24.1 Problem 1|CO,s — batch, fE < Q| C]f“

max —
Let us now turn to problem 1|CO, s — batch, f,E < 0|Y" C]A. Dealing with Q, we
assume that deadlines d ]’3 (Q) on the completion times of jobs J ]B are computed in
constant time such that (see Sect. 4.2.1):

ffchHh=zoecl <(fH0)(=df0) (4.18)

Let ED(Q) be the Earliest Deadline order of jobs with respect to these deadlines.
Assume that jobs of agent 4 are numbered according to the SPT order pi' < ---

p ', and jobs of agent B are numbered according to ED(Q) order: c?lg (Q)<---
d;,(Q).
The following property proposed in Kovalyov et al. (2012b) holds.

IAIA

Lemma 4.4. There exists an optimal schedule for the problem 1|CO,s —
batch, nﬁlx < Q|Y.C4, if one exists, in which the jobs of agent A are processed

in the SPT order and the jobs of agent B are processed in the ED(Q) order,
respectively.

Algorithm 23 (Kovalyov et al. 2012a) is a dynamic programming algorithm that
solves this scheduling problem, where a single batch is appended to the end of a cur-
rent schedule. We denote by F (b4, i4,bp,ip) the minimum total completion time of
jobs of 74, subject to the condition that the first i 4 jobs of agent A are scheduled in
b 4 batches, the first i g jobs of agent B are scheduled in b g batches and the deadlines
for the latter jobs are satisfied. F(b4,i4,bp,ip) is the recursion function. The opti-
mal value corresponds to min{ F(bs,n4,bg,ng) | 1 <bs <ny,1 <bg <ng}.

We define C(b4,i4,bp,ip) the completion time of the last job scheduled:

igq ip
C(ba.iabp.ip) =sabs+ssbs+ Y _ pi+ > pf (4.19)

i=1 i=1

A decision in the DP algorithm is whether to schedule next a job of agent 4 or a
job of agent B.
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Algorithm 23 for problem 1|CO, s — batch, f,5 < Q|3 C}!

max
1: F(0,0,bg,ig) =0for0<bp <ip<np
2: F(bA,iA,bB,iB) = 4ooforl < bA <igy<ngand1<ip < bB <np
3: Calculate Jf(Q) such that ij(Cj) <0
4: forby :=0ton, do
5: foriy := b, ton, do

6 for bg :=0tong do

7. for iz := bp tong do

8: if (bA,iA,bB,iB) # (0, 0,0, 0) then

9: Calculate C(by,i4,bp,ip) via4.19

10: F(bA,iA,bB,iB) = IniIl{FA(bA,iA,bB,iB), FB(bA,iA,bB,iB)}
11: end if

12: end for

13: end for

14: end for

15: end for

e If ajob of agent A is scheduled, there are two cases. If the last batch is a batch of
agent A, either this job is included in this batch or it starts a new batch; Otherwise,
it starts a new batch. In any case, it has no impact on f.2 , the only impact is on

> CJ.A. The new cost for A is the cost of the first b4 — 1 batches plus the cost

of the last batch. Because we do not know which batch is the last one and how

many jobs it contains, the new cost can be expressed as follows:

FAbainbpin)= _min |F(ba—1.jbp.in)

4—1<j<ia—1

(4= )Clbasiabp.in)|

» If a job of agent B is scheduled, it has no impact on ) C jA and we have to
B

consider only the limit for £ . This sort of decision is only possible if we have

C(bya,ig,bp,ip) < ij(Q). In this case, the cost is unchanged and we have
the following expression:

FB(ba,ia,bp,ip) = min {F(bA,iA,bB—l,j)}+f(bA,l'A,bB,l'B)
bp—1<j<ip—1

where f(ba.is.bp.ip) = 0if C(ba.ia.bp.ig) < dP (Q) and +oo oth-

erwise. F(by,is.bp.ip) equals the minimum between F4(b4,i4,bp,ip) and

FB(ba,is b, ip) (see Algorithm 23).

Since each value F'(by,i4,bp,ip) can be computed in O(n) time, the following
result holds.

Theorem 4.5. An optimal solution to problem 1|CO, s — batch, f,5 < Q|> CA
can be found in O(nnn%) time.
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sa| Jp | SE JE P Sa| Jg

Fig. 4.6 Solution to the 1|CO, s — batch, fE_ < Q|>.C jA problem

max —

Example 4.5. Let consider the following 4-job instance, where jobs J;! and J;!
belong to J* and jobs J and J.f belong to 7 2:

L FU £ E R
pho2 4 4 1
dB 9 11

We assume that the jobs of J? are subject to due dates and that the function ij (t)
is defined by:

ffoy=2-d} vjeJ®

Itis easy to see that /°(1) < Q & 2t —d} < Q & 1 < (Q +d})/2. Therefore,

for each job J]B we define a deadline c?f(Q) = (0 + df)/Z. With Q = 19, we
obtain:

JE g JE

d8 14 15

We suppose that s, = 3 and sp = 2. The optimal solution is given by the sequence
(I AT B, T2, {J{Y) (itis not possible in this example to finish the sequence by
a job of agent B for deadline reasons). The sequence is represented in Fig. 4.6. We
have /B = max(24—9,24—11) =15<19and Y C;' =5+ 19 = 24. o

max

4242 Problem 1|CO,s — batch, > C# < Q| f,,

max

Let us now turn to the symmetric problem, denoted 1|CO, s — batch,_ C ]A <
Q| fE . We can derive an algorithm that determines whether there exists a solution

to the feasibility problem 1|CO,s — batch,y . C ]A < Q,fB < y|-, where
vy € [lbp,ubg] with [bp and ubp given by Egs. (4.12) and (4.13).

The idea is that problem 1|CO, s —batch, Y Cf’ < 0. fB < y|—hasasolution

max —

if and only if there is a schedule in which " C jA < O and each job of agent B
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completes within its deadline d ]B (y) defined as in (4.18), with y in place of Q.

As usual, we assume that d f (y) is computed in constant time through an explicit
expression for the inverse function ( ij )7L(@).

Suppose that jobs of agent B are numbered according to deadlines, le (y) <
- < dB (y) and jobs of agent A are numbered in SPT order, pl <...< p;‘A. Let
ED(y) be the Earliest Deadline order. We have the following property.

Lemma 4.5. If one exists, there exists a feasible solution to problem 1|/CO,s —
batch,y CA < Q, max < y|— in which the jobs of agent B are processed in the
ED(y) order and the jobs of agent A are processed in SPT order.

Hence, a feasible solution can be obtained by dynamic programming Algo-
rithm 23, where we should consider d? () instead of d2(Q).

A feasible solution, if it exists, corresponds to the state (by,n4,bpg,npg) such
that F(by,na,bp,ng) < 0,1 <by <ngand 1 < bg < np. Thus, verifying if
1|CO, s — batch, Y CjA < 0, fB < y|—has asolution can be done in O(nn*n%
time.

So, an optimal solution value for the problem 1|CO, s — batch, )", C; A<0|fE
corresponds to min{y | F(bg,n4,bp,ng) < Qwithl < by < ny,1 < bg <
np}. Let Yg = ubp — Ibg (where ubp and by are given by (4.12) and (4.13)). In
conclusion, the following result holds.

Theorem 4.6. An optimal solution to problem 1|CO, s — batch,  CA < Q| f.8
can be found in O(n>n%nlog Yg) time.

ax —

max

4.2.5 Functions fmax, Y w;U,
4251 Problem 1|CO, s — batch, f,5, < Q| X wi U

Let us now turn to problem 1|CO, s — batch, £ < Q0| WAUA.
Proposition 4.1. The problem 1|CO, s — batch, fE < Q|>" WAUA is NP-hard.

Proof. If Q is sufficiently large and if the setup time is equal to O, there is no need
to constitute batches, and the problem is equivalent to the single-agent scheduling
problem 1|| )" w; U;, which is NP-hard (Karp 1972). O

Given Q, similarly to Sect.4.2.1, we can associate a deadline d ]B(Q) to each
job J jB in constant time. Let ED(Q) be the Earliest Deadline order with respect
to deadlines d f (Q). We assume that jobs in 74 are numbered in EDD order, i.e.
it < = d;, and that jobs in J* are numbered in ED(Q) order, i.e., df(Q) <

~<dp , (Q). One can easily establish the following property.

Lemma 4.6. If an optimal schedule for problem 1|CO,s — batch, fE <

max —_

0] Zw;’ U]A exists, there is one in which the late jobs of agent A form a single
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batch that is processed at the end of the schedule, the early jobs of agent A are
processed in EDD order, and the jobs of agent B are processed in ED(Q ) order.

In what follows, for simplicity, we write d 7 instead of d 2.

Lemma 4.6 allows to devise a dynamic programming solution algorithm.

Let C(ig,ip, Wy, k, e) be the minimum completion time of the last early job, in
a schedule where the first i4 jobs of agent A and the first i3 jobs of agent B are
scheduled, the total weight of the late jobs for agent A does not exceed Wy, the last
scheduled batch is composed of jobs of agent k, k € {A, B}, and the last batch is
(Jek, JekH, e, J,-];). Note that if k& = A, the last batch must complete within deA,

and if k = B, the last batch must complete within df .
In the recursion, a job Jl.’; is scheduled at the end of the partial schedule. There
are five alternatives:

1. The last batch belongs to agent A (k = A) and either

o Job J,-j is late,
* Or job Ji;’ is assigned to the last early batch of agent A (if the batch still

completes within d ),
* Orjob Jif starts a new early batch (if the new batch completes within dii).

2. The last batch belongs to agent B (k = B) and either

* Job Jig is assigned to the last early batch of agent B (if the batch still
completes within d 5,
* Orjob Jig starts a new early batch (if the new batch completes within di‘; ).

The dynamic program is given in Algorithm 24, where we have the following
definitions:

if C(ia—1.ip. Wa. A e) + pt <d

@(ia,ip, Wa, A e) = .
otherwise

lfC(iA,iB — 17WA,B,6) + pli < d‘;B
otherwise

if Cia—1iip, Wa. 0. h) + 54+ pft <di

otherwise

{O
+
$inip. Wi B.c) = {O
A7 B’ A’ , +
Lo . 0
Vo(ia,ip, Wa, £, h) = {

i 4. ip — B - B
V2 (iaig, Wa, L, h) = % 0 1fc(lAle LW b h) + 55+ pf <d?P
+o00 otherwise
The optimal value of W] is given by:

W; :min{WA | C(nA,nB,WA,k,e) < 400, Wy :0,1,...,WA,
kel{A,B}, e=1,...,n;}

where W, is the total weight of all jobs in J4.
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Algorithm 24 for problem 1|CO, s — batch, 5 < Q| > wiU/

max —

21:
22:
23:
24
25:
26:

27:
28:
29:

30:
31:
32:
33:
34
35:
36:

S A O e e

WA = Z;IA=1 W/i1

J
: fork := Ato B do

for e := 1ton; do
C(0,0,0,k,e):=0
end for
end for
for k := A to B do
for e := 1tony do
if (ig,ip, Wy, k,e) # (0,0,0,k,e) then
C(iA,iB, WA,k,e) =00
end if
end for

: end for
c foriy:=1ton, do

forig :=1tong dg
for W, :=0to W, do
for k := A to B do
for e := 1to i, do
if (k = A) and (e < i) then
C(iA,iB, WA,A,E) =

C(IA - l,iB, WA —W,{i,A,L’),

min{ ) K o
Clia—Lip W, Ase)+ p/, + ¢liaip. Wa, A, €)

end if
if (¢ = B) and (e < ip) then
Clia.ig,Wa,B.e) := Clig.ip—1.Wa.B.e)+ pE +¢(is.izg, Wy, B.e)
end if
if (k = A) and (e = i,) then
C(iA,iB,WA,A,e) =

min {CGix — 1.5, Wi, €.1) + s+ pls + 9" (i W ) 11 < h <

A—1if = Aand 1 §h§i3if£=3}
end if
if (¢ = B) and (¢ = ip) then
C(iA,iB, WA,B,E) =
min {Clia,ip = 1, Wa, &.h) + 55+ pl + Y2 (ain, Wa ,h) 11 < h <

iAifZ=Aand15h§B—1if€=B}
end if
end for
end for
end for

end for
end for
return W
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Let us consider the complexity of Algorithm 24. There are O(n 4npn WA) entries
for C(nq,np, Wy, k, e). Each of them can be computed in O(n), so that we have
the following result.

Theorem 4.7. Algorithm 24 solves problem 1|CO, s — batch, {5 < Q| ZWAUA
in O(n4ngn® WA) time.

For the unweighted case, because Wy = ny, the algorithm runs in polynomial
time.
Corollary 4.1. Algorithm 24 solves 1|CO,s — batch,
O(n%ngn?).

< Q|ZU]-A in time

max

4.2.5.2 Problem 1|CO, s — batch, ZwAUA < 0|

max

Let us now turn to the symmetric problem 1|CO, s — batch, 3 wiU/ < Q|
The resolution of this problem will use Algorithm 24 iteratively.

Let consider a given value of y € [/bp,ubp], [bp and ubp given by Egs. (4.12)
and (4.13). It is possible to solve problem 1|CO, s — batch, fi, < y| > wiU" by
Algorithm 24. If the value of W is less than or equal to Q, y can be decreased,
otherwise, y has to be increased. Fixing the optimal value of y can be done by a
binary search.

Therefore, an optimal schedule for 1|CO, s — batch, ) wiU* < Q| f5, canbe
obtained in O((n4npn)Q log Yp) with Yp = ubp — lbp.

de

Corollary 4.2. Algorithm 24 used iteratively as described above can solve problem
1|CO, s — batch, " UA < O|fB. in O(n’npgnlogYp), i.e. in polynomial time,
because Q < ny4.

4253 Problem 1|CO, s — batch|P(fpux, > UP)

Let us now consider problem 1|CO, s —batch|P(f2 > U jB ). Each Pareto optimal
solution can be found by solving a logarithmic number of instances of the e-
constraint problem. However, in this case, the problem is even easier. Let consider

that F, A*n denotes the value of the optimal solution for agent A to problem

1|CO, s — batch, U; B < Q|fA with Q = np. To obtain a first Pareto optimal
solution, we only need to solve one instance of the symmetric problem, i.e.,
11CO, s — batch, fr, < Q|3 UP with Q = F4%, . 1f US* denotes the optimal
value of this problem, the pair (F é’an, U 5 *) is a Pareto optimal solution.

The next Pareto optimal solution can be generated by solving problem 1|CO, s —
batch, " U 53 < Q| problem with Q = np — 1. We obtain an optimal solution
with value F AlnB_l and the symmetric problem is solved, and so on. By doing
this, the whole Pareto set can be obtained. Hence, the complexity of this algorithm

max
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is essentially related to the size of the Pareto set. In this case, the Pareto set has a
polynomial number of solutions, which is bounded by np. Hence, the size of the
Pareto set is bounded by O(np).

In conclusion, the following result holds.

Theorem 4.8. Problem 1|CO,s — batch|P(fi,. > UP) can be solved in

max’
0 (ningnz) time.

4.2.6 Functions Cpay, Y C;

4.2.6.1 Problem 1|CO,s — batch, ) Cf < Q0|cA.

Let us now turn to problem 1/CO, s — batch, " C jB < Q|CA.. Assume that the

jobs of agent B are numbered in SPT order pf <...< pr. We have the following
property (Kovalyov et al. 2012b).

Lemma 4.7. [f an optimal schedule for problem 1|CO, s —batch, ) C]B <Qo|cA.
exists, there is one in which the jobs of agent A form a single batch and the jobs of
agent B are processed in SPT order.

By the same reasoning as presented in Sect. 4.2.3.1, and according to Lemma 4.7,
an optimal schedule is of the form (5, B4, ) where g and 7, (possibly empty)
contain only batches of jobs of agent B, and B is the only batch of agent 4 jobs.

We remark that for each solution of the form (g, 34, ]Té), the makespan Cn/}ax
only depends on the number of jobs k& and the number of batches b in the partial
schedule 7g. Hence, as in Sect.4.2.3.2, given k and b, the problem reduces to

constructing two schedules:

e 73 = n®?, that minimizes the total completion time of the job set
(JE, ..., J kB } starting at time zero and forming b batches,

s wp = 7%+D_ that minimizes the total completion time of jobs at the end of the
schedule {J, kB+l’ ey Jni }, assuming that they start at time zero.

Hence, the optimal schedule corresponds to the minimum value of:

k
Co kD) =b.sg + Y pPf + 54+ Pa (4.20)
j=1

over (b, k) such that 0 < b < k < np and such that:

k np
Y CPEE) + (g —k)Ch by + Y CP*T)y <0 @21
=1 j=k+1
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Algorithm 25 for problem 1|CO, s — batch, Y. C# < Q|CA

1: Renumber jobs of agent B in SPT order

2: F(0,0):=0

3: F(1.k) = k(sg + Yr—, p?) // initial value

4: for b :=2tong do

5: fork :=btongdo

6: F(b, k) := minizy s {Fb = 1, j) + k= ) (bss + Xy pF)|
7:  end for

8: end for

9

: return CA_(k, b) defined in (4.20) and satisfying (4.21)

max

The whole set of schedules 7**D, 0 < k < np — 1, can be found in O(n%)
time by a backward dynamic programming algorithm with batch insertion proposed
by Coffman et al. (1990). Such an algorithm solves the single-agent problem 1|s —
batch| )" C; to optimality and works as follows.

Given the job set {Jy,...,J,}, let F(i) be the minimum value of the total
completion time restricted to the job set {J;, Ji +1, ..., J, }, where the schedule starts
at time zero with a setup time s. The recursion function fori =n,n —1,...,11s:

h—1

F()= min {F(h)—l—(n—i—i—l)(s—i—ij)} (4.22)

i+1<h<n+1 o
J=t

For each value of /4, formula (4.22) considers that a batch (J;,..., JJy—1) is
appended at the beginning of the partial schedule containing jobs (Jp,..., J,).
Such first batch completes at time s + Z?;I, p; and, therefore, its contribution

to the total completion time is (h — i )(s + Zi’;

this batch, the processin% of the subsequent batches (containing jobs Jj, ..., J,)
is delayed by time s + ) j;li pj» so the contribution of subsequent batches becomes

Lp j). Due to the insertion of

=
expression (4.22), which is initialized with F(n + 1) = 0.

For what concerns schedules 7*?), 0 < b < k < ng, these can all be found
by the dynamic programming Algorithm 25 (Kovalyov et al. 2012a), where a single
batch is appended at the end of a current schedule and F (b, k) is the minimum total
completion time of jobs {J 2, ..., JkB } in b batches from time zero.

For given k and b, the value F(b, k) is computed in O(k) time. Hence, all the
values F (b, k) and corresponding schedules 7%, 0 < b < k < np, can be found
in O(n%) time. In conclusion, considering that P4 can be computed in O(rn4), the
following theorem holds.

Theorem 4.9. The problem 1|CO, s — batch,y. CE < Q|CA_ can be solved in
O(n’ + ny) time.

Fhy+(n—h+ 1)<s + Zh_li pj). Adding up the two contributions, we get the
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Note that (4.22) and Algorithm 25 can also be used to solve the symmetric
problem 1|CO, s—batch, CA < Q| C; B In fact, one only needs to select, among

the O(n B) pairs (k, b), the one such that

CcA (D) = bsp + Zp] +54+Ps<Q
j=1

and that minimizes

k k np
Z CH™) + (ng — k) (bsB + pr + 54+ PA) + Z CP(x**h).

j=1 j=1 j=k+1

4.2.6.2 Problem 1|CO, s — batch|P(Cyoy» > C )

Let us now consider problem 1|CO, s —batch|P(CA > C JB ). Each Pareto optimal
solution can be found by solving a logarithmic number of instances of the &-
constraint problem. However, suppose that F B is the value of the optimal solution
ofproblem 1|CO, s — batch,CA < Q|ZCB Let Q =T = nas4 + npsg +
i 74 pi +Y e 7B pl- . To obtain a Pareto optimal solution, we only need to solve
one instance of the symmetric problem, i.e., problem 1|CO, s — batch, > C jB <
FJ|Chu- If F* is the optimal value of the problem, the pair (F*, FJ) is Pareto
optlmal Similarly, the next Pareto optimal solution can be generated by solving
1/CO, s — batch, C,, < F* — pB|>" CP where p? is the processing time of the
job of agent B scheduled just before the first job of agent A in the previous Pareto
solution, and thereafter one instance of the symmetric problem. In this way, the
whole Pareto set can be obtained. Note that the scheduling of jobs of agent B which
are processed after 74 is given by solving problem 1|CO, s —batch| Y C; by using
the algorithm of Coffman et al. (1990).

Hence, the complexity of this enumeration is essentially related to the size of the
Pareto set. In this case, the Pareto set has a polynomial number of solutions. This is
due to the fact that the structure of any strict Pareto optimal solution is of the form
(w*D BA 7 *k+D) where jobs of J* are inserted after certain batches of jobs of
J 8. The makespan for agent A is completely determined by the number of jobs
k,0 <k < np preceding B4 and the number of batches »,0 < b < k < np in the
sub-sequence 7 *-?). Hence, the size of the Pareto set is bounded by O(np).

In conclusion, the following result holds.

Theorem 4.10. Problem 1|CO, s —batch|P(CA
HAHB).

max’

> CJB) can be solved in O (n}+
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4.2.7 Functions ) C;j, > C;
4.2.7.1 Problem 1|CO, s — batch, " CjB <0|Y CJ{‘

Let us now turn to problem 1|CO,s — batch,ZCjB < Q|ZC;‘. Its NP-

hardness follows from the complexity of problem 1|CO, Y  C jB <Q0|>cC jA (see
Theorem 3.20, page 110), since the former problem reduces to the latter letting
&1=SB==Q

By a simple pairwise argument, one can establish the following lemma.

Lemma 4.8. There exists an optimal schedule for 1/CO,s — batch,ZCJB <

o|>.C jA problem, if one exists, in which the jobs of each agent are processed in
SPT order.

Based on Lemma 4.8, a pseudo-polynomial time dynamic programming algo-
rithm can be derived. Assume that the jobs are numbered in SPT order, i.e.,
pi<--<p!andpf <---<pk.

Let F(i4,ip,q) be the value of the optimal solution of the problem restricted to
the job set {Jl.j, Jl.jH, o Jnﬁ} U {szs JlﬁH, e J,ﬁg} starting at time 0, provided
that the total completion time for agent B is smaller than or equal to g. In the
functional equation, the contribution of a single batch appended at the beginning
of the schedule is taken into account.

We denote by F4(i, iz, q) the total completion time of agent A if the decision is
to schedule job Jl.j just before the solution obtained with F(i4 + 1,ip,q). This job
can constitute a new batch, either only with this job or with other jobs already sched-
uled. Therefore, we will consider these possibilities in the recursive relation. Simi-
larly, we denote by F2(i 4, i, q) the total completion time of agent A if the decision
is to schedule job Jl.ﬁ before the solution obtained with F(i4 + 1,ip,q). We have:

ng+1 . S . S
Fi(igip.g) = min {F(jiig.q—n§ P{tI0) 4 nf0 pii=0)

J=iat

with P = s + 37 _pkfor 1 < i < j < m, Yk € {4,B} and
n](c”‘) = ny — i} + 1 the number of jobs of agent k already scheduled.

n3+l . . s . . -
FB(ia,ip,q) = 'miri_l {F(iA,j,q — i pis 1)) + 0 pis 1)}
J=iB

Notice that F4(i4,ip,q) and FB(i4,ip,q) are setto +ooif g > Q.

The optimal solution o* is given by

min{F(l, 1,q9) :q €[sp + pr, Q]}

Jj=1
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Algorithm 26 for problem 1|CO, s — batch, 3 CF < Q| >~ C/

1: for k := Ato B do
2 fori :=1ton; do

3 for j :=i ton; do
4 Compute P/(l"j )
5: Compute Pé"])
6

7

8

end for
end for
: end for
9: Fny+ 1l,ng+1,0):=0
10: fori g := 1ton, do

11: forig := 1tongdo

12: for g := 1to Q do

13: if (i4.ip.1) # (ng + 1,np + 1,0) then
14: F(iA,iB,l) = 400

15: end if

16: end for

17: end for

18: end for

19: for i  := n, downto 1 do
20: for iz := ng downto 1 do

21: forg = 0to O do

22: if(iA,l.B)#(l’lA,l’lB) then

23: Flis.ig.q) = min{FA(iA,iB,q), FB(iA,iB,q)}
24 end if

25: end for

26: end for

27: end for

28: return ¢*

The corresponding dynamic programming algorithm is presented in details in
Algorithm 26.

For each choice of the values iy and ip, F(i4,ip,t) is computed in O(n)
time. Hence, the necessary time to compute all values F(iy4,ip,¢) is no more than
O(n npnQ) time. In conclusion, the following result holds.

Theorem 4.11. An optimal solution to problem 1|CO,s — batch,_ CJB <
o1 Cf’ can be found in O(nangnQ) time.

4.2.7.2 Problem 1|CO, s — batch|P (Y. C;‘ ) Cf)

We now consider the problem 1/CO,s — batch|P(3_C/,5" CF). Even in the
COMPETING scenario of the single machine problem without batches, denoted
1|COIP(X_C,3-CP), the size of the Pareto set may not be polynomial (see
Sect. 3.9.2). Hence, the size of the Pareto set with batches is also exponential.
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4.2.8 Functions ) w;U;, > w;U;
4.2.8.1 Problem 1|CO,s — batch, wf Uf <0\ w;.‘ UJ‘.4

Let us now turn to problem 1|CO, s — batch, ) wf UJB <0|> w;»l UJ»A.

