
Multiagent
Scheduling

Alessandro Agnetis
Jean-Charles Billaut
Stanisław Gawiejnowicz
Dario Pacciarelli
Ameur Soukhal

Models and Algorithms

Multiagent Scheduling

Alessandro Agnetis • Jean-Charles Billaut •
Stanisław Gawiejnowicz • Dario Pacciarelli •
Ameur Soukhal

Multiagent Scheduling

Models and Algorithms

123

Alessandro Agnetis
Dipartimento di Ingegneria
dell’Informazione

e Scienze Matematiche
UniversitJa di Siena
Siena, Italy

Jean-Charles Billaut
Ameur Soukhal
Laboratoire d’Informatique
Université François Rabelais Tours
Tours, France

Stanisław Gawiejnowicz
Faculty of Mathematics and

Computer Science
Adam Mickiewicz University
Poznań, Poland

Dario Pacciarelli
Dipartimento di Ingegneria
UniversitJa Roma Tre
Roma, Italy

ISBN 978-3-642-41879-2 ISBN 978-3-642-41880-8 (eBook)
DOI 10.1007/978-3-642-41880-8
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014930231

© Springer-Verlag Berlin Heidelberg 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com

To Silvia, Walter and Gaia
Alessandro Agnetis

To my parents
Jean-Charles Billaut

To Mirosława and Agnieszka
Stanisław Gawiejnowicz

To my parents
Dario Pacciarelli

To my parents
Ameur Soukhal

Preface

Scheduling problems are combinatorial optimization problems in which some
activities have to be executed using resources that they need. A feasible allocation
of the resources to the activities over time is called a schedule. The quality of a
schedule is measured by various optimality criteria that are functions of completion
times of the activities and the amounts of resources that have been used. Problems
in the construction of different classes of schedules with required properties are
considered in the theory of scheduling that originated approximately 60 years ago.

The theory of scheduling is a very active research area containing a great number
of scheduling models. Several books (see, e.g., Blazewicz et al. 2007; Brucker
2007 or Pinedo 2008) present classical models of scheduling problems in which all
data are described by numbers, and schedules are evaluated by a single optimality
criterion. Some other books present more specific models such as scheduling
problems in just-in-time manufacturing systems (Jozefowska 2007), scheduling
problems when the quality of a schedule is measured by several optimality criteria
(T’Kindt and Billaut 2006) or scheduling problems in which job processing times
depend on when the jobs are started (Gawiejnowicz 2008).

The book presented to the reader is devoted to multiagent scheduling. Research
on this scheduling model was started approximately 10 years ago, after publication
of Baker and Smith (2003) and Agnetis et al. (2004), in which two-agent scheduling
was introduced. In multiagent scheduling problems, activities share resources but
are maintained by two or more agents that use their own optimality criteria. These
agents may or may not compete, and the final schedule is evaluated by several
optimality criteria. Though multiagent scheduling is intensively studied in view of
many applications, it was not presented earlier in a monograph.

This book is organized into six chapters that can be divided into two parts.
The first, introductory part of the book is composed of two chapters. Chap-

ter 1 gives a general introduction to multiagent scheduling, introducing general
definitions and notation, several resolution approaches for multicriteria problems
and different scenario when considering several agents. Chapter 2 recalls basic ele-
ments of complexity theory and resolution methods. Algorithms with performance

vii

viii Preface

guarantees, approximation schemes, implicit enumeration algorithms and relaxation
techniques are presented.

The second, main part of the book is composed of four chapters. Chapter 3
deals with single machine multiagent scheduling problems with fixed job processing
times. Problems presented in the chapter are divided into groups with respect to the
optimality criteria used by agents. Chapter 4 concerns single machine scheduling
problems with batching constraints. For these problems, jobs of one agent can be
gathered into batches that are processed in parallel or in series. Chapter 5 deals
with parallel machines environments. Problems with and without preemption are
considered. Finally, Chap. 6 deals with variable job processing times; it means
scheduling problems where the processing times depend on the job starting times,
their positions in schedule or are changing in some interval between a minimum and
a maximum value.

In all the chapters, the literature of the subject is reviewed and a lot of problems
are presented with complexity results and different resolution methods. In order to
make the book as compact and actual as possible, references discussed in the book
concern only agent scheduling problems with regular optimality criteria listed in
Chap. 1 and published not later than June 30, 2013. The authors also decided to
include in the book numerous examples to illustrate the most important aspects of
considered problems and to make the contents as clear as possible. Moreover, at the
end of Chaps. 3–6, some tables are given that summarize the main results.

The book is intended for researchers and Ph.D. students working in the theory
of scheduling and other members of scientific community who are interested in
recent scheduling models. Since prerequisites for reading this book are only the
basic knowledge of discrete mathematics, algorithmics, complexity theory and a
high-level programming language, this book can also serve students of graduate
studies.

Multiagent scheduling is still in development. Hence, though the authors made a
substantial effort to give the reader a complete presentation of the subject, it is not
excluded that some issues or references have been missed. Therefore, the authors
will welcome any comments on the book.

Ending, the authors wish to express their gratitude to Christian Rauscher, who
on behalf of Springer was responsible for work on this book. Thank you very much,
Christian, for your patience and cooperation!

Siena, Italy Alessandro Agnetis
Tours, France Jean-Charles Billaut
Poznań, Poland Stanisław Gawiejnowicz
Roma, Italy Dario Pacciarelli
Tours, France Ameur Soukhal

Contents

1 Multiagent Scheduling Fundamentals . 1
1.1 Main Concepts and Notions . 1

1.1.1 Basic Definitions of Multiagent Scheduling 2
1.1.2 Multiagent Scheduling Applications .. 3

1.2 Multiagent Scheduling Problem Description . 6
1.2.1 Job Characteristics . 6
1.2.2 Machine Environment . 7
1.2.3 Optimality Criteria . 8

1.3 Solution Approaches to Multiagent Scheduling Problems 10
1.3.1 Feasibility Problem . 10
1.3.2 Linear Combination of Criteria. 10
1.3.3 Epsilon-Constraint Approach.. 11
1.3.4 Lexicographic Order . 11
1.3.5 Pareto Set Enumeration .. 12
1.3.6 Counting .. 13

1.4 Classification of Multiagent Scheduling Problems 13
1.4.1 Competing Agents . 13
1.4.2 Interfering Sets . 13
1.4.3 Multicriteria Optimization .. 13
1.4.4 Nondisjoint Sets . 14

1.5 Notation of Multiagent Scheduling Problems . 14
1.6 Examples of Single- and Multiagent Scheduling Problems 16
1.7 Bibliographic Remarks . 22

2 Problems, Algorithms and Complexity . 23
2.1 Basic Notions of Complexity Theory .. 23
2.2 NP-Completeness and NP-Hardness. 25

2.2.1 NP-Completeness . 25
2.2.2 NP-Hardness . 26

ix

x Contents

2.3 Enumeration and Exact Algorithms . 28
2.3.1 Dynamic Programming . 28
2.3.2 Branch-and-Bound Algorithms. 30
2.3.3 Mathematical Programming Algorithms.. 32

2.4 Approximation Algorithms . 36
2.4.1 Problems with One Objective Function .. 36
2.4.2 Problems with Multiple Objective Functions 38

2.5 Approximation Schemes . 39
2.5.1 Simplifying .. 40
2.5.2 Solving . 41
2.5.3 Translating Back . 42

2.6 Relaxation of Problems. 43
2.6.1 Linear Programming Relaxation . 43
2.6.2 Lagrangian Relaxation . 44

2.7 Complexity of Basic Scheduling Problems. 48
2.7.1 Single Machine Scheduling Problems . 48
2.7.2 Multimachine Scheduling Problems . 52
2.7.3 Reductions Between Scheduling Problems 53

2.8 Bibliographic Remarks . 55

3 Single Machine Problems . 57
3.1 Functions fmax; fmax . 57

3.1.1 Epsilon-Constraint Approach.. 58
3.1.2 Computing the Pareto Set. 65
3.1.3 Linear Combination .. 67

3.2 Functions Cmax;
P
Cj . 71

3.2.1 Epsilon-Constraint Approach.. 72
3.2.2 Computation of the Pareto Set. 73
3.2.3 Linear Combination .. 74

3.3 Functions fmax;
P
Cj . 74

3.3.1 Epsilon-Constraint Approach.. 74
3.3.2 Computing the Pareto Set. 77
3.3.3 Linear Combination .. 80

3.4 Functions
P

wjCj ; Cmax . 80
3.4.1 Epsilon-Constraint Approach.. 81
3.4.2 Computing the Pareto Set. 87
3.4.3 Linear Combination .. 87
3.4.4 Approximation . 91

3.5 Functions
P

wjCj ; Lmax . 92
3.5.1 Epsilon-Constraint Approach.. 92
3.5.2 Computing the Pareto Set. 101
3.5.3 Linear Combination .. 102

3.6 Functions
P

wjCj ; fmax . 102
3.7 Functions

P
Uj ; fmax . 102

3.7.1 Epsilon-Constraint Approach.. 103
3.7.2 Computing the Pareto Set and Linear Combination 107

Contents xi

3.8 Functions
P
Tj ; fmax . 108

3.8.1 Epsilon-Constraint Approach.. 108
3.9 Functions

P
Cj ,

P
Cj . 109

3.9.1 Epsilon-Constraint Approach.. 110
3.9.2 Computing the Pareto Set. 114
3.9.3 Linear Combination .. 115

3.10 Functions
P

wjCj ,
P

wjCj . 116
3.10.1 Epsilon-Constraint Approach.. 116
3.10.2 Approximation . 121
3.10.3 Computing the Pareto Set. 126
3.10.4 Linear Combination .. 126

3.11 Functions
P
Uj ,

P
Cj . 126

3.11.1 Epsilon-Constraint Approach.. 126
3.11.2 Computing the Pareto Set. 127
3.11.3 Linear Combination .. 127

3.12 Functions
P
Tj ,

P
Cj . 130

3.13 Functions
P

wjCj ,
P
Uj . 130

3.13.1 Epsilon-Constraint Approach.. 131
3.13.2 Linear Combination .. 131

3.14 Functions
P
Uj ,

P
Uj . 131

3.14.1 Epsilon-Constraint Approach.. 132
3.14.2 Computing the Pareto Set and Linear Combination 135

3.15 Functions
P

wjUj ,
P

wjUj . 136
3.15.1 Epsilon-Constraint Approach.. 136
3.15.2 Computing the Pareto Set. 138

3.16 Tables. 138
3.17 Bibliographic Remarks . 141

4 Batching Scheduling Problems . 147
4.1 Introduction . 147
4.2 Two-Agent s-Batching Problems . 150

4.2.1 Functions fmax; fmax . 151
4.2.2 Functions Cmax, Cmax . 153
4.2.3 Functions Cmax, Lmax . 155
4.2.4 Functions fmax,

P
Cj . 160

4.2.5 Functions fmax,
P

wj Uj . 163
4.2.6 Functions Cmax,

P
Cj . 167

4.2.7 Functions
P
Cj ,

P
Cj . 170

4.2.8 Functions
P

wj Uj ,
P

wj Uj . 172
4.3 Two-Agent P-Batching Problems . 175

4.3.1 Preliminary Results . 175
4.3.2 Functions fmax, fmax . 176
4.3.3 Functions Cmax, Cmax . 178
4.3.4 Functions Cmax, Lmax . 179

xii Contents

4.3.5 Functions fmax,
P
fj . 182

4.3.6 Functions
P
fj ,

P
fj . 183

4.4 Tables. 185
4.5 Bibliographic Remarks . 186

4.5.1 Serial Batching Problems . 187
4.5.2 Parallel Batching Problems . 187

5 Parallel Machine Scheduling Problems . 189
5.1 Preemptive Jobs. 189

5.1.1 Functions fmax; fmax . 190
5.1.2 Functions fmax,

P
Cj . 194

5.1.3 Functions
P
fj ;

P
fj . 196

5.2 Non-preemptive Jobs with Arbitrary Processing Times 197
5.2.1 Preliminary Results . 197
5.2.2 Functions Cmax; Cmax . 198
5.2.3 Functions Cmax,

P
Cj . 200

5.2.4 Functions
P
Cj ,

P
Cj . 205

5.3 Non-preemptive Jobs with Identical Processing Times 206
5.3.1 Functions fmax; fmax . 206
5.3.2 Functions fmax, Cmax . 208
5.3.3 Functions Cmax, Cmax . 209
5.3.4 Functions Lmax, Cmax . 209
5.3.5 Functions

P
fj ; Cmax . 210

5.3.6 Functions
P
Uj ; Cmax . 210

5.4 Tables. 212
5.5 Bibliographic Remarks . 212

5.5.1 Preemptive Jobs . 212
5.5.2 Non-preemptive Jobs with Arbitrary Processing Times. . . . 214
5.5.3 Non-preemptive Jobs with Identical Processing Times 214

6 Scheduling Problems with Variable Job Processing Times 217
6.1 Introduction . 217

6.1.1 Main Forms of Variable Job Processing Times 218
6.1.2 Notation for Variable Job Scheduling Problems 224
6.1.3 Basic Results on Variable Job Scheduling 227
6.1.4 Examples of Variable Job Scheduling Problems 233

6.2 Two-Agent Time-Dependent Job Scheduling Problems 239
6.2.1 Proportional Deteriorating Job Processing Times 239
6.2.2 Proportional-Linear Deteriorating Job

Processing Times. 244
6.2.3 Linear Deteriorating Job Processing Times. 245
6.2.4 Proportional-Linear Shortening Job Processing Times 247

6.3 Two-Agent Position-Dependent Job Scheduling Problems 248
6.3.1 Log-Linear Position-Dependent Job Processing

Times with Learning Effect. 248

Contents xiii

6.3.2 Log-Linear Position-Dependent Job Processing
Times with Learning and Ageing Effects 250

6.3.3 Linear Position-Dependent Job Processing
Times with Learning and Ageing Effects 251

6.3.4 Past-Sequence-Dependent Job Processing
Times with Ageing Effect . 251

6.4 Two-Agent Controllable Job Scheduling Problems 253
6.4.1 Linear Controllable Job Processing Times with

the Total Compression Cost Criterion. 253
6.4.2 Linear Controllable Job Processing Times with

Other Criteria Than the Total Compression Cost 255
6.5 Tables. 256
6.6 Bibliographic Remarks . 258

6.6.1 Time-Dependent Job Scheduling Problems.. 258
6.6.2 Position-Dependent Job Scheduling Problems 259
6.6.3 Controllable Job Scheduling Problems . 260

References . 261

Index . 269

Chapter 1
Multiagent Scheduling Fundamentals

This chapter gives a general introduction to multicriteria and multiagent scheduling.
Basic concepts from the two research areas are presented and a classification of
considered problems, illustrating the presentation by examples, is proposed.

The chapter is composed of seven sections. In Sect. 1.1, basic concepts
and notions related to multicriteria and multiagent scheduling are introduced.
In Sect. 1.2, the main parts of formal statement of any scheduling problem
considered in the book are introduced. In Sect. 1.3, we present the possible solution
approaches to multiagent scheduling problems. In Sect. 1.4, a classification of
multiagent scheduling problems introduces the several scenario that are considered.
Notations for multiagent scheduling problems are given in Sect. 1.5. In Sect. 1.6,
examples illustrate the introduced concepts and the important notions. The chapter
ends by Sect. 1.7 with bibliographic remarks.

1.1 Main Concepts and Notions

In this section, we introduce main concepts and notions used in the book. In
Sect. 1.1.1 we recall a few definitions of main notions in single- and multiagent
scheduling. In Sect. 1.1.2 we give several examples of applications of multiagent
scheduling problems. In the book, we use a standard mathematical notation. If a
notation is introduced ad hoc, it is clarified at the place of its first appearance.
Theorems, lemmas, properties, examples and figures are numbered separately
in each chapter. Proofs and examples are ended by box ‘�’ and diamond ‘˘’,
respectively. Algorithms are presented in a pseudocode in which standard control
statements are used and comments start with symbol ‘==’.

A. Agnetis et al., Multiagent Scheduling, DOI 10.1007/978-3-642-41880-8__1,
© Springer-Verlag Berlin Heidelberg 2014

1

2 1 Multiagent Scheduling Fundamentals

1.1.1 Basic Definitions of Multiagent Scheduling

Since multiagent scheduling uses the same background and notions as other research
domains in the theory of scheduling, we only briefly recall some facts. In the book,
by scheduling we mean all actions that have to be done in order to determine when
each activity of a set is to start and to complete. In the theory of scheduling, the
elements of the set are called jobs and we will use this name hereafter.

Each job is in competition with the others for the use of time and of resources
capacity. The resources are understood as everything what is needed for a job for its
completion. Therefore, in scheduling we also deal with allocation of resources to
each job. A schedule is determined by a set of start times and of assigned resources,
which respect some predefined requirements, called constraints, such as arrival
times or due dates of jobs, precedence constraints among the jobs, etc.

A problem in which, given some input data, one has to find a schedule is called
a scheduling problem. A schedule that satisfies all requirements of the considered
scheduling problem is called a feasible schedule. Unless otherwise stated, we denote
feasible schedules by small Greek characters, e.g. � , � , etc.

The quality of a schedule is measured by a function called optimality criterion or
objective function that is generally based on the jobs completion times. Sometimes,
for brevity, we call an optimality criterion and objective function as criterion and
objective, respectively.

In multiagent scheduling problems, schedules are evaluated by two or more
criteria. In the book, we denote by f 1.�/, f 2.�/, . . . , f K.�/ the evaluation of
� by a criterion f 1, f 2, . . . , f K , respectively. Moreover, we assume that functions
f k , where 1 � k � K , have to be minimized.

Among all feasible schedules there exists at least one that is optimal, i.e. the
best one with respect to the applied criteria. There are known different kinds of
optimality for multiagent scheduling problems, and the most popular among them
are the following two.

Definition 1.1. A feasible schedule � is a strict Pareto optimal or strictly nondomi-
nated schedule with respect to the optimality criteria f 1, f 2, . . . , f K , if there is no
feasible schedule � such that f k.�/ � f k.�/ for all 1 � k � K , with at least one
strict inequality.

The set of all strict Pareto optimal schedules defines the Pareto set.

Definition 1.2. A feasible schedule � is a weak Pareto optimal or weakly nondomi-
nated schedule with respect to the optimality criteria f 1, f 2, . . . , f K , if there is no
feasible schedule � such that f k.�/ < f k.�/ for all 1 � k � K .

Remark 1.1. These definitions are formulated in context of scheduling problems,
but they may gain a more general form if we replace word ‘schedule’ by ‘solution’.
Hence, throughout the book both the words are used interchangeably if a scheduling
problem is discussed.

1.1 Main Concepts and Notions 3

f1

f2

σ1

σ2
σ3

σ4

σ5

σ6

σ7 σ8

Fig. 1.1 Strict Pareto
solutions vs. weak Pareto
solutions

The set of weak Pareto optimal schedules defines the tradeoff curve, called also
Pareto curve. Since this curve may be non convex, we distinguish supported Pareto
optimal schedules if the solutions are on the convex hull of the Pareto set and the
non supported Pareto optimal schedules otherwise.

The position of strict and weak Pareto optimal solutions and the notion of
supported and non supported Pareto solution are illustrated in Fig. 1.1 for K D 2.
In the figure, strict Pareto optimal solutions are represented by a cross (�2, �4, �5,
�6, �7), while weak Pareto optimal solutions are represented by a circle (�1, �3, �8).
Solutions �1, �2, �7 and �8 are supported, while solutions �3, �4, �5 and �6 are non
supported.

Notice that given above definitions can be easily extended to the case of more
than two optimality criteria. In the following, for simplicity, a Pareto schedule will
denote a strict Pareto schedule.

1.1.2 Multiagent Scheduling Applications

In the multicriteria scheduling literature, several objective functions are used to
measure the performance of a schedule, and all the jobs that are scheduled contribute
to each performance measure.

In order to make a distinction between the jobs that will share the same resources,
one generally associate a weight to each job. This weight allows us to give more
or less importance to a job, in comparison to the others, and helps in scheduling
decisions. However, this distinction may not be sufficient.

In some cases, it may happen that some jobs have to be evaluated by a
specific performance measure and that other jobs have to be evaluated by another
performance measure. This is the subject of multiagent scheduling.

4 1 Multiagent Scheduling Fundamentals

In a multiagent scheduling problem, there are several agents, each interested in a
subset of jobs. Each agent has its own performance measure which depends on the
schedule of its jobs only. However, all the jobs have to share common resources, so
the problem is to find a schedule of the jobs of all agents, which constitutes a good
compromise solution. Below we give several examples of multiagent scheduling
problems.

1.1.2.1 Rescheduling Problems

Workshop of Medium Deep Groove Ball Bearings group (Pessan et al. 2008)
describes a problem in which the principle objective is the minimization of the
total flow time. Some jobs to be scheduled cannot be performed during the day
because the production demand exceeds the workshop load. In such a case, the jobs
that have not been performed during the day become urgent the next day. These
particular jobs receive a deadline and their early production is mandatory. Here,
an agent corresponds to the job subset that has to be completed early. Notice that
here, all the jobs contribute to the global objective value which is the total flow
time.

1.1.2.2 Aircraft Landings

A classical problem in air traffic management is to schedule aircraft landings
on a given set of runways, accounting for both safety and quality of service.
In collaborative decision making, these decisions are made allowing information
exchange among the airlines. Each airline is obviously interested in maximizing
the satisfaction of its passengers only, which in turn is related to the delay of the
corresponding flights. Here, one agent corresponds to one airline, which is interested
to a subset of all flights. Notice that because of code sharing, the subsets of flights
may not be all disjoint, although the same flight may have different relevance for
two airlines.

1.1.2.3 Project Scheduling

In a firm, multiple projects may compete for the usage of shared renewable resources
such as people and machinery over time (Knotts et al. 2000). Each project manager
is responsible for the performance of a project, and must therefore negotiate the use
of the resources with the other managers. In this case, a manager is an agent, the set
of activities of one agent contains the tasks of his/her project. Typically, in this case,
all sets of activities are disjoint.

1.1 Main Concepts and Notions 5

1.1.2.4 Railway Scheduling

Brewer and Plott (1996) describe a problem arising in railroad management. The
central rail administration sells access to the tracks to private companies, enforcing
safety rules according to which an overall timetable is feasible. For example, no two
trains can use the same block section at the same time. Hence, a feasible schedule
of all trains (jobs) must be devised properly with respect to the objectives of each
company (agent). Notice that also in this case, the jobs of agents are disjoint and the
agents compete to perform the jobs on shared resources.

1.1.2.5 Cross-Docking Distribution

Multi-agent scheduling problems can be encountered in optimizing product con-
solidation operations of a cross-docking distribution center. The center receives
various products from the suppliers and fulfills demands of these products from
the customers, by using a fleet of vehicles of various capacities. A product to be
delivered to a customer is a collection of items placed in a standard container, e.g.
a box or a pallet. Items intended for specific customers are a priory assigned to
specific warehouses and transportation terminals associated with them. Consider
customers of the same warehouse. For a planning period, each customer places
an order of the required products to be consolidated and delivered by truck of an
appropriate capacity. Due to the limited resources of the warehouse, operations on
different products are performed sequentially. Each customer takes care of delivery
times of its own products by means of specifying an objective function based on
the dispatching times of its products. If there are two customers, one of which can
specify an upper bound on the value of its objective function, then this situation
can be modeled as a problem in which an agent is a customer and a job is a set of
operations related to preparing a product from the order of a given customer. Product
preparation operations include unloading from the warehouse, labeling, packaging,
loading into a truck and documenting of the required number of items.

1.1.2.6 Communication Networks

Competing scheduling problems occur in integrated-services packet-switched net-
works such as ATM (Asynchronous Transfer Mode) networks, and in soft real-time
systems (Peha 1995). Integrated-services networks are networks that carry several
traffic types such as voice, video, image transfer, and various kinds of computer
data. These different traffic involve different performance objective functions. For
example, for most types of computer data, the performance is typically measured
in mean queueing delay, which is equivalent to minimizing the weighted total
completion time. For voice and video, however, packets that are queued for a too
long time will not reach their destination in time for playback and will be lost. It
corresponds to minimizing the weighted number of tardy jobs.

6 1 Multiagent Scheduling Fundamentals

In general, in these systems, it is useful to classify jobs in two categories: time-
constrained, for jobs which should be processed any time before their deadlines;
and non-time-constrained, for jobs which should simply be processed as early
as possible. In fact, in any packet-switched network, information carried by the
network is first divided into smaller packets. Packets are queued in a buffer at
the network access point, awaiting transmission into the network, and a scheduling
algorithm orders these packet transmissions.

1.2 Multiagent Scheduling Problem Description

In this section, we describe main parts of formal statement of any scheduling
problem considered in the book. In Sects. 1.2.1, 1.2.2 and 1.2.3 we describe, respec-
tively, main data concerning job, machine environment and optimality criterion that
together compose a scheduling problem formulation.

1.2.1 Job Characteristics

In what follows, we denote by J the set of jobs, and by n D jJ j the number of
jobs. K is the number of agents, i.e., the number of subsets of jobs. In case of two
agents, the agents will be denoted by A and B instead of 1 and 2.

J k is the subset of agent k, and nk D jJ kj is the number of jobs in J k . It may
appear in the following that a job belongs to more than one agent. In this case, NJ k

denotes the jobs that only belong to agent k and Nnk D j NJ kj. In the following, a
schedule � which is optimal for agent k, is denoted by �k and is called reference
schedule for agent k. Since we only address regular objective functions, in �k the
jobs of J k are scheduled before all other jobs, so the value f k.�k/ can be computed
without considering the jobs of the other agents.

We denote by Jj the job number j . When necessary, J kj will denote the job

number j in subset J k . Reversely, J �1.Jj / will denote the agent or the set of
agents that own job Jj . The main data associated to a job concern its processing
time, due date and weight.

The processing time of job Jj (J kj) we denote by pj (pkj). The total processing
time of the activities of agent k and the total processing time of all activities will be
denoted by Pk D P

J kj 2J k p
k
j and P D P

Jj2J pj , respectively. The due date of

job Jj (J kj) we denote by dj (dkj). When a due date is associated to a job, at least
one performance measure is related to the respect of the due dates. The weight of
job Jj (J kj) we denote by wj (wkj).

We will use brackets Œi � to denote the job in position i in the sequence. pŒi�,
dŒi� and wŒi � are respectively the duration, the due date and the weight of the job in
position i .

1.2 Multiagent Scheduling Problem Description 7

Some additional job characteristics may also be considered. Following the three-
field notation introduced by Graham et al. (1979), these characteristics are indicated
in the ˇ-field. This field may contain several characteristics, also called constraints,
and we refer the reader to Brucker (2007) or Blazewicz et al. (2007) for a detailed
description of this field. We only mention here the fields that will be considered in
the following:

• The release date rj (rkj) that means that a job cannot start its processing before
this release date,

• pj D p (pkj D pk) in case of identical job processing times or equal length jobs,

if p D 1 (pk D 1) we talk about unitary processing times,
• pmtn indicates that the preemption of jobs is allowed what means that it is

possible to interrupt a job and to resume its processing at a later time, eventually
on another machine,

• prec indicates some precedence relations between jobs, given by a directed
acyclic graph.

In multiagent scheduling, the particularity is that the job environment may be
different for all the agents. Thus, for a formal problem description, the ˇ-field has
to be split between the agents. By default, if there is only one ˇ-field, it is assumed
that the job characteristics are the same for all the jobs.

We illustrate now some job data introduced earlier.

Example 1.1. (a) Symbol rBj in the ˇ field indicates that the jobs of agent B are
subject to release dates, whereas it is not the case for the jobs of the other agents.
Symbol rj in the ˇ field indicates that the jobs of all agents are subject to release
dates.

(b) Notation pmtnAIpBj D 1 in the ˇ field indicates that the preemption is allowed
for the jobs of agent A only and that all the jobs of agent B have unitary
processing times.

˘

1.2.2 Machine Environment

We denote by M the set of machines andm D jMj is the number of machines. The
machine number i is denoted byMi . Following the three-field notation, the machine
environment is described in the ˛-field by a string of two parameters, ˛ D ˛1˛2,
where ˛1 denotes the type of machine(s) and ˛2 is the number of the machines. In
case of a single machine ˛1 D ; and ˛2 D 1, otherwise ˛1 2 f;; P;Q;R; F; J;Og
and ˛2 is a positive integer. In most of cases, ˛2 2 f1; 2; 3;m;;g, with ˛2 D m

when the number of machines is supposed to be known and fixed. ˛2 D ; when
the number of machines is unknown and it is a parameter of the problem instance.
Notice also that not all combinations of ˛1 and ˛2 are possible.

8 1 Multiagent Scheduling Fundamentals

If ˛1 2 fP;Q;Rg, then jobs have to be scheduled on parallel machines and each
of the jobs is composed of a single operation. If ˛1 D P , the machines are identical
and the processing time of a job is the same for all the machines. If ˛1 D Q, the
machines are uniform and a coefficient of speed si is associated to each machine
Mi so that the processing time of a job depends on the performing machine, i.e.,
pj;i D pj

si
. If ˛1 D R, the machines are unrelated and the processing time of a job

depends on the performing machine, i.e. the speeds are job dependent.
If ˛1 2 fF; J;Og we deal with a shop environment. In this case, to each job Jj

is associated a set of oj operations denoted by Oj;1, Oj;2, . . .Oj;oj ; while to each
operationOj;h is associated a performing machine �j;h and a processing time pj;h.
In case of multiagent scheduling, the agent number can be easily introduced in the
notation: okj , Ok

j;1, �
k
j;h, etc.

In shop problems, precedence relations among operations of every job Jj , 1 �
j � n, are in the form of

Oj;1 � Oj;2 � � � � � Oj;oj ;

whereO � O 0 means that the completion time of operationO precedes the starting
time of operationO 0. It is also assumed that�j;h ¤ �j;h0 for h ¤ h0, 1 � h; h0 � oj .
The precedence relations between the operations of a job are not given and are a part
of the problem.

The succession of machines required for the processing of a job in a shop
problem is called the routing of the job. In the general case, when the routings are
different, the workshop is called a jobshop, denoted by ˛1 D J . The flowshop case
is denoted by ˛1 D F . In this case, the jobs require the m machines in the same
order for being processed: oj D m and �j;i D Mi , 8j , 1 � j � n. If the routings
are not specified, we deal with the openshop case denoted by ˛1 D O .

1.2.3 Optimality Criteria

Following the three-field notation, the field � contains the expression of the
objective function, also called optimality criterion.

The completion time of a job Jj is denoted by Cj . The cost associated to job
Jj is a function of its completion time denoted by fj .Cj /. In the multiagent case,
we assume that all the jobs associated to an agent contribute to the evaluation for
this agent and we denote by Ck

j the completion time of job J kj 2 J k and f k the

objective function related to the jobs of J k if it is not job dependent.
The most classical functions f k

j that are used generally for job J kj 2 J k are the
following:

1.2 Multiagent Scheduling Problem Description 9

the completion time Ck
j ,

the flow time F k
j D Ck

j � rkj ,
the lateness Lkj D Ck

j � dkj ,

the tardiness T kj D max
n
Ck
j � dkj ; 0

o
,

the tardiness penalty Uk
j D 1 if Ck

j > d
k
j , 0 otherwise.

Each function f k
j leads to four possible objectives:

f k
max D max

J kj 2J k

n
f k
j

o
; (1.1)

wf kmax D max
J kj 2J k

n
wkj f

k
j

o
; (1.2)

X
f k
j D

X

J kj 2J k

f k
j ; (1.3)

X
wkj f

k
j D

X

J kj 2J k

wkj f
k
j : (1.4)

The most important objective functions are:

the makespan Ck
max,

the maximum lateness Lkmax,
the maximum tardiness T kmax,

the total .weighted/ completion time
P
.wkj /C

k
j ,

the total .weighted/ tardiness
P
.wkj /T

k
j ,

the .weighted/ number of tardy jobs
P
.wkj /U

k
j .

For some particular applications, other criteria may be defined, e.g. the maximum

earliness Ek
max, where the earliness Ek

j D max
n
dkj � Ck

j ; 0
o
.

All objective functions can be divided into regular and non regular ones. A
regular objective function is an objective function which is nondecreasing with
respect to variables Cj . For example, functions Fj and Tj are regular functions,
whereas function Ej is not regular. When the objective function is regular, it is
always better to shift the jobs to the left, i.e. to schedule the jobs as early as
possible. However, in case of a non regular objective function, it may be necessary
to introduce idle times in the schedule for having a better solution. In this book, we
consider only regular objective functions.

10 1 Multiagent Scheduling Fundamentals

1.3 Solution Approaches to Multiagent Scheduling Problems

Multiagent scheduling problems can be solved in a multicriteria context using the
following approaches:

• Finding one Pareto optimal schedule,
• Finding the whole set of strict Pareto optimal schedules and
• Counting the number of Pareto optimal schedules.

In case of finding one Pareto optimal schedule, we usually are interested only
in the strict Pareto optimal ones. The whole set of Pareto optimal schedules can
be obtained by finding strict Pareto optimal schedules one by one and iteratively,
or by using population based algorithms. Finally, in counting the number of Pareto
optimal schedules, the aim is to count the number of nondominated schedules or to
give an approximation of their number.

Several methods exist for finding one of or all the Pareto optimal solutions. These
methods are described in details in T’Kindt and Billaut (2006). We report here the
most classical approaches used in the multicriteria scheduling literature. The nota-
tion is given forK D 2 criteria, but they can be easily extended to the general case.

1.3.1 Feasibility Problem

This approach means that no particular objective function has to be minimized and
the problem is to find a feasible solution. We denote the approach by ‘�’ in the �
field. If we consider the example “Rescheduling Problem” described in Sect. 1.1.2.1,
it is possible to consider that the late jobs belong to agent B . This agent has to find
a feasible schedule, i.e. a schedule where each job satisfies its deadline. For agent
A, who has the whole set of jobs, the notation of the objective function is

P
CA
j

and suppose that this agent has a goal to reach denoted by Q. The constraints that
CA
j � QdAj and

P
CB
j � Q are inserted in the field ˇ of the problem notation and

the objective function is denoted by ‘�’.

1.3.2 Linear Combination of Criteria

This method consists in defining a linear combination of objective functions,
f̨ A C .1 � ˛/f B if K D 2, which has to be minimized. We denote the approach

by f̨ A C .1 � ˛/f B in the � field. In case of K agents, the notation becomesPK
kD1 ˛kf k .The solutions that can be obtained by this approach constitute a subset

of the set of strict Pareto optimal solutions (Geoffrion 1968). In other words, it may
be impossible to fix weights to the criteria so that all the Pareto optimal solutions
are obtained. This is due to the shape of the tradeoff curve, which can be nonconvex

1.3 Solution Approaches to Multiagent Scheduling Problems 11

Algorithm 1 for the enumeration of Pareto optimal solutions with the "-constraint
approach
1: R WD ;
2: for Q2 WD ub2 downto lb2 step ı2 do
3: for Q3 WD ub3 downto lb3 step ı3 do

4:
:
:
:

5: for QK WD ubK downto lbK step ıK do
6: x WD lex-minff W f k.x/ � Qk , 2 � k � Kg
7: if not exists x0 2 R such that f .x0/ � f .x/ then
8: R WD R [fxg
9: end if

10: end for

11:
:
:
:

12: end for
13: end for
14: return R

for scheduling problems and therefore, the non supported Pareto optimal solutions
cannot be returned by such a method.

1.3.3 Epsilon-Constraint Approach

This method is often used in the literature. For example, in case of two objective
functions, the first of them is minimized and the other one is bounded. In case of
more than two objectives, the scheduling problem becomes: Find � , such that f 1.�/

is minimized and f 2.�/ � Q2; : : : ; f
K.�/ � QK . This method leads to one weak

Pareto optimal solution. For obtaining a strict Pareto optimal solution, a symmetric
problem has to be solved. In the case of two agents, we denote the approach by
putting f A in the � field and f B � Q in the ˇ field.

By modifying the vector Q iteratively, it is possible to obtain the whole set of
strict Pareto optimal solutions. Notice that several algorithms have been proposed
in the literature for improving the implementation of such a process (Laumanns
et al. 2006; Mavrotas 2009). Algorithm 1 illustrates this method in the case of
K objective functions. The values ık denote the predefined decrement of Qk , lbk
and ubk denote the bounds for objective function f k and the function lex-min.f /
returns the solution with minimum lexicographic value, i.e. with minimum f 1 and
then minimum f 2, etc.

1.3.4 Lexicographic Order

With this method, an order is defined between the objective functions. The primary
objective function is minimized first. Then, a new solution is searched, which

12 1 Multiagent Scheduling Fundamentals

fA

fB

fA

fB

σ1

σ2
σ3

σ4

σ5

σ6

σ7 σ8

σ1

σ2
σ3

σ4

σ5

σ6

σ7 σ8

Q

a b

Fig. 1.2 Linear combination vs. �-constraint approaches

minimizes the second objective function under the constraint that this solution is
optimal for the primary objective function, and so on. We denote this approach by
Lex.f 1; f 2; : : : ; f K/.

If S denotes the set of feasible schedules and f 1, f 2 and f 3 are three objective
functions to consider in this order, the method consists in finding a sequence � 2 S3
with:

S1 D
n
� 2 S W f 1.�/ D min

�2S
ff 1.�/g

o
;

S2 D
n
� 2 S1 W f 2.�/ D min

�2S1
ff 2.�/g

o
;

S3 D
n
� 2 S2 W f 3.�/ D min

�2S2
ff 3.�/g

o
:

The linear combination and the �-constraint approach are illustrated in Fig. 1.2
for K D 2. The solutions returned by a lexicographic order are �1 if the primary
objective is f A and �7 if the primary objective is f B .

In Fig. 1.2a are depicted the solutions that can be obtained by using a linear
combination of criteria are �2 and �7. The dotted line represents the linear
combination that allows finding both �2 and �7.

In Fig. 1.2b is depicted solution �5 obtained with the "-constraint approach with
f B � Q.

1.3.5 Pareto Set Enumeration

This approach means that we are interested in finding the whole set of strict Pareto
optimal solutions. We denote the approach by P.f A; f B/ in the � field.

1.4 Classification of Multiagent Scheduling Problems 13

1.3.6 Counting

This approach means that our aim is to count the number of strict Pareto optimal
solutions. We denote the approach by #.f A; f B/ in the � field.

1.4 Classification of Multiagent Scheduling Problems

Scheduling problems in which agents (customers, production managers, etc.) have
to share the same set(s) of resources are at the frontier of combinatorial optimization
and cooperative game theory (Agnetis et al. 2004). The key assumption of our
models is that each agent (denoted A and B in case of two agents) has a set of jobs
to perform (denoted by J A and J B). The complexity of a multiagent scheduling
problem depends on the intersection structure of the job sets J k . Therefore, we
introduce a classification of multiagent problems based on the relationship among
the subsets J k . Below we briefly describe different scenarios of the classification.

1.4.1 Competing Agents

In this case, the agents have no job in common, i.e., all jobs in each of theK job sets
exclusively belong to one agent. This means that J h \ J k D ; for any two agents
h and k. In this situation, agents purely compete with each other to use system
resources. The notation of the COMPETING scenario in the ˇ-field is ‘CO’. Note
that in this case the notation of the agents is symmetric, i.e. problems with objective
functions f A and gB are the same as problems with objective functions gA and f B .

1.4.2 Interfering Sets

In this case, the job sets are nested, and we will always assume that they are
numbered so that J D J 1 � J 2 � : : : � J K (in case of two agents we have
J D J A � J B). The notation of the INTERFERING scenario in the ˇ-field is ‘IN’.
Note that this case is asymmetric, e.g., both problems 1jINjf A; gB and 1jINjgA; f B

can be considered, often having different complexity status.

1.4.3 Multicriteria Optimization

This is the classical multicriteria scheduling case, i.e., in which J 1 D J 2 D : : : D
J K D J . The notation of the MULTICRITERIA scenario in the ˇ-field is ‘MU’ and
the notation in case of two criteria is ‘BI’ for BICRITERIA.

14 1 Multiagent Scheduling Fundamentals

J A

obj fA

Competing

J B

obj fB

J obj fA

Multicriteria

obj fBJ

J Bobj fA

NonDisjoint
J = J A ∪ J B

obj fBJ A

obj fB

Interfering

obj fAJ A J B

Fig. 1.3 Possible scenario for multiagent scheduling problems for K D 2 agents

1.4.4 Nondisjoint Sets

This is the most general case, in which any two job sets may or may not intersect
each other. In this case, the notation J kj indicates a job Jj that belongs to J k only.
The notation for jobs belonging to more than one set is introduced when needed. In
the case ofK D 2 agents, it is assumed that a job in J A\J B has only one possible
processing time, whatever the agent it belongs to. However, concerning the other
parameters such as due dates or weights, it is assumed that it depends on the agent.
Thus, to a given job Jj 2 J A \ J B , can be associated a due date dAj and a due date
dBj , dAj ¤ dBj . The notation of the NONDISJOINT scenario in the ˇ-field is ‘ND’.

All these cases, for K D 2 agents, are illustrated in Fig. 1.3.

1.5 Notation of Multiagent Scheduling Problems

It should be apparent from the previous section that multi-agent problems involve
multiple issues, which have to be compactly recorded into an appropriate notation
to quickly refer to a specific combinatorial problem.

Since it is the most widely used notation tool in scheduling, we will stick as
much as possible to the classical ˛jˇj� notation of scheduling problems, introduced
by Graham et al. (1979); we refer the reader to Blazewicz et al. (2007) for further
details on the notation in classical scheduling.

In classical scheduling problems, the field ˛ indicates the machine environment
and � the objective function. The field ˇ contains all additional features required

1.5 Notation of Multiagent Scheduling Problems 15

to completely specify the problem, e.g. the presence of deadlines, release dates, the
possibility of preemption etc. In most of our problems, we introduce a new field ˇsc

within the field ˇ, with ˇsc 2 fCO; IN;BI;MU;NDg that specifies the scenario, i.e.,
the intersection structure of the job sets J k .

In this book, we often group the results on the basis of the scheduling criteria
adopted. When referring to all problems arising for a given pair f; g (or, more
generally,K-tuple) of scheduling criteria, we use the following notation

˛jˇjf; g

The only asymmetric scenario is INTERFERING, since J B � J A. In this case
we need to distinguish

˛jIN; ˇjf A; gB

and

˛jIN; ˇjgA; f B:

In a two-agent setting, in general a job Jj may belong to both J A and J B .
Hence, if for instance agent B wants to minimize the total weighted completion
time, its objective function is denoted by

X

Jj2J B

wBj Cj :

However, in the two-agent COMPETING scenario, in which each job belongs to
only one agent, for the sake of clarity we write:

X

JBj 2J B

wBj C
B
j :

Nonetheless, to keep notation simple, in the ˛jˇj� problem description we use
the simplified notation

P
wBj C

B
j to mean

P
Jj2J B wBj Cj , in all scenarios. In other

words, we tend to use superscripts A and B (or, more generally, k) whenever this
helps identifying the problem, even if it can result a bit redundant.

Example 1.2. Consider the two-agent problem in which agentA wants to minimize
the number of tardy jobs and the total weighted completion time for agent B must
not exceed a valueQ. In the NONDISJOINT scenario, the objective functions of the
two agents are denoted by

X

Jj2J A

Uj and
X

Jj2J B

wBj Cj ;

16 1 Multiagent Scheduling Fundamentals

while, in the COMPETING case, we write:

X

JAj 2J A

U A
j and

X

JBj 2J B

wBj C
B
j :

However, we denote the two corresponding problems as

1jND;
X

wBj C
B
j � Qj

X
UA
j and 1jCO;

X
wBj C

B
j � Qj

X
UA
j

˘
If a job Jj only belongs to agent k, i.e., Jj 2 NJ k , then it is sometimes convenient

to denote its related quantities as J kj and pkj . Also, we tend to use the superscript
when considering its completion time.

Example 1.3. For instance, if agentA wants to minimize total weighted completion
time in the INTERFERING scenario (in which J B � J A, so that NJ A D J A n J B),
we can write the objective function of agent A as:

X
wAj C

A
j D

X

Jj2J B

wAj Cj C
X

JAj 2 NJ A

wAj C
A
j

˘
The notation for multiagent scheduling problems used in the book is summarized

in Table 1.1.

1.6 Examples of Single- and Multiagent Scheduling Problems

In this section, we illustrate the introduced earlier concepts of Pareto optimal
solution, Pareto front, optimality criteria, solution approaches and scenario for
multiagent scheduling problems.

We begin with two examples of single-agent scheduling problems.

Example 1.4. Problem 1jjPCj is the problem of scheduling jobs on a single
machine such that the sum of completion times is minimized. Let us consider the
following 3-job instance:

j 1 2 3
pj 5 2 1

The solution of this problem corresponding to the sequence .J2; J1; J3/ is
illustrated in Fig. 1.4 and has an objective function value equal to 17. Notice that
in this case, with only three jobs, it is easy to evaluate all the possible sequences

1.6 Examples of Single- and Multiagent Scheduling Problems 17

Table 1.1 Summary of multiagent scheduling notation

Notation of data

n Total number of jobs
J k Subset of jobs of agent k
NJ k Subset of jobs that only belong to agent k

J �1.Jj / (Set of) agent(s) that own Jj
nk (Nnk) Number of jobs in J k (NJ k)
J kj Job j of agent k
pkj Processing time of J kj
P D P

Jj2J pj Sum of processing times

Pk D P
Jj2J k pj Sum of processing times of jobs of agent k

rkj Release date of J kj
dkj Due date of J kj
wkj Weight of J kj

Notation of variables

Ck
j Completion time of J kj
F k
j Flow time of J kj
Lkj Lateness of J kj
T kj Tardiness of J kj
U k
j Indicator of tardiness of J kj

Notation of approaches

� Feasibility problem
f̨ A C .1� ˛/f B or

PK
kD1 ˛kf

k Linear combination
f B � Qjf A or f 2 � Q2; : : : ; f

k � Qk jf 1 Epsilon-constraint
Lex.f A; f B/ or Lex.f 1; f 2; : : : ; f K/ Lexicographic order
P.f A; f B/ or P.f 1; f 2; : : : ; f K/ Pareto set enumeration
#.f A; f B/ or #.f 1; f 2; : : : ; f K/ Counting

Notation of scenario

CO COMPETING

IN INTERFERING

MU MULTICRITERIA

BI BICRITERIA

ND NONDISJOINT

(here nŠ D 6) and to find that the optimal solution is sequence .J3; J2; J1/ with a
value of 12.

˘

Example 1.5. Problem 1jjLmax is a single machine scheduling problem, where jobs
have to respect release dates and the objective is to minimize the maximum lateness,
which is the maximum difference between the completion time and the due date

18 1 Multiagent Scheduling Fundamentals

t

Cj = 17

5

J2 J1

100

J3
Fig. 1.4 Solution .J2; J1; J3/
for the 1jjPCj problem

Lmax = max(5, −6, 4) = 5
5

J2 J1 J3

15100

t

Fig. 1.5 Solution .J2; J1; J3/
for the 1jjLmax problem

for all the jobs (this value may be negative). Let us consider the following 3-job
instance:

j 1 2 3

pj 7 6 5
dj 8 12 14

The solution of this problem corresponding to the sequence .J2; J1; J3/ is
illustrated in Fig. 1.5 and has an objective function value equal to 5. As for the
previous example, a simple enumeration shows that the optimal solution is given by
sequence .J1; J2; J3/ with a value of 4.

˘
Now, we pass to examples of multiagent scheduling problems.

Example 1.6. Notation 1jBIjPCj ;Lmax is used to indicate that we consider a
single machine bicriteria scheduling problem where the objective functions areP
Cj and Lmax. This notation does not refer to a specific approach.

˘
Example 1.7. Problem 1jBIjP.PCj ;Lmax/ is a bicriteria scheduling problem,
where all the jobs have a processing time and a due date. The problem is to give
the list of solutions covering all the strict Pareto optimal solutions. Let us consider
the following 6-job instance:

j 1 2 3 4 5 6

pj 5 2 1 7 6 5
dj 30 30 30 8 12 14

1.6 Examples of Single- and Multiagent Scheduling Problems 19

Cj

Lmax

60 70

20

100 110 12080 90

10

Fig. 1.6 Set of solutions in
the criteria space

Table 1.2 Whole Pareto set

�
P
Cj .�/ Lmax.�/ �

P
Cj .�/ Lmax.�/

.J3; J2; J6; J1; J5; J4/ 70 18 .J3; J2; J1; J6; J4; J5/ 71 14

.J3; J2; J1; J5; J4; J6/ 73 13 .J3; J2; J6; J4; J5; J1/ 74 9

.J3; J2; J1; J4; J5; J6/ 74 12 .J3; J2; J5; J4; J6; J1/ 76 8

.J3; J2; J4; J5; J6; J1/ 77 7 .J2; J3; J4; J5; J6; J1/ 78 7

.J3; J4; J2; J5; J6; J1/ 82 7 .J2; J4; J3; J5; J6; J1/ 84 7

.J3; J5; J4; J2; J6; J1/ 85 7 .J3; J6; J4; J5; J2; J1/ 86 7

.J4; J3; J2; J5; J6; J1/ 88 7 .J3; J5; J4; J6; J2; J1/ 88 6

.J3; J4; J5; J6; J2; J1/ 89 5 .J3; J4; J5; J6; J1; J2/ 92 5

.J4; J3; J5; J6; J2; J1/ 95 5 .J4; J3; J5; J6; J1; J2/ 98 5

.J5; J4; J3; J6; J2; J1/ 99 5 .J4; J5; J3; J6; J2; J1/ 100 5

.J5; J4; J3; J6; J1; J2/ 102 5 .J4; J5; J3; J6; J1; J2/ 103 5

.J5; J4; J6; J2; J3; J1/ 104 5 .J4; J5; J6; J3; J2; J1/ 104 4

.J4; J5; J6; J2; J3; J1/ 105 4 .J4; J5; J6; J3; J1; J2/ 107 4

.J4; J5; J6; J2; J1; J3/ 109 4 .J4; J5; J6; J1; J3; J2/ 111 4

.J4; J5; J6; J1; J2; J3/ 112 4

In the criteria space, the set of all the possibles solutions (here the nŠ D
720 solutions have been enumerated) is represented in Fig. 1.6 (notice that some
solutions may have the same vector of criteria .

P
Cj ;Lmax/).

The Pareto set is composed by the sequences given in Table 1.2 (only one
sequence is given per vector .

P
Cj ;Lmax/).

Among these Pareto optimal sequences, some of them are strict Pareto opti-
mal solutions (sequence .J3; J2; J1; J6; J4; J5/ with vector (71,14) or sequence
.J3; J2; J4; J5; J6; J1/ with vector (77,7) for instance), some of them are weak
Pareto optimal solutions (sequence .J4; J3; J5; J6; J2; J1/ with vector (95,5) or
sequence .J4; J5; J6; J2; J1; J3/ with vector (109,4) for instance). Generally, the
weak Pareto optimal solutions are not considered as interesting solutions. Notice
that sequence .J3; J2; J1; J5; J4; J6/ with vector (74,12) and .J3; J5; J4; J6; J2; J1/
with vector (88,6) (for instance) are not supported.

˘

20 1 Multiagent Scheduling Fundamentals

Example 1.8. Problem 1jBI;
P
Cj � QjLmax is to find a sequence of jobs

minimizing the maximum lateness but also satisfying the constraint that the sum
of completion times is less than or equal to a given value Q.

We suppose that the limit for the sum of completion times is Q D 75. The
maximum value for the sum of completion times could be represented in Fig. 1.6
by a vertical line at abscissa 75, all the vectors being at the right of this line
corresponding to forbidden solutions.

It is not difficult to see that one solution which respects the bound on the
total completion time and which minimizes the maximum lateness is sequence
.J3; J2; J6; J4; J5; J1/, with a total completion time of 74 and an Lmax value equal
to 9.

˘
Example 1.9. In problem 1jBI j˛PCj C .1 � ˛/Lmax, we search for a sequence
of jobs minimizing a linear combination of criteria. This solution belongs to the set
of strict Pareto optimal solutions which are given in Table 1.2.

With ˛ D 0; 3 (we give more importance to the Lmax), the solution which is
returned is sequence .J3; J2; J4; J5; J6; J1/ with

P
Cj D 77 and Lmax D 7.

With ˛ D 0; 5, the best solution is now sequence .J3; J2; J6; J4; J5; J1/ withP
Cj D 74 and Lmax D 9.
We can notice that there is no possible value for ˛ that allow to find sequence

.J3; J2; J5; J4; J6; J1/ with
P
Cj D 76 and Lmax D 8, even if this solution may be

of interest. This is why this sequence is called non-supported.
˘

Example 1.10. Problem 1jCO;PCA
j � QjLBmax corresponds to a multiagent

scheduling problem with two agents in the COMPETING scenario. It means that
J A \ J B D ;. The problem is to find a solution which minimizes the maximum
lateness of the jobs of agent B , and such that the total completion time of the jobs
of agent A do not exceed a given value Q. Let us consider the following instance
with three jobs per agent.

Agent A Agent B

Jkj J A1 J A2 J A3 J B1 J B2 J B3

pkj 5 2 1 7 6 5
dkj – – – 8 12 14

As an illustration of the evaluation in this case, the sequence .J A3 , JA2 , JB1 , JB2 ,
JB3 , JA1 / is represented in Fig. 1.7 and evaluated.

In the case of multiagent, the jobs which are taken into account for
computing the objective function of one agent are only the jobs of this
agent. All the solutions corresponding to the given instance are represented
in the criteria space in Fig. 1.8. In this set of solutions, there are only four

1.6 Examples of Single- and Multiagent Scheduling Problems 21

t

∑
CA

j = 26 + 1 + 3 = 30, LB
max = max{2, 4, 7} = 7

5

JA
1

0251010 25

JA
3 JA

2 JB
1 JB

2 JB
3

Fig. 1.7 Solution .J A3 ; J
A
2 ; J

B
1 ; J

B
2 ; J

B
3 ; J

A
1 / for the 1jCO;PCA

j � QjLBmax problem

CA
j

LB
max

10 20

20

30 40 7050 60

10

Fig. 1.8 Set of solutions in the criteria space for the multiagent case

strict Pareto optimal solutions: .J A3 ; J
A
2 ; J

A
1 ; J

B
1 ; J

B
2 ; J

B
3 / with values (12,12),

.J A3 ; J
A
2 ; J

B
1 ; J

B
2 ; J

B
3 ; J

A
1 / with values (30,7), .J A3 ; J

B
1 ; J

B
2 ; J

B
3 ; J

A
2 ; J

A
1 / with

values (48,5) and .J B1 ; J
B
2 ; J

B
3 ; J

A
3 ; J

A
2 ; J

A
1 / with values (66,4).

If we take for example Q D 40, the best solution is given by sequence
.J A3 ; J

A
2 ; J

B
1 ; J

B
2 ; J

B
3 ; J

A
1 /.

˘
Example 1.11. The problem denoted by 1jIN; LBmax � QjPCA

j corresponds to a
multiagent scheduling problem with two agents in the INTERFERING scenario. It
means that for the evaluation of agent A,

P
CA
j in this case, all the jobs are taken

into account. For the evaluation of agent B , LBmax here, only the jobs of agent B are
considered.

Let us consider the instance described in Example 1.10 and the sequence
.J A3 ; J

A
2 ; J

B
1 ; J

B
2 ; J

B
3 ; J

A
1 / represented in Fig. 1.7. The values of the objective

functions for this sequence are
P
CA
j D 77 and LBmax D 7.

For the problem denoted by 1jIN; LAmax � QjPCB
j , we need a due date for each

job, and the Lmax function is evaluated considering all the jobs. If we consider the
values reported in Example 1.8, the values of the objective functions for the same
sequence are

P
CB
j D 47 and LAmax D 7.

˘

22 1 Multiagent Scheduling Fundamentals

1.7 Bibliographic Remarks

The basic concepts and notions of the theory of scheduling are presented in
Blazewicz et al. (2007), Brucker (2007) and Pinedo (2008). The three-field notation
of scheduling problems has been introduced in the survey (Graham et al. 1979). The
descriptions of different extensions to the notation are described in mentioned above
monographs.

Problems of scheduling with multiple criteria are discussed in several review
papers such as Dileepan and Sen (1988), Lee and Vairaktarakis (1993), Nagar et al.
(1995) and Hoogeveen (2005). A more detailed discussion of the topics is given in
T’Kindt and Billaut (2006).

Chapter 2
Problems, Algorithms and Complexity

In this chapter, the basic notions related to problems, algorithms and complexity
are recalled. Some topics related to approximability, problem relaxation and simple
reductions between scheduling problems are also discussed.

The chapter is composed of eight sections. Basic notions of complexity theory are
recalled in Sect. 2.1, and Sect. 2.2 focus on properties of NP-complete and NP-hard
problems. In Sect. 2.3, exact and enumerative algorithms are discussed. In Sects. 2.4
and 2.5, approximation algorithms and approximation schemes are considered.
Methods of problems relaxation are presented in Sect. 2.6. Some reductions between
scheduling problems are described in Sect. 2.7. The chapter ends by Sect. 2.8 with
remarks on references.

2.1 Basic Notions of Complexity Theory

A computational problem is a mathematical problem, defined by some parameters
and one or more questions, that a computer has to solve, i.e., for which we want to
find a solution. For solving efficiently a problem, an algorithm has to be designed,
understood as a finite procedure expressed in terms of predefined elementary
operations.

The efficiency of an algorithm is given by the amount of resources required to
execute it, as time and memory. The most crucial efficiency measure is the running
time needed by an algorithm for finding a solution for any instance of a problem,
that is given on the input of the algorithm. This time depends on the size of the input,
denoted as I . If the input size is size.I / D n, it means that n elements are required
to describe the problem parameters. The size can be expressed in bytes or bits, but
in general it is given informally.

The time required by an algorithm to solve any instance of a problem of size
n is a function of n, which is called the algorithm complexity. The big-O notation

A. Agnetis et al., Multiagent Scheduling, DOI 10.1007/978-3-642-41880-8__2,
© Springer-Verlag Berlin Heidelberg 2014

23

24 2 Problems, Algorithms and Complexity

is commonly used to describe this function. An algorithm for which this function
can be bounded from above by a polynomial in n (O.n/, O.n logn/, O.n2/, etc.)
is called a polynomial time algorithm. An algorithm for which this function cannot
be bounded by such a polynomial function (2n, nŠ, nn, etc.) is called an exponential
time algorithm.

A problem which is so hard that no polynomial time algorithm can possibly solve
it is called intractable.

Algorithms that have running times polynomial in n and the maximum of the
elements of the instance, denoted max.I /, are called pseudopolynomial.

The complexity class of a problem indicates its intrinsic difficulty, and this
information is crucial for being able to solve the problem properly. This is the
object of the theory of NP-completeness, presented in the seminal book of Garey
and Johnson (1979).

The Theory of NP-completeness applies on several types of problems. We
distinguish the following two main classes of problems:

• Decision problems that are defined by a name, an instance, which is a description
of all the parameters, and a question for which the answer belongs to the set
fyes; nog,

• Optimization problems that are defined by a name, an instance, and in which the
aim is to find a solution with minimum value of a given function.

Example 2.1. Let us consider the following decision problem, called PARTITION

(Garey and Johnson 1979).

PARTITION

Instance: A finite set A of k integers aj , j D 1; : : : ; k, such that
kX

jD1
aj D 2E

Question: Is there a subset A0 � A such thatX

aj2A0

aj D
X

aj2AnA0

aj D E?

This problem is very important for scheduling theory with fixed (constant) job
processing times. ˘
Example 2.2. The single machine problem presented in Sect. 1.4 is an optimiza-
tion problem. Its name is ONEMACHINETOTALCOMPLETIONTIME, denoted by
1jjPCj . An instance is defined by a number n of jobs and a vector .pj /1�j�n
of processing times. The aim is to find a sequence of jobs that minimizes the sum of
the completion times. ˘

2.2 NP-Completeness and NP-Hardness 25

There exist two main classes of decision problems. The class P is the class of
decision problems that can be solved by a polynomial time algorithm running on a
deterministic computer in which at any time there may be done at most one action,
contrary to non-deterministic computer in which more actions may be done. These
problems are said to be ‘easy’ to solve, in the sense that large instances can possibly
be solved in a reasonable computation time. The class NP is the class of decision
problems that can be solved by a polynomial time algorithm running on a non-
deterministic computer. It is equivalent to say that the class NP is the class of
decision problems for which a response ‘yes’ can be verified in polynomial time on
a deterministic computer. It is clear that P � NP .

2.2 NP-Completeness and NP-Hardness

In the section, we consider basic issues related to NP-completeness and NP-
hardness.

2.2.1 NP-Completeness

Some relationships between problems can be established and the principal technique
which is used is the polynomial reduction, defined as follows.

Definition 2.1. We say that a decision problem P1 polynomially reduces to a
decision problem P2 if and only if there exists a polynomial time algorithm f ,
which can build, from any instance I1 of P1, an instance I2 D f .I1/ of P2 such
that the response to problem P1 for instance I1 is ‘yes’ if and only if the answer to
problem P2 for instance I2 is ‘yes’.

If such an algorithm f exists, it proves that any instance of problem P1 can be
solved by an algorithm for problem P2. We say that P2 is at least as difficult as P1.
If a polynomial time algorithm exists for solving P2, then P1 can also be solved in
polynomial time.

The fact that a decision problem P1 polynomially reduces to a decision problem
P2 is denoted by P1 / P2.

The next definition introduces an important subclass of the class NP .

Definition 2.2. A problemP is NP-complete if P belongs to NP and any problem
of NP polynomially reduces to P .

The first problem proven to be NP-complete was SATISFIABILITY problem
(Cook 1971).

26 2 Problems, Algorithms and Complexity

SATISFIABILITY

Instance: A set U of variables and a collection C of clauses over U .
Question: Is there a satisfying truth assignment for C ?

The NP-complete problems create a subset of NP and we say that NP-
complete problems are the ‘difficult’ problems of NP . Indeed, let us suppose that
an NP-complete problem can be solved in polynomial time. Then, according to
Definition 2.1, any problem in NP can be solved in polynomial time, which implies
that NP � P and thus P D NP. Therefore, unless P D NP, the NP-complete
problems cannot be solved in polynomial time, which make these problems more
‘difficult’ that those from the class P .

There exist many NP-complete problems, two examples of such problems are
SATISFIABILITY and PARTITION. For more detailed list of NP-complete problems
we refer the reader to Garey and Johnson (1979).

The class of NP-complete problems can also be divided into two parts. We
distinguish problems that are NP-complete in the strong sense and problems that are
NP-complete in the ordinary sense or in the weak sense. For purposes of the book,
it is sufficient to state that a problem P is NP-complete in the strong sense if P
cannot be solved by a pseudo-polynomial time algorithm, unless P D NP. The NP-
complete problems that can be solved by a pseudo-polynomial time algorithm are
said to be NP-complete in the ordinary sense. For more detailed discussion of strong
and weak NP-complexity, we refer the reader to monographs Garey and Johnson
(1979) or Papadimitriou (1994).

2.2.2 NP-Hardness

The notion of NP-completeness concerns problems that belong to NP . It has been
extended to the problems that are outside NP , for proving that these problems
are also hard. Any decision problem P , member of NP or not, to which an NP-
complete problem can be transformed, has the property that it cannot be solved in
polynomial time, unless P D NP. Therefore, such a problem is called NP-hard, i.e.
as hard as NP-complete problems.

This definition applies for instance to search problems that constitute the third
main class of problems, apart decision and optimization ones. A search problem
consists in either returning the answer ‘no’ if the problem has no solution or
returning some solution to the problem otherwise. Moreover, this definition applies
also to optimization problems.

Let us consider two problems, P1 and P2, and let A1 and A2 be two algorithms
for solving these problems, respectively, with the property that A1 calls A2 as a

2.2 NP-Completeness and NP-Hardness 27

subprogram. If A1 runs in polynomial time if A2 runs in polynomial time, we say
that problem P1 is Turing reducible to problem P2, denoted by P1 /T P2. The
Turing reduction can be used for proving NP-hardness results. Notice that from the
above we may deduce that all NP-complete problems are NP-hard.

Example 2.3. Let us consider the following decision problem.

TWO PROCESSORS

Instance: A set J of n jobs, fpj g 2 N, 8j , 1 � j � n, Y 2 N.
Question: Is there a two-processor schedule for J such that the jobs complete

on both machines not later than Y ?

We show that this problem is NP-complete by reduction from PARTITION

problem. First, we may notice that problem TWO PROCESSORS is in NP , since
any response ‘yes’ can be verified in polynomial time.

Then, considering an arbitrary instance of PARTITION, we define the following
instance for problem TWO PROCESSORS: n D jAj, pj D aj , 8j , 1 � j � n,
Y D 1

2

P
aj2A aj . This construction can be done in polynomial time. If the answer

to PARTITION problem is ‘yes’, it is sufficient to schedule the jobs of A0 on machine
M1 and the jobs ofAnA0 on machineM2 and the makespan of the schedule is exactly
equal to Y . Therefore, the answer to TWO PROCESSORS is ‘yes’. If the answer to
TWO PROCESSORS is ‘yes’, the jobs assigned to M1 and the jobs assigned to M2

constitute a partition of the jobs, each of size 1
2

P
aj2A aj and therefore the answer

to PARTITION is ‘yes’.
Hence, TWO PROCESSORS is NP-complete.
Let us consider now the scheduling problem denoted by P2jjCmax. This problem

can be solved by calling iteratively the algorithm for problem TWO PROCESSORS,
by changing the value of Y . A binary search can be designed to ensure that
the number of calls is bounded by n. This method gives a Turing reduction and
therefore, P2jjCmax is NP-hard and cannot be solved in polynomial time, unless
P D NP. ˘

The following NP-complete problems will be used in the following.

KNAPSACK

Instance: Two sets of nonnegative integers fa1; a2; : : : ; ang and
fw1;w2; : : : ;wng and two integers b and W .
Question: Is there a subset S � f1; 2; : : : ; ng such thatX

i2S
ai � b and

X

i2S
wi 	 W ‹

28 2 Problems, Algorithms and Complexity

3-PARTITION

Instance: An integer E , a set A of 3r nonnegative integers fa1; a2; : : : ; a3r g,
with E=4 < ak < E=2, 8k, 1 � k � 3n,

3rX

kD1
ak D rE

Question: Can A be partitioned into r disjoint subsets A1; : : : ; Ar such that
for 1 � h � r , X

k2Ah
ak D E‹

2.3 Enumeration and Exact Algorithms

For combinatorial optimization problems, it can be tempting to enumerate the
whole set of potential solutions, and to keep the best solution. For example, finding
the best sequence of a scheduling problem with n jobs can be done by enumerating
the nŠ possible sequences. Such an enumeration, however, is only possible on current
supercomputers and if the value of n, in most of the problems, is not greater than,
say, 20.

In this section, we describe enumeration algorithms and exact algorithms. We
begin with implicit enumeration algorithms based on dynamic programming and
branch-and-bound approach. In these cases we explore implicitly the whole set of
possible solutions, i.e., we explore only the solutions which can potentially lead to
an optimal solution.

2.3.1 Dynamic Programming

Dynamic Programming (DP) is an implicit enumeration method, based on the
Bellman’s principle of optimality (Bellman 1957). The main idea of the DP is that
a problem – satisfying certain conditions – can be decomposed into subproblems
of the same nature, and the optimal solution of the problem can be obtained from
the optimal solutions of the subproblems, by using recursive relations. Each step
of the recursion is called a phase. The problem is in a given state at the beginning
of the phase, and after some decisions, enters into another state. A final state of
the DP corresponds to an optimal solution. Depending on the number of states and
phases, the running time of a DP algorithm can be polynomial, pseudopolynomial
or exponential.

We illustrate application of the DP method with the following problem.

2.3 Enumeration and Exact Algorithms 29

Problem 1jj P
wj Uj

In the problem, there is a single machine, to each job is associated a due date and
a weight and the objective is to minimize the weighted number of tardy jobs. This
problem is ordinary NP-hard (Karp 1972). We assume that all jobs are numbered in
EDD order. This renumeration can be done in O.n log.n// time if necessary.

There are n phases in the DP algorithm. A phase j corresponds to job Jj ,
assuming that the first j � 1 jobs have been scheduled. A state at phase j is t ,
the date at which completes the last early job. A decision at phase j is to schedule
job Jj early or tardy.

Let us denote by Fj .t/ the minimum cost of scheduling job Jj at phase j ,
assuming that the j �1 first jobs are scheduled, and that the last early job completes
at time t (Lawler and Moore 1969).

If the decision is that Jj is early (only possible if t � dj), then Jj does not
generate any cost, and the cost is the same as before scheduling Jj , when the last
early job completed at time t�pj . In this case, Fj .t/ D Fj�1.t�pj /. If the decision
is that Jj is tardy, then Jj generates a cost of wj . In this case, Fj .t/ D Fj�1.t/Cwj .

The recursive relation is given by:

Fj .t/ D

8
ˆ̂
<

ˆ̂
:

min
˚
Fj�1.t � pj /; Fj�1.t/C wj

� 8j; 1 � j � n;

8t; 0 � t � dj
Fj .dj / 8j; 1 � j � n;

8t; dj C 1 � t � P

with P D Pn
jD1 pj .

The initial conditions of the recursion are:

�
F0.t/ D 0; 8t 	 0

Fj .t/ D 1; 8j 2 0; : : : ; n;8t < 0

The value of Fn.P / gives the optimal value of the objective function. In order to
find the corresponding solution, a backward procedure has to be implemented. This
algorithm runs in O.nP/ time.

Example 2.4. Let us the following 4-job instance of problem 1jjPwj Uj :

j 1 2 3 4

pj 5 2 3 4
dj 8 10 11 12
wj 13 7 5 9

Details of solution of the problem by the DP are given in Table 2.1. The value of
the optimal solution is equal to 5. The corresponding solution can be find by using

30 2 Problems, Algorithms and Complexity

Table 2.1 Solution details of problem 1jjPwj Uj by dynamic program-
ming

t < 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

F0(t) ∞ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
F1(t) ∞ 13 13 13 13 13 0 0 0 0
F2(t) ∞ 20 20 13 13 13 7 7 0 0 0 0
F3(t) ∞ 25 25 18 18 18 12 12 5 5 5 0 0 0...
F4(t) ∞ 34 34 27 27 25 21 18 14 14 12 9 5 5 5 5

a backtrack procedure: F4.12/ D 5 because it is the minimum between F3.12/C 9

andF3.8/. Therefore, job J4 doesn’t generate a cost, and it is an early job.F3.8/ D 5

because it is the minimum between F2.8/ C 5 and F2.5/. Job J3 generates a cost,
this job is tardy. Then, F2.8/ D 0, it means that the remaining jobs are early. At the
end, the optimal sequence is equal to .J1; J2; J4; J3/. ˘

2.3.2 Branch-and-Bound Algorithms

Another method of implicit enumeration is used in so-called branch-and-bound
algorithms. In this case, the enumeration is done by a tree search procedure, it
means a procedure where the elements are nodes of a tree, which are explored in
a special order. Each node is equivalent to a state of the DP algorithm and an arc
corresponds to a decision. The ending node of an arc is equivalent to a final state of
the DP algorithm.

A branch-and-bound procedure is an implicit enumeration method, characterized
by two elements: the branching and the bound. The branching is the way the
problem is decomposed. It is related to the definition of nodes and arcs. For example,
a branching process can suppose that a sequence for a scheduling problem is
developed from the first job to the last job of the schedule. It means that the root node
of the tree is empty, the terminal nodes (leaves of the tree) are complete sequences,
and each node is completed by one job in each of its child nodes.

Two sorts of bounds are considered. For a minimization problem, an upper bound
UB is generally the value of a feasible solution, therefore greater than or equal to
the value of an optimal solution. During the search process, this quantity is the
value of the best known solution. A lower bound LB.�/ is a quantity associated to
a node � of the tree. It is an under estimation of the value of the best solution which
can be reached from this node, i.e. no feasible solution under this part of the tree
has a solution less than this quantity. Therefore, if LB.�/ 	 UB, this part of the
tree cannot help improving the best known solution value and there is no need to
continue the enumeration of these solutions. Node � is pruned or cutted and we can
consider that this part of the tree has been implicitly explored.

2.3 Enumeration and Exact Algorithms 31

The nodes can be explored using several procedures. The three most often used
methods to explore the search tree are:

• The breath first search – nodes are managed in a First-In, First-Out list;
• The depth first search – nodes are managed in a Last-In,First-Out stack;
• The best first search – nodes are sorted in non-decreasing order with respect to

their lower bounds.

The algorithm stops when all the nodes have been implicitly explored.
We illustrate the application of the branch-and-bound algorithm with the follow-

ing problem.

Problem 1jj P
wj Tj

There is a single machine, to each job is associated a due date and a weight and
the objective is to minimize the total weighted tardiness. This problem is strongly
NP-hard (see Lawler (1977) among others). The upper bound that we consider is
the value of the objective function for the EDD sequence. The lower bound at node
� is equal to the value of the jobs already scheduled plus the smallest possible cost
of the last job scheduled, i.e.

LB.�/ D
X

j2�
wj Tj C min

j…�

(

wj max.0;
nX

kD1
pk � dj /

)

We assume that the nodes of the tree are explored using the depth first search
strategy. We illustrate the application of the branch-and-bound algorithm on the
following numerical example.

Example 2.5. We consider the problem 1jjPwj Tj and the following instance:

j 1 2 3 4

pj 5 2 3 4
dj 7 8 9 10
wj 1 3 5 8

The EDD sequence is .J1; J2; J3; J4/ and the total weighted tardiness is equal to
UB D 37 (only job J4 is late). The initial lower bound is equal to LB.ı/ D 7, where
ı denotes the root node (see Fig. 2.1).

The nodes are created in the following order: 1 (LB D 18); 12 (LB D 25); 123
(LB D 37) is pruned because it cannot improve the solution; 124 (LB D 33); 1243
is a leaf with evaluation 33, which allows to update the upper bound (UB D 33); 13
(LB D 18); 132 (LB D 38) is pruned; 134 (LB D 34) is pruned; 14 (LB D 18); 142

32 2 Problems, Algorithms and Complexity

Fig. 2.1 Search tree for Example 2.5

(LB D 34) is pruned; 143 (LB D 33) is pruned; 2 (LB D 7); 21 (LB D 25); 213
(LB D 37) is pruned; 214 (LB D 33); 23 (LB D 7); 231 (LB D 35) is pruned; 234
(LB D 7); 2341 is a leaf with evaluation 7, which allows to update the upper bound
(UB D 7). The search can stop, this upper bound is equal to the lower bound of the
root node, therefore, no better solution can be found.

Solution .J2; J3; J4; J1/ is optimal. ˘
The efficiency of a branch-and-bound algorithm is related to several parameters.

The strength of the lower bound is a key point. If the lower bound is strong (near to
the optimal), it will allow us to cut a lot of branches. But this efficiency may assume
a higher computational complexity and a compromise has to be found between
quality and computation time. The size of the search tree is another parameter that
has to be considered and the application of some dominance conditions in a pre-
processing phase can help in decreasing its size. Finally, the search strategy has also
an impact on the number of nodes that are explored. For instance, in Example 2.5,
the best-first strategy will only explore nodes 2, 23, 234 and 2341.

2.3.3 Mathematical Programming Algorithms

Integer Linear Programming (ILP) or Mixed Integer Linear Programming (MILP)
are two variants of mathematical programming that sometimes are used for solving
scheduling problems. In both cases, first we formulate the problem to be solved in
terms of variables, restrictions and functions, and next, using commercial or open

2.3 Enumeration and Exact Algorithms 33

source solvers, look for solutions. The resolution methods for solving ILP or MILP
problems are generic methods using sophisticated variants of branch-and-bound
algorithms.

In the section, we describe three basic ways of formulation a scheduling problem
using mathematical programming. The models often involve arbitrarily large values
called “big-M ”. As we will explain, these models are generally difficult to solve in
practice.

2.3.3.1 Positional Variables

We define binary variables xj;k equal to 1 if job Jj is in position k and 0 otherwise.
This type of variable can be used when the considered scheduling problem is
equivalent to finding a sequence of jobs. Notice that it is not the case for job shop
problems of for non-permutation flow shop problems. This sort of model has been
introduced in Wagner (1959).

The following constraints insure that there is exactly one job per position and one
position per job:

nX

jD1
xj;k D 1; 8k; 1 � k � n

nX

kD1
xj;k D 1; 8j; 1 � j � n

The processing time, the due date and the release date of the job in position
k become variables equal to pŒk� D Pn

jD1 pj xj;k , dŒk� D Pn
jD1 dj xj;k and

rŒk� D Pn
jD1 rj xj;k , respectively. The expression of the completion time of the

job in position k is given by:

CŒk� D
kX

qD1

nX

jD1
pj xj;q

For example, let consider the 1jjPTj problem and let Tk be the tardiness of the
job in position k. Then, an MILP model for the 1jjPTj problem is given by:

Minimize
nX

kD1
Tk (2.1)

subject to
nX

jD1
xj;k D 1; 8k; 1 � k � n (2.2)

34 2 Problems, Algorithms and Complexity

nX

kD1
xj;k D 1; 8j; 1 � j � n (2.3)

Tk 	
kX

qD1

nX

jD1
pj xj;q �

nX

jD1
dj xj;k; 8k; 1 � k � n (2.4)

variables Tk 	 0; 8k; 1 � k � n (2.5)

xj;k 2 f0; 1g; 8j; 1 � j � n;8k; 1 � k � n (2.6)

Notice that using positional variables it is difficult to consider objective functions
with weighted functions such as the

P
wj Tj , without using additional big-M

constraints. Indeed, it is not possible to simply replace in the model Tk by wkTk ,
because wk is also a variable, which makes the model nonlinear.

2.3.3.2 Precedence Variables

We define binary variables yi;j equal to 1 if job Ji precedes job Jj and 0 otherwise.
This sort of model has been introduced in Manne (1960) for the job shop scheduling
problem. In this case, we generally introduce a continuous variable Cj for the
completion time of job Jj and the expression of the disjunctive constraint (only
one job at a time on a machine) requires “big-M ” as follows:

Cj 	 Ci C pj �M.1 � yi;j /; 8i; 1 � i � n;8j; 1 � j � n (2.7)

Ci 	 Cj C pi �Myi;j ; 8i; 1 � i � n;8j; 1 � j � n (2.8)

If Ji precedes Jj , yi;j D 1. In this case, constraints (2.7) ensure that
Cj 	 Ci C pj and constraints (2.8) are deleted because Ci s always greater than
Cj C pi � M , with M a big value. If Jj precedes Ji , yi;j D 0. In this case,
constraints (2.7) can be deleted because Cj is always greater than Ci Cpj �M and
constraints (2.8) ensure that Ci 	 Cj C pi .

For problem 1jjPTj , we introduce n continuous variables Tj for the tardiness
of job Jj and an MILP model is given by:

Minimize
nX

jD1
Tj (2.9)

subject to Cj 	 Ci C pj �M.1 � yi;j /; 8i; 1 � i � n;8j; 1 � j � n (2.10)

Ci 	 Cj C pi �Myi;j ; 8i; 1 � i � n;8j; 1 � j � n (2.11)

Tj 	 Cj � dj ; 8j; 1 � j � n (2.12)

2.3 Enumeration and Exact Algorithms 35

variables Tj 	 0; 8j; 1 � j � n (2.13)

Cj 	 0; 8j; 1 � j � n (2.14)

yi;j 2 f0; 1g; 8i; 1 � i � n;8j; 1 � j � n (2.15)

2.3.3.3 Time-Indexed Variables

There are several possible definitions for time-indexed variables (see the initial
paper Bowman (1959)). We define binary variables zj;t equal to 1 if job j is being
performed at time t and equal to 0 otherwise. Another possibility is to say that it is
equal to 1 if job j starts its processing at time t .

