
Studies in Computational Intelligence 590

Indrajit Chakrabarti
Kota Naga Srinivasarao Batta
Sumit Kumar Chatterjee

Motion
Estimation for
Video Coding
Efficient Algorithms and Architectures

Studies in Computational Intelligence

Volume 590

Series editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: kacprzyk@ibspan.waw.pl

About this Series

The series “Studies inComputational Intelligence” (SCI) publishes newdevelopments
and advances in the various areas of computational intelligence—quickly and with a
high quality. The intent is to cover the theory, applications, and design methods of
computational intelligence, as embedded in the fields of engineering, computer
science, physics and life sciences, as well as the methodologies behind them. The
series contains monographs, lecture notes and edited volumes in computational
intelligence spanning the areas of neural networks, connectionist systems, genetic
algorithms, evolutionary computation, artificial intelligence, cellular automata,
self-organizing systems, soft computing, fuzzy systems, and hybrid intelligent
systems. Of particular value to both the contributors and the readership are the short
publication timeframe and the world-wide distribution, which enable both wide and
rapid dissemination of research output.

More information about this series at http://www.springer.com/series/7092

http://www.springer.com/series/7092

Indrajit Chakrabarti • Kota Naga Srinivasarao Batta
Sumit Kumar Chatterjee

Motion Estimation for Video
Coding
Efficient Algorithms and Architectures

123

Indrajit Chakrabarti
Department of Electronics and ECE
Indian Institute of Technology Kharagpur
Kharagpur
India

Kota Naga Srinivasarao Batta
Department of Electronics and ECE
Indian Institute of Technology Kharagpur
Kharagpur
India

Sumit Kumar Chatterjee
Department of Electronics
and Communication Engineering

National Institute of Technology Sikkim
Ravangla
India

ISSN 1860-949X ISSN 1860-9503 (electronic)
Studies in Computational Intelligence
ISBN 978-3-319-14375-0 ISBN 978-3-319-14376-7 (eBook)
DOI 10.1007/978-3-319-14376-7

Library of Congress Control Number: 2014959195

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained
herein or for any errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Dedicated to our Families
and Friends

Preface

Overview

A video signal, which is composed of a sequence of still frames of pixels, contains
significant amount of redundant information in spatial and temporal domain.
Elimination of this redundant information is achieved by efficient video compres-
sion methods. To provide interoperability between video encoder and decoder,
MPEG-X (1, 2 and 4) and H.26X (261, 262, 263, 264 and 265) video coding
standards have been defined by the ITU-G and VCEG. To reduce the temporal
redundancy between adjacent frames, the majority of the existing coding standards
have adopted Block Matching Algorithms (BMA) for Motion Estimation (ME).
BMA calculates motion vector for an entire block of pixels instead of individual
pixels. The same motion vector is applicable to all the pixels in the block. This
reduces the computational requirement and also results in a more accurate motion
vector since the objects are typically a cluster of pixels.

In general, out of all the components of a video encoder, the ME module
consumes the major share of overall power. A very simple arithmetic computation
is required for ME. However, frequent memory access associated with ME affects
the overall speed of operation and the power consumption. The present work has
therefore focused on design and development of VLSI architectures for several fast
ME architectures characterized by high processing speed, low power, and low area
making them suitable for portable video application devices that are typically
operated by battery power and involve real time operation.

Organization and Features

This book primarily focuses on low-power VLSI implementation of ME architec-
tures and efficient data reuse technique along with other techniques that have been
used to make a high performance ME architecture. In addition, the concept of

vii

scalable video coding based on in-band motion compensated temporal filtering has
also been presented.

Chapter 1 gives a brief introduction to the concept of video compression and
motion estimation. Chapter 2 provides the background of ME and different fast
search techniques for motion estimation and a brief survey of the literature related
to the scalable video coding. Chapter 3 explains the design of VLSI architecture for
realizing Fast Three Step Search algorithm (FTSS). Chapter 4 explains the imple-
mentation of VLSI architecture for Successive Elimination algorithm (SEA).
Chapter 5 provides details of fast ME based on a combination of Diamond Search
and 1-bit transformation and its architecture. Chapter 6 introduces a new two stage
fast algorithm for Variable Block Size Motion Estimation (VBSME) based on pixel
truncation and its low power architecture. Chapter 7 gives the fundamentals of
Scalable Video Coding based on In-band Motion Compensated Temporal Filtering
(IB-MCTF). Finally, Chap. 8 presents a few suggestions for extensions of the
present work.

Programs have been developed in Matlab and Verilog to implement the research
ideas discussed in depth from Chap. 3 through Chap. 7. Some of these programs
have been provided in the two appendices of this book for the benefit of the reader.

Audience

This book presents material that is appropriate for courses at the senior under-
graduate level and graduate level in the areas of Video processing and VLSI
architectures. It is also suitable for research students who are working on design of
VLSI architectures for Video processing applications. Practicing engineers in the
area of hardware implementation of video CODEC will also find the book to be
immensely useful. Basic familiarity with logic design and hardware description
languages is considered adequate to follow the material presented in this book.

Acknowledgments

The authors owe a word of thanks to many people who have helped in various ways
in this project. The authors thank their families and friends for their unstinting
support. Thanks are due to Professor A.S. Dhar of Department of Electronics and
Electrical Communication Engineering, Indian Institute of Technology Kharagpur,
India for providing us encouragement. The authors express their sincere gratitude to
Dr. Thomas Ditzinger, Springer editor, and Professor Janusz Kacprzyk, series editor
for Studies in Computational Intelligence series, for providing us with the necessary
support to see our efforts of writing this book come to fruition. The authors thank
the anonymous reviewers for their comments. We acknowledge all the authors of

viii Preface

http://dx.doi.org/10.1007/978-3-319-14376-7_1
http://dx.doi.org/10.1007/978-3-319-14376-7_2
http://dx.doi.org/10.1007/978-3-319-14376-7_3
http://dx.doi.org/10.1007/978-3-319-14376-7_4
http://dx.doi.org/10.1007/978-3-319-14376-7_5
http://dx.doi.org/10.1007/978-3-319-14376-7_6
http://dx.doi.org/10.1007/978-3-319-14376-7_7
http://dx.doi.org/10.1007/978-3-319-14376-7_8
http://dx.doi.org/10.1007/978-3-319-14376-7_3
http://dx.doi.org/10.1007/978-3-319-14376-7_7

books and research papers that have been referenced while writing this book.
A detailed list of references has been provided at the end of each chapter. The
authors also acknowledge the support of Indian Institute of Technology Kharagpur.

Kharagpur, November 2014 Indrajit Chakrabarti
Kota Naga Srinivasarao Batta

Sumit Kumar Chatterjee

Preface ix

Contents

1 Introduction . 1
1.1 Fundamentals of Video Compression. 1

1.1.1 Transform Block. 2
1.1.2 Quantization. 3
1.1.3 Entropy Coding . 4
1.1.4 Motion Estimation and Compensation 4

1.2 Motivation . 5
1.3 Challenges Encountered. 6
1.4 Contributions of the Present Research 7
1.5 Organization of the Book. 8
References. 8

2 Background and Literature Survey . 11
2.1 Block Matching Algorithm. 11

2.1.1 Full Search Block Matching Algorithm 12
2.1.2 Fast Search Algorithms for Block Matching

Algorithm . 13
2.1.3 Motion Estimation Architectures 17

2.2 Scalable Video Coding . 19
2.3 Conclusions . 21
References. 21

3 VLSI Architecture for Fast Three Step Search Algorithm. 25
3.1 Introduction . 25
3.2 Prediction of Direction of Current Motion Vector 26
3.3 Fast Three Step Search Algorithm (FTSS) 27
3.4 Proposed 3-PE Architecture for FTSS 28
3.5 Results . 32

xi

http://dx.doi.org/10.1007/978-3-319-14376-7_1
http://dx.doi.org/10.1007/978-3-319-14376-7_1
http://dx.doi.org/10.1007/978-3-319-14376-7_1#Sec1
http://dx.doi.org/10.1007/978-3-319-14376-7_1#Sec1
http://dx.doi.org/10.1007/978-3-319-14376-7_1#Sec2
http://dx.doi.org/10.1007/978-3-319-14376-7_1#Sec2
http://dx.doi.org/10.1007/978-3-319-14376-7_1#Sec3
http://dx.doi.org/10.1007/978-3-319-14376-7_1#Sec3
http://dx.doi.org/10.1007/978-3-319-14376-7_1#Sec4
http://dx.doi.org/10.1007/978-3-319-14376-7_1#Sec4
http://dx.doi.org/10.1007/978-3-319-14376-7_1#Sec5
http://dx.doi.org/10.1007/978-3-319-14376-7_1#Sec5
http://dx.doi.org/10.1007/978-3-319-14376-7_1#Sec6
http://dx.doi.org/10.1007/978-3-319-14376-7_1#Sec6
http://dx.doi.org/10.1007/978-3-319-14376-7_1#Sec7
http://dx.doi.org/10.1007/978-3-319-14376-7_1#Sec7
http://dx.doi.org/10.1007/978-3-319-14376-7_1#Sec8
http://dx.doi.org/10.1007/978-3-319-14376-7_1#Sec8
http://dx.doi.org/10.1007/978-3-319-14376-7_1#Sec9
http://dx.doi.org/10.1007/978-3-319-14376-7_1#Sec9
http://dx.doi.org/10.1007/978-3-319-14376-7_1#Bib1
http://dx.doi.org/10.1007/978-3-319-14376-7_2
http://dx.doi.org/10.1007/978-3-319-14376-7_2
http://dx.doi.org/10.1007/978-3-319-14376-7_2#Sec1
http://dx.doi.org/10.1007/978-3-319-14376-7_2#Sec1
http://dx.doi.org/10.1007/978-3-319-14376-7_2#Sec2
http://dx.doi.org/10.1007/978-3-319-14376-7_2#Sec2
http://dx.doi.org/10.1007/978-3-319-14376-7_2#Sec3
http://dx.doi.org/10.1007/978-3-319-14376-7_2#Sec3
http://dx.doi.org/10.1007/978-3-319-14376-7_2#Sec3
http://dx.doi.org/10.1007/978-3-319-14376-7_2#Sec7
http://dx.doi.org/10.1007/978-3-319-14376-7_2#Sec7
http://dx.doi.org/10.1007/978-3-319-14376-7_2#Sec10
http://dx.doi.org/10.1007/978-3-319-14376-7_2#Sec10
http://dx.doi.org/10.1007/978-3-319-14376-7_2#Sec11
http://dx.doi.org/10.1007/978-3-319-14376-7_2#Sec11
http://dx.doi.org/10.1007/978-3-319-14376-7_2#Bib1
http://dx.doi.org/10.1007/978-3-319-14376-7_3
http://dx.doi.org/10.1007/978-3-319-14376-7_3
http://dx.doi.org/10.1007/978-3-319-14376-7_3#Sec1
http://dx.doi.org/10.1007/978-3-319-14376-7_3#Sec1
http://dx.doi.org/10.1007/978-3-319-14376-7_3#Sec2
http://dx.doi.org/10.1007/978-3-319-14376-7_3#Sec2
http://dx.doi.org/10.1007/978-3-319-14376-7_3#Sec3
http://dx.doi.org/10.1007/978-3-319-14376-7_3#Sec3
http://dx.doi.org/10.1007/978-3-319-14376-7_3#Sec4
http://dx.doi.org/10.1007/978-3-319-14376-7_3#Sec4
http://dx.doi.org/10.1007/978-3-319-14376-7_3#Sec5
http://dx.doi.org/10.1007/978-3-319-14376-7_3#Sec5

3.5.1 Simulation Results . 32
3.5.2 Synthesis Results . 33

3.6 Conclusions . 34
References. 34

4 Parallel Architecture for Successive Elimination Block
Matching Algorithm . 35
4.1 Introduction . 35
4.2 Successive Elimination Algorithm (SEA) 36
4.3 Proposed Parallel Architecture for SEA 37

4.3.1 Internal Memory Unit (IMU) 38
4.3.2 Control Unit (CU). 38
4.3.3 Process Control Unit (PCU) 39
4.3.4 Working of the Proposed Architecture 39

4.4 Results . 42
4.4.1 Simulation Results . 42
4.4.2 Synthesis Results . 43

4.5 Conclusions . 44
References. 44

5 Fast One-Bit Transformation Architectures 45
5.1 Introduction . 45
5.2 One Bit Transformation and Diamond Search Algorithm 47

5.2.1 One Bit Transformation Based ME 47
5.2.2 Diamond Search Based 1-BT ME 48

5.3 Data Flow Analysis for DS Algorithm. 51
5.4 Proposed VLSI Architecture for 1-BT Based Fixed Block

Size Motion Estimation . 53
5.4.1 Processing Element . 54
5.4.2 Memory Interleaving . 55
5.4.3 Register Array for the Current Block Pixels 56
5.4.4 Search Register Array . 56
5.4.5 Comparator Unit . 57
5.4.6 Process Control Unit . 57

5.5 Proposed Fast Binary ME Architecture for Variable
Block Size . 58

5.6 Results . 60
5.6.1 Performance of the Proposed Fast 1-BT Based ME . . . 60
5.6.2 Implementation Results . 61

5.7 Conclusions . 62
References. 63

xii Contents

http://dx.doi.org/10.1007/978-3-319-14376-7_3#Sec6
http://dx.doi.org/10.1007/978-3-319-14376-7_3#Sec6
http://dx.doi.org/10.1007/978-3-319-14376-7_3#Sec7
http://dx.doi.org/10.1007/978-3-319-14376-7_3#Sec7
http://dx.doi.org/10.1007/978-3-319-14376-7_3#Sec8
http://dx.doi.org/10.1007/978-3-319-14376-7_3#Sec8
http://dx.doi.org/10.1007/978-3-319-14376-7_3#Bib1
http://dx.doi.org/10.1007/978-3-319-14376-7_4
http://dx.doi.org/10.1007/978-3-319-14376-7_4
http://dx.doi.org/10.1007/978-3-319-14376-7_4
http://dx.doi.org/10.1007/978-3-319-14376-7_4#Sec1
http://dx.doi.org/10.1007/978-3-319-14376-7_4#Sec1
http://dx.doi.org/10.1007/978-3-319-14376-7_4#Sec2
http://dx.doi.org/10.1007/978-3-319-14376-7_4#Sec2
http://dx.doi.org/10.1007/978-3-319-14376-7_4#Sec3
http://dx.doi.org/10.1007/978-3-319-14376-7_4#Sec3
http://dx.doi.org/10.1007/978-3-319-14376-7_4#Sec4
http://dx.doi.org/10.1007/978-3-319-14376-7_4#Sec4
http://dx.doi.org/10.1007/978-3-319-14376-7_4#Sec5
http://dx.doi.org/10.1007/978-3-319-14376-7_4#Sec5
http://dx.doi.org/10.1007/978-3-319-14376-7_4#Sec6
http://dx.doi.org/10.1007/978-3-319-14376-7_4#Sec6
http://dx.doi.org/10.1007/978-3-319-14376-7_4#Sec7
http://dx.doi.org/10.1007/978-3-319-14376-7_4#Sec7
http://dx.doi.org/10.1007/978-3-319-14376-7_4#Sec8
http://dx.doi.org/10.1007/978-3-319-14376-7_4#Sec8
http://dx.doi.org/10.1007/978-3-319-14376-7_4#Sec9
http://dx.doi.org/10.1007/978-3-319-14376-7_4#Sec9
http://dx.doi.org/10.1007/978-3-319-14376-7_4#Sec10
http://dx.doi.org/10.1007/978-3-319-14376-7_4#Sec10
http://dx.doi.org/10.1007/978-3-319-14376-7_4#Sec11
http://dx.doi.org/10.1007/978-3-319-14376-7_4#Sec11
http://dx.doi.org/10.1007/978-3-319-14376-7_4#Bib1
http://dx.doi.org/10.1007/978-3-319-14376-7_5
http://dx.doi.org/10.1007/978-3-319-14376-7_5
http://dx.doi.org/10.1007/978-3-319-14376-7_5#Sec1
http://dx.doi.org/10.1007/978-3-319-14376-7_5#Sec1
http://dx.doi.org/10.1007/978-3-319-14376-7_5#Sec2
http://dx.doi.org/10.1007/978-3-319-14376-7_5#Sec2
http://dx.doi.org/10.1007/978-3-319-14376-7_5#Sec3
http://dx.doi.org/10.1007/978-3-319-14376-7_5#Sec3
http://dx.doi.org/10.1007/978-3-319-14376-7_5#Sec4
http://dx.doi.org/10.1007/978-3-319-14376-7_5#Sec4
http://dx.doi.org/10.1007/978-3-319-14376-7_5#Sec5
http://dx.doi.org/10.1007/978-3-319-14376-7_5#Sec5
http://dx.doi.org/10.1007/978-3-319-14376-7_5#Sec6
http://dx.doi.org/10.1007/978-3-319-14376-7_5#Sec6
http://dx.doi.org/10.1007/978-3-319-14376-7_5#Sec6
http://dx.doi.org/10.1007/978-3-319-14376-7_5#Sec7
http://dx.doi.org/10.1007/978-3-319-14376-7_5#Sec7
http://dx.doi.org/10.1007/978-3-319-14376-7_5#Sec8
http://dx.doi.org/10.1007/978-3-319-14376-7_5#Sec8
http://dx.doi.org/10.1007/978-3-319-14376-7_5#Sec9
http://dx.doi.org/10.1007/978-3-319-14376-7_5#Sec9
http://dx.doi.org/10.1007/978-3-319-14376-7_5#Sec10
http://dx.doi.org/10.1007/978-3-319-14376-7_5#Sec10
http://dx.doi.org/10.1007/978-3-319-14376-7_5#Sec11
http://dx.doi.org/10.1007/978-3-319-14376-7_5#Sec11
http://dx.doi.org/10.1007/978-3-319-14376-7_5#Sec12
http://dx.doi.org/10.1007/978-3-319-14376-7_5#Sec12
http://dx.doi.org/10.1007/978-3-319-14376-7_5#Sec13
http://dx.doi.org/10.1007/978-3-319-14376-7_5#Sec13
http://dx.doi.org/10.1007/978-3-319-14376-7_5#Sec13
http://dx.doi.org/10.1007/978-3-319-14376-7_5#Sec14
http://dx.doi.org/10.1007/978-3-319-14376-7_5#Sec14
http://dx.doi.org/10.1007/978-3-319-14376-7_5#Sec15
http://dx.doi.org/10.1007/978-3-319-14376-7_5#Sec15
http://dx.doi.org/10.1007/978-3-319-14376-7_5#Sec16
http://dx.doi.org/10.1007/978-3-319-14376-7_5#Sec16
http://dx.doi.org/10.1007/978-3-319-14376-7_5#Sec17
http://dx.doi.org/10.1007/978-3-319-14376-7_5#Sec17
http://dx.doi.org/10.1007/978-3-319-14376-7_5#Bib1

6 Efficient Pixel Truncation Algorithm and Architecture 65
6.1 Introduction . 65
6.2 Proposed Fast Two Stage Search Based Motion Estimation

Algorithm . 66
6.2.1 Summary of the Proposed Fast Two Stage Search

Algorithm . 68
6.3 Architecture for the Proposed Fast Two Stage Search

Algorithm . 69
6.3.1 Memory Management for the Proposed F2SS

Algorithm . 69
6.3.2 Proposed Architecture for the First Stage of ME. 70
6.3.3 Proposed Architecture for the Second Stage of ME . . . 72

6.4 Results . 77
6.4.1 Performance Analysis of the Proposed Algorithm 77
6.4.2 Synthesis Results and Comparison 80

6.5 Conclusions . 82
References. 82

7 Introduction to Scalable Image and Video Coding 85
7.1 Overview of Wavelet Based Scalable Video Coding 85

7.1.1 Existing Scalable Video Codec Designs. 86
7.1.2 Discrete Wavelet Transform 89
7.1.3 Problem of Shift Variance in DWT 89
7.1.4 Critically Sampled DWT . 91
7.1.5 Over-Complete Discrete Wavelet Transform

(ODWT) . 91
7.1.6 Lifting Based Discrete Wavelet Transform 92
7.1.7 Over-Complete Discrete Wavelet Transform

Using the Lifting Scheme . 94
7.1.8 Spatial Scalability with DWT 94
7.1.9 Temporal Scalability with DWT 95

7.2 Motion Compensated Temporal Filtering (MCTF). 96
7.2.1 Spatial Domain MCTF (SD-MCTF) 97
7.2.2 In-Band MCTF (IB-MCTF) 98

7.3 Proposed Framework for SVC . 102
7.4 Simulation Results . 104
7.5 Conclusions . 106
References. 107

8 Forward Plans . 109
8.1 SoC Based Design for SVC . 109
8.2 Scalable Extension of HEVC . 110
References. 111

Contents xiii

http://dx.doi.org/10.1007/978-3-319-14376-7_6
http://dx.doi.org/10.1007/978-3-319-14376-7_6
http://dx.doi.org/10.1007/978-3-319-14376-7_6#Sec1
http://dx.doi.org/10.1007/978-3-319-14376-7_6#Sec1
http://dx.doi.org/10.1007/978-3-319-14376-7_6#Sec2
http://dx.doi.org/10.1007/978-3-319-14376-7_6#Sec2
http://dx.doi.org/10.1007/978-3-319-14376-7_6#Sec2
http://dx.doi.org/10.1007/978-3-319-14376-7_6#Sec3
http://dx.doi.org/10.1007/978-3-319-14376-7_6#Sec3
http://dx.doi.org/10.1007/978-3-319-14376-7_6#Sec3
http://dx.doi.org/10.1007/978-3-319-14376-7_6#Sec4
http://dx.doi.org/10.1007/978-3-319-14376-7_6#Sec4
http://dx.doi.org/10.1007/978-3-319-14376-7_6#Sec4
http://dx.doi.org/10.1007/978-3-319-14376-7_6#Sec5
http://dx.doi.org/10.1007/978-3-319-14376-7_6#Sec5
http://dx.doi.org/10.1007/978-3-319-14376-7_6#Sec5
http://dx.doi.org/10.1007/978-3-319-14376-7_6#Sec6
http://dx.doi.org/10.1007/978-3-319-14376-7_6#Sec6
http://dx.doi.org/10.1007/978-3-319-14376-7_6#Sec7
http://dx.doi.org/10.1007/978-3-319-14376-7_6#Sec7
http://dx.doi.org/10.1007/978-3-319-14376-7_6#Sec13
http://dx.doi.org/10.1007/978-3-319-14376-7_6#Sec13
http://dx.doi.org/10.1007/978-3-319-14376-7_6#Sec14
http://dx.doi.org/10.1007/978-3-319-14376-7_6#Sec14
http://dx.doi.org/10.1007/978-3-319-14376-7_6#Sec15
http://dx.doi.org/10.1007/978-3-319-14376-7_6#Sec15
http://dx.doi.org/10.1007/978-3-319-14376-7_6#Sec16
http://dx.doi.org/10.1007/978-3-319-14376-7_6#Sec16
http://dx.doi.org/10.1007/978-3-319-14376-7_6#Bib1
http://dx.doi.org/10.1007/978-3-319-14376-7_7
http://dx.doi.org/10.1007/978-3-319-14376-7_7
http://dx.doi.org/10.1007/978-3-319-14376-7_7#Sec2
http://dx.doi.org/10.1007/978-3-319-14376-7_7#Sec2
http://dx.doi.org/10.1007/978-3-319-14376-7_7#Sec3
http://dx.doi.org/10.1007/978-3-319-14376-7_7#Sec3
http://dx.doi.org/10.1007/978-3-319-14376-7_7#Sec4
http://dx.doi.org/10.1007/978-3-319-14376-7_7#Sec4
http://dx.doi.org/10.1007/978-3-319-14376-7_7#Sec5
http://dx.doi.org/10.1007/978-3-319-14376-7_7#Sec5
http://dx.doi.org/10.1007/978-3-319-14376-7_7#Sec6
http://dx.doi.org/10.1007/978-3-319-14376-7_7#Sec6
http://dx.doi.org/10.1007/978-3-319-14376-7_7#Sec7
http://dx.doi.org/10.1007/978-3-319-14376-7_7#Sec7
http://dx.doi.org/10.1007/978-3-319-14376-7_7#Sec7
http://dx.doi.org/10.1007/978-3-319-14376-7_7#Sec8
http://dx.doi.org/10.1007/978-3-319-14376-7_7#Sec8
http://dx.doi.org/10.1007/978-3-319-14376-7_7#Sec9
http://dx.doi.org/10.1007/978-3-319-14376-7_7#Sec9
http://dx.doi.org/10.1007/978-3-319-14376-7_7#Sec9
http://dx.doi.org/10.1007/978-3-319-14376-7_7#Sec10
http://dx.doi.org/10.1007/978-3-319-14376-7_7#Sec10
http://dx.doi.org/10.1007/978-3-319-14376-7_7#Sec11
http://dx.doi.org/10.1007/978-3-319-14376-7_7#Sec11
http://dx.doi.org/10.1007/978-3-319-14376-7_7#Sec12
http://dx.doi.org/10.1007/978-3-319-14376-7_7#Sec12
http://dx.doi.org/10.1007/978-3-319-14376-7_7#Sec13
http://dx.doi.org/10.1007/978-3-319-14376-7_7#Sec13
http://dx.doi.org/10.1007/978-3-319-14376-7_7#Sec14
http://dx.doi.org/10.1007/978-3-319-14376-7_7#Sec14
http://dx.doi.org/10.1007/978-3-319-14376-7_7#Sec15
http://dx.doi.org/10.1007/978-3-319-14376-7_7#Sec15
http://dx.doi.org/10.1007/978-3-319-14376-7_7#Sec16
http://dx.doi.org/10.1007/978-3-319-14376-7_7#Sec16
http://dx.doi.org/10.1007/978-3-319-14376-7_7#Sec17
http://dx.doi.org/10.1007/978-3-319-14376-7_7#Sec17
http://dx.doi.org/10.1007/978-3-319-14376-7_7#Bib1
http://dx.doi.org/10.1007/978-3-319-14376-7_8
http://dx.doi.org/10.1007/978-3-319-14376-7_8
http://dx.doi.org/10.1007/978-3-319-14376-7_8#Sec1
http://dx.doi.org/10.1007/978-3-319-14376-7_8#Sec1
http://dx.doi.org/10.1007/978-3-319-14376-7_8#Sec2
http://dx.doi.org/10.1007/978-3-319-14376-7_8#Sec2
http://dx.doi.org/10.1007/978-3-319-14376-7_8#Bib1

Appendix A: Matlab Programs . 113

Appendix B: Verilog Modules . 125

Index . 155

xiv Contents

About the Authors

Indrajit Chakrabarti received the Bachelor’s and Master’s degree (in Electronics
and Telecommunication) from Jadavpur University, India in 1987 and 1990
respectively. He got Ph.D. degree from Indian Institute of Technology (IIT)
Kharagpur, India in 1997. From 1998 to 2004, he worked as an Assistant Professor
and later as an Associate Professor in the Department of Electronics and Com-
munication Engineering, IIT Guwahati. Since December 2004 till date, he has been
serving as an Associate Professor in the Department of Electronics and Commu-
nication Engineering, IIT Kharagpur. His research interests include VLSI archi-
tectures for image and video processing, digital signal processing, error control
coding and wireless communication. He has published more than 15 papers in
international journals, and is a member of IEEE.

Kota Naga Srinivasarao Batta received the Master’s degree (in Visual Informa-
tion and Embedded Systems Engineering) from Indian Institute of Technology (IIT)
Kharagpur, India in 2008. Since December 2012 till date, he is a research scholar in
the Department of E & ECE, Indian Institute of Technology (IIT) Kharagpur, India.
From 2002 to 2006, he worked as an Assistant Professor and from 2008 to 2012 he
worked as an Associate Professor in the Department of Electronics and Commu-
nication Engineering, Gudlavalleru Engineering College, Gudlavalleru, Andhra
Pradesh, India. His research interests include VLSI architectures for image and
video compression, digital signal processing and design of embedded systems.

Sumit Kumar Chatterjee received the Master’s degree (in Microwaves) from
Burdwan University, India in 1999. He got Ph.D. degree from Indian Institute of
Technology (IIT) Kharagpur, India in 2011. From 2011 to 2014, he worked as an
Assistant Professor in the Department of Electronics and Communication Engi-
neering, Asansol Engineering college. Since September 2014 till date, he has been
serving as an Ad hoc Faculty in the Department of Electronics and Communication
Engineering, NIT Sikkim. His research interests include VLSI architectures for
image and video compression, digital signal processing and error control coding.

xv

Abstract

Video data consist of a time sequence of image frames, and there exists a significant
redundancy in temporal domain. One of the important aims of video compression is
removal of the temporal redundancy in an efficient way. Motion Estimation (ME),
which tries to remove the temporal redundancy by finding the best matching block
in a reference frame for each block in the present frame, is the principal component
of a video encoding system. Of all the components of a video encoder, the ME
module consumes the lion’s share of overall power. A very simple arithmetic
computation is required for ME. However, frequent memory access associated with
ME affects the overall speed of operation and the power consumption. The present
work has therefore focused on design and development of several fast ME archi-
tectures characterized by high processing speed, low power, and low area making
them suitable for portable video application devices that are typically operated by
battery power and involve real time operation. VLSI architecture has been devel-
oped for Fast Three Step Search (FTSS) algorithm that is used in video confer-
encing applications. An intelligent data arrangement has been used in this design to
reduce the power consumption and to achieve a high speed of operation. Parallel
VLSI architectures for Successive Elimination algorithm (SEA) have also been
developed. The architecture proposed for SEA requires nearly 60 % less time with
same power requirement and accuracy, but somewhat more area while being
compared to an architecture meant for realizing full search algorithm. Moreover, the
present work has conceived fast ME by combining One Bit Transformation (1BT)
for fixed block size and single reference frame. Fast 1BT based ME architectures
for variable block size and single reference frame and multiple reference frames
have also been developed. The scope of the present work also includes fast ME
algorithms based on the pixel truncation. An appropriate architecture has also been
developed for implementing the proposed ME algorithm. In the present work, all
the proposed architectures have been synthesized and analyzed for power and
maximum operating frequencies in FPGA as well as ASIC platforms.

Nowadays, the consumer looks out for the best possible video quality regardless
of his/her location and degree of network support. To realize this however, the

xvii

transmitted video must match the receiver’s characteristics such as the required bit
rate, resolution and frame rate, thus aiming to provide the best quality subject to the
limitations of the receiver and the network. Scalable video coding provides an
appropriate solution to this type of problem. In recent years, wavelet-based image
and video coding systems that utilize a wide range of spatial, temporal and SNR
scalability with state-of-the-art coding performance have been developed. An
introduction to scalable video coding based in-band motion compensated temporal
filtering (IB-MCTF) has been provided towards the end of this book.

Keywords Video compression � Fast three step search � Successive elimination �
One-bit transformation � Pixel truncation � Parallel VLSI architecture � Scalable
video coding

xviii Abstract

Chapter 1
Introduction

Several image frames combine in a sequence to constitute a video signal. Frame rate
of a video processing system is stated to be the number of frames sent out or received
per second (fps). As far as a day-to-day consumer application like mobile video com-
munication is concerned, frame rate of 30 fps is considered adequate. However, the
rate can vary from as low as 10–15 fps for videoconferencing application to 60 fps
for a typical high-end High Definition Television (HDTV) transmission. Storage
and transmission of the enormous volume of data that is required for high quality
video processing proves to be a challenge for the system designers. At the same
time, one cannot overlook the considerable similarity existing between the contents
of successive frames, considering the fact that there exists very short time difference
(varying between 1/10 and 1/60 s, based on the frame rate) between any two con-
secutive frames of a video sequence. Removal of this inherent temporal redundancy
by employing video compression is the key to development of efficient storage and
transmission systems for video information.

Over the last few decades, video compression has been the underlying technology
of numerous consumer electronic products including the modern-day smart-phones
and tablet computers. Continuing evolution of efficient video processing architecture
has enabled development and manufacture of hand held low-area low-power devices
including digital camcorders and camera phones.

This introductory chapter first identifies the principal tasks involved in an overall
video compression job. Following a brief background on the basic blocks of a typical
video codec, themotivation of the present research is stated. Subsequently, challenges
faced in undertaking thiswork are spelt out. Salient contributions of the researchwork
recorded in this book are next enumerated. The chapter ends by drawing an outline
of the present book.

1.1 Fundamentals of Video Compression

In this section, we explore the operation of the basic video codec. The major video
coding standards released since the early 1990s have been based on the same generic
design (or model) of a video CODEC that incorporates a motion estimation and

© Springer International Publishing Switzerland 2015
I. Chakrabarti et al., Motion Estimation for Video Coding,
Studies in Computational Intelligence 590, DOI 10.1007/978-3-319-14376-7_1

1

2 1 Introduction

Transform
(DCT) Quantization

Entropy
Coding

Inverse
Transform

(IDCT)

Inverse
Quantization

Motion Estimation/
Compensation

Frame Buffer

Filtering

MV

Bitstream

Fn

Fn-1

MV

Current
Frame

Fig. 1.1 Block Diagram for a generic video encoder

compensation front end (sometimes described asDifferential Pulse CodeModulation
(DPCM)), a transform stage and an entropy encoder. The model is often described
as a hybrid DPCM/DCT CODEC [1, 2]. Any CODEC that is compatible with
H.261/263/264/265 or MPEGs (1/2/4) has to implement a similar set of basic cod-
ing and decoding functions (although there are many differences of detail between
the standards and their actual implementations). Figure1.1 shows the structure of an
encoder for video compression (generic DPCM/DCT hybrid encoder). In an encoder,
video frame n(Fn) is processed to produce a coded (compressed) bitstream while in
a decoder, the compressed bitstream is decoded to produce a reconstructed video
frame F̂n , not usually identical to the source frame. Functionality of each block is
explained in the following subsections.

1.1.1 Transform Block

The first step in Discrete Cosine Transform (DCT) based image/video coding is to
divide the image into small blocks, usually of size 8 × 8 pixels. Then, DCT opera-
tion is performed on each block to convert each pixel value into frequency domain. It
takes 64 input values and yields 64 frequency domain coefficients. This transform is
fully reversible; the original block can be reconstructed by applying an Inverse DCT
(IDCT). DCT not only converts the pixels into the corresponding frequency values
such that the lower frequencies appear at the top-left side of the block,while the higher
frequencies appear at the bottom right. As the human eye is sensitive to only low
frequencies, subsequently steps tend to discard the high frequency values to achieve
compression.Hence,DCThelps separatemore perceptible information from less per-
ceptible information. DCT converts a block of image pixels into a block of transform
coefficients of the same dimension [3]. These DCT coefficients represent the original
pixels values in the frequency domain. Any gray-scale 8× 8 pixel block can be fully
represented by a weighted sum of 64 DCT basis functions where the weights are just

1.1 Fundamentals of Video Compression 3

the corresponding DCT coefficients [1, 2]. The two-dimensional DCT transform of
an N × N pixel block is described in Eq. (1.1), where f (j, k) is the pixel value at the
position (j, k) and F(u, v) is the transform coefficient at the position (u, v).

F(u, v) = 2

N
C(u)C(v)

N−1∑

j=0

N−1∑

k=0

f (j, k) cos

[
(2 j + 1)uπ

2N

]
cos

[
(2k + 1)vπ

2N

]

(1.1)

Corresponding Inverse DCT is given by

f (j, k) = 2

N

N−1∑

u=0

N−1∑

v=0

C(u)C(v)F(u, v) cos

[
(2 j + 1)uπ

2N

]
cos

[
(2k + 1)vπ

2N

]

(1.2)

where

C(w)=
{

1√
2

forw = 0;
1 forw = 1, 2, 3, . . . , n − 1;

Using formulae (1.1) and (1.2), the forward and inverse transforms require a large
number of floating point computations. Simple calculation shows that a total of
64 × 64 = 4,096 computations are needed to transform a block of 8 × 8 pixels.

It may be noted that the forward and inverse DCT transforms are separable,
implying that the two dimensional transform coefficients can be obtained by applying
a one-dimensional transform first along the horizontal direction and then along the
vertical direction separately. This can reduce the number of computations required
for each 8 × 8 block from 4,096 to 1,024.

1.1.2 Quantization

For a typical block in a photographic image, most of the high-frequency DCT coef-
ficients will be nearly zero. On an average, the DC coefficient and the other low-
frequency coefficients often have relatively large amplitudes. This is because in an
image with smooth natural scene, most blocks tend to contain little high-frequency
contents; in general, only a few of the DCT coefficients have significant values [1, 2].
The DCT coefficients are quantized so that the near-zero coefficients are set to zero
and the remaining coefficients are represented with reduced precision. To quantize
each coefficient, it is divided by the quantizer step size and the result is rounded
to the nearest integer. Therefore, larger quantizer step sizes mean coarser quan-
tization. Although this results in information loss, compression is achieved since
most of the coefficient values in each block now are zero. Coarser quantization
(i.e., larger quantizer step size) gives higher compression and poorer decoded image
quality.

4 1 Introduction

1.1.3 Entropy Coding

After quantization, nonzero coefficients are further encoded using an entropy coder
such asHuffman coder. In Huffman coding [4] (and in other entropy coding schemes)
[1, 2], the more frequent values are represented with shorter codes and the less fre-
quent values with longer codes. Zero coefficients can be efficiently encoded using
run-length encoding. Instead of transmitting all the zero values one by one, run length
coding simply transmits the total number of the current run of zeros. The result is a
compressed representation of the original image. To decode the image, the reverse
procedure is carried out. First, the variable-length codes (entropy codes) are decoded
to get back the quantized coefficients. These are then multiplied by the appropriate
quantizer step size to obtain an approximation to the original DCT coefficients. These
coefficients are put through the inverse DCT to get back the pixel values in the spa-
tial domain. These decoded pixel values will not be identical to the original image
pixels since a certain amount of information is lost during quantization. A lossy
DCT CODEC produces characteristic distortions due to the quantization process.
These include “blocking” artifacts [5], where the block structure used by the encoder
becomes apparent in the decoded image, and “mosquito noise” [5], where lines and
edges in the image are surrounded byfine lines.DCT-based image coding systems can
provide compression ratios ranging between 10 and 20 while maintaining a reason-
ably good image quality. The actual efficiency depends to some extent on the image
content. As images with considerable detail contain many nonzero high-frequency
DCT coefficients, they need to be coded at higher rates than images with less detail.
Compression can be improved by increasing the quantization step size. In general,
higher compression is obtained at the expense of poorer decoded image quality.

1.1.4 Motion Estimation and Compensation

Motion Estimation (ME) and Motion Compensation (MC) play an important role
in video coding system. Motion estimation has been adopted in many video coding
standards likeMPEG-X series andH.26X series [6]. Inmotion estimation andmotion
compensation, the previous or the future frame is used as the reference frame to
predict the current frame [7]. Both the frames are divided into blocks of fixed sizes,
usually 16× 16 pixels known as theMacroblocks (MBs). For eachMB in the current
frame, one estimates itsmotion by searching for the bestmatchedMB(within a search
range) in a previously available reference frame.

The displacement between the MB in the current frame and the best matched one
in the reference frame is known as the Motion Vector (MV). It is only the difference
between the two MBs and the displacement used to describe the position of the
reference MB, which needs to be coded. The amount of coded data is therefore
much less than the original, and a high compression ratio can be achieved. However,
modern coding standards like H.264 allowME for blocks of variable sizes to achieve
a better prediction for objects with complex motion [1, 2].

1.1 Fundamentals of Video Compression 5

As mentioned previously, the purpose of motion estimation is to search for the
most similar reference block for a given block in the current frame and to find a MV
for the same. This process is repeated for all the blocks in the current frame and a
separate motion vector is found for all the blocks. On the other hand, the process of
motion compensation is concerned with reconstructing the current frame from the
MVs which have been obtained from the motion estimator.