Proposition 4.2. The problem 1|CO,s — batch,waUjB < Q|2:wj»1Ujf4 is
NP-hard.

Proof. The result follows from the NP-hardness of the single-agent problem
1| > w;U; (Karp 1972). |

Before introducing a pseudo-polynomial dynamic programming algorithm to
solve problem 1|CO, s — batch, > wf U jB <0/X w;’ U jA, we give some properties
to characterize the optimal solutions of this problem.

The first property is that we can put all late jobs of each agent into one batch
scheduled after all “early” batches. Hence, an optimal schedule is of the form
(Ekaks) TOa=kanz=kp)y where E%4k#) is the subsequence of k, jobs of agent
A and kp jobs of agent B that are early and are scheduled first in b batches, and
T(ra=kanz=ks) ig the subsequence of n4 — k4 jobs of agent A forming at most one
batch and np — kp jobs of agent B forming at most one batch, and are scheduled at
the end of the sequence.

For the second property, we have.

Lemma 4.9. If an optimal schedule for problem 1|CO,s — batch, wa UJ.B <

o1 w;l U jA exists, there is one in which the early jobs of each agent are processed
in EDD order.

Proof. Consider an optimal schedule for which the property does not hold, i.e.,
batch BY of agent k (k is either A or B), is scheduled before batch Bf with J} € B}
and J ]k e Bk d ]k < d¥ and both batches are early. Thus, if we move job J/ from

Bf to B¥, the completion time of batch Bf (as well as the completion time of all
batches between Bf and BF) is reduced by pf, without increasing the completion
time of batch B¥, and hence J} remains early. Continuing this exchange reasoning,
we obtain an optimal schedule with the desired property. O

According to previous properties, we assume that the jobs of each agent are
numbered in EDD order, i.e.,d{! <--- < d anddf <---<df.

A dynamic programming algorithm can be proposed, similar to the algorithm for
the single-agent problem given in Brucker and Kovalyov (1996), and following a
similar reasoning that led to Algorithm 24.

Let C(ig,ip, Wy, Wg, k,e) be the minimum completion time of the last early
job, in a schedule with the first i 4 jobs of agent A and the first iz jobs of agent B,
in which the total weights of late jobs do not exceed W4 and Wp for the two agents,
respectively, the last scheduled batch is of agent k, k € {A, B}, and the last batch is

(JE TR J,-];). Note that the last batch must complete within d*.
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In the recursion, a job Ji’z is added to the end of a partial schedule. There are
three alternatives:

1. Job Ji’,f is late,

2. Job J,.]z is assigned to the last early batch of agent k (if the batch still completes
within d¥),

3. Job JI/Z starts a new early batch (if the new batch completes within dli ).

The dynamic program is given in Algorithm 27, where we have:

G(ia.ip, Wa,Wp, A, e)
{0 ifC(iA—1,iB,WA,WB,A,e)+pf/’4§d€A
" | 400 otherwise

¢(ia.ip, Wa, Wp, B, e)

_ {0 ifC(igig—1,Wa.Wg.B.e)+ p2 <df
" | +o0 otherwise

U (igip, Wa, Wg, £, h)

_ {0 ifc(iA—1,l'B,WA,WB,5,h)+SA+P{1Sd{j
" | +o0 otherwise

U2 (ig,ip, Wa, Wg, £, h)

{0 ifC(iaipg— 1. Wa, Wp. L h)+s5+ pE <df
"~ | +o0 otherwise

The optimal value W is given by:

W =min{Wy | C(ng.ng, Wa, Wg.k.e) < +oo, Wy =0,1,..., Wy,
Wg=0,1,...,0, k€{A,B}, e=1,...,nx},

where W, is the sum of all weights of agent A. In conclusion, one has the following
theorem.
Theorem 4.12. An optimal schedule for 1|CO, s—baich,y wf UJB <Ql> w;‘ UJ»A
can be found in time in O((n’np + nAn%)WA 0).

Note that this implies that the unweighted problem 1|CO, s — batch, Y U jB <
01> U jA can be solved in polynomial time, since W4 = ny and 0 <np.

Corollary 4.3. This dynamic programming algorithm solves the scheduling prob-
lem 1|CO, s — batch, ) UP < Q| S U in O(nyny 4 n’yny) time.
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Algorithm 27 for problem 1|CO, s — batch, }_ w?UP < Q| Y} w/U/

1: Wy =30 wh
2: C(0,0,0,0.k,e) := 0
3: for k := Ato B do

4: for e := 1to n; do

5: if (4.1, Wy, Wg,k,e) # (0,0,0,0,k, e) then
6: C(iA,iB,WA,WB,k,E):= “+o00

7. end if

8: end for

9: end for

10: fori  :=1ton, do
11: forip :=1ton3d9

12: for W, :=0to W, do
13: for Wz :=0to QO do
14: fork € {A,B}ande =1,...,i; do
15: if (k = A) and (e < i) then
16: v i =C(iy— 1, zB,WA—w,A,WB,A e)
17: Uy = C(lA l,lB,WA,WB,A €)+p,'A+¢(iA,iB,WA,WB,A,€)
18: C(iA,iB,WA,WB,A,e) = min{vl;vz}
19: end if
20: if (« = B) and (e < ip) then
21: vy = C(ig,ip — 1, WA,WB—W,E,B e)
22: Uy = C(ZA,IB I,WA,WB,B €)+[JI-B+¢(iA,iB,WA,WB,B,€)
23: C(ig,ig, Wy, Wg, B, e) := min{vi; v}
24 end if
25: if (k = A) and (e = i,) then
26: vy = min {C(iy — 1,ig, Wy,Wp, A, h) + s4 + pu +
1<h<ig—1
V' (iaip. Wa. W, A, h)}
27 v, = min {C(ix — l.ip. Wi Wp.B.h) + s4 + pif +
1<h<ip /
V' (ia,ig, Wa, Wg, B, h)}
28: C(iA,iB,WA,WB,A,e) = min{vl;vz}
29: end if
30: if (¢ = B) and (e = ip) then
31: vy = min {C(is,ipg — 1, Wy, Ws, A h) + sz + pl-i +
1<h<iy
V(i ig. Wa. Wg, A, h)}
32: v, = min  {C(iq.ip — L.Wa,Ws.B.h) + sz + pf +
I<h<ip—1
V2(ia,ig, Wa, Wg, B, h)}
33: C(iA,iB,WA,WB,B,E):= min{vl;vz}
34. end if
35: end for
36: end for
37: end for
38: end for
39: end for

40: return W}
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4.2.8.2 Problem 1|CO, s — batch|P (Y. U]f“ ) Uf)

We next address problem 1|/CO,s — batch|P(3_ U/, Y- UP). Without loss of
generality, let assume that n4 < np. In order to compute the Pareto set for problem
l|s — batch|P(3_ U, 3" UP), one can solve at most n4 + 1 problems of type
l|s — batch,ZUjA < 0] ZU]B for Q = ny,n4 —1,...,0. In conclusion, the
following result holds:

Theorem 4.13. Problem 1|CO,s — batch|P(3_U', Y UJ) can be solved in
O(n*n% + n’n3) time.

4.3 Two-Agent P-Batching Problems

In this section, we consider two sets of jobs J* and 72 owned by two competing
agents A and B, on an unbounded single parallel batching machine on which the
jobs can be processed in batches. All jobs in the same batch start and finish their
processing at the same time. The processing time of each batch is equal to the
longest processing time of the jobs in the batch.

As in the previous section, the jobs should be scheduled on the parallel-batching
machine under the restriction that jobs of different agents cannot be processed in
a common batch. In the following, we only address the COMPETING scenario, and
results for various combinations of regular scheduling criteria are presented.

4.3.1 Preliminary Results

We start by establishing a simple but important property. If there are two jobs
belonging to the same agent J* and J jk such that p¥ < p§ andd¥ > d jk , then J} can
always be assigned to the same batch as job J jk As its contribution to the objective
function value is dominated by J jk , we can delete Jik from J* without affecting the

solution, and we can discard Jik from further consideration. Therefore, whenever
the job due dates are relevant, one can assume without loss of generality that SPT
and EDD orders coincide, i.e., p’l‘ < p’z‘ <...< p,’jk and dlk < dzk <...< d,fk,
Vk € {A, B}.

For the single-agent batching scheduling problem with any regular objective
function f, denoted 1|p — batch| f, Brucker et al. (1998) show that there exists
an optimal schedule which is an SPT-batch schedule, i.e., a schedule where each
batch is formed by jobs which are consecutive in the SPT ordering of all jobs. This
result is generalized by Li and Yuan (2012) to the two-agent case.

Property 4.1. For any pair f4, 2 of regular objective functions, there exists an
optimal schedule for problem 1|p — batch, f2 < Q| f“ such that the jobs of each
batch are consecutive in the SPT ordering of the jobs of the respective agent.
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Fig. 4.7 Illustration of an SPT-batch schedule

As usual, when f¥ is a max-type function which is bounded, we associate with
each job J Jk a deadline d ;‘(Q) as described in Sect.4.2.1. A schedule is feasible if
and only if all the deadlines are respected.

In view of these results, we assume in the following that the jobs of each agent are
numberer according to SPT order. Moreover, note that the batch set-up time s can
be added to each processing time, and hence it can be disregarded. In the following
we therefore assume that set-up times are equal to zero.

Example 4.6. Let consider the following 10-job instance with only one agent (jobs
are numbered in SPT order).

Jj Jl J2 J3 J4 J5 J6 J7 Jg J9 Jl()
pi 1 2 3 3 6 71 8 8 9 11

We represent in Fig. 4.7 an SPT-batch schedule with three batches. o

4.3.2 Functions fuax, fimax

4.3.2.1 Problem 1|CO, p — batch, f2 < 0| fA

max — max

Let us consider problem 1|CO, p — batch, f,B < Q| f4. . The problem is solved

max*

by applying a binary search to the feasibility problem 1|CO, p — batch, fEB <

max
0, fa <y|l—, withy € [lbg,ub4], Ib4 and ub, given by Egs. (4.12) and (4.13).
For each value y and Q, one can compute deadlines d/!(y) and d?(Q) for the
completion times of jobs of 74 and J5, respectively. The idea is that problem

1|CO, p — batch, fE < Q, fA. < y|— has solution if and only if there is a

a;
schedule in which each job completes within its deadline. The d jk are computed in
constant time, because we assume that we have an explicit expression for the inverse
function (f/)~'(¢), VJF, k € {A, B}.
Recall that all the jobs of agent A are numbered so that pf‘ < pg‘ < ... <

p;fA andd{! <djt <--- < dnAA. Li and Yuan (2012) propose a forward dynamic



4.3 Two-Agent P-Batching Problems 177

Algorithm 28 for problem 1|CO, p — batch, fA <y, fB < Q|-
1: C,(0.0):=0
2: foriy:=1ton, do

3: forig:=1tongdo

4: Compute 01 (i4,ip)

5: Compute 0, (i4,ip)

6: if (01(i4,ip) = @) and (02(i4,ip) = @) then
7. Cy(l.A,l.B) = 400

8: else

9: v 1= ming, e, i, {Cy (La.ip) + pii}
10: v 1= ming, eo,(4.ip{Cy (ia. Lp) + pB}
11: Cy(i4,ip) := min {vi!, vF}

12: end if

13: end for

14: end for

15: if Cy(n4,np) # 400 then

16: return ‘Schedule is feasible’

17: else

18: return ‘Schedule is not feasible’
19: end if

programming algorithm to solve problem 1|CO, p-batch, fB < Q, f4 < y|—in
polynomial time, described in Algorithm 28.

For a given y, C,(i4,ip) denotes the minimum makespan for SPT-batch
schedules containing jobs {J/, ..., Ji;’} U{JE, ..., Jl.ﬁ}, respecting f4 <y and

B < Q for the first i and i jobs of both agents. We set C,(ig,ip) = +ooif

there is no feasible schedule for jobs {J, ..., Ji;’} u{Js, ..., Jl.ﬁ}, i.e. no feasible
schedule for these jobs respects their deadline d ;‘ (y) and d ]’3 Q).

In Algorithm 28, we denote by o, (i4, i) the set of indices of jobs of agent A,
starting from £ 4, that can be scheduled in the same batch as Jif and such that the
deadline of job J [/11 41 1s respected. Suppose that the last current batch belongs to
agent A, and call J[‘i 41 the first job of A in the last current batch. In this case,
01(i4,ip) is the set of candidate values for index £ 4. Note that since the last batch
spans from J Z‘i 41 to Jl-j, its length is given by pf; and it has to complete within

dj!, ,(»). Hence, one has:

01(ia.ip) = {0 <€y <ig—1:Cy(La.ip) + p <df (1)}

Similarly, if the last batch belongs to B, and contains jobs (J, Zi TR Jig ), the
set 02(i4,1p) of candidate values for index £ must ensure that the last batch can
feasibly complete within its deadlines, hence:

02(ia.ip) ={0 <lp <ip—1:Cy(ia.lp) + p} < sziﬂ(Q)}

Note that the recursion described in Algorithm 28 can be stopped, and one can
deduce that there is no feasible solution, if Cy(i4,ip) = +o0 has been obtained
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Fig. 4.8 Two solutions for the 1|CO, p — batch, CE < Q|CA  problem

max — ma:

for some (i4,ip). For a given y, this dynamic programming algorithm requires
O(nn4np) time to compute C,(n4,np).

Let Y4 = uby — b 4. To solve the two-agent batching problem, we only need to
determine min{y : C,(n4,np) < +oo}, which can be done by using binary search
on Y4. For each value of y, we first compute the deadline d ;‘ (y) for jobs of agent
A, then we call the dynamic programming algorithm to determine Cy(n4,np). In
conclusion one has the following result.

Theorem 4.14. Problem 1|CO, p — batch, fE < Q|f4 can be solved in
O(nnanplogYy) time.

4.3.3 Functions Cmax, Cmax

4.3.3.1 Problem 1|CO, p —batch,CE < Q|CA .

max

Let us now turn to problem 1|CO, p—batch, CE < Q|CA . As for the serial batch

problem 1|CO, s — batch, CE < Q|CA ., presented in Sect. 4.2.2.1, the following
property holds.

Property 4.2. In the problem 1|CO, p — batch,CE < Q|CA . if an optimal
schedule exists, there is one in which all jobs of agent A are scheduled in a single
batch and all jobs of agent B are scheduled in a single batch.

Example 4.7. Let consider the following 5-job instance withny =2 and np = 3:

If 0 < 10, it is not possible to schedule the batch BB of J8 last, therefore the
solution is (B2, B4). If Q0 > 11, the solution is (B4, B%). Figure 4.8 gives these
two solutions. o
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Algorithm 29 for problem 1|CO, p — batch,CE < Q|CA

max

1: if max; <<, {p}} + max,<;<,, {p?} < O then
2 Schedule jobs of agent A in the first batch

3 Schedule jobs of agent B in the second batch

4: o := J4|J% // concatenation of two job sets
5: else

6:  ifmaxi<j<,,{p]} < O then

7 Schedule jobs of agent B in the first batch

8: Schedule jobs of agent A in the second batch
9: o:=7J874

10:  endif

11: end if

12: if 0 # () then

13: return o

14: else

15: return ‘There is no feasible solution’

16: end if

In conclusion one has the following result.

Theorem 4.15. By using Algorithm 29, problem 1|CO, p — batch, CE < Q|f4
can be solved in O(n) time.

4.3.4 Functions Cpax, L max

4.3.4.1 Problem1|CO, p —batch, L5, < Q|CA .
Let us now consider the problem 1|CO, p — batch, LE,, < Q|CA . Itis easy to see
that the following lemma holds.

Lemma 4.10. There exists an optimal schedule for the problem 1|CO,p —
batch, LB < Q|CA_, if one exists, in which the jobs of agent A form a single
batch and the jobs of agent B are processed in SPT-batch sequence.

Proof. This results from Property 4.1 where SP T -batch sequence is dominant and
it is easy to show that all jobs of agent A are scheduled in a single batch. O

Let B4 be the only batch of agent A. According to Lemma 4.10, the optimal
schedule is of the form (g, B4, ng) where g and ng are sequences of batches of
agent B, one of them being possibly empty. It means that 75 is the partial schedule
of the first j jobs of agent B and the np — j remaining jobs define the partial
schedule 7.

Note that Lflax < Q@ is equivalent to C]B < c?f,j =1,...,np, where c?]B =

df + Q. Note that in view of Property 4.1, we can assume dlB < dzg <...< d,f;.
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The overall idea for solving problem 1|CO, p — batch, Lmax < Q|C max is the
following:

Step 1. To determine the optimal sub-sequence mp, we solve the single-agent,
bicriteria p-batch problem 1|p — batch|P(Cumax, Lmax) On the first j jobs
of agent B. This step is done by using the algorithm of He et al. (2007).

Step 2. To determine the optimal sub-sequence j, we solve the single-agent,
monocriterion p-batch problem 1|p — batch|Ly,.x only on the remaining
jobs of agent B. This step is done by using the algorithm of Brucker et al.
(1998).

Step 1: Computing 75 by Solving 1|BI, p — batch|P(LE ., CA )

In view of the structure (73, B4, ]T/B) of an optimal schedule, in order to compute
g, we observe that the starting time of 7}, is equal to the completion time of 7
plus maxi<j<n,{ P} A1 Hence, we have to consider all the compromise solutions with
criteria Lfm and lefax for the first j jobs of J B Therefore, one must solve ng + 1
bicriteria problems 1|BI, p — batch|P(Lmax, Cmax), for the first j jobs of 72,0 <
Jj < np.Itis shown in He et al. (2007) that the number of Pareto optimal points for
1|BI, p—batch|P(Cax, Lmax) is bounded by O (n?), therefore the procedure can run

in O(n%) time. Before describing the method, we show the following proposition.

Property 4.3. There exists an optimal solution 6 = (7p,B4, 7)) of problem
1|CO, p — batch, LB < Q|CA , such that 7 is a Pareto optimal solution of

max max?

problem 1|BI, p — batch|P(Lmax, Cmax) restricted to the jobs in 75.

Proof. Let 0* = (mp*, B4, 7;,") be an optimal solution of problem 1|CO, p —
batch, LB~ < Q|CA.. If mp* is not Pareto optimal for problem 1|BI, p —
batch|P(Cuax, Lmax), there exists a Pareto optimal schedule 7 of the first j jobs
of agent B that dominates it, 1e such that Coax () < CB (mp*) and LB (7) <
LB (wp*).Leto = (]T BA, 7},™) be the schedule obtained from o* by replacing
the partial schedule g * with 7. Clearly, mdx(cr) mdx(?‘[) +pi < mdx(a*)+
pa = CA (o), and since o* is optimal, CA (5) = mdx(o*) Now Lmdx(cr)
max {L[]fmx(n) Lumax(")}. Since L8 (6*) = max {LE, (75*), Lyax (™)} and
LB () < LB (wp*), then Lmdx(a) < L3 (0%) < Q. Hence, G is feasible and

optimal for 1|CO, p — batch, LE, < Q|CA.. |

Step 2: Computing 7y by Solving 1|p — batch| Ly

First of all, we recall the dynamic programming algorithm presented in Brucker et al.
(1998) for the single-agent parallel batching problem 1| p — batch| L,y Solving this
problem with the remaining jobs of 72 will easily allow to check if the condition
L3 < O holds.

Let L(i) be the minimum value of the maximum lateness for SPT-batch

schedules containing jobs J;, Ji+1, ..., Jy, if the processing starts at time zero. Let
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B = {Ji,...,Jj_1} (with processing time p;_;) be the first batch. Its lateness is
given by p;_i — d;. The insertion of such batch delays by p;_; all subsequent
batches, so that their overall maximum lateness is therefore L(j) + p;—i. In
conclusion, we get the following recursion function.

L@) = i L(j i—1, Dj—1 —d; 4.23
(@) i+lg}H§ln+l{maX{ (/)+17] L Pj—1 1}} ( )
fori =n,n—1,...,1. The initial value is L(n + 1) = —oo and the optimal value

is given by L(1). It can be computed in O(n?) time.

Hence, for a given j, the second partial schedule 7, for an optimal solution can
be obtained by solving the 1| p—batch| L.« problem, by applying this DP algorithm
to the jobs (j, ..., np) if the first batch starts at the completion time of job J ]B plus

pa .. This step is done in O(n%) time.

Resolution Method for Finding o*

Foreach0 < j < np,let )" be the set of Pareto optimal solutions of the problem
1|BI, p — batch|P(Cmax, Lmax) applied to the jobs JB, ..., J]B obtained by the
procedure described at step 1, and denote by (p)"/ each element of )/ . For each
0 < j <np,wedenoteas ()’ the optimal schedule for 1| p—batch| L max obtained
by the procedure described at step 2.

For a given j € {0,1,...,np}, and for each (73)’”/ € )/, we define a global
solution 0™/ = ((mg)"/, BA, (})7),

The optimal solution to problem 1|CO, p — batch, LB, < Q|C

o'/ such that LB _(07/) < Q and C2 (0'/) is minimum.

4 1S a sequence

Now, we can derive a polynomial time algorithm to solve problem 1|CO, p —
batch, LB < Q|CA . which is based on the algorithm in Qi et al. (2013) (see
Algorithm 30).

Step 1 in Algorithm 30 requires time nplognpg. Step 2 requires time n4.
Determining all (7))’ (steps 3-5) can be done in 0(n3B) time. For each j, He’s
algorithm allows to compute the set )/ in time O(rz%). Since this has to be run
for j = 0,...,np times, steps 6-8 in Algorithm 30 require time O(ni;). Since
|V/| = O(n?), there are O(n3,) global solution, from which at step 9 the best is
selected. In conclusion, one has the following result.

Theorem 4.16. Algorithm 30 solves problem 1|CO, p — batch, LE, < Q|C
Ona+ nB) time.

max 4

max

4.3.4.2 Problem 1|CO, p — batch, CE_ < Q|LA

Let us turn now to the symmetric problem 1|CO, p — batch,CE < Q|LA .

From Property 4.3, the structure of an optimal solution is (g, BA, nB), where
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Algorithm 30 for problem 1|CO, p — batch, L8 < Q|CA

max
1: Arrange the jobs of 7 in SPT order
2: pd. = max;e 74 (ph)
3: for j :==0tonpdo
4:  Solve problem 1|p — batch|LE

corresponding to it LE, (7})/

5: end for
6: for j :==0tonpdo
7:  Solve problem 1|p — batch|(Cpax» Lmax) by He’s algorithm to calculate )/
8
9

by Brucker’s algorithm (4.23) to determine ()’ and

: end for
: Determine the set of non dominated solutions and keep the solution (¢//)* with minimum
CA (o) and satisfying LE (o) < Q
10: return (o?/)*

schedule 7}, starts at time C JB + pa - Hence, an optimal schedule can be found

by Algorithm 30 where in step 9 we select the solution that minimizes L
Crnax = Q-
In conclusion, one has the following result.

Theorem 4.17. Problem 1|CO, p—batch, CE < Q|L4, canbe solvedin O(n s+
4
ng).

where

4.3.5 Functions fuma Y. fi

4.3.5.1 Problem 1|CO, p — batch, f,E < Q| fjA

a;

Let us consider the problem 1|CO, p — batch, fE < Q|3 fjA when agent A
wants to minimize a general sum-type function. Note that this scheduling problem
is in general NP-hard, e.g. when )~ f/* = 3" w/U' (see Brucker et al. 1998). We
next present a pseudo-polynomial time dynamic programming algorithm proposed
by Li and Yuan (2012) that solves this problem. As usual, for the jobs of agent B,
we define deadlines d/ = (f*)7'(Q).

Let F(i4,ip,t) be the minimum objective value for SPT-batch schedules where
the jobs {J/, ..., Jij} uJg, ..., Jig} are scheduled, subject to the constraint that
the last batch completes at time ¢ and no job of agent B is tardy.

As a consequence of Property 4.1, when considering F(i4,ip,t), there are two
possible decisions concerning the last batch of the partial schedule:

1. The last batch belongs to agent A, and is denoted by J[;_H, e, Jl.j with €4 < iy,
2. The last batch belongs to agent B, and is denoted by J[ljﬁ_l, ey Jl-ﬁ with £p <
ig.
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Algorithm 31 for problem 1|CO, p — batch, f2_ < Q| fjA

max

: F(0,0,0):=0
: fort # 0do

F(0,0,t) := 400
end for
foriy :=1tony do

fori, :=1tongdo

fort :=0to P do ,
vi t=ming</, <i,—1 {F(IAJBJ -+ Xl fiA([)}

v i=mingeo(pipa) {F G lp.t — pl)}
F(ig,ipg,t) := min {vf’,vfg}
end for
end for
: end for

. return the schedule corresponding to F(n4,npg,t)

X R_DUBRR

—— =
R B ol

Therefore, it is possible to derive a dynamic programming algorithm (Algo-
rithm 31) where 0 (i 4,ip,t) denotes the set of candidate values for index £ z. Since
the deadline of job J, [i 4 must be respected, one has:

0(iaip.t) ={0<lp <ig—1:t<df_ }

Since the last batch belongs to either agent A or agent B, the optimal objective
value is equal to min{ F(n4,np.1) : p; + pp <t < P}.

For each value of i 4 and for each 7, all sums Y /L, | f4(7) can be evaluated in
O(n4). Since i 4 ranges from 1 to n4 and ¢ from p to P =YL, p + 3 '2, pF,

i=1
all sums appearing in step 6 can be computed in a preprocessing step in O(nﬁP)
time, and each application of the recursive formula requires O(n 4 +np) time. Since
ig, ip and P assume n 4, np and P values respectively, in conclusion one has the

following result.