The disjunctive constraint is simply given by
Pn

jD1 zj;t � 1. With such variables,
a job can be easily preempted. To prevent this, the following constraints are
introduced:

pj
 .zj;t � zj;tC1/C
TX

t 0DtC2
zj;t 0 � pj

For problem 1jjPTj we introduce n continuous variables Tj for the tardiness
of job Jj , 1 � j � n and with P D Pn

jD1 pj an MILP model is given by:

Minimize
nX

jD1
Tj (2.16)

subject to
PX

tD0
zj;t D pj ; 8j 2 f1; : : : ; ng (2.17)

nX

jD1
zj;t � 1; 8t 2 f1; : : : ; P g (2.18)

pj
 .zj;t � zj;tC1/C
TX

t 0DtC2
zj;t 0 � pj ;

8j 2 f1; : : : ; ng; 8t 2 f1; : : : ; P g (2.19)

Tj 	 t
 zj;t � dj ; 8j 2 f1; : : : ; ng;8t 2 f1; : : : ; P g (2.20)

variables Tj 	 0; 8j 2 f1; : : : ; ng (2.21)

zj;t 2 f0; 1g; 8j 2 f1; : : : ; ng; 8t 2 f1; : : : ; P g (2.22)

This model has a pseudo-polynomial number of variables, depending on the
duration P of the schedule.

36 2 Problems, Algorithms and Complexity

2.4 Approximation Algorithms

An NP-hard problem cannot be solved to optimality by a polynomial time algorithm,
unless P D NP . As we have shown in the previous section, exact resolution
methods require a pseudo-polynomial or exponential computation time. However,
some polynomial time approximation algorithms can be used in order to find
approximate solutions. Moreover, for many of such algorithms it is possible to give
a performance guarantee ensuring a certain quality of the solutions the algorithm
returns.

In the section, we recall basic definitions and notions related to approximation
algorithms, separately for single and multiple objectives.

2.4.1 Problems with One Objective Function

Let us denote by f �.I / the value of an optimal solution of a given minimization
problem, for the instance I and by H.I/ the value of the solution returned by the
heuristic H . Let " > 0 and set � D " C 1. We say that algorithm H has a relative
performance guarantee of �, or that algorithm H is a �-approximation algorithm
(or .1C "/-approximation algorithm), if for any instance I , we have

H.I/� f �.I / � "f �.I /

or, equivalently,

H.I/ � �f �.I /

or, equivalently,

H.I/

f �.I /
� �:

We say that H has an absolute performance guarantee of c, if for any instance
I , we have:

H.I/ � f �.I /C c

Example 2.6. Let us consider the problemP2jjCmax. We propose algorithmH (see
Algorithm 2) to solve this problem. Notice that algorithm H can be applied for an
arbitrary number of machines.

We are going to study this algorithm, in order to see if a performance guarantee
can be derived.

Let us denote by Jk the last job of the schedule, i.e. the job which gives the
maximum completion time of the schedule. We have

2.4 Approximation Algorithms 37

Algorithm 2 for problem P2jjCmax

1: while there are jobs to be scheduled do
2: Schedule the next job on the first available machine
3: end while
4: return Cmax

Cmax.H/ D tk.H/C pk;

where Cmax.H/, pk and tk.H/ denote the makespan of the schedule given by H ,
the duration of job Jk and the starting time of job Jk , respectively.

We can establish that the optimal makespan is greater than or equal to the average
sum of processing times, i.e.

1

2

nX

jD1
pj � C �

max;

and thus we have

1

2
.

nX

jD1
pj � pk/ � C �

max � 1

2
pk:

Because k was assigned to the first available machine, we have

tk.H/ � 1

2
.

nX

jD1
pj � pk/:

This implies that

tk.H/ � C �
max � 1

2
pk;

and hence

Cmax.H/ � C �
max C pk � 1

2
pk:

Because pk � C �
max, we have finally

Cmax.H/ � 3

2
C �

max:

Therefore, we can say that algorithm H is a 3
2
-approximation for P2jjCmax.

˘

38 2 Problems, Algorithms and Complexity

fk(σ)

(1 − ε)fk(σ)

Fig. 2.2 Illustration of the
definition of an
approximation algorithm
(type I)

2.4.2 Problems with Multiple Objective Functions

When the solutions are evaluated by multiple objective functions, several approxi-
mation methods can be defined. We refer to Ruzika and Wiecek (2005) and to Zitzler
et al. (2008) for a survey on such methods.

Some measures have been proposed, extending the definition of performance
guarantee to the case of multiple objectives. We only introduce in this section two
basic extensions of the notion of "-approximation that we call approximation of type
I and approximation of type II.

2.4.2.1 Approximation of Type I

In Ehrgott et al. (2011), the authors use the concept of "-efficient solution and
"-nondominated point to measure the quality of approximation.

Given a scalar " > 0, a schedule � and a vector in the objective space
f .�/ D .f 1.�/; f 2.�/; : : : ; f K.�//, schedule � is "-nondominated if there is no
other schedule � such that 8k; 1 � k � K ,

.1C "/f k.�/ � f k.�/:

Notice that this is equivalent to say that there is no other schedule � such that
8k; 1 � k � K , f k.�/ � .1 � "/f k.�/.

An algorithmH is called a .1C"/-approximation if it returns solutions satisfying
this condition. This is illustrated in Fig. 2.2 in the case of two criteria.

2.4.2.2 Approximation of Type II

Let us denote by f �k.I / the minimal value of objective f k for instance I . The
point with coordinates .f �1.I /; f �2.I /; : : : ; f �K.I // is called the reference point
for the instance I .

2.5 Approximation Schemes 39

f∗1

f∗2

(1 + ε1)f∗1

(1 + ε2)f∗2

H1

H2

Fig. 2.3 Illustration of the
definition of an
approximation algorithm
(type II)

Let consider a set of real numbers ."1; "2; : : : ; "K/ with "k > 0 for any k and set
ˇk D "k C 1 for any k. We denote byH an algorithm andHk.I / is the value of the
solution returned by algorithmH for the instance I for the function f k .

An algorithmH is called a .ˇ1; ˇ2; : : : ; ˇK/-approximation algorithm iff for any
instance I ,

Hk.I / � .1C "k/f
�k.I /

or

Hk.I /

f �k.I /
� ˇk;8k; 1 � k � K

This definition is illustrated in Fig. 2.3 in the case of two criteria.

2.5 Approximation Schemes

An approximation scheme is a familly of .1 C "/-approximation algorithms H",
over all ", 0 < " < 1. A polynomial-time approximation scheme (PTAS) is an
approximation scheme whose time complexity is polynomial in the input size. A
fully polynomial-time approximation scheme (FPTAS) has time complexity that is
polynomial in the input size and also polynomial in 1

"
(Schuurman and Woeginger

2011).
These definitions imply that a PTAS may have a time complexity bounded in

O.n1="/, but this is not possible for an FPTAS.
Two types of results can be given in terms of approximation schemes. The first

type of result is the proposition of a (fully) polynomial-time approximation scheme.
The second type of result is the proof that such an approximation cannot exist unless
P D NP .

40 2 Problems, Algorithms and Complexity

Several approaches allow us to obtain an approximation scheme. In the follow-
ing, we illustrate the technique called adding structure to the input data with the
P2jjCmax problem.

In the following, Cmax.S; I / denotes the makespan of solution S for instance I .

2.5.1 Simplifying

The first step of the technique is called simplifying and the aim is to simplify in
polynomial time the instance I into another instance I #. The simplification depends
on " (the closer " to zero, the closer I # to I).

For the P2jjCmax problem, we introduce the following notations.

psum D
nX

jD1
pj

and

pmax D n
max
jD1 pj

We denote by I the initial instance and S� the optimal solution of the problem. We
know that:

LB D max.
1

2
psum; pmax/ � Cmax.S

�; I /

For constructing instance I #, we split the jobs into two disjoint sets:

• The big jobs with a processing time greater than "LB are not changed,
• If we denote by ˙ the sum of processing times of all the small jobs, for which

the processing time is smaller than or equal to "LB, we introduce b ˙
"LB c jobs of

duration "LB in instance I #.

We want to estimate the deviation between Cmax.S
#�; I #/, the value of the

optimal solution of the problem with instance I # (denoted S#�) and Cmax.S
�; I /,

the optimal solution of the problem with the original instance I . We denote by ˙1

and ˙2 the total processing time of the small jobs on machine M1 and M2 in S�.
On machine M1, suppose that we keep unchanged the big jobs and that small jobs
are gathered together and replaced by d ˙1

"LB e jobs of length "LB. We do the same on
machineM2. It is clear that d ˙1

"LB e C d ˙2
"LB e 	 b ˙

"LB c.
We have an increase of the makespan on M1 at most equal to:

l ˙1

"LB

m
"LB �˙1 � "LB

2.5 Approximation Schemes 41

t

C∗
max = 100

20

J2J4

8060400

J3

100

J5

J1

J6

J7 J8

J9

Fig. 2.4 Optimal solution for the P2jjCmax problem

and the same on M2. Therefore, we have Cmax.S
�; I #/ 	 Cmax.S

�; I / and
Cmax.S

�; I #/ � "LB C Cmax.S
�; I / � "Cmax.S

�; I / C Cmax.S
�; I /. We deduce

that Cmax.S
�; I #/ � .1C "/Cmax.S

�; I /. Because Cmax.S
#�; I #/ � Cmax.S

�; I #/,
we have:

Cmax.S
#�; I #/ � .1C "/Cmax.S

�; I /

Example 2.7. Let us consider the following 9-job instance I of the P2jjCmax

problem:

j 1 2 3 4 5 6 7 8 9

pj 18 30 39 40 50 2 6 6 9

For this instance, LB D maxf100; 50g D 100. An optimal solution S� to this
instance has a makespan equal to C �

max D 100 (see Fig. 2.4).
Suppose that we take " D 0:10. Therefore, jobs J6, J7, J8 and J9 are small jobs

and � D 23. These small jobs do not belong to I # and two dummy jobs of length
"LB D 10 are introduced. The new instance is the following: ˘

j 1 2 3 4 5 60 70

pj 18 30 39 40 50 10 10

2.5.2 Solving

The second step is to solve the problem with the simplified instance in polynomial
time.

For the P2jjCmax problem, the total processing time has not increased. The
total processing time of the small jobs is at most psum � 2LB. Each job in I # has

42 2 Problems, Algorithms and Complexity

a processing time greater than or equal to "LB, thus the total processing time is
greater than or equal to jI #j"LB. So jI #j"LB � psum � 2LB, and thus jI #j � 2=".
So the number of jobs in I # only depends on ", and can be considered constant
(it does not depend on n). Therefore, the total enumeration of all the 22=" possible
schedules can be done in “constant” time. It is clear that in practice, this time is
strongly related to ".

Example 2.8. An optimal solution to the P2jjCmax problem for instance I # has a
makespan of 100, with jobs J4, J5 and J 0

6 onM1, the other jobs on M2. ˘

2.5.3 Translating Back

The third step of the technique is to translate the optimal solution S#� for instance
I # into an approximate solution S 0 for the original instance I .

We denote by˙#
1 and˙#

2 the duration of the dummy jobs onM1 andM2 in S#�.
We have:

˙#
1 C˙#

2 D "LB

�
˙

"LB

�

> ˙ � "LB

We denote by C #�
1 and C #�

2 the completion time on machineM1 and on machine
M2 for solution S#�. We construct a solution S 0 for instance I as follows. The big
jobs are not changed, they keep the same assignment as in S#�. On machine M1,
the small jobs are scheduled greedily so that the load does not exceed C #�

1 C 2"LB.
Therefore, if C 0

1 denotes the completion time of solution S 0 on machine M1, we
have:

C #�
1 C 2"LB 	 C 0

1 	 C #�
1 C "LB

The unscheduled jobs can be scheduled on machine M2, and the total length of
the unscheduled jobs is at most ˙ � ˙#

1 � "LB < ˙#
2 . Therefore, the unscheduled

small jobs can be put on M2 after the big jobs and complete before C #�
2 . We have

C 0
2 � C #�

2 .
We know that C 0

1 � C #�
1 C 2"LB and because C #�

1 � Cmax.S
#�; I #/ �

.1C "/Cmax.S
�; I /, and LB � Cmax.S

�; I / we have:

C 0
1 � .1C 3"/Cmax.S

�; I /

Because C 0
2 � C #�

2 � .1C "/Cmax.S
�; I /, we deduce finally that:

Cmax.S
0; I / � .1C 3"/Cmax.S

�; I /

Example 2.9. Solution S# is the following: The jobs J4 to J9 are scheduled onM1,
jobs J1 to J3 are scheduled on M2. The makespan is equal to 113. ˘

2.6 Relaxation of Problems 43

The complexity of this PTAS is in O.nC 21="/.
We refer to the tutorial of Schuurman and Woeginger for a more detailed

description of approximation schemes (Schuurman and Woeginger 2011).

2.6 Relaxation of Problems

A relaxation is a way to simplify the problem. Of course, the optimal solution of
the relaxed problem is just an approximated solution of the original problem. In
the section, we present two classical relaxation methods, called linear programming
relaxation and Lagrangian relaxation.

2.6.1 Linear Programming Relaxation

The linear programming relaxation consists in replacing the integrity constraints
of an MILP model by weaker constraints: each binary variable belongs to interval
[0,1] and each integer variable may be real. By using this relaxation, also called
linear relaxation, the NP-hard MILP is transformed into a linear program, i.e. a
related problem which can be solved in polynomial time. In case of a minimization
problem, the value of the linear relaxation can be used as a lower bound for the
corresponding MILP.

Example 2.10. To illustrate the relaxation, we consider two integer variables x and
y and the following MILP. The advantage with this example is that the constraints
can be represented in the plan.

Minimize Z D x C y

subject to 11x � 12y 	 �23
6x � 8y 	 �14
x 	 1

variables x; y 2 N

The solution space is represented in Fig. 2.5, where bullets represent the integer
solutions.

The solution of the MILP is x� D 3, y� D 4 and Z� D 7 whereas the solution
of the linear programming relaxation is x� D 1, y� D 2:5 and Z� D 3:5. For
more complex problems, the linear relaxation can be arbitrarily far from the optimal
solution of the MILP problem. ˘

44 2 Problems, Algorithms and Complexity

x = 1

11x − 12y + 23 = 0

6x − 8y + 14 = 0

Z = x + y

Solution of the linear relaxation:

Solution of the MILP: x∗ = 3, y∗ = 4, Z∗ = 7

x

y

x∗ = 1, y∗ = 2.5, Z∗ = 3.5

Fig. 2.5 Solution space for the Example 2.10

The linear relaxation of a model is generally used to provide a global lower bound
at the root node of the search tree, but also a local lower bound at any node. The
better the relaxation, the better the algorithm convergence.

Notice that the MILP models that use big-M formulations are generally difficult
to solve, because in this case, the linear relaxation is weak and does not allow to cut
branches.

Example 2.11. Let consider the model with precedence variables presented in
Sect. 2.3.3 from Eqs. (2.9)–(2.15) and consider that the processing times of jobs are
comprised between 1 and 100. The completion times are necessarily smaller than
100n. If M is arbitrarily big, for instance M D 106, constraints (2.10) and (2.11)
are simply canceled in the linear relaxation because always respected, whatever the
values of the variables yi;j . At the end, the only constraints in the linear relaxation
are given by Eq. (2.12) and the value of the objective function of the relaxed linear
program is generally equal to 0. Therefore, in case of “big-M ” formulations, there
is a real need to set M as small as possible. ˘

2.6.2 Lagrangian Relaxation

Let consider the general formulation of a combinatorial optimization problem .CO/
with variables xj , 1 � j � n.

Minimize cx

subject to Ax 	 b

variables x 	 0

2.6 Relaxation of Problems 45

which is equivalent to:

Minimize
nX

jD1
cj xj

subject to
nX

jD1
ai;j xj 	 bi ; 8i; 1 � i � m

variables xj 	 0; 8j; 1 � j � n

This problem is equivalent to its dual version with variables ui , 1 � i � m called
dual.CO/:

Maximize
mX

iD1
ui bi

subject to
mX

iD1
uj aj;i � cj ; 8j; 1 � j � n

variables ui 	 0; 8i; 1 � i � m

If the variables are integer or binary variables, the problem and its dual version
are difficult to solve. The Lagrangian relaxation is a generic technique which is used
to compute lower bounds, but it can also be used for obtaining upper bounds. The
idea is to relax some constraints in order to make the problem easier to solve. The
constraints that are relaxed are put in the objective function, each one multiplied by
a parameter called the Lagrangian multiplier, that can be viewed as a penalty for
violating the constraint.

The Lagrangian version of problem .CO/ with all the constraints in the objective
function can be formulated by:

Minimize cx C 	.b � Ax/

variables x 	 0

	 	 0

which is equivalent to L.CO/:

Minimize
nX

jD1
cj xj C

mX

iD1
	i .bi �

nX

jD1
ai;j xj /

variables xj 	 0; 8j; 1 � j � n

	i 	 0; 8i; 1 � i � m

46 2 Problems, Algorithms and Complexity

We denote by L.	; x/ D cx C 	.b � Ax/ the Lagrangian function. We have:

L.	; x/ D
nX

jD1
cj xj C

mX

iD1
	i .bi �

nX

jD1
ai;j xj / (2.23)

, L.	; x/ D
mX

iD1
	ibi �

nX

jD1
xj .

mX

iD1
.	iai;j /� cj /

The optimal solution of L.CO/ is a lower bound of problem .CO/. Therefore,
the problem is to find a set of variables 	 so that the optimal solution of L.CO/ is
as close as possible to the optimal solution of .CO/, therefore maximizing L.CO/.

This problem is called the Lagrangian dual of .CO/. The problem is to find the
vector 	 which maximizesL.	; x/ for x 	 0, which can be written as follows: Find
	� such that:

L.	�/ D max
	�0

n
min
x�0fL.	; x/g

o
(2.24)

Suppose that x is fixed. Then, L.	; x/ is a linear function depending only on 	.
For each possible value of x, minx�0fL.	; x/g is a lower envelope of a finite set
of linear functions, i.e., a concave, piecewise linear function. The points where this
envelope changes its slope are called breakpoints. 	� is the value of 	 for which this
envelope reaches its maximal value. This is illustrated by the following example.

Example 2.12. To illustrate the Lagrangian relaxation and the envelope of linear
functions, we use the following (simple) integer programming problem.

Minimize Z D x C y

subject to 3x � 2y 	 2

variables .x; y/ 2 X with X D f.0; 0/; .1; 0/; .0; 1/; .1; 1/; .1; 2/; .2; 1/; .2; 2/g

The Lagrangian function isL.	; x/ D xCyC	.2�3xC2y/. For each possible
value of .x; y/, we obtain one linear equation as follows.

.0; 0/ WL.	/ D 2	 .1; 0/ WL.	/ D1 � 	 .0; 1/ WL.	/ D1C 4	

.1; 1/ WL.	/ D 2C 	 .1; 2/ WL.	/ D3C 3	 .2; 1/ WL.	/ D3 � 2	

.2; 2/ WL.	/ D 4

The dual function is presented in Fig. 2.6, the optimal value of 	 is equal to 	� D
1=3 and the optimal objective value is L.1=3/ D 2=3. It is clear that the optimal
solution of the initial problem is given by .x; y/� D .1; 0/ with an objective value
of 1. The difference between the value of the Lagrangian relaxation and the optimal
value is called the duality gap, equal to 1/3 for this example. ˘

2.6 Relaxation of Problems 47

λ

L(λ)

λ

L(λ)

maximum

Fig. 2.6 Dual function

Algorithm 3 General Lagrangian relaxation
1: Determine the constraints to relax
2: Choose an initial value of the dual variables 	.0/

3: for i WD 1 to m do
4: Compute Gi
5: end for
6: UB WD HighValue
7: LB WD � HighValue
8: k WD 0

9: while stopping condition not met do
10: Solve L.CO/ with 	 D 	.k/

11: Denote by x.k/ the solution
12: Denote by L.	.k// the value of x.k/

13: if x.k/ is a feasible solution to .CO/ then
14: UB WD minfUB; L.	.k//g
15: end if
16: Define step size t .k/

17: for i WD 1 to m do
18: 	

.kC1/
i WD 	

.k/
i C t .k/Gi

19: end for
20: k WD k C 1

21: end while
22: return the last L.	.k//

The Lagrangian relaxation lies in two crucial points: which constraints to relax
and how to solve the Lagrangian dual. The subgradient method is the most used
and generally the best method for solving the problem. Remember the expression of
L.	; x/ given in Eq. (2.23). We define the subgradient of multiplier 	i by:

Gi D @L.	; x/

@	i
D bi �

nX

jD1
ai;j xj

The general Lagrangian relaxation procedure is depicted in Algorithm 3.

48 2 Problems, Algorithms and Complexity

We refer the reader to Geoffrion (1974) and to Van de Velde (1991) for a detailed
presentation of the Lagrangian relaxation method.

2.7 Complexity of Basic Scheduling Problems

In this section, we give a list of algorithms and problems complexities, which
constitute the basic elements in scheduling theory. The elements from the list will
be used in the rest of the book.

2.7.1 Single Machine Scheduling Problems

2.7.1.1 Problem 1jjLmax

This problem can be solved optimally by sorting the jobs in their dj non decreasing
order in O.n log.n// time. This sorting rule is called EDD for Earliest Due Date
first or Jackson’s rule (Jackson 1955).

2.7.1.2 Problem 1jj P
wj Cj

This problem can be solved optimally by sorting the jobs in their pj =wj non
decreasing order in O.n log.n// time. This sorting rule is called “WSPT” for
Weighted Shortest Processing time first or Smith’s rule (Smith 1956). This problem
can be solved inO.n log.n// time. Notice that if wj D 1 for all the jobs, the problem
becomes the 1jjPCj , which is solved by sorting the jobs in their pj non decreasing
order. In this case, the rule is called “SPT” for Shortest Processing time first.

2.7.1.3 Problem 1jj P
Uj

The problem is to minimize the number of tardy jobs. The Moore-Hodgson’s
algorithm (Moore 1968), reported in Algorithm 4, returns the best sequence for this
problem.

2.7.1.4 Problem 1j precjfmax

To each job Jj is associated a non decreasing cost function fj .Cj / with Cj the
completion time of Jj . This problem, presented in Lawler (1973), can be solved
optimally in O.n2/ time by Algorithm 5. This algorithm builds a solution backward
starting by the end of the schedule. At each iteration, there is a job Jj that has

2.7 Complexity of Basic Scheduling Problems 49

Algorithm 4 for problem 1jjPUj

1: Number the jobs so that d1 � d2 � � � � � dn
2: S WD ;
3: t WD 0

4: for j WD 1 to n do
5: if t C pj � dj then
6: S WD S [fJj g
7: t WD t C pj
8: else
9: Choose as Jmax the longest job in S [fJj g

10: S WD S n fJmaxg [fJj g
11: t WD t � pmax C pj
12: end if
13: end for
14: return jobs in S in EDD order, then jobs in J n S in any order

Algorithm 5 for problem 1jprecjfmax

1: P WD Pn
jD1 pj

2: S WD fJj W
j D ;g
3: � WD ./ == initial empty schedule
4: while S ¤ ; do
5: Choose Jk 2 S such that fk.P / D minj2S ffj .P /g
6: Schedule Jk at the end of schedule �
7: P WD P � pk
8: Update S
9: end while

10: return �

no successors (the set �j of successors of Jj is empty) with the smallest cost if it
completes at time P .

2.7.1.5 Problem 1jj P
Tj

The problem concerns the minimization of the total weighted tardiness with
agreeable weights, i.e. pi < pj implies wi 	 wj . This problem has been proved
NP-hard in the ordinary sense in Du and Leung (1990).

For the problem, Lawler (1977) proposed a pseudo-polynomial time algorithm.
Before we formulate this algorithm, we need some preliminaries.

Let � denote an optimal sequence. Let Cj .�/ denote the completion time of job
Jj in sequence � . We suppose that the jobs are numbered in EDD order. We define
arbitrary due dates d 0

j such that

minfdj ; Cj g � d 0
j � maxfdj ; Cj g

50 2 Problems, Algorithms and Complexity

Proposition 2.1. Any optimal sequence � 0 regarding due dates d 0
j is also an

optimal sequence regarding due dates dj .

Proof. We denote in the following T the total tardiness regarding due dates dj , T 0
the total tardiness regarding due dates d 0

j and Cj .� 0/ the completion time of Jj
in � 0. We want to prove that T .� 0/ D T .�/. We know that T .� 0/ 	 T .�/, we have
to prove that T .� 0/ � T .�/.

We have:

T .�/ � T 0.�/ D
nX

jD1
Aj

with the following definition of Aj :

• If Jj is tardy regarding dj , Cj > dj , then because dj � d 0
j � Cj we have

Aj D d 0
j � dj ,

• If Jj is early, Cj � dj , then Cj � d 0
j � dj and Aj D 0.

Similarly, we have:

T .� 0/� T 0.� 0/ D
nX

jD1
Bj

with the following definition of Bj :

• If Cj 	 dj , we have dj � d 0
j � Cj . There are three possibilities for C 0

j :

1. C 0
j � dj , then Bj D maxf0; C 0

j � dj g C maxf0; C 0
j � d 0

j g D 0,
2. dj � C 0

j � d 0
j , then Bj D C 0

j � dj ,
3. d 0

j � C 0
j , then Bj D C 0

j � dj � C 0
j C d 0

j D d 0
j � dj

Therefore we have Bj D maxf0;minfC 0
j � dj ; d

0
j � dj gg. We can see that

Bj�Aj .
• If Cj � dj , we have Cj � d 0

j � dj . Again, three possibilities:

1. C 0
j � d 0

j , then Bj D 0,
2. d 0

j � C 0
j � dj , then Bj D 0 � .C 0

j � d 0
j /,

3. d 0
j � C 0

j , then it comes Bj D �.dj � d 0
j /.

Therefore we have Bj D � maxf0;minfC 0
j ; dj g � d 0

j g and again we can see that
Bj � Aj .

In both cases, Aj 	 Bj and thus
Pn

jD1 Aj 	 Pn
jD1 Bj . Because � 0 is optimal

regarding d 0
j , we have T 0.� 0/ � T 0.�/ and thus:

T 0.� 0/C
nX

jD1
Bj � T 0.�/C

nX

jD1
Aj , T .� 0/ � T .�/

what is equivalent to inequality T .� 0/ � T .�/. ut

2.7 Complexity of Basic Scheduling Problems 51

Proposition 2.2. Let Jk be the job with maximum processing time. There exists a
job Jj� with j � 	 k such that all the jobs in fJ1; J2; : : : ; Jj�g n fJkg are scheduled
before Jk , the other jobs after Jk .

Proof. Let C 0
k be the maximum possible completion time of Jk in an optimal

sequence. We define the following due dates: d 0
j D dj if j ¤ k and d 0

k D
maxfC 0

k; dkg. Let � be an optimal sequence regarding due dates d 0
j and Ck

the completion time of Jk in � . Because the condition minfdj ; Cj g � d 0
j �

maxfdj ; Cj g of Proposition 2.1 applies, � is also optimal regarding due dates dj .
Because C 0

k is the maximum possible completion time of Jk in an optimal sequence,
Ck � C 0

k � maxfC 0
k; dkg. There is no job Jj before Jk with a greater due date. By

choosing j � as the greater index such that dj� � d 0
k , then because dk � d 0

k, j � > k
and the proposition is proved. ut

Proposition 2.2 leads to a dynamic programming algorithm, with O.n4pmax/

complexity. A phase j is the number of jobs to schedule. A state at phase j is
the subset of jobs to schedule and the start time. A decision at phase j is the job to
put in position k. We denote by Fj .f1; 2; : : : ; j g; t/ the minimum cost of scheduling
jobs Jr with r 2 f1; 2; : : : ; j g, starting at time t .

The recursive relation (see also Pinedo (2008) for a similar presentation of the
algorithm) is given by:

Fj .f1; 2; : : : ; j g; t/ D min
k�r�j

�

Fr�1.f1; 2; : : : ; rg n fkg; t/

C maxf0; t C
rX

`D1
p` � dkg

CFr�j .fr C 1; r C 2; : : : ; j g; t C
rX

`D1
p`/

�

with k such that pk D max1�`�j p`.
The initial conditions of the recursion are:

F0.;; t/ D 0; 8t
F1.fj g; t/ D max.0; t C pj � dj /; 8t;8j

We search for F.f1; 2; : : : ; ng; 0/.

2.7.1.6 Problem 1jLmax � Qj P
Cj

In Van Wassenhove and Gelders (1980), the authors consider the problem of
enumerating the Pareto solutions for the 1jjPCj ; Tmax problem. Let consider that
Tmax is bounded by a given quantity Q. Then, for any job j , one has Tj � Q and

52 2 Problems, Algorithms and Complexity

Algorithm 6 for problem 1jLmax � QjPCj

1: P WD Pn
jD1 pj

2: J WD f1; 2; : : : ; ng
3: k WD n

4: � WD ./ == initial empty schedule
5: while k ¤ 0 do
6: Find index i such that Qdi � P and pi D maxfpj W j 2 J g
7: Assign job with index i to position k in �
8: P WD P � pj
9: J WD J n fig

10: k WD k � 1

11: end while
12: return �

therefore Cj � Q C dj . By defining Qdj D dj C Q, the problem is to minimize
P
Cj under the constraints that Cj � Qdj for any job Jj .
The algorithm uses a backward procedure that assigns at each step at the last

position, the longest possible job (see Algorithm 6).
The following result can be proved (Lawler 1977).

Theorem 2.1. Problem 1jjPTj can be solved in O.n3P / time.

2.7.2 Multimachine Scheduling Problems

2.7.2.1 Problem Pjj P
Cj

The problem with m D 1 machine can be solved by sorting the jobs in SPT order
(see problem 1jjPwjCj). It can be proved that this method is also optimal for
the P jjPCj problem. The jobs are sorted in SPT order. Then, the smallest job is
assigned to machine M1, the second to machine M2 and so on until machine Mm

and then the .m C 1/th job to machine M1, the .m C 2/th job to machine M2, etc.
Notice that problems QjjPCj and RjjPCj can also be solved in polynomial
time. However, problem P2jjPwjCj is ordinary NP-hard and P jjPwj Cj is
strongly NP-hard.

2.7.2.2 Problem F 2jjCmax

This problem is the two-machine flow shop scheduling problem with minimisation
of the makespan. It is optimally solved in O.n log n/ time by the Johnson’s
algorithm (Johnson 1954), presented by Algorithm 7.

2.7 Complexity of Basic Scheduling Problems 53

Algorithm 7 for problem F2jjCmax

1: Let U WD fJj =pj;1 � pj;2g
2: Let V WD fJj =pj;1 > pj;2g
3: Sort the jobs of U in non-decreasing order of pj;1 values
4: Sort the jobs of V in non-increasing order of pj;2 values
5: � WD U jV == concatenation of U and V
6: return �

Table 2.2 Some polynomially solvable scheduling problems

Problem Notation Time complexity References

Single machine 1jjLmax O.n logn/ Jackson (1955)
1jjPUj O.n2/ Moore (1968)
1jjPwj Cj O.n logn/ Smith (1956)
1jprecjfmax O.n2/ Lawler (1973)

Parallel machines RjjPCj Horn (1973) and
Bruno et al. (1974)

Flow shop F2jjCmax O.n logn/ Johnson (1954)

2.7.3 Reductions Between Scheduling Problems

We recall in this section the complexity status of some basic scheduling problems.
The interested reader can refer to Blazewicz et al. (2007), Brucker (2007) or
Pinedo (2008) for a wide overview of scheduling problems. The web site at www.
informatik.uni-osnabrueck.de/knust/class/ contains an updated list of complexity
status.

Some reductions must be known in order to deduce easily the complexity of some
problems. These reductions are also presented.

2.7.3.1 Complexity of Basic Scheduling Problems

The complexity of the most classical scheduling problems without preemption is
summarized in the following tables. In Table 2.2 we list problems that can be solved
in polynomial time. In Table 2.3 we list some NP-hard problems.

2.7.3.2 Simple Reductions Between Scheduling Problems

The reductions between problems can be depicted by a graph, called a reduction
graph. An arc between problem P1 and problem P2 indicates that P1 / P2.

In the theory of scheduling, simple reductions can be established between
problems, using several ways. Concerning the machine environment, it is clear
that single machine scheduling problems are less complicated than parallel machine
problems and less complicated than flow shop scheduling problems, which are less

www.informatik.uni-osnabrueck.de/knust/class/
www.informatik.uni-osnabrueck.de/knust/class/

54 2 Problems, Algorithms and Complexity

Table 2.3 Some NP-hard
scheduling problems

Problem Notation References

Single machine 1jjP Tj Lawler (1977)
1jjPwj Uj Lawler and Moore (1969)

Parallel machines P2jjCmax Lenstra et al. (1977)
P jjCmax Garey and Johnson (1979)
P2jrj jPCj Simple reduction
P jjPwj Cj Bruno et al. (1974)

Flow shop F2jrj jCmax Lenstra et al. (1977)
F2jjLmax Lenstra et al. (1977)
F2jjPCj Garey et al. (1976)
F3jjCmax Garey et al. (1976)

Cmax

Lmax

Tj

wjTj

Uj

wjUj

wjCj

∑
Cj

1

P

Q

R

F

J

O

Fig. 2.7 Simple reductions between problems according to the machine environment and the
objective function (Brucker 2007)

complicated than job shop scheduling problems. Considering the constraints, one
can say, for instance, that a problem with unitary processing times is less com-
plicated than the same problem with identical processing times, which is less
complicated than the one with arbitrary processing times. And simple reductions
can also be derived on the objective functions. The reduction trees reported in
Fig. 2.7 concern simple reductions between problems according to the machine
environments and objective functions.

We can establish general relationships and simple relations among the scenarios
which are considered in the multiagent case (see Sect. 1.4).

• MULTICRITERIA is a special case of INTERFERING in which J 2 D J 1 D J .
Therefore, for the same reasons, we have ˛jMU; ˇj� / ˛jIN; ˇj� .

• INTERFERING is a special case of NONDISJOINT in which J 2 n J 1 D ;.
Therefore, we have ˛jIN; ˇj� / ˛jND; ˇj� .

These relationships are summarized in Fig. 2.8. Depending on the specific
objective functions of the agents, further reductions may hold, as it will be illustrated
in detail in the next sections.

2.8 Bibliographic Remarks 55

MULTICRITERIA

INTERFERING

NON DISJOINT

COMPETING

Fig. 2.8 Simple reductions
between scenario in the
multiagent case

An important observation concerns the three symmetric scenarios, i.e., COMPET-
ING, NONDISJOINT and MULTICRITERIA. Suppose that, for any of these cases,
we have a polynomial algorithm solving 1jˇsc; f

B � QjgA. Then, under the mild
assumptions that gA and f B are regular, rational-valued and that an upper bound
ubB is known for f B , it turns out that also the symmetric problem 1jˇsc; g

A �
Rjf B is polynomially solvable. In fact, in order to solve the latter, one can solve
a logarithmic (log ubB) number of instances of 1jˇsc; f

B � QjgA, for various
values of Q. If gA

�

.q/ denotes the optimal value of 1jˇsc; f
B � qjgA, the value

of the optimal solution of 1jˇsc; g
A � Rjf B is given by the smallest q for which

gA
�

.q/ � R.

2.8 Bibliographic Remarks

The basic concepts related to problems and algorithms are presented in Knuth
(1967–1969), Aho et al. (1974) and Cormen et al. (1994). Models of deterministic
and nondeterministic computers are considered in Aho et al. (1974), Hopcroft and
Ullman (1979) and Lewis and Papadimitriou (1998). Presentation of the theory of
NP-completeness is given in Garey and Johnson (1979) and Papadimitriou (1994).
A review of complexity classes other than P and NP is presented in Johnson
(1990). Enumerative algorithms are considered by Woeginger (2003). Branch-and-
bound algorithms and their applications are discussed by Papadimitriou and Steiglitz
(1982) and Walukiewicz (1991). Dynamic programming and its applications are
studied in Bellman (1957), Bellman and Dreyfus (1962) and Lew and Mauch
(2007). Hochbaum (1998), Schuurman and Woeginger (2011) and Vazirani (2003)
discuss approximation algorithms and approximation schemes.

Chapter 3
Single Machine Problems

This chapter is devoted to single-machine agent scheduling problems. We present
most of the results for the case of two agents (K D 2), for simplicity and because
most of the results found so far in the literature apply to this case. Whenever it is
possible, we illustrate how these results can be extended to scenarios with a larger
number of agents.

In the chapter, we use the following scheme of presentation of the results. First,
at the top level, we categorize the results on the basis of scheduling criteria. Next,
for each pair of scheduling objectives, we illustrate the results separately for each
solution approach. Finally, for each solution approach, we present the results for the
various scenarios.

The chapter is composed of 17 sections. In Sects. 3.1–3.15 we present results
concerning scheduling problems with particular pairs of objective functions. First,
in Sects. 3.1–3.8, we consider the cases that include one or two objective functions
of ‘max’ type. Next, in Sects. 3.9–3.15, we discuss the cases in which both
objective functions are of ‘sum’ type. We end the chapter with Sects. 3.16 and 3.17
that include, respectively, tables with summary of problems complexities and
bibliographic remarks.

3.1 Functions fmax; fmax

In this section, we consider the case in which each job Jj has (in general) two
functions associated, namely f A

j .Cj / and f B
j .Cj /, both of which are supposed to

be nondecreasing with Cj . The agents A and B are interested in minimizing the
maximum value reached by a function f A

j and f B
j respectively.

In this case (Fig. 3.1), the reduction NONDISJOINT ! BICRITERIA holds, since
NONDISJOINT can be seen as a special case of BICRITERIA in which f k

j .Cj / D
�1 for each job Jj 2 J n J k , k 2 fA;Bg, so the three cases NONDISJOINT,
INTERFERING and BICRITERIA collapse into a single case. On the other hand,

A. Agnetis et al., Multiagent Scheduling, DOI 10.1007/978-3-642-41880-8__3,
© Springer-Verlag Berlin Heidelberg 2014

57

58 3 Single Machine Problems

COMPETING does not. Therefore, in this section, we provide results for NONDIS-
JOINT and COMPETING scenarios.

3.1.1 Epsilon-Constraint Approach

3.1.1.1 Problem 1jND; f B
max � Qjf A

max

We next present an algorithm that solves 1jND; f B
max � Qjf Amax, hence the most

general scenario. The algorithm has complexity O.n2/, and can be seen as a
generalization of the classical Lawler’s algorithm (see Algorithm 5, page 49) for
the single-agent problem 1jprecjfmax with fmax D max1�j�n fj .Cj /. In what
follows, therefore, we consider the problem in which agent A wants to minimize
f A

max D maxj2JA f A
j .Cj / so that f B

max D maxj2J B f B
j .Cj / does not exceedQ.

Given a schedule � for the overall job set J D J A [J B , we indicate, as
usual, with Cj .�/ the completion time of the job Jj . We next introduce a solution
algorithm which can be applied even if precedence constraints may exist among
jobs, possibly across the job sets J A and J B . Practical situations in which this
can occur include for instance aircraft scheduling problems. An incoming flight
may carry some passengers that have to take a certain departing flight, and this
introduces a precedence constraint among the jobs, even if they are run by different
airlines (agents).

The idea of the algorithm is simple, and consists in building the schedule from
right to left, hence first deciding which jobs must be scheduled in the last positions,
and then proceeding backwards towards the beginning of the schedule. Since it does
not imply any additional complexity, we present the algorithm in the general case in
which precedence constraints exist, i.e., for problem 1jND; prec; f B

max � Qjf Amax. In
what follows, we let P D P

Jj2J pj .
More precisely, the algorithm first decides which is the last job to be processed.

Let L be the set of jobs that can be processed last, i.e., Jj 2 L if and only if it has
no successors in the precedence graph. Thanks to the fact that all functions fj are
regular, we know that whatever the last job, its completion time is P . So, if there is
a job Jj 2 L and Jj 2 NJ B D J B n J A such that f B

j .P / � Q, scheduling it as
the last job is certainly the best choice, since this can only favor the remaining jobs.
Otherwise, we consider a job Jh 2 L for which f A

h .P / is minimum among the jobs
which are either in NJ A D J A n J B or in J A \ J B and have f B

h .P / � Q. Once
the last job has been selected, the same procedure is repeated to select the second
last job, after P has been decreased by the length of the job in the last position, and
L has also been updated accordingly. At the j -th iteration of the algorithm, the j -th
last job is selected, and so on until either all jobs are scheduled or an infeasibility is
detected. The latter occurs if only candidates from J B are left, and for all of them
f B
i .P / > Q.

3.1 Functions fmax; fmax 59

More formally, consider an instance of the single-agent problem 1jprecjfmax,
having job set J D J A [J B , where the objective function is defined as:

fmax D max
j2J

fj .Cj .�//

and for each t 	 0, let

fj .t/ D

8
ˆ̂
<̂

ˆ̂
:̂

f A
j .t/ if Jj 2 NJ A

f A
j .t/ if Jj 2 J A \ J B and f B

j .t/ � Q

C1 if Jj 2 J B and f B
j .t/ > Q

�1 if Jj 2 NJ B and f B
j .t/ � Q:

(3.1)

With these positions, if an optimal schedule �� for problem 1jprecjfmax has finite
objective function value f �

max, then �� is also feasible and optimal for 1jND; f B
max �

Qjf Amax, and achieves the same optimal objective function value f A
max D f �

max.
Otherwise, if f �

max D 1, then no feasible solution exists for the two-agent problem.
In view of the above reduction, Algorithm 8 details Lawler’s algorithm for

this special case. At each step, L contains the jobs that can be scheduled in the
current last position, and P denotes its completion time (the latter equals the total
processing time of unscheduled jobs). Succ.j / and Pred.j / respectively denote
the sets of successors and predecessors of Jj in the precedence graph. Under the
hypothesis that each f A

j .t/ value can be computed in constant time, Algorithm 8
requires time O.n2/.

3.1.1.2 Problem 1jND; LB
max � QjLA

max

For some specific agents’ cost functions, the analysis seen for problem 1jND; f B
max �

Qj; f Amax can be simplified and, correspondingly, complexity can be decreased. This
is in particular the case if fmax D Lmax. For simplicity we describe the approach
omitting precedence constraints, which can however be easily taken into account
with no increase in complexity. A simple but useful property of this problem is the
following.

Theorem 3.1. There is an optimal solution to problem 1jND; LBmax � QjLAmax in
which the jobs in NJ A D J A n J B are scheduled in EDD order, and the jobs in
NJ B D J B n J A are scheduled in EDD order.

Note that, when considering the problem 1jND; LBmax � QjLAmax, each job in
J A \ J B has length pj but two distinct (and possibly unrelated) due dates dAj and
dBj , respectively for agentsA andB . As observed by Hoogeveen (1996) for problem
1jBI; LBmax � QjLAmax, also problem 1jND; LBmax � QjLAmax can be solved more
efficiently than in the case with general fmax. More precisely, consider the three sets
NJ A, NJ B and J A \ J B of size NnA, NnB and nAB respectively. Sort the first two sets

60 3 Single Machine Problems

Algorithm 8 for problem 1jND; prec; f B
max � Qjf Amax

1: P WD P
j2J pj

2: for j 2 J do
3: Construct the set L of jobs that can be scheduled in the current last position
4: Construct the set Succ.j / of successors of job Jj
5: Construct the set P red.j / of predecessors of job Jj
6: end for
7: Jh WD argminffi .P / W Ji 2 Lg
8: fmax WD fh.P /

9: while .J ¤ ;/ and .fmax < 1/ do
10: Ch.�/ WD P

11: P WD P � ph
12: L WD L n fJhg
13: J WD J n fJhg
14: for Jj 2 P red.h/ do
15: Succ.j / WD Succ.j / n fJhg
16: if Succ.j / D ; then
17: L WD L[fJj g
18: end if
19: end for
20: Set Jh WD argminffi .P / W Ji 2 Lg
21: fmax WD maxffmax; fh.P /g
22: end while
23: return values Ch.�/

in EDD order, while for the third we have two different orderings, with respect to
the first and the second set of due dates respectively, call them EDDA and EDDB. In
what follows, suppose that the jobs of J A \ J B are numbered according to EDDA.
During the execution of Algorithm 8, for a given current valueP of the total duration
of unscheduled jobs, we have a set of jobs in J A \ J B such that dBj C Q 	 P .
These are the feasible jobs, i.e., the jobs that can be feasibly scheduled to complete
at P . Hence, at each step the set of candidates for the last available position in the
schedule consists of:

(i) The job having largest due date among unscheduled jobs of NJ A,
(ii) The job having largest due date among unscheduled jobs of NJ B , and

(iii) The feasible job having largest index (and therefore smallest lateness with
respect to dAj) among unscheduled jobs of J A \ J B .

To efficiently select the appropriate job in case (iii), we must keep the feasible
jobs ordered with respect to their indices (and hence, with respect to EDDA), so
that the job having largest index can be extracted in constant time. When a job is
scheduled and P is updated, new jobs may be added to the set of feasible jobs, and
hence inserted in the ordered list of feasible jobs.

Note that, similar to the algorithm for general 1jND; f B
max � Qj; f Amax, if there

is a job Jj 2 NJ B such that dBj C Q 	 P , it is certainly convenient to schedule

it. Otherwise, we must resort to either the job in NJ A having largest due date, or the
feasible job in J A \ J B having largest due date with respect to EDDA.

3.1 Functions fmax; fmax 61

NONDISJOINT

INTERFERING COMPETING

MULTICRITERIA

Fig. 3.1 Reduction graph for 1jjf A
max ; f

B
max

While the jobs from NJ A and NJ B are considered exactly once during the
algorithm, those in J A\J B are also inserted in the ordered list of feasible jobs. The
latter operation requires complexity O.logn/, so the overall algorithm complexity
is O.n logn/.

In conclusion, we obtain Algorithm 9. In the algorithm, with a slight abuse of
notation, we let hA, hB and hAB be the indices of the currently unscheduled jobs
(from NJ A, NJ B and J A\J B respectively) having largest index, and consequently:

• dhA is the largest due date of the unscheduled jobs from NJ A

• dhB is the largest due date of the unscheduled jobs from NJ B

• dAhAB is the largest due date (with respect to A) of the unscheduled jobs from
J A \ J B

Example 3.1. Let consider the following 6-job instance, where jobs J1 to J4 belong
to J A and jobs J3 to J6 belong to J B :

Jj J1 J2 J3 J4 J5 J6

pj 4 2 3 5 7 4
dAj 14 18 19 10
dBj 13 16 17 21

We have NJ A D f1; 2g, NnA D 2, NJ B D f5; 6g, NnB D 2 and J A \ J B D f3; 4g,
P D 25. Suppose that we fix Q D 2, i.e. we want LBmax � 2. The sequence
.J3; J4; J5; J6; J1; J2/ is represented in Fig. 3.2. The constraint on LBmax � 2 is
satisfied, but the value of LAmax D 9 is not minimal.

Let us illustrate the execution of Algorithm 9 on this example. At the beginning
of the algorithm, no job from J B can be feasibly scheduled at the end of the
schedule, so we have to schedule the job in NJ A having largest due date, i.e., J2.
The makespan of unscheduled jobs is therefore 25 � 2 D 23. Now job J6 from
NJ B can be scheduled (with a lateness of 2), so the current makespan decreases to

19. This allows scheduling job J5, also from NJ B (and also with a lateness of 2).
Since the current makespan is now 12, F becomes non empty, in fact at this point
F D fJ3; J4g. Considering J A [F , the job having largest due date is J3, that
can therefore be scheduled to complete at 12. This brings the current makespan to

62 3 Single Machine Problems

Algorithm 9 for problem 1jND; LBmax � QjLAmax

1: Partition the jobs into the three sets NJ A (of size NnA), NJ B (of size NnB) and J A \ J B

2: Sort sets NJ A and NJ B in EDD order
3: Sort J A \ J B according to EDDA and EDDB

4: J WD J A [J B

5: P WD P
j2J pj

6: hA WD NnA
7: hB WD NnB
8: if there exist jobs in J A \ J B such that dBj CQ � P then
9: Construct the ordered set F of these jobs

10: else
11: F WD ;
12: end if
13: while N ¤ ; do
14: if .hB > 0/ and .dhB CQ � P/ then
15: ChB .�/ WD P

16: N WD N n fJBhB g
17: hB WD hB � 1

18: P WD P � phB
19: else
20: if F ¤ ; then
21: hAB WD largest index of a job in F
22: else
23: hAB WD 0

24: end if
25: if .hA > 0/ and .hAB > 0/ and .dAhAB � dhA / then
26: ChAB .�/ WD P

27: N WD N n fJhAB g
28: F WD F n fJhAB g
29: P WD P � phAB
30: Update F by adding all jobs in J A \ J B such that dBj CQ � P

31: else
32: if hA > 0 then
33: ChA .�/ WD P

34: J WD J n fJAhAg
35: hA WD hA � 1

36: P WD P � phA
37: else
38: if hB > 0 then
39: return ‘The problem is infeasible’
40: end if
41: end if
42: end if
43: end if
44: end while
45: return values ChA .�/; ChB .�/ and ChAB .�/

3.1 Functions fmax; fmax 63

t

LA
max = max(9, 7, −16, −2) = 9, LB

max = max(−10, −8, −2, −2) = −2

5

J6

0251010 25

J3 J4 J1 J2J5

Fig. 3.2 Solution .J3; J4; J5; J6; J1; J2/ for problem 1jND;LBmax � QjLAmax

t

LA
max = max(−5, 7, −7, −5) =7, LB

max = max(−1, −11, 2, 2) =2

5

J6

0251010 25

J3J4 J1 J2J5

Fig. 3.3 Optimal solution for problem 1jND;LBmax � QjLAmax

9, so that J1 can be scheduled, and finally J4. In conclusion, the optimal solution
represented in Fig. 3.3 is .J4; J1; J3; J5; J6; J2/, for which LAmax D 7 (attained by
job J2). ˘

3.1.1.3 Problem 1jC B
max � QjC A

max

Let us now consider the case in which each agent is interested in minimizing its own
makespan. In the COMPETING scenario, the following simple property holds Baker
and Smith (2003).

Proposition 3.1. In any Pareto optimal solution to problem 1jCO; C B
max � QjCA

max,
the jobs of each agent are scheduled consecutively.

In view of this property, 1jCO; C B
max � QjCA

max is trivial. In fact, if Q < P , in
the optimal schedule the whole set J B is scheduled before the whole set J A, and
viceversa if Q 	 P . However, if release dates are present, the problem turns out to
be NP-hard (Ding and Sun 2010).

Theorem 3.2. Problem 1jCO; rj ; CB
max � QjCA

max is NP-hard.

Proof. Given an instance of PARTITION (see definition page 24), define an instance
of problem 1jCO; rj jCB

max � QjCA
max as follows. Agent A has n jobs, of length aj

and release date rAj D 0, 8j 2 f1; : : : ; ng. Agent B has a single job, of length 1,

having release date rB1 D R D 1
2

P
j aj . A solution such that CA

max � 2R C 1 and
CB

max � R C 1 exists if and only if the instance of PARTITION is a yes-instance. In
fact, in such a solution, the job of agentB must start exactly at timeR and complete
at RC 1. Hence, one has C1

max D 2RC 1 if and only if it is possible to partition all
the jobs in J A into two sets of length R. ut

64 3 Single Machine Problems

Theorem 3.2 implies the NP-hardness of 1jCO; rj ; f B
max � Qjf Amax. Leung et al.

(2010) show that the preemptive version of the problem can be solved in polynomial
time. Specifically, 1jCO; rj ; pmtnjf B

max � Qjf Amax can be solved in O.n2/, while
1jCO; rj ; pmtnjLBmax � Qjf Amax can be solved in O.nA lognA C nB lognB/.

3.1.1.4 Extension to K Agents

The results illustrated so far can be easily extended, even for the NONDISJOINT

scenario, to the case of K agents, and each agent k is interested in minimizing an
objective function of the form f k

max D maxJj2Jk f
k
j . In what follows, let J �1.Jj /

denote the set of agents that own job Jj , i.e.

J �1.Jj / D fk W Jj 2 Jkg:

Let us first consider the feasibility problem (see Sect. 1.3), i.e., given K values
Q1;Q2; : : : ;QK , the problem of finding, if it exists, a schedule � such that
f k

max.�/ � Qk, k D 1; : : : ; K . Since the functions f k
j are nondecreasing, in order

to have f k
j .Cj / � Qk, Cj must not exceed a certain deadline Qdj , defined as

Qdj D maxft jf k
j .t/ � Qk; k 2 J �1.Jj /g: (3.2)

Assuming to have an explicit expression for the inverse function .f k
j .Cj //

�1, Qdj
can be computed in time O.K/. Hence, the feasibility problem consists of finding
a schedule � such that Cj .�/ � Qdj . Once all values Qdj have been computed (in
O.nK/), we simply order all jobs by nondecreasing values of Qdj , and schedule them
in this order. If no contraint is violated, a feasible schedule is found. Otherwise,
no schedule exists for the values Q1;Q2; : : : ;QK . Hence, the feasibility problem
1jND; f 1

max � Q1; f
2

max � Q2; : : : ; f
K

max � QK j� can be solved inO.nKCn logn/.
Notice that the complexity of 1jCO; f 1

max � Q1; f
2

max � Q2; : : : ; f
K

max � QK j� is
O.n logn/, since in the COMPETING scenario, each job belongs to exactly one agent
and its deadline can be computed in constant time.

Also, the K-agent problem 1jND; f 2
max � Q2; : : : ; f

K
max � QK jf 1

max preserves
the complexity of the two-agent case. In fact, notice that we only need to replace, in
the positions (3.1), the role of agentB with agents 2, : : : ,K . More precisely, we let:

fj .t/ D

8
ˆ̂
<̂

ˆ̂
:̂

f 1
j .t/ if N �1.Jj / � f1g
f 1
j .t/ if N �1.Jj / � f1g and t � Qdj

C1 if N �1.Jj / � f1g and t > Qdj
�1 if 1 62 N �1.Jj / and t � Qdj :

The same complexity considerations done for 1jND; f B
max � Qjf A

max apply,
implying that also in the K-agent setting the NONDISJOINT problem can be solved
in O.n2/.

3.1 Functions fmax; fmax 65

3.1.2 Computing the Pareto Set

3.1.2.1 Problem 1jNDjP.f A
max; f B

max/

Let us now turn to problem 1jNDjP.f Amax; f
B

max/. As shown in Sect. 1.3, each Pareto
optimal solution can be found by solving a logarithmic number of instances of the "-
constraint problem. However, in this case the problem is even easier. In fact, suppose
that F1 is the value of the optimal solution of 1jND; f B

max � Qjf Amax for some
Q. To obtain a Pareto optimal solution, we only need to solve one instance of the
symmetric problem, i.e., 1jND; f A

max � F1jf B
max. If F2 is the optimal value of such

an instance, the pair .F1; F2/ is Pareto optimal. Similarly, the next Pareto optimal
solution can be generated by solving 1jND; f B

max � F2 � "jf Amax (for sufficiently
small ") and thereafter one instance of the symmetric problem. In this way, the
whole Pareto set can be obtained. Hence, the complexity of this task is essentially
related to the size of the Pareto set.

It turns out that the Pareto set has a polynomial number of solutions. This can be
shown following an approach originally proposed in Hoogeveen (1996) for problem
1jBIjP.f 1max; f

2
max/, which in this case subsumes also problem 1jNDjP.f A

max; f
B

max/

(Fig. 3.3).
One Pareto optimal schedule is a reference schedule (defined in Sect. 1.2.1) for

agent A. This can be found solving an instance of problem 1jND; f B
max � Qjf Amax

with Q D C1. Let F �
1 be the optimal value. The corresponding value F 0

2 can
be found by solving the symmetric problem 1jND; f A

max � F �
1 jf B

max. .F �
1 ; F

0
2 / is a

Pareto optimal pair.
Consecutive Pareto optimal schedules are related by a structural property which

allows showing that the Pareto set has polynomial size. Consider a Pareto optimal
schedule � having values .F1; F2/, and consider the next Pareto optimal schedule
� 0, of values .F 0

1; F
0
2/, with F 0

2 < F2. There must be in � at least one critical job,
i.e., a job Jj such that f B

j .Cj .�// D F2. For each critical job Jj there exists at
least one job Ji that precedes Jj in � and follows it in � 0. More precisely, for each
critical job Jj consider the set Jj of jobs Ji that precede Jj in � and are such that
f 2
i .Cj .�// < F2. Note that Jj cannot be empty, otherwise one cannot get F 0

2 < F2.
Let now

F1.j / D min
Ji2Jj

ff A
i .Cj .�//g

and consider a job Jj� such that F1.j �/ D maxfF1.j /g among all critical jobs. It
can be shown Hoogeveen (1996) that there can be no Pareto optimal value for agent
A betweenF1 and F1.j �/, and that if Ji and Jj are such that f A

i .Cj .�// D F1.j
�/,

in the optimal solution � 0 to 1jBI; f B
max � F1.j

�/jf 1
max, Ji completes at Cj�.�/.

The schedule � 0 is Pareto optimal if f B
j .Cj .�

0// < f B
j .Cj .�//. Moreover, it can

be shown that as we further increase the bound on agentB , the same two jobs cannot
overtake each other again. As a consequence, going from the ideal solution for agent
A to the ideal solution for agentB , each pair of jobs can overtake each other at most

66 3 Single Machine Problems

once, so there are at mostO.n2/ Pareto optimal solutions. Since each Pareto optimal
point can be found by solving two instances of the "-constraint problem, and each
requiresO.n2/ (Sect. 3.1.1), the whole Pareto set can be computed in O.n4/.

3.1.2.2 Problem 1jjP.LA
max; LB

max/

It is now interesting to analyze the special case in which both agents want to
minimize the maximum lateness. In this case, problem 1jNDjP.LAmax; L

B
max/ can

be solved in O.n3 logn/, since each instance of the "-constraint problem can be
solved in O.n log n/ instead of O.n2/.

In turn, problem 1jCOjP.LAmax; L
B
max/ can be solved even more efficiently, by

exploiting the property in Theorem 3.1. Notice that, in this case J A \ J B D ;, and
hence we can restrict to Pareto optimal solutions in which the jobs of the two agents
are EDD-ordered. Given any Pareto optimal solution in the COMPETING scenario,
consider the completion time of the job that determines the maximum lateness for
agent A (critical job), and call such lateness value y. As observed in Yuan et al.
(2005), if the critical job is Ju, such lateness value equals

y D
uX

iD1
pAi C

vX

iD1
pBi � dAu

for some v, and can therefore assume at most O.n2/ different values. Hence, we
can compute a priori (and very simply) all values for y, letting 1 � u � nA and
0 � v � nB . For each y, we can then solve the corresponding "-constraint problem
1jCO; LBmax � yjLAmax, and generate a Pareto optimal solution (Algorithm 10).

Notice that we did not include the sorting phase in Alg. 10, which requires
O.n logn/. However, such phase is done once for all, so indeed, after the jobs are
sorted, solving problem 1jCO; LBmax � yjLAmax only takesO.n/ time. Therefore, the
problem 1jCOjP.LAmax; L

B
max/ can be solved in O.n3/.

Example 3.2. To illustrate Algorithm 10, let consider the following 6-job instance,
where jobs JA1 to JA3 belong to J A and jobs JB1 to JB3 belong to J B :

J kj J A1 J A2 J A3 J B1 J B2 J B3

pj 5 4 2 6 7 4
dj 7 9 16 9 12 17

We have P D 28, hA D nA D hB D nB D 3. The Pareto optimal solutions
for this instance are S1 (for y D 5) and S2 (for y D 9) represented in Fig. 3.4.
With sequence S1 D .J B1 ; J

B
2 ; J

A
1 ; J

B
3 ; J

A
2 ; J

A
3 /, one has LAmax D max.18� 7; 26�

9; 28�16/ D 17 andLBmax D max.6�9; 13�12; 22�17/D 5 � y. With sequence
S2 D .J A1 ; J

B
1 ; J

B
2 ; J

A
2 ; J

B
3 ; J

A
3 /, one has LAmax D max.5�7; 22�9; 28�16/D 13

and LBmax D max.11� 9; 18� 12; 26� 17/ D 9 � y. ˘

3.1 Functions fmax; fmax 67

Algorithm 10 for problem 1jCO; LBmax � yjLAmax

1: P WD P
h2J ph

2: hA WD nA
3: hB WD nB
4: while J ¤ ; do
5: if .hB > 0/ and .dhB C h � P/ then
6: ChB .�/ WD P

7: J WD J n fJhB g
8: hB WD hB � 1

9: P WD P � phB
10: else
11: if hA > 0 then
12: ChA .�/ WD P

13: J WD J n fJhAg
14: hA WD hA � 1

15: P WD P � phA
16: else
17: return ‘The problem is infeasible’
18: end if
19: end if
20: end while
21: return values ChA .�/ and ChB .�/

t

5 0251010 25

JB
1 JB

2 JA
1 JB

3 JA
2 JA

3

t

5 0251010 25

JB
1 JB

2JA
1 JB

3JA
2 JA

3

S1

S2

Fig. 3.4 Optimal solutions for the 1jCO; LBmax � yjLAmax problem with y D 5 and y D 9

3.1.3 Linear Combination

Let us first consider theK-agent, linear combination problem denoted 1jCOjPk ˛k
f k

max. Cheng et al. (2008) have proved that this problem is strongly NP-hard when
K is not fixed and for general f k

max. In particular, the problem is strongly NP-hard
when f k

max D maxJj2J k fwkjC
k
j g for each agent k. From the reduction graph in

Fig. 3.3, this implies the NP-hardness of all the other scenarios. Notice however
that the unweighted problem, i.e., when f k

max D maxJj2J k fCk
j g, denoted by

1jCOjPk ˛kC
k
max, is indeed very easy. In fact, we can restrict to solutions in which

each agent’s jobs are performed consecutively, since only the completion time of

68 3 Single Machine Problems

the last job of an agent contributes to the objective function of that agent (i.e.,
Proposition 3.1 can be extended to K agents). So, we can indeed aggregate each
agent’s jobs into a single job of length Pk D P

Jj2J k pj . The problem is therefore
reduced to an instance of the classical, single-agent problem 1jjPwjCj in which
each job has length Pk and weight ˛k , and is therefore solved by Smith’s rule (see
Sect. 2.7.1) in time O.nCK logK/.

Let us turn to problem 1jCOjPk ˛kL
k
max. In the two-agent case, the problem can

be solved inO.nAnBn/ as shown by Yuan et al. (2005). IfK is not fixed, Cheng et al.
(2008) prove that the problem is at least binary NP-hard, and it is open as for strong
NP-hardness. However, if K is fixed, the situation is simpler. We next show that the
problem 1jCOjPk ˛kL

k
max can be solved in polynomial time for fixed K . In this

situation, the same property already stated for the two-agent problem 1jCO; LBmax �
QjLAmax (Theorem 3.1) holds, i.e., we can restrict ourselves to considering solutions
in which the jobs of each agent are scheduled in EDD order. As a consequence, in
any such solution, the completion time of any job equals the sum of the processing
times of the first u1; u2; : : : ; uK jobs for the K agents respectively:

KX

kD1

ukX

jD1
pkj

Because of this, the number of different values Lkmax can take is at most
Q
k nk . To

solve problem 1jCOjPk ˛kL
k
max, one can therefore check the feasibility of each

K-tuple .Q1;Q2; � � � ;QK/, where each Qk corresponds to one possible value of
Lkmax. Such feasibility problem can be solved in O.n logn/, as already discussed in
Sect. 3.1.1.4. In conclusion, the optimal value of the objective function is

min

(
KX

kD1
˛kQk W .Q1;Q2; � � �QK/ is feasible

)

:

Since each Qk takes at most
Q
k nk values, the linear combination problem

1jCOjPk ˛kL
k
max can be solved in O.n.n1n2 � � �nK/K logn/. An open problem is

to provide an algorithm for problem 1jCOjPk ˛kL
k
max having lower complexity.

Indeed, the same approach can be used for the 1jCOjPk ˛kf
k

max problem,
i.e., solving a feasibility problem for each possible K-tuple .Q1;Q2; � � � ;QK/.
However, since Theorem 3.1 does not apply, the number of K-tuples to be tried
out is not polynomially bounded, and this indeed results in a pseudopolynomial
complexity.

Let us now turn to the NONDISJOINT scenario. The simplest case is the two-
agent problem 1jNDj f̨ A

max C f̌ B
max. Since (see Sect. 3.1.2) the whole Pareto set can

be generated in at most O.n4/, this problem can be solved in polynomial time. One
only needs to compute the value of the objective function for all Pareto optimal

3.1 Functions fmax; fmax 69

solutions, and select the best. Actually, it is an open problem to determine a more
efficient algorithm for the general problem 1jNDj f̨ A

max C f̌ B
max.

In some special cases, such more efficient algorithm can be devised. For instance,
consider the two-agent problem 1jNDj˛CA

max C ˇCB
max. It is easy to show that the

following property holds.

Theorem 3.3. In any optimal solution to 1jNDj˛CA
max C ˇCB

max, one of the two
following conditions holds:

1. First all jobs in J A are scheduled, followed by NJ B

2. First all jobs in J B are scheduled, followed by NJ A

Proof. Let us first rule out the trivial cases ˛ D 0 or ˇ D 0, for which conditions (2)
and (1) hold respectively. Hence, ˛ ¤ 0 and ˇ ¤ 0. Given an optimal schedule � ,
suppose that CA

max.�/ � CB
max.�/. In this case, we next show that condition (1)

holds. Suppose by contradiction that in � there is a job Jj 2 NJ B such that
Cj .�/ < CA

max.�/. This implies that Jj is not the last scheduled job of agent B
in � . Consider a new schedule � 0 obtained by postponing Jj so that it completes at
CA

max.�/. Therefore, CA
max.�

0/ D CA
max.�/ � pj , while CB

max.�
0/ D CB

max.�/. Then
� 0 is strictly better than � , a contradiction. A symmetric discussion shows that if
CB

max.�/ � CA
max.�/, condition (2) holds. ut

On the basis of this result, 1jNDj˛CA
max C ˇCB

max can be solved by simply
comparing the values of the objective function in the two solutions obtained by
scheduling first J A or J B respectively. (Clearly, scheduling within each set is
immaterial.). Theorem 3.3 can be generalized to K agents, by using the very same
arguments.

Theorem 3.4. Given any optimal solution � to 1jNDjPk ˛kC
k
max, there exists an

ordering k1; k2; : : : ; kK of the K agents such that, in � , first all jobs in J k1 are
scheduled, followed by all jobs in J k2 n J k1 , followed by all jobs in J k3 n .J k1 [
J k2/,. . . , followed by all jobs in J kK nSK�1

iD1 J ki .

If K is fixed, this theorem allows to devise a polynomial algorithm for
1jNDjPk ˛kC

k
max. In fact, given any ordering k1; k2; : : : ; kK of the K agents,

we can build a solution by scheduling the agents as prescribed by Theorem 3.4, i.e.,
first J k1 , then J k2 n J k1 , etc. The solution to problem 1jNDjPk ˛kC

k
max therefore

consists in finding the optimal ordering of the agents.
To this aim, one can use the following dynamic programming approach. Let S

be any subset of the K agents, and consider the problem restricted to the set J .S/
of jobs belonging to at least one agent of S :

J .S/ D
[

k2S
Jk

70 3 Single Machine Problems

and define T .S/ as the total processing time of these jobs, i.e.

T .S/ D
X

j2J .S/

pj

Let F.S/ be the optimal value of the objective function in such restricted problem.
If the last completing agent in S is agent k, its contribution to the optimal cost is
˛kT .S/, and the total cost is therefore

˛kT .S/C F.S n fkg/:
As a consequence, F.S/ can be computed as

F.S/ D min
k2S f˛kT .S/C F.S n fkg/g (3.3)

The recursive formula (3.3) must be initialized letting F.;/ D 0. When S
includes all agents (jS j D K), we get the last completing agent in the optimal
solution as

kK D arg min
k

f˛kT .S/C F.S n fkg/g

the second last agent kK�1 will be obtained as

kK�1 D arg min
k

f˛kT .S n kK/C F.S n fkK; kg/g

and so on, backtracking the whole optimal solution.
Let us now consider complexity issues. Each T .S/ can be computed a-priori in

O.n/. Each F.S/ can be computed through Eq. (3.3) inO.K/. Since the number of
possible agent subsets is 2K , the complexity is dominated by the computation of all
values T .S/, i.e., O.n2K/.

Let us now turn to the case in which K is not fixed. In this case, somewhat
surprisingly, the problem turns out to be hard. We employ the following problem,
which has been proved strongly NP-hard in Arbib et al. (2003).

Problem 3.1 (MIN FLOW TIME GRAPH ORDERING (MFTGO)). Given an
undirected graphG D .V;E/, let � be an ordering of the nodes, and for each u 2 V
denote by �.u/ the position of u in the ordering �. Let ei .�/ denote the number of
arcs adjacent to the i -th node of the ordering � that have a position smaller than i ,
i.e., the quantity

ei .�/ D jf.u; v/ 2 E W �.u/ < �.v/ D igj
Given an integerH , is there an ordering � such that

f .�/ D
jV jX

iD1
i ei .�/ � H‹ (3.4)

3.2 Functions Cmax;
P
Cj 71

In the following theorem, we show that MTFGO can be reduced to the decision
version of 1jNDjPk ˛kC

k
max, i.e. to the feasibility problem:

1jND;
KX

kD1
˛kC

k
max � Qj�

Theorem 3.5. If K is not fixed, problem 1jNDjPk ˛kC
k
max is strongly NP-hard,

even if all jobs have unit length and each agent owns exactly two jobs.

Proof. Given an instance of MFTGO, we build a corresponding instance of
1jND;

P
k ˛kC

k
max � Qj� as follows. There are K D jEj agents and n D jV j

jobs. For each node u 2 V we define one job, Ju. For each edge .u; v/ 2 E , we
define one agent Auv , with corresponding job set Juv D fJu; Jvg. All jobs have unit
duration,pu D 1 for all u. We denote byC uv

max the makespan of agentAuv . Moreover,
let Q D H and all ˛uv D 1.

Consider an ordering � in MFTGO. As observed, ei .�/ is the number of arcs
having one endpoint in the i -th node of � and the other endpoint in a node having a
smaller position than i in �. Such value is multiplied by i to obtain the contribution
of the i -th node to f .�/. Now, let us identify the arcs with the agents and the nodes
with the jobs. Also, order the jobs in 1jND;

PK
kD1 ˛kC k

max � Qj� as the nodes in
MFTGO, i.e., let � D �. Then, ei .�/ D ei .�/ equals the number of agents who
have both of their jobs completed when the i -th job in � is processed. Since all jobs
have unit duration, the i -th job is indeed completed at time i , i.e., C uv

max D i for all
Auv such that �.u/ < �.v/ D i . Therefore, since ˛uv D 1, we can write �.�/ as

�.�/ D
X

uvW.u;v/2E
C uv

max D
jV jX

iD1
i ei .�/ (3.5)

and hence
P

k ˛kC
k
max � Q if and only if (3.4) is verified. ut

Concerning the INTERFERING scenario, we observe that, as a consequence of
Theorem 3.4, an optimal solution to problem 1jIN jPk ˛kC

k
max is trivially obtained

by sequencing the agents from the innermost to the outermost, i.e., first JK , then
JK�1 n JK , then JK�2 n JK�1,. . . , then NJ A.

All the problems addressed in this section assumed that all jobs are available
at the beginning of the schedule. If nonzero release dates are present, even the two-
agent problem 1jCO; rj j˛CA

max CˇCB
max is NP-hard (Ding and Sun 2010). The proof

is almost identical to that of Theorem 3.2, where one defines ˇ >> ˛.

3.2 Functions Cmax;
P

Cj

In this section we address the first problem in which one agent holds a max-type
and the other agent a sum-type objective functions. The simplest such case is when
agent A wants to minimize the total completion time, and agent B the makespan

72 3 Single Machine Problems

NONDISJOINT

INTERFERING COMPETING

Fig. 3.5 Reduction graph for 1jjPCj ; Cmax

of its jobs. Throughout this section, with no loss of generality we can suppose that
the jobs in NJ B are scheduled consecutively in any Pareto optimal solution. Hence
we assume that NJ B consists of a single job NJB of length NPB , equal to the total
processing time of the jobs in NJ B .

In this case, the reductions in Fig. 3.5 hold. Notice that BICRITERIA is not shown
since the Cmax criterion is not relevant when applied to all jobs. In what follows we
therefore illustrate the results for the NONDISJOINT scenario.

3.2.1 Epsilon-Constraint Approach

Let us consider problem 1jND; C B
max � QjPCA

j . In what follows, jobs in NJ A are
numbered in SPT order, are denoted by JA1 ; J

A
2 ; : : : ; J

ANnA and have processing times
pA1 ; p

A
2 ; : : : ; p

ANnA . A simple pairwise interchange argument allows one to establish
the following theorem.

Theorem 3.6. In an optimal solution to problem 1jND; C B
max � QjPCA

j , jobs in
J A are sequenced in SPT order.

As a consequence of Theorem 3.6, problem 1jND; C B
max � QjPCA

j can be
solved very efficiently. In fact, observe that an optimal solution has the following
three-block structure. The first block contains all the jobs in J A\J B as well as the
first j � jobs in NJ A sequenced in SPT order. Job JAj� is the job such that:

X

Jj2J A\J B

pi C
j�

X

iD1
pAi � Q � NPB <

X

Jj2J A\J B

pi C
j�C1X

iD1
pAi (3.6)

The second block consists of job NJB . Finally, the third block contains the
remaining jobs in NJ A, again sequenced in SPT order. Once the jobs in J A are
sorted in SPT order and the index j � is computed by the (3.6), the optimal solution
is found. The complexity is thereforeO.nA lognA C nB/.

3.2 Functions Cmax;
P
Cj 73

t5 0251010 25

J3 J1 J4 J5 J6 J2

Fig. 3.6 Solution for problem 1jND; CB
max � QjPCA

j

Example 3.3. Let us consider an example with n D 8 jobs and the following
instance where J A D fJ1; J2; J3; J4g and J B D fJ3; J4; J5; J6g.

Jj J1 J2 J3 J4 J5 J6
(J kj J A2 J A4 J A1 D JB2 JA3 D JB4 J B1 J B3)

pAj 4 6 3 5
pBj 3 5 2 4

If we impose CB
max � 19, we will first sequence J3 and then J1 and J4. After

these jobs, one has to schedule the remaining jobs of NJ B , and finally job J2. The
solution is represented in Fig. 3.6. We obtain CB

max D 18 � 19 and
P
CA
j D 3 C

7C 12C 24 D 46. ˘

3.2.2 Computation of the Pareto Set

Let us turn to problem 1jNDjP.PCj ; Cmax/. To generate the whole Pareto set,
one may think of starting from a very large Q, so that, from (3.6), j � D NnA, and
decrease it. This yields a reference schedule for agent A, in which all jobs of agent
A are SPT ordered, followed by NJB . Decreasing Q, this solution remains optimal
until Q becomes smaller than

X

Jj 2J A\J B

pj C
NnAX

jD1
pAj � NPB

At this point, j � D NnA � 1, i.e., the new optimal schedule is obtained from the
previous one by postponing job J NnA after job NJB .

We can therefore continue decreasingQ in this way, considering that, from (3.6),
for each index h, 1 � h � NnA � 1, the optimal schedule is the same for all values of
Q such that

X

Jj2J A\J B

pj C
hX

jD1
pAj � NPB � Q <

X

Jj 2J A\J B

pAi C
hC1X

jD1
pAj � NPB (3.7)

At each new Pareto optimal solution, the only difference between the new and the
previous solution is that NJB swaps its position with the job JAh 2 NJ A immediately

74 3 Single Machine Problems

NONDISJOINT

INTERFERING COMPETING

BICRITERIA

Fig. 3.7 Reduction graph for 1jjf A
max ;

P
CB
j

preceding it. Therefore, the new solution can be computed in constant time and we
obtain the following result.

Theorem 3.7. There are exactly NnA C 1 Pareto optimal solutions, that can be
computed in O.nA lognA C nB/ time.

3.2.3 Linear Combination

Problem 1jNDj˛PCA
j CˇCB

max can be obviously solved in timeO.nA lognACnB/,
since, from Theorem 3.7, there are only NnA C 1 Pareto optimal solutions, that can
be easily enumerated.

3.3 Functions fmax;
P

Cj

Now let us turn to the case in which one agent has a general max-type cost
function. Notice that in this case, problem 1jNDjf A

max;
P
CB
j reduces to problem

1jIN jf Amax;
P
CB
j . In fact, in the NONDISJOINT scenario, we can easily extend J A

to include all jobs, simply by attaching to each job Jj 2 NJ B a trivial function
f A
j D �1. Such jobs can be feasibly scheduled in any position and will never

contribute to f A
max. The situation is depicted in Fig. 3.7.

Note however that the situation is different if we consider the problem
1jIN jPCA

j ; f
B

max. In this case, INTERFERING reduces to BICRITERIA (see
Fig. 3.8).

3.3.1 Epsilon-Constraint Approach

Let us consider the problem 1jND; f B
max � QjPCA

j . In the literature, some efficient
algorithms have been given for the BICRITERIA scenario (see Hoogeveen and van
de Velde 1995) and the COMPETING scenario (see Agnetis et al. 2004). We present

3.3 Functions fmax;
P
Cj 75

NONDISJOINT

INTERFERING COMPETING

BICRITERIA

Fig. 3.8 Reduction graph for 1jIN jPCA
j ; f

B
max

here an algorithm that generalizes both of them to solve the NONDISJOINT case,
maintaining the same complexity.

As usual, P D P
Jj2J pj is the total processing time of all jobs. Similar to

what done in Sect. 3.1, let us define a deadline Qdj for each job Jj 2 J B so that
f B
j .Cj / � Q for Cj � Qdj and f B

j .Cj / > Q for Cj > Qdj . As usual, in the

following we suppose that each deadline Qdj can be computed in constant time, i.e.,
that an inverse function is available for each f B

j .�/. If this is not the case, then

to determine Qdj one must perform a binary search, which may require O.logP/
evaluations of each f B

j .�/.
In order to solve problem 1jf Bmax � QjPCA

j , we can still adopt a similar
reasoning to Lawler’s algorithm (Algorithm 5), as follows. We build the schedule
from right to left. At the k-th iteration, we decide which is the k-th last job to
be scheduled. Let t denote the total processing time of unscheduled jobs, i.e., the
completion time of the next job to be scheduled. The candidates are all jobs in NJ A

(i.e., jobs that do not have a deadline) and the jobs in J B that can complete at t
without violating the deadline, i.e., such that t � Qdj .

From the viewpoint of agent A, the best candidate is a job from NJ B . Only if
there are no candidates in NJ B that can feasibly complete at t , we must select the
longest job from J A that can be feasibly scheduled to complete at t . The algorithm
proceeds in this way until either all jobs are scheduled, or an infeasibility is detected
(because the constraint on f B

max is too strict).
The procedure is detailed in Algorithm 11, in which we indicate by LB the set

of the jobs in NJ B that can be scheduled to complete at the current time t , i.e.,
LB D fJj 2 NJ B W t � Qdj g, while LA � J A is the set of jobs belonging to agent A
that can be feasibly scheduled at time t , i.e.,LA D NJ A[fJj 2 J A\J B W t � Qdj g.

Algorithm 11 computes the optimal solution in time O.n log n/. In fact, the
complexity of the algorithm is dominated by the phase in which the jobs in J A

are sorted in SPT order and the jobs in J B and sorted by nondecreasing deadlines
(which we assume can be computed in constant time). Thereafter, at each step the
last jobs from the two lists are considered to determine the next job to be scheduled.
This is because at the lines 5 and 8 of the algorithm, ties are broken arbitrarily.

76 3 Single Machine Problems

Algorithm 11 for problem 1jND; f B
max � QjPCA

j

1: LA WD NJ A [fJj 2 J A \ J B W Qdj � P g
2: LB WD fJj 2 NJ B W Qdj � P g
3: t WD P

4: while LA [LB ¤ ; do
5: if LB ¤ ; then
6: Choose as Jh any job in LB
7: LB WD LB n fJhg
8: else
9: Choose as Jh any job such that ph D maxfpj W Jj 2 LAg

10: LA WD LA n fJhg
11: end if
12: Ch.�/ WD t

13: t WD t � ph
14: LA WD LA [fJj 2 J A \ J B W t � Qdj < t C phg
15: LB WD LB [fJj 2 J B n J A W t � Qdj < t C phg
16: end while
17: if t > 0 then
18: return ‘The problem is infeasible’
19: else
20: return values Ch.�/
21: end if

However, it can be shown that giving a tie-breaking rule for the two above cases,
the same algorithm generates a strict Pareto optimal solution. More precisely, at
line 5, instead of picking any job in LB , we can decide, in particular, to choose the
candidate Jj 2 LB for which f B

j .t/ is minimum. Similarly, at line 8, if there is

more than one longest job in LA, we choose one belonging to NJ A, if any, or else,
one from J A \ J B for which f B

j .t/ is minimum.
These modifications are shown in Algorithm 12. The only price we have to pay to

have a strict Pareto optimal solution is that the overall complexity of the algorithm is
nowO.n2/, since the selection of the next scheduled job now requiresO.n/, due to
the computation of f B

j .t/. Notice that Algorithm 12, in the BICRITERIA case and
when f B

max D LBmax, is the well-known Van Wassenhove-Gelders algorithm (Van
Wassenhove and Gelders 1980).

