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Motion Deblurring provides a comprehensive guide to restoring images degraded by
motion blur, bridging traditional approaches and emerging computational photography-
based techniques, and bringing together a wide range of methods emerging from basic
theory and cutting-edge research. It encompasses both algorithms and architectures,
providing detailed coverage of practical techniques by leading researchers.

From an algorithms perspective, blind and non-blind approaches are discussed,
including the use of single or multiple images, projective motion blur models, image
priors and parametric models, high dynamic range imaging in the irradiance domain,
and image recognition in blur. Performance limits for motion deblurring cameras are
also presented.

From a systems perspective, hybrid frameworks combining low resolution high-speed
and high resolution low-speed cameras are covered, along with the use of inertial sensors
and coded exposure cameras. An architecture exploiting compressive sensing for video
recovery is also described.

This book will be a valuable resource for researchers and practitioners in computer
vision, image processing, and related fields.
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Preface

The computer vision community is witnessing major resurgence in the area of motion
deblurring spurred by the emerging ubiquity of portable imaging devices. Rapid strides
are being made in handling motion blur both algorithmically and through tailor-made
hardware-assisted technologies. The main goal of this book is to ensure a timely dissem-
ination of recent findings in this very active research area. Given the flurry of activity in
the last few years in tackling uniform as well as non-uniform motion blur resulting from
incidental shake in hand-held consumer cameras as well as object motion, we felt that
a compilation of recent and concerted efforts for restoring images degraded by motion
blur was well overdue. Since no single compendium of the kind envisaged here exists,
we believe that this is an opportune time for publishing a comprehensive collection
of contributed chapters by leading researchers providing in-depth coverage of recently
developed methodologies with excellent supporting experiments, encompassing both
algorithms and architectures.

As is well-known, the main cause of motion blur is the result of averaging of intensi-
ties due to relative motion between a camera and a scene during exposure time. Motion
blur is normally considered a nuisance although one must not overlook the fact that
some works have used blur for creating aesthetic appeal or exploited it as a valuable cue
in depth recovery and image forensics. Early works were non-blind in the sense that the
motion blur kernel (i.e. the point spread function (PSF)) was assumed to be of a simple
form, such as those arising from uniform camera motion, and efforts were primarily
directed at designing a stable estimate for the original image. Research in this area then
surged towards PSF estimation to deal with arbitrarily-shaped blur kernels resulting
from incidental shakes in hand-held cameras and due to object motion in real scenes.
This led to the evolution of blind deconvolution algorithms in which the PSF as well
as the latent image had to be estimated. Initial works dealt with space-invariant kernels,
only to quickly pave the way for investigation of methods for dealing with space-variant
blur situations which are actually more prevalent. Parallel efforts addressing the motion
blur problem from an acquisition point of view too were also being developed. Tradi-
tional approaches to motion deblurring have separated the sensor from the scene being
sensed in that the motion-blurred images are post-processed to mitigate blurring effects.
Given the recent advances in computational photography, novel approaches are being
developed that integrate the sensor design and motion deblurring aspects. These have
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ranged from integrating inertial sensor data, to proposing hybrid system architectures
consisting of multiple cameras with different sensor characteristics, to suitably tailoring
the nature of the PSF itself through coded exposure cameras.

Research continues to grow at an amazing pace as portable imaging devices are
becoming commonplace. Commercial significance of the motion deblurring problem is
amply evident from the plethora of software and hardware-based approaches that have
been reported in recent years and this can only be expected to grow by leaps and bounds
in the coming years. In an attempt to provide a comprehensive coverage of early as well
as recent efforts in this area, the contents of this edited book are spread across thir-
teen self-contained chapters. These can be broadly categorized under two major heads,
namely, Algorithms and Systems for tackling the motion deblurring problem. We have
deliberately refrained from sequestering the chapters along these themes and instead
allowed the chapters to seamlessly weave through both these heads.

The first chapter by Jiaya Jia deals with shift-invariant or uniform single image
motion deblurring and provides a systematic survey that covers early as well as latest
developments for single-input motion blur models and solvers. Representative methods
such as regularized and iterative approaches for model design and solver construction,
and recent advances including construction of natural priors for a latent image and
variable splitting solver for sparse optimization are described for the non-blind deconvo-
lution problem. For blind deconvolution, marginalized estimation and alternating mini-
mization strategies along with edge prediction for very large PSFs are presented.

The chapter by Joshi et al. addresses the problem of spatially varying blur and presents
a unified model of camera shake that can represent space-variant blur as a function of
camera motion. The discussions range from fully blind methods to hardware design for
deblurring using sensor data. A method for generation of sharp panoramas from blurry
sequences is also presented.

The chapter by Ben-Ezra et al. involves hybrid-imaging system design targeting
image deblurring due to camera shake and, to some extent, moving objects in a scene.
This is a hardware-assisted technique that combines a high resolution camera along
with an auxiliary low resolution camera to effect deblurring. The secondary imager is
principally used to acquire information about the spatially invariant or spatially variant
discrete parametric 2D motion field. The flow field is then used to derive the PSF corre-
sponding to the primary camera so as to arrive at a high resolution non-blurred image.

The chapter by Whyte et al. describes a compact global parameterization of camera
shake blur, based on the 3D rotation of the camera during the exposure. A model based
on three-parameter homographies is used to connect camera motion to image motion
and, by assigning weights to a set of these homographies, this formulation can be
viewed as a generalization of the standard, spatially-invariant convolutional model of
image blur. A scheme for blur estimation from a single image followed by restoration
is presented. Different approximations are introduced for the global model to reduce
computational complexity.

The chapter by Sroubek et al. presents an attractive semi-blind implementation for
image deblurring on a smartphone device. It is shown that information from the inertial
sensors such as accelerometers and gyroscopes, which are readily available in modern
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smartphones, is accurate enough to provide camera motion trajectory and, consequently,
to estimate the blurring PSF. A simple yet effective space-variant implementation of
the deblurring algorithm is given that can handle complex camera motion as well as
rolling shutter issues. The method works in practical situations and is fast enough to be
acceptable by end users.

The chapter by Jingyi Yu presents two multi-sensor fusion techniques for sufficient
and low-light conditions, respectively, that combine the advantages of high speed and
high resolution for reducing motion blur. The hybrid sensor consists of a pair of high-
speed color (HS-C) cameras and a single high resolution color (HR-C) camera. The
HS-C cameras capture fast-motion with little motion blur. They also form a stereo pair
and provide a low resolution depth map. The motion flows in the HS-C cameras are
estimated and warped using the depth map on to the HR-C camera as the PSFs for
motion deblurring. The HR-C image, once deblurred, is then used to super-resolve the
depth map. A hybrid sensor configuration for extension to low-light imaging conditions
is also discussed.

The chapter by Amit Agrawal describes coded exposure photography in which the
key idea is to assist motion deblurring by modifying the imaging process to avoid loss
of high frequency information during capture time itself. In addition to optimal temporal
code design, the role of coded exposure in enabling resolution enhancement of blurred
moving objects is also dwelt upon. Hardware and implementational considerations for
consumer-grade cameras are also discussed.

The chapter by Tai et al. describes a projective motion path blur model which, in
comparison to conventional methods based on space-invariant blur kernels, is more
effective at modeling spatially varying motion blur. The model is applicable to situ-
ations when a camera undergoes ego motion while observing a distant scene. The
blurred image is modeled as an integration of the clear scene under a sequence of planar
projective transformations that describes the camera’s path. A modified Richardson–
Lucy algorithm is proposed that incorporates this new blur model in the deblurring
step. The algorithm’s convergence properties and its robustness to noise are also
studied.

The chapter by Vijay et al. describes a method that operates in the irradiance domain
to estimate the high dynamic range irradiance of a static scene from a set of blurred and
differently exposed observations captured with a hand-held camera. A two-step proce-
dure is proposed in which the camera motion corresponding to each blurred image is
derived first, followed by estimation of the latent scene irradiance. Camera motion esti-
mation is performed elegantly by using locally derived PSFs as basic building blocks.

By reformulating motion deblurring as one of recovering video from an underdeter-
mined set of linear observations, the chapter by Veeraraghavan et al. presents an alter-
nate viewpoint for tackling motion blur. An imaging architecture is introduced in which
each observed frame is a coded linear combination of the voxels of the underlying high-
speed video frames which in turn are recovered by exploiting both temporal and spatial
redundancies. The architecture can tackle complex scenarios, such as non-uniform
motion, multiple independent motions and spatially variant PSFs, naturally without the
need for explicit segmentation.
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The chapter by Scott McCloskey dwells on deblurring in the context of improving the
performance of image-based recognition, where motion blur may suppress key visual
details. The development of a motion deblurring system based on coded exposure is
discussed, and its utility in both iris recognition and barcode scanning is demonstrated.
A method is introduced to generate near-optimal shutter sequences by incorporating the
statistics of natural images. Also described are extensions to handle more general object
motion that can even include acceleration.

The chapter by Mitra et al. addresses the problem of recognizing faces from motion-
blurred images, which is especially relevant in the context of hand-held imaging. Based
on the conditional convexity property associated with directional motion blurs, they
propose a bank-of-classifiers approach for directly recognizing motion-blurred faces.
The approach is discriminative and scales impressively with the number of face classes
and training images per class.

The final chapter by Cossairt et al. derives performance bounds in terms of signal-
to-noise ratio for various computational imaging-based motion deblurring approaches
including coded-exposure and camera-motion based techniques and discusses the impli-
cations of these bounds for real-world scenarios. The results and conclusions of the
study can be readily harnessed by practitioners to not only choose an imaging system,
but also to design it.

The contents of this book will benefit theoreticians, researchers, and practitioners
alike who work at the confluence of computer vision, image processing, computational
photography, and graphics. It can also serve as general reference for students majoring
in Electrical Engineering and Computer Science with special focus in these areas. It
would be suitable both as a textbook as well as an advanced compendium on motion
blur at graduate level. Given the impact that an application such as motion deblurring
has on consumer cameras, the material covered herein will be of great relevance to the
imaging industry too. In short, this book can serve as a one-stop resource for readers
interested in motion blur.

This comprehensive guide to the restoration of images degraded by motion blur
bridges traditional approaches and emerging computational techniques while bringing
together a wide range of methods, from basic theory to cutting-edge research. We hope
that readers will find the overall treatment to be in-depth and exhaustive, with a right
balance between theory and practice.

A.N. Rajagopalan
Rama Chellappa
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1 Mathematical models and practical
solvers for uniform motion deblurring
Jiaya Jia

Recovering an unblurred image from a single motion-blurred picture has long been a
fundamental research problem. If one assumes that the blur kernel – or point spread
function (PSF) – is shift-invariant, the problem reduces to that of image deconvolution.
Image deconvolution can be further categorized to the blind and non-blind cases.

In non-blind deconvolution, the motion blur kernel is assumed to be known or com-
puted elsewhere; the task is to estimate the unblurred latent image. The general problems
to address in non-blind deconvolution include reducing possible unpleasing ringing
artifacts that appear near strong edges, suppressing noise, and saving computation.
Traditional methods such as Wiener deconvolution (Wiener 1949) and the Richardson–
Lucy (RL) method (Richardson 1972, Lucy 1974) were proposed decades ago and find
many variants thanks to their simplicity and efficiency. Recent developments involve
new models with sparse regularization and the proposal of effective linear and non-
linear optimization to improve result quality and further reduce running time.

Blind deconvolution is a much more challenging problem, since both the blur kernel
and the latent image are unknown. One can regard non-blind deconvolution as one
inevitable step in blind deconvolution during the course of PSF estimation or after PSF
has been computed. Both blind and non-blind deconvolution are practically very useful,
which is studied and employed in a variety of disciplines including, but not limited
to, image processing, computer vision, medical and astronomic imaging, and digital
communication.

This chapter discusses shift-invariant single image motion deblurring methods, which
assume that the image is uniformly blurred with only one PSF, which may not be known
a priori. This set of problems has a long history in theoretical and empirical research and
has notably advanced in the last 5–10 years with a few remarkably effective models and
solvers.

1.1 Non-blind deconvolution

Ideally, a blur observation is modeled as a linearly filtered version of the latent unblurred
signal. This process can be expressed as

b = l ⊗ f, (1.1)
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2 Mathematical models and practical solvers for uniform motion deblurring

(b) (c)(a)

Figure 1.1 Inverse filtering problem. Visual artifacts caused by inverse filter. (a) Blurred image
and PSF; (b) close-ups; (c) output of inverse filtering.

where b, l and f are the blurred image, latent unblurred image, and PSF (or blur kernel),
respectively. In the frequency domain,

F(b) = F(l) · F(f), (1.2)
where F is the Fourier transform.