Theorem 4.18. Problem 1|CO, p — batch, {5 < Q] ijA can be solved in
O(mnangP) time.

4.3.6 Functions ) f;, > f;
4.3.6.1 Problem 1|CO, p —batch,y" f < QY f}!

Let us now turn to problem 1|CO, p —batch, )" ij <0l fjA. For such NP-hard
scheduling problem, we report a pseudo-polynomial-time dynamic programming
algorithm by Li and Yuan (2012).
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Algorithm 32 for problem 1|CO, p — batch, Y [ < Q3 f}!

: forg > 0do
F(0,0,0,9) :=0

end for

for g < 0do
F(ig,ig,t,q) := 400

end for

: for (i4,ip.t) # (0,0,0) do

if ¢ < 0 then
F(iA,iB,l‘,q) = 400

end if

: end for

cforiy:=1ton, do

forizg ;= 1tong do
fort :=0to P do

for g :=0to Q do
Fia.ip.t.q) = min{F(is,ip.1.q)" F(ia.ip.1,9)"}
end for

end for

end for

: end for

: return the schedule corresponding to min{F(n4,np,t, Q) : pfA + pr <t <P}

A

PO DD — = = s e
TRV RXRIN ALY P

Let F(is,ip,t,q) denote the minimum objective value for partial SPT-batch
schedules of jobs {J4, ..., J,.j} U{JB, ..., Jig}, subject to the constraint that the
last batch completes at time ¢ and the objective value of agent B is at most ¢.
According to Property 4.1, there exists a schedule corresponding to F(i4,ip,?,q)
in which the last batch contains jobs J[}1 - Jif with £4 < i, or Jtzi ., Ji]z
with £ < ip.

+10 +1o

We denote by:

ia
Fligip.t.)* = min {F(taig.t—pl.g)+ Y f ()}

0<ly<ig—1
j=la+1

ip
.. B __ . . B B
F(lAsletsq) - 05(12151?8—1 {F(lAveBs[_piqu_ A ;—Fl]{] (t))}
J=tB

A dynamic programming algorithm can be derived (see Algorithm 32).
The optimal solution ¢* has an objective value which corresponds to

min{ F(n4,ng,1, Q):p,/,lA +pr <t <P}

The partial sums > /4, fiA(t) foriy = 1,...,n4,1 = piﬁ,...,Z;A:l pit +
>"E, pB, can be evaluated in a preprocessing step in O(n*P) time and it is the
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Table 4.1 Polynomial solvable serial batching problems

Problem Complexity Section Page
1|CO, s — batch, fE < Q|f4, O(nyngnlogYy) 42.1.1 151
1|CO, s — batch, CE < Q|CA o(n) 42.2.1 153
1/CO, s — batch, LE, < Q|CA. O(ny +n%) 423.1 155
1|CO, s — batch, CA, < Q|LE,. O(ny +n3) 4232 158
1|CO. s — batch, f,5 < 03> C/! O(nn’n%) 4.2.4.1 160
1|CO, s — batch, Y C* < Q| £, O(nin%nlogYp) 4242 162
1|CO. s — batch, f,5 < 01> U/ O(n%n%n?) 425.1 163
11€0, s — batch, Y wiUA < Q| £, O(n%ngnlogYy) 4252 166
1|CO, s — batch, Y. CE < Q|CA, O(ny +n3) 42.6.1 167
1|C0,s—batch,ZUjB < Q|X:Ujf‘l O(n3n% + nin3) 4281 172

Table 4.2 Enumeration of the Pareto set serial batching problems

Problem Size Section Page
1/CO, s — batch|P(CA., CE.. 2 4222 155
1|CO, s — batch|P(CA, LB O(np) 4233 159
1|CO. s — batch|P(f. 2 UP) O(np) 4253 166
1|CO. s — batch|P(Ciy. > CF) O(np) 4262 169
1|CO. s — batch| P C. Y- CF) Exponential 4272 171
1|CO. s — batch|P(Y U, 3 UP) ny+1 4282 175

same for the partial sums S fE@ foripg =1,....np,t = pE Y04 pi+
R piB. Each application of the recursive formula requires O(n4 + ng) = O(n)

time. In conclusion, one has the following result.

Theorem 4.19. Problem 1|CO, p — batch,}” fF < Q|) f;* can be solved in
O(nnangPQ) time.

4.4 Tables

Further, most of the suggested algorithms can be modified to handle bounded batch
sizes and any number of agents. Tables 4.1, 4.2 and 4.3 present computational
complexity results for two-agent single machine s-batching problems. Tables 4.4
and 4.5 present computational complexity results for two-agent single machine
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Table 4.3 N P-hard serial batching problems

Problem Complexity Section Page
1|CO. s — batch, f5 < 01> wiU}! O(nangn’*Wy) 425.1 163
1|CO. s — batch, )2 C} < Q| X C}! O(nsngnQ) 42.7.1 170
11CO. s — batch, ) whUP < 0|3 wiU/ Onng + nnaWiQ) 42.8.1 172

Table 4.4 Polynomial solvable parallel batching problems

Problem Complexity Section Page
1|CO, p-batch, fE < Q|f4. O(nnnplog(Yy)) 43.2.1 176
1|CO, p-batch, CE < Q|C4. O(n) 43.3.1 178
1|CO, p-batch, L < Q|CA O(ny +n%) 43.4.1 179
1|CO, p-batch, CE < Q|LA O(ny +n%) 4.3.4.2 181

Table 4.5 N P-hard parallel batching problems

Problem Complexity Section Page
1|CO. p — batch, .5, < 0|2 f}! OnnngP) 43.5.1 182
11CO. p-batch, Y /£ < Q| Y £/ O(mnnpPQ) 43.6.1 183

p-batching problems. Several problems are NP-hard because the classical single
machine problems (i.e. without batching and only one criterion) are NP-hard. In
Tables 4.1 and 4.3, T = nAsA + npsp + P, P is the total processing time of all
jobs, and W* = 37" wh k € {4, B}.

4.5 Bibliographic Remarks

In this section, we give some remarks and the main references related to scheduling
on batching machines. As in the scheduling literature, intensive research has been
done involving a single batching machine without job compatibilities, where jobs
have families and only the jobs of the same family can be assigned to the same batch.
Also, problems with job compatibilities have been studied for various objective
functions and additional constraints. We refer the reader mainly to the following
review papers and books that cover many parts of research done on single objective
batching scheduling problems: Brucker et al. (1998), Potts and Kovalyov (2000),
Potts et al. (2001) and Brucker (2007).
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4.5.1 Serial Batching Problems

In this chapter, we focused only on unbounded batching machine without job
family compatibilities in the COMPETING scenario. It is also interesting to study
the same problems with other hypotheses, such as bounded batching machines,
job compatibilities, different scenarios, etc. Li and Yuan (2012) study two-agent
problems on a serial batching machine where jobs of both agents can be assigned
to the same batch. This difference makes the results of their paper inapplicable to
the problems studied in this chapter and vice versa. All the proposed algorithms are
based on dynamic programming. Mor and Mosheiov (2011) and Feng et al. (2011)
consider the model presented in this chapter (see Sect.4.2). Mor and Mosheiov
(2011) assume that jobs have unit processing times, the objective functions are
>c ]A and ) C ]B , and the constraint that batches of the second agent are processed

continuously. They suggest an O(n/?) time algorithm. Feng et al. (2011) assume
that setup times are identical (s4 = s = s) and the objective functions are CA  and

max
Lflax. They present an O(n 4 + nja) algorithm for finding the set of Pareto solutions.

4.5.2 Parallel Batching Problems

We focus in this chapter on parallel batching problems in the COMPETING scenario,
with unbounded batching machine and without job family compatibilities. Some
other models can be found in the literature. Tan et al. (2011) consider non-identical
job sizes and objective functions CA  and CZ . Since the problem is NP-hard
in the strong sense, the authors develop an ant colony algorithm to find the set
of Pareto solutions. The specificities of the model in Sabouni and Jolai (2010)
are the job compatibilities, which restrict jobs of different agents to be placed
in the same batch. The authors consider the objective functions C4 and L3 .
In Li and Yuan (2012) various combinations of regular objective functions are
considered. Concerning approximation schemes, we refer to Nong et al. (2008)
where the authors study scheduling family jobs with release dates on a bounded
batching machine to minimize the makespan (for only one agent). A polynomial-
time approximation scheme for the identical job length model and an approximation

algorithm with a worst-case ratio for the non-identical job length model are given.



Chapter 5
Parallel Machine Scheduling Problems

This chapter presents some results on scheduling jobs on parallel machines with
the COMPETITIVE and the INTERFERING scenario. First, we study the case where
job preemption is allowed, i.e. when the processing of a job can be interrupted and
resumed later, eventually on another machine. Next, we study the case without job
preemption.

The chapter is composed of five sections. In Sect.5.1, we consider parallel
machine scheduling problems without job preemption. In Sects.5.2 and 5.3, we
consider preemptable parallel machine scheduling problems with arbitrary and
equal job processing times, respectively. We end the chapter with Sects. 5.4 and 5.5
including, respectively, complexity tables and bibliographic remarks.

5.1 Preemptive Jobs

In this section, we assume that preemption is allowed, i.e., a job processing
can be interrupted and resumed later, possibly on another machine. Scheduling
jobs on parallel machines when preemption is allowed has attracted researchers’
attention for a long time (Brucker 2007; Pinedo 2008). Mc Naughton studied
preemptive independent job scheduling problems with various objective functions
(Mc Naughton 1959). In particular, the author proposes a polynomial time algorithm
for solving problem Pm|pmin|Cy,x. Mc Naughton’s algorithm can be described
as follows: select the jobs one by one in any order and fill up the machines
M, M,, ..., M,, within the time interval [0, LB], where LB is a lower bound for
the makespan. We have:

1 o n
LB:max{— i max }
m;p] T2y P

A. Agnetis et al., Multiagent Scheduling, DOI 10.1007/978-3-642-41880-8_5, 189
© Springer-Verlag Berlin Heidelberg 2014
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For a given machine M; that performs job J;, if time LB is reached before the
end of J;, this job is preempted and its remaining processing time is performed at
time O on the next machine M; 4.

Most of the classical multicriteria parallel machine scheduling problems deal
with two criteria (see T’Kindt and Billaut 2006). For example, in Mohri et al.
(1999), the authors study the Pm|BI, pmin, Cinax < Q|Lmax problem for m = 2 or
m = 3 machines. In the following, we focus on the COMPETING and INTERFERING
scenarios.

5.1.1 Functions fyax, fmax

5.1.1.1 Problem Rm|IN,pmtn,CE_< Q|CA
We start by considering the case of unrelated machines in the INTERFERING
scenario (in which we recall that 7 = J4 2 J58).

In this section, a set M of m unrelated parallel machines is shared between two
agents in order to schedule their sets of jobs, when they both want to minimize the
makespan.

While we illustrate how to solve problem Rm|IN,pmin,CE < Q|CA | the
whole procedure, with minor adjustments, can be applied to problem Rm|IN,
pmm, f,B < Q| fA. in which all jobs in J; € 74 hold the same linear, monoton-
ically nondecreasmg function of the jobs completion times fjA (C;) = fAC; and
similarly f%(C;) = f?C; for J; € J%.

Following the two-phase exact approach proposed for solving the classical
problem Rm|pmtn|Lax, we can show that problem Rm|IN, pmin, CE < Q|CA .
is polynomially solvable (Sadi et al. 2013). In the first phase, a linear program is
proposed, which takes into account all the constraints of the feasible problem and
gives the optimal function value Clﬁax along with the processing time fraction of
each job to be carried out on each machine. Therefore, this linear program returns
the proportion of each job to execute on each machine. In the second phase, the
problem is to find a feasible solution to the preemptive open shop problem denoted
by Om|pmitn, d;|—. In the second phase, the schedule of jobs to be executed on each
machine is computed by solving a matching problem, which determines a feasible
schedule of job fractions, respecting the optimal function value obtained at phase 1.

5.1.1.2 Phase 1: Assignment of Preempted Jobs to Machines

For the proposed linear program, let x;; (Vi,1 <i <mand Vj, 1 < j < ny)
be the decision variables that represent the fraction of processing time of job J;
executed on machine M;, x;; € [0,1]. Here, C/ is a continuous variable. The
proposed linear program is the following.
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(P1) Minimize C2 (5.1
subjectto Y xj; =1, J e J* (5.2)
i=1
nA
Co — D PjiXji =0, M; € M (5.3)
j=1
m
Cn/;lax - Z PjiXji >0, JJA S jA (54)
i=l1
np
0 - ij,ixj,i >0, MieM (5.5)
j=1
m
0 - ij,ixj,i >0, JjB eJ”® (5.6)
i=l1
variables C >0 (5.7)
xji €01, J} e T4 M e M (5.8)

Constraints (5.2) impose that every job J jA is completely assigned to the
machines. Constraints (5.3) impose that the total processing time of the jobs
assigned to machine M; is less than or equal to C2 . Constraints (5.4) require that
the total processing time of each job, performed on several machines, is less than or
equal to C[ﬁax‘ Constraints (5.5) and (5.6) guarantee the respect of the e—constraints.
Constraints (5.5) require that the sum of job processing times related to agent B and
assigned to machine M; is less than or equal to Q. Constraints (5.6) guarantee that
the total processing time of job J ,B € J& is less than or equal to Q.

It is clear that if problem (P1) has no feasible solution, then the main problem
has no feasible solution either. Otherwise, for each feasible schedule verifying (5.2)-
(5.7), a feasible schedule can be identified, where there is no job overlapping, no
machine overbooking and the total processing amount of each job over all machines

does not exceed Q. The value of the optimal solution of problem (P1) is denoted

5.1.1.3 Phase 2: Construction of a Feasible Solution

From (P1), the ratio x;; of job J; which must be performed on a machine M; is
known. The problem of phase 2 is equivalent to a preemptive open-shop scheduling
problem with deadlines, denoted by Om |pmtn,d?,d f |—. Here, d ;‘ =d*=Ch

forall J; € JA. Since 78 € J4, the makespan for JE cannot exceed that of J4,

and therefore we set c?]B =d8 = min{Q, Clﬁ:x} for all J; € J5. Later on, the
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quantities x;; constitute “tasks” 0;; of job J; of duration p;;x;;, to be performed
on machine M;.

A feasible preemptive schedule for the open shop problem with deadlines can
be obtained in polynomial time by using the algorithm proposed by Cho and Sahni
(1981).

_ Suppose first that dB < d#. In this case, we distinguish the intervals [0, d®[and
[dB,d4], of length I} = d® and I, = d* — d ® respectively.

The quantity of processing time of the task o;; that can be scheduled during the
k-th interval (of length /) is denoted by g;;x, k = 1,2. Let consider now the
following system of linear constraints.

(P2) Minimise — (5.9
n
subjectto Y " qjix < Ix. k =1.2, M; € M (5.10)
j=1
Y qiin < I k=12, J;€J4 (5.11)
i=1
qjit+qjia=pjixji, M\ie M, J; € J* (5.12)
qji2=0, MieM, J;eJ® (5.13)
variables ;i x >0, M; e M, J; € J*, k=1,2 (5.14)

Constraints (5.10) ensure that the amount of processing time assigned to each
machine and during each time interval cannot exceed the interval length. Constraints
(5.11) avoid any overlapping of tasks on the machines. Constraints (5.12) guarantee
the assignment of the total tasks of jobs to the machines. Constraints (5.13)
guarantee the assignment of tasks in their interval.

Suppose now that d 2 = d*. In this case, the same approach applies, with just
a single time interval [0, d"!], so that we can simply let the amount of job J; on
machine M; equaltog;;1 = p;;x;; forall j € T4, M; € M.

At this point, for each interval k the amount of processing of job J; on machine
M; during interval k is given, for all i, j, k. The last step is therefore to plan the
detailed sequence of tasks on each machine so that different jobs do not overlap. To
accomplish this, we apply an approach in (Brucker 2007, see Algorithm 33) to one
interval at a time, i.e., we associate a bipartite graph G, = (J, M, E, ¢) with each
interval k, where 7 is the set of job nodes, M is the set of machine nodes and E is
the set of edges (J;, M;) for j € J,i € Mand ¢ (j,i) =qjix (j =1,...,n,
i=1,....,m,k e€{l,2}) the weight of arc (J;, M;) (Fig.5.1).

Using Algorithm 33, at each iteration, the procedure finds a maximum cardinality
matching p and schedules § time units of |p| different jobs on the machines specified
by p, where § = miny; m;)ep 4;.ik- This technique avoids an overlapping of tasks
in the final schedule.
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O

Matching

Fig. 5.1 Graph Gy atstep 1 and at step 2

Algorithm 33 Matching procedure for a feasible solution

I: Let Gy = (N, M, E, ¢) be a bipartite graph // Gy is given on input
2: Initial schedule 0 = () // initial empty schedule
3: while £ # @ do

4:  Seek for the maximum matching p in Gy // See Fig. 5.1, Graph 1
50 8 =miny; m)ep $x(J, 1)

6:  foreach (J;, M;) € pdo

7 Schedule § processing time units of J; at the end of machine M;
8: Update o

9: @i (j,i) := ¢ (j.i) — 8 // See Fig.5.1, Matching
10: if ¢ (j,i) = O then
11: Eliminate (J;, M;)
12: end if
13:  end for

14: end while
15: return o

At each iteration of the matching procedure for interval k, at least one arc
(J;, M;) of the maximum matching is such that § = ¢y (/, ). Hence for interval
k, there are at most n X m iterations. Therefore, the procedure runs in O(nm). The
matching can be calculated in O(nm+/n + m) by using the algorithm described in
Hopcroft and Karp (1973). Thus, the step 2 runs in O(n?>m?\/n + m) time.

Theorem 5.1. An optimal solution to problem Rm|IN,pmtn,CE < Q|CA can
be obtained in polynomial time.

5.1.1.4 Problem Rm|IN,pmtn,Ct, < Oy, k=2,...,K|C}

max — ax

The procedure described for the two-agent case can be generalized to the case of
K agents, i.e. to problem Rm|IN, pmin, ck < Or,k=2,..., K|CHI1 For what

max — ax*
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concerns phase 1, we can use the same formulation (P1), in which constraints (5.5)
and (5.6) are added for each agent k, k = 2,..., K. The solution of (P1) returns a
minimum value Cnllzx and values x;‘,i foralll < j <mandl <i <m.

For what concerns phase 2, recalling that 7 = J!' 2 7> 2 ... 2 JX, we can
define the deadlines for the jobs of each agentk (k = 1,..., K) as follows:

71 __ *
d - Cmax

d* = min{Qr.d* "} k=2,....K

Letting I}, = dr — Jk_l, we can now write model (P2) as:

(P2') Minimise — (5.15)
n
subjectto » "qjix < I, k=1.....K.M; e M (5.16)
j=1
m
Y qiik <l k=1..KJeJ (5.17)
i=1
K
qu,i,k =pixji, Mie M, J; € J' (5.18)
k=1

qik=0ieMk=1,... K J e T2 (519
variablesg;;x >0, M; e M, J; € IV k=1,....K (5.20)

Since some interval may be actually void (if d* = d*! for some k), one is
left with running the matching procedure for H < K nonempty intervals. At each
iteration of the matching procedure for interval h, 1 < h < H, at least one arc
(J;, M;) of the maximum matching is such that § = ¢;(/, i). For interval h, there
are at most n X m iterations, and so the procedure runs in O (nmK). Thus, step 2 runs
in O(n*>m?K /n + m) time. Therefore, the problem can be solved in polynomial
time.

5.1.2 Functions fmax Y Cj

5.1.2.1 Problem P2|CO,pmtn, f5 < 0|3 C;‘

For the preemptive scheduling problem in the COMPETING scenario, one can notice
that while problem P2|CO, pmin, f,E < Q|3 C jA is polynomial and quite simple
to solve, the problem P3|CO,pmn, fE < QY CjA is open. Wan et al. (2010)

max —
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Algorithm 34 for problem P2|CO, pmn, f,5 < Q|3 C}!

max —

: Renumber the jobs in 74 in SPT order

: for j € 7% do

Compute deadlines 47 such that £5, <

: end for

: Schedule jobs in 7 backwards so that each job completes as close to its deadline as possible.

: Schedule jobs in 74 as early as possible alternatively on the two machines via the preemptive
SPT rule (if necessary, reschedule jobs in 7 & on the other machine).

7: return the global schedule.

consider two identical machines that are shared by two competing agents. The
objective of the second agent is to schedule its jobs so that function f.B is less
than a given value Q and the objective of the first agent is to minimize the total
completion time of jobs. They propose a polynomial time algorithm described in
Algorithm 34.

The first step of the algorithm is to sort the jobs of agent B in EDD order and to
schedule them backward, starting by the job with maximum deadline, so that they
complete as close to their deadlines as possible. This schedule leaves some empty
places for the jobs of agent A on both machines. The jobs of 74 are considered
in SPT order and scheduled in these intervals. To give more details on step 6 of
Algorithm 34, dealing with the scheduling of jobs in J4, let J jA be the currently
scheduled job on machine M,. If it can be completely scheduled on M,, no action
is required and we can pass to the next job J ;’H. Otherwise, a job of J5, say,
J hB, is encountered at time ¢, before the end of J ;4_ Let x denote the length of the

unscheduled portion of J jA. Consider the following two cases:

1. If the other machine M,/ is idle at t, we continue processing J jA on M., possibly
until completion.

2. If the other machine M,/ is busy at ¢, a portion of length x of J hB is moved to an
earlier idle time on M,/ to make room for J jA.

These two conditions are used until no further move is possible, or J jA is
completed. If none of these two conditions hold, J jA is preempted and resumed

at the first available time. In any case, J jA completes as soon as possible. In Wan
et al. (2010) it is shown that the following complexity result holds.

Theorem 5.2. Problem P2|CO,pmm, B~ < Q|ZCJA can be solved in

max —_

O(nglogng + nplognp) time by Algorithm 34.

About the running time of Algorithm 34, Wan et al. (2010) suppose implicitly
that the functions ij are known and the deadlines d JB for each job J jB are computed
in constant time, i.e. deadline d f corresponds to the latest completion time C jB for
which f%(C?) = Q and the inverse function (f)~" is known. It is possible to
extend this result to the case in which the ij are non-decreasing functions and the
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S | st J; T2 Jj 3 |
t
Dji s J
S’ | T | T2 J; T3 |
c! C; t

Fig. 5.2 Sequences S and S’

inverse function is not known. For each job J 2, the deadline d f (Q) is computed as
follows.

dP(Q)=max{r: ff(1) < 0.0<7<T}

where T is the sum of the completion times of all jobs. Therefore, the deadlines can
be computed in O(np log T') time by a binary search in [0, T'].

5.1.3 Functions Y. f;,Y. f;

B A
5.1.3.1 Problem Pm|IN,pmin, ¢’ =0| > C;

To prove that this problem is NP-hard, we will first show that problem
1IN, pmin, 3" C? < Q| 3" C;! is NP-hard.

Proposition 5.1. Problem 1|IN,pmm, " C} < Q|3 C;" is NP-hard.

Proof. Let S be a feasible schedule for the 1|IN,pmmn, " C]B < 01> CjA
problem, where a job J; is preempted. We have ) C ]B (S) < Q. We assume that
S =m/Jj/m/J; /73 with 1, m, and 3 three sub-sequences of jobs (the notation
a/b stands for the concatenation of a and b). We denote by p;, the duration of job
J; before m>. Let S’ be the same sequence where J; is not preempted (i.e., shifted
to the right). We have S’ = m;/m2/J; /w3 (see Fig.5.2).

Shifting J; to the right does not modify its completion time and allows the jobs
of m, to complete p;, time units earlier: C;rz = Cyp, —pj. IfJ; € JEB, then
»c JB (S) < Q. Because the completion of J; does not change and because the
completion times for the jobs of J# in 7, (if any) only decrease (the completion
times of other jobs is unchanged) and we have ) C jB (S’) < Q. The same reasoning

applies if J; € J4. In that case, we can state:

dYcksh=) clsH=0
D CHS) =D CAS) = pilmal < Y CH(S)
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Therefore, S’ dominates S and there is no need to preempt a job to minimize the
sum of completion times. Thus, there is no preemption in any optimal solution.

Because the nonpreemptive problem 1[/N,}"CP < Q[) C;' is NP-hard
(Sect.3.9.1, Theorem 3.21), the proof follows. O

The same reasoning shows that problem Pm|CO, pmin, Y ¥ < Q| f/* (and

hence Pm|ND, pmin, " ij <0l fjA) is NP-hard. In conclusion, the following
theorem holds:

Proposition 5.2. Problem 1|B;c, pmtn,y_ CJB <0y CjA is NP-hard, with B €
{CO, IN, ND}.

Clearly, this result implies that also Pm|B,., pmin, )" ij < 0> fjA is NP-

hard, where fjk is a monotonically non decreasing function of the completion time
C;, with B, € {CO, IN,ND}.

5.2 Non-preemptive Jobs with Arbitrary Processing Times

5.2.1 Preliminary Results

Recall that if the decision problem 7 reduces to 7', we use the notation 7 o« 7’
(see Sect. 2.2.1, page 25). In the following, I", I'; and I, are sets of regular criteria,
namely It = {Cyax, Linax. > Ui, 2 Ti, 2 wiTi, Y wiUi}, I = {D°Ci, Y wi G},
and I' = Iy U I. Let By € {ND, IN, CO}.

Proposition 5.3. The following reductions from the classical scheduling problem
hold.