With minor modifications, Algorithm 11 also solves the K-agent problem
denoted 1jND; f 2

max � Q2; f
3

max � Q3; : : : ; f
K

max � QK jPC1
j (with no guarantee

of finding a strict Pareto optimal solution) (Agnetis et al. 2007). The only difference
is that the role of agent B is now played by the set of agents 2, 3, : : : ; K . In
fact, we can treat all the jobs from J 2 [J 3 [: : : [J K as if they belonged to
a single agent, and thereafter apply Algorithm 11. The deadline Qdj of each job
Jj 2 J 2 [J 3 [: : : [J K can be computed as in (3.2), where J �1.Jj / is now
defined as

J �1.Jj / D fk W Jj 2 J k; k ¤ 1g

3.3 Functions fmax;
P
Cj 77

Algorithm 12 for finding a strict Pareto optimal solution for problem
1jNDjPCA

j ; f
B

max

1: LA WD NJ A [fJj 2 J A \ J B W Qdj � P g
2: LB WD fJj 2 NJ B W Qdj � P g
3: t WD P

4: while LA [LB ¤ ; do
5: if LB ¤ ; then
6: Choose as Jh any job such that f B

h .t/ D minff B
j .t/ W Jj 2 LBg

7: LB WD LB n fJhg
8: else
9: A WD fJk W pk D maxfpj W Jj 2 L1gg

10: if A n J B ¤ ; then
11: Choose as Jh any job from A n J B

12: else
13: Choose as Jh any job such that f B

h .t/ D minff B
j .t/ W Jj 2 Ag

14: LA WD LA n fJhg
15: end if
16: Ch.�/ WD t

17: t WD t � ph

18: LB WD LB [fJj 2 J B n J A W P � Qdj < t C phg
19: LA WD LA [fJj 2 J A \ J B W t � Qdj < t C phg
20: end if
21: end while
22: if t > 0 then
23: return ‘The problem is infeasible’
24: else
25: return values Ch.�/
26: end if

In conclusion, the deadlines of all jobs can be computed in time O.nK/ and the
overall complexity then becomes O.nK C n log n/.

Wan et al. (2013) consider the preemptive version of the problem when release
dates are present, i.e., 1jCO; rj ; pmtn; f B

max � QjPCA
j , and show that it is NP-

hard.

3.3.2 Computing the Pareto Set

Let us now consider problem 1jNDjP.fmax;
P
Cj /. For simplicity, and with no loss

of generality, we slightly modify the instance of 1jNDjP.fmax;
P
Cj /, attaching

a dummy function f B
j D �1 to each job Jj 2 NJ A. In this way, J B � J .

We follow a similar approach to Hoogeveen and van de Velde (1995) for problem
1jBIjP.fmax;

P
Cj /.

As we have seen in the previous section, a strict Pareto optimal solution can be
generated by means of Algorithm 12 in O.n2/. To generate the whole Pareto set,

78 3 Single Machine Problems

one can employ Algorithm 1, which consists in solving instances of 1jND; f B
max �

QjPCA
j for decreasing values of Q. Hence, to determine the complexity of

problem 1jNDjP.fmax;
P
Cj /, we need to investigate the size of the Pareto set.

Note that the interval of values of interest forQ can be found as follows. First, an
upper boundQUB on the largest value of f B

max in a strict Pareto optimal solution can
be obtained by sequencing all jobs in J A in SPT order, followed by the jobs in NJ B

in any order. Hence, we apply Algorithm 12 to 1jf Bmax � QUB jPCA
j and obtain a

strict Pareto optimal schedule �SPT . Note that it is a reference schedule for agent
A. Similarly, the minimum value Q�

B of interest for Q can be found by solving an
instance of the single-agent problem 1jjfmax, including all jobs. The corresponding
schedule ��

B is a reference schedule for agent B .
Given any schedule � , we can associate with any two jobs Ji and Jj , an indicator

function ıij .�/ defined as follows:

ıij .�/ D
8
<

:

1 if Ji 2 J A precedes Jj 2 J A and pi > pj
1 if Ji 2 NJ B precedes Jj 2 J A

0 otherwise
(3.8)

and we also define

�.�/ D
X

Ji ;Jj2J
ıij .�/

Notice that whenever ıij .�/ D 1, jobs Ji and Jj are sequenced in � in reverse
order than in �SPT . Therefore, we can view �.�/ as a “measure” of the distance
between schedules � and �SPT . More formally, we want to show that�.�/ is strictly
decreasing as we move across Pareto optimal schedules, going from ��

B to �SPT .
Let us introduce an operation that transforms a schedule into another.

Definition 3.1. Operation move.i; j / transforms a schedule � in which Ji pre-
cedes Jj into a schedule � such that:

(a) If Ji 2 J A, Jj 2 J A and pi 	 pj , � is obtained by swapping jobs Ji and Jj
in �

(b) If Ji 2 NJ B , � is obtained by postponing Ji immediately after Jj in �

Notice that the operation move.i; j / is not defined if Ji ; Jj 2 J A but pi < pj
or if Ji 2 J A and Jj 2 NJ B . The following lemma holds for any schedule obtained
from another schedule by means of a move operation.

In what follows, for ease of notation, we write
P
CA
j .�/ to indicateP

Jj2J A Cj .�/.

Lemma 3.1. If � is obtained from � performing move.i; j /, then either

• �.�/ < �.�/ and
P
CA
j .�/ <

P
CA
j .�/, or

• �.�/ D �.�/ and
P
CA
j .�/ D P

CA
j .�/.

3.3 Functions fmax;
P
Cj 79

Proof. Consider a schedule� in which Ji precedesJj . We consider separately cases
a and b of Definition 3.1.

In case a, Ji 2 J A, Jj 2 J A and pi 	 pj . In this case, ıij .�/ D 0

if pi D pj , and ıij .�/ D 1 if pi > pj . The operation move.i; j / swaps Ji
and Jj . Therefore, the difference between �.�/ and �.�/ only depends on Ji ,
Jj and the jobs scheduled between them. Notice that ıj i.�/ D 0. If Jt is an
arbitrary job scheduled between Ji and Jj , it follows from the definition of ı that
ıit .�/C ıtj .�/ 	 ıjt .�/C ıti .�/. Hence �.�/ � �.�/, and the equality holds if
and only if pi D pj , in which case

P
CA
j .�/ D P

CA
j .�/.

Let us now consider case b, i.e., Ji 2 NJ B . In this case, the operation move.i; j /
postpones Ji immediately after Jj , yielding ıj i.�/ D 0 and also, if Jt is an arbitrary
job scheduled between Ji and Jj in � , ıti .�/ D 0 for all t . Since the relative
ordering of all other jobs is unchanged,�.�/ � �.�/. In particular,�.�/ D �.�/

if and only if only jobs from NJ B have been involved, i.e., Jt 2 NJ B for all t .
However, in this case no job from J A has changed its completion time, and thereforeP
CA
j .�/ D P

CA
j .�/. ut

We are now in the position of establishing the key result, which relates Pareto
optimal schedules to function �.

Theorem 3.8. Consider two arbitrary distinct Pareto optimal schedules � and � .
If we have

P
CA
j .�/ <

P
CA
j .�/, then �.�/ < �.�/.

Proof. Since � and � are strictly Pareto optimal, f B
max.�/ > f

B
max.�/. We will show

that � can be obtained from schedule � by a sequence of move operations.
Compare the two schedules � and � , starting from the end. Suppose that the first

difference between the schedules occurs at the k-th position; Ji occupies the k-th
position in � , whereas job Jj occupies the k-th position in � . We distinguish three
subcases.

1. Ji 2 J A; Jj 2 J A. Since f B
max.�/ 	 f B

max.�/, when Algorithm 12 is run with
Q D f B

max.�/, both jobs Ji and Jj could be feasibly scheduled in k-th position.
If Ji is preferred to Jj in � , it means that pi 	 pj . We can then apply move.i; j /
to � and obtain a schedule � 0 in which jobs Ji and Jj are swapped. Note that
Ci.�/ D Ci.�

0/, while all other jobs between Ji and Jj in � 0 have decreased
their completion time with respect to � . Hence, f B

max.�/ 	 f B
max.�

0/.
2. Ji 2 NJ B . Applying move.i; j / to � we obtain a schedule � 0 in which Ji is

moved after Jj . Note that Ci.�/ D Ci.�
0/, while all other jobs between Ji

and Jj in � 0 have decreased their completion time with respect to � . Hence,
f B

max.�/ 	 f B
max.�

0/.
3. Ji 2 J A; Jj 2 NJ B . This subcase cannot occur. In fact, since f B

max.�/ 	 f B
max.�/,

it would have been feasible to select Jj to complete at Ci.�/ when running
Algorithm 12 with Q D f B

max.�/, and hence, Jj would have been selected
instead of Ji .

In all cases, we obtain a schedule � 0 which is identical to � for the jobs in
k-th, k C 1-th,: : :, n-th position, and such that f B

max.�/ 	 f B
max.�

0/. Moreover,

80 3 Single Machine Problems

from Lemma 3.1, �.� 0/ � �.�/. The above argument can therefore be repeated
replacing � with � 0, and so on until we reach schedule � . Note that going from �

to � , the values of � are nonincreasing, and since
P
CA
j .�/ <

P
CA
j .�/, from

Lemma 3.1 at least one move operation causes a strict decrease in �, and the thesis
follows. ut

At this point we are in the position of proving a result on the number of Pareto
optimal schedules. In fact, from Theorem 3.8 it turns out that two Pareto optimal
solutions must have different values of �. We only need therefore to compute the
maximum value�.�/ can attain, given that the minimum value is �.�SPT / D 0. It
is easy to verify that the maximum value is attained when, in a reference schedule
for agentB , all jobs in NJ B are sequenced first, followed by jobs in J A in LPT order.
In this case

� D nA NnB C nA.nA � 1/

2
C 1 (3.9)

and hence there are O.n2/ Pareto optimal solutions. In conclusion, the following
result holds.

Theorem 3.9. Problem 1jNDjP.fmax;
P
Cj / can be solved in O.n4/.

Hoogeveen and van de Velde (1995) show that the bound is tight, even in the case
of BICRITERIA (for which nA D nB D n and NnB D 0).

It is interesting to observe that the discussion done for two agents does not
trivially extend to the case of K agents. In fact, consider three agents, one holdingP
Cj and the other two fmax. The structure of any strict Pareto optimal solution is

such that jobs of J A are interleaved with blocks of jobs of J B [J3. Depending
on how are the latter jobs sequenced within each block, we can get various distinct
Pareto optimal solutions. So, even for a fixed position of the jobs in J A, there can
be a large number of Pareto optimal solutions.

3.3.3 Linear Combination

As a consequence of the results in Sect. 3.3.2, for two agents the linear combination
problem 1jNDj f̨max C ˇ

P
Cj is solvable in O.n4/, since Algorithm 12 runs in

O.n2/ and, from (3.9), there are O.n2/ Pareto optimal solutions.

3.4 Functions
P

wj Cj ; Cmax

Let us now consider the situation arising when agent A wants to minimize the
weighted sum of completion times.

We observe that in this problem, 1jND; C B
max � QjPwAj Cj can be seen

as a special case of 1jIN;CB
max � QjPwAj Cj in which all jobs in NJ B have

3.4 Functions
P

wj Cj ; Cmax 81

NONDISJOINT

INTERFERING COMPETING

Fig. 3.9 Reduction graph for 1jjPwj Cj ; Cmax

wj D 0. (This reduction actually holds, more generally, for 1jIN; f Bmax �
QjPwAj Cj). Obviously, 1jIN;Pwj CB

j � QjCA
max reduces to the single-agent

problem 1jjPwj Cj , as well as 1jBI; C B
max � QjPwj CA

j , so BICRITERIA is not
reported in the reduction graph for 1jjPwj Cj ; Cmax (Fig. 3.9).

3.4.1 Epsilon-Constraint Approach

We next address problem 1jCO; C B
max � QjPwAj C

A
j , and show that even this

special case is NP-hard.
A key result for the unweighted case is that the jobs in J A are SPT ordered in

any optimal solution (Theorem 3.6). One might think that, similarly, in any optimal
solution to 1jCO; C B

max � QjPwAj C
A
j , the jobs in J A are ordered according to

Smith’s rule, i.e., by nondecreasing values of the ratios pAj =wAj . Unfortunately, it is
easy to show that this is not the case in general. Consider the following example.

Example 3.4. Let consider an instance of 1jCO; C B
max � QjPwAj C

A
j . Set J A con-

tains four jobs JA1 ; J
A
2 ; J

A
3 ; J

A
4 with processing times and weights below. Set J B

consists of a single job JB1 having processing time pB1 D 10, and let Q D 20. The
best solution in which the jobs of J A are WSPT-ordered is obtained by sequencing
the jobs of J A by Smith’s rule and then inserting J 2B1 in the latest feasible
position. By doing so, one obtains the sequence � D fJA1 ; J B1 ; J A2 ; J A3 ; J A4 g, withP

wAj C
A
j .�/ D 9
 6C 7
 21C 4
 24C 5
 28 D 437. The optimal solution is in

turn �� D fJA1 ; J A4 ; J B1 ; J A2 ; J A3 g, with
P

wAj C
A
j .�

�/ D 9
 6C 5
 10C 7
 25C
4
 28 D 391. ˘

Jj JA1 J A2 J A3 J A4 J B1

pj 6 5 3 4 10
wAj 9 7 4 5

82 3 Single Machine Problems

Indeed, we next show that 1jCO; C B
max � QjPwAj C

A
j is binary NP-hard. The

reduction uses the well-known NP-hard KNAPSACK problem (see Sect. 2.2.2).

Theorem 3.10. Problem 1jCO; C B
max � QjPwAj C

A
j is binary NP-hard.

Proof. The details can be found in Agnetis et al. (2004), we give here a sketch of
the proof. Given an instance of KNAPSACK, we define an instance of 1jCO; C B

max �
QjPwAj C

A
j as follows. Agent A has n jobs, having processing times pAi D ai

and weights wAi D wi , i D 1; : : : ; n. Agent B has only one very long job, having
processing time C D .

Pn
jD1 wj /.

Pn
jD1 aj /. Also, we set Q D b C C . Now,

consider a feasible schedule � for 1jCO; C B
max � QjPwj CA

j , and let S denote
the jobs of J A scheduled before JB1 in � . Note that job JB1 affects the objective
function of agent A by the amount

X

Jj2J AnS
wjC

Since C is very large, in the optimal solution the total weight of the jobs
scheduled after JB1 is minimum, i.e., the problem consists in maximizing

P
Jj2S wj .

Since such jobs have to be scheduled in the interval Œ0; C �, this is equivalent to
solving the original instance of KNAPSACK. ut

We next show that 1jND; C B
max � QjPwAj C

A
j can be solved in pseudo-

polynomial time by means of a dynamic programming algorithm. For illustration
purposes, we consider all jobs in J A numbered in WSPT order. Also, we first
suppose that NJ B ¤ ; and later on, we show how to modify the algorithm to account
for the case in which NJ B D ; (i.e., for the problem 1jIN;CB

max � QjPwAj C
A
j).

It is easy to verify that in general the structure of an optimal solution to
1jND; C B

max � QjPwAj C
A
j consists of three blocks, as follows. The first block

contains all jobs in J A \ J B plus some jobs from NJ A, sequenced in WSPT order.
The second block is formed by all jobs in NJ B (in any order). Finally, the third block
contains the remaining jobs from NJ A, sequenced in WSPT order. Since the jobs in
NJ B only contribute to CB

max, we can regard them as a single job JB` of length

pB` D
X

Jj2 NJ B

pBj

Note that the completion time of JB` is CB
max. We adopt a dynamic programming

approach described in the following. Let F.k; t1; t2/ be the optimal value of a
subproblem restricted to the first k jobs in J A plus job JB` , in which the machine
continuously works between 0 and t1, it is idle from t1 to t2, and JB` starts at t2
(Fig. 3.10). Note that this means that each job in J A is either processed within 0
and t1, or after t2 C pB` . In particular, because of the WSPT ordering, in an optimal
solution to such restricted problem, either job Jk 2 J A completes at time t1, or it is

3.4 Functions
P

wj Cj ; Cmax 83

t1 t2

J A ∩ JB plus remaining jobs

JB

CB
max

some jobs from J A from J A

t0

Fig. 3.10 Illustration of the dynamic programming algorithm for 1jND; CB
max � QjPwAj C

A
j

the last job in the schedule. Clearly, certain boundary conditions must be enforced,
namely:

• F.0; 0; t2/ D 0

• F.0; t1; t2/ D C1 if t1 > 0, since the machine must be working between 0 and t1
• F.k; t1; t2/ D C1 if t1 < 0 or t1 > t2
• F.k; t1; t2/ D C1 if t2 > Q � pB` , since in this case CB

max would exceedQ.

If none of the above boundary conditions hold, the value F.k; t1; t2/ can be
computed by means of a recursive formula. Here we must distinguish two cases,
depending on whether (i) Jk 2 J A \ J B or (ii) Jk 2 NJ A. Let us first consider case
(i). Jk can only be scheduled in the first block. Due to WSPT, Jk is the last job of
the block, completing at t1, and therefore:

F.k; t1; t2/ D F.k � 1; t1 � pAk ; t2/C wAk t1 (3.10)

Consider now case (ii). In this case, Jk is scheduled as the last job of either the
first or the second block. In the latter case, it completes at time pB` C .t2 � t1/ C
Pk

jD1 pj , so that:

F.k; t1; t2/ D min
n
F.k � 1; t1 � pk; t2/C wkt1;

F .k � 1; t1; t2/C wk.p
B
` C .t2 � t1/C

kX

jD1
pj /

o
(3.11)

Since the optimal schedule has no idle time, it must be searched among solutions
corresponding to values of F.k; t1; t2/ having t1 D t2. In conclusion, the optimal
value of the total weighted completion time for agent A is

min
t1

fF.n; t1; t1/g

So far we assumed NJ B ¤ ;. If NJ B D ;, we call J` the job in J B having
smallest ratio wj =pj (i.e., the largest index). This job plays the same role that was
played by the block NJ B in the previous case, and this is why we use the same index
`. In fact, J` is the job scheduled last among the jobs of J B in an optimal solution,

84 3 Single Machine Problems

thus completing at CB
max. However, since now NJ B D ;, we must pay attention to

the fact that J` also contributes to the objective function of agent A. Since it starts
at t2, its contribution to the objective of agentA is w`.t2 Cp`/. In conclusion, when
NJ B D ;, we can apply the same dynamic programming approach (3.10)–(3.11),

provided that:

• The job Jk ranges in J A n fJ`g,
• F.0; 0; t2/ D w`.t2 C p`/.

Let us now turn to complexity issues. Once the jobs in J A are ordered, the
computation of each value F.k; t1; t2/ can be done in constant time. Considering
that for all t1; t2 it holds t1 � t2 � Q � p`, we have the following result.

Theorem 3.11. The DP algorithm (3.10)–(3.11) solves problem 1jND; C B
max �

QjPwAj C
A
j in O.nAQ2/ time.

A different exact approach to 1jND; C B
max � QjPwAj C

A
j exploits the properties

of a Lagrangian bound. This is illustrated in the following section.

3.4.1.1 A Lagrangian Bound

In what follows we assume that the problem has a feasible solution (i.e., we assume
that

P
Jj 2J B pj < Q), and we number the jobs in NJ A according to Smith’s rule,

i.e., for each pair of jobs JAi ; J
A
j 2 NJ A such that i < j , it holds pAi =wAi � pAj =wAj .

Denoting by S the set of permutations of all jobs in J , we can formulate problem
1jND; C B

max � QjPwAj C
A
j as follows:

Find z� D min
�

n X

Jj2J A

wAj Cj .�/
o

(3.12)

subject to CB
max.�/ � Q (3.13)

Cj .�/ � CB
max.�/; 8Jj 2 J B

variables � 2 S

Relaxing constraint (3.13) in problem (3.12), we get the Lagrangian problem:

L.	/ D min
�2S

n X

Jj2J A

wAj Cj .�/C 	.CB
max.�/ �Q/ W

Cj .�/ � CB
max.�/; Jj 2 J B

o
(3.14)

The Lagrangian dual of problem (3.12) is the following:

L.	�/ D max
	�0 fL.	/g (3.15)

3.4 Functions
P

wj Cj ; Cmax 85

δA
nA

P B δA
1 P B

λ∗

infeasible
solutions feasible

solutions

λ

L(λ)

L(λ∗)

σh+1σh

Fig. 3.11 Lagrangian function L.	/

In this section we will see that Problem (3.15) can be solved very efficiently.
As recalled in Sect. 2.6.2, L.	/ is a concave piecewise linear function in the

variable 	 	 0, and the values of 	 in which the slope of L.	/ changes are called
breakpoints. Note when 	 D 0, the optimal schedule �.0/ to (3.14) is obtained
by scheduling all jobs of J A in WSPT order, followed by the jobs in NJ B in any
order. If L.	/ is a monotonically nonincreasing function, its maximum is achieved
for 	 D 0, which means that the schedule �.0/ is feasible, and therefore optimal,
for the original problem (in fact, the slope of L.	/ implies that CB

max.�.0// � Q).
Hence, we rule out this trivial case from further consideration.

In the non-trivial case, the optimal value 	� is obtained at a breakpoint in which
the slope of L.	/ turns from increasing to non-increasing (see Fig. 3.11). Moreover,
for all values of 	 between two breakpoints, the same schedule �.	/ is optimal for
the Lagrangian problem (3.14). Therefore, the slope of each segment is given by
.CB

max.�.	// �Q/. In other words, a positive slope corresponds to a solution of the
Lagrangian problem (3.14) that is infeasible for the original problem (3.12), while
a nonpositive slope is corresponds to a feasible solution. Notice that in a breakpoint
N	, one has two different schedules �. N	 � "/ and �. N	 C "/ achieving the same
optimal valueL. N	/ of the Lagrangian problem. Since, for increasing 	, the quantity
CB

max.�.	// is nonincreasing, the optimal solution 	� of the Lagrangian dual is
achieved at a breakpoint in which there are two optimal schedules of the Lagrangian
problem (3.14), achieving L.	�/. One of these schedules (the optimal schedule for
the Lagrangian problem with 	 D 	� � ") is infeasible for (3.12), while the other
(the optimal schedule for the Lagrangian problem with 	 D 	� C ") is feasible
for (3.12). This condition is, in fact, necessary and sufficient for characterizing 	�,
as we next show.

86 3 Single Machine Problems

The Lagrangian problem (3.14) is in the format of the 1jNDj˛PwAj C
A
j CˇCB

max
problem, with ˛ D 1 and ˇ D 	. As it will be shown in Sect. 3.4.3, an optimal
solution to this problem has the following structure. There is a job JAh 2 NJ A such
that first all jobs in fJAj 2 NJ A W j � hg[.J A\J B/ are scheduled in WSPT order,

then all jobs in NJ B (in any order), and finally all the remaining jobs in NJ A in WSPT
order. Clearly, such schedule is feasible if and only if:

X

JAj 2 NJA

j<h

pj C
X

Jj2J B

pj � Q (3.16)

Recalling that the optimal value 	� for the Lagrangean dual is obtained at a
breakpoint in which the slope of L.	/ turns from increasing to non-increasing, in
order to find 	� one only needs to find the job JAh 2 NJ A such that:

X

JAj 2 NJA

j<h

pj C
X

Jj2J B

pj � Q <
X

JAj 2 NJA

j�h

pj C
X

Jj2J B

pj (3.17)

Let �h and � 0
h be the two schedules associated with the breakpoint 	�. The

feasible schedule � 0
h is obtained from the infeasible schedule �h by simply extracting

job JAh and inserting it immediately after J B . This way, CB
max.�

0
h/ � Q. Since both

schedules are optimal for the Lagrangian problem with 	 D 	�, 	� can be simply
obtained by solving the equation:

X

Jj2J A

wAj Cj .�h/C 	�.CB
max.�h/�Q/ D

X

Jj 2J A

wAj Cj .�
0
h/C 	�.CB

max.�
0
h/�Q/

i.e., observing that CB
max.�

0
h/� CB

max.�h/ D ph,

	� D
P

Jj2J A wAj Cj .�
0
h/�P

Jj2J A wAj Cj .�h/

ph

Algorithm 13 summarizes the steps necessary for the computation of 	�.
In Algorithm 13 we assume that problem (3.12) has a feasible solution (i.e.,P

Jj2J B pj < Q) and it is not trivially solvable (i.e., �.0/ is infeasible for the
original problem (3.12)).

Algorithm 13 can still be used, with minor modifications, even if some jobs of
NJ A are constrained to precede and some other jobs are constrained to follow the

last job in J B . In Agnetis et al. (2009b), such modified algorithm is used to derive
lower bounds at the nodes of the branch-and-bound tree, in an exact approach to
the solution of 1jCO; C B

max � QjPwAj C
A
j . In this approach, the branching rule

constrains the jobs in NJ A to either precede or follow the jobs in J B (which, in the
COMPETING case, can be treated as a single job).

3.4 Functions
P

wj Cj ; Cmax 87

Algorithm 13 for the Lagrangean dual of 1jNDjCB
max � QjPwAj Cj

1: h WD minfj W Jj 2 NJ A;
P

Ji2J B pi CP
Ji2 NJA

i�j

pi > Qg
2: Create schedule �h by scheduling first all jobs in fJj 2 NJ A W j � hg [.J A \ J B/ in WSPT

order, followed by jobs in NJ B in any order, and by the remaining jobs in NJ A in WSPT order
3: Create schedule � 0

h from �h by moving Jh immediately after the last job in J B

4: 	� WD 1
ph
.
P

Jj2J A wAj Cj .�
0

h/�P
Jj2J A wAj Cj .�h//

5: L.	�/ WD P
Jj2J A wAj Cj .�

0

h/C 	�.CB
max.�

0

h/�Q/

6: return L.	�/

3.4.2 Computing the Pareto Set

Let us now consider the problem of enumerating Pareto optimal solutions.
We next show that the number of Pareto optimal solutions is in general not
polynomially bounded, even in the COMPETING scenario, problem denoted by
1jCOjP.PwAj C

A
j ; C

B
max/.

Example 3.5. Let consider an instance of 1jCOjPwAj C
A
j ; C

B
max, in which agent B

has a single job JB1 of unit length, while agentA has nA jobs. For each job Ji 2 J A

(i D 1; 2; : : : ; nA), pAi D wAi D 2i�1. We first observe that for every schedule, the
quantity

CB
1 C

nAX

iD1
wAi C

A
i (3.18)

is constant and does not depend on the schedule. In fact, in (3.18) the completion
time of job JB1 is summed to the other completion times with coefficient 1, which
can therefore be regarded as a unit weight. Since pB1 D 1, we have that pj =wj D 1

for all jobs, including JB1 , and as a consequence any schedule yields the same value
of the sum of (3.18). This value can be computed, for example, by considering the
sequence JB1 ; J

A
1 ; J

A
2 ; : : : ; J

A
nA

. In this sequence, the completion time of each job
JAi is 2i , and therefore CB

1 CPnA
iD1 wAi C

A
i D 1CPnA

iD1 22i�1.
Now, observe that for each integer x from 1 to 2nA , there is a subset S.x/ of J A

having total length x � 1. Consider the schedule consisting of S.x/ followed by J 21
and thereafter by J A nS.x/. In this schedule, CB

max D x, and hence
PnA

iD1 wAi C
A
i D

1CPnA
iD1 22i�1 � x. Clearly, for each x D 1; : : : ; 2nA we obtain a different Pareto

optimal solution. ˘

3.4.3 Linear Combination

Let us now turn to the linear combination problem. The COMPETING case
1jCOj˛PwAj C

A
j C ˇCB

max is easy. In fact, since all jobs in J B are scheduled

88 3 Single Machine Problems

consecutively in an optimal solution, we can merge them into a single job JB1 of
length

P
pBj , completing at CB

max. The problem then reduces to an instance of the
single-agent problem 1jjP Qwj Cj in which Qwj D ˛wAj for Jj 2 J A and Qwj D ˇ

for Jj D JB1 . The complexity is thereforeO.n logn/.
We next analyze the INTERFERING case 1jIN j˛PwAj C

A
j C ˇCB

max, and then
discuss how the approach can be generalized to the NONDISJOINT scenario
1jNDj˛PwAj C

A
j C ˇCB

max.
Consider an instance of 1jIN j˛PwAj C

A
j C ˇCB

max (remember that J B � J A).
In what follows, we assume that the jobs in J B are numbered in WSPT order from
J1 to JnB and that the jobs in NJ A are numbered in WSPT order from JnBC1 to JnA .
Observe that JnB is the last scheduled job from J B in an optimal solution, so that
its completion time equals CB

max. In what follows we let

Wj D
nBX

hDj
wAh (3.19)

Pj D
nBX

hDj
ph

The values Wj and Pj represent the total weight and, respectively, total processing
time of the last .nB � j C 1/ jobs of J B in the WSPT order.

Theorem 3.12. In an optimal solution � for problem 1jIN j˛PwAj C
A
j CˇCB

max,

1. All jobs scheduled up to JnB (including JnB) are in WSPT order
2. All jobs scheduled after JnB are in WSPT order
3. All jobs in NJ A are in WSPT order throughout the schedule.

Proof. A simple interchange argument allows to establish points 1 and 2. We next
prove point 3.

Given an optimal schedule � , let Jj 2 NJ A be the job following JnB in � . Let Jk
be the last job in NJ A before JnB . Between Jk and JnB there are in general other jobs
from J B , all consecutively scheduled. Let Jf be the first such job. Now consider
the block of jobs ŒJf ; : : : ; JnB � (all belonging to J B), having total processing time
Pf and total weight Wf , and let � 0 be a schedule obtained from � by moving Jk
after JnB . Going from � to � 0, the completion time of Jk increases by Pf , while the
completion time of each job in the block decreases by pk . The difference between
the objective 1values of � 0 and � is therefore

˛wAk Pf � .˛Wf C ˇ/pk

Since � is optimal, such difference must be nonnegative, i.e.:

pk

˛wAk
� Pf

˛Wf C ˇ
(3.20)

3.4 Functions
P

wj Cj ; Cmax 89

Similarly, consider a schedule � 00 obtained from � by moving Jj before Jf .
Going from � to � 00, the completion time of Jj decreases by Pf , while the
completion time of each job in the block increases by pj . The difference between
the two objective values is therefore

.˛Wf C ˇ/pj � ˛wAj Pf

again, since � is optimal, it must hold:

Pf

˛Wf C ˇ
� pj

˛wAj
(3.21)

and hence, from (3.20) and (3.21),

pk

˛wAk
� Pf

˛Wf C ˇ
� pj

˛wAj
(3.22)

which shows that also the jobs in NJ A are WSPT ordered throughout the whole
schedule. ut

Theorem 3.12 completely describes the structure of an optimal solution. In fact,
all we need to decide is the position of JnB within the jobs of NJ A, ordered by WSPT.
This allows to solve 1jIN j˛PwAj C

A
j C ˇCB

max by means of the following simple
algorithm, in which we let f .�/ D ˛

P
j2J A wAj C

A
j .�/C ˇCB

max.�/.
Let �0 be the schedule in which all jobs of J B (in WSPT order) precede all

jobs of NJ A (in WSPT order), and let �1 be the schedule obtained from �0 inserting
job JnBC1 between J1 and JnB according to WSPT. Now let �i (i D 2 : : : NnA) be
the schedule obtained from �i�1 inserting job JnBCi between JnBCi�1 and JnB ,
according to WSPT. If Jf denotes the job of J B that immediately follows JnBCi in
�i , the value of f .�i / can be computed as:

f .�i / D f .�i�1/C ˛.Wf pnBCi � wAnBCiPf /C ˇpnBC1 (3.23)

Once all values f .�i / are computed, one simply needs to pick the best. The
procedure is summarized in Algorithm 14, in which NJ A and J B are supposed
WSPT-ordered, and where “j” indicates the concatenation of two subsequences.

Theorem 3.13. Given the WSPT-ordered sets NJ A and J B , Algorithm 14 correctly
solves problem 1jNDj˛PwAj C

A
j C ˇCB

max in O.n/. If NJ A and J B are not ordered,
the complexity is O.n logn/.

Proof. Theorem 3.12 specifies the structure of an optimal schedule. Schedules
�0; �1; : : : ; �n0

A
are the only schedules having such structure. Since Algorithm 14

selects the best among them, its correctness follows. Note that if pnBCi =wAnBCi >
pnB=wAnB , schedule �i (and hence also �iC1; : : : ; � NnA) is certainly worse than �i�1,
so one can avoid generating it (line 6 in Algorithm 14).

90 3 Single Machine Problems

Algorithm 14 for problem 1jIN j˛Pj2J A wAj C
A
j C ˇCB

max

1: �X WD J B

2: �Y WD NJ A

3: Compute all values Wj , Pj via (3.19)
4: �0 WD �X j�Y
5: �� WD �0
6: for i D 1 to NnA do
7: if pnBCi =wAi � pnB =wAnB then
8: Remove JnBCi from �Y
9: if i D 1 then

10: Insert JnBC1 between J1 and JnB in �X , according to WSPT
11: else
12: Insert JnBCi between JnBCi�1 and JnB in �X , according to WSPT
13: end if
14: Choose as Jf the job in J B following JnBCi

15: �i WD �X j�Y
16: f .�i / WD f .�i�1/C ˛.Wf pnBCi � wAnBCiPf /C ˇpnBCi

17: if f .�i / < f .��/ then
18: �� WD �i
19: end if
20: end if
21: end for
22: return final schedule

Turning to complexity issues, we observe the following two facts.

• Considering that Wj D WjC1 C wAj and Pj D PjC1 C pj , at line 2 all these
values can be computed in O.nB/.

• The main cycle of Algorithm 14 is executed NnA times. In order to correctly insert
job JnBCi in �X (lines 9 and 11), and hence find Jf , �X is scanned starting from
JnBCi�1, so that all jobs of J B are considered at most once throughout the whole
algorithm. Hence, the complexity of the whole cycle is O. NnA C nB/.

Considering that, at line 15, each f .�i / can be computed in constant time
through (3.23), and that NnA C nB D n, we conclude that, once the two sets NJ A

and J B are WSPT-ordered, the optimal schedule can be found in O.n/. Hence,
if NJ A and J B are not ordered, the whole complexity is dominated by the sorting
phase,O.n log n/. ut

Finally, we observe that 1jNDj˛PwAj C
A
j C ˇCB

max can be easily reduced to

1jIN j˛PwAj C
A
j C ˇCB

max. Simply, all the jobs in NJ B (which only contribute to
CB

max) can be scheduled contiguously, and therefore behave as a single job of J B

of length given by the sum of their processing times, and weight zero. Actually,
the same approach can be used to solve the K-agent case in O.n logn/, in which
H agents hold the weighted sum of completion times, and the other K � H the
maximum completion time.

3.4 Functions
P

wj Cj ; Cmax 91

3.4.4 Approximation

Here we report on some approximation results for 1jND; C B
max � QjPwAj C

A
j .

We refer to the basic concepts about approximation introduced in Sect. 2.4.2,
more specifically we make use of the type II approximation concept. First of all,
we recall that the schedule � 0

h produced by Algorithm 13 in Sect. 3.4.1.1 solves the
Lagrangean dual and is feasible for 1jND; C B

max � QjPwAj C
A
j . One may therefore

question how good is � 0
h for the two agents. In what follows, recall that the jobs of

NJ A are numbered in WSPT order, and h is such that

h D minfj W JAj 2 NJ A; PB C
X

JAi 2 NJA

i�j

pi > Qg

Also, we recall that PB and NPB denote the total processing time of the jobs in
J B and NJ B respectively. In particular, the quality of a schedule for agent k can be
expressed with respect to a reference schedule �k (Sect. 1.2.1) for that agent. From
the viewpoint of agentB , since � 0

h is feasible, CB
max.�

0
h/ � Q, while in the reference

schedule �B , obviously CB
max.�

B/ D PB . Hence, letting ˇB D Q=PB , the schedule
is ˇB -approximate for agent B .

Let us now consider agent A, for which the reference schedule �A is obtained
sequencing all jobs in J A in WSPT order. For each job in J A, we next compare
Cj .�

0
h/ with Cj .�A/. If Jj 2 J A\J B , Cj .� 0

h/ � Cj .�
A/, since all jobs preceding

Jj in � 0
h certainly precede it also in the reference schedule �A (while viceversa may

not be true). Consider now Jj 2 NJ A. If j < h, i.e., Cj .�A/ � Q � NPB , then
its completion time is the same as in the reference schedule, Cj .� 0

h/ D Cj .�
A/. If

j 	 h, Cj .� 0
h/ D Cj .�

A/C NPB . Since, by (3.16),

Cj .�
A/ > Q � NPB

one has

Cj .�
0
h/

Cj .�A/
D 1C

NPB
Cj .�A/

< 1C
NPB

Q � NPB
D Q

Q � NPB
so that, in conclusion, the following result is proved.

Theorem 3.14. The feasible schedule � 0
h found by Algorithm 13, that solves the

Lagrangean dual of problem 1jND; C B
max � QjPwAj C

A
j , is .ˇ1; ˇ2/-approximate,

where

ˇ1 D Q

Q � NPB

92 3 Single Machine Problems

NONDISJOINT

INTERFERING COMPETING

BICRITERIA

Fig. 3.12 Reduction graph for 1jjPwj Cj ; Lmax

and

ˇ2 D Q

PB
:

Finally, another approximation result has been given for the COMPETING case
1jCO; C B

max � QjPwAj C
A
j . For this case, a strongly polynomial FPTAS is provided

in Kellerer and Strusevich (2010). It is based on a quadratic knapsack formulation
of the problem, and has complexityO.n6="3/.

3.5 Functions
P

wj Cj ; Lmax

In this case, NONDISJOINT is a special case of BICRITERIA. In fact, if we attach a
due date dj D C1 to all jobs in NJ A, one can incorporate them in J B . Similarly,
one can define a weight wj D 0 for all jobs in NJ B , and hence incorporate them in
NJ A. We therefore obtain the reduction graph in Fig. 3.12.

3.5.1 Epsilon-Constraint Approach

Throughout this section we focus on the COMPETING scenario. We suppose that the
jobs in J A are numbered according to non-decreasing pAj =wAj (WSPT order), and
jobs in J B are numbered according to non-decreasing due dates (EDD order).

Let us consider the problem 1jCO; LBmax � QjPwAj C
A
j . We observe that it

strictly generalizes 1jCO; C B
max � QjPwAj C

A
j , since the latter can be seen as a

special case of the former in which all jobs belonging to agent B have due date
dBj D 0.

3.5 Functions
P

wj Cj ; Lmax 93

KA1 A2 Ar

d1

...

t

d2 dr

KK

Fig. 3.13 Schedule in the NP-hardness proof for 1jCO; LBmax � QjPwAj C
A
j

While problem 1jCO; C B
max � QjPwAj C

A
j is binary NP-hard, problem

1jCO; LBmax � QjPwAj C
A
j is strongly NP-hard.

As observed in Cheng et al. (2008), this result is a consequence of a result in
Lawler (1977). In fact, Lawler showed that problem 1jjPwj Tj is strongly NP-
hard. In the reduction, an instance of 1jjPwj Tj is defined in which the job set
is partitioned into two subsets. The jobs in the first subset have due date equal to
zero, and therefore their completion time coincides with their tardiness. The jobs
in the second subset have a very large weight, so that, in any feasible solution,
none of them is ever tardy. Therefore, the total weighted tardiness indeed equals the
total weighted completion time of the first subset so that no job of the second set
is late. Identifying the two subsets with J A and J B respectively, this implies that
1jCO; LBmax � QjPwAj C

A
j is strongly NP-hard.

However, a direct proof of this result is given by Tuong (2009). Such proof will
be useful also later on (Theorem 3.17). We make use of the strongly NP-complete
problem 3-PARTITION (see Sect. 2.2.2).

Theorem 3.15. Problem 1jCO; LBmax � QjPwAj C
A
j is strongly NP-hard.

Proof. Given an instance of 3-PARTITION, we build an instance of problem
1jCO; LBmax � QjPwAj C

A
j as follows. Set J A consists of 3r jobs, having pAi D

wAi D ai , i D 1; : : : ; 3r . Let now K be a very large integer, say K > E2. Set
J B consists of r jobs, JB1 ; J

B
2 ; : : : ; J

B
r with pBj D K and dBj D j.K C E/ for

j D 1; : : : ; r . Moreover, let Q D 0. We want to show that the instance of 3-
PARTITION has a solution if and only if there is a feasible schedule such that

3rX

jD1
wAj C

A
j �

3rX

iD1

3rX

jD1
pAi p

A
j CKEr.r � 1/=2 (3.24)

We first illustrate the key idea, and then work out the details. In the instance
of 1jCO; LBmax � QjPwAj C

A
j , the jobs of J B are very long. Therefore, it is

convenient to process each of them as close as possible to its due date. This leaves
r intervals of length E . If and only if it is possible to perfectly fill these intervals
with triples of jobs from J A, then the instance of 3-PARTITION is a yes-instance
(see Fig. 3.13).

(Only if.) First observe that if there is a 3-PARTITION, then we can schedule the
jobs so that each job in J B completes at its due date, and we can schedule the triple
of jobs in J A corresponding to each set Ah between two jobs of J B . Let us now

94 3 Single Machine Problems

compute the total weighted completion time for J A. Indicating by h1; h2 and h3 the
indices of the three jobs in Ak , after some computation one gets:

3rX

jD1
wAj C

A
j D

3rX

iD1

3rX

jD1
pAi p

A
j C

r�1X

hD1
.hK.pAh1 C pAh2 C pAh3//

D
3rX

iD1

3rX

jD1
pAi p

A
j CKE

r�1X

hD1
h

D
3rX

iD1

3rX

jD1
pAi p

A
j CKEr.r � 1/=2 (3.25)

(If.) Suppose now that a feasible schedule � exists such that (3.24) is satisfied.
LetGh be the set of jobs of J A scheduled consecutively between the .h� 1/-th and
the h-th job of J B in � , and let p.Gh/ denote their total length. It is easy to see that
the value of the total weighted completion time for agent A is given by:

3rX

jD1
wAj C

A
j .�/ D

3rX

iD1

3rX

jD1
pAi p

A
j C

rX

hD1
.h� 1/Kp.Gh/ (3.26)

where p.G1/ C p.G2/ C : : : C p.Gr / D rE . Moreover, due to the constraint on
maximum lateness, and recalling that dBh D h.E CK/, the total length of the jobs
from J A scheduled before dBh cannot exceed hE.

Now, in order to obtain a lower bound on
P3r

jD1 wAj C
A
j .�/, we can therefore find

r values for p.Gh/, h D 1; : : : ; r that minimize the function
Pr

hD1.h � 1/p.Gh/,
subject to the constraints

p.G1/ � E

p.G1/C p.G2/ � 2E

:::

p.G1/C p.G2/C : : :C p.Gh/ � hE

:::

p.G1/C p.G2/C : : :C p.Gr�1/ � .r � 1/E

p.G1/C p.G2/C : : :C p.Gr�1/C p.Gr/ D rE

it is easy to check that the minimizer is p.Gh/ D E , h D 1; : : : ; r , so that we get
the lower bound

3rX

jD1
wAj C

A
j .�/ 	

3rX

iD1

3rX

jD1
pAi p

A
j CKEr.r � 1/=2 (3.27)

3.5 Functions
P

wj Cj ; Lmax 95

hence, from (3.24), � satisfies (3.24) at equality. But this can only occur if p.Gh/ D
E for all h, i.e., if the instance of 3-PARTITION is a yes-instance. ut

As a consequence of this result, in view of the reduction graph in Fig. 3.12,
all problems are strongly NP-hard, and one is led to consider effective solution
approaches. As we have already seen for 1jND; C B

max � QjPwAj C
A
j , also in

this case a viable approach is to pursue lower bounds by means of a Lagrangian
relaxation of the problem. It turns out that even in this case the Lagrangian dual can
be solved very efficiently, and the quality of the bound is sufficient to solve instances
of the problem of reasonable size. We next illustrate this approach for COMPETING.
Details can be found in Agnetis et al. (2009b).

3.5.1.1 The Lagrangian Approach for 1jCO; LB
max � Qj P

wA
j

C A
j

To start with, let us perform a “shaving” of the due dates of the jobs in J B . Let
NdnB D d2nB and recursively, for j D .nB �1/; : : : 1, let Ndj D minfd2j ; NdjC1�p2jC1g.

For each job in J B we define a shifted due date Qj D Ndj C Q, for which the
following holds

Qj � QjC1 � p2jC1 j D 1; : : : ; nB � 1 (3.28)

With no loss of generality, from now on we regardQj as a deadline for job JBj .
Note that, with no loss of generality, we can always assume that the jobs in J B

are scheduled in EDD order in an optimal solution, and hence formulate problem
1jCO; LBmax � QjPwAj C

A
j as:

Find z� D min
�

nAX

jD1
wAj C

A
j .�/ (3.29)

subject to CB
1 .�/ � Q1

CB
2 .�/ � Q2

:::

CB
nB
.�/ � QnB

Relaxing the nB constraints on the completion times of the jobs in J B in (3.29),
we get the Lagrangian problem:

L.	/ D min
�

n nAX

iD1
wAi C

A
i .�/C

nBX

jD1
	j .C

B
j .�/ �Qj /

o
(3.30)

96 3 Single Machine Problems

and the corresponding Lagrangian dual:

NL.	�/ D max
	�0

8
<

:
min
�

� nAX

iD1
wAi C

A
i .�/C

nBX

jD1
	j .C

B
j .�/ �Qj /

�
9
=

;
(3.31)

A key role is played by the ratios between the weight of a job in (3.30) and its
processing time (Smith’s ratio). Notice that for jobs in J A such ratio is given by:

ıAi D wAi =p
A
i

and is therefore part of problem input. For jobs in J B ,

ıBj D 	j =p
B
j

and it therefore depends on the vector of Lagrangian multipliers. We denote with
ıA, ıB and ı the vectors .ıA1 ; : : : ; ı

A
nA
/, .ıB1 ; : : : ; ı

B
nB
/ and .ıA1 ; : : : ; ı

A
nA

, ıB1 ; : : : ; ı
B
nB
/

respectively. We can rewrite the Lagrangian problem (3.31) as:

L.ıB/ D min
�2S

� nAX

iD1
ıAi p

A
i C

A
i .�/C

nBX

jD1
ıBj p

B
j .C

B
j .�/ �Qj /

�

(3.32)

Note that in (3.32) only the ıBj are variables, whereas the ıAi are given. The dual
problem (3.31) becomes

L.ıB
�
/ D max

ıB�0
fL.ıB/g (3.33)

3.5.1.2 The Algorithm for the Lagrangian Dual

For convenience of exposition, we introduce a (long) dummy job, JAnAC1, such that
pAnAC1 D QnB and wAnAC1 D 0. Clearly, such job will be always scheduled last
in an optimal solution to (3.29) and (3.32). We next consider the Lagrangian Dual
Algorithm (LDA) for (3.33).

The algorithm is fairly simple. The schedule is built from left to right. At each
step, either a job JAi 2 J A or a job JBj 2 J B is scheduled. In the latter case, a
value is assigned to ıBj . In particular, the algorithm considers the current makespan
T augmented by pAi , where JAi is the first unscheduled job from J A, and the latest
start time for the first unscheduled job JBj from J B , i.e.,Qj �pBj . If such latest start
time falls between T and T C pAi , then JBj is scheduled, and receives the value ıAi .
Otherwise, JAi is scheduled. This goes on until all jobs are scheduled, as reported in
Algorithm 15.

We denote with ��
LDA and ıBLDA the schedule and, respectively, the values of

the Smith’s ratios of jobs in J B produced by LDA. We also denote with J B
i the

set of the jobs in J B whose ıBj is set equal to ıAi , and call cluster Ji the set

3.5 Functions
P

wj Cj ; Lmax 97

Algorithm 15 (LDA) for the Lagrangian dual of 1jCO; LBmax � QjPwAi C
A
i

1: i WD 1

2: j WD 1

3: T WD 0

4: while i � nA C 1 do
5: while .T C pAi > Qj � pBj / and .j � nB/ do
6: ıBj WD ıAi
7: Schedule JBj
8: T WD T C pBj
9: j WD j C 1

10: end while
11: Schedule JAi
12: T WD T C pAi
13: i WD i C 1

14: end while
15: return final schedule

J B
i [fJAi g. Note that the jobs in J B belonging to the same cluster are scheduled

consecutively, followed by the corresponding job JAi 2 J A at the end of the cluster.
In the remainder of this section, we show that LDA optimally solves problem (3.33).
To this aim, we first need to establish some preliminary results.

Proposition 3.2. If (3.29) is feasible then, for each JBj ,

(a) Qj � CB
j .�

�
LDA/ 	 0 and

(b) Qj � CB
j .�

�
LDA/ < p

A
i , where Ji is the cluster JBj belongs to.

Proof. For the sake of simplicity, in this proof we omit ��
LDA from the completion

times notation (so we write CB
j for CB

j .�
�
LDA/). We prove the thesis by induction.

From the feasibility of (3.29) immediately follows thatQ1 �pB1 	 0. Then JB1 will

be scheduled starting at time T D
i�1P
kD1

pAk , where i is such that T � Q1 � pB1 <

T C pAi (T D 0 if i D 1). Hence, CB
1 D T C pB1 � QB

1 , proving (a) for j D 1,
andQ1 � CB

1 D Q1 � T � pB1 < p
A
i , proving (b) for j D 1.

Now, suppose that (a) and (b) hold for job JBj . Note that, after JBj has been
scheduled, T is set equal to CB

j . Two cases can occur:

(i) CB
j C pAi > QjC1 � pBjC1. In this case JBjC1 is scheduled immediately after

the end of JBj , and

CB
jC1 D CB

j C pBjC1
� Qj C pBjC1 by the induction hypothesis
� QjC1 for (3.28)

proving (a). Moreover,QjC1 �CB
jC1 D QjC1�CB

j �pBjC1 < pAi , proving
(b). (Note that, in particular, for cluster JnAC1 this holds because pAnAC1 D
QnB .)

98 3 Single Machine Problems

(ii) CB
j C pAi � QjC1 � pBjC1. In this case, after the end of job JBj , the jobs
JAi ; : : : ; J

A
i 0 will be consecutively scheduled, being i 0 such that

CB
j C

i 0�1X

kDi
pAk � QjC1 � pBjC1 < CB

j C
i 0X

kDi
pAk

Then JBjC1 is scheduled to start at the end of JBi 0�1, and so

CB
jC1 D CB

j C
i 0�1X

kDi
pAk C pBjC1 � QjC1;

proving (a). Moreover,

QjC1 � CB
jC1 D QjC1 � CB

j �
i 0�1X

kDi
pAk � pBj < p

A
i 0 ;

proving (b) (again, for JnAC1 this holds because pAnAC1 D QnB).

This completes the proof. ut
Note that schedule ��

LDA is feasible as a consequence of (a).
The following is a well known general property that holds for all scheduling

problems, and can be easily proved by a simple pairwise interchange argument.

Proposition 3.3. Let � be a single-machine schedule of the jobs fJ1; : : : ; Jng with
durations fp1; : : : ; png, and let I � fJ1; : : : ; Jng be a subset of consecutively
scheduled jobs. The quantity

X

Ji2I
piCi .�/ (3.34)

does not depend on the ordering of the jobs in I.

Lemma 3.2. Given ��
LDA and any cluster Ji , let Q� be any schedule obtained

from ��
LDA by arbitrarily reordering the jobs within cluster Ji . Also, denote with

JB�1; : : : ; J
B
�`�1

; J A�` ; J
B
�`C1

; : : : ; J B�jJi j
the jobs of Ji , ordered according to their

position in the schedule Q� . Then

hX

kD1
pB�k .C

B
�k
. Q�/�Q�k/ � 0 8h D 1; : : : ; ` � 1 (3.35)

jJi jX

kDh
pB�k .C

B
�k
. Q�/ �Q�k / > 0 8h D `C 1; : : : ; jJi j (3.36)

3.5 Functions
P

wj Cj ; Lmax 99

Proof. Let N� be the schedule obtained reordering the jobs of ��
LDA within cluster Ji

as follows: schedule in EDD order the jobs JB�1 ; : : : ; J
B
�`�1

, then schedule JAi , then
schedule in EDD order the jobs JB�`C1

; : : : ; J B�jJi j
. Note that CB

�k
. N�/ � CB

�k
.��
LDA/

for any k < `. Then, from Proposition 3.2(a), it follows that CB
�k
. N�/ � Q�k �

CB
�k
.��
LDA/�Q�k � 0 for any k < `. Symmetrically,CB

�k
. N�/ 	 CB

�k
.��
LDA/CpAi for

any k > `, and from Proposition 3.2(b) it follows thatCB
�k
. N�/�Q�k 	 CB

�k
.��
LDA/�

Q�k C pAi > 0 for any k > `. Hence, for schedule N� it holds

hX

kD1
pB�k .C

B
�k
. N�/�Q�k/ � 0 8h D 1; : : : ; ` � 1 (3.37)

jJi jX

kDh
pB�k .C

B
�k
. N�/ �Q�k / > 0 8h D `C 1; : : : ; jJi j (3.38)

Any schedule Q� differs from N� only in the order of the jobs of J B within the two
blocks, before and after JAi respectively. Then, in view of Proposition 3.3, the thesis
holds. ut

We are now in the position of proving the correctness of Algorithm LDA.

Theorem 3.16. Algorithm LDA correctly solves the Lagrangian dual prob-
lem (3.33) in O.n/.

Proof. We first show that the vector ı2LDA of Smith’s ratios produced by the
algorithm LDA is optimal for (3.33). Due to the concavity of L.ıB/ (Sect. 2.6.2),
it is sufficient to prove that ıBLDA is locally optimal. To this aim, let us consider
an arbitrary perturbed vector ıBLDA C "�, where � is an arbitrary real vector with
nB components and " > 0 is small enough to preserve relative ordering, i.e., if
ıBh > ıBk , then ıBh C "�h > ıBk C "�k. By resequencing all jobs by the Smith’s
rule, we obtain an optimal schedule Q� for the Lagrangian problem (3.32) in which
the jobs that belong to the same cluster in ��

LDA are still sequenced consecutively
(in nonincreasing order of �j). The value of the perturbed Lagrangian function can
be expressed as a summation over all clusters:

L.ıBLDA C "�/ D
nAX

iD1

�

ıAi p
A
i C

A
i . Q�/C

X

JBj 2J B
i

�
ıBj C "�j

	
pBj .C

B
j . Q�/�Qj /

D
nAX

iD1
ıAi

�

pAi C
A
i . Q�/C

X

JBj 2J B
i

pBj .C
B
j . Q�/�Qj /

„ ƒ‚ …
#1

C "

nAX

iD1

� X

JBj 2J B
i

�jp
B
j .C

B
j . Q�/ �Qj /

„ ƒ‚ …
#2

100 3 Single Machine Problems

From Proposition 3.3, it follows that the term #1 is equal to the unperturbed value,
L.ıBLDA/. So, the variation of the Lagrangian function is given by the term #2. We
next show that all terms in square brackets in the summation #2 are non-positive.
Each of such terms can be split into two parts, taking into account the jobs in J B

for which �j > 0 and �j < 0 respectively. Note that the jobs in J B for which �j

is strictly positive are scheduled before JAi in Q� and the jobs in J B for which�j is
strictly negative are scheduled after JAi in Q� .

L.ıBLDA C "�/� L.ıBLDA/ D "

nAX

iD1

� �j>0X

JBj 2J B
i

�j p
B
j .C

B
j . Q�/�Qj /

C
�j<0X

JBj 2J B
i

�jp
B
j .C

B
j . Q�/ �Qj /

(3.39)

For any cluster Ji , denote with JB�1; : : : ; J
A
�`
; : : : ; J B�jJi j

the jobs belonging to Ji ,
ordered according to their position in the schedule Q� (i.e., by nonincreasing values
of�j). Letting��` D 0 for uniformity of notation, the two summations for�j > 0

and�j < 0 in (3.39) can be respectively rewritten as

`�1X

kD1
��kp

B
�k
.CB

�k
. Q�/�Q�k/ D

`�1X

hD1

�
��h ���hC1

�

„ ƒ‚ …
#1

hX

kD1
pB�k .C

B
�k
. Q�/�Q�k/

„ ƒ‚ …
#2

(3.40)

jJi jX

kD`C1
��kp

B
�k
.CB

�k
. Q�/�Q�k/ D

jJi jX

hD`C1

�
��h ���h�1

�

„ ƒ‚ …
#1

jJi jX

kDh
pB�k .C

B
�k
. Q�/�Q�k /

„ ƒ‚ …
#2

(3.41)

Since ��h 	 ��hC1
, all the coefficients #1 in (3.40) are non-negative, and from

Lemma 3.2, all the terms #2 in (3.40) are non-positive. Similarly, all the coefficients
#1 in (3.41) are non-positive, while from Lemma 3.2 all the terms #2 in (3.41) are
strictly positive. Then L.ıBLDA C "�/ � L.ıLDA/, being the sum of non-positive
terms, is non-positive, which implies that L.ıBLDA/ is a local maximum.

As for the complexity of LDA, we observe that each job is considered exactly
once throughout the algorithm. Assuming that the jobs in J A have preliminarily
been ordered according to WSPT and jobs in J B according to EDD, the thesis
follows. ut

3.5 Functions
P

wj Cj ; Lmax 101

Example 3.6. Let consider an instance of 1jCO; LBmax � QjPwAi C
A
i , with the

following data, in which the valuesQj are shifted due dates.

J kj J A1 J A2 J A3 J B1 J B2 J B3

pkj 1 4 3 3 2 2
wkj 4 10 3
ıAj 4 2.5 1
Qj 6 9 13

Algorithm LDA schedules JA1 first, completing at T D 1. The latest start time
of job JB1 is Q1 � pB1 D 6 � 3 D 3, larger than T . Then, we schedule the second
job from J A, i.e., JA2 , and T D 5. Since 5 > 3, we assign to ıB1 the same Smith’s
ratio value of the last scheduled job from J A, i.e., ıB1 D ıA2 D 2:5. Hence, we
schedule job JB1 and update T to 8. Considering now job JB2 , its latest start time is
Q2 � pB2 D 9� 2 D 7. Again, being it smaller than the current value of T , we also
set ıB2 D 2:5, schedule JB2 and increase T to 10. Now Q3 � pB3 D 11 > 10, so job
JA3 is scheduled, to complete at 13. Since 13 > 11, job JB3 gets ıB3 D ıA3 D 1. In
conclusion, an optimal solution of the Lagrangian dual is given by

fJA1 gfJA2 ; J B1 ; J B2 gfJA3 ; J B3 g

where we highlighted the three clusters. The corresponding value of the bound is
117. In this example, it can be seen that the optimal solution is

fJB1 ; J A2 ; J B2 ; J A1 ; J B3 ; J A3 g

having value 155. ˘
Note that LDA computes a bound at the root node of the enumeration tree. If a

set of branching constraints is added, LDA has to be suitably adapted. In particular,
an effective branching strategy in this case consists in fixing the jobs in J A from
left to right. Details and computational experiments can be found in Agnetis et al.
(2009b).

3.5.2 Computing the Pareto Set

Since 1jCO; LBmax � QjPwAj C
A
j generalizes 1jCO; C B

max � QjPwAj C
A
j , the

result in Sect. 3.4.2 applies, so also in this case there can be a nonpolynomial number
of Pareto optimal solutions.

102 3 Single Machine Problems

3.5.3 Linear Combination

Now consider 1jCOj˛PwAj C
A
j CˇLBmax. As stated by Baker and Smith (2003), the

problem is strongly NP-hard. In fact, the NP-hardness of this problem can be shown
by slightly modifying the construction in the proof of Theorem 3.15.

Theorem 3.17. Problem 1jCOj˛PwAj C
A
j C ˇLBmax is strongly NP-hard.

Proof. Given an instance of 3-PARTITION, we build an instance of problem
1jCOj˛PwAj C

A
j C ˇLBmax as in Theorem 3.15, with the only addition of a dummy

job JBrC1 to J B having pBrC1 D dBrC1 D 0. The presence of such job ensures that
LBmax 	 0. Moreover, let ˛ D 1 and ˇ a sufficiently large number, to ensure that in a
yes-instance of 1jj˛PwAj C

A
j C ˇLBmax, no job from J B completes late. With these

positions, the same proof of Theorem 3.15 shows that the instance of 3-PARTITION

has a solution if and only if there is a feasible schedule such that

˛

3rX

jD1
wAj C

A
j C ˇLBmax �

3rX

iD1

3rX

jD1
pAi p

A
j CKEr.r � 1/=2:

ut

3.6 Functions
P

wj Cj ; fmax

This setting is clearly a generalization of 1jjPwj Cj ; Lmax, hence the same NP-
hardness results hold.

For the linear combination approach, Nong et al. (2011) provide a PTAS for the
case in which f A

max D max wAj C
A
j . Actually, their scheme is polynomial only for

fixed nA, since it has time complexity which grows exponentially with nA.
Moreover, they give a 2-approximation algorithm for the same problem. This

exploits a well-known result by Queyranne (1993) concerning the convex hull Q
of all feasible completion time vectors fCA

j ; C
B
j g in a single-machine scheduling

problem. In particular, the algorithm consists in minimizing the function U CP
Jj2J B wBj C

B
j , over the points of Q such that U 	 wAj C

A
j for all JAj 2 J A. This

LP can be solved in polynomial time using the ellipsoid algorithm. Let CLP
j denote

the value of Cj in the optimal solution of the LP. Nong et al. show that sequencing
the jobs by increasing values of CLP

j , one obtains a 2-approximate schedule.

3.7 Functions
P

Uj ; fmax

Let us now turn to the case in which agent A wants to minimize the total number of
tardy jobs, while agent B holds a general max-type objective function.

3.7 Functions
P
Uj ; fmax 103

NONDISJOINT

INTERFERING COMPETING

BICRITERIA

Fig. 3.14 Reduction graph for 1jjPUj ; fmax

As in Sect. 3.5, also in this case NONDISJOINT ! BICRITERIA. In fact, if we
attach a due date dj D C1 to all jobs in NJ B (which only contribute to f B

max), one
can incorporate them in J A. Similarly, one can set fj D �1 for j 2 NJ A (since
these jobs only contribute to the number of tardy jobs), and hence incorporate them
in NJ B . We therefore have the situation of Fig. 3.14.

3.7.1 Epsilon-Constraint Approach

In this section we consider the problem 1jCO; f B
max � QjPUA

j . As we will see,
this problem can be solved in O.n log n/ by a suitable generalization of Moore’s
algorithm (Sect. 2.7.1) (Agnetis et al. 2004).

As in Sect. 3.1, we define a deadline QdBk for each job JBk 2 J B such that
f B
k .C

B
k / � Q for CB

k � QdBk and f B
k .C

B
k / > Q for CB

k > QdBk . In what follows, we
call the latest start time (denoted LSk) of job JBk the maximum value the starting
time of JBk can attain in a feasible schedule (i.e., a schedule respecting all deadlines).
The valuesLSk can be computed as follows. Order the jobs of J B in nondecreasing
order of deadline. Start from the last job, JBnB , and schedule such job to start at time
QdBnB � pBnB . Continue backwards, letting LSk WD minf QdBk ; LSkC1g � pBk , for all
k D nB � 1; : : : ; 1. Clearly, if job JBk starts after time LSk , at least one job in J B

violates its deadline, i.e., f B
max > Q.

Consider now, for each job JBk 2 J B , the latest processing interval ŒLSk; QdBk �.
Let I D [nB

kD1ŒLSk; QdBk �. Set I consists of a number ˇ � nB of intervals,
I1;h1 ; Ih1;h2 ; : : : ; Ihˇ�1;nB , call them reserved intervals. Each reserved interval Iu;v

ranges from LSu to QdBv . Note that, by construction, the length jjIu;vjj of interval Iu;v

equals QdBv � LSu D Pv
kDu p

B
k . We say that jobs JBu ; J

B
uC1; : : : ; J Bv are associated

with Iu;v .
Consider now problem 1jCO; pmtn; f B

max � QjPUA
j , i.e., the preemptive

variant of 1jCO; f B
max � QjPUA

j .

104 3 Single Machine Problems

Lemma 3.3. Given an optimal solution to 1jCO; pmtn; f B
max � QjPUA

j , there
exists an optimal solution to problem 1jCO; f B

max � QjPUA
j with the same number

of late jobs from J A.

Proof. Clearly, the optimal nonpreemptive schedule has at least the number of tardy
jobs of an optimal preemptive schedule. Now observe that if in an optimal schedule
�� for 1jCO; pmtn; f B

max � QjPUA
j there is a job Ji (of any agent), ending at

Ci , which is preempted at least once, we can always schedule the whole Ji in
interval ŒCi�pi ; Ci �, moving other (parts of) jobs backwards, without increasing the
completion time of any job. Repeating this for each preempted job, we eventually
obtain a nonpreemptive solution having a number of tardy jobs not greater than ��,
and the proof follows. ut
Lemma 3.4. There exists an optimal solution to the 1jCO; pmtn; f B

max � QjPUA
j

problem in which each job from J B is nonpreemptively scheduled in the reserved
interval it is associated with.

Proof. In an optimal solution to 1jCO; pmtn; f B
max � QjPUA

j , all the jobs from

J B associated with an interval Iu;v complete within QdBv . Hence, if we move all the
pieces of JBu ; J

B
uC1; : : : ; J Bv to exactly fit the interval Iu;v , we obtain a solution in

which the completion time of no job from J A has increased, since we only moved
pieces of such jobs backwards. ut

Lemma 3.4 allows one to fix the position of the jobs from J B in an optimal
solution to 1jCO; pmtn; f B

max � QjPUA
j . The schedule of the jobs from J A can

then be found by solving an auxiliary instance of the well-known single-agent,
nonpreemptive problem 1jjPUj , solvable by Moore’s algorithm (see Chap. 2.7.1).
Given an instance of 1jCO; pmtn; f B

max � QjPUA
j , the auxiliary instance includes

the jobs from J A only, with modified due dates as follows. For each job JAh , if dAh
falls outside of any reserved interval, we subtract from dAh the total length of all the
reserved intervals preceding dAh , i.e., we define the modified due date DA

h of job
JAh as:

DA
h D dAh �

X

u;vW QdBv �dAh
jjIu;vjj (3.42)

If dAh falls within the reserved interval Ip;q , we do the same, but instead of dAh we
use the left extreme of Ip;q :

DA
h D LSp �

X

u;vW QdBv <dAh
jjIu;vjj (3.43)

We can now prove the main result of this section.

3.7 Functions
P
Uj ; fmax 105

Algorithm 16 for problem 1jCO; f B
max � QjPUA

j

1: for JBk 2 J B do
2: Compute deadlines DB

k

3: end for
4: Arrange all jobs in J B in non-decreasing order of deadlines DB

k

5: LSnB WD QdBnB
6: for k WD nB � 1 downto 1 do
7: LSk WD minf QdBk ; LSkC1g
8: end for
9: Compute reserved intervals I1;h1 ; Ih1;h2 ; : : : ; Ihˇ�1;nB and associated job sets from J B

10: for JAh 2 JA do
11: if dAh 2 Ip;q for some p; q then
12: DA

h WD LSp �P
u;vW QdBv �dAh

jjIu;vjj
13: else
14: DA

h WD dAh �P
u;vW QdBv �dAh

jjIu;vj
15: end if
16: end for
17: Solve an instance of problem 1jjPUA

j with due dates DA
h

18: Denote by � the optimal schedule
19: Insert in � the jobs from J B in the corresponding reserved intervals, producing an optimal

schedule � 0 for problem 1jCO; pmtn; f B
max � QjPUA

j

20: Consolidate preempted jobs from J A by moving the jobs from J B backwards, constructing
an optimal schedule � 00 for problem 1jCO; f B

max � QjPUA
j

21: return � 00

Theorem 3.18. Problem 1jCO; f B
max � QjPUA

j can be solved in O.nA lognA C
nB lognB/ time.

Proof. Given a schedule � for the auxiliary instance of 1jjPUA
j , it is possible to

define a solution � 0 to 1jCO; pmtn; f B
max � QjPUA

j by re-inserting the reserved
intervals (with the associated jobs from J B) in the schedule, one at a time, from the
first to the last, every time shifting everything forward. Each reinsertion can possibly
preempt one job from J A. From the definition of the modified due dates in the
auxiliary instance, it follows immediately that each job from J A is early in � 0 if and
only if it is early in � . Hence, from an optimal solution to the auxiliary instance we
obtain an optimal solution to 1jCO; pmtn; f B

max � QjPUA
j . Applying Lemma 3.3,

we can obtain an optimal solution to 1jCO; f B
max � QjPUA

j by rearranging the
jobs from J A that had been preempted during the reinsertion phase. Let us now
turn to complexity issues. The jobs from J B are ordered first; the complexity for
this is O.nB lognB/. Then, the computation of the reserved intervals takes time
O.nB/. The auxiliary instance can be defined in time O.nA/ and solved in time
O.nA lognA/ by Moore’s algorithm. The optimal solution to 1jCO; pmtn; f B

max �
QjPUA

j can be reconstructed in timeO.nACnB/. Finally, the optimal solution to
1jCO; f B

max � QjPUA
j is obtained in timeO.nA C nB/. The overall complexity is

therefore dominated by the ordering steps and the theorem follows. ut

106 3 Single Machine Problems

The polynomiality result for the two-agent problem 1jCO; f B
max � QjPUA

j

can be generalized to the case with K agents in which p agents hold an objective
function fmax and K � p hold

P
Uj (Agnetis et al. 2007). In fact, the p agents

holding fmax are essentially treated as a single agent, since the only relevant
information of each job is its deadline. In the wake of Lemma 3.4 and Theorem 3.18,
the problem reduces to an instance of a problem withK�p agents, each interested in
minimizing the number of tardy jobs. This can be solved by dynamic programming,
suitably modifying the algorithm that will be shown in Sect. 3.14.1.1.

On the basis of the above results, the COMPETING case appears indeed sig-
nificantly easier than the other cases. In fact, we next show that the problem
1jBI; LBmax � QjPUA

j is NP-hard, and as a consequence so are also 1jIN;LBmax �
QjPUA

j , 1jIN;PUB
j � Qjf A

max and 1jND; LBmax � QjPUA
j .

A result by Lawler (1982) establishes the (ordinary) NP-hardness of the follow-
ing single-agent, single-machine problem (denoted by 1jdj ; Qdj jPUj). A set of
n jobs is given, each having processing time pj , due date dj and deadline Qdj . A
schedule is feasible if all deadlines are respected. The problem consists in finding
the feasible schedule that minimizes the number of tardy jobs (with respect to due
dates). To see why this result implies the NP-hardness of 1jBI; LBmax � QjPUA

j ,

just suppose that for each Jj 2 J we let dAj D dj , dBj D Qdj andQ D 0. Finding an

optimal solution for 1jdj ; Qdj jPUj is then equivalent to finding an optimal solution
to 1jBI; LBmax � 0jPUA

j .
Notice that in the above observation it is of critical importance to assume that

deadlines and due dates are independent of each other. A different problem is when
the maximum tardiness of a job is computed with respect to the same due date
used to compute the number of tardy jobs. In other words, 1jBI; dAj D dBj ; T

B
max �

QjPUA
j consists in minimizing the number of tardy jobs when none of them is

allowed to have a tardiness larger than Q. The complexity of this problem still
stands out as one of the most prominent open issues in theoretical scheduling (Huo
et al. 2007a).

In spite of the above results, we note that the complexity of problems
1jIN;CB

max � QjPUA
j and 1jND; C B

max � QjPUA
j is still open.

Leung et al. (2010) address the problem in the COMPETING scenario with the
addition of release dates and preemption, i.e., 1jCO; rj ; pmtn; f B

max � QjPUA
j .

They provide an algorithm of complexity O.n7/, which exploits an algorithm by
Lawler (1990) for the (weighted) single-agent problem 1jrj ; pmtnjPwj Uj . In the
unweighted case, the complexity of Lawler’s algorithm is O.n5/. In what follows,
we show that also the two-agent problem can be solved in O.n5/, by combining the
decomposition approach of Algorithm 16 with the unweighted version of Lawler’s
algorithm.

Similar to what already done for problem 1jCO; f B
max � QjPUA

j , for each

JBk 2 J B we compute a deadline QdBk such that, as usual, f B
k .C

B
k / � Q for CB

k �
QdBk and f B

k .C
B
k / > Q for CB

k > QdBk . Next, for the jobs in J B we define a set
of reserved intervals. These can be computed by reversing the time axis, viewing
the deadlines as release dates and scheduling the jobs according to the preemptive

3.7 Functions
P
Uj ; fmax 107

earliest-due-date rule (where the earliest due date corresponds indeed to the latest
release date). In the reserved interval Ip;q , the jobs JBp ; J

B
pC1; : : : ; J Bq are entirely

(preemptively) scheduled. We let S.Ip;q/ andF.Ip;q/ denote the start time and finish
time of the interval Ip;q respectively. When doing so, if a job cannot be entirely
scheduled between its release and due date, the instance of 1jCO; f B

max � QjPUA
j

is infeasible.
Thereafter, the jobs of J A are to be scheduled. To this aim, we define an auxiliary

instance of the single-agent problem 1jrj ; pmtnjPUj in which only the jobs of
agent A appear, with suitably defined release and due dates. Precisely, if rAh or dAh
fall outside a reserved interval, similarly to (3.42) we define

RAh D rAh �
X

u;vWF.Iu;v/�rAh
jjIu;vjj (3.44)

DA
h D dAh �

X

u;vWF.Iu;v/�dAh
jjIu;vjj (3.45)

whereas, if they fall within reserved interval Ip;q , similarly to (3.43) we define

RAh D S.Ip;q/ �
X

u;vWF.Iu;v /�rAh
jjIu;vjj (3.46)

DA
h D S.Ip;q/ �

X

u;vWF.Iu;v /�dAh
jjIu;vjj (3.47)

In conclusion, the problem can be solved by Algorithm 17.

3.7.2 Computing the Pareto Set and Linear Combination

Obviously, if agent A holds
P
UA
j , there are O.nA/ Pareto optimal solutions.

Hence, in the COMPETING scenario, in view of Theorem 3.18, problems
1jCOjP.PUA

j ; f
B

max/ and 1jCOj˛PUA
j C f̌ B

max can be solved in polynomial
time. In view of view of the observation in Sect. 2.7.3, also the "-constraint problem
1jCO; f B

max � QjPUA
j can be solved in polynomial time and hence the problem

of finding a single single Pareto optimal solution, namely O.n logn logUB/,
where UB is an upper bound on f B

max. consequence, 1jCOjP.PUA
j ; f

B
max/ and

1jCOj˛PUA
j C f̌ B

max can both be solved in O.nAn logn logUB/ time. However,
the complexity of the corresponding problems in INTERFERING and NONDISJOINT

scenarios is still open, even for fmax D Cmax.
Similarly, the complexity of the linear combination problem is open in the

K-agent case (K fixed), even in the COMPETING scenario, when some agents
hold Cmax and others

P
Uj . However, when the number of agents holding Cmax

108 3 Single Machine Problems

Algorithm 17 for problem 1jCO; rj ; pmtn; f B
max � QjPUA

j

1: for JBk 2 J B do
2: Compute deadlines QdBk
3: end for
4: Arrange all jobs in J B in non-decreasing order of deadlines QdBk
5: Compute reserved intervals I1;h1 ; Ih1;h2 ; : : : ; Ihˇ�1;nB and associated job sets from J B

6: for JAh 2 J A do
7: if dAh 2 Ip;q for some p; q then
8: DA

h WD S.Ip;q/�P
u;vWF.Iu;v /�dAh

jjIu;v jj
9: else

10: DA
h WD dAh �P

u;vWF.Iu;v /�dAh
jjIu;vjj

11: end if
12: if rAh 2 Ip;q for some p; q then
13: RAh WD S.Ip;q/�P

u;vWF.Iu;v /�rAh
jjIu;v jj

14: else
15: RAh WD rAh �P

u;vWF.Iu;v /�rAh
jjIu;vjj

16: end if
17: end for
18: Solve an instance of problem 1jrj ; pmtnjPUA

j with release dates RAh and due dates DA
h

19: Denote by � the obtained optimal schedule
20: Insert in � the jobs from J B in the corresponding reserved intervals, producing an optimal

schedule � 0 for problem 1jCO; rj ; pmtn; f B
max � QjPUA

j

21: return � 0

is not fixed, the problem is strongly NP-hard. In fact, one can easily reduce
1jCOj˛PwAj C

A
j CˇPUB

j (which is shown to be strongly NP-hard in Sect. 3.13.2)

to 1jCOjPK�1
kD1 ˛kC k

max C ˛K
P
UK
j , in which K D nA C 1, there is one agent

(holding a single job) for each original job of JA, ˛k D wAk for k D 1; : : : ; K � 1

and ˛K D ˇ.

3.8 Functions
P

Tj ; fmax

As in the previous section, NONDISJOINT ! BICRITERIA, setting a very large due
date dj D 1 for all jobs in J B and fj D �1 for Jj 2 J A (Fig. 3.15).

3.8.1 Epsilon-Constraint Approach

Note that even the simplest scenario for problem 1jCO; f B
max � QjPT Aj is at

least NP-hard, since so is the classical single-agent problem 1jjPTj (Du and
Leung 1990). In fact, a pseudopolynomial pseudopolynomial algorithm can be
given for 1jCO; f B

max � QjPT Aj (Leung et al. 2010). Such algorithm exploits
the construction presented in Sect. 3.7.1. Also here, for each job JBj 2 J B we
compute a deadline DB

j such that if CB
j > DB

j , then FB
j .C

B
j / > Q. Hence, we

3.9 Functions
P
Cj ,

P
Cj 109

NONDISJOINT

INTERFERING COMPETING

BICRITERIA

Fig. 3.15 Reduction graph for 1jjP T Aj ; f
B

max

NONDISJOINT

INTERFERING COMPETING

Fig. 3.16 Reduction graph for 1jjPCj ;
P
Cj

can compute a set of reserved intervals for the jobs in J B . The reserved intervals
are used to define an instance of the single-agent problem 1jjPTj in which only
jobs in J A appear. In this instance, the due dates of the jobs are modified to account
for the reserved intervals, using relations (3.42) and (3.43). By applying the same
arguments of Lemma 3.4 (page 104) and Theorem 3.18 (page 104), it can be shown
that the optimal solution to this instance of 1jjPTj allows to derive an optimal
solution to the original problem. Hence, in view of algorithm (Lawler 1977) for
problem 1jjPTj (Theorem 2.1 in Sect. 2.7.1), letting P denote the total processing
time of all jobs, the following results holds.

Theorem 3.19. Problem 1jCO; f B
max � QjPT Aj can be solved in time O.n4AP C

nB lognB/.

Notice that the term O.nB lognB/ in the complexity is due to the computation
of reserved intervals, which only involves jobs of J B .

3.9 Functions
P

Cj ,
P

Cj

Let us now turn to problems in which both objective functions are of sum-type.
The simplest such case is when the two functions are the sum of completion times.
In this case, no further reductions hold in general besides those in Fig. 2.8. Since
BICRITERIA does not make sense in this case, we get Fig. 3.16.

110 3 Single Machine Problems

3.9.1 Epsilon-Constraint Approach

3.9.1.1 Problem 1jCO;
P

C B
j

� Qj P
C A

j

Let us consider the problem 1jCO;
P
CB
j � QjPCA

j .
First of all, it is easy to show that, with no loss of generality, we can suppose that

both agents order their jobs in SPT order. Hence, for simplicity we number the jobs
of each agent accordingly.

In the following proof, we use the NP-complete problem PARTITION (Sect. 2.1).
With no loss of generality we assume that the k integers in the instance of
PARTITION are all different. For the sake of simplicity, we number the k integers
in increasing order, i.e., a1 < a2 < : : : < ak . Remember that

Pk
jD1 aj D E .

Theorem 3.20. Problem 1jCO;
P
CB
j � QjPCA

j is binary NP-hard.