If F(f) does not contain zero or very small values and the blurred image is noise-free,
the latent image l can be obtained simply by inverting the convolution process using
inverse filtering, the simplest method that solves for l. This process is expressed as

F(l) = F(b)/F(f). (1.3)

This strategy practically may produce severe visual artifacts, such as ringings, with the
following reasons. First, the inversion of f may not exist, especially for low-pass filters.
Second, motion PSFs caused by object or camera motion are typically band-limited and
their spectrums have zero or near-zero values at high frequency. Third, image formation
causes problems including image noise, quantization error, color saturation, and non-
linear camera response curve. They make blur violate the ideal convolution model and
lead to a more flexible form

b = l ⊗ f + n, (1.4)

where n denotes error in the blurred image, which we call image noise in general. One
deconvolution result by direct inverse filter is shown in Figure 1.1.

Development of more advanced non-blind deconvolution methods date back to the
1970s. Early representative approaches include Wiener Deconvolution (Wiener 1949),
Least Square Filtering (Miller 1970, Hunt 1973, Tikhonov & Arsenin 1977),
Richardson–Lucy method (Richardson 1972, Lucy 1974) and recursive Kalman Filter-
ing (Woods & Ingle 1981). Readers are referred to Andrews & Hunt (1977) for a review
of these early approaches.

Simply put, many algorithms minimize an energy consisting of two terms, i.e. the
data term Edata (corresponding to likelihood in probability) and regularization (also
known as prior) Eprior. Edata measures the difference between the convolved image and
the blur observation, and is written as
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1.1 Non-blind deconvolution 3

Edata = �(l ⊗ f − b), (1.5)

where � is a distance function. A common definition is �(·) = ‖ · ‖2 (Wiener 1949),
representing the L2-norm of all elements. It is also called the Gaussian likelihood. Eprior
is denoted as a function �(l), which has different specifications in existing approaches.
Given Edata and Eprior, the latent image l can be estimated by minimizing the energy
incorporating these two terms, expressed as

min
l
‖l ⊗ f − b‖2 + λ�(l), (1.6)

where λ is a weight. In what follows, we discuss a few representative non-blind
deconvolution methods with respect to model design and solver construction. Their
respective strengths, disadvantages, and relations are also presented.

1.1.1 Regularized approaches

A number of early methods incorporated square regularization constraints. Two repre-
sentative forms are �(l) = ‖l‖2 and �(l) = ‖∇l‖2, where ∇ is the gradient operator.
They enforce smoothness on image values and image gradients, and are called Tikhonov
and Gaussian regularizers, respectively. Substituting them into Eq. (1.6) yields

min
l
‖l ⊗ f − b‖2 + λ‖l‖2 (1.7)

and

min
l
‖l ⊗ f − b‖2 + λ‖∇l‖2, (1.8)

for overall energy minimization. Weight λ is typically a small value.
The main advantage of these constrained least square methods is in the simplicity

of formation, which results in a solver similar to an inverse filter. Taking the Tikhonov
method as an example, there exists a closed form solution l∗ for Eq. (1.7) by setting its
first order derivative to zero with respect to l. Rearranging Eq. (1.7) in a matrix form
and denoting by E the total energy yield

E = ‖Fν(l)− ν(b)‖2 + λ‖ν(l)‖2

= ν(l)TFTFν(l)− 2ν(b)TFν(l) + ν(b)Tν(b) + λν(l)Tν(l),

where F is a sparse convolution matrix generated from f, and ν is the operator that
transforms the image into its vector form. The partial derivative is

∂E
∂ν(l)

= 2FTFν(l)− 2FTν(b) + 2λν(l). (1.9)

By setting the above equation to zero, the optimal solution l∗ is

ν(l∗) =
FT

FTF + λ�
ν(b), (1.10)

where � is an identity matrix, the same size as FTF.



�

�

“9781107044364AR” — 2013/12/20 — 9:50 — page 4 — #18
�

�

�

�

�

�

4 Mathematical models and practical solvers for uniform motion deblurring

Regularization bias
If there is neither kernel error nor image noise and the kernel matrix F is invertible, the
ground truth latent image l̂ is simply the reversion of convolution, expressed as

ν(l̂) = F−1ν(b) =
FTν(b)

FTF
. (1.11)

The difference between Eqs. (1.10) and (1.11) makes it possible to analyze how the
regularization term introduces bias in deconvolution in an ideal noise-free situation. It
serves as guidance for future deconvolution model design.

We denote the error map of the recovered image as

δl = l∗ − l̂, (1.12)

where δl is the error introduced in deconvolution. Equations (1.11) and (1.12) together
lead to

ν(δl) = ν(l∗)− ν(l̂) = − λν(b)
(FTF + λ�)F

= − λ

FTF + λ�
ν(l̂). (1.13)

Because λ/(FTF + λ�) can be regarded as a weight fixed by blur, this equation indi-
cates that δl generally appears as a high frequency map dependant on image structures
in ν(l̂) as shown in Figure 1.2(d). Intuitively, a large λ makes the result lose detail.

(b)(a)

(d)(c)

Figure 1.2 Error introduced with Tikhonov regularization. (a) Blurred image with the ground
truth PSF; (b) deblurred image with Tikhonov regularization; (c) ground truth latent image;
(d) map of δl computed using Eq. (1.13).
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1.1 Non-blind deconvolution 5

If we consider inevitable image noise and PSF error, the Tikhonov regularizer actually
enhances the stability of deconvolution, discussed below.

Noise amplification
Now consider the case that image noise δb is presented, which is common in natural
images. With a derivation similar to Eq. (1.9), which takes derivatives and sets them to
zero, the expression obtained is

ν(δl) =
FTν(δb)

FTF + λ�
+

−λν(l̂)
FTF + λ�

. (1.14)

We have explained the second term given the same expression in Eq. (1.13). It produces
a map that in general contains a high frequency structure.

In the first term, setting κ = FT/(FTF + λ�) to represent a coefficient matrix, the
expression simplifies to κν(δb). It actually functions as adding noise with a ratio κ ,
which maintains noisy results. Summing up the effects of the two terms in Eq. (1.14),
it is concluded that the deconvolution results contain noise while lacking an amount
of structural detail compared to the ground truth image. Two examples are shown in
Figure 1.3.

Relation to Wiener deconvolution
Wiener filter is a method which has been widely used in non-blind deconvolution
(Wiener 1949). Its specialty is in the use of image and noise power spectra to suppress
noise, expressed as

F(l) =
1

F(f)

(
|F(f)|2

|F(f)|2 + 1
SNR(f)

)
· F(b), (1.15)

where SNR(f) is the signal-to-noise ratio and |F(f)|2 denotes autocorrelation.

(c)(b)(a)

Figure 1.3 Influence of image noise in deconvolution using Tikhonov regularization. (a) Input
images with additive noise; (b) deconvolution results; artifacts are primarily the amplified noise;
(c) difference maps between (b) and the ground truth unblurred noise-free images.
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6 Mathematical models and practical solvers for uniform motion deblurring

It can be proven that the Tikhonov regularized method is equivalent to the Wiener
filter with a proper λ. First, Eq. (1.10) can be rewritten as

(FTF + λ�)ν(l) = FTν(b). (1.16)

Because it holds that

Fν(l) = ν(f ⊗ l),

FTν(l) = ν(f ⊕ l) = ν(f′ ⊗ l),

F(f) · F(f′) = |F(f)|2,

where f′ is the flipped version of f, ⊕ denotes correlation, and · is an element-wise
multiplication operator. Equation (1.16) finds the solution in image domain as

ν(f′ ⊗ (f ⊗ l)) + λl = ν(f′ ⊗ b). (1.17)

Taking the Fourier transform on both sides of Eq. (1.17) yields

F(f′) · F(f) · F(l) + λF(l) = F(f′) · F(b),
which can be further expressed as

l = F−1
( F(f′) · F(b)
F(f′) · F(f) + λ�

)
. (1.18)

Equation (1.18) is the same as Eq. (1.15) when λ� = 1/(SNR(f)). This equivalence
implies that Wiener deconvolution has similar noise amplification and structure infor-
mation loss properties to Tikhonov regularized deconvolution.

1.1.2 Iterative approaches

Iterative computation was also used in several methods. The van Cittert (van Cittert
1931) solver can be applied to iteratively estimate the deconvolved image as

lt+1 = lt + β(b − lt ⊗ f), (1.19)

where β is a parameter, adjustable automatically or manually, controlling the conver-
gence speed while t and t + 1 index iterations. Equation (1.19) converges ideally to a
result close to that produced by the inverse filter expressed in Eq. (1.3), which does not
incorporate any prior or regularization.

The widely employed Richardson–Lucy (RL) deconvolution (Richardson 1972, Lucy
1974) can be expressed as

lt+1 = lt
(

f′ ⊗
(

b
lt ⊗ f

))
, (1.20)

where f′ is the flipped version of f, used in correlation instead of convolution. How
Eq. (1.20) is constructed is explained in quite a number of papers and tutorials avail-
able online, and is thus omitted here. Different from direct inversion (Eq. (1.3)), RL
deconvolution is iterative and can be stopped halfway, which empirically alleviates,
in part, noise amplification. Performing it for many iterations or making it converge,
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1.1 Non-blind deconvolution 7

contrarily, could yield less satisfactory results. The following derivation shows that the
RL method is equivalent to the Poisson maximum likelihood, without imposing any
image or kernel prior.

When assuming independent and identically distributed (i.i.d.) Gaussian noise n =
b − l ⊗ f, the maximum likelihood estimation of l is generally expressed as

p(b|l) ∝
∏

i
exp

(
− (bi − (l ⊗ f)i)2

2σ 2

)
, (1.21)

where p(b|l) is the conditional probability (also known as likelihood), i indexes pixels,
and σ 2 is the Gaussian variance. Similarly, assuming that noise n = b − l ⊗ f follows a
Poisson distribution, yields

p(b|bl) ∝
∏

i

(l ⊗ f)bi
i exp(−(l ⊗ f)i)

bi! , (1.22)

where i indexes pixels. Its logarithmic energy is

log (p(b|l)) ∝
∑

i
(bilog (l ⊗ f)i − (l ⊗ f)i) , (1.23)

where the constant bi! term is omitted. Taking partial derivatives w.r.t. each pixel on the
log energy and setting them to zero yields

f′ ⊗
(

b
l ⊗ f

− 1
)

= 0. (1.24)

Since f is a PSF, its elements amount to 1, making f′ ⊗ 1 = 1. Thus Eq. (1.24) can be
approximated by Richardson–Lucy deconvolution, in iterations, as

lt+1 = lt
(

f′ ⊗
(

b
lt ⊗ f

))
. (1.25)

The above derivation shows that the RL method is equivalent to the Poisson maximum
likelihood estimator in theory. Because there is no prior on the latent image l, the algo-
rithm should be stopped halfway to reduce noise and other visual artifacts. There has
been research to improve RL. For example, Yuan, Sun, Quan & Shum (2008), in the
multi-scale refinement scheme, applied edge-preserving bilateral filtering to the RL
result. This nonlocal regularizer makes the iterative method a bit more robust against
noise.

1.1.3 Recent advancements

Effective non-blind deconvolution needs to deal with noise and suppress ringing arti-
facts introduced by incorrect blur kernel estimates and sometimes by compression or
tone management in image formation. Understanding these issues led to better means
of regularizing the deconvolution process in recent years, giving prior Eprior (denoted
as �(l)) a number of new forms. A general principle is that the prior should not
penalize excessively estimation outliers – in order not to wrongly deviate final results.
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8 Mathematical models and practical solvers for uniform motion deblurring
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Figure 1.4 Illustration of different regularization terms. Different prior functions penalize values
differently. The Gaussian prior increases energy most quickly for large absolute values.

In what follows, without special mention, the overall objective function is still the one
expressed in Eq. (1.6):

min
l
‖l ⊗ f − b‖2 + λ�(l). (1.26)

Chan & Wong (1998) used a total variation regularizer, which is also known as a
Laplacian prior, by setting

�(l) = ‖∇l‖1, (1.27)

where ∇ denotes the first-order derivative operator, i.e. ∇l = (∂xl, ∂yl), a concatenation
of the two gradient images. ‖ · ‖1 is the L1-norm operator for all image gradients. This
prior, illustrated in Figure 1.4 by solid lines, has a stronger effect on reducing the influ-
ence of large errors than the Gaussian prior used in Eq. (1.8) (and shown as a dash–dot
curve in Figure 1.4).

There are other ways to define �(l). Shan, Jia & Agarwala (2008) constructed a
natural prior for the latent image by concatenating two piecewise continuous convex
functions, plotted as the concatenating curve in Figure 1.4. The expression is

�(li) =

{
a|∇li| |∇li| � ξ
b(∇li)2 + c |∇li| > ξ

(1.28)

where i indexes pixels and ∇li represents a partial derivative for li in either the x
or y direction. ξ is the value on which the linear and quadratic functions are concate-
nated. a, b, and c are three parameters.�(l) can actually be used to approximate natural
image statistics when a is large and b is very small.

To make the resulting structure less smooth, Levin, Fergus, Durand & Freeman (2007)
suggested a hyper-Laplacian prior, written as
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1.1 Non-blind deconvolution 9

Table 1.1 Comparison of a few non-blind deconvolution methods with respect to the employed
likelihood and prior.