1. Pm||Cpax O(Pm|,3,fB = QICn/;lax’ VfB er.
2. PmIIBvafB = Q|C,,’;1axO(Pm|,3SC,fB = QlfA, VfA en, VfB er.

Proof. These claims are direct consequences of the complexity of problem
Pm||Conay, with a sufficiently large value of Q. O

Proposition 5.4. Problems Pm|B,., f® < Q|f* are NP-hard, ¥V f* € I' and
ViBer.

Proof. We consider the decision version of the problems. We first show that
Pm|Bse, fA <04, fB<Q0p|-VfAen,VfB erI,is NP-complete. Then, we
show that Pm|Bs., f4 < 04, fB < 0p|— Vf4 eV [fB erI,is NP-complete.
The first claim is given by step 2 of Proposition 5.3.
We know that problem Pm|B,., CB < Qp|— is NP-complete. Hence problem
Pm|B;., C,fax < 03, f4 < Q4|— is NP-complete as well, V f4 € I'. This is also
true for f4 =" CiA. And because it is true for C 2 itis also true forany f % € I7.

max’

Thus, problem Pm|B, f8 < QB,ZC]A < Q4|—is NP-complete, V f 8 € I7.
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We know that problem Pm| B, > C]B < 035.Y CjA < Q4|— is NP-complete
(Proposition 5.2). So problem Pm|By., f2 < Qp,Y. C# < Q4|— is NP-complete
V fB € I'. This is also true for ijCjA, i.e. for problems Pm|B., 2 < Qp.
fAfQAl—,VfBeFandeAeFZ. O

In the following, we show that some NP-hard problems with non-preemptive
INTERFERING jobs can be solved in pseudo-polynomial time by dynamic program-
ming algorithms.

5.2.2 Functions Cpax, Cmax

5.2.2.1 Problem Pm|IN,CE < Q|CA

In this section, we discuss a problem with identical parallel machines and makespan
as objective functions in the INTERFERING scenario. We present the results in the
two-agent case and give ideas for a generalization to the case of K agents when
possible.

The scheduling problem Pm|IN,CB < Q,CA < UB|- is equivalent to the
single-agent problem Pm|c§i |Cnax Where d ]B =0Q,VJ ,B € J5B. Remember that the
jobs of 7% are numbered from 1 to 3 and the jobs of J4 (i.e. jobs in 74 and not
in 78) from 1 tony —ng.

We define the following recursive function (Blazewicz et al. 2007) as follows:

Fj j»(t1, ... 1) is equal to frue if the jobs JB,...,lez of JB and J{’,...,J;/’4
of J4 can be scheduled on M, ..., M, so that each machine M; is busy in the
interval [0, #;], and F;, j, (t1, ..., tx) is equal to false otherwise.

We define

Fo(0,...,0) = true
F()p(ll, .o ty) = false, V(t1,...,t,) 75 (0, ..., 0).

The recursive relation is given by:

m

FjA,jB(tl,-n,tm) = \/FjA—l,jB(tla"'ati —ij,...,lm)
i=1
m

V\/(FjA,jB—l(tlv”-,ti —ij,u-,tm)/\(ti =< Q))

i=1

forjy=1...nq—np, jp=1...np, t; € [O,Mb]
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with ub = P, the sum of all processing times. Then, the optimal makespan value
is given by
C A*

max — f, m1n {max{tl’IZv oo atm} : FI‘IA—I‘IBJLB(tl7 ce ,tm) = true}

1, lm

In conclusion, the following result holds.

Theorem 5.3. An optimal solution for problem Pm|IN, C, can be

obtained in O(n*ub™) time.

max —_ Q | max

5.2.2.2 Problem Pm|IN,C2,. < Q3,...,CK < 0k|C]}

Note that this result can be generalized to the case of K agents. An optimal schedule
for Pm|IN,C2, < Q,...,CK < Qk|C]}  canbe obtained in O(nXub™).

5.2.2.3 Problem P2|CO,CE < Q|C

max

Let us turn to the COMPETING scenario. By following a similar idea to the
INTERFERING scenario, we can derive another dynamic programming algorithm.
We define function Fj, j,(t1, 0,1, 15') = true if the jobs J{, ..., in of 74 and
the jobs JB,...,J fz of J% can be scheduled on M; and M, so that each machine

M; is busy in the interval [0, #;], with t,-A the completion time on machine M; of the
last job of agent A. This function is equal to false otherwise.
We define

F50(0,0,0,0) = true and
Foolti, ta, t{', ) = false ¥ (11, 12, £, 15) # (0,0,0,0).

The recursive relation is given by:

A A
/AJB([lsZthl vtz) = Fj—1j,(t1 = pjy 02,1 — pjssty) A0 —Z1)
A
vFJ'A—LJ'B(l‘lvl‘Z_ij’Zl ’t2 pJA)A(IZ—[ )
V F it = pig o i 5 At < Q)

V Fj, is—1(tita— pig i Y At < Q)

where j1 = 1...n4,jo =1...np,4; €0, ub],tiA € [0, ub]. Then, the optimal
makespan value is given by

Cnfax = mi};l A{max(tlA,tzA) S Fy gttt 1Y) = true}
t1,t2,t1 ,t2
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Therefore, we have the following result.

Theorem 5.4. An optimal solution to problem P2|CO,CE < Q|C2 can be
obtained in O (n4ngub*) time.

Notice that this DP algorithm can be extended to the m-machine case.

5.2.3 Functions Cpay, Y C;

5.23.1 Problem Pm|IN, Y. C} < 0|Cy,y

In this section, we consider the INTERFERING scenario. The objective of agent A is
and the objective of agent B is total completion time. We consider the e-constraint
approach where Y C jB has to be less than or equal to Q. We will see that problem

Pm|IN, Y- CP < Q|Cj,; can be solved in pseudo-polynomial time by a dynamic
programming algorithm. The algorithm exploits the following property:
Lemma 5.1. There is an optimal solution to Pm|IN, C]B < Q|CA_ in which,

Jor each machine M;, the jobs of J B allocated to M; are scheduled in SPT order
and precede all jobs of T4 allocated to M;.

In view of this result, we suppose that the jobs in J 2 are numbered in SPT order.
Let Fj, j;(t1,...,tm—1,q) be the recursive function defined by:

FfA~fB([1? conlm—1,9) =
true if jobs 1 to j4 of J4and 1 to jpof J B can be scheduled on M, ..., M, so that
each machine M; is busy in the interval [0, #;] and the sum of completion times of
jobs of 72 is equal to ¢, with g the total completion time of jobsin 72,0 < ¢ < Q.
false  otherwise.

We define

Foo(0,...,0) = true
F()q()(ll,...,lm,q) zfalse,V(Zl,...,tm) 7é (O,...,O),O <q=< Q

The recursive relation is the following.

m
FjA,jB(le---9Zqu) = \/FjA—l,jB(le---sti —ij,...,lm,q)
i=1
m

\/\/(FjA,jB—l(le---sti —ij,...,lm,q—li)A(q < Q))

i=1

where ja=1...ng—npg,jp=1...np,t; €[0,ub],q € [0, Q].
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This dynamic programming algorithm determines the assignment of jobs to
machines, which is sufficient to deduce an optimal schedule. The optimal makespan
value is given by

cr = ) gnin {max{t;.t2,....tn} : Fuymngng(ti ... . tm.q) = true}

s02500ey m

In conclusion, for a given upper bound Q on the total completion time of jobs of
agent B, we have the following result.

Theorem 5.5. An optimal solution to problem Pm|IN, C]B < Q|CA can be
obtained in O(n*ub™ Q) time.

5.2.3.2 Problem Pm|IN,C, < Q| > C}!

Let us turn now to the symmetric case, i.e. agent A wants to minimize Y  C jA, and
the makespan of the jobs in 7% should be less than or equal to a given value Q.
We next show that Pm|IN,CE < Q|3 C jA can be solved in pseudo-polynomial
time by a dynamic programming algorithm. The algorithm exploits the following
property:

Lemma 5.2. In any optimal solution to Pm|IN,CE < Q|) CjA, for each
machine M;, all the jobs scheduled up to the last job of J 8 are in SPT order;, and
all the remaining jobs (all belonging to J*) are also scheduled in SPT order.

In view of this result, we suppose in the following that both the jobs of 7 & and
the jobs of J4 are numbered in SPT order. Then, we let Fj,jz(t, ... tn) denote
the total completion time of the jobs of 7# when the first j4 jobs of 74 and the
first jp jobs of J% are scheduled on the m machines, and the makespan of the m
machines is #1, f, . . . , t,, respectively.

We define

Fo0(0,...,0) =0
Foolti, ... tyw) = +00,¥(t1,...,tm) # (0,...,0)
Fj, js(t1, ... ty) = o0, if t; ¢ [0, ub].

FjA,jB(tla"'atm) =

FjA—LjB(tl’”"tf —le,---,tm)+fi
) mll’lm FjA,jB—l(tlww,ti —pjz,...,tm) + 1, ift; < Q
FjA,jB—l(tl,-n,ti —pjz,...,tm) + oo, ift; > Q

where j4 =1...ny—np,jp=1...np,t €[0,ub],q € [0, Q].
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The optimal total completion time is given by:

Z C; :(min {Fu—npng(ti, .. tm)}

Jiega ..., tm)
J

In conclusion, we have the following result, in which as usual ub is an upper
bound on a machine makespan (e.g., the total processing time of the jobs).

Theorem 5.6. An optimal solution to problem Pm|IN,CE < Q|3 C ]A can be
obtained in O(n 4ngub™) time.

5.2.3.3 Problem Pm|CO, C,,. < Q| > C}

Let us consider now the COMPETING scenario. This problem is binary NP-hard (see
Proposition 5.2.1). In Zhao and Lu (2013) it is shown that this problem is NP-hard
evenwhenm = 2andng = 2.

In what follows, we refer to Balasubramanian et al. (2009), in which the problem
Pm|CO,CE < Q|>" CJA is addressed.

On each machine, it is easy to show that the schedule has a specific structure
(as in the single-machine case, see Sect. 3.2.1):

Lemma 5.3. In any optimal solution to Pm|CO,CE < Q|3 C#, for each
machine M; € M, it holds:

s The schedule on M; consists of three consecutive blocks: first some jobs of J4
are scheduled, then a block of jobs of J®, followed by the remaining jobs of J*.
s Alljobs of J4 on M; are scheduled in SPT order.

Therefore, we assume that the jobs of agent A are numbered in SPT order.
However, as underlined in Balasubramanian et al. (2009), the starting times of the
jobs in J4 on the m machines may not follow the SPT ordering. Consider in fact
the following counterexample.

Example 5.1. Let m = 2 machines. We consider thatn4 = 3, ng = 2 and we have
the following processing times:

If the makespan of agent B has to be less than or equal to O = 10, then in
any optimal schedule, the jobs of J2 complete at time 10. Jobs J IA and JZA are
scheduled on the first machine, followed by job J lB and job J3A is scheduled on M5,
followed by job JzB . The total completion time of the jobs of agent A is equal to

S Ch =5,
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Fig. 5.3 Example for
problem
pm|Co.CE < o|XC}

L 7B
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SPT schedule for agent A
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Algorithm 35 for problem Pm|CO, Ch, < QY C}!

*

1: 0* := () // initial empty schedule

2: 3 Co*) = +o0

3: for j ;==1tony do

4:  Construct a partial SPT schedule for the j first jobs of agent A
5.

6

Calculate (11,1, ...,ty) // t; is the maximal job completion time on M;
Apply Algorithm 36 to schedule the jobs of agent B on the m machines that are available
at time (t1, 1, ..., tm)

7. (#,8,....1,) = updated vector of machine completion times

8:  Schedule the n4 — j remaining jobs in SPT order on the /n machines that are available at
time (¢, 25, ...,1})

9:  Calculate the makespan CZ
10:  fori :=1tomdo
11: if there is a machine M; where jobs of agent B complete before CEZ_ then
12: Shift to the left the first jobs of block 73(i) (jobs in 7, (i) are right shifted) so that the
jobs in (i) do not complete after CE_ // jobs in 7, (i) are right shifted
13: end if
14:  end for
15:  Denote by o; the schedule obtained

16:  if (C5, (0;) < @)and (3" C;'(0;) < > C}'(c*)) then

17: oc* =0,
18: end if
19: end for

20: return o™

Note that for this example, the schedule of jobs of agent A in SPT order gives the
same value for ) CAbutCB =11 (see Fig. 5.3). This solution is thus dominated.

max
<

Based on the results of Conway et al. (1967) to solve the Pm|| ) C; problems
optimally (jobs are scheduled in SPT order) and the heuristic of Graham (1966) for
the Pm||Cmax problem (jobs are scheduled in Longest Processing Time (LPT) order),
Balasubramanian et al. (2009) propose a heuristic (Algorithm 35) to generate a set
of near non-dominated points where the SPT and LPT heuristics are used iteratively.
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Algorithm 36 for problem Pm|unavail|Cyox (MLPT heuristic)

1: Create the m® dummy jobs
2: Add the dummy jobs to the other ones to obtain J
3: Arrange all the jobs of 7 in LPT order
4: Assume now that all the machines are ready at time zero
5: while 7 # @ do
6: Ji1) := the first job in J
7. if Jpyy is a dummy job then
8: if the smallest loaded machine has already received one dummy job then
9: Among all the machines which have only received real jobs, select the machine with
the smallest job J ¢
10: Replace J ¢ by Jp
11: T =T\ )
12: J:i=JU{Js}
13: J[l] =J f
14: else
15: Assign job Jjj) to the smallest loaded machine
16: J = j\{J[l]}
17: end if
18:  else
19: Assign job Jjj to the smallest loaded machine
20: J = J\{J[]]}
21:  endif

22: end while
23: Shift all the dummy jobs to the head of their assigned machine
24: return final schedule

Following Lemma 5.2, on each machine M;, the jobs of the two agents are split
in three blocks: a block (i) of j4 jobs of agent A, followed by a block 7, (i) of
jB jobs of agent B, followed by a block 73(i) of the remaining jobs of agent A
assigned to M;. Any of these blocks may be empty.

In Algorithm 35, the schedule of the jobs of agent B is done by the algorithm
of Lee (1991), denoted MLPT. This algorithm solves the Pm||Cp,x problem when
some machines are not available at time zero (Pm|unavail|Cp,x problem). The
author provide a “modified LPT” (MLPT) algorithm where the makespan obtained
by MLPT is bounded by $C.*. (C.*, being the optimal makespan).

Let a; denote the earliest time that machine M; can start to process the jobs.
Let m° be the number of machines with a; > 0. In MLPT algorithm, Lee (1991)
considers a; as the processing time of a dummy job J;. We merge the dummy jobs
with the jobs to schedule and this gives the set 7 with n 4+ m° jobs.

To optimally solve the problem Pm|CO,Cl, < Q|3 C}', a mixed integer
programming model is proposed in Balasubramanian et al. (2009).

In the proposed time-indexed formulation, the decision variables are x;, = 1
if job J; starts at time 7, and 0 otherwise. Let P = Y7L, pi' + 372 p? be the
maximum possible start time of a job. The time indexed formulation for problem
Pm|CO,CJ < Q| C}is the following.

max
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»
Minimize Z Zx,,,(z + 1)) (5.21)
jegat=0
O—pj
subjectto Y x;, =1, ¥j e J” (5.22)
t=0
P
Y oxju=1,vjeJ (5.23)
t=0

t
> > Xjs<m,VteP (5.24)

J €T s=max(0.t—p;+1)

variables x;, € {0,1}, Vj € J,Vt € P (5.25)

In this model, the objective function gives the total completion time of only
job of agent A. The set of constraints (5.22) ensures that each job of agent B
is scheduled exactly once and that no job in 74 completes after Q. The set of
constraints (5.23) ensures that each job of agent A is scheduled exactly once. The
set of constraints (5.24) ensures that at each time 7, no more than m jobs have
been started and are not yet completed. The set of constraints (5.25) are integrality
constraints on the decision variables.

5.2.4 Functions ) C;, > C;

B 4
5.2.4.1 Problem Pm|IN, ) ¢/ =0l > C;

In the INTERFERING scenario, we consider the case where the total completion time
is the objective function of both agents A and B. The problem Pm|IN,Y  C ,B <
o|>.C jA can be solved in pseudo-polynomial time by a dynamic programming
algorithm as follows. In what follows, we suppose that the jobs in J 4 are numbered
in SPT order.

In a partial schedule, in addition to the total completion time of jobs in J2,
denoted by g, we must save the information related to the completion time of the last
job on each machine, denoted by #;,i = 1, ..., m. In the following recursive func-
tion, we let F;, ;. (f1,...,tn, q) be the total completion time of the jobs of agent A
when the first j 4 jobs of 74 and the first jz jobs of 7% are scheduled on m identical
parallel machines, and machine M; completes attime #;,i = 1,...,m,withqg < Q.

Fo0(0,...,0)=0
F070(11,...,tm,q) = +00, V(ll,...,lm,q) 75 ©,...,0)
Fijpg(ti, ... tm,q) = +oo, if t; ¢ [0,ub] orq < O.
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FjA,jB(tla"'atm’q) =

FjA—l,jB(tl’-‘-,ti —p;lA,...,fm,Q) +1;
) minm FjA,jB—l(t17“"ti —ij,...,tmyq_ti) + 1, lfq = Q
' Fijs—1@t, .o ti—=Djp,oo i tm,q — 1) + 00, ifg > 0

le E{1,...,)1—7!3},ij€{1,...,)13},Vl,’ € [O,Mb],qu [O, Q]

The optimal solution is obtained by min{F,, ,— ;. »,(t1, ..., tm.q) : t; € [0, ub],
Vq € [0, Q]}. In conclusion, we have the following result.

Theorem 5.7. An optimal solution to problem Pm|IN, C]B < Q| CjA can be
obtained in O(n*ub™ Q) time.

5.2.4.2 Problem Pm|IN|P(>_ C;‘ ) Cf)

Concerning problem Pm|IN|P(3_ C;', 3" C ), we recall that in the INTERFERING
scenario, even for the single machine problem 1|IN|P(}.C4,Y"C ]B ), the size of
the Pareto set may not be polynomial (see Sect.3.9.2). Therefore, the size of the
Pareto set is exponential in the parallel machine context.

5.3 Non-preemptive Jobs with Identical Processing Times

In this section we consider that all jobs have the same processing time, whatever
the agent, i.e., p/j? = p, Vk, VJ;‘ e J*. However, it is possible to associate a
specific due date and a specific weight to each job. We consider uniform parallel
machines, i.e., the processing time of a job only depends on the performing machine.
More precisely, as explained in Sect. 1.2.2, a coefficient of speed v; is associated to
machine M; and the processing time of a job J; is equal to p;; = p;/v;. In our
case, pj; = p/vi,Vj € J.

5.3.1 Functions fyax, fmax

53.1.1 Problem Qm|CO, p; = p, f.E < O|fA,

We consider in this section the case in which each agent wants to minimize a general
regular max-type cost function fX ., i.e., we consider the e-constraint problem
Om|CO, pj = p. frx = Ol frni:

Since we are dealing with equal-size jobs, the completion time of the job
scheduled in position £ on machine M; is equal to C; = {p/v;, where v; is
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A ¢ _(1,2,2,3,4,4,4,5,6,6,8,8, 10, 12,12, 16, 20, 24} b

C=1{1,2,2,3,4,4}
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Fig. 5.4 Relation between vector C and time intervals

the processing speed of machine M; and we introduce the set of completion times
of jobs on machine M;, denoted by C; = {Cj¢; : 1 < £ < n}. In particular, we let C
denote the set of the n 4 + n p smallest possible completion times, some completion
times being possibly present more than once in C. We assume that the elements of
C are sorted in non decreasing order and Cj) refers to the kth completion time in C.

Example 5.2. Let consider an instance with m = 3 machines, p = 1l andny = 3
jobs and np = 3 jobs. Speeds of the machines are the following.

M, My M, M;
v; 1 1/2 1/4

We have C; = {1,2,3,4,5,6} on machine My, C; = {2,4,6,8,10,12} on
machine M, and C; = {4, 8, 12, 16, 20, 24} on machine Mj3. Therefore, | J/_, C; =
{1,2,2,3,4,4,4,5,6,6,8,8,10,12,12,16,20,24}. We only keep the 6 smallest
values and we have C = {1, 2, 2, 3, 4, 4}. To each completion time of C corresponds
a time interval /;, as represented in Fig.5.4 (in part (a) the first 16 intervals are
represented and in part (b) only the n = 6 sufficient intervals). o

A deadline d‘]B can be associated to each job of 72 so that ij (CJB) < Q

if C} < d 7 ((f)7" is supposed to be computable in constant time). The
method which is used to solve this problem is inspired by the backward Lawler’s
algorithm (Lawler 1973) for the single objective scheduling problem 1|prec| fiax-
The algorithm presented in Algorithm 37 can be implemented in O (n?).

5.3.1.2 Problem Om|CO, p; = p|P(fA., f.E)
The calculation of the set of Pareto optimal solutions for the problem of scheduling
independent equal sized jobs of two COMPETING agents A and B on m uniform
parallel machines is analyzed in Elvikis et al. (2011).
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Algorithm 37 for problem Om|CO, p; = p, f.B < O]

de

1: BuildC

2:t = C[,l]

3 st:=74 .

4: 88 :={1f egh d} <1}
5:k:=n

6: while S* U S? # @ do

7:  if S® # @ then

8: for 7 € S* do

9: if J# has minimum £ () then
10 ok)y:=JF
11: end if
12: end for
13: else
14: for /' € S* do
15: if J/ has minimum £/ (¢) then
16: o(k):=J}
17: end if
18: end for
19: end if
20 k:=k—1
21: t = C[k]

22:  Update S*
23:  Update S
24: end while
25: return o

Starting with 0 = max Jhe JB{ ij (Ciy)}, Algorithm 37 proposed for problem

Om|CO, p; = p, mdx < Q| 4 is used and it can be shown that it returns a
Pareto solution, let (f;!, /,%) denote its value to the two agents. Then, Q is updated
as f,® — 1, and another Pareto solution can be computed via Algorithm 37. It is
possible to show (Elvikis et al. 2011) that the whole Pareto set can be enumerated
very efficiently, exploiting the relationship between consecutive Pareto optimal
schedules. In Elvikis et al. (2011), the authors use properties and propose a coding
which runs in O(n? + n% + nnplogng) time with O(nng) memory.

5.3.2 Functions funax, Cmax

5.3.2.1 Problem Om|CO, p; = p,C, max < Qlfmax

Recalling the definition of set C given in Sect.5.3.1, let k be the index of the
completion time in C such that C) < Q and C[k+1] > Q. Itis easy to show
that there is an optimal solution to Om|CO, p; = p,CE < Q|fA. in which
the completion times between Cjx—,,+1) and Cj are assigned to the jobs of J B,
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The remaining completion times are assigned to the jobs of 74 with an algorithm
similar to Algorithm 37.

5.3.2.2 Problem Qm|CO, p; = p|P(fA.,

max)

max

occurs when the jobs of 72 have the np smallest completion times in C. Hence,
throughout the set of all Pareto optimal solutions, C.2 has values Cj 1, Cjny+1,
- Clus+ny). Hence, there are O(n,) Pareto optimal solutions and each of them

can be found applying the algorithm proposed for problem Qm|CO, p; = p,C2

max—
0| maxw1thQ Ck, k =np,...,nqg +np.

In any feasible solution to this problem, the value of C, B s at least Cln]» Which

5.3.3 Functions Cpax, Cmax

B
max ’ Cmax)

5.3.3.1 Problem Om|CO, p; = p|P(C

The problem Qm|CO, p; = pIP(
that the Qm|C0 Pj = plp( max’ de

mdx, CB ) isindeed trivial. In fact, it is obvious

B ) problem admits only two Pareto solutions
in the criteria space: (Cl, = Cpu,, CE . = Cpy) and (CA, = Cju). CE . = Cpuy)),

which completely define the assignment of jobs to completion times.

5.3.4 Functions L ax, Cmax

5.3.4.1 Problem Om|CO, p; = p|P(L4,.,CE.
Following the same approach as presented in Sect.5.3.2.2, we can show that the
scheduling problem Qm|CO, p; = p|P(L ., CE ) can be solved very efficiently.
We first recall a result from single-agent scheduling.

Lemma 5.4. Given an instance of problem Qm|p; = p|Lmax, there exists an
optimal solution in which jobs are assigned in EDD order to the completion times.

Lemma 5.4 trivially extends to the two-agent problem Om|CO, p; = p,CE <
Q|L2 ., in which jobs in J4 are EDD ordered. We can then use the same approach
introduced for Om|CO, p; = p,CB < Q|f4, (Sect.5.3.2.1). Hence, letting k
be such that Cy) < Q and C[k+1] > Q, it is easy to show that there is an optimal
solution to Om|CO, p; = p,CEB < Q|L4,. in which all jobs in J # are scheduled
to complete at Cjx—nz+1], - . - , C¢). The remaining completion times are assigned to
the jobs of 74 in EDD order. In conclusion, there are at most 7 4 + 1 possible Pareto

solutions, that can all be enumerated in O(n logn).
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5.3.5 Functions Y fj, Cmax

5.3.5.1 Problem Qm|CO, p; = p|P(¥L f, Ca

Because the objective functions are regular and following the same approach as
in Sect.5.3.1 for problem Qm|CO, p; = p|P(fa. f.E,), the determination of
the Pareto set is obtained by solving iteratively the e-constraint version of the
problem. For the latter problem with CZ < Q, minimizing the objective function
of agent A is equivalent to finding an optimal assignment of the jobs of agent A
to the completion times {Cpij, . . ., Cik—np]} U {Cl+1]s - - - » Cpuy} of C where k verifies
Cik) < Q and Cj4q) > Q. This is an assignment problem that can be solved in
O(nil) (see Dessouky et al. (1990)).