Proof. Given an instance of PARTITION, define an instance of 1jCO;
P
CB
j �

QjPCA
j as follows. The two job sets J A and J B are identical, and each contains k

jobs, having length pi D ai , i D 1; 2; : : : ; k. LettingQ D 3EC2.Pk
iD1.k� i/pi /,

we want to establish whether there is a schedule � such that
P
CA
j .�/ � Q and

P
CB
j .�/ � Q.

Consider any schedule � in which the jobs are sequenced in SPT order. Such
a schedule has the following structure: the two jobs of length p1 are scheduled
first, followed by the two jobs of length p2, : : :, followed by the two jobs of
length pk . Note that there exist exactly 2k SPT schedules, obtained by choosing
in all possible ways the agent who has the precedence in a pair of jobs having
the same length. Also, note that the sum of the two agents’ objective functions,
i.e., the quantity

P
CA
j C P

CB
j is the same for all SPT schedules, and it equals

T D 6E C 4
Pk

iD1.k � i/pi . Note that Q D T=2.
Now let us consider the cost of an SPT schedule for each agent. We denote by

J Œi � the pair of jobs JAi and JBi (both of length pi). Given an SPT schedule, the
notationA �i B means that in this schedule JAi precedes JBi in J Œi �. Given an SPT
schedule, observe that the contribution to the total completion time of the jobs in
J Œ1� is p1 for one agent and 2p1 for the other, the contribution of the jobs in J Œ2� is
2p1Cp2 for one agent and 2p1C2p2 for the other, etc., the contribution of the jobs in
J Œh� is 2p1C2p2C: : :C2ph�1Cph for one agent and 2p1C2p2C: : :C2ph�1C2ph
for the other. Hence, in a given SPT schedule, the contribution of J Œh� to

P
CA
j can

be obtained by adding to 2p1 C 2p2 C : : :C 2ph�1 C ph either 0 or ph, depending
on whether agent A precedes agent B in J Œh� or viceversa, for each h D 1; : : : ; k.
For agent B the opposite holds, i.e., if B �i A, then the value ph is added to the
objective function of agent A. Given an SPT schedule, let x.0; ph/ D 0 if A �h B

and x.0; ph/ D ph if B �h A in the solution, and let x D Pk
hD1 x.0; ph/. Hence,

in any SPT schedule, the total completion time for agent A is:

3.9 Functions
P
Cj ,

P
Cj 111

p1 C x.0; p1/

C2p1 C p2 C x.0; p2/

C2p1 C 2p2 C p3 C x.0; p3/

:::

C2p1 C 2p2 C � � � C 2ph�1 C ph C x.0; ph/

:::

C2p1 C 2p2 C � � � C 2pk�1 C pk C x.0; pk/

D 2E C 2.

kX

iD1
.k � i/pi /C x (3.48)

whereas for agent B the total completion time equals

2E C 2.

kX

iD1
.k � i/pi /C .2B � x/: (3.49)

We next call feasible a schedule � such that
P
CA
j .�/ � T=2 and

P
CB
j .�/ �

T=2. We want to show that a schedule � is feasible, then it is an SPT schedule.
Suppose in fact that a feasible schedule � 0 exists that is not SPT. Then, there

must be at least two consecutive jobs in � 0, say JAi and JB` , such that JAi precedes
JB` and pi > p`. Now if we swap the two jobs, we obtain a new schedule � 00
such that

P
CA
j .�

00/ D P
CA
j .�

0/C p` and
P
CB
j .�

00/ D P
CB
j .�

0/ � pi . Since
pi > p`, one has

P
CA
j .�

0/ C P
CB
j .�

0/ >
P
CA
j .�

00/ C P
CB
j .�

00/, i.e., the
overall total completion time

P
CA
j CP

CB
j has decreased of the amount pi �p`.

So, each job of J B following a longer job of J A can be swapped with it, hence
decreasing the overall total completion time of the solution. This can be repeated
until no such pair of jobs exists. A symmetrical discussion could be done for each
job JAv 2 J A following a longer job JBu 2 J B . This time, if we swap them, the
agent A gains pu and the agent B loses pv, and so the overall total completion time
of the solution decreases by pu � pv. By repeatedly applying the above swaps, we
eventually find an SPT solution � 00. However, since the solution we started with,
� 0, was feasible, the overall total completion time of � 00 cannot exceed T D 6E C
4
Pk

iD1.k � i/pi . At each swap, the overall total completion time of the solution
actually decreased. However, we ended up with an SPT schedule, whose weight
is exactly 6E C 4

Pk
iD1.k � i/pi , a contradiction. Therefore only SPT schedules

can be feasible. For a schedule to be feasible, the total completion time for each
agent must be T=2. Recalling the expressions (3.48) and (3.49) of the completion
times for the two agents in an SPT solution, we observe that a feasible solution may
exist if and only if x D E , i.e., if and only if there is a solution to the instance of
PARTITION. ut

112 3 Single Machine Problems

3.9.1.2 Problem 1jIN;
P

C B
j

� Qj P
C A

j

Now let us consider 1jIN;PCB
j � QjPCA

j . The following properties can be
easily established by a pairwise interchange argument

Lemma 3.5. Given a feasible instance of problem 1jIN;PCB
j � QjPCA

j , there
is always an optimal solution such that:

• All jobs in NJ A are ordered in SPT
• All jobs in J B are ordered in SPT
• If pi < pj , Ji 2 J B and Jj 2 NJ A, then Ji precedes Jj

Note that this lemma does not imply that a job in NJ A must precede a longer job
in J B . One can deduce the following result (Tuong et al. 2012).

Theorem 3.21. Problem 1jIN;PCB
j � QjPCA

j is binary NP-hard.

Proof. Let J B � J . Given an instance of PARTITION, in which we suppose that
a1 < a2 < � � � < ak , we define an instance of 1jIN;PCB

j � QjPCA
j in a

similar way as in Theorem 3.20, but with some relevant differences. Consider the
two disjoint job sets NJ A and J B . For each integer ai in the instance of PARTITION,
we define a pair of jobs, namely job J2i�1 2 NJ A of length p2i�1 D Mai and
J2i 2 J B of length p2i D ˛Mai , where ˛ D 1 C 1=M , and M is a sufficiently
large integer that guarantees that p2i < p2iC1 and all processing times are integer.
To this aim, one can choose any integerM such that

M 	 k�1
max
iD1

�
ai

aiC1 � ai

�

Note that the jobs are numbered in SPT order, and there is a single SPT schedule
J1; J2; : : : ; J2k . Note that the SPT schedule is the best possible schedule for agent
A. We let XA and XB be the costs for the two agents of the SPT sequence:

XA D M

kX

jD1
.aj C aj .1C ˛/.2.k � j /C 1// (3.50)

XB D M

kX

jD1
aj .1C ˛/.k � j C 1/ (3.51)

We then address the question of whether there exists a schedule such that the cost
to agentA is at mostXAC .˛�1/ME and the cost to agentB is at mostXB �ME .
We call feasible such a schedule if it exists. We next show that a feasible schedule
exists if and only if the instance of PARTITION is a yes-instance. We observe that if,
in the SPT sequence, we swap jobs J2i�1 2 NJ A and J2i 2 J B , the cost of agent
B reduces by p2i�1 D Mai while the cost of agent A increases by p2i � p2i�1 D
.˛ � 1/Mai .

3.9 Functions
P
Cj ,

P
Cj 113

Given a yes instance .A0; A nA0/ of PARTITION, we build a schedule as follows.
We start from the SPT sequence and, for each ai 2 A0, we swap jobs J2i�1 2 NJ A

and J2i 2 J B . The cost for the two agents in the resulting schedule is therefore:

agent A: XA C
X

ai2A0

.˛ � 1/Mai D XA C .˛ � 1/ME

agent B: XB �
X

ai2A0

Mai D XB �ME:

i.e., the obtained schedule is feasible.
Viceversa, consider a feasible schedule � . Lemma 3.5 implies that there is a

feasible schedule obtained from the SPT schedule by swapping jobs J2i�1 and J2i
for a subset OA � fa1; a2; : : : ; akg. Since � is obtained from the SPT sequence by
swapping jobs J2i and J2i�1 for each ai 2 OA and the cost for the two agents is:

agent A: XA C
X

ai2 OA
.˛ � 1/Mai � X1 C .˛ � 1/ME (3.52)

agent B: XB �
X

ai2 OA
Mai � X2 �ME: (3.53)

From (3.52),
P

ai2 OA ai � E , while from (3.53),
P

ai2 OA ai 	 E . HenceP
ai2 OA ai D E and we can build a solution to PARTITION letting ai 2 A0 if and

only if ai 2 OA. ut

3.9.1.3 Problem 1jND;
P

C B
j

� Qj P
C A

j

In view of these two NP-hardness results, one is led to question whether the
problems are weakly or strongly NP-hard. We next show that the most general
problem, i.e., 1jND;

P
CB
j � QjPCA

j can be solved by a pseudopolynomial
dynamic-programming algorithm. In what follows we will consider the three
disjoint sets NJ A, NJ B and J A \ J B , and assume that the jobs are numbered
in SPT order within each of these three sets. In fact, it is easy to prove (by a
simple pairwise interchange argument) that in any optimal solution to problem
1jND;

P
CB
j � QjPCA

j , the jobs are SPT ordered within each set.

We denote by A.i; j; h/ the set consisting of the first i jobs of NJ A, the first j
jobs of NJ B and the first h jobs of J A \ J B . Here we denote as JABt the t-th job of
J A \ J B and nAB D jJ A \ J B j. Let P.i; j; h/ be the sum of the processing times
of the jobs in A.i; j; h/. Let F.i; j; h; q/ denote the value of an optimal solution
to the instance of 1jND;

P
CB
j � qjPCA

j in which only jobs from A.i; j; h/ are
considered, with q � Q. In an optimal solution to this problem, the last job is either
JAi , JBj , or JABh . In the first case, the contribution of the last job to the objective

114 3 Single Machine Problems

function is given by P.i; j; h/, and this must be added to the optimal solution up to
that point. In the second case, the completion time of JBj is P.i; j; h/. In the third
case, the completion time of JABh is P.i; j; h/, and this quantity must be added to
the objective function. Therefore we can define the following dynamic programming
formula:

F.i; j; h; q/ D minf F.i � 1; j; h; q/C P.i; j; h/I (3.54)

F.i; j � 1; h; q � P.i; j; h//I
F.i; j; h � 1; q � P.i; j; h//C P.i; j; h/g

Formula (3.54) must be suitably initialized, by setting F.0; 0; 0; q/ D 0 for all
q D 0; : : : ;Q and F.i; j; h; q/ D C1 for q < 0.

Note that F. NnA; NnB; nAB;Q/ gives the optimal solution value. Since each
quantity F.i; j; h; q/ can be computed in constant time, the following theorem
holds.

Theorem 3.22. Problem 1jND;
P
CB
j � QjPCA

j can be solved in O. NnA NnB
nABQ/ time.

The pseudopolynomial algorithm can in principle be extended to any numberK
of agents, each holding

P
Ck
j as objective function. The recursive formula (3.54)

must consider all possible subsets of K agents, since a job may contribute to the
cost of any subset of objective functions. Since in this case the number of possible
job subsets is 2K � 1, one would get a complexity of O.n2

K�1Q2 : : :QK/. Though
such complexity grows rapidly with K , it shows that the problem is still solvable
in pseudopolynomial time for a fixed number of agents. Of course, in many cases
some of these subsets may be empty. In particular, for both COMPETING and
INTERFERING one has only K disjoint subsets. For COMPETING these subsets
coincide with J 1;J 2; : : : ;J K , and in the INTERFERING case, the subsets are
NJ 1 D J 1nJ 2, J 2nJ 3, etc., J K�1nJ K , J K . Therefore in both these scenarios the

problem is solvable by formula (3.54) in O.nKQ2 : : :QK/. However, all K-agent
problems are open as for strong NP-hardness if K is not fixed.

3.9.2 Computing the Pareto Set

3.9.2.1 Problem 1jjP.
P

C A
j

;
P

C B
j

/

We next address problem 1jjP.PCA
j ;
P
CB
j /. Even in the COMPETING scenario,

we show that the size of the Pareto set may not be polynomial.

Example 3.7. Let consider an instance of problem 1jCOjP.PCA
j ;
P
CB
j / in

which the sets J A and J B are identical. Each set consists of k jobs of size

3.9 Functions
P
Cj ,

P
Cj 115

p0 D 1; p1 D 2; p2 D 4; p3 D 8; : : : ; pk�1 D 2k�1. Consider now a subset of all
possible schedules, namely those in which the two jobs of length p0 are scheduled
first, then the two jobs of length p1, the two of length p2 etc. Let � be one such
schedule. In � , for each pair of jobs having equal length, either the job of agent A
or of agent B is scheduled first. Call NA the set of job pair indices in which the job
of J A precedes the job of J B having the same length in � , and NB the set of pair
indices in which the opposite holds in � . Consider job JAh . If it is scheduled before
JBh , its contribution to the cost function of Agent 1 is 2h C 2.2h � 1/, otherwise it
is 2.2h/C 2.2h � 1/. Hence, the total completion time for the Agent 1 is given by

X

Jh2J A

CA
h D

X

h2NA

.2hC1 C 2h � 2/C
X

h2NB

.2hC2 � 2/ (3.55)

D
X

h2NA

.3.2h/� 2/C
X

h2NB

.4.2h/ � 2/ (3.56)

D
k�1X

hD0
3.2h/� 2k C

X

h2NB

2h (3.57)

Note that only the last term in expression (3.57) depends on the actual schedule � .
This expression shows that the quantity

P
Jh2J A CA

h may attain 2k different values,
one for each possible set NB . Symmetrically, the same analysis for Agent 2 yields

X

Jh2J B

CB
h D

k�1X

hD0
3.2h/ � 2k C

X

h2NA

2h: (3.58)

Since obviously
P

h2NA 2h C P
h2NB 2h D 2k � 1, for each choice of the set NA

we find a Pareto optimal solution. Hence, the size of the Pareto set is 2k. ˘

3.9.3 Linear Combination

3.9.3.1 Problem 1jNDj˛ P
C A

j
C ˇ

P
C B

j

The linear combination problem 1jNDj˛PCA
j C ˇ

P
CB
j can be solved in

O.n logn/ by the Smith’s rule. In fact, it is equivalent to an instance of the single-
agent problem 1jjPwj Cj in which:

wj D ˛ for j 2 NJ A

wj D ˇ for j 2 NJ B

wj D ˛ C ˇ for j 2 J A \ J B:

116 3 Single Machine Problems

NONDISJOINT

INTERFERING COMPETING

BICRITERIA

Fig. 3.17 Reduction graph for 1jjPwj Cj ;
P

wj Cj

3.10 Functions
P

wj Cj ,
P

wj Cj

Let us now turn to the more general problem in which both agents want to minimize
the weighted sum of the completion times of their respective jobs. This is actually
one of the scenarios that has received most attention in the literature.

In this case, NONDISJOINT ! BICRITERIA. In fact, it is a special case of
BICRITERIA in which we simply set wBj D 0 if Jj 62 J B and wAj D 0 if Jj 62 J A.
We have therefore the reduction graph of Fig. 3.17.

3.10.1 Epsilon-Constraint Approach

We next show that problem 1jCO;
P

wBj C
B
j � QjPwAj C

A
j is strongly NP-hard. In

view of the reduction graph in Fig. 3.17, this implies the strong NP-hardness of the
other cases, including 1jBI;

P
wBj Cj � QjPwAj Cj . To the best of our knowledge,

so far only the binary NP-hardness of the BICRITERIA problem 1jBI;
P

wBj Cj �
QjPwAj Cj had been established (Hoogeveen 2005).

Theorem 3.23. Problem 1jCO;
P

wBj C
B
j � QjPwAj C

A
j is strongly NP-hard.

Proof. Given an instance of 3-PARTITION, we build an instance of problem
1jCO;

P
wBj C

B
j � QjPwAj C

A
j as follows. Set J A consists of 3r jobs, having

pAi D wAi D ai , i D 1; : : : ; 3r . Set J B consists of r jobs, JB1 ; J
B
2 ; : : : ; J

B
r with

pBj D E and wBj D E3.r�j / for j D 1; : : : ; r . We want to show that the instance
of 3-PARTITION has a solution if and only if there is a schedule such that, for the
objective functions of the two agents, one has:

3rX

jD1
wAj C

A
j �

X

i;j

pAi p
A
j C r.r � 1/

2
E2 D YA (3.59)

3.10 Functions
P

wj Cj ,
P

wj Cj 117

t

0 B 2B 3B (2r − 1)B(2r − 2)B

. . .

4B 5B

Fig. 3.18 Schedule in the NP-hardness proof for 1jCO;
P

wBj C
B
j � QjPwAj C

A
j

and

rX

jD1
wBj C

B
j �

rX

jD1
.2j � 1/E3.r�j /C1 D YB (3.60)

The key idea is similar to the one used in Theorem 3.15. In the instance of
1jCO;

P
wBj C

B
j � QjPwAj C

A
j , the jobs of J B have “large” weights. In particular,

their weights and the value YB are defined in such a way that job JBj cannot complete
after .2j � 1/E , for each j D 1; : : : ; r . On the other hand, in order for agent A not
to exceed YA, it is convenient to process each JBj as close as possible to .2j � 1/E .
This leaves r intervals of length E . If and only if it is possible to perfectly fill these
intervals with triples of jobs from J A, then the instance of 3-PARTITION is a yes-
instance (see Fig. 3.18).

(Only if.) First observe that if there is a 3-PARTITION, then we can schedule the
jobs so that each job in J B completes at .2j � 1/E , and we can schedule the triple
of jobs in J A corresponding to each set Ah between two jobs of J B . Let us now
compute the total weighted completion time for J A. Indicating by h1; h2 and h3 the
indices of the three jobs in Ak , after some computation one gets:

X
wAj C

A
j D

3rX

iD1

3rX

jD1
pAi p

A
j C

rX

hD1
.hE.pAh1 C pAh2 C pAh3//

D
3rX

iD1

3rX

jD1
pAi p

A
j C r.r C 1/

2
E2 D YA (3.61)

Similarly,

rX

jD1
wBj C

B
j D

rX

jD1
.2j � 1/E3.r�j /C1 D YB

So, the schedule is feasible.
(If.) Suppose now that a feasible schedule � exists such that (3.59) and (3.60) are

satisfied. We claim that in � the first job of J B , i.e., JB1 , cannot complete after E .
In fact, in this case its completion time would be

wB1 C
B
1 � .E C 1/E3r�3

118 3 Single Machine Problems

since E 	 3, it holds

E3r�3 >
rX

jD2
.2j � 1/E3r�3jC1

and this implies that the total weighted completion time for agent B would exceed
YB , hence contradicting the fact that � is feasible. So, the first job JB1 of J B must
complete at time E (i.e., it starts at time 0). By a very similar argument, one can
show that JB2 cannot complete after 3E , and so on, so that JBj does not complete
after .2j � 1/E .

Now let Gh be the set of jobs of J A scheduled consecutively between JBh and
JBhC1 in � for h D 1; : : : ; r � 1, while Gr denotes the jobs of J A scheduled after
JBr . Let p.Gh/ denote the total length of the jobs in Gh. It is easy to see that the
value of the total weighted completion time for agent A is given by:

3rX

jD1
wAj C

A
j .�/ D

3rX

iD1

3rX

jD1
pAi p

A
j C

rX

hD1
hEp.Gh/ (3.62)

Since, from the previous discussion, job JBh cannot complete after .2h � 1/E ,
the total length of the jobs from J A scheduled before time .2h�1/E cannot exceed
.h � 1/E . Now, in order to obtain a lower bound on

P3r
jD1 wAj C

A
j .�/, we can

reason exactly as in the proof of Theorem 3.15, and compute r figures for p.Gh/,
h D 1; : : : ; r that minimize the function

Pr
hD1 hp.Gh/. It is easy to verify that the

minimizer is p.Gh/ D E , h D 1; : : : ; r , so that we get the lower bound:

3rX

jD1
wAj C

A
j .�/ 	

3rX

iD1

3rX

jD1
pAi p

A
j C r.r C 1/

2
E2 (3.63)

since � is feasible, both (3.59) and (3.63) hold, and therefore

3rX

jD1
wAj C

A
j .�/ D YA (3.64)

but this can only occur if p.Gh/ D E for all h, i.e., if the instance of 3-PARTITION

is a yes-instance. ut

3.10.1.1 Problem 1jBI;
P

wB
j

C B
j

� Qj P
wA

j
C A

j

As we have already seen for problem 1jND; C B
max � QjPwAj C

A
j and 1jCO; LBmax �

QjPwAj C
A
j , also in this case a viable approach to build an exact algorithm is to

pursue lower bounds by means of a Lagrangian relaxation of the problem. It turns

3.10 Functions
P

wj Cj ,
P

wj Cj 119

out that even in this case the Lagrangian dual can be solved very efficiently, and the
quality of the bound is sufficient to solve instances of the problem of reasonable size.
We next illustrate this approach for 1jBI;

P
wBj C

B
j � QjPwAj C

A
j (since the other

scenarios can be reduced to it setting the appropriate weights to zero), and give an
efficient algorithm to solve the Lagrangian dual. In what follows, we let ıAi and ıBj
denote the ratios wAi =pi and wBj =pj respectively. Recalling (Sect. 3.4.1.1) that S
denotes the set of all job permutations, the original problem is

z� D min
�2S

8
<

:

nX

iD1
wAi Ci .�/ W

nX

jD1
wBj Cj .�/ � Q

9
=

;
(3.65)

Relaxing the constraint on the jobs of agent B in (3.65), we get the Lagrangian
problem:

L.	/ D min
�2S

8
<

:

nX

iD1
wAi Ci.�/C 	

0

@
nX

jD1
wBj Cj .�/ �Q

1

A

9
=

;
(3.66)

Note that for each value of 	 	 0, the problem (3.66) is in the format of a
classical, single-agent problem 1jjP Qwj Cj , in which the weights are defined as
Qwh D wAh C 	wBh . The optimal schedule �.	/ for this problem can be found by the
Smith’s rule, i.e., scheduling the jobs in non-increasing order of their ratios ıAh C
	ıBh . For each 	, the solution of (3.66) is a lower bound for the original problem.
The Lagrangian dual is therefore:

L.	�/ D max
	�0

8
<

:
min
�2S

n nX

iD1
wAi Ci .�/C 	

� nX

jD1
wBj Cj .�/ �Q

	o
9
=

;
(3.67)

Recall that L.	/ is a concave, piecewise linear function (see Fig. 3.19), and that
the breakpoints of L.	/ are the values of 	 in which the slope of L.	/ changes. For
all values of 	 between two consecutive breakpoints, the optimal schedule for (3.66)
remains the same. If N	 is not a breakpoint, the slope of L.	/ in N	 is

nX

jD1
wBj Cj

�
�. N	/� �Q (3.68)

which represents the violation of the constraint
Pn

jD1 wBj Cj .�/ � Q in (3.65). If
N	 is a breakpoint, then, for sufficiently small " > 0, the schedules �. N	 � "/ and
�. N	 C "/ are obtained one from the other simply swapping the jobs of all adjacent
pairs .Ji ; Jj / for which

ıAi C N	ıBi D ıAj C N	ıBj : (3.69)

120 3 Single Machine Problems

min max

infeasible
solutions feasible

solutions

+ε ε

Fig. 3.19 Shape of Lagrangian function

Note that there is at least one such pair. Both schedules �. N	 � "/ and �. N	 C "/

are optimal for problem (3.66), with 	 D N	. Notice that if, for some pair .Ji ; Jj /,
ıAi D ıAj , then for any 	, the job having higher ratio for Agent 2 will be sequenced
first in �.	/. Symmetrically, if ıBi D ıBj , their relative ordering in �.	/ is decided
by the ratios ıAi and ıAj . Hence, any breakpoint in L.	/ is associated with two jobs
.Ji ; Jj / such that ıAi ¤ ıAj and ıBi ¤ ıBj . Now, with no loss of generality suppose
that ıAi > ı

A
j , i.e., for Agent 1 job Ji has a higher priority than Jj . If also ıBi > ı

B
j ,

then for no 	 	 0 one has that (3.69) holds. Therefore, in this case, for any 	, Ji
will always precede Jj in �.	/. If, on the other hand, ıBi < ıBj , then Ji precedes

Jj in �.	/ for 	 < N	, and Ji follows Jj for 	 > N	, where N	 is given by (3.69). In
conclusion, as 	 goes from 0 to 1, any two jobs overtake each other at most once
(see Fig. 3.20). As a consequence, the overall set
 of breakpoints is given by:

 D
(
ıAi � ıAj

ıBj � ıBi
W ıAi > ıAj ; ıBj > ıBi ; i; j D 1; : : : ; n

)

and the total number of breakpoints cannot exceed n.n � 1/=2.
The maximumL.	�/ is attained in the breakpoint 	� in which the slope of L.	/

switches from positive to non-positive, and therefore schedule �.	� C "/ is feasible
for (3.65). The breakpoint 	� can be efficiently found as follows.

First compute the set
 and sort it by nondecreasing values. Then, compute
the schedule �.1/ obtained by ordering the jobs by nonincreasing ratios ıBi . This
coincides with �.	/ for sufficiently large 	. As 	 decreases, the same schedule
�.1/ remains optimal until the largest breakpoint N	 2
 is encountered, i.e.,
�. N	/ � �.1/. The schedule �. N	 � "/ can be generated from �. N	/ by simply

3.10 Functions
P

wj Cj ,
P

wj Cj 121

λ ∈ [λ3 ,λ4]

λ ∈ [λ2 ,λ3]

JB
1JA

1 JB
2 JB

3 JB
4 JB

5 JB
6JA

2 JA
3 JA

4 JA
5 JA

6

λ ∈ [λ1 ,λ2]

λ ∈ [λ0 ,λ1]

JB
1 JA

1JB
2 JB

3 JB
4 JB

5 JB
6 JA

2 JA
3 JA

4 JA
5 JA

6λ ∈ [λk−1 ,λk]

JB
1 JA

1JB
2 JB

3 JB
4 JB

5 JB
6 JA

2 JA
3 JA

4 JA
5 JA

6λ ∈ [λk−2 ,λk − 1]

JB
1 JA

1JB
2 JB

3 JB
4 JB

5 JB
6 JA

2 JA
3 JA

4 JA
5 JA

6

JB
1 JA

1JB
2 JB

3 JB
4 JB

5 JB
6JA

2 JA
3 JA

4 JA
5 JA

6

λ ∈ [λk−3 ,λk − 2]

λ ∈ [λk−4 ,λk − 3]

JB
1JA

1 JB
2 JB

3 JB
4 JB

5 JB
6JA

2 JA
3 JA

4 JA
5 JA

6

JB
1JA

1 JB
2 JB

3 JB
4 JB

5 JB
6JA

2 JA
3 JA

4 JA
5 JA

6

JB
1JA

1 JB
2 JB

3 JB
4 JB

5 JB
6JA

2 JA
3 JA

4 JA
5 JA

6

Fig. 3.20 Optimal schedules for problem (3.66) for decreasing values of 	, where 	0 D 	min and
	k D 	max

swapping all job pairs Ji ; Jj such that .ıAi � ıAj /=.ı
B
j � ıBi / D N	. As 	 further

decreases, the schedule �. N	�"/ remains optimal up to the second largest breakpoint,
and the same argument applies. At each breakpoint, the value of (3.68) can be
updated by computing the contribution of each swap in constant time. The optimal
breakpoint 	� is the first value for which the slope (3.68) computed in 	� � "

is positive. Since the overall number of swaps cannot exceed n.n � 1/=2, the
complexity is dominated by the ordering of the breakpoints, and the following
theorem holds.

Theorem 3.24. The Lagrangian dual of problem 1jBI;
P

wBj C
B
j � QjPwAi C

A
i

can be solved in O.n2 logn/.

This result can be slightly refined for 1jCO;
P

wBj C
B
j � QjPwAj C

A
j . In

this case, it can be shown that the total number of breakpoints cannot exceed
nAnB . Details can be found in Agnetis et al. (2009b), where it is also shown
how the Lagrangian bound can be embedded in a branch-and-bound scheme for
1jCO;

P
wBj C

B
j � QjPwAj C

A
j .

3.10.2 Approximation

In this section we present an approximation result concerning problem 1jCOjPwAj
CA
j ;
P

wBj C
B
j . In what follows we refer to the concept of .ˇA; ˇB/-approximation

schedule, introduced in Sect. 2.4.2 as type II approximation. Also, we assume that
the jobs of each agent are numbered in WSPT order. For each agent k, k 2 fA;Bg,
consider the reference schedule �k (Sect. 1.2.1), and let �kj denote the completion

time of job J kj in such schedule. Note that this is simply the sum of the processing

122 3 Single Machine Problems

Algorithm 18 Approximation for 1jCOjPwAj C
A
j ;
P

wBj C
B
j

1: Construct the reference schedule �A via WSPT
2: �Aj WD CA

j .�
A/

3: Construct the reference schedule �B via WSPT
4: �Bj WD CB

j .�
B/

5: Schedule all jobs in non-decreasing order of ˇi� ij values
6: return Q�

times of the first j jobs of agent k. For the sake of clarity, in this section we let
Q�
k denote the optimal value of the objective function of agent k in its reference

schedule �k . This is a lower bound to the cost agent k will pay in any two-agent
feasible schedule.

Suppose we want to find a .ˇA; ˇB/-approximation schedule for given ˇA > 1

and ˇB > 1. This can be achieved by the simple Algorithm 18, as long as the
following condition holds:

1

ˇA
C 1

ˇB
D 1 (3.70)

As shown in Algorithm 18, the algorithm consists in computing the two reference
schedules, multiplying each �Aj by ˇA and each �Bj by ˇB , and then scheduling the

jobs by nondecreasing values of ˇk�kj . We call Q� the schedule produced. Lee et al.
(2009) proved the following result.

Theorem 3.25. Given ˇA > 1 and ˇB > 1 satisfying (3.70), Algorithm 18
produces a .ˇA; ˇB/-approximation schedule.

Proof. The proposition holds if we show that in the schedule Q� , the completion time
of each job Ck

j . Q�/ does not exceed ˇk�kj . The proof is by induction on the number

of jobs. At the beginning of the algorithm, the job with smallest ˇk�kj is scheduled

first. In this case, Ck
1 . Q�/ D �k1 and since ˇk > 1, the thesis obviously holds.

Now consider that p jobs from J A and q jobs from J B have been scheduled
so far. By the inductive hypothesis, Ck

j . Q�/ � ˇk�
k
j for all jobs scheduled so far,

and suppose that the next job in the list is from J A, i.e., job JApC1 (a symmetric
discussion holds if it is from J B). Since the algorithm schedules the jobs by
nondecreasing ˇk�kj , one has that

ˇB�
B
q � ˇA�

A
pC1: (3.71)

Now let us consider the completion time of JApC1. Recalling that �Ap and �Bq equal
the total processing time of scheduled jobs from J A and J B respectively, one has

CA
pC1. Q�/ D �Bq C �ApC1:

3.10 Functions
P

wj Cj ,
P

wj Cj 123

From (3.71),

CA
pC1. Q�/ � ˇA

ˇB
�ApC1 C �ApC1 D ˇA

�
1

ˇA
C 1

ˇB

�ApC1;

and hence, from (3.70), CA
pC1.�A/ � ˇ1�

A
pC1 and the thesis holds. ut

This theorem has interesting implications on the "-constraint problem, since it
allows to establish a relationship between the optimal value of 1jCO;

P
wBj C

B
j �

QjPwAj C
A
j for a given Q and the value of the reference schedule of agent A. To

this aim, consider an instance of 1jCO;
P

wBj C
B
j � QjPwAj C

A
j . For the problem

to be feasible, clearly Q must be at least Q�
B . Consider now the optimal schedule N�

for 1jCO;
P

wBj C
B
j � QjPwAj C

A
j . The value of the optimal solution for agent A

cannot be worse than what agent A could attain by Algorithm 18. Expressing Q as
Q D ˇBQ

�
B , from (3.70) one has:

nAX

jD1
wAj C

A
j . N�/ � ˇB

ˇB � 1Q
�
A

This allows to express the tradeoff between the two agents with respect to the
ideal valuesQ�

A andQ�
B . For instance, if we allow that agentB pays up to 1.5 times

its ideal cost, the cost to agent A will certainly not exceed 3 times its ideal cost.
For illustration purposes, we presented Theorem 3.25 for K D 2, but Lee et al.

(2009) indeed established the result for any numberK of agents, given that:

1

ˇ1
C 1

ˇ2
C : : : ;C 1

ˇK
D 1: (3.72)

Example 3.8. Let us consider a three-agent instance, in which all jobs have unit
weight and unit length. Each of the three agents owns four jobs. We want to
find a .ˇ1; ˇ2; ˇ3/-approximation schedule, in which ˇ1 D ˇ2 D ˇ3 D 3,
so that Eq. (3.72) holds. Clearly, the reference schedules �1, �2, �3 have values
Q�
1 D Q�

2 D Q�
3 D 10. When applying Algorithm 18, we obtain the following

vectors of modified completion times:

fˇ1�Aj g D f3; 6; 9; 12g
fˇ2�Bj g D f3; 6; 9; 12g
fˇ3�3j g D f3; 6; 9; 12g

Since ties can be broken arbitrarily, suppose we always break them in favor of agent
1 and then agent 2, so that we obtain the schedule

�A D fJ 11 ; J 21 ; J 31 ; J 12 ; J 22 ; J 32 ; J 13 ; J 23 ; J 33 ; J 14 ; J 24 ; J 34 g

124 3 Single Machine Problems

and

f 1.�A/ D 1C 4C 7C 10 D 22

f 2.�A/ D 2C 5C 8C 11 D 26

f 3.�A/ D 3C 6C 9C 12 D 30

we observe that

f 1.�A/ D 22 < 30 D ˇ1Q
�
1 ;

f 2.�A/ D 26 < 30 D ˇ2Q
�
2 ;

f 3.�A/ D 30 D ˇ3Q
�
3 :

If we consider the same type of instance, in which each agent owns n=3 identical
unit time jobs, with arbitrary n, we get, for each agent k,

Q�
k D n.nC 3/=18 (3.73)

and, always solving the ties in favor of agent 1 and then 2,

f 1.�A/ D n.n � 1/=6

f 2.�A/ D n.nC 1/=6

f 3.�A/ D n.nC 3/=6

Hence, for each agent k,

lim
n!1

f k.�A/

Q�
k

D 3 D ˇk

and this shows that the bound is indeed tight. ˘
As shown in Saule and Trystram (2009) and Lee et al. (2009), it turns out that

the simple Algorithm 18 is the best possible, i.e., if .ˇ1; ˇ2; : : : ; ˇK/ satisfies (3.72),
there cannot exist an approximation algorithm yielding a strictly better approxima-
tion than .ˇ1; ˇ2; : : : ; ˇK/. We next show such tightness result considering again
Example 3.8. In this example the sum of the three agents’ costs is independent of
the actual schedule (since all schedules are SPT in this case), and equals

n.nC 1/

2
; (3.74)

while the value of the reference schedule for each agent is given by (3.73). Now
suppose that we perfectly divide the cost (3.74) among the three agents. In this case,
the cost to each agent would be

3.10 Functions
P

wj Cj ,
P

wj Cj 125

n.nC 1/

6
(3.75)

and therefore, the ratio between (3.75) and (3.73) is

3.nC 1/

nC 3

which approaches 3 as n ! 1. This means that no algorithm can ensure to find a
.ˇ1; ˇ2; ˇ3/-approximation schedule strictly better than .3; 3; 3/-approximation.

It is interesting to observe that Angel et al. (2005) give a fairly sophisticated
(2,2)-approximation algorithm for the more general scenario 1jBI;

P
wBj C

B
j �

QjPwAj C
A
j .

Finally, let us apply the above considerations to the two-agent problem
1jCO; C B

max � QjPwAj C
A
j (Sect. 3.4.1), which can indeed be viewed as a special

case of 1jCO;
P

wBj C
B
j � QjPwAj C

A
j , in which, with no loss of generality,

agent B only has one job of length PB and weight 1. Observing that in this case
Q�
B D PB , one has that any feasible solution to 1jCO; C B

max � QjPj wAj Cj is
ˇ2-approximate, where

ˇB D Q

PB
(3.76)

and hence, from (3.70), the best possible approximation for agent A is:

ˇA D Q

Q � P2 : (3.77)

We can compare these expressions with those in Theorem 3.14. When applied
to the COMPETING scenario, one has NPB D PB , and we retrieve exactly (3.76)
and (3.77), thus showing that the optimal feasible schedule for the Lagrangean dual
provides the same approximation.

Moreover, notice that in the general NONDISJOINT scenario, NP2 � P2, and as a
consequence, the .ˇA; ˇB/-approximation provided by Theorem 3.14 may be such
that

1

ˇA
C 1

ˇB
> 1: (3.78)

Note that this does not contradict the tightness result above, since 1jND; C B
max �

QjPwAj Cj is not a special case of 1jND;
P

wBj Cj � QjPwAj Cj . In other
words, (3.78) shows that 1jND; C B

max � QjPwAj Cj can be better approximated
than 1jCO; C B

max � QjPwAj Cj .
We conclude this section on approximation observing that, since problem

1jCO;
P

wBj Cj � QjPwAj Cj is strongly NP-hard (see Theorem 3.23),
no FPTAS is likely to exist. In Levin and Woeginger (2006) the authors

126 3 Single Machine Problems

give a PTAS for problem 1jBI;
P

wBj C
B
j � QjPwAj C

A
j , of complexity

O.n2 log2 n.log logWP/n3=".2="/Š.2="/1="/.

3.10.3 Computing the Pareto Set

In view of the result established in Sect. 3.9.2, in the worst case the size of the Pareto
set can be exponential.

3.10.4 Linear Combination

Problem 1jNDj˛PwAj CjCˇPwBj Cj is easily solved inO.n logn/ by the Smith’s

rule (indeed, so does even the K-agent problem 1jNDjP˛k
P

wkj Cj). Notice that
this fact has been exploited by the Lagrangian approach to the " constraint problem,
where the weights of the jobs in J B are simply multiplied by 	 (Sect. 3.10.1).

3.11 Functions
P

Uj ,
P

Cj

Let us now consider the case in which one agent wants to minimize total
(unweighted) completion time and the other wants to minimize the number of
tardy jobs.

The reduction graphs for this case reflect the asymmetry of the problem.
In fact, the scenario 1jIN jPCA

j ;
P
UB
j reduces to 1jBIjPCA

j ;
P
UB
j , by

simply associating a very large due date to the jobs of NJ A. This yields the
reduction graph in Fig. 3.21. Similarly, the scenario 1jNDjPUA

j ;
P
CB
j reduces

to 1jIN jPUA
j ;
P
CB
j associating a very large due date to the jobs of J B

(see Fig. 3.22).

3.11.1 Epsilon-Constraint Approach

Problems 1jCO;
P
CB
j � QjPUA

j and 1jBI;
P
UB
j � QjPCA

j have been
proved NP-hard in Leung et al. (2010) and Huo et al. (2007b) respectively. In
view of the reduction graphs in Figs. 3.21 and 3.22, these NP-hardness results
imply the NP-hardness of all other scenarios. A pseudopolynomial algorithm
having complexity O.nAn2BPB/ has been proposed in Ng et al. (2006) for problem
1jCO;

P
UB
j � QjPCA

j .
In Meiners and Torng (2007), the authors address the problem in which the

jobs have release dates and preemptions are allowed, i.e., problem 1jCO; rj ; prmt;P
CB
j � QjPUA

j . They show that even if jJ Aj D 1, the problem is NP-

3.11 Functions
P
Uj ,

P
Cj 127

NONDISJOINT

INTERFERING COMPETING

BICRITERIA

Fig. 3.21 Reduction graph for 1jjPCA
j ;
P
UB
j

NONDISJOINT

INTERFERING COMPETING

BICRITERIA

Fig. 3.22 Reduction graph for 1jjPUA
j ;
P
CB
j

hard. Moreover, they consider the lexicographic approach for the weighted problem
1jCO; rj ; pmtnjLex.PwAj U

A
j ;
P
CB
j /, and give a polynomial time algorithm for

the special case in which all jobs have unit length (in which case, preemption is
indeed immaterial).

3.11.2 Computing the Pareto Set

In all scenarios, as the cost function of agent k is the number of tardy jobs, there are
at most nk C 1 Pareto optimal solutions. Incidentally, we observe that this is one of
the few cases in which the Pareto set is polynomially bounded, but the "-constraint
problem is hard.

3.11.3 Linear Combination

Turning to problem 1jCOj˛PUA
j Cˇ

P
CB
j , it has been proved to be NP-hard by

Choi et al. (2009).

128 3 Single Machine Problems

The proof uses a variant of the PARTITION problem:

EVEN-ODD PARTITION

Instance: A finite set I of 2n integers aj , such that
kX

jD1
aj D 2E

Question: Is there a partition of I into two sets I1 and I2, such thatX

aj2I1
aj D

X

aj2I2
aj D E

where I1 and I2 each contains exactly one element from fa2i�1; a2i g?

Theorem 3.26. The problem 1jCOj˛PUA
j C ˇ

P
CB
j is NP-hard.

Proof. We reduce EVEN-ODD PARTITION to 1jCOj˛PUA
j C ˇ

P
CB
j . We make

the following assumptions. Let �i D a2i � a2i�1, i D 1; : : : ; n. Notice that since
each pair of integers, a2i ; a2i�1 must be put into two different sets, we can add
a constant ci to each pair without changing the problem instance. By carefully
choosing ci , we may assume that the given instance of Even-Odd Partition satisfies
the following properties:

1. a1 > .2nC 2/ maxf�1; : : : ; �ng
2. a2i�1 >

P2i�2
jD1 aj

3. ai =j is integer

If this is not true, we can multiply each ai by nŠ without changing the problem
instance. Note that although the numbers ai may become exponential, the size of
the binary input remains polynomial.

Now given an instance of the EVEN-ODD PARTITION problem, we create the
instance of 1jCOj˛PCA

j C ˇ
P
UB
j as follows. There are 2n “P-jobs”, each of

which corresponds to an integer in the EVEN-ODD PARTITION instance, and a large
“R-job” for Agent B. There are n “Q-jobs” for Agent A. The processing times and
due dates of these jobs are shown in the following table.

Job Processing time Due date

P2i�1 a2i�1.D p2i�1/
Pi�1

kD1 p2k CPi�1
kD1 xk C p2i�1

P2i a2i C .li � 1/�i .D p2i /
Pi�1

kD1 p2k CPi
kD1 xk C p2i

R L
Pn

iD1 xi C ŒE C 1
2

Pn
iD1.li � 1/�i �CL

Qi xi

3.11 Functions
P
Uj ,

P
Cj 129

where:

• L is an integer larger than 2E
• x1 D 1, xi D n�iC1

n�iC2a2i�3 for i D 2; : : : ; n � 1 and xn D 1
2
a2n�3 C a2n�5. Note

that x1 < x2 <; : : : ; < xn and they are all integers
• li �i D 1

n�iC1a2i�1 for i D 1; : : : ; n � 1. Note that by the third of the above
assumptions, li �i is integer.

Also, let

TC D
nX

iD1
.n � i/Œa2i C .li � 1/�i �C

nX

iD1
.n� i C 1/xi C 1

2

nX

iD1
li�i

and finally, let ˛ D " and ˇ D 1 � ", where " is a very small, positive value.
The problem consists in determining whether there exists a schedule such that the
objective function value is at most "TC C .1� "/n.

In the instance of EVEN-ODD PARTITION, without loss of generality, we can
assume that

a1 	 2 and a2i�1 �
2i�2X

jD1
aj 	 2

First of all we claim that in the instance of 1jCOj˛PCA
j C ˇ

P
UB
j , there should

exist at least n tardy jobs of agent B in all schedules. In fact, consider two jobs of
agent B of length p2i�1 and p2i . Then,

p2i�1 C p2i D a2i�1 C a2i

and

d2i D
i�1X

kD1
p2k C

iX

kD1
xk C p2i D

i�1X

kD1

n� k C 2

n� k C 1
a2k�1 C x1

C
iX

kD2

n � k C 1

n � k C 2
a2k�3 C p2i D 1C

iX

kD2
.
n � k C 3

n � k C 2
C n � k C 1

n � k C 2
/a2k�3 Cp2i

D 1C 2

iX

kD2
a2k�3 Cp2i

In case i D 1, since a1 	 2,

p1 C p2 � d2 D a1 C a2 � .x1 C a2/ D a1 � 1 > 0

130 3 Single Machine Problems

In case i > 1, since a2i�1 >
P2i�2

kD1 ak and a2k � a2k�1 > 0,

p2i�1 C p2i � d2i D a2i�1 � .1C 2

iX

kD2
a2k�3/ >

2i�2X

kD1
ak � .1C 2

iX

kD2
a2k�3/

D
i�1X

kD1
.a2k � a2k�1/� 1 	 0

These two cases imply that one job among 2i�1 and 2i should be tardy. Thus, there
should be at least n tardy jobs of Agent B in all schedules and the claim is proved.

Because of this claim and the small value of ", there exists an optimal schedule
with n tardy jobs of agent B. Moreover, it can be shown (Leung et al. 2010) that
the lower bound to total completion time for agent A is TC , and that a schedule
attaining such a bound exists if and only if there exists a partition I1; I2 in the
instance of EVEN-ODD PARTITION. This completes the proof. ut

3.12 Functions
P

Tj ,
P

Cj

Now let us turn to the case in which one agent wants to minimize the total
unweighted completion time and the other wants to minimize the total tardiness.

It is easy to see that in this case the same reduction graphs of Figs. 3.22 and 3.21
hold, where

P
Tj replaces

P
Uj . The scenario 1jIN jPCA

j ;
P
T Bj reduces to

1jBIjPCB
j ;
P
T Aj , by simply associating a very large due date to the jobs of NJ A,

while 1jCOjPT Aj ;
P
CB
j reduces to 1jIN jPT Aj ;

P
CB
j , associating a very large

due date to the jobs of J B .
In Leung et al. (2010) the authors give a pseudopolynomial algorithm for

problem 1jCO;
P
CB
j � QjPT Aj , which combines the ideas developed in Agnetis

et al. (2004) with the pseudo-polynomial time algorithm by Lawler for 1jjPTj
(Sect. 2.7.1). The following result holds:

Theorem 3.27. Problem 1jCO;
P
CB
j � QjPT Aj can be solved in O.n4An

2
BQ

.P1 C P2// time.

3.13 Functions
P

wj Cj ,
P

Uj

For this case, one has the reduction graph in Fig. 3.23. In fact, problem
1jNDjPwAj C

A
j ;
P
UB
j reduces to 1jBIjPwAj C

A
j ;
P
UB
j , by assigning a weight

wj D 0 to each j 2 NJ B and setting a very large due date dj to each j 2 NJ A.

3.14 Functions
P
Uj ,

P
Uj 131

NONDISJOINT

INTERFERING COMPETING

BICRITERIA

Fig. 3.23 Reduction graph
for 1jjPwj Cj ;

P
Uj

3.13.1 Epsilon-Constraint Approach

As observed by Ng et al. (2006), a consequence of a result in Lawler (1977) is
that problem 1jCO;

P
UB
j � QjPwAj C

A
j is strongly NP-hard. This implies the

NP-hardness of the "-constraint problem in all other scenarios.

3.13.2 Linear Combination

For what concerns the problem 1jCOj˛PwAj C
A
j CˇPUB

j , it is strongly NP-hard.
In fact, since (Lawler 1977) the problem 1jCO; LBmax � 0jPwAj C

A
j is strongly NP-

hard, so is also 1jCO;
P
UB
j D 0jPwAj C

A
j . The latter problem can be reduced to

1jCOj˛PwAj C
A
j C ˇ

P
UB
j just by setting a very large ˇ.

In view of the reduction graph of Fig. 3.23, also all other scenarios are strongly
NP-hard.

3.14 Functions
P

Uj ,
P

Uj

In this section we turn to the case in which both agents want to minimize the
total number of tardy jobs. It is well-known that in the single-agent case, 1jjPUj
is solved by Moore’s algorithm (Sect. 2.7.1). When we address this problem in
the two-agent, NONDISJOINT setting, we must make an important distinction on
whether:

(i) A job Ji 2 J A\J B has the same due date for both agents (we write dAj D dBj
in the ˇ field of the problem notation to refer to this case)

(ii) A job Ji 2 J A \ J B may have different due dates for the two agents.

In case (i), the reduction graph in Fig. 3.24 holds. In this case, the BICRITERIA

setting makes no sense, and, as we will see, all problems in the NONDISJOINT

scenario can be solved in polynomial time.

132 3 Single Machine Problems

NONDISJOINT

INTERFERING COMPETING

Fig. 3.24 Reduction graph
for
1jdAj D dBj jPUA

j ;
P
UB
j

when the common jobs have
the same due dates for both
agents

NONDISJOINT

INTERFERING COMPETING

BICRITERIA

Fig. 3.25 Reduction graph
for 1jjPUA

j ;
P
UB
j when

the common jobs may have
different due dates for both
agents

In case (ii), the reduction graph in Fig. 3.25 holds. Actually, in this case the
COMPETING scenario is the same as with a single due date, since there are no jobs
in common between the two agents. However, we will see that all problems in the
remaining scenarios are hard.

3.14.1 Epsilon-Constraint Approach

3.14.1.1 Problem 1jND; dA
j

D dB
j

;
P

U B
j

� Qj P
U A

j

Let us start by considering problem 1jND; dAj D dBj ;
P
UB
j � QjPUA

j when the
two agents apply the same due date to common jobs. We show that this problem can
be efficiently solved by dynamic programming. The following lemma relates to the
structure of an optimal schedule.

Lemma 3.6. There is an optimal schedule �� for problem 1jND; dAj D
dBj ;

P
UB
j � QjPUA

j in which all the late jobs are scheduled consecutively
at the end of the schedule, and all the early jobs are scheduled consecutively in
Earliest Due Date (EDD) order at the beginning of the schedule.

Proof. Consider an optimal schedule �� and move all the late jobs to the end of
the schedule, thus obtaining a new schedule � 0. Clearly,

P
UA
j .�

0/ � P
UA
j .�

�/,
since we are moving backward the early jobs. Consider now all the early jobs in � 0,
that are sequenced consecutively at the beginning of the schedule, and resequence
them in EDD order. This does not increase the number of late jobs, thus completing
the proof. ut

3.14 Functions
P
Uj ,

P
Uj 133

In the remaining part of this section we assume that the jobs in J are globally
numbered from J1 to Jn in EDD order.

We next illustrate a recursion relation that can be exploited to design a poly-
nomial time dynamic programming algorithm for 1jND; dAj D dBj ;

P
UB
j �

QjPUA
j .

Let C.i; h; k/ be the minimum completion time of the last early job in a partial
schedule of the job set fJ1; : : : ; Ji g in which agent A has at most h late jobs and
agent B at most k late jobs. By definition, we set C.i; h; k/ D C1 if no such
schedule exists. The following relations hold.

Boundary Conditions:

C.0; h; k/ D 0; for all h 	 0; k 	 0

C.i; h; k/ D C1; if i < 0 or h < 0 or k < 0:

Recursion Relation:

f .i; h; k/ D
� C1 if C.i � 1; h; k/C pi > di
0 otherwise.

C.i; h; k/ D
8
<

:

minfC.i � 1; h; k/C pi C f .i; h; k/IC.i � 1; h� 1; k/g if Ji 2 NJ A

minfC.i � 1; h; k/C pi C f .i; h; k/IC.i � 1; h; k � 1/g if Ji 2 NJ B

minfC.i � 1; h; k/C pi C f .i; h; k/IC.i � 1; h� 1; k � 1/g if Ji 2 J A \ J B

In all three subcases of the recursion relation, the first term refers to job Ji being
scheduled on time. If this occurs, the makespan increases by pi . The second term
equals the makespan when Ji is late. This term is slightly different depending on
the subset Ji belongs to.

Lemma 3.7. If C.i; h; k/ is finite, then it is the minimum completion time of the
last early job over all feasible schedules for the job set fJ1; : : : ; Ji g, with at most h
late jobs for agent A and k for agent B . If C.i; h; k/ D C1, then there is no such
feasible schedule.

Proof. The proof is by induction on i . Clearly the property holds for i D 1, for any
h; k D 1; : : : ; n. Now, assume that the property holds until .i � 1/. We will show
that the property holds also for i and for any h; k.

Let � be a schedule for the job set fJ1; : : : ; Ji g, such that the completion time
� of the last early job in � is minimum among all feasible schedules with at most
h late jobs for agent A and k for agent B . If Ji is early in � then, again from the
inductive hypothesis, � D C.i � 1; h; k/C pi . If Ji is late in � , we consider three
subcases.

134 3 Single Machine Problems

1. If Ji only belongs to agent A, from the inductive hypothesis, � D C.i �
1; h � 1; k/. If C.i � 1; h � 1; k/ D C1, there can be no feasible schedule
of fJ1; : : : ; Ji g with at most h and k late jobs for the two agents respectively, and
the algorithm sets C.i; h; k/ D C1.

2. The argument is symmetrical if Ji only belongs to agent B , so that � D C.i �
1; h; k�1/ and the schedule attainingC.i; j; k/ is infeasible ifC.i�1; h; k�1/ D
C1.

3. Finally, consider the case in which Ji belongs to both agents. Now, from the
inductive hypothesis, � D C.i � 1; h� 1; k � 1/.

In all three cases, the recursion relation correctly chooses the smallest between the
two quantities. ut
Theorem 3.28. The value h� D minfh W C.n; h;Q/ < C1g is an optimal solution
value to problem 1jND; dAj D dBj ;

P
UB
j � QjPUA

j , and it can be computed in
time O.n3/.

Proof. Suppose that an optimal schedule � for 1jND; dAj D dBj ;
P
UB
j �

QjPUA
j exists in which

P
UA
j .�/ D Qh < h�. In this case, by definition of

h�, it must hold C.n; Qh;Q/ D C1. On the other hand, since Qh < h�, in �
there is at least one early job for agent A. Without loss of generality, we can
assume that � has the structure illustrated in Lemma 3.6, and let J` be the last
scheduled early job in � . From Lemma 3.7, C`.�/ cannot be smaller than the
minimum completion time of an early job, i.e., C`.�/ 	 C.n; Qh;Q/. But since
C.n; Qh;Q/ D C1, this is a contradiction. Therefore, h� is the optimal value for
1jND; dAj D dBj ;

P
UB
j � QjPUA

j .
Let us now turn to complexity. Computing each C.i; h; k/ requires constant time.

Since h; k � n, computing all of them requiresO.n3/ time. The quantity h� can be
computedO.n/ time, and therefore the thesis holds. ut

The dynamic programming approach can be extended to any number K of
agents, each holding

P
U k
j as objective function (k D 1; : : : ; K). In this case,

C.i; h1; h2; : : : ; hK/ will denote the smallest completion time of the last early job
in a schedule of the first i jobs, in which at most hj jobs are late for agent k,
k D 1; : : : ; K . Although job Ji can contribute to the number of late jobs of all
the agents it belongs to, the computation of C.i; h1; h2; : : : ; hK/ can still be done
in constant time, since it only involves the comparison between two quantities.
Therefore, the K-agent problem in the NONDISJOINT scenario can be solved in
O.nKC1/. The complexity status of the "-constraint problem in all scenarios when
K is not fixed is still open (Cheng et al. 2006).

The dynamic programming approach can also be extended to the problem with
release dates, as long as these are agreeable, i.e., di < dj if and only if ri < rj . In
fact, assuming with no loss of generality that di 	 ri Cpi for each Ji , the algorithm
can still be applied, provided that the recursion relation is modified as follows:

3.14 Functions
P
Uj ,

P
Uj 135

C.i; h; k/ D
8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

minfmaxfC.i � 1; h; k/; ri g C pi C f .i; h; k/I C.i � 1; h� 1; k/g
if Ji 2 NJ A

minfmaxfC.i � 1; h; k/; ri g C pi C f .i; h; k/I C.i � 1; h; k � 1/g
if Ji 2 NJ B

minfmaxfC.i � 1; h; k/; ri g C pi C f .i; h; k/I C.i � 1; h� 1; k � 1/g
if Ji 2 J A \ J B

In conclusion, the following result holds.

Theorem 3.29. An optimal solution value to problem 1jND; rj ; dAj D dBj ;
P
UB
j �

QjPUA
j when release and due dates are agreeable can be computed in timeO.n3/.

3.14.1.2 Problem 1jND;
P

U B
j

� Qj P
U A

j

Let us now consider the case in which a job belonging to J A \ J B may have
distinct due dates for the two agents. The problem 1jBI;

P
UA
j � QjPUB

j is

binary NP-hard. In fact, it reduces to the single-agent problem 1jdj ; Qdj jPUj ,
which has already been recalled in Sect. 3.7.1, and that was proved binary NP-
hard by Lawler (1982). In fact, 1jdj ; Qdj jPUj is a special case of 1jBI;

P
UA
j �

QjPUB
j in which deadlines Qdj play the role of due dates for agent B , and

Q D 0. As a consequence, in view of Fig. 3.25, also 1jIN;PUB
j � QjPUA

j

and 1jND;
P
UA
j � QjPUB

j are NP-hard.

3.14.2 Computing the Pareto Set and Linear Combination

From Lemma 3.7, it follows that a schedule with h late jobs from J A and k
late jobs from J B is Pareto optimal if C.n; h; k/ is finite, while C.n; h � 1; k/

and C.n; h; k � 1/ are both infinite. The proof of Theorem 3.28 shows that
all values C.n; h; k/ can be computed in O.n3/. Hence, one can conclude the
following.

Theorem 3.30. The problem 1jND; dAj D dBj jP.PUA
j ;
P
UB
j / and the problem

1jND; dAj D dBj j˛PUA
j C ˇ

P
UB
j can both be solved in O.n3/.

A corollary of this theorem is that problem 1jCOjP.PUA
j ;
P
UB
j / and problem

1jCOj˛PUA
j C ˇ

P
UB
j can also be solved in O.n3/.

136 3 Single Machine Problems

Turning to the more general case in which the due dates of common jobs may be
distinct for the two agents, we have the following result:

Theorem 3.31. The problem 1jBI; ˛
P
UA
j C ˇ

P
UB
j � Qj� is NP-complete.

Proof. Membership in NP is obvious. Given a feasibility instance of the single-
agent problem 1jdj ; Qdj ;PUj � Qj�, we can define a feasibility instance
1jBI; ˛

P
UA
j Cˇ

P
UB
j � Qj�. The due dates dj are the due dates of the jobs for

agent A, while deadlines Qdj play the role of due dates for agent B . Let also ˛ D 1

and ˇ D Q C 1. Hence, in a feasible instance for the BICRITERIA problem, no job
can be tardy with respect to Qdj , and therefore there is a schedule with at most Q
tardy jobs with respect to dj if and only if the original instance of the single-agent
problem is feasible. ut

The above result implies the NP-hardness of 1jIN j˛PUA
j C ˇ

P
UB
j and

1jNDj˛PUA
j C ˇ

P
UB
j .

3.15 Functions
P

wj Uj ,
P

wj Uj

The classical, single-agent problem 1jjPwjUj is well-known to be binary NP-hard
(Lawler and Moore 1969). This obviously implies that all multi-agent problems in
this scenario are at least binary NP-hard. As in the previous section, also here we
distinguish the two cases in which common jobs have the same due date for the two
agents, and, respectively, have different due dates.

3.15.1 Epsilon-Constraint Approach

3.15.1.1 Common Jobs Have the Same Due Date

Let us consider the general K-agent setting (Fig. 3.26). When the jobs belonging
to more than one set J k have the same due date for all the sets they belong to,
one can still assume that all jobs are numbered in EDD order. Cheng et al. (2006)
show that the algorithm in Sect. 3.14.1.1 can be easily generalized to solve the K-
agent problem 1jCO;

P
w2j U

2
j � Q2; : : : ;

P
wKj U

K
j � QK jPw1j U

1
j . Here we

report the algorithm for the general, multi-criteria case 1jMU; dkj D dj ;
P

w2j U
2
j �

Q2; : : : ;
P

wKj U
K
j � QK jPw1j U

1
j .

Let C.i; X1;X2; : : : ; XK/ be the minimum completion time of the last early job
in a partial schedule of the job set fJ1; : : : ; Ji g in which

P
wkjUj � Xk , k D

1; : : : ; K and we set C.i; X1;X2; : : : ; XK/ D C1 if no such schedule exists. The
following relations hold:

3.15 Functions
P

wj Uj ,
P

wj Uj 137

NONDISJOINT

INTERFERING COMPETING

BICRITERIA

Fig. 3.26 Reduction graph
for 1jdkj D
dj jPwj Uj ;

P
wj Uj

Boundary Conditions:

C.0;X1;X2; : : : ; XK/ D 0; for all Xk 	 0

C.i; X1;X2; : : : ; XK/ D C1; if i < 0 or some Xk < 0:

Recursion Relation:

f .i; X1;X2; : : : ; XK/ D
� C1 if C.i � 1;X1;X2; : : : ; XK/C pi > di
0 otherwise.

C.i; X1; X2; : : : ; XK/ D
min

n
C.i � 1;X1;X2; : : : ; XK/C pi C f .i; X1;X2; : : : ; XK/I

C.i � 1;X1 � w1i ; X2 � w2i ; : : : ; XK � wKi /
o

In the recursion relation, the first term refers to job Ji being scheduled on time.
If this occurs, the makespan of early jobs increases by pi . The second term equals
the makespan of early jobs when Ji is late. An analogous result to Theorem 3.28
can be easily established.

Theorem 3.32. The value z� D minfz W C.n; z;Q2; : : : ;QK/ < C1g is an
optimal solution value to 1jMU; dkj D dj ;

P
w2j U

2
j � Q2; : : : ;

P
wKj U

K
j �

QK jPw1j U
1
j , and it can be computed in time O.nW1Q2 : : :QK/, where W1 D

P
w1j .

Cheng et al. (2006) provide an FPTAS for problem 1jCO;
P

w2j U
2
j �

Q2; : : : ;
P

wKj U
K
j � QK jPw1j U

1
j for fixed K . Also, similar considerations to

those of Sect. 3.14.1.1 can be done for what concerns the problem with release
dates, which can therefore be solved in pseudopolynomial time if release and due
dates are agreeable.

138 3 Single Machine Problems

When the number K of agents is not fixed, they show that the problem
1jCO;

P
w2j U

2
j � Q2; : : : ;

P
wKj U

K
j � QK jPw1j U

1
j is strongly NP-hard.

Figure 3.25 implies the strong NP-hardness of all the other scenarios.

3.15.1.2 Common Jobs Have Distinct Due Dates

Here we limit ourselves to observing that when the same job may have distinct
due dates, the dynamic programming algorithm of Sect. 3.15.1.1 no longer holds
in general, since a unique EDD ordering of the jobs may not exist. Problem
1jND;

P
wBj U

B
j � QB jPwAj U

A
j is in fact open as for strong NP-hardness.

3.15.2 Computing the Pareto Set

We next address the problem of determining the size of the Pareto set. For
simplicity we refer to the COMPETING scenario with two agents, i.e., to problem
1jCOjP.PwAj U

A
j ;
P

wBj U
B
j /. By means of a similar construction to Example 3.7,

we show that the size of the Pareto set may not be polynomial, even if all jobs have
the same due date.

Example 3.9. Let consider an instance of 1jCOjP.PwAj U
A
j ;
P

wBj U
B
j / in which

the sets J A and J B are identical. Each set consists of h jobs of size and weight
p0 D w0 D 1; p1 D w1 D 2; p2 D w2 D 4; p3 D w3 D 8; : : : ; ph�1 D wh�1 D
2h�1. All jobs have the same due date, d D 2h � 1. Notice that, in this example, for
any schedule the sum of the two agents’ objectives cannot be smaller than 2h � 1.
Hence, any schedule for which this sum equals 2h � 1 is Pareto optimal. One such
schedule can be obtained as follows. For each pair of jobs of equal size, schedule
the job of one (arbitrary) agent between 0 and d (i.e., early) and the job of the other
agent after d (i.e., tardy). By doing so, the makespan of the early jobs is exactly d .
Hence, if the cost to agent A is x, the cost to agent B is 2h � 1 � x. For each value
of x such that 0 � x � 2h � 1, we get a distinct Pareto optimal schedule. Hence,
there are at least 2h Pareto optimal solutions. ˘

3.16 Tables

This section summarizes the complexity results presented in this chapter in 13
tables. Tables 3.1–3.5 present the results in the COMPETING scenario, Tables 3.6–
3.9 present the results in the NONDISJOINT scenario, Tables 3.10 and 3.11 concern
the INTERFERING scenario and Tables 3.12 and 3.13 concern the BICRITERIA

scenario.

3.16 Tables 139

Table 3.1 Complexity of two-agent, "-constraint COMPETING problems

Problem Complexity Section Page

1jCO; CB
max � QjCA

max O.n/ 3.1.1.3 63
1jCO; LBmax � QjLAmax O.n logn/ 3.1.1.2 59
1jCO; prec; f Bmax � Qjf A

max O.n2/ 3.1.1 58
1jCO; CB

max � QjPCA
j O.nA lognA C nB/ 3.2.1 72

1jCO; f B
max � QjPCA

j O.n logn/ 3.3.1 74
1jCO; CB

max � QjPwAj C
A
j bNPH, O.nAQ2/ 3.4.1 81

1jCO; LBmax � QjPwAj C
A
j sNPH 3.5.1 92

1jCO; f B
max � QjPUA

j O.nA lognA C nB lognB/ 3.7.1 103
1jCO; f B

max � QjPT Aj bNPH, O.n4AP C nB lognB/ 3.8 108
1jCO;

P
CB
j � QjPCA

j bNPH, O.nAnBQ/ 3.9.1 110
1jCO;

P
wBj C

B
j � QjPwAj C

A
j sNPH 3.10.1 116

1jCO;
P
CB
j � QjPUA

j bNPH 3.11.1 126
1jCO;

P
CB
j � QjP T Aj bNPH, O.n4An

2
BQP/ 3.12 130

1jCO;
P

wBj C
B
j � QjPUA

j sNPH 3.13.1 131
1jCO;

P
UB
j � QjPUA

j O.n3/ 3.14.1.1 132
1jCO;

P
wBj U

B
j � QjPwAj U

A
j bNPH, O.nW 2/ 3.15.1.1 136

1jCO; rj ; pmtn; f B
max � Qjf A

max O.n2/ 3.1.1 63
1jCO; rj ; pmtn; LBmax � QjLAmax O.nA lognA C nB lognB/ 3.1.1 63
1jCO; rj ; pmtn; f B

max � QjPCA
j bNPH 3.3.1 77

1jCO; rj ; pmtn; f B
max � QjPUA

j O.n5/ 3.7.1 106
1jCO; rj ; pmtn;

P
CB
j � QjPUA

j bNPH 3.11.1 126

‘bNPH’ for binary NP-hard
‘sNPH’ for strongly NP-hard

Table 3.2 Complexity of two-agent, linear combination COMPETING problems

Problem Complexity Section Page

1jCOj˛CA
max C ˇCB

max O.n/ 3.1.3 67
1jCOj˛LAmax C ˇLBmax O.n3/ 3.1.3 67
1jCOj f̨ A

max C f̌ B
max O.n4/ 3.1.3 67

1jCOj˛PCA
j C ˇCB

max O.nA lognA/ 3.2.3 74
1jCOj˛PCA

j C f̌ Bmax O.n4/ 3.3.3 80
1jCOj˛PwAj C

A
j C ˇCB

max O.n logn/ 3.4.3 87
1jCOj˛PwAj C

A
j C ˇLBmax sNPH 3.5.3 102

1jCOj˛PwAj C
A
j C f̌ Bmax sNPH 3.5.3 102

1jCOj˛PUA
j C f̌ Bmax O.nAn logn logUB/ 3.7.2 107

1jCOj˛PCA
j C ˇ

P
CB
j O.n logn/ 3.9.3 115

1jCOj˛PwAj C
A
j C ˇ

P
wBj C

B
j O.n logn/ 3.10.4 126

1jCOj˛PCA
j C ˇ

P
UB
j bNPH 3.11.3 127

1jCOj˛PwAj C
A
j C ˇ

P
UB
j sNPH 3.13.2 131

1jCOj˛PUA
j C ˇ

P
UB
j O.n3/ 3.14.2 135

1jCOj˛PwAj U
A
j C ˇ

P
wBj U

B
j NP-hard 3.15 136

‘bNPH’ for binary NP-hard
‘sNPH’ for strongly NP-hard

140 3 Single Machine Problems

Table 3.3 Complexity of two-agent, Pareto optimality COMPETING problems

Problem Complexity Size Section Page

1jCOjP.CA
max; C

B
max/ O.n/ 2 3.1.1.3 63

1jCOjP.LAmax; L
B
max/ O.n3/ O.n2/ 3.1.2.2 66

1jCOjP.f A
max; f

B
max/ O.n4/ O.nAnB/ 3.1.2 65

1jCOjP.PCA
j ; C

B
max/ O.nA lognA/ O.nA/ 3.2.2 73

1jCOjP.f A
max;

P
CB
j / O.n4/ O.nAnB/ 3.3.2 77

1jCOjP.CA
max;

P
wBj C

B
j / Nonpolynomial 3.4.2 87

1jCOjP.LAmax;
P

wBj C
B
j / Nonpolynomial 3.4.2 87

1jCOjP.PUA
j ; f

B
max/ O.nAn logn logUB/ O.nA/ 3.7.2 107

1jCOjP.PCA
j ;
P
CB
j / Nonpolynomial 3.9.2 114

1jCOjP.PwAj C
A
j ;
P

wBj C
B
j / Nonpolynomial 3.9.2 114

1jCOjP.PUA
j ;
P
UB
j / O.n3/ O.n/ 3.14.2 135

Table 3.4 Complexity of K-agent COMPETING problems, K fixed. We let U D maxj ffj .P /g
and NQ D max2�k�KfQkg
Problem Complexity Section Page

1jCO; f 2
max � Q2; : : : ; f

K
max � QK jf 1

max O.minfn2; n logn logU g/ 3.1.1.4 64
1jCO; f 1

max � Q1; f
2

max � Q2; : : : ; f
K

max � QK j� O.n logn/ 3.1.1.4 64
1jCO; f 2

max � Q2; : : : ; f
K

max � QK jPC1
j O.n logn/ 3.3.1 74

1jCO;
P
U2
j � Q2; : : : ;

P
UK
j � QK jPU1

j O.nKC1/ 3.14.1.1 132
1jCO;

P
w2j U

2
j � Q2; : : : ;

P
wKj U

K
j � bNPH, O.nW1Q2 : : :QK/ 3.15.1.1 136

QK jPw1j U
1
j

1jCO;
P
C2
j � Q2; : : : ;

P
CK
j � QK jPC1

j bNPH, O.nK NQK�1/ 3.9.1.3 114
1jCOjP ˛kC

k
max O.n/ 3.1.3 67

1jCOjP ˛kL
k
max O.n2KC1/ 3.1.3 67

1jCOjPK�1
kD1 ˛kC

k
max C ˛K.

P
wKj C

K
j / O.n logn/ 3.4.3 87

1jCOjPK�1
kD1 ˛kC

k
max C ˛K.

P
j U

K
j / Open 3.7.2 107

1jCOjPK�1
kD1 ˛k.

P
j wkj C

k
j /C ˛KC

K
max O.n logn/ 3.4.3 87

1jCOjPk ˛k.
P

wkj C
k
j / O.n logn/ 3.10.4 126

1jCOjPK�1
kD1 ˛k.

P
j wkj C

k
j /C ˛K

P
UK
j sNPH 3.13.2 131

1jCOjPK�1
kD1 ˛k.

P
j U

k
j /C ˛KC

K
max Open 3.7.2 107

1jCOjPK�1
kD1 ˛k.

P
j U

k
j /C ˛K.

P
j wKj C

K
j / sNPH 3.13.2 131

1jCOjPk ˛k.
P

j U
k
j / O.nKC1/ 3.14.2 135

‘bNPH’ for binary NP-hard
‘sNPH’ for strongly NP-hard

Tables 3.1, 3.6, 3.10 and 3.12 deal with the "-constraint approach. Tables 3.2, 3.7,
3.11 and 3.13 deal with the linear combination approach. Table 3.3 deals with the
enumeration of the Pareto set. Tables 3.4, 3.5, 3.8 and 3.9 concern theK-agent case.

3.17 Bibliographic Remarks 141

Table 3.5 Complexity of K-agent COMPETING problems, K not fixed. We let U denote
maxj ffj .P /g
Problem Complexity Section Page

1jCO; f 2
max � Q2; : : : ; f

K
max � QK jf 1

max O.minfn2 C nK; 3.1.1.4 65
n logn logU g

1jCO; f 1
max � Q1; f

2
max � Q2; : : : ; f

K
max � QK j� O.n logn/ 3.1.1.4 65

1jCO; f 2
max � Q2; : : : ; f

K
max � QK jPC1

j O.n logn/ 3.3.1 74
1jCO;

P
U2
j � Q2; : : : ;

P
UK
j � QK jPU1

j Open 3.14.1.1 132
1jCO;

P
w2j U

2
j � Q2; : : : ;

P
wKj U

K
j � QK jPw1j U

1
j sNPH 3.15.1.1 136

1jCO;
P
C2
j � Q2; : : : ;

P
CK
j � QK jPC1

j bNPH� 3.9.1 110
1jCOjP ˛kC

k
max O.nCK logK/ 3.1.3 67

1jCOjP ˛kL
k
max bNPh� 3.1.3 67

1jCOjPK�1
kD1 ˛kC

k
max C ˛K.

P
j wKj C

K
j / O.n logn/ 3.4.3 87

1jCOjPK�1
kD1 ˛kC

k
max C ˛K.

P
j U

K
j / sNPH 3.7.2 107

1jCOjPK�1
kD1 ˛k.

P
j wkj C

k
j /C ˛KC

K
max O.n logn/ 3.4.3 87

1jCOjPk ˛k.
P

j wkj C
k
j / O.n logn/ 3.10.4 126

1jCOjPK�1
kD1 ˛k.

P
j wkj C

k
j /C ˛K

P
j U

K
j sNPH 3.13.2 131

1jCOjPK�1
kD1 ˛k.

P
j U

k
j /C ˛KC

K
max bNPH 3.14.2 136

1jCOjPK�1
kD1 ˛k.

P
j U

k
j /C ˛K.

P
j wKj C

K
j / sNPH 3.13.2 131

1jCOjPk ˛k.
P

j U
k
j / bNPH 3.14.2 135

‘bNPH’ for binary NP-hard
‘sNPH’ for strongly NP-hard

‘bNPH�’ for binary NP-hard, open as for strong NP-hardness

3.17 Bibliographic Remarks

This chapter has covered most of the literature on single-machine multi-agent
problems. Actually, several papers are coming out on this topic, mainly devoted
to developing exact and heuristic approaches for hard problems. We briefly point
out some of the most recent papers.

A few paper consider tardiness-related objective functions. In particular,
Lee et al. (2012) address problem 1jCO; rj ; T Bmax � QjPT Aj , Wu (2013)
addresses problem 1jCO; T Bmax � 0jPT Aj and Yin et al. (2012c) address problem
1jCO; rj ; LBmax � QjPT Aj . In each of these papers a branch-and-bound algorithm
and various meta-heuristic algorithms are proposed. Wu et al. (2013a) address
problem 1jCO; rj ;

P
CB
j � QjPCA

j and show that it is strongly NP-hard. They
also provide an exact algorithm and various meta-heuristic algorithms. For problem
1jCO; rj ; LBmax � QjPwAj C

A
j , Cheng et al. (2013) propose a branch-and-bound

algorithm and a simulated annealing algorithm.
Khowala et al. (2009) propose a heuristic approach for generating Pareto optimal

solutions of the problem 1jCOjP.PUA
j ;
P
CB
j /.

142 3 Single Machine Problems

Table 3.6 Complexity of two-agent, "-constraint NONDISJOINT problems

Problem Complexity Section Page

1jND; CB
max � QjCA

max O.n/ 3.1.1.3 63
1jND; LBmax � QjLAmax O.n logn/ 3.1.1.2 59
1jND; prec; f Bmax � Qjf A

max O.n2/ 3.1.1.1 58
1jND; CB

max � QjPCA
j O.nA lognA/ 3.2.1 72

1jND; f B
max � QjPCA

j O.n logn/ 3.3.1 74
1jND; CB

max � QjPwAj C
A
j bNPH, O.nAQ2/ 3.4.1 81

1jND; LBmax � QjPwAj C
A
j sNPH 3.5.1 92

1jND; CB
max � QjPUA

j Open 3.7.1 103
1jND; LBmax � QjPUA

j bNPH 3.7.1 103
1jND; CB

max � QjPT Aj bNPH 3.8.1 108
1jND;

P
CB
j � QjPCA

j bNPH, O.n3Q/ 3.9.1 110
1jND;

P
wBj C

B
j � QjPwAj C

A
j sNPH 3.10.1 116

1jND;
P
CB
j � QjPUA

j bNPH 3.11.1 126
1jND;

P
CB
j � QjP T Aj bNPH 3.12 130

1jND;
P

wBj C
B
j � QjPUA

j sNPH 3.7.2 107
1jND; dAj D dBj ;

P
UB
j � QjPUA

j O.n3/ 3.14.1.1 132
1jND;

P
UB
j � QjPUA

j bNPH 3.14.1.2 135
1jND; dAj D dBj ;

P
wBj U

B
j � QjPwAj U

A
j bNPH, O.nWAQ/ 3.15.1.1 136

1jND;
P

wBj U
B
j � QjPwAj U

A
j bNPH� 3.15.1.2 138

‘bNPH’ for binary NP-hard
‘bNPH�’ for binary NP-hard, open as for strong NP-hardness

‘sNPH’ for strongly NP-hard

Table 3.7 Complexity of two-agent, linear combination NONDISJOINT prob-
lems

Problem Complexity Section Page

1jNDj˛CA
max C ˇCB

max O.n/ 3.1.3 67
1jNDj f̨ A

max C f̌ B
max O.n4/ 3.1.3 67

1jNDj˛PCA
j C ˇCB

max O.nA lognA/ 3.2.3 74
1jNDj˛PCA

j C f̌ Bmax O.n4/ 3.3.3 80
1jNDj˛PwAj C

A
j C ˇCB

max O.n logn/ 3.4.3 87
1jNDj˛PwAj C

A
j C ˇLBmax sNPH 3.5.3 102

1jNDj˛PCA
j C ˇ

P
CB
j O.n logn/ 3.9.3 115

1jNDj˛PwAj C
A
j C ˇ

P
wBj C

B
j O.n logn/ 3.10.4 126

1jNDj˛PCA
j C ˇ

P
UB
j bNPH 3.11.3 127

1jNDj˛PwAj C
A
j C ˇ

P
UB
j sNPH 3.13.2 131

1jND; dAj D dBj j˛PUA
j C ˇ

P
UB
j O.n3/ 3.14.2 135

1jNDj˛PUA
j C ˇ

P
UB
j bNPH 3.14.2 135

‘bNPH’ for binary NP-hard
‘sNPH’ for strongly NP-hard

3.17 Bibliographic Remarks 143

Table 3.8 Complexity of K-agent, NONDISJOINT problems, K fixed. NQ denotes
max2�k�KfQkg
Problem Complexity Section Page

1jND; f 2
max � Q2; : : : ; f

K
max � QK jf 1

max O.n2/ 3.1.1.4 65
1jND; f 2

max � Q2; : : : ; f
K

max � QK jPj C
1
j O.n logn/ 3.3.1 74

1jND;
P
C2
j � Q2; : : : ;

P
CK
j � QK jPC1

j bNPH, O.n2
K

�1 NQK�1/ 3.9.1 110
1jND; dkj D dj ;

P
U2
j � Q2; : : : ;

P
UK
j � O.nKC1/ 3.14.1.1 132

QK jPU1
j

1jND; dkj D dj ;
P

w2j U
2
j � bNPH, O.nW1Q2 : : :QK/ 3.15.1.1 136

Q2; : : : ;
P

wKj U
K
j � QK jPw1j U

1
j

1jNDjP ˛kC
k
max O.n2K/ 3.1.3 67

1jNDjPK�1
kD1 ˛k.

P
j wkj C

k
j /C ˛KC

K
max O.n logn/ 3.4.3 90

1jNDjPk ˛k.
P

j wkj C
k
j / O.n logn/ 3.10.4 126

1jNDjPK�1
kD1 ˛k.