Likelihood Prior

Wiener (Wiener 1949) Gaussian Gaussian
L-Sa (Tikhonov et al. 1977) Gaussian Gaussian
RL (Richardson 1972, Lucy 1974) Poisson –
midrule Chan & Wong 1998 Gaussian Laplacian
Wang et al. 2008 Gaussian Laplacian
Shan et al. 2008 Gaussian Concatenating
Yuan et al. 2008 Poisson Non-local (bilateral)
Krishnan & Fergus 2009 Gaussian Hyper-Laplacian
Yang et al. 2009 Laplacian Laplacian
Xu & Jia 2010 Laplacian Laplacian

aL-S is an abbreviation for least square.

�(l) = ‖∇l‖α , (1.29)

where α < 1, representing a norm corresponding to a sparser distribution.
Additionally, the methods of Yang, Zhang & Yin (2009) and Xu & Jia (2010) suppress

noise via a TV-L1 (total variation) objective, which uses the Laplacian data term, i.e.
Edata = ‖l ⊗ f − b‖1, so the objective function can then be expressed as

min
l
‖l ⊗ f − b‖1 + ‖∇l‖1. (1.30)

This function can suppress strong Gaussian and, particularly, impulse image noise with
the robust constraint on the data term.

The likelihood and prior forms of different recent methods are listed in Table 1.1.
Gaussian likelihood and Laplacian prior are most frequently used thanks to their sim-
plicity in expression and reasonable ability to resist noise and error.

Albeit not quadratic, objective functions incorporating the Laplacian prior in
Eq. (1.27), the concatenating term in Eq. (1.28), the hyper-Laplacian prior in Eq. (1.29),
and the robust data term in Eq. (1.30), as a TV-L1 energy can be solved efficiently
through half-quadratic splitting, which decomposes the original problem into a single-
variable quadratic minimization process. Details are provided in Section 1.1.4.

1.1.4 Variable splitting solver

An effective scheme to solve sparsely constrained non-blind deconvolution is variable
splitting, implemented by half-quadratic penalty methods (Geman & Reynolds 1992,
Geman & Yang 1995). This scheme has been used in many recent methods (Shan et al.
2008, Wang, Yang, Yin & Zhang 2008, Krishnan & Fergus 2009, Xu & Jia 2010). In
what follows, we discuss the half-quadratic penalty solver for minimizing

E‖l ⊗ f − b‖2 + λ‖∇l‖α , (1.31)
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10 Mathematical models and practical solvers for uniform motion deblurring

with a (hyper) Laplacian prior, where 0.5 � α � 1. Objective functions with the
concatenating prior expressed in Eq. (1.28) and the TV-L1 function in Eq. (1.30) can
be solved similarly.

The basic idea is to separate variables involved in convolution from those in other
terms, so that they can be estimated quickly and reliably using Fourier transforms. This
is realized by using a set of auxiliary variables ψ = (ψx,ψy) for ∇l = (∂xl, ∂yl), and
adding the extra condition ψ ≈ ∇l. Eq. (1.31) is accordingly updated to

EL = ‖l ⊗ f − b‖2 + λ‖ψx‖α + λ‖ψy‖α + γ ‖ψx − ∂xl‖2 + γ ‖ψy − ∂yl‖2, (1.32)

given the isotropic implementation of the α-norm. γ is a weight. When its value is
infinitely large, the desired conditions ψx = ∂xl and ψy = ∂yl can be satisfied. In this
case, minimizing EL converges to minimizing E.

Given this variable substitution, it is possible now to iterate between optimizing ψ
and l. This process is efficient and is able to converge to an optimal point, since, in
each iteration, the global optimum of ψ is reached in a closed form, while a fast Fourier
transform can be used to update l.

Updating ψ

With an estimated l from the previous pass, Eq. (1.32) is simplified to

E′ψ = λ‖ψx‖α + λ‖ψy‖α + γ ‖ψx − ∂xl‖2 + γ ‖ψy − ∂yl‖2. (1.33)

With a few algebraic operations to decompose ψ into the set containing all elements
ψi,x and ψi,y corresponding to all pixels i, E′ψ can be written as a sum of sub-energy
terms

E′ψ =
∑

i

(
E′ψi,x + E′ψi,y

)
, (1.34)

where each E′ψi,υ
, υ ∈ {x, y} only contains a single variable ψi,υ ∈ ψυ , given by

E′ψi,υ = λ|ψi,υ |α + γ (ψi,υ − ∂υ li)2, (1.35)

where li is pixel i in l. Each E′ψi,υ
contains only one variable ψi,υ so it can be opti-

mized independently. For any α smaller than 1, minimizing Eq. (1.35) depends on two
variables, i.e. joint weight γ /λ and image-dependent ∂υ li. By sampling values from
them, a 2D lookup table can be constructed offline, from which optimal results can
be obtained efficiently. Possible errors caused by the discrepancy of actual values and
nearest samples are controllable (Krishnan & Fergus 2009). For the special cases where
α = 1/2, α = 2/3 and α = 1, analytic solutions are available. We discuss the case α = 1,
where ψi,υ is expressed as

ψi,υ = sign(∂υ li)max
{
|∂υ li| − λ

2γ
, 0
}

, (1.36)

which is the 1D shrinkage formula (Wang et al. 2008). Its computation is efficient.



�

�

“9781107044364AR” — 2013/12/20 — 9:50 — page 11 — #25
�

�

�

�

�

�

1.1 Non-blind deconvolution 11

Updating l
With � estimated above, l is updated by minimizing

E′l = ‖l ⊗ f − b‖2 + γ ‖ψx − ∂xl‖2 + γ ‖ψy − ∂yl‖2. (1.37)

Since the major computation is on convolution, frequency domain operation is applied.
Denoting the Fourier transform operator and its inverse as F and F−1, respectively, E′l
is updated to

E′F(l) = ‖F(l) · F(f)− F(b)‖2 + γ ‖F(ψx)− F(l) · F(∂x)‖2
2

+ γ ‖F(ψy)− F(l) · F(∂y)‖2
2, (1.38)

where F(∂υ), υ ∈ {x, y}, is the filter ∂υ in the frequency domain. It can be obtained by
the Matlab function “psf2otf".

According to Plancherel’s theorem in harmonic analysis, which states that the sum of
the square of a function is equal to the sum of the square of its Fourier transform, the
energy equivalence E′l = E′F(l) can be established for all possible values of l. It further
follows that the optimal l∗ that minimizes E′l corresponds to the counterpart F(l∗) in the
frequency domain that minimizes E′F(l):

E′l|l∗ = E′F(l)|F(l∗). (1.39)

Accordingly, the optimal l∗ is given by

l∗ = F−1
(

arg min
F(l)

E′F(l)
)

. (1.40)

Since E′F(l) is a sum of quadratic energies of unknown F(l), it is a convex function
and can be solved by simply setting the partial derivatives ∂E′F(l)/∂F(l) to zero. The
solution of l∗ can be expressed as

l∗ = F−1

(
F(f) · F(b) + γF(∂x) · F(ψx) + γF(∂y) · F(ψy)

F(f) · F(f) + γF(∂x) · F(∂x) + γF(∂y) · F(∂y)

)
, (1.41)

where (·) denotes the conjugate operator. The division is an element-wise one.
The above two steps, respectively, update ψ and l until convergence. Note that γ

in Eq. (1.32) controls how strongly ψ is constrained to be similar to ∇l, and its value
can be set with the following consideration. If γ is too large initially, the convergence
is quite slow. On the other hand, if γ is overly small before convergence, the optimal
solution of Eq. (1.32) must not be the same as that of Eq. (1.31). A general rule (Shan
et al. 2008, Wang et al. 2008) is to adaptively adjust γ in iterations. In the early stages,
γ is set small to stimulate significant gain for each step. Its value increases in every or
every few iterations, making ψ gradually approach ∇l. γ should be sufficiently large at
convergence.

1.1.5 A few results

We show a few examples to visually compare the aforementioned methods and models.
In Figure 1.5, results from approaches incorporating different prior terms are shown.
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12 Mathematical models and practical solvers for uniform motion deblurring

(a) Input (b) RL (c)Gaussian

(d) Groundtruth (e) Hyper-Laplacian (f) Laplacian

Figure 1.5 Non-blind deconvolution results. Visual comparison of non-blind deconvolution
methods with the data term defined in Eq. (1.5) and priors set as none (Richardson–Lucy),
Gaussian, hyper-Laplacian and Laplacian, respectively.

The input blurred image and PSF contain noise, making RL and the Gaussian prior
method produce a level of ringing artifacts and image noise. Laplacian and hyper-
Laplacian priors, in comparison, perform better in terms of robustness against these
problems. Based on publicly available executables or codes, we deconvolve another
input image in Figure 1.6(a), similarly containing noise and PSF errors. The results
shown in (c), (e) and (f) are visually pleasing. Laplacian and hyper-Laplacian priors
used to produce the results are effective in suppressing a medium level of image noise.

In terms of computation complexity, Wiener deconvolution involves the simplest
operation and thus runs fastest. Methods incorporating concatenating and Laplacian
priors can produce higher quality results; their corresponding algorithm is also efficient
when written in optimized C. The method of Krishnan & Fergus (2009) makes use of a
lookup table, which is constructed offline with respect to parameters. This table speeds
up the solver considerably.

1.2 Blind deconvolution

Blind deconvolution solves shift-invariant (uniform) motion deblurring

b = l ⊗ f + n (1.42)

by estimating both f and l. n represents inevitable additive noise.
There have been many blind deconvolution methods. Approaches proposed before

2005 mainly used the strategy to estimate the blur PSF and the latent image separately,
which results in alternating optimization. For example, Ayers & Dainty (1988) iterated
between updating the blur PSF and the latent image in a style similar to the Wiener filter;
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(a) Input (b) Wiener deconvolution (c) Shan et al. (2008)

(d) Ground truth (e) Krishnan&Fergus (2009) (f) Xu & Jia (2010)

Figure 1.6 Non-blind deconvolution results. Visual comparison of results produced by a few
efficient non-blind deconvolution methods.

Fish, Brinicombe, Pike & Walker (1995) performed blind deconvolution in a maximum
likelihood fashion, using the Richardson–Lucy iteration; Chan & Wong (1998) applied
the total variation regularizer to both the PSF and the image. These methods are not
elaborated in this book because they have respective limitations in handling natural
image blur, especially when noise and complex-structure PSFs present. The remainder
of this chapter will focus on recent understanding and more advanced developments of
models and solvers.

The major difficulty for successful natural image motion blur blind deconvolution is
due to the high dimension of solution space. Any PSF f can be fitted into Eq. (1.42) to
find a corresponding l and n, making it challenging to define proper criteria for opti-
mization. Figure 1.7 shows an example. Two solutions in the two rows on the righthand
side indicate huge ambiguity for PSF and image estimation. A small change in estima-
tion steps could significantly deviate the solution.

Modern objective functions can generally be expressed as

min
l,f
�(l ⊗ f − b) + λ1�(l) + λ2ϒ(f), (1.43)

similar to the one shown in Eq. (1.6), where λ1 and λ2 are two weights.�,�, andϒ are
different functions to constrain noise, latent image and PSF, respectively. Among them,
� and � can use the same expression introduced above in non-blind deconvolution.
Generally, �(l⊗ f− b) is set to ‖l⊗ f− b‖2 (or ‖∇l⊗ f−∇b‖2), which is a quadratic
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14 Mathematical models and practical solvers for uniform motion deblurring

(a) (d)(c)

(f)(e)(b)

Figure 1.7 Ambiguity of solution for blind deconvolution. (a) Ground truth latent image;
(b) blurred input; (c–d) one latent image estimate and the corresponding noise map n; (e–f)
another latent image result and corresponding noise map. (d) and (f) are normalized for
visualization.

cost on pixel values (or their derivatives). �(l) can be set the same way as Eqs. (1.27)–
(1.29) to follow sparse gradient distributions. The new ϒ is ideally a sparse function
since a motion PSF tends to have most elements close to zero. Its L1-norm form is

ϒ(f) = ‖f‖1.

With these three functions, the objective function can be written as

min
l,f

‖l ⊗ f − b‖2 + λ1‖∇l‖α + λ2‖f‖1, (1.44)

where α set to 2, 1, and a value between 0 and 1 correspond to quadratic, Laplacian,
and hyper-Laplacian functions, respectively. Note that different methods may alter these
terms or use extra ones in the above objective, but, overall, the constraints are enough
for blind deconvolution.

This objective also corresponds to a posterior probability

p(l, f|b) ∝ p(b|l, f)p(l)p(f),
∝ exp(−�(l ⊗ f − b)) · exp(−λ1�(l)) · exp(−λ2ϒ(f)), (1.45)

in the probability framework (Shan et al. 2008, Fergus, Singh, Hertzmann, Roweis &
Freeman 2006).

Solving Eq. (1.44) by simply estimating the PSF and the latent image iteratively
cannot produce correct results. Trivial solutions or local-minima can, contrarily, be
obtained. The trivial solution is the delta-function PSF, which contains a one in the
center and zeros for all other elements, and exactly the blurred image as the latent image
estimate (Levin, Weiss, Durand & Freeman 2009). Without any deblurring, the resulting
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Figure 1.8 Coarse-to-fine PSF estimation in several levels.

energy in Eq. (1.44) could be even lower than that with correct deblurring for many
images. In addition, simple iterative optimization is easily stuck in poor local minima.