As there are at most (n4 + 1) possible completion times for the last job of the
block of jobs in 7 2, one can deduce that there are at most (14 + 1) Pareto optimal
schedules.

In some special cases for function Y fA, the problem Qm|CO, pj =
pIPX f#,CE ) can be solved even more efficiently:

« If Y f' = X wiC/, the jobs of J* are assigned to the completion times
1Cups - Cle=ng)} YLC 4115 - - - » Cpup} of C in WSPT order, i.e., by non increasing
order of w;’, since processing times are identical.

. A _ ATA A _ A _ g4 ”»

If 3 f4 = > wiT/ with T{/ = max(0,C;' — d{') and the additional

assumption that the weights w/ and due dates d' are agreeable (i.e., d;' <

J

d jA/ = w;‘ > w;‘/), the jobs of J* are assigned to the completion times

{C[l], ceey C[k—ng]} U {C[k+1], ey C[n]} of C in EDD order.

In both such special cases, Qm|CO, p; = p|P(}_ f,CE ) can be solved in
O(nlogn).

5.3.6 Functions ) U;j, Cax

53.6.1 Problem Qm|CO, p; = p|P(C U/, Ch,
For this problem, again the jobs of J# are scheduled to complete at 3 consecutive
completion times in C. As a consequence, there are at most n4 + 1 Pareto optimal
solutions. It is clear that in a Pareto solution, the jobs before the block of 7 B are
early jobs (since otherwise, by shifting the jobs to the end, the makespan for 72 can
be reduced without changing the number of tardy jobs). Furthermore, we can limit
to considering schedules in which the early jobs are scheduled in EDD order.

The first Pareto solution is obtained by first assigning the jobs of 7% to the last
completion times in C. We sort the jobs of 7 in EDD order and we start assigning
them in this order to the first n,4 completion times. When a job of J4 is late if
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Algorithm 38 for problem Om|CO, p; = p|P(>_U#,CB )

1: BuildC

2: Arrange the jobs of 74 in EDD order
3:t:=n

4: R := () // the initial set of Pareto solutions
5: whilet > ng do

6:  Assign the jobs of 72 to the completion times at position t —ng + 1to ¢ in C
7T r:=1

8 ji=1

9: while (j <ng)and (r <t —ng)do

10: if Cj) < d;' then

11: r:=r+1

12: Assign J jA to the completion time at position r in C
13: else

14: Move J jA to the end of the schedule

15: end if

16: ji=j+1

17: end while

18:  Shift block 7% to the left if necessary to obtain solution o
190 R:=RU{o}

20: ti=t—1

21: end while

22: Remove the weak Pareto solutions from R

23: return R

assigned to a completion time Cj,, it is moved to the end of the schedule and the
jobs of J 2 are left shifted accordingly. Then, the next jobs in 74 are tried out to
complete at Cj), until the first job which is early when assigned to Cj, is found.
Then, we continue considering Cj, 1] and so on, until all jobs of J 4 are assigned a
completion time.

The next Pareto solution is found by left-shifting each job of 72 to the previous
position in C with respect to the previous Pareto optimal solution. As before, the
new tardy jobs of 74 are moved to the end of the schedule and the process iterates.
This algorithm is described in Algorithm 38.

Example 5.3. Let us illustrate this algorithm with the following instance. Letn4 =
6,ng = 5,and p = 1. The due dates of jobs of 7 are the following.

a1 1 3 5 6 7
We assume that there are m = 3 machines with speeds 1, 1/2 and 1/4 as in
Example 5.2. The vector of completion times C is equal to C = {1,2,2,3,4,4,

4,5,6,6,7}.
First, the jobs of 72 are assigned to the completion times {4, 5, 6, 6, 7}. In this
case, job J IA can complete at time 1 and is assigned to the first completion time of C.
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Fig. 5.5 Pareto solution with
S UA CB )y =(1,6) M, PRI IE B

max

My | Jf| JB | JE

Ms JB

Job J2A cannot complete at time 2, thus this job is put at the end of the schedule.
Then, job J3A can complete at time 2, job J. 4A can complete at time 2, job JSA can
complete at time 3, and job J6A can complete at time 4. There is one tardy job, so
Z UjA = 1. Because one job of J4is late, it is possible to shift the block T8 to the
right by one position. Finally, the assignment to the completion times of C is given
by (JA, J3A, J4A, JSA, J6A, JIB, JzB, J3B, J4B, JSB, JzA). The makespan of JBis equal
to 6 and the schedule is represented in Fig. 5.5.

For the second Pareto solution, the jobs of 72 are assigned to the completion
times {4,4,4,5,6}. Nothing changes for jobs JIA to JSA, assigned to the same
positions. Job J6A is scheduled in position 11 and is not late. The solution is again a
vector UL, CE )= (1,6). o

5.4 Tables

In Table 5.1, we summarize the results in the preemptive case. In Tables 5.2 and 5.3,
we summarize the results in the non-preemptive case with the epsilon-constraint
approach and the Pareto front enumeration, respectively. In Table 5.4, we summarize
the results in the non-preemptive case with equal-length jobs. The running times of
the different algorithms are given in the tables.

5.5 Bibliographic Remarks

In this section, we give some remarks on main references related to multiagent
parallel machine scheduling problems. We give some references to the reader who
wants to enter more into the details on these problems.

5.5.1 Preemptive Jobs

Note that there are few results dealing with parallel machines multiagent scheduling
problems when preemption of jobs is allowed. The first study on monocriterion
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Table 5.1 Preemptive case

Problem Complexity Section  Page
Rm|IN, pmm, fE < Q|fA4. O(n’>m?/n + m) 5.1.1.1 190

Rm|IN, pmin, f¥ < Qpk =2,... K|fL, OW*m*K+/n+m) 5114 193

P2|CO,pmm, fB < Q|ZCjA O(nylogng +npglogng)  5.1.2.1 194

Pm|IN,pmin, 3 CF < Q|3 C}! NP-hard 5.1.3.1 196

Pm|IN,pmin, " {7 < Q|3 /! NP-hard 5.1.3.1 196

Table 5.2 Non-preemptive jobs — Epsilon-constraint approach

Problem Complexity Section Page
Pm|IN,CE < g|C4 . O(n*UB™) 5.22.1 198

Pm|IN,C2,, < 0,,...,CK < 0kl|C} on*uB™) 5222 199

P2|co,cB < Q|cA. O(nnpUBY 5223 199

Pm|IN, > CP < Q|Ch, O(n2UB™ Q) 5.2.3.1 200

Pm|IN.CE, < 0|3 C} O(n2UB™) 5232 201

pm|co.CE < 0|XC} NP-hard 5.2.3.3 202

Pm|IN.>-CF < Q]3> C/ O(n2UB™ Q) 5.2.4.1 205

Table 5.3 Non-preemptive jobs — Pareto front enumeration

Problem Size Section Page
Pm|IN[P(X_CH. Y- CP) Nonpolynomial 5242 206

Table 5.4 Non-preemptive case with equal-length jobs

Problem Complexity/size Section Page
Om|CO. p; = p. frx < Ol S o(n?) 53.1.1 206

Om|CO, p; = pIP(fyix: fos) o) 53.12 207

Om|CO, p; = p.Cy < Ol friin o) 53.2.1 208

om|CO, p; = p|P(f4,.CE) 5322 209

Om|CO, p; = p|P(CA,.CE ) om?) 5.3.3.1 209

om|CO, p; = p|P(LA,..CE ) 5.34.1 209

om|Co, p; = p|P(X f1,CE (na+1) 53.5.1 210

om|Co, p; = plPO_ UM CE 5.3.6.1 210

scheduling problems on parallel machines is due to McNaughton 1959, where
the objective function to minimize is the makespan. Then, one of more inter-
esting results is to solve the classical feasibility scheduling problem denoted
by Rm|pmitn,d;|— (Brucker 2007). The idea for solving this problem can be
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generalized for solving problem Rm|IN, pmin, n’fax < Ok = 2,...K| fn{ax,
where all the agents have the same objective function (see Sect. 5.1). The complexity
of the proposed algorithm can be improved by following the approach proposed
in Sedefio-Noda et al. (2006) for solving the preemptive open shop problem with
time-windows, based on network flow approaches to check feasibility and a max-
flow parametrical algorithm to minimize the makespan. Other objective functions
are considered in Mohri et al. (1999), dealing with the P3|MU,pmin, Cpyx <
Q| Lax problem. The authors propose a polynomial time algorithm to enumerate
the whole Pareto set based on the e-constraint approach. Minimizing both the total
completion time of jobs and the makespan criteria in multicriteria scenario has been
studied in Leung and Young (1989), where the linear combination is considered
and a polynomial time algorithm is proposed. These results can be extends to the
NONDISJOINT scenario.

5.5.2 Non-preemptive Jobs with Arbitrary Processing Times

In this case, without simplifying hypotheses, any problem is NP-hard. Therefore,
the challenge is to propose pseudo-polynomial time algorithms, most often based
on dynamic programming. The next step is then to propose (Fully) Polynomial
Approximation Schemes, as in Kellerer and Strusevich (2010) or in Zhao and
Lu (2013). In the latter, the authors consider identical parallel machines in the
COMPETING scenario with the e-constraint approach, where the objective of agent
Bis Cp,, < O and the objective of agent A, to minimize is either C,,, or 3 C . In
Wan et al. (2010), the authors consider identical parallel machines when processing
times are controllable (see Sect.6.4) and propose approximation schemes and
algorithms with performance guarantee. The minimization of the total completion
time with deadlines and additional constraints can also catch our attention. For
example, in Su (2009), the identical parallel machine scheduling problem with
job deadlines and machine eligibility constraints is considered. The objective is
to minimize the total completion time, and every job can be processed only on a
specified subset of machines. This problem is NP-hard. These methods and results
can be adapted in the INTERFERING scenario to solve a problem with two agents A
and B, where agent B aims to minimize a regular objective function f,2 and the

objective function of the agent A to minimize is the total completion time.

5.5.3 Non-preemptive Jobs with Identical Processing Times

The scheduling problem with uniform parallel machines and identical jobs was
studied in the seminal work of Dessouky et al. (1990). The authors introduce the
vector of earliest possible completion times C and propose a resolution method
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that can be used for general regular functions and its improvement in case of
classical scheduling objective functions. In the BICRITERIA scenario, Tuzikov
et al. (1998) consider general objective functions f4,, > f;' and fi. with the
e-constraint approach. Based on the Lawler’s backward algorithm (Lawler 1973) for
the 1|prec| fmax problem, polynomial time algorithms are proposed for obtaining the
set of Pareto solutions. The problem in the multiagent context has been addressed
in Elvikis et al. (2011) and T kindt (2012). The authors propose a polynomial time

generic algorithm with a better time complexity.



Chapter 6
Scheduling Problems with Variable Job

Processing Times

In this chapter, we consider agent scheduling problems in which job processing
times are variable. This means that the processing times, contrary to other chapters
of the book, are not fixed and may change depending on such parameters as job
starting times, job positions in schedule or the amount of resources allocated to
jobs. Though problems of this type appear in many applications and non-fixed job
processing times are studied in scheduling theory from over a few decades, agent
scheduling problems with variable job processing times only recently started to be
a new subject of research.

The chapter is composed of six sections. In Sect. 6.1, we give a short introduction
to scheduling problems with variable job processing times. The main part of
the chapter is composed of Sects. 6.2—6.4, in which we review agent scheduling
problems with time-dependent, position-dependent and controllable job processing
times, respectively. In Sect. 6.5, we present tables summarizing the time complexity
statuses of considered earlier scheduling problems. We end the chapter by Sect. 6.6
with bibliographic remarks.

6.1 Introduction

In this section, we recall some definitions and results applied in the chapter. First,
we introduce the reader to the phenomenon of job processing times variability and
propose a classification of main forms of the variability. Next, we describe some
extensions of the three-field notation that we use in the book. Further, we present
basic results concerning scheduling problems with variable processing times. We
complete the section by several examples of single- and two-agent scheduling
problems with variable job processing times.

A. Agnetis et al., Multiagent Scheduling, DOI 10.1007/978-3-642-41880-8_6, 217
© Springer-Verlag Berlin Heidelberg 2014
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6.1.1 Main Forms of Variable Job Processing Times

One of the basic assumptions of scheduling theory is that the processing times of
the jobs are fixed, known in advance and described by numbers. However, this is
very restrictive, since it does not allow one to consider many practical problems in
which jobs have variable processing times. For example, jobs may deteriorate — and
deterioration increases the time needed for their processing, job processing times
may change in view of learning or ageing effects, or they may depend on the amount
of a resource allocated to the jobs etc.

The variability of job processing times may be modeled in various ways. In this
chapter, we consider the following forms of variable job processing times described
by functions or intervals:

» Time-dependent job processing times — the processing time of a job is a function
of the job starting time;

* Position-dependent job processing times — the processing time of a job is a
function of the position of the job in schedule;

» Controllable job processing times — the processing time of a job is varying in
some interval between a certain minimum and maximum value.

Now, we briefly describe the mentioned above forms of variable job processing
times, limiting the presentation only to these job processing time forms that appear
in agent scheduling literature.

6.1.1.1 Time-Dependent Job Processing Times

This is the most popular form of variable job processing times. In this case, the
processing times of jobs are functions of the job starting times. Scheduling problems
with job processing times of this type are considered in that branch of scheduling
theory known as time-dependent scheduling (Gawiejnowicz 2008).

Time-dependent processing times appear in many important problems in which
any delay in processing causes an increase (a decrease) of the processing times of
executed jobs. Examples are the problems of scheduling maintenance procedures,
planning the sequences of derusting operations, modeling the issues related to
fire fighting, financial problems such as the repayment of multiple loans, military
problems such as recognizing aerial threats etc.

There are two main research directions in time-dependent scheduling, each
having its own specificity and possible application areas. Though, under some
assumptions, the results from both these directions are mutually related, at present
they are developing rather separately.

The first direction concerns scheduling problems in which job processing times
are non-decreasing (or increasing) functions of the job starting times. This means
that job processing times deteriorate in time, i.e. a job that is started later has not
lower (not larger) processing time than the same job started earlier. Jobs that have
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time-dependent deteriorating processing times are called deteriorating jobs. Most of
the literature on time-dependent scheduling concerns scheduling deteriorating jobs.

The simplest form of job deterioration is proportional deterioration. In this case,
we assume that job processing time p; is in the form of

Pj :bjl, (6.1)

where b; > 0 for 1 < j < n and ¢ denotes the starting time of job J;. Coefficient
b; is called the deterioration rate of job J;, 1 < j < n.Moreover, in order to avoid
the trivial case when all processing times of jobs executed on a machine are equal
to zero, we assume that the first scheduled job starts at time 7y > 0 from which the
machine is available for processing.

A more general form of job deterioration is proportional-linear deterioration. In
this case, job processing time p; is in the form of

pj =bjla+bi), (6.2)

wherefp = 0,b; >0forl <j <n,a>0andb > 0.
The next form of job deterioration is linear deterioration. In this case, job pro-
cessing time p; is a linear function of the job starting time,

pj =aj +bjt, (6.3)

where tp = 0,a; > 0and b; > Ofor 1 < j < n. Coefficient a; is called the basic
processing time of job J;, 1 < j < n.

Throughout the chapter we write that deteriorating jobs have proportional,
proportional-linear or linear processing times, if the processing times are in the
form of (6.1), (6.2) or (6.3), respectively.

Notice that some relations hold among the above mentioned forms of job
deterioration. Proportional job deterioration (6.1) is a special case of proportional-
linear deterioration (6.2) that, in turn, is a special case of linear deterioration (6.3).
Hence, any time-dependent scheduling problem with linear (proportional-linear) job
processing times includes as a special case the problem with proportional-linear
(proportional) job processing times.

The second direction in time-dependent scheduling concerns the study of
such problems in which job processing times are non-increasing (or decreasing)
functions of the job starting times. This, in turn, means that job processing times
shorten in time, i.e. the processing time of a job becomes shorter if it is started later.
Jobs with time-dependent processing times of this type are called shortening jobs.
Scheduling problems with shortening jobs are relatively less explored than those
with deteriorating jobs.

The simplest form of job processing time shortening is proportional-linear
shortening in which job processing time p; is in the form of

pj =bjla—bi), (6.4)
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where shortening rates b are rational, satisfy the condition
0<b;b<l (6.5)

and the condition

I«Xprm)<1 (6.6)

i=1

holds for 1 < j < n. Conditions (6.5) and (6.6) assure that job processing
times (6.4) are positive in any non-idle schedule.

A special case of proportional-linear shortening is the case when a = 1, i.e.
when job processing time p; is in the form of

pj = b;(1—bt), (6.7)

where b; > Ofor1 < j < nand b > 0. In this case, condition (6.6) takes the
form of

b Zn:bj—bmin <1,

j=1

where byin 1= mini<;j<,{b;}.

The next type of job shortening is linear shortening, in which job processing
times are decreasing linear functions of the job starting times. In this case,
processing time p; is in the form of

pj =a; —bjt, (6.8)
where shortening rates b; are rational and conditions
0<b; <1 (6.9)

and

bj (Zai—aj) <a; (610)

i=1

hold for 1 < j < n. Notice that conditions (6.9) and (6.10) are generalizations of
conditions (6.5) and (6.6), respectively.

Throughout the chapter we write that shortening jobs have proportional-linear
or linear processing times, if the processing times are in the form of (6.4) or (6.8),
respectively.
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6.1.1.2 Position-Dependent Job Processing Times

This is the second popular form of variable job processing times. In this case, job
processing times are functions of the job positions in schedule. Scheduling problems
of this type are considered in the second active research area in scheduling theory
called position-dependent scheduling.

Position-dependent job processing times occur in manufacturing systems, in
which the assembly time of a product is a function of skills of the worker who is
involved in the process of making the product. Because the skills have an impact on
the process, the assembly time is a function of the worker’s experience. Moreover,
since the latter can be expressed by the number of products made by the worker
earlier, this time is a function of the product position in a schedule.

Similarly, as in the case of time-dependent job processing times, there are two
main research directions in position-dependent scheduling. The first is the most
popular and, in a sense, it is similar to the one with shortening jobs: the processing
time of a job is a non-increasing (a decreasing) function of the job position in a
schedule. Since the aim of this form of job processing time is to model so-called
learning effect, problems of this kind are called scheduling problems with learning
effect.

The simplest form of learning effect is log-linear learning effect in which the
processing time p; , of job J; (1 < j < n) scheduled in position r is in the form of

pjr=p;re. (6.11)

Here p; is the basic processing time of job J;, a < 0 is the learning index, and
r denotes the position of J; in the schedule, 1 < r < n.

Another form of learning effect is linear learning effect that, in a sense, is similar
to linear shortening. In this case,

pj,,.zpj—ﬁjr, (612)

where p; is the basic processing time of job J; and B; is the learning factor
(0<Bj <L forl <j<n).

Throughout the chapter we write that position-dependent jobs have log-linear or
linear position-dependent processing times with learning effect, if the processing
times are in the form of (6.11) or (6.12), respectively.

A separate class of scheduling problems with learning effect takes into account
the impact of previously scheduled jobs. This form of learning effect is called past-
sequence-dependent learning effect. For example, job processing times with past-
sequence-dependent learning effect may be in the form of

r—1 o
(1 + Zp[k]) ,ﬂ} : (6.13)
k=1

pj,r = Pj max
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r—1 o
Pjr=1pj (1 + Zp[k]) ; (6.14)

k=1
or
_ M
Pjr=Dpj (M) : (6.15)
L+ 32 px

where p;, pj, @ < 0and 0 < B < 1 denote the basic processing time of job J;,
the processing time of the job in position k, the learning index and the truncation
parameter, respectively.

Throughout the chapter we write that position-dependent jobs have past-
sequence-dependent processing times with learning effect, if the processing times
are in the form of (6.13), (6.14) or (6.15).

The second form of position-dependent variable job processing times has a
similar nature to that one of deteriorating jobs, since the processing time of a job is
a non-decreasing (or an increasing) function of the job position in a schedule. Since
this form of position-dependent job processing times is related to so-called ageing
effect, problems of this kind are called scheduling problems with ageing effect.

The simplest form of ageing effect is log-linear ageing effect that has the same
form as log-linear learning effect but with positive exponent. In this case, job
processing time p; , is in the form of

Djr = pjrﬂ, (6.16)

where p; is the basic processing time of job J; and the ageing index B > 0.

A similar change of the sign of a parameter that has an impact on job processing
time may concern also other forms of learning effect. For example, position-
dependent job processing times with ageing effect may be in the form of

pjr=pj+B;r, (6.17)

r—1 p
Pjr=1pj (1 + Zp[k]) ; (6.18)

k=1
or
_ 8
1+ r—1 "
Pir =D (—Z" L2l ]) (6.19)
1+ Zk 1 Pk

where p; is the basic processing time of job J; and 8 > 0.
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Notice that ageing effects of the forms (6.16), (6.17), (6.18) and (6.19) are
counterparts of learning effects of the forms (6.11), (6.12), (6.14) and (6.15),
respectively.

Throughout the chapter we write that position-dependent jobs have log-linear
or linear position-dependent processing times with ageing effect, if the processing
times are in the form of (6.16) or (6.17), respectively. Similarly, we write that
position-dependent jobs have past-sequence-dependent processing times with age-
ing effect, if the processing times are in the form of (6.18) or (6.19), respectively.

6.1.1.3 Controllable Job Processing Times

This is the third popular form of variable job processing times. In this case, job
processing times are described by intervals, i.e., the processing time of a job varies
between a minimum and a maximal value that are specific for each job. Moreover,
the processing time of a job is expressed by a non-increasing function of the amount
of a resource allocated to a given job. This resource may be continuous or discrete
and, in most cases, it is non-renewable and its availability is limited by an upper
bound. Scheduling problems of this type are considered in the third active research
area in scheduling theory called resource-dependent scheduling.

Controllable job processing times appear in some industrial applications such as
the problem of organizing the production at a blacksmith’s division in a steel mill.
In this case, the job processing times vary within certain limits and they require
resources such as gas or power. Allotted resources may change job processing times
but since the former are scarce, a cost has to be paid for each unit of resource
employed.

There are two main forms of controllable job processing times. The first form of
controllable job processing times, called convex, assumes that the processing time
pj of job J; is a convex function of the resource amount u; allocated to J;. Since
no agent scheduling problems with convex controllable job processing times were
considered so far, we do not discuss this form here.

The second form of controllable job processing times is called linear. In this case,
the processing time p; of job J; is a linear function of the amount u; of a resource
allocated to the job, i.e.

Dj =ﬁj—vjuj, (620)

where 0 < u; < u; < ‘z—j The values ﬁj, u; and v; > 0 are called the non-
compressed (maximal) processing time, the upper bound on the amount of allocated
resource and the compression rate of job J;, 1 < j < n.

There is another possible form of linear controllable job processing times. In
this form, we let the actual processing time p; € [Ej,ﬁj], where L, < p; for
1 < j < n. The maximal processing time can be compressed (decreased) at the cost
cjx;, where
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)Cj = ﬁj — pj (621)

is the amount of compression of job J; and c; is the compression cost per unit time.
This implies that the processing time p; of controllable job J; is in the form of

p; =D, —Xj. (6.22)

where p j and x; are defined as in (6.20) and (6.21), respectively. In this form,
the cost of compression is usually measured by the total compression cost function
2 Cix)

Throughout the chapter we write that jobs have controllable linear processing
times, if the processing times are in the form of (6.20) or (6.22).

Notice that any solution to a scheduling problem with controllable job processing
times has two components. Namely, if job processing times are in the form of (6.20),
a solution to the problem is specified by (i) a vector of resource amounts allocated
to each job and (ii) a schedule. Similarly, if job processing times are in the
form of (6.22), the solution is specified by (i) a vector of job processing times
compressions and (ii) a schedule.

Moreover, in scheduling problems with controllable job processing times, two
criteria are used to measure the quality of a schedule, namely a scheduling criterion
and a cost function measuring the cost of job compression in the evaluated schedule.

The forms of variable job processing times that we consider in the chapter are
summarized in Table 6.1.

6.1.2 Notation for Variable Job Scheduling Problems

In the section, we introduce several extensions to the three-field notation defined
earlier to address agent scheduling problems with variable job processing times.

6.1.2.1 Notation for Single-Agent Time-Dependent Job Scheduling
Problems

To denote scheduling problems with time-dependent job processing times, in the
second field of problem notation we give the form of the functions that describe the
processing times.

Example 6.1. (a) Symbol 1|p; = b;t|y C; denotes the single-agent, single-
machine time-dependent scheduling problem with proportional processing
times of jobs and the objective of minimizing total completion time, ) " C;.

(b) Symbol 1|p; = a; + b;t|Cpax denotes the single-agent, single-machine time-
dependent scheduling problem with linear processing times of jobs and the
objective of minimizing the maximum completion time, Cyyx. o
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Table 6.1 Summary of main forms of variable job processing times

Job processing time name Job processing time form
Time-dependent job processing times

Proportional deterioration bjt

Proportional-linear deterioration bj(a+ bt)

Linear deterioration aj +bjt
Proportional-linear shortening bj(a—bt)

Linear shortening aj—bjt

Position-dependent job processing times

Log-linear learning effect p;r®
Linear learning effect pj —B;r
o
Past-sequence-dependent learning effect pj max {(1 + Z,rc;ll p[k]) s ﬂ}
Past-sequence-dependent learning effect Dj (1 + Z;;ll p[k])
o

] _ . i ROy
Past-sequence-dependent learning effect D) ( T
Log-linear ageing effect T rP
Linear ageing effect p; +B;r

B
. ~ ~_1
Past-sequence-dependent ageing effect D (1 + Yo p[k])
Past-sequence-dependent ageing effect i L:‘”[”
Y 1+Z;¢_=11 Pk

Controllable job processing time
Linear compression D —vju;
Linear compression D;—X;

If necessary, in the second field of the notation we specify other requirements

concerning a given time-dependent scheduling problem.