P
j wkj C

k
j /C ˛K

P
j U

K
j sNPH 3.13.2 131

1jNDjPK�1
kD1 ˛k.

P
j U

k
j /C .

P
j wKj C

K
j / sNPH 3.13.2 131

1jND; dkj D dj jPk ˛k.
P

j U
k
j / O.nKC1/ 3.14.2 135

‘bNPH’ for binary NP-hard
‘sNPH’ for strongly NP-hard

Table 3.9 Complexity of K-agent, NONDISJOINT problems, K not fixed

Problem Complexity Section Page

1jND; f 2
max � Q2; : : : ; f

K
max � QK jf 1

max O.n2 C nK/ 3.1.1.4 65
1jND; f 2

max � Q2; : : : ; f
K

max � QK jPC1
j O.n lognC nK/ 3.3.1 74

1jND;
P
C2
j � Q2; : : : ;

P
CK
j � QK jPC1

j bNPH� 3.9.1 110
1jND; dkj D dj ;

P
U2
j � Q2; : : : ;

P
UK
j � QK jPU1

j Open 3.14.1.1 132
1jND; dkj D dj ;

P
w2j U

2
j � Q2; : : : ;

P
wKj U

K
j � sNPH 3.15.1.1 136

QK jPw1j U
1
j

1jNDjP ˛kC
k
max sNPH 3.1.3 67

1jNDjPK�1
kD1 ˛kC

k
max C ˛K.

P
j wKj C

K
j / sNPH 3.1.3 67

1jNDjPK�1
kD1 ˛kC

k
max C ˛K.

P
j U

K
j / sNPH 3.13.2 131

1jNDjPK�1
kD1 ˛k.

P
j wkj C

k
j /C ˛KC

K
max O.nK C n logn/ 3.4.3 90

1jNDjPk ˛k.
P

j wkj C
k
j / O.nK C n logn/ 3.10.4 126

1jNDjPK�1
kD1 ˛k.

P
j wkj C

k
j /C ˛K

P
j U

K
j sNPH 3.13.2 131

1jNDjPK�1
kD1 ˛k.

P
j U

k
j /C ˛KC

K
max NP-hard 3.14.2 135

1jNDjPK�1
kD1 ˛k.

P
j U

k
j /C ˛K.

P
j wKj C

K
j / sNPH 3.13.2 131

1jNDjPk ˛k.
P

j U
k
j / NP-hard 3.14.2 135

‘bNPH’ for binary NP-hard
‘bNPH�’ for binary NP-hard, open as for strong NP-hardness
‘sNPH’ for strongly NP-hard

144 3 Single Machine Problems

Table 3.10 Complexity of two-agent, "-constraint INTERFERING problems

Problem Complexity Section Page

1jIN;LBmax � QjLAmax O.n logn/ 3.1.1.2 59
1jIN; prec; f Bmax � Qjf A

max O.n2/ 3.1.1 58
1jIN; f B

max � QjPCA
j O.n logn/ 3.3.1 74

1jIN; CB
max � QjPwAj C

A
j bNPH, O.nQ2/ 3.4.1 81

1jIN;LBmax � QjPwAj C
A
j sNPH 3.5.1 92

1jIN; CB
max � QjPUA

j Open 3.7.1 103
1jIN;LBmax � QjPUA

j bNPH 3.7.1 103
1jIN; CB

max � QjP T Aj bNPH 3.8.1 108
1jIN;PCB

j � QjPCA
j bNPH, O.n2Q/ 3.9.1 110

1jIN;PwBj C
B
j � QjPwAj C

A
j sNPH 3.10.1 116

1jIN;PCB
j � QjPUA

j bNPH 3.11.1 126
1jIN;PUB

j � QjPCA
j bNPH 3.11.1 126

1jIN;PCB
j � QjP T Aj bNPH 3.12 130

1jIN;PwBj C
B
j � QjPUA

j sNPH 3.13.1 131
1jIN; dAj D dBj ;

P
UB
j � QjPUA

j O.n3/ 3.14.1.1 132
1jIN;PUB

j � QjPUA
j bNPH 3.14.2 135

1jIN;PwBj U
B
j � QjPwAj U

A
j bNPH, O.nWAQ/ 3.15.1.2 138

‘bNPH’ for binary NP-hard
‘sNPH’ for strongly NP-hard

Table 3.11 Complexity of two-agent, linear combination INTERFERING problems

Problem Complexity Section Page

1jIN j f̨ A
max C f̌ B

max O.n4/ 3.1.3 67
1jIN j˛PCA

j C ˇCB
max O.n logn/ 3.2.3 74

1jIN j˛PCA
j C f̌ Bmax O.n4/ 3.3.3 80

1jIN j˛PwAj C
A
j C ˇCB

max O.n logn/ 3.4.3 87
1jIN j˛PwAj C

A
j C ˇLBmax sNPH 3.5.3 102

1jIN j˛PCA
j C ˇ

P
CB
j O.n logn/ 3.9.3 115

1jIN j˛PwAj C
A
j C ˇ

P
wBj C

B
j O.n logn/ 3.10.4 126

1jIN j˛PCA
j C ˇ

P
UB
j bNPH 3.11.3 127

1jIN j˛PwAj C
A
j C ˇ

P
UB
j sNPH 3.13.2 131

1jIN; dAj D dBj j˛PUA
j C ˇ

P
UB
j O.n3/ 3.14.2 135

1jIN j˛PUA
j C ˇ

P
UB
j bNPH 3.14.2 135

‘bNPH’ for binary NP-hard

‘sNPH’ for strongly NP-hard

*

Yin et al. (2012a) analyze the complexity of the linear combination approach
for various COMPETING, two-agent due date assignment problems, i.e., problems in
which due dates must be assigned to individual jobs.

While throughout this book we consider regular cost functions, it is worth
noticing that in Mor and Mosheiov (2010) two-agent problems in the COMPETING

scenario have been analyzed in which the agents cost functions depending on job
earliness (and hence are non regular).

3.17 Bibliographic Remarks 145

Table 3.12 Complexity of two-agent, "-constraint BICRITERIA problems

Problem Complexity Section Page

1jBI; LBmax � QjLAmax O.n logn/ 3.1.1.2 59
1jBI; prec; f B

max � Qjf A
max O.n2/ 3.1.1 74

1jBI; f Bmax � QjPCA
j O.n logn/ 3.3.1 74

1jBI; LBmax � QjPwAj C
A
j sNPH 3.5.1 92

1jBI; LBmax � QjPUA
j bNPH 3.7.1 103

1jBI; dAj D dBj ; T
B
max � QjPUA

j Open 3.7.1 103
1jBI; LBmax � QjPT Aj bNPH 3.8.1 108
1jBI;

P
wBj C

B
j � QjPwAj C

A
j sNPH 3.10.1 116

1jBI;
P
CB
j � QjPUA

j bNPH 3.11.1 126
1jBI;

P
CB
j � QjPT Aj bNPH 3.12 130

1jBI;
P

wBj C
B
j � QjPUA

j sNPH 3.13.1 131
1jBI; dAj D dBj ;

P
UB
j � QjPUA

j O.n3/ 3.14.1.1 132
1jBI;

P
UB
j � QjPUA

j bNPH 3.14.1.2 135
1jBI;

P
wBj U

B
j � QjPwAj U

A
j bNPH 3.15.1.2 138

‘bNPH’ for binary NP-hard
‘sNPH’ for strongly NP-hard

Table 3.13 Complexity of two-agent, linear combination BICRITERIA problems

Problem Complexity Section Page

1jBIj f̨ A
max C f̌ Bmax O.n4/ 3.1.3 67

1jBIj˛PCA
j C f̌ B

max O.n4/ 3.3.3 80
1jBIj˛PwAj C

A
j C ˇLBmax Strongly NP-hard 3.5.3 102

1jBIj˛PwAj C
A
j C ˇ

P
wBj C

B
j O.n logn/ 3.10.4 126

1jBIj˛PwAj C
A
j C ˇ

P
UB
j Strongly NP-hard 3.13.2 131

1jBIj˛PUA
j C ˇ

P
UB
j Binary NP-hard 3.14.2 135

Finally, we want to briefly mention that recently attempts have started to analyze
multi-agent scheduling problems through game-theoretical concepts. In Agnetis
et al. (2009a), the concept of Nash bargaining solution is applied to the two-
agent setting 1jCOjPwAj C

A
j ;
P

wBj C
B
j , showing the hardness of its determination.

Moreover, in Agnetis et al. (2013) the situation is addressed in which two agents
submit their jobs one at a time, and each time the shortest is selected for processing.
Depending on an agent’s objective function, the problem of deciding the best
submission sequence may turn out to be easy or hard.

Chapter 4
Batching Scheduling Problems

In this chapter, we consider batching scheduling problems in the context of agent
scheduling. The main feature of these problems is the partition of the set of jobs into
a number of subsets of jobs called batches.

The chapter is composed of five sections. In Sect. 4.1, we introduce basic
definitions and notions of batching scheduling. In Sects. 4.2 and 4.3 we discuss
two-agent s-batching and two-agent p-batching problems, respectively. We end
the chapter with Sects. 4.4 and 4.5 including, respectively, complexity tables and
bibliographic remarks.

4.1 Introduction

In batching scheduling problems, the set of jobs is partitioned into a number of
subsets of jobs called batches. For each subset, jobs are executed jointly on the same
machine in a ‘compact’ time interval. It means that the starting time of all the jobs
in a given batch is given by the starting time of the first job in the batch and the
completion time of all the jobs in the batch is equal to the completion time of the last
job. A setup time is generally required before starting the execution of a batch. This
setup time is supposed to be independent of the jobs and to each batch of a given
agent is associated a constant batch setup time. The computation of the duration
of a batch depends on the problem type. More precisely, two types of batching
scheduling problems are distinguished in the literature, depending on the type of
machine. We distinguish serial batching machines (jobs are processed in sequence)
and parallel batching machines (jobs are processed in parallel) respectively denoted
by s � batch and p � batch.

In this chapter, we review multiagent batching scheduling problems in which
jobs from different agents cannot be assigned to the same batch, i.e., one processing
batch can only contain jobs from one specific agent. In the literature, we say that
the agents are incompatible or non compatible. Some papers in the literature also

A. Agnetis et al., Multiagent Scheduling, DOI 10.1007/978-3-642-41880-8__4,
© Springer-Verlag Berlin Heidelberg 2014

147

148 4 Batching Scheduling Problems

J6J3 J4J1 J2 J5

t
5 2015100 25

S1

J6J3 J4J1 J2 J5

t
5 2015100 25

S2

s

sss

B1

B1 B2 B3

Fig. 4.1 Two schedules for a serial batching problem

consider the case where agents are compatible (Fan et al. 2013; Li and Yuan 2012;
Sabouni and Jolai 2010) but these papers are not referred here.

A serial batching machine processes the jobs of one batch sequentially and the
length of each batch is equal to the sum of the job processing times in the batch,
plus a setup time. According to the three-field notation of scheduling problems, this
is generally noted by “s � batch” in the ˇ-field.

A parallel batching machine processes the jobs of one batch in parallel and
the length of each batch is equal to the maximum of the job processing times in
the batch, plus a setup time. According to the three-field notation of scheduling
problems, this is generally noted by “p � batch” in the ˇ-field.

For both types of batching models, the capacity of the batching machine can
be bounded or unbounded. If there is a limit on the size of a batch, the machine
is bounded. Otherwise, it is unbounded. A scheduling decision for the batching
machine deals with the composition of the batches and their sequencing.

Example 4.1. For the serial batching case, let consider the following instance with
n D 6 jobs:

Jj J1 J2 J3 J4 J5 J6

pj 3 2 4 7 1 3
dj 9 11 13 14 18 19

We assume that s D 2 is the setup time. Two schedules S1 and S2 are represented
in Fig. 4.1 with only one batch in S1 and three batches in S2 (the setup time
before a batch is represented by a triangle). The schedules are evaluated as follows:
Cmax.S1/ D 22, Cmax.S2/ D 26,

P
Cj .S1/ D 132 (all jobs complete at time

22),
P
Cj .S2/ D 106 (jobs J1 and J2 complete at time 7, jobs J3 and J4

complete at time 20, and jobs J5 and J6 complete at time 26), Lmax.S1/ D
max.22 � 9; 22 � 11; 22 � 13; 22 � 14; 22 � 18; 22 � 19/ D 13, and Lmax.S2/ D
max.7 � 9; 7 � 11; 20� 13; 20� 14; 26� 18; 26� 19/ D 7. ˘

Example 4.2. For the parallel batching case, let consider the same instance as in
Example 4.1 with n D 6 jobs. In this case, we do not consider setup times because

4.1 Introduction 149

J6

J3

J4

J1

J2

J5

t
50

S1

J6

J3 J4

J1

J2

J5

t
50

S2

10

Fig. 4.2 Two schedules for a parallel batching problem

they are supposed to be included in the processing time. Two schedules S1 and S2
are represented in Fig. 4.2 with only one batch in S1 (containing all the jobs) and
two batches in S2. The evaluation of the schedules are the following:Cmax.S1/ D 7,
Cmax.S2/ D 11,

P
Cj .S1/ D 42 (all jobs complete at time 7),

P
Cj .S2/ D 31 (all

the jobs except J4 complete at time 4, job J4 completes at time 11), Lmax.S1/ D
max.7� 9; 7� 11; 7� 13; 7� 14; 7� 18; 7� 19/ D �2, and Lmax.S2/ D max.4�
9; 4� 11; 4� 13; 11� 14; 4� 18; 4� 19/ D �3. ˘

Single-agent batch scheduling models have been intensively studied in the last
decade. The application domains for these models include (but are not limited
to) temperature testing operations in computer chip manufacturing (Uzsoy and
Yang 1997), production of metal sheets on a multi-head hole-punching machine
(Gavranovic and Finke 2000), machine part manufacturing in containers such as
boxes, palettes, or carts (Cheng and Kovalyov 2001), manufacturing of computer
parts of different types (Cheng et al. 2004b), scheduling of chemical (photolytical,
galvanic) baths (Oulamara et al. 2005), vulcanization operations on press-machines
in tire manufacturing (see for instance Oulamara et al. (2009)), etc.

In this chapter, we consider that the jobs belong to two agents and that there is
a single batching machine. In the following, remember that we consider the non
compatible case, i.e. the jobs of one batch belong to only one agent. Moreover,
a constant batch setup time denoted by sk is associated to each batch of agent k,
k 2 fA;Bg.

In the following sections, polynomial and pseudo-polynomial time dynamic
programming algorithms are derived for single machine s-batching and p-batching
scheduling problems with various combinations of the objective functions, except
the total weighted completion time, because minimizing this function is already
strongly NP-hard (Albers and Brucker 1993) in the single-agent case.

150 4 Batching Scheduling Problems

4.2 Two-Agent s-Batching Problems

In the following, we consider two sets of jobs J A and J B , owned by the two
competing agentsA andB , on a single serial unbounded batching machine. It means
that the batching processing machine can process any number of jobs in a batch.

We start this section by the definition of a mixed integer linear program, that is
able to model any type of single machine s-batching problem. The interest of this
model is that it requires positional variables (or assignment variables) as well as
precedence variables together in the same model (see Sect. 2.3.3, page 32).

We define binary (assignment) variables xAj;` equal to 1 if job JAj is in the batch
number ` of agent A, and 0 otherwise, 8j , 1 � j � nA, 8`, 1 � ` � nA and
similarly xBj;` for agent B . These two sets of variables allow to assign the jobs to
batches and the following constraints ensure that each job is exactly in one batch.

nkX

`D1
xkj;` D 1;8j; 1 � j � nk;8k 2 fA;Bg (4.1)

The binary variables zk` allow to know if a batch of agent k is empty or not, with
the following constraints.

zk` 	 xkj;`; (4.2)

8 j; 1 � j � nk;8`; 1 � ` � nk;8k 2 fA;Bg

zk` �
nkX

jD1
xkj;`;8`; 1 � ` � nk;8k 2 fA;Bg (4.3)

We denote by CBk
` the completion time of the batch ` of agent k (noted Bk`).

Then, we define binary (precedence) variables y`;`0 equal to 1 if the batch BA`
precedes BB

`0 , and 0 otherwise. These variables allow to define a sequence of batches
between agent A and agent B through the following constraints.

CBA
` 	 CBB

`0 C sAzA` C
nAX

jD1
pAj x

A
j;` �My`;`0 ;

8`; 1 � ` � nA;8`0; 1 � `0 � nB

(4.4)

CBB
`0 	 CBA

` C sBzB`0 C
nBX

jD1
pBj x

B
j;`0 �M.1� y`;`0 /;

8`; 1 � ` � nA;8`0; 1 � `0 � nB

(4.5)

Then, we fix an order between the batches of each agent. We impose that batch
Bk` precedes batch Bk`C1, with the following constraints.

4.2 Two-Agent s-Batching Problems 151

CBk
1 	 sk C

nkX

jD1
pkj x

k
j;1;8k 2 fA;Bg (4.6)

CBk
` 	 CBk

`�1 C skzk` C
nkX

jD1
pkj x

k
j;`;

8`; 2 � ` � nk;8k 2 fA;Bg
(4.7)

These definitions can be used to define the value of various criteria. Let Ck
j

denote the completion time of the job J kj 2 J k . This value is given by the following
constraints.

Ck
j 	 CBk

` �M.1 � xkj;`/;
8j; 1 � j � nk;8`; 1 � ` � nk;8k 2 fA;Bg

(4.8)

We terminate the definition of this model with the following objective functions.

Ck
max D CBk

nB
;8k 2 fA;Bg (4.9)

Lkmax 	 Ck
j � dkj ;8j; 1 � j � nk;8k 2 fA;Bg (4.10)

X
Ck
j D

nkX

jD1
C k
j ;8k 2 fA;Bg (4.11)

4.2.1 Functions fmax; fmax

4.2.1.1 Problem 1jCO; s � batch; f B
max � Qjf A

max

In the COMPETING scenario, let consider problem 1jCO; s� batch; f B
max � Qjf A

max.
We can derive an algorithm that determines whether or not there exists a solution
to the feasibility problem 1jCO; s � batch; f A

max � y; f B
max � Qj�, where y 2

ŒlbA; ubA�, with lbk and ubk for k 2 fA;Bg a lower bound and an upper bound of
f k

max, given by:

lbk D min
1�j�nk

n
f k
j .s1 C pkj /

o
(4.12)

ubk D max
1�j�nk

n
f k
j .T /

o
(4.13)

where T D nAsA C nBsB C P with P the total processing time of jobs.

152 4 Batching Scheduling Problems

For each value y and Q, one can compute deadlines QdAj .y/ and QdBj .Q/ on
the completion times of jobs JAj and JBj , respectively. The idea is that 1jCO; s �
batch; f A

max � y; f B
max � Qj� has a feasible solution if and only if there is a schedule

in which each job completes within its deadline.
We assume that we have an explicit expression for the inverse function

.f k
j /

�1.t/, k 2 fA;Bg. So Qdkj can be computed in constant time such that

f A
j .C

A
j / � y for CA

j � QdAj and f A
j .C

A
j / > y for CA

j >
QdAj

and f B
j .C

B
j / � Q for CB

j � QdBj and f B
j .C

B
j / > Q for CB

j > QdBj :

Otherwise, the deadlines can be computed in O.n logT / time. Of course, for a
given value of T , the deadline of a job can be calculated in O.logT / time by a
binary search in the interval Œ0; T �, because we have:

QdAj .y/ D maxf� jf A
j .�/ � y; sA C pAj � � � T g (4.14)

QdBj .Q/ D maxf� jf B
j .�/ � Q; sB C pBj � � � T g (4.15)

In what follows, we suppose that, given y, the jobs are numbered by nondecreas-
ing order of the deadlines, i.e., QdA1 .y/ � � � � � QdAnA.y/ and QdB1 .Q/ � � � � � QdBnB .Q/.

The following property (Kovalyov et al. 2012b) can be easily established.

Lemma 4.1. If a feasible schedule exists for 1jCO; s � batch; f A
max � y; f B

max �
Qj�, there is one in which the jobs of each agent are processed in the Earliest
Deadline First (EDF) order.

The idea is that a schedule with values f A
max � y and f B

max � Q exists if
and only if, when regarding QdAj .y/ and QdBj .Q/ as due dates, a schedule exists
such that the maximum lateness of all the n jobs is non-positive. Hence, we can
propose a dynamic programming algorithm to solve the problem of minimizing the
maximum lateness of all the n jobs with due dates QdAj .y/ and QdBj .Q/. However,
the problem is not precisely the same problem as the 1js � batchjLmax, since
the jobs of different agents cannot be scheduled in the same batch. Therefore,
Webster and Baker’s algorithm (Webster and Baker 1995) for 1js � batchjLmax

cannot be used to determine an optimal solution. In Kovalyov et al. (2012b), a
new dynamic programming algorithm is proposed. In this dynamic programming
algorithm, L.iA; iB/ is defined as the minimum value of maximum lateness when
the job subset fJAiA; J AiAC1; : : : ; J AnAg [fJBiB ; J BiBC1; : : : ; J BnB g is scheduled from time
zero. Following a similar logic to Webster and Baker’s algorithm, a single batch
is appended to the beginning of a current schedule. An optimal solution value is
given by L.1; 1/. The recursive dynamic programming algorithm is described in
Algorithm 19.

For each iA and iB , L.iA; iB/ can be computed in O.n/ time. Hence, all values
L.iA; iB/ can be computed in O.nAnBn/ time. We use binary search to enumerate

4.2 Two-Agent s-Batching Problems 153

Algorithm 19 for problem 1jCO; s � batch; f B
max � Qjf Amax

1: for j WD 1 to nA do
2: Calculate QdAj .y/ via (4.14)
3: end for
4: for j WD 1 to nB do
5: Calculate QdBj .Q/ via (4.15)
6: end for
7: L.nA C 1; nB C 1/ WD 0

8: for iA WD nA C 1 downto 1 do
9: for iB WD nB C 1 downto 1 do

10: if .iA; iB/ ¤ .nA C 1; nB C 1/ then
11: L.iA; iB/ WD

min

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

miniAC1�j�nAC1

(

max

(
sA CPj�1

hDiA
pAh � QdAiA .y/;

L.j; iB/C sA CPj�1

hDiA
pAh

miniBC1�j�nBC1

(

max

(
sB CPj�1

hDiB
pBh � QdBiB .Q/;

L.iA; j /C sB CPj�1

hDiB
pBh

12: end if
13: end for
14: end for
15: return the solution that minimizes L.1; 1/

the values of y 2 ŒlbA; ubA�, which requires O.logYA/ iterations, where YA D
ubA � lbA. In conclusion, the following result holds.

Theorem 4.1. An optimal solution to problem 1jCO; s�batch; f B
max � Qjf Amax can

be obtained in O..nAnBn/ logYA/ time.

4.2.2 Functions Cmax, Cmax

4.2.2.1 Problem 1jCO; s � batch; C B
max � QjC A

max

The problem considered here is denoted 1jCO; s � batch; C B
max � QjCA

max. The
following property was established in Kovalyov et al. (2012b).

Lemma 4.2. If an optimal schedule exists, there exists one in which the jobs of each
agent form a single batch.

Proof. Let LB D sA C P
j2J A pAj C sB C P

j2JB pBj D sA C sB C P
j2J pj ,

and let LB 0 D sA CP
j2JA pAj . It is clear that LB 0 is a lower bound for CA

max and
LB is a lower bound for the global Cmax. It is possible to build a feasible solution
for problem 1js � batch; C B

max � QjCA
max by using Algorithm 20.

This algorithm builds a feasible solution, if one exists, with CA
max D LB 0 if

Q 	 LB , otherwise, we have CA
max D LB . So for problem 1jCO; s�batch; C B

max �
QjCA

max, an optimal schedule can be obtained in O.n/. ut

154 4 Batching Scheduling Problems

Algorithm 20 for problem 1jCO; s � batch; C B
max � QjCA

max

1: � WD ./ == initial empty schedule
2: PA WD P

j2J A pAj
3: PB WD P

j2J B pBj
4: if sA C sB C PA C PB � Q then
5: Schedule jobs of agent A in the first batch
6: Schedule jobs of agent B in the second batch
7: � WD J AjJ B == concatenation of two job sets
8: else
9: if sB C PB � Q then

10: Schedule jobs of agent B in the first batch
11: Schedule jobs of agent A in the second batch
12: � WD J B jJ A

13: end if
14: end if
15: if � ¤ ./ then
16: return �
17: else
18: return ‘There is no solution’
19: end if

t
5

JB
3

2015100 25

JA
3JB

1 JA
1 JA

2JB
2

J B

sB

J A

sA

Q = 19

Fig. 4.3 Solution to the 1jCO; s � batch; CB
max � QjCA

max problem

In view of this property, problem 1jCO; s � batch; C B
max � QjCA

max is trivial and
can be easily solved in polynomial time.

Example 4.3. Let consider the following 6-job instance, where jobs JA1 to JA3
belong to J A and jobs JB1 to JB3 belong to J B :

J kj J A1 J A2 J A3 J B1 J B2 J B3

pkj 5 2 3 1 7 2

We assume that sA D 2 and sB D 4 and we fix Q D 19.
We havePA D 10 andPB D 10. sACsBCPACPB D 2C4C10C10 D 26 > Q

and sB CPB D 14 � Q. Therefore, the optimal solution is obtained by sequencing
the jobs of J B first in one batch and then the jobs of J A in another batch. The
corresponding schedule is represented in Fig. 4.3. ˘

4.2 Two-Agent s-Batching Problems 155

4.2.2.2 Problem 1jCO; s � batchjP.C A
max; C B

max/

The problem 1jCO; s� batchjP.CA
max; C

B
max/ has only two Pareto optimal solutions:

one corresponds to the solution where J A precedes J B , and the other corresponds
to the solution where J B precedes J A.

4.2.3 Functions Cmax, Lmax

4.2.3.1 Problem 1jCO; s � batch; LB
max � QjC A

max

We consider now the problem 1jCO; s � batch; LBmax � QjCA
max. Without loss of

generality, we suppose that the jobs of J B are numbered in EDD order, i.e. dB1 �
dB2 � : : : � dBnB . Kovalyov et al. (2012b) present the following lemma.

Lemma 4.3. If an optimal schedule for problem 1jCO; s � batch; LBmax � QjCA
max

exists, then there is one in which the jobs of J A form a single batch and the jobs of
J B are processed in EDD order.

Proof. Let us first show that the jobs of J A form a single batch. If �� is an optimal
schedule for which this does not hold, a new schedule � can be built by moving all
jobs in J A into the last batch of agent A. This can only improve the value of LBmax
(since jobs of J B are moved backwards) as well as CA

max (since at least one setup sA
is saved). So there is no interest in scheduling the jobs of agentA in several batches.

Let us now suppose that in such schedule � not all the jobs of J B are processed
in EDD order, i.e., there is a batch BB` scheduled before batch BBt with JBi 2 BB`
and JBj 2 BBt , and dBj < dBi . Let � 0 be the schedule obtained by moving job JBi
from BB` to BBt . Note that CA

max.�
0/ � CA

max.�/. Moreover, the completion time
of batch BB` is reduced by pBi , while the completion time of batch BBt does not
increase. Therefore, the lateness of all jobs in J B except JBi does not increase. On
the other hand, since dBj < dBi , the lateness of JBi in � 0 does not exceed that of
JBj in � , thus LBmax.�

0/ � LBmax.�/. Continuing this exchange process, we get an
optimal schedule with the desired property. ut

Let now BA be the only batch of agent A. According to Lemma 4.3, the optimal
schedule is of the form .�B;BA; � 0

B/ where �B and � 0
B are sequences of batches

of agent B , either of which can be empty. Note that LBmax � Q is equivalent to
CB
j � QdBj , 1 � j � nB , where QdBj D dBj CQ.

In the single-agent case, given jobs J1; : : : ; Jn with deadlines Qdj , 1 � j � n, the
problem of determining a feasible schedule respecting the deadlines can be solved
by Algorithm 21 with t D 0 as input (Hochbaum and Landy 1994).

According to Algorithm 21, if job n is included in some batch, a feasible
schedule is obtained. Otherwise, some job cannot be included in a batch without
violating the earliest deadline of this batch, in which case no feasible schedule exists.

156 4 Batching Scheduling Problems

Algorithm 21 for problem 1js � batch; Qdj j�
1: Let t be the start time of the schedule == t is given on input of the algorithm
2: Renumber the jobs so that Qd1 � Qd2 � � � � � Qdn
3: i WD 1

4: b WD 1

5: repeat
6: Denote by k the maximal job index such that t C s CPk

jDi pj � Qdi
7: if there exists a job with index k then
8: Build a batch Bb with the jobs .Ji ; : : : ; Jk/
9: b WD b C 1

10: t WD t C s CPk
jDi pj

11: i WD k C 1

12: else
13: return ‘There is no feasible solution’
14: end if
15: until (job n is included in some batch) or (there is no feasible solution)
16: return all batches

Algorithm 21 requires O.n logn/ time for re-indexing the jobs, and O.n/ time for
building the batches. Note that this algorithm, for any number of jobs, constructs
a feasible schedule with the minimum number of batches, thus, minimizes the
makespan.

This algorithm can be applied to solve 1jCO; s � batch; LBmax � QjCA
max. In fact,

in view of Lemma 4.3, if we know after which job JBk is scheduled the batch BA of
agent A, then we can solve the problem in O.nB/ time by applying Hochbaum and
Landy’s algorithm twice: first for jobs JB1 ; : : : ; J

B
k , starting at time 0, and then for

jobs JBkC1; : : : ; J BnB starting at CB
k C sA C PA (k D 0 indicates that BA precedes all

jobs in J B). In conclusion, the following result holds.

Theorem 4.2. Algorithm 22 solves the 1jCO; s � batch; LBmax � QjCA
max problem

in O.nA C n2B/ time.

Note that CA
max is nondecreasing with k, while LBmax is nonincreasing with k.

Therefore, the optimal index k� can be found by a binary search over the range
0; : : : ; nB , and applying Algorithm 21 twice for each value of k. The smallest value
of k for which the algorithm provides a feasible solution yields the optimal schedule.
Therefore, the complexity of steps 15–31 of Algorithm 22 can be improved. In this
case, the complexity reduces to O.nA C nB lognB/ time.

Example 4.4. Let consider the following 8-job instance with nA D nB D 4:

J kj J A1 J A2 J A3 J A4 J B1 J B2 J B3 J B4

pkj 3 3 4 2 1 5 1 3
dBj 11 15 19 23

4.2 Two-Agent s-Batching Problems 157

Algorithm 22 for problem 1jCO; s � batch; LBmax � QjCA
max

1: Renumber the jobs of J B in EDD order
2: PA WD P

i2J A pAi
3: BA WD J A

4: for i D 1 to nB do
5: QdBi WD dBi CQ

6: end for
7: Apply Algorithm 21 to job set J B with t WD sA C PA

8: Denote by � 0.i/
B the sequence of batches obtained if any

9: if there is no feasible solution then
10: nofeasible := true
11: else
12: return .BA; � 0.i/

B / == optimal solution
13: end if
14: i WD 1

15: while (nofeasible = true) and (i � nB) do
16: Apply Algorithm 21 to job set fJB1 ; : : : ; J Bi g with t WD 0

17: if there is feasible solution then
18: Denote by �.i/B the sequence of batches obtained
19: else
20: �

.i/
B WD ;

21: end if
22: Apply Algorithm 21 to job set fJBiC1; : : : ; J

B
nB

g with t WD CB
i .�

.i/
B /C sA C PA

23: if there is feasible solution then
24: Denote by � 0.i/

B the sequence of batches obtained
25: else
26: �

0.i/
B WD ;

27: end if
28: if .�.i/B ¤ ;/ and .� 0.i/

B ¤ ;/ then
29: return (�.i/B ;BA; � 0.i/

B)
30: end if
31: end while
32: return ‘There is no feasible solution’

We assume that sA D 3 and sB D 1 andQ D 8. We represent in Fig. 4.4 a sequence
S1 where the jobs of agent A are scheduled first, and then the jobs of agent B in
EDD order. The makespan for A is CA

max D 15 but the maximum lateness for the
jobs of agent B is LBmax D max.15; 11; 7; 3/ D 15, which is not acceptable. In
Fig. 4.5, a sequence S2 is presented. A first batch composed by the two first jobs of
agent B precedes the jobs of agent A, and the remaining jobs of agent B terminate
the schedule in a last batch. Here, CA

max D 22 and LBmax D max.�4;�8; 8; 4/ D 8,
which is now acceptable. Let consider the following sequence S3: B1 D .J B1 /I B2 D
.J A/I B3 D .J B2 /I B4 D .J B3 /I B5 D .J B4 /. In S3, a first batch composed by the first
job of agent B precedes the jobs of agent A, and the three remaining jobs of agent
B terminate the schedule in three different batches. In S3, we have CA

max D 17 and
LBmax D max.�8; 8; 6; 6/ D 8, which is a Pareto optimal solution. ˘

158 4 Batching Scheduling Problems

t
5

JB
4

2015100 25

JA
3 JB

1JA
1 JA

2 JB
2

J B = BB
1sBJ A = BA

sA JA
4 JB

3

Fig. 4.4 Not a feasible solution for the 1jCO; s � batch; LBmax � QjCA
max problem

t
5

JB
4

2015100 25

JA
3JB

1 JA
1 JA

2JB
2

sB J A = BA

sA JA
4 JB

3

BB
1 BB

2sB

Fig. 4.5 Feasible solution for the 1jCO; s � batch; LBmax � QjCA
max problem

4.2.3.2 Problem 1jCO; s � batch; C A
max � QjLB

max

Let us now turn to the symmetric problem 1jCO; s � batch; C A
max � QjLBmax. In

this case, Lemma 4.3 still holds. It means that the optimal schedule is of the form
.�B;BA; � 0

B/ where �B and � 0
B are sequences of batches of agentB , eventually one

of them being empty.
Note that for the schedule .�B;BA; � 0

B/, the makespan for agent A is completely
determined by the number of jobs k preceding BA and the number of batches b in
the sequence �B . It is given by:

CA
max.k; b/ D bsB C

kX

jD1
pBj C sA C PA

Hence, given k and b, the problem reduces to constructing two schedules:

• �B D �.k;b/, that minimizes the maximum lateness of jobs JB1 ; : : : ; J
B
k starting

at time zero and forming b batches,
• � 0

B D �.kC1/, that minimizes the maximum lateness of jobs JBkC1; : : : ; J BnB
starting at time CA

max.k; b/ (if k D nB , � 0
B is empty and in this case we define

LBmax.�
.nBC1// D �1).

An optimal solution has the form .�.k;b/;BA; �.kC1//, and the optimal value of
LBmax is given by:

LBmax D max
0�b�k�nB

n
maxfLBmax.�

.k;b//; LBmax.�
.kC1//g W CA

max.k; b/ � Q
o

For a given k, 0 � k � nB , determining an optimal schedule �.kC1/ is
equivalent to solving the single-agent scheduling problem 1js � batchjLmax. In
Webster and Baker (1995) it is shown that there exists an optimal schedule for this
problem in which jobs are sequenced in EDD order, and a keen backward dynamic
programming algorithm with batch insertion is proposed, working as follows.

4.2 Two-Agent s-Batching Problems 159

Given the job set fJ1; : : : ; Jng, let L.i/ be the minimum value of the maximum
lateness for the job subset fJi ; : : : ; Jng, when the first batch contains job i and starts
after time s. We let L.nC 1/ D �1, and define the recursion function:

L.i/ D min
i<k�nC1

n
max

n
L.k/C s C

k�1X

hDi
ph; s C

k�1X

hDi
ph � di

oo
(4.16)

Function (4.16) is computed for i D n; n � 1; : : : ; 1. The optimal value is given
by L.1/.

By applying Webster and Baker’s algorithm, we derive an optimal schedule
�.kC1/, k D 0; 1; : : : ; nB � 1 in O.n2B/ time. All the schedules �.k;b/, 0 � b � k �
nB , can be found in O.n3B/ time by a forward dynamic programming algorithm,
as follows (Kovalyov et al. 2012a). Let L.b; k/ denote the minimum value of the
maximum lateness of the job subset fJB1 ; : : : ; J Bk g when these jobs are scheduled in
EDD order in b batches from time zero. The following recursion formula holds:

L.b; k/ D min
1�i�k�1

n
max

n
L.b � 1; i/; bsB C

kX

jD1
pBj � dBiC1

oo
(4.17)

The recursion function (4.17) is evaluated for 1 � b � k � nB . According
to (4.17), a single batch is appended at the end of a current schedule. Each
value L.b; k/ can be calculated in O.k/ time. Hence, all the values L.b; k/ and
corresponding schedules �.k;b/, 0 � b � k � nB , can be found in O.n3B/ time.
The algorithm is initialized with L.0; 0/ D �1 and �.0;0/ D ;. In conclusion, the
following result holds.

Theorem 4.3. Problem 1jCO; s� batch; C A
max � QjLBmax can be solved in O.nA C

n3B/ time.

4.2.3.3 Problem 1jCO; s � batchjP.C A
max; LB

max/

Let us now turn to problem 1jCO; s � batchjP.CA
max; L

B
max/. Each Pareto optimal

solution can be found by solving a logarithmic number of instances of the "-
constraint problem. However, in this case, the problem is even easier. In fact,
suppose that FB is the value of the optimal solution of 1jCO; s � batch; C A

max �
QjLBmax for someQ. To obtain a Pareto optimal solution, we only need to solve one
instance of the symmetric problem, i.e., 1jCO; s � batch; LBmax � FB jCA

max. If FA is
the optimal value of such an instance, the pair .FA; FB/ is Pareto optimal. Similarly,
the next Pareto optimal solution can be generated by solving 1jCO; s�batch; C A

max �
FA � "jLBmax (for sufficiently small ") and thereafter one instance of the symmetric
problem. In this way, the whole Pareto set can be obtained. Hence, the complexity
of this task is essentially related to the size of the Pareto set. In this case, the Pareto
set has a polynomial number of solutions. This is due to the fact that the structure
of any strict Pareto optimal solution is of the form .�.k;b/;BA; �.kC1// where jobs

160 4 Batching Scheduling Problems

of JA are inserted after certain batches of jobs of JB . The makespan for agent A
is completely determined by the number of jobs k; 0 � k � nB preceding BA and
thereafter the number of batches b; 0 � b � k � nB in the sub-sequence �.k;b/.
Hence, the size of the Pareto set is bounded by O.nB/.

In conclusion, the following result holds:

Theorem 4.4. Problem 1jCO; s�batchjP.CA
max; L

B
max/ can be solved inO.nAnBC

n4B/.

4.2.4 Functions fmax,
P

Cj

4.2.4.1 Problem 1jCO; s � batch; f B
max � Qj P

C A
j

Let us now turn to problem 1jCO; s� batch; f B
max � QjPCA

j . Dealing withQ, we

assume that deadlines QdBj .Q/ on the completion times of jobs JBj are computed in
constant time such that (see Sect. 4.2.1):

f B
j .C

B
j / � Q , CB

j � .f B
j /

�1.Q/
� D QdBj .Q/

�
(4.18)

Let ED.Q/ be the Earliest Deadline order of jobs with respect to these deadlines.
Assume that jobs of agent A are numbered according to the SPT order pA1 � � � � �
pAnA and jobs of agent B are numbered according to ED.Q/ order: QdB1 .Q/ � � � � �
QdBnB .Q/.

The following property proposed in Kovalyov et al. (2012b) holds.

Lemma 4.4. There exists an optimal schedule for the problem 1jCO; s �
batch; f B

max � QjPCA
j , if one exists, in which the jobs of agent A are processed

in the SPT order and the jobs of agent B are processed in the ED.Q/ order,
respectively.

Algorithm 23 (Kovalyov et al. 2012a) is a dynamic programming algorithm that
solves this scheduling problem, where a single batch is appended to the end of a cur-
rent schedule. We denote by F.bA; iA; bB; iB/ the minimum total completion time of
jobs of J A, subject to the condition that the first iA jobs of agentA are scheduled in
bA batches, the first iB jobs of agentB are scheduled in bB batches and the deadlines
for the latter jobs are satisfied. F.bA; iA; bB; iB/ is the recursion function. The opti-
mal value corresponds to minfF.bA; nA; bB; nB/ j 1 � bA � nA; 1 � bB � nBg.

We define C.bA; iA; bB; iB/ the completion time of the last job scheduled:

C.bA; iA; bB; iB/ D sAbA C sBbB C
iAX

iD1
pAi C

iBX

iD1
pBi (4.19)

A decision in the DP algorithm is whether to schedule next a job of agent A or a
job of agent B .

4.2 Two-Agent s-Batching Problems 161

Algorithm 23 for problem 1jCO; s � batch; f B
max � QjPCA

j

1: F.0; 0; bB ; iB/ WD 0 for 0 � bB � iB � nB
2: F.bA; iA; bB; iB/ WD C1 for 1 � bA � iA � nA and 1 � iB � bB � nB
3: Calculate QdBj .Q/ such that f B

j .Cj / � Q

4: for bA WD 0 to nA do
5: for iA WD bA to nA do
6: for bB WD 0 to nB do
7: for iB WD bB to nB do
8: if .bA; iA; bB ; iB/ ¤ .0; 0; 0; 0/ then
9: Calculate C.bA; iA; bB ; iB/ via 4.19

10: F.bA; iA; bB ; iB/ WD minfFA.bA; iA; bB; iB/; F
B.bA; iA; bB; iB/g

11: end if
12: end for
13: end for
14: end for
15: end for

• If a job of agentA is scheduled, there are two cases. If the last batch is a batch of
agentA, either this job is included in this batch or it starts a new batch; Otherwise,
it starts a new batch. In any case, it has no impact on f B

max, the only impact is onP
CA
j . The new cost for A is the cost of the first bA � 1 batches plus the cost

of the last batch. Because we do not know which batch is the last one and how
many jobs it contains, the new cost can be expressed as follows:

F A.bA; iA; bB; iB/ D min
bA�1�j�iA�1

n
F.bA � 1; j; bB ; iB/

C .iA � j /C.bA; iA; bB; iB/
o

• If a job of agent B is scheduled, it has no impact on
P
CA
j and we have to

consider only the limit for f B
max. This sort of decision is only possible if we have

C.bA; iA; bB; iB/ � QdBjC1.Q/. In this case, the cost is unchanged and we have
the following expression:

FB.bA; iA; bB; iB/ D min
bB�1�j�iB�1

n
F.bA; iA; bB � 1; j /

o
C f .bA; iA; bB; iB/

where f .bA; iA; bB; iB/ D 0 if C.bA; iA; bB; iB/ � QdBjC1.Q/ and C1 oth-
erwise. F.bA; iA; bB; iB/ equals the minimum between FA.bA; iA; bB; iB/ and
F B.bA; iA; bB; iB/ (see Algorithm 23).

Since each value F.bA; iA; bB; iB/ can be computed in O.n/ time, the following
result holds.

Theorem 4.5. An optimal solution to problem 1jCO; s � batch; f B
max � QjPCA

i

can be found in O.nn2An
2
B/ time.

162 4 Batching Scheduling Problems

JB
1 JA

2JA
1 JB

2

t
5 2015100 25

sA

BA
1 BB

1

sB sA

BA
2

Fig. 4.6 Solution to the 1jCO; s � batch; f Bmax � QjPCA
j problem

Example 4.5. Let consider the following 4-job instance, where jobs JA1 and JA2
belong to J A and jobs JB1 and JB2 belong to J B :

J kj J A1 J A2 J B1 J B2

pkj 2 4 4 1
dBj 9 11

We assume that the jobs of J B are subject to due dates and that the function f B
j .t/

is defined by:

f B
j .t/ D 2t � dBj ;8j 2 J B

It is easy to see that f B
j .t/ � Q , 2t � dBj � Q , t � .QC dBj /=2. Therefore,

for each job JBj we define a deadline QdBj .Q/ D .Q C dBj /=2. With Q D 19, we
obtain:

JBj J B1 J B2
QdBj 14 15

We suppose that sA D 3 and sB D 2. The optimal solution is given by the sequence
.fJA1 g; fJB1 ; J B2 g; fJA1 g/ (it is not possible in this example to finish the sequence by
a job of agent B for deadline reasons). The sequence is represented in Fig. 4.6. We
have f B

max D max.24 � 9; 24� 11/ D 15 � 19 and
P
CA
j D 5C 19 D 24. ˘

4.2.4.2 Problem 1jCO; s � batch;
P

C A
j

� Qjf B
max

Let us now turn to the symmetric problem, denoted 1jCO; s � batch;
P
CA
j �

Qjf Bmax. We can derive an algorithm that determines whether there exists a solution
to the feasibility problem 1jCO; s � batch;

P
CA
j � Q;f Bmax � yj�, where

y 2 ŒlbB ; ubB� with lbB and ubB given by Eqs. (4.12) and (4.13).
The idea is that problem 1jCO; s�batch;

P
CA
j � Q;f Bmax � yj� has a solution

if and only if there is a schedule in which
P
CA
j � Q and each job of agent B

4.2 Two-Agent s-Batching Problems 163

completes within its deadline QdBj .y/ defined as in (4.18), with y in place of Q.

As usual, we assume that QdBj .y/ is computed in constant time through an explicit
expression for the inverse function .f B

j /
�1.t/.

Suppose that jobs of agent B are numbered according to deadlines, QdB1 .y/ �
� � � � QdBnB .y/ and jobs of agent A are numbered in SPT order, pA1 � � � � � pAnA . Let
ED.y/ be the Earliest Deadline order. We have the following property.

Lemma 4.5. If one exists, there exists a feasible solution to problem 1jCO; s �
batch;

P
CA
i � Q;f Bmax � yj� in which the jobs of agent B are processed in the

ED.y/ order and the jobs of agent A are processed in SPT order.

Hence, a feasible solution can be obtained by dynamic programming Algo-
rithm 23, where we should consider QdBi .y/ instead of QdBi .Q/.

A feasible solution, if it exists, corresponds to the state .bA; nA; bB; nB/ such
that F.bA; nA; bB; nB/ � Q, 1 � bA � nA and 1 � bB � nB . Thus, verifying if
1jCO; s � batch;

P
CA
j � Q;f Bmax � yj� has a solution can be done in O.nn2An

2
B/

time.
So, an optimal solution value for the problem 1jCO; s � batch;

P
CA
i � Qjf Bmax

corresponds to minfy j F.bA; nA; bB; nB/ � Q with 1 � bA � nA; 1 � bB �
nBg. Let YB D ubB � lbB (where ubB and lbB are given by (4.12) and (4.13)). In
conclusion, the following result holds.

Theorem 4.6. An optimal solution to problem 1jCO; s � batch;
P
CA
i � Qjf Bmax

can be found in O.n2An
2
Bn logYB/ time.

4.2.5 Functions fmax,
P

wj Uj

4.2.5.1 Problem 1jCO; s � batch; f B
max � Qj P

wA
j

U A
j

Let us now turn to problem 1jCO; s � batch; f B
max � QjPwAj U

A
j .

Proposition 4.1. The problem 1jCO; s � batch; f B
max � QjPwAj U

A
j is NP-hard.

Proof. If Q is sufficiently large and if the setup time is equal to 0, there is no need
to constitute batches, and the problem is equivalent to the single-agent scheduling
problem 1jjPwj Uj , which is NP-hard (Karp 1972). ut

Given Q, similarly to Sect. 4.2.1, we can associate a deadline QdBj .Q/ to each
job JBj in constant time. Let ED(Q) be the Earliest Deadline order with respect

to deadlines QdBj .Q/. We assume that jobs in J A are numbered in EDD order, i.e.

dA1 � � � � � dAnA , and that jobs in J B are numbered in ED(Q) order, i.e., QdB1 .Q/ �
� � � � QdBnB .Q/. One can easily establish the following property.

Lemma 4.6. If an optimal schedule for problem 1jCO; s � batch; f B
max �

QjPwAj U
A
j exists, there is one in which the late jobs of agent A form a single

164 4 Batching Scheduling Problems

batch that is processed at the end of the schedule, the early jobs of agent A are
processed in EDD order, and the jobs of agent B are processed in ED(Q) order.

In what follows, for simplicity, we write QdBj instead of QdBj .Q/.
Lemma 4.6 allows to devise a dynamic programming solution algorithm.
Let C.iA; iB;WA; k; e/ be the minimum completion time of the last early job, in

a schedule where the first iA jobs of agent A and the first iB jobs of agent B are
scheduled, the total weight of the late jobs for agent A does not exceedWA, the last
scheduled batch is composed of jobs of agent k, k 2 fA;Bg, and the last batch is
.J ke ; J

k
eC1; : : : ; J kik /. Note that if k D A, the last batch must complete within dAe ,

and if k D B , the last batch must complete within QdBe .
In the recursion, a job J kik is scheduled at the end of the partial schedule. There

are five alternatives:

1. The last batch belongs to agent A .k D A/ and either

• Job JAiA is late,
• Or job JAiA is assigned to the last early batch of agent A (if the batch still

completes within dAe),
• Or job JAiA starts a new early batch (if the new batch completes within dAiA).

2. The last batch belongs to agent B .k D B/ and either

• Job JBiB is assigned to the last early batch of agent B (if the batch still

completes within QdBe),
• Or job JBiB starts a new early batch (if the new batch completes within QdBiB).

The dynamic program is given in Algorithm 24, where we have the following
definitions:

�.iA; iB;WA;A; e/ D
�
0 if C.iA � 1; iB;WA;A; e/C pAiA � dAe
C1 otherwise

�.iA; iB;WA;B; e/ D
�
0 if C.iA; iB � 1;WA;B; e/C pBiB � QdBe
C1 otherwise

 1.iA; iB;WA; `; h/ D
�
0 if C.iA � 1; iB;WA; `; h/C sA C pAiA � dAiA
C1 otherwise

 2.iA; iB;WA; `; h/ D
�
0 if C.iA; iB � 1;WA; `; h/C sB C pBiB � QdBiB
C1 otherwise

The optimal value of W �
A is given by:

W �
A D minfWA j C.nA; nB;WA; k; e/ < C1;WA D 0; 1; : : : ; OWA;

k 2 fA;Bg; e D 1; : : : ; nkg

where OWA is the total weight of all jobs in J A.

4.2 Two-Agent s-Batching Problems 165

Algorithm 24 for problem 1jCO; s � batch; f B
max � QjPwAj U

A
j

1: OWA WD PnA
jD1 wAj

2: for k WD A to B do
3: for e WD 1 to nk do
4: C.0; 0; 0; k; e/ WD 0

5: end for
6: end for
7: for k WD A to B do
8: for e WD 1 to nk do
9: if .iA; iB;WA; k; e/ ¤ .0; 0; 0; k; e/ then

10: C.iA; iB;WA; k; e/ WD 1
11: end if
12: end for
13: end for
14: for iA WD 1 to nA do
15: for iB WD 1 to nB do
16: for WA WD 0 to OWA do
17: for k WD A to B do
18: for e WD 1 to ik do
19: if .k D A/ and .e < iA/ then
20: C.iA; iB;WA; A; e/ WD

min

(
C.iA � 1; iB ;WA � wAiA ; A; e/;

C.iA � 1; iB ;WA; A; e/C pAiA C �.iA; iB ;WA; A; e/

21: end if
22: if .k D B/ and .e < iB/ then
23: C.iA; iB;WA; B; e/ WD C.iA; iB � 1;WA; B; e/CpBiB C�.iA; iB ;WA; B; e/

24: end if
25: if .k D A/ and .e D iA/ then
26: C.iA; iB;WA; A; e/ WD

min
n
C.iA � 1; iB ;WA; `; h/C sA C pAiA C 1.iA; iB ;WA; `; h/ W 1 � h �

A� 1 if ` D A and 1 � h � iB if ` D B
o

27: end if
28: if .k D B/ and .e D iB/ then
29: C.iA; iB;WA; B; e/ WD

min
n
C.iA; iB � 1;WA; `; h/C sB C pBiB C 2.iA; iB;WA; `; h/ W 1 � h �

iA if ` D A and 1 � h � B � 1 if ` D B
o

30: end if
31: end for
32: end for
33: end for
34: end for
35: end for
36: return W �

A

166 4 Batching Scheduling Problems

Let us consider the complexity of Algorithm 24. There areO.nAnBn OWA/ entries
for C.nA; nB;WA; k; e/. Each of them can be computed in O.n/, so that we have
the following result.

Theorem 4.7. Algorithm 24 solves problem 1jCO; s � batch; f B
max � QjPwAj U

A
j

in O.nAnBn2 OWA/ time.

For the unweighted case, because OWA D nA, the algorithm runs in polynomial
time.

Corollary 4.1. Algorithm 24 solves 1jCO; s � batch; f B
max � QjPUA

j in time
O.n2AnBn

2/.

4.2.5.2 Problem 1jCO; s � batch;
P

wA
j

U A
j

� Qjf B
max

Let us now turn to the symmetric problem 1jCO; s � batch;
P

wAj U
A
j � Qjf B

max.
The resolution of this problem will use Algorithm 24 iteratively.

Let consider a given value of y 2 ŒlbB; ubB�, lbB and ubB given by Eqs. (4.12)
and (4.13). It is possible to solve problem 1jCO; s � batch; f B

max � yjPwAj U
A
j by

Algorithm 24. If the value of W �
A is less than or equal to Q, y can be decreased,

otherwise, y has to be increased. Fixing the optimal value of y can be done by a
binary search.

Therefore, an optimal schedule for 1jCO; s � batch;
P

wAj U
A
j � Qjf Bmax can be

obtained in O..nAnBn/Q logYB/ with YB D ubB � lbB .

Corollary 4.2. Algorithm 24 used iteratively as described above can solve problem
1jCO; s � batch;

P
UA
j � Qjf Bmax in O.n2AnBn log YB/, i.e. in polynomial time,

becauseQ � nA.

4.2.5.3 Problem 1jCO; s � batchjP.f A
max;

P
U B

j
/

Let us now consider problem 1jCO; s�batchjP.f Amax;
P
UB
j /. Each Pareto optimal

solution can be found by solving a logarithmic number of instances of the "-
constraint problem. However, in this case, the problem is even easier. Let consider
that FA�

QDnB denotes the value of the optimal solution for agent A to problem
1jCO; s � batch;

P
UB
j � Qjf Amax with Q D nB . To obtain a first Pareto optimal

solution, we only need to solve one instance of the symmetric problem, i.e.,
1jCO; s � batch; f A

max � QjPUB
j with Q D FA�

QDnB . If UB�
Q denotes the optimal

value of this problem, the pair .F A
QDnB ; U

B�
Q / is a Pareto optimal solution.

The next Pareto optimal solution can be generated by solving problem 1jCO; s�
batch;

P
UB
j � Qjf Amax problem with Q D nB � 1. We obtain an optimal solution

with value F A�
QDnB�1 and the symmetric problem is solved, and so on. By doing

this, the whole Pareto set can be obtained. Hence, the complexity of this algorithm

4.2 Two-Agent s-Batching Problems 167

is essentially related to the size of the Pareto set. In this case, the Pareto set has a
polynomial number of solutions, which is bounded by nB . Hence, the size of the
Pareto set is bounded by O.nB/.

In conclusion, the following result holds.

Theorem 4.8. Problem 1jCO; s � batchjP.f Amax;
P
UB
j / can be solved in

O.n2AnBn
2/ time.

4.2.6 Functions Cmax,
P

Cj

4.2.6.1 Problem 1jCO; s � batch;
P

C B
j

� QjC A
max

Let us now turn to problem 1jCO; s � batch;
P
CB
j � QjCA

max. Assume that the
jobs of agentB are numbered in SPT order pB1 � � � � � pBnB . We have the following
property (Kovalyov et al. 2012b).

Lemma 4.7. If an optimal schedule for problem 1jCO; s�batch;
P
CB
j � QjCA

max
exists, there is one in which the jobs of agent A form a single batch and the jobs of
agent B are processed in SPT order.

By the same reasoning as presented in Sect. 4.2.3.1, and according to Lemma 4.7,
an optimal schedule is of the form .�B;BA; � 0

B/ where �B and � 0
B (possibly empty)

contain only batches of jobs of agent B , and BA is the only batch of agent A jobs.
We remark that for each solution of the form .�B;BA; � 0

B/, the makespan CA
max

only depends on the number of jobs k and the number of batches b in the partial
schedule �B . Hence, as in Sect. 4.2.3.2, given k and b, the problem reduces to
constructing two schedules:

• �B D �.k;b/, that minimizes the total completion time of the job set
fJB1 ; : : : ; J Bk g starting at time zero and forming b batches,

• � 0
B D �.kC1/, that minimizes the total completion time of jobs at the end of the

schedule fJBkC1; : : : ; J BnB g, assuming that they start at time zero.

Hence, the optimal schedule corresponds to the minimum value of:

CA
max.k; b/ D b:sB C

kX

jD1
pBj C sA C PA (4.20)

over .b; k/ such that 0 � b � k � nB and such that:

kX

jD1
CB
j .�

.k;b//C .nB � k/CA
max.k; b/C

nBX

jDkC1
CB
j .�

.kC1// � Q (4.21)

168 4 Batching Scheduling Problems

Algorithm 25 for problem 1jCO; s � batch;
P
CB
i � QjCA

max

1: Renumber jobs of agent B in SPT order
2: F.0; 0/ WD 0

3: F.1; k/ D k.sB CPk
iD1 p

B
i / == initial value

4: for b WD 2 to nB do
5: for k WD b to nB do

6: F.b; k/ WD min1�j�k�1

n
F.b � 1; j /C .k � j /

�
bsB CPk

iD1 p
B
i

	o

7: end for
8: end for
9: return CA

max.k; b/ defined in (4.20) and satisfying (4.21)

The whole set of schedules �.kC1/, 0 � k � nB � 1, can be found in O.n2B/
time by a backward dynamic programming algorithm with batch insertion proposed
by Coffman et al. (1990). Such an algorithm solves the single-agent problem 1js �
batchjPCj to optimality and works as follows.

Given the job set fJ1; : : : ; Jng, let F.i/ be the minimum value of the total
completion time restricted to the job set fJi ; JiC1; : : : ; Jng, where the schedule starts
at time zero with a setup time s. The recursion function for i D n; n � 1; : : : ; 1 is:

F.i/ D min
iC1�h�nC1

n
F.h/C .n � i C 1/

�
s C

h�1X

jDi
pj

	o
(4.22)

For each value of h, formula (4.22) considers that a batch .Ji ; : : : ; Jh�1/ is
appended at the beginning of the partial schedule containing jobs .Jh; : : : ; Jn/.
Such first batch completes at time s C Ph�1

jDi pj and, therefore, its contribution

to the total completion time is .h � i/
�
s C Ph�1

jDi pj
	

. Due to the insertion of

this batch, the processing of the subsequent batches (containing jobs Jh; : : : ; Jn)
is delayed by time sCPh�1

jDi pj , so the contribution of subsequent batches becomes

F.h/C .n � h C 1/
�
s C Ph�1

jDi pj
	

. Adding up the two contributions, we get the

expression (4.22), which is initialized with F.nC 1/ D 0.
For what concerns schedules �.k;b/, 0 � b � k � nB , these can all be found

by the dynamic programming Algorithm 25 (Kovalyov et al. 2012a), where a single
batch is appended at the end of a current schedule and F.b; k/ is the minimum total
completion time of jobs fJB1 ; : : : ; J Bk g in b batches from time zero.

For given k and b, the value F.b; k/ is computed in O.k/ time. Hence, all the
values F.b; k/ and corresponding schedules �.k;b/, 0 � b � k � nB , can be found
in O.n3B/ time. In conclusion, considering that PA can be computed in O.nA/, the
following theorem holds.

Theorem 4.9. The problem 1jCO; s � batch;
P
CB
i � QjCA

max can be solved in
O.n3B C nA/ time.

4.2 Two-Agent s-Batching Problems 169

Note that (4.22) and Algorithm 25 can also be used to solve the symmetric
problem 1jCO; s�batch; C A

max � QjPCB
j . In fact, one only needs to select, among

the O.n2B/ pairs .k; b/, the one such that

CA
max.�

.k;b// D bsB C
kX

jD1
pBj C sA C PA � Q

and that minimizes

kX

jD1
CB
j .�

.k;b//C .nB � k/

�

bsB C
kX

jD1
pBj C sA C PA

C
nBX

jDkC1
CB
j .�

.kC1//:

4.2.6.2 Problem 1jCO; s � batchjP.C A
max;

P
C B

j
/

Let us now consider problem 1jCO; s�batchjP.CA
max;

P
CB
j /. Each Pareto optimal

solution can be found by solving a logarithmic number of instances of the "-
constraint problem. However, suppose that FB

Q is the value of the optimal solution
of problem 1jCO; s � batch; C A

max � QjPCB
j . Let Q D T D nAsA C nBsB C

P
i2JA pAi CP

i2J B pBi . To obtain a Pareto optimal solution, we only need to solve
one instance of the symmetric problem, i.e., problem 1jCO; s � batch;

P
CB
j �

FB
Q jCA

max. If FA is the optimal value of the problem, the pair .F A; F B
Q / is Pareto

optimal. Similarly, the next Pareto optimal solution can be generated by solving
1jCO; s � batch; C A

max � FA � pBk jPCB
i where pBk is the processing time of the

job of agent B scheduled just before the first job of agent A in the previous Pareto
solution, and thereafter one instance of the symmetric problem. In this way, the
whole Pareto set can be obtained. Note that the scheduling of jobs of agentB which
are processed after J A is given by solving problem 1jCO; s�batchjPCj by using
the algorithm of Coffman et al. (1990).

Hence, the complexity of this enumeration is essentially related to the size of the
Pareto set. In this case, the Pareto set has a polynomial number of solutions. This is
due to the fact that the structure of any strict Pareto optimal solution is of the form
.�.k;b/;BA; �.kC1// where jobs of J A are inserted after certain batches of jobs of
J B . The makespan for agent A is completely determined by the number of jobs
k; 0 � k � nB preceding BA and the number of batches b; 0 � b � k � nB in the
sub-sequence �.k;b/. Hence, the size of the Pareto set is bounded by O.nB/.

In conclusion, the following result holds.

Theorem 4.10. Problem 1jCO; s�batchjP.CA
max;

P
CB
j / can be solved inO.n4BC

nAnB/.

170 4 Batching Scheduling Problems

4.2.7 Functions
P

Cj ,
P

Cj

4.2.7.1 Problem 1jCO; s � batch;
P

C B
j

� Qj P
C A

j

Let us now turn to problem 1jCO; s � batch;
P
CB
j � QjPCA

j . Its NP-
hardness follows from the complexity of problem 1jCO;

P
CB
j � QjPCA

j (see
Theorem 3.20, page 110), since the former problem reduces to the latter letting
sA D sB D 0.

By a simple pairwise argument, one can establish the following lemma.

Lemma 4.8. There exists an optimal schedule for 1jCO; s � batch;
P
CB
j �

QjPCA
j problem, if one exists, in which the jobs of each agent are processed in

SPT order.

Based on Lemma 4.8, a pseudo-polynomial time dynamic programming algo-
rithm can be derived. Assume that the jobs are numbered in SPT order, i.e.,
pA1 � � � � � pAnA and pB1 � � � � � pBnB .

Let F.iA; iB; q/ be the value of the optimal solution of the problem restricted to
the job set fJAiA; J AiAC1; : : : ; J AnAg [fJBiB ; J BiBC1; : : : ; J BnB g starting at time 0, provided
that the total completion time for agent B is smaller than or equal to q. In the
functional equation, the contribution of a single batch appended at the beginning
of the schedule is taken into account.

We denote by FA.iA; iB; q/ the total completion time of agentA if the decision is
to schedule job JAiA just before the solution obtained with F.iA C 1; iB; q/. This job
can constitute a new batch, either only with this job or with other jobs already sched-
uled. Therefore, we will consider these possibilities in the recursive relation. Simi-
larly, we denote by FB.iA; iB; q/ the total completion time of agentA if the decision
is to schedule job JBiB before the solution obtained with F.iA C 1; iB; q/. We have:

F A.iA; iB; q/ D nAC1
min

jDiAC1

n
F
�
j; iB ; q � n.iB /B P

.iA;j�1/
A

	
C n

.iA/
A P

.iA;j�1/
A

o

with P
.i;j /

k D sk C Pj

hDi pkh for 1 � i � j � nk , 8k 2 fA;Bg and

n
.ik/

k D nk � ik C 1 the number of jobs of agent k already scheduled.

F B.iA; iB; q/ D nBC1
min

jDiBC1

n
F
�
iA; j; q � n

.iB/
B P

.iB ;j�1/
B

	
C n

.iA/
A P

.iB ;j�1/
B

o

Notice that FA.iA; iB; q/ and F B.iA; iB; q/ are set to C1 if q > Q.

The optimal solution �� is given by

min
n
F.1; 1; q/ W q 2 ŒsB C

nBX

jD1
pBj ;Q�

o

4.2 Two-Agent s-Batching Problems 171

Algorithm 26 for problem 1jCO; s � batch;
P
CB
j � QjPCA

j

1: for k WD A to B do
2: for i WD 1 to nk do
3: for j WD i to nk do
4: Compute P .i;j /

A

5: Compute P .i;j /
B

6: end for
7: end for
8: end for
9: F.nA C 1; nB C 1; 0/ WD 0

10: for iA WD 1 to nA do
11: for iB WD 1 to nB do
12: for q WD 1 to Q do
13: if .iA; iB ; t / ¤ .nA C 1; nB C 1; 0/ then
14: F.iA; iB; t / WD C1
15: end if
16: end for
17: end for
18: end for
19: for iA WD nA downto 1 do
20: for iB WD nB downto 1 do
21: for q D 0 to Q do
22: if .iA; iB/ ¤ .nA; nB/ then

23: F.iA; iB; q/ WD min
n
FA.iA; iB ; q/; F

B.iA; iB ; q/
o

24: end if
25: end for
26: end for
27: end for
28: return ��

The corresponding dynamic programming algorithm is presented in details in
Algorithm 26.

For each choice of the values iA and iB , F.iA; iB; t/ is computed in O.n/

time. Hence, the necessary time to compute all values F.iA; iB; t/ is no more than
O.nAnBnQ/ time. In conclusion, the following result holds.

Theorem 4.11. An optimal solution to problem 1jCO; s � batch;
P
CB
j �

QjPCA
j can be found in O.nAnBnQ/ time.

4.2.7.2 Problem 1jCO; s � batchjP.
P

C A
j

;
P

C B
j

/

We now consider the problem 1jCO; s � batchjP.PCA
j ;
P
CB
j /. Even in the

COMPETING scenario of the single machine problem without batches, denoted
1jCOjP.PCA

j ;
P
CB
j /, the size of the Pareto set may not be polynomial (see

Sect. 3.9.2). Hence, the size of the Pareto set with batches is also exponential.

172 4 Batching Scheduling Problems

4.2.8 Functions
P

wj Uj ,
P

wj Uj

4.2.8.1 Problem 1jCO; s � batch;
P

wB
j

U B
j

� Qj P
wA

j
U A

j

Let us now turn to problem 1jCO; s � batch;
P

wBj U
B
j � QjPwAj U

A
j .

Proposition 4.2. The problem 1jCO; s � batch;
P

wBj U
B
j � QjPwAj U

A
j is

NP-hard.

Proof. The result follows from the NP-hardness of the single-agent problem
1jjPwj Uj (Karp 1972). ut

Before introducing a pseudo-polynomial dynamic programming algorithm to
solve problem 1jCO; s � batch;

P
wBj U

B
j � QjPwAj U

A
j , we give some properties

to characterize the optimal solutions of this problem.
The first property is that we can put all late jobs of each agent into one batch

scheduled after all “early” batches. Hence, an optimal schedule is of the form
.E.kA;kB /; T .nA�kA;nB�kB// where E.kA;kB / is the subsequence of kA jobs of agent
A and kB jobs of agent B that are early and are scheduled first in b batches, and
T .nA�kA;nB�kB/ is the subsequence of nA � kA jobs of agent A forming at most one
batch and nB � kB jobs of agent B forming at most one batch, and are scheduled at
the end of the sequence.

For the second property, we have.

Lemma 4.9. If an optimal schedule for problem 1jCO; s � batch;
P

wBj U
B
j �

QjPwAj U
A
j exists, there is one in which the early jobs of each agent are processed

in EDD order.

Proof. Consider an optimal schedule for which the property does not hold, i.e.,
batch Bk` of agent k (k is either A or B), is scheduled before batch Bkt with J ki 2 Bk`
and J kj 2 Bkt , dkj < dki and both batches are early. Thus, if we move job J ki from

Bk` to Bkt , the completion time of batch Bk` (as well as the completion time of all
batches between Bk` and Bkt) is reduced by pki , without increasing the completion
time of batch Bkt , and hence J ki remains early. Continuing this exchange reasoning,
we obtain an optimal schedule with the desired property. ut

According to previous properties, we assume that the jobs of each agent are
numbered in EDD order, i.e., dA1 � � � � � dAnA and dB1 � � � � � dBnB .

A dynamic programming algorithm can be proposed, similar to the algorithm for
the single-agent problem given in Brucker and Kovalyov (1996), and following a
similar reasoning that led to Algorithm 24.

Let C.iA; iB;WA;WB; k; e/ be the minimum completion time of the last early
job, in a schedule with the first iA jobs of agent A and the first iB jobs of agent B ,
in which the total weights of late jobs do not exceedWA andWB for the two agents,
respectively, the last scheduled batch is of agent k, k 2 fA;Bg, and the last batch is
.J ke ; J

k
eC1; : : : ; J kik /. Note that the last batch must complete within dke .

4.2 Two-Agent s-Batching Problems 173

In the recursion, a job J kik is added to the end of a partial schedule. There are
three alternatives:

1. Job J kik is late,
2. Job J kik is assigned to the last early batch of agent k (if the batch still completes

within dke),
3. Job J kik starts a new early batch (if the new batch completes within dkik).

The dynamic program is given in Algorithm 27, where we have:

�.iA; iB;WA;WB;A; e/

D
�
0 if C.iA � 1; iB;WA;WB;A; e/C pAiA � dAe
C1 otherwise

�.iA; iB;WA;WB;B; e/

D
�
0 if C.iA; iB � 1;WA;WB;B; e/C pBiB � dBe
C1 otherwise

 1.iA; iB;WA;WB; `; h/

D
�
0 if C.iA � 1; iB;WA;WB; `; h/C sA C pAiA � dAiA
C1 otherwise

 2.iA; iB;WA;WB; `; h/

D
�
0 if C.iA; iB � 1;WA;WB; `; h/C sB C pBiB � dBiB
C1 otherwise

The optimal valueW �
A is given by:

W �
A D minfWA j C.nA; nB;WA;WB; k; e/ < C1;WA D 0; 1; : : : ; OWA;

WB D 0; 1; : : : ;Q; k 2 fA;Bg; e D 1; : : : ; nkg;

where OWA is the sum of all weights of agentA. In conclusion, one has the following
theorem.

Theorem 4.12. An optimal schedule for 1jCO; s�batch;
P

wBj U
B
j � QjPwAj U

A
j

can be found in time in O..n2AnB C nAn
2
B/

OWAQ/.

Note that this implies that the unweighted problem 1jCO; s � batch;
P
UB
j �

QjPUA
j can be solved in polynomial time, since OWA D nA and Q � nB .

Corollary 4.3. This dynamic programming algorithm solves the scheduling prob-
lem 1jCO; s � batch;

P
UB
j � QjPUA

j in O.n3An
2
B C n2An

3
B/ time.

174 4 Batching Scheduling Problems

Algorithm 27 for problem 1jCO; s � batch;
P

wBj U
B
j � QjPwAj U

A
j

1: OWA WD PnA
jD1 wAj

2: C.0; 0; 0; 0; k; e/ WD 0

3: for k WD A to B do
4: for e WD 1 to nk do
5: if .iA; iB;WA;WB; k; e/ ¤ .0; 0; 0; 0; k; e/ then
6: C.iA; iB ;WA;WB; k; e/ WD C1
7: end if
8: end for
9: end for

10: for iA WD 1 to nA do
11: for iB WD 1 to nB do
12: for WA WD 0 to OWA do
13: for WB WD 0 to Q do
14: for k 2 fA;Bg and e D 1; : : : ; ik do
15: if .k D A/ and .e < iA/ then
16: v1 WD C.iA � 1; iB ;WA � wAiA ;WB; A; e/

17: v2 WD C.iA � 1; iB ;WA;WB; A; e/C pAiA C �.iA; iB ;WA;WB; A; e/

18: C.iA; iB;WA;WB; A; e/ WD minfv1I v2g
19: end if
20: if (k D B) and (e < iB) then
21: v1 WD C.iA; iB � 1;WA;WB � wBiB ; B; e/
22: v2 WD C.iA; iB � 1;WA;WB; B; e/C pBiB C �.iA; iB;WA;WB; B; e/

23: C.iA; iB;WA;WB; B; e/ WD minfv1I v2g
24: end if
25: if .k D A/ and .e D iA/ then
26: v1 WD min

1�h�iA�1
fC.iA � 1; iB ;WA;WB; A; h/ C sA C pAiA C

 1.iA; iB;WA;WB; A; h/g
27: v2 WD min

1�h�iB
fC.iA � 1; iB ;WA;WB; B; h/ C sA C pAiA C

 1.iA; iB;WA;WB; B; h/g
28: C.iA; iB;WA;WB; A; e/ WD minfv1I v2g
29: end if
30: if .k D B/ and .e D iB/ then
31: v1 WD min

1�h�iA
fC.iA; iB � 1;WA;WB; A; h/ C sB C pBiB C

 2.iA; iB;WA;WB; A; h/g
32: v2 WD min

1�h�iB�1
fC.iA; iB � 1;WA;WB; B; h/ C sB C pBiB C

 2.iA; iB;WA;WB; B; h/g
33: C.iA; iB;WA;WB; B; e/ WD minfv1I v2g
34: end if
35: end for
36: end for
37: end for
38: end for
39: end for
40: return W �

A

4.3 Two-Agent P-Batching Problems 175

4.2.8.2 Problem 1jCO; s � batchjP.
P

U A
j

;
P

U B
j

/

We next address problem 1jCO; s � batchjP.PUA
j ;
P
UB
j /. Without loss of

generality, let assume that nA � nB . In order to compute the Pareto set for problem
1js � batchjP.PUA

j ;
P
UB
j /, one can solve at most nA C 1 problems of type

1js � batch;
P
UA
j � QjPUB

j for Q D nA; nA � 1; : : : ; 0. In conclusion, the
following result holds:

Theorem 4.13. Problem 1jCO; s � batchjP.PUA
j ;
P
UB
j / can be solved in

O.n4An
2
B C n3An

3
B/ time.

4.3 Two-Agent P-Batching Problems

In this section, we consider two sets of jobs J A and J B owned by two competing
agents A and B , on an unbounded single parallel batching machine on which the
jobs can be processed in batches. All jobs in the same batch start and finish their
processing at the same time. The processing time of each batch is equal to the
longest processing time of the jobs in the batch.

As in the previous section, the jobs should be scheduled on the parallel-batching
machine under the restriction that jobs of different agents cannot be processed in
a common batch. In the following, we only address the COMPETING scenario, and
results for various combinations of regular scheduling criteria are presented.

4.3.1 Preliminary Results

We start by establishing a simple but important property. If there are two jobs
belonging to the same agentJ ki and J kj such thatpki � pkj and dki 	 dkj , then J ki can

always be assigned to the same batch as job J kj . As its contribution to the objective

function value is dominated by J kj , we can delete J ki from J k without affecting the

solution, and we can discard J ki from further consideration. Therefore, whenever
the job due dates are relevant, one can assume without loss of generality that SPT
and EDD orders coincide, i.e., pk1 � pk2 � : : : � pknk and dk1 � dk2 � : : : � dknk ,
8k 2 fA;Bg.

For the single-agent batching scheduling problem with any regular objective
function f , denoted 1jp � batchjf , Brucker et al. (1998) show that there exists
an optimal schedule which is an SPT-batch schedule, i.e., a schedule where each
batch is formed by jobs which are consecutive in the SPT ordering of all jobs. This
result is generalized by Li and Yuan (2012) to the two-agent case.

Property 4.1. For any pair f A; f B of regular objective functions, there exists an
optimal schedule for problem 1jp � batch; f B � Qjf A such that the jobs of each
batch are consecutive in the SPT ordering of the jobs of the respective agent.

176 4 Batching Scheduling Problems

t
50 10 15 20

J1

J2

J3

J4

J5

J6

J7

J8

J9

J10

Fig. 4.7 Illustration of an SPT-batch schedule

As usual, when f k is a max-type function which is bounded, we associate with
each job J kj a deadline Qdkj .Q/ as described in Sect. 4.2.1. A schedule is feasible if
and only if all the deadlines are respected.

In view of these results, we assume in the following that the jobs of each agent are
numberer according to SPT order. Moreover, note that the batch set-up time s can
be added to each processing time, and hence it can be disregarded. In the following
we therefore assume that set-up times are equal to zero.

Example 4.6. Let consider the following 10-job instance with only one agent (jobs
are numbered in SPT order).

Jj J1 J2 J3 J4 J5 J6 J7 J8 J9 J10

pkj 1 2 3 3 6 7 8 8 9 11

We represent in Fig. 4.7 an SPT-batch schedule with three batches. ˘

4.3.2 Functions fmax, fmax

4.3.2.1 Problem 1jCO; p � batch; f B
max � Qjf A

max

Let us consider problem 1jCO; p � batch; f B
max � Qjf Amax. The problem is solved

by applying a binary search to the feasibility problem 1jCO; p � batch; f B
max �

Q;f Amax � yj�, with y 2 ŒlbA; ubA�, lbA and ubA given by Eqs. (4.12) and (4.13).
For each value y and Q, one can compute deadlines QdAi .y/ and QdBi .Q/ for the

completion times of jobs of J A and J B , respectively. The idea is that problem
1jCO; p � batch; f B

max � Q;f Amax � yj� has solution if and only if there is a
schedule in which each job completes within its deadline. The Qdkj are computed in
constant time, because we assume that we have an explicit expression for the inverse
function .f k

j /
�1.t/, 8J kj , k 2 fA;Bg.

Recall that all the jobs of agent A are numbered so that pA1 � pA2 � � � � �
pAnA and dA1 � dA2 � � � � � dAnA . Li and Yuan (2012) propose a forward dynamic

4.3 Two-Agent P-Batching Problems 177

Algorithm 28 for problem 1jCO; p � batch; f A
max � y; f B

max � Qj�
1: Cy.0; 0/ WD 0

2: for iA WD 1 to nA do
3: for iB WD 1 to nB do
4: Compute �1.iA; iB/
5: Compute �2.iA; iB/
6: if .�1.iA; iB/ D ;/ and .�2.iA; iB/ D ;/ then
7: Cy.iA; iB/ WD C1
8: else
9: vA1 WD min`A2�1.iA;iB /fCy.`A; iB/C pAiAg

10: vB1 WD min`B2�2.iA;iB /fCy.iA; `B/C pBiB g
11: Cy.iA; iB/ WD min

˚
vA1 ; v

B
1

�

12: end if
13: end for
14: end for
15: if Cy.nA; nB/ ¤ C1 then
16: return ‘Schedule is feasible’
17: else
18: return ‘Schedule is not feasible’
19: end if

programming algorithm to solve problem 1jCO; p-batch; f B
max � Q;f A

max � yj� in
polynomial time, described in Algorithm 28.