Motion estimation happens to be themost computationally expensive and resource
hungry operation in the entire video compression process. Hence, this field has seen
the highest activity and research interest in the past two decades.

Many fundamental block matching algorithms [7–21] are available in the lit-
erature from the mid-1980s to the recent years. Efficient motion estimation algo-
rithms and architectures are therefore indeed necessary for the design of an efficient
video encoder. The following chapters of this book present an in-depth of discus-
sion on some important block motion estimation algorithms and their hardware
implementation.

1.2 Motivation

Modern video coding standards have made a substantial amount of improvement
possible in the coding efficiency while compared to the previous standards. The
required coding gain however entails hardware systems of higher complexity.Motion
Estimation (ME) has been identified as the main source of power consumption in
the video encoding systems. Although ME based on Block Matching Algorithms
(BMAs) involves simple and straightforward arithmetic computations, it requires a
huge amount of memory access which in turn calls for considerable power consump-
tion and it may also affect the overall speed of operation [8]. However, there are not
many implementations, which ensure low power consumption and high speed of
operation at the same time, that are found in the literature. Design of an architecture
for ME, which can take care of the high memory bandwidth requirement, is thus
crucial for an efficient video encoding system. Therefore, a major objective of the
present work has been to design hardware structures for MEwith low power require-
ments. Several techniques have been adopted in this work to designME architectures
endowed with the desirable features of low area and low power consumption, and
high speed of operation to meet the real time requirements for the modern video
coding/processing applications.

With rapid evolution of digital video technology and the continuous improve-
ment taking place in communication infrastructure, the consumer demands the best
possible video quality wherever they are and whatever their network support is. For
this purpose, the transmitted video must match the receiver’s characteristics such
as the required bit rate, resolution and frame rate, thus aiming to provide the best
quality subject the limitations of the receiver and the network. Besides, the same link
is often used to transmit to either low-end devices such as small cell phones, or to
high-performance devices like HDTV workstations. Based on this observation, it is

6 1 Introduction

evident that such heterogeneous networks pose a great problem for traditional video
encoders which do not allow for on-the-fly video streaming adaptation.

To circumvent this drawback, the concept of scalability for video coding has been
proposed as an emergent solution for supporting, in a given network, endpoints with
distinct video processing capabilities. Scalable Video Coding (SVC) must support
more than one spatial, temporal and quality layers. This demands a more advanced
codec structure of SVC in comparison to that of the conventional hybrid video coding
structure. This book provides an introduction to SVC inChap. 7. It hasmany potential
applications ranging from High Definition Digital Video Disc (HD-DVD) to Digital
Video Broadcasting for Hand held terminals (DVB-H) with small screens. However,
with the SVC coding performance comes the overhead of high computation com-
plexity. Employing a general purpose processor to deal with such high complexity
will necessitate considerable increase in power budget and overall cost. Dedicated
hardware (based on design of VLSI Architecture) can only ensure acceptable per-
formance of high resolution video processing. So for real-time applications, need is
felt for a dedicated hardware accelerator system. This is the motivation behind the
work on designing architectures for SVC based on In-Band Motion Compensated
Temporal Filtering (IB-MCTF) to address video communication over heterogeneous
networks that involves video data communication over variable rate and bandwidth
conditions.

1.3 Challenges Encountered

Due to computational regularity, motion estimation based on full search is generally
preferred for Very Large Scale Integration (VLSI) implementation. However, the
computational complexity for the full search algorithm is very huge and therefore
many fast search algorithms have been proposed.

• Although the computational time of these fast search algorithms is much smaller
than full search algorithm, the search data flow for these fast search algorithms is
irregular when one becomes involved with their hardware realization. This makes
the memory access mechanism for VLSI implementation of fast search algorithms
more complex than that for full search algorithm.

• Unlike full search algorithm, the processing order of these fast search algorithms
is not predefined but dynamic, which makes the controlling unit much more com-
plicated than that of the full search algorithm.

In recent years, wavelet-based image and video coding systems that utilize a
wide range of spatial, temporal and SNR scalability with state-of-the-art coding
performance have been proposed in the literature [22–26].

• To serve a broad range of data rates (that vary from a few Kbit/s to several Mbit/s)
on heterogeneous networks or on a wide variety of terminals with different char-
acteristics, fine-granular spatio-temporal and SNR scalability becomes necessary.

http://dx.doi.org/10.1007/978-3-319-14376-7_7

1.3 Challenges Encountered 7

• Selecting trade-offs among these three dimensions (spatial/temporal/quality)
becomes inevitable in order to support a high degree of content variation with
high quality. Motion-compensated wavelet video coding schemes can provide full
scalability with fine granularity over a large range of bitrates.

These factors pose considerable challenges for designing VLSI architectures for
fast search ME algorithms and SVC.

Many techniques have been applied to reduce the overall power consumption of
the ME modules by reducing the required memory bandwidth. This is achieved by
reducing the redundant data access for different search locations.Additionally, highly
parallel architectures have been developed to increase the overall speed of operation
for the ME process. Therefore, a major part of this book beginning from Chap.3 and
ending inChap. 6 has focused on the design and development of fastME architectures
characterized by high processing speed, low power, and low area, which make them
suitable for portable video application devices that are typically operated by battery
power and involve real time operation. Chapter 7 gives an introduction to Scalable
Video Coding based on spatial domain motion compensated temporal filtering (SD-
MCTF) and in-band motion compensated temporal filtering (IB-MCTF).

1.4 Contributions of the Present Research

Keeping the challenges stated above in view, the main contributions of the work
embodied in this book have been the following:

• To optimize the design of the proposed architectures to meet the requirement for
low-power consumption.

• To design and implement efficient VLSI architecture for Fast Three Step search
(FTSS) motion estimation algorithm [27]. FTSS determines the direction of the
currentmotionvector from thepreviousmotionvector and reduces the computation
for checking the candidate motion vector.

• Todevelop a parallelVLSI architecture for successive elimination algorithm (SEA)
[28]. By using SEA, motion vector for each reference block in the current frame
can be found with much less computational load than what would be required if
one executes the exhaustive search algorithm.

• To design and develop a high performance ME architectures based upon combi-
nation of diamond search algorithm and one-bit transformation supporting blocks
of variable sizes and multiple reference frames [29].

• To design and develop an efficient architecture to reduce the computational comp-
lexity andmemory access for variable block sizeMEbasedonpixel truncation [30].

• To optimize the performance of each ME architecture to meet the requirements
for modern video coding standards.

• To perform comparison with existing work in order to establish the acceptability
of the proposed architectures.

• To give an introduction to scalable video coding based on in-band motion com-
pensated temporal filtering (IB-MCTF) through lifting based DWT.

http://dx.doi.org/10.1007/978-3-319-14376-7_3
http://dx.doi.org/10.1007/978-3-319-14376-7_6
http://dx.doi.org/10.1007/978-3-319-14376-7_7

8 1 Introduction

1.5 Organization of the Book

This book primarily focuses on low-power VLSI implementation of ME architec-
tures and efficient data reuse technique along with other techniques that have been
used to make a high performance ME architecture. Finally the concept of scalable
video coding based on in-band motion compensated temporal filtering has also been
presented.

In this chapter gives a brief introduction to the concept of video compression and
ME, different ME architectures and explains the motivation of the present work. It
also identifies the major challenges faced and lists the principle contributions made
in course of this research.

Chapter 2 provides the background of ME and different fast search techniques for
motion estimation and brief survey on literature related to the scalable video coding.

Chapter 3 explains the design and development of VLSI architecture for realizing
Fast Three Step Search algorithm (FTSS).

Chapter 4 describes design and implementation of VLSI architecture implemen-
tation of Successive Elimination Algorithm (SEA).

Chapter 5 provides the details on architectural implementation of fast ME based
on a combination of Diamond Search and 1-bit transformation.

A two stage fast algorithm for Variable Block Size Motion Estimation (VBSME)
based on pixel truncation has been proposed in this work. A suitable low-power
architecture for implementing the proposed ME algorithm has been described in
Chap.6.

Chapter 7 briefly explains the work done so far in IB-MCTFwhich is an important
branch of the broad field of scalable video coding.

Finally Chap.8 presents a few suggestions for extensions of the present work.
To give the reader a better feel for the approach adopted in the present work, some

important Matlab and Verilog programs are given in Appendix A and Appendix B
respectively.

References

1. Richardson, I.E.G.: H.264 andMPEG-4VideoCompressionVideoCoding forNextGeneration
Multimedia. Wiley, West Sussex (2003)

2. Tekalp, A.M.: Digital Video Processing. Prentice-Hall, Upper Saddle River (1995)
3. Watson, A.B.: Image compression using the discrete cosine transform. Math. J. 4(1), 81–88

(1994)
4. Huffman,D.A.:Amethod for the construction ofminimum-redundancy codes. Proc. IRE 40(9),

1098–1101 (1952). doi:10.1109/JRPROC.1952.273898
5. Meesters, L., Martens, J.-B.: Blockiness in JPEG-coded images, HVEI IV, vol. 3644. SPIE,

San Jose (1999)
6. Puria, A., Chen, X., Luthra, A.: Video coding using the H.264/MPEG-4 AVC compression

standard. Signal Process.: Image Commun. 19, 793–849 (2004)
7. Gharavi, H., Mills, M.: Blockmatching motion estimation algorithms-new results. IEEE Trans.

Circuits Syst. 37(5), 649–665 (1990)

http://dx.doi.org/10.1007/978-3-319-14376-7_2
http://dx.doi.org/10.1007/978-3-319-14376-7_3
http://dx.doi.org/10.1007/978-3-319-14376-7_4
http://dx.doi.org/10.1007/978-3-319-14376-7_5
http://dx.doi.org/10.1007/978-3-319-14376-7_6
http://dx.doi.org/10.1007/978-3-319-14376-7_7
http://dx.doi.org/10.1007/978-3-319-14376-7_8
http://dx.doi.org/10.1109/JRPROC.1952.273898

References 9

8. Kawahito, S., Handoko, D., Tadokoro, Y.,Matsuzawa, A.: Low powermotion vector estimation
using iterative search block-matchingmethods and a high-speed non-destructive CMOS sensor.
IEEE Trans. Circuits Syst. Video Technol. 12(12), 1084–1092 (2002)

9. Li, R., Zeng, B., Liou, M.L.: A new three-step search algorithm for block motion estimation.
IEEE Trans. Circuits Syst. Video Technol. 4(4), 438–442 (1994)

10. Lu, J., Liou, M.L.: A simple and efficient search algorithm for block-matching motion estima-
tion. IEEE Trans. Circuits Syst. Video Technol. 7(2), 429–433 (1997)

11. Po, L.-M., Ma, W.-C.: A novel four step search algorithm for fast block motion estimation.
IEEE Trans. Circuits Syst. Video Technol. 6(3), 313–317 (1996)

12. Li, W., Salari, E.: Successive elimination algorithm for motion estimation. IEEE Trans. Image
Process. 4(1), 105–107 (1995)

13. Zhu, S.,Ma, K.K.: A new diamond search algorithm for fast block-matchingmotion estimation.
IEEE Trans. Image Process. 9(2), 287–290 (2000)

14. Nie, Y., Ma, K.K.: Adaptive rood pattern search for fast block-matching motion estimation.
IEEE Trans. Image Process. 11(12), 1442–1448 (2002)

15. Cheung, C.H., Po, L.M.: A novel cross-diamond search algorithm for fast block motion esti-
mation. IEEE Trans. Circuits Syst. Video Technol. 12(12), 1168–1177 (2002)

16. Ghanbari, M.: The cross search algorithm for motion estimation. IEEE Trans. Commun. 38(7),
950–953 (1990)

17. Chen, L.G., Chen, W.T., Jehng, Y.S., Chiueh, T.D.: An efficient parallel motion estimation
algorithm for digital image processing. IEEE Trans. Circuits Syst. Video Technol. 1(4), 378–
385 (1991)

18. Tourapis, A.M., Au, O.C., Liu, M.L.: Highly efficient predictive zonal algorithms for fast
block-matching motion estimation. IEEE Trans. Circuits Syst. Video Technol. 12(10), 934–
947 (2002)

19. Natarajan, B., Bhaskaran, V., Konstantinides, K.: Low-complexity block-based motion estima-
tion via one-bit transforms. IEEE Trans. Circuits Syst. Video Technol. 7(3), 702–706 (1997)

20. Liu, B., Zaccarin, A.: New fast algorithms for the estimation of block motion vectors. IEEE
Trans. Circuits Syst. Video Technol. 3(2), 148–157 (1993)

21. Hsieh, C.H., Lu, P.C., Shyn, J.S., Lu, E.H.: Motion estimation algorithm using interblock
correlation. IEE Electron. Lett. 26(5), 276–277 (1990)

22. Andreopoulos, Y., van der Schaar, M., Munteanu, A., Barbarien, J., Schelkens, P., Cornelis, J.:
Complete-to-overcomplete discrete wavelet transforms for scalable video coding with MCTF.
Proc. SPIE/IEEE Visual Commun. Image Process. 5150, 719–731 (2003)

23. Ohm, J.-R.: Advances in scalable video coding. Proc. IEEE, Invit. Pap. 93, 42–56 (2005)
24. Wang, B., Loo, K.K., Yip, P.Y., Siyau, M.F.: A simplified scalable wavelet video codec with

MCTF Structure. In: International Conference on Digital Telecommunications (ICDT’06), pp.
29–31 August 2006. doi:10.1109/ICDT.2006.11

25. Andreopoulos, Y., van der Schaar, M., Munteanu, A., Barbarien, J., Schelkens, P., Cornelis,
J.: Fully-scalable wavelet video coding using in-band motion-compensated temporal filtering.
In: Proceedings IEEE International Conference Acoustics, Speech and Signal Processing, pp.
III-417–III-420 (2003)

26. Park, H.-W., Kim, H.-S.: Motion estimation using low-band-shift method for wavelet-based
moving-picture coding. IEEE Trans. Image Process. 9(4), 577–587 (2000)

27. Srinivasarao, B.K.N., Chakrabarti, I.: A parallel architectural implementation of the fast three
step search algorithm for block motion estimation. In: Proceedings of 5th International Multi-
Conference on Systems, Signals and Devices (SSD-08), Amman, Jordan, 20–22 July 2008, pp.
1–6. doi:10.1109/SSD.2008.4632849

http://dx.doi.org/10.1109/ICDT.2006.11
http://dx.doi.org/10.1109/SSD.2008.4632849

10 1 Introduction

28. Srinivasarao, B.K.N., Chakrabarti, I.: A parallel architecture for successive elimination block
matching algorithm. In: Proceedings TENCON-2008 (IEEE Region 10 Conference), pp. 1–6.
Hyderabad, India, 19–21 November 2008

29. Chatterjee, S.K., Chakrabarti, I.: Low power VLSI architectures for one bit transformation
based fast motion estimation. IEEE Trans. Consum. Electron. 56(4), 2652–2660 (2010)

30. Chatterjee, S.K., Chakrabarti, I.: Power efficient motion estimation algorithm and architecture
based on pixel truncation. IEEE Trans. Consum. Electron. 57(4), 1782–1790 (2011)

Chapter 2
Background and Literature Survey

This chapter begins with an overview of block matching algorithm (BMA) approach
to motion estimation which is preferred for its simplicity and straightforward circuit
implementation. Many block matching algorithms are briefly introduced and also a
brief survey of different motion estimation architectures are presented.

2.1 Block Matching Algorithm

Mainly, there are two different techniques of ME, namely Pel-Recursive Algorithm
(PRA) and Block Matching Algorithm (BMA). In PRAs, there is an iterative refin-
ing of ME for individual pixels by gradient methods [1]. On the other hand, BMAs
assume that all the pixels within a block have the same motion activity [2]. In BMAs,
motion is estimated on the basis of rectangular blocks and one Motion Vector (MV)
is produced for each block. Compared to BMAs, PRAs involve more computational
complexity and less regularity, and so are difficult to realize in hardware. In gen-
eral, BMAs are more suitable for a simple hardware realization because of their
regularity and simplicity [3]. Also, BMA is adopted in all video coding standards
because of its performance [4]. In the process of BMA, one is required to find a
MB in the reference frame within a given search area, that is most similar to the
MB in the current frame (current MB). Due to a given search range a window like
structure is formed in the reference frame, which is known as the Search Window
(SW). For a search range of [−p,+p] and for a MB of size N × N, the spatial rela-
tionship between the current MB and the SW is shown in Fig. 2.1. The matching
criterion of the BMA has a direct impact on coding efficiency and computational
complexity. Many matching criteria have been proposed in literature e.g., mean
squared error, Sum of Absolute Differences (SAD), pel difference classification etc.
[5]. Among the various proposed matching criteria, SAD calculation requires only
a few simple computational steps, and thus is the most preferred one for VLSI

© Springer International Publishing Switzerland 2015
I. Chakrabarti et al., Motion Estimation for Video Coding,
Studies in Computational Intelligence 590, DOI 10.1007/978-3-319-14376-7_2

11

12 2 Background and Literature Survey

Fig. 2.1 The process of
motion estimation by block
matching algorithm

implementation. The evaluation of SAD for a given location (m, n) within the SW
is done as:

SAD(m, n) =
N−1∑

i=0

N−1∑

j=0

|cur(i, j) − re f (i + m, j + n)| (2.1)

where −p ≤ m, n ≤ +p. Also, cur(i, j) is the current MB of size N × N at the
coordinate location (i, j), while re f (i + m, j + n) is the reference block within
the SW at the coordinate location (i + m, j + n) and p is the search range in both
the directions. The term |cur(i, j) − re f (i + m, j + n)| is known as the distortion
which is the absolute difference in intensity between the current pixel cur(i, j) and
the reference pixel re f (i + m, j + n) [4]. The expression SAD(m, n) yields the
summation of all the distortions for the current MB at the search location (m, n).
The search candidate, which has the smallest SAD, is selected as the best matching
reference MB, and the associated location (m, n) is the MV of this current MB. In
the following subsections, ME algorithms are broadly classified into two categories,
namely full search algorithm and fast search algorithms based on the provided quality
and the search process.

2.1.1 Full Search Block Matching Algorithm

In full search BMA, all search candidates within the search window are evaluated,
and the search candidate with the smallest SAD is selected as the best matched
search candidate. The final MV is obtained from the location of the best matched
search candidate. The algorithm for full search based ME is shown in Algorithm 2.1.
Since all the search candidates are examined in full search, ME based on the full

2.1 Block Matching Algorithm 13

search provides the optimum solution. Although full search yields optimum results,
it requires a huge amount of computation.

Algorithm 2.1 Full Search Block Matching Algorithm

1: S ADmin = M AX V ALU E;
2: MV = (0, 0);
3: for m = -p to +p do
4: for n = -p to +p do
5: SAD(m,n) = 0;
6: for i = 0 to N-1 do
7: for j = 0 to N-1 do
8: S AD(m, n) = S AD(m, n) + |cur(i, j) − re f (i + m, j + n)|
9: end for
10: end for
11: if SAD(m,n) < SADmin then
12: S ADmin = S AD(m, n);
13: MV = (m, n);
14: end if
15: end for
16: end for

For example, the computational complexity required to perform ME in real time
for a video sequence in Common Intermediate Format (CIF) (352 × 288 @ 30 fps)
and for a search range of size [−16, 15] is 9.3GigaOperations per Second (GOPS). If
the frame size becomes DVD format (720× 480@ 30 fps) and the searching range is
increased to [−32, 31], the required computational complexity also increases to 127
GOPS. This extremely large computational complexity for full search based ME has
motivated the development of many fast search algorithms. In the next subsections,
several fast search algorithms will be discussed.

2.1.2 Fast Search Algorithms for Block Matching Algorithm

In order to reduce the huge computational requirement for motion estimation based
on full search algorithm, a large number of fast but sub-optimal BMAs can be found
in the literature [6–11]. These algorithms reduce the computational time aswell as the
hardware overhead to a considerable extent. However, themajor drawback associated
with these fast search algorithms is that very often they may be trapped in some
local minima and thereby produce suboptimal results. Fast search algorithms can be
broadly classified into three categories, namely (i) reduction in the number of search
candidates [11–15] (ii) exploiting different matching criteria instead of the classical
SAD [16–18] , and (iii) predictive search [19–22] based on their characteristics.

14 2 Background and Literature Survey

In the following subsection, a brief introduction to these categories and some typical
examples are presented.

2.1.2.1 Reduction in the Number of Search Candidates

These algorithms are based on the assumption that the distortion monotonically
decreases as the search candidate approaches the optimal one. That is, even if all the
search candidates are not matched, the optimal search candidate can be obtained by
following the search candidate with the smallest distortion. This category accounts
for the majority of fast search algorithms, and there are many algorithms available in
literature, such as three step search [12], Successive Elimination, cross search [13],
new-three-step search [6], four step search [12], unrestricted center-biased diamond
search [23], diamond search [9], and so on.

Figure2.2 depicts the search process for the Three Step Search (TSS) [12]. This
algorithm was introduced by Koga et al. [12]. It became very popular because of its
simplicity. It searches for the best motion vectors in a coarse-to-fine search pattern.
In the first step, an initial step size is fixed. Eight blocks at a distance of the step
size from the center (around the center block) are picked for comparison. In the next
step, the center is moved to the point giving the minimum distortion with the step
size halved. This is repeated till the step size becomes smaller than 1. One problem
that occurs with TSS is that, it uses a uniformly allocated checking point pattern in
the first step, which becomes inefficient for small motion estimation.

In Successive Elimination algorithm,motion vector for each reference block in the
current frame can be find with much less computational load than exhaustive search
algorithm by using some mathematical properties, which is discussed in Chap.3.

Fig. 2.2 The search process
for three step search

st nd

rd

http://dx.doi.org/10.1007/978-3-319-14376-7_3

2.1 Block Matching Algorithm 15

Fig. 2.3 The search
procedure for diamond
search algorithm

Diamond Search (DS) [9] is another typical fast search algorithm and is shown
in Fig. 2.3 DS has two search steps namely, large diamond and small diamond. In
the searching procedure, the large diamond step is applied first. DS continues in the
large diamond step until the search candidate at the center has the smallest distortion
among the nine candidates of the large diamond. Next, the small diamond is used
to refine the searching result of the large diamond. Figure2.3 portrays an example
of DS algorithm. The arrow is the direction toward which the large diamond moves,
and after the searching result of the large diamond converges, the small diamond is
adopted to refine the searching result in the last step.

2.1.2.2 Simplification of Matching Criteria

The matching criterion of the block matching ME method has a direct impact on the
coding efficiency and the computational complexity. Many matching criteria have
been proposed in literature e.g., mean square error, SAD, pel difference classification
etc. [5].Whatever may be thematching criterion, evaluation of thematching criterion
on pixels with 8 bits/pixel representation requires a huge amount of computation.
The computational load can be reduced to a great extent by representing the pixels
with a reduced number of bits. This method is known as pixel truncation. As pro-
posed in [24], the number of bits in each pixel is truncated to achieve the reduction
in computation. For example, if the number of bits in each pixel is truncated from
eight bits to five bits, then the required computational load is only 5/8 of the original.
Moreover, not only does pixel truncation serve to reduce the computational com-
plexity, it also saves the hardware cost and the power consumed by ME hardware.

16 2 Background and Literature Survey

This is because a subtractor with less bit width can be used instead of that with eight
bits. In the majority of video sequences, any pixel can be truncated to only six or five
bits without much degradation in the quality.

It has been shown in [25] that for motion estimation based on pixel truncation,
optimum results may be obtained by using Difference Pixel Count (DPC) as the
matching criteria instead of the conventional SAD. For a block of size N × N and
for a search range [−p, p− 1], the DPC at any location (m, n) can be found as [25]:

DPC(m, n) =
N−1∑

i=0

N−1∑

j=0

δ̄[Ĉ(i, j), R̂(i + m, j + n)] (2.2)

Here, Ĉ(i, j) and R̂(i + m, j + n) represent bit truncated values for the pixels from
the CB and the SW respectively. In Eq.2.2, δ̄(x, y) represents the standard delta
function, for which δ̄(x, y) = 0 if (x = y); else its value is 1.

In another method, as proposed in [16], an image frame with 8 bits/pixel repre-
sentation is first converted into a binary framewith 1 bit/pixel representation. Motion
estimation is then carried out on these binary image frames. Boolean exclusive OR
(XOR) operation is used to find theNumber ofNon-Matching Points (NNMP),which
is used as the matching criterion in place of the conventional SAD. The NNMP at
any point (m, n) for a MB of size N × N is found as:

NNMP(m, n) =
N−1∑

i=0

N−1∑

j=0

Bt (i, j) ⊕ Bt−1(i + m, j + n)]

where, −s ≤ m, n ≤ s

(2.3)

Here, s is the maximum search range and ⊕ denotes the XOR operation. Also, Bt

and Bt−1 represent the current and the reference 1BT frames respectively.

2.1.2.3 Predictive Search

The main problem associated with the fast search algorithms is that they are usually
trapped into a local minimum. In order to avoid this condition, predictive search is
developed and combined with other fast search algorithms. The concept of predictive
search is based on the assumption that theMotionVectors (MVs) of neighboringMBs
are correlated and similar, so that they can be used to predict the MV of the current
MB. Besides the spatial information, the temporal information also can be used in
the process of prediction because of the motion continuity in the temporal direction.
Therefore, the motion information of neighboring blocks in the spatial or temporal
space is used to serve as the initial search candidate of fast search algorithms instead
of the original point.

As proposed in [15], the initial search candidate can be the MVs of the blocks on
the top, left, and top-right, their median, zero MV, the MV of the collocated block

2.1 Block Matching Algorithm 17

in the previous frame, and the accelerated motion vector of the collocated block
in the previous two frames. By this way, the searching range can be reduced and
constrained, so that not only the computational complexity but also the bit-rate of
MV can be reduced. The Fast three step search algorithm (FTSS) [26] makes use
of the directional information from adjacent previous motion vector and unimodal
error surface assumption (UESA). It determines the direction of the current motion
vector from the previous motion vector and reduces the computation for checking the
candidate motion vector using the UESA. The UESA means that the error increases
monotonically in getting away from the global minimum [27].

2.1.3 Motion Estimation Architectures

In order to achieve real time computation of Motion Estimation (ME), it is required
that theME hardware should be fast and at the same time should consume low power.
Many ME architectures have been proposed in the last few years. In general, ME
hardware can be broadly divided into two parts, the Processing Element (PE) array
and the on-chip memory, as shown in Fig. 2.4.

PE array is themajor operational core and responsible for the computation of SAD
as given by Eq.2.1. Although motion estimation involves simpler arithmetic com-
putations, it involves a huge amount of memory access which involves considerable
power consumption and also affects the overall speed of operation [24]. The required
data are loaded through a global data bus. Moreover, in order to reduce the required
memory bandwidth, some of the data are stored in the on-chip memory for data
re-use. For each Macroblock (MB), the PE array gets the required data from both the
global/system bus and the on-chip memory, and computes the corresponding SADs.
At the same time, the data in the on-chip memory are updated for data re-use of the
next MB or the search candidate. Depending on different ME algorithms and charac-
teristics of PE array, the ME architectures can be broadly classified into three types:
inter-level, intra-level, and tree-based architectures. While all inter-level and intra-
level architectures have been used mostly for implementing full search algorithm,

Fig. 2.4 The block diagram
of a typical ME architecture

18 2 Background and Literature Survey

tree-based architectures have been used for realizing fast search algorithms. In the
following subsections, a brief survey of ME architectures are presented.

2.1.3.1 Motion Estimation Architectures for Full Search Algorithm

The full search algorithm can provide the best quality among variousME algorithms,
but involves a huge amount of computation. Although the computational requirement
for full search is large, it is preferred for VLSI implementation because of its simple
operations and regular data flow compared to the fast search algorithms. Many dif-
ferent types of architectures have been proposed for the full search algorithm. The
inter-level and intralevel architectures are the most commonly used. The first VLSI
implementation ofmotion estimatorwas due toYang et al. [28],who implemented the
ME architecture for full search algorithm. This architecture was based on inter-level
ME architecture. The PE in inter-level architectures is responsible for the computa-
tion of one search location. One PE computes the differences of all the pixels in the
current block and accumulates the SAD pixel by pixel. The partial SAD is stored in
each PE, until the SAD calculation of one search location is finished. A comparator
is responsible for selecting the minimum SAD among all the generated SADs.

A detailed systolic mapping procedure to derive full search BMA architectures
was proposed byKomarek and Pirsch [29]. This architecture was based on intra-level
architecture. In an intra-level architecture, current pixels are stored in the correspond-
ing PEs, and the reference pixels are propagated from one PE to another. The PE is
responsible for calculating the distortion between one specific current pixel and the
corresponding reference pixel for all the search candidates. In each PE, the distortion
of a current pixel in current MB is computed and added to the partial SAD, which
is propagated from the other PEs. After the initial cycles (depending upon the block
size), the SADs are generated one by one and the comparator selects the minimum
of them.

A large number of architectures have been proposed based on these two basic
architectures. For example, the extension of architecture [28] has been proposed
in [30], and besides one-dimensional inter-level architectures, two two-dimensional
inter-level semisystolic architectures have been proposed in [31, 32]. The architec-
ture [33] is an extension of [29]. The architectures described in [34] and [35] are two
other intra-level architectures with large registers for fewer data inputs and memory
bandwidth.

2.1.3.2 Motion Estimation Architectures for Fast Search Algorithms

Unlike the full search algorithm, the data flow for fast search algorithms is irregular
and the processing order of the search candidates is not predefined. Rather, it depends
on the last searching result. Thus, although the computational complexity of fast
search algorithms is much smaller than that of the full search algorithm, the irregular
data flow required for the fast search algorithms poses considerable challenge for

2.1 Block Matching Algorithm 19

VLSI implementation. This makes the implementation of fast search algorithms
much more difficult than that of the full search algorithm. Jong et al. [36] developed
a fully pipelined parallel architecture for three step search BMA. Basically, 9 PEs
compute the SAD of nine candidates in each step, and 256 cycles are required in each
of the three steps. An intelligent data and memory arrangement are used to utilize the
advantage of three step search procedure. Tree-based architectures developed by Jong
et al. have the advantages of short latency, support for random access of the search
candidates, and absence of pipelining bubbles cycles. A tree-based architecture that
can support DS and fast full search algorithms has been proposed in [37]. As shown
in Fig. 2.3, there are many duplicated search candidates between two successive
steps in DS. After each search step for large diamond pattern, only five or three
search candidates need to be calculated, and the others are calculated at the last
large diamond pattern. In order to avoid the duplicated search candidates, a ROM-
based solution, which uses a ROM to check if the search candidate is required to
be computed or not, has been proposed in [37]. As stated in [37], the ROM-based
solution can save 24.4%search candidates in theDS algorithm, and the area overhead
is also not significant. This architecture also supports fast full search algorithms.

Several architectures have been proposed for fast search algorithms besides tree-
based architectures. For example, Dutta and Wolf [38] have modified the data flow
of the 1-D linear array in [28] to support full search, TSS, and the conjugate direc-
tion search in the same architecture. A joint algorithm architecture design of a pro-
grammable motion estimator chip has been proposed by Lin et al. [39]. Cheng and
Hang have proposed architecture based on universal systolic arrays to realize many
BMAs [40].

2.2 Scalable Video Coding

Scalable Video Coding (SVC) must support more than one spatial, temporal and
quality layer; hence the Codec structure of SVC differs from the conventional hybrid
video coding structure of the H.264 video standard. There have been many contribu-
tors to the codec structure for an SVC. The first such contribution to the SVC codec
structures was by Ohm [41]. Some of his video codec designs were modifications
of the conventional hybrid coding [42–46]. Hybrid coding has been prevalent in all
the video coding standards since the introduction of motion compensation for video
coding. In case of encoding of the hybrid video structure, one frame predicts another,
the predicted frame predicts another and this goes on for a GOP. It is quite evident
and stated in [47] that prediction error tends to accumulate and the quality of the
frames worsens as we move towards the last frame of the GOP. To avoid such a
problem Motion Compensated Temporal Filtering has been introduced [41, 48–50].

Application of Motion Compensation (MC) is a key for high compression per-
formance in video coding, but still is often understood to be implicitly coupled with
frame prediction schemes. There is indeed no justification for this restriction, as
MC can rather be interpreted as a method to align a filtering operation along the

20 2 Background and Literature Survey

temporal axis with a motion trajectory. In the case of MC prediction, the filters are in
principle linear predictive coding (LPC) analysis and synthesis filters, while in cases
of transform or wavelet coding, transform basis functions extended over the temporal
axis are subject to MC alignment. This is known as motion-compensated temporal
filtering. If MCTF is used in combination with a 2-D spatial wavelet transform, this
shall be denoted as a 3-D or (depending on the sequence of the spatial and tempo-
ral processing) either as a 2-D+t or t+2-D wavelet transform. In case of MCTF as
shown in Fig. 2.5, the error frame is used to update the reference frame; hence the
error remains within the candidate and reference frames and is not accumulated or
propagated to the successive frames.

Andreopoulos et al. [48, 49], introduced Wavelet-Based Scalable Video Coding.
Instead of the conventional DCT, DWTwas introduced as a suitable Image andVideo
Transform.DiscreteWavelet Transform is amulti-resolution transform. By using this
property, DWT provides for an improved representation of the digital video data in a
hierarchical manner. The latter being a useful property which can be extensively used
in case of SVC. First codec structure which introduces the property of MCTF was
SD-MCTF [48]. SD-MCTFperform themotion compensation in temporal axis on the
pixel domain. The residual frames were then spatially decomposed using a suitable
Discrete Wavelet Filter. For better coding efficiency [41], IB-MCTF [49] was intro-
duced. Because the motion compensation was performed in the wavelet domain, the
problem of shift-variance will be seen. In order to solve this problem, Over-complete
DWT [48, 49, 51, 52] has to be performed. The algorithm and complexity models of
IB-MCTF were shown in [49, 51]. Conventionally wavelet decomposition was per-
formed by the convolution method. The problem with convolution based DWT was
higher memory requirement and greater computational time. To avoid this problem a
mathematical approach called Lifting scheme was introduced. Factorization of Dis-
creteWavelet Filters was done byDaubechies and Sweldens [53] and the results have
been used in the implementation of our architecture. Details of over complete DWT
(ODWT), lifting based ODWT, SD-MCTF, and IB-MCTF are given in the Chap.7.

Temporal Split

Transform
Block

Quantization
Block

+

-

+

Coded bits

Updated frames

Error Frames

Odd Frames

Even Frames

Fig. 2.5 Compensated temporal filtering block with predict and update stage

http://dx.doi.org/10.1007/978-3-319-14376-7_7

2.3 Conclusions 21

2.3 Conclusions

This chapter has presented the basic elements of ME algorithms and architectures
which will be used in the following chapters. The concepts of motion estimation,
block matching algorithm, different ME algorithms, ME architectures, challenges in
hardware implementation and advantages of fast search algorithms have been dis-
cussed in this chapter. The ME algorithms have been classified into two categories,
namely full search and fast search algorithms. Fast search algorithms are further
classified based on simplification of matching criteria, reduction of search candi-
dates, and predictive search. The ME architectures on the other hand, are separated
into two parts, namely the processing element array and the on-chip memory. In
the processing element array, inter-level, intra-level, and tree-based architectures are
three basic types of ME architectures and are adopted in many ME architectures and
video coding systems.

Scalable video coding based on IB-MCTF has a better PSNR performance than
SD-MCTF because there is more degree of freedom of choosing in the ME schemes
for the different sub-bands. But the memory requirement and the computational
complexity increase as we go down higher levels of spatial and temporal scalability.
IB-MCTF is preferred in research oriented fields where the quality of the received
video data is more significant. In domains of medical imaging and distant medical
applications where the quality of the video is significantly more important than the
end-to-end delay, IB-MCTF is better than SD-MCTF.

In the next chapter, an implementation of one of the most popular motion estima-
tion algorithm, namely the Fast Three step search algorithms will be discussed.

References

1. Biemonda, J., Looijengaa, L., Boekeea, D.E., Plompenb, R.H.J.M.: A pel-recursive Wiener-
based displacement estimation algorithm. J. Signal Process. 13(4), 399–412 (1987)

2. Wiegand, T., Sullivan, G.J., Bjontegaard, G., Luthra, A.: Overview of the H.264/AVC video
coding standard. IEEE Trans. Circuits Syst. 7(7), 560–576 (2003)

3. Lu, J., Liou, M.L.: A simple and efficient search algorithm for block-matching motion estima-
tion. IEEE Trans. Circuits Syst. Video Technol. 7(2), 429–433 (1997)

4. Tekalp, A.M.: Digital Video Processing. Prentice Hall Ltd., New York (1995)
5. Ghanbari, M.: Video Coding, An Introduction to Standard Codecs. The Institute of Electrical

Engineers, London (1999). Chaps. 2, 5, 6, 7 and 8.
6. Li, R., Zeng, B., Liou, M.L.: A new three-step search algorithm for block motion estimation.

IEEE Trans. Circuits Syst. Video Technol. 4(4), 438–442 (1994)
7. Po, L.-M., Ma, W.-C.: A novel four step search algorithm for fast block motion estimation.

IEEE Trans. Circuits Syst. Video Technol. 6(3), 313–317 (1996)
8. Li, W., Salari, E.: Successive elimination algorithm for motion estimation. IEEE Trans. Image

Process. 4(1), 105–107 (1995)
9. Zhu, S.,Ma, K.K.: A new diamond search algorithm for fast block-matchingmotion estimation.

IEEE Trans. Image Process. 9(2), 287–290 (2000)
10. Nie, Y., Ma, K.K.: Adaptive rood pattern search for fast block-matching motion estimation.