Example 6.2. (a) Symbol 1|p; = bjt,s; = b;t,GT|fmlx denotes the single-

(b)

agent, single-machine time-dependent batch scheduling problem with propor-
tional job processing times, proportional setup times and the objective of
minimizing the maximum cost, fma.x. Symbol ‘GT’ stands for group technol-
0gy, and it means that jobs are partitioned into groups, and jobs in the same
group must be processed consecutively, without idle times. A setup time is
required when switching between jobs of different groups.

Symbol 1|p; = a; + b;t]| > w;C; + L denotes the single-agent, single-
machine time-dependent scheduling problem with linear processing times and
the objective of minimizing the sum of the total weighted completion time and
the maximum lateness, Yy w i Cj + Liax. <o

6.1.2.2 Notation for Single-Agent Position-Dependent Job Scheduling

Problems

We denote in a similar way scheduling problems with position-dependent job
processing times.
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Example 6.3. Symbol 1|p;, = p; (1 + Zz;ll p[k]) | >~ C; denotes the single-
agent, single-machine scheduling problem with past-sequence-dependent ageing
effect with B = 1 and the objective of minimizing the ) C;. o

For clarity, we use different symbols for different forms of position-dependent
job processing times. For example, in order to distinguish between different forms
of learning and ageing effects, we denote negative and positive exponents appearing
in these forms as « and B, respectively. Thus, in the second field of the three-field
notation we do not further specify assumptions on the parameters, which are given
in the description of the considered problem.

Example 6.4. (a) Symbol 1|p;, = p;rf| 3 C; denotes the single-agent, single-
machine scheduling problem with log-linear ageing effect and the objective of
minimizing the > C;. Since the positive exponent § is specific for the ageing
effect, we do not specify in the second field that 8 > 0.

(b) Symbol 1|p;, = p;r®|Cmax denotes the single-agent, single-machine schedul-
ing problem with log-linear learning effect and the objective of minimizing the
Chax- Similarly to the previous case, we omit the assumption & < 0, since the
negative exponent « is specific for this form of learning effect.

(c) Symbol 1|p;j, = p; — Br|fmax denotes the single-agent, single-machine
scheduling problem with linear learning effect and the objective of minimizing
the fmax. Since the coefficient 8 in the form of learning effect is positive, we do
not specify in the second field that 0 < § < % forl <j <n.

(d) Symbol 1|p;, = p; (1 + 32 p[k])ﬂ |>-U; denotes the single-agent,
single-machine scheduling problem with the past-sequence-dependent ageing
effect and the objective of minimizing the ) U;. As in Examples 6.4 (a), (c),
we do not specify in the second field the assumption 8 > 0. o

6.1.2.3 Notation for Single-Agent Controllable Job Scheduling Problems

We denote scheduling problems with controllable job processing times using similar
rules as in the previous two cases.

Example 6.5. (a) Symbol 1|p; = P; — x| fmax denotes the single-agent, single-
machine scheduling problem with linear controllable job processing times and
the objective of minimizing the fiax-

(b) Symbol 1|p; = P; — x;|3_C; + } c;x; denotes the single-agent, single-
machine scheduling problem with linear controllable job processing times and
the objective of minimizing the sum of the total completion time and the total
compression cost, Zj C; + Z; CiXj. o
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6.1.2.4 Notation for Two-Agent Variable Job Scheduling Problems

We extend the notation introduced earlier in the book to denote two-agent schedul-
ing problems with variable job processing times.

For brevity, if jobs of both agents are of the same form and share the same
additional requirements, we use the same notation as for single-agent problems.
Otherwise, we describe the job characteristics separately.

Example 6.6. (a) Symbol 1|p; = b;t|> w;.‘ CjA + LB denotes the single-
machine, two-agent scheduling problem in which both agents have proportional
time-dependent job processing times and the objective is to minimize the sum
of the total weighted completion time of jobs of agent A and the maximum

lateness of jobs of agent B, > w;‘CA + 14

max*

(b) Symbol 1|p;1 = b;‘t,pf = af + bft| Zw;‘CA + LB denotes the same
problem as the one described in Example 6.6 (a), with the difference that now
deteriorating jobs of agent B have linear processing times.

(¢) Symbol 1|pﬁr = p;‘r“, pﬁr = pfrﬂ, > UJB =0 T].A denotes the single-
machine, two-agent scheduling problem in which position-dependent jobs of
agent A have log-linear job processing times with learning effect, position-
dependent jobs of agent B have log-linear job processing times with ageing
effect, and the objective of agent A is to minimize the total tardiness, provided

that the no job of agent B is tardy (e-constrained approach). o

We use symbol ‘o’ in the second field of the notation to denote standard
circumstances, i.e., if the processing times of jobs are fixed, the jobs are non-
preemptable, there are no ready times, deadlines and there are no precedence
constraints among the jobs.

Example 6.7. Symb011|pj =7; —xJA, rd dA pmtn?, oB| Zcfx;’,fnﬁx denotes
the two-agent single-machine scheduling problems in which the objective of agent A
is to minimize the total compression cost, Y_ ¢/x4, while the objective of agent B is

JR
to minimize the maximum cost, f.2 . Jobs of agent A can be preempted, have linear
controllable processing times and possess ready times and deadlines, while jobs
of agent B cannot be preempted, have fixed processing times, and possess neither

ready times nor deadlines. o

6.1.3 Basic Results on Variable Job Scheduling

In this section, we recall several basic results on scheduling jobs with variable
processing times. Since our aim is to compare the difficulty of single- and two-agent
scheduling problems of this type, the results can be viewed as special cases of two-
agent problems considered in the subsequent sections.
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6.1.3.1 Single-Agent Time-Dependent Job Scheduling Problems

The first part of basic results from this group concerns time-dependent proportional
job processing times (6.1).

Theorem 6.1. (a) Problem 1|p; = b;t|Cmax is solvable in O(n) time and
n
Coax(0) =10 [ | (1 + b)) (6.23)
j=1

does not depend on schedule o for the problem.

(b) Problem 1|p; = bjt|Lmax is solvable in O(nlogn) time by scheduling jobs in
non-decreasing order of due dates.

(c) Problem 1|p; = bjt| fumax is solvable in O(n?) time by scheduling jobs using
modified algorithm by Lawler (1973).

(d) Problem 1|p; = bjt|)_ C; is solvable in O(nlogn) time by scheduling jobs
in non-decreasing order of deterioration rates and

noJ
dYCioy =1y [T +bw). (6.24)

j=lk=1

(e) Problem 1|p; = b;t|> w;C; is solvable in O(nlogn) time by scheduling
Jjobs in non-decreasing order of W ratios.

(f) Problem 1|p; = bjt| Uj; is solvable in O(nlogn) time by scheduling jobs
using modified algorithm by Moore (1968).

Formulae (6.23) and (6.24) can be proved by induction with respect to the number
of jobs. Theorem 6.1 (b), (e) can be proved by a pairwise job interchange argu-
ment (Mosheiov 1994) or by using properties of so-called isomorphic scheduling
problems (Gawiejnowicz and Kononov 2012). The time complexity of problem
llp; = b;t| Y T; is unknown.

Scheduling problems with time-dependent proportional-linear job processing
times (6.2) are not more difficult than those with time-dependent proportional job
processing times.

Theorem 6.2. (a) Problem 1|p; = bj(a + bt)|Cpay is solvable in O(n) time and

n

Coan(@) = (10 + %) T (1 +byb) - % (6.25)

=1

does not depend on schedule o for the problem.
(b) Problem 1|p; = bj(a + bt)|Lmax is solvable in O(nlogn) time by scheduling
Jjobs in non-decreasing order of due dates.
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(c) Problem 1|p; = bj(a + bt)| fmax is solvable in O(n?) time by scheduling jobs
using modified algorithm by Lawler (1973).
(d) Problem1|p; = b;(a+bt)| Y C; issolvable in O(nlogn) time by scheduling

L . b; .
Jjobs in non-decreasing order of 1 ratios and
J

nj
> Ci0) = (0 +5) DT (14 bwib) - 5 (6.26)

j=lk=1

(e) Problem 1|p; = bj(a + bt)|Y_w;C; is solvable in O(nlogn) time by
scheduling jobs in non-decreasing order of »v,(1—4j—};,};) ratios.

(f) Problem 1|p; = b;(a+bt)|)_Uj is solvable in O(nlogn) time by scheduling
Jjobs using modified algorithm by Moore (1968).

() Ifa =0andb = 1, then problem 1|p; = bj(a + bt)|Y_T; is NP-hard.

Formulae (6.25) and (6.26) can be proved by induction with respect to the number
of jobs. Theorem 6.2 (b), (e) can be proved by a pairwise job interchange argument
(Kononov 1998) or by using properties of mentioned earlier isomorphic scheduling
problems (Gawiejnowicz and Kononov 2012). Theorem 6.2 (d) follows from
Theorem 6.2 (e) withw; = 1for1 < j < n. Theorem 6.2 (g) follows from a result
by Du and Leung (1990). The time complexity of problem 1|p; = b;(a+bt)| > T;
is unknownifa = 0and b = 1.

Similar results to those of Theorem 6.2 can be obtained also for linear-
proportional shortening job processing times (6.4). For example, replacing in (6.25)
coefficients a and b by —b and 1, respectively, we obtain the formula

n

1 1
Crnax =\to—~ 1 —byb - 6.27
(o) (o b)]!:[l( [k])+b (6.27)
for the maximum completion time in problem 1|p; = b;(1 — bt)|Cpax. This

type of mutual relations between a scheduling problem with deteriorating jobs and
the corresponding problem with shortening jobs is studied in Gawiejnowicz et al.
(2009a), where one can find a transformation between instances of these two classes
of time-dependent scheduling problems.

Unlike scheduling problems with time-dependent proportional or time-
dependent proportional-linear job processing times, most scheduling problems
with time-dependent linear processing times (6.3) are difficult. Only the case of the
Chax criterion is easy, while other criteria either lead to NP-hard problems or their
time complexity is unknown.

Theorem 6.3. (a) Problem 1|p; = a; + b;t|Cpax is solvable in O(nlogn) time

. . . . . . b]
by scheduling jobs in non-increasing order of ratios m and
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Cmax(o) = Za[i] l_[ (1 + b[k]) + 1_[(1 + b[,]) (6.28)

i=1 k=i+1 i=1

(b1) Problem 1|p; = aj + bjt|Lmax is NP-hard, even if only one ay # 0 for some
1 <k < n, and due dates of all jobs with a; = 0 are equal.

(b2) Problem 1|p; = a; + bjt|Lmax is NP-hard, even if there are only two distinct
due dates.

(c) Problem 1|p; = a; + bjt| fmax is NP-hard.

(d) Problem1|p; =a; +b;t|y w;C; is NP-hard.
(e) Problem1|p; =aj+ b;t|> U, is NP-hard.
(f) Problem1|p; =a; + b;t| Y T; is NP-hard.

Formula (6.28) can be proved by induction with respect to the number of jobs.
Theorem 6.3 (b1) can be proved using described below reduction from the following
decision problem called SUBSET PRODUCT (Johnson 1982).

SUBSET PRODUCT
Instance: A finite set ¥ = {y1, y2,....,y,} of integers and an integer H
Question: Is there a subset Y’ C Y such that

[1 v =H

ijY/

The reduction from the SUBSET PRODUCT to the decision version of problem
1|pj = aj + bjt|Lma is as follows. We are givenn = p + 1 jobs to be scheduled
on a single machine from time 7o = 1, where agp = 1, b9 = 0,dy = H + 1
anda; =0,b; =y; —1,d; = Wforl <j <pwithY = n§=1Yj-
The threshold G = 0. To prove Theorem 6.3 (b1) it is sufficient to show that the
SUBSET PRODUCT problem has a solution if and only if for the above instance of
problem 1|p; = a; + b;t|Lnax there exists a schedule with the maximum lateness
not greater than G (Kononov 1997).

Theorem 6.3 (b2) can be proved in a similar way using a more complicated
reduction from the PARTITION PROBLEM (Bachman and Janiak 2000). Theorem 6.3
(c), (e) and (f) follow from Theorem 6.3 (b). The time complexity of problem
llpj =aj +b;t| > C;isunknown,evenifa; = 1forl < j <n.

Some of the problems mentioned in Theorems 6.1-6.3 are closely related. For
example, there exists a mutual relation between problems 1|p; = a; + b;t|Crax
and1|p; = b;t| ) C;, since by assuming in formula (6.28) that fp = O and aj;) = 1
for 1 <i < n, we obtain formula (6.24) with 7, = 1. Conversely, by assuming in
formula (6.24) that 1y = 1, we obtain formula (6.28) with fp = 0 and a;; = 1
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for 1 < i < n. Similar mutual relations between other pairs of time-dependent
scheduling problems with deteriorating jobs and consequences of such relations
are discussed in Gawiejnowicz et al. (2009b), where one can find a transformation
between such pairs of problems.

6.1.3.2 Single-Agent Position-Dependent Job Scheduling Problems

The first group of results in this area concerns position-dependent log-linear job
processing times (6.11).

Theorem 6.4. (a) Problem 1|p;, = p;jr®|Cumax is solvable in O(nlogn) time by
scheduling jobs in non-decreasing order of p; values and

Coax (@) =10+ > (P1j1°) - (6.29)
j=1

(b) If basic job processing times and due dates are agreeable, i.e. p; < p; implies
di > dj forl <i # j < n, then problem 1|p;, = p;r®|Lmax is solvable in
O(nlogn) time by scheduling jobs in non-decreasing order of due dates.

(¢) Problem 1|pj, = p;jr*|>_C; is solvable in O(nlogn) time by scheduling
Jjobs in non-decreasing order of p; values and

> Cio) =nto+ Y (n—j+ Dpy1j* (6.30)

=1 Jj=1

(d1) If all basic job processing times are equal, i.e., pj = p for 1 < j < n, then
problem 1|p;, = p;r*| > w;C; is solvable in O(nlogn) time by scheduling
Jjobs in non-decreasing order of w; values.

(d2) If job weights satisfy the equality w; = wp; for 1 < j < n, then problem
lpjr = pjr¥|Y_w;C;j is solvable in O(nlogn) time by scheduling jobs
in non-decreasing order of p; values.

(d3) If basic job processing times and job weights are agreeable, i.e. p; < p;
implies w; > wj for 1 <i # j < n, then problem 1|p;, = p;jr*| > w;C;
is solvable in O(nlogn) time by scheduling jobs in non-decreasing order
of s—j ratios.

(e) Problem 1|p; = p;r®|>_T; is NP-hard.

Formulae (6.29) and (6.30) can be proved by induction with respect to the number
of jobs. Theorem 6.4 (e) follows from the NP-hardness of problem 1||Tjax (Du and
Leung 1990), which is a special case of problem 1|p; = p;r¥|>"T; wheno = 0.
In general, when o # 0, the time complexity of problem 1|p;, = p;r®| > T, is
unknown. Similarly, the time complexity of problems 1|p;, = p;r*|Lmax, L|pjr =
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Pir%| fmaxs 1pjr = pjr®|>_w;Cj and 1|p;, = p;r*|Y_ U; without additional
assumptions on « is unknown.

Similar results to those of Theorem 6.4 hold also for log-linear ageing
effect (6.16), since it differs from log-linear learning effect only by the replacement
of the negative exponent « by the positive exponent S.

The next group of results on position-dependent job processing times concerns
linear processing times (6.12) with B; = Bforl < j <n.

Theorem 6.5. (a) Problem 1|p;, = p; — Br|Cuax is solvable in O(n) time and

nn+1)

8 (6.31)

Cmax(U) =1+ Z Plj1—

J=1

does not depend on schedule o.
(b) Problem 1|p;, = p;j — Br|>_Cj is solvable in O(nlogn) time by scheduling
Jjobs in non-decreasing order of p; values and

nn+1)(n+2)

. B.  (6.32)

Y Ci@)=nto+ Y (n—j+py—
j=1 Jj=1

Formulae (6.31) and (6.32) can be proved by induction with respect to the number
of jobs. Counterparts of Theorem 6.5 (a), (b) for job processing times in the form
of pj, = pj — B,r,where 1 < j < n, are given in Bachman and Janiak (2004).

Similar results to those of Theorem 6.5 hold also for the linear ageing
effect (6.17), since it differs from the linear learning effect only by the sign before
the ageing factor 8.

The last group of results on position-dependent job processing times concerns
past-sequence-dependent processing times (6.14).

Theorem 6.6. (a) Problem 1|p;, = p; (1 + Z;;ll p[k])a |Cinax s solvable in
O(nlogn) time by scheduling jobs in non-decreasing order of p; values.

(b) Problem 1|p;, = p; (1 + Zz;ll p[k])a | > C; is solvable in O(nlogn) time
by scheduling jobs in non-decreasing order of p; values.

(¢) If basic job processing times and job weights are agreeable as in Theo-
rem 6.4 (d3), then problem 1|p;, = p; (1 + Z;;ll p[k]>a|2ijj is
solvable in O (nlogn) time by scheduling jobs in non-decreasing order of ratios

The time complexity of problem 1|p;, = p; (1 + 32, p[k])a [> w;C;
without additional assumptions is unknown. The same concerns the problems

lpjr=pj (1 + ) P[k]) |Lmax and 1|pj, = p; (1 + ) P[k]) [>-U;.
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Similar results to those of Theorem 6.6 hold also for position-dependent job
processing times in the form of (6.18).

6.1.3.3 Single-Agent Controllable Job Scheduling Problems

In the section, we recall basic results concerning the single-agent single-machine
controllable job scheduling problem 1|p; =p; — x;[ > w;C; + > c¢;x;.

For the first time the above problem was formulated and studied by Vickson
(1980a,b). Recalling that x; denotes the shortening of job J;, one has the following
two properties.

Property 6.1. For problem 1|p; = p; — x;|> w;C; + } c;x;, there exists
an optimal schedule such that forall 1 < j <neitherx; =0orx; =7p;.
Property 6.2. In optimal schedule for problem 1|p; = p;—x;| > w;C;+} c;x;,
jobs are arranged in non-decreasing order of ratios 5—’/

The complexity of the problem has been established by Wan et al. (2001).
Theorem 6.7. Problem 1|p; =p; —x;|>_ w;C; + 3 c;x; is NP-hard.

The proof of Theorem 6.7 is based on a complex reduction from EVEN-ODD
PARTITION problem (Garey and Johnson 1979); we refer the reader to Wan et al.
(2001) for details of that proof.

6.1.4 Examples of Variable Job Scheduling Problems

In this section, we present few examples of scheduling problems with variable job
processing times introduced in Sect. 6.1.1, in order to give the reader a deeper insight
into the specificity of the problems. Since in all these examples job processing times
are described by monotonically increasing or decreasing functions, throughout this
section we consider only non-idle sequences.

6.1.4.1 Examples of Time-Dependent Job Scheduling Problems
We first consider two single-agent time-dependent scheduling problems with pro-
portional job processing times (6.1).

Example 6.8. The simplest scheduling problems with proportional job processing
times (6.1) are problems 1|p; = b;t|Cmax and 1|p; = b;t| > C;.
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Consider the following instance of the problem with n = 3 jobs and #p = 1:

J 1 2 3
by 5 2
There exist 3! = 6 job sequences for this instance, but job processing times

are different in different sequences. For example, in sequence (J>, Ji, J3) we have
p2:2x52:2x1:2andC2:3,p1 :SXSI :5x3:15andC1 = 18,
and p; = 1 x S3 = 18 and C3 = 36, while in sequence (J3, J>, J1) we have
pi=1xS =1x1=1andCy =2,p,=2x 85 =2x2=4and C, = 6, and
D1 :SXSI :3OandC1 = 36.

The list of all sequences for the instance, with corresponding values of job
processing times, job completion times, the Cpyx and Y C;, are given in the
following table.

Sequence o )4l Cy PP Cp P Cp3) Crnax (0) 2. C;(0)

(J1, J2, J3) 5 6 12 18 18 36 36 50

J1, I3, Jo) 5 6 6 12 24 36 36 54

(J2, J1, J3) 2 3 15 18 18 36 36 56

(J2, J3, J1) 2 3 3 6 30 36 36 45

(J3, J1, J2) 1 2 10 12 24 36 36 48

(J3, J2, J1) 1 2 4 6 30 36 36 44
Notice that the job processing times py), where k = 1,2, 3, are different

for different sequences o. However, as stated by Theorem 6.1 (a) and (d),
the maximum completion time Cy,.x(0) is the same for all o, while the total
completion time ) C;(0) depends on o. The optimal sequence for the )  C;
criterion, according to Theorem 6.1 (d), is the sequence o* = (J3, J2, J1) with
> Ci(o*) = 44. o

Example 6.9. Another polynomially solvable time-dependent scheduling problem
with proportional job processing times (6.1) is problem 1|p; = b;t|Lpax.
Consider the following instance of the problem with n = 3 jobs and #p = 1:

All possible sequences for the instance, with corresponding values of job processing
times, job completion times, job latenesses and the L., are given in the table
below.
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Sequences  pyy  Cyp Ly pp Cp Ly pa Ca Lp Low(0)
1, o, J3) 1 2 —-10 6 8 4 16 24 0 4
Ui Js o)1 2 —10 4 6 —18 18 24 20 20
(I, J3) 3 4 0 4 8 —4 16 24 0 0
(L, J3, ) 3 4 0 8 2 -2 12 24 12 12
(I Ji ) 2 3 —21 3 6 -6 18 24 20 20
s, b, ) 2 3 21 9 12 8§ 12 24 12 12

The optimal sequence for this instance, according to Theorem 6.1 (), is 0* =

(Jz, Ji, J3), with LmaX(G*) =0.

<&

The next example in the section concerns a single-machine time-dependent
scheduling problem with linear job processing times (6.3).

Example 6.10. Problem 1|p; = a; +b;t|Cpay is the only known non-trivial single-
agent time-dependent scheduling problem with linear job processing times (6.3) that
is solvable in polynomial time.

Consider the following instance of the problem with n = 3 jobs and 7y = 0:

All possible sequences for the instance, with corresponding values of job processing
times, job completion times and the Cy,,x, are given in table below.

Sequence o Jail Cij P Cpy 28 Cy Cinax (0)
(J1, 2, J3) 1 1 3 4 11 15 15
(J1, I3, J) 1 1 5 6 8 14 14
A 2 2 7 9 21 30 30
(Jo, I3, J1) 2 2 7 9 28 37 37
A 3 3 10 3 15 28 28
(J3, T2, J1) 3 3 5 8 25 33 33

The optimal sequence for the instance, according to Theorem 6.3 (a), is sequence

o* = (J1, J3, J2) with Cyx(0*) = 14.

6.1.4.2 Examples of Position-Dependent Job Scheduling Problems

o

The next example illustrates the computation of position-dependent job processing

times with log-linear learning effect (6.11) or ageing effect (6.16).
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Example 6.11. Position-dependent log-linear job processing times with learning
effect (6.11), where p;, = p;r* (a < 0), and position-dependent log-linear job
processing times with ageing effect (6.16), where p;, = p jrﬁ (B > 0), are ones of
the simplest forms of position-dependent job processing times.

In the first case, we have the following table of job processing times p; -, in which
the job processing time in position j,r (1 < j,r < n) is equal to the basic job
processing time p; divided by rlod;

r Dir DP2.r D3.r ... DPn,r
1 P P2 Py ... Da
2 pan P2 P3 P
2lel 2lel 2lel e 2lel
3 o ;s P
3l 3lel 3] coe 3lel
n P_l‘ P p3

n
plel nle co plel

In the second case, the job processing time in position j,r (1 < j,r < n)isequal
to the basic processing time p; multiplied by rb:

r Pi.r P2.r P3.r oo Pn.r
1 D1 D2 D3 cee Dn

2 pi2f p2f p2f L p2f
3 pi38 p3f p3f L p3f
n pnf pnf paf . pnf

<

Similar tables can be obtained for other forms of position-dependent job
processing times. For example, in the case of position-dependent job processing
times (6.12) and (6.17), in the above two tables, for any 1 < r < n, one should
just replace division by % with subtraction of rf, and multiplication by r# with
addition of rf, respectively.

6.1.4.3 Examples of Controllable Job Scheduling Problems

The example below illustrates the computation of controllable job processing times
in the form of (6.22).