For a given y, Cy.iA; iB/ denotes the minimum makespan for SPT-batch
schedules containing jobs fJA1 ; : : : ; J AiAg [fJB1 ; : : : ; J BiB g, respecting f A

max � y and
f B

max � Q for the first iA and iB jobs of both agents. We set Cy.iA; iB/ D C1 if
there is no feasible schedule for jobs fJA1 ; : : : ; J AiAg [fJB1 ; : : : ; J BiB g, i.e. no feasible

schedule for these jobs respects their deadline QdAj .y/ and QdBj .Q/.
In Algorithm 28, we denote by �1.iA; iB/ the set of indices of jobs of agent A,

starting from `A, that can be scheduled in the same batch as JAiA and such that the
deadline of job JA`AC1 is respected. Suppose that the last current batch belongs to
agent A, and call JA`AC1 the first job of A in the last current batch. In this case,
�1.iA; iB/ is the set of candidate values for index `A. Note that since the last batch
spans from JA`AC1 to JAiA , its length is given by pAiA and it has to complete within
dA`1CA.y/. Hence, one has:

�1.iA; iB/ D ˚
0 � `A � iA � 1 W Cy.`A; iB/C pAiA � QdA`AC1.y/

�

Similarly, if the last batch belongs to B , and contains jobs .J B`BC1; : : : ; J BiB /, the
set �2.iA; iB/ of candidate values for index `B must ensure that the last batch can
feasibly complete within its deadlines, hence:

�2.iA; iB/ D ˚
0 � `B � iB � 1 W Cy.iA; `B/C pBiB � QdB`BC1.Q/

�

Note that the recursion described in Algorithm 28 can be stopped, and one can
deduce that there is no feasible solution, if Cy.iA; iB/ D C1 has been obtained

178 4 Batching Scheduling Problems

JB
1

JA
2 JB

3

JA
1

JB
2

t
50 10

BA

BB

if Q ≥ 11

JB
1

JA
2JB

3

JA
1

JB
2

5
t

0 10

BA

BB

if Q ≤ 10

Fig. 4.8 Two solutions for the 1jCO; p � batch; CB
max � QjCA

max problem

for some .iA; iB/. For a given y, this dynamic programming algorithm requires
O.nnAnB/ time to compute Cy.nA; nB/.

Let YA D ubA � lbA. To solve the two-agent batching problem, we only need to
determine minfy W Cy.nA; nB/ < C1g, which can be done by using binary search
on YA. For each value of y, we first compute the deadline QdAj .y/ for jobs of agent
A, then we call the dynamic programming algorithm to determine Cy.nA; nB/. In
conclusion one has the following result.

Theorem 4.14. Problem 1jCO; p � batch; f B
max � Qjf Amax can be solved in

O.nnAnB logYA/ time.

4.3.3 Functions Cmax, Cmax

4.3.3.1 Problem 1jCO; p � batch; C B
max � QjC A

max

Let us now turn to problem 1jCO; p�batch; C B
max � QjCA

max. As for the serial batch
problem 1jCO; s � batch; C B

max � QjCA
max, presented in Sect. 4.2.2.1, the following

property holds.

Property 4.2. In the problem 1jCO; p � batch; C B
max � QjCA

max, if an optimal
schedule exists, there is one in which all jobs of agent A are scheduled in a single
batch and all jobs of agent B are scheduled in a single batch.

Example 4.7. Let consider the following 5-job instance with nA D 2 and nB D 3:

J kj J A1 J A2 J B1 J B2 J B3

pkj 4 5 3 2 6

If Q � 10, it is not possible to schedule the batch BB of J B last, therefore the
solution is .BB;BA/. If Q 	 11, the solution is .BA;BB/. Figure 4.8 gives these
two solutions. ˘

4.3 Two-Agent P-Batching Problems 179

Algorithm 29 for problem 1jCO; p � batch; C B
max � QjCA

max

1: if max1�j�nAfpAj g C max1�j�nB fpBj g � Q then
2: Schedule jobs of agent A in the first batch
3: Schedule jobs of agent B in the second batch
4: � WD J AjJ B == concatenation of two job sets
5: else
6: if max1�j�nB fpBj g � Q then
7: Schedule jobs of agent B in the first batch
8: Schedule jobs of agent A in the second batch
9: � WD J B jJ A

10: end if
11: end if
12: if � ¤ ./ then
13: return �
14: else
15: return ‘There is no feasible solution’
16: end if

In conclusion one has the following result.

Theorem 4.15. By using Algorithm 29, problem 1jCO; p � batch; C B
max � Qjf Amax

can be solved in O.n/ time.

4.3.4 Functions Cmax, Lmax

4.3.4.1 Problem 1jCO; p � batch; LB
max � QjC A

max

Let us now consider the problem 1jCO; p � batch; LBmax � QjCA
max. It is easy to see

that the following lemma holds.

Lemma 4.10. There exists an optimal schedule for the problem 1jCO; p �
batch; LBmax � QjCA

max, if one exists, in which the jobs of agent A form a single
batch and the jobs of agent B are processed in SPT-batch sequence.

Proof. This results from Property 4.1 where SPT -batch sequence is dominant and
it is easy to show that all jobs of agent A are scheduled in a single batch. ut

Let BA be the only batch of agent A. According to Lemma 4.10, the optimal
schedule is of the form .�B;BA; � 0

B/ where �B and � 0
B are sequences of batches of

agent B , one of them being possibly empty. It means that �B is the partial schedule
of the first j jobs of agent B and the nB � j remaining jobs define the partial
schedule � 0

B .
Note that LBmax � Q is equivalent to CB

j � QdBj , j D 1; : : : ; nB , where QdBj D
dBj CQ. Note that in view of Property 4.1, we can assume dB1 � dB2 � � � � � dBnB .

180 4 Batching Scheduling Problems

The overall idea for solving problem 1jCO; p � batch; LBmax � QjCA
max is the

following:

Step 1. To determine the optimal sub-sequence �B , we solve the single-agent,
bicriteria p-batch problem 1jp � batchjP.Cmax; Lmax/ on the first j jobs
of agent B . This step is done by using the algorithm of He et al. (2007).

Step 2. To determine the optimal sub-sequence � 0
B , we solve the single-agent,

monocriterion p-batch problem 1jp � batchjLmax only on the remaining
jobs of agent B . This step is done by using the algorithm of Brucker et al.
(1998).

Step 1: Computing �B by Solving 1jBI; p � batchjP.LBmax; C
A
max/

In view of the structure .�B;BA; � 0
B/ of an optimal schedule, in order to compute

�B , we observe that the starting time of � 0
B is equal to the completion time of �B

plus max1�i�nAfpAi g. Hence, we have to consider all the compromise solutions with
criteria LBmax and CB

max for the first j jobs of J B . Therefore, one must solve nB C 1

bicriteria problems 1jBI; p � batchjP.Lmax; Cmax/, for the first j jobs of J B , 0 �
j � nB . It is shown in He et al. (2007) that the number of Pareto optimal points for
1jBI; p�batchjP.Cmax; Lmax/ is bounded byO.n2/, therefore the procedure can run
in O.n3B/ time. Before describing the method, we show the following proposition.

Property 4.3. There exists an optimal solution N� D . N�B;BA; N� 0
B/ of problem

1jCO; p � batch; LBmax � QjCA
max, such that N�B is a Pareto optimal solution of

problem 1jBI; p � batchjP.Lmax; Cmax/ restricted to the jobs in N�B .

Proof. Let �� D .�B
�;BA; � 0

B
�
/ be an optimal solution of problem 1jCO; p �

batch; LBmax � QjCA
max. If �B� is not Pareto optimal for problem 1jBI; p �

batchjP.Cmax; Lmax/, there exists a Pareto optimal schedule � of the first j jobs
of agent B that dominates it, i.e., such that Cmax.�/ � CB

max.�B
�/ and LBmax.�/ �

LBmax.�B
�/. Let N� D .�;BA; � 0

B
�
/ be the schedule obtained from �� by replacing

the partial schedule �B� with � . Clearly,CA
max. N�/ D CB

max.�/CpAmax � CB
max.�

�/C
pAmax D CA

max.�
�/, and since �� is optimal, CA

max. N�/ D CA
max.�

�/. Now LBmax. N�/ D
max

˚
LBmax.�/; Lmax.�

0
B

�
/
�
. Since LBmax.�

�/ D max
˚
LBmax.�B

�/; Lmax.�
0
B

�
/
�

and
LBmax.�/ � LBmax.�B

�/, then LBmax. N�/ � LBmax.�
�/ � Q. Hence, N� is feasible and

optimal for 1jCO; p � batch; LBmax � QjCA
max. ut

Step 2: Computing � 0
B by Solving 1jp � batchjLmax

First of all, we recall the dynamic programming algorithm presented in Brucker et al.
(1998) for the single-agent parallel batching problem 1jp�batchjLmax. Solving this
problem with the remaining jobs of J B will easily allow to check if the condition
LBmax � Q holds.

Let L.i/ be the minimum value of the maximum lateness for SPT-batch
schedules containing jobs Ji ; JiC1; : : : ; Jn, if the processing starts at time zero. Let

4.3 Two-Agent P-Batching Problems 181

B D fJi ; : : : ; Jj�1g (with processing time pj�1) be the first batch. Its lateness is
given by pj�1 � di . The insertion of such batch delays by pj�1 all subsequent
batches, so that their overall maximum lateness is therefore L.j / C pj�1. In
conclusion, we get the following recursion function.

L.i/ D min
iC1�j�nC1

˚
maxfL.j /C pj�1; pj�1 � di g

�
(4.23)

for i D n; n � 1; : : : ; 1. The initial value is L.nC 1/ D �1 and the optimal value
is given by L.1/. It can be computed in O.n2/ time.

Hence, for a given j , the second partial schedule � 0
B for an optimal solution can

be obtained by solving the 1jp�batchjLmax problem, by applying this DP algorithm
to the jobs .j; : : : ; nB/ if the first batch starts at the completion time of job JBj plus
pAmax. This step is done in O.n2B/ time.

Resolution Method for Finding ��

For each 0 � j � nB , let Yj be the set of Pareto optimal solutions of the problem
1jBI; p � batchjP.Cmax; Lmax/ applied to the jobs JB1 ; : : : ; J

B
j obtained by the

procedure described at step 1, and denote by .�B/i;j each element of Yj . For each
0 � j � nB , we denote as .� 0

B/
j the optimal schedule for 1jp�batchjLmax obtained

by the procedure described at step 2.
For a given j 2 f0; 1; : : : ; nBg, and for each .�B/i;j 2 Yj , we define a global

solution �i;j D ..�B/
i;j ;BA; .� 0

B/
j /,

The optimal solution to problem 1jCO; p � batch; LBmax � QjCA
max is a sequence

�i;j such that LBmax.�
i;j / � Q and CA

max.�
i;j / is minimum.

Now, we can derive a polynomial time algorithm to solve problem 1jCO; p �
batch; LBmax � QjCA

max, which is based on the algorithm in Qi et al. (2013) (see
Algorithm 30).

Step 1 in Algorithm 30 requires time nB lognB . Step 2 requires time nA.
Determining all .� 0

B/
j (steps 3–5) can be done in O.n3B/ time. For each j , He’s

algorithm allows to compute the set Yj in time O.n3B/. Since this has to be run
for j D 0; : : : ; nB times, steps 6–8 in Algorithm 30 require time O.n4B/. Since
jYj j D O.n2/, there are O.n3B/ global solution, from which at step 9 the best is
selected. In conclusion, one has the following result.

Theorem 4.16. Algorithm 30 solves problem 1jCO; p � batch; LBmax � QjCA
max in

O.nA C n4B/ time.

4.3.4.2 Problem 1jCO; p � batch; C B
max � QjLA

max

Let us turn now to the symmetric problem 1jCO; p � batch; C B
max � QjLAmax.

From Property 4.3, the structure of an optimal solution is .�B;BA; � 0
B/, where

182 4 Batching Scheduling Problems

Algorithm 30 for problem 1jCO; p � batch; LBmax � QjCA
max

1: Arrange the jobs of J B in SPT order
2: pAmax WD maxi2J A .pAi /

3: for j WD 0 to nB do
4: Solve problem 1jp � batchjLBmax by Brucker’s algorithm (4.23) to determine .� 0

B/
j and

corresponding to it LBmax.�
0

B/
j

5: end for
6: for j WD 0 to nB do
7: Solve problem 1jp � batchj.Cmax; Lmax/ by He’s algorithm to calculate Yj

8: end for
9: Determine the set of non dominated solutions and keep the solution .� i;j /� with minimum
CA

max.�
i;j / and satisfying LBmax.�

i;j / � Q

10: return .� i;j /�

schedule � 0
B starts at time CB

j C pAmax. Hence, an optimal schedule can be found
by Algorithm 30 where in step 9 we select the solution that minimizes LAmax where
CB

max � Q.
In conclusion, one has the following result.

Theorem 4.17. Problem 1jCO; p�batch; C B
max � QjLAmax can be solved inO.nAC

n4B/.

4.3.5 Functions fmax,
P

fj

4.3.5.1 Problem 1jCO; p � batch; f B
max � Qj P

f A
j

Let us consider the problem 1jCO; p � batch; f B
max � QjPf A

j when agent A
wants to minimize a general sum-type function. Note that this scheduling problem
is in general NP-hard, e.g. when

P
f A
j D P

wAj U
A
j (see Brucker et al. 1998). We

next present a pseudo-polynomial time dynamic programming algorithm proposed
by Li and Yuan (2012) that solves this problem. As usual, for the jobs of agent B,
we define deadlines QdBj D .f B

j /
�1.Q/.

Let F.iA; iB; t/ be the minimum objective value for SPT-batch schedules where
the jobs fJA1 ; : : : ; J AiAg [fJB1 ; : : : ; J BiB } are scheduled, subject to the constraint that
the last batch completes at time t and no job of agent B is tardy.

As a consequence of Property 4.1, when considering F.iA; iB; t/, there are two
possible decisions concerning the last batch of the partial schedule:

1. The last batch belongs to agentA, and is denoted by JA`AC1; : : : ; J AiA with `A < iA,
2. The last batch belongs to agent B , and is denoted by JB`BC1; : : : ; J BiB with `B <
iB .

4.3 Two-Agent P-Batching Problems 183

Algorithm 31 for problem 1jCO; p � batch; f B
max � QjPf A

j

1: F.0; 0; 0/ WD 0

2: for t ¤ 0 do
3: F.0; 0; t / WD C1
4: end for
5: for iA WD 1 to nA do
6: for i2 WD 1 to nB do
7: for t WD 0 to P do
8: vA1 WD min0�lA�iA�1

n
F.lA; iB ; t � pAiA /CPiA

iDlAC1 f
A
i .t /

o

9: vB1 WD minlB2�.iA;iB ;t/

˚
F.iA; lB ; t � pBiB /

�

10: F.iA; iB; t / WD min
˚
vA1 ; v

B
1

�

11: end for
12: end for
13: end for
14: return the schedule corresponding to F.nA; nB; t/

Therefore, it is possible to derive a dynamic programming algorithm (Algo-
rithm 31) where �.iA; iB; t/ denotes the set of candidate values for index `B . Since
the deadline of job JB`BC1 must be respected, one has:

�.iA; iB; t/ D f0 � `B � iB � 1 W t � QdB`BC1g

Since the last batch belongs to either agent A or agent B , the optimal objective
value is equal to minfF.nA; nB; t/ W pAnA C pBnB � t � P g.

For each value of iA and for each t , all sums
PiA

iD`AC1 f A
i .t/ can be evaluated in

O.nA/. Since iA ranges from 1 to nA and t from pAiA to P D PiA
iD1 pAi CPnB

iD1 pBi ,
all sums appearing in step 6 can be computed in a preprocessing step in O.n2AP /
time, and each application of the recursive formula requiresO.nACnB/ time. Since
iA, iB and P assume nA, nB and P values respectively, in conclusion one has the
following result.

Theorem 4.18. Problem 1jCO; p � batch; f B
max � QjPf A

j can be solved in
O.nnAnBP / time.

4.3.6 Functions
P

fj ,
P

fj

4.3.6.1 Problem 1jCO; p � batch;
P

f B
j

� Qj P
f A

j

Let us now turn to problem 1jCO; p�batch;
P
f B
j � QjPf A

j . For such NP-hard
scheduling problem, we report a pseudo-polynomial-time dynamic programming
algorithm by Li and Yuan (2012).

184 4 Batching Scheduling Problems

Algorithm 32 for problem 1jCO; p � batch;
P
f B
j � QjPf A

j

1: for q � 0 do
2: F.0; 0; 0; q/ WD 0

3: end for
4: for q < 0 do
5: F.iA; iB ; t; q/ WD C1
6: end for
7: for .iA; iB; t / ¤ .0; 0; 0/ do
8: if q < 0 then
9: F.iA; iB ; t; q/ WD C1

10: end if
11: end for
12: for iA WD 1 to nA do
13: for iB WD 1 to nB do
14: for t WD 0 to P do
15: for q WD 0 to Q do
16: F.iA; iB; t; q/ WD minfF.iA; iB; t; q/A; F.iA; iB; t; q/Bg
17: end for
18: end for
19: end for
20: end for
21: return the schedule corresponding to minfF.nA; nB; t;Q/ W pAnA C pBnB � t � P g

Let F.iA; iB; t; q/ denote the minimum objective value for partial SPT-batch
schedules of jobs fJA1 ; : : : ; J AiAg [fJB1 ; : : : ; J BiB g, subject to the constraint that the
last batch completes at time t and the objective value of agent B is at most q.
According to Property 4.1, there exists a schedule corresponding to F.iA; iB; t; q/
in which the last batch contains jobs JA`AC1; : : : ; J AiA with `A < iA or JB`BC1; : : : ; J BiB
with `B < iB .

We denote by:

F.iA; iB; t; q/
A D min

0�`A�iA�1
˚
F.`A; iB; t � pAiA; q/C

iAX

jD`AC1
f A
j .t/

�

F.iA; iB; t; q/
B D min

0�`B�iB�1
˚
F.iA; `B ; t � pBiB ; q �

iBX

jD`BC1
f B
j .t//

�

A dynamic programming algorithm can be derived (see Algorithm 32).
The optimal solution �� has an objective value which corresponds to

minfF.nA; nB; t;Q/ W pAnA C pBnB � t � P g

The partial sums
PiA

iD1 f A
i .t/ for iA D 1; : : : ; nA, t D pAiA; : : : ;

PiA
iD1 pAi C

PnB
iD1 pBi , can be evaluated in a preprocessing step in O.n2P / time and it is the

4.4 Tables 185

Table 4.1 Polynomial solvable serial batching problems

Problem Complexity Section Page

1jCO; s � batch; f Bmax � Qjf A
max O.nAnBn logYA/ 4.2.1.1 151

1jCO; s � batch; CB
max � QjCA

max O.n/ 4.2.2.1 153

1jCO; s � batch; LBmax � QjCA
max O.nA C n2B/ 4.2.3.1 155

1jCO; s � batch; CA
max � QjLBmax O.nA C n3B/ 4.2.3.2 158

1jCO; s � batch; f Bmax � QjPCA
j O.nn2An

2
B/ 4.2.4.1 160

1jCO; s � batch;
P
CA
j � Qjf B

max O.n2An
2
Bn logYB/ 4.2.4.2 162

1jCO; s � batch; f Bmax � QjPUA
j O.n2An

2
Bn

2/ 4.2.5.1 163

1jCO; s � batch;
P

wAj U
A
j � Qjf B

max O.n2AnBn logYB/ 4.2.5.2 166

1jCO; s � batch;
P
CB
j � QjCA

max O.nA C n3B/ 4.2.6.1 167

1jCO; s � batch;
P
UB
j � QjPUA

j O.n3An
2
B C n2An

3
B/ 4.2.8.1 172

Table 4.2 Enumeration of the Pareto set serial batching problems

Problem Size Section Page

1jCO; s � batchjP.CA
max; C

B
max/ 2 4.2.2.2 155

1jCO; s � batchjP.CA
max; L

B
max/ O.nB/ 4.2.3.3 159

1jCO; s � batchjP.f A
max;

P
UB
j / O.nB/ 4.2.5.3 166

1jCO; s � batchjP.CA
max;

P
CB
j / O.nB/ 4.2.6.2 169

1jCO; s � batchjP.PCA
j ;
P
CB
j / Exponential 4.2.7.2 171

1jCO; s � batchjP.PUA
j ;
P
UB
j / nA C 1 4.2.8.2 175

same for the partial sums
PiB

iD1 f B
i .t/ for iB D 1; : : : ; nB , t D pBiB ; : : : ;

PnA
iD1 pAi C

PiB
iD1 pBi . Each application of the recursive formula requires O.nA C nB/ D O.n/

time. In conclusion, one has the following result.

Theorem 4.19. Problem 1jCO; p � batch;
P
f B
j � QjPf A

j can be solved in
O.nnAnBPQ/ time.

4.4 Tables

Further, most of the suggested algorithms can be modified to handle bounded batch
sizes and any number of agents. Tables 4.1, 4.2 and 4.3 present computational
complexity results for two-agent single machine s-batching problems. Tables 4.4
and 4.5 present computational complexity results for two-agent single machine

186 4 Batching Scheduling Problems

Table 4.3 NP -hard serial batching problems

Problem Complexity Section Page

1jCO; s � batch; f Bmax � QjPwAj U
A
j O.nAnBn

2WA/ 4.2.5.1 163

1jCO; s � batch;
P
CB
j � QjPCA

j O.nAnBnQ/ 4.2.7.1 170

1jCO; s � batch;
P

wBj U
B
j � QjPwAj U

A
j O.n2AnB C nAn

2
B

OWAQ/ 4.2.8.1 172

Table 4.4 Polynomial solvable parallel batching problems

Problem Complexity Section Page

1jCO; p-batch; f Bmax � Qjf A
max O.nnAnB log.YA// 4.3.2.1 176

1jCO; p-batch; CB
max � QjCA

max O.n/ 4.3.3.1 178

1jCO; p-batch; LBmax � QjCA
max O.nA C n4B/ 4.3.4.1 179

1jCO; p-batch; CB
max � QjLAmax O.nA C n4B/ 4.3.4.2 181

Table 4.5 NP -hard parallel batching problems

Problem Complexity Section Page

1jCO; p � batch; f B
max � QjP f A

j O.nnAnBP / 4.3.5.1 182

1jCO; p-batch;
P
f B
j � QjP f A

j O.nnAnBPQ/ 4.3.6.1 183

p-batching problems. Several problems are NP-hard because the classical single
machine problems (i.e. without batching and only one criterion) are NP-hard. In
Tables 4.1 and 4.3, T D nAsA C nBsB C P , P is the total processing time of all
jobs, andW k D Pnk

jD1 wkj ; k 2 fA;Bg.

4.5 Bibliographic Remarks

In this section, we give some remarks and the main references related to scheduling
on batching machines. As in the scheduling literature, intensive research has been
done involving a single batching machine without job compatibilities, where jobs
have families and only the jobs of the same family can be assigned to the same batch.
Also, problems with job compatibilities have been studied for various objective
functions and additional constraints. We refer the reader mainly to the following
review papers and books that cover many parts of research done on single objective
batching scheduling problems: Brucker et al. (1998), Potts and Kovalyov (2000),
Potts et al. (2001) and Brucker (2007).

4.5 Bibliographic Remarks 187

4.5.1 Serial Batching Problems

In this chapter, we focused only on unbounded batching machine without job
family compatibilities in the COMPETING scenario. It is also interesting to study
the same problems with other hypotheses, such as bounded batching machines,
job compatibilities, different scenarios, etc. Li and Yuan (2012) study two-agent
problems on a serial batching machine where jobs of both agents can be assigned
to the same batch. This difference makes the results of their paper inapplicable to
the problems studied in this chapter and vice versa. All the proposed algorithms are
based on dynamic programming. Mor and Mosheiov (2011) and Feng et al. (2011)
consider the model presented in this chapter (see Sect. 4.2). Mor and Mosheiov
(2011) assume that jobs have unit processing times, the objective functions areP
CA
j and

P
CB
j , and the constraint that batches of the second agent are processed

continuously. They suggest an O.n3=2/ time algorithm. Feng et al. (2011) assume
that setup times are identical (sA D sB D s) and the objective functions areCA

max and
LBmax. They present anO.nA Cn4B/ algorithm for finding the set of Pareto solutions.

4.5.2 Parallel Batching Problems

We focus in this chapter on parallel batching problems in the COMPETING scenario,
with unbounded batching machine and without job family compatibilities. Some
other models can be found in the literature. Tan et al. (2011) consider non-identical
job sizes and objective functions CA

max and CB
max. Since the problem is NP-hard

in the strong sense, the authors develop an ant colony algorithm to find the set
of Pareto solutions. The specificities of the model in Sabouni and Jolai (2010)
are the job compatibilities, which restrict jobs of different agents to be placed
in the same batch. The authors consider the objective functions CA

max and LBmax.
In Li and Yuan (2012) various combinations of regular objective functions are
considered. Concerning approximation schemes, we refer to Nong et al. (2008)
where the authors study scheduling family jobs with release dates on a bounded
batching machine to minimize the makespan (for only one agent). A polynomial-
time approximation scheme for the identical job length model and an approximation
algorithm with a worst-case ratio for the non-identical job length model are given.

Chapter 5
Parallel Machine Scheduling Problems

This chapter presents some results on scheduling jobs on parallel machines with
the COMPETITIVE and the INTERFERING scenario. First, we study the case where
job preemption is allowed, i.e. when the processing of a job can be interrupted and
resumed later, eventually on another machine. Next, we study the case without job
preemption.

The chapter is composed of five sections. In Sect. 5.1, we consider parallel
machine scheduling problems without job preemption. In Sects. 5.2 and 5.3, we
consider preemptable parallel machine scheduling problems with arbitrary and
equal job processing times, respectively. We end the chapter with Sects. 5.4 and 5.5
including, respectively, complexity tables and bibliographic remarks.

5.1 Preemptive Jobs

In this section, we assume that preemption is allowed, i.e., a job processing
can be interrupted and resumed later, possibly on another machine. Scheduling
jobs on parallel machines when preemption is allowed has attracted researchers’
attention for a long time (Brucker 2007; Pinedo 2008). Mc Naughton studied
preemptive independent job scheduling problems with various objective functions
(Mc Naughton 1959). In particular, the author proposes a polynomial time algorithm
for solving problem PmjpmtnjCmax. Mc Naughton’s algorithm can be described
as follows: select the jobs one by one in any order and fill up the machines
M1;M2; : : : ;Mm within the time interval Œ0;LB�, where LB is a lower bound for
the makespan. We have:

LB D max
n 1

m

nX

jD1
pj I n

max
jD1 pj

o

A. Agnetis et al., Multiagent Scheduling, DOI 10.1007/978-3-642-41880-8__5,
© Springer-Verlag Berlin Heidelberg 2014

189

190 5 Parallel Machine Scheduling Problems

For a given machine Mi that performs job Jj , if time LB is reached before the
end of Jj , this job is preempted and its remaining processing time is performed at
time 0 on the next machineMiC1.

Most of the classical multicriteria parallel machine scheduling problems deal
with two criteria (see T’Kindt and Billaut 2006). For example, in Mohri et al.
(1999), the authors study the PmjBI; pmtn; Cmax � QjLmax problem for m D 2 or
m D 3machines. In the following, we focus on the COMPETING and INTERFERING

scenarios.

5.1.1 Functions fmax; fmax

5.1.1.1 Problem RmjIN; pmtn; C B
max � QjC A

max

We start by considering the case of unrelated machines in the INTERFERING

scenario (in which we recall that J D J A � J B).
In this section, a set M of m unrelated parallel machines is shared between two

agents in order to schedule their sets of jobs, when they both want to minimize the
makespan.

While we illustrate how to solve problem RmjIN; pmtn; C B
max � QjCA

max, the
whole procedure, with minor adjustments, can be applied to problem RmjIN;
pmtn; f B

max �Qjf Amax in which all jobs in Jj 2 J A hold the same linear, monoton-
ically nondecreasing function of the jobs completion times f A

j .Cj / D f ACj and
similarly f B

j .Cj / D f BCj for Jj 2 J B .
Following the two-phase exact approach proposed for solving the classical

problem RmjpmtnjLmax, we can show that problem RmjIN; pmtn; C B
max � QjCA

max
is polynomially solvable (Sadi et al. 2013). In the first phase, a linear program is
proposed, which takes into account all the constraints of the feasible problem and
gives the optimal function value CA�

max along with the processing time fraction of
each job to be carried out on each machine. Therefore, this linear program returns
the proportion of each job to execute on each machine. In the second phase, the
problem is to find a feasible solution to the preemptive open shop problem denoted
byOmjpmtn; Qdj j�. In the second phase, the schedule of jobs to be executed on each
machine is computed by solving a matching problem, which determines a feasible
schedule of job fractions, respecting the optimal function value obtained at phase 1.

5.1.1.2 Phase 1: Assignment of Preempted Jobs to Machines

For the proposed linear program, let xj;i (8i , 1 � i � m and 8j , 1 � j � nA)
be the decision variables that represent the fraction of processing time of job Jj
executed on machine Mi , xj;i 2 Œ0; 1�. Here, CA

max is a continuous variable. The
proposed linear program is the following.

5.1 Preemptive Jobs 191

.P1/ Minimize CA
max (5.1)

subject to
mX

iD1
xj;i D 1; J Aj 2 J A (5.2)

CA
max �

nAX

jD1
pj;ixj;i 	 0; Mi 2 M (5.3)

CA
max �

mX

iD1
pj;i xj;i 	 0; J Aj 2 J A (5.4)

Q �
nBX

jD1
pj;i xj;i 	 0; Mi 2 M (5.5)

Q �
mX

iD1
pj;ixj;i 	 0; J Bj 2 J B (5.6)

variables CA
max 	 0 (5.7)

xj;i 2 Œ0; 1�; J Aj 2 J A; Mi 2 M (5.8)

Constraints (5.2) impose that every job JAj is completely assigned to the
machines. Constraints (5.3) impose that the total processing time of the jobs
assigned to machine Mi is less than or equal to CA

max. Constraints (5.4) require that
the total processing time of each job, performed on several machines, is less than or
equal to CA

max. Constraints (5.5) and (5.6) guarantee the respect of the "�constraints.
Constraints (5.5) require that the sum of job processing times related to agent B and
assigned to machine Mi is less than or equal to Q. Constraints (5.6) guarantee that
the total processing time of job JBj 2 J B is less than or equal to Q.

It is clear that if problem .P1/ has no feasible solution, then the main problem
has no feasible solution either. Otherwise, for each feasible schedule verifying (5.2)–
(5.7), a feasible schedule can be identified, where there is no job overlapping, no
machine overbooking and the total processing amount of each job over all machines
does not exceed Q. The value of the optimal solution of problem .P1/ is denoted
by CA�

max.

5.1.1.3 Phase 2: Construction of a Feasible Solution

From .P1/, the ratio xj;i of job Jj which must be performed on a machine Mi is
known. The problem of phase 2 is equivalent to a preemptive open-shop scheduling
problem with deadlines, denoted by Omjpmtn; QdAj ; QdBj j�. Here, QdAj D QdA D CA�

max

for all Jj 2 J A. Since J B � J A, the makespan for J B cannot exceed that of J A,
and therefore we set QdBj D QdB D minfQ;CA�

maxg for all Jj 2 J B . Later on, the

192 5 Parallel Machine Scheduling Problems

quantities xj;i constitute “tasks” oj;i of job Jj of duration pj;ixj;i , to be performed
on machineMi .

A feasible preemptive schedule for the open shop problem with deadlines can
be obtained in polynomial time by using the algorithm proposed by Cho and Sahni
(1981).

Suppose first that QdB < QdA. In this case, we distinguish the intervals Œ0; QdBŒ and
Œ QdB; QdA�, of length I1 D QdB and I2 D QdA � QdB respectively.

The quantity of processing time of the task oj;i that can be scheduled during the
k-th interval (of length Ik) is denoted by qj;i;k , k D 1; 2. Let consider now the
following system of linear constraints.

.P2/ Minimise � (5.9)

subject to
nX

jD1
qj;i;k � Ik; k D 1; 2; Mi 2 M (5.10)

mX

iD1
qj;i;k � Ik; k D 1; 2; Jj 2 JA (5.11)

qj;i;1 C qj;i;2 D pj;ixj;i ; Mi 2 M; Jj 2 JA (5.12)

qj;i;2 D 0; Mi 2 M; Jj 2 JB (5.13)

variables qj;i;k 	 0; Mi 2 M; Jj 2 JA; k D 1; 2 (5.14)

Constraints (5.10) ensure that the amount of processing time assigned to each
machine and during each time interval cannot exceed the interval length. Constraints
(5.11) avoid any overlapping of tasks on the machines. Constraints (5.12) guarantee
the assignment of the total tasks of jobs to the machines. Constraints (5.13)
guarantee the assignment of tasks in their interval.

Suppose now that QdB D QdA. In this case, the same approach applies, with just
a single time interval Œ0; QdA�, so that we can simply let the amount of job Jj on
machineMi equal to qj;i;1 D pj;ixj;i for all j 2 J A, Mi 2 M.

At this point, for each interval k the amount of processing of job Jj on machine
Mi during interval k is given, for all i; j; k. The last step is therefore to plan the
detailed sequence of tasks on each machine so that different jobs do not overlap. To
accomplish this, we apply an approach in (Brucker 2007, see Algorithm 33) to one
interval at a time, i.e., we associate a bipartite graphGk D .J ;M; E; �k/ with each
interval k, where J is the set of job nodes, M is the set of machine nodes and E is
the set of edges .Jj ;Mi/ for j 2 J , i 2 M and �k.j; i/ D qj;i;k (j D 1; : : : ; n,
i D 1; : : : ; m, k 2 f1; 2g) the weight of arc .Jj ;Mi/ (Fig. 5.1).

Using Algorithm 33, at each iteration, the procedure finds a maximum cardinality
matching � and schedules ı time units of j�j different jobs on the machines specified
by �, where ı D min.Jj ;Mi /2� qj;i;k. This technique avoids an overlapping of tasks
in the final schedule.

5.1 Preemptive Jobs 193

J1

Jn

JnB

M1

M2

Mm

Graph 1

q1,1,k

J1

Jn

JnB

M1

M2

Mm

Matching

q1,1,k − δ

qnB,2,k − δ

qn,m,k − δqn,m,k

Fig. 5.1 Graph Gk at step 1 and at step 2

Algorithm 33 Matching procedure for a feasible solution
1: Let Gk D .N ;M; E; �k/ be a bipartite graph == Gk is given on input
2: Initial schedule � D ./ == initial empty schedule
3: while E ¤ ; do
4: Seek for the maximum matching � in Gk == See Fig. 5.1, Graph 1
5: ı D min.Jj ;Mi /2� �k.j; i/

6: for each .Jj ;Mi / 2 � do
7: Schedule ı processing time units of Jj at the end of machine Mi

8: Update �
9: �k.j; i/ WD �k.j; i/� ı == See Fig. 5.1, Matching

10: if �k.j; i/ D 0 then
11: Eliminate .Jj ;Mi /

12: end if
13: end for
14: end while
15: return �

At each iteration of the matching procedure for interval k, at least one arc
.Jj ;Mi/ of the maximum matching is such that ı D �k.j; i/. Hence for interval
k, there are at most n
m iterations. Therefore, the procedure runs in O.nm/. The
matching can be calculated in O.nm

p
nCm/ by using the algorithm described in

Hopcroft and Karp (1973). Thus, the step 2 runs in O.n2m2
p
nCm/ time.

Theorem 5.1. An optimal solution to problem RmjIN; pmtn; C B
max � QjCA

max can
be obtained in polynomial time.

5.1.1.4 Problem RmjIN; pmtn; C k
max � Qk; k D 2; : : : ; K jC 1

max

The procedure described for the two-agent case can be generalized to the case of
K agents, i.e. to problem RmjIN; pmtn; C k

max � Qk; k D 2; : : : ; KjC1
max. For what

194 5 Parallel Machine Scheduling Problems

concerns phase 1, we can use the same formulation (P1), in which constraints (5.5)
and (5.6) are added for each agent k, k D 2; : : : ; K . The solution of (P1) returns a
minimum value C1�

max and values x�
j;i for all 1 � j � n and 1 � i � m.

For what concerns phase 2, recalling that J D J 1 � J 2 � : : : � J K , we can
define the deadlines for the jobs of each agent k (k D 1; : : : ; K) as follows:

Qd1 D C1�

max

Qdk D minfQk; Qdk�1g k D 2; : : : ; K

Letting Ik D Qdk � Qdk�1, we can now write model (P2) as:

.P20/ Minimise � (5.15)

subject to
nX

jD1
qj;i;k � Ik; k D 1; : : : ; K;Mi 2 M (5.16)

mX

iD1
qj;i;k � Ik; k D 1; : : : ; K; Jj 2 J 1 (5.17)

KX

kD1
qj;i;k D pj;ixj;i ; Mi 2 M; Jj 2 J 1 (5.18)

qj;i;k D 0; i 2 M; k D 1; : : : ; K; Jj 2 J K�kC2 (5.19)

variables qj;i;k 	 0; Mi 2 M; Jj 2 J 1; k D 1; : : : ; K (5.20)

Since some interval may be actually void (if Qdk D Qdk�1 for some k), one is
left with running the matching procedure for H � K nonempty intervals. At each
iteration of the matching procedure for interval h, 1 � h � H , at least one arc
.Jj ;Mi/ of the maximum matching is such that ı D �h.j; i/. For interval h, there
are at most n
m iterations, and so the procedure runs inO.nmK/. Thus, step 2 runs
in O.n2m2K

p
nCm/ time. Therefore, the problem can be solved in polynomial

time.

5.1.2 Functions fmax,
P

Cj

5.1.2.1 Problem P2jCO; pmtn; f B
max � Qj P

C A
j

For the preemptive scheduling problem in the COMPETING scenario, one can notice
that while problem P2jCO; pmtn; f B

max � QjPCA
j is polynomial and quite simple

to solve, the problem P3jCO; pmtn; f B
max � QjPCA

j is open. Wan et al. (2010)

5.1 Preemptive Jobs 195

Algorithm 34 for problem P2jCO; pmtn; f B
max � QjPCA

j

1: Renumber the jobs in J A in SPT order
2: for j 2 J B do
3: Compute deadlines QdBj such that f B

max � Q

4: end for
5: Schedule jobs in J B backwards so that each job completes as close to its deadline as possible.
6: Schedule jobs in J A as early as possible alternatively on the two machines via the preemptive

SPT rule (if necessary, reschedule jobs in J B on the other machine).
7: return the global schedule.

consider two identical machines that are shared by two competing agents. The
objective of the second agent is to schedule its jobs so that function f B

max is less
than a given value Q and the objective of the first agent is to minimize the total
completion time of jobs. They propose a polynomial time algorithm described in
Algorithm 34.

The first step of the algorithm is to sort the jobs of agent B in EDD order and to
schedule them backward, starting by the job with maximum deadline, so that they
complete as close to their deadlines as possible. This schedule leaves some empty
places for the jobs of agent A on both machines. The jobs of J A are considered
in SPT order and scheduled in these intervals. To give more details on step 6 of
Algorithm 34, dealing with the scheduling of jobs in J A, let JAj be the currently
scheduled job on machine Me. If it can be completely scheduled on Me, no action
is required and we can pass to the next job JAjC1. Otherwise, a job of JB , say,
JBh , is encountered at time t , before the end of JAj . Let x denote the length of the
unscheduled portion of JAj . Consider the following two cases:

1. If the other machineMe0 is idle at t , we continue processing JAj onMe0 , possibly
until completion.

2. If the other machine Me0 is busy at t , a portion of length x of JBh is moved to an
earlier idle time on Me0 to make room for JAj .

These two conditions are used until no further move is possible, or JAj is
completed. If none of these two conditions hold, JAj is preempted and resumed
at the first available time. In any case, JAj completes as soon as possible. In Wan
et al. (2010) it is shown that the following complexity result holds.

Theorem 5.2. Problem P2jCO; pmtn; f B
max � QjPCA

j can be solved in
O.nA lognA C nB lognB/ time by Algorithm 34.

About the running time of Algorithm 34, Wan et al. (2010) suppose implicitly
that the functionsf B

j are known and the deadlines QdBj for each job JBj are computed

in constant time, i.e. deadline QdBj corresponds to the latest completion time CB
j for

which f B
j .C

B
j / D Q and the inverse function .f B

j /
�1 is known. It is possible to

extend this result to the case in which the f B
j are non-decreasing functions and the

196 5 Parallel Machine Scheduling Problems

t

t

S

S′

π1

π1

π2 π3Jj Jj

pj1

CjCπ2

π2 Jj π3

CjC′
π2

Fig. 5.2 Sequences S and S 0

inverse function is not known. For each job JBj , the deadline QdBj .Q/ is computed as
follows.

QdBj .Q/ D maxf� W f B
j .�/ � Q; 0 � � � T g

where T is the sum of the completion times of all jobs. Therefore, the deadlines can
be computed in O.nB logT / time by a binary search in Œ0; T �.

5.1.3 Functions
P

fj ;
P

fj

5.1.3.1 Problem PmjIN; pmtn;
P

C B
j

� Qj P
C A

j

To prove that this problem is NP-hard, we will first show that problem
1jIN; pmtn;

P
CB
j � QjPCA

j is NP-hard.

Proposition 5.1. Problem 1jIN; pmtn;
P
CB
j � QjPCA

j is NP-hard.

Proof. Let S be a feasible schedule for the 1jIN; pmtn;
P
CB
j � QjPCA

j

problem, where a job Jj is preempted. We have
P
CB
j .S/ � Q. We assume that

S D �1=Jj =�2=Jj =�3 with �1, �2 and �3 three sub-sequences of jobs (the notation
a=b stands for the concatenation of a and b). We denote by pj1 the duration of job
Jj before �2. Let S 0 be the same sequence where Jj is not preempted (i.e., shifted
to the right). We have S 0 D �1=�2=Jj =�3 (see Fig. 5.2).

Shifting Jj to the right does not modify its completion time and allows the jobs
of �2 to complete pi1 time units earlier: C 0

�2
D C�2 � pj1 . If Jj 2 J B , then

P
CB
j .S/ � Q. Because the completion of Jj does not change and because the

completion times for the jobs of NJ A in �2 (if any) only decrease (the completion
times of other jobs is unchanged) and we have

P
CB
j .S

0/ � Q. The same reasoning

applies if Ji 2 NJ A. In that case, we can state:

X
CB
j .S

0/ �
X

CB
j .S/ � Q

X
CA
j .S

0/ D
X

CA
j .S/� pj1 j�2j <

X
CA
j .S/

5.2 Non-preemptive Jobs with Arbitrary Processing Times 197

Therefore, S 0 dominates S and there is no need to preempt a job to minimize the
sum of completion times. Thus, there is no preemption in any optimal solution.

Because the nonpreemptive problem 1jIN;PCB
j � QjPCA

j is NP-hard
(Sect. 3.9.1, Theorem 3.21), the proof follows. ut

The same reasoning shows that problem PmjCO; pmtn;
P
f B
j � QjPf A

j (and
hence PmjND; pmtn;

P
f B
j � QjPf A

j) is NP-hard. In conclusion, the following
theorem holds:

Proposition 5.2. Problem 1jˇsc; pmtn;
P
CB
j � QjPCA

j is NP-hard, with ˇsc 2
fCO; IN;NDg.

Clearly, this result implies that also Pmjˇsc; pmtn;
P
f B
j � QjPf A

j is NP-

hard, where f k
j is a monotonically non decreasing function of the completion time

Cj , with ˇsc 2 fCO; IN;NDg.

5.2 Non-preemptive Jobs with Arbitrary Processing Times

5.2.1 Preliminary Results

Recall that if the decision problem � reduces to � 0, we use the notation � / � 0
(see Sect. 2.2.1, page 25). In the following,
 ,
1 and
2 are sets of regular criteria,
namely
1 D fCmax; Lmax;

P
Ui;

P
Ti ;
P

wi Ti ;
P

wiUig,
2 D fPCi ;
P

wiCig,
and
 D
1 [
2. Let ˇsc 2 fND; IN;COg.

Proposition 5.3. The following reductions from the classical scheduling problem
hold.

1. PmjjCmax / Pmjˇ; f B � QjCA
max, 8f B 2
 .

2. Pmjˇsc; f
B � QjCA

max / Pmjˇsc; f
B � Qjf A, 8f A 2
1, 8f B 2
 .

Proof. These claims are direct consequences of the complexity of problem
PmjjCmax, with a sufficiently large value of Q. ut
Proposition 5.4. Problems Pmjˇsc; f

B � Qjf A are NP-hard, 8f A 2
 and
8f B 2
 .

Proof. We consider the decision version of the problems. We first show that
Pmjˇsc; f

A � QA; f
B � QB j�, 8f A 2
1, 8f B 2
 , is NP-complete. Then, we

show that Pmjˇsc; f
A � QA; f

B � QB j�, 8f A 2
2, 8f B 2
 , is NP-complete.
The first claim is given by step 2 of Proposition 5.3.
We know that problem Pmjˇsc; C

B
max � QB j� is NP-complete. Hence problem

Pmjˇsc; C
B
max � QB; f

A � QAj� is NP-complete as well, 8f A 2
 . This is also
true for f A D P

CA
i . And because it is true forCB

max, it is also true for any f B 2
1.
Thus, problem Pmjˇ; f B � QB;

P
CA
j � QAj� is NP-complete, 8f B 2
1.

198 5 Parallel Machine Scheduling Problems

We know that problem Pmjˇsc;
P
CB
j � QB;

P
CA
j � QAj� is NP-complete

(Proposition 5.2). So problem Pmjˇsc; f
B � QB;

P
CA
j � QAj� is NP-complete

8f B 2
 . This is also true for
P

wj CA
j , i.e. for problems Pmjˇsc; f

B � QB;

f A � QAj�, 8f B 2
 and 8f A 2
2. ut
In the following, we show that some NP-hard problems with non-preemptive

INTERFERING jobs can be solved in pseudo-polynomial time by dynamic program-
ming algorithms.

5.2.2 Functions Cmax; Cmax

5.2.2.1 Problem PmjIN; C B
max � QjC A

max

In this section, we discuss a problem with identical parallel machines and makespan
as objective functions in the INTERFERING scenario. We present the results in the
two-agent case and give ideas for a generalization to the case of K agents when
possible.

The scheduling problem PmjIN; C B
max � Q;CA

max � UBj� is equivalent to the
single-agent problem Pmj Qdi jCmax where QdBj D Q, 8JBj 2 J B . Remember that the

jobs of J B are numbered from 1 to nB and the jobs of NJ A (i.e. jobs in J A and not
in J B) from 1 to nA � nB .

We define the following recursive function (Blazewicz et al. 2007) as follows:
Fj1;j2.t1; : : : ; tm/ is equal to true if the jobs JB1 ; : : : ; J

B
jB

of J B and JA1 ; : : : ; J
A
jA

of NJ A can be scheduled on M1; : : : ;Mm so that each machine Mi is busy in the
interval Œ0; ti �, and FjA;jB .t1; : : : ; tm/ is equal to false otherwise.

We define

F0;0.0; : : : ; 0/ D true

F0;0.t1; : : : ; tm/ D false, 8.t1; : : : ; tm/ ¤ .0; : : : ; 0/:

The recursive relation is given by:

FjA;jB .t1; : : : ; tm/ D
m_

iD1
FjA�1;jB .t1; : : : ; ti � pjA; : : : ; tm/

_
m_

iD1

�
FjA;jB�1.t1; : : : ; ti � pjB ; : : : ; tm/ ^ .ti � Q/

�

for jA D 1 : : : nA � nB; jB D 1 : : : nB ; ti 2 Œ0; ub�

5.2 Non-preemptive Jobs with Arbitrary Processing Times 199

with ub D P , the sum of all processing times. Then, the optimal makespan value
is given by

CA�

max D min
t1;t2;:::;tm

fmaxft1; t2; : : : ; tmg W FnA�nB ;nB .t1; : : : ; tm/ D t rueg

In conclusion, the following result holds.

Theorem 5.3. An optimal solution for problem PmjIN; C B
max � QjCA

max can be
obtained in O.n2ubm/ time.

5.2.2.2 Problem PmjIN; C 2
max � Q2; : : : ; C K

max � QK jC 1
max

Note that this result can be generalized to the case ofK agents. An optimal schedule
for PmjIN; C 2

max � Q2; : : : ; C
K
max � QK jC1

max can be obtained in O.nKubm/.

5.2.2.3 Problem P2jCO; C B
max � QjC A

max

Let us turn to the COMPETING scenario. By following a similar idea to the
INTERFERING scenario, we can derive another dynamic programming algorithm.
We define function FjA;jB .t1; t2; t

A
1 ; t

A
2 / D true if the jobs JA1 ; : : : ; J

A
jA

of J A and
the jobs JB1 ; : : : ; J

B
jB

of J B can be scheduled on M1 and M2 so that each machine
Mi is busy in the interval Œ0; ti �, with tAi the completion time on machine Mi of the
last job of agent A. This function is equal to false otherwise.

We define

F0;0.0; 0; 0; 0/ D true and

F0;0.t1; t2; t
A
1 ; t

A
2 / D false 8.t1; t2; tA1 ; tA2 / ¤ .0; 0; 0; 0/:

The recursive relation is given by:

FjA;jB .t1; t2; t
A
1 ; t

A
2 / D FjA�1;jB .t1 � pjA; t2; t

A
1 � pjA; t

A
2 / ^ .t1 D tA1 /

_ FjA�1;jB .t1; t2 � pjA; t
A
1 ; t

A
2 � pjA/ ^ .t2 D tA2 /

_ FjA;jB�1.t1 � pjB ; t2; tA1 ; tA2 / ^ .t1 � Q/

_ FjA;jB�1.t1; t2 � pjB ; t
A
1 ; t

A
2 / ^ .t2 � Q/

where j1 D 1 : : : nA; j2 D 1 : : : nB ; ti 2 Œ0; ub�; tAi 2 Œ0; ub�. Then, the optimal
makespan value is given by

CA�

max D min
t1;t2;t

A
1 ;t

A
2

fmax.tA1 ; t
A
2 / W FnA;nB .t1; t2; tA1 ; tA2 / D t rueg

200 5 Parallel Machine Scheduling Problems

Therefore, we have the following result.

Theorem 5.4. An optimal solution to problem P2jCO; C B
max � QjCA

max can be
obtained in O.nAnBub4/ time.

Notice that this DP algorithm can be extended to the m-machine case.

5.2.3 Functions Cmax,
P

Cj

5.2.3.1 Problem PmjIN;
P

C B
j

� QjC A
max

In this section, we consider the INTERFERING scenario. The objective of agent A is
and the objective of agent B is total completion time. We consider the "-constraint
approach where

P
CB
j has to be less than or equal to Q. We will see that problem

PmjIN;PCB
j � QjCA

max can be solved in pseudo-polynomial time by a dynamic
programming algorithm. The algorithm exploits the following property:

Lemma 5.1. There is an optimal solution to PmjIN;PCB
j � QjCA

max in which,
for each machine Mi , the jobs of JB allocated to Mi are scheduled in SPT order
and precede all jobs of NJ A allocated to Mi .

In view of this result, we suppose that the jobs in JB are numbered in SPT order.
Let FjA;jB .t1; : : : ; tm�1; q/ be the recursive function defined by:

FjA;jB .t1; : : : ; tm�1; q/ D
true if jobs 1 to jA of NJ A and 1 to jB of J B can be scheduled on M1; : : : ;Mm so that

each machine Mi is busy in the interval Œ0; ti � and the sum of completion times of
jobs of J B is equal to q, with q the total completion time of jobs in J B , 0 � q � Q.

false otherwise.

We define

F0;0.0; : : : ; 0/ D true

F0;0.t1; : : : ; tm; q/ D false;8.t1; : : : ; tm/ ¤ .0; : : : ; 0/; 0 � q � Q

The recursive relation is the following.

FjA;jB .t1; : : : ; tm;q/ D
m_

iD1
FjA�1;jB .t1; : : : ; ti � pjA; : : : ; tm; q/

_
m_

iD1

�
FjA;jB�1.t1; : : : ; ti � pjB ; : : : ; tm; q � ti / ^ .q � Q/

�

where jA D 1 : : : nA � nB; jB D 1 : : : nB; ti 2 Œ0; ub�; q 2 Œ0;Q�.

5.2 Non-preemptive Jobs with Arbitrary Processing Times 201

This dynamic programming algorithm determines the assignment of jobs to
machines, which is sufficient to deduce an optimal schedule. The optimal makespan
value is given by

CA�

max D min
t1;t2;:::;tm

˚
maxft1; t2; : : : ; tmg W FnA�nB ;nB .t1; : : : ; tm; q/ D t rue

�

In conclusion, for a given upper boundQ on the total completion time of jobs of
agent B , we have the following result.

Theorem 5.5. An optimal solution to problem PmjIN;PCB
j � QjCA

max can be
obtained in O.n2ubmQ/ time.

5.2.3.2 Problem PmjIN; C B
max � Qj P

C A
j

Let us turn now to the symmetric case, i.e. agent A wants to minimize
P
CA
j , and

the makespan of the jobs in J B should be less than or equal to a given value Q.
We next show that PmjIN; C B

max � QjPCA
j can be solved in pseudo-polynomial

time by a dynamic programming algorithm. The algorithm exploits the following
property:

Lemma 5.2. In any optimal solution to PmjIN; C B
max � QjPCA

j , for each
machine Mi , all the jobs scheduled up to the last job of JB are in SPT order, and
all the remaining jobs (all belonging to NJA) are also scheduled in SPT order.

In view of this result, we suppose in the following that both the jobs of J B and
the jobs of J A are numbered in SPT order. Then, we let FjA;jB .t1; : : : ; tm/ denote
the total completion time of the jobs of J A when the first jA jobs of NJ A and the
first jB jobs of J B are scheduled on the m machines, and the makespan of the m
machines is t1; t2; : : : ; tm respectively.

We define

F0;0.0; : : : ; 0/ D 0

F0;0.t1; : : : ; tm/ D C1;8.t1; : : : ; tm/ ¤ .0; : : : ; 0/

FjA;jB .t1; : : : ; tm/ D C1; if ti … Œ0; ub�:

FjA;jB .t1; : : : ; tm/ D

min
iD1;:::;m

8
<

:

FjA�1;jB .t1; : : : ; ti � pj1; : : : ; tm/C ti
FjA;jB�1.t1; : : : ; ti � pj2; : : : ; tm/C ti ; if ti � Q

FjA;jB�1.t1; : : : ; ti � pj2; : : : ; tm/C 1; if ti > Q

where jA D 1 : : : nA � nB; jB D 1 : : : nB ; ti 2 Œ0; ub�; q 2 Œ0;Q�.

202 5 Parallel Machine Scheduling Problems

The optimal total completion time is given by:

X

Jj2JA
Cj D min

.t1;:::;tm/
fFnA�nB ;nB .t1; : : : ; tm/g

In conclusion, we have the following result, in which as usual ub is an upper
bound on a machine makespan (e.g., the total processing time of the jobs).

Theorem 5.6. An optimal solution to problem PmjIN; C B
max � QjPCA

j can be
obtained in O.nAnBubm/ time.

5.2.3.3 Problem PmjCO; C B
max � Qj P

C A
j

Let us consider now the COMPETING scenario. This problem is binary NP-hard (see
Proposition 5.2.1). In Zhao and Lu (2013) it is shown that this problem is NP-hard
even when m D 2 and nB D 2.

In what follows, we refer to Balasubramanian et al. (2009), in which the problem
PmjCO; C B

max � QjPCA
j is addressed.

On each machine, it is easy to show that the schedule has a specific structure
(as in the single-machine case, see Sect. 3.2.1):

Lemma 5.3. In any optimal solution to PmjCO; C B
max � QjPCA

j , for each
machineMi 2 M, it holds:

• The schedule on Mi consists of three consecutive blocks: first some jobs of J A

are scheduled, then a block of jobs of J B , followed by the remaining jobs of J A.
• All jobs of JA onMi are scheduled in SPT order.

Therefore, we assume that the jobs of agent A are numbered in SPT order.
However, as underlined in Balasubramanian et al. (2009), the starting times of the
jobs in JA on the m machines may not follow the SPT ordering. Consider in fact
the following counterexample.

Example 5.1. Let m D 2 machines. We consider that nA D 3, nB D 2 and we have
the following processing times:

J kj J A1 J A2 J A3 J B1 J B2

pkj 1 1 2 8 8

If the makespan of agent B has to be less than or equal to Q D 10, then in
any optimal schedule, the jobs of J B complete at time 10. Jobs JA1 and JA2 are
scheduled on the first machine, followed by job JB1 and job JA3 is scheduled onM2,
followed by job JB2 . The total completion time of the jobs of agent A is equal toP
CA
j D 5.

5.2 Non-preemptive Jobs with Arbitrary Processing Times 203

t
5 100

M1

M2

JB
1

JB
2

JA
1 JA

2

JA
3

t
5 100

M1

M2

JB
1

JB
2

JA
1

JA
2

JA
3

SPT schedule for agent A

Fig. 5.3 Example for
problem
PmjCO; CB

max � QjPCA
j

Algorithm 35 for problem PmjCO; C B
max � QjPCA

j

1: �� WD ./ == initial empty schedule
2:
P
CA
j .�

�/ WD C1
3: for j WD 1 to nA do
4: Construct a partial SPT schedule for the j first jobs of agent A
5: Calculate .t1; t2; : : : ; tm/ == ti is the maximal job completion time on Mi

6: Apply Algorithm 36 to schedule the jobs of agent B on the m machines that are available
at time .t1; t2; : : : ; tm/

7: .t 01; t
0

2; : : : ; t
0

m/ WD updated vector of machine completion times
8: Schedule the nA � j remaining jobs in SPT order on the m machines that are available at

time .t 01; t
0

2; : : : ; t
0

m/

9: Calculate the makespan CB
max

10: for i WD 1 to m do
11: if there is a machine Mi where jobs of agent B complete before CB

max then
12: Shift to the left the first jobs of block �3.i/ (jobs in �2.i/ are right shifted) so that the

jobs in �2.i/ do not complete after CB
max == jobs in �2.i/ are right shifted

13: end if
14: end for
15: Denote by �j the schedule obtained
16: if (CB

max.�j / � Q) and (
P
CA
j .�j / <

P
CA
j .�

�/) then
17: �� WD �j
18: end if
19: end for
20: return ��

Note that for this example, the schedule of jobs of agentA in SPT order gives the
same value for

P
CA
j , butCB

max D 11 (see Fig. 5.3). This solution is thus dominated.
˘

Based on the results of Conway et al. (1967) to solve the PmjjPCj problems
optimally (jobs are scheduled in SPT order) and the heuristic of Graham (1966) for
the PmjjCmax problem (jobs are scheduled in Longest Processing Time (LPT) order),
Balasubramanian et al. (2009) propose a heuristic (Algorithm 35) to generate a set
of near non-dominated points where the SPT and LPT heuristics are used iteratively.

204 5 Parallel Machine Scheduling Problems

Algorithm 36 for problem PmjunavailjCmax (MLPT heuristic)
1: Create them0 dummy jobs
2: Add the dummy jobs to the other ones to obtain J
3: Arrange all the jobs of J in LPT order
4: Assume now that all the machines are ready at time zero
5: while J ¤ ; do
6: JŒ1� WD the first job in J
7: if JŒ1� is a dummy job then
8: if the smallest loaded machine has already received one dummy job then
9: Among all the machines which have only received real jobs, select the machine with

the smallest job Jf
10: Replace Jf by JŒ1�
11: J WD J n fJŒ1�g
12: J WD J [fJf g
13: JŒ1� WD Jf
14: else
15: Assign job JŒ1� to the smallest loaded machine
16: J WD J n fJŒ1�g
17: end if
18: else
19: Assign job JŒ1� to the smallest loaded machine
20: J WD J n fJŒ1�g
21: end if
22: end while
23: Shift all the dummy jobs to the head of their assigned machine
24: return final schedule

Following Lemma 5.2, on each machine Mi , the jobs of the two agents are split
in three blocks: a block �1.i/ of jA jobs of agent A, followed by a block �2.i/ of
jB jobs of agent B , followed by a block �3.i/ of the remaining jobs of agent A
assigned to Mi . Any of these blocks may be empty.

In Algorithm 35, the schedule of the jobs of agent B is done by the algorithm
of Lee (1991), denoted MLPT. This algorithm solves the PmjjCmax problem when
some machines are not available at time zero (PmjunavailjCmax problem). The
author provide a “modified LPT” (MLPT) algorithm where the makespan obtained
by MLPT is bounded by 4

3
C �

max (C �
max being the optimal makespan).

Let ai denote the earliest time that machine Mi can start to process the jobs.
Let m0 be the number of machines with ai > 0. In MLPT algorithm, Lee (1991)
considers ai as the processing time of a dummy job Ji . We merge the dummy jobs
with the jobs to schedule and this gives the set J with nCm0 jobs.

To optimally solve the problem PmjCO; C B
max � QjPCA

j , a mixed integer
programming model is proposed in Balasubramanian et al. (2009).

In the proposed time-indexed formulation, the decision variables are xj;t D 1

if job Jj starts at time t , and 0 otherwise. Let P D PnA
jD1 pAj C PnB

jD1 pBj be the
maximum possible start time of a job. The time indexed formulation for problem
PmjCO; C B

max � QjPCA
j is the following.

5.2 Non-preemptive Jobs with Arbitrary Processing Times 205

Minimize
X

j2J A

PX

tD0
xj;t .t C pj / (5.21)

subject to

Q�pjX

tD0
xj;t D 1; 8j 2 J B (5.22)

PX

tD0
xj;t D 1; 8j 2 J A (5.23)

X

j2J

tX

sDmax.0;t�pjC1/
xj;s � m; 8t 2 P (5.24)

variables xj;t 2 f0; 1g; 8j 2 J ;8t 2 P (5.25)

In this model, the objective function gives the total completion time of only
job of agent A. The set of constraints (5.22) ensures that each job of agent B
is scheduled exactly once and that no job in J A completes after Q. The set of
constraints (5.23) ensures that each job of agent A is scheduled exactly once. The
set of constraints (5.24) ensures that at each time t , no more than m jobs have
been started and are not yet completed. The set of constraints (5.25) are integrality
constraints on the decision variables.

5.2.4 Functions
P

Cj ,
P

Cj

5.2.4.1 Problem PmjIN;
P

C B
j

� Qj P
C A

j

In the INTERFERING scenario, we consider the case where the total completion time
is the objective function of both agents A and B . The problem PmjIN;PCB

j �
QjPCA

j can be solved in pseudo-polynomial time by a dynamic programming
algorithm as follows. In what follows, we suppose that the jobs in JA are numbered
in SPT order.

In a partial schedule, in addition to the total completion time of jobs in J B ,
denoted by q, we must save the information related to the completion time of the last
job on each machine, denoted by ti , i D 1; : : : ; m. In the following recursive func-
tion, we let FjA;jB .t1; : : : ; tm; q/ be the total completion time of the jobs of agent A
when the first jA jobs of NJ A and the first jB jobs of J B are scheduled onm identical
parallel machines, and machineMi completes at time ti , i D 1; : : : ; m, with q � Q.

F0;0.0; : : : ; 0/ D 0

F0;0.t1; : : : ; tm; q/ D C1; 8.t1; : : : ; tm; q/ ¤ .0; : : : ; 0/

FjA;jB .t1; : : : ; tm; q/ D C1; if ti … Œ0; ub� or q < 0:

206 5 Parallel Machine Scheduling Problems

FjA;jB .t1; : : : ; tm; q/ D

min
iD1;:::;m

8
<

:

FjA�1;jB .t1; : : : ; ti � pAjA; : : : ; tm; q/C ti

FjA;jB�1.t1; : : : ; ti � pjB ; : : : ; tm; q � ti /C ti ; if q � Q

FjA;jB�1.t1; : : : ; ti � pjB ; : : : ; tm; q � ti /C 1; if q > Q

8j1 2 f1; : : : ; n � nBg;8j2 2 f1; : : : ; nBg;8ti 2 Œ0; ub�;8q 2 Œ0;Q�

The optimal solution is obtained by minfFnA�nB ;nB .t1; : : : ; tm; q/ W ti 2 Œ0; ub�;
8q 2 Œ0;Q�g. In conclusion, we have the following result.

Theorem 5.7. An optimal solution to problem PmjIN;PCB
j � QjPCA

j can be
obtained in O.n2ubmQ/ time.

5.2.4.2 Problem PmjINjP.
P

C A
j

;
P

C B
j

/

Concerning problem PmjINjP.PCA
j ;
P
CB
j /, we recall that in the INTERFERING

scenario, even for the single machine problem 1jINjP.PCA
j ;
P
CB
j /, the size of

the Pareto set may not be polynomial (see Sect. 3.9.2). Therefore, the size of the
Pareto set is exponential in the parallel machine context.

5.3 Non-preemptive Jobs with Identical Processing Times

In this section we consider that all jobs have the same processing time, whatever
the agent, i.e., pkj D p, 8k, 8J kj 2 J k . However, it is possible to associate a
specific due date and a specific weight to each job. We consider uniform parallel
machines, i.e., the processing time of a job only depends on the performing machine.
More precisely, as explained in Sect. 1.2.2, a coefficient of speed vi is associated to
machine Mi and the processing time of a job Jj is equal to pj;i D pj =vi . In our
case, pj;i D p=vi , 8j 2 J .

5.3.1 Functions fmax; fmax

5.3.1.1 Problem QmjCO; pj D p; f B
max � Qjf A

max

We consider in this section the case in which each agent wants to minimize a general
regular max-type cost function f k

max, i.e., we consider the "-constraint problem
QmjCO; pj D p; f Bmax � Qjf A

max.
Since we are dealing with equal-size jobs, the completion time of the job

scheduled in position ` on machine Mi is equal to CŒ`�;i D `p=vi , where vi is

5.3 Non-preemptive Jobs with Identical Processing Times 207

t
0

M3

M2

M1 h1 h2

h3

h4 h5

h6

h7

h8 h9

h10

. . .

h11

h12

h13 h14

h15

t
0

M3

M2

M1 h1 h2

h3

h4 h5

h6

C = {1, 2, 2, 3, 4, 4, 4, 5, 6, 6, 8, 8, 10, 12, 12, 16, 20, 24}
C = {1, 2, 2, 3, 4, 4}

5 10

5

a
b

Fig. 5.4 Relation between vector C and time intervals

the processing speed of machine Mi and we introduce the set of completion times
of jobs on machineMi , denoted by Ci D fCŒ`�;i W 1 � ` � ng. In particular, we let C
denote the set of the nA C nB smallest possible completion times, some completion
times being possibly present more than once in C. We assume that the elements of
C are sorted in non decreasing order and CŒk� refers to the kth completion time in C.

Example 5.2. Let consider an instance with m D 3 machines, p D 1 and nA D 3

jobs and nB D 3 jobs. Speeds of the machines are the following.

Mi M1 M2 M3

vi 1 1/2 1/4

We have C1 D f1; 2; 3; 4; 5; 6g on machine M1, C2 D f2; 4; 6; 8; 10; 12g on
machineM2 and C3 D f4; 8; 12; 16; 20; 24g on machine M3. Therefore,

Sm
iD1 Ci D

f1; 2; 2; 3; 4; 4; 4; 5; 6; 6; 8; 8; 10; 12; 12; 16; 20; 24g. We only keep the 6 smallest
values and we have C D f1; 2; 2; 3; 4; 4g. To each completion time of C corresponds
a time interval ht , as represented in Fig. 5.4 (in part (a) the first 16 intervals are
represented and in part (b) only the n D 6 sufficient intervals). ˘

A deadline QdBj can be associated to each job of J B so that f B
j .C

B
j / � Q

if CB
j � QdBj (.f B

j /
�1 is supposed to be computable in constant time). The

method which is used to solve this problem is inspired by the backward Lawler’s
algorithm (Lawler 1973) for the single objective scheduling problem 1jprecjfmax.
The algorithm presented in Algorithm 37 can be implemented in O.n2/.

5.3.1.2 Problem QmjCO; pj D pjP.f A
max; f B

max/

The calculation of the set of Pareto optimal solutions for the problem of scheduling
independent equal sized jobs of two COMPETING agents A and B on m uniform
parallel machines is analyzed in Elvikis et al. (2011).

208 5 Parallel Machine Scheduling Problems

Algorithm 37 for problem QmjCO; pj D p; f B
max � Qjf Amax

1: Build C
2: t WD CŒn�
3: SA WD J A

4: SB WD fJBj 2 J B W QdBj � tg
5: k WD n

6: while SA [SB ¤ ; do
7: if SB ¤ ; then
8: for JBj 2 SB do
9: if JBj has minimum f B

j .t/ then
10: �.k/ WD JBj
11: end if
12: end for
13: else
14: for JAj 2 SA do
15: if JAj has minimum f A

j .t/ then
16: �.k/ WD JAj
17: end if
18: end for
19: end if
20: k WD k � 1

21: t WD CŒk�
22: Update SA
23: Update SB
24: end while
25: return �

Starting with Q D maxJBj 2JB ff B
j .CŒn�/g, Algorithm 37 proposed for problem

QmjCO; pj D p; f Bmax � Qjf Amax is used and it can be shown that it returns a
Pareto solution, let .f A

0 ; f
B
0 / denote its value to the two agents. Then,Q is updated

as f B
0 � 1, and another Pareto solution can be computed via Algorithm 37. It is

possible to show (Elvikis et al. 2011) that the whole Pareto set can be enumerated
very efficiently, exploiting the relationship between consecutive Pareto optimal
schedules. In Elvikis et al. (2011), the authors use properties and propose a coding
which runs in O.n2A C n2B C nAnB lognB/ time with O.nnB/ memory.

5.3.2 Functions fmax, Cmax

5.3.2.1 Problem QmjCO; pj D p; C B
max � Qjf A

max

Recalling the definition of set C given in Sect. 5.3.1, let k be the index of the
completion time in C such that CŒk� � Q and CŒkC1� > Q. It is easy to show
that there is an optimal solution to QmjCO; pj D p;CB

max � Qjf A
max in which

the completion times between CŒk�nBC1� and CŒk� are assigned to the jobs of J B .

5.3 Non-preemptive Jobs with Identical Processing Times 209

The remaining completion times are assigned to the jobs of J A with an algorithm
similar to Algorithm 37.

5.3.2.2 Problem QmjCO; pj D pjP.f A
max; C B

max/

In any feasible solution to this problem, the value of CB
max is at least CŒnB �, which

occurs when the jobs of J B have the nB smallest completion times in C. Hence,
throughout the set of all Pareto optimal solutions, CB

max has values CŒnB �, CŒnBC1�,
: : : , CŒnACnB �. Hence, there are O.nA/ Pareto optimal solutions and each of them
can be found applying the algorithm proposed for problem QmjCO; pj D p;CB

max �
Qjf Amax with Q D CŒk�, k D nB; : : : ; nA C nB .

5.3.3 Functions Cmax, Cmax

5.3.3.1 Problem QmjCO; pj D pjP.C A
max; C B

max/

The problem QmjCO; pj D pjP.CA
max; C

B
max/ is indeed trivial. In fact, it is obvious

that the QmjCO; pj D pjP.CA
max; C

B
max/ problem admits only two Pareto solutions

in the criteria space: .CA
max D CŒnA�; C B

max D CŒn�/ and .CA
max D CŒn�; C B

max D CŒnB �/,
which completely define the assignment of jobs to completion times.

5.3.4 Functions Lmax, Cmax

5.3.4.1 Problem QmjCO; pj D pjP.LA
max; C B

max/

Following the same approach as presented in Sect. 5.3.2.2, we can show that the
scheduling problem QmjCO; pj D pjP.LAmax; C

B
max/ can be solved very efficiently.

We first recall a result from single-agent scheduling.

Lemma 5.4. Given an instance of problem Qmjpj D pjLmax, there exists an
optimal solution in which jobs are assigned in EDD order to the completion times.

Lemma 5.4 trivially extends to the two-agent problem QmjCO; pj D p;CB
max �

QjLAmax, in which jobs in JA are EDD ordered. We can then use the same approach
introduced for QmjCO; pj D p;CB

max � Qjf Amax (Sect. 5.3.2.1). Hence, letting k
be such that CŒk� � Q and CŒkC1� > Q, it is easy to show that there is an optimal
solution to QmjCO; pj D p;CB

max � QjLAmax in which all jobs in JB are scheduled
to complete at CŒk�nBC1�; : : : ; CŒk�. The remaining completion times are assigned to
the jobs of J A in EDD order. In conclusion, there are at most nAC1 possible Pareto
solutions, that can all be enumerated in O.n logn/.

210 5 Parallel Machine Scheduling Problems

5.3.5 Functions
P

fj ; Cmax

5.3.5.1 Problem QmjCO; pj D pjP.
P

f A
j

; C B
max/

Because the objective functions are regular and following the same approach as
in Sect. 5.3.1 for problem QmjCO; pj D pjP.f A

max; f
B

max/, the determination of
the Pareto set is obtained by solving iteratively the "-constraint version of the
problem. For the latter problem with CB

max � Q, minimizing the objective function
of agent A is equivalent to finding an optimal assignment of the jobs of agent A
to the completion times fCŒ1�; : : : ; CŒk�nB �g [fCŒkC1�; : : : ; CŒn�g of C where k verifies
CŒk� � Q and CŒkC1� > Q. This is an assignment problem that can be solved in
O.n3A/ (see Dessouky et al. (1990)).

As there are at most .nA C 1/ possible completion times for the last job of the
block of jobs in J B , one can deduce that there are at most .nA C 1/ Pareto optimal
schedules.

In some special cases for function
P
f A
j , the problem QmjCO; pj D

pjP.Pf A
j ; C

B
max/ can be solved even more efficiently:

• If
P
f A
j D P

wAj C
A
j , the jobs of J A are assigned to the completion times

fCŒ1�; : : : ; CŒk�nB �g[fCŒkC1�; : : : ; CŒn�g of C in WSPT order, i.e., by non increasing
order of wAj , since processing times are identical.

• If
P
f A
j D P

wAj T
A
j with T Aj D max.0; CA

j � dAj / and the additional
assumption that the weights wAj and due dates dAj are agreeable (i.e., dAj �
dAj 0) wAj 	 wAj 0), the jobs of J A are assigned to the completion times
fCŒ1�; : : : ; CŒk�nB �g [fCŒkC1�; : : : ; CŒn�g of C in EDD order.

In both such special cases, QmjCO; pj D pjP.Pf A
j ; C

B
max/ can be solved in

O.n logn/.

5.3.6 Functions
P

Uj ; Cmax

5.3.6.1 Problem QmjCO; pj D pjP.
P

U A
j

; C B
max/

For this problem, again the jobs of JB are scheduled to complete at nB consecutive
completion times in C. As a consequence, there are at most nA C 1 Pareto optimal
solutions. It is clear that in a Pareto solution, the jobs before the block of J B are
early jobs (since otherwise, by shifting the jobs to the end, the makespan for J B can
be reduced without changing the number of tardy jobs). Furthermore, we can limit
to considering schedules in which the early jobs are scheduled in EDD order.

The first Pareto solution is obtained by first assigning the jobs of J B to the last
completion times in C. We sort the jobs of J A in EDD order and we start assigning
them in this order to the first nA completion times. When a job of J A is late if

5.3 Non-preemptive Jobs with Identical Processing Times 211

Algorithm 38 for problem QmjCO; pj D pjP.PUA
j ; C

B
max/

1: Build C
2: Arrange the jobs of J A in EDD order
3: t WD n

4: R WD ; == the initial set of Pareto solutions
5: while t � nB do
6: Assign the jobs of J B to the completion times at position t � nB C 1 to t in C
7: r WD 1

8: j WD 1

9: while (j � nA) and (r � t � nB) do
10: if CŒr� � dAj then
11: r WD r C 1

12: Assign JAj to the completion time at position r in C
13: else
14: Move JAj to the end of the schedule
15: end if
16: j WD j C 1

17: end while
18: Shift block J B to the left if necessary to obtain solution �
19: R WD R [f�g
20: t WD t � 1

21: end while
22: Remove the weak Pareto solutions from R
23: return R

assigned to a completion time CŒr�, it is moved to the end of the schedule and the
jobs of JB are left shifted accordingly. Then, the next jobs in J A are tried out to
complete at CŒr�, until the first job which is early when assigned to CŒr� is found.
Then, we continue considering CŒrC1� and so on, until all jobs of JA are assigned a
completion time.

The next Pareto solution is found by left-shifting each job of J B to the previous
position in C with respect to the previous Pareto optimal solution. As before, the
new tardy jobs of J A are moved to the end of the schedule and the process iterates.
This algorithm is described in Algorithm 38.

Example 5.3. Let us illustrate this algorithm with the following instance. Let nA D
6, nB D 5, and p D 1. The due dates of jobs of J A are the following.

JAj J A1 J A2 J A3 J A4 J A5 J A6

dAj 1 1 3 5 6 7

We assume that there are m D 3 machines with speeds 1, 1/2 and 1/4 as in
Example 5.2. The vector of completion times C is equal to C D f1; 2; 2; 3; 4; 4;
4; 5; 6; 6; 7g.

First, the jobs of J B are assigned to the completion times f4; 5; 6; 6; 7g. In this
case, job JA1 can complete at time 1 and is assigned to the first completion time of C.

212 5 Parallel Machine Scheduling Problems

t
0

M3

M2

M1
JA
1 JA

3

JA
4

JA
5 JA

6

JB
1

JB
2

JB
3 JB

4

JB
5

JA
2

Fig. 5.5 Pareto solution with
.
P
UA
j ; C

B
max/ D .1; 6/

Job JA2 cannot complete at time 2, thus this job is put at the end of the schedule.
Then, job JA3 can complete at time 2, job JA4 can complete at time 2, job JA5 can
complete at time 3, and job JA6 can complete at time 4. There is one tardy job, soP
UA
j D 1. Because one job of J A is late, it is possible to shift the block J B to the

right by one position. Finally, the assignment to the completion times of C is given
by .J A1 ; J

A
3 ; J

A
4 ; J

A
5 ; J

A
6 ; J

B
1 ; J

B
2 ; J

B
3 ; J

B
4 ; J

B
5 ; J

A
2 /. The makespan of J B is equal

to 6 and the schedule is represented in Fig. 5.5.
For the second Pareto solution, the jobs of J B are assigned to the completion

times f4; 4; 4; 5; 6g. Nothing changes for jobs JA1 to JA5 , assigned to the same
positions. Job JA6 is scheduled in position 11 and is not late. The solution is again a
vector .

P
UA
j ; C

B
max/ D .1; 6/. ˘

5.4 Tables

In Table 5.1, we summarize the results in the preemptive case. In Tables 5.2 and 5.3,
we summarize the results in the non-preemptive case with the epsilon-constraint
approach and the Pareto front enumeration, respectively. In Table 5.4, we summarize
the results in the non-preemptive case with equal-length jobs. The running times of
the different algorithms are given in the tables.

5.5 Bibliographic Remarks

In this section, we give some remarks on main references related to multiagent
parallel machine scheduling problems. We give some references to the reader who
wants to enter more into the details on these problems.

5.5.1 Preemptive Jobs

Note that there are few results dealing with parallel machines multiagent scheduling
problems when preemption of jobs is allowed. The first study on monocriterion

5.5 Bibliographic Remarks 213

Table 5.1 Preemptive case

Problem Complexity Section Page

RmjIN; pmtn; f Bmax � Qjf A
max O.n2m2

p
nCm/ 5.1.1.1 190

RmjIN; pmtn; f kmax � Qk; k D 2; : : : ; Kjf 1max O.n2m2K
p
nCm/ 5.1.1.4 193

P2jCO; pmtn; f B
max � QjPCA

j O.nA lognA C nB lognB/ 5.1.2.1 194

PmjIN; pmtn;
P
CB
j � QjPCA

j NP-hard 5.1.3.1 196

PmjIN; pmtn;
P
f B
j � QjP f A

j NP-hard 5.1.3.1 196

Table 5.2 Non-preemptive jobs – Epsilon-constraint approach

Problem Complexity Section Page

PmjIN; CB
max � QjCA

max O.n2UBm/ 5.2.2.1 198

PmjIN; C 2
max � Q2; : : : ; C

K
max � QK jC1

max O.nKUBm/ 5.2.2.2 199

P2jCO; CB
max � QjCA

max O.nAnBUB4/ 5.2.2.3 199

PmjIN;PCB
j � QjCA

max O.n2UBmQ/ 5.2.3.1 200

PmjIN; CB
max � QjPCA

j O.n2UBm/ 5.2.3.2 201

PmjCO; CB
max � QjPCA

j NP-hard 5.2.3.3 202

PmjIN;PCB
j � QjPCA

j O.n2UBmQ/ 5.2.4.1 205

Table 5.3 Non-preemptive jobs – Pareto front enumeration

Problem Size Section Page

PmjINjP.PCA
j ;
P
CB
j / Nonpolynomial 5.2.4.2 206

Table 5.4 Non-preemptive case with equal-length jobs

Problem Complexity/size Section Page

QmjCO; pj D p; f B
max � Qjf A

max O.n2/ 5.3.1.1 206

QmjCO; pj D pjP.f A
max; f

B
max/ O.n3/ 5.3.1.2 207

QmjCO; pj D p; CB
max � Qjf A

max O.n2/ 5.3.2.1 208

QmjCO; pj D pjP.f A
max; C

B
max/ 5.3.2.2 209

QmjCO; pj D pjP.CA
max; C

B
max/ O.n2A/ 5.3.3.1 209

QmjCO; pj D pjP.LAmax; C
B
max/ 5.3.4.1 209

QmjCO; pj D pjP.P f A
j ; C

B
max/ .nA C 1/ 5.3.5.1 210

QmjCO; pj D pjP.PUA
j ; C

B
max/ 5.3.6.1 210

scheduling problems on parallel machines is due to McNaughton 1959, where
the objective function to minimize is the makespan. Then, one of more inter-
esting results is to solve the classical feasibility scheduling problem denoted
by Rmjpmtn; Qdj j� (Brucker 2007). The idea for solving this problem can be

214 5 Parallel Machine Scheduling Problems

generalized for solving problem RmjIN; pmtn; f k
max � Qk; k D 2; : : :Kjf 1

max,
where all the agents have the same objective function (see Sect. 5.1). The complexity
of the proposed algorithm can be improved by following the approach proposed
in Sedeño-Noda et al. (2006) for solving the preemptive open shop problem with
time-windows, based on network flow approaches to check feasibility and a max-
flow parametrical algorithm to minimize the makespan. Other objective functions
are considered in Mohri et al. (1999), dealing with the P3jMU; pmtn; Cmax �
QjLmax problem. The authors propose a polynomial time algorithm to enumerate
the whole Pareto set based on the "-constraint approach. Minimizing both the total
completion time of jobs and the makespan criteria in multicriteria scenario has been
studied in Leung and Young (1989), where the linear combination is considered
and a polynomial time algorithm is proposed. These results can be extends to the
NONDISJOINT scenario.