IEEE Trans. Image Process. 11(12), 1442–1448 (2002)

22 2 Background and Literature Survey

11. Cheung, C.H., Po, L.M.: A novel cross-diamond search algorithm for fast block motion esti-
mation. IEEE Trans. Circuits Syst. Video Technol. 12(12), 1168–1177 (2002)

12. Koga, T., Iinuma, K., Hirano, A., Iijima, Y., Ishiguro, T.: Motion compensated interframe
coding for video conferencing, Proccedings of Natural Telecommunication Conference, pp.
C9.6.1-C9.6.5, (1981)

13. Ghanbari, M.: The cross search algorithm for motion estimation. IEEE Trans. Commun. 38(7),
950–953 (1990)

14. Chen, L.G., Chen, W.T., Jehng, Y.S., Chiueh, T.D.: An efficient parallel motion estimation
algorithm for digital image processing. IEEE Trans. Circuits Syst. Video Technol. 1(4), 378–
385 (1991)

15. Tourapis, A.M., Au, O.C., Liu, M.L.: Highly efficient predictive zonal algorithms for fast
block-matching motion estimation. IEEE Trans. Circuits Syst. Video Technol. 12(10), 934–
947 (2002)

16. Natarajan, B., Bhaskaran, V., Konstantinides, K.: Low-complexity block-based motion estima-
tion via one-bit transforms. IEEE Trans. Circuits Syst. Video Technol. 7(3), 702706 (1997)

17. Liu, B., Zaccarin, A.: New fast algorithms for the estimation of block motion vectors. IEEE
Trans. Circuits Syst. Video Technol. 3(2), 148–157 (1993)

18. Wang, Y., Wang, Y., Kuroda, H.: A globally adaptive pixel decimation algorithm for block-
motion Estimation. IEEE Trans. Circuits Syst. Video Technol. 10(6), 1006–1011 (2000)

19. Hsieh, C.H., Lu, P.C., Shyn, J.S., Lu, E.H.: Motion estimation algorithm using interblock
correlation. IEE Electron. Lett. 26(5), 276–277 (1990)

20. Zafar, S., Zhang, Y.Q., Baras, J.S.: Predictive blockmatchingmotion estimation for TV coding-
part I: inter-block prediction. IEEE Trans. Broadcast. 37(3), 97–101 (1991)

21. Zhang, Y.Q., Zafar, S.: Predictive block-matching motion estimation for TV coding-part II:
inter-frame prediction. IEEE Trans. Broadcast. 37(3), 102–105 (1991)

22. Chalidabhongse, J., Kuo, C.C.J.: Fast motion vector estimation using multiresolution-spatio-
temporal correlations. IEEE Trans. Circuits Syst. Video Technol. 7(3), 477–488 (1997)

23. Tham, J.Y., Ranganath, S., Ranganath, M., Kassim, A.A.: A novel unrestricted center biased
diamond search algorithm for block motion estimation. IEEE Trans. Circuits Syst. Video Tech-
nol. 8(4), 369–377 (1998)

24. He, Z.L., Tsui, C.Y., Chan, K.K., Liou, M.L.: Low-power VLSI design for motion estimation
using adaptive pixel truncation. IEEE Trans. Circuits Syst. Video Technol. 10(5), 669–678
(2000)

25. Lee, S., Kim, J.M., Chae, S.I.: New motion estimation algorithm using adaptively quantized
low bit-resolution image and its VLSI architecture for MPEG2 video encoding. IEEE Trans.
Circuits Syst. Video Technol. 8(6), 734–744 (1998)

26. Kim, J.-N., Choi, T.-S.: A fast three step search algorithm with minimum checking points. In:
Proceedings of IEEE Conference Consumer Electronics, pp. 132–133. 2–4 June 1998

27. Jianjua, L., Liou, M.L.: A simple and efficient search algorithm for block-matching motion
estimation. IEEE Trans. Circuits Syst. Video Technol. 7(2), 429–433 (1997)

28. Yang, K.M., Sun, M.T., Wu, L.: A family of VLSI designs for the motion compensation block-
matching algorithm. IEEE Trans. Circuits Syst. 36(2), 1317–1325 (1989)

29. Komarek,T., Pirsch, P.:Array architectures for blockmatching algorithms. IEEETrans.Circuits
Syst. 36(2), 1301–1308 (1989)

30. Shen, J.F., Wang, T.C., Chen, L.G.: A novel low-power full search blockmatching motion
estimation design forH.263+. IEEETrans. Circuits Syst. VideoTechnol. 11(7), 890–897 (2001)

31. Yeo, H., Hu, Y.H.: A novel modular systolic array architecture for full-search block matching
motion estimation. IEEE Trans. Circuits Syst. Video Technol. 5(5), 407–416 (1995)

32. Lai, Y.K., Chen, L.G.: A data-interlacing architecture with two dimensional datareuse for full-
search block-matching algorithm. IEEE Trans. Circuits Syst. Video Technol. 8(2), 124–127
(1998)

33. Chang, S.F., Hwang, J.H., Jen, C.W.: Scalable array architecture design for full search block
matching. IEEE Trans. Circuits Syst. Video Technol. 5(4), 332–343 (1995)

References 23

34. Vos, L.D., Stegherr, M.: Parameterizable VLSI architectures for the full-search block-matching
algorithm. IEEE Trans. Circuits Syst. 36(2), 1309–1316 (1989)

35. Roma, N., Sousa, L.: Efficient and configurable full-search blockmatching processors. IEEE
Trans. Circuits Syst. Video Technol. 12(12), 1160–1167 (2002)

36. Jong, H.-M., Chen, L.-G., Chiueh, T.-D.: Parallel architectures for 3-step hierarchical search
block-matching algorithm. IEEE Trans. Circuit Syst. Video Technol. 4(4), 407–416 (1994)

37. Chao, W.M., Hsu, C.W., Chang, Y.C., Chen, L.G.: A novel motion estimator supporting dia-
mond search and fast full search. In: Proceedings of IEEE International Symposium Circuits
Systems (ISCAS02), pp. 492–495 (2002)

38. Dutta, S.,Wolf,W.:Aflexible parallel architecture adopted to blockmatchingmotion estimation
algorithms. IEEE Trans. Circuits Syst. Video Technol. 6(1), 74–86 (1996)

39. Lin, H.D., Anesko, A., Petryna, B.: A 14-GOPS programmable motion estimator for H.26X
video coding. IEEE J. Solid-State Circuits 31(11), 1742–1750 (1996)

40. Cheng, S.C., Hang, H.M.: A comparison of block-matching algorithms mapped to systolic-
array implementation. IEEE Trans. Circuits Syst. Video Technol. 7(5), 741–757 (1997)

41. Ohm, J.-R.: Advances in scalable video coding. Proc. IEEE, Invit. Pap. 93, 42–56 (2005)
42. Advanced Video Coding for Generic Audiovisual Services, ITU-T Rec. H.264 and ISO/IEC

14496-10 (MPEG-4 AVC), ITU-T and ISO/IEC JTC 1, Version 1: May 2003, Version 2: May
2004, Version 3: March 2005, Version 4: September 2005, Version 5 and Version 6: June 2006,
Version 7: April 2007, Version 8 (including SVC extension): Consented in July 2007

43. ITU-T Rec. & ISO/IEC 14496–10 AVC.: Advanced video coding for generic audiovisual
services, version 3 (2005)

44. Schwarz, et al. H.: Technical description of the HHI proposal for SVC CE1. ISO/IEC
JTC1/WG11, Doc. m11244, Palma de Mallorca, Spain, October 2004

45. Reichel, J., Schwarz, H., Wien, M.: Scalable video coding joint draft 6 Joint video team, Doc.
JVT-S201, Geneva, Switzerland, April 2006

46. Coding of audiovisual objectsPart 10: Advanced video coding, International Organization
for Standardization/International Electrotechnical Commission (ISO/IEC), ISO/IEC14 496–
10 (identical to ITU-T Recommendation H.264)

47. Richardson, I.E.G.: Video Codec Design, John Wiley & Sons. Ltd. (2002). doi:10.1002/
0470847832

48. Andreopoulos, Y., van der Schaar, M., Munteanu, A., Barbarien, J., Schelkens, P., Cornelis, J.:
Complete-to-overcomplete discrete wavelet transforms for scalable video coding with MCTF.
In: Proceedings SPIE/IEEE Visual Communication Image Process., pp. 719–731 (2003)

49. Andreopoulos, Y., Munteanu, A., Barbarien, J., van der Schaar, M., Cornelis, J., Schelkens, P.:
In-band motion compensated temporal filtering. Signal Process. Image Commun. 19, 653–673
(2004)

50. Wang, B., Loo, K.K., Yip, P.Y., Siyau, M.F.: A simplified scalable wavelet video codec with
MCTF structure. In: International Conference on Digital Telecommunications, (ICDT’06),
29–31 August 2006. doi:10.1109/ICDT.2006.11

51. Andreopoulos, Y., van der Schaar, M., Munteanu, A., Barbarien, J., Schelkens, P., Cornelis,
J.: Fully-scalable wavelet video coding using in-band motion-compensated temporal filtering.
In: Proceedings IEEE International Conference Acoustical Speech and Signal Process., pp.
III-417–III-420 (2003)

52. Park, H.-W., Kim, H.-S.: Motion estimation using low-band-shift method for wavelet-based
moving-picture coding. IEEE Trans. On Image Process. 9(4), 577–587 (2000)

53. Daubechies, I., Sweldens, W.: Factoring wavelet transforms into lifting steps. J. Fourier Anal.
Apple 4(3), 247–269 (1998)

http://dx.doi.org/10.1002/0470847832
http://dx.doi.org/10.1002/0470847832
http://dx.doi.org/10.1109/ICDT.2006.11

Chapter 3
VLSI Architecture for Fast Three Step
Search Algorithm

The goal of this chapter is to introduce a Fast Three Step Search (FTSS) algorithm,
and its VLSI architecture. The chapter starts with a brief discussion on FTSS and
three step search (TSS) algorithm. Section 3.2 presents the method by which one
can predict the direction of current motion vector. The FTSS algorithm has been
presented in Sect. 3.3. Section 3.4 gives the detailed VLSI architecture required for
implementation of the FTSS algorithm. The simulation and the synthesis results
of the proposed algorithm and the corresponding architecture are presented in the
subsequent section. The conclusions are finally presented in the last section.

3.1 Introduction

In general, there is a correlation between the motion vector of current block and the
motion vector of previous block [1]. This is particularly true in low bit-rate video
applications, including videophone and video conferencing, where fast and complex
movements are rarely involved. To reduce the heavy computational cost resulting
from the massive number of candidate locations, three step search algorithm (TSS)
searches for the best motion vector in a coarse-to-fine manner. In the first step, nine
sparsely located candidates are evaluated and the one with the minimum SAD is
picked out. In the second step, the search is focused on the area centered at the win-
ner of the previous step, but distances between candidate locations are shortened by
half. In the same manner, the third step compares SAD’s of nine locations around the
winner of the second step and then gives the final motion vector. For the commonly
used search range of d1 = d2 = 7, the hierarchical search procedure decreases the
number of search locations to 1/9 of the exhaustive approach. The Fast Three Step
Search algorithm (FTSS) [2] makes use of the directional information from adjacent
previous motion vector and unimodal error surface assumption (UESA). It deter-
mines the direction of the current motion vector from the previous motion vector and
reduces the computation for checking the candidate motion vector using the UESA.
The UESA means that the error increases monotonically in getting away from the
global minimum [3].

© Springer International Publishing Switzerland 2015
I. Chakrabarti et al., Motion Estimation for Video Coding,
Studies in Computational Intelligence 590, DOI 10.1007/978-3-319-14376-7_3

25

26 3 VLSI Architecture for Fast Three Step Search Algorithm

3.2 Prediction of Direction of Current Motion Vector

Directional information of the previous motion vector was used for the estimation
of the current motion vector. Direction of the current motion vector is predicted with
the adjacent motion vector for the current frame. Figure 3.1 shows the determination
of direction for the current motion vector from the sign of previous motion vector
that is the motion vector of the left neighbor. Note that the positive direction of
the vertical axis points downwards, while that of the horizontal axis points towards
right. The set of search points (checking points) in the subsequent phase, when the
previous motion vector is directed towards top left (as shown in Fig. 3.1a) is found
out based on four exhaustive conditions as depicted in Fig. 3.2. The second phase of
checking points for the remaining three possible previous motion vectors (as shown
in Fig. 3.1b, c, d) will be determined in a similar manner. By selecting the direction
from the adjacent previous motion vector instead of arbitrary search direction, the
probability of occurrence of 4 checking points in the first step will be increased. That
is, by exact estimation of direction of the current motion vector, we can check only
four checking points in the first step, not five or six checking points as [3]. By using
the directional information, we are able to decrease one or two checking points in the
first step as compared with the Lu and Lious algorithm [3]. The number of checking
points for the first step is nine in the original TSS algorithm. The FTSS algorithm
reduces the number of checking points by 4 or 5 points for each step, while ensuring

I II

III IV

I II

III IV

I II

III IV

I II

III IV

MV (-,-) MV (-,+) MV (+,-) MV (+,+)

(a) (b) (c) (d)

Fig. 3.1 Direction of the current MV from the previous MV

I II

III IV

X<Y, Z<Y

I II

III IV

 Z<Y<X

I II

III IV

X<Y<Z

I II

III IV

Y<X, Y<Z

X Y

Z

X Y

Z

X Y

Z

X Y

Z

(a) (b) (c) (d)

Fig. 3.2 Next checking points after checking 3 points

3.2 Prediction of Direction of Current Motion Vector 27

a performance close to TSS algorithm. The number of checking points for the first
step is nine in the original TSS algorithm. The FTSS algorithm reduces the number
of checking points by 4 or 5 points for each step, while ensuring a performance close
to TSS algorithm.

3.3 Fast Three Step Search Algorithm (FTSS)

The FTSS algorithm [2] differs from the TSS algorithm [4] in the following ways:-

• Previous motion vector is considered in FTSS.
• For each step, in the first phase of FTSS algorithm, one needs to consider the three

search points as specified in Fig. 3.1.
• In second phase, it considers one or two search point(s) as specified in Fig. 3.2.

So for each step it checks four or five search points. So the minimum number of
search points for three steps is 12 and the maximum number of search points is 15.
But in TSS Algorithm, the number of search points is fixed at 25. The arrangement
of search points is shown in Fig. 3.3. Assume that the sign of the adjacent previous
motion vector is (+,−). According to Fig. 3.1, first three search points are S4, S5
and S8. In the first step, we will compare SAD values of the S4, S5 and S8 (i.e.
SAD (4), SAD (5), and SAD (8)). In this algorithm, SAD(x) is Sum of Absolute
Difference at the location Sx. Search points (candidate locations) S1–S9 are shown
in Fig. 3.3.

Fig. 3.3 The FTSS
Algorithm (the 9 candidate
locations in a step labeled by
S1–S9)

Blocks chosen for 1st step Blocks chosen for 2nd step

Blocks chosen for 3rd step

0

1

2

3

4

5

6

7

-1

-2

-3

-4

-5

-6

0 1 2 3 4 5 6 7-1-2-3-4-5-6

-7

-7
X

Y

S1 S2 S3

S4 S5 S6

S7 S8 S9

28 3 VLSI Architecture for Fast Three Step Search Algorithm

Algorithm 3.1 Fast Three Step Search Algorithm

1: if SAD(6)< SAD(5) & SAD(8) < SAD(5) then
2: check 9 & select min [SAD(x)] (4 Pts)
3: end if
4: if SAD(6) < SAD(5) < SAD(8) then
5: check 3 & select min [SAD(x)] (4 Pts)
6: end if
7: if SAD(8) < SAD(5) < SAD(6) then
8: check 7 & select min [SAD(x)] (4 Pts)
9: end if

10: if SAD(5) < SAD(6)& SAD(5) < SAD(8) then
11: if SAD(5) < SAD(6) < SAD(8) then
12: if SAD(2) < SAD(5) then
13: check 1 & select min [SAD(x)] (5 Pts)
14: else min [SAD(x)] = SAD(5) (4 Pts)
15: end if
16: end if
17: if SAD(5) < SAD(8) < SAD(6) then
18: if SAD(4) < SAD(5) then
19: check 1 & select min [SAD(x)] (5 Pts)
20: else min [SAD(x)]= SAD(5) (4 pts)
21: end if
22: end if
23: end if

3.4 Proposed 3-PE Architecture for FTSS

The proposed architecture for FTSS consists of memory sub system, control unit, and
process control unit, as depicted in Fig. 3.4. Memory sub-system (MSS): It consists of
three half search area buffers, which are used to store the search block from external
memory [4]. Two half search area buffers are used for each task. And these buffers
are again divided into nine memory modules to enhance memory bandwidth. This
also enables memory interleaving for simultaneous accesses [5].

Control Unit (CU): It is a finite state machine. This is having a counter to count
the number of clock cycles, and an algorithm unit to decide the second phase search
points in every step. Depending on the number of clock cycles, it generates the timing
and control signals for all the blocks. The major functions of the control unit are

• To activate the required half search area buffer to access the external memory.
• To send search point’s base addresses to process control unit for each step.

3.4 Proposed 3-PE Architecture for FTSS 29

Memory Sub System

Control Unit

Algorithm Unit

Process Control Unit

PE
Array

Address
Generator array

Current Pixel

Search Pixel

Module No. & Address

Store_en

Row & col Address

MAD values

step12

step11

From Ext.Mem

Motion vectors

Fig. 3.4 Block diagram of proposed architecture for FTSS algorithm

• To take the SAD values from the process control block, according to the minimum
SAD value select the next checking point(s) using algorithm block.

• To find the motion vector after completion of three steps.

Process control unit (PCU): It contains the processing element array unit (PE Array)
and address generator array unit. The major tasks of the process control unit are listed
as follows:

• To take step activation signal and base addresses of search points from the con-
trol unit. From base address and offset address, the address generator calculates
memory module number and module address.

• To send module numbers and module addresses to memory sub system, then take
search pixels from memory sub system, and current pixel from external (system)
memory.

• To calculate SAD values for each search point and send to control unit.

Address generator array unit (AGU): It consists of three address generators. Each
address generator generates module number and module address by using base
address which is coming from control unit, and offset address which is generated
internally. According to FTSS algorithm, each step is having two phases. Control
unit will selects, 3 search points in 1st phase out of nine, according to sign of adjacent
previous motion vector. Base addresses of the selected search points will send to the
process control unit. After 256 clocks, process control unit will send the SAD values
for those search points. According to SAD values of the 3 search points, algorithm

30 3 VLSI Architecture for Fast Three Step Search Algorithm

Fig. 3.5 Block diagram for
processing element (PE) Accumulator

a

b

|a-b|

Search pix

Cur.pix

Reg-
ister

MAD[15:8]

MAD[7:0]

|a-b|

unit decides the next one or two search points for 2nd phase. This will continue for
remaining two steps. After three steps, the control unit generate the motion vector.
The distance between search points for the first step is equal to 4, for second step, it
is equal to 2 and for third step, it is 1.

PE array: It consists of three processing elements (PEs). Each PE takes a search
pixel and a current pixel as input from memory sub system and finds mean absolute
difference (MAD). The difference will be accumulated and produce the MAD value
for each search point (16 × 16 blocks) for every 256 clocks. The structure of PE is
shown in Fig. 3.5.

The proposed parallel architecture with 3 PE’s is a good choice for the FTSS [2]
algorithm. For, there are two phases in each step, according to FTSS algorithm spec-
ified in Algorithm 3.1. In the first phase in each step, the number of checking points
are 3. In the second phase in each step the number of checking points are 1 or 2.
So the number of parallel checking points never exceeds three, which entails only
three PE’s. However, the difficulties on data addressing and interconnection com-
plexity make it hard to implement. The present chapter suggests a hardware structure
that can effectively solve all these problems. This architecture is based on two data
management techniques, namely (1) an on chip buffer configuration for reducing
the number of external memory accesses, (2) the residual memory interleaving for
parallel data accesses.

The basic 3-PE structure and its input data flow are shown in Fig. 3.6. For 16 × 16
blocks and a vector range of−7 to +7 pixels in both horizontal and vertical directions,
this method in principle completes a block-matching every 256 × 2 × 3 = 1,536
clock cycles. Furthermore, because the required pixels are sent to PE’s in parallel
without data skewing, the latency delay is also very short. In essence, this architec-
ture provides a flexible high-speed motion estimator at a low cost. To reduce the
loads of system memory, chip I/O, and interconnection, we used the on chip buffer
configuration for data reuse and residual memory interleaving, as described in [4].

Random-access on-chip buffers have been used in the proposed architecture and
utilized characteristics of FTSS to reduce the addressing and control overheads. The
proposed architecture sequentially inputs current block pixels and broadcasts them
to all PE’s (as shown in Fig. 3.6). However, search area pixels are stored in on-chip
buffers so that they are internally available whenever necessary. In general, a double

3.4 Proposed 3-PE Architecture for FTSS 31

Current blockCurrent blockCurrent block

Search block0Search block0Search block0

Search block1Search block1Search block1

Search block8Search block8Search block8

MUX

MUX

MUX
Addr.Gen
Array

PE 1

PE 2

PE 3

MAD 1

MAD 2

MAD 3

PROCESS CONTROL
UNIT

256X2 Clocks

 Step 1
(phase 1&2)

 Step 2
(phase 1&2)

 Step 3
(phase 1&2)

Current pixel

Search

Module
no& adr

pix

Search pix

Search pix

Fig. 3.6 Proposed basic 3-PE structure and its input data flow

0 1 2 0 1 2 0 1

0 1 2 3 4 5 6

16 pixels

search area of current block 0

search area of current block 1

search area of current block 2

HSA blocks
30X16 pixelsCurrent blocks

 16X16

30
 p

ix
el

s

Fig. 3.7 Search areas of the adjacent current blocks

Fig. 3.8 Search area buffers
used for each task

T0 T1 T2 T3 T4 T5

0 1 2 0 1 2

1 2 0 1 2 0

HSA
Buffers

Task Ti

sized buffer is required for simultaneous I/O and computation [6]. For further I/O
bandwidth reduction, we utilize the overlap between search areas of adjacent current
blocks as shown in Fig. 3.7, and utilized the scheme of three half-search-areas (HSA)
as described in [4]. An HSA buffer stores an HSA block (30 × 16 pixels), which is
larger than the real half search area (30 × 16 pixels). The extra column is for filling
the gap between search areas of different tasks. The operations of the three HSA
buffers are shown in Fig. 3.8. When executing task 0 (matching current block 0),

32 3 VLSI Architecture for Fast Three Step Search Algorithm

Fig. 3.9 Residual memory
interleaving

0 1 2 0 1 2 0 1

3 4 5 3 4 5 3 4

6 7 8 6 7 8 6 7

0 1 2 0 1 2 0 1

3 4 5 3 4 5 3 4

6 7 8 6 7 8 6 7

PE’s access search area pixels from HSA buffer 0 and 1. During these 256 × 2 × 3
or 1,536 clock cycles, the HSA buffer 2 is being filled by the right-half of search
area for task 1. In the next 256 × 2 × 3 clock cycles, search area pixels are accessed
from buffer 1 and 2 for executing task 1, and new data are input to buffer 0. Cyclic
manner, the 30 × 16 new pixels can be easily accessed from system memory during
256 × 2 × 3 or 1,536 clock cycles by using only one input port.

Memory interleaving has been used for simultaneous accessing of pixels which
are required for the 3-PE architecture. Residual memory interleaving has been done
by dividing the search area buffer into 32 = 9 memory modules. The search area 1st
row pixel 0 (top left) is loaded in to memory module M0, pixel 1 in to M1, pixel 2 is
loaded into M2, pixel 3 is loaded into M0, and pixel 4 into M1 this repeats for entire
1st row. Second row pixels are stored in memory modules M3, M4 and M5. Third
row pixels are stored in memory modules M6, M7 and M8. Again 4th row pixels are
stored in memory modules M0, M1 and M2. This is repeated for entire search area.
Memory module numbers corresponding to pixels are shown in Fig. 3.9.

3.5 Results

3.5.1 Simulation Results

The proposed architecture has been simulated in Xilinx-ISE 8.1i platform using
vertex 4 device family. Synthesis tool was XST(VHDL/Verilog), and simulator was
Modelsim-XE(verilog). Functionality of proposed architecture has been tested on
two images, namely ‘Lena’ and ‘News reader’ of size 128×128. Block size has been
taken to be 16 × 16,while the search range has been fixed at [−7,+7]. Figure 3.10
shows the number of checking points per block for TSS and FTSS. And Table 3.1
shows the performance comparison between 9 PE’s TSS and 3 PE’s FTSS.

3.5 Results 33

Fig. 3.10 Simulation result

Table 3.1 Performance
comparison between FTSS
and TSS in terms of PSNR

Image type (3PEs) FTSS (dB) (9PEs) TSS (dB)

trevor.qcif 37.1061 37.4403

News reader.qcif 34.592 34.812

3.5.2 Synthesis Results

Verilog language is employed to model the proposed architecture at behavioral dom-
ain. The behavioral verilog model is then used for logic circuit synthesis executed by
invoking the Synopsys design vision synthesis tool. The logic circuit that implements
a proposed architecture has been obtained. Table 3.2 shows the area requirements for
proposed (3PEs) FTSS Architecture and (9 PEs) TSS architecture in terms of stan-
dard unit cells. Table 3.3 shows the power consumption for proposed (3PEs) FTSS
Architecture and (9 PEs) TSS architecture. Negative percentage of saving in 2nd row
(control unit) of Tables 3.2 and 3.3 indicates that the complexity of the control unit
has been increased due to algorithmic unit in 3 PEs FTSS architecture. That is area
and power requirements are more in control unit of 3 PEs FTSS architecture.

Table 3.2 Area in (µm2)

comparison between
proposed (3PEs) FTSS and
(9PEs) TSS architecture

Unit name FTSS (3-PEs) TSS (9-PEs) % of saving

Control unit 16708.00 1568 −90.61

Process control 61446.00 166133.00 63.034

Total 78154.00 167701.00 53.39

Table 3.3 Power
comparision between
proposed (3PEs) FTSS and
(9PEs) TSS architecture

Unit name FTSS (3-PEs) TSS (9-PEs) % of saving

(mW)

Control unit 2.43 475.2 uW −80.5

Process control 50.6 83.01 mW 39.01

Total 53.0 83.49 mW 36.44

34 3 VLSI Architecture for Fast Three Step Search Algorithm

3.6 Conclusions

The present chapter has focussed on an efficient VLSI architecture for the FTSS
algorithm. Configuration of random access on-chip buffer solves the problem of
chip I/O and memory bandwidth requirements. The buffer and the input data have
been arranged according to the principle of residual memory interleaving for parallel
accessing of data. The proposed architecture has been designed with 3 PEs, and as
compared with 9 PEs TSS architecture, the chip area has been reduced by almost
50 %. Moreover, the number of checking points has been reduced as compared with
TSS and NTSS algorithms. This paves the way for reduced power consumption by
almost 25 %. This architecture is considered to be useful for low bit rate, low power
video applications like video telephony, video conferencing and HDTV.

References

1. Jain, J.R., Jain, A.K.: Displacement measurement and its application in interframe image cod-
ing. IEEE Trans. Commun. COM–29(12), 1799–1808 (1981)

2. Kim, J.-N., Choi, T.-S.: A fast three step search algorithm with minimum checking points. In:
Proceedings of IEEE Conference on Consume Electronics, pp. 132–133, 2–4 June 1998

3. Lu, J., Liou, M.L.: A simple and efficient search algorithm for block-matching motion estima-
tion. IEEE Trans. Circuits Syst. Video Technol. 7(2), 429–433 (1997)

4. Jong, H.-M., Chen, L.-G., Chiueh, T.-D.: Parallel architectures for 3-step hierarchical search
block-matching algorithm. IEEE Trans. Circuit Syst. Video Technol. 4(4), 407–416 (1994)

5. Srinivasarao, B.K.N., Chakrabarti, I.: Parallel architectural implementation of the fast three
step search algorithm for block motion estimation. In: Proceedings of 5th International Multi-
Conference on Systems, Signals and Devices (SSD-08), pp. 1–6. Amman, Jordan, 20–22 July
2008. doi:10.1109/SSD.2008.4632849

6. Po, L.-M., Ma, W.-C.: A novel four step search algorithm for fast block motion estimation.
IEEE Trans. Circuits Syst. Video Technol. 6(3), 313–317 (1996)

http://dx.doi.org/10.1109/SSD.2008.4632849

Chapter 4
Parallel Architecture for Successive
Elimination Block Matching Algorithm

The Successive Elimination Algorithm (SEA) effectively eliminates the search points
within the search window and thus decreases the number of matching evaluation
instances that require very intensive computations compared to the standard Full
Search Algorithm (FSA). This chapter begins with an introduction to SEA followed
by a detailed description of the SEA algorithm. Section 4.3 gives the details of parallel
architecture for SEA algorithm. Relevant design statistics on area and power for
comparing between SEA and FSA implementations are presented in the subsequent
section. The conclusions are finally presented in the last section.

4.1 Introduction

Recently the market for portable multimedia applications, such as MPEG video
camera, wireless video phone, and portable wireless multimedia terminal, has been
on the rise [1]. Consequently, fast VLSI video compression processors are in
high demand for the emerging wireless video applications. Typical video compres-
sion processors today include VLSI motion estimators which implement the FSA.
In the block-matching motion estimation, the motion vector is the displacement of a
macroblock with the minimum distortion from the reference macroblock. The FSA
determines the motion vector by identifying a macroblock with the minimum dis-
tortion from a pool of all possible candidate blocks in the search area. The FSA
thus offers the optimal solution; however, existing implementations of this algorithm
are computationally expensive and time consuming because they typically compute
the distortion values of all possible candidate macroblocks. Many motion estimation
algorithms are found in the literature [2–4]. Some of them are fast but cannot guar-
antee an optimal solution; they can be stuck in local optima. Such algorithms are
fast, and consume less power when implemented in VLSI; however, they can result
in high levels of distortion that cannot be accepted in many applications [1, 5]. The
disadvantage of these algorithms is that they result in sub-optimal solutions because
the search space is reduced. These approaches reduce the computational load, and

© Springer International Publishing Switzerland 2015
I. Chakrabarti et al., Motion Estimation for Video Coding,
Studies in Computational Intelligence 590, DOI 10.1007/978-3-319-14376-7_4

35

36 4 Parallel Architecture for Successive Elimination Block Matching Algorithm

consequently the power consumption, by sacrificing the optimality of the solution.
Without sacrificing the optimality, the successive elimination algorithm (SEA) pro-
posed by Li and Salari [6] reduces the computational load of the FSA. The motion
vector found by SEA is identical to the motion vector found by FSA.

4.2 Successive Elimination Algorithm (SEA)

The aim of motion estimation is to find the best matching block of the reference
block in the current Frame. The top left comer point of the best matching block
exists within the search window in the previous frame. Sum of Absolute Difference
(SAD), which is the error norm, is used to measure the matching between the two
blocks. The best matching block has minimum SAD. SAD is defined as Eq. (4.1)

SAD(i, j) = ||X − Y (i, j)|| (4.1)

In Eq. (4.1) X represents the reference block in the current frame for which a motion
vector is required, and Y (i, j) represents the possible candidate motion vector block
within the search window. Note that (i, j) is the upper left comer point of the block,
and (i, j) is the point within search window. In FSA, SAD is computed for every
point (i, j) in the search window, one displacement at a time. As each SAD is
calculated, SAD is compared against the current minimum SAD (cur−min−SAD).
If it is smaller than the cur−min−SAD then it becomes the current minimum SAD.
When this procedure is repeated for all of the points (i, j) in the search window,
the block that has the current minimum SAD is the best matching block, and the
displacement vector of the best matching block is the motion vector for the reference
block in the current frame.

By using SEA, motion vector for each reference block in the current frame can
be found with much less computational load than the exhaustive search algorithm by
using mathematical property. Applying mathematical inequality ||A||1 − ||B||1 ≤
||A − B||1 for A = X and B = Y(i, j) gives

|||X ||1 − ||Y (i, j)|||1 ≤ ||X − Y (i, j)||1 (4.2)

where ||X || = ∑
k |Xk | Note that X represents the reference block in the current

frame for which motion vector is required, and Y(i,j) represents the possible candidate
blocks within the search window. ||X ||1,||Y (i, j)||1 are sum norms and those are
precomputed. Assume that, cur−min−SAD = SAD(m,n) = ||X − Y (m, n)||1 is
calculated for an initial matching candidate block. To find the best matching block,
the only interested is the blocks its SADs are less than cur−min−SAD. From the

4.2 Successive Elimination Algorithm (SEA) 37

Eqs. (4.1) and (4.2), the blocks its sum norm ||Y (i, j)||1 satisfy Eq. (4.3) can not
become the best matching candidate block, therefore, ||X − Y (i, j)||1 calculation
does not need. By using Eq. (4.3), many points in the search window can be eliminated
by only calculating absolute difference between sum norms, (|||X ||1 − ||Y (i, j)|||1
symbolized as SAD−SN) without involving calculation of ||X − Y (i, j)||1.

cur_min_SAD ≤ |||X||1 − ||Y (i, j)|||1 = SAD_SN (4.3)

If Y(i, j) cannot satisfy Eq. (4.3), SAD (i, j) must be calculated. If SAD (i, j) is less
than cur−min−SAD, SAD (i, j) becomes cur−min−SAD. When this procedure is
repeated for all of the points (i, j) in the search window, the block that has the current
minimum SAD(cur−min−SAD) is the best matching block, and the displacement
vector of the best matching block is the motion vector for the reference block. If
the upper left corner point of the best matching block is (u, v) and upper left corner
point of the reference block in the current frame is (a, b), the motion vector is (u-a,
v-b). The SEA speeds up the process of finding the motion vector by eliminating
impossible candidate blocks in the search window before their SAD calculation that
requires very intensive computations. SEA algorithm is expressed as follows.

Algorithm 4.1 Successive elimination algorithm

1. Select initial candidate motion vector block its upper left corner point is one of
the search points within the search window in the previous frame.

2. Calculate SAD at the selected point.
3. cur−min−SAD = SAD
4. select another point among the rest of the search points within the search window
5. • calculate SAD−SN at the selected search point.

• if (cur−min−SAD ≤ SAD−SN) go to 7
• calculate SAD at the selected search point (the matching evaluation point)

6. if(SAD < cur−min−SAD) then cur−min−SAD = SAD
7. if(all the points in the search window is not completed) then go to step 4
8. Minimum SAD = cur−min−SAD, find motion vector.

4.3 Proposed Parallel Architecture for SEA

Figure 4.1 shows the block diagram of the proposed architecture [7]. It consists of
three major units, namely internal memory unit, control unit, and process control unit.

38 4 Parallel Architecture for Successive Elimination Block Matching Algorithm

Process
Control
Unit

Internal
Memory
unit

Control
Unit

Motion vector 1

Motion vector 2

{
Search pixels

{
Search pixels

Block_sum

Clk

Start

Current pixel

Search pixel

Pr_dis

E
n_

co
l

Pr_str

S_en

C_en

restart

restart

Row
Col

En_sum

En_row

Clk

Clk

En_procel

Fig. 4.1 Complete block diagram to a proposed parallel architecture

4.3.1 Internal Memory Unit (IMU)

The internal memory unit is consists of four search area buffers (SA buffers), and one
register array called col−array. SA buffers are used to store the search block from
external memory. Three SA buffers are used for each task. And these buffers are
again divided into sixteen memory modules to enhance memory bandwidth. Each
memory module in a buffer can store 48 pixels (i.e. one entire column in a search
area). This also enables memory interleaving for simultaneous accesses. Col−array
is array of 48 registers. Each register can store 16 bit data, which is used to store the
sum of 16 pixels in a column.

4.3.2 Control Unit (CU)

The control unit is a finite state machine. It consists of a counter to count the number
of clocks. Depending on the number of clocks, it generates the timing and control
signals for all the blocks. When inputs ‘Start’ and ‘Pr−dis’ goes to logic 1 then
counter is initialized to zero, otherwise it continuously counts the number of clocks.

4.3 Proposed Parallel Architecture for SEA 39

Fig. 4.2 Block diagram for
processing element (PE) Accumulator

a

b

|a-b|

Search pix

Cur.pix

Reg-
ister

MAD[15:8]

MAD[7:0]

|a-b|

4.3.3 Process Control Unit (PCU)

The process control unit consists of processing element array (PE array), and Address
generator unit. It calculates the SAD value of the search point if it is necessary. And it
calculates the motion vector from the search point having minimum SAD value. The
PE array consists of 16 processing elements (PEs). Each PE takes a search pixel and
a current pixel as inputs and found the partial Sum of absolute difference (PSAD).
After 16 clocks sum of all 16 PSADs will give the SAD. The structure of PE is shown
in Fig. 4.2.

4.3.4 Working of the Proposed Architecture

Given a block of size N × N , the block motion estimation searches for a search
point that yields the minimum SAD value within a neighborhood. Suppose that the
maximum motion in vertical and horizontal direction is 2N. We consider the search
block of size 48 × 48 and reference block (current block) of size 16 × 16.

The present chapter suggests a hardware structure based on two data management
techniques, namely (1) an on chip buffer configuration for reducing the number of
external memory accesses, (2) the residual memory interleaving for parallel data
accesses [8]. Furthermore, because the required pixels are sent to PEs in parallel
without data skewing, the latency delay is also very short. In essence, this architec-
ture provides a flexible high-speed motion estimator at a low cost. To reduce the
loads of system memory, chip I/O, and inter-connection, we used the on chip buffer
configuration for data reuse and residual memory interleaving, as described in [2].

The proposed architecture sequentially inputs current block pixels and search
pixels. For a task 0 (i.e. finding the Motion vector for current block 0) Search pixels
are stored in SA buffer 0, 1, and 2. Figure 4.3 shows the SA buffers corresponding to
each task. Figure 4.4 shows the memory modules of each SA buffers, corresponding
to each pixel. Pixel (0, 0) is stored in module 0 (M0) of buffer 0, pixel (0, 1) is stored

40 4 Parallel Architecture for Successive Elimination Block Matching Algorithm

Search area
Buffers

Task TiT0 T1 T2 T3 T4 T5

0 1 2 3 0 1

1 2 3 0 1 2
2 3 0 1 2 3

Fig. 4.3 Search area buffers for each task

Buffer 0 Buffer 1 Buffer 2
M0 M1 M2 M15 M0M1M2 M15 M0M1M2 M15

16 Columns

Search area for current block 0

M0M1M2 M15

Buffer 3

Search area for current block 1

48
 R

ow
s

C
O

L
 0

C
O

L
 1

C
O

L
 2

C
O

L
 1

5

C
O

L
 0

C
O

L
 1

C
O

L
 2

C
O

L
 1

5

C
O

L
 0

C
O

L
 1

C
O

L
 2

C
O

L
 1

5

C
O

L
 0

C
O

L
 1

C
O

L
 2

C
O

L
 1

5

Row 0
Row 1

Row 0
Row 1

Row 0
Row 1

Row 0
Row 1

Row 47 Row 47 Row 47 Row 47

Fig. 4.4 Search area buffers and its memory modules

in module 1(M1) of buffer 0, and pixel (0, 47) is stored in module 15 (M15) of buffer
2. Figure 4.4 shows that same column pixels are stored in same memory module.
None of the same row pixels are available in one module. So while calculating the
SAD value of a particular search point all the same row pixels we can access in
parallel for 16 PEs. Because required 16 columns pixels of same row are available
in 16 different modules. Like wise current block (16 × 16) pixels are also stored in
current−buffer of capacity 16 memory modules each module can store 16 pixels.

Assume for task 0, search area pixels are available in SA buffers 0, 1, and 2,
and current block pixels are available in current−buffer which is available in process
control unit. For first clock pulse, registers in a col−array loaded with 0th row pixels of
search area. Each column pixel is loaded in to corresponding register, i.e. ith column
pixel is loaded in to register (i). For the next clock pulse all the columns of next

4.3 Proposed Parallel Architecture for SEA 41

row pixels are added with the previous pixels which are available in corresponding
registers. Like that after 16 clocks each register is having sum of 16 pixels belongs
to same column (i.e. register (i) is having sum of first 16 pixels of ith column). For
the next 16 clocks sum of first 16 registers in col−array is available in block−sum
register.

For FSA we need to calculate SAD value for all the search points (2N × 2N =
32×32 points). But according to SEA we need not to calculate SAD for all the search
points. We can skip the calculation of SAD value by using Eq. (4.3). For left most
top pixel (pixel (0,0)) we need to calculate the SAD value. Proposed architecture
takes 16 clocks to calculate the exact SAD value. For calculating the SAD value,
process control unit (PCU) send address of the pixel (i, j) (i.e. co-ordinate of the
pixel) to internal memory unit (IMU). Then IMU sends search pixels from (i, j) to (i,
j + 15), after that PCU sends these 16 search pixels as one input for each processing
element (PE) in the PE array. And 16 current block pixels are coming from the
current−buffer which is available internally as a second input for each PE. After 16
clocks sum of 16 PEs will give the SAD value for the search point (i, j), this will
consider as a Cur−min−SAD value. reference−sum is sum of all pixel values in the
current−buffer. The procedure followed by the proposed architecture for processing
the remaining search points is given below.

1. temp = Block−sum - register(i) + register(i+16)
2. SAD−SN = abs(temp - reference−sum);
3. If (cur−min−SAD < SAD−SN)

Then Go to next search point
Else Go to calculation of SAD value

4. If (SAD < cur−min−SAD)
Then cur−min−SAD = SAD;
Else go to next search point

5. If (Row value of search point changed from (i-1) row to i throw)
Then {
register(m) = register(m)-pixel(i-1, m) + pixel(i+15, m);
Block−sum = register(m) + register(m+1) +register(m+15);
}
ElseIf (all the points in the search window is not completed)
Then go to next search point
Else Minimum SAD = cur−min−SAD, find motion vector.

For calculating the SAD−SN it requires only one clock. But to calculate exact SAD
it requires 16 clocks. This process is continued till all the search points are com-
pleted. After completion of all the search points PCU finds the motion vector from
cur−min−SAD. However, search area pixels are stored in on-chip buffers so that
they are internally available whenever necessary. For further I/O bandwidth reduc-
tion, we utilize the overlap between search areas of adjacent current blocks (as shown
in Fig. 4.5) and utilized the scheme of three search area buffers (SA buffer). It was

42 4 Parallel Architecture for Successive Elimination Block Matching Algorithm

0 1 2 0 1 2 0 1

0 1 2 3 4 5 6

16 pixels

search area of current block 0
search area of current block 1

search area of current block 2

SA Buffers
48X16 pixels Current blocks

 16X16
48

 p
ix

el
s

3 3

Fig. 4.5 Search area buffers for each current block

described in [9]. For executing task 1, search area pixels are accessed from buffer
1, 2 and 3, new data are input to buffer 0. In this cyclic manner, new pixels can be
easily accessed from system memory during the task 0, by using only one input port.

4.4 Results

4.4.1 Simulation Results

The proposed architecture has been simulated in Xilinx-ISE 8.1i platform. Function-
ality of the proposed architecture has been tested on two benchmark video clippings
namely, ‘foreman.qcif’ and ‘Newsreader.qcif’.We have tested the five frames in each
clipping; each frame is of size 176 × 144. Each frame contains 11 × 9 = 99 ref-
erence blocks of size 16 × 16. For the FSA no. of search points for each reference
block is 32 × 32 = 1,024. No. of clocks required for the proposed architecture
to find a motion vector to FSA is equals to no. of search points multiplied by 16
(i.e. 1,024 ∗ 16 = 16,384 because 16 clocks are required to calculate the SAD
value). No. of clocks required to SEA is equals to no. of search points for which
complete SAD value is calculated ∗ 16 + no. of points checked only the block−sum
+ no. of rows ∗ 16. Table 4.1 shows the no. of clocks and performance comparison
between FSA and SEA for the inputs newsreader.qcif and foreman.qcif. Simulation

Table 4.1 Number of clocks and performance comparison between FSA and SEA for the input
News reader sequence (5 frames, QCIF:176 X144 pixels, 8 bits per pixel)

FSA SEA Percentage of speed increased

No. of SADs calculated per Frame 101,376 36,908

PSNR 39.08 dB 39.08 dB

Average no. of clocks 16,384 7,100 56.66 %

required for one block (1,024 × 16)

4.4 Results 43

results shows that the average speed to calculate the motion vector by the proposed
architecture for SEA is increased by nearly 59 % when compared to FSA.

4.4.2 Synthesis Results

Verilog language [10, 11] is employed to model the proposed architecture at behav-
ioral domain. The behavioral Verilog model is then used for logic circuit synthesis
executed by invoking the Synopsys design vision synthesis tool. The logic circuit
that implements a proposed architecture has been obtained. Table 4.2 shows the area
requirements for proposed Architecture for SEA and FSA, in terms of standard
area units (area required by the 2-input NAND gate equals to 4 area units). The area
requirement shows that Architecture for SEA will take nearly 30 % more than the
FSA architecture. Table 4.3 shows the power consumption for proposed Architecture
for SEA and FSA. That shows power requirements are nearly same for both archi-
tectures. The proposed architecture for SEA increased the speed by nearly 59 % with
same power requirement and slight raise in area required by the FSA architecture.
The proposed architecture can work up to 100 MHz frequency (Table 4.4).

Table 4.2 Area (in µm2) comparison between architectures of SEA and FSA

Unit name SEA FSA

Memory 3213950.00 2216900.00

Control unit 848.00 793.00

Process control unit 87476.00 85073.00

Total 3302274.00 2302766.00

Table 4.3 Number of clocks and performance comparison between FSA and SEA for the input
Foreman sequence (QCIF:176 ×144 pixels, 8 bits per pixel, 5 frames)

FSA SEA Percentage of speed increased

No. of SADs calculated per Frame 101,376 30,959

PSNR 38.46 dB 38.46 dB

Average no. of clocks 16,384 6,200 62.15 %

required for one block (1,024×16)

Table 4.4 Power comparison
between architectures of SEA
and FSA

Unit name SEA FSA

Memory 320.6612 mW 318.9846 mW

Control unit 101.5602 µW 96.0931 µW

Process control unit 17.4026 mW 17.2832 mW

Total 338.165 mW 337.2287 mW

44 4 Parallel Architecture for Successive Elimination Block Matching Algorithm

4.5 Conclusions

The present chapter has focused on developing a parallel architecture for SEA. The
proposed architecture for SEA increased the speed by nearly 59 % with same power
requirement and accuracy, but slight increase in area required by the FSA architecture.
Simulation study shows that the average search points are reduced by SEA to 70 %
of the search points required by the FSA. Configuration of random access on-chip
buffer solves the problem of chip I/O and memory bandwidth requirements. The
buffer and the input data have been arranged according to the principle of residual
memory interleaving for parallel accessing of data. This architecture is considered to
be useful for real-time video applications like video telephony, video conferencing
and HDTV.

References

1. Do, V.L., Yun, K.Y.: A low-power VLSI architecture for full-search block-matching motion
estimation. IEEE Trans. Circuits Syst. Video Technol. 8(4), 393–398 (1998)

2. Jong, H.-M., Chen, L.-G., Chiueh, T.-D.: Parallel architectures for 3-step hierarchical search
block-matching algorithm. IEEE Trans. Circuits Syst. Video Technol. 4(4), 407–416 (1994)

3. Srinivasan, R., Rao, K.: Predictive coding based on efficient motion estimation. In: Proceedings
IEEE ICC’84, pp. 521–526 (1984)

4. Pun, A., Hang, H.M., Schilling, D.L.: An efficient block matching algorithm for motion com-
pensated coding. In: Proceedings International Conference Acoustics, Speech, and Signal
Processing, pp. 25.4.1–25.4.4 (1987)

5. Yeo, H., Hu, Y.: A novel matching criterion and low power architecture for real-time based
block based motion estimation. In: Proceedings ASAP’96, pp. 122–130, August 1996

6. Li, W., Salari, E.: Successive elimination algorithm for motion estimation. IEEE Trans. Image
Process. 4(1), 15 Jan 1995

7. Srinivasarao, B.K.N., Chakrabarti, I.: A parallel architecture for successive elimination block
matching algorithm. In: Proceedings TENCON-2008 (IEEE Region 10 Conference), pp. 1–6.
Hyderabad, India, 19–21 November 2008

8. Mahmoud, H.A., Bayoumi, M.A., Wilson, B.: A low power architecture for a new efficient
block matching motion estimation algorithm. In: Proceedings 43rd IEEE Midwest Symposium
on Circuits and Systems, Lansing, 8–11 August 2000

9. Baglietto, P., Maresca, M., Migliaro, A., Migliardi, M.: Parallel implementation of the full
search block matching algorithm for motion estimation. In: ASAP’95, pp. 182–192. IEEE
Computer Society Press, July 1995

10. Palnitkar, S.: Verilog HDL: A Guide to Digital Design and Synthesis, 2nd edn. Prentice Hall,
February 2003

11. Bhasker, J.: Verilog HDL Synthesis: A Practical Primer. Star Galaxy, November 1998

Chapter 5
Fast One-Bit Transformation Architectures

This chapter begins with an introduction to one-bit transformation process followed
by its combination with the Diamond Search (DS) algorithm leading to a fast binary
ME procedure. The novel data flow analysis for the DS algorithm has been pro-
vided in the subsequent section. Next, the proposed ME architectures based on the
combination of the DS algorithm with one bit transformation have been presented.
Relevant results dealing with synthesis of the proposed architectures are given next.
Conclusions are finally drawn in the last section.

5.1 Introduction

Due to the stringent requirements of the real time video playback systems, video cod-
ing is the most essential part of any visual application. Furthermore, due to the limited
channel and storage capacity, these applications require a very high compression ratio
as well. Motion estimation (ME), which is the most essential part of any video coding
technique, exploits and tries to minimize the temporal redundancy present between
successive frames. ME, which is computationally intensive, involves about 80 % of
the total computational power of the encoder [1]. Block matching motion estimation
(BMME) is one of the most efficient and popular techniques to remove the tempo-
ral redundancy present between successive frames [2]. In this method, given two
blocks of pixels, a source block of size b × b known as macro-blocks (MBs) and a
search window larger than the source block, find the b × b sub-block in the search
window that is closest to the source block in a previously available frame known as
the reference frame. Motion vector (MV) is defined as the displacement between the
current block position and the best matched one in the reference frame. This process
is repeated until MV is found for all the blocks in the current frame. In order to
improve the coding efficiency, variable blocks size (VBS) ME has been adopted in
modern coding standards like H.264.

© Springer International Publishing Switzerland 2015
I. Chakrabarti et al., Motion Estimation for Video Coding,
Studies in Computational Intelligence 590, DOI 10.1007/978-3-319-14376-7_5

45

46 5 Fast One-Bit Transformation Architectures

Let p denote the source block of b × b pixels, with pi, j being the pixel at row i
and column j . Similarly, let w denote the search window with wi, j being the pixel at
row i and column j . The sub-block of w at position x, y is denoted by wx,y and is the
block of b × b pixels wx+i,y+ j , for i = 1, 2, . . . , b, j = 1, 2, . . . , b. The matching
criterion of the BMME method has a direct impact on the coding efficiency and
computational complexity. The distance between two blocks u and v can be measured
in many metrics, e.g., mean squared error, sum of absolute differences (SAD), pel
difference classification etc. [3]. But typically the mean absolute deviation is used.
The mean absolute deviation or l1 metric is given by

‖u, v||1 = 1

b2

∑

i, j

|ui, j − vi, j | (5.1)

Whatever may be the matching criterion, evaluation of the matching criterion on
pixels with 8 bits/pixel representation requires a huge amount of computation. The
computational load can be reduced to a great extent by representing the pixels with
a reduced number of bits. As proposed in [4], an image frame with 8 bits/pixel
representation is first converted into a binary frame with 1 bit/pixel representation.
ME is then carried out on these binary image frames. Boolean exclusive OR (XOR)
operation is used to find the number of non-matching points (NNMP). In this method,
NNMP is regarded as the matching criterion in place of the conventional SAD.

In literature, many one-bit transformation (1-BT) kernels are available that con-
vert an image with 8 bits/pixel representation into a binary image with 1 bit/pixel
representation. The first 1-BT kernel was proposed by Natarajan et al. [4]. A mul-
tiplication free one-bit transformation (MF-1BT) kernel has been proposed in [5].
Binary ME with an early termination scheme have been proposed in [6]. Two bit
transformation (2-BT) has been proposed in [7] for an enhanced accuracy in ME.
The constrained one bit transformation (C-1BT) has been proposed in [8] for a bet-
ter performance than 1-BT, but at the same time with a reduced complexity than
2-BT. The implementation of 1-BT based ME on hardware has been proposed for
the first time by Natarajan et al. [4]. A high performance VBS ME architecture for
MF-1BT has been proposed in [9]. In [10], MF-1BT and C-1BT ME architectures
for fixed block size (FBS) are presented. Both the architectures [4, 10] are based on
16 processing elements (PEs).

The application of fast search algorithms like diamond search (DS) on 1-BT
frames can further reduce the computational load to a great extent as compared
to applying full search (FS) on 1-BT frames. The combination of 1-BT with DS
[11] results in a very small degradation in the peak signal to noise ratio (PSNR) as
compared to FS.

5.1 Introduction 47

In this chapter, we have presented an in depth analysis of performing ME on 1-BT
binary frames by applying DS algorithm and proposed architectures for 1-BT based
FBS and VBS motion estimation. In the architectures presented in this chapter, the
pixels from the current block (CB) are read only once from the external memory and
are stored into the local memories of the ME hardware. Thereafter, the pixels from
the CB are supplied to the appropriate PEs periodically. The overlap between the
neighboring search locations for DS is also exploited in a novel way to reduce the
number of external memory accesses. The architectures explained in this chapter are
faster than a recently reported 1-BT based ME architecture [9].

5.2 One Bit Transformation and Diamond
Search Algorithm

One bit transformation based ME algorithms reduce the computational complexity
of the ME process to a great extent. The diamond search algorithm requires much less
computational power when compared with FS based ME. At the same time, diamond
search algorithm provides acceptable image quality, and therefore, is one of the most
preferred search algorithms. In the present section, explains the functionality of 1-BT
based ME and diamond search algorithm.

5.2.1 One Bit Transformation Based ME

Before applying 1-BT based ME, the original image frames having 8 bits/pixel rep-
resentation is converted into binary image frames with 1 bit/pixel representation.
This is done by filtering the original image frame by a multi band-pass filter. The
filtered image is then compared with the original image to obtain the binary image.
In the original work by Natarajan et al. [4], the kernel used for filtering was having 25
non-zero elements and required expensive floating point multiplications. MF-1BT
has been proposed in [5] in which the complex floating point multiplications were
replaced by simple shifting operations. This new kernel ‘K’ in matrix form has been
shown in (5.2).

As in this kernel the normalization factor is a power of 2, the filtering can now
be performed by mere shifting without any expensive multiplication operation. The
original frame F is filtered by convolving it with K and the filtered frame F̂ is obtained
and then one-bit image frames are constructed.

48 5 Fast One-Bit Transformation Architectures

K = 1

16

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0000000001000000000
0000000000000000000
0000000000000000000
0000001000001000000
0000000000000000000
0000000000000000000
0001000001000001000
0000000000000000000
0000000000000000000
1000001000001000001
0000000000000000000
0000000000000000000
0001000001000001000
0000000000000000000
0000000000000000000
0000001000001000000
0000000000000000000
0000000000000000000
0000000001000000000

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.2)

B(i, j) =
{

1, if F(i, j) > F̂(i, j)
0, otherwise

(5.3)

Here, i and j are the spatial coordinates of the pixel. The foregoing process by
which an original frame with 8 bits/pixel representation is converted into a binary
frame with 1 bit/pixel representation is known as one-bit transformation. After this
operation, the number of non-matching points (NNMP) at any point (m, n) for a MB
of size N × N is found as:

NNMP(m, n)=
N−1∑

i=0

N−1∑

j=0

Bt (i, j) ⊕ Bt−1(i + m, j + n)

where, −s ≤ m, n ≤ s.

(5.4)

Here, ‘s’ is the maximum search range and ⊕ denotes XOR operation. Also, Bt and
Bt−1 represent the current and the reference 1-BT frames respectively.

5.2.2 Diamond Search Based 1-BT ME

In DS algorithm [12], the search pattern forms a diamond like shape as shown in
Fig. 5.1. Also, there is no limit on the number of steps that may be involved in the
algorithm. DS uses two fixed search patterns, where one is the large diamond search
pattern (LDSP) and the other is the small diamond search pattern (SDSP). The search
starts with the LDSP with its center of search located at the origin. The matching

5.2 One Bit Transformation and Diamond Search Algorithm 49

Fig. 5.1 An example
illustrating the search
strategy of DS algorithm -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

 -6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

y

x

criterion is evaluated for all the nine points of LDSP and if the best match is found
at the center, then the search pattern is switched to SDSP; else, another LDSP is
selected with the new search center pointing to the location where the best match is
found. This process is repeated until the best match is found at the center of the LDSP,
after which the search pattern is switched to SDSP where the matching criterion is
evaluated for four points around the center. The final MV is then found from the
point giving the best match at this step.

Figure 5.1 demonstrates pictorially the steps required to find the motion vector
(−2, +3). The solid spheres indicate the location of the search points for LDSP. The
solid squares indicate the location of the search points for SDSP. The locations of
the minimum SAD points are indicated by transparent sphere (square) for LDSP
(SDSP).

As DS algorithm is highly center biased, it is very fast as compared to FS
algorithm. On the other hand, unlike other fast search techniques such as the new
three step search, where the number of search steps are fixed, in DS the number of
search steps are not fixed and thus its performance is very much close to that of FS
in terms of the PSNR [13].

Motion estimation is usually performed on 1-BT frames by full search only
[9, 10]. In the present work, several fast search techniques (e.g. three step search
TSS), new three step search (NTSS), four step search (4-SS), and diamond search
(DS)) have been applied on 1-BT frames. The performance of fast ME on 1-BT
frames is evaluated based on PSNR and the average number of search points.

In Table 5.1, the PSNR values obtained by applying different fast search algorithms
on 1-BT frames have been shown for different benchmark video sequences. All the
sequences are in CIF (352 × 288) format, and each of the sequences contains 300

50 5 Fast One-Bit Transformation Architectures

Table 5.1 Performance comparison in terms of PSNR (dB)

Video sequence Full search TSS NTSS 4-SS DS

Foreman Max. 32.208 29.678 31.816 31.078 31.960

Min. 28.106 25.900 27.652 27.965 27.899

Avg. 30.766 28.982 29.651 30.031 30.458

Hall Monitor Max. 34.388 31.631 33.599 34.163 34.478

Min. 30.423 28.161 29.89 30.318 30.33

Avg. 33.755 31.129 32.535 33.16 33.675

Football Max. 23.262 22.435 22.16 22.616 22.966

Min. 17.004 16.189 16.891 16.868 16.969

Avg. 21.639 19.816 20.953 21.101 21.448

Tennis Max. 30.465 28.899 29.997 30.108 30.169

Min. 22.307 21.115 21.169 21.076 21.987

Avg. 28.387 26.158 27.586 27.618 28.178

Coastguard Max. 31.672 29.178 30.661 31.306 31.217

Min. 23.191 21.806 22.898 22.165 22.766

Avg. 29.512 27.638 28.76 28.898 28.922

Table 5.2 Average number of search points per MV generation

Video sequence NTSS 4-SS DS

Foreman 30.15 26.80 24.00

Hall Monitor 22.68 20.43 13.30

Football 22.56 21.58 17.70

Tennis 20.59 21.18 19.96

Coastguard 17.50 16.53 13.85

The number of search points for TSS and FS are fixed, namely 25 and 1,089 respectively for a
search range of [−16, 16]

frames. The search range is taken as [−16, 16] along both the axes. The average
number of search points required to generate a MV can be regarded as a metric to
measure the computational complexity for block matching. The average number of
search points for different search algorithms on different video sequences have been
shown in Table 5.2.

It can be observed from Table 5.1 that the combination of DS and 1-BT displays
PSNR performance similar to the application of FS on 1-BT in most sequences with
less than 0.21 dB degradation except for the sequences with complex motion like
Foreman and the Coastguard for which the performance degrades by 0.31 and 0.59
dB respectively. On the other hand, it can be seen from Table 5.2, that DS based
1-BT ME always provides faster results than other fast search techniques. Taking all
these observations into account, it can be inferred that applying DS on 1-BT frames
provides almost the same performance as that of the FS based 1-BT ME, but at much
lower computational complexity.

5.3 Data Flow Analysis for DS Algorithm 51

5.3 Data Flow Analysis for DS Algorithm

Due to the regularity in data-flow, Full Search Motion Estimation (FSME) is generally
preferred from the implementation point of view. However, due to its high computa-
tional power requirements, many fast but sub-optimal search algorithms have been
proposed. These fast search algorithms can reduce the computational power by up to
60 %, but as a side effect introduce irregular data flow [14–16]. In our experiment, it
has been found that DS based 1-BT ME provides acceptable quality at much lower
complexity than Full Search (FS) based 1-BT ME. Therefore, DS algorithm is one of
the most preferred fast search algorithms. On the other hand, as DS introduces irregu-
lar data flow, the implementation of DS in hardware imposes considerable challenge
for a VLSI designer. The search points for DS algorithm are arranged in a diamond
like shape. This makes memory access mechanism for DS to be completely different
from the FSME. The technique by which the data reuse is done for FS cannot be
applied to DS in the same way. It has been shown in [17, 18] that the memory access
is the most costly operation in ME hardware. Therefore, it is possible to reduce the
overall power consumption of the ME hardware by reducing the number of external
memory accesses. In the present section, a novel data-flow has been presented, which
reduces the power consumption by maximizing the data reuse. In Fig. 5.2, the center
of search is represented by location ‘4’, and all the eight search locations around
the center are represented by indexes starting from ‘0’ to ‘8’. In order to understand
the data overlap among different search locations, let us consider the size of the
block as 4 × 4, and the center of search is located at pixel coordinates (2, 2). Now,

4

0

1 2

3 5

8

6 7

Fig. 5.2 Search locations for DS algorithm. The center of search is denoted by ‘4’

52 5 Fast One-Bit Transformation Architectures

0,2 0,3 0,4 0,5

1,1 1,2 1,3 1,4 1,5 1,6

2,0 2,1 2,2 2,3 2,4 2,5 2,6 2,7

3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,7

4,0 4,1 4,2 4,3 4,4 4,5 4,6 4,7

5,0 5,1 5,2 5,3 5,4 5,5 5,6 5,7

6,1 6,2 6,3 6,4 6,5 6,6

7,2 7,3 7,4 7,5

Row0

Row1

Row2

Row3

Row4

Row5

Row6

Row7

Fig. 5.3 Data flow example for DS with pixel coordinate (2, 2) as the center of search

with reference to Figs. 5.2 and 5.3, location ‘0’ corresponds to the pixel coordinates
(0, 2), location ‘1’ corresponds to the pixel coordinates (1, 1), and so on.

In order to reduce the processing time for 1-BT based ME, it is desirable to process
an entire row of data from the current block as well as the search block simultaneously
[4, 10]. In that case, one has to access an entire row of data from both of the blocks
simultaneously. Now, with reference to Figs. 5.2 and 5.3, one can observe that the
search pixels for the entire first row corresponding to the location ‘0’ in Fig. 5.2 have
the pixel coordinates (0, 2), (0, 3), (0, 4) and (0, 5) in Fig. 5.3. It is also obvious
from Fig. 5.3 that the first row of search pixels corresponding to the location ‘0’ can
be obtained from the same row, namely ‘Row0’. Similarly, the search pixels for the
entire first row corresponding to the search locations ‘1’ and ‘2’ can be obtained from
the same row, namely Row1. In a similar way, ‘Row2’ provides the search pixels for
the entire first row corresponding to the search locations ‘3’, ‘4’, and ‘5’. Similarly,
the first row of search pixels for the search locations ‘6’ and ‘7’ are obtained from
Row3 and lastly, the first row search pixels for the search location ‘8’ are obtained
from Row4. Thus, by exploiting the overlap of the search pixels for different search
locations, one can reduce the number of memory accesses to 5 (Row0–Row4) instead
of 9 as would have been required for a straightforward implementation.

It may be noted that the second row corresponding to the search location ‘0’ in
Fig. 5.2 has the pixel coordinates (1, 2), (1, 3), (1, 4), and (1, 5) in Fig. 5.3. Thus, the
second row of data corresponding to the search location ‘1’ can be obtained from

5.3 Data Flow Analysis for DS Algorithm 53

‘Row1’ (as shown in Fig. 5.3) which has already been read in the last step. Similar
is the case for all the search locations except for the location ‘8’, for which an entire
new row (i.e. Row5) has to be read. Thus, only a new row of data has to be read
in the subsequent steps of ME. Therefore, by exploiting the overlaps of the search
pixels for different search locations the number of memory accesses for search pixels
can he reduced down to 8 (5 + 1 + 1 + 1), whereas 36 (9 × 4) memory accesses
(corresponding to the fact that there exist 9 search locations and the block size is
4 × 4 as mentioned earlier in the present section) would have been required for a
straightforward implementation of DS algorithm.

5.4 Proposed VLSI Architecture for 1-BT Based Fixed Block
Size Motion Estimation

The block diagram of the proposed architecture for performing Fixed Block Size
(FBS) ME on binary frames by applying DS has been shown in Fig. 5.4. The archi-
tecture includes 8 RAMs for storing all the pixels from the search window (SW), a
register array for storing the current pixels, a register array for storing the search pix-
els termed as the search register array, a data selector array, nine PEs, a comparator
and a process control unit. In the proposed scheme, the evaluations of the matching
criterion for all the 9 search locations shown in Fig. 5.2 are done in parallel. As there
are 9 search locations for DS algorithm, a total of 9 PEs are used.

Register Array

Current Block Pixels

Search Register
Array

From
External
Memory

Process Control Unit

Pattern Analyzer Control Sequence
Generator

R0

R1

R2

R3

R4

RAM0

RAM1

RAM2

RAM3

RAM4

RAM5

RAM6

RAM7

48

48

48

48

48

48

Motion
Vectors

48

48

48

48

48

48

48

PE0

PE1

PE2

PE3

PE4

PE5

PE6

PE7

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

Comparator
 and MV
Selector

16 Bit data
selector

PE8

9

9

9

9

9

9

9

9

9

Fig. 5.4 Overall VLSI architecture for the proposed FBS ME

54 5 Fast One-Bit Transformation Architectures

Before the start of ME process for each MB, the search pixels from the entire SW
are loaded into the internal memory of the ME hardware which consists of 8 RAMs.
The CB pixels are also loaded into the register array for storing the current pixels.
In the first step of ME, the center of search is chosen as the origin and the search
pixels required for computing the matching criteria at the center are loaded into the
search register array from 8 RAMs. The search register array then provides proper
search pixels to all the PEs. All the PEs start the evaluation of the matching criterion
(NNMP) for all the 9 search locations simultaneously. The computed values of the
NNMPs are sent to the comparator. The comparator finds the minimum NNMP value
as well as the corresponding location and sends it to the process control unit. The
process control unit controls the entire process of ME by sending proper control
signals to all the hardware modules. The internal structure of each of the modules of
the proposed hardware is provided in the following subsections.

5.4.1 Processing Element

The architecture of the PE is shown in Fig. 5.5. The PE possesses two input ports
namely, C and S for reading two 16-bit vectors from the CB and the SW respectively.
There are two 8-bit XOR arrays in the PE. One of the XOR arrays operates on the
eight most significant bits of the 16-bit vectors C and S, and the other operates on
the remaining eight least significant bits. The number of ones as a result of the XOR
operation is obtained by using two look-up tables (LUTs) with 28 entries. The outputs
of the LUTs are then applied to a 4-bit adder. The output of the adder is then applied
at the input of the accumulator. The output of the accumulator provides the value of
the NNMP for a particular location after 16 clock cycles for a MB of size 16 × 16.

Fig. 5.5 PE architecture for
1-BT FBS ME

XOR Array XOR Array

Accumulator

16 16

8 8

8 8

NNMP

SC

4 4

5

Adder

9

256 8
LUT

256 8
LUT

8 8

××

5.4 Proposed VLSI Architecture for 1-BT Based Fixed Block Size … 55

5.4.2 Memory Interleaving

In order to provide the required search pixels to all the PEs simultaneously, memory
interleaving technique similar to [19] is exploited. The search pixels from the SW are
interleaved among 8 RAMs (indexed from 0 to 7). For a single MB of size 16 × 16
pixels and for a search range of [−16, 16] pixels, the size of the SW will be 48 × 48
pixels. Here, since each pixel is represented by one bit, the actual size of the SW
would be 48 × 48 bits. The distribution of the search pixels among these 8 RAMs is
depicted in Fig. 5.6. All the pixels from the first location of SW are stored into the
first location (that is the address 0) of the RAM0. Similarly, all the pixels from the
second location of the SW are stored into the first location of the RAM1.

This process is repeated for all the first eight locations of the SW (i.e. for the
locations 0 to 7). After the eighth location, the search pixels from the next location
(i.e. address 8) are stored into the second location of the RAM0 (i.e. address 1). This
process is repeated for the entire SW. This whole process is depicted in Fig. 5.6b.
Using the above memory organization, it becomes very easy for one to locate the
particular RAM and the location in that RAM where the search pixels from the SW
with a given location are stored. For a given location in the SW, the last three bits of
the location determine the particular RAM, whereas the first three bits of the location
starting from the MSB determine the location of that RAM at which the search pixels
with the given location are stored. For example, for the location 7 (000111) of the
SW, the first three bits starting from the MSB (i.e. 000) determine the address of the

Fig. 5.6 Memory
interleaving for parallel
access of the search pixels.
a Search block for MB of
size 16 × 16 and search range
of [−16, 16]. b Modified
memory arrangement with
the first index indicating the
RAM number and the second
indicating the location of
48-bit word stored in the
RAM

0

1

2

3

7

8

9

32

47

RAM0

RAM1

RAM2

RAM7

RAM0

RAM1

RAM0

RAM7

0,0

1,0

2,0

3,0

7,0

0,1

1,1

0,4

7,5

(a) (b)
48 bits 48 bits

56 5 Fast One-Bit Transformation Architectures

RAM and the last three bits (i.e. 111) determine the particular RAM, i.e. the search
pixels from location ‘7’ of the SW are stored at an address 0 of the RAM7. Similarly,
the search pixels from the location ‘47’ of the SW are stored at address 5 of RAM7.

5.4.3 Register Array for the Current Block Pixels

The pixels from the CB are read only once from the external memory and are stored
into an array of sixteen 16-bit registers. The current pixels are then provided to the
proper PE by the register array, and no further external memory access is required.
In this way, the proposed architecture significantly reduces the number of external
memory accesses for the current pixels.

5.4.4 Search Register Array

In order to provide search pixels to all the PEs simultaneously, an array of five
48-bit registers are used. The data sharing and the data reuse techniques presented
in Sect. 1.3 are performed by this unit. It reduces the number of external memory
accesses to a great extent. At the start of each search, the data are loaded into the
register array from the RAMs independently and at the same time. From the next step
onwards, no external memory read operations are required for the registers R0–R3
as shown in Fig. 5.7.

R0

From RAM

Start

R1

From RAM

Start

R2

From RAM

Start

R3

From RAM

Start

R4
From RAM

48

48

48

48

48

48

48

48

48

Fig. 5.7 Register array for search pixels

http://dx.doi.org/10.1007/978-3-319-14376-7_1

5.4 Proposed VLSI Architecture for 1-BT Based Fixed Block Size … 57

Register R0 is now connected to register R1 via one multiplexer and register R1 is
connected to register R2 via another multiplexer. This is the case for all the registers
except for the last register R4, which is always connected with one of the RAMs.

The register R0 always provides the search pixels required for the computation of
the NNMP at location 0 (vide Fig. 5.2). Computation of NNMP at location 0 is done
by PE0. Therefore, register R0 is connected to PE0 via one 16-bit data selector. In a
similar way, R1 supplies the search pixels required for the computation of NNMP at
the locations 1 and 2. Therefore, register R1 is connected to the processing elements
PE1 and PE2 via two 16-bit data selectors. Register R2 is connected to PE3, PE4
and PE5 via three 16-bit data selectors. In a similar way, register R3 is connected to
PE6 and PE7, while register R4 is connected to PE8 via data selectors.

The data selector provides the proper data to the proper PE from the register array.
It accepts one 48-bit data at its input from the register and provides one 16-bit output
to the PE that is connected to it. It selects the proper data depending upon the location
of the search center. In particular, if the search center is located at the pixel coordinate
(4, 4), then one of the data selectors that is attached to register R1 will accept the
entire row of 48-bit search data starting from (3, 0) to (3, 47) from register R1, and
will provide one 16-bit search data starting from (3, 3) to (3, 18) to PE1. Another
data selector will provide 16-bit data starting from (3, 5) to (3, 20) to PE2. It takes
one clock cycle to load the search pixels from the RAMs into the register array and
thus it produces a delay of one clock cycle.

5.4.5 Comparator Unit

The outputs of all the PEs are connected to a comparator. The comparator selects
the best MV from the computed values of the matching criteria. It generates the
coordinates of the best matching point. It also generates a number ranging from 0 to
8 indicating the location where the best match is found. For example, with reference
to Fig. 5.2, if the best match were found at the center of the search, then it will
generate the number 4.

5.4.6 Process Control Unit

This is the most critical part of the architecture. There are two parts in this unit. One
is the pattern analyzer and the other is the control sequence generator. The pattern
analyzer unit takes the decision regarding whether to perform LDSP or SDSP in the
next step of the search depending upon the location of the best match as obtained
from the comparator unit. It also generates the center of the new search and the new
points where the matching criteria are to be evaluated.

The control sequence generator generates the control signals to control the register
array for the current block pixels and the search register. It generates the control

58 5 Fast One-Bit Transformation Architectures

signals required to coordinate among the different hardware units to complete the
search smoothly. It also generates the termination signal indicating that the search
process is complete, and the MVs are ready to be read from the MV selector.

5.5 Proposed Fast Binary ME Architecture for Variable
Block Size

The DS based binary ME architecture with Variable Block Size (VBS) is similar to
the FBS ME architecture shown in Fig. 5.4. The VBS motion estimation architecture
computes the NNMP values for all the 41 partitions of a MB. The partition of a given
MB into 41 blocks is shown in Fig. 5.8. However, for VBS ME architecture, an array
of 4 PEs is used instead of a single PE as was used for FBS ME architecture. The
architecture of a single PE has been shown in Fig. 5.9. There are two read ports S
and C for reading the row of pixels from the SW and the CB respectively. These
are then applied at the inputs of the XOR array and the number of 1s as a result of
XOR operation is counted by a LUT. The LUT has 16 entries. The output of the LUT
is then applied to an accumulator. The final output of the accumulator provides the
NNMP value for a particular location.

The detailed structure of PE Array 0 has been depicted in Fig. 5.10. PE Array 0
consists of four PEs namely, PE00, PE01, PE02 and PE03. Each PE computes the
NNMP value for a primitive block of size 4 × 4 in 4 clock cycles. One 4-bit counter,

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

4×4

17 18

19 20

21 22

23 24

8×4

25 26 27 28

29 30 31 32

4×8

33 34

35 36

8×8 16×8

37

38

8×16

39 40
16×16

41

Fig. 5.8 Partition of a MB into 41 blocks

5.5 Proposed Fast Binary ME Architecture for Variable Block Size 59

XOR Array

16 LUT

NNMP

SC

5

4

4

Accumulator

3

4

Fig. 5.9 PE architecture for 1-BT VBS ME

PE00

R13R9R5R1

5

5 5 5 5

0 1 2 3

count[3:2]

PE01

R14R10R6R2

5

5 5 5 5

0 1 2 3

count[3:2]

PE02

R15R11R7R3

5

5 5 5 5

0 1 2 3

count[3:2]

PE03

R16R12R8R4

5

5 5 5 5

0 1 2 3

count[3:2]

Search Pixels

44 4 44 4 4 4

Current Pixels

Fig. 5.10 Configuration of the PE Array 0

60 5 Fast One-Bit Transformation Architectures

which starts counting from the start of the operation (i.e. from time t = 0), is used
to keep track of the entire process. The NNMP values for sixteen 4 × 4 blocks are
stored into sixteen 5-bit registers, namely R1 to R16 (vide Fig. 5.10). The NNMP
values for sixteen 4 × 4 blocks are directed to the appropriate registers by four 1 to
4 demultiplexers. The first two bits starting from the MSB of the counter are used
as the control signal for the demultiplexers. Since each PE can compute the NNMP
value of a 44 block in 4 clock cycles, the four PEs, namely PE00, PE01, PE02 and
PE03 work in parallel to produce the NNMP values for the blocks 1, 2, 3 and 4 (vide
Fig. 5.8) respectively at time t = 3. At time t = 3, the counter will read count = 0011
and count [3:2] = 00, so the output of the PE00 will be stored in the register R1.
Similarly, the outputs of the other three PEs, namely PE01, PE02 and PE03 will be
stored in the registers R2, R3 and R4 respectively.

In this way, all the sixteen NNMP values for sixteen 4 × 4 blocks are obtained
and are stored in the registers R1 to R16. The NNMP values for other block sizes are
obtained by adding the NNMP values of the primitive 4×4 blocks. For example, the
NNMP values of the two 4×4 blocks are added to obtain the NNMP value for a 4×8
or an 8 × 4 block. The NNMP values for the 4 × 8 and 8 × 4 blocks are stored into a
pipeline register [9]. The NNMP values of the two 8 × 4 blocks are added to obtain
the NNMP value of one 8 × 8 block. The NNMP value of the two 8 × 8 blocks are
added to obtain the NNMP value for one 16×8 or 8×16 block, which are also stored
into another pipeline register. The NNMP values of two 8 × 16 blocks are finally
added to obtain the NNMP value for a single MB. The merging process introduces a
delay of two clock cycles for two stage pipelining. The 41 NNMP values computed
for a MB are finally sent to a comparator and a MV selector, which determine the
minimum NNMP value and the corresponding MVs for each MB partition.

5.6 Results

5.6.1 Performance of the Proposed Fast 1-BT Based ME

The PSNR difference for the proposed method of ME has been compared with the
conventional FS based binary ME. The results have been shown in Table 5.3. It can
be observed from Table 5.3 that the proposed method of ME can provide a very small
PSNR degradation compared to the FS based binary ME. For a video sequence with
low motion like Hall Monitor, the PSNR drop is below 0.1 dB. However, the PSNR
drop increases slightly for the sequences with complex motion like Foreman and
Coastguard. The FS based binary ME has been compared with the proposed method
of ME in terms of the average number of steps required to process a MB, and the
result of the comparison has been provided in Table 5.4. Based on the observations
made on Tables 5.3 and 5.4, it can be concluded that the computational complexity
of the proposed method is much lower than the FS based ME. At the same time, the
degradation in PSNR is also less than 0.5 dB for all the video sequences tested.

5.6 Results 61

Table 5.3 Average PSNR drop (dB) against conventional full search based binary ME

Foreman Hall Monitor Football Tennis Coastguard

0.308 0.080 0.191 0.209 0.478

Table 5.4 Average number of search points per MV generation

Video sequence Average no. of search steps

Foreman 6.85

Hall Monitor 3.76

Football 4.92

Tennis 5.62

Coastguard 3.98

The number of search points for TSS and FS are fixed, namely 25 and 1,089 respectively for a
search range of [−16, 16]

5.6.2 Implementation Results

The proposed DS based binary ME architectures for FBS and VBS are described in
Verilog HDL. In order to make a fair comparison with the architectures reported in
[9], the proposed architectures are also implemented on the same FPGA as was done
in [9]. The proposed fast binary FBS ME architecture consumes 731 slices (1,103
LUTs). The on-chip memory of the proposed architecture is 2,304 bits for storing
the SW for a single MB. These search pixels are stored into 6 locations of 8 RAMs.
The proposed VBS ME architecture consumes 1,014 slices (1,576 LUTs).

The proposed VBS ME architecture involves a latency of 22 clock cycles: one
clock cycle for loading the search pixels from the RAMs into the register array for
search pixels, 16 clock cycles required for the computation of the NNMP, two clock
cycles for the merging process, one clock cycle for the comparison and one clock
cycle each required for the purpose of the pattern generation and the control signal
generation. Therefore, each of the steps of DS requires 22 clock cycles. Based on
our simulation results (vide Table 5.4), it is found that when applying DS on 1-BT
frames, a maximum of seven search steps are required for processing a single MB.
Thus, a total 154 (22 × 7) clock cycles are required to process a single MB.

Comparison of the proposed architecture with various other architectures is pre-
sented in Table 5.5. It then follows from Table 5.5 that the proposed architecture
involves the least number of clock cycles required for processing a single MB. One
major advantage of having the least number of clock cycles requirement for process-
ing one MB is that the clock frequency required to process a video sequence with
a given frame size, and the frame rate is substantially reduced compared to other
architectures. The reduction of the minimum clock frequency requirement has a
direct impact on reducing the overall power consumption for ME hardware [20].
The clock frequencies required for the proposed VBS ME architecture and its coun-
terparts [9, 10] for processing different video sequences with different frame sizes

62 5 Fast One-Bit Transformation Architectures

Table 5.5 Comparison with other 1-BT based ME architectures

Proposed Proposed [9] (FBS) [9] (VBS) [10]

(FBS) (VBS)

No. of
PEs/MB

9 36 (9 × 4) 256 256 16

On-chip
memory

2,304 2,304 4,608 4,608 24,064

Supported
block sizes

16 × 16 4 × 4 to 16 × 16 16 × 16 4 × 4 to 16 × 16 16 × 16

Search range [−16, 16] [−16, 16] [−16, 16] [−16, 16] [−16, 15]

No. of clock
cycles/MB

140 154 282 282 1,039

Area 731 slices 1,014 slices 4,758 slices 6,782 slices 944 slices

(1103 LUTs) (1576 LUTs) (7280 LUTs) (8702 LUTs) (1467 LUTs)

Maximum
freq. (MHz)

135 129 115 113 127

Table 5.6 Required clock frequencies of the proposed architecture and other 1-BT MT architectures
for different video sequences

Frame size CIF SDTV HD for PCs HD for TVs

(352 × 288) (1,280 × 720) (1,280 × 720) (1,920 × 1,080)

Frame rate (fps) 30 30 60 60

Clock rate Proposed 1.82 16.63 33.26 74.84

(MHz) Akin [9] 3.36 30.46 60.91 137

Celebi [10] 12.34 112.22 224.41 505

and rates have been provided in Table 5.6. It can be observed from Table 5.6 that for
the proposed architecture, a clock frequency of 16.63 MHz is sufficient to perform
VBS ME for a video sequence with Standard Definition television (SDTV) frame
size (1,280 × 720) and a frame rate of 30 fps. On the other hand, the required clock
frequencies are 30.46 and 112.22 MHz for the architectures [9, 10] respectively
for processing the same video sequence. Accordingly, the power consumption for
processing the SDTV frame is only 59 mW for the proposed architecture, whereas
the power consumptions are 83 and 96 mW for the architectures [9, 10] respectively.

5.7 Conclusions

In the present chapter, low power ME architectures have been developed for imple-
menting DS on 1-BT frames with FBS and VBS support. As compared with other
1-BT based ME architectures, the proposed architectures involve the lowest latency.

5.7 Conclusions 63

The clock frequency of the proposed ME architectures therefore can be effectively
reduced for low power designs. In particular, the required clock frequency for the
proposed VBS ME architecture for processing SDTV frames (1,280 × 720 @ 30
fps) is 16.63 MHz. The resulting power dissipation is only 59 mW, which may be
an attractive solution for portable consumer video applications typically operated by
battery power. On the other hand, the frame size and the frame rate supported by the
proposed architectures can also be extended subject to a clock frequency constraint.
For the proposed VBS ME architecture, the required clock frequency for processing
High definition (HD) resolution for TVs (1,920 × 1,080 @ 60 fps) is 74.84 MHz.
The maximum operating frequencies of the proposed architectures for FPGA imple-
mentation are found to be 135 and 129 MHz for FBS and VBS respectively. The
proposed architectures are therefore deemed suitable for designing consumer elec-
tronic products that require real time video processing or compression at affordable
prices.

References

1. He, Z.L., Tsui, C.Y., Chan, K.K., Liou, M.L.: Low-power VLSI design for motion estimation
using adaptive pixel truncation. IEEE Trans. Circuits Syst. Video Technol. 10(5), 669–678
(2000)

2. Hsieh, C.H., Lin, T.P.: VLSI architecture for block-matching motion estimation algorithm.
IEEE Trans. Circuits Syst. Video Technol. 2(2), 169–175 (1992)

3. Gharavi, H., Mills, M.: Blockmatching motion estimation algorithms-new results. IEEE Trans.
Circuits Syst. 37(5), 649–665 (1990)

4. Natarajan, B., Bhaskaran, V., Konstantinides, K.: Low-complexity block-based motion estima-
tion via one-bit transforms. IEEE Trans. Circuits Syst. Video Technol. 7(3), 702–706 (1997)

5. Ertürk, S.: Multiplication-free one-bit transform for low-complexity block-based motion esti-
mation. IEEE Signal Process. Lett. 14(2), 109–112 (2007)

6. Lee, H., Jeong, J.: Early termination scheme for binary block motion estimation. IEEE Trans.
Consum. Electron. 53(4), 1682–1686 (2007)

7. Ertürk, A., Ertürk, S.: Two-bit transform for binary block motion estimation. IEEE Trans.
Circuits Syst. Video Technol. 15(7), 938–946 (2005)

8. Urhan, O., Ertürk, S.: Constrained one-bit transform for low complexity block motion estima-
tion. IEEE Trans. Circuits Syst. Video Technol. 17(4), 478–482 (2007)

9. Akin, A., Dogan, Y., Hamzaoglu, I.: High performance hardware architectures for one bit
transform based motion estimation. IEEE Trans. Consum. Electron. 55(2), 941–949 (2009)

10. Celebi, A., Urhan, O., Hamzaoglu, I., Ertürk, S.: Efficient hardware implementation of low bit
depth motion estimation algorithms. IEEE Signal Process. Lett. 16(6), 513–516 (2009)

11. Sumit K. Chatterjee., Chakrabarti, I.: Low power VLSI architectures for one bit transformation
based fast motion estimation. IEEE Trans. Consum. Electron. 56(4), 2652–2660 (2010)

12. Zhu, S., Ma, K.K.: A new diamond search algorithm for fast block-matching motion estimation.
IEEE Trans. Image Process. 9(2), 287–290 (2000)

13. Lee, E.S., Urhan, O., Chang, T.G.: Multiplication-free one-bit transform and diamond search
combination for fast binary block motion estimation. In: Proceedings 15th International Con-
ference on Signal Processing and Communications Applications, SIU-2007

14. Chen, T.C., Chen, Y.H., Tsai, S.F., Chien, S.Y., Chen, L.G.: Fast algorithm and architecture
design of low-power integer motion estimation for H.264/AVC. IEEE Trans. Circuits Syst.
Video Technol. 17(5), 568–577 (2007)

64 5 Fast One-Bit Transformation Architectures

15. Ding, D., Yao, S., Yu, L.: Memory bandwidth efficient hardware architecture for AVS encoder.
IEEE Trans. Consum. Electron. 54(2), 675–680 (2008)

16. Wei, C., Hui, H., Jiarong, T., Hao, M.: A high-performance reconfigurable VLSI architecture
for VBSME in H.264. IEEE Trans. Consum. Electron. 54(3), 1338–1345 (2008)

17. Parlak, M., Hamzaoglu, I.: Low power H.264 deblocking filter hardware implementations. In:
Proceedings Second NASA/ESA Conference on Adaptive Hardware and Systems (AHS-2007)

18. Kuhn, P.: Algorithms, Complexity Analysis and VLSI Architectures for MPEG-4 Motion Esti-
mation, 1st edn, pp. 120–128. Kluwer Academic Press (1999)

19. Jong, H.M., Chen, L.G., Chiueh, T.D.: Parallel architectures for 3-step hierarchical search
block-matching algorithm. IEEE Trans. Circuits Syst. Video Technol. 4(4), 407–416 (1994)

20. Ou, C.M., Le, C.F., Hwang, W.J.: An efficient VLSI architecture for H.264 variable block size
motion estimation. IEEE Trans. Consum. Electron. 51(4), 1291–1299 (2005)

Chapter 6
Efficient Pixel Truncation Algorithm
and Architecture

The goal of this chapter is to introduce a new block matching algorithm, namely the
Fast Two Stage Search (F2SS) algorithm and its VLSI architecture for performing
low power variable block size Motion Estimation (ME) based on pixel truncation.
The chapter starts with a brief discussion on ME methods which adopt the pixel
truncation approach. The proposed F2SS algorithm has been presented in Sect. 6.2.
Section 6.2 presents the architecture designed for implementing the proposed F2SS
algorithm. The simulation and the synthesis results of the proposed algorithm and the
corresponding architecture are presented in the subsequent section. The conclusions
are finally presented in the last section.

6.1 Introduction

Motion Estimation (ME) is a process widely used to compress motion pictures to
effectively remove temporal redundancies. Block Matching Algorithm (BMA) is
the preferred type of ME due to its simplicity and performance efficiency [1–3]. In
BMA, for each block in the current frame (current block), the best matched block in
a previously available frame (the reference frame) is searched within a given search
area. The Motion Vector (MV) is defined as the displacement between the current
block and the best matched block in the reference frame. Although ME based on Full
Search (FS) algorithm provides the optimum solution for obtaining high compression
ratio, they suffer from high hardware costs and computational power requirements.
In modern video coding standards such as MPEG-4/H.264, a special feature called
Variable Block Size Motion Estimation (VBSME) has been included to improve
coding efficiency.

Due to the increasing need for advanced video coding methods, many portable
electronic devices such as mobile phones and camcorders typically use MPEG-4 or
H.264 based techniques for video compression. These mobile devices are operated
by batteries and thus have limited processing power. To suit these conditions, many
fast ME algorithms such as four step search [4], diamond search [5], and adaptive

© Springer International Publishing Switzerland 2015
I. Chakrabarti et al., Motion Estimation for Video Coding,
Studies in Computational Intelligence 590, DOI 10.1007/978-3-319-14376-7_6

65

66 6 Efficient Pixel Truncation Algorithm and Architecture

rood pattern search [6] have been proposed. These fast search algorithms reduce
computational complexity of the FS algorithm without compromising Peak Signal-
to-Noise Ratio (PSNR). In another approach, pixel resolution is reduced from 8 bits
to fewer bits. One-Bit Transform (1-BT) based MEs have been proposed in [7] and
[8], where each pixel is transformed to a one-bit representation. In [9] the bit-depths
of the pixels are truncated. It is also shown in [9] that on an average, four bits can be
truncated without adversely affecting the quality of the reconstructed frame. There
are several ME architectures based on 1-BT. The first implementation of 1-BT based
VBSME was presented in [10]. The first implementation of ME based on 1-BT
and multiple reference frames was proposed in [11]. The implementation of fast
1-BT based ME was proposed in [12] by combining 1-BT based ME with diamond
search algorithm. Recently, an efficient algorithm and its architecture based on pixel
truncation was presented in [13] for performing VBSME.

In the present chapter, an extension of the work presented in [13] is reported. It
is shown that the present algorithm is faster and more efficient than that presented
in [13]. The resulting architecture also consumes less power than the algorithm
described in [13]. The chapter is organized as follows. The new algorithm for per-
forming ME is presented in the following section. Section 6.3 presents the proposed
architecture. The simulation and the synthesis results are presented in Sect. 6.4. Con-
clusions are finally drawn in Sect. 6.5.

6.2 Proposed Fast Two Stage Search Based Motion
Estimation Algorithm

In the present algorithm, ME is performed in two stages: in the first stage, ME
is performed on truncated pixels, and in the second stage, it is performed on the
pixels with full resolution for refining the MV obtained from the first stage. It has
been shown in [13] that optimum results may be obtained by taking the two Most
Significant Bits (MSBs) of the pixel and by using the Difference Pixel Count (DPC)
as the matching criterion. Therefore, in the present ME algorithm, the two MSBs
are taken and DPC is used as the matching criterion as proposed in [13]. Thus, the
first stage of the proposed algorithm is essentially the same as the first stage of the
algorithm [13]. For the second stage of search, an algorithm is proposed based on
experiments performed on different benchmark video sequences. Based on these
experimental results, it is found that there is a high possibility that if the MV for the
first stage points in a particular direction, the MV for the second stage will also have
similar characteristics. Substantial savings in computational time can therefore be
achieved by restricting the second stage of search in the direction pointed by the MV
obtained from first stage of search.

It is also found that there is a high probability that the search for a large MV in a
small search pattern with closely spaced search points may be trapped in some local
minimum [5]. On the other hand, for detecting small motions, a small search pattern

6.2 Proposed Fast Two Stage Search Based Motion Estimation Algorithm 67

with closely spaced search points is more suitable than a large search pattern with
widely spaced search points [5]. From the above discussions, it may be concluded that
the computational time may be saved further by selecting the search pattern for the
second stage of the search in accordance with the magnitude of the MV obtained from
the first stage. Based on these factors, a novel scheme for second stage MV refinement
has been proposed. The details of the algorithm are given below. In this algorithm,
an initial search pattern is selected based on both the magnitude and the direction
of the MV obtained from the first stage of search. The search pattern is chosen in
such a way that it is able to detect both large and small or zero MVs efficiently.
It is also shown that, for most real-world video sequences, MV distributions in the
horizontal and the vertical directions are higher than in other directions [6]. Based on
these observations, a rood-like search pattern is selected as the initial search pattern
similar to [6].

The proposed Fast Two-Stage Search (F2SS) ME algorithm can be represented
pictorially as shown in Fig. 6.1. In Fig. 6.1, it is assumed that the MV obtained from
the first stage points to the location (−3,+2), represented as a solid sphere. A rood-
like search pattern is then created around this location with four search points at the
four vertices of the rood pattern, shown as transparent squares in Fig. 6.1. The distance
S between the center and the search points is selected as S = max{|MVx |, |MVy |},
where {|MVx | and |MVy |} are the vertical and the horizontal MV components respec-
tively. In the second stage of the proposed algorithm, the search is performed at all
five points (including the center) after selecting the initial search pattern. The point

 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

 -6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

y

x
-7

Fig. 6.1 The search strategy for the proposed F2SS algorithm

68 6 Efficient Pixel Truncation Algorithm and Architecture

corresponding to the minimum Sum of Absolute Differences (SAD) value (SADmin)
is chosen as the new center of search and is indicated by a solid square in Fig. 6.1. If
SADmin is found at the center of the rood pattern, then the search is stopped mid-
way; else, the search pattern is changed to the Small Diamond Search Pattern (SDSP)
around SADmin, which is the same search pattern that was used in [5]. The location
of the search points for subsequent search steps are indicated by the triangles. The
above process is repeated until SADmin is found at the center of the SDSP.

The present algorithm is motivated by the Adaptive Rood Pattern Search
Algorithm (ARPS) originally proposed in [6]. However, the algorithm presented
here is different from ARPS in the following aspects. (1) In ARPS, the initial search
pattern is selected based on the MVs of the neighboring blocks. In this one however,
the initial search pattern for the second stage is selected from the MV obtained from
the first stage. (2) Since the second stage of refinement is performed around the MV
obtained from the first stage in the present case, no further checking is required for
the Zero-Motion Prejudgment (ZMP). However, for ARPS, extra checks are required
for ZMP resulting in increased complexity. In the algorithm proposed in [13], FS is
performed during the second stage of the search. Additionally, in the second stage,
the search area is reduced to quarter of the first search area. This results in a sub-
stantial drop in the PSNR value of the reconstructed image for the sequences with
complex motions like Foreman. On the other hand, for the present algorithm, the
same search area is considered in both stages.

The main advantage of the present algorithm over [13] is its ability to perform
faster MEs. This is because, if the best match is found at the center at the first
step of the second stage of ME, then it does not waste any time in further search.
Also, the proposed algorithm saves computational time for detecting large MVs by
directly jumping to the neighborhood of the most likely location of the MV. Sub-
sequently, SDSP is used in the present method in contrast to the method in [13]
that is based on the FS algorithm, which consumes considerable time in check-
ing all possible locations. The proposed algorithm is summarized in the following
subsection.

6.2.1 Summary of the Proposed Fast Two Stage
Search Algorithm

First Stage:
1. Perform FS based ME on truncated pixels.
2. Obtain the location that is indicated by the MV.
Second Stage:
1. Construct a rood-like search pattern around the location obtained from the First
Stage with four search points located at the four vertices of the rood pattern with
S = max{|MVx |, |MVy |}.
2. Compute the SAD values at the four search locations and at the center and also
obtain SADmin.

6.2 Proposed Fast Two Stage Search Based Motion Estimation Algorithm 69

if (SADmin is found at the center) then
MV = {|MVx |, |MVy |};
stop;
else
go to 3;
3. Change the search pattern to SDSP around the point corresponding to SADmin
and compute the SAD values at all the search locations to obtain the new value of
SADmin.
if (SADmin is found at the center) then
read MV corresponding to SADmin;
stop;
else
go to 3;

6.3 Architecture for the Proposed Fast Two Stage
Search Algorithm

In order to reduce computational complexity, many ME architectures based on pixel
truncation have been proposed [9, 13]. In these architectures, the entire 8-bit data
are accessed, and only a part of the data is used to evaluate the matching criteria.
Although computational complexity is reduced substantially by this approach, there
is no reduction in the memory bandwidth requirement. In a recently reported archi-
tecture [13], a new memory design has been presented, in which different number of
bit-planes can be accessed at different stages of ME from the same memory module.
The proposed scheme is attractive but requires additional hardware to transpose and
realign the pixels during ME.

6.3.1 Memory Management for the Proposed F2SS Algorithm

In the present memory management scheme, two on-chip memories namely, RAM0
and RAM1 are used instead of a single on-chip memory. The first two MSBs of the
reference pixels are stored in RAM0, and the remaining 6 bits are stored in RAM1
as shown in Fig. 6.2. Here, R0,0[7:6] represents the first two MSBs, while R0,0[5:0]
represents the remaining 6 bits of the reference pixels from the Search Window
(SW) from the location (0,0). This process is repeated for the entire SW, and all the
reference pixels are arranged in two RAMs as depicted in Fig. 6.2. Similarly, the
current pixels are also organized in two RAMs—CBRAM0 and CBRAM1. The ME
architecture with this new memory organization is shown in Fig. 6.3. In the first stage
of ME, the most significant 2 bits of the reference pixels can be directly accessed
from RAM0, and two MSBs of the current pixels can be accessed from CBRAM0.

70 6 Efficient Pixel Truncation Algorithm and Architecture

R0,0

[7:0]

R1,0

[7:0]

R0,1

[7:0]

R0,0

[7:6]

R1,0

[7:6]

R0,1

[7:6]

R0,0

[5:0]

R1,0

[5:0]

R0,1

[5:0]

RAM RAM0 RAM1

Fig. 6.2 The proposed memory management scheme

RAM0
(2-bit)

First Stage ME

CBRAM0
(2-bit)

2

RAM1
(6-bit)

Second Stage ME

CBRAM1
(6-bit)

266 2

First Stage
MV

Refined MV

2

Fig. 6.3 The block diagram of an ME architecture with the proposed memory management scheme

After the first stage of ME, the second stage of MV refinement is performed by a
refinement unit shown as the block “Second Stage ME” in Fig. 6.3, for which both
RAMs are used.

6.3.2 Proposed Architecture for the First Stage of ME

As previously mentioned, in the first stage of the present F2SS algorithm, ME is
performed by taking the two MSBs of the pixel and by using the DPC as the matching
criterion. For a block of size N × N and for a search range [−p, p−1], the DPC at
any location (m, n) can be found as [14]:

DPC(m, n) =
N−1∑

i=0

N−1∑

j=0

δ̄[Ĉ(i, j), R̂(i + m, j + n)] (6.1)

Here, Ĉ(i, j) and R̂(i + m, j + n) represent bit truncated values for the pixels from
the CB and the SW respectively. In Eq. 6.1, δ̄(x, y) represents the standard delta

6.3 Architecture for the Proposed Fast Two Stage Search Algorithm 71

Reg Reg

22

22

1

CP SP

DPC

SP[0]SP[1]CP[1] CP[0]

Fig. 6.4 The architecture for the DPC based PE. Here, CP and SP represent 2 MSBs of the current
and the search pixels respectively

function, for which δ̄(x, y) = 0 if (x = y); else its value is 1. The implementation of
DPC on hardware is much simpler than conventional SAD. The architecture for the
DPC based Processing Element (PE) is shown in Fig. 6.4.

The architecture performing the first stage of ME is shown in Fig. 6.5, which is
based on SAD tree [15], and is similar to that reported in [13]. The architecture
consists of the Current Block (CB) memory, a search register array; a 2-D array
of 256 DPC based PEs, a 2-D adder tree, a comparator, and the final MV selector.
However, owing to the proposed memory management scheme, for the first stage of
ME, the reference and the current pixels are accessed from RAM0 and CBRAM0
respectively. The reference pixels are stored in the register array for data reuse,
which in turn reduces the required memory bandwidth. For a block of size N × N,
a total of N × N current and reference pixels are loaded into PEs in every clock
cycle. At the same time, N reference pixels that belong to the same row of the
SW are also loaded into the register array to up date the reference pixels [15]. The
reference pixels are propagated in the vertical direction rowby- row in the register
array.

After an initial latency, the PEs generate 256 pixel differences for a given location
in every clock cycle. These are then added by the adder tree to produce DPC for
all the blocks. As depicted in Fig. 6.6, a Macroblock (MB) can be partitioned into
41 blocks. Thus, the adder tree generates 41 DPCs in all. The comparator and MV
selector select the best MB partition and the corresponding MVs.

72 6 Efficient Pixel Truncation Algorithm and Architecture

CB Pixels
Register0

Register15

256 DPC Based PE Array

Adder Tree

Comparator & MV Selector

256 Pixel Differences

41 DPC

Best MB Partition
& MV

Current
Pixels Search

Pixels

Fig. 6.5 The block diagram for architecture performing the first stage of ME

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

4×4

17 18

19 20

21 22

23 24

8×4

25 26 27 28

29 30 31 32

4×8

33 34

35 36

8×8 16×8

37

38

8×16

39 40
16×16

41

Fig. 6.6 The partition of a MB into 41 blocks

6.3.3 Proposed Architecture for the Second Stage of ME

In the second stage of the proposed F2SS algorithm, ME is performed on the pixels
with full resolution, and Sum of Absolute Differences (SAD) is used as the matching
criterion. For a block of size N × N, the SAD at any location (m, n) within a search
range [−p, p−1] can be found as:

6.3 Architecture for the Proposed Fast Two Stage Search Algorithm 73

Architecture
for

Performing
ME on

Truncated
Pixels

Control Unit
MV
from
1st Stage

Data Selector

Data Selector

248

248

PE
Array2

PE
Array3

PE
Array1

PE
Array4

C
om

pa
ra

to
r

SAD2

SAD3

SAD1

SAD4

Refined
MV

(0,0) ... (0,30)
 .
 .
 .

(30,0) ... (30,30)

SWRAM

SWRAMTr

CBRAM

CBRAMTr

(0,0) ... (30,0)
 .
 .
 .

(0,30) ... (30,30)

(0,0) ... (0,15)
 .
 .
 .

(15,0) ... (15,15)

128

128

(0,0) ... (15,0)
 .
 .
 .

(0,15) ... (15,15)

128

128

128

128

Fig. 6.7 The block diagram of the proposed ME architecture

SAD(m, n) =
N−1∑

i=0

N−1∑

j=0

|C(i, j) − R(i + m, j + n)| (6.2)

Here, C(i, j) and R(i+m, j+n) are the pixel values for the current and the reference
pixels respectively.

Figure 6.7 shows the block diagram of the proposed architecture. The architecture
includes two on-chip memories for storing the reference pixels from the SW, two
on-chip memories for storing the current pixels from the CB, two data selectors, 4 PE
arrays, one control unit, and one comparator. Each of the modules of the proposed
architecture is described in detail as follows.

6.3.3.1 On-Chip Memory Unit

The proposed architecture is designed for performing VBSME for a MB of
size 16 × 16 pixels, and for a search range of [−8, 7] pixels. Therefore, the total

74 6 Efficient Pixel Truncation Algorithm and Architecture

R0,0 R0,1 R0,2 R0,30

R1,0 R1,1 R1,2 R1,30

R2,0 R2,1 R2,2 R2,30

R3,0 R3,1 R3,2 R3,30

R30,0 R30,1 R30,2 R30,30

C0,0 C0,15

C15,0 C15,15

 -2 -1 0

-2
-1

0

1

Search Window

Current Block

Y

X

Fig. 6.8 The search window and the current block

size of the Search Window (SW) is 31 × 31 pixels. Figure 6.8 shows the CB and
the corresponding SW. Let us further assume that the MV obtained from the first
stage points to the location (0, −1), which corresponds to the reference pixel R2,1.
Then, according to the proposed algorithm, one is required to search at the locations
(−1, −1), (0, −2), (0, 0) and (1, −1). The starting reference pixels corresponding to
these locations are R1,1, R2,0, R2,2 and R3,1 respectively.

The rood-like search pattern for the proposed algorithm is shown in Fig. 6.9.
Here, the search center is denoted by ‘0’, and all the four search points around
the center are denoted by the indices ‘1’ to ‘4’. All the pixels from the SW are
stored in two RAMs namely, SWRAM and SWRAMTr. However, owing to the
proposed memory management scheme as shown in Fig. 6.2, both the RAMs consist
of two smaller RAMs. In order to make the overall process faster, the entire row
of pixels from the SW is written as a single word to a single address of SWRAM.
As there are 31 pixels in one row of the SW, these are written as a single 248-bit
(31 pixels× 8 bits) word in SWRAM. In another RAM (SWRAMTr in Fig. 6.10), the
same reference pixels are stored but in transposed form, i.e. the entire first column of

0

1

2 3

4

Fig. 6.9 The rood-like search pattern for the second stage of the proposed F2SS algorithm

6.3 Architecture for the Proposed Fast Two Stage Search Algorithm 75

R0,0 R0,1 R0,30

R1,0 R1,1 R1,30

R2,0 R2,1 R2,30

R3,0 R3,1 R3,30

R30,0 R30,1 R30,30

SWRAM

CBRAM

R0,0 R1,0 R30,0

R0,1 R1,1 R30,1

R0,2 R1,2 R30,2

R0,3 R1,3 R30,3

R0,30 R1,30 R30,30

SWRAMTr

CBRAMTr

C0,0 C0,15

C15,0 C15,15

C0,0 C15,0

C0,15 C15,15

Fig. 6.10 The modified memory arrangement for the proposed architecture

pixels from the SW starting from R0,0 to R30,0 are written as a single 248-bit word to
the address ‘0’ of SWRAMTr. This new memory arrangement is shown in Fig. 6.10.
As shown in Fig. 6.10, the current pixels are also stored in two RAMs, namely
CBRAM and CBRAMTr (both of which consist of two smaller RAMs as shown in
Fig. 6.2). In this case, an entire row of pixels from the CB is written as a single 128-bit
(16 pixels× 8 bits) word at a single address of the CBRAM. In another RAM namely,
CBRAMTr, an entire column of the pixels from the CB is stored as a single 128-bit
word. It is now obvious from Figs. 6.9 and 6.10 that the entire first row of reference
pixels corresponding to the search locations ‘2’ and ‘3’ (R2,0 to R2,15 and R2,2 to
R2,17) belong to the same address of the SWRAM. Similarly, the entire first column
of reference pixels corresponding to the search locations ‘1’ and ‘4’ (R1,1 to R16,1
and R3,1 to R18,1) belong to the same address of SWRAMTr.

6.3.3.2 Data Selector Unit

The outputs of SWRAM and SWRAMTr are connected to the data selectors. Each
data selector accepts the entire 248-bit data from the RAM, and provides two 128-bit
(16 pixels × 8 bits) data to the PE arrays that are connected to it. It selects the proper
data depending upon the location of the search center as obtained from the control
unit.

6.3.3.3 PE Array

As the second stage of the proposed F2SS algorithm involves four search locations,
four PE arrays are used. In each of the PE arrays, the number of PEs is equal to

76 6 Efficient Pixel Truncation Algorithm and Architecture

Search Pixels

Current Pixels

R13R9R5R1

12 12 12 12

0 1 2 3

count[3:2]

R14R10R6R2

12

12 12 12 12

0 1 2 3

count[3:2]

R16R12R8R4

12

12 12 12 12

0 1 2 3

count[3:2]

128

128

PE0 PE1 PE2 PE3

0

8

PE8 PE9 PE10 PE11

0

PE12 PE13 PE14 PE15

0

12

PE4 PE5 PE6 PE7

0

R15R11R7R3

12

12 12 12 12

0 1 2 3

count[3:2]

32 32 32 32 32 32 32

∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑∑

32

8 8

Fig. 6.11 The detailed architecture of a PE array

Fig. 6.12 The structure for a
single PE

A-B

SAD Register
(10-bit)

SAD Out

Over

A B

8

8

10

10

10

||

∑

8

the size of the row of the CB. Moreover, as in the present example the size of the
CB is taken as 16 × 16, there are 16 PEs in each of the PE arrays. The detailed
structure of a PE array and a single PE are shown in Figs. 6.11 and 6.12 respectively.
One 4-bit counter, which starts counting from the start of the operation (i.e. from time
t = 0), is used to keep track of the entire process. The SAD values for sixteen 4 × 4
blocks are stored into sixteen 12-bit registers, R1 to R16 (vide Fig. 6.11). The SAD

6.3 Architecture for the Proposed Fast Two Stage Search Algorithm 77

values for sixteen 4 × 4 blocks are directed to the appropriate registers by four 1 to
4 demultiplexers. The first two bits starting from the MSB of the counter output are
used as the control signal for the demultiplexers. The first group of four PEs, namely
PE0, PE1, PE2 and PE3 work in parallel to produce the SAD values for block 1 (vide
Fig. 6.6) in four clock cycles (or at time t = 3). At the same time, the SAD values for
blocks 2, 3 and 4 are also produced by the other three groups of PEs. At time t = 3,
the counter will read count = 0011 and count [3:2] = 00, and hence the SAD values
for block 1 will be stored in the register R1. Similarly, the SAD values for the blocks
2, 3 and 4 will be stored in the registers R2, R3 and R4 respectively. In this way, all
the sixteen SAD values for sixteen 4 × 4 blocks are obtained, and these are stored
in the registers R1 to R16. The SAD values for the other block sizes are obtained by
adding the SAD values of the primitive 4 × 4 blocks [10].

6.3.3.4 Comparator

All the PE arrays send the computed values of SAD to the comparator. The com-
parator finds the value of SADmin and the corresponding location. It then generates
a number ranging from 0 to 4 depending upon the location of the SADmin and sends
the same to the control unit.

6.3.3.5 Control Unit

The architecture performing ME on truncated pixels sends the MV to the control unit,
which then generates the read addresses for all the memory units. Depending upon
the location of the SADmin as obtained from the comparator unit, it further takes
the decision on whether the subsequent steps of ME are required or not. If further
steps of ME are required, then it generates the new read addresses for all the memory
modules so that the proper reference pixels can be sent to the PE arrays. It further
checks for the boundary conditions for all the steps and all of the search locations. If
the boundary condition is reached at any step and for any particular location(s), then
it sends the proper signal to disable the PE array(s), which is (are) responsible for the
evaluation of SAD for that (those) location(s). It also sends an appropriate control
signal to the comparator so that the maximum SAD value(s) is (are) initialized for
that (those) location(s).

6.4 Results

6.4.1 Performance Analysis of the Proposed Algorithm

The performance of the proposed F2SS algorithm has been compared in terms of the
quality and the computational cost with the FS algorithm. In Table 6.1, the average
PSNR values as obtained for the proposed F2SS and the FS algorithms are presented

78 6 Efficient Pixel Truncation Algorithm and Architecture

Table 6.1 The average PSNR obtained for the FS and the F2SS algorithm

Video sequence (CIF @ 30 fps) Full search (dB) Proposed (dB)

Foreman 34.82 34.66

Coastguard 30.03 29.86

Tennis 32.48 32.39

News 32.59 32.48

Stefan 28.42 28.03

Mother and daughter 33.86 33.72

Mobile 31.33 31.31

Hall monitor 33.45 33.38

for 16× 16 block sizes and for a search range of [−16, 15] pixels. All the sequences
are in CIF format (352 × 288 pixels) and cover a wide range of motion content. In
the present analysis, 100 frames for each of the video sequences are taken, and the
average values for the PSNR per frame for each of the reconstructed video sequences
are computed. It can be observed from Table 6.1 that the proposed ME algorithm
displays performance similar to the FS algorithm for most of the video sequences
with less than 0.2 dB degradation in the PSNR. However, for the sequence “Stefan”,
the PSNR degrades by 0.39 dB.

The performance of the proposed algorithm has also been compared with a similar
algorithm [13]. The PSNR drop with respect to the FS algorithm as obtained by
comparing the results of applying the proposed algorithm and the algorithm [13] has
been presented in Table 6.2. For the proposed F2SS algorithm, 8×8 block partition is
used for the first stage of search in the present analysis. Once again, from Table 6.2, it
is obvious that the proposed algorithm provides a smaller PSNR drop when compared
to the algorithm [13], except for the sequence “Stefan” for which the proposed

Table 6.2 The average PSNR drop (dB) for the F2SS and algorithm [13] with respect to the FS
algorithm for QCIF frames

Video sequence (QCIF @ 30 fps) Block size Algorithm [13] Proposed

Akio 16 × 16 0 0

8 × 8 0 0

4 × 4 0.05 0.03

Mobile 16 × 16 0 0

8 × 8 0. 02 0.02

4 × 4 0.14 0.09

Foreman 16 × 16 0.07 0.03

8 × 8 0.19 0.16

4 × 4 0.44 0.33

Stefan 16 × 16 0.03 0.05

8 × 8 0.11 0.18

4 × 4 0.27 0.25

6.4 Results 79

algorithm results in a slight increase in the average PSNR drop. This may be ascribed
to the fact that this sequence contains more movements in the directions other than
vertical and horizontal directions which the proposed algorithm has failed to detect.

The proposed algorithm has also been tested on video sequences with CIF frame
resolution and the comparison results have been shown in Table 6.3. However, it
should be noted that although the hardware implementation performs matching in
the search range of [−8, 7] for all block sizes, a search range of [−16, 15] is used for a
block of dimension 16×16, a search range of [−8, 7] is used for a block of dimension
8×8, while a search range of [−4, 3] is used for a block of dimension 4×4, because
of the available results presented in [13]. It should be further noted that these results
are provided using an open loop scheme, that is, the PSNR is computed between the
original frames and the motion compensated frames without using a video encoder.

Finally, it may be observed from Tables 6.2 and 6.3 that the proposed algorithm
shows better performance in terms of the PSNR for most of the cases compared to the
algorithm [13]. This may be attributed to the fact that in the proposed algorithm, there
is no reduction in the size of the SW in the refinement stage. The average number of
search steps required to process one MB can be regarded as a metric to measure the
computational complexity of a given ME algorithm. In Table 6.4, the average number

Table 6.3 The average PSNR drop (dB) for the F2SS and algorithm [13] with respect to the FS
algorithm for CIF frames

Video sequence (QCIF @ 30 fps) Block size Algorithm [13] Proposed

Mobile 16 × 16 0.11 0.02

8 × 8 0.20 0.13

4 × 4 0.40 0.28

Foreman 16 × 16 0.12 0.11

8 × 8 0.21 0.19

4 × 4 0.39 0.31

Stefan 16 × 16 0.04 0.08

8 × 8 0.09 0.11

4 × 4 0.32 0.30

Table 6.4 The average
number of steps required for
second stage of the proposed
F2SS algorithm

Video sequence
(CIF @ 30 fps)

Number of search steps
required

Foreman 2.93

Coastguard 2.85

Tennis 2.53

News 2.81

Stefan 2.92

Mother and daughter 2.03

Mobile 1.88

Hall monitor 1.09

80 6 Efficient Pixel Truncation Algorithm and Architecture

Table 6.5 Implementation results

Technology (nm) 90

Maximum operating frequency (MHz) 129

Area (k Gates) Processing unit 298.86

(2-input NAND gate) Memory unit 158.98

Power (mW) 19.53 @ 100 MHz

Fig. 6.13 Comparison of the
rate-distortion curves for the
proposed algorithm with the
full-search algorithm

of search steps per MB as required by the proposed F2SS algorithm has been shown
for different video sequences. It can be observed from Table 6.5 that the proposed
algorithm requires at most three steps to compute the second stage of search.

In order to compare the performance of the proposed algorithm with that of the
optimum FS algorithm, two video sequences namely, “Mobile” (QCIF) and “Fore-
man” (CIF) are selected at 30 frames per second (fps). The tests were done on the
existing H.264 reference software (JM 16.0) with rate control option off and five
Quantization Parameters (QP) selected as: 24, 28, 32, 36 and 40. The search range
and the number of frames have been taken as [−16, 15] and 100 respectively. Here,
it should be mentioned that in the present analysis, the size of the MB has been taken
as 16 × 16 for all the cases. The test results have been illustrated in Fig. 6.13. It can
be observed that the coding performance for the proposed algorithm is quite similar
to that of the FS algorithm even for lower bit rates and for sequences with complex
motion like “Foreman”.

6.4.2 Synthesis Results and Comparison

The proposed architecture has been described in Verilog HDL and synthesized with
90 nm technology. The implementation results have been shown in Table 6.5. Before

6.4 Results 81

the start of the second stage of the proposed F2SS algorithm, all the reference pixels
required for performing the search are loaded into the on-chip memory unit from
the off-chip memory. As mentioned earlier, the size of the SW for the proposed
architecture is 31 × 31 pixels. In the proposed architecture, 31 pixels are loaded in
one clock cycle. Therefore, 31 clock cycles would be required to load all the pixels
from the SW into the RAMs storing the reference pixels.

In the first stage of ME, 256 clock cycles are required for low resolution search
similar to the architecture described in [13]. However, in the second stage of the
search procedure, the architecture involves a latency of 21 clock cycles for each
of the steps as explained next. It spends sixteen clock cycles for the computation
of the SADs, two clock cycles for the merging process similar to [10], one clock
cycle for comparison, and one clock cycle each required for the pattern generation
and control signal generation. For the proposed F2SS algorithm, if the best match is
found at the center in the first step of the second stage, then no further search steps are
required, and thereby the second stage of search can be completed in 52 (31 + 21)

clock cycles. Thus, it can generate the MV for a 16 × 16 MB in 308 (256 + 52)

clock cycles. However, based on the simulation results (vide Table 6.4), the proposed
F2SS algorithm requires at most three steps to complete the second stage of the
search procedure. Therefore, even in the worst case, the proposed architecture can
complete the second stage of search in 63 (21×3) clock cycles. In addition to this, 31
clock cycles are also required for the loading of the reference pixels. Therefore, the
proposed architecture can find the MV for a MB in 350 (256+63+31) clock cycles.

On the other hand, the architecture [13] always requires 500 clock cycles to
process a MB. Therefore, compared to the architecture [13], the proposed architec-
ture requires 30 % less number of clock cycles to process a MB. One major advan-
tage of requiring fewer clock cycles for processing a MB is that the clock frequency
necessary to process a video sequence with a given frame size and frame rate is
substantially reduced. It can be observed that for the proposed architecture, a clock
frequency of 1.04 MHz is sufficient to perform ME for a video. The proposed ME
architecture has been compared with other architectures, and the results of compar-
ison have been listed in Table 6.6. In the proposed architecture, the reference pixels
are stored into two RAMs. Similarly, the current pixels are also stored in two RAMs.
The memory unit is much simpler for the proposed architecture, though it requires
more area to store the current and the reference pixels. The proposed architecture is
based on 4 PE arrays, with 16 PEs in each array. On the other hand, for the archi-
tecture [13] which is also based on pixel truncation, 256 PEs are required. Owing
to this fact, the processing unit for the proposed architecture consumes less area.
Taking all of these facts into account, it is clear from the third row (gate count) of
Table 6.6 that the total area for the proposed architecture is slightly on the higher side
(5 % only) as compared with the architecture [13]. Since for the architectures pre-
sented in Table 6.6, different processes and supply voltages are used, the power results
for all the architectures have been normalized according to the supply voltage and
the dimension for the purpose of fair comparison [16]. The normalized power results
for all the architectures have been shown in the last entry of Table 6.6. As mentioned
earlier, since the average computational complexity is generally lower than the worst

82 6 Efficient Pixel Truncation Algorithm and Architecture

Table 6.6 Comparison of the proposed architecture with other architectures

[16] [17] [13] Proposed

Process (nm) 180 350 130 90

Voltage (V) 1.3 3.3 1.2 1.0

Gate count (k) 131.2 23.1 436 457.5

Core size (mm2) 3.6 7.5 2.26 2.39

Required frequency (MHz) 13.5 25 1.4 0.95

Video specification CIF @ 30 fps CIF @ 30 fps QCIF @ 30 fps QCIF @ 30 fps

Power (mW) 16.72 189 1.33 0.32

Normalized power (mW) 2.47 1.15 0.44 0.32

(1.0 V, 90 nm)*

(*) Normalized power = Power × (0.0652/Process2) × (1.082/Voltage2)

case, the operating frequency can be reduced for further reduction of power con-
sumption. This is also obvious from the last entry of Table 6.6, which reveals that the
total power consumption for the proposed architecture is reduced by 27 % compared
to the architecture [13], which is the best low-power video compression architecture
for mobile communication available so far in the literature.

6.5 Conclusions

In this chapter, a fast block matching motion estimation algorithm, which is faster
compared to a recently reported algorithm, has been proposed. The proposed algo-
rithm is found to have relatively lower computational complexity while maintaining
an acceptable image quality. The chapter also describes an appropriate architecture
for implementing the proposed ME algorithm. It has been shown that, for real time
encoding of QCIF videos (30 frames per second), the power consumption is only
0.32 mW with a compression performance similar to that of the full search algo-
rithm. Therefore, the proposed architecture is particularly suitable for applications
requiring low power consumption such as mobile consumer equipment.

References

1. Netravali, A.N., Robbins, J.D.: Motion compensated television coding: part-I. Bell Syst. Tech.
J. 58, 631–670 (1979)

2. Jain, J.R., Jain, A.K.: Displacement measurement and its application in interframe image cod-
ing. IEEE Trans. Commun. 29, 1799–1808 (1981)

3. Dufaux, F., Moscheni, F.: Motion estimation techniques for digital TV: a review and a new
contribution. Proc. IEEE 83, 858–876 (1995)

References 83

4. Po, L.-M., Ma, W.-C.: A novel four step search algorithm for fast block motion estimation.
IEEE Trans. Circuits Syst. Video Technol. 6(3), 313–317 (1996)

5. Zhu, S., Ma, K.K.: A new diamond search algorithm for fast block-matching motion estimation.
IEEE Trans. Image Process. 9(2), 287–290 (2000)

6. Nie, Y., Ma, K.K.: Adaptive rood pattern search for fast block-matching motion estimation.
IEEE Trans. Image Process. 11(12), 1442–1448 (2002)

7. Natarajan, B., Bhaskaran, V., Konstantinides, K.: Low-complexity block-based motion estima-
tion via one-bit transforms. IEEE Trans. Circuits Syst. Video Technol. 7(3), 702–706 (1997)

8. Ertürk, S.: Multiplication-free one-bit transform for low–complexity block-based motion esti-
mation. IEEE Signal Process. Lett. 14(2), 109112 (2007)

9. He, Z.L., Tsui, C.Y., Chan, K.K., Liou, M.L.: Low-power VLSI design for motion estimation
using adaptive pixel truncation. IEEE Trans. Circuits Syst. Video Technol. 10(5), 669–678
(2000)

10. Akin, A., Dogan, Y., Hamzaoglu, I.: High performance hardware architectures for one bit
transform based motion estimation. IEEE Trans. Consum. Electron. 55(2), 941–949 (2009)

11. Akin, A., Sayilar, G., Hamzaoglu, I.: High performance hardware architectures for one bit
transform based single and multiple reference frame motion estimation. IEEE Trans. Consum.
Electron. 56(2), 1144–1152 (2010)

12. Chatterjee, S.K., Chakrabarti, I.: Low power VLSI architectures for one bit transformation
based fast motion estimation. IEEE Trans. Consum. Electron. 56(4), 2652–2660 (2010)

13. Bahari, A., Arslan, T., Erdogan, A.T.: Low-power H.264 video compression architectures for
mobile communication. IEEE Trans. Circuits Syst. Video Technol. 19(9), 1251–1261 (2009)

14. Lee, S., Kim, J.M., Chae, S.I.: New motion estimation algorithm using adaptively quantized
low bit-resolution image and its VLSI architecture for MPEG2 video encoding. IEEE Trans.
Circuits Syst. Video Technol. 8(6), 734–744 (1998)

15. Chen, C.Y., Chien, S.Y., Huang, Y.W., Chen, T.C., Wang, T.C., Chen, L.G.: Analysis and
architecture design of variable block-size motion estimation for H.264/AVC. IEEE Trans.
Circuits Syst. I: Regul. Pap. 53(3), 578–593 (2006)

16. Chen, T.C., Chen, Y.H., Tsai, S.F., Chien, S.Y., Chen, L.G.: Fast algorithm and architecture
design of low-power integer motion estimation for H.264/AVC. IEEE Trans. Circuits Syst.
Video Technol. 17(5), 568–577 (2007)

17. Huang, Y.W., Chien, S.Y., Hsieh, B.Y., Chen, L.G.: Global elimination algorithm and archi-
tecture for fast block matching motion estimation. IEEE Trans. Circuits Syst. Video Technol.
14(6), 898–907 (2004)

Chapter 7
Introduction to Scalable Image
and Video Coding

Themain aim of this chapter is to provide the fundamentals of wavelet based Scalable
Video Coding (SVC), and to briefly discuss about its two widely followed variants,
viz. Spatial Domain Motion Compensated Temporal Filtering (SD-MCTF) and In-
Band Motion Compensated Temporal Filtering (IB-MCTF). This chapter starts with
an overviewof SVC, followedbydiscussion on the principle ofMCTF.Next, Sect. 7.3
provides the details of the proposed framework for SVC. Simulation results are given
in Sect. 7.4 and conclusions are drawn in Sect. 7.5.

7.1 Overview of Wavelet Based Scalable Video Coding

Scalability has drawn considerable attention of the researchers due to its capability of
reconstructing low resolution or low quality video signal from partial bitstream. This
enables a simple solution in adaptation to network and terminal capability. The partial
bitstream is derived by dropping packets from the larger bitstream. A partial (subset)
bitstream can represent a lower spatial resolution, or a lower temporal resolution,
or a lower quality video signal (each separately or in combination) compared to the
bitstream it is derived from.

Modern video transmission and storage systems using the Internet andmobile net-
works are typically based on Real-time Transport Protocol (RTP)/Internet Protocol
(IP) for real-time services (conversational and streaming) and on computer file for-
mats likeMPEG-4 or 3GPP.Most RTP/IP access networks are typically characterized
by a wide range of connection qualities and receiving devices. Such varying connec-
tion quality results from adaptive resource sharing mechanisms of these networks
addressing the time varying data throughput requirements of a varying number of
users. The variety of devices with different capabilities ranging from cell phones
with small screens and restricted processing power to high-end PCs with high-
definition displays results from the continuous evolution of these endpoints. Scal-
able video coding (SVC) is one solution to the problems posed by the characteristics

© Springer International Publishing Switzerland 2015
I. Chakrabarti et al., Motion Estimation for Video Coding,
Studies in Computational Intelligence 590, DOI 10.1007/978-3-319-14376-7_7

85

86 7 Introduction to Scalable Image and Video Coding

of modern video transmission systems. The applications like streaming, conferenc-
ing, surveillance, broadcast and storage can benefit from SVC.

7.1.1 Existing Scalable Video Codec Designs

Research on scalability is carried out in one or a combination of more than one of the
following domains, viz. temporal, spatial, and quality. In particular, spatial and tem-
poral scalability are described as a subset of the bit stream that represents the source
content with a reduced picture size (spatial resolution) or frame rate (temporal resolu-
tion), respectively. With quality scalability, the substream provides the same spatio-
temporal resolution as a complete bit stream, though with a lower signal-to-noise
ratio (SNR).

Scalable video coding must support more than one spatial, temporal and quality
layers. Hence, the codec structure of SVC differs from the conventional hybrid video
coding structure of the H.264 video standard. There have been many contributors to
the codec structure for an SVC. The first significant contribution to the SVC codec
structure was made by Ohm[1]. The following video codec structures (Figs. 7.1, 7.2
and 7.3) are examples of video codec structures developed by Ohm[1].

Spatial Scalability: Video is coded at multiple spatial resolutions. The data and de-
coded samples of lower resolutions can be used to predict data or samples of higher
resolutions in order to reduce the bit rate to code the higher resolutions. Spatial
scalability is typically realized as a differential pyramid, where motion compensated
prediction is applied within each pyramid level in addition to the coarse-to-fine pre-
diction. Theremay be cases, however, where the reconstruction of the previous frame
enhancement layer allows better prediction of the actual enhancement frame, with-
out referencing the current base-layer frame. As shown in Fig. 7.1, the enhancement
layer frame can either be predicted entirely from the up-sampled base layer, from
the previous enhancement layer reconstruction, or from the mean value of both.

Fig. 7.1 Block diagram of
spatial scalable codec
(Source Ohm[1])

QB

T-1

MC

aB

T

QET

MCaE

T-1

+

+

+

+

+

+

+

BL: Base Layer
EL: Enhancement Layer
QB: Quantization for BL
QE: Quantization for EL
aE (aB): Multiplicative

Constant for EL (BL)
MC: Motion Compensation

7.1 Overview of Wavelet Based Scalable Video Coding 87

Temporal Scalability: It is often used in practice, as reduction of the video frame rate
is a common approach in cases where insufficient transmission capacity is available.
Assume that the base layer relates to a reconstructed sequence of lower frame rate.
If the base information is self-contained, it can be established as a subsequence from
which frames are skipped, while the enhancement layer supplements these frames
for the higher frame rate, which are then predicted from the base-layer frames as
depicted in Fig. 7.2.

SNR/Quality/Fidelity Scalability: Video is coded at a single spatial resolution
though at different qualities. The data and decoded samples of (base layer) lower
qualities can be used to predict data or samples of the (enhancement layer) higher
qualities in order to reduce the bit rate to code the higher qualities. To achieve higher
compression performance, interframe prediction with a separate loop can be applied
to the enhancement layer coding as shown in Fig. 7.3.

The above three block diagrams (Figs. 7.1, 7.2 and 7.3) were a diagrammatic rep-
resentation of the video codec proposed by Ohm[1]. All these video codec designs
were modifications of the conventional hybrid coding [2–7]. Hybrid coding has been
prevalent in all the video coding standards since the introduction of motion com-
pensation for video coding. In case of encoding of the hybrid video structure, one
frame predicts another, the predicted frame predicts another and this goes on for a
Group-of-Pictures (GOP). It is quite evident and stated in [7] that prediction error
tends to accumulate and the quality of the frames worsens as we move towards the
last frame of the GOP. To avoid such a problem, Motion Compensated Temporal
Filtering has been introduced [8–11].

Fig. 7.2 Block diagram of
temporal scalable codec
(Source Ohm[1])

1:N

EL

BL

Fig. 7.3 Block diagram of
SNR scalable codec (Source
Ohm[1])

BL

EL

88 7 Introduction to Scalable Image and Video Coding

Application of motion compensation (MC) is a key for high compression perfor-
mance in video coding. It is often understood to be implicitly coupled with frame
prediction schemes. There is indeed no justification for this restriction, as MC can
rather be interpreted as a method to align a filtering operation along the temporal
axis with a motion trajectory. In the case of MC prediction, the filters are in principle
linear predictive coding (LPC) analysis and synthesis filters, while in cases of trans-
form or wavelet coding, the transform basis functions extended over the temporal
axis are subject to MC alignment. This is known as motion-compensated tempo-
ral filtering. If MCTF is used in combination with a 2-D spatial wavelet transform,
this shall be denoted as a 3-D or (depending on the sequence of the spatial and
temporal processing) either as a 2-D + t or t + 2-D wavelet transform. In case of
MCTF (Fig. 7.4), the error frame is used to update the reference frame. Hence, the
error remains within the candidate and reference frames and is not accumulated or
propagated to the successive frames.

Andreopoulos et al. [8, 9], introduced wavelet-based Scalable Video Coding. In-
stead of the conventional discrete cosine transform (DCT), discrete wavelet trans-
form (DWT) was introduced as a suitable Image and Video Transform. DWT is a
multi-resolution transform, and by using this property it provides an improved repre-
sentation of the digital video data in a hierarchical manner. This is a useful property
which can be extensively used in case of SVC. The first codec structure which intro-
duced the property ofMCTF in SVCwas SD-MCTF[8]. SD-MCTFperformsmotion
compensation in temporal axis of the pixel domain. The residual frames were then
spatially decomposed using a suitable Discrete Wavelet Filter. For better coding effi-
ciency [1], IB-MCTF [8, 9] was introduced. Asmotion compensation was performed
in the wavelet domain, the problem of shift-variance can not be avoided. In order
to solve this problem, Over-complete DWT[8, 9, 12, 13] has to be performed. The
algorithm and complexity models of IB-MCTF were given in [9, 12]. Conventional
wavelet decomposition was performed using the convolution method. However, the
problem with convolution based DWT was higher memory requirement and greater
computational time. To solve this problem, a mathematical approach called lift-
ing scheme was introduced by Daubechies and Sweldens [14] through factorization

Temporal Split

Transform
Block

Quantization
Block

+

-

+

Coded bits

Updated frames

Error Frames

Odd Frames

Even Frames

Fig. 7.4 Motion compensated temporal filtering [8, 9] block with predict and update stage

7.1 Overview of Wavelet Based Scalable Video Coding 89

of Discrete Wavelet Filters. Details of over complete DWT (ODWT), lifting based
ODWT, SD-MCTF, and IB-MCTF are given in the following sections.

7.1.2 Discrete Wavelet Transform

Fourier Transform of any signal generates the frequency profile of the signal. It shows
the frequency components that are present in the signal. It fails to show spatial or
temporal variation of the frequency component, i.e. it cannot show the position of
the frequency at the time or space axes. Wavelet Transform[15, 16] on the other
hand decimates the signal both in frequency as well as in time/spatial domain; it
captures both the frequency and location information. This is a key advantage of
wavelet transform over Fourier transform. DWT is the representation of signals as
a series summation of certain wavelets. Some popular wavelets that are used in the
context of DWT are Haar wavelets, Daubechies wavelets, 5/3 orthonormal wavelets
and 9/7 orthonormal wavelets. The feature that makes DWT suitable in the context of
SVC is its ability to decompose the signal into lower resolution. DWT is also called
Multi-resolution Transform. The signal passes through two filters—a high pass filter
that extracts the high frequency components (detailed coefficients) and a low pass
filter that produces the low frequency components (approximate coefficients). The
approximate coefficients are the representation of the signal in the lower resolution in
the spatial domain. The low frequency components can be further decomposed to give
even lower resolution in the spatial domain. This property of DWT to decompose
a signal into lower resolution makes it suitable in the context of SVC. However,
wavelet transform suffers from a problem of shift variance which is the reason of
the dominance of DCT in the video coding standards. This problem of shift variance
is the reason why motion estimation [17] algorithm cannot be directly used in the
wavelet domain representation of consecutive frames.

7.1.3 Problem of Shift Variance in DWT

The representation of any signal using the DWT gives both frequency and location
information. This property is desirable in case of image and video coding applica-
tions. The block diagram of the wavelet decomposition has a down-sample stage.
Certain samples from both the approximate coefficients (low pass) as well as the
detailed coefficients (high pass) are dropped leading to lower resolution. This shows
that wavelet decomposition is highly dependent on the alignment of the signal and
the discrete grid chosen for analysis. It is clear that a unit shift in the spatial domain
does not correspond to a unit shift in the wavelet domain. This can cause a lot of high
frequency components to develop at the edges of the wavelet domain signal while
performing motion compensation in the wavelet domain. This problem is called the
shift variance.

90 7 Introduction to Scalable Image and Video Coding

2
4
6
8

10
12
14
16
18
20

2 4 6 8 10 12 14 16 18 20

(a)

2
4
6
8

10
12
14
16
18
20

2 4 6 8 10 12 14 16 18 20

(b)

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

2

4

6

8

10

0

-2

-4
-6

1 2 3 4 5 6 7 8 9 10

2

4

6

8

10

0

-2

-4
-6

-8

(c) (d)

(e) (f)

Fig. 7.5 Problem of shift variance in DWT. Parts a and b show a one dimensional signal x[n] and
its time shifted version. Parts c and d show low pass coefficients of x[n] and x[n − 1]. Parts e and
f depict high pass coefficients of x[n] and x[n − 1]

Figure7.5 shows that the wavelet domain representation of the detailed and ap-
proximate coefficients is quite different for any signal and its unit time shifted version.
Let y[n] be equal to DWT(x[n]), where x[n] is a one dimensional signal. Due to shift
variance, y[n − 1] is not equal to DWT(x[n]). This difference is more prominent in
case of the detailed coefficients than the approximate coefficients. At the edges of
any signal in the spatial domain, this disparity is most critical and causes a lot of
high frequency components to develop at those positions. So if there is a unit time
shift in any signal, it cannot be captured by the critically sampled Discrete Wavelet
Transform. A single pixel shift in either direction or both cannot be captured by the
critically sampled wavelet transform. So for effective motion compensation in the

7.1 Overview of Wavelet Based Scalable Video Coding 91

wavelet domain, we need to obtain the phase information aswell. This can be done by
performing the operation of Over-complete Discrete Wavelet Transform (ODWT).

7.1.4 Critically Sampled DWT

The DWT of a signal x[n] is calculated by passing it through a series of filters. First,
the samples are passed through a low pass filter with impulse response g[n] resulting
in a convolution of the two:

y[n] = (x ∗ g)[n] =
∞∑

k=−∞
x[k]g[n − k] (7.1)

The signal is also decomposed simultaneously using a high-pass filter. The outputs
represents the detail coefficients (from the high-pass filter) and the approximation
coefficients (from the low-pass). It is important that the two filters are related to each
other and they are known as quadrature mirror filter [15, 16]. However, since half the
frequencies of the signal have now been removed, half the samples can be discarded
according to Nyquist criteria. The filter outputs are then down sampled by two.

ylow[n] =
∞∑

k=−∞
x[k]g[2n − k]

yhigh[n] =
∞∑

k=−∞
x[k]h[2n − k]

(7.2)

This decompositionhas halved the time resolution sinceonlyhalf of the output of each
filter characterizes the signal. However, as each output has half the frequency band of
the input, the frequency resolution has been doubled. Because of the down-sampling
operation, this method of DWT is called critically sampled DWT or complete DWT.

7.1.5 Over-Complete Discrete Wavelet Transform (ODWT)

The transformation based on ODWT has been used to overcome the problem of shift
variance faced by critically sampled DWT. In the critically sampled DWT structure,
in the down-sample stage, odd terms of the signals are discarded and the even terms
of signals are retained. This method is known as even phase DWT. If we retain the
odd terms and discard the even terms, then the DWT is odd phase DWT. In over-
complete DWT, both the even phase and the odd phase are retained. This implies that
there is no down-sample stage since it is the interlaced version of even phase DWT
and odd phase DWT.

92 7 Introduction to Scalable Image and Video Coding

EVEN ODD L0L0 L0H0 L0L1 L0H1 L1L0 L1H0 L1L1 L1H1 H0L0 H0H0 H0L1H0H1 H1L0 H1H0 H1L1 H1H1

(a) (b)

Fig. 7.6 Block diagram of over-complete discrete wavelet transform a 1-D signal. b 2-D signal

Figure7.6a shows that if X is an one dimensional (1-D) signal, after the first level
of wavelet decomposition using ODWT, we obtain four sub-bands instead of two
phases (even and odd). However, if the signal is a two dimensional (2-D) signal,
like an image, this over-complete DWT has been performed at each decomposition
stage, the row-wise decomposition stage and the column-wise decomposition stage.
As shown in Fig. 7.6b various sub-bands in the case of an imagewould be LL, LH,HL
and HH sub-bands. The number of phases increases as one goes down the resolution
levels. For a 1-D signal, the number of phases at a certain decomposition level I
is 2I , i.e. 2 phases in the first level and four phases in the second level and so on.
Similarly, for a 2-D signal (image), the number of phases at a certain level is 22I, i.e.
four phases in the first level, sixteen phases in the second level, and so on.

7.1.6 Lifting Based Discrete Wavelet Transform

Implementation of convolution based DWT requires very intense computation and
a lot of memory. These features of DWT make it unfavorable in the field of video
compression and video coding. To avoid the problems of convolution based DWT, a
mathematical approach called the lifting-based wavelet transform or simply lifting
has been developed. The main feature of this method is to factorize the low pass
and the high pass filters into a number of mathematical operations. The method
uses spatial correlation between the high pass and the low pass filter coefficients
to minimize computations and improve the system performance. The operations
involved are sequential, as memory requirement is quite nominal as there is no data
dependency between the input and the output. Hence, the value of the transformed
data can be loaded back into the samememory. Figure7.7 shows the block diagram of
a lifting scheme. Haar wavelets have only one Predict Stage (P) and one Update stage
(U). However, other wavelets like D4, 5/3 orthonormal and 9/7 orthonormal wavelets
have more than one Predict and Update stages. Irrespective of the number of Predict
andUpdate stages, every lifting scheme has a similar framework. The first step of any
lifting scheme is a split. In splitting stage the input sequence To perform the lifting
scheme, the first step is splitting the input bit-stream x[n] separated into a x[2n]

7.1 Overview of Wavelet Based Scalable Video Coding 93

Fig. 7.7 Block diagram of lifting based DWT for an one dimensional signal

(even) and x[2n + 1] (odd) coefficients. Always even signal coefficients predict the
odd signal coefficients. The difference between the odd coefficients and the predicted
coefficients is used to update the even coefficients. So along the odd coefficient data
path, the high pass coefficients are obtained. Along the even coefficient data path, the
low pass coefficients are obtained. For a two dimensional (Image) input sequence,
x[n] split in to even and odd coefficients and then the set of predict and update stages
is performed to obtain the low Pass and the high pass coefficients along the row. Next,
both the high pass and low pass coefficients are passed through a similar structure
as depicted in Fig. 7.8, this time the frames are split along the column. So after the
predict and update stages are applied along the column, four sub-bands are obtained,
viz. LL, LH, HL and HH.

Row Processing
Column Processing

Fig. 7.8 Block diagram of lifting based DWT for a 2-D signal (Image)

94 7 Introduction to Scalable Image and Video Coding

7.1.7 Over-Complete Discrete Wavelet Transform
Using the Lifting Scheme

The importance of over complete DWT in the perspective of Motion compensation
(MC) in the wavelet domain already has been mentioned earlier. Lifting based over
complete DWT is a method [12] proposed to solve the problem of shift variance in
DWT using the lifting scheme.

As shown in Fig. 7.8, the first stage splits the frame into odd and even coeffi-
cients. Then the even coefficients are used to predict the odd coefficients and the
difference of that data is used to update the even coefficients. Note that the even
coefficients are members of the set {x0, x2, x4, . . . , x2n}, while the odd coefficients
are {x1, x3, x5, . . . , x2n+1}. The wavelet coefficients are a function of the data-sets
(x0, x1), (x2, x3), (x4, x5), . . . , (x2n, x2n+1). However, no information is available
for the dataset (x1, x2), (x3, x4), (x5, x6), . . . , (x2n−1, x2n). For normal lifting based
DWT, the even coefficients predict the odd coefficients and the difference data is
used to update the even coefficients. For the lifting based over complete DWT, same
process done for one pixel shifted version of the signal. These two processes when
performed together gives the over-complete DWT coefficients. For the scenario of
an image, the lifting framework remains the same but for the fact that the operation
is performed first along the row and then along the column as well.

7.1.8 Spatial Scalability with DWT

Apart from the decimation in space and frequency, the other advantage of wavelet
transform over any other conventional transform is its ability to decompose the
signal into multiple resolutions. In the previous section, the architectures for lifting
based DWT and lifting based ODWT have been mentioned. In this section, we
briefly discuss how DWT can be used for spatial scalability. After the first level
of decomposition, we obtain four sub-bands—LL, LH, HL and HH. The LL sub-
band is the representation of the image at a lower spatial resolution, which is of size
equal to 1/2 × 1/2 of the original image. The other sub-bands contain the high pass
information or the detailed information. We can use the LL to decompose the image
further. After the second level of decomposition, we have LLLL sub-bandwhich is of
size equal to 1/4 × 1/4 resolution of the original image. We can decompose further,
giving an even lower resolution image of resolution 1/8 × 1/8 of that of the original
image. This sub-band will be the base-layer for the spatial scalable video bit-stream.
The other sub-bands become the enhancement layers. The details are depicted in the
Fig. 7.9.

7.1 Overview of Wavelet Based Scalable Video Coding 95

Fig. 7.9 Diagrammatic
Representation of spatial
decomposition using DWT
showing four different
resolution levels

LLLLHL

LLLLHHLLLLLH

LLLLLL

7.1.9 Temporal Scalability with DWT

Utilizing the multi-resolution property of wavelet transform along the temporal axis
helps obtain temporal scalability. For temporal transform, the inter-frame wavelet
coding has been proposed earlier which however fails to meet the compression de-
mands of today’s broadcasting network.But keeping the basic structure of inter-frame
wavelet coding,MCTF has been proposed which has been seen [11, 12] to give better
coding efficiency. After one level of temporal decomposition of each pair of frames,
we obtain one low pass or average frame and one high pass or difference frame.
This low pass frames can be combined together to form the second level of temporal
decomposition. The high pass frames are kept separate. So after two levels decom-
position, we have one low pass frame and three high pass frames. The low pass
frames are the average over four consecutive frames. By combining these two low
pass frames, we may decompose the video signal further. At the end of three levels
of decomposition, we have one low pass frame and seven high pass frames. This
low pass frame or LLL frame becomes the base layer for temporal scalability. As
shown in Fig. 7.10, for every eight frames, we have one such LLL frame which is the
average over these eight frames. This way the frame rate of this LLL frame is 1/8th of
the original frame rate. The other high pass frames becomes the enhancement layers.
This is the procedure for temporal scalability.

96 7 Introduction to Scalable Image and Video Coding

1 2 3 4 5 6
7 8

Video
Sequence

Temporal
Filtering

Temporal
Filtering

Temporal
Filtering

Spatial
Filtering

Spatial
Filtering

Spatial
Filtering

L H

LL

LH

LLL LLH

Motion
Compensation

Fig. 7.10 Wavelet-based motion-compensated temporal filtering

7.2 Motion Compensated Temporal Filtering (MCTF)

Hybrid video coding, as found in H.264/AVC[6, 7] and all existing video coding de-
signs are based on differential pulse code modulation (DPCM) together with spatial
decorrelating transformations [7]. DPCM is characterized by the use of synchronous
prediction loops at the encoder and decoder. Differences between these prediction
loops lead to a “drift” that can accumulate over time and produce annoying artifacts.
Only recently, new methods of efficient enhancement layer prediction represented
by the motion-compensated wavelet coding were developed to improve the tradi-
tional hybrid scalable coders. These new wavelet codecs have been considered a
useful coding structure with numerous advantages over non-scalable conventional
techniques based on motion-compensated prediction [18–20].

7.2 Motion Compensated Temporal Filtering (MCTF) 97

One key element of recent advances in scalable video coding is the hierarchi-
cal prediction structure characterized MCTF which involves lifting based DWT. In
lifting-based MCTF framework, a wavelet transform is applied along the motion
trajectories and the recursive prediction loop in conventional hybrid video coding
is replaced with an open loop structure [1]. The wavelet transform is efficiently im-
plemented by lifting scheme, which is easily invertible and any type of operation,
linear or non-linear, can be incorporated into the prediction and update steps. As a
consequence, these wavelet video coding schemes are believed to provide flexible
spatial, temporal, SNR and complexity scalability with fine granularity over a wide
range of bit-rates, while maintaining a very high coding efficiency. In the future, the
design of the scalable extension of the HEVC may include a wavelet decomposition
structure in the temporal direction, because of its high quality.

7.2.1 Spatial Domain MCTF (SD-MCTF)

SD-MCTF is the first motion compensated temporal filtering algorithm that has
been proposed. This has been the first ever modification of the conventional hybrid
coding. Inspite of its high efficiency hybrid coding fails in error resilience. Due to the
loop structure, the error tends to accumulate within the Group-of-Pictures (GOP). To
avoid this, a non-loop/open loop structure has beenproposed in [9]. In SD-MCTF,The
motion compensation is performed in the spatial domain. Twoconsecutive frames, the
odd numbered frame being the candidate frame and the even numbered frame being
the reference frame are considered. Using a suitable block matching algorithm[17],
the predicted frame is obtained. The better the prediction, the better will be the
compression. This is because the number of significant bits in the error frame will
be less. Some pixels in the reference frame get mapped to more than one pixel in
the candidate frame, whereas the other pixels are not mapped to any one of the
pixels in the candidate frame. The error frame is used to update the reference frame.
For the update process, the information of the inverse motion vector is necessary.
This information can be calculated from the motion vector information. The updated
frame is obtained using the same algorithm as is used for the predicted frame. The
algorithm of SD-MCTF comprises several steps as follows:

Step 1 The sequenceof frames is split into even andodd frames.Even framesbecome
the reference frames and the odd framesbecome the candidate frames.Motion
estimation using a suitable block matching algorithm is applied. The output
of the ME block is the motion vector information.

Step 2 Using the information from the motion vector, a predicted frame is obtained.
The best matched macro-block from the reference frame is copied into the
position of the candidate MB in the predicted frame.

Step 3 The next step is to obtain the error frame. It is a pixel-by-pixel subtrac-
tion of the predicted frame from the candidate frame. The sum-squared

98 7 Introduction to Scalable Image and Video Coding

pixel-by-pixel value of the error frame gives the measure of the accuracy
of ME/MC algorithm.

Step 4 The next step is to obtain the updated frame. This is the part that has been
introduced in MCTF. Until step 3, the procedure is same for both the hybrid
structure as well as theMCTF. Update step involves creating an update frame
using the information from the error frame and inverse motion vector. The
inversemotion vector can be obtained from forwardmotion vector. Obtaining
an update frame is similar to step 2. While calculating the inverse motion
vector, it can be observed that some of the Macro-Blocks in the reference
frame are multi-connected while some have no connection, or there exists no
reference in the motion vector. For the multi-connected MBs in the reference
frame, the inversemotion vector obtained first using the raster scan is applied.
For the non connected MBs in the update frame for those pixels, the value
of motion vector is zero.

Step 5 The next step is performing the averaging. The pixel values of the update
frame are divided by 2, and this is added to the pixel values of the cor-
responding position of the reference frame. After this step, we obtain the
average frame.

Step 6 Repeat steps 1–5 with video stream inputs as the average frames or the low
pass frames obtained from the previous decomposition to further decompose
the video stream into even lower temporal resolutions.

Step 7 Following the decomposition of the even and odd frames into average and
difference frames respectively, spatial decomposition is performed to remove
the spatial redundancy. DWT is used for spatial decomposition. Any one of
the wavelets (like Haar, D4, and different orthonormal wavelets) can be used
as a suitable basis for DWT.
Spatial Domain MCTF is also called ‘t + 2D’ transform. Temporal decom-
position is carried out first, followed by a spatial transform.

7.2.2 In-Band MCTF (IB-MCTF)

Figure7.11 represents the block diagram for IB-MCTF. In this scheme, the motion
estimation [13] is performed in-band or in the sub-bands. In case of IB-MCTF, the
motion estimation is performed in-band, and the performance of the transcoder suf-
fers from the problemof shift variance.BecauseDWT is shift variant, it is not possible
to use the critically sampled DWT sub-bands for motion estimation. So for effective
motion compensation in the wavelet domain, we need to use over-complete DWT.
Apart from the sequence of temporal and spatial decomposition and performing
ODWT instead of the critically sampled DWT, the basic framework of IB-MCTF[9]
is similar to that of SD-MCTF. IB-MCTF also has the same structure for MCTF
except for Motion Vector (MV) information and Inverse Motion Vector (IMV) infor-
mation, in which the phase information has to be computed. IB-MCTF is also called
2D + t transform.

7.2 Motion Compensated Temporal Filtering (MCTF) 99

Temporal Split Predict Update

Quantization
Block

+

-

+

Coded bits

Updated frames

Error Frames

Odd Frames

Even Frames

DWT
(Ts)

Video
Frames

(A2t, A2t+1)

(TsA2t+1)

(TsA2t) +

Fig. 7.11 Block diagram for IB-MCTF with predicting and update blocks

Candidate
Video Frame

Reference
Video Frame

LL

HH

HL

LH

LL00

HH00

HL00

LH00

LL01

HH01

HL01

LH01

LL10

HH10

HL10

LH10

LL11

HH11

HL11

LH11

DWT

Candidate
Sub Bands

ODWT

Phase 00

Phase 01

Phase 10

Phase 11

Reference
Sub Bands

Fig. 7.12 Step 1: Spatial decomposition to obtain the sub-bands; critically sampled DWT for
candidate frame and ODWT for reference video frame

The algorithm of IB-MCTF consists of a number of steps as follows:

Step 1 The first step of IB-MCTF involves splitting of the video frame into the
sub-bands. Because of the problem of shift variance, ODWT is performed
to obtain the phase information. The even frames are the reference frames
(Fig. 7.12).

Step 2 Motion estimation is performed on the sub-band LL of the candidate frame
and the reference frame. For motion estimation, the information that is sent
to the ME block is the candidate sub-band, and the reference sub-bands for

100 7 Introduction to Scalable Image and Video Coding

Motion Estimation
using Block
Matching

00 01

10 11
Reference Sub-bands

Candidate Sub-band

MVx MVy Phase

dx dy 11

Best matched macro-block for
the candidate macro-block

Fig. 7.13 Step 2: Motion estimation process in case of IB-MCTF, the phase information also
considered for ME

00 01

10 11
Reference Sub-bands

predicted Sub-band

MVx MVy Phase

dx dy 11

Best matched macro-block

Motion vector with Phase
Information dx

dy

Sub-band of the
particular phase

selected

Best matched macro-block
copied in to the candidate

macro-block position

Fig. 7.14 Step 3: Predicted sub-band obtained using information from the reference sub-band and
the motion vector data along with false information

Pixel-by-
pixel

subtraction

Candidate sub-band Predicted sub-band Error sub-band

Fig. 7.15 Step 4: Error sub-band by subtracting predicted sub-band from the candidate sub-band

7.2 Motion Compensated Temporal Filtering (MCTF) 101

all the phases (00, 01, 10 and 11). ME is performed using the block matching
algorithm, and the output of the ME block is the motion vector. In addition
to the motion vector, phase information is obtained (Fig. 7.13).

Step 3 Using the phase information and the motion vector, a predicted sub-band
is obtained. The best matched macro-block from the reference sub-band of
the particular phase is copied into the position of the candidate MB in the
predicted sub-band (Fig. 7.14).

Step 4 The error sub-band is a pixel-by-pixel subtraction of the predicted sub-band
from candidate sub band (Fig. 7.15).

Step 5 The next step is the formation of the update sub-band. For this process, the
inverse motion vector is obtained. The process for IMV is not as straight-
forward as in case of SD-MCTF. The algorithm to obtain the inverse mo-
tion vector has been mentioned in [9, 12]. If the phase of the best match is
00, then the inverse motion vector is obtained by the same procedure as in
SD-MCTF. However, for non-zero phase, the inverse motion vector is mod-
ified depending on the phase information. The problem of multi-connected
and non-connected macro-blocks is still present in the case of IB-MCTF.
Unlike the predict stage where the different phases of the reference sub-band
are present, the different phases of the error sub-band are unavailable at this
stage. Here, CODWT is performed. The phase information and the inverse
motion vector are used to form the updated sub-band (Figs. 7.16 and 7.18).

Step 6 This is the averaging step. In this step, the reference sub-band is added to the
updated sub-band/2. Each pixel value in the average sub-band is formed by

00 01

10 11
Phase information

using CODWT

updated Sub-band

IMVx IMVy Phase

dx’ dy’ 11

Best matched macro-block

Inverse Motion vector
with Phase Information dx’

dy’

Sub-band of the
particular phase

selected

Best matched macro-block
copied in to the error
macro-block position

Error sub-band

CODWT

Fig. 7.16 Step 5: Formation of the update frame from the error frame using IMV and phase

102 7 Introduction to Scalable Image and Video Coding

Pixel-by-
pixel

addition

Reference sub-band Update sub-band/2 Average sub-band

Fig. 7.17 Step 6: Formation of the average sub-band by adding the reference sub-band to the update
sub-band/2

MVx MVy Phase

dx dy 11

Motion vector with Phase

For a macro-block
at pos. ((x+dx),

(y+dy)) IMVx
information is

(-dx,-dy).

MVx MVy

dx’ dy’

MVx MVy Phase

dx dy 11

x y

Inverse motion
vector without

phase
compensation

Phase information along
with x and y

Inverse motion vector with phase

Fig. 7.18 Inverse motion vector with phase information from motion vector using IB-MCTF algo-
rithm mentioned in [9]

the sum of the pixel value of reference sub-band and 1/2 value of the pixel
of the updated sub-band (Fig. 7.17).

Step 7 The previous steps of IB-MCTF algorithm are performed for decomposing
the video stream for one spatial and one temporal level. For further decom-
position, step 1 should be repeated for further spatial decomposition levels
and then Step 2 to Step 6 should be repeated for subsequent temporal levels.

7.3 Proposed Framework for SVC

The main encoding framework for scalable video coding based on IB-MCTF is
illustrated in Fig. 7.19. Initially, we apply lifting based DWT on each frame of the
GOP. The size of the GOP is 8. The number of levels in DWT depends on the

7.3 Proposed Framework for SVC 103

Fig. 7.19 Proposed framework for SVC based on IB-MCTF

resolution of the base layer. In our framework, we consider one level decomposition
using CDF 9/7 filter coefficients to perform the DWT operation. MCTF is applied
in the temporal direction on low frequency (LF) bands of each pair of frames in a
GOP. In this process, each odd frame is predicted from the even frame through MC.
Because MC is applied on DWT coefficients of the image, we have adopted low
band shift method for motion estimation [12]. To avoid the problem of shift variance
in DWT, we have used the ODWT. After the prediction step, the even frame was
updated by using CODWT[9]. After the first level of temporal decomposition, we
get 4 LF frames and 4 HF frames. For the second level, 4 LF frames are the inputs,
from which we get 2 LF and 2 HF frames. At the third level, we get 1 LF and 1 HF
frame. The maximum number of levels in temporal direction is three, as the GOP
size is eight. After the 3rd level decomposition in temporal direction, we have 1
LF and 7 HF frames. Entropy coding is next applied to those frames. We consider
EZW+Huffman coding for entropy coding. Finally, codedmotion vectors and output
of entropy coder are subjected to packetization. The bi-orthogonal 9/7 wavelet can be
implemented as four lifting steps followed by scaling (shown in Fig. 7.20). It entails
the hardware implementation of six equations embodied by Eq. (7.3).

High pass
Coefficients

Low pass
Coefficients

Input

X[n]

X[2n+1]

X[2n]

Split

1

Odd

Even

Fig. 7.20 1-D lifting scheme of Daubechies 9/7 for forward wavelet DWT

104 7 Introduction to Scalable Image and Video Coding

Fig. 7.21 PSNR (in dB)
versus bit-rate (in kbps) for
IB-MCTF and SD-MCTF

X1[2n + 1] ← X [2n + 1] + α{X [2n] + X [2n + 2]}
X2[2n] ← X [2n] + β{X1[2n + 1] + X1[2n − 1]}

X3[2n + 1] ← X1[2n + 1] + γ {X2[2n] + X2[2n + 2]} (7.3)

X4[2n] ← X2[2n] + δ{X3[2n + 1] + X3[2n − 1]}
X5[2n + 1] ← 1/ζ {X3[2n + 1]}

X6[2n] ← ζ {X4[2n]}

The original data to be filtered is denoted by X [n]; and the 1-D DWT outputs are the
detail coefficients X5[n] and the approximation coefficients X6[n]. The lifting step
coefficients are denoted by α, β, γ and δ and the scaling coefficient is represented by
ζ are constants [14]. The above equations are implemented on Matlab to obtain the
coefficients X5[n] and X6[n], which correspond to high pass and lowpass coefficients
respectively. For an image, which is a 2-D signal, the above process is performed in
rows and as well as columns.

7.4 Simulation Results

We have simulated scalable video codec architecture based on IB-MCTF and SD-
MCTF through Matlab tool. For both the architectures, we consider the size of the
GOP as eight, the number of decomposition levels in the spatial domain as one. We
used lifting based CDF 9/7 filter coefficients for wavelet. For SVC based IB-MCTF,
motion compensation and motion estimation are done on wavelet domain, whereas
in SD-MCTF it was done in pixel domain. In temporal axis, always an odd frame
is predicted by even frames through lifting based prediction step. Prediction step
involves the ME and MC. After this, the even frames are updated by residual frames
(HF frame). After the one level of temporal decomposition we get 4 LF frames and

7.4 Simulation Results 105

Fig. 7.22 Performance (PSNR in dB) comparison between IB-MCTF, SD-MCTF and Hybrid
model for the different input sequences: a ‘viplane’, b ‘foreman’, c ‘Bus’, d ‘football’, e IB-MCTF
with entropy coding for ‘viplane’ sequence, f IB-MCTF with 2-level temporal decomposition for
‘viplane’ sequence

106 7 Introduction to Scalable Image and Video Coding

Table 7.1 Performance (PSNR in dB) comparison between IB-MCTF and SD-MCTF

Frame no. IB-MCTF SD-MCTF

Viplane Foreman Bus Football Viplane Foreman Bus Football

1 53.20 45.80 36.64 36.42 38.31 43.53 31.05 32.17

2 49.51 44.34 34.30 34.96 30.47 35.95 23.60 25.22

3 53.62 45.88 36.79 36.83 42.77 42.83 30.35 31.73

4 50.38 44.50 34.46 35.59 35.36 34.44 22.64 24.24

5 53.43 45.58 36.58 36.92 42.01 39.92 30.36 31.64

6 49.92 43.67 33.76 35.60 35.46 32.61 22.66 24.08

7 52.18 45.87 36.36 37.26 43.35 44.24 30.81 30.95

8 50.04 44.25 33.15 35.79 36.24 36.39 22.70 23.22

4 HF frames. For the second level, 4 LF frames are the inputs and then we get
2 LF and 2 HF frames, at the third level, we get 1 LF and 1 HF frame. Maximum
numbers of levels in temporal direction are three, because theGOP size is eight. After
the 3rd level decomposition in temporal direction we have 1 LF and 7 HF frames.
Entropy coding applies to those frames. We tested the simulated architectures with
“viplane”, “foreman”, “bus”, and “football” video sequences (Figs. 7.21 and 7.22).
Results shows that SVC based on IB-MCTF provides the better PSNR and bit rate.
Performance evaluation is given in Table7.1.

7.5 Conclusions

The present framework is concerned with implementation of IB-MCTF. It has been
demonstrated that IB-MCTF performs better than SD-MCTF as there exists greater
freedom in choosing various ME schemes for different sub-bands. But the memory
requirement and the computational complexity increase as we go down higher levels
of spatial and temporal scalability. For a two layer (base layer + one enhancement
layer) encoding, IB-MCTF requires more computation than SD-MCTF. As the level
of decomposition increases the computational requirements increases by the order of
22n where n is the level of decomposition. Hence we can conclude that the IB-MCTF
is preferred in research oriented fields where the quality of the received video data
is more significant. In domains of medical imaging and distant medical applications
where the quality of the video is significantly more important than the end-to-end
delay, IB-MCTF is better than SD-MCTF.

References 107

References

1. Ohm, J.R.: Advances in scalable video coding. Proc. IEEE 93, 42–56 (2005)
2. Advanced Video Coding for Generic Audiovisual Services.: ITU-T Rec. H.264 and ISO/IEC

14496–10 (MPEG-4 AVC), ITU-T and ISO/IEC JTC 1, Version 1: May 2003, Version 2: May
2004, Version 3: March 2005, Version 4: September 2005, Version 5 and Version 6: June 2006,
Version 7: April 2007, Version 8 (including SVC extension): Consented in July 2007

3. ITU-T Rec. & ISO/IEC 14496–10 AVC.: Advanced video coding for generic audiovisual
services, version 3 (2005)

4. Schwarz, H., et al.: Technical Description of the HHI proposal for SVC CE1, ISO/IEC
JTC1/WG11, Doc. m11244, Palma de Mallorca, Spain. October 2004

5. Reichel, J., Schwarz, H., Wien, M.: Scalable video coding joint draft 6. Joint Video Team, Doc.
JVT-S201, Geneva, Switzerland, April 2006

6. Coding of audiovisual objectsPart 10.: Advanced video coding. International Standards Organ-
isation/International Electrotechnical Commission (ISO/IEC), ISO/IEC14 496-10 (identical to
ITU-T Recommendation H.264)

7. Richardson, I.E.G.: H.264 andMPEG-4Video Compression Video Coding for Next generation
Multimedia. Wiley, West Sussex (2003)

8. Andreopoulos, Y., Van Der Schaar, M., Munteanu, A., Barbarien, J., Schelkens, P., Cornelis, J.:
Complete-to-overcomplete discrete wavelet transforms for scalable video coding with MCTF.
In: Proceedings of the SPIE/IEEEVisual Communications and Image Processing, pp. 719–731
(2003)

9. Andreopoulos, Y., Munteanu, A., Barbarien, J., Van der Schaar, M., Cornelis, J., Schelkens, P.:
In-bandmotion compensated temporal filtering. Signal Process.: Image Commun. 19, 653–673
(2004)

10. Vanhoof, B., Peón, M., Lafruit, G., Bormans, J., Nachtergaele, L., Bolsens, I.: A scalable
architecture for MPEG-4 wavelet quantization. J. VLSI Signal Process.-Syst. Signal, Image
VideoTechnol.23(1) (1999) (Special Issue on Implementation ofMPEG-4MultimediaCodecs)

11. Wang, B., Loo, K.K., Yip, P.Y., Siyau M.F.: A simplified scalable wavelet video codec with
MCTF structure. In: International Conference on Digital Telecommunications (ICDT’06) 29–
31 August 2006. doi:10.1109/ICDT.2006.11

12. Andreopoulos, Y., van der Schaar, M., Munteanu, A., Barbarien, J., Schelkens, P., Cornelis, J.:
Fully-scalable wavelet video coding using in-band motion-compensated temporal filtering. In:
Proceedings of the IEEE International Conference onAcoustics, Speech and Signal Processing,
pp. III-417-III-420 (2003)

13. Park, H.W., Kim, H.-S.: Motion estimation using low-band-shift method for wavelet-based
moving-picture coding. IEEE Trans. Image Process. 9(4), 577–587 (2000)

14. Daubechies, I., Sweldens, W.: Factoring wavelet transforms into lifting steps. J. Fourier Anal.
Apple 4(3), 247–269 (1998)

15. Vaidyanathan, P.P.: Multirate Systems and Filter Banks, 1st edn. Prentice Hall Inc., Englewood
Cliffs (1992)

16. Strang, G., Nguyen, T.: Wavelets and Filter Banks. Wellesley-Cambridge Press (1996), ISBN:
0-9614088-7-1

17. Barjatya, A.: Block matching algorithms for motion estimation. In: Technical Report, Utah
State University (2004)

18. Ohm, J.R.: Three-dimensional sub-band codingwithmotion compensation. IEEETrans. Image
Process. 3, 559–571 (1994)

19. Ohm, J.R.: Motion-compensated 3D sub-band coding with multiresoultion representation of
motion parameters. Proc. ICIP 1994 3, 250–254 (1994)

20. Choi, S., Woods, J.: Motion compensated 3D sub-band coding of video. IEEE Trans. Image
Process. 8, 155–167 (1999)

21. Schelkens, P., Andreopoulos, Y., Barbarien, J., Clerckx, T., Verdicchio, F., Munteanu, A., van
der Schaar M.: A comparative study of scalable video coding schemes utilizing wavelet tech-
nology. In: Proceedings of SPIE Photonics East,Wavelet Applications in Industrial Processing,
vol. 5266, pp. 147–156 Providence (2004)

http://dx.doi.org/10.1109/ICDT.2006.11

108 7 Introduction to Scalable Image and Video Coding

22. Barbarien, J., et al.: Scalable motion vector coding. In: Proceedings of the International Con-
ference on Image Processing 2004 (ICIP’04), vol. 2, 24–27 (October 2004)

23. Andra, K., Chakrabarti, C., Acharya, T.: A VLSI architecture for lifting-based forward and
inverse wavelet transform. In: IEEE Transactions on Signal Processing, 50(4), April 2002

24. Weeks,M., Bayoumi,M.A.: Three-dimensional discrete wavelet transform architectures. IEEE
Trans. Signal Process., 50(8), 2050–2063 (2002). doi:10.1109/TSP.2002.800402

25. Zhang, C., Wang, C., Omair Ahmad, M.: A pipeline VLSI architecture for high-speed compu-
tation of the 1-D discrete wavelet transform. IEEE Trans. Circuits Syst., 57(10), 2729–2740
(2010). doi:10.1109/TCSI.2010.2046974

26. Das, A., Hazra, A., Banerjee, S.: An efficient architecture for 3-D discrete wavelet transform.
IEEE Trans. Circuits Syst. Video Technol., 20, 286–296 (2010). doi:10.1109/TCSVT.2009.
2031551

27. Mohanty B.K., Meher, P.K.: Parallel and pipeline architectures for high-throughput compu-
tation of multilevel 3-D DWT. IEEE Trans. Circuits Syst. Video Technol., 20(9), 1200–1209
(2010). doi:10.1109/TCSVT.2010.2056950

28. Mohanty, B.K., Mahajan, A., Meher, P.K.: Area- and power-efficient architecture for high-
throughput implementation of lifting 2-D DWT. IEEE Trans. Circuits Syst. II: Express Br.,
59(7), 434–438 (2012). doi:10.1109/TCSII.2012.2200169

29. Zhang, W., Jiang, Z., Gao, Z., Liu, Y.: An efficient VLSI architecture for lifting-based discrete
wavelet transform. IEEE Trans. Circuits Syst. II: Express Br. 59(3), 158–162 (2012)

http://dx.doi.org/10.1109/TSP.2002.800402
http://dx.doi.org/10.1109/TCSI.2010.2046974
http://dx.doi.org/10.1109/TCSVT.2009.2031551
http://dx.doi.org/10.1109/TCSVT.2009.2031551
http://dx.doi.org/10.1109/TCSVT.2010.2056950
http://dx.doi.org/10.1109/TCSII.2012.2200169

Chapter 8
Forward Plans

The previous five chapters have recordedmajor contributions of the present research,
which may be enumerated as follows:

1. Design and implementation of efficient VLSI architecture for Fast Three Step
search motion estimation algorithm.

2. Development of a parallelVLSI architecture for successive elimination algorithm.
3. Design and implementation of a high performancemotion estimation architecture

based on diamond search algorithm and one-bit transformation.
4. Development of a new algorithm for motion estimation based on pixel truncation.

Also designed an efficient architecture for the same.
5. Implementation of scalable video coding based on in-band motion compensated

temporal filtering (IBMCTF) through lifting based DWT.

Possible extensions of the research undertaken so far can be contemplated as
follows.

8.1 SoC Based Design for SVC

Sooner or later, wired as well as wireless communication will be characterized by
transmission of video frames over variable bandwidth channels. The need of the
video signals to be displayed on the entire gamut of devices ranging from mobile
cellphones to ultra-high definition television systems calls for extensive adoption of
the principle of scalable video coding (SVC) in video transmission [1]. Scalable video
coding is deemed applicable to even the latest video coding standard, viz. High Effi-
ciency Video Coding (HEVC) or H.265 [2–4]. To manage the complexity of H.265,
FPGA devices can be used as co-processors or accelerators to achieve a real-time
encoder/decoder system. Major FPGA vendors such as Altera and Xilinx currently
offer powerful System-on-Chip (SoC) devices (Altera’s Arria V and Cylone V series,
and Xilinx’s Zynq-7000). These SoC platforms appear to be feasible approaches for
development, prototyping, and production. For, they provide both flexibility and per-
formance. Based on simple calculation, the 4K encoding process can be split into

© Springer International Publishing Switzerland 2015
I. Chakrabarti et al., Motion Estimation for Video Coding,
Studies in Computational Intelligence 590, DOI 10.1007/978-3-319-14376-7_8

109

110 8 Forward Plans

four parallel processing pipelines, with two SoC chips performing the processing in
parallel. The newly introduced SoC devices have dual ARM processors and FPGA
fabric, so that motion estimation, motion compensation, and inter prediction blocks
can be implemented in the FPGA fabric. Moreover, DWT can be implemented in the
FPGA DSP area, and Syntax assembly and entropy coding can be handled by the
ARM core. As the complexity of video codec algorithm increases, such SoC FPGAs
are likely to be effective means of implementation.

8.2 Scalable Extension of HEVC

Figure8.1 shows the structure of the encoder for the proposed scalable video codec
pertaining to the case of input HDTV sequence, and examples of bit-stream compo-
sition for different spatial and temporal resolution. The decoder can automatically

Video
Frames

LF
Band

HF
Band

IB-MCTF

BL

EL-1

EL-2

EL-3

DWT: Discrete Wavelet Transform
LF : Low Frequency
HF : High Frequency
IB-MCTF : In-band Motion
Compensated Temporal Filtering
BL : Base Layer
EL : Enhancement Layer

BL EL-1 EL-2 EL-3 Bit Stream

Example for
Input HDTV
sequence

QCIF

CIF

SDTV

HDTV

DWT

Fig. 8.1 The encoding structure that performs open-loop framework for SVC using IBMCTF

8.2 Scalable Extension of HEVC 111

acquire necessary bit-streams right from the lowest level QCIF to the highest level
HDTV depending on the network environment and the spatial-temporal display
requirement of the user terminal. For spatial changes, if the input video frame is
of an SD resolution (704 × 576) and the client wants to display the video in CIF
(352× 288) at its terminal, the combination bit-stream between QCIF and CIF will
be necessary. It is known that better video quality can be obtained from increasingly
higher resolution. Hence, there is a need to use more video information from upper
resolution levels to reconstruct the picture [1, 5–7]. For temporal variation, one may
have to drop some frames in order to suit the network transmission condition. In this
scenario, certain bit-streamswill be selected from the different resolution to compose
the output.

References

1. Ohm, J.R.: Advances in scalable video coding. Proc. of the IEEE 93, 42–56 (2005)
2. Sullivan, G.J., Ohm, J.R., JinHan,W.,Wiegand, T.: Overview of the high efficiency video coding

(HEVC) standard. IEEE Trans. Circuits Syst. Video Technol. 22(12), 1649–1668 (2012)
3. Ohm, J.R., Sullivan, G.J., Schwarz, H., Tan, T.K., Wiegand, T.: Comparison of the coding

efficiency of video coding standardsincluding high efficiency video coding (HEVC). IEEETrans.
Circuits Syst. Video Technol. 22(12), 1669–1684 (2012)

4. Bossen, F., Bross, B., Sühring, K., Flynn, D.: HEVC complexity and implementation analysis.
IEEE Trans. Circuits Syst. Video Technol. 22(12), 1685–1696 (2012)

5. Andreopoulos, Y., van der Schaar, M., Munteanu, A., Barbarien, J., Schelkens, P., Cornelis, J.:
Fully-scalable wavelet video coding using in-band motion compensated temporal filtering. In:
Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP’03), pp. III-417–III-20, 3, 6–10 April 2003. doi:10.1109/ICASSP.2003.1199500

6. Andreopoulos, Y., Munteanu, A., Barbarien, J., van der Schaar, M., Cornelis, J., Schelkens, P.:
In-band motion compensated temporal filtering. Signal Process. Image Commun. 19, 653–673
(2004)

7. Wang, B., Loo, K.K., Yip, P.Y., Siyau, M.F.: A simplified scalable wavelet video codec with
MCTF structure. In: Proceedings of International Conference on Digital Telecommunications
(ICDT’06), 29–31 August 2006. doi:10.1109/ICDT.2006.11

http://dx.doi.org/10.1109/ICASSP.2003.1199500
http://dx.doi.org/10.1109/ICDT.2006.11

Appendix A
Matlab Programs

A.1 Program for Fast Three Step Search Algorithm

xx=imread(’foreman13.jpg’);

yy=imread(’foreman14.jpg’);

[H W]=size(xx);

mri1= zeros(H+16,W+16);

mri2= zeros(H,W);

searchpoint=zeros(9,2);

blok=zeros(64,2);

madvalue=zeros(9,1);

motionvector=zeros((H/16)*(W/16),2);

ptemp=0;

a3=zeros(H,W);

a2=uint8(zeros(H,W));

for sr=1:H

for sc=1:W

mri1(sr+7,sc+7)=xx(sr,sc,1); %previous frame

mri2(sr,sc)=yy(sr,sc,1); %current frame

end

end

%###start dividing current frame in to 16X16 blocks

Blocks=zeros(16,16,(H/16)*(W/16));

fr=1;

for row1=0:16:H-16

for col1=0:16:W-16

for row=1:16

for col=1:16

Blocks(row,col,fr)=mri2((row+row1),(col+col1));

end

© Springer International Publishing Switzerland 2015
I. Chakrabarti et al., Motion Estimation for Video Coding,
Studies in Computational Intelligence 590, DOI 10.1007/978-3-319-14376-7

113

114 Appendix A: Matlab Programs

end

fr = fr+1;

end

end

%#### Finish dividing current frame in to 16X16 blocks #

%### start loading search window ###

buff=zeros(30,32,(H/16)*(W/16));

fr=1;

for row1=0:16:H-16

for col1=0:16:W-16

for row=1:30

for col=1:32

buff(row,col,fr)=mri1((row+row1),(col+col1));

end

end

fr = fr+1;

end

end

for frameno=1:(H/16)*(W/16)

% for loop on "frameno" started from here

bi=0;

% frameno=30;

%1st step address starts from here

[srow,scol]=searchaddr(frameno);

[crow,ccol]=currentaddr(frameno);

spx=3;

for sp1=1:3:7

spy=3;

for sp2=1:3

searchpoint(sp1+sp2-1,1)=srow+spx;

searchpoint(sp1+sp2-1,2)=scol+spy;

spy=spy+4;

end

spx=spx+4;

end

%first step starts from here

j=3;

for i=1:3

for mad1st=5:6

searx=searchpoint(mad1st,1);

seary=searchpoint(mad1st,2);

Appendix A: Matlab Programs 115

mad1=0;

for a=0:15

for b=0:15

t1=buff(a+searx-(floor((frameno-1)/8)*16),

b+seary-(rem((frameno-1),8)*16),frameno);

t2=Blocks(a+crow-(floor((frameno-1)/8)*16),

b+ccol-(rem((frameno-1),8)*16),frameno);

ptemp=procelem(t1,t2);

mad1=mad1+ptemp;

end

end

madvalue(mad1st,1)=mad1;

bi=bi+1;

end

mad1st=8;

searx=searchpoint(mad1st,1);

seary=searchpoint(mad1st,2);

mad1=0;

for a=0:15

for b=0:15

t1=buff(a+searx-(floor((frameno-1)/8)*16),

b+seary-(rem((frameno-1),8)*16),frameno);

t2=Blocks(a+crow-(floor((frameno-1)/8)*16),

b+ccol-(rem((frameno-1),8)*16),frameno);

ptemp=procelem(t1,t2);

mad1=mad1+ptemp;

end

end

madvalue(mad1st,1)=mad1;

bi=bi+1;

if((madvalue(6,1)< madvalue(5,1))&&

(madvalue(8,1)< madvalue(5,1)))

% main if condition starts from here

mad1st=9;

searx=searchpoint(mad1st,1);

seary=searchpoint(mad1st,2);

mad1=0;

for a=0:15

for b=0:15

t1=buff(a+searx-(floor((frameno-1)/8)*16),

b+seary-(rem((frameno-1),8)*16),frameno);

t2=Blocks(a+crow-(floor((frameno-1)/8)*16),

b+ccol-(rem((frameno-1),8)*16),frameno);

ptemp=procelem(t1,t2);

116 Appendix A: Matlab Programs

mad1=mad1+ptemp;

end

end

madvalue(mad1st,1)=mad1;

bi=bi+1;

if((madvalue(6,1)<madvalue(9,1))&&

(madvalue(6,1)<madvalue(8,1)))

s2row=searchpoint(6,1);

s2col=searchpoint(6,2);

elseif((madvalue(8,1)<madvalue(9,1))&&

(madvalue(8,1)<madvalue(9,1)))

s2row=searchpoint(8,1);

s2col=searchpoint(8,2);

else

s2row=searchpoint(9,1);

s2col=searchpoint(9,2);

end

elseif((madvalue(6,1)<madvalue(5,1))&&

(madvalue(5,1)<madvalue(8,1)))

mad1st=3;

searx=searchpoint(mad1st,1);

seary=searchpoint(mad1st,2);

mad1=0;

for a=0:15

for b=0:15

t1=buff(a+searx-(floor((frameno-1)/8)*16),

b+seary-(rem((frameno-1),8)*16),frameno);

t2=Blocks(a+crow-(floor((frameno-1)/8)*16),

b+ccol-(rem((frameno-1),8)*16),frameno);

ptemp=procelem(t1,t2);

mad1=mad1+ptemp;

end

end

madvalue(mad1st,1)=mad1;

bi=bi+1;

if(madvalue(6,1)<madvalue(3,1))

s2row=searchpoint(6,1);

s2col=searchpoint(6,2);

else

s2row=searchpoint(3,1);

s2col=searchpoint(3,2);

end

elseif((madvalue(8,1)<madvalue(5,1))&&

Appendix A: Matlab Programs 117

(madvalue(5,1)<madvalue(6,1)))

mad1st=7;

searx=searchpoint(mad1st,1);

seary=searchpoint(mad1st,2);

mad1=0;

for a=0:15

for b=0:15

t1=buff(a+searx-(floor((frameno-1)/8)*16),

b+seary-(rem((frameno-1),8)*16),frameno);

t2=Blocks(a+crow-(floor((frameno-1)/8)*16),

b+ccol-(rem((frameno-1),8)*16),frameno);

ptemp=procelem(t1,t2);

mad1=mad1+ptemp;

end

end

madvalue(mad1st,1)=mad1;

bi=bi+1;

if(madvalue(8,1)<madvalue(7,1))

s2row=searchpoint(8,1);

s2col=searchpoint(8,2);

else

s2row=searchpoint(7,1);

s2col=searchpoint(7,2);

end

elseif((madvalue(5,1)<madvalue(6,1))&&

(madvalue(5,1)<madvalue(8,1)))

if((madvalue(5,1)<madvalue(6,1))&&

(madvalue(6,1)<madvalue(8,1)))

mad1st=2;

searx=searchpoint(mad1st,1);

seary=searchpoint(mad1st,2);

mad1=0;

for a=0:15

for b=0:15

t1=buff(a+searx-(floor((frameno-1)/8)*16),

b+seary-(rem((frameno-1),8)*16),frameno);

t2=Blocks(a+crow-(floor((frameno-1)/8)*16),

b+ccol-(rem((frameno-1),8)*16),frameno);

ptemp=procelem(t1,t2);

mad1=mad1+ptemp;

end

end

madvalue(mad1st,1)=mad1;

bi=bi+1;

118 Appendix A: Matlab Programs

if(madvalue(2,1)<madvalue(5,1))

mad1st=1;

searx=searchpoint(mad1st,1);

seary=searchpoint(mad1st,2);

mad1=0;

for a=0:15

for b=0:15

t1=buff(a+searx-(floor((frameno-1)/8)*16),

b+seary-(rem((frameno-1),8)*16),frameno);

t2=Blocks(a+crow-(floor((frameno-1)/8)*16),

b+ccol-(rem((frameno-1),8)*16),frameno);

ptemp=procelem(t1,t2);

mad1=mad1+ptemp;

end

end

madvalue(mad1st,1)=mad1;

bi=bi+1;

if(madvalue(2,1)<madvalue(1,1))

s2row=searchpoint(2,1);

s2col=searchpoint(2,2);

else

s2row=searchpoint(1,1);

s2col=searchpoint(1,2);

end

else

s2row=searchpoint(5,1);

s2col=searchpoint(5,2);

end

else

mad1st=4;

searx=searchpoint(mad1st,1);

seary=searchpoint(mad1st,2);

mad1=0;

for a=0:15

for b=0:15

t1=buff(a+searx-(floor((frameno-1)/8)*16),

b+seary-(rem((frameno-1),8)*16),frameno);

t2=Blocks(a+crow-(floor((frameno-1)/8)*16),

b+ccol-(rem((frameno-1),8)*16),frameno);

ptemp=procelem(t1,t2);

mad1=mad1+ptemp;

end

end

madvalue(mad1st,1)=mad1;

bi=bi+1;

Appendix A: Matlab Programs 119

if(madvalue(4,1)<madvalue(5,1))

mad1st=1;

searx=searchpoint(mad1st,1);

seary=searchpoint(mad1st,2);

mad1=0;

for a=0:15

for b=0:15

t1=buff(a+searx-(floor((frameno-1)/8)*16),

b+seary-(rem((frameno-1),8)*16),frameno);

t2=Blocks(a+crow-(floor((frameno-1)/8)*16),

b+ccol-(rem((frameno-1),8)*16),frameno);

ptemp=procelem(t1,t2);

mad1=mad1+ptemp;

end

end

madvalue(mad1st,1)=mad1;

bi=bi+1;

if(madvalue(4,1)<madvalue(1,1))

s2row=searchpoint(4,1);

s2col=searchpoint(4,2);

else

s2row=searchpoint(1,1);

s2col=searchpoint(1,2);

end

else

s2row=searchpoint(5,1);

s2col=searchpoint(5,2);

end

end

else %if((madvalue(5,1)< madvalue(8,1))&&

(madvalue(8,1)<madvalue(6,1)))

mad1st=4;

searx=searchpoint(mad1st,1);

seary=searchpoint(mad1st,2);

mad1=0;

for a=0:15

for b=0:15

t1=buff(a+searx-(floor((frameno-1)/8)*16),

b+seary-(rem((frameno-1),8)*16),frameno);

t2=Blocks(a+crow-(floor((frameno-1)/8)*16),

b+ccol-(rem((frameno-1),8)*16),frameno);

ptemp=procelem(t1,t2);

mad1=mad1+ptemp;

end

120 Appendix A: Matlab Programs

end

madvalue(mad1st,1)=mad1;

bi=bi+1;

if(madvalue(4,1)<madvalue(5,1))

mad1st=1;

searx=searchpoint(mad1st,1);

seary=searchpoint(mad1st,2);

mad1=0;

for a=0:15

for b=0:15

t1=buff(a+searx-(floor((frameno-1)/8)*16),

b+seary-(rem((frameno-1),8)*16),frameno);

t2=Blocks(a+crow-(floor((frameno-1)/8)*16),

b+ccol-(rem((frameno-1),8)*16),frameno);

ptemp=procelem(t1,t2);

mad1=mad1+ptemp;

end

end

madvalue(mad1st,1)=mad1;

bi=bi+1;

if(madvalue(4,1)<madvalue(1,1))

s2row=searchpoint(4,1);

s2col=searchpoint(4,2);

else

s2row=searchpoint(1,1);

s2col=searchpoint(1,2);

end

else

s2row=searchpoint(5,1);

s2col=searchpoint(5,2);

end

end

j=j-1;

spx=0;

for sp1=1:3:7

spy=0;

for sp2=1:3

searchpoint(sp1+sp2-1,1)=s2row+spx-j;

searchpoint(sp1+sp2-1,2)=s2col+spy-j;

spy=spy+j;

end

spx=spx+j;

end

end

motionvector(frameno,1,frame)=s2row-(srow+7);

Appendix A: Matlab Programs 121

motionvector(frameno,2,frame)=s2col-(scol+7);

blok(frameno,1)=frameno;

blok(frameno,2)=bi;

end % for loop on "frameno" end here

A.2 Program for Successive Elimination Algorithm

xx=imread(’b11.bmp’);

yy=imread(’b12.bmp’);

[H W]=size(xx);

mri1= zeros(H+32,W+32);

mri2= zeros(H, W);

motionvector=zeros((H/16)*(W/16),2);

colarray=zeros(48,1);

ptemp=0;

count1=0;

a3=zeros(H, W);

a2=uint8(zeros(H, W));

for sr=1:H

for sc=1:W

a3(sr,sc)=128;

end

end

for sr=1:128

for sc=1:128

mri1(sr+16,sc+16)=xx(sr,sc,1); %previous frame

mri2(sr,sc)=yy(sr,sc,1); %current frame

end

end

%# start dividing current frame in to 16X16 blocks #

Blocks=zeros(16,16,(H/16)*(W/16));

fr=1;

for row1=0:16:H-16

for col1=0:16:W-16

for row=1:16

for col=1:16

Blocks(row,col,fr)=mri2((row+row1),(col+col1));

end

end

fr = fr+1;

122 Appendix A: Matlab Programs

end

end

%# Finish dividing of current frame in to 16X16 blocks #

%# start search window loading #

buff=zeros(48,48,(H/16)*(W/16));

fr=1;

for row1=0:16:H-16

for col1=0:16:W-16

for row=1:48

for col=1:48

buff(row,col,fr)=mri1((row+row1),(col+col1));

end

end

fr = fr+1;

end

end

for frameno=1:(H/16)*(W/16)

% frameno for loop started from here

mad1=0;

count=0;

refsum=0;

for a=1:16

for b=1:16

t1=buff(a,b,frameno);

t2=Blocks(a,b,frameno);

refsum=refsum+t2;

ptemp=procelem(t1,t2);

mad1=mad1+ptemp;

end

end

count=count+1;

srow=0;

scol=0;

cur_min_sad=mad1;

for k=1:48

colarray(k,1)=0;

for l=1:16

colarray(k,1)=colarray(k,1)+ buff(l,k,frameno);

end

end

temp1=0;

for m=1:16

temp1=temp1+colarray(m,1);

end

sr=1;

Appendix A: Matlab Programs 123

for sc=2:31

temp12=temp1-colarray(sc-1,1)+colarray(sc+15,1);

temp1=temp12;

sad_sn=abs(refsum-temp12);

if (cur_min_sad>sad_sn)

mad1=0;

for a=1:16

for b=1:16

t1=buff(a,b+sc-1,frameno);

t2=Blocks(a,b,frameno);

ptemp=procelem(t1,t2);

mad1=mad1+ptemp;

end

end

count=count+1;

if (cur_min_sad>=mad1)

cur_min_sad=mad1;

srow=sr;

scol=sc;

else

end

else

end

mad1=0;

end

for sr=2:30

for k=1:46

colarray(k,1)=0;

for l=sr:sr+16

colarray(k,1)=colarray(k,1)+ buff(l,k,frameno);

end

end

for sc=1:32

temp1=0;

for m=sc:sc+16

temp1=temp1+colarray(m,1);

end

sad_sn=abs(refsum-temp1);

if (cur_min_sad>=sad_sn)

mad1=0;

for a=1:16

for b=1:16

t1=buff(a+sr-1,b+sc-1,frameno);

t2=Blocks(a,b,frameno);

124 Appendix A: Matlab Programs

ptemp=procelem(t1,t2);

mad1=mad1+ptemp;

end

end

count=count+1;

if (cur_min_sad>=mad1)

cur_min_sad=mad1;

srow=sr;

scol=sc;

else

end

else

end

mad1=0;

end

end

count1=count1+count;

motionvector(frameno,1)=srow-16;

motionvector(frameno,2)=scol-16;

end %for loop on " frameno" end here

Appendix B
Verilog Modules

B.1 Simulation Program for Fast Three Step Search
Algorithm

‘timescale 1ns / 1ps

module ftss(clk,start, mad12,mad22,mad32,memno1,

memadr1,memno2,memadr2,memno3,memadr3,pe_en);

input clk;

// input restart;

input start;

output [15:0] mad12;

output [15:0] mad22;

output [15:0] mad32;

output [7:0]memno1; output [7:0]memno2; output [7:0]memno3;

output [7:0]memadr1; output[7:0]memadr2;output[7:0]memadr3;

output pe_en;

reg [7:0] memmod1[0:8][0:63];

reg [7:0] memmod2 [0:8][0:63];

reg step11; reg step12; reg step21; reg step22;

reg step31; reg step32; reg storen;

reg pe_en; reg pe1en; reg pe2en; reg restart;

reg [7:0]ram [0:1][0:8];

reg signed [7:0]motionvect [0:1][0:15];

reg [15:0]madval [0:8];

reg [7:0]memr[0:63][0:63];

reg [7:0]searchmem[0:79][0:79];

reg [7:0]curmem[0:15][0:15];

reg [7:0]memry[0:4095];

reg [7:0]memry1[0:4095];

reg [15:0] mad12; reg [15:0] mad22;

reg [15:0] mad32; reg [15:0] mad11;

© Springer International Publishing Switzerland 2015
I. Chakrabarti et al., Motion Estimation for Video Coding,
Studies in Computational Intelligence 590, DOI 10.1007/978-3-319-14376-7

125

126 Appendix B: Verilog Modules

reg [15:0] mad21; reg [15:0] mad31;

reg [15:0] temp1; reg [15:0] temp2;

reg [15:0] temp3;reg [15:0] madtemp;

reg [7:0]memno1; reg [7:0]memno2;

reg [7:0]memno3; reg [7:0]memadr1;

reg [7:0]memadr2; reg [7:0]memadr3;

reg [7:0]roi; reg [7:0]roi2;

reg [7:0]coj;reg [7:0]roi3; reg [7:0]coj3;

reg [7:0]coj2; reg [7:0]dist;

reg [7:0]rrt; reg [7:0]rct;reg [7:0]p;

integer i,j,l,l1,ir,i1,i2,si,sj,ssi,ssj,

m,n,i3,j3,k,a,b,c,d,mv1,mv2,mv3;

integer gli,j1,ar,ac,ar1,ar2,ar3,ac1,ac2,

ac3,s2temp,s2temp2,blockno,madloc,s3temp;

always@(posedge start)

begin

restart=1’b0;

l=0;l1=0;gli=0;

blockno=0;

$readmemh("127.txt",memry,0,4095);

for(i=0;i<=63;i=i+1)

for(j=0;j<=63;j=j+1)

begin

memr[i][j]=memry[l];

l=l+1;

end

for(si=0;si<=79;si=si+1)

for(sj=0;sj<=79;sj=sj+1)

searchmem[si][sj]=128;

$readmemh("128.txt",memry1,0,4095);

for(ssi=0;ssi<=63;ssi=ssi+1)

for(ssj=0;ssj<=63;ssj=ssj+1)

begin

searchmem[ssi+7][ssj+7]=memry1[l1];

l1=l1+1;

end

for(i=0;i<=8;i=i+1)

madval[i]=16’d65535;

end

always@(posedge restart)

begin

step11=1’b0; step12=1’b0; step21=1’b0;

step22=1’b0; step31=1’b0; step32=1’b0;

Appendix B: Verilog Modules 127

mad12[15:0]=16’d0000;

mad22[15:0]=16’d0000;

mad32[15:0]=16’d0000;

l=0;l1=0;m=0;n=0;

ir=0;c=0;d=0;

ar=(blockno/4)*16;

ac=(blockno%4)*16;

ar1=0;ar2=0;ar3=0;

ac1=0;ac2=0;ac3=0;

for(i1=3;i1<=11;i1=i1+4)

for(i2=3;i2<=11;i2=i2+4)

begin

ram[0][ir]=i1;

ram[1][ir]=i2;

ir=ir+1;

end

for(i=0;i<=15;i=i+1)

for(j=0;j<=15;j=j+1)

curmem[i][j]=memr[i+ar][j+ac];

for(a=ar;a<=ar+29;a=a+3)

for(b=ac;b<=ac+30;b=b+3)

begin

if(b<(ac+15))

begin

memmod1[0][m]=searchmem[a][b];

memmod1[1][m]=searchmem[a][b+1];

memmod1[2][m]=searchmem[a][b+2];

memmod1[3][m]=searchmem[a+1][b];

memmod1[4][m]=searchmem[a+1][b+1];

memmod1[5][m]=searchmem[a+1][b+2];

memmod1[6][m]=searchmem[a+2][b];

memmod1[7][m]=searchmem[a+2][b+1];

memmod1[8][m]=searchmem[a+2][b+2];

m=m+1;

end

else if(b==(ac+15))

begin

memmod1[0][m]=searchmem[a][b];

memmod1[3][m]=searchmem[a+1][b];

memmod1[6][m]=searchmem[a+1][b];

m=m+1;

memmod2[0][n]=searchmem[a][b];

memmod2[1][n]=searchmem[a][b+1];

memmod2[2][n]=searchmem[a][b+2];

memmod2[3][n]=searchmem[a+1][b];

128 Appendix B: Verilog Modules

memmod2[4][n]=searchmem[a+1][b+1];

memmod2[5][n]=searchmem[a+1][b+2];

memmod2[6][n]=searchmem[a+2][b];

memmod2[7][n]=searchmem[a+2][b+1];

memmod2[8][n]=searchmem[a+2][b+2];

n=n+1;

end

else if((b>(ac+15))&&(b<(ac+30)))

begin

memmod2[0][n]=searchmem[a][b];

memmod2[1][n]=searchmem[a][b+1];

memmod2[2][n]=searchmem[a][b+2];

memmod2[3][n]=searchmem[a+1][b];

memmod2[4][n]=searchmem[a+1][b+1];

memmod2[5][n]=searchmem[a+1][b+2];

memmod2[6][n]=searchmem[a+2][b];

memmod2[7][n]=searchmem[a+2][b+1];

memmod2[8][n]=searchmem[a+2][b+2];

n=n+1;

end

else if(b==(ac+30))

begin

memmod2[0][n]=searchmem[a][b];

memmod2[3][n]=searchmem[a+1][b];

memmod2[6][n]=searchmem[a+2][b];

n=n+1;

end

end

for(si=0;si<=8;si=si+1)

for(sj=0;sj<=63;sj=sj+1)

begin

$display("memory value memmod 1 [%d][%d]=%h",

si,sj,memmod1[si][sj]);

$display("memory value memmod 2 [%d][%d]=%h",

si,sj,memmod2[si][sj]);

end

if((blockno>>2)==0)

begin

mv1=4;

mv2=5;

mv3=7;

end

else

begin

if((motionvect[0][blockno-1]<0)&&

Appendix B: Verilog Modules 129

(motionvect[1][blockno-1]<0))

begin

mv1=1;

mv2=3;

mv3=4;

end

else if((motionvect[0][blockno-1]<0)&&

(motionvect[1][blockno-1]>0))

begin

mv1=1;

mv2=4;

mv3=5;

end

else if((motionvect[0][blockno-1]>0)&&

(motionvect[1][blockno-1]<0))

begin

mv1=3;

mv2=4;

mv3=7;

end

else

begin

mv1=4;

mv2=5;

mv3=7;

end

end

end

always@clk

begin

gli=gli+1;

if((gli/2)==0)

restart=1’b1;

else if (((gli/2)>0)&&((gli/2)<=256))

//for step 1,first phase

begin

restart=1’b0;

step11=clk;

end

else if((gli/2)==257)

begin

pe_en=1’b1;

step11=1’b0;

//compare the 3 search locations and find the next

130 Appendix B: Verilog Modules

//one or two search locations

end

else if(((gli/2)>257)&&((gli/2)<=514))

//for step 1, second phase

begin

pe_en=1’b0;

step12=clk;

end

else if((gli/2)==515)

begin

storen=1’b1; // starts 2 nd step

dist[7:0]=8’b00000010;

end

else if(((gli/2)>515)&&((gli/2)<=771))

//for step 2,first phase

begin

storen=1’b0;

step12=1’b0;

step21=clk;

end

else if((gli/2)==772)

pe_en=1’b1;

else if(((gli/2)>772)&&((gli/2)<=1029))

//for step 2,second phase

begin

pe_en=1’b0;

step21=1’b0;

step22=clk;

end

else if((gli/2)==1030)

begin

storen=1’b1;

// starts 3rd step

dist[7:0]=8’b00000001;

end

else if(((gli/2)>1030)&&((gli/2)<=1286))

//for step 3,first phase

begin

storen=1’b0;

step22=1’b0;

step31=clk;

end

else if((gli/2)==1287)

pe_en=1’b1;

else if(((gli/2)>1287)&&((gli/2)<=1543))

Appendix B: Verilog Modules 131

//for step 3,second phase

begin

pe_en=1’b0;

step31=1’b0;

step32=clk;

end

else

begin

step32=1’b0;

if(blockno<16)

//find the motion vector.

begin

gli=0;

motionvect[0][blockno]=rrt-7;

motionvect[1][blockno]=rct-7;

blockno=blockno+1;

for(j=0;j<=16;j=j+1)

for(i=0;i<=1;i=i+1)

$display("motion vector values :

motion vectors[%d][%d]=%d",i,j,motionvect[i][j]);

end

end

end

always@(posedge step11 or posedge step21 or posedge step31)

begin

adgen1(ar1+ram[0][mv1],ac1+ram[1][mv1],memno1,memadr1);

if(ac1+ram[1][mv1]<=15)

procelem1(curmem[ar1][ac1],memmod1[memno1][memadr1],mad11);

else

procelem1(curmem[ar1][ac1],memmod2[memno1][memadr1],mad11);

temp1=mad11+mad12;

mad12=temp1;

if((ac1<15)&&(ar1<=15))

ac1=ac1+1;

else if((ac1==15)&&(ar1<15))

begin

ac1=0;

ar1=ar1+1;

end

else

begin

ac1=0;

ar1=0;

madval[4]=mad12;

132 Appendix B: Verilog Modules

end

end

always@(posedge step11 or posedge step21 or posedge step31)

begin

adgen2(ar2+ram[0][mv2],ac2+ram[1][mv2],memno2,memadr2);

if(ac2+ram[1][mv2]<=15)

procelem2(curmem[ar2][ac2],memmod1[memno2][memadr2],mad21);

else

procelem2(curmem[ar2][ac2],memmod2[memno2][memadr2],mad21);

temp2=mad21+mad22;

mad22=temp2;

if((ac2<15)&&(ar2<=15))

ac2=ac2+1;

else if((ac2==15)&&(ar2<15))

begin

ac2=0;

ar2=ar2+1;

end

else

begin

ac2=0;

ar2=0;

madval[5]=mad22;

end

end

always@(posedge step11 or posedge step21 or posedge step31)

begin

adgen3(ar3+ram[0][mv3],ac3+ram[1][mv3],memno3,memadr3);

if(ac3+ram[1][mv3]<=15)

procelem3(curmem[ar3][ac3],memmod1[memno3][memadr3],mad31);

else

procelem3(curmem[ar3][ac3],memmod2[memno3][memadr3],mad31);

temp3=mad31+mad32;

mad32=temp3;

if((ac3<15)&&(ar3<=15))

ac3=ac3+1;

else if((ac3==15)&&(ar3<15))

begin

ac3=0;

ar3=ar3+1;

end

else

begin

Appendix B: Verilog Modules 133

ac3=0;

ar3=0;

madval[7]=mad32;

end

end

always@(posedge pe_en)

begin

mad12[15:0]=16’d0000;

mad22[15:0]=16’d0000;

mad32[15:0]=16’d0000;

ar1=0; ac1=0;ar3=0;

ar2=0; ac2=0;ac3=0;

if ((mv1==4)&&(mv2==5))

begin

if((madval[5]<madval[4])&&(madval[7]<madval[4]))

begin

roi=ram[0][8];

coj=ram[1][8];

s2temp=8;

pe1en=1’b1;

pe2en=1’b0;

end

else if((madval[5]<madval[4])&&(madval[4]<madval[7]))

begin

roi=ram[0][2];

coj=ram[1][2];

s2temp=2;

pe1en=1’b1;

pe2en=1’b0;

end

else if((madval[7]<madval[4])&&(madval[4]<madval[5]))

begin

roi=ram[0][6];

coj=ram[1][6];

s2temp=6;

pe1en=1’b1;

pe2en=1’b0;

end

else

begin

roi=ram[0][0];

coj=ram[1][0];

s2temp=0;

roi2=ram[0][1];

coj2=ram[1][1];

134 Appendix B: Verilog Modules

s2temp2=1;

pe1en=1’b1;

pe2en=1’b1;

roi3=ram[0][3];

coj3=ram[1][3];

s3temp=3;

end

end

else if ((mv1==1)&&(mv2==3))

begin

if((madval[1]<madval[4])&&(madval[3]<madval[4]))

begin

roi=ram[0][0];

coj=ram[1][0];

s2temp=0;

pe1en=1’b1;

pe2en=1’b0;

end

else if((madval[1]<madval[4])&&(madval[4]<madval[3]))

begin

roi=ram[0][2];

coj=ram[1][2];

s2temp=2;

pe1en=1’b1;

pe2en=1’b0;

end

else if((madval[3]<madval[4])&&(madval[4]<madval[3]))

begin

roi=ram[0][6];

coj=ram[1][6];

s2temp=6;

pe1en=1’b1;

pe2en=1’b0;

end

else

begin

roi=ram[0][5];

coj=ram[1][5];

s2temp=5;

roi2=ram[0][7];

coj2=ram[1][7];

s2temp2=7;

pe1en=1’b1;

pe2en=1’b1;

roi3=ram[0][8];

Appendix B: Verilog Modules 135

coj3=ram[1][8];

s3temp=8;

end

end

else if ((mv1==1)&&(mv2==4))

begin

if((madval[1]<madval[4])&&(madval[5]<madval[4]))

begin

roi=ram[0][2];

coj=ram[1][2];

s2temp=2;

pe1en=1’b1;

pe2en=1’b0;

end

else if((madval[1]<madval[4])&&(madval[4]<madval[5]))

begin

roi=ram[0][0];

coj=ram[1][0];

s2temp=0;

pe1en=1’b1;

pe2en=1’b0;

end

else if((madval[5]<madval[4])&&(madval[4]<madval[1]))

begin

roi=ram[0][8];

coj=ram[1][8];

s2temp=8;

pe1en=1’b1;

pe2en=1’b0;

end

else

begin

roi=ram[0][3];

coj=ram[1][3];

s2temp=3;

roi2=ram[0][6];

coj2=ram[1][6];

s2temp2=6;

pe1en=1’b1;

pe2en=1’b1;

roi3=ram[0][7];

coj3=ram[1][7];

s3temp=7;

end

end

136 Appendix B: Verilog Modules

else if ((mv1==3)&&(mv2==4))

begin

if((madval[3]<madval[4])&&(madval[7]<madval[4]))

begin

roi=ram[0][6];

coj=ram[1][6];

s2temp=6;

pe1en=1’b1;

pe2en=1’b0;

end

else if((madval[3]<madval[4])&&(madval[4]<madval[7]))

begin

roi=ram[0][60];

coj=ram[1][0];

s2temp=0;

pe1en=1’b1;

pe2en=1’b0;

end

else if((madval[7]<madval[4])&&(madval[4]<madval[3]))

begin

roi=ram[0][8];

coj=ram[1][8];

s2temp=8;

pe1en=1’b1;

pe2en=1’b0;

end

else

begin

roi=ram[0][1];

coj=ram[1][1];

s2temp=1;

roi2=ram[0][2];

coj2=ram[1][2];

s2temp2=2;

pe1en=1’b1;

pe2en=1’b1;

roi3=ram[0][5];

coj3=ram[1][5];

s3temp=5;

end

end

end

always@(posedge step12 or posedge step22 or posedge step32)

begin

adgen1(ar1+roi,ac1+coj,memno1,memadr1);

Appendix B: Verilog Modules 137

if(ac1+coj<=15)

procelem1(curmem[ar1][ac1],memmod1[memno1][memadr1],mad11);

else

procelem1(curmem[ar1][ac1],memmod2[memno1][memadr1],mad11);

temp1=mad11+mad12;

mad12=temp1;

if((ac1<15)&&(ar1<=15))

ac1=ac1+1;

else if((ac1==15)&&(ar1<15))

begin

ac1=0;

ar1=ar1+1;

end

else

begin

ac1=0;

ar1=0;

madval[s2temp]=mad12;

end

end

always@(posedge step12 or posedge step22 or posedge step32)

begin

adgen2(ar2+roi2,ac2+coj2,memno2,memadr2);

if(ac2+coj2<=15)

procelem2(curmem[ar2][ac2],memmod1[memno2][memadr2],mad21);

else

procelem2(curmem[ar2][ac2],memmod2[memno2][memadr2],mad21);

temp2=mad21+mad22;

mad22=temp2;

if((ac2<15)&&(ar2<=15))

ac2=ac2+1;

else if((ac2==15)&&(ar2<15))

begin

ac2=0;

ar2=ar2+1;

end

else

begin

ac2=0;

ar2=0;

madval[s2temp2]=mad22;

end

end

always@(posedge step12 or posedge step22 or posedge step32)

begin

138 Appendix B: Verilog Modules

adgen3(ar3+roi3,ac3+coj3,memno3,memadr3);

if(ac3+coj3<=15)

procelem3(curmem[ar3][ac3],memmod1[memno3][memadr3],mad31);

else

procelem3(curmem[ar3][ac3],memmod2[memno3][memadr3],mad31);

temp3=mad31+mad32;

mad32=temp3;

if((ac3<15)&&(ar3<=15))

ac3=ac3+1;

else if((ac3==15)&&(ar3<15))

begin

ac3=0;

ar3=ar3+1;

end

else

begin

ac3=0;

ar3=0;

madval[s3temp]=mad32;

end

end

always@(posedge storen)

begin

madtemp=16’d65535;

for(p=0;p<=8;p=p+1)

begin

if(madval[p]<madtemp)

begin

madtemp=madval[p];

madloc=p;

end

end

rrt=ram[0][madloc];

rct=ram[1][madloc];

ram[0][0]=rrt-dist;

ram[1][0]=rct-dist;

ram[0][1]=rrt-dist;

ram[1][1]=rct;

ram[0][2]=rrt-dist;

ram[1][2]=rct+dist;

ram[0][3]=rrt;

ram[1][3]=rct-dist;

ram[0][4]=rrt;

ram[1][4]=rct;

Appendix B: Verilog Modules 139

ram[0][5]=rrt;

ram[1][5]=rct+dist;

ram[0][6]=rrt+dist;

ram[1][6]=rct-dist;

ram[0][7]=rrt+dist;

ram[1][7]=rct;

ram[0][8]=rrt+dist;

ram[1][8]=rct+dist;

mad12[15:0]=16’d0000;

mad22[15:0]=16’d0000;

mad32[15:0]=16’d0000;

ar1=0; ac1=0;

ar2=0; ac2=0;

ar3=0; ac3=0;

end

task adgen1(input [7:0] row1, col1,

output [7:0] modno1, modadr1);

begin

if(col1>15)

col1=col1-15;

modno1=((row1%3)*3+(col1%3));

modadr1=((row1/3)*6+(col1/3));

end

endtask

task adgen2(input [7:0] row2, col2,

output [7:0] modno2, modadr2);

begin

if(col2>15)

col2=col2-15;

modno2=((row2%3)*3+(col2%3));

modadr2=((row2/3)*6+(col2/3));

end

endtask

task adgen3(input [7:0] row3, col3,

output [7:0] modno3, modadr3);

begin

if(col3>15)

col3=col3-15;

modno3=((row3%3)*3+(col3%3));

modadr3=((row3/3)*6+(col3/3));

end

endtask

task procelem1;

input [7:0] curpix1;

input [7:0] searchpix1;

140 Appendix B: Verilog Modules

output [15:0] mad1;

begin

if (curpix1 < searchpix1)

begin

mad1[7:0]=searchpix1-curpix1;

mad1[15:8]=8’b00000000;

end

else

begin

mad1[7:0]=curpix1-searchpix1;

mad1[15:8]=8’b00000000;

end

end

endtask

task procelem2;

input [7:0] curpix2;

input [7:0] searchpix2;

output [15:0] mad2;

begin

if (curpix2 < searchpix2)

begin

mad2[7:0]=searchpix2-curpix2;

mad2[15:8]=8’b00000000;

end

else

begin

mad2[7:0]=curpix2-searchpix2;

mad2[15:8]=8’b00000000;

end

end

endtask

task procelem3;

input [7:0] curpix3;

input [7:0] searchpix3;

output [15:0] mad3;

begin

if (curpix3 < searchpix3)

begin

mad3[7:0]=searchpix3-curpix3;

mad3[15:8]=8’b00000000;

end

else

begin

mad3[7:0]=curpix3-searchpix3;

mad3[15:8]=8’b00000000;

Appendix B: Verilog Modules 141

end

end

endtask

endmodule

B.2 Simulation Program for Successive Elimination
Algorithm

‘timescale 1ns / 1ps

module successive1(clk,start,cur_min_sad,

tesum1,madsum,ar1,contcol,controw,spix1,

spix2,spix3,spix4,spix5,spix6,spix7);

input clk;

input start;

output [15:0] cur_min_sad;

output [15:0]tesum1,madsum;

output[7:0] ar1,contcol,controw,spix1,spix2,

spix3,spix4,spix5,spix6,spix7;

reg [7:0] buffer1 [0:15][0:47];

reg [7:0] buffer2 [0:15][0:47];

reg [7:0] buffer3 [0:15][0:47];

reg restart; reg cont;reg cont1;

reg signed [7:0]motionvect [0:1][0:15];

reg [7:0]memr[0:63][0:63];

reg [7:0]searchmem[0:95][0:95];

reg [7:0]curblock[0:15][0:15];

reg [7:0]memry[0:4095];

reg [7:0]memry1[0:4095];

reg [15:0] temad,itemad1,itemad2,

itemad3,itemad4,itesum1,itesum2,itesum3,itesum4;

reg [15:0]temad0,temad1,temad2,temad3,temad4,

temad5,temad6,temad15;

reg [15:0] temad7,temad8,temad9,temad10,temad11,

temad12,temad13,temad14;

reg [15:0] tesum1,refsum,cur_min_sad,madsum;

reg [7:0]contar1,spix0,spix1,spix2,spix3,spix4,

spix5,spix6,spix7;

reg [7:0]spix8,spix9,spix10,spix11,spix12,spix13,

spix14,spix15;

reg [7:0]roi,roi2,coj,roi3,coj3,controw,contcol;

reg [7:0]coj2;reg [7:0]dist; reg [7:0]rrt;

142 Appendix B: Verilog Modules

reg [7:0]rct;reg [7:0]p,ar1;

integer i,j,l,l1,ir,i1,i2,si,sj,ssi;

integer ssj,m,n,i3,j3,k,a,b,c,d;

integer gli,j1,ar,ac,blockno;

integer lp1,lp2,lp3,pq,ai;

always@(posedge start)

//INITIALIZING ALL MEMORYS WITH PIXELS

begin

restart=1’b0;

l=0;l1=0;

cont1=1’b1;

blockno=0;

$readmemh("127.txt",memry,0,4095);

for(i=0;i<=63;i=i+1)

for(j=0;j<=63;j=j+1)

begin

memr[i][j]=memry[l];

l=l+1;

end

for(si=0;si<=95;si=si+1)

for(sj=0;sj<=95;sj=sj+1)

searchmem[si][sj]=8’b10000000;

$readmemh("128.txt",memry1,0,4095);

for(ssi=0;ssi<=63;ssi=ssi+1)

for(ssj=0;ssj<=63;ssj=ssj+1)

begin

searchmem[ssi+16][ssj+16]=memry1[l1];

l1=l1+1;

end

end

always@(posedge restart)

begin

refsum[15:0]=16’h0000;

temad[15:0]=16’h0000;

tesum1[15:0]=16’h0000;

cur_min_sad[15:0]=16’hffff;

controw=0;

contcol=0;

contar1=0;

cont=1’b0;

l=0;l1=0;m=0;n=0;

ir=0; pq=0;ai=0;

ar=(blockno/4)*16;

Appendix B: Verilog Modules 143

ac=(blockno%4)*16;

ar1=0;lp1=0;lp2=0;lp3=0;

for(i=0;i<=15;i=i+1)

for(j=0;j<=15;j=j+1)

begin

curblock[j][i]=memr[i+ar][j+ac];

refsum=refsum+memr[i+ar][j+ac];

end

for(a=ar;a<=ar+47;a=a+1)

begin

for(b=ac;b<=ac+47;b=b+1)

begin

if(b<(ac+16))

begin

buffer1[lp1][m]=searchmem[a][b];

lp1=lp1+1;

end

else if(b>=(ac+16)&& b<(ac+32))

begin

buffer2[lp2][n]=searchmem[a][b];

lp2=lp2+1;

end

else if((b>=(ac+32))&&(b<(ac+48)))

begin

buffer3[lp3][pq]=searchmem[a][b];

lp3=lp3+1;

end

end

n=n+1;

m=m+1;

pq=pq+1;

lp1=0;lp2=0;lp3=0;

end

for(si=0;si<=15;si=si+1)

for(sj=0;sj<=47;sj=sj+1)

begin

$display("memory value buffer 1 [%d][%d]=%h",

si,sj,buffer1[si][sj]);

$display("memory value buffer 2 [%d][%d]=%h",

si,sj,buffer2[si][sj]);

$display("memory value buffer 3 [%d][%d]=%h",

si,sj,buffer3[si][sj]);

end

end

144 Appendix B: Verilog Modules

// BEGINING OF CONTROL BLOCK

always@(posedge clk)

begin

if(cont1==1’b1)

begin

restart=1’b1;

cont1=1’b0;

end

else

begin

restart=1’b0;

if (cont==1’b0)

begin

if((controw<=31)&&(contcol<=31))

begin

searchpixgen(ar1+controw,contcol,spix0,spix1,

spix2,spix3,spix4,spix5, spix6,spix7,spix8,spix9,spix10,

spix11,spix12,spix13,spix14,spix15);

itesum1=spix0+spix1+spix2+spix3;

itesum2=spix4+spix5+spix6+spix7;

itesum3=spix8+spix9+spix10+spix11;

itesum4=spix12+spix13+spix14+spix15;

tesum1=tesum1+itesum1+itesum2+itesum3+itesum4;

if(ar1<15)

ar1=ar1+1;

else

begin

if (tesum1>refsum)

madsum=tesum1-refsum;

else

madsum=refsum-tesum1;

if(cur_min_sad[15:0] > madsum[15:0])

cont=1’b1;

else

begin

ar1=0;

contcol=contcol+1;

tesum1[15:0]=16’h0000;

end

end

end

else if((contcol>31)&&(controw<32))

begin

Appendix B: Verilog Modules 145

contcol=0;

controw=controw+1;

end

else if(controw>31)

begin

contcol=0;

controw=0;

cont1=1’b1;

motionvect[0][blockno]=rrt-16;

motionvect[1][blockno]=rct-16;

blockno=blockno+1;

for(j=0;j<=blockno;j=j+1)

for(i=0;i<=1;i=i+1)

$display("motion vector values :motion vectors

[%d][%d]=%d",i,j,motionvect[i][j]);

end

end

else

begin

searchpixgen(contar1+controw,contcol,spix0,

spix1,spix2, spix3,spix4,spix5, spix6,spix7,

spix8,spix9,spix10,spix11,spix12,spix13,

spix14,spix15);

procelem0(curblock[0][contar1],spix0,temad0);

procelem1(curblock[1][contar1],spix1,temad1);

procelem2(curblock[2][contar1],spix2,temad2);

procelem3(curblock[3][contar1],spix3,temad3);

procelem4(curblock[4][contar1],spix4,temad4);

procelem5(curblock[5][contar1],spix5,temad5);

procelem6(curblock[6][contar1],spix6,temad6);

procelem7(curblock[7][contar1],spix7,temad7);

procelem8(curblock[8][contar1],spix8,temad8);

procelem9(curblock[9][contar1],spix9,temad9);

procelem10(curblock[10][contar1],spix10,temad10);

procelem11(curblock[11][contar1],spix11,temad11);

procelem12(curblock[12][contar1],spix12,temad12);

procelem13(curblock[13][contar1],spix13,temad13);

procelem14(curblock[14][contar1],spix14,temad14);

procelem15(curblock[15][contar1],spix15,temad15);

itemad1=temad0+temad1+temad2+temad3;

itemad2=temad4+temad5+temad6+temad7;

itemad3=temad8+temad9+temad10+temad11;

itemad4=temad12+temad13+temad14+temad15;

temad=temad+itemad1+itemad2+itemad3+itemad4;

146 Appendix B: Verilog Modules

if(contar1<15)

contar1=contar1+1;

else

begin

if (cur_min_sad > temad)

begin

cur_min_sad=temad;

rrt=controw;

rct=contcol;

end

contar1=0;

ar1=0;

cont=1’b0;

contcol=contcol+1;

temad[15:0]=16’h0000;

end

end

end

end

task searchpixgen(input [7:0] row1, col1,

output [7:0]searchpix0, searchpix1,searchpix2,

searchpix3,searchpix4, searchpix5,

searchpix6,searchpix7,searchpix8, searchpix9,

searchpix10,searchpix11,searchpix12,searchpix13,

searchpix14,searchpix15);

begin

if(col1<16)

searchpix0=buffer1[col1][row1];

else if (col1>=16 && col1<32)

searchpix0=buffer2[col1-16][row1];

else

searchpix0=buffer3[col1-32][row1];

if(col1+1<=15)

searchpix1=buffer1[col1+1][row1];

else if (col1+1>=16 && col1+1<32)

searchpix1=buffer2[(col1+1)-16][row1];

else

searchpix1=buffer3[(col1+1)-32][row1];

if(col1+2<=15)

searchpix2=buffer1[col1+2][row1];

else if (col1+2>=16 && col1+2<32)

searchpix2=buffer2[(col1+2)-16][row1];

Appendix B: Verilog Modules 147

else

searchpix2=buffer3[(col1+2)-32][row1];

if(col1+3<=15)

searchpix3=buffer1[col1+3][row1];

else if (col1+3>=16 && col1+3<32)

searchpix3=buffer2[(col1+3)-16][row1];

else

searchpix3=buffer3[(col1+3)-32][row1];

if(col1+4<=15)

searchpix4=buffer1[col1+4][row1];

else if (col1+4>=16 && col1+4<32)

searchpix4=buffer2[(col1+4)-16][row1];

else

searchpix4=buffer3[(col1+4)-32][row1];

if(col1+5<=15)

searchpix5=buffer1[col1+5][row1];

else if (col1+5>=16 && col1+5<32)

searchpix5=buffer2[(col1+5)-16][row1];

else

searchpix5=buffer3[(col1+5)-32][row1];

if(col1+6<=15)

searchpix6=buffer1[col1+6][row1];

else if (col1+6>=16 && col1+6<32)

searchpix6=buffer2[(col1+6)-16][row1];

else

searchpix6=buffer3[(col1+6)-32][row1];

if(col1+7<=15)

searchpix7=buffer1[col1+7][row1];

else if (col1+7>=16 && col1+7<32)

searchpix7=buffer2[(col1+7)-16][row1];

else

searchpix7=buffer3[(col1+7)-32][row1];

if(col1+8<=15)

searchpix8=buffer1[col1+8][row1];

else if (col1+8>=16 && col1+8<32)

searchpix8=buffer2[(col1+8)-16][row1];

else

searchpix8=buffer3[(col1+8)-32][row1];

if(col1+9<=15)

searchpix9=buffer1[col1+9][row1];

else if (col1+9>=16 && col1+9<32)

searchpix9=buffer2[(col1+9)-16][row1];

else

searchpix9=buffer3[(col1+9)-32][row1];

if(col1+10<=15)

148 Appendix B: Verilog Modules

searchpix10=buffer1[col1+10][row1];

else if (col1+10>=16 && col1+10<32)

searchpix10=buffer2[(col1+10)-16][row1];

else

searchpix10=buffer3[(col1+10)-32][row1];

if(col1+11<=15)

searchpix11=buffer1[col1+11][row1];

else if (col1+11>=16 && col1+11<32)

searchpix11=buffer2[(col1+11)-16][row1];

else

searchpix11=buffer3[(col1+11)-32][row1];

if(col1+12<=15)

searchpix12=buffer1[col1+12][row1];

else if (col1+12>=16 && col1+12<32)

searchpix12=buffer2[(col1+12)-16][row1];

else

searchpix12=buffer3[(col1+12)-32][row1];

if(col1+13<=15)

searchpix13=buffer1[col1+13][row1];

else if (col1+13>=16 && col1+13<32)

searchpix13=buffer2[(col1+13)-16][row1];

else

searchpix13=buffer3[(col1+13)-32][row1];

if(col1+14<=15)

searchpix14=buffer1[col1+14][row1];

else if (col1+14>=16 && col1+14<32)

searchpix14=buffer2[(col1+14)-16][row1];

else

searchpix14=buffer3[(col1+14)-32][row1];

if(col1+15<=15)

searchpix15=buffer1[col1+15][row1];

else if (col1+15>=16 && col1+15<32)

searchpix15=buffer2[(col1+15)-16][row1];

else

searchpix15=buffer3[(col1+15)-32][row1];

end

endtask

task procelem0(input [7:0] cpix0, spix0, output [15:0] temad0);

begin

if (cpix0 < spix0)

begin

temad0[7:0]=spix0-cpix0;

temad0[15:8]=8’b00000000;

end

Appendix B: Verilog Modules 149

else

begin

temad0[7:0]=cpix0-spix0;

temad0[15:8]=8’b00000000;

end

end

endtask

task procelem1(input [7:0] cpix1,spix1,

output [15:0] temad1);

begin

if (cpix1 < spix1)

begin

temad1[7:0]=spix1-cpix1;

temad1[15:8]=8’b00000000;

end

else

begin

temad1[7:0]=cpix1-spix1;

temad1[15:8]=8’b00000000;

end

end

endtask

task procelem2(input [7:0] cpix2,spix2,

output [15:0] temad2);

begin

if (cpix2 < spix2)

begin

temad2[7:0]=spix2-cpix2;

temad2[15:8]=8’b00000000;

end

else

begin

temad2[7:0]=cpix2-spix2;

temad2[15:8]=8’b00000000;

end

end

endtask

task procelem3(input [7:0] cpix3,spix3,

output [15:0] temad3);

begin

if (cpix3 < spix3)

begin

temad3[7:0]=spix3-cpix3;

temad3[15:8]=8’b00000000;

end

150 Appendix B: Verilog Modules

else

begin

temad3[7:0]=cpix3-spix3;

temad3[15:8]=8’b00000000;

end

end

endtask

task procelem4(input [7:0] cpix4,spix4,

output [15:0] temad4);

begin

if (cpix4 < spix4)

begin

temad4[7:0]=spix4-cpix4;

temad4[15:8]=8’b00000000;

end

else

begin

temad4[7:0]=cpix4-spix4;

temad4[15:8]=8’b00000000;

end

end

endtask

task procelem5(input [7:0] cpix5, spix5,

output [15:0] temad5);

begin

if (cpix5 < spix5)

begin

temad5[7:0]=spix5-cpix5;

temad5[15:8]=8’b00000000;

end

else

begin

temad5[7:0]=cpix5-spix5;

temad5[15:8]=8’b00000000;

end

end

endtask

task procelem6(input [7:0] cpix6,spix6,

output [15:0] temad6);

begin

if (cpix6 < spix6)

begin

temad6[7:0]=spix6-cpix6;

temad6[15:8]=8’b00000000;

end

Appendix B: Verilog Modules 151

else

begin

temad6[7:0]=cpix6-spix6;

temad6[15:8]=8’b00000000;

end

end

endtask

task procelem7(input [7:0] cpix7,spix7,

output [15:0] temad7);

begin

if (cpix7 < spix7)

begin

temad7[7:0]=spix7-cpix7;

temad7[15:8]=8’b00000000;

end

else

begin

temad7[7:0]=cpix7-spix7;

temad7[15:8]=8’b00000000;

end

end

endtask

task procelem8(input [7:0] cpix8,spix8,

output [15:0] temad8);

begin

if (cpix8 < spix8)

begin

temad8[7:0]=spix8-cpix8;

temad8[15:8]=8’b00000000;

end

else

begin

temad8[7:0]=cpix8-spix8;

temad8[15:8]=8’b00000000;

end

end

endtask

task procelem9(input [7:0] cpix9,spix9,

output [15:0] temad9);

begin

if (cpix9 < spix9)

begin

temad9[7:0]=spix9-cpix9;

temad9[15:8]=8’b00000000;

end

152 Appendix B: Verilog Modules

else

begin

temad9[7:0]=cpix9-spix9;

temad9[15:8]=8’b00000000;

end

end

endtask

task procelem10(input [7:0] cpix10,spix10,

output [15:0] temad10);

begin

if (cpix10 < spix10)

begin

temad10[7:0]=spix10-cpix10;

temad10[15:8]=8’b00000000;

end

else

begin

temad10[7:0]=cpix10-spix10;

temad10[15:8]=8’b00000000;

end

end

endtask

task procelem11(input [7:0] cpix11,spix11,

output [15:0] temad11);

begin

if (cpix11 < spix11)

begin

temad11[7:0]=spix11-cpix11;

temad11[15:8]=8’b00000000;

end

else

begin

temad11[7:0]=cpix11-spix11;

temad11[15:8]=8’b00000000;

end

end

endtask

task procelem12(input [7:0] cpix12,spix12,

output [15:0] temad12);

begin

if (cpix12 < spix12)

begin

temad12[7:0]=spix12-cpix12;

temad12[15:8]=8’b00000000;

end

Appendix B: Verilog Modules 153

else

begin

temad12[7:0]=cpix12-spix12;

temad12[15:8]=8’b00000000;

end

end

endtask

task procelem13(input [7:0] cpix13,spix13,

output [15:0] temad13);

begin

if (cpix13 < spix13)

begin

temad13[7:0]=spix13-cpix13;

temad13[15:8]=8’b00000000;

end

else

begin

temad13[7:0]=cpix13-spix13;

temad13[15:8]=8’b00000000;

end

end

endtask

task procelem14(input [7:0] cpix14,spix14,

output [15:0] temad14);

begin

if (cpix14 < spix14)

begin

temad14[7:0]=spix14-cpix14;

temad14[15:8]=8’b00000000;

end

else

begin

temad14[7:0]=cpix14-spix14;

temad14[15:8]=8’b00000000;

end

end

endtask

task procelem15(input [7:0] cpix15,spix15,

output [15:0] temad15);

begin

if (cpix15 < spix15)

begin

temad15[7:0]=spix15-cpix15;

temad15[15:8]=8’b00000000;

end

154 Appendix B: Verilog Modules

else

begin

temad15[7:0]=cpix15-spix15;

temad15[15:8]=8’b00000000;

end

end

endtask

endmodule

Index

Symbols
3-PE, 28
90 nm technology, 80

A
Adaptive rood pattern search (ARPS), 66, 68
Address generator array unit, 29
always, 113, 141
Architecture, 61

B
Base-layer, 86
Batteries, 65
Bit rate, 86
Bit-depths, 66
Bit-plane, 69
Bitstream, 2
Block Matching Algorithms (BMA), 5, 11,

65
Blocking artifacts, 4
BMME, 45

C
Camcorders, 65
CBRAM, 75
CBRAMTr, 75
CIF, 13, 80
Clock cycle, 81
Coding efficiency, 15
Comparator, 57
Compression ratio, 45
Computational complexity, 69
Control sequence, 57
Control unit, 28, 38

Current pixel, 12

D
Data reuse, 40
Data skewing, 30
DCT, 2
Demultiplexers, 60
Diamond Search, 15, 45, 65
Difference Pixel Count (DPC), 16, 66
DPCM, 2

E
External memory, 56

F
Fast Two Stage Search (F2SS), 65
FBS, 58
Four step search, 65
FPGA, 63
Frame rate, 1
frameno, 113
FSA, 35, 36, 41
FTSS, 7, 25
Full Search, 65

G
Group-of-Pictures, 87

H
H.264, 45
Half-search-areas, 31
Hardware structure, 39

© Springer International Publishing Switzerland 2015
I. Chakrabarti et al., Motion Estimation for Video Coding,
Studies in Computational Intelligence 590, DOI 10.1007/978-3-319-14376-7

155

156 Index

High hardware costs, 65
Huffman, 4
Hybrid coding, 87

I
IB-MCTF, 6, 7, 85
imread, 113
input, 113, 141
integer, 113, 141
Internal memory unit (IMU), 38, 41

L
Latency, 81
Lifting, 7
Linear predictive coding, 88
LUTs, 54

M
Macroblock, 4, 17, 35
Matching criterion, 46
Memory interleaving, 55
Memory sub-system, 28
module, 113, 141
Mosquito noise, 4
Motion compensation, 4, 88
Motion estimation, 4
Motion vector, 4, 25
motionvector, 113
MPEG-4, 65
Multi-resolution, 89
Multimedia, 35

N
NNMP, 16, 54, 57
NTSS, 34

O
On-chip memories, 73
One-bit transformation, 45
Orthonormal, 92
output, 113, 141

P
Pattern analyzer, 57
PE, 17
PE array, 30, 75
Pipelining, 60
Pixel truncation, 65

posedge, 113, 141
Power consumption, 5
PRA, 11
Process control unit (PCU), 29, 39, 41
Processing power, 65
PSNR, 60, 79

Q
QCIF, 80
Quantization, 3
Quantization Parameter, 80

R
readmemh, 113, 141
Real time video, 45
Reference Pixel, 12
reg, 113, 141
Register array, 56
Residual, 40
RTP, 85

S
SAD, 11, 36
Scalable Video Coding (SVC), 6, 85
SEA, 35, 36
Search Area buffers, 38
Search pattern, 69
Search Window, 11
searchpoint, 113
Shift variance, 89
Small Diamond Search Pattern, 68
Spatial Domain MCTF (SD-MCTF), 7, 85,

97
Spatial scalability, 94
Substream, 86
SWRAM, 75
SWRAMTr, 75

T
task, 113
Temporal scalability, 95
TSS, 14, 25

U
UESA, 17

V
VBS, 45, 58

Index 157

VBSME, 65

Verilog HDL, 80

Vertices, 67

Video codec, 1

Video coding, 45

Video compression, 1

Video encoding, 5

VLSI, 18, 25, 35

W
Wireless video phone, 35

X
XOR arrays, 54

Z
Zero-Motion Prejudgment, 68

	Preface
	Contents
	About the Authors
	Abstract
	1 Introduction
	1.1 Fundamentals of Video Compression
	1.1.1 Transform Block
	1.1.2 Quantization
	1.1.3 Entropy Coding
	1.1.4 Motion Estimation and Compensation

	1.2 Motivation
	1.3 Challenges Encountered
	1.4 Contributions of the Present Research
	1.5 Organization of the Book
	References

	2 Background and Literature Survey
	2.1 Block Matching Algorithm
	2.1.1 Full Search Block Matching Algorithm
	2.1.2 Fast Search Algorithms for Block Matching Algorithm
	2.1.3 Motion Estimation Architectures

	2.2 Scalable Video Coding
	2.3 Conclusions
	References

	3 VLSI Architecture for Fast Three Step Search Algorithm
	3.1 Introduction
	3.2 Prediction of Direction of Current Motion Vector
	3.3 Fast Three Step Search Algorithm (FTSS)
	3.4 Proposed 3-PE Architecture for FTSS
	3.5 Results
	3.5.1 Simulation Results
	3.5.2 Synthesis Results

	3.6 Conclusions
	References

	4 Parallel Architecture for Successive Elimination Block Matching Algorithm
	4.1 Introduction
	4.2 Successive Elimination Algorithm (SEA)
	4.3 Proposed Parallel Architecture for SEA
	4.3.1 Internal Memory Unit (IMU)
	4.3.2 Control Unit (CU)
	4.3.3 Process Control Unit (PCU)
	4.3.4 Working of the Proposed Architecture

	4.4 Results
	4.4.1 Simulation Results
	4.4.2 Synthesis Results

	4.5 Conclusions
	References

	5 Fast One-Bit Transformation Architectures
	5.1 Introduction
	5.2 One Bit Transformation and Diamond Search Algorithm
	5.2.1 One Bit Transformation Based ME
	5.2.2 Diamond Search Based 1-BT ME

	5.3 Data Flow Analysis for DS Algorithm
	5.4 Proposed VLSI Architecture for 1-BT Based Fixed Block Size Motion Estimation
	5.4.1 Processing Element
	5.4.2 Memory Interleaving
	5.4.3 Register Array for the Current Block Pixels
	5.4.4 Search Register Array
	5.4.5 Comparator Unit
	5.4.6 Process Control Unit

	5.5 Proposed Fast Binary ME Architecture for Variable Block Size
	5.6 Results
	5.6.1 Performance of the Proposed Fast 1-BT Based ME
	5.6.2 Implementation Results

	5.7 Conclusions
	References

	6 Efficient Pixel Truncation Algorithm and Architecture
	6.1 Introduction
	6.2 Proposed Fast Two Stage Search Based Motion Estimation Algorithm
	6.2.1 Summary of the Proposed Fast Two Stage Search Algorithm

	6.3 Architecture for the Proposed Fast Two Stage Search Algorithm
	6.3.1 Memory Management for the Proposed F2SS Algorithm
	6.3.2 Proposed Architecture for the First Stage of ME
	6.3.3 Proposed Architecture for the Second Stage of ME

	6.4 Results
	6.4.1 Performance Analysis of the Proposed Algorithm
	6.4.2 Synthesis Results and Comparison

	6.5 Conclusions
	References

	7 Introduction to Scalable Image and Video Coding
	7.1 Overview of Wavelet Based Scalable Video Coding
	7.1.1 Existing Scalable Video Codec Designs
	7.1.2 Discrete Wavelet Transform
	7.1.3 Problem of Shift Variance in DWT
	7.1.4 Critically Sampled DWT
	7.1.5 Over-Complete Discrete Wavelet Transform (ODWT)
	7.1.6 Lifting Based Discrete Wavelet Transform
	7.1.7 Over-Complete Discrete Wavelet Transform Using the Lifting Scheme
	7.1.8 Spatial Scalability with DWT
	7.1.9 Temporal Scalability with DWT

	7.2 Motion Compensated Temporal Filtering (MCTF)
	7.2.1 Spatial Domain MCTF (SD-MCTF)
	7.2.2 In-Band MCTF (IB-MCTF)

	7.3 Proposed Framework for SVC
	7.4 Simulation Results
	7.5 Conclusions
	References

	8 Forward Plans
	8.1 SoC Based Design for SVC
	8.2 Scalable Extension of HEVC
	References

	Appendix A Matlab Programs
	Appendix B Verilog Modules
	Index