Example 6.12. Consider the following instance of the controllable job scheduling
problem 1|p; =p; —x;| > C; + > c;x; withn = 3 jobs and £y = 0:
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Consider first the case when all jobs have been crashed by 50 %, i.e. when x; =
1, x = % and x3 = % Then, job processing times, job completion times and the
values of the ) C; + ) c; x; criterion for all possible sequences are as follows:

Sequence o Pl Cy J4e) Cpy P Cp3) 3 Ci(0) + Y ¢jx;(0)
(J1, J2, J3) 1 1 ! 3 3 3 T
(le J37 JZ) 1 1 % % % 3 12
(J2, 1, J3) % % 1 % % 3 %
(J2, 13, ) % % % 2 1 3 11
(J3, J1, J2) % % 1 g % 3 2_25
(J3. 12, J1) 2 2 : 2 1 3 12

Notice that if jobs are not compressed at all, i.e. when x; = x, = x3 = 0,

sequence (J, Ji, J3) yields the minimum total completion time (equal to 10).
If all jobs are crashed by 50 %, i.e., when x; = 1, x, = % and x3 = %,
the minimum value of the objective ) C;(0) + D c¢;x;(0) is attained with two
sequences, (J1, Jo, J3) and (J2, J3, J1).
If all jobs have been crashed by 75 %, i.e., when x| = %, X, = % and x3 = %,
the values of job processing times, job completion times and the ) C; + ) c;x;
criterion for all possible sequences for the instance are as follows:

Sequencea  py Gy P Cp oy Gy X C@ e
(J1, J2, J3) 3 3 : 2 2 3 11
(J1. J3. J2) i i 2 2 ! 3 2
(J2. J1. J3) i i i 2 2 3 i
(J2, I3, J1) % % % 1 % % 11
(3, J1, ) 2 2 i 3 1 3 4
(3, J2, 1) 3 3 1 1 ! 2 2

As one can observe, the minimum value of the )~ C;(0) + Y _ ¢;x; criterion is
equal to %, attained for sequence (J2, Ji, J3). o

6.1.4.4 Example of a Two-Agent Variable Job Scheduling Problem

We complete this section with an example of a two-agent single-machine scheduling
problem with variable job processing times.
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Example 6.13. Consider the e-constraint approach to the two-agent single-machine
scheduling problem with time-dependent proportional job processing times, i.e.,
problem 1|p; = b;t,CE, < Q|L4 .. The aim is to find a schedule such that
the schedule minimizes the maximum lateness LA for agent A, provided that the
maximum completion time C2_ for agent B does not exceed a given upper bound
0 >0.

Let us consider the following instance of the problem: tp = 1,n4 = 2,np = 1,
pil=1t,d =6, ps =2t,d! =12, pf =31

All possible sequences for this instance, along with job completion times and the

values of LA and CB | are given in table below.

Sequence o P Cy pp Cp ey Cy Ljw(0)  CRu(0)
A, I8 TE) 1 2 4 6 18 24 12 6
A JE I 1 2 6 8 16 24 —4 24
JA, I3, TE) 2 3 3 6 18 24 12 3
A JE T 2 3 9 12 12 24 18 3
JE, T TN 3 4 4 8 16 24 2 24
JE, I TH 3 4 8 12 12 24 18 12

Notice that in all schedules corresponding to sequences from the table we have
Cp31 = 24, since by Theorem 6.1 (a) the value of Cpax does not depend on schedule
of time-dependent proportional jobs.

Notice also that different values of Q may or may not be restrictive. For example,
if O < 3 then no schedule is feasible; if 3 < @ < 6 then three schedules are feasible
and two of them, (JIA, JzA, JIB) and (JZA, JIA, JIB), are optimal; if Q > 24 then all
schedules are feasible but only one, (J{1, JB, J;'), is optimal. o

This example ends the introductory part of the chapter. In the next three sections
we give a systematic presentation of agent scheduling problems with variable job
processing times defined in Sect. 6.1.1.

Coherently with the notation in the rest of the book, we denote start
time and completion time of job J; in a schedule o by S;(0) and C;(0),
respectively.

Moreover, given two jobs J; and J;, we will often denote by o and ¢’ two
schedules such that job J; immediately precedes job J; in o, J; immediately
precedes job J; in ¢’ and the rest of the schedule is the same in o and ¢, i.e.

Finally, by x(;y we denote the ith element of a non-decreasingly sorted sequence
X1, X2, ..., Xk, 1.€., X)) =X = ... X30) =0 = X(k)-
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6.2 Two-Agent Time-Dependent Job Scheduling Problems

In this section, we give a detailed presentation of the two-agent scheduling problems
with variable job processing times described in Sect. 6.1.1.

6.2.1 Proportional Deteriorating Job Processing Times

In the section, we consider two-agent time-dependent scheduling problems with
proportional deteriorating job processing times (6.1).

62.1.1 1|CO,p; =b;t,CE < Q|LA

a; max

In problem 1|CO, p; = b;t, CEB < Q|LA,, one has to find a schedule such

that the maximum lateness L4 for jobs of agent A is minimal, provided that
the maximum completion time C.2_ for jobs of agent B does not exceed a given
upper bound Q > 0. The problem has been considered in Liu and Tang (2008),
and it is a time-dependent counterpart of the two-agent scheduling problem with
fixed job processing times, 1|CO,CE2 < Q|L4 . Time-dependent proportional
job processing times are in the form of (6.1).

An optimal algorithm for the problem is based on the following properties.

Property 6.3. An optimal schedule for problem 1|CO, p; = b;t,CE < Q|LA
is a non-idle schedule.

The property holds, since both criteria L4 and C2

max

are regular.
Property 6.4. Given an instance of 1|/CO,p; = b;1,CE < Q|LA., the
maximum completion time for agent B is given by formula (6.23) and the value

does not depend on schedule.
The property follows from Theorem 6.1 (a).
Property 6.5. For problem 1|{CO, p; = b;t,CE < Q|L4 ., there exists an opti-

max?>
mal schedule in which the jobs of agent A are scheduled in non-decreasing order of

due dates.
The property follows from Theorem 6.1 (b).
Property 6.6. For problem 1|{CO, p; = b;t,CE < Q|L4 ., there exists an opti-

max — max?>
mal schedule in which jobs of agent B are scheduled consecutively in a single block.

The property can be proved by a pairwise job interchange argument. In view of
this property, we can replace all jobs of 7 by a single artificial job J5.

The main idea of an optimal algorithm for problem 1|CO, p; = b;t, Cn]fax <
Q|LA . based on Properties 6.3-6.6, is as follows. We arrange the jobs of 74 in
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Algorithm 39 for problem 1|CO, p; = b;1,CE < Q|LA

max max
w:=1o[1;(1+b{) T, (1 + b))

: Arrange all jobs of agent A in non-decreasing order of due dates d;!
: Create artificial job Jp composed of all jobs of agent B
fori :=n, + 1 downto 1 do

Create schedule o of all jobs of agent A in which job J is in position i

if C;,(0) < O then

return o

end if
: end for
: return ‘Input instance is not feasible’

VR IQNE LD =

—_

non-decreasing order of their due dates and create the artificial job Jp. Next, at each
iteration, we schedule the job Jp in a given position, starting from position n4 + 1,
and check whether the completion time of job Jp does not exceed the upper bound
Q. If so, we return the schedule; otherwise, we decrease the position of Jz by one
and pass to the next iteration.

The pseudocode of the algorithm is presented above (see Algorithm 39).

Theorem 6.8. Algorithm 39 generates an optimal schedule for problem
1|CO, pj = bjl, CB < Q|LA in O(nyglogny + nyng) time.

max max

Proof. The correctness of Algorithm 39 follows from Properties 6.3—6.6. Lines 1,
2 and 3 need O(n4 +np), O(nglogny) and O(np) time, respectively. Loop for in
lines 4-9 is performed O(n 4) times, and the creation of schedule o in line 5 needs
O(ny4 + np) time, while checking the condition in sentence if in line 6 can be done
in a constant time if we remember the results of the previous iteration. Therefore,
the overall running time of Algorithm 39 isequalton s +ng+nylogns+n np =
O(I’lAIOgI’lA + nang). O

6212 1|CO, p; =b;t, fuix < Q1 X C/
We next address problem 1|CO, p; = b;t, f.E < Q> C].A. This problem has
been considered by Liu and Tang (2008) and it is a time-dependent counterpart of
the two-agent scheduling problem with fixed job processing times, 1|CO, fB <
o|>.C jA. Time-dependent proportional job processing times are in the form
of (6.1).

Hereafter we assume that the cost functions f,.B of jobs of J% are regular, and
their values can be computed in a constant time.

An optimal algorithm for problem 1|CO, p; = b;t, f.E < 0|2 CjA is based
on Properties 6.3—6.4, which still hold for the problem, and the following two new
properties. Let u be defined as in Algorithm 39.
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Property 6.7. 1f, in a feasible instance of problem 1|CO,p;, = b;t, fB <

0| ZC;‘, there is a job JkB € J? such that ka (u) < Q, then there exists an

optimal schedule for the instance in which job J, kB is scheduled in the last position,
and there is no optimal schedule in which a job of 4 is scheduled in the last
position.

The property can be proved by contradiction.

Property 6.8. If, in a feasible instance of problem 1|CO,p;, = b;t, fB <

o|>.C jA, for all jobs J 2 € 78 itholds f,%(u) > Q, then in any optimal schedule
the job J, ,A € J* having largest deterioration rate is scheduled in the last position.

The property can be proved by a pairwise job interchange argument.

Properties 6.7-6.8 imply that in any optimal schedule for problem
11CO,p; = bjt, fii, < QX C}', jobs of J* are arranged in non-decreasing
order of their deterioration rates. Similarly as in Chap. 3, given a value of Q, for
each job J ” one can define a 'deadline’ Df such that f;°(C”) < Q if C# < Df
and f2(CB) > Q otherwise. Each Df can be computed in constant time if the

inverse functions f;% ~are available, otherwise it requires O(lognp) time.

The main idea of the algorithm for problem 1|CO, p; = b;t, fi < 0| > C/!
is as follows. At each iteration, we select an unscheduled job to be scheduled in
the last position. If it is possible, we select a job of agent B, otherwise we select a
job of agent A having largest deterioration rate. If all jobs of agent A have already
been scheduled, and no job of agent B can be feasibly scheduled in the current last
position, the instance is infeasible.

The pseudocode of the algorithm is presented below (see Algorithm 40).

Theorem 6.9. Algorithm 40 generates an optimal schedule for problem
11CO, pj =bjt, fihy < Q1 X C; in O(nalogna + nglogng) time.

Proof. The correctness of Algorithm 40 follows from Properties 6.3-6.4 and 6.7—
6.8. Line 1 and 2 both need O(n4 + np) time. Line 3 and 4 need O(n4logny)
and O(nplognp) time, respectively. Loop while in lines 6-19 is performed n 4 +
np times, and each its iteration needs a constant time, since there is selected only
a single job. Hence, the overall running time of Algorithm 40 is O(n4logn, +
ny 10g ny ) . O

6.2.1.3 1|CO,p; =b;t, N U? = 0| X T

We next consider the problem of minimizing the total tardiness Y TjA of jobs of
agent A, given that no job of agent B is tardy. Time-dependent proportional job
processing times are in the form of (6.1).

For this problem, Gawiejnowicz et al. (2011) proposed a branch-and-bound
algorithm based on Properties 6.9—6.12 given below.
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Algorithm 40 for problem 1|CO, p; = b;t, fif < Q|3 C}

cJi=gtu gk
wi=1o[1;(1+b{) T, (1 + b))
: Arrange all agent A ]obs in non-decreasing order of deterioration rates b!
Arrange all agent B jobs in non-decreasing order of ‘deadlines’ D!
o:=0
while there exist in J unscheduled jobs do

if there exists job J2 € 758 such that £,%(u) < QO then

Jser 1= JkB

else
10: if all agent B jobs have been scheduled then
11: return ‘Input instance is infeasible’
12: else
13: Jser = agent A job with the largest deterioration rate
14: end if
15:  endif
16: Schedule job J;,; in the last position in o
17: ‘I_‘I\{Jsel}
18: =
19: end whlle
20: return o

A R el ey

b

brel

Property 6.9 gives conditions under which a schedule o dominates ¢, i.e. when
> TjA(a) <> T].A(a’).

Property 6.9. Let B, : =1+ bl‘, Bj =1+ bj and Blj = Bji = (1 + b,)(l + b])
Schedule o dominates schedule ¢’ if any of the following holds:

(@) J; € J* and J; e J4 are such that Bt < d;;

(b) J; € J* and Jj € J4 are such that B;¢ > d;, Bjt >djandb; <bj;
(c) J; € 7% and Jj € JA are such that Bt > d;;

(d) J; € 7B and Jj € J4 are such that B;¢ > d; and Bjt > d; or

(e) J; € J® and Jj € JE are such that B;t > d;, Byt > d;.

Property 6.9 can be proved by a pairwise job interchange argument.

The next two results, Property 6.10 and 6.11, allow to determine a sequence of
unscheduled jobs and the feasibility of a given schedule, and are used to speed up
the search of the tree of all possible schedules. Proofs of these properties follow
from definitions of schedule dominance and feasibility.

Let 7 denote a sequence of unscheduled jobs. Also, let (, [k + 1],...,[n]) be
the schedule in which the order of the last n —k jobs has been determined backwards
and (77, [k 4+ 1],...,[n]) be the schedule in which unscheduled jobs are arranged
in non-decreasing order of due dates.

Property 6.10. If in sequence 7/ there are no tardy jobs, then schedule
(7, [k + 1],....[n]) dominates any schedule in the form of (7, [k + 1]...., [n]).
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Algorithm 41 for problem 1|CO, p; = b;t,> U} = 0| 3T}

1: Create base population P

2: Evaluate P,

3: while does not hold stop condition do

4:  Create temporary population 7; by using a preselection operator to P;

5:  Create offspring population O; by using crossing and mutation operators to 7;
6: Evaluate O;

7:  Create a new population P; 1 by using a postselection operator to P; and O;
8: end while

9

: return the best solution in P;

Property 6.11. 1f agent B job Jy;) is such that 1o [ [ ;¢ (1 + b;) 1_[;'=k+1(1 + brjy)
>dyfork +1<i <n,then (m, [k +1],...,[n]) is not a feasible schedule.

The next result, Property 6.12, gives a lower bound on the total tardiness for jobs
in 74. Leto = (m, [k +1],..., [n]) denote a schedule in which the order of the last
n —k jobs has been determined backwards, and assume that among the unscheduled
jobs there are k 4 jobs from J“ and kp jobs from 58, where k4 + k4 = k.

Property 6.12. Giveno = (w, [k + 1],..., [n]), then

ka
Z TjA(n) > Z max {C(?)(n) - d(i’), O}

i=1

and

ka
Y Ti0) =Y max {c(;*)(a) —dp, 0} + > TA().

i=1 katls<i<k.JjpegA

Proof. Since C(;1(0) = to[[/_,(1 + b)) = to[[/=;(1 + b)) for 1 < j <k,
to ]_[,j —1(1+b(;)) is alower bound on the completion time of job Jj;; in 0. Moreover,
since the jobs of agent B cannot be tardy, we should complete the jobs in 72 as
late as possible but before their due dates. We can do this by checking whether the
completion time of a given job does not exceed its deadline and if so, putting the
job in a right place in a schedule. Repeating this procedure a number of times, we
obtain the given two bounds. O

For this problem, the same authors proposed a genetic algorithm, using the
TEAC library developed by Gawiejnowicz et al. (2006). In this algorithm, imple-
mented in C#, the operator of mutation was called with probability 0.02, the operator
of crossing was called with probability 0.80, the size of the offspring population was
equal to 50 individuals, and tournament preselection (with tournament size equal
to 5) and random postselection have been used. The stop condition was passing 100
generations. The pseudocode of the algorithm is given above (see Alg. 41).
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6.2.1.4 1|CO,p; =b;t,s; =b't,GT, f,5, < Q| X C}

This batch scheduling problem, considered by Liu et al. (2010a), is an immediate
extension of the problem presented in Sect. 6.2.1.2.

Compared to the latter case, where all jobs belong to the same group, now jobs
are divided into a number of distinct groups, each group corresponds to a batch,
and a sequence-dependent setup time is needed between jobs from different groups.
Both time-dependent proportional job processing times and setup times are in the
form of (6.1). The aim is to find a schedule of batches and to schedule jobs in each
batch.

Problem 1|CO, p; = b;t,s; = bt,GT, 5 < 0|3 C;!is not more difficult
than problem 1|CO, p; = b;t, fE < Q|> C4, since it can still be solved in
O(nglogns + nplogng) time by modifying the algorithm for the latter problem
presented in Sect. 6.2.1.2.

6.2.2 Proportional-Linear Deteriorating Job Processing Times

In the section, we consider two-agent time-dependent scheduling problems with
proportional-linear deteriorating job processing times (6.2).

6.22.1 1|CO, p; =bj(a + bt), Cmax < Q|L;,,and

1/CO, p; _b (@ +bt), fE, < Q| Y CA

Both the problems, 1|CO, p; = b;(a + bt),CE < Q|LA,, and 1|CO, p; =
bj(a+bt), fE < 0> C4, con51dered by Liu et al. (2011), are straightforward
extensions of problems presented in Sects.6.2.1.1 and 6.2.1.2, respectively. Time-
dependent proportional-linear job processing times are in the form of (6.2).

The replacement of proportional job processing times (6.1) by proportional-
linear job processing times (6.2) does not increase the time complexity of these
problems. Moreover, algorithms for these two problems are based on the same
properties and have almost the same form as their counterparts for proportional
job processing times. As implied by Theorems 6.1 (@) and 6.2 (a), the only minor
differences concern formulae for computing the values of u and Cy,yx.

6.2.22 1|CO,p; =b;(a+bt),s; = b (' +b'1),GT, f,5 < 0| ¥ C}

This problem, considered by Liu et al. (2010a), is a similar extension of problem
11CO,p; = b1, fE < O] ZCA as the one presented in Sect. 6.2.1.4. Time-
dependent proportional-linear job processing times and setup times are in the form
of (6.2).
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The new problem, 1|CO, p; = bj(a + bt),s; = b'(a" + b'1),GT, fE <
0| C4, canbe solvedin O(n4 logn 4 +np logn g) time using a modified version
of the algorithm for problem 1|CO, p; = b;t,s; = bit, B < Q|ZC]A

discussed in Sect. 6.2.1.4. -

6.2.3 Linear Deteriorating Job Processing Times

In the section, we consider two-agent time-dependent scheduling problems with
linear deteriorating job processing times (6.3).

6231 1|CO,p; =a; +bt, Y UP = 0| _wicC

In problem 1|CO, p; = a; + bt,y" UjB = 0| Zw‘]f’CJA, similarly to Sect. 6.2.1.3,
the jobs of J% are constrained to be performed within their due dates, but now
agent A wants to minimize the total weighted completion time. This problem has
been considered by Lee et al. (2010). Time-dependent linear job processing times
are in the form of (6.3) with a common deterioration rate, b; = b for all jobs.
Notice that the strong NP-hardness of this problem is implied by that of problem
11CO, 3" U} = 0] }w/C}" considered in Chap. 3.

In Lee et al. (2010), the authors proposed for this problem a branch-and-bound
algorithm based on the following result.

Property 6.13. Let P; := a; +bt, P; :=a; +bt and P; := a;(1+b) + (1+b)*.
Schedule o dominates schedule o’ if any of the following holds:

(@) Ji € J*and J; € J4 are such thatw; P; < w; P; anda; < a;;

(b) Jie J'and J; € J® are such that P; +a; <d;j anda; < a;;

(¢) Ji € J"and J; € J* are such that (1 + b)t +a; < d;, Pj+a; < d; and
a; <a;.

Property 6.13 can be proved by a pairwise job interchange argument.

Note that, given a schedule o, its feasibility can be checked by verifying whether
there exists a job J]B such that Sf )1 +b)+ af > df. If such a job exists, then
o is not feasible.

As alower bound of the total weighted completion time of a schedule o in which
the order of the first k jobs have been determined and in the set of unscheduled jobs
there are k4 jobs of agent A and kg jobs of agent B, k4 + kg = n —k, Lee et al.
(2010) apply the value

> wiCp(o) + LBus, (6.33)
lfifk,./[i]EJA

where L By is calculated as follows (see Algorithm 42).
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Algorithm 42 for calculation lower bound L Bys for problem 1|CO, p; = a; +bt,
B _ A A
U ;= 0> w 2C;
1: for j :=1ton —k do _
Cietjy 7= Cuy(1 +b) + Xizy a1+ b)Y~
: end for
: Arrange all jobs of agent A in non-decreasing order of weights w?!
: Arrange all jobs of agent B in non-decreasing order of due dates d?
ic:=0
ia:=ny
ib:= npg
9: whileic > n—k do
. YA A A
10: LBus := Y52 Wiy 41 Ci)
11: if C[,,_k] < d(?b) then

i A A el

12: C(?b) = C[,lf,-(-]
13: ib:=ib—1
14: else .

15: C(?a) = C[,,_k]
16: ia:=ia—1
17: end if

18: ic:=ic+1
19: end while
20: return LByg

The authors also use three O(n?) heuristics that construct initial suboptimal
schedules for the considered exact algorithm.

6.23.2 1|CO,p; =a; +bt,LE < 0] Zw‘]‘.‘UjA
This problem has been considered by Wu et al. (2013b). Jobs have time-dependent
linear processing times of the same form as those in Sect. 6.2.3.1.

Similarly as for the problems considered in Sect.6.2.3.1, also for problem
1|1CO, pj = a; +bt, Lﬁax <0l w;‘ UjA a branch-and-bound algorithm has been

proposed, based on the following result.

Property 6.14. Let P; := a; +(14+D)t, Pj :=a; +(14+b)t, Pj :=a;+a;(1+b)+
(14 b)t and P; := a; +a;(1 + b) + (1 + b)*¢. Schedule o dominates schedule
o’ if any of the following holds:

(@) J; e T4 and J; e g4 are such that P; > d; > P;,a; <a; and P; < dj;

(b) Ji e J'and J; € JB are such that P; > d;, Py > d; > P;anda; <aj;

(¢) Ji € J'and J; € J* are such that P; > d; > P;, P > d; > Pi,w; > w;
anda; <ay;

d) Jie T4 and J; e g4 are such that P; > d;, P, < d; anda; < a;;

(e) J; e JA and J; e g4 are such that P < d;, P; < d;anda; <ay;

f) JiejBandeejBaIesuchthatPi—di§Q<Pﬁ—d,-andPij—djfQ;
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(g) JieJ® and J; cJbB are such that Py —d; < 0, Pj—d; < Qanda; <ay;
(h) J; € J* and J; cJB are such that P; > d; and P —d; < Q.

Property 6.14 can be proved by a pairwise job interchange argument.

As in the previous section, the feasibility of a schedule o can be checked by
verifying whether there exists a job J ]B such that S ]B @)1 +b)+a;—d f > Q.
If such a job exists, schedule o is not feasible.

As a lower bound of the total weighted number of tardy jobs of a schedule ¢ in
which k jobs have been fixed, Wu et al. (2013b) apply the value

> wyUp(o) + LBuys.
1<i<k,J;eTA

where LByy is computed by an algorithm (see Wu et al. 2013b, Sect. 3.2) similar to
Algorithm 42.

For the considered problem, the authors propose also a tabu search algorithm; we
refer the reader to Wu et al. (2013b, Sect. 4) for details.

6.2.4 Proportional-Linear Shortening Job Processing Times

In the section, we consider two-agent time-dependent scheduling problems with
proportional-linear shortening job processing times (6.4).

6.24.1 1|CO,p; =b;(1—bt)|fA. f.E,

This problem, considered by Yin et al. (2012b), is a time-dependent counterpart of
problem 1|CO, f.B < Q| fA considered in Chap. 3. We deal here with shortening
jobs and job processing times in the form of (6.7).

The introduction of variable job processing times does not make problem
11CO. p; = b;(1—bt), fE < Q| fA more difficult than 1|CO, f2, < Q| f4,.
since the former problem still can be solved in O(rti1 + nplognpg) time by slightly
modified algorithm for the latter problem.

The modified algorithm uses formula (6.27) for computing job completion times,
a counterpart of Property 6.3 for shortening job processing times and the following

result that gives similar properties to those concerning problem 1|| £4 | £.B .

Property 6.15. (a) If, in a given schedule, the last job is completed at time ¢ and if
there is a job J]B such that .2 (max{0, ij —(t+ bf(l —bt))}) < O, then
there exists an optimal schedule in which a job J; € J 2 completes at time
¢ and there exists no optimal schedule in which a job J; € J4 completes at

time 7.
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(b) If, in a given schedule, the last job completes at time ¢, and for any job J ]B one
has ij (max{0, ij -+ bf(l — bt))}) > Q, then there exists an optimal
schedule in which the job Jl-A with the minimum cost is scheduled at time 7.

(c) In an optimal schedule, jobs in & are scheduled in non-decreasing order of
‘deadlines’ Df defined as in Sect. 6.2.1.2.

Using Property 6.15, similar to what presented in Chap. 3, one can find a Pareto
optimal schedule in O(n% + n%) time.

6.3 Two-Agent Position-Dependent Job Scheduling Problems

In this section, we consider several two-agent scheduling problems with position-
dependent job processing times.

6.3.1 Log-Linear Position-Dependent Job Processing Times
with Learning Effect

In this section, we consider two-agent scheduling problems with position-dependent
log-linear job processing times (6.11).

6.3.1.1 1CO, pj, = p;r*, X U? < Q| X T}

The problem, considered by Wu et al. (2011), is a position-dependent counterpart
of problem 1|CO, p; = b;1,> U} = 0|} T} from Sect. 6.2.1.3. Log-linear job
processing times with learning effect are in the form of (6.11). The aim is to find a
schedule such that the total tardiness > TjA for agent A is minimal, provided that
no job of agent B is tardy.

In Wu et al. (2011), the authors propose a branch-and-bound algorithm based on
the following counterpart of Property 6.9.