5.5.2 Non-preemptive Jobs with Arbitrary Processing Times

In this case, without simplifying hypotheses, any problem is NP-hard. Therefore,
the challenge is to propose pseudo-polynomial time algorithms, most often based
on dynamic programming. The next step is then to propose (Fully) Polynomial
Approximation Schemes, as in Kellerer and Strusevich (2010) or in Zhao and
Lu (2013). In the latter, the authors consider identical parallel machines in the
COMPETING scenario with the "-constraint approach, where the objective of agent
B is CB

max � Q and the objective of agentA, to minimize is either CA
max or

P
CA
j . In

Wan et al. (2010), the authors consider identical parallel machines when processing
times are controllable (see Sect. 6.4) and propose approximation schemes and
algorithms with performance guarantee. The minimization of the total completion
time with deadlines and additional constraints can also catch our attention. For
example, in Su (2009), the identical parallel machine scheduling problem with
job deadlines and machine eligibility constraints is considered. The objective is
to minimize the total completion time, and every job can be processed only on a
specified subset of machines. This problem is NP-hard. These methods and results
can be adapted in the INTERFERING scenario to solve a problem with two agents A
and B , where agent B aims to minimize a regular objective function f B

max and the
objective function of the agent A to minimize is the total completion time.

5.5.3 Non-preemptive Jobs with Identical Processing Times

The scheduling problem with uniform parallel machines and identical jobs was
studied in the seminal work of Dessouky et al. (1990). The authors introduce the
vector of earliest possible completion times C and propose a resolution method

5.5 Bibliographic Remarks 215

that can be used for general regular functions and its improvement in case of
classical scheduling objective functions. In the BICRITERIA scenario, Tuzikov
et al. (1998) consider general objective functions f A

max,
P
f A
j and f B

max with the
"-constraint approach. Based on the Lawler’s backward algorithm (Lawler 1973) for
the 1jprecjfmax problem, polynomial time algorithms are proposed for obtaining the
set of Pareto solutions. The problem in the multiagent context has been addressed
in Elvikis et al. (2011) and T’kindt (2012). The authors propose a polynomial time
generic algorithm with a better time complexity.

Chapter 6
Scheduling Problems with Variable Job
Processing Times

In this chapter, we consider agent scheduling problems in which job processing
times are variable. This means that the processing times, contrary to other chapters
of the book, are not fixed and may change depending on such parameters as job
starting times, job positions in schedule or the amount of resources allocated to
jobs. Though problems of this type appear in many applications and non-fixed job
processing times are studied in scheduling theory from over a few decades, agent
scheduling problems with variable job processing times only recently started to be
a new subject of research.

The chapter is composed of six sections. In Sect. 6.1, we give a short introduction
to scheduling problems with variable job processing times. The main part of
the chapter is composed of Sects. 6.2–6.4, in which we review agent scheduling
problems with time-dependent, position-dependent and controllable job processing
times, respectively. In Sect. 6.5, we present tables summarizing the time complexity
statuses of considered earlier scheduling problems. We end the chapter by Sect. 6.6
with bibliographic remarks.

6.1 Introduction

In this section, we recall some definitions and results applied in the chapter. First,
we introduce the reader to the phenomenon of job processing times variability and
propose a classification of main forms of the variability. Next, we describe some
extensions of the three-field notation that we use in the book. Further, we present
basic results concerning scheduling problems with variable processing times. We
complete the section by several examples of single- and two-agent scheduling
problems with variable job processing times.

A. Agnetis et al., Multiagent Scheduling, DOI 10.1007/978-3-642-41880-8__6,
© Springer-Verlag Berlin Heidelberg 2014

217

218 6 Scheduling Problems with Variable Job Processing Times

6.1.1 Main Forms of Variable Job Processing Times

One of the basic assumptions of scheduling theory is that the processing times of
the jobs are fixed, known in advance and described by numbers. However, this is
very restrictive, since it does not allow one to consider many practical problems in
which jobs have variable processing times. For example, jobs may deteriorate – and
deterioration increases the time needed for their processing, job processing times
may change in view of learning or ageing effects, or they may depend on the amount
of a resource allocated to the jobs etc.

The variability of job processing times may be modeled in various ways. In this
chapter, we consider the following forms of variable job processing times described
by functions or intervals:

• Time-dependent job processing times – the processing time of a job is a function
of the job starting time;

• Position-dependent job processing times – the processing time of a job is a
function of the position of the job in schedule;

• Controllable job processing times – the processing time of a job is varying in
some interval between a certain minimum and maximum value.

Now, we briefly describe the mentioned above forms of variable job processing
times, limiting the presentation only to these job processing time forms that appear
in agent scheduling literature.

6.1.1.1 Time-Dependent Job Processing Times

This is the most popular form of variable job processing times. In this case, the
processing times of jobs are functions of the job starting times. Scheduling problems
with job processing times of this type are considered in that branch of scheduling
theory known as time-dependent scheduling (Gawiejnowicz 2008).

Time-dependent processing times appear in many important problems in which
any delay in processing causes an increase (a decrease) of the processing times of
executed jobs. Examples are the problems of scheduling maintenance procedures,
planning the sequences of derusting operations, modeling the issues related to
fire fighting, financial problems such as the repayment of multiple loans, military
problems such as recognizing aerial threats etc.

There are two main research directions in time-dependent scheduling, each
having its own specificity and possible application areas. Though, under some
assumptions, the results from both these directions are mutually related, at present
they are developing rather separately.

The first direction concerns scheduling problems in which job processing times
are non-decreasing (or increasing) functions of the job starting times. This means
that job processing times deteriorate in time, i.e. a job that is started later has not
lower (not larger) processing time than the same job started earlier. Jobs that have

6.1 Introduction 219

time-dependent deteriorating processing times are called deteriorating jobs. Most of
the literature on time-dependent scheduling concerns scheduling deteriorating jobs.

The simplest form of job deterioration is proportional deterioration. In this case,
we assume that job processing time pj is in the form of

pj D bj t; (6.1)

where bj > 0 for 1 � j � n and t denotes the starting time of job Jj . Coefficient
bj is called the deterioration rate of job Jj , 1 � j � n. Moreover, in order to avoid
the trivial case when all processing times of jobs executed on a machine are equal
to zero, we assume that the first scheduled job starts at time t0 > 0 from which the
machine is available for processing.

A more general form of job deterioration is proportional-linear deterioration. In
this case, job processing time pj is in the form of

pj D bj .aC bt/; (6.2)

where t0 D 0, bj > 0 for 1 � j � n, a 	 0 and b 	 0.
The next form of job deterioration is linear deterioration. In this case, job pro-

cessing time pj is a linear function of the job starting time,

pj D aj C bj t; (6.3)

where t0 D 0; aj > 0 and bj > 0 for 1 � j � n: Coefficient aj is called the basic
processing time of job Jj ; 1 � j � n:

Throughout the chapter we write that deteriorating jobs have proportional,
proportional-linear or linear processing times, if the processing times are in the
form of (6.1), (6.2) or (6.3), respectively.

Notice that some relations hold among the above mentioned forms of job
deterioration. Proportional job deterioration (6.1) is a special case of proportional-
linear deterioration (6.2) that, in turn, is a special case of linear deterioration (6.3).
Hence, any time-dependent scheduling problem with linear (proportional-linear) job
processing times includes as a special case the problem with proportional-linear
(proportional) job processing times.

The second direction in time-dependent scheduling concerns the study of
such problems in which job processing times are non-increasing (or decreasing)
functions of the job starting times. This, in turn, means that job processing times
shorten in time, i.e. the processing time of a job becomes shorter if it is started later.
Jobs with time-dependent processing times of this type are called shortening jobs.
Scheduling problems with shortening jobs are relatively less explored than those
with deteriorating jobs.

The simplest form of job processing time shortening is proportional-linear
shortening in which job processing time pj is in the form of

pj D bj .a � bt/; (6.4)

220 6 Scheduling Problems with Variable Job Processing Times

where shortening rates bj are rational, satisfy the condition

0 < bj b < 1 (6.5)

and the condition

b

nX

iD1
bi � bj

!

< 1 (6.6)

holds for 1 � j � n: Conditions (6.5) and (6.6) assure that job processing
times (6.4) are positive in any non-idle schedule.

A special case of proportional-linear shortening is the case when a D 1, i.e.
when job processing time pj is in the form of

pj D bj .1 � bt/; (6.7)

where bj > 0 for 1 � j � n and b > 0. In this case, condition (6.6) takes the
form of

b

0

@
nX

jD1
bj � bmin

1

A < 1;

where bmin WD min1�j�nfbj g:
The next type of job shortening is linear shortening, in which job processing

times are decreasing linear functions of the job starting times. In this case,
processing time pj is in the form of

pj D aj � bj t; (6.8)

where shortening rates bj are rational and conditions

0 < bj < 1 (6.9)

and

bj

nX

iD1
ai � aj

!

< aj (6.10)

hold for 1 � j � n: Notice that conditions (6.9) and (6.10) are generalizations of
conditions (6.5) and (6.6), respectively.

Throughout the chapter we write that shortening jobs have proportional-linear
or linear processing times, if the processing times are in the form of (6.4) or (6.8),
respectively.

6.1 Introduction 221

6.1.1.2 Position-Dependent Job Processing Times

This is the second popular form of variable job processing times. In this case, job
processing times are functions of the job positions in schedule. Scheduling problems
of this type are considered in the second active research area in scheduling theory
called position-dependent scheduling.

Position-dependent job processing times occur in manufacturing systems, in
which the assembly time of a product is a function of skills of the worker who is
involved in the process of making the product. Because the skills have an impact on
the process, the assembly time is a function of the worker’s experience. Moreover,
since the latter can be expressed by the number of products made by the worker
earlier, this time is a function of the product position in a schedule.

Similarly, as in the case of time-dependent job processing times, there are two
main research directions in position-dependent scheduling. The first is the most
popular and, in a sense, it is similar to the one with shortening jobs: the processing
time of a job is a non-increasing (a decreasing) function of the job position in a
schedule. Since the aim of this form of job processing time is to model so-called
learning effect, problems of this kind are called scheduling problems with learning
effect.

The simplest form of learning effect is log-linear learning effect in which the
processing time pj;r of job Jj (1 � j � n) scheduled in position r is in the form of

pj;r D pj r
˛: (6.11)

Here pj is the basic processing time of job Jj , ˛ < 0 is the learning index, and
r denotes the position of Jj in the schedule, 1 � r � n.

Another form of learning effect is linear learning effect that, in a sense, is similar
to linear shortening. In this case,

pj;r D pj � ˇj r; (6.12)

where pj is the basic processing time of job Jj and ˇj is the learning factor
(0 < ˇj <

pj
n

for 1 � j � n/.
Throughout the chapter we write that position-dependent jobs have log-linear or

linear position-dependent processing times with learning effect, if the processing
times are in the form of (6.11) or (6.12), respectively.

A separate class of scheduling problems with learning effect takes into account
the impact of previously scheduled jobs. This form of learning effect is called past-
sequence-dependent learning effect. For example, job processing times with past-
sequence-dependent learning effect may be in the form of

pj;r D pj max

(

1C
r�1X

kD1
pŒk�

!˛

; ˇ

)

; (6.13)

222 6 Scheduling Problems with Variable Job Processing Times

pj;r D pj

1C
r�1X

kD1
pŒk�

!˛

; (6.14)

or

pj;r D pj

1CPr�1

kD1 pŒk�
1CPr�1

kD1 pk

!˛

; (6.15)

where pj , pŒk�, ˛ < 0 and 0 < ˇ < 1 denote the basic processing time of job Jj ,
the processing time of the job in position k, the learning index and the truncation
parameter, respectively.

Throughout the chapter we write that position-dependent jobs have past-
sequence-dependent processing times with learning effect, if the processing times
are in the form of (6.13), (6.14) or (6.15).

The second form of position-dependent variable job processing times has a
similar nature to that one of deteriorating jobs, since the processing time of a job is
a non-decreasing (or an increasing) function of the job position in a schedule. Since
this form of position-dependent job processing times is related to so-called ageing
effect, problems of this kind are called scheduling problems with ageing effect.

The simplest form of ageing effect is log-linear ageing effect that has the same
form as log-linear learning effect but with positive exponent. In this case, job
processing time pj;r is in the form of

pj;r D pj r
ˇ; (6.16)

where pj is the basic processing time of job Jj and the ageing index ˇ > 0.
A similar change of the sign of a parameter that has an impact on job processing

time may concern also other forms of learning effect. For example, position-
dependent job processing times with ageing effect may be in the form of

pj;r D pj C ˇj r; (6.17)

pj;r D pj

1C
r�1X

kD1
pŒk�

!ˇ

; (6.18)

or

pj;r D pj

1CPr�1

kD1 pŒk�
1CPr�1

kD1 pk

!ˇ

; (6.19)

where pj is the basic processing time of job Jj and ˇ > 0.

6.1 Introduction 223

Notice that ageing effects of the forms (6.16), (6.17), (6.18) and (6.19) are
counterparts of learning effects of the forms (6.11), (6.12), (6.14) and (6.15),
respectively.

Throughout the chapter we write that position-dependent jobs have log-linear
or linear position-dependent processing times with ageing effect, if the processing
times are in the form of (6.16) or (6.17), respectively. Similarly, we write that
position-dependent jobs have past-sequence-dependent processing times with age-
ing effect, if the processing times are in the form of (6.18) or (6.19), respectively.

6.1.1.3 Controllable Job Processing Times

This is the third popular form of variable job processing times. In this case, job
processing times are described by intervals, i.e., the processing time of a job varies
between a minimum and a maximal value that are specific for each job. Moreover,
the processing time of a job is expressed by a non-increasing function of the amount
of a resource allocated to a given job. This resource may be continuous or discrete
and, in most cases, it is non-renewable and its availability is limited by an upper
bound. Scheduling problems of this type are considered in the third active research
area in scheduling theory called resource-dependent scheduling.

Controllable job processing times appear in some industrial applications such as
the problem of organizing the production at a blacksmith’s division in a steel mill.
In this case, the job processing times vary within certain limits and they require
resources such as gas or power. Allotted resources may change job processing times
but since the former are scarce, a cost has to be paid for each unit of resource
employed.

There are two main forms of controllable job processing times. The first form of
controllable job processing times, called convex, assumes that the processing time
pj of job Jj is a convex function of the resource amount uj allocated to Jj . Since
no agent scheduling problems with convex controllable job processing times were
considered so far, we do not discuss this form here.

The second form of controllable job processing times is called linear. In this case,
the processing time pj of job Jj is a linear function of the amount uj of a resource
allocated to the job, i.e.

pj D pj � �juj ; (6.20)

where 0 � uj � uj � pj
�j

. The values pj , uj and �j > 0 are called the non-

compressed .maximal/ processing time, the upper bound on the amount of allocated
resource and the compression rate of job Jj , 1 � j � n.

There is another possible form of linear controllable job processing times. In
this form, we let the actual processing time pj 2 Œp

j
; pj �, where p

j
� pj for

1 � j � n. The maximal processing time can be compressed (decreased) at the cost
cj xj , where

224 6 Scheduling Problems with Variable Job Processing Times

xj D pj � pj (6.21)

is the amount of compression of job Jj and cj is the compression cost per unit time.
This implies that the processing time pj of controllable job Jj is in the form of

pj D pj � xj ; (6.22)

where pj and xj are defined as in (6.20) and (6.21), respectively. In this form,
the cost of compression is usually measured by the total compression cost functionP

j cj xj .
Throughout the chapter we write that jobs have controllable linear processing

times, if the processing times are in the form of (6.20) or (6.22).
Notice that any solution to a scheduling problem with controllable job processing

times has two components. Namely, if job processing times are in the form of (6.20),
a solution to the problem is specified by (i) a vector of resource amounts allocated
to each job and (ii) a schedule. Similarly, if job processing times are in the
form of (6.22), the solution is specified by (i) a vector of job processing times
compressions and (ii) a schedule.

Moreover, in scheduling problems with controllable job processing times, two
criteria are used to measure the quality of a schedule, namely a scheduling criterion
and a cost function measuring the cost of job compression in the evaluated schedule.

The forms of variable job processing times that we consider in the chapter are
summarized in Table 6.1.

6.1.2 Notation for Variable Job Scheduling Problems

In the section, we introduce several extensions to the three-field notation defined
earlier to address agent scheduling problems with variable job processing times.

6.1.2.1 Notation for Single-Agent Time-Dependent Job Scheduling
Problems

To denote scheduling problems with time-dependent job processing times, in the
second field of problem notation we give the form of the functions that describe the
processing times.

Example 6.1. (a) Symbol 1jpj D bj t jPCj denotes the single-agent, single-
machine time-dependent scheduling problem with proportional processing
times of jobs and the objective of minimizing total completion time,

P
Cj .

(b) Symbol 1jpj D aj C bj t jCmax denotes the single-agent, single-machine time-
dependent scheduling problem with linear processing times of jobs and the
objective of minimizing the maximum completion time, Cmax. ˘

6.1 Introduction 225

Table 6.1 Summary of main forms of variable job processing times

Job processing time name Job processing time form

Time-dependent job processing times
Proportional deterioration bj t

Proportional-linear deterioration bj .aC bt/

Linear deterioration aj C bj t

Proportional-linear shortening bj .a � bt/

Linear shortening aj � bj t

Position-dependent job processing times
Log-linear learning effect pj r

˛

Linear learning effect pj � ˇj r

Past-sequence-dependent learning effect pj max
n�
1CPr�1

kD1 pŒk�

	˛
; ˇ
o

Past-sequence-dependent learning effect pj

�
1CPr�1

kD1 pŒk�

	ˇ

Past-sequence-dependent learning effect pj

�
1C

Pr�1
kD1 pŒk�

1C
Pr�1
kD1 pk

˛

Log-linear ageing effect rj r
ˇ

Linear ageing effect pj C ˇj r

Past-sequence-dependent ageing effect pj

�
1CPr�1

kD1 pŒk�

	ˇ

Past-sequence-dependent ageing effect pj

�
1C

Pr�1
kD1 pŒk�

1C
Pr�1
kD1 pk

ˇ

Controllable job processing time
Linear compression pj � �juj
Linear compression pj � xj

If necessary, in the second field of the notation we specify other requirements
concerning a given time-dependent scheduling problem.

Example 6.2. (a) Symbol 1jpj D bj t; sj D b0
j t; GT jfmax denotes the single-

agent, single-machine time-dependent batch scheduling problem with propor-
tional job processing times, proportional setup times and the objective of
minimizing the maximum cost, fmax. Symbol ‘GT ’ stands for group technol-
ogy, and it means that jobs are partitioned into groups, and jobs in the same
group must be processed consecutively, without idle times. A setup time is
required when switching between jobs of different groups.

(b) Symbol 1jpj D aj C bj t jPwj Cj C Lmax denotes the single-agent, single-
machine time-dependent scheduling problem with linear processing times and
the objective of minimizing the sum of the total weighted completion time and
the maximum lateness,

P
wj Cj C Lmax. ˘

6.1.2.2 Notation for Single-Agent Position-Dependent Job Scheduling
Problems

We denote in a similar way scheduling problems with position-dependent job
processing times.

226 6 Scheduling Problems with Variable Job Processing Times

Example 6.3. Symbol 1jpj;r D pj

�
1CPr�1

kD1 pŒk�
	

jPCj denotes the single-

agent, single-machine scheduling problem with past-sequence-dependent ageing
effect with ˇ D 1 and the objective of minimizing the

P
Cj . ˘

For clarity, we use different symbols for different forms of position-dependent
job processing times. For example, in order to distinguish between different forms
of learning and ageing effects, we denote negative and positive exponents appearing
in these forms as ˛ and ˇ, respectively. Thus, in the second field of the three-field
notation we do not further specify assumptions on the parameters, which are given
in the description of the considered problem.

Example 6.4. (a) Symbol 1jpj;r D pj r
ˇjPCj denotes the single-agent, single-

machine scheduling problem with log-linear ageing effect and the objective of
minimizing the

P
Cj . Since the positive exponent ˇ is specific for the ageing

effect, we do not specify in the second field that ˇ > 0.
(b) Symbol 1jpj;r D pj r

˛jCmax denotes the single-agent, single-machine schedul-
ing problem with log-linear learning effect and the objective of minimizing the
Cmax. Similarly to the previous case, we omit the assumption ˛ < 0, since the
negative exponent ˛ is specific for this form of learning effect.

(c) Symbol 1jpj;r D pj � ˇr jfmax denotes the single-agent, single-machine
scheduling problem with linear learning effect and the objective of minimizing
the fmax. Since the coefficient ˇ in the form of learning effect is positive, we do
not specify in the second field that 0 < ˇ < pj

n
for 1 � j � n.

(d) Symbol 1jpj;r D pj

�
1CPr�1

kD1 pŒk�
	ˇ jPUj denotes the single-agent,

single-machine scheduling problem with the past-sequence-dependent ageing
effect and the objective of minimizing the

P
Uj . As in Examples 6.4 (a), (c),

we do not specify in the second field the assumption ˇ > 0. ˘

6.1.2.3 Notation for Single-Agent Controllable Job Scheduling Problems

We denote scheduling problems with controllable job processing times using similar
rules as in the previous two cases.

Example 6.5. (a) Symbol 1jpj D pj � xj jfmax denotes the single-agent, single-
machine scheduling problem with linear controllable job processing times and
the objective of minimizing the fmax.

(b) Symbol 1jpj D pj � xj jPCj C P
cj xj denotes the single-agent, single-

machine scheduling problem with linear controllable job processing times and
the objective of minimizing the sum of the total completion time and the total
compression cost,

P
j Cj CP

j cj xj . ˘

6.1 Introduction 227

6.1.2.4 Notation for Two-Agent Variable Job Scheduling Problems

We extend the notation introduced earlier in the book to denote two-agent schedul-
ing problems with variable job processing times.

For brevity, if jobs of both agents are of the same form and share the same
additional requirements, we use the same notation as for single-agent problems.
Otherwise, we describe the job characteristics separately.

Example 6.6. (a) Symbol 1jpj D bj t jPwAj C
A
j C LBmax denotes the single-

machine, two-agent scheduling problem in which both agents have proportional
time-dependent job processing times and the objective is to minimize the sum
of the total weighted completion time of jobs of agent A and the maximum
lateness of jobs of agent B ,

P
wAj C

A
j CLAmax.

(b) Symbol 1jpAj D bAj t; p
B
j D aBj C bBj t j

P
wAj C

A
j C LBmax denotes the same

problem as the one described in Example 6.6 (a), with the difference that now
deteriorating jobs of agent B have linear processing times.

(c) Symbol 1jpAj;r D pAj r
˛; pBj;r D pBj r

ˇ;
P
UB
j D 0jPT Aj denotes the single-

machine, two-agent scheduling problem in which position-dependent jobs of
agent A have log-linear job processing times with learning effect, position-
dependent jobs of agent B have log-linear job processing times with ageing
effect, and the objective of agent A is to minimize the total tardiness, provided
that the no job of agent B is tardy ("-constrained approach). ˘

We use symbol ‘ı’ in the second field of the notation to denote standard
circumstances, i.e., if the processing times of jobs are fixed, the jobs are non-
preemptable, there are no ready times, deadlines and there are no precedence
constraints among the jobs.

Example 6.7. Symbol 1jpAj D pAj �xAj ; rAj ; dAj ; pmtnA; ıB jP cAj x
A
j ; f

B
max denotes

the two-agent single-machine scheduling problems in which the objective of agentA
is to minimize the total compression cost,

P
cAj x

A
j , while the objective of agentB is

to minimize the maximum cost, f B
max. Jobs of agentA can be preempted, have linear

controllable processing times and possess ready times and deadlines, while jobs
of agent B cannot be preempted, have fixed processing times, and possess neither
ready times nor deadlines. ˘

6.1.3 Basic Results on Variable Job Scheduling

In this section, we recall several basic results on scheduling jobs with variable
processing times. Since our aim is to compare the difficulty of single- and two-agent
scheduling problems of this type, the results can be viewed as special cases of two-
agent problems considered in the subsequent sections.

228 6 Scheduling Problems with Variable Job Processing Times

6.1.3.1 Single-Agent Time-Dependent Job Scheduling Problems

The first part of basic results from this group concerns time-dependent proportional
job processing times (6.1).

Theorem 6.1. .a/ Problem 1jpj D bj t jCmax is solvable in O.n/ time and

Cmax.�/ D t0

nY

jD1

�
1C bŒj �

�
(6.23)

does not depend on schedule � for the problem.
.b/ Problem 1jpj D bj t jLmax is solvable in O.n log n/ time by scheduling jobs in

non-decreasing order of due dates.
.c/ Problem 1jpj D bj t jfmax is solvable in O.n2/ time by scheduling jobs using

modified algorithm by Lawler (1973).
.d/ Problem 1jpj D bj t jPCj is solvable in O.n logn/ time by scheduling jobs

in non-decreasing order of deterioration rates and

X
Cj .�/ D t0

nX

jD1

jY

kD1

�
1C bŒk�

�
: (6.24)

.e/ Problem 1jpj D bj t jPwj Cj is solvable in O.n log n/ time by scheduling

jobs in non-decreasing order of bj
wj .1Cbj / ratios.

.f / Problem 1jpj D bj t jPUj is solvable in O.n log n/ time by scheduling jobs
using modified algorithm by Moore (1968).

Formulae (6.23) and (6.24) can be proved by induction with respect to the number
of jobs. Theorem 6.1 .b/, .e/ can be proved by a pairwise job interchange argu-
ment (Mosheiov 1994) or by using properties of so-called isomorphic scheduling
problems (Gawiejnowicz and Kononov 2012). The time complexity of problem
1jpj D bj t jPTj is unknown.

Scheduling problems with time-dependent proportional-linear job processing
times (6.2) are not more difficult than those with time-dependent proportional job
processing times.

Theorem 6.2. .a/ Problem 1jpj D bj .aC bt/jCmax is solvable in O.n/ time and

Cmax.�/ D
�
t0 C a

b

	 nY

jD1

�
1C bŒj �b

�� a

b
(6.25)

does not depend on schedule � for the problem.
.b/ Problem 1jpj D bj .aC bt/jLmax is solvable in O.n log n/ time by scheduling

jobs in non-decreasing order of due dates.

6.1 Introduction 229

.c/ Problem 1jpj D bj .aC bt/jfmax is solvable in O.n2/ time by scheduling jobs
using modified algorithm by Lawler (1973).

.d/ Problem 1jpj D bj .aCbt/jPCj is solvable inO.n log n/ time by scheduling

jobs in non-decreasing order of bj
1Cbj b ratios and

X
Cj .�/ D

�
t0 C a

b

	 nX

jD1

jY

kD1

�
1C bŒk�b

�� na

b
: (6.26)

.e/ Problem 1jpj D bj .a C bt/jPwj Cj is solvable in O.n log n/ time by

scheduling jobs in non-decreasing order of bj
wj .1Cbj b/ ratios.

.f / Problem 1jpj D bj .aCbt/jPUj is solvable inO.n logn/ time by scheduling
jobs using modified algorithm by Moore (1968).

.g/ If a D 0 and b D 1, then problem 1jpj D bj .a C bt/jPTj is NP-hard.

Formulae (6.25) and (6.26) can be proved by induction with respect to the number
of jobs. Theorem 6.2 .b/, .e/ can be proved by a pairwise job interchange argument
(Kononov 1998) or by using properties of mentioned earlier isomorphic scheduling
problems (Gawiejnowicz and Kononov 2012). Theorem 6.2 .d/ follows from
Theorem 6.2 .e/ with wj D 1 for 1 � j � n. Theorem 6.2 .g/ follows from a result
by Du and Leung (1990). The time complexity of problem 1jpj D bj .aCbt/jPTj
is unknown if a D 0 and b D 1.

Similar results to those of Theorem 6.2 can be obtained also for linear-
proportional shortening job processing times (6.4). For example, replacing in (6.25)
coefficients a and b by �b and 1, respectively, we obtain the formula

Cmax.�/ D
�

t0 � 1

b

 nY

kD1

�
1 � bŒk�b

�C 1

b
(6.27)

for the maximum completion time in problem 1jpj D bj .1 � bt/jCmax. This
type of mutual relations between a scheduling problem with deteriorating jobs and
the corresponding problem with shortening jobs is studied in Gawiejnowicz et al.
(2009a), where one can find a transformation between instances of these two classes
of time-dependent scheduling problems.

Unlike scheduling problems with time-dependent proportional or time-
dependent proportional-linear job processing times, most scheduling problems
with time-dependent linear processing times (6.3) are difficult. Only the case of the
Cmax criterion is easy, while other criteria either lead to NP-hard problems or their
time complexity is unknown.

Theorem 6.3. .a/ Problem 1jpj D aj C bj t jCmax is solvable in O.n logn/ time

by scheduling jobs in non-increasing order of ratios bj
aj

and

230 6 Scheduling Problems with Variable Job Processing Times

Cmax.�/ D
nX

iD1
aŒi �

nY

kDiC1
.1C bŒk�/C t0

nY

iD1
.1C bŒi �/: (6.28)

.b1/ Problem 1jpj D aj C bj t jLmax is NP-hard, even if only one ak 6D 0 for some
1 � k � n; and due dates of all jobs with aj D 0 are equal.

.b2/ Problem 1jpj D aj C bj t jLmax is NP-hard, even if there are only two distinct
due dates.

.c/ Problem 1jpj D aj C bj t jfmax is NP-hard.
.d/ Problem 1jpj D aj C bj t jPwj Cj is NP-hard.
.e/ Problem 1jpj D aj C bj t jPUj is NP-hard.
.f / Problem 1jpj D aj C bj t jPTj is NP-hard.

Formula (6.28) can be proved by induction with respect to the number of jobs.
Theorem 6.3 .b1/ can be proved using described below reduction from the following
decision problem called SUBSET PRODUCT (Johnson 1982).

SUBSET PRODUCT

Instance: A finite set Y D fy1; y2; : : : ; ypg of integers and an integerH
Question: Is there a subset Y 0 � Y such thatY

yj2Y 0

yj D H?

The reduction from the SUBSET PRODUCT to the decision version of problem
1jpj D aj C bj t jLmax is as follows. We are given n D p C 1 jobs to be scheduled
on a single machine from time t0 D 1, where a0 D 1, b0 D 0, d0 D H C 1

and aj D 0; bj D yj � 1, dj D NY .HC1/
H

for 1 � j � p, with NY D Qp
jD1 yj .

The threshold G D 0. To prove Theorem 6.3 .b1/ it is sufficient to show that the
SUBSET PRODUCT problem has a solution if and only if for the above instance of
problem 1jpj D aj C bj t jLmax there exists a schedule with the maximum lateness
not greater than G (Kononov 1997).

Theorem 6.3 .b2/ can be proved in a similar way using a more complicated
reduction from the PARTITION PROBLEM (Bachman and Janiak 2000). Theorem 6.3
.c/, .e/ and .f / follow from Theorem 6.3 .b/. The time complexity of problem
1jpj D aj C bj t jPCj is unknown, even if aj D 1 for 1 � j � n.

Some of the problems mentioned in Theorems 6.1–6.3 are closely related. For
example, there exists a mutual relation between problems 1jpj D aj C bj t jCmax

and 1jpj D bj t jPCj , since by assuming in formula (6.28) that t0 D 0 and aŒi � D 1

for 1 � i � n, we obtain formula (6.24) with t0 D 1. Conversely, by assuming in
formula (6.24) that t0 D 1, we obtain formula (6.28) with t0 D 0 and aŒi � D 1

6.1 Introduction 231

for 1 � i � n. Similar mutual relations between other pairs of time-dependent
scheduling problems with deteriorating jobs and consequences of such relations
are discussed in Gawiejnowicz et al. (2009b), where one can find a transformation
between such pairs of problems.

6.1.3.2 Single-Agent Position-Dependent Job Scheduling Problems

The first group of results in this area concerns position-dependent log-linear job
processing times (6.11).

Theorem 6.4. .a/ Problem 1jpj;r D pj r
˛jCmax is solvable in O.n logn/ time by

scheduling jobs in non-decreasing order of pj values and

Cmax.�/ D t0 C
nX

jD1

�
pŒj �j

˛
�
: (6.29)

.b/ If basic job processing times and due dates are agreeable, i.e. pi � pj implies
di 	 dj for 1 � i 6D j � n, then problem 1jpj;r D pj r

˛jLmax is solvable in
O.n logn/ time by scheduling jobs in non-decreasing order of due dates.

.c/ Problem 1jpj;r D pj r
˛jPCj is solvable in O.n log n/ time by scheduling

jobs in non-decreasing order of pj values and

nX

jD1
Cj .�/ D nt0 C

nX

jD1
.n � j C 1/pŒj �j

˛: (6.30)

.d1/ If all basic job processing times are equal, i.e., pj D p for 1 � j � n, then
problem 1jpj;r D pj r

˛jPwj Cj is solvable inO.n log n/ time by scheduling
jobs in non-decreasing order of wj values.

.d2/ If job weights satisfy the equality wj D wpj for 1 � j � n, then problem
1jpj;r D pj r

˛jPwj Cj is solvable in O.n log n/ time by scheduling jobs
in non-decreasing order of pj values.

.d3/ If basic job processing times and job weights are agreeable, i.e. pi � pj
implies wi 	 wj for 1 � i 6D j � n, then problem 1jpj;r D pj r

˛jPwj Cj
is solvable in O.n log n/ time by scheduling jobs in non-decreasing order
of pjwj

ratios.

.e/ Problem 1jpj D pj r
˛jPTj is NP-hard.

Formulae (6.29) and (6.30) can be proved by induction with respect to the number
of jobs. Theorem 6.4 .e/ follows from the NP-hardness of problem 1jjTmax (Du and
Leung 1990), which is a special case of problem 1jpj D pj r

˛jPTj when ˛ D 0.
In general, when ˛ ¤ 0, the time complexity of problem 1jpj;r D pj r

˛jPTj is
unknown. Similarly, the time complexity of problems 1jpj;r D pj r

˛jLmax, 1jpj;r D

232 6 Scheduling Problems with Variable Job Processing Times

pj r
˛jfmax, 1jpj;r D pj r

˛jPwj Cj and 1jpj;r D pj r
˛jPUj without additional

assumptions on ˛ is unknown.
Similar results to those of Theorem 6.4 hold also for log-linear ageing

effect (6.16), since it differs from log-linear learning effect only by the replacement
of the negative exponent ˛ by the positive exponent ˇ.

The next group of results on position-dependent job processing times concerns
linear processing times (6.12) with ˇj D ˇ for 1 � j � n.

Theorem 6.5. .a/ Problem 1jpj;r D pj � ˇr jCmax is solvable in O.n/ time and

Cmax.�/ D t0 C
nX

jD1
pŒj � � n.nC 1/

2
ˇ (6.31)

does not depend on schedule � .
.b/ Problem 1jpj;r D pj � ˇr jPCj is solvable in O.n logn/ time by scheduling

jobs in non-decreasing order of pj values and

nX

jD1
Cj .�/ D nt0 C

nX

jD1
.n � j C 1/pŒj � � n.nC 1/.nC 2/

6
ˇ: (6.32)

Formulae (6.31) and (6.32) can be proved by induction with respect to the number
of jobs. Counterparts of Theorem 6.5 .a/, (b) for job processing times in the form
of pj;r D pj � ˇj r , where 1 � j � n, are given in Bachman and Janiak (2004).

Similar results to those of Theorem 6.5 hold also for the linear ageing
effect (6.17), since it differs from the linear learning effect only by the sign before
the ageing factor ˇ.

The last group of results on position-dependent job processing times concerns
past-sequence-dependent processing times (6.14).

Theorem 6.6. .a/ Problem 1jpj;r D pj

�
1CPr�1

kD1 pŒk�
	˛ jCmax is solvable in

O.n logn/ time by scheduling jobs in non-decreasing order of pj values.

.b/ Problem 1jpj;r D pj

�
1CPr�1

kD1 pŒk�
	˛ jPCj is solvable in O.n log n/ time

by scheduling jobs in non-decreasing order of pj values.
.c/ If basic job processing times and job weights are agreeable as in Theo-

rem 6.4 .d3/, then problem 1jpj;r D pj

�
1CPr�1

kD1 pŒk�
	˛ jPwj Cj is

solvable inO.n logn/ time by scheduling jobs in non-decreasing order of ratios
pj
wj

.

The time complexity of problem 1jpj;r D pj

�
1CPr�1

kD1 pŒk�
	˛ jPwj Cj

without additional assumptions is unknown. The same concerns the problems

1jpj;r D pj

�
1CPr�1

kD1 pŒk�
	˛ jLmax and 1jpj;r D pj

�
1CPr�1

kD1 pŒk�
	˛ jPUj .

6.1 Introduction 233

Similar results to those of Theorem 6.6 hold also for position-dependent job
processing times in the form of (6.18).

6.1.3.3 Single-Agent Controllable Job Scheduling Problems

In the section, we recall basic results concerning the single-agent single-machine
controllable job scheduling problem 1jpj D pj � xj jPwj Cj CP

cj xj .
For the first time the above problem was formulated and studied by Vickson

(1980a,b). Recalling that xj denotes the shortening of job Jj , one has the following
two properties.

Property 6.1. For problem 1jpj D pj � xj jPwj Cj C P
cj xj , there exists

an optimal schedule such that for all 1 � j � n either xj D 0 or xj D pj .

Property 6.2. In optimal schedule for problem 1jpj D pj�xj jPwj CjCP cj xj ,
jobs are arranged in non-decreasing order of ratios pj

wj
.

The complexity of the problem has been established by Wan et al. (2001).

Theorem 6.7. Problem 1jpj D pj � xj jPwj Cj CP
cj xj is NP-hard.

The proof of Theorem 6.7 is based on a complex reduction from EVEN-ODD

PARTITION problem (Garey and Johnson 1979); we refer the reader to Wan et al.
(2001) for details of that proof.

6.1.4 Examples of Variable Job Scheduling Problems

In this section, we present few examples of scheduling problems with variable job
processing times introduced in Sect. 6.1.1, in order to give the reader a deeper insight
into the specificity of the problems. Since in all these examples job processing times
are described by monotonically increasing or decreasing functions, throughout this
section we consider only non-idle sequences.

6.1.4.1 Examples of Time-Dependent Job Scheduling Problems

We first consider two single-agent time-dependent scheduling problems with pro-
portional job processing times (6.1).

Example 6.8. The simplest scheduling problems with proportional job processing
times (6.1) are problems 1jpj D bj t jCmax and 1jpj D bj t jPCj .

234 6 Scheduling Problems with Variable Job Processing Times

Consider the following instance of the problem with n D 3 jobs and t0 D 1:

j 1 2 3

bj 5 2 1

There exist 3Š D 6 job sequences for this instance, but job processing times
are different in different sequences. For example, in sequence .J2; J1; J3/ we have
p2 D 2
 S2 D 2
 1 D 2 and C2 D 3, p1 D 5
 S1 D 5
 3 D 15 and C1 D 18,
and p3 D 1
 S3 D 18 and C3 D 36, while in sequence .J3; J2; J1/ we have
p3 D 1
 S1 D 1
 1 D 1 and C1 D 2, p2 D 2
 S2 D 2
 2 D 4 and C2 D 6, and
p1 D 5
 S1 D 30 and C1 D 36.

The list of all sequences for the instance, with corresponding values of job
processing times, job completion times, the Cmax and

P
Cj , are given in the

following table.

Sequence � pŒ1� CŒ1� pŒ2� CŒ2� pŒ3� CŒ3� Cmax.�/
P
Cj .�/

.J1; J2; J3/ 5 6 12 18 18 36 36 50

.J1; J3; J2/ 5 6 6 12 24 36 36 54

.J2; J1; J3/ 2 3 15 18 18 36 36 56

.J2; J3; J1/ 2 3 3 6 30 36 36 45

.J3; J1; J2/ 1 2 10 12 24 36 36 48

.J3; J2; J1/ 1 2 4 6 30 36 36 44

Notice that the job processing times pŒk�, where k D 1; 2; 3, are different
for different sequences � . However, as stated by Theorem 6.1 .a/ and .d/,
the maximum completion time Cmax.�/ is the same for all � , while the total
completion time

P
Cj .�/ depends on � . The optimal sequence for the

P
Cj

criterion, according to Theorem 6.1 .d/, is the sequence �? D .J3; J2; J1/ withP
Cj .�

?/ D 44. ˘
Example 6.9. Another polynomially solvable time-dependent scheduling problem
with proportional job processing times (6.1) is problem 1jpj D bj t jLmax.

Consider the following instance of the problem with n D 3 jobs and t0 D 1:

j 1 2 3

bj 1 3 2
dj 12 4 24

All possible sequences for the instance, with corresponding values of job processing
times, job completion times, job latenesses and the Lmax, are given in the table
below.

6.1 Introduction 235

Sequence � pŒ1� CŒ1� LŒ1� pŒ2� CŒ2� LŒ2� pŒ3� CŒ3� LŒ3� Lmax.�/

.J1; J2; J3/ 1 2 �10 6 8 4 16 24 0 4

.J1; J3; J2/ 1 2 �10 4 6 �18 18 24 20 20

.J2; J1; J3/ 3 4 0 4 8 �4 16 24 0 0

.J2; J3; J1/ 3 4 0 8 12 �12 12 24 12 12

.J3; J1; J2/ 2 3 �21 3 6 �6 18 24 20 20

.J3; J2; J1/ 2 3 �21 9 12 8 12 24 12 12

The optimal sequence for this instance, according to Theorem 6.1 .b/, is �? D
.J2; J1; J3/, with Lmax.�

?/ D 0. ˘
The next example in the section concerns a single-machine time-dependent

scheduling problem with linear job processing times (6.3).

Example 6.10. Problem 1jpj D aj Cbj t jCmax is the only known non-trivial single-
agent time-dependent scheduling problem with linear job processing times (6.3) that
is solvable in polynomial time.

Consider the following instance of the problem with n D 3 jobs and t0 D 0:

j 1 2 3

aj 1 2 3
bj 3 1 2

All possible sequences for the instance, with corresponding values of job processing
times, job completion times and the Cmax, are given in table below.

Sequence � pŒ1� CŒ1� pŒ2� CŒ2� pŒ3� CŒ3� Cmax.�/

.J1; J2; J3/ 1 1 3 4 11 15 15

.J1; J3; J2/ 1 1 5 6 8 14 14

.J2; J1; J3/ 2 2 7 9 21 30 30

.J2; J3; J1/ 2 2 7 9 28 37 37

.J3; J1; J2/ 3 3 10 13 15 28 28

.J3; J2; J1/ 3 3 5 8 25 33 33

The optimal sequence for the instance, according to Theorem 6.3 .a/, is sequence
�? D .J1; J3; J2/ with Cmax.�

?/ D 14. ˘

6.1.4.2 Examples of Position-Dependent Job Scheduling Problems

The next example illustrates the computation of position-dependent job processing
times with log-linear learning effect (6.11) or ageing effect (6.16).

236 6 Scheduling Problems with Variable Job Processing Times

Example 6.11. Position-dependent log-linear job processing times with learning
effect (6.11), where pj;r D pj r

˛ (˛ < 0), and position-dependent log-linear job
processing times with ageing effect (6.16), where pj;r D pj r

ˇ (ˇ > 0), are ones of
the simplest forms of position-dependent job processing times.

In the first case, we have the following table of job processing timespj;r , in which
the job processing time in position j; r .1 � j; r � n/ is equal to the basic job
processing time pj divided by r j˛j:

r p1;r p2;r p3;r : : : pn;r

1 p1 p2 p3 : : : pn
2

p1

2j˛j

p2

2j˛j

p3

2j˛j
: : :

pn

2j˛j

3
p1

3j˛j

p2

3j˛j

p3

3j˛j
: : :

pn

3j˛j

: : : : : : : : : : : : : : : : : :

n
p1
nj˛j

p2
nj˛j

p3
nj˛j

: : :
pn
nj˛j

In the second case, the job processing time in position j; r .1 � j; r � n/ is equal
to the basic processing time pj multiplied by rˇ:

r p1;r p2;r p3;r : : : pn;r

1 p1 p2 p3 : : : pn
2 p12

ˇ p22
ˇ p32

ˇ : : : pn2
ˇ

3 p13
ˇ p23

ˇ p33
ˇ : : : pn3

ˇ

: : : : : : : : : : : : : : : : : :

n p1n
ˇ p2n

ˇ p3n
ˇ : : : pnn

ˇ

˘
Similar tables can be obtained for other forms of position-dependent job

processing times. For example, in the case of position-dependent job processing
times (6.12) and (6.17), in the above two tables, for any 1 � r � n, one should
just replace division by r j˛j with subtraction of rˇ, and multiplication by rˇ with
addition of rˇ, respectively.

6.1.4.3 Examples of Controllable Job Scheduling Problems

The example below illustrates the computation of controllable job processing times
in the form of (6.22).

Example 6.12. Consider the following instance of the controllable job scheduling
problem 1jpj D pj � xj jPCj CP

cj xj with n D 3 jobs and t0 D 0:

6.1 Introduction 237

j 1 2 3

pj 2 1 3
cj 1 3 2

Consider first the case when all jobs have been crashed by 50 %, i.e. when x1 D
1, x2 D 1

2
and x3 D 3

2
. Then, job processing times, job completion times and the

values of the
P
Cj CP

cj xj criterion for all possible sequences are as follows:

Sequence � pŒ1� CŒ1� pŒ2� CŒ2� pŒ3� CŒ3�
P
Cj .�/CP

cj xj .�/

.J1; J2; J3/ 1 1 1
2

3
2

3
2

3 11

.J1; J3; J2/ 1 1 3
2

5
2

1
2

3 12

.J2; J1; J3/
1
2

1
2

1 3
2

3
2

3 21
2

.J2; J3; J1/
1
2

1
2

3
2

2 1 3 11

.J3; J1; J2/
3
2

3
2

1 5
2

1
2

3 25
2

.J3; J2; J1/
3
2

3
2

1
2

2 1 3 12

Notice that if jobs are not compressed at all, i.e. when x1 D x2 D x3 D 0,
sequence .J2; J1; J3/ yields the minimum total completion time (equal to 10).

If all jobs are crashed by 50 %, i.e., when x1 D 1, x2 D 1
2

and x3 D 3
2
,

the minimum value of the objective
P
Cj .�/ C P

cj xj .�/ is attained with two
sequences, .J1; J2; J3/ and .J2; J3; J1/.

If all jobs have been crashed by 75 %, i.e., when x1 D 3
2
, x2 D 3

4
and x3 D 9

4
,

the values of job processing times, job completion times and the
P
Cj C P

cj xj
criterion for all possible sequences for the instance are as follows:

Sequence � pŒ1� CŒ1� pŒ2� CŒ2� pŒ3� CŒ3�
P
Cj .�/CP

cj xj

.J1; J2; J3/
1
2

1
2

1
4

3
4

3
4

3
2

11

.J1; J3; J2/
1
2

1
2

3
4

5
4

1
4

3
2

23
2

.J2; J1; J3/
1
4

1
4

1
2

3
4

3
4

3
2

43
4

.J2; J3; J1/
1
4

1
4

3
4

1 1
2

3
2

11

.J3; J1; J2/
3
4

3
4

1
2

5
4

1
4

3
2

47
4

.J3; J2; J1/
3
4

3
4

1
4

1 1
2

3
2

23
2

As one can observe, the minimum value of the
P
Cj .�/ C P

cj xj criterion is
equal to 43

4
, attained for sequence .J2; J1; J3/. ˘

6.1.4.4 Example of a Two-Agent Variable Job Scheduling Problem

We complete this section with an example of a two-agent single-machine scheduling
problem with variable job processing times.

238 6 Scheduling Problems with Variable Job Processing Times

Example 6.13. Consider the "-constraint approach to the two-agent single-machine
scheduling problem with time-dependent proportional job processing times, i.e.,
problem 1jpj D bj t; C

B
max � QjLAmax. The aim is to find a schedule such that

the schedule minimizes the maximum lateness LAmax for agent A, provided that the
maximum completion time CB

max for agent B does not exceed a given upper bound
Q 	 0.

Let us consider the following instance of the problem: t0 D 1, nA D 2, nB D 1,
pA1 D t , dA1 D 6, pA2 D 2t , dA2 D 12, pB1 D 3t .

All possible sequences for this instance, along with job completion times and the
values of LAmax and CB

max, are given in table below.

Sequence � pŒ1� CŒ1� pŒ2� CŒ2� pŒ3� CŒ3� LAmax.�/ CB
max.�/

.J A1 ; J
A
2 ; J

B
1 / 1 2 4 6 18 24 12 6

.J A1 ; J
B
1 ; J

A
2 / 1 2 6 8 16 24 �4 24

.J A2 ; J
A
1 ; J

B
1 / 2 3 3 6 18 24 12 3

.J A2 ; J
B
1 ; J

A
1 / 2 3 9 12 12 24 18 3

.J B1 ; J
A
1 ; J

A
2 / 3 4 4 8 16 24 2 24

.J B1 ; J
A
2 ; J

A
1 / 3 4 8 12 12 24 18 12

Notice that in all schedules corresponding to sequences from the table we have
CŒ3� D 24, since by Theorem 6.1 .a/ the value of Cmax does not depend on schedule
of time-dependent proportional jobs.

Notice also that different values ofQ may or may not be restrictive. For example,
ifQ < 3 then no schedule is feasible; if 3 � Q � 6 then three schedules are feasible
and two of them, .J A1 ; J

A
2 ; J

B
1 / and .J A2 ; J

A
1 ; J

B
1 /, are optimal; if Q 	 24 then all

schedules are feasible but only one, .J A1 ; J
B
1 ; J

A
2 /, is optimal. ˘

This example ends the introductory part of the chapter. In the next three sections
we give a systematic presentation of agent scheduling problems with variable job
processing times defined in Sect. 6.1.1.

Coherently with the notation in the rest of the book, we denote start
time and completion time of job Ji in a schedule � by Si.�/ and Ci.�/,
respectively.

Moreover, given two jobs Ji and Jj , we will often denote by � and � 0 two
schedules such that job Ji immediately precedes job Jj in � , Jj immediately
precedes job Ji in � 0 and the rest of the schedule is the same in � and � 0, i.e.

� W : : : ; Ji ; Jj ; : : :
� 0 W : : : ; Jj ; Ji ; : : :

Finally, by x.i/ we denote the i th element of a non-decreasingly sorted sequence
x1; x2; : : : ; xk , i.e., x.1/ � x.2/ � : : : x.i/ � � � � � x.k/.

6.2 Two-Agent Time-Dependent Job Scheduling Problems 239

6.2 Two-Agent Time-Dependent Job Scheduling Problems

In this section, we give a detailed presentation of the two-agent scheduling problems
with variable job processing times described in Sect. 6.1.1.

6.2.1 Proportional Deteriorating Job Processing Times

In the section, we consider two-agent time-dependent scheduling problems with
proportional deteriorating job processing times (6.1).

6.2.1.1 1jCO; pj D bj t; C B
max � QjLA

max

In problem 1jCO;pj D bj t; C
B
max � QjLAmax one has to find a schedule such

that the maximum lateness LAmax for jobs of agent A is minimal, provided that
the maximum completion time CB

max for jobs of agent B does not exceed a given
upper bound Q 	 0. The problem has been considered in Liu and Tang (2008),
and it is a time-dependent counterpart of the two-agent scheduling problem with
fixed job processing times, 1jCO;CB

max � QjLAmax. Time-dependent proportional
job processing times are in the form of (6.1).

An optimal algorithm for the problem is based on the following properties.

Property 6.3. An optimal schedule for problem 1jCO;pj D bj t; C
B
max � QjLAmax

is a non-idle schedule.

The property holds, since both criteria LAmax and CB
max are regular.

Property 6.4. Given an instance of 1jCO;pj D bj t; C
B
max � QjLAmax, the

maximum completion time for agent B is given by formula (6.23) and the value
does not depend on schedule.

The property follows from Theorem 6.1 .a/.

Property 6.5. For problem 1jCO;pj D bj t; C
B
max � QjLAmax, there exists an opti-

mal schedule in which the jobs of agent A are scheduled in non-decreasing order of
due dates.

The property follows from Theorem 6.1 .b/.

Property 6.6. For problem 1jCO;pj D bj t; C
B
max � QjLAmax, there exists an opti-

mal schedule in which jobs of agentB are scheduled consecutively in a single block.

The property can be proved by a pairwise job interchange argument. In view of
this property, we can replace all jobs of J B by a single artificial job JB .

The main idea of an optimal algorithm for problem 1jCO;pj D bj t; C
B
max �

QjLAmax, based on Properties 6.3–6.6, is as follows. We arrange the jobs of J A in

240 6 Scheduling Problems with Variable Job Processing Times

Algorithm 39 for problem 1jCO;pj D bj t; C
B
max � QjLAmax

1: u WD t0
Q
j .1C bAŒj �/

Q
j .1C bBŒj �/

2: Arrange all jobs of agent A in non-decreasing order of due dates dAi
3: Create artificial job JB composed of all jobs of agent B
4: for i WD nA C 1 downto 1 do
5: Create schedule � of all jobs of agent A in which job JB is in position i
6: if CJB .�/ � Q then
7: return �
8: end if
9: end for

10: return ‘Input instance is not feasible’

non-decreasing order of their due dates and create the artificial job JB . Next, at each
iteration, we schedule the job JB in a given position, starting from position nA C 1,
and check whether the completion time of job JB does not exceed the upper bound
Q. If so, we return the schedule; otherwise, we decrease the position of JB by one
and pass to the next iteration.

The pseudocode of the algorithm is presented above (see Algorithm 39).

Theorem 6.8. Algorithm 39 generates an optimal schedule for problem
1jCO;pj D bj t; C

B
max � QjLAmax in O.nA lognA C nAnB/ time.

Proof. The correctness of Algorithm 39 follows from Properties 6.3–6.6. Lines 1,
2 and 3 needO.nA C nB/, O.nA lognA/ andO.nB/ time, respectively. Loop for in
lines 4–9 is performedO.nA/ times, and the creation of schedule � in line 5 needs
O.nA C nB/ time, while checking the condition in sentence if in line 6 can be done
in a constant time if we remember the results of the previous iteration. Therefore,
the overall running time of Algorithm 39 is equal to nACnB CnA lognACnAnB D
O.nA lognA C nAnB/. ut

6.2.1.2 1jCO; pj D bj t; f B
max � Qj P

C A
j

We next address problem 1jCO;pj D bj t; f
B

max � QjPCA
j . This problem has

been considered by Liu and Tang (2008) and it is a time-dependent counterpart of
the two-agent scheduling problem with fixed job processing times, 1jCO; f Bmax �
QjPCA

j . Time-dependent proportional job processing times are in the form
of (6.1).

Hereafter we assume that the cost functions f B
i of jobs of J B are regular, and

their values can be computed in a constant time.
An optimal algorithm for problem 1jCO;pj D bj t; f

B
max � QjPCA

j is based
on Properties 6.3–6.4, which still hold for the problem, and the following two new
properties. Let u be defined as in Algorithm 39.

6.2 Two-Agent Time-Dependent Job Scheduling Problems 241

Property 6.7. If, in a feasible instance of problem 1jCO;pj D bj t; f
B

max �
QjPCA

j , there is a job JBk 2 J B such that f B
k .u/ � Q, then there exists an

optimal schedule for the instance in which job JBk is scheduled in the last position,
and there is no optimal schedule in which a job of J A is scheduled in the last
position.

The property can be proved by contradiction.

Property 6.8. If, in a feasible instance of problem 1jCO;pj D bj t; f
B

max �
QjPCA

j , for all jobs JBk 2 J B it holds f B
k .u/ > Q, then in any optimal schedule

the job JAl 2 J A having largest deterioration rate is scheduled in the last position.

The property can be proved by a pairwise job interchange argument.
Properties 6.7–6.8 imply that in any optimal schedule for problem

1jCO;pj D bj t; f
B

max � QjPCA
j , jobs of J A are arranged in non-decreasing

order of their deterioration rates. Similarly as in Chap. 3, given a value of Q, for
each job JBj one can define a ’deadline’ DB

i such that f B
i .C

B
i / � Q if CB

i � DB
i

and f B
i .C

B
i / > Q otherwise. Each DB

i can be computed in constant time if the

inverse functions f B
i

�1
are available, otherwise it requiresO.lognB/ time.

The main idea of the algorithm for problem 1jCO;pj D bj t; f
B

max � QjPCA
j

is as follows. At each iteration, we select an unscheduled job to be scheduled in
the last position. If it is possible, we select a job of agent B , otherwise we select a
job of agent A having largest deterioration rate. If all jobs of agent A have already
been scheduled, and no job of agent B can be feasibly scheduled in the current last
position, the instance is infeasible.

The pseudocode of the algorithm is presented below (see Algorithm 40).

Theorem 6.9. Algorithm 40 generates an optimal schedule for problem
1jCO;pj D bj t; f

B
max � QjPCA

j in O.nA lognA C nB lognB/ time.

Proof. The correctness of Algorithm 40 follows from Properties 6.3–6.4 and 6.7–
6.8. Line 1 and 2 both need O.nA C nB/ time. Line 3 and 4 need O.nA lognA/
and O.nB lognB/ time, respectively. Loop while in lines 6–19 is performed nA C
nB times, and each its iteration needs a constant time, since there is selected only
a single job. Hence, the overall running time of Algorithm 40 is O.nA lognA C
nA lognA/. ut

6.2.1.3 1jCO; pj D bj t;
P

U B
j

D 0j P
T A

j

We next consider the problem of minimizing the total tardiness
P
T Aj of jobs of

agent A, given that no job of agent B is tardy. Time-dependent proportional job
processing times are in the form of (6.1).

For this problem, Gawiejnowicz et al. (2011) proposed a branch-and-bound
algorithm based on Properties 6.9–6.12 given below.

242 6 Scheduling Problems with Variable Job Processing Times

Algorithm 40 for problem 1jCO;pj D bj t; f
B

max � QjPCA
j

1: J WD J A [J B

2: u WD t0
Q
j .1C bAŒj �/

Q
j .1C bBŒj �/

3: Arrange all agent A jobs in non-decreasing order of deterioration rates bAi
4: Arrange all agent B jobs in non-decreasing order of ‘deadlines’ DA

i

5: � WD ;
6: while there exist in J unscheduled jobs do
7: if there exists job JBk 2 J B such that f B

k .u/ � Q then
8: Jsel WD JBk
9: else

10: if all agent B jobs have been scheduled then
11: return ‘Input instance is infeasible’
12: else
13: Jsel WD agent A job with the largest deterioration rate
14: end if
15: end if
16: Schedule job Jsel in the last position in �
17: J WD J n fJsel g
18: u WD u

1Cbsel
19: end while
20: return �

Property 6.9 gives conditions under which a schedule � dominates � 0, i.e. whenP
j T

A
j .�/ � P

j T
A
j .�

0/.

Property 6.9. Let Bi WD 1C bi , Bj WD 1C bj and Bij D Bji WD .1C bi /.1C bj /.
Schedule � dominates schedule � 0 if any of the following holds:

.a/ Ji 2 J A and Jj 2 J A are such that Bijt < dj ;

.b/ Ji 2 J A and Jj 2 J A are such that Bi t 	 di , Bj t 	 dj and bi < bj ;

.c/ Ji 2 J B and Jj 2 J A are such that Bijt 	 dj ;
.d/ Ji 2 J B and Jj 2 J A are such that Bi t 	 di and Bjit 	 di or
.e/ Ji 2 J B and Jj 2 J B are such that Bi t 	 di , Bijt 	 dj .

Property 6.9 can be proved by a pairwise job interchange argument.
The next two results, Property 6.10 and 6.11, allow to determine a sequence of

unscheduled jobs and the feasibility of a given schedule, and are used to speed up
the search of the tree of all possible schedules. Proofs of these properties follow
from definitions of schedule dominance and feasibility.

Let � denote a sequence of unscheduled jobs. Also, let .�; Œk C 1�; : : : ; Œn�/ be
the schedule in which the order of the last n�k jobs has been determined backwards
and .�%; Œk C 1�; : : : ; Œn�/ be the schedule in which unscheduled jobs are arranged
in non-decreasing order of due dates.

Property 6.10. If in sequence �% there are no tardy jobs, then schedule
.�%; Œk C 1�; : : : ; Œn�/ dominates any schedule in the form of .�; Œk C 1�; : : : ; Œn�/.

6.2 Two-Agent Time-Dependent Job Scheduling Problems 243

Algorithm 41 for problem 1jCO;pj D bj t;
P
UB
j D 0jPT Aj

1: Create base population P0
2: Evaluate P0
3: while does not hold stop condition do
4: Create temporary population Ti by using a preselection operator to Pi
5: Create offspring population Oi by using crossing and mutation operators to Ti
6: Evaluate Oi
7: Create a new population PiC1 by using a postselection operator to Pi and Oi
8: end while
9: return the best solution in Pi

Property 6.11. If agent B job JŒi� is such that t0
Q
j2�.1 C bj /

Qi
jDkC1.1 C bŒj �/

	 dŒi� for k C 1 � i � n, then .�; Œk C 1�; : : : ; Œn�/ is not a feasible schedule.

The next result, Property 6.12, gives a lower bound on the total tardiness for jobs
in J A. Let � D .�; ŒkC1�; : : : ; Œn�/ denote a schedule in which the order of the last
n�k jobs has been determined backwards, and assume that among the unscheduled
jobs there are kA jobs from J A and kB jobs from J B , where kA C kA D k.

Property 6.12. Given � D .�; Œk C 1�; : : : ; Œn�/, then

X
T Aj .�/ 	

kAX

iD1
max

n
CA
.i/.�/ � dA.i/; 0

o

and

X
T Aj .�/ 	

kAX

iD1
max

n
CA
.i/.�/ � dA.i/; 0

o
C

X

kAC1�i�k;JŒi �2J A

T AŒi �.�/:

Proof. Since CŒj �.�/ D t0
Qj
iD1.1 C bŒi �/ 	 t0

Qj
iD1.1 C b.i// for 1 � j � k,

t0
Qj
iD1.1Cb.i// is a lower bound on the completion time of job JŒj � in � . Moreover,

since the jobs of agent B cannot be tardy, we should complete the jobs in J B as
late as possible but before their due dates. We can do this by checking whether the
completion time of a given job does not exceed its deadline and if so, putting the
job in a right place in a schedule. Repeating this procedure a number of times, we
obtain the given two bounds. ut

For this problem, the same authors proposed a genetic algorithm, using the
TEAC library developed by Gawiejnowicz et al. (2006). In this algorithm, imple-
mented in C#, the operator of mutation was called with probability 0.02, the operator
of crossing was called with probability 0.80, the size of the offspring population was
equal to 50 individuals, and tournament preselection (with tournament size equal
to 5) and random postselection have been used. The stop condition was passing 100
generations. The pseudocode of the algorithm is given above (see Alg. 41).

244 6 Scheduling Problems with Variable Job Processing Times

6.2.1.4 1jCO; pj D bj t; sj D b0
j
t; GT; f B

max � Qj P
C A

j

This batch scheduling problem, considered by Liu et al. (2010a), is an immediate
extension of the problem presented in Sect. 6.2.1.2.

Compared to the latter case, where all jobs belong to the same group, now jobs
are divided into a number of distinct groups, each group corresponds to a batch,
and a sequence-dependent setup time is needed between jobs from different groups.
Both time-dependent proportional job processing times and setup times are in the
form of (6.1). The aim is to find a schedule of batches and to schedule jobs in each
batch.

Problem 1jCO;pj D bj t; sj D b0
j t; GT; f

B
max � QjPCA

j is not more difficult
than problem 1jCO;pj D bj t; f

B
max � QjPCA

j , since it can still be solved in
O.nA lognA C nB lognB/ time by modifying the algorithm for the latter problem
presented in Sect. 6.2.1.2.

6.2.2 Proportional-Linear Deteriorating Job Processing Times

In the section, we consider two-agent time-dependent scheduling problems with
proportional-linear deteriorating job processing times (6.2).

6.2.2.1 1jCO; pj D bj .a C bt/; C B
max � QjLA

max and
1jCO; pj D bj .a C bt/; f B

max � Qj P
C A

j

Both the problems, 1jCO;pj D bj .a C bt/; CB
max � QjLAmax and 1jCO; pj D

bj .a C bt/; f B
max � QjPCA

j , considered by Liu et al. (2011), are straightforward
extensions of problems presented in Sects. 6.2.1.1 and 6.2.1.2, respectively. Time-
dependent proportional-linear job processing times are in the form of (6.2).

The replacement of proportional job processing times (6.1) by proportional-
linear job processing times (6.2) does not increase the time complexity of these
problems. Moreover, algorithms for these two problems are based on the same
properties and have almost the same form as their counterparts for proportional
job processing times. As implied by Theorems 6.1 .a/ and 6.2 .a/, the only minor
differences concern formulae for computing the values of u and Cmax.

6.2.2.2 1jCO; pj D bj .a C bt/; sj D b0
j
.a0 C b0t/; GT; f B

max � Qj P
C A

j

This problem, considered by Liu et al. (2010a), is a similar extension of problem
1jCO;pj D bj t; f

B
max � QjPCA

j as the one presented in Sect. 6.2.1.4. Time-
dependent proportional-linear job processing times and setup times are in the form
of (6.2).

6.2 Two-Agent Time-Dependent Job Scheduling Problems 245

The new problem, 1jCO;pj D bj .a C bt/; sj D b0
j .a

0 C b0t/; GT; f B
max �

QjPCA
j , can be solved inO.nA lognACnB lognB/ time using a modified version

of the algorithm for problem 1jCO;pj D bj t; sj D b0
j t; f

B
max � QjPCA

j

discussed in Sect. 6.2.1.4.

6.2.3 Linear Deteriorating Job Processing Times

In the section, we consider two-agent time-dependent scheduling problems with
linear deteriorating job processing times (6.3).

6.2.3.1 1jCO; pj D aj C bt;
P

U B
j

D 0j P
wA

j
C A

j

In problem 1jCO;pj D aj C bt;
P
UB
j D 0jPwAj C

A
j , similarly to Sect. 6.2.1.3,

the jobs of J B are constrained to be performed within their due dates, but now
agent A wants to minimize the total weighted completion time. This problem has
been considered by Lee et al. (2010). Time-dependent linear job processing times
are in the form of (6.3) with a common deterioration rate, bj D b for all jobs.
Notice that the strong NP-hardness of this problem is implied by that of problem
1jCO;PUB

j D 0jPwAj C
A
j considered in Chap. 3.

In Lee et al. (2010), the authors proposed for this problem a branch-and-bound
algorithm based on the following result.

Property 6.13. Let Pi WD ai Cbt , Pj WD aj Cbt and Pij WD ai .1Cb/C .1Cb/2t .
Schedule � dominates schedule � 0 if any of the following holds:

.a/ Ji 2 J A and Jj 2 J A are such that wj Pi < wiPj and ai � aj ;

.b/ Ji 2 J A and Jj 2 J B are such that Pij C aj < dj and ai < aj ;

.c/ Ji 2 J A and Jj 2 J A are such that .1 C b/t C ai � di , Pij C aj � dj and
ai < aj .

Property 6.13 can be proved by a pairwise job interchange argument.
Note that, given a schedule � , its feasibility can be checked by verifying whether

there exists a job JBj such that SBj .�/.1C b/C aBj > d
B
j . If such a job exists, then

� is not feasible.
As a lower bound of the total weighted completion time of a schedule � in which

the order of the first k jobs have been determined and in the set of unscheduled jobs
there are kA jobs of agent A and kB jobs of agent B , kA C kB D n � k, Lee et al.
(2010) apply the value

X

1�i�k;JŒi �2J A

wŒi �CŒi �.�/C LBUS; (6.33)

where LBUS is calculated as follows (see Algorithm 42).

246 6 Scheduling Problems with Variable Job Processing Times

Algorithm 42 for calculation lower boundLBUS for problem 1jCO; pj D aj Cbt;P
UB
j D 0jPwAj C

A
j

1: for j WD 1 to n� k do
2: OCŒkCj � WD CŒk�.1C b/j CPj

iD1 a.kCi/.1C b/j�i

3: end for
4: Arrange all jobs of agent A in non-decreasing order of weights wAi
5: Arrange all jobs of agent B in non-decreasing order of due dates dBi
6: ic WD 0

7: ia WD nA
8: ib WD nB
9: while ic � n� k do

10: LBUS WD PnA
jD1 wA.nA�jC1/C

A
.j/

11: if OCŒn�k� � dB.ib/ then

12: CB
.ib/ WD OCŒn�ic�

13: ib WD ib � 1

14: else
15: CA

.ia/ WD OCŒn�k�

16: ia WD ia� 1

17: end if
18: ic WD ic C 1

19: end while
20: return LBUS

The authors also use three O.n2/ heuristics that construct initial suboptimal
schedules for the considered exact algorithm.

6.2.3.2 1jCO; pj D aj C bt; LB
max � Qj P

wA
j

U A
j

This problem has been considered by Wu et al. (2013b). Jobs have time-dependent
linear processing times of the same form as those in Sect. 6.2.3.1.

Similarly as for the problems considered in Sect. 6.2.3.1, also for problem
1jCO;pj D aj Cbt; LBmax � QjPwAj U

A
j a branch-and-bound algorithm has been

proposed, based on the following result.

Property 6.14. LetPi WD aiC.1Cb/t ,Pj WD aj C.1Cb/t ,Pij WD aj Cai .1Cb/C
.1C b/2t and Pji WD ai C aj .1C b/C .1C b/2t . Schedule � dominates schedule
� 0 if any of the following holds:

.a/ Ji 2 J A and Jj 2 J A are such that Pji > di 	 Pi , ai � aj and Pij � dj ;

.b/ Ji 2 J A and Jj 2 J B are such that Pj > dj , Pji > di 	 Pi and ai � aj ;

.c/ Ji 2 J A and Jj 2 J A are such that Pij > dj 	 Pj , Pji > di 	 Pi , wi > wj
and ai < aj ;

.d/ Ji 2 J A and Jj 2 J A are such that Pj > dj , Pi < di and ai < aj ;
.e/ Ji 2 J A and Jj 2 J A are such that Pij � dj , Pji � di and ai < aj ;
.f / Ji 2 J B and Jj 2 J B are such that Pi �di � Q < Pji �di and Pij � dj � Q;

6.2 Two-Agent Time-Dependent Job Scheduling Problems 247

.g/ Ji 2 J B and Jj 2 J B are such that Pji � di � Q, Pij � dj � Q and ai < aj ;

.h/ Ji 2 J A and Jj 2 J B are such that Pji > di and Pij � dj � Q.

Property 6.14 can be proved by a pairwise job interchange argument.
As in the previous section, the feasibility of a schedule � can be checked by

verifying whether there exists a job JBj such that SBj .�/.1 C b/C aj � dBj > Q.
If such a job exists, schedule � is not feasible.

As a lower bound of the total weighted number of tardy jobs of a schedule � in
which k jobs have been fixed, Wu et al. (2013b) apply the value

X

1�i�k;Ji2J A

wŒi �UŒi �.�/C LBUS;

where LBUS is computed by an algorithm (see Wu et al. 2013b, Sect. 3.2) similar to
Algorithm 42.

For the considered problem, the authors propose also a tabu search algorithm; we
refer the reader to Wu et al. (2013b, Sect. 4) for details.

6.2.4 Proportional-Linear Shortening Job Processing Times

In the section, we consider two-agent time-dependent scheduling problems with
proportional-linear shortening job processing times (6.4).

6.2.4.1 1jCO; pj D bj .1 � bt/jf A
max; f B

max

This problem, considered by Yin et al. (2012b), is a time-dependent counterpart of
problem 1jCO; f Bmax � Qjf Amax considered in Chap. 3. We deal here with shortening
jobs and job processing times in the form of (6.7).

The introduction of variable job processing times does not make problem
1jCO;pj D bj .1 � bt/; f B

max � Qjf Amax more difficult than 1jCO; f Bmax � Qjf A
max,

since the former problem still can be solved in O.n2A C nB lognB/ time by slightly
modified algorithm for the latter problem.

The modified algorithm uses formula (6.27) for computing job completion times,
a counterpart of Property 6.3 for shortening job processing times and the following
result that gives similar properties to those concerning problem 1jjf Amax; f

B
max.

Property 6.15. .a/ If, in a given schedule, the last job is completed at time t and if
there is a job JBj such that f B

max.maxf0; dBj � .t C bBj .1 � bt//g/ � Q; then
there exists an optimal schedule in which a job Jj 2 J 2 completes at time
t and there exists no optimal schedule in which a job Ji 2 J A completes at
time t .

248 6 Scheduling Problems with Variable Job Processing Times

.b/ If, in a given schedule, the last job completes at time t , and for any job JBj one
has f B

j .maxf0; dBj � .t C bBj .1 � bt//g/ > Q, then there exists an optimal
schedule in which the job JAi with the minimum cost is scheduled at time t .

.c/ In an optimal schedule, jobs in J B are scheduled in non-decreasing order of
‘deadlines’DB

j defined as in Sect. 6.2.1.2.

Using Property 6.15, similar to what presented in Chap. 3, one can find a Pareto
optimal schedule in O.n2A C n2B/ time.

6.3 Two-Agent Position-Dependent Job Scheduling Problems

In this section, we consider several two-agent scheduling problems with position-
dependent job processing times.

6.3.1 Log-Linear Position-Dependent Job Processing Times
with Learning Effect

In this section, we consider two-agent scheduling problems with position-dependent
log-linear job processing times (6.11).

6.3.1.1 1jCO; pj;r D pj r˛;
P

U B
j

� Qj P
T A

j

The problem, considered by Wu et al. (2011), is a position-dependent counterpart
of problem 1jCO;pj D bj t;

P
UB
j D 0jPT Aj from Sect. 6.2.1.3. Log-linear job

processing times with learning effect are in the form of (6.11). The aim is to find a
schedule such that the total tardiness

P
T Aj for agent A is minimal, provided that

no job of agent B is tardy.
In Wu et al. (2011), the authors propose a branch-and-bound algorithm based on

the following counterpart of Property 6.9.

Property 6.16. Let Pi D pir
˛ , Pj WD pj r

˛ , Pij WD pir
˛ C pj .r C 1/˛, Pji WD

pj r
˛Cpi .rC1/˛ andR WD r˛�.rC1/˛ , where 1 � r � n. Schedule � dominates

schedule � 0 if any of the following holds:

.a/ Ji 2 J A and Jj 2 J A are such that pi < pj , Si .�/ C Pi 	 di and Si.�/ C
Pj 	 dj ;

.b/ Ji 2 J A and Jj 2 J A are such that pi � pj , Si .�/CPj � dj � Si.�/CPij,

Si.�/C Pi 	 di and pi
2r˛�.rC1/˛

R
C Si .�/�dj

R
< pj ;

.c/ Ji 2 J A and Jj 2 J A are such that pi < pj and Si.�/C Pij � dj ;

6.3 Two-Agent Position-Dependent Job Scheduling Problems 249

.d/ Ji 2 J A and Jj 2 J A are such that pi � pj , Si .�/CPi � di � Si .�/CPji,

Si.�/C Pij 	 dj and pi C di�dj
R

< pj ;
.e/ Ji 2 J A and Jj 2 J A are such that Si.�/C Pj 	 dj , Si.�/ C Pji � di and

pi
r˛

R
< pj ;

.f / Ji 2 J A and Jj 2 J A are such that pi < pj and Si.�/C Pij � dj ;

.g/ Ji 2 J A and Jj 2 J B are such that Si.�/C minfPij; Pj g 	 dj , Si.�/CPi �
di and pi r

˛

R
< pj ;

.h/ Ji 2 J B and Jj 2 J A are such that pi < pj , Si.�/ C Pij � dj and Si.�/C
Pi � di ;

.i/ Ji 2 J B and Jj 2 J B are such that pi < pj , Si.�/C Pi � di , and Si.�/C
Pij � dj .

Wu et al. (2011) check the feasibility of a schedule � verifying whether there
exists a job Jk such that Sk.�/ C pmin.k C 1/ > dBmin, where pmin is the minimal
basic processing time among unscheduled jobs and dBmin is the smallest due date
among jobs of J B . If such a job exists, schedule � is not feasible.

As a lower bound of the total tardiness of a schedule � in which k jobs have been
fixed, the authors apply the value

X

1�i�k;Ji2J A

TŒi �.�/C LBUS;

whereLBUS is computed by an algorithm (see Wu et al. 2013b, Algorithm 1) similar
to Algorithm 42. In order to construct initial suboptimal schedules for the considered
exact algorithm, they use two O.n2/ heuristics.

6.3.1.2 1jCO; pj;r D pj r˛; C B
max � Qj P

wA
j

C A
j

This problem has been considered by Li and Hsu (2012). Position-dependent log-
linear job processing times with learning effect are in the form of (6.11). For this
problem, Li and Hsu (2012) proposed a branch-and-bound algorithm based on the
following result.

Property 6.17. Let Pi WD pir
˛ , Pj WD pj .r C 1/˛ and Pij WD pir

˛ C pj .r C 1/˛.
Schedule � dominates schedule � 0 if any of the following holds:

.a/ Ji 2 J A and Jj 2 J A are such that pj
pi

	 wj
wi
> 1 and Si.�/C Pij � Q;

.b/ Ji 2 J B and Jj 2 J B are such that pj
pi

	 wj
wi
> 1;

.c/ Ji 2 J A and Jj 2 J B are such that pj
pi

	 wj
wi
> 1 and Si .�/C Pi � Q;

.d/ Ji 2 J B and Jj 2 J A are such that pj
pi

	 wj
wi
> 1 and Si .�/C Pij < Q.

The authors check the feasibility of a schedule � by verifying whether there
exists a job JAk such that SAk .�/ > Q or SAk .�/C pmin.k C 1/˛ > Q, where pmin

is the minimal basic processing time among unscheduled jobs. If such a job exists,
schedule � is not feasible.

250 6 Scheduling Problems with Variable Job Processing Times

As a lower bound on the total weighted completion time of schedule � in which
only the first k jobs are fixed, Li and Hsu (2012) apply the value

nX

iD1
wŒi �CŒi �.�/C

n�kX

jD1
wA.kCj /CA

.kCj /:

The authors also proposed for problem 1jCO;pj;r D pj r
˛; CB

max �
QjPwAj C

A
j a genetic algorithm. In the algorithm, population size was equal to

40, the probability of cross-over was equal to 1, the probability of mutation was
equal to 0.1, selection was made by choosing the best solution from the previous
population and the stop condition was passing 2n generations; we refer the reader
to Li and Hsu (2012, Sect. 4) for details.

6.3.2 Log-Linear Position-Dependent Job Processing Times
with Learning and Ageing Effects

In this section, we consider a two-agent scheduling problem with position-
dependent log-linear job processing times (6.11) and (6.16).

6.3.2.1 1jCO; pA
j;r

D pA
j

r˛; pB
j;r

D pB
j

rˇ; LB
max � 0j P

wA
j

C A
j

In this problem, considered by Cheng et al. (2011b), learning and ageing
effects (6.11) and (6.16) are combined, i.e. job processing times of agent A are
in the form of (6.11), while those of agent B are in the form of (6.16). For this
problem, Cheng et al. (2011b) proposed a branch-and-bound algorithm exploiting
the following result.

Property 6.18. Let P2
i WD p2i r

ˇ , P2
j WD p2j .r C 1/ˇ, P2

ij WD p2i r
ˇ C p2j .r C 1/ˇ

andR WD r˛�.r C 1/˛, where 1 � r � n. Schedule � dominates schedule � 0 if any
of the following holds:

.a/ Ji 2 J A and Jj 2 J A are such that
p1j

p1i
	 w1j

w1i
> 1;

.b/ Ji 2 J B and Jj 2 J B are such that p2i > p
2
j , Si.�/C P2

i < d
2
i and Si .�/C

P2
ij < d

2
j ;

.c/ Ji 2 J B and Jj 2 J A are such that Si .�/C P2
i < d

2
i and p2i <

p1j R

rˇ
.

The authors show that the feasibility of a schedule � can be checked by verifying
whether there exists a job JBj such that SBj .�/ > d

B
j or SBj .�/C pBj .kC1/ˇ > dBj .

If such a job exists, schedule � is not feasible.
As a lower bound of the total weighted completion time of a schedule � with the

first k jobs fixed, Cheng et al. (2011b) apply the bound (6.33).

6.3 Two-Agent Position-Dependent Job Scheduling Problems 251

The authors also proposed for the problem a simulated annealing algorithm; we
refer the reader to Cheng et al. (2011b, Sect. 4) for details.

6.3.3 Linear Position-Dependent Job Processing Times
with Learning and Ageing Effects

In this section, we consider two-agent scheduling problems with position-dependent
linear job processing times with learning effect (6.12) and ageing effect (6.17).

6.3.3.1 1jCO; pj;r D pj � ˇr; f B
max � Qj P

C A
j

and 1jCO; pj;r D pj C ˇr; f B
max � Qj P

C A
j

These problems, considered by Liu et al. (2010b), are position-dependent coun-
terparts of time-dependent scheduling problems studied in Sects. 6.2.1.2, 6.2.1.4,
6.2.2.1 and 6.2.2.2. In both these problems one should find a schedule such that
the total completion time

P
CA
j for agent A jobs is minimal, provided that the

maximum cost f B
max for agent B jobs does not exceed a given upper boundQ 	 0.

Position-dependent job processing times are in the form of either (6.12) or (6.17)
with ˇj D ˇ for 1 � j � n.

For these problems, based on counterparts of Properties 6.3, 6.7, 6.8 and Theo-
rem 6.5 .a/, the authors propose algorithms of complexityO.nA lognACnB lognB/
which are obtained by simple modifications of Algorithm 40.

6.3.4 Past-Sequence-Dependent Job Processing Times
with Ageing Effect

In this section, we consider two-agent scheduling problems with past-sequence-
dependent job processing times in the form of (6.18) or (6.19).

6.3.4.1 1jCO; pj;r D pj

�
1 C Pr�1

kD1 pŒk�

�
; C B

max � Qj P
C A

j

and 1jCO; pj;r D pj

�

1 C
Pr�1

kD1 pŒk�
Pr�1

kD1 pk

�

; C B
max � Qj P

C A
j

These problems, considered by Liu et al. (2013), are past-sequence-dependent coun-
terparts of time-dependent scheduling problems studied in Sects. 6.2.1.2, 6.2.1.4,
6.2.2.1 and 6.2.2.2. Past-sequence-dependent job processing times with ageing
effect are in the form of (6.18) or (6.19) with ˇ D 1. The aim is to find a schedule

252 6 Scheduling Problems with Variable Job Processing Times

such that the total completion time
P
CA
j for agent A is minimal, provided that the

maximum completion time CB
max for agent B does not exceed a given upper bound

Q 	 0.
For these problems, based on counterparts of Properties 6.3, 6.7, 6.8 and The-

orem 6.5 .a/, Liu et al. (2013) proposed algorithms of complexity O.nA lognA C
nB lognB/ which are immediate modifications of Algorithm 40.

6.3.4.2 1jCO; pj;r D pj

�
1 C Pr�1

kD1 pŒk�

�
; f B

max � Qj P
C A

j

and 1jCO; pj;r D pj

�

1 C
Pr�1

kD1 pŒk�
Pr�1

kD1 pk

�

; f B
max � Qj P

C A
j

These problems have been considered by Liu et al. (2013) and generalize the
problems analyzed in Sect. 6.3.4.1. Here the objective of agent B is to minimize
the maximum cost, f B

max. Both these problems can be solved by the same algorithms
as their simpler variants with the CB

max objective.

6.3.4.3 1jCO; pj;r D pj max
n

.1 C Pr�1
kD1 pŒk�/

˛; ˇ
o

;
P

U B
j

� Qj P
wA

j
C A

j

This problem, considered by Cheng et al. (2011a), is the past-sequence-dependent
counterpart of problem 1jCO;pj D aj C bt;

P
UB
j � QjPwAj C

A
j presented in

Sect. 6.2.3.1. Past-sequence-based job processing times with learning effect are in
the form of (6.13).

The authors proposed for the problem a branch-and-bound algorithm based on
the following result.

Property 6.19. Let Pi WD pi max fP˛; ˇg, Pj WD pj max fP˛; ˇg and Pji WD
pj max f.P C pi /

˛; ˇg, where P WD 1 C Pr�1
kD1 pŒk� and 1 � r � n. Schedule

� dominates schedule � 0 if any of the following holds:

.a/ Ji 2 J A and Jj 2 J A are such that pj
pi
> 1 	 wj

wi
;

.b/ Ji 2 J B and Jj 2 J B are such that pi < pj , Si.�/ C Pi C Pji < dj and
Si.�/C Pi < di ;

.c/ Ji 2 J A and Jj 2 J B are such that pi < pj and Si.�/C Pi C Pij < dj ;
.d/ Ji 2 J B and Jj 2 J A are such that Pi < Pj � Pji and Si .�/C Pi < di .

Cheng et al. (2011a) check the feasibility of a schedule � verifying whether there
exists a job JBj such that SBj .�/ > dBj or SBj .�/ C Pj > dBj . If such a job exists,
schedule � is not feasible; otherwise, it is feasible.

As a lower bound on the total weighted completion time of a schedule � with the
first k jobs fixed, the bound (6.33) is applied.

6.4 Two-Agent Controllable Job Scheduling Problems 253

The authors also proposed for the problem a simulated annealing algorithm; we
refer the reader to Cheng et al. (2011a, Sect. 3.3) for details.

6.3.4.4 1jCO; pA
j;r

D pA
j

.1 C Pr�1
kD1 pŒk�/

˛;

pB
j;r

D pB
j

.1 C Pr�1
kD1 pŒk�/

ˇ; LB
max � Qj P

wA
j

C A
j

This problem, considered by Wu et al. (2012), is the past-sequence-dependent
counterpart of problem 1jCO;pAj;r D pAj r

˛; pBj;r D pBj r
ˇ; LBmax � 0jPwAj C

A
j

discussed in Sect. 6.3.2.1. The main difference between these two problems is
the replacement in the latter problem the log-linear job processing times (6.11)
and (6.16) by past-sequence-dependent job processing times (6.14) and (6.18),
respectively.

This replacement does not make problem 1jCO;pAj;r D pAj .1 C Pr�1
kD1 pŒk�/˛;

pBj;r D pBj .1CPr�1
kD1 pŒk�/ˇ; LBmax � QjPwAj C

A
j more difficult compared to its

counterpart from Sect. 6.3.2.1, since properties of the former problem have almost
the same form as those of the latter one.

For the considered problem, the authors proposed a branch-and-bound algorithm
and an ant colony algorithm; we refer the reader to Wu et al. (2012, pp. 1987–1990)
for details.

6.4 Two-Agent Controllable Job Scheduling Problems

In this section, we present several two-agent scheduling problems with controllable
job processing times considered by Wan et al. (2010).

6.4.1 Linear Controllable Job Processing Times with the Total
Compression Cost Criterion

In the section, we consider two-agent controllable job scheduling problems with the
total compression cost criterion

P
cAj x

A
j for agent A, provided that the objective of

agentB must not exceed a given upper boundQ 	 0. Moreover, in all the problems
only the jobs of agent A have variable processing times of the form (6.22), while
jobs of agent B have processing times described by numbers.

6.4.1.1 1jCO; pA
j

D p
A
j � xA

j
; rA

j
; dA

j
; pmtnA; ıB; f B

max � Qj P
cA

j
xA

j

Despite the simplifying assumption that only one agent has jobs with variable
processing times, only some of the problems of this type can be solved in a

254 6 Scheduling Problems with Variable Job Processing Times

Algorithm 43 for problem 1jCO;pAj D pAj � xAj ; rAj ; dAj ; pmtnA; pmtnB; f B
max �

QjP cAj x
A
j

1: for each job j of agent B do
2: Compute ‘deadline’ DB

j

3: rBj WD 0

4: cBj WD C1
5: end for
6: Starting from time max1�j�nB fDB

j g schedule all agent B jobs backwards in such a way that
each of them is as close its deadline as possible

7: Apply the algorithm by Leung et al. (1994) to generate a schedule � for jobs of both agents
8: return �

polynomial time. We start with one of the problems that was shown computationally
difficult in Wan et al. (2010).

Theorem 6.10. Problem 1jCO;pAj D pAj � xAj ; r
A
j ; d

A
j ; pmtn

A; ıB; f B
max �

QjP cAj x
A
j is strongly NP-hard.

Proof. The reduction from the 3-PARTITION problem with 3q elements and the
maximum value E is as follows. We let nA D q � 1 and nB D 3q. Jobs in J A have
unit processing times and cannot be compressed, i.e., pA

j
D pAj D 1:Moreover, job

Jj of agentA has release date rAj D j
EC .j �1/ and deadline dAj D j
ECj ,
where 1 � j � q � 1. The criterion of agent A is the total compression costP

j c
A
j x

A
j and the threshold for the cost equals 0.

Jobs of agent B have processing times equal to aj and can be compressed. The
criterion of agent B is f B

max D CB
max.

The further proof follows by showing that the 3-PARTITION problem has a
solution if and only if there exists such a schedule for problem 1jCO;pAj D
pAj �xAj ; rAj ; dAj ; pmtnA; ıB; f B

max � QjP cAj x
A
j that the total cost

P
j c

A
j x

A
j D 0.

ut

6.4.1.2 1jCO; pA
j

D p
A
j � xA

j
; rA

j
; dA

j
; pmtnA; pmtnB;

f B
max � Qj P

cA
j

xA
j

This problem is almost the same as the one considered in the previous section,
except that now also the jobs of agent B can be preempted. This change makes
this new problem polynomially solvable (see Algorithm 43).

Algorithm 43 is based on an algorithm due to Leung et al. (1994) which solves
problem 1jCO;pj D pj � xj ; rj ; dj ; pmtnjP cj xj in O.n logn C kn/ time,
where k is the number of distinct values of compression costs cj , 1 � j � n.

Theorem 6.11. Algorithm 43 generates an optimal schedule for problem
1jCO;pAj D pAj �xAj ; rAj ; dAj ; pmtnA; pmtnB; f B

max � QjP cAj x
A
j inO.n lognC

6.4 Two-Agent Controllable Job Scheduling Problems 255

.k C 1/n/ time, where k is the number of distinct values of compression costs cj of
agent A.

The correctness of Algorithm 43 and its running time follow from the correctness
and the running time of algorithm by Leung et al. (1994).

Modified versions of Algorithm 43 can be used to solve another two problems,
1jCO; pAj D pAj � xAj ; r

A
j ; d

A
j ; pmtn

A; rBj ; pmtnB; f B
max � QjP cAj x

A
j and

1jCO;pAj D pAj �xAj ; rAj ; dAj ; pmtnA; rBj ; d
B
j ; pmtnB; f B

max � QjP cAj x
A
j , in which

also agentB jobs have ready times or ready times and due dates. In the first case, it is
sufficient to use in Step 3 of Algorithm 43 non-zero agentB due dates. In the second
case, one need to apply the following result in which ‘deadlines’ DB

j , defined as in
Sect. 6.2.1.2, allow to schedule jobs as late as possible.

Property 6.20. For problem 1jCO;pAj D pAj � xAj ; d
A
j ; pmtnA; pmtnB;

f B
maxjP cAj x

A
j there exists an optimal schedule in which agent B jobs are scheduled

as late as possible.

The modified algorithm uses algorithm by Leung et al. (1994) for all jobs of both
agents and next, if necessary, applying Property 6.20 it combines pieces of agent B
jobs together and moves them towards their ’deadlines’.

6.4.2 Linear Controllable Job Processing Times with Other
Criteria Than the Total Compression Cost

In this section, we present some two-agent controllable job scheduling problems
studied by Wan et al. (2010) which concern other criteria than the total compression
cost

P
cAj x

A
j discussed in Sect. 6.4.1.

6.4.2.1 1jCO; pA
j

D p
A
j � xA

j
; dA

j
; pmtnA; ıB; f B

max �
Qj P

C A
j

C P
cA

j
xA

j
and

1jCO; pA
j

D p
1
j � xA

j
; rA

j
; pmtnA; ıB; f B

max � Qj P
cA

j
xA

j
C T A

max

Wan et al. (2010) claim without proof that by similar reductions from the
3-PARTITION problem as in Sect. 6.4.1.1 one can prove that problems

• 1jCO;pAj D pAj � xAj ; d
A
j ; pmtn

A; ıB; f B
max � QjPCA

j CP
cAj x

A
j and

• 1jCO;pAj D p1j � xAj ; rAj ; pmtnA; ıB; f B
max � QjP cAj x

A
j C T Amax

are strongly NP-hard as well.

256 6 Scheduling Problems with Variable Job Processing Times

6.4.2.2 1jCO; pA
j

D p
A
j � xA

j
; pmtnA; ıB; f B

max � Qj P
C A

j
C P

cA
j

xA
j

This problem has been mentioned at the end of the previous section. In the case
when basic job processing times and compression costs of agent A are agreeable,
i.e. if pAi � pAj implies cAi � cAj for arbitrary jobs Ji and Jj of agent A, Wan
et al. (2010, Sect. 4) proposed to solve this problem by the following algorithm of
complexityO.nB.nA C nB/n

2
A lognA/.

First, for job JBj there is computed ‘deadline’DB
j . After that, starting from time

max1�j�nB fDB
j g, a schedule � is built by scheduling all jobs in J B backwards, so

that each of them is as close to its ‘deadline’ as possible. Next, the jobs in J A are
scheduled by the preemptive SPT rule, skipping time slots occupied in � by jobs of
J B . Finally, the jobs of J A are accordingly compressed and scheduled again using
the preemptive SPT rule.

Similar approaches allow to solve further two-agent scheduling problems with
controllable job processing times in the form of (6.22), as reported in Wan et al.
(2010, Sects. 4 and 5).

This section ends our presentation of agent scheduling problems with different
forms of variable job processing times.

6.5 Tables

In the section, we present tables that summarize the time complexity statuses of the
scheduling problems considered earlier in the chapter. In all the tables symbols n,
nA and nB denote the total number of jobs of both agents, the number of jobs of
agent A and the number of jobs of agent B , respectively.

In Table 6.2 we summarize the time complexity statuses of single-agent schedul-
ing problems with time-dependent job processing times considered in Sect. 6.1.3.1.

In Table 6.3 we summarize the time complexity statuses of single-agent
scheduling problems with position-dependent job processing times considered
in Sect. 6.1.3.2.

In Table 6.4 we summarize the time complexity statuses of two-agent
scheduling problems with time-dependent job processing times considered in
Sect. 6.1.

In Table 6.5 we summarize the time complexity statuses of single-machine two-
agent scheduling problems with position-dependent job processing times considered
in Sect. 6.2.

In Table 6.6 we summarize the time complexity statuses of single-machine two-
agent scheduling problems with controllable job processing times considered in
Sect. 6.3.

6.5 Tables 257

Table 6.2 Time complexity of single-agent time-dependent scheduling problems

Problem Time complexity Reference Page

1jpj D bj t jCmax O.n/ Theorem 6.1 .a/ 228
1jpj D bj t jLmax O.n logn/ Theorem 6.1 .b/ 228
1jpj D bj t jfmax O.n2/ Theorem 6.1 .c/ 228
1jpj D bj t jPCj O.n logn/ Theorem 6.1 .d/ 228
1jpj D bj t jPwj Cj O.n logn/ Theorem 6.1 .e/ 228
1jpj D bj t jPUj O.n logn/ Theorem 6.1 .f / 228
1jpj D bj t jPTj Open Section 6.1.3.1 228
1jpj D bj .a C bt/jCmax O.n/ Theorem 6.2 .a/ 228
1jpj D bj .a C bt/jLmax O.n logn/ Theorem 6.2 .b/ 228
1jpj D bj .a C bt/jfmax O.n2/ Theorem 6.2 .c/ 228
1jpj D bj .a C bt/jPCj O.n logn/ Theorem 6.2 .d/ 228
1jpj D bj .a C bt/jPwj Cj O.n logn/ Theorem 6.2 .e/ 228
1jpj D bj .a C bt/jPUj O.n logn/ Theorem 6.2 .f / 228
1jpj D bj .a C bt/jP Tj NP-harda Theorem 6.2 .g/ 228
1jpj D aj C bj t jCmax O.n logn/ Theorem 6.3 .a/ 229
1jpj D aj C bj t jLmax NP-hard Theorem 6.3 .b1/ and .b2/ 229
1jpj D aj C bj t jfmax NP-hard Theorem 6.3 .c/ 229
1jpj D aj C bj t jPCj Openb Section 6.1.3.1 228
1jpj D aj C bj t jPwj Cj NP-hard Theorem 6.3 .d/ 229
1jpj D aj C bj t jPUj NP-hard Theorem 6.3 .e/ 229
1jpj D aj C bj t jPTj NP-hard Theorem 6.3 .f / 229
a If a D 1 and b D 0, otherwise the problem is open
b Even if aj D 1 for 1 � j � n

Table 6.3 Time complexity of single-agent position-dependent scheduling problems

Time
Problem complexity Reference Page

1jpj;r D pj r
˛ jCmax O.n logn/ Theorem 6.4 .a/ 231

1jpj;r D pj r
˛ jLmax O.n logn/a Theorem 6.4 .b/ 231

1jpj;r D pj r
˛ jfmax Open Section 6.1.3.2 231

1jpj;r D pj r
˛ jPCj O.n logn/ Theorem 6.4 .c/ 231

1jpj;r D pj r
˛ jPwj Cj O.n logn/a Theorem 6.4 .d1/, .d2/ and .d3/ 231

1jpj;r D pj r
˛ jPUj Open Section 6.1.3.2 231

1jpj;r D pj r
˛ jPTj NP-hardb Theorem 6.4 .e/ 231

1jpj;r D pj � ˇr jCmax O.n/ Theorem 6.5 .a/ 232
1jpj;r D pj � ˇr jPCj O.n logn/ Theorem 6.5 .b/ 232

1jpj;r D pj

�
1CPr�1

kD1 pŒk�

	˛ jCmax O.n logn/ Theorem 6.6.a/ 232

1jpj;r D pj

�
1CPr�1

kD1 pŒk�

	˛ jLmax Open Section 6.1.3.2 231

1jpj;r D pj

�
1CPr�1

kD1 pŒk�

	˛ jPCj O.n logn/ Theorem 6.6 .b/ 232

1jpj;r D pj

�
1CPr�1

kD1 pŒk�

	˛ jPwj Cj O.n logn/a Theorem 6.6 .c/ 232

1jpj;r D pj

�
1CPr�1

kD1 pŒk�

	˛ jPUj Open Section 6.1.3.2 231

a Under additional assumptions on pj , wj or dj ; otherwise, the problem is open
b If ˛ D 0, otherwise the problem is open

258 6 Scheduling Problems with Variable Job Processing Times

Table 6.4 Time complexity of two-agent time-dependent scheduling problems

Problem Time complexity Reference Page

1jCO; pj D bj t; C
B
max � QjLAmax O.nA lognA C nAnB/ Theorem 6.8 240

1jCO; pj D bj t; f
B

max � QjPCA
j O.nA lognA C nB lognB/ Theorem 6.9 241

1jCO; pj D bj t;
P
UB
j D 0jP T Aj Open Section 6.2.1.3 241

1jCO; pj D bj t; sj D b0

j t;

GT; f B
max � QjPCA

j O.nA lognA C nB lognB/ Section 6.2.1.4 244
1jCO; pj D bj .aC bt/; CB

max � QjLAmax O.nA lognA C nAnB/ Section 6.2.2.1 244
1jCO; pj D bj .aC bt/; f B

max � QjPCA
j O.nA lognA C nB lognB/ Section 6.2.2.1 244

1jCO; pj D bj .aC bt/; sj D b0

j .a
0 C b0t /;

GT; f B
max � QjPCA

j O.nA lognA C nB lognB/ Section 6.2.2.2 244
1jCO; pj D aj C bt;

P
UB
j D 0jPwAj C

A
j Strongly NP-hard Section 6.2.3.1 245

1jCO; pj D aj C bt; LBmax � QjPwAj U
A
j Strongly NP-hard Section 6.2.3.2 246

1jCO; pj D bj .1� bt/jf A
max; f

B
max O.n2A C nB lognB/ Section 6.2.4.1 247

6.6 Bibliographic Remarks

In this section, we give some remarks on main references related to scheduling
problems with variable job processing times. In view of space limitations, we refer
the reader mainly to review papers and books that cover major parts of research
done on a particular type of variable job processing times.

6.6.1 Time-Dependent Job Scheduling Problems

The first review on time-dependent scheduling, Gawiejnowicz (1996), covers
references on single-machine problems published up to 1995. This review discusses
time-dependent scheduling in the context of so-called discrete-continuous schedul-
ing in which, apart processors that are discrete resources, jobs for completion need
also continuous resources such as energy or power.

The next time-dependent scheduling review, Alidaee and Womer (1999), covers
literature up to 1998. This review also discusses mainly single-machine time-
dependent scheduling problems, since to that time only a few authors have
considered parallel-machine problems with time-dependent job processing times
(Chen 1996, 1997; Kononov 1997).

The last review on time-dependent scheduling so far, Cheng et al. (2004a),
discusses references published up to 2003 and includes some new topics at that time
such as flow shop scheduling with time-dependent job processing times (Kononov
and Gawiejnowicz 2001; Mosheiov 2002).

The most recent discussion of time-dependent scheduling is presented in the
book by Gawiejnowicz (2008). This book reviews literature up to 2008, including
also non-English references, and discusses in detail single-, parallel- and dedicated-
machine time-dependent scheduling problems. In particular, in Chap. 6 of the book
are presented proofs of results given in Sect. 6.2.

6.6 Bibliographic Remarks 259

Table 6.5 Time complexity of two-agent position-dependent scheduling problems

Problem Time complexity Reference Page

1jCO, pj;r D pj r
˛ ,
P
UB
j �

QjPT Aj

Open Section 6.3.1.1 248

1jCO , pj;r D pj r
˛ , CB

max �
QjPwAj C

A
j

Open Section 6.3.1.2 249

1jCO, pAj;r D pAj r
˛ , pBj;r D

pBj r
ˇ , LBmax � 0jPwAj C

A
j

Open Section 6.3.2.1 250

1jCO, pj;r D pj � ˇr , f B
max �

QjPCA
j

O.nA lognA C nB lognB/ Section 6.3.3.1 251

1jCO, pj;r D pj C ˇr , f B
max �

QjPCA
j

O.nA lognA C nB lognB/ Section 6.3.3.1 251

1jCO, pj;r D
pj

�
1CPr�1

kD1 pŒk�

	
,

CB
max � QjPCA

j

O.nA lognA C nB lognB/ Section 6.3.4.1 251

1jCO, pj;r D
pj

�

1C
Pr�1
kD1 pŒk�Pr�1
kD1 pk

,

CB
max � QjPCA

j

O.nA lognA C nB lognB/ Section 6.3.4.1 251

1jCO , pj;r D
pj

�
1CPr�1

kD1 pŒk�

	
,

f B
max � QjPCA

j

O.nA lognA C nB lognB/ Section 6.3.4.2 252

1jCO, pj;r D
pj

�

1C
Pr�1
kD1 pŒk�Pr�1
kD1 pk

,

f B
max � QjPCA

j

O.nA lognA C nB lognB/ Section 6.3.4.2 252

1jCO, pj;r D
pj max

n
.1CPr�1

kD1 pŒk�/
˛; ˇ

o
,

P
UB
j � QjPwAj C

A
j

Strongly NP-hard Section 6.3.4.3 252

1jCO, pAj;r D
pAj .1C

Pr�1
kD1 pŒk�/

˛; pBj;r D
pBj .1 C Pr�1

kD1 pŒk�/
ˇ , LBmax �

QjPwAj C
A
j

Open Section 6.3.4.4 253

6.6.2 Position-Dependent Job Scheduling Problems

The first position-dependent scheduling review, Bachman and Janiak (2004), covers
literature up to 2001 and presents several complexity results on scheduling with
position-dependent log-linear and linear job processing times.

The most recent review on position-dependent scheduling, Biskup (2008),
discusses references published up to 2007 and covers single- and multiple-machine
scheduling problems, in identical parallel and dedicated parallel environments, with
many forms of position-dependent job processing times.

260 6 Scheduling Problems with Variable Job Processing Times

Table 6.6 Time complexity of two-agent scheduling problems with controllable jobs

Problem Time complexity Reference Page

1jCO; pAj D pAj �
xAj ; r

A
j ; d

A
j ; pmtn

A; ıB ,
f B

max � QjP cAj x
A
j

Strongly NP-hard Theorem 6.10 254

1jCO; pAj D pAj �
xAj ; d

A
j ; pmtn

A; ıB , f B
max �

QjPCA
j CP

cAj x
A
j

Strongly NP-hard Section 6.4.1.1 253

1jCO; pAj D pAj �
xAj ; r

A
j ; pmtn

A; ıB , f B
max �

QjP cAj x
A
j C T Amax

Strongly NP-hard Section 6.4.1.1 253

1jCO; pAj D pAj �
xAj ; r

A
j ; d

A
j ; pmtn

A; pmtnB ,
f B

max � QjP cAj x
A
j

O.n lognC .k C 1/n/a Theorem 6.11 254

1jCO; pAj D pAj �xAj ; pmtnA; ıB ,
f B

max � QjPCA
j CP

cAj x
A
j

O.nBnn
2
A lognA/ Section 6.4.2.2 256

a k denotes the number of distinct values of compression costs

Review by Anzanello and Fogliatto (2011) includes a detailed analysis of curve
shapes describing different forms of learning effect. A critical discussion of existing
literature on scheduling problems with position-dependent job processing times and
a proposal of a unifying view on some of the problems one can find in Rustogi and
Strusevich (2012).

In the first two of these reviews are described proofs or given references to results
mentioned in Sect. 6.3.

6.6.3 Controllable Job Scheduling Problems

The first survey on scheduling problems with controllable job processing times,
Nowicki and Zdrzalka (1990), concerns mainly to single-machine problems, though
it also addresses flow shop and parallel-machine problems, and covers references up
to 1988.

The most recent review on the subject, Shabtay and Steiner (2007), following
the classification scheme introduced in Nowicki and Zdrzalka (1990), presents a
detailed discussion of single-, parallel- and dedicated-machine scheduling prob-
lems, and covers literature of the subject up to 2006.

Some controllable job scheduling problems are also discussed in reviews by
Chen et al. (1998) and Hoogeveen (2005).

In all these reviews are described proofs or are given references to results
mentioned in Sect. 6.4.

References

Agnetis, A., Mirchandani, P., Pacciarelli, D., & Pacifici, A. (2004). Scheduling problems with two
competing agents. Operations Research, 52, 229–242.

Agnetis, A., Pacciarelli, D., & Pacifici, A. (2007). Multi-agent single machine scheduling. Annals
of Operations Research, 150, 3–15.

Agnetis, A., de Pascale, G., & Pranzo, M. (2009a). Computing the nash solution for scheduling
bargaining problems. International Journal of Operational Research, 1, 54–69.

Agnetis, A., Pacciarelli, D., & de Pascale, G. (2009b). A Lagrangian approach to single-machine
scheduling problems with two competing agents. Journal of Scheduling, 12, 401–415.

Agnetis, A., Nicosia, G., Pacifici, A., & Pferschy, U. (2013). Two agents competing for a shared
machine. Lecture Notes in Computer Science, 8176 LNAI, 1–14.

Aho, A. V., Hopcroft, J. E., & Ullman, J. D. (1974). The design and analysis of computer
algorithms. Reading: Addison-Wesley.

Albers, S., & Brucker, P. (1993). The complexity of one-machine batching problems. Discrete
Applied Mathematics, 47, 87–107.

Alidaee, B., & Womer, N. K. (1999). Scheduling with time dependent processing times: Review
and extensions. Journal of the Operatational Research Society, 50, 711–720.

Angel, E., Bampis, E., & Gourvès, L. (2005). Approximation results for a bicriteria job scheduling
problem on a single machine without preemption. Information Processing Letters, 94, 19–27.

Anzanello, M. J., & Fogliatto, F. S. (2011). Learning curve models and applications: Literature
review and research directions. International Journal of Industrial Ergonomics, 41, 573–583.

Arbib, C., Flammini, M., & Marinelli, F. (2003). Minimum flow time graph ordering. Lecture Notes
on Computer Science, 2880, 23–33.

Bachman, A., & Janiak, A. (2000). Minimizing maximum lateness under linear deterioration.
European Journal of Operational Research, 126, 557–566.

Bachman, A., & Janiak, A. (2004). Scheduling jobs with position-dependent processing times.
Journal of the Operational Research Society, 55, 257–264.

Baker, K., & Smith, J. C. (2003). A multiple criterion model for machine scheduling. Journal of
Scheduling, 6, 7–16.

Balasubramanian, H., Fowler, J., Keha, A., & Pfund, M. (2009). Scheduling interfering job sets on
parallel machines. European Journal of Operational Research, 199, 55–67.

Bellman, R. (1957). Dynamic programming. Princeton: Princeton University Press.
Bellman, R., & Dreyfus, S. E. (1962). Applied dynamic programming. Princeton: Princeton

University Press.
Biskup, D. (2008). A state-of-the-art review on scheduling with learning effects. European Journal

of Operational Research, 188, 315–329.
Blazewicz, J., Ecker, K. H., Pesch, E., Schmidt, G., & Weglarz, J. (2007). Handbook on scheduling:

From theory to applications. Berlin/Heidelberg: Springer.

A. Agnetis et al., Multiagent Scheduling, DOI 10.1007/978-3-642-41880-8,
© Springer-Verlag Berlin Heidelberg 2014

261

262 References

Bowman, E. H. (1959). The schedule sequencing problem. Operations Research, 7, 621–624.
Brewer, P. J., & Plott, C. R. (1996). A binary conflict ascending price (bicap) mechanism for the

decentralized allocation of the right to use railroad tracks. International Journal of Industrial
Organization, 14(6), 857–886.

Brucker, P. (2007). Scheduling algorithms (5th ed.). Berlin: Springer.
Brucker, P., & Kovalyov, M. Y. (1996). Single machine batch scheduling to minimize the weighted

number of late jobs. Mathematical Methods of Operations Research, 43, 1–8.
Brucker, P., Gladky, A., Hoogeveen, H., Kovalyov, M. Y., Potts, C. N., Tautenhahn, T., & van de

Velde, S. L. (1998). Scheduling a batching machine. Journal of Scheduling, 1(1), 31–54.
Bruno, J., Coffman, E. G., & Sethi, R. (1974). Scheduling indepedant tasks to reduce mean

finishing time. Communications of the ACM, 17, 382–387.
Chen, Z.-L. (1996). Parallel machine scheduling with time dependent processing times. Discrete

Applied Mathematics, 70, 81–93.
Chen, Z.-L. (1997). Erratum to parallel machine scheduling with time dependent processing times.

Discrete Applied Mathematics, 75, 103.
Chen, B., Potts, C. N., & Woeginger, G. J. (1998). A review of machine scheduling: Complexity

and approximability. In D. Z. Du & P. M. Pardalos (Eds.), Handbook of combinatorial
optimization (pp. 21–169). Dordrecht: Kluwer Academic Publishers.

Cheng, T. C. E., & Kovalyov, M. Y. (2001). Single machine batch scheduling with sequential job
processing. IIE Transactions, 33, 413–420.

Cheng, T. C. E., Ding, Q., & Lin, B. (2004a). A concise survey of scheduling with time-dependent
processing times. European Journal of Operational Research, 152, 1–13.

Cheng, T. C. E., Kovalyov, M. Y., & Chakhlevich, K. N. (2004b). Batching in a two-stage flowshop
with dedicated machines in the second stage. IIE Transactions, 36, 87–93.

Cheng, T. C. E., Ng, C., & Yuan, J. J. (2006). Multi-agent scheduling on a single machine to
minimize total weighted number of tardy jobs. Theoretical Computer Science, 362, 273–281.

Cheng, T. C. E., Ng, C., & Yuan, J. J. (2008). Multi-agent scheduling on a single machine with
max-form criteria. European Journal of Operational Research, 188, 603–609.

Cheng, T. C. E., Cheng, S. R., Wu, W., Hsu, P. H., & Wu, C. C. (2011a). A two-agent
single-machine scheduling problem with truncated sum-of-processing-times-based learning
considerations. Computers and Industrial Engineering, 60, 534–541.

Cheng, T. C. E., Wu, W., Cheng, S. R., & Wu, C. C. (2011b). Two-agent scheduling with position-
based deteriorating jobs and learning effects. Applied Mathematics and Computation, 217,
8804–8824.

Cheng, T. C. E., Chung, Y.-H., Liao, S., & Lee, W.-C. (2013). Two-agent singe-machine scheduling
with release times to minimize the total weighted completion time. Computers and Operations
Research, 40, 353–361.

Cho, Y., & Sahni, S. (1981). Preemptive scheduling of independent jobs with release and due times
on open, flow and job shops. Operations Research, 29, 511–522.

Choi, B., Leung, J.-T., & Pinedo, M. (2009). A note on the complexity of a two-agent, linear
combination problem. Technical report, Stern School of Business at New York University,
IOMS Department.

Coffman, E. G., Yannakakis, J. M., Magazine, M. J., & Santos, C. A. (1990). Batch sizing and job
sequencing on a single machine. Annals of Operations Research, 26, 135–147.

Conway, R., Maxwell, W., & Miller, L. (1967). Theory of scheduling. Reading: Addison-Wesley
Cook, S. A. (1971). The complexity of theorem proving procedures. In Third annual ACM

symposium on theory of computing (STOC ’71), Shaker Heights (pp. 151–158). New York:
ACM

Cormen, T. H., Leiserson, C. E., & Rivest, R. L. (1994). Introduction to algorithms. Cambridge:
MIT.

Dessouky, M. I., Lageweg, B. J., Lenstra, J. K., & van de Velde, S. L. (1990). Scheduling identical
jobs on uniform parallel machines. Statistica Neerlandica, 44, 115–123.

Dileepan, P., & Sen, T. (1988). Bicriterion static scheduling research for a single machine. Omega.
The International Journal of Management Science, 16, 53–59.

References 263

Ding, G., & Sun, S. (2010). Single-machine scheduling problems with two agents competing for
makespan. Lecture Notes in Computer Science, 6328, 244–255.

Du, J., & Leung, J. (1990). Minimizing total tardiness on one machine is NP-hard. Mathematics of
operations research, 15, 483–495.

Ehrgott, M., Shao, L., & Schobel, A. (2011). An approximation algorithm for convex multi-
objective programming problems. Journal of Global Optimization, 50, 397–416.

Elvikis, D., Hamacher, H. W., & T’Kindt, V. (2011). Scheduling two agents on uniform parallel
machines with makespan and cost functions. Journal of Scheduling, 14, 471–481.

Fan, B., Cheng, T., Li, S., & Feng, Q. (2013). Bounded parallel-batching scheduling with two
competing agents. Journal of Scheduling, 16, 261–271.

Feng, Q., Yu, Z., & Shang, W. (2011). Pareto optimization of serial-batching scheduling problems
on two agents. In 2011 international conference on advanced mechatronic systems (ICAMechS)
(pp. 165–168). ISBN 978-1-4577-1698-0.

Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the theory of
NP-completeness. New York: W.H. Freeman and Company.

Garey, M. R., Johnson, D. S., & Sethi, R. (1976). The complexity of flowshop and jobshop
scheduling. Mathematics of operations research, 1(2), 117–129.

Gavranovic, H., & Finke, G. (2000). Graph partitioning and set covering for optimal design of
production system in the metal industry. In The second conference on management and control
of production and logistics – MCPL’00, Grenoble.

Gawiejnowicz, S. (1996). Brief survey of continuous models of scheduling. Foundations of
Computing and Decision Sciences, 21, 81–100.

Gawiejnowicz, S. (2008). Time-dependent scheduling: EATCS monographs in theoretical com-
puter science. Berlin/New York: Springer.

Gawiejnowicz, S., & Kononov, A. (2012, in press). Isomorphic scheduling problems. Annals of
Operations Research. doi:10.1007/s10479-012-1222-2.

Gawiejnowicz, S., Onak, T., & Suwalski, C. (2006). A new library for evolutionary algorithms.
Lecture Notes in Computer Science, 3911, 414–421.

Gawiejnowicz, S., Kurc, W., & Pankowska, L. (2009a). Conjugate problems in time-dependent
scheduling. Journal of Scheduling, 12, 543–553.

Gawiejnowicz, S., Kurc, W., & Pankowska, L. (2009b). Equivalent time-dependent scheduling
problems. European Journal of Operational Research, 196, 919–929.

Gawiejnowicz, S., Lee, W. C., Lin, C. L., & Wu, C. C. (2011). Single-machine scheduling of
proportionally deteriorating jobs by two agents. Journal of the Operational Research Society,
62, 1983–1991.

Geoffrion, A. M. (1968). Proper efficiency and the theory of vector maximization. Journal of
Mathematical Analysis and Applications, 22, 618–630.

Geoffrion, A. M. (1974). Lagrangian relaxation for integer programming. Mathematical Program-
ming Study, 2, 82–114.

Graham, R. L. (1966). Bounds for certain multiprocessor anomalies. Bell System Technical
Journals, 17, 1563–1581.

Graham, R. L., Lawler, E. L., Lenstra, J. K., & Rinnooy Kan, A. H. G. (1979). Optimization
and approximation in deterministic sequencing and scheduling: A survey. Annals of Discrete
Mathematics, 5, 287–326.

He, C., Lin, Y., & Yuan, J. (2007). Bicriteria scheduling on a batching machine to minimize
maximum lateness and makespan. Theoretical Computer Science, 381, 234–240.

Hochbaum, D. (1998). Approximation algorithms for NP-hard problems. Boston: PWS Publishing.
Hochbaum, D. S., & Landy, D. (1994). Scheduling with batching: Minimizing the weighted

number of tardy jobs. Operations Research Letters, 16, 79–86.
Hoogeveen, J. A. (1996). Single-machine scheduling to minimize a function of two or three

maximum cost criteria. Journal of Algorithms, 21, 415–433.
Hoogeveen, H. (2005). Multicriteria scheduling. European Journal of Operational Research, 167,

592–623.

264 References

Hoogeveen, J. A., & van de Velde, S. L. (1995). Minimizing total completion time and maximum
cost simultaneously is solvable in polynomial time. Operations Research Letters, 17, 205–208.

Hopcroft, J. E., & Karp, R. M. (1973). An nf rac52 algorithm for maximum matchings in bipartite
graphs. SIAM Journal on Computing, 4, 225–231.

Hopcroft, J., & Ullman, J. (1979). Introduction to automata theory, languages and computation.
Reading: Addison-Wesley.

Horn, W. A. (1973). Minimizing average flow time with parallel machines. Operations Research,
21, 846–847.

Huo, Y., Leung, J. Y.-T., & Zhao, H. (2007a). Bi-criteria scheduling problems: Number of
tardy jobs and maximum weighted tardiness. European Journal of Operational Research, 177,
116–134.

Huo, Y., Leung, J. Y.-T., & Zhao, H. (2007b). Complexity of two dual criteria scheduling problems.
Operations Research Letters, 35, 211–220.

Jackson, J. R. (1955). Scheduling a production line to minimize maximum tardiness. In Manage-
ment Science Research (Vol. 43). Los Angeles: University of California.

Johnson, S. M. (1954). Optimal two and three-stage production schedules with setup times
included. Naval Research Logistic Quarterly, 1, 61–67.

Johnson, D. (1982). The NP-completeness column: An ongoing guide. Journal of Algorithms, 2,
393–405.

Johnson, D. S. (1990). A catalog of complexity classes. In J. van Leeuwen (Ed.), Handbook
of theoretical computer science: Algorithms and complexity (pp. 67–161). Elsevier/MIT:
Amsterdam/Cambridge.

Jozefowska, J. (2007). Just-in-time scheduling: Models and algorithms for computer and manu-
facturing systems. Berlin: Springer.

Karp, R. M. (1972). Reducibility among combinatorial problems. In R. E. Miller & J. W. Thatcher
(Eds.), Complexity of computer computations (pp. 85–104). New York: Plenum Press.

Kellerer, H., & Strusevich, V. A. (2010). Fully polynomial approximation schemes for a symmetric
quadratic knapsack problem and its scheduling applications. Algorithmica, 57, 769–795.

Khowala, K., Fowler, J., Keha, A., & Balasubramanian, H. (2009). Single machine scheduling
with interfering job sets. In Multidisciplinary international conference on scheduling: Theory
and applications (MISTA 2009), 10–12 Aug 2009, Dublin (pp. 357–365).

Knotts, G., Dror, M., & Hartman, B. C. (2000). Agent-based project scheduling. IIE Transactions,
32, 387–401.

Knuth, D. E. (1967–1969). The art of computer programming (Vols. 1–3). Reading: Addison-
Wesley.

Kononov, A. (1997). Scheduling problems with linear increasing processing times. In Operations
research September 3–6, 1996, Braunschweig (pp. 208–212). Springer.

Kononov, A. (1998). Single machine scheduling problems with processing times proportional to
an arbitrary function. Discrete Analysis and Operations Research, 5, 17–37.

Kononov, A., & Gawiejnowicz, S. (2001). NP-hard cases in scheduling deteriorating jobs on
dedicated machines. Journal of the Operational Research Society, 52, 708–718.

Kovalyov, M. Y., Oulamara, A., & Soukhal, A. (2012). Two-agent scheduling on an unbounded
serial batching machine. Lecture Notes in Computer Science, 7422 LNCS, 427–438.

Kovalyov, M. Y., Oulamara, A., & Soukhal, A. (2012b). Two-agent scheduling with agent specific
batches on an unbounded serial batching machine. In The 2nd international symposium on
combinatorial optimization, ISCO 2012: Vol. 7422. Lecture Notes in Computer Science, Athens.

Laumanns, M., Thiele, L., & Zitzler, E. (2006). An efficient, adaptive parameter variation scheme
for metaheuristics based on the epsilon-constraint method. European Journal of Operational
Research, 169(3), 932–942.

Lawler, E. L. (1973). Optimal sequencing of a single machine subject to precedence constraints.
Management Science, 19(8), 544–546.

Lawler, E. L. (1977). A pseudopolynomial algorithm for sequencing jobs to minimize total
tardiness. Annals of Discrete Mathematics, 1, 331–342.

References 265

Lawler, E. L. (1982). Scheduling a single machine to minimize the number of late jobs (Vol. 1,
pp. 331–342). Berkeley: Computer Science Division, University of California. (preprint)

Lawler, E. L. (1990). A dynamic programming algorithm for preemptive scheduling of a single
machine to minimize the number of late jobs. Annals of Operations Research, 26, 125–133.

Lawler, E. L., & Moore, J. (1969). A functional equation and its application to resource allocation
and sequencing problems. Management Science, 16(1), 77–84.

Lee, C. (1991). Parallel machines scheduling with nonsimultaneous machine available time.
Discrete Applied Mathematics, 20, 53–61.

Lee, C. Y., & Vairaktarakis, G. (1993). Complexity of single machine hierarchical scheduling:
A survey. In P. M. Pardalos (Ed.), Complexity in numerical optimization (pp. 269–298).
Singapore: World Scientific.

Lee, K., Choi, B.-C., Leung, J. Y.-T., & Pinedo, M. L. (2009). Approximation algorithms for multi-
agent scheduling to minimize total weighted completion time. Information Processing Letters,
109, 913–917.

Lee, W. C., Wang, W. J., Shiau, Y. R., & Wu, C. C. (2010). A single-machine scheduling problem
with two-agent and deteriorating jobs. Applied Mathematical Modelling, 34(10), 3098–3107.

Lee, W. C., Chung, Y., & Hu, M. (2012). Genetic algorithms for a two-agent single-machine
problem with release time. Applied Soft Computing, 12, 3580–3589.

Lenstra, J. K., Rinnooy Kan, A. H. G., & Brucker, P. (1977). Complexity of machine scheduling
problems. Annals of Discrete Mathematics, 1, 343–362.

Leung, J. Y.-T., & Young, G. H. (1989). Minimizing schedule length subject to minimum flow
time. SIAM Journal on Computing, 18(2), 314–326.

Leung, J. Y.-T., Yu, V. K. M., & Wei, W.-D. (1994). Minimizing the weighted number of tardy task
units. Discrete Applied Mathematics, 51, 307–316.

Leung, J. Y.-T., Pinedo, M. L., & Wan, G. (2010). Competitive two-agent scheduling and its
applications. Operations Research, 58, 458–469.

Levin, A., & Woeginger, G. J. (2006). The constrained minimum weighted sum of job completion
times problem. Mathematical Programming Series A, 108, 115–126.

Lew, A., & Mauch, H. (2007). Dynamic programming: A computational tool. Berlin/Heidelberg:
Springer.

Lewis, H. R., & Papadimitriou, C. H. (1998). Elements of the theory of computation (2nd ed.).
Upper Saddle River: Prentice-Hall.

Li, D. C., & Hsu, P. H. (2012). Solving a two-agent single-machine scheduling problem considering
learning effect. Computers and Operations Research, 39, 1644–1651.

Li, S., & Yuan, J. (2012). Unbounded parallel-batching scheduling with two competitive agents.
Journal of Scheduling, 15, 629–640.

Liu, P., & Tang, L. (2008). Two-agent scheduling with linear deteriorating jobs on a single machine.
Lecture Notes in Computer Science, 5092, 642–650.

Liu, P., Tang, L., & Zhou, X. (2010a). Two-agent group scheduling with deteriorating jobs on a
single machine. International Journal of Advanced Manufacturing Technology, 47, 657–664.

Liu, P., Zhou, X., & Tang, L. (2010b). Two-agent group single-machine scheduling with position-
dependent processing times. International Journal of Advanced Manufacturing Technology, 48,
325–331.

Liu, P., Yi, N., & Zhou, X. Y. (2011). Two-agent single-machine scheduling problems under
increasing linear deterioration. Applied Mathematical Modelling, 35, 2290–2296.

Liu, P., Yi, N., Zhou, X., & Gong, H. (2013). Scheduling two agents with sum-of-processing-
times-based deterioration on a single machine. Applied Mathematics and Computation, 219,
8848–8855.

Manne, A. S. (1960). On the job-shop scheduling problem. Operations Research, 8, 219–223.
Mavrotas, G. (2009). Effective implementation of the epsilon-constraint method in multi-objective

mathematical programming problems. Applied Mathematics and Computation, 213(2),
455–465.

Mc Naughton, R. (1959). Scheduling with deadlines and loss functions. Management Science, 6,
1–12.

266 References

Meiners, C. R., & Torng, E. (2007). Mixed criteria packet scheduling. In M. Y. Kao &
X.-Y. Li (Eds.), AAIM 2007: Vol. 4508. Lecture Notes on Computer Science (pp. 120–133).
Berlin/Heidelberg: Springer.

Mohri, S., Masuda, T., & Ishii, H. (1999). Bi-criteria scheduling problem on three identical parallel
machines. International Journal of Production Economics, 60–61, 529–536.

Moore, J. M. (1968). An n job, one machine sequencing algorithm for minimizing the number of
late jobs. Management Science, 15, 102–109.

Mor, B., & Mosheiov, G. (2010). Scheduling problems with two competing agents to minimize
minmax and minsum earliness measures. European Journal of Operational Research, 206(3),
540–546.

Mor, B., & Mosheiov, G. (2011). Single machine batch scheduling with two competing agents to
minimize total flowtime. European Journal of Operational Research, 215(3), 524–531.

Mosheiov, G. (1994). Scheduling jobs under simple linear deterioration. Computers and Opera-
tions Research, 21, 653–659.

Mosheiov, G. (2002). Complexity analysis of job-shop scheduling with deteriorating jobs. Discrete
Applied Mathematics, 117, 195–209.

Nagar, A., Haddock, J., & Heragu, S. (1995). Multiple and bicriteria scheduling: A literature
survey. European Journal of the Operational Research, 81, 88–104.

Ng, C. T., Cheng, T. C. E., & Yuan, J. J. (2006). A note on the complexity of the problem of two-
agent scheduling on a single machine. Journal of Combinatorial Optimization, 12, 387–394.

Nong, Q., Ng, C., & Cheng, T. (2008). The bounded single-machine parallel-batching scheduling
problem with family jobs and release dates to minimize makespan. Operations Research Letters,
36(1), 61–66.

Nong, Q., Cheng, T., & Ng, C. (2011). Two-agent scheduling to minimize the total cost. European
Journal of Operational Research, 215, 39–44.

Nowicki, E., & Zdrzalka, S. (1990). A survey of results for sequencing problems with controllable
processing times. Discrete Applied Mathematics, 26, 271–287.

Oulamara, A., Kovalyov, M. Y., & Finke, G. (2005). Scheduling a no-wait flowshop with
unbounded batching machines. IIE Transactions on Scheduling and Logistics, 37, 685–696.

Oulamara, A., Finke, G., & Kuiten, A. K. (2009). Flowshop scheduling problem with batching
machine and task compatibilities. Computers & Operations Research, 36, 391–401.

Papadimitriou, C. M. (1994). Computational complexity. Reading: Addison Wesley.
Papadimitriou, C. H., & Steiglitz, K. (1982). Combinatorial optimization: Algorithms and

complexity. Englewood Cliffs: Prentice-Hall.
Peha, J. M. (1995). Heterogeneous-criteria scheduling: Minimizing weighted number of tardy jobs

and weighted completion time. Journal of Computers and Operations Research, 22, 1089–1100.
Pessan, C., Bouquard, J.-L., & Neron, E. (2008). An unrelated parallelmachines model for

an industrial production resetting problem. European Journal of Industrial Engineering, 2,
153–171.

Pinedo, M. (2008). Scheduling: Theory, algorithms, and systems (3rd ed.). Berlin: Springer.
Potts, C., & Kovalyov, M. (2000). Scheduling with batching: A review. European Journal of

Operational Research, 120(2), 228–249.
Potts, C., Strusevich, V., & Tautenhahn, T. (2001). Scheduling batches with simultaneous job

processing for two-machine shop problems. Journal of Scheduling, 4(1), 25–51.
Qi, F., Yuan, J. J., Liu, H., & He, C. (2013). A note on two-agent scheduling on an unbounded

parallel-batching machine with makespan and maximum lateness objectives. Applied Mathe-
matical Modelling, 37, 7071–7076.

Queyranne, M. (1993). Structure of a simple scheduling polyhedron. Mathematical Programming,
58, 263–285.

Rustogi, K., & Strusevich, V. A. (2012). Simple matching vs linear assignment in scheduling
models with positional effects: A critical review. European Journal of Operational Research,
222, 393–407.

Ruzika, S., & Wiecek, M. M. (2005). Approximation methods in multiobjective programming.
Journal of Optimization Theory and Applications, 126(3), 473–501.

References 267

Sabouni, M. Y., & Jolai, F. (2010). Optimal methods for batch processing problem with makespan
and maximum lateness objectives. Applied Mathematical Modelling, 34(2), 314–324.

Sadi, F., Soukhal, A., & Billaut, J.-C. (2013, to appear). Solving multi-agent scheduling problems
on parallel machines with a global objective function. RAIRO Operations Research.

Saule, E., & Trystram, D. (2009). Multi-users scheduling in parallel systems. In Proceedings of
the 23rd international symposium on parallel & distributed computing 2009, Rome (pp. 1–9).
IEEE Computer Society.

Schuurman, P., & Woeginger, G. J. (2011). Approximation schemes – A tutorial. In R. H. Mohring,
C. N. Potts, A. S. Schulz, G. J. Woeginger, & L. A. Wolsey (Eds.), Lectures on scheduling.

Sedeño-Noda, A., Alcaide, D., & González-Martín, C. (2006). Network flow approaches to pre-
emptive open-shop scheduling problems with time-windows. European Journal of Operational
Research, 174(3), 1501–1518.

Shabtay, D., & Steiner, G. (2007). A survey of scheduling with controllable processing times.
Discrete Applied Mathematics, 155, 1643–1666.

Smith, W. E. (1956). Various optimizer for single-stage production. Naval Research Logistics
Quarterly, 3, 59–66.

Su, L.-H. (2009). Scheduling on identical parallel machines to minimize total completion time
with deadline and machine eligibility constraints. The International Journal of Advanced
Manufacturing Technology, 40, 572–581.

Tan, Q., Chen, H.-P., Du, B., & Li, X.-L. (2011). Two-agent scheduling on a single batch processing
machine with non-identical job sizes. In Proceedings of the 2nd international conference on
artificial intelligence, management science and electronic commerce, AIMSEC 2011, Art. No.
6009883 (pp. 7431–7435).

T’kindt, D. E. V. (2012, in press). Two-agent scheduling on uniform parallel machines with min-
max criteria. Annals of Operations Research, 1–16.

T’Kindt, V., & Billaut, J.-C. (2006). Multicriteria scheduling: Theory, models and algorithms
(2nd ed.). Berlin/Heildelberg/New York: Springer.

Tuong, N. H. (2009). Complexité et Algorithmes pour l’Ordonnancement Multicritere de Travaux
Indépendants: Problèmes Juste-À-Temps et Travaux Interférants (in French). PhD thesis,
Université François-Rabelais de Tours, Tours.

Tuong, N. H., Soukhal, A., & Billaut, J.-C. (2012). Single-machine multi-agent scheduling
problems with a global objective function. Journal of Scheduling, 15, 311–321.

Tuzikov, A., Makhaniok, M., & Manner, R. (1998). Bicriterion scheduling of identical processing
time jobs by uniform processors. Computers and Operations Research, 25, 31–35.

Uzsoy, R., & Yang, Y. (1997). Minimizing total weighted completion time on a single batch
processing machine. Production and Operations Management, 6, 57–73.

Van de Velde, S. (1991). Machine scheduling and Lagrangian relaxation. PhD thesis, CWI
Amsterdam.

Van Wassenhove, L. N., & Gelders, L. F. (1980). Solving a bicriterion problem. European Journal
of Operational Research, 4(1), 42–48.

Vazirani, V. V. (2003). Approximation algorithms (2nd ed.). Berlin/Heidelberg: Springer.
Vickson, R. G. (1980a). Choosing the job sequence and processing times to minimize total

processing plus flow cost on a single machine. Operations Research, 28, 1155–1167.
Vickson, R. G. (1980b). Two single machine sequencing problems involving controllable job

processing times. AIIE Transactions, 12, 258–262.
Wagner, H. M. (1959). An integer linear programming model for machine scheduling. Naval

Research Logistic Quarterly, 6, 131–140.
Walukiewicz, S. (1991). Integer programming. Warszawa: Polish Scientific Publishers.
Wan, G., Yen, B. P. C., & Li, C. L. (2001). Single machine scheduling to minimize total

compression plus weighted flow cost is NP-hard. Information Processing Letters, 79, 273–280.
Wan, G., Leung, J.-Y., & Pinedo, M. (2010). Scheduling two agents with controllable processing

times. European Journal of Operational Research, 205, 528–539.
Wan, L., Yuan, J., & Geng, Z. (2013, to appear). A note on the preemptive scheduling to minimize

total completion time with release and deadline constraints. Journal of Scheduling.

268 References

Webster, S., & Baker, K. (1995). Scheduling groups of jobs on a single machine. Operations
Research, 43, 692–704.

Woeginger, G. J. (2003). Exact algorithms for NP-hard problems: A survey. Lecture Notes in
Computer Science, 2570, 187–205.

Wu, W. H. (2013). An exact and meta-heuristic approach for two-agent single-machine scheduling
problem. Journal of Marine Science and Technology, 21, 215–221.

Wu, C. C., Huang, S. K., & Lee, W. C. (2011). Two-agent scheduling with learning consideration.
Computers and Industrial Engineering, 61, 1324–1335.

Wu, W. H., Cheng, S. R., Wu, C. C., & Yin, Y. Q. (2012). Ant colony algorithms for a two-
agent scheduling with sum-of processing times-based learning and deteriorating considerations.
Journal of Intelligent Manufacturing, 23, 1985–1993.

Wu, C.-C., Wu, W.-H., Chen, J.-C., Yin, Y., & Wu, W.-H. (2013a). A study of the single-machine
two-agent scheduling problem with release times. Applied Soft Computing, 13, 998–1006.

Wu, W. H., Xu, J., Wu, W., Yin, Y., Cheng, I., & Wu, C. C. (2013b). A tabu method for a two-
agent single-machine scheduling with deterioration jobs. Computers & Operations Research,
40, 2116–2127.

Yin, Y. Q., Cheng, S. R., Cheng, T., Wu, C. C., & Wu, W.-H. (2012a). Two-agent single-machine
scheduling with assignable due dates. Applied Mathematics and Computation, 219, 1674–1685.

Yin, Y. Q., Cheng, S. R., & Wu, C. C. (2012b). Scheduling problems with two agents and a
linear non-increasing deterioration to minimize earliness penalties. Information Sciences, 189,
282–292.

Yin, Y. Q., Wu, W., Cheng, S. R., & Wu, C. C. (2012c). An investigation on a two-agent single-
machine scheduling problem with unequal release dates. Computers & Operations Research,
39, 3062–3073.

Yuan, J. J., Shang, W. P., & Feng, Q. (2005). A note on the scheduling with two families of jobs.
Journal of Scheduling, 8, 537–542.

Zhao, K., & Lu, X. (2013). Approximation schemes for two-agent scheduling on parallel machines.
Theoretical Computer Science, 468, 114–121.

Zitzler, E., Knowles, J., & Thiele, L. (2008). Quality assessment of Pareto set approximations.
Lecture Notes in Computer Science, 5252 LNCS, 373–404.

Index

Ageing
effect, log-linear, 222
index, 222

Agreeable, basic job processing times
and costs, 256
and due dates, 231
and weights, 231, 232

Algorithm
approximation scheme, 36, 39, 91, 121
branch-and-bound, 30
complexity, 23
dynamic programming, 28
exact, 28

Approaches, 10
counting, 13
epsilon, 11, 58
feasibility, 10
lexicographic, 11
linear combination, 10
Pareto enumeration, 12

Batching, 147
parallel, 147, 175, 187
serial, 147, 150, 187

Branch-and-bound, 30

Cluster, 97
Complexity

exponential, 24
NP-completeness, 25
NP-hardness, 25, 26
polynomial, 24
pseudo-polynomial, 24
running time, 23
of scheduling problems, 48
theory, 23

Compression
cost per unit time, 224
rate, 223

Controllable job
convex, 223
linear, 223

Cost function, 224
Criteria, 8, 9

regular, 9

Deteriorating jobs, 219
Deterioration

linear, 219
proportional, 219
proportional-linear, 219
rate, 219

Due date
agreeable, 134, 137
distinct, 59, 131, 135, 136, 138
modified, 104
same for all agents, 131, 132, 136
shifted, 95

Dynamic programming, 28

Function
indicator, 78
max-type

general, 57, 74, 102, 108
lateness, 59, 92
makespan, 63, 71, 80
tardy jobs, 130

sum-type
completion time, 71, 74, 109, 110, 126,

130
tardiness, 108, 130

A. Agnetis et al., Multiagent Scheduling, DOI 10.1007/978-3-642-41880-8,
© Springer-Verlag Berlin Heidelberg 2014

269

270 Index

tardy jobs, 102, 126, 131
weighted completion time, 80, 92, 102,

116, 130
weighted tardy jobs, 136

Group technology, 225

Intractable, 24
Isomorphic scheduling problems, 228

Job
characteristics, 6
critical, 66
deterioration, 218
equal-length, 206, 214
preemption, 189, 212
processing time

controllable, 218
fixed, 218
linear, 219–221
log-linear, 221
position-dependent, 218
proportional, 219
proportional-linear, 219, 220
shortening, 220
time-dependent, 218
variable, 218

shortening, 219

Knapsack problem, 27

Lagrangian
bound, 84
breakpoint, 46, 85, 119
dual, 46, 84, 96, 119
function, 46, 84
problem, 84, 95, 119

Latest start time, 103
Learning effect, 221

linear, 221
log-linear, 221
past-sequence-dependent, 221

Learning factor, 221

Machine, 7
Mathematical programming, 32
Min flow time graph ordering problem, 70
Multiagent scheduling, 3

Operation, move, 78

Parallel machines, 7, 52, 189
identical, 8, 194
uniform, 8, 206
unrelated, 8, 190

Pareto
enumeration, 3, 11
optimum, 2
weak, 2

3-Partition problem, 28
Partition problem, 24
Preemption, 7, 189, 212
Processing time

basic, 219
non-compressed, 223
shortening, 220
variable, 217

Reduction
between problems, 53
polynomial, 25
Turing, 27

Reference schedule, 121
Relaxation, 43

Lagrangian, 44
linear, 43

Reserved interval, 103, 109
Resource, 7, 223

continuous, 258
discrete, 258

Satisfiability problem, 25
Scenario, 13, 54

bicriteria, 13
competing, 13
interfering, 13
multicriteria, 13
nondisjoint, 14

Scheduling
discrete-continuous, 258
with learning effect, 221
multiagent, 1

classification, 1
solution approaches, 1

multicriteria, 1
non-idle, 233, 239
position-dependent, 221
reference, 65, 78, 91
resource-dependent, 223
time-dependent, 218

Index 271

Search problem, 26
Sequencing rule

EDD, 48
SPT, 48
WSPT, 48

Shortening
jobs, 219
linear, 220

proportional-linear, 219
rate, 220

Single machine, 7, 57
Subgradient method, 47

TEAC library, 243
Truncation parameter, 222

	Preface
	Contents
	Chapter
1 Multiagent Scheduling Fundamentals
	1.1 Main Concepts and Notions
	1.1.1 Basic Definitions of Multiagent Scheduling
	1.1.2 Multiagent Scheduling Applications
	1.1.2.1 Rescheduling Problems
	1.1.2.2 Aircraft Landings
	1.1.2.3 Project Scheduling
	1.1.2.4 Railway Scheduling
	1.1.2.5 Cross-Docking Distribution
	1.1.2.6 Communication Networks

	1.2 Multiagent Scheduling Problem Description
	1.2.1 Job Characteristics
	1.2.2 Machine Environment
	1.2.3 Optimality Criteria

	1.3 Solution Approaches to Multiagent Scheduling Problems
	1.3.1 Feasibility Problem
	1.3.2 Linear Combination of Criteria
	1.3.3 Epsilon-Constraint Approach
	1.3.4 Lexicographic Order
	1.3.5 Pareto Set Enumeration
	1.3.6 Counting

	1.4 Classification of Multiagent Scheduling Problems
	1.4.1 Competing Agents
	1.4.2 Interfering Sets
	1.4.3 Multicriteria Optimization
	1.4.4 Nondisjoint Sets

	1.5 Notation of Multiagent Scheduling Problems
	1.6 Examples of Single- and Multiagent Scheduling Problems
	1.7 Bibliographic Remarks

	Chapter
2 Problems, Algorithms and Complexity
	2.1 Basic Notions of Complexity Theory
	2.2 NP-Completeness and NP-Hardness
	2.2.1 NP-Completeness
	2.2.2 NP-Hardness

	2.3 Enumeration and Exact Algorithms
	2.3.1 Dynamic Programming
	Problem 1||wjUj

	2.3.2 Branch-and-Bound Algorithms
	Problem 1||wj Tj

	2.3.3 Mathematical Programming Algorithms
	2.3.3.1 Positional Variables
	2.3.3.2 Precedence Variables
	2.3.3.3 Time-Indexed Variables

	2.4 Approximation Algorithms
	2.4.1 Problems with One Objective Function
	2.4.2 Problems with Multiple Objective Functions
	2.4.2.1 Approximation of Type I
	2.4.2.2 Approximation of Type II

	2.5 Approximation Schemes
	2.5.1 Simplifying
	2.5.2 Solving
	2.5.3 Translating Back

	2.6 Relaxation of Problems
	2.6.1 Linear Programming Relaxation
	2.6.2 Lagrangian Relaxation

	2.7 Complexity of Basic Scheduling Problems
	2.7.1 Single Machine Scheduling Problems
	2.7.1.1 Problem 1||Lmax
	2.7.1.2 Problem 1||wjCj
	2.7.1.3 Problem 1||Uj
	2.7.1.4 Problem 1|prec|fmax
	2.7.1.5 Problem 1||Tj
	2.7.1.6 Problem 1|Lmax Q|Cj

	2.7.2 Multimachine Scheduling Problems
	2.7.2.1 Problem P||Cj
	2.7.2.2 Problem F2||Cmax

	2.7.3 Reductions Between Scheduling Problems
	2.7.3.1 Complexity of Basic Scheduling Problems
	2.7.3.2 Simple Reductions Between Scheduling Problems

	2.8 Bibliographic Remarks

	Chapter
3 Single Machine Problems
	3.1 Functions fmax,fmax
	3.1.1 Epsilon-Constraint Approach
	3.1.1.1 Problem 1|ND,fmaxBQ|fmaxA
	3.1.1.2 Problem 1|ND,LmaxBQ|LmaxA
	3.1.1.3 Problem 1|CmaxBQ|CmaxA
	3.1.1.4 Extension to K Agents

	3.1.2 Computing the Pareto Set
	3.1.2.1 Problem 1|ND|P(fmaxA,fmaxB)
	3.1.2.2 Problem 1||P(LmaxA,LmaxB)

	3.1.3 Linear Combination

	3.2 Functions Cmax,Cj
	3.2.1 Epsilon-Constraint Approach
	3.2.2 Computation of the Pareto Set
	3.2.3 Linear Combination

	3.3 Functions fmax,Cj
	3.3.1 Epsilon-Constraint Approach
	3.3.2 Computing the Pareto Set
	3.3.3 Linear Combination

	3.4 Functions wjCj,Cmax
	3.4.1 Epsilon-Constraint Approach
	3.4.1.1 A Lagrangian Bound

	3.4.2 Computing the Pareto Set
	3.4.3 Linear Combination
	3.4.4 Approximation

	3.5 Functions wjCj,Lmax
	3.5.1 Epsilon-Constraint Approach
	3.5.1.1 The Lagrangian Approach for 1|CO,LmaxBQ| wjA CjA
	3.5.1.2 The Algorithm for the Lagrangian Dual

	3.5.2 Computing the Pareto Set
	3.5.3 Linear Combination

	3.6 Functions wj Cj, fmax
	3.7 Functions Uj,fmax
	3.7.1 Epsilon-Constraint Approach
	3.7.2 Computing the Pareto Set and Linear Combination

	3.8 Functions Tj,fmax
	3.8.1 Epsilon-Constraint Approach

	3.9 Functions Cj, Cj
	3.9.1 Epsilon-Constraint Approach
	3.9.1.1 Problem 1|CO,CjBQ|CjA
	3.9.1.2 Problem 1|IN,CjBQ|CjA
	3.9.1.3 Problem 1|ND,CjBQ|CjA

	3.9.2 Computing the Pareto Set
	3.9.2.1 Problem 1||P(CjA,CjB)

	3.9.3 Linear Combination
	3.9.3.1 Problem 1|ND|αCjA + βCjB

	3.10 Functions wjCj, wjCj
	3.10.1 Epsilon-Constraint Approach
	3.10.1.1 Problem 1|BI,wjB CjBQ|wjA CjA

	3.10.2 Approximation
	3.10.3 Computing the Pareto Set
	3.10.4 Linear Combination

	3.11 Functions Uj, Cj
	3.11.1 Epsilon-Constraint Approach
	3.11.2 Computing the Pareto Set
	3.11.3 Linear Combination

	3.12 Functions Tj, Cj
	3.13 Functions wjCj, Uj
	3.13.1 Epsilon-Constraint Approach
	3.13.2 Linear Combination

	3.14 Functions Uj, Uj
	3.14.1 Epsilon-Constraint Approach
	3.14.1.1 Problem 1|ND,djA =djB,UjB Q|UjA
	3.14.1.2 Problem 1|ND,UjB Q|UjA

	3.14.2 Computing the Pareto Set and Linear Combination

	3.15 Functions wj Uj, wj Uj
	3.15.1 Epsilon-Constraint Approach
	3.15.1.1 Common Jobs Have the Same Due Date
	3.15.1.2 Common Jobs Have Distinct Due Dates

	3.15.2 Computing the Pareto Set

	3.16 Tables
	3.17 Bibliographic Remarks

	Chapter
4 Batching Scheduling Problems
	4.1 Introduction
	4.2 Two-Agent s-Batching Problems
	4.2.1 Functions fmax,fmax
	4.2.1.1 Problem 1|CO, s-batch,fBmax Q | fAmax

	4.2.2 Functions Cmax, Cmax
	4.2.2.1 Problem 1|CO, s-batch, CBmax Q | CAmax
	4.2.2.2 Problem 1|CO, s-batch | P(CAmax,CBmax)

	4.2.3 Functions Cmax, Lmax
	4.2.3.1 Problem 1|CO, s-batch, LBmax Q | CAmax
	4.2.3.2 Problem 1|CO, s-batch, CAmax Q | LBmax
	4.2.3.3 Problem 1|CO, s-batch |P(CmaxA, LmaxB)

	4.2.4 Functions fmax, Cj
	4.2.4.1 Problem 1|CO, s-batch, fBmax Q | CAj
	4.2.4.2 Problem 1|CO, s-batch, CAj Q | fBmax

	4.2.5 Functions fmax, wj Uj
	4.2.5.1 Problem 1|CO, s-batch, fBmax Q | wAj UAj
	4.2.5.2 Problem 1|CO, s-batch, wAj UAj Q | fBmax
	4.2.5.3 Problem 1|CO, s-batch | P(fmaxA, UjB)

	4.2.6 Functions Cmax, Cj
	4.2.6.1 Problem 1|CO, s-batch, CBj Q | CAmax
	4.2.6.2 Problem 1|CO, s-batch |P(CmaxA,CjB)

	4.2.7 Functions Cj, Cj
	4.2.7.1 Problem 1|CO, s-batch, CBj Q | CAj
	4.2.7.2 Problem 1|CO, s-batch| P(CjA, CjB)

	4.2.8 Functions wj Uj, wj Uj
	4.2.8.1 Problem 1|CO, s-batch, wBj UBj Q | wAj UAj
	4.2.8.2 Problem 1|CO, s-batch| P(UjA , UjB)

	4.3 Two-Agent P-Batching Problems
	4.3.1 Preliminary Results
	4.3.2 Functions fmax, fmax
	4.3.2.1 Problem 1|CO, p-batch, fBmax Q | fmaxA

	4.3.3 Functions Cmax, Cmax
	4.3.3.1 Problem 1|CO, p-batch, CBmax Q | CmaxA

	4.3.4 Functions Cmax, Lmax
	4.3.4.1 Problem 1|CO, p-batch, LBmax Q | CmaxA
	4.3.4.2 Problem 1|CO, p-batch, CBmax Q | LmaxA

	4.3.5 Functions fmax, fj
	4.3.5.1 Problem 1|CO, p-batch, fBmax Q | fjA

	4.3.6 Functions fj, fj
	4.3.6.1 Problem 1|CO, p-batch, fjB Q | fjA

	4.4 Tables
	4.5 Bibliographic Remarks
	4.5.1 Serial Batching Problems
	4.5.2 Parallel Batching Problems

	Chapter
5 Parallel Machine Scheduling Problems
	5.1 Preemptive Jobs
	5.1.1 Functions fmax, fmax
	5.1.1.1 Problem Rm|IN, pmtn, CmaxB Q | CmaxA
	5.1.1.2 Phase 1: Assignment of Preempted Jobs to Machines
	5.1.1.3 Phase 2: Construction of a Feasible Solution
	5.1.1.4 Problem Rm|IN, pmtn, Cmaxk Qk, k=2, …, K | Cmax1

	5.1.2 Functions fmax, Cj
	5.1.2.1 Problem P2 |CO, pmtn, fBmax Q | CjA

	5.1.3 Functions fj, fj
	5.1.3.1 Problem Pm | IN, pmtn, CjB Q | CjA

	5.2 Non-preemptive Jobs with Arbitrary Processing Times
	5.2.1 Preliminary Results
	5.2.2 Functions Cmax, Cmax
	5.2.2.1 Problem Pm|IN, CmaxB Q| CmaxA
	5.2.2.2 Problem Pm|IN, Cmax2 Q2, …, CmaxK QK| Cmax1
	5.2.2.3 Problem P2|CO, CmaxB Q| CmaxA

	5.2.3 Functions Cmax, Cj
	5.2.3.1 Problem Pm| IN, CjB Q | CmaxA
	5.2.3.2 Problem Pm | IN, CBmax Q | CjA
	5.2.3.3 Problem Pm|CO, CmaxBQ|CjA

	5.2.4 Functions Cj, Cj
	5.2.4.1 Problem Pm | IN, CjBQ | CjA
	5.2.4.2 Problem Pm |IN |P(CjA, CjB)

	5.3 Non-preemptive Jobs with Identical Processing Times
	5.3.1 Functions fmax, fmax
	5.3.1.1 Problem Qm|CO, pj=p, fBmaxQ |fmaxA
	5.3.1.2 Problem Qm|CO, pj=p |P (fmaxA, fBmax)

	5.3.2 Functions fmax, Cmax
	5.3.2.1 Problem Qm|CO, pj=p, CmaxB Q|fmaxA
	5.3.2.2 Problem Qm|CO, pj=p|P (fmaxA, CmaxB)

	5.3.3 Functions Cmax, Cmax
	5.3.3.1 Problem Qm|CO, pj=p |P (CmaxA, CBmax)

	5.3.4 Functions Lmax, Cmax
	5.3.4.1 Problem Qm|CO, pj=p |P (LmaxA, CBmax)

	5.3.5 Functions fj, Cmax
	5.3.5.1 Problem Qm| CO, pj=p |P(fjA, CmaxB)

	5.3.6 Functions Uj, Cmax
	5.3.6.1 Problem Qm| CO, pj=p |P(UjA, CBmax)

	5.4 Tables
	5.5 Bibliographic Remarks
	5.5.1 Preemptive Jobs
	5.5.2 Non-preemptive Jobs with Arbitrary Processing Times
	5.5.3 Non-preemptive Jobs with Identical Processing Times

	Chapter
6 Scheduling Problems with Variable Job Processing Times
	6.1 Introduction
	6.1.1 Main Forms of Variable Job Processing Times
	6.1.1.1 Time-Dependent Job Processing Times
	6.1.1.2 Position-Dependent Job Processing Times
	6.1.1.3 Controllable Job Processing Times

	6.1.2 Notation for Variable Job Scheduling Problems
	6.1.2.1 Notation for Single-Agent Time-Dependent Job Scheduling Problems
	6.1.2.2 Notation for Single-Agent Position-Dependent Job Scheduling Problems
	6.1.2.3 Notation for Single-Agent Controllable Job Scheduling Problems
	6.1.2.4 Notation for Two-Agent Variable Job Scheduling Problems

	6.1.3 Basic Results on Variable Job Scheduling
	6.1.3.1 Single-Agent Time-Dependent Job Scheduling Problems
	6.1.3.2 Single-Agent Position-Dependent Job Scheduling Problems
	6.1.3.3 Single-Agent Controllable Job Scheduling Problems

	6.1.4 Examples of Variable Job Scheduling Problems
	6.1.4.1 Examples of Time-Dependent Job Scheduling Problems
	6.1.4.2 Examples of Position-Dependent Job Scheduling Problems
	6.1.4.3 Examples of Controllable Job Scheduling Problems
	6.1.4.4 Example of a Two-Agent Variable Job Scheduling Problem

	6.2 Two-Agent Time-Dependent Job Scheduling Problems
	6.2.1 Proportional Deteriorating Job Processing Times
	6.2.1.1 1|CO,pj=bjt,CmaxBQ|LmaxA
	6.2.1.2 1|CO,pj=bjt,fmaxBQ|CjA
	6.2.1.3 1|CO,pj=bjt,UjB=0|TjA
	6.2.1.4 1|CO,pj=bjt,sj=b'jt,GT,fmaxBQ|CjA

	6.2.2 Proportional-Linear Deteriorating Job Processing Times
	6.2.2.1 1|CO,pj=bj(a+bt),CmaxBQ|LmaxA and 1|CO,pj=bj(a+bt),fmaxBQ|CjA
	6.2.2.2 1|CO,pj=bj(a+bt),sj=b'j(a'+b't),GT, fmaxBQ|CjA

	6.2.3 Linear Deteriorating Job Processing Times
	6.2.3.1 1|CO,pj=aj+bt,UjB=0|wjACjA
	6.2.3.2 1|CO,pj=aj+bt,LmaxBQ|wjAUjA

	6.2.4 Proportional-Linear Shortening Job Processing Times
	6.2.4.1 1|CO,pj=bj(1-bt)|fmaxA,fmaxB

	6.3 Two-Agent Position-Dependent Job Scheduling Problems
	6.3.1 Log-Linear Position-Dependent Job Processing Times with Learning Effect
	6.3.1.1 1|CO,pj,r=pjrα,UjBQ|TjA
	6.3.1.2 1|CO,pj,r=pjrα,CmaxBQ|wjACjA

	6.3.2 Log-Linear Position-Dependent Job Processing Times with Learning and Ageing Effects
	6.3.2.1 1|CO,pj,rA=pjA rα,pj,rB=pjB rβ,LmaxB0| wjACjA

	6.3.3 Linear Position-Dependent Job Processing Times with Learning and Ageing Effects
	6.3.3.1 1|CO,pj,r=pj-βr,fmaxBQ|CjA and 1|CO,pj,r=pj+βr,fmaxBQ|CjA

	6.3.4 Past-Sequence-Dependent Job Processing Times with Ageing Effect
	6.3.4.1 1|CO,pj,r=pj(1+k=1r-1 p[k]), CmaxBQ|CjA and 1|CO,pj,r=pj(1+k=1r-1 p[k]k=1r-1 pk),CmaxBQ| CjA
	6.3.4.2 1|CO,pj,r=pj(1+k=1r-1 p[k]),fmaxBQ| CjA and 1|CO,pj,r=pj(1+k=1r-1 p[k]k=1r-1 pk),fmaxBQ| CjA
	6.3.4.3 1|CO,pj,r=pjmax{ (1+k=1r-1 p[k])α,β}, UjBQ|wjACjA
	6.3.4.4 1|CO,pj,rA=pjA (1+k=1r-1 p[k])α, pj,rB=pjB (1+k=1r-1 p[k])β,LmaxBQ| wjACjA

	6.4 Two-Agent Controllable Job Scheduling Problems
	6.4.1 Linear Controllable Job Processing Times with the Total Compression Cost Criterion
	6.4.1.1 1|CO,pjA=pjA-xjA,rjA,djA,pmtnA, B,fmaxBQ|cjAxjA
	6.4.1.2 1|CO,pjA=pjA-xjA,rjA, djA, pmtnA,pmtnB, fmaxBQ|cjAxjA

	6.4.2 Linear Controllable Job Processing Times with Other Criteria Than the Total Compression Cost
	6.4.2.1 1|CO,pjA=pjA-xjA,djA,pmtnA, B,fmaxBQ|CjA+cjAxjA and 1|CO,pjA=pj1-xjA,rjA,pmtnA, B,fmaxBQ|cjAxjA+TmaxA
	6.4.2.2 1|CO,pjA=pjA-xjA,pmtnA, B,fmaxB Q|CjA+cjAxjA

	6.5 Tables
	6.6 Bibliographic Remarks
	6.6.1 Time-Dependent Job Scheduling Problems
	6.6.2 Position-Dependent Job Scheduling Problems
	6.6.3 Controllable Job Scheduling Problems

	References
	Index