To tackle the blind deconvolution problem, there are mainly two streams of research
work for full posterior distribution approximation p(l, f|b), using (i) maximum marginal
probability estimation, and (ii) energy minimization directly in Eq. (1.44). Most existing
methods estimate PSFs in a multi-scale framework where the PSF is first estimated on
the small-resolution image in an image pyramid. The estimate is then propagated to
the next level as the initialization to refine the result in a higher resolution. This process
repeats for a few passes, which improves numerical stability, avoids many local minima,
and even saves computation by reducing the total number of iterations. An illustration
of multi-level PSFs is shown in Figure 1.8. The following discussion is based on an
estimation in one image level.

1.2.1 Maximum marginal probability estimation

Theoretically, the blur PSF can be perfectly obtained by maximizing the following
marginalized probability, expressed as

p(f|b) =
∫

p(l, f|b)dl, (1.46)

where p(l, f|b) is the full posterior distribution defined in Eq. (1.45). Empirically, a huge
difficulty exists regarding computational tractability of integration on the latent image
l. Even if one treats the latent image as discrete, marginalization still involves summing
all possible image values, which is prohibitively expensive.

To address this problem, Fergus et al. (2006) approximated the posterior distribution
using parametric factorization, written as

p(l, f|b) ≈ q(f, l) = q(f)q(l) (1.47)

=
∏

i
q(fi)

∏
j

q(lj), (1.48)

where the first equation (1.47) assumes independence between f and l, making marginal-
ization, i.e.

∫
q(f, l)dl = q(f), valid. The second equation (1.48) assumes pixel indepen-

dence, to ease parameter estimation. Also, by assuming Gaussian distributions for both
the kernel and latent images, the optimal kernel that maximizes the marginalized prob-
ability becomes the mean of the Gaussian distribution, i.e. f∗i = Eq(fi)(fi), where Eq(fi) is
the expectation w.r.t. the distribution q(fi). This process corresponds to the mean field
approach.
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The final approximated distributions, in this case, are Gaussian moments, obtained
by minimizing a function representing the Kullback–Leibler divergence KL(q(l, f)‖
p(l, f|b)) between the approximating distribution and the true posterior, following the
variational Bayesian framework (Jordan, Ghahramani, Jaakkola & Saul 1999, Miskin &
MacKay 2000). More details of this approach, e.g. the use of gradients and unknown
noise variance, can be found in the original papers. Note that iteratively minimizing the
KL divergence cost function is very time consuming. For reference, the publicly avail-
able Matlab code takes 10 minutes to process a 255 × 255 image on a PC with an Intel
i3 2.13 GHz CPU.

Following this line, Levin, Weiss, Durand & Freeman (2011) proposed approximating
the conditional distribution p(l|b, f) ≈ q(l) instead of the joint distribution p(l, f|b). It
leads to an expectation–maximization (EM) framework that treats l as a latent variable
and computes expectation on it instead of integration over all possible configurations.
The M-step minimizes the log-likelihood

Eq(l)(−ln p(l, b|f)) = Eq(l)(‖l ⊗ f − b ‖2). (1.49)

The M-step leads to quadratic programming and can be efficiently solved using
frequency-domain acceleration.

The E-step, which uses q(l) to approximate the conditional distribution, is analogous
to minimization of KL divergence in Fergus et al. (2006). If a Gaussian prior on the
latent image is imposed, the E-step q(l) = p(l|b, f) has a closed-form solution. Another
difference, compared to Fergus et al. (2006), is that instead of considering the distri-
bution of f (i.e. q(f)), Levin et al. (2011) counted in only a single f estimation in the
M-step – which also makes it more efficient than the maximum marginal probability
implementation. It reduces the running time to around 1.2 minutes for a 255×255 image
based on the author-released Matlab code. Approximating p(l|b, f) with the general
sparse image priors is still costly, especially when compared to methods employing
explicit edge recovery or prediction, discussed next.

1.2.2 Alternating energy minimization

Energy minimization from Eq. (1.44) is another common way for uniform blind decon-
volution. It has achieved great success based on a few milestone techniques proposed
in recent years. Alternating minimization can now be applied to many natural images
that are blurred with very large PSFs and/or with significant noise. The process is also
efficient. For example, top performing methods (Cho & Lee 2009, Xu & Jia 2010, Xu,
Zheng & Jia 2013) written in optimized C++, or even Matlab, take around 5 seconds to
process an 800 × 800 image. Additionally, this set of methods is flexibly expandable,
and has been employed as key steps in many non-uniform (spatially-variant) motion
deblurring approaches.

The most important empirical strategy to make the solver avoid the trivial solution is
to generate an intermediate sharp-edge representation. This idea was introduced by Jia
(2007), who selected object boundaries for transparency estimation and performed PSF
estimation only in these regions. It is based on the observation that an opaque object
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shutter press

shutter release

t

x

opaque

transparent transparent

opaque

Figure 1.9 1D example of transparency related to motion blur. 1D example showing how
transparency is produced on a motion-blurred object. Left: motion-blurred bar, whose two ends
are blended to the background and cause semi-transparency. Right: binary transparency map
without object motion blur.

with sharp edges has its boundary blended into the background after motion blur, as
illustrated in Figure 1.9.

With this finding, the original energy function (1.44) can be updated to estimation
of the PSF and transparency map, instead of the latent natural image. The transparency
value for a blurred pixel is denoted as αi. It ranges in [0, 1]. Its latent unblurred value is
αo. Ideally for solid objects, the αo map is a binary one, i.e. αo(i) = {0, 1} for any pixel
i. These variables update the original convolution model (1.42) to

αi = αo ⊗ f + n. (1.50)

The corresponding objective function is updated too. Note that this model does not cause
the trivial solution problem. Thanks to value binarization in the latent transparency map
αo, direct optimization can lead to satisfactory results if the input transparency values
αi are accurate enough.

Later on, Joshi, Szeliski & Kriegman (2008), instead of generating the transparency
map, directly detected edges and predicted step ones. These pixels are used to guide
PSF estimation, also avoiding the trivial solution.

1.2.3 Implicit edge recovery

Following this line, several other methods also implicitly or explicitly predict edges
from the blurred image to guide PSF estimation. A general procedure employed in Shan
et al. (2008) iterates between PSF estimation and latent image recovery. PSF estimation
is achieved by converting Eq. (1.44) to

min
f
‖l ⊗ f − b‖2 + λ2‖f‖1. (1.51)
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Latent image l estimation, accordingly, is obtained by a non-blind deconvolution pro-
cess, expressed as

min
l
‖l ⊗ f − b‖2 + λ1‖∇l‖1. (1.52)

Its solver has been presented in Section 1.1.4. Equations (1.51) and (1.52) iterate until
convergence.

To solve Eq. (1.51), writing it as matrix multiplication yields

min
ν(f)

‖Aν(f)− ν(b)‖2 + λ2‖ν(f)‖1, (1.53)

where A is a matrix computed from the convolution operator whose elements depend
on the estimated latent image l. ν(f) and ν(b) are the vectorized f and b, respectively.
Equation (1.53) is in a standard L1-regularized minimization form, and can be solved by
transforming optimization to its dual problem and computing the solution via an interior
point method (Kim, Koh, Lustig & Boyd 2007) or by iterative reweighted least squares
(IRLS).

This algorithm can produce reasonable kernel estimates and avoids the trivial solution
because it adopts a special mechanism to set parameters λ1 and λ2 in Eqs. (1.51) and
(1.52), which control how strong image and kernel regularization are. At the beginning
of blind image deconvolution, the input kernel is not accurate; the weight λ1 is therefore
set large, encouraging the system to produce an initial latent image with mainly strong
edges and few ringing artifacts, as shown in Figure 1.10(b). This also helps guide PSF
estimation in the following steps to eschew the trivial delta kernel. Then, after each
iteration of optimization, the λ values decrease to reduce the influence of regulariza-
tion on the latent image and kernel estimate, allowing for the recovery of more details.
Figure 1.10 shows intermediate results produced during this process, where the PSF is
gradually shaped and image details are enhanced in iterations.

Normalized L1 regularization
An algorithm similar to that of Shan et al. (2008) was later proposed by Krishnan, Tay &
Fergus (2011). It incorporates a normalized L1 regularization term on image gradi-
ents, written as ‖∇l‖1/‖∇l‖2, where ∇l denotes gradients of l. Normalized L1 modi-
fies traditional L1 regularization ‖∇l‖1 by weight 1/‖∇l‖2, which makes the resulting
‖∇l‖1/‖∇l‖2 value generally smaller than that of ‖∇b‖1/‖∇b‖2. This means the trivial
blurred image solution is not favored by regularization. In this algorithm, blind deconvo-
lution can be achieved by iteratively solving

min∇l
‖∇l ⊗ f −∇b‖2 + λ3

‖∇l‖1

‖∇l‖2 , (1.54)

and
min

f
‖∇l ⊗ f −∇b‖2 + λ4‖f‖1, (1.55)

where λ3 and λ4 are two weights. Because λ3
‖∇l‖2 in Eq. (1.54) is, in fact, a weight in

each iteration, its function is similar to λ1 in Eq. (1.52). Both weights decrease during
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(b)(a)

(d)(c)

Figure 1.10 Illustration of optimization in iterations. (a) Blurred image. The ground truth blur
kernel and simple initial kernel are shown in the two rectangles; (b–d) restored images and
kernels in three iterations.

iterations to accommodate more and more details in PSF estimation, which guide blind
deconvolution and avoid the trivial delta kernel solution.

1.2.4 Explicit edge prediction for very large PSF estimation

Explicit edge prediction was developed and used in Money & Kang (2008), Cho & Lee
(2009), and Xu & Jia (2010), and along with shock filters in Osher & Rudin (1990).
It directly restores strong edges from intermediate latent image estimates in iterations.
Shock filters perform iteratively. Given an image I, in pass t + 1, the shock filtered result
Ĩt+1 is expressed as

Ĩt+1 = Ĩt − sign(�Ĩt)|∇ Ĩt|, (1.56)

where � and ∇ are the Laplacian and gradient operators.
A shock filter can be used in iterative blind deconvolution. It produces step-like edges

from intermediate latent image estimates produced in each iteration. After removing
small-magnitude edges by thresholding the gradients, only a few of the strongest edges
are kept, as illustrated in Figure 1.11(b). This thresholded edge map Ĩ then substitutes
for l in Eq. (1.51) for PSF estimation in the next iteration.
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(a) Blurred image b (b) Thresholded Ĩ (c) Thresholded Ĩ

Figure 1.11 Shock filter. Illustration of shock filter. Given the input image (a), optimization is
performed in iterations. (b) and (c) are generated in two iterations.

In early iterations, the thresholded edge map Ĩ is rather coarse and is obviously
different from the blur input b. It thus effectively avoids the trivial solution. In following
iterations, more details are added to the edge map, as shown in Figure 1.11(c), to further
refine the PSF estimate.

This strategy, however, could suffer from the convergence problem because each
shock filtering process might raise the cost resulting from Eq. (1.51) instead of reducing
it in each PSF estimation iteration. Also, the shock filtered map does not guarantee to
contain correct edges for large PSF estimation. To address these issues, a general and
unified framework was proposed in Xu et al. (2013) where the edge map is predicted
by a family of sparsity functions to approximate L0-norm regularization in the new
objective. It leads to consistent energy minimization and accordingly fast convergence.
The L0 scheme is mathematically established with high-sparsity-pursuit regularization.
It assures only salient changes in the image are preserved and made use of.

To simplify mathematical expressions, in what follows, we describe a framework
robust in optimization for large-kernel blind deconvolution, which still employs a shock
filter. It is similar to that of Xu & Jia (2010). The method starts with the construction of
an image pyramid with n levels. After processing the coarsest level, its result propagates
to the finer one as an initialization. This procedure repeats until all levels are processed.
In each level, the method takes a few iterations to select edges and initialize the PSF. The
final PSF refinement is performed in the highest resolution to improve detail recovery.

Edge selection
In this phase, the PSF is estimated with salient-gradient map construction and kernel
estimation. To make this process fast, coarse image restoration is adopted to obtain the
l estimate quickly.

Initially, the blurred image is Gaussian smoothed and is then shock filtered using
Eq. (1.56). Note that the output, i.e. the salient-edge map, in many cases, cannot be
used directly to guide PSF estimation due to the following fact: if the scale of an object
is smaller than that of the blur kernel, the edge information of the object might adversely
affect kernel estimation.

This is explained with the example shown in Figure 1.12. Two step signals, i.e. the
dashed curves in (a) and (b), are blurred with a wide Gaussian kernel, yielding signals
in solid curves. Due to the small width of the latent signal, its blurred version in (a)
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(a) (b)

Figure 1.12 Ambiguity of motion deblurring. Two latent signals (dashed lines) in (a) and (b) are
Gaussian blurred, shown as solid curves. In (a), the blurred signal is not total-variation
preserving and is shorter than the input. The dot–dash curve with the same height as the blurred
signal, however, is an optimal solution during deblurring. The bottom horizontal lines indicate
the kernel size.

reduces in height, which can misguide PSF estimation. Specifically, the shorter dash–
dot signal, compared to the taller one, has the same total variation as the blurred signal,
and thus produces less energy in Laplacian regularization. It is more optimal than the
ground truth signal when minimizing Eq. (1.44) with α = 1. By contrast, the larger-
scale object shown in Figure 1.12(b) has no such ambiguity because it is wider than
the kernel, preserving total variation along its edges. This example indicates that if
structure saliency is changed by motion blur, corresponding edges produced by a shock
filter could misguide kernel estimation.

This problem can be tackled by selecting positively informative edges for PSF esti-
mation and eliminating textured regions with fine structures. A metric to measure the
usefulness of gradients is

r(i) =
|∑y∈Nh(i) ∇b(j)|∑

j∈Nh(i) |∇b(j)| + ε
, (1.57)

where b still denotes the blurred image and Nh(i) is an h×h window centered at pixel i.
ε is to avoid a large r in flat regions. ∇b(j) is signed. For a window containing primarily
texture patterns, ∇b cancels out a lot in measure |∑j ∇b(j)|. In contrast,

∑
j |∇b(j)| is

the sum of absolute gradient magnitudes in Nh(x), which estimates how strong the image
structure is inside the window. Their incorporation in r actually measures whether the
window is a textured one or not. A large r implies that local gradients are of similar
directions and are not extensively neutralized, while a small r corresponds to either a
texture or a flat region. Figure 1.13(b) shows the computed r map. More explanations
are provided in Xu, Yan, Xia & Jia (2012).

Pixels belonging to small r-value windows are then removed and encoded in mask

M = H(r − τr), (1.58)

where H(·) is the Heaviside step function, outputting zeros for negative and zero values,
and ones otherwise. τr is a threshold. Finally, the selected edges are formed by non-zero
values in ∇Is, constructed as
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(a) Blurred input

(c) (d) (e) (f )

(j)(i)(h)(g)

(b) r map

Figure 1.13 Edge selection in kernel estimation. (a) Blurred image; (b) r map (Eq. (1.57));
(c–e) Is in the 1st, 2nd and 7th iterations without considering r; (f) deblurring result not using the
r map; (g–i) Is maps computed according to Eq. (1.59); (j) our final result. (c–e) and (g–i) are
constructed from ∇Is by solving Poisson equations.

∇Is = ∇ Ĩ ◦ H(M ◦ |∇ Ĩ| − τs), (1.59)

where ◦ denotes element-wise matrix multiplication, Ĩ is the shock filtered image and
τs is a threshold of gradient magnitudes. Equation (1.59) excludes part of the gradi-
ents, whose values depend jointly on the magnitude of |∇ Ĩ| and the prior mask M. This
selection process becomes much more robust following kernel estimation.

Figure 1.13(c–e) and (g–i) illustrate the correspondingly computed Is maps in different
iterations without and with the edge selection operation, respectively. The comparison
in these two rows clearly shows that including more edges does not necessarily benefit
kernel estimation. Contrarily, they can confuse this process, especially in the first few
iterations. So an appropriate image edge selection process is vital. To allow for infer-
ring subtle structures eventually, one can decrease the values of τr and τs in iterations,
to include more and more edges. The maps in (e) and (i) contain similar amounts of
edges; but the quality significantly differs. The step to produce the results in (f) and (j)
is detailed below.
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Algorithm 1 Kernel Initialization

INPUT: Blur image b and an all-zero kernel with size h × h
Build an image pyramid with levels {1, 2, · · · , n}.
for l = 1 to n do

Compute gradient confidence r for all pixels using Eq. (1.57).
for i = 1 to 5 do

(a) Select edges ∇Is for kernel estimation (Eq. (1.59)).
(b) Estimate kernel using Eq. (1.61).
(c) Estimate the latent image ll by fast non-blind deconvolution (Eq. (1.8)),
and update τs ← τs/1.1, τr ← τr/1.1.

end for
Upscale image ll+1 ← ll ↑.

end for
OUTPUT: Kernel estimate f0 and sharp edge gradient ∇Is for further refinement

Fast kernel estimation
With the selected edge maps, PSF initialization can be done quickly with a simple
quadratic objective function written as

Ee(f) = ‖∇Is ⊗ f − ∇b‖2 + λ‖f‖2. (1.60)

Here, f is constrained in a simple quadratic term thanks to the effective gradient maps
∇Is. Note that minimizing Ee makes the PSF estimate a bit more noisy compared to
that constrained by the Laplacian term in Eq. (1.53). The result will be refined in the
following steps.

Based similarly on Parseval’s theorem and the derivation in Eq. (1.39), computing
fast Fourier transforms (FFTs) on all variables and setting the derivatives w.r.t. f to
zeros, yield the closed-form solution

f = F−1

(
F(∂xIs)F(∂xb) + F(∂yIs)F(∂yb)

F(∂xIs)2 + F(∂yIs)2 + λ

)
, (1.61)

where F(·) and F−1 denote FFT and inverse FFT, respectively. F(·) is the complex
conjugate operator.

The algorithm for multi-scale kernel initialization is sketched in 1. Deconvolution
starts from the coarsest level with edge selection in Eq. (1.59)), kernel estimation in
Eq. (1.61) and fast deconvolution using Eq. (1.8). The estimates then propagate to the
next level by spatial upscaling and repeating the above steps to obtain a more accurate
result. After all levels are processed, final kernel refinement is performed in the original
image resolution, as described below.

Sparse kernel refinement
To remove the remaining noise from kernel f0 output from 1, one can apply a hard or
hysterisis threshold to set small values to zeros. This simple scheme however ignores the
blur model, possibly making the truncated kernel less accurate. One example is shown
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(c)(b)(a)

f s

S 3S 2S 1

f 0

Figure 1.14 Sparse kernel refinement. (a) Blurred image; (b) top row, left to right: kernel f0,
kernel by simply thresholding to remove small-value elements, and our kernel refinement result
fs; bottom row, left to right: S1–S3, iteratively detected support regions by the ISD method;
(c) restored image using fs.

in the top, centered image of Figure 1.14(b). Keeping only the large-value elements
cannot apparently correctly preserve the subtle structure in the motion PSF.

This problem is solved by iterative support detection (ISD) that ensures deblurring
quality while removing noise (Wang & Yin 2009, Xu & Jia 2010). The idea is to itera-
tively secure PSF elements that already have large values by relaxing the regularization
penalty, so that these pixels will not be significantly affected by regularization in next-
round kernel refinement.

ISD is an iterative method. In each iteration i, after refining the kernel estimate fi, a
partial support is produced to put large-value elements into set Si and all others to set
Si. This process is denoted as

Si ← {j : fi
j > ε

s}, (1.62)

where j indexes elements in fi and εs is a positive number evolving in iterations, to
form the partial support. εs can be configured by applying the “first significant jump"
rule. Briefly, we sort all elements in fi in ascending order w.r.t. their values and compute
differences d0, d1, . . . between each two nearby elements. Then we examine these differ-
ences sequentially starting from the head d0 and search for the first element, dj for
example, that satisfies dj > ‖fi‖∞/(2h · i), where h is the kernel width and ‖fi‖∞
returns the largest value in fi. εs is thus assigned with the value of the jth kernel element.
Readers are referred to Wang & Yin (2009) for further explanation. Examples of the
detected support are shown in the bottom row of Figure 1.14(b). Elements within S are
less penalized in optimization, resulting in an adaptive process.

Sparse kernel refinement in each iteration i + 1 is achieved by minimizing

E(f) =
1
2
∥∥∇Is ⊗ f − ∇b

∥∥2 + γ
∑
j∈Si

|fj|. (1.63)

Soft thresholding applies to kernel refinement in regularization, which automatically
maintains element sparsity faithful to the motion PSF. 2 depicts the kernel refinement
procedure.
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Algorithm 2 Kernel refinement

INPUT: Initial kernel f0, ∇b, and ∇Is (output of 1)
Initialize the partial support S0 with f0 (Eq. (1.62)) and set i = 1.
repeat

Solve for fi by minimizing Eq. (1.63).
Produce Si (Eq. (1.62)).
i ← i + 1.

until ‖fi+1−fi‖
‖fi‖ � εf (εf = 1e−3 empirically)

OUTPUT: Kernel estimate fs

To minimize Eq. (1.63) with the partial support, iterative reweighted least squares
(IRLS) can be applied. By writing convolution into the matrix multiplication form, the
latent image l, kernel f, and blur input b are correspondingly expressed as matrix A,
vector ν(f), and vector ν(b). Equation (1.63) is then minimized by iteratively solving
linear equations w.r.t. ν(f). In the t-th pass, the corresponding linear equation is
expressed as

[ATA + γ diag(ν(S̄))diag(�−1)]ν(f)t = ATν(b), (1.64)

where AT denotes the transposed A and ν(S̄) is the vector form of S̄. � denotes
max(‖ν(f)t−1‖1, 1e−5), which is the weight related to the kernel estimate from the
previous iteration. diag(·) produces a diagonal matrix from the input vector. Equa-
tion (1.64) can be solved by a conjugate gradient method in each pass.

The finally refined kernel fs is shown in Figure 1.14(b). It maintains small-value
elements, which exist in almost all motion kernels. In the meantime, it is reasonably
sparse. Optimization in this phase converges in less than 3 iterations referring to the
loop in 2.

Finally, given the PSF estimate f output from this algorithm, high quality latent image
reconstruction can be applied by non-blind deconvolution using Eq. (1.31). Figure
1.14(c) shows the restored image that contains correctly reconstructed texture and struc-
ture, manifesting the effectiveness of this blind deconvolution framework.

1.2.5 Results and running time

Two blind deconvolution examples and their results are presented in Figures 1.15 and
1.16. The input blurred natural images are with motion kernels with resolutions 50×50
and 85×85, respectively, in a spatial-invariant manner. All methods that are compared in
this section can remove part or all of the blur. Differences can be observed by comparing
the motion kernel estimates shown in the bottom right hand corner of each result and
the finally deblurred images, which depend on the quality of kernel estimates and the
different non-blind deconvolution strategies employed during kernel estimation or after
it. Note that these uniform blind deconvolution methods provide basic and vital tools,
which avail research in recent years, and in future will remove spatially-variant blur
from natural images caused by camera rotation and complex object motion.
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(b) Shan et al. (2008)

(d) Levin et al. (2011)(c) Cho & Lee (2009)

tupnI)a(

Figure 1.15 Visual comparison of different blind deconvolution results. The input is a camera
captured blurred natural image.

Figure 1.17 shows a very challenging example where the input image is blurred with
a kernel as large as 95× 95 pixels. The method of Xu & Jia (2010) can deblur the input
image and produce a high quality deconvolution result. The running time of different
methods on CPU is given in Table 1.2 tested on a PC with an Intel i7 2.93GHz CPU
and 8 GB memory. There is much room to speed up the methods written in Matlab by
programming them in C++. In general, as the alternating energy minimization strategy
does not need to estimate marginal probability or sample distributions, it is generally
more efficient and flexible.

Finally, code or executables for several representative natural image uniform blind
deblurring methods is publicly available at the links listed below.

• Fergus et al. (2006) (website and code)
http://cs.nyu.edu/%7efergus/research/deblur.html

• Shan et al. (2008) (website and executable)
http://www.cse.cuhk.edu.hk/leojia/projects/motion%5fdeblurring

• Cho & Lee (2009) (website and executable)
http://cg.postech.ac.kr/research/fast%5fmotion%5fdeblurring/

• Xu & Jia (2010) (website and software)
http://www.cse.cuhk.edu.hk/leojia/projects/robust%5fdeblur

http://www.cse.cuhk.edu.hk/leojia/projects/robust%5fdeblur
http://cg.postech.ac.kr/research/fast%5fmotion%5fdeblurring/
http://www.cse.cuhk.edu.hk/leojia/projects/motion%5fdeblurring
http://cs.nyu.edu/%7efergus/research/deblur.html
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(c) Krishnan et al. (2011)

(b) Fergus et al. (2006)(a) Input

(d) Xu & Jia (2010)

(h) Close-up of (d)(g) Close-up of (c)(f)Close-upof(b)(e)Input

Figure 1.16 Visual comparison of different blind deconvolution results. The input is a camera
captured blurred natural image. Close-ups are shown from (e–h).

(a) Input (b) Xu & Jia (2010)

Figure 1.17 Deblurring a significantly blurred image. Deconvolution of a significantly blurred
natural image. The blur kernel is as large as 95 × 95.
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Table 1.2 Blind deconvolution running time. Running time (in seconds) of different methods on CPU with
respect to three image resolutions. The kernel sizes are, respectively, 31 × 31, 41 × 41, and 51 × 51
for the three sets of data. Note that Matlab implementation can generally be sped up when
reprogrammed in C or C++ .

Methods (Implementation) version 255 × 255 800 × 800 1024 × 768

Fergus et al. (2006) (Matlab) v1.2 649.11 4343.24 6916.44
Shan et al. (2008) (C++) v1.0 73.28 417.22 700.23
Cho & Lee (2009) (C++) 0.79 5.78 11.60
Xu & Jia (2010) (C++) v3.0 0.80 5.75 13.26
Levin et al. (2011) (Matlab) 76.21 1084.19 1737.27
Krishnan et al. (2011) (Matlab) 25.60 215.22 273.85
Xu et al. (2013) (Matlab) 1.05 5.77 12.23

• Krishnan et al. (2011) (website and code)
http://cs.nyu.edu/%7edilip/research/blind-deconvolution/

• Levin et al. (2011) (code)
http://www.wisdom.weizmann.ac.il/%7elevina/papers/

LevinEtalCVPR2011Code.zip

• Xu et al. (2013) (website and software)
http://www.cse.cuhk.edu.hk/leojia/projects/l0deblur
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2 Spatially varying image deblurring
Neel Joshi, Sing Bing Kang and Richard Szeliski

Camera shake is one of the most common causes of image blur. This type of blur arises
when a long exposure is required (due to low light levels, for example), and the camera
is not held still.

Removing blur due to camera shake is a very active area of research. With just a single
photograph as input, this blur removal is known as the blind deconvolution problem, i.e.
simultaneously recovering both the blurring function (point spread function or PSF) and
the deblurred, latent image. Unfortunately, the blind deconvolution problem is inher-
ently ill-posed, as the observed blurred image provides only a partial constraint on
the solution. Therefore, the problem cannot be solved without assuming constraints or
priors on the blur or the deblurred image. The most common assumption is that the
blur is spatially invariant, but this can handle only a limited set of camera motions. The
deblurred image is typically assumed to have natural image statistics (Fergus, Singh,
Hertzmann, Roweis & Freeman 2006). A key open problem is to model general camera
motions, which are quite common and can cause the blur kernels to vary spatially.

2.1 Review of image deblurring methods

Image deblurring has received a lot of attention in the computer vision community.
Deblurring is the combination of two tightly coupled sub-problems: PSF estimation and
non-blind image deconvolution. These problems have been addressed both indepen-
dently and jointly (Richardson 1972).

Single-image methods use image priors and kernel priors to constrain an optimization
for the blur kernel and the latent image (Shan, Jia & Agarwala 2008, Likas & Galatsanos
2004, Fergus et al. 2006, Yuan, Sun, Quan & Shum 2007, Joshi, Zitnick, Szeliski &
Kriegman 2009, Levin 2007, Joshi, Szeliski & Kriegman 2008, Jia 2007).

Jin et al. (Jin, Favaro & Cipolla 2005) address the problem of simultaneous
tracking and deblurring in motion-blurred image sequences. Cho et al.’s work (Cho,
Matsushita & Lee 2007) uses segmentation masks to simultaneously estimate multiple
(parametric) motion blurs over the whole image as well as handle occlusion. It can
be regarded as an extension of the previous technique (Jin et al. 2005), since it uses a
similar blur constraint and also assumes that the blur kernel is a 1D Gaussian.
Bascle et al. (Bascle, Blake & Zisserman 1996) jointly perform deblurring and
super-resolution on image sequences using a generative back-projection technique.
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The technique assumes that the 1D motion that produces blur is completely deter-
mined by affine motion between images. Onogi and Saito (Onogi & Saito 2005) deblur
video frames for panorama generation. In their case, they perform feature tracking with
the assumption that there are only foreground and background global motions. Like
Bascle et al., they derive the blur directly from the estimated motions, implicitly assum-
ing a known duty cycle, and invert each frame using a Wiener filter.

The most common commercial approach for reducing image blur is image stabiliza-
tion (IS). These methods, used in high-end lenses and now appearing in point and shoot
cameras and cell phones, use mechanical means to dampen camera motion by offset-
ting lens elements or translating the sensor. There are also techniques for deblurring
that either use specialized hardware or assume a highly controlled capture process. For
instance, Ben-Ezra and Nayar (Ben-Ezra & Nayar 2004) use a hybrid camera system
to estimate camera motion for deblurring purposes. Agrawal et al. (Agrawal, Xu &
Raskar 2009) use multi-image deconvolution to address the problem of zeros in the
frequency domain of blur kernels.

There is relatively little work on handling spatially-varying blur. Tai et al. (Tai, Du,
Brown & Lin 2008) developed a hybrid camera that captured a high frame rate video
and a blurred image. Optical flow vectors from the video are used to guide the compu-
tation of spatially-varying blur kernels, which are in turn used for deblurring. Tai et al.
(Tai, Kong, Lin & Shin 2010) use a coded exposure to produce a stroboscopic motion
image and estimate motion homographies for the discrete motion steps with some user
interaction. Dai and Wu (Dai & Wu 2008) propose a method to estimate spatially
varying blur kernels based on values of the alpha map. The technique of Shan et al.
(Shan, Xiong & Jia 2007) handles rotational motion blur, but it requires user interaction
for rotation cues and also relies on constraints from the alpha matte.

One approach to model the spatial variation of blur kernels is to run a blind deconvo-
lution method at each pixel. Joshi et al. (Joshi et al. 2008) partly accomplished this;
they run their method for non-overlapping windows in an image and use this to remove
spatially varying defocus blur and chromatic aberration. However, they do not address
camera motion blur, nor do they try to recover a global model of the blur. Levin et al.
(Levin, Fergus, Durand & Freeman 2007) take a similar approach for object motion
blur, where an image is segmented into several areas of different motion blur and then
each area is deblurred independently. Hirsch et al. (Hirsch, Sra, Schölkopf & Harmeling
2010) also propose a multi-frame patch-based deblurring approach but do not impose
any global camera motion constraints on the spatially-varying blur. Whyte et al.
(Whyte, Sivic, Zisserman & Ponce 2010) describe a framework where they recover
the integrated 3-dimensional rotational camera motion (roll, pitch and yaw) to explain
the spatially-varying blur.

2.2 A unified camera shake blur model

In this section, we develop a unified model relating the camera motion, the latent image,
and the blurred image for a planar scene.
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Let i be the latent image of a planar scene and b be the recorded blurred image. The
blurred image can be written as a convolution of the latent image with a kernel k and
the addition of some noise n

b = k ⊗ i + n, (2.1)

where n ∼ N (0, σ 2). This convolution model does not account for variations in depth
and view-dependent illumination changes; we do not handle them here.

This convolution model can also be written as a matrix-vector product

B = KI + N, (2.2)

where I, B, and N denote the column-vector forms of i, b, and n respectively. K is an
image resampling matrix (or blur matrix) that applies the convolution, with each row of
K being the blur kernel placed at each pixel location and unraveled into a row vector.
If the blur is spatially invariant, each row will just be a shifted version of another. This
matrix-vector form becomes particularly useful for formulating spatially varying blur;
each row can be set with a different blur kernel for each pixel (Seitz & Baker 2009), as
we will discuss in the next section.

2.2.1 Blur matrices

We assume the camera initially lies at the world origin with its axes aligned with the
world axes. A camera motion is a sequence of camera poses where each pose can
be characterized by six parameters: three rotations and three translations. Any camera
motion can be represented as a 1D continuous path through this six-dimensional space,
which we call camera pose space. In a discretized version of this space, the camera
spends a fraction of the exposure time at each pose; we call this proportion the density
at that pose. Taken together, these densities form a motion density function (MDF) from
which a blur kernel can be directly determined for any point on the image. The MDF
for all the camera poses form a column vector over the discrete positions in the camera
pose space. We denote the MDF by a vector A with elements aj that denote the density
at the camera pose j.

The observed blurred image B is an integration over the images seen by the camera in
all the poses in its path. In the discrete motion space, B is a summation over the images
seen by the camera in all possible poses, each weighted by the proportion of time spent
by the camera in that pose, which in our notation is the pose’s density. We write this
mathematically as

B =
∑

j
aj(KjI) + N, (2.3)

where Kj is a warping transformation from I (the latent image or the un-blurred
image seen by the camera in the original pose) to the image seen in pose j. N is the
Gaussian noise. Given a particular 6D pose (indexed by j) of a camera, the corre-
sponding homography that warps a scene at depth d is Pj
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Pj = C
(

Rj +
1
d

tj[0 0 1]
)

C−1, (2.4)

where Rj and tj are the rotation matrix and translation vector for pose j, and C is the
matrix of camera intrinsics. For now, we assume the depth d is known. Kj is a resampling
matrix where each row contains the weights used to compute the values of pixels in the
warped image by applying the inverse homography. We use bilinear interpolation for
the warps and thus there are at most four non-zero values per row of Kj. For clarity,
we note that Kj is a sparse square matrix where each dimension is the width times the
height of the image i.

From Eqs. (2.2) and (2.3), we can write the blur matrix K as

K =
∑

j
ajKj. (2.5)

This shows that the Kj’s form a basis set whose elements can be linearly combined using
the MDF to get the corresponding blur matrix for any camera path. By definition, the
blur matrix also gives us the blur kernels for each pixel location in the image.

2.2.2 Spatially-varying deconvolution

If these values are known, the image can be deblurred using non-blind deconvolution.
We modify the+ formulation of Levin et al. (2007) to use our spatially-varying blur
model.

For single image deconvolution, we find the most likely estimate of the sharp image
I, given the observed blurred image B, the blur matrix A, and noise level σ 2 using a
maximum a posteriori (MAP) technique.

We express this as a maximization over the probability distribution of the posterior
using Bayes’ rule. The result is a minimization of a sum of negative log likelihoods

P(I|B, A) = P(B|I) P(I)
P(B)

(2.6)

argmax
I

P(I|B) = argmin
I

[L(B|I) + L(I)]. (2.7)

The problem of deconvolution is now reduced to minimizing the negative log likelihood
terms. Given the blur formation model Eq. (2.3), the “data” negative log likelihood is

L(B|I) =
‖B −KI‖2

σ 2 . (2.8)

The contribution of our deconvolution approach is this new data term that uses the
spatially-varying model derived in the previous section.

The “image” negative log likelihood is derived from a natural image prior that models
images as having a heavy tailed gradient distribution (Weiss & Freeman 2007, Levin
et al. 2007, Shan et al. 2008). The minimization is performed using iteratively
re-weighted least squares (Stewart 1999).
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2.3 Single image deblurring using motion density functions

In the previous section, we described the blur kernel formation model based on a known
MDF and how we use it to deblur an image. In this section, we show how to estimate the
MDF from just an image. We discuss an approach for estimating the full 6D space for
camera motion blur using a 3D space of 2D translation and in-plane rotation. Starting
from a single image, we seek to recover the latent image and the spatially varying blur
kernels that arise from this 3D camera motion model.

Although a full model of motion would require six degrees of freedom (three trans-
lations plus three rotations), 6D general motion can be reasonably approximated by
modeling only in-plane rotation and translation, i.e. 3D camera motion. Our approach
is similar to parallel work by Whyte et al. (2010) who use a rotational camera motion
(roll, pitch and yaw) instead. Whyte et al.’s model will be approximately the same as
ours for the longer focal lengths. For the shorter focal lengths, their system will have
more artifacts if the underlying camera motion is mostly translations instead of out-of-
plane rotations. Our system will have more artifacts if the underlying camera motion is
mostly out-of-plane rotations instead of translations.

2.3.1 Optimization formulation

Equation (2.3) relates the MDF to the latent image and the blurred image. In the process
of deblurring, the basis (given by Kj’s) is pre-computed, and we solve for the variables
I and A. To do this, we pose the problem in a Bayesian framework and seek to recover
the latent image and MDF that is most likely given the observation and priors on the
image and MDF.

We compute the MAP estimate, which we formulate as the minimization of the
following energy function

E =

∥∥∥∥∥∥
⎡⎣∑

j
ajKj

⎤⎦ I − B

∥∥∥∥∥∥
2

+ prior(A) + prior(I) (2.9)

prior(A) = λ1||A||γ + λ2||∇A||2 (2.10)

prior(I) = φ(|∂xI|) + φ(|∂yI|). (2.11)

The prior(I) is the image prior with the same parameter settings as used by Shan et al.
(2008).

We model priors that are important to recovering an accurate MDF. The first is a
sparsity prior on the MDF values. We note that while blur kernels in the 2D image space
may seem quite dense, in the higher dimensional MDF space, a 1D path represents an
extremely sparse population of the space. The second prior is a smoothness prior on the
MDF, which also incorporates the concept of the MDF representing a path, as it enforces
continuity in the space and captures the conditional probability that a particular pose is
more likely if a nearby pose is likely. We also note that we can choose to use the whole
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blurred image for the optimization or some selected parts by masking out rows in I, B,
and the corresponding matrices.

The number of matrices Kj is the number of motion poses that we sample. The number
of samples along each depth of field (DOF) affects the size of the data stored and hence
we want to keep the sampling as coarse as possible. We hypothesize that the sampling
need only be dense enough that the neighboring voxels in the discretized motion space
project to within a pixel width at any image location. The range of the motion can be
chosen to cover the estimate of the kernel size that is initially specified by the user.
We automatically choose the sampling range and resolution along the three degrees of
freedom and pre-compute the Kj’s.

2.3.2 Our system for MDF-based deblurring

The proposed optimization in Eq. (2.9) is non-linear in the variables I and A. We solve
this using an alternating, iterative expectation–maximization (EM)-style procedure,
which takes an initialization for I and then optimizes for A and I successively.

For the initial estimate, we first select uniformly distributed patches on the blurred
image, which we independently deblur using the blind deconvolution approach proposed
by Shan et al. (2008). The patch sizes are proportional to the estimated maximum blur
kernel size in the image, which is an input parameter for our system. Since kernel
estimation techniques require a good distribution of edge orientations (Joshi et al. 2008),
we filter out the patches having a low average value of the Harris corner metric. The
Harris corner metric measures the presence of gradients in orthogonal directions in an
image region and hence is a good estimate for the success of kernel estimation. We
empirically choose this threshold value to be 0.1. These deblurred patches are the initial
estimates for the latent image in corresponding regions.

2.3.3 Experiments and results

Figure 2.1 shows results for real-world blurred images of scenes captured using a Canon
EOS-1D camera. We perform all our comparisons with the recent blind deconvolution
method of Shan et al. (2008), who have code available online. They show the original
blurred image (A), the deblurred result using spatially invariant deconvolution (B), our
deblurred result (C), and the inset comparisons between (B) and (C). Our approach
shows a significant improvement over the spatially invariant approach in all the cases.
Our current implementation does not handle depth variance in the scene. See Gupta,
Joshi, Zitnick, Cohen & Curless (2010) for additional comparison sets with real and
synthetic data.

2.4 Image deblurring using inertial measurement sensors

In this section, we describe a combined hardware and software-based approach for esti-
mating spatially varying blur that uses a novel hardware attachment that can be affixed
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Figure 2.1 Deblurring results. (A) Original blurred image; (B) deblurred image using spatially
invariant approach; (C) deblurred result using our system. Recovered blur kernels at a few
locations are shown in boxes in the corner of the images. [Reproduced from Gupta et al. (2010)
with permission from Springer.]

to any consumer camera. The device uses inexpensive gyroscopes and accelerometers
to measure a camera’s acceleration and angular velocity during an exposure. (We note
that sensors are already in many cameras and smartphones.) This data are used as input
to a novel “aided blind deconvolution” algorithm that computes the spatially varying
image blur and latent deblurred image. We derive a model that handles spatially varying
blur due to full 6-DOF camera motion and spatially varying scene depth; however, our
system assumes spatially invariant depth.

By instrumenting a camera with inertial measurement sensors, we can obtain relevant
information about the camera motion and thus the camera-shake blur; however, there
are many challenges in using this information effectively. Motion tracking using inertial
sensors is prone to significant error when tracking over an extended period of time. This
error, known as “drift”, occurs due to the integration of the noisy measurements, which
leads to increasing inaccuracy in the tracked position over time. As we will show in
our experiments, using inertial sensors directly is not sufficient for camera tracking and
deblurring.

Instead, we use the inertial data and the recorded blurry image together with an image
prior in a novel “aided blind deconvolution” method that computes the camera-induced
motion blur and the latent deblurred image using an energy minimization framework.
We consider the algorithm to be “aided blind deconvolution”, since it is only given an
estimate of the PSF from the sensors. Our method is completely automatic, handles per-
pixel, spatially varying blur, out-performs current leading image-based methods, and
our experiments show that it can handle large kernels – up to 100 pixels, with a typical
size of 30 pixels.
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2.4.1 Deblurring using inertial sensors

In this section, we describe the design challenges and decisions for building our sensing
platform for image deblurring and how it is used to estimate image blur.

Estimating camera motion using inertial sensors
Given the spatially varying blur model introduced in Section 2.2, our goal is to directly
estimate the blur matrix K by directly solving for the time-varying extrinsics, Rj and tj,
and depth d in Eq. (2.4). In this section, we discuss how to recover the camera rotations
and translations, and in Section 2.4.2 we address recovering camera intrinsics.

Any motion of a rigid body and any point on that body can be parameterized as a
function of six unknowns, three for rotation and three for translation. We now describe
how to recover these quantities given inertial measurements from accelerometers and
gyroscopes.

Accelerometers measure the total acceleration at a given point along an axis, while
gyroscopes measure the angular velocity at a given point around an axis. Note that for a
moving rigid body, the pure rotation at all points is the same, while the translations for
all points are not the same when the body is rotating.

Before deriving how to compute camera motion from inertial measurements, we first
present our notation, as summarized in Table 2.1.

A rigid body, such as a camera, with a three-axis accelerometer and three-axis gyro-
scope (three accelerometers and gyroscopes mounted along x, y, and z in a single chip,
respectively) measures the following accelerations and angular velocities

ωt
t = Rtωt, (2.12)

bt
t = Rt (at + g + (ωt × (ωt × r)) + (αt × r)) . (2.13)

The measured acceleration is the sum of the acceleration due to translation of the
camera, centripetal acceleration due to rotation, the tangential component of angular
acceleration, and gravity, all rotated into the current frame of the camera. The measured

Table 2.1 Quantities in bold indicate measured or calibrated values. Note that these are vectors, i.e.
three axis quantities. The “superscript” character indicates the coordinate frame of the value and the
“subscript” indicates the time the value was measured, i.e. the current frame is t. The initial frame is
where t = 0. For readability, we will generally omit the superscript or subscript when the frame or time is
the initial frame.

Symbol Description
Rt Rotation from the initial coordinate frame to the frame at time t
Rt Rotation from frame at time t to the initial coordinate frame
θt, ωt, αt Angular position, velocity, and acceleration at time t in the initial frame
ωt

t Angular velocity at time t in the frame at time t
xt,vt,at Position, velocity, and acceleration at time t in the initial coordinate frame
bt

t Accelerometer reading at time t in the coordinate frame at time t
yt Position of the accelerometer in the initial coordinate frame
r Vector from the accelerometer position to center of rotation
g Gravity in the camera’s initial coordinate frame
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angular velocity is the camera’s angular velocity also rotated in the current frame of the
camera. To recover the relative camera rotation, it is necessary to recover the angular
velocity for each time-step t in the coordinate system of the initial frame ωt, which
can be integrated to get the angular position. To recover relative camera translation, we
need to first compute the accelerometer position for each time-step relative to the initial
frame. From this, we can recover the camera translation.

The camera rotation can be recovered by sequentially integrating and rotating the
measured angular velocity into the initial camera frame

θt = (Rt−1ωt− 1
t− 1)�t + θt− 1 (2.14)

Rt = angleAxisToMat(θt), (2.15)

where “angleAxisToMat” converts the angular position vector to a rotation matrix. Since
we are only concerned with relative rotation, the initial rotation is zero

θt = 0 = 0, Rt = 0 = Identity. (2.16)

Once the rotations are computed for each time-step, we can compute the acceleration
in the initial frame’s coordinate system

bt = Rtbt
t, (2.17)

and integrate the acceleration, minus the constant acceleration of gravity, to get the
accelerometer’s relative position at each time-step

wt = (bt− 1 − g)�t + wt− 1, (2.18)

yt = 0.5(bt− 1 − g)�t2 + wt− 1�t + yt− 1. (2.19)

As we are concerned with relative position, we set the initial position to zero, and we
also assume that the initial velocity is zero

yt = 0 = wt = 0 = [0, 0, 0]. (2.20)

The accelerometers’ translation (its position relative to the initial frame) in terms of
the rigid body rotation and translation is

yt = Rtyt = 0 + xt. (2.21)

Given this, we can compute the camera position at time t

xt = Rtyt = 0 − yt. (2.22)

In Eq. (2.18), it is necessary to subtract the value of gravity in the initial frame of
the camera. We note, however, that the initial rotation of the camera relative to the
world is unknown, as the gyroscopes only measure velocity. The accelerometers can be
used to estimate the initial orientation if the camera initially has no external forces on it
other than gravity. We have found this assumption unreliable as the camera is often not
at rest, so we instead make the assumption that the measured acceleration is normally
distributed about the constant force of gravity. We have found this reliable when the
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camera motion is due to high-frequency camera shake. Thus we set the direction of
mean acceleration vector as the direction of gravity

g = mean(bt, [0 . . . T]). (2.23)

To summarize, the camera rotation and translation are recovered by integrating the
measured acceleration and angular velocities that are rotated into the camera’s initial
coordinate frame. This gives us the relative rotation and translation over time, which is
used to compute the spatially varying PSF matrix. If the measurements are noise-free,
this rotation and motion information is sufficient for deblurring; however, in practice,
the sensor noise introduces significant errors. Furthermore, even if the camera motion is
known perfectly, one still needs to know the scene depth, as discussed in Section 2.4.1.
Thus additional steps are needed to deblur an image using the inertial data.

Drift compensation and deconvolution
It is well known that computing motion by integrating differential sensors can lead to
drift in the computed result. This drift is due to the noise present in the sensor read-
ings. The integration of a noisy signal leads to a temporally increasing deviation of the
computed motion from the true motion.

We have measured the standard deviation of our gyroscope’s noise to be 0.5◦/s and
the accelerometer noise is 0.006 m/s2, using samples from when the gyroscopes and
accelerometers are held stationary (at zero angular velocity and constant acceleration,
respectively). In our experiments, there is significantly less drift in rotation, due to the
need to perform only a single integration step on the gyroscope data. The necessity to
integrate twice to get positional data from the accelerometers causes more drift.

To get high-quality deblurring results, we must overcome the drift. We propose a
novel aided blind deconvolution algorithm that computes the camera motion, and in
turn the image blur function, that best matches the measured acceleration and angular
velocity while maximizing the likelihood of the deblurred latent image according to a
natural image prior.

Our deconvolution algorithm compensates for positional drift by assuming it is linear
in time, which can be estimated if one knows the final end position of the camera. We
assume the rotational drift is minimal. The final camera position is, of course, unknown;
however, we know the drift is bounded and thus the correct final position should lie close
to our estimate from the sensor data. Thus in contrast to a traditional blind deconvolution
algorithm that solves for each value of a kernel or PSF, our algorithm only has to solve
for a few unknowns. We solve for these using an energy minimization framework that
performs a search in a small local neighborhood around the initially computed end point.

In our experiments, we have found that the camera travels in the order of a couple of
millimeters during a long exposure (the longest we have tried is half a second). We note
that a few millimeter translation in depth (z) has little effect on the image for lenses of
common focal lengths, thus the drifts in x and y are the only significant sources of error.
We set our optimization parameters to search for the optimal end point within a 1 mm
radius of the initially computed end point, subject to the constraints that the acceleration
along that recovered path matches the measured accelerations best in the least-squares
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sense. The optimal end point is the one that results in a deconvolved image with the
highest log-likelihood as measured by the hyper-Laplacian image prior (discussed in
Section 2.4.1).

Specifically, let us define a function g that, given a potential end point (u, v), computes
the camera’s translational path that best matches, in the least squares sense, the observed
acceleration and terminates at (u, v)

g(a, u, v) = argmin
x

T∑
t = 0

(
d2xt

dt2
− at

)2

+ (θx,T − u)2 + (θy,T − v)2. (2.24)

For notational convenience, let ρ define a function that forms the blur sampling
matrix from the camera intrinsics, extrinsics, and scene depth using the rigid-body
dynamics and temporal integration processes discussed in Section 2.4.1

A(d) = ρ(θ , x, d, K). (2.25)

The drift-compensated blur matrix and deconvolution equations are

A(d, u, v) = ρ(ω, g(a, u, v), d, K), (2.26)

I = argmin
I,d,u,v

[
‖B − A(d, u, v)I‖2/σ 2 + λ‖∇I‖0.8

]
. (2.27)

We then search over the space of (u, v) to find the (u, v) that results in the image I
that has the highest likelihood given the observation and image prior. We perform this
energy minimization using the Nelder–Mead simplex method. The spatially varying
deconvolution method discussed in Section 2.2.2 is used as the error function in the
inner loop of the optimization. We perform the optimization on one-tenth down-sampled
versions (of our 21 MP images).

The results from our search process are shown as plots of the camera motion in
Figure 2.2 and visually in Figure 2.5, when used to deblur images. The running time
for this search method is about five minutes on a 0.75 MP image. The search only needs
to be run once either for the entire image, or it could be run on a subsection of the image
if that is preferable. Once the drift is corrected for, the PSF is more accurate for the entire
image, and the image can be deblurred using the method described in Section 2.2.2.

Computing scene depth
Note that a spatially invariant scene depth is implicitly computed during the drift com-
pensation process, as scaling the end point equally in the x and y dimensions is equiv-
alent to scaling the depth value. Specifically, the optimization is over u′ = u/d and
v′ = v/d and thus solves for a single depth value for the entire scene.

2.4.2 Deblurring system

In this section, we describe our hardware for recording the accelerometer and gyroscope
data and implementation related concerns and challenges.
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Figure 2.2 Drift compensation: angular and translational position of the camera vs time is shown
for the image in the horizontal box in Figure 2.5. The “ground truth” motion, computed using
structure from motion, is shown as solid lines. The dashed lines are the motions from using the
raw sensor data and the “+” marked lines are the result after drift compensation. The drift
compensated results are much closer to the ground truth result. Note the bottom right plot does
not show a drift corrected line as we only compensate for x and y drift. [Reproduced from
(Joshi et al. 2010) with permission from ACM.]

Bluetooth Radio  3-axis Accelerometer

GyrosArduino Board SLR Trigger

Figure 2.3 First two images: an SLR camera instrumented with our image deblurring attachment
that uses inertial measurement sensors and the input image in an “aided blind deconvolution”
algorithm to automatically deblur images with spatially varying blurs; third image: a blurry input
image; fourth image: the result of our method. The blur kernel at each corner of the image is
shown at 2× size. [Reproduced from Joshi et al. (2010) with permission from ACM.]

Hardware design
Since there are six unknowns per time-step, the minimal configuration of sensors is
six. It is possible to recover rotation and translation using six accelerometers alone, by
sensing each axis in pairs at three different points on a rigid-body; however, after exper-
imenting with this method we found accelerometers alone to be too noisy for reliable
computation of rotation. Thus our prototype hardware system, shown in Figure 2.3, is a
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minimal configuration consisting of a three-axis ±1.5 g MEMS accelerometer package
and three single axis ±150◦/s MEMS gyroscopes wired to an Arduino controller board
with a Bluetooth radio. All parts are off-the-shelf components. Additionally, the SLR’s
hot-shoe, i.e. flash trigger signal, is wired to the Arduino board. The Arduino board is
interrupt-driven such that when the trigger signal from the SLR fires, the accelerome-
ters and gyroscopes are polled at 200 Hz during the exposure window. Each time the
sensors are read, the values are sent over the Bluetooth serial port interface. The sensors
and Arduino board are mounted to a laser-cut acrylic base that secures the board, the
sensors, and a battery pack.

Our hardware attachment has an optional feature used for calibration and validation
experiments: mounting holes for a Point Grey high-speed camera. When the Arduino
board is sampling the inertial sensors, it can also send a 100 Hz trigger to the high-speed
camera. We use the high-speed data to help calibrate our sensors and to acquire data to
get ground truth measurements for motion blur.

Calibration and ground truth measurements
It is necessary to calibrate several aspects of our system: the sensor ranges, the
position of the accelerometer relative to the camera’s optical center, and the camera
intrinsics.

We calibrate these values in two stages. The first stage is to calibrate the sensors’
responses. We do this by rotating the gyroscopes at a known constant angular velocity
to recover the mapping from the 10-bit A/D output to degrees per second. We performed
this measurement at several known angular velocities to confirm that the gyroscopes
have a linear response. To calibrate the accelerometers, we held them stationary in six
orientations with respect to gravity, (±x,±y,±z), which allowed us to map the A/D
output to units of m/s2.

To calibrate our setup and to take ground truth measurements for camera-shake,
we developed a method to accurately recover a camera’s position during an exposure
using a method inspired by Ben-Ezra and Nayar (Ben-Ezra & Nayar 2004). However,
instead of tracking 2D motion, we track 6D motion. We attached a high-speed camera
(200 FPS Point Grey Dragonfly Express) to our sensor platform, and our Arduino micro-
controller code is set to trigger the high-speed camera at 100 FPS during the SLR’s
exposure window. In a laboratory setting, we created a scene with a significant amount
of texture and took about 10 images with exposures ranging from one-tenth to one-half
of a second. For each of these images, accelerometer and gyro data were recorded in
addition to high-speed frames. We took the high-speed frames from these shots and
acquired additional wide-baseline shots with the SLR and high-speed camera. Using
all of this data, we created a 3D reconstruction of the scene using 3D structure from
motion.

This reconstruction process gives us a collection of sparse 3D points, camera rota-
tions, and camera translations, with an unknown global transformation and a scale ambi-
guity between camera depth and scene depth. We resolve the scale ambiguity using a
calibration grid of known size.
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2.4.3 Results

We will now describe the results of our ground truth camera-shake measurements and
compare these results, using our deblurring method, to the ground truth measurements.
We also compare our results to those of Shan et al. (2008) and Fergus et al. (2006),
using the implementations the authors have available online. We also show results of
our methods running on natural images acquired outside of a laboratory setup and in
addition compare these to results using previous work.

Laboratory experiments and camera-shake study
In Figure 2.4, we show visualizations of the ground truth spatially varying PSFs for an
image from our laboratory setup. This image shows some interesting properties. There is
a significant variation across the image plane. Also, the kernels displayed are for a fixed
depth, thus all the spatial variance is due to rotation. To demonstrate the importance of
accounting for spatial variance, on the bottom row of Figure 2.4, we show a result where
we have deconvolved using the PSF for the correct part of the image and the PSF for a
different, non-corresponding area. These results are quite interesting as they show that
some of the common assumptions made in image deconvolution do not always hold.
Most deconvolution work assumes spatially invariant kernels, which really only applies
for camera motion under an orthographic model; however, with a typical imaging setup
(we use a 40 mm lens), the perspective effects are strong enough to induce a spatially
varying blur. We also note that there is often a roll component to the blur, something that
is also not modeled by spatially invariant kernels. Lastly, we observe that translation,

Figure 2.4 Visualization of ground truth for spatially varying PSFs. For the blurry image
(top left), we show a sparsely sampled visualization of the blur kernels across the image plane
(top right). There is quite a significant variation across the image plane. To demonstrate the
importance of accounting for spatial variance, in the bottom row we show a result where we
have deconvolved using the PSF for the correct part of the image and a non-corresponding area –
the center of the image. [Reproduced from Joshi et al. (2010) with permission from ACM.]
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Blurry image Using PSFs from
the raw sensor

values

Our final output Using
groundtruth

motion

Shan et al. Fergus et al.

Figure 2.5 Deblurring results and comparisons. Here we show deblurring results for a cropped
portion of the scene shown in Figure 2.4. Each row is a different capture. These sections are
cropped from an 11 MP image. The results in the column with the vertical box are the final
output of our method, where the sensor data plus our drift compensation method are used to
compute the camera motion blur. Subtle differences in the PSF before and after drift
compensation can have a big result on the quality of the deconvolution. [Reproduced from Joshi
et al. (2010) with permission from ACM.]

and thus depth-dependent effects can be significant, which is interesting as it is often
thought that most camera-shake blur is due to rotation.

In Figure 2.5, using the same scene as above, we show comparisons of deconvolu-
tion results using our method, ground truth, and two others. The images shown of the
laboratory calibration scene were taken at exposures from one-third to one-tenth of a
second. For each image we show the input, the result of deconvolving with PSFs from
the initial motion estimate and after performing drift correction, and compare these to
a deconvolution using PSFs from the recovered ground truth motions, and PSFs recov-
ered using the methods of Shan et al. (2008) and Fergus et al. (2006). For these latter
two comparisons, we made a best effort to adjust the parameters to recover the best blur
kernel possible. To make the comparison fair, all results were deblurred using exactly
the same deconvolution method, that of Levin et al. (2007). The results in Figure 2.5
show a wide variety of blurs, yet our method recovers an accurate kernel and provides
deconvolution results that are very close to that of the ground truth. In all cases, our
results are better than those using Shan et al.’s and Fergus et al.’s methods.

Real images
After calibrating our hardware system using the method discussed in Section 2.4.2, we
took the camera outside of the laboratory and used a laptop with a Bluetooth adapter
to capture the inertial sensor data. In Figure 2.6, we show several results where we
have deblurred images using our method, Shan et al.’s method, and Fergus et al.’s
method. The Shan et al. and Fergus et al. results were deconvolved using Levin et al.’s
method (Levin et al. 2007), and our results are deconvolved using our spatially varying
deconvolution method discussed in Section 2.4.1.



�

�

“9781107044364AR” — 2013/12/20 — 9:50 — page 46 — #60
�

�

�

�

�

�

46 Spatially varying image deblurring

Input IMU deblurring
(our final output)

Shan et al. Fergus et al.

Figure 2.6 Natural images deblurred with our setup. For all the images our results show a clear
improvement over the input blurry image. The blur kernel at each corner of the image is shown
at 2× size. The Shan et al. results are of varying quality, and many show large ringing artifacts
that are due to kernel misestimation and over-sharpening; the Fergus et al. results are generally
blurrier than our results. With the stones image, the intentionally defocused background stones
are not sharpened in our result. [Reproduced from Joshi et al. (2010) with permission
from ACM.]

All the images shown here were shot with one-half to one-tenth of a second exposures
with a 40 mm lens on a Canon 1Ds Mark III. For additional results, see Joshi et al.
(2010).

2.5 Generating sharp panoramas from motion-blurred videos

A convenient way to generate a panorama is to take a video while panning, then stitch
the frames using a commercial tool such as AutoStitch, Hugin, Autodesk Stitcher,
Microsoft Image Composite Editor, or Microsoft Photosynth. However, if there is sig-
nificant camera motion, the frames in the video can be very blurry. Stitching these
frames will result in a blurry panorama, as shown in Figure 2.7(b). In this section, we
describe a new technique that is capable of generating sharp panoramas such as that
shown in (c).

Our framework assumes that the scene is static and adequately far away from the
camera. Hence the apparent motion and motion blur in the video are mainly due to
camera rotation. This allows us to parameterize the image motion as a homography
(Tai, P. Tan, L. Gao & Brown 2009). Moreover, we assume that the camera motion is
piecewise linear (i.e. the velocity is constant between successive frames).
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Figure 2.7 Stitching example. First row: input frames (only first and last frames shown); second
row: result of directly stitching the input frames; third row: result of our technique. [Reproduced
from Li et al. (2010) with permission from IEEE.]

We pose the problem of generating a sharp panorama from a sequence of blurry input
photos as that of estimating the camera motion, its duty cycle (i.e. the amount of time
the sensor is exposed relative to maximum exposure given the video frame rate), and
the sharpened images, where the motion and the duty cycle give us the blur kernel for
sharpening. In our approach, all these are estimated jointly by minimizing an energy
function in a multi-image deconvolution framework.

The energy minimization is carried out using gradient descent. This is viable
under our model since we can compute the derivative of the energy function with
respect to motion, duty cycles, as well as latent images. We initialize motion by
computing global parametric optical flow between successive video frames using the
Lucas–Kanade method (Lucas & Kanade 1981). Duty cycles are set to an initial guess,
which does not need to be accurate. Subsequently, we alternate between updating latent
images while holding motion and duty cycles constant (i.e. performing deconvolution)
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and updating motion and duty cycles while holding the latent images constant. The
updates are described in Sections 2.5 and 2.5.1, respectively. Although in theory all
three sets of variables can be optimized simultaneously, the alternating scheme has a
much smaller and hence manageable memory footprint and is effective in practice.

Multi-image deconvolution
Multi-image deconvolution can be formulated as an extension of the single image model
discussed in Section 2.2.2. Let B1, . . . , Bn be the sequence of observed images with
motion blur and I1, . . . , In be the corresponding underlying latent images without
motion blur. If we regard each image as an m-dimensional vector, where m is the number
of pixels, then the spatially varying motion blur can be represented as sparse m × m
matrices K1, . . . ,Kn, namely

Bi = KiIi + Ni (2.28)

for each image i ∈ {1, . . . , n}, where Ni is the noise. Recall that Ki is parameterized
by camera motion, as discussed in Section 2.2. Similarly, let Ai, j denote the warping to
frame i from frame j, which is determined also by the relative motion, i.e.

Ii = Ai, jIj. (2.29)

Hence

Bi = KiAi, jIj + Ni. (2.30)

Assuming Gaussian noise, the maximum-likelihood estimate for frame j is then obtained
by minimizing the energy function

EML(Ij) =
j+∑

i = j−

∥∥∥D−1
i
(
KiAi, jIj − Bi

)∥∥∥2
, (2.31)

where j− = max( j − r, 1), j+ = min( j + r, n), Di is a diagonal matrix whose entries are
the standard deviations of noise at each pixel in the ith image, and r is the number of
nearby observations to include in each temporal direction. In our work, r is typically in
the range of 1 to 3. Note that if r = 0, the problem reduces to single image deconvolu-
tion. Because of noise in the observation Bi as well as empirical errors in the recovered
warping Ai, j and blur Ki, a common approach is to introduce an image prior on I that
typically regularizes its gradients (e.g. Levin et al. (2007)). Hence the maximum a
posteriori estimate corresponds to the minimum of the energy function

EMAP(Ij) =
j+∑

i = j−

∥∥∥D−1
i
(
KiAi, jIj − Bi

)∥∥∥2
+ φ(Ij), (2.32)

where φ(·) is the functional form of the prior. The overall energy function can be
minimized with respect the latent images Ij using gradient-based MAP-deconvolution
techniques (e.g. Levin et al. (2007), Nocedal (1980)).
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2.5.1 Motion and duty cycle