Property 6.16. Let P; = p;r*, P; := p;r%, Pj := pir®* + p;(r + 1)*, P; :=
pir*+pi(r+1)*and R := r*—(r +1)%, where 1 < r < n. Schedule o dominates
schedule o if any of the following holds:

(@) J; € J* and Ji € J4 are such that pi < pj,Si(0) + P > d; and S;(0) +
P >dj;

(b) J; € J4 and Jj € J4 are such that p; < pj,Si(o)+ P; <d; < Si(o)+ Py,
Sl(o_) + Pl‘ 2 di and pi 2r"-(};+1)b¥ + Si(U})e—dj < p],

(¢) Ji € J*and J; € J* are such that p; < p; and S;(0) + P; < d,;
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(d) J; e 7" and Jj e J4 are such that p; < pj, Si(o) + P <d; <Si(0)+ Pji,
Si(0) + Py > djand pi + “3% < pj;

(e) J; € J4 and Jj € J# are such that S;(c0) + P; >d;, Si(0) + P; <d; and
Pi% < PDpjs

(f) Ji € J4and J; € J4 are such that p; < p; and S;(0) + P; < d;;

(g) Ji € J'and J; € J? are such that S; (o) + min{ Py, P;} > d;, Si(0) + P; <
d; andp,-% < pj;

(h) J; € % and Jj € J4 are such that p; < pj,Si(0) + Pj < d; and S;(0) +
P; < d;;

(i) J; € JE and Jj € JE are such that pi < pj,Si(0)+ P; <d;,and S;(0) +

Wu et al. (2011) check the feasibility of a schedule o verifying whether there
exists a job Ji such that Si(0) + pmin(k + 1) > d;fm’ where pmin is the minimal
basic processing time among unscheduled jobs and d 2 is the smallest due date
among jobs of J&. If such a job exists, schedule o is not feasible.

As alower bound of the total tardiness of a schedule o in which k jobs have been
fixed, the authors apply the value

Z Tji)(0) + LBys,
1<i<k,J;eJg4

where L Bys is computed by an algorithm (see Wu et al. 2013b, Algorithm 1) similar
to Algorithm 42. In order to construct initial suboptimal schedules for the considered
exact algorithm, they use two O(n?) heuristics.

63.1.2 1]CO, p;, = p;r*,CE < Q| T wiC!

This problem has been considered by Li and Hsu (2012). Position-dependent log-
linear job processing times with learning effect are in the form of (6.11). For this
problem, Li and Hsu (2012) proposed a branch-and-bound algorithm based on the
following result.

Property 6.17. Let P; := p;ir®, P; := p;(r + 1)* and P := p;r® 4+ p; (r + 1)*.
Schedule o dominates schedule o’ if any of the following holds:

(@) JieJ and J; € T4 aresuchthat% > k> land S;(0) + Py < 0;

(b) Ji € JB and J; € J® are such that % 2
(¢) Ji e J4and J; € J¥ are such that f}—f
(d) Ji € JB and J; € J4 are such that f}—f

o > 1;
% > land S;(0) + P; < Q;

2L > 1and S;(0) + Py < Q.

Wi

IV IV v

The authors check the feasibility of a schedule o by verifying whether there
exists a job J;! such that S{*(0) > Q or S#(0) + pmin(k + 1)* > Q, where ppin
is the minimal basic processing time among unscheduled jobs. If such a job exists,
schedule o is not feasible.
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As a lower bound on the total weighted completion time of schedule o in which
only the first k jobs are fixed, Li and Hsu (2012) apply the value

n n—k
A A
> wiC(0) + > wir Cit .

i=1 j=l1

max —
0| Zw;’ C jA a genetic algorithm. In the algorithm, population size was equal to

40, the probability of cross-over was equal to 1, the probability of mutation was
equal to 0.1, selection was made by choosing the best solution from the previous
population and the stop condition was passing 27 generations; we refer the reader
to Li and Hsu (2012, Sect. 4) for details.

The authors also proposed for problem 1|CO,p;, = p;r*, CE

6.3.2 Log-Linear Position-Dependent Job Processing Times
with Learning and Ageing Effects

In this section, we consider a two-agent scheduling problem with position-
dependent log-linear job processing times (6.11) and (6.16).

6.32.1 1|CO, p*

A B B B A A
G =P5r Py, = pirf Ly <0 X wiC;

max

In this problem, considered by Cheng et al. (2011b), learning and ageing
effects (6.11) and (6.16) are combined, i.e. job processing times of agent A are
in the form of (6.11), while those of agent B are in the form of (6.16). For this
problem, Cheng et al. (2011b) proposed a branch-and-bound algorithm exploiting
the following result.

Property 6.18. Let P? := pirP, P} := pX(r + VP, P} == plrf + pi(r + 1)f
andR := r*—(r + 1)*, where 1 < r < n. Schedule o dominates schedule ¢’ if any
of the following holds:

! w

1
(@) JieJ and J; € T4 are such that 22 > w—{ > 1;

i

(b) J; € JB and J; € JP are such that p? > [;Jz, Si(0) + P? < d? and S;(0) +
Pi]? < df;

1
(¢) Ji € B and J; € J4 are such that S; (o) + P? < d? and p? < prj—ﬁR.

The authors show that the feasibility of a schedule o can be checked by verifying
whether there exists a job JJB such that SJB (o) > d]B or Sf (o)+ pf k+1)f > dJB.
If such a job exists, schedule o is not feasible.

As a lower bound of the total weighted completion time of a schedule o with the
first k jobs fixed, Cheng et al. (2011b) apply the bound (6.33).
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The authors also proposed for the problem a simulated annealing algorithm; we
refer the reader to Cheng et al. (2011b, Sect. 4) for details.

6.3.3 Linear Position-Dependent Job Processing Times
with Learning and Ageing Effects

In this section, we consider two-agent scheduling problems with position-dependent
linear job processing times with learning effect (6.12) and ageing effect (6.17).

6.33.1 1|CO, pj, = p; —Br, fiy < QI X C}
and 1|CO, pj, = pj + Br, frms < I X C}!

These problems, considered by Liu et al. (2010b), are position-dependent coun-
terparts of time-dependent scheduling problems studied in Sects.6.2.1.2, 6.2.1.4,
6.2.2.1 and 6.2.2.2. In both these problems one should find a schedule such that

the total completion time ) C jA for agent A jobs is minimal, provided that the

maximum cost f,2 for agent B jobs does not exceed a given upper bound Q > 0.

Position-dependent job processing times are in the form of either (6.12) or (6.17)
with B; = Bforl < j <n.

For these problems, based on counterparts of Properties 6.3, 6.7, 6.8 and Theo-
rem 6.5 (a), the authors propose algorithms of complexity O(n 4 logn 4+nplogng)
which are obtained by simple modifications of Algorithm 40.

6.3.4 Past-Sequence-Dependent Job Processing Times
with Ageing Effect

In this section, we consider two-agent scheduling problems with past-sequence-
dependent job processing times in the form of (6.18) or (6.19).

634.1 11CO, p;, = p; (1+ LiZi Pn) s Gt < Q12 C

r—1
and 1|C0’ Pjr =Dj (1 + z:kr=——11pp[k]) ’ Cnlfax = Ql Z CJA
k

k=1

These problems, considered by Liu et al. (2013), are past-sequence-dependent coun-
terparts of time-dependent scheduling problems studied in Sects.6.2.1.2, 6.2.1.4,
6.2.2.1 and 6.2.2.2. Past-sequence-dependent job processing times with ageing
effect are in the form of (6.18) or (6.19) with 8 = 1. The aim is to find a schedule
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such that the total completion time ) C jA for agent A is minimal, provided that the

maximum completion time C.2
0 >0.

For these problems, based on counterparts of Properties 6.3, 6.7, 6.8 and The-
orem 6.5 (a), Liu et al. (2013) proposed algorithms of complexity O(n4logn 4 +
nplognp) which are immediate modifications of Algorithm 40.

for agent B does not exceed a given upper bound

6342 11CO, p;r = p; (1+ LiZi Pin) » S = Q1 €

r—1
and 1|CO, p;., = p; <1+ M) L <0y

—1
Z;:l Pk

These problems have been considered by Liu et al. (2013) and generalize the
problems analyzed in Sect.6.3.4.1. Here the objective of agent B is to minimize
the maximum cost, f,2_. Both these problems can be solved by the same algorithms

as their simpler variants with the CZ _ objective.

6343 1/CO, pjr = pjmax {(1+ i) pu)* B},
YUF < 0|y wich

This problem, considered by Cheng et al. (2011a), is the past-sequence-dependent
counterpart of problem 1|CO, p; = a; + bt,>_ U} < Q| Y- w/C}" presented in
Sect. 6.2.3.1. Past-sequence-based job processing times with learning effect are in
the form of (6.13).

The authors proposed for the problem a branch-and-bound algorithm based on
the following result.

Property 6.19. Let P; := p;max{P% B}, P; := p;max{P% B} and P; =
pjmax {(P + p;)* B}, where P := 1+ Y ;_\ ppjand 1 < r < n. Schedule
o dominates schedule o if any of the following holds:

(@) JieJ and J; € T4 aresuchthat%>lz%;

(b) J; € JB and Jj € JB are such that p; < pj, Si(c) + P, + P < d; and
Si(0)+Pi <d,';

(¢) Ji € J*and J; € J® are such that p; < p; and S;(0) + P; + P; < d,;

d) JieJ® and J; e J4 are such that P; < P; — Pjand S;(0) + Pi < d;.

Cheng et al. (201 1a) check the feasibility of a schedule o verifying whether there
exists a job J]B such that Sf (o) > df or Sf (0)+ P; > ij. If such a job exists,
schedule o is not feasible; otherwise, it is feasible.

As alower bound on the total weighted completion time of a schedule o with the
first k& jobs fixed, the bound (6.33) is applied.
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The authors also proposed for the problem a simulated annealing algorithm; we
refer the reader to Cheng et al. (2011a, Sect. 3.3) for details.

6344 1|CO, p?, = pA(1+ Y42\ pu)®
Pt = pPa+ X0 pw)?, LE, < Q1T wicCH

This problem, considered by Wu et al. (2012), is the past-sequence-dependent
counterpart of problem 1|C0,pﬁr = pj‘r“,pfr = Pf”ﬂ’Lﬁax < OIZw;‘CjA
discussed in Sect.6.3.2.1. The main difference between these two problems is
the replacement in the latter problem the log-linear job processing times (6.11)
and (6.16) by past-sequence-dependent job processing times (6.14) and (6.18),
respectively.

This replacement does not make problem 1|CO, pﬁr = p;’(l + Z};_:ll i)
plo=pl0+ Sz pu)f LB, < O] >_w}C/* more difficult compared to its

counterpart from Sect. 6.3.2.1, since properties of the former problem have almost
the same form as those of the latter one.

For the considered problem, the authors proposed a branch-and-bound algorithm
and an ant colony algorithm; we refer the reader to Wu et al. (2012, pp. 1987-1990)

for details.

6.4 Two-Agent Controllable Job Scheduling Problems

In this section, we present several two-agent scheduling problems with controllable
job processing times considered by Wan et al. (2010).

6.4.1 Linear Controllable Job Processing Times with the Total
Compression Cost Criterion

In the section, we consider two-agent controllable job scheduling problems with the
total compression cost criterion cj’x;’ for agent A, provided that the objective of
agent B must not exceed a given upper bound Q > 0. Moreover, in all the problems
only the jobs of agent A have variable processing times of the form (6.22), while
jobs of agent B have processing times described by numbers.

6.4.1.1 1|CO, pt =P} —xi,rd,df, pmtnt, 0¥, fE < 0| ¥ chx4

Despite the simplifying assumption that only one agent has jobs with variable
processing times, only some of the problems of this type can be solved in a
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B

max —

Algorithm 43 for problem 1|CO, p;‘ = ﬁ;‘ —xj‘, r;‘, dJA, pmtnt, pmtn®
ALA
0| ch X
1: for each job j of agent B do
2 Compute ‘deadline’ Df
3 r]B =0
4 cf =400
5
6

: end for

: Starting from time max, <; <, , {D f } schedule all agent B jobs backwards in such a way that
each of them is as close its deadline as possible

: Apply the algorithm by Leung et al. (1994) to generate a schedule o for jobs of both agents

8: return o

2

polynomial time. We start with one of the problems that was shown computationally
difficult in Wan et al. (2010).

Theorem 6.10. Problem 1|CO, pt = Pt — x4, rid.df pmint oF, fB

o1 c;lx;l is strongly NP-hard.

A

Proof. The reduction from the 3-PARTITION problem with 3¢ elements and the
maximum value E is as follows. We letny = ¢ — 1 and np = 3q. Jobs in 74 have
unit processing times and cannot be compressed, i.e., p;‘ = ﬁ;‘ = 1. Moreover, job

J; of agent A has release date r;‘ =jxE+(-1 anddeadlined;1 =jxE+],
where 1 < j < g — 1. The criterion of agent A is the total compression cost
>_; ¢/x{ and the threshold for the cost equals 0.

Jobs of agent B have processing times equal to a; and can be compressed. The
criterion of agent B is f.2 = CEB .

The further proof follows by showing that the 3-PARTITION problem has a
solution if and only if there exists such a schedule for problem 1|C o, p;‘ =
7l —xtrddlt. pmint o8 fB < Q|3 c#x that the total cost ) ; ¢! 0
|

6.4.1.2 1|C0,p —p] —xA,r] dA,pmtn , pmtn®,
max < QIch

This problem is almost the same as the one considered in the previous section,
except that now also the jobs of agent B can be preempted. This change makes
this new problem polynomially solvable (see Algorithm 43).

Algorithm 43 is based on an algorithm due to Leung et al. (1994) which solves
problem 1{CO, p; = p; — xj,r;,dj, pmin|}_c;x; in O(nlogn + kn) time,
where k is the number of distinct values of compression costs ¢;, 1 < j < n.

Theorem611 Algorithm 43 generates an optimal schedule for problem
1|CO, p] =Dj —xA A dA pmin?, pmin®, fB < Q|Zc in O(nlogn+
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(k + 1)n) time, where k is the number of distinct values of compression costs ¢; of
agent A.

The correctness of Algorithm 43 and its running time follow from the correctness
and the running time of algorithm by Leung et al. (1994).

Modified versions of Algorithm 43 can be used to solve another two problems,
1|Co, ij = ﬁ;‘ — xjA, ]A,d]A pmtn?, B,pmmB nﬁlx < 0| ZCA 4 and
A pmtnt,r ]B, dB,pmtnB B <0lY chA in Wthh
also agent B ]obs have ready times or ready tlmes and due dates. In the ﬁrst case, itis
sufficient to use in Step 3 of Algorithm 43 non-zero agent B due dates. In the second
case, one need to apply the following result in which ‘deadlines’ D f , defined as in

Sect. 6.2.1.2, allow to schedule jobs as late as possible.

Property 6.20. For problem 1]|CO, p;‘ = ﬁ;‘ - x]A, d]A,pmtnA,pmtnB,
fB 1> 4 c; there exists an optimal schedule in which agent B jobs are scheduled

as late as p0551b1e.

The modified algorithm uses algorithm by Leung et al. (1994) for all jobs of both
agents and next, if necessary, applying Property 6.20 it combines pieces of agent B
jobs together and moves them towards their deadlines’.

6.4.2 Linear Controllable Job Processing Times with Other
Criteria Than the Total Compression Cost

In this section, we present some two-agent controllable job scheduling problems
studied by Wan et al. (2010) which concern other criteria than the total compression
cost Y c;‘x;‘ discussed in Sect. 6.4.1.

6.4.2.1 1|CO, p? =P} — x4, d4, pmint,o¥, fE <
Q|ZCA +Zch] and
1|C09P _17]_3‘3;t pmtnA,oB,fnﬁleQ|ZchA+Tn‘;‘ax

Wan et al. (2010) claim without proof that by similar reductions from the
3-PARTITION problem as in Sect. 6.4.1.1 one can prove that problems

4.df, pmtnA B e <01 CH+ Y cfxt and
j’ »,pmtl’l max—Q'ZCAxA—i_TI’glaX
are strongly NP-hard as well.

e 1|CO, pj —pj — X
e 1|CO, pj —pj—x
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6.4.22 1|CO, p? = 5;‘ — x4, pmint, o, fE < Q|Y CAH+ Y ctxd

This problem has been mentioned at the end of the previous section. In the case
when basic job processing times and compression costs of agent A are agreeable,
ie. if piA < pj’ implies ciA < c;’ for arbitrary jobs J; and J; of agent A, Wan
et al. (2010, Sect.4) proposed to solve this problem by the following algorithm of
complexity O(np(na + np)n’ logn ).

First, for job J jB there is computed ‘deadline’ D ]B . After that, starting from time
max|<; SHB{Df}, a schedule o is built by scheduling all jobs in 72 backwards, so
that each of them is as close to its ‘deadline’ as possible. Next, the jobs in J* are
scheduled by the preemptive SPT rule, skipping time slots occupied in o by jobs of
J 8. Finally, the jobs of J4 are accordingly compressed and scheduled again using
the preemptive SPT rule.

Similar approaches allow to solve further two-agent scheduling problems with
controllable job processing times in the form of (6.22), as reported in Wan et al.
(2010, Sects. 4 and 5).

This section ends our presentation of agent scheduling problems with different
forms of variable job processing times.

6.5 Tables

In the section, we present tables that summarize the time complexity statuses of the
scheduling problems considered earlier in the chapter. In all the tables symbols 7,
n4 and np denote the total number of jobs of both agents, the number of jobs of
agent A and the number of jobs of agent B, respectively.

In Table 6.2 we summarize the time complexity statuses of single-agent schedul-
ing problems with time-dependent job processing times considered in Sect. 6.1.3.1.

In Table 6.3 we summarize the time complexity statuses of single-agent
scheduling problems with position-dependent job processing times considered
in Sect. 6.1.3.2.

In Table 6.4 we summarize the time complexity statuses of two-agent
scheduling problems with time-dependent job processing times considered in
Sect. 6.1.

In Table 6.5 we summarize the time complexity statuses of single-machine two-
agent scheduling problems with position-dependent job processing times considered
in Sect. 6.2.

In Table 6.6 we summarize the time complexity statuses of single-machine two-
agent scheduling problems with controllable job processing times considered in
Sect. 6.3.
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Table 6.2 Time complexity of single-agent time-dependent scheduling problems
Problem Time complexity Reference Page
1p; = b;t|Crax O(n) Theorem 6.1 (a) 228
1p; = bjt|Lyax O(nlogn) Theorem 6.1 (b) 228
Up; = bjt| funax on?) Theorem 6.1 (¢) 228
lp; =b1] 3 C; O(nlogn) Theorem 6.1 (d) 228
lp; =bjt| > w;C; O(nlogn) Theorem 6.1 (e) 228
lp; =b;t| 3 U; O(nlogn) Theorem 6.1 (f) 228
lUp; =bt| 3T, Open Section 6.1.3.1 228
lp; = bj(a + bt)|Cax O(n) Theorem 6.2 (a) 228
lp; = bj(a + bt)|Lmax O(nlogn) Theorem 6.2 (b) 228
lp; = bj(a + bt)| fiax on?) Theorem 6.2 (c) 228
lp; =bjla+bt)|>C; O(nlogn) Theorem 6.2 (d) 228
lp; =bja+b)| > w,;C; O(nlogn) Theorem 6.2 (e) 228
lp; =bjla+b)|>U; O(nlogn) Theorem 6.2 ( f) 228
lp; =bjla+bt)| 3T, NP-hard® Theorem 6.2 (g) 228
lHp; =a; 4+ bjt|Cua O(nlogn) Theorem 6.3 (a) 229
llp; =a; + bjt|Lyax NP-hard Theorem 6.3 (b1) and (b2) 229
lp; =a;+bjt] fuax NP-hard Theorem 6.3 (c) 229
llp; =a; +b;1|3C; Open® Section 6.1.3.1 228
lp; =a; +b;t] > w;C, NP-hard Theorem 6.3 (d) 229
lp; =a; +b;t| 3 U; NP-hard Theorem 6.3 (e) 229
lp, =a; +b;1|3T; NP-hard Theorem 6.3 (f) 229
2Ifa = 1 and b = 0, otherwise the problem is open
®Evenifa; =1forl <j <n
Table 6.3 Time complexity of single-agent position-dependent scheduling problems

Time
Problem complexity Reference Page
Hpjr = p;jr*|Cmax O(nlogn) Theorem 6.4 (a) 231
Hpjr = p;jr*|Lmax O(nlogn)* Theorem 6.4 (b) 231
Upjr = p;r®| fumax Open Section 6.1.3.2 231
Up;r =pjr*l1>C; O(nlogn) Theorem 6.4 (¢) 231
Upjr = p;jr¥l > w;C; O(nlogn)*® Theorem 6.4 (d1), (d2) and (d3) 231
Upjr = p;ir*1 2 U; Open Section 6.1.3.2 231
Upjr =p;ir*| 2T, NP-hard®  Theorem 6.4 () 231
Hpjr = pj — BrlCnax O(n) Theorem 6.5 (a) 232
lpjr =p; —BriXC; O(nlogn) Theorem 6.5 (b) 232
Upj, = pj (1 + Zk_l Pk |Cmdx O(nlogn) Theorem 6.6(a) 232
pir = p (1 + 302 piy) ILms Open Section 6.1.3.2 231
Upsr = p; (14 252 P | Y C;  O(nlogn) Theorem 6.6 (b) 232
Up;r =p; (1 + 3 i) 12> w;C; O(nlogn)* Theorem 6.6 () 232
Upjr = p; (1 Y] p[k]) |YU;  Open Section 6.1.3.2 231

# Under additional assumptions on p;, w; or d;; otherwise, the problem is open

b If & = 0, otherwise the problem is open
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Table 6.4 Time complexity of two-agent time-dependent scheduling problems

Problem Time complexity Reference Page
11CO,p; =b;1,CE < OILA, O(nylogng +nanp) Theorem 6.8 240
11CO, p; = bjt, fE < Q|ZCJ-A O(mglogng +nplogng) Theorem 6.9 241
11CO, p; =b;jt. > UP =0T} Open Section 6.2.1.3 241
1|C0,p] = bjl,Sj = b}l‘,

GT. 5. <olXxc O(nylogng +nplognp) Section6.2.1.4 244
11CO, p; =b;j(a+bt),CE, < O|LA, O(n4logng +nang) Section 6.2.2.1 244

max —

11CO, p; =bj(a+bt),s; =bj(a +b't),
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6.6 Bibliographic Remarks

In this section, we give some remarks on main references related to scheduling
problems with variable job processing times. In view of space limitations, we refer
the reader mainly to review papers and books that cover major parts of research
done on a particular type of variable job processing times.

6.6.1 Time-Dependent Job Scheduling Problems

The first review on time-dependent scheduling, Gawiejnowicz (1996), covers
references on single-machine problems published up to 1995. This review discusses
time-dependent scheduling in the context of so-called discrete-continuous schedul-
ing in which, apart processors that are discrete resources, jobs for completion need
also continuous resources such as energy or power.

The next time-dependent scheduling review, Alidace and Womer (1999), covers
literature up to 1998. This review also discusses mainly single-machine time-
dependent scheduling problems, since to that time only a few authors have
considered parallel-machine problems with time-dependent job processing times
(Chen 1996, 1997; Kononov 1997).

The last review on time-dependent scheduling so far, Cheng et al. (2004a),
discusses references published up to 2003 and includes some new topics at that time
such as flow shop scheduling with time-dependent job processing times (Kononov
and Gawiejnowicz 2001; Mosheiov 2002).

The most recent discussion of time-dependent scheduling is presented in the
book by Gawiejnowicz (2008). This book reviews literature up to 2008, including
also non-English references, and discusses in detail single-, parallel- and dedicated-
machine time-dependent scheduling problems. In particular, in Chap. 6 of the book
are presented proofs of results given in Sect. 6.2.
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Table 6.5 Time complexity of two-agent position-dependent scheduling problems
Problem Time complexity Reference Page
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6.6.2 Position-Dependent Job Scheduling Problems

The first position-dependent scheduling review, Bachman and Janiak (2004), covers
literature up to 2001 and presents several complexity results on scheduling with
position-dependent log-linear and linear job processing times.

The most recent review on position-dependent scheduling, Biskup (2008),
discusses references published up to 2007 and covers single- and multiple-machine
scheduling problems, in identical parallel and dedicated parallel environments, with

many forms of position-dependent job processing times.
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Table 6.6 Time complexity of two-agent scheduling problems with controllable jobs

Problem Time complexity Reference Page

1|C0 pJA = p;‘ - Strongly NP-hard Theorem 6.10 254
A A oB
j, j,dj,pmm , 0%,
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Review by Anzanello and Fogliatto (2011) includes a detailed analysis of curve
shapes describing different forms of learning effect. A critical discussion of existing
literature on scheduling problems with position-dependent job processing times and
a proposal of a unifying view on some of the problems one can find in Rustogi and
Strusevich (2012).

In the first two of these reviews are described proofs or given references to results
mentioned in Sect. 6.3.

6.6.3 Controllable Job Scheduling Problems

The first survey on scheduling problems with controllable job processing times,
Nowicki and Zdrzalka (1990), concerns mainly to single-machine problems, though
it also addresses flow shop and parallel-machine problems, and covers references up
to 1988.

The most recent review on the subject, Shabtay and Steiner (2007), following
the classification scheme introduced in Nowicki and Zdrzalka (1990), presents a
detailed discussion of single-, parallel- and dedicated-machine scheduling prob-
lems, and covers literature of the subject up to 2006.

Some controllable job scheduling problems are also discussed in reviews by
Chen et al. (1998) and Hoogeveen (2005).

In all these reviews are described proofs or are given references to results
mentioned in Sect. 6.4.
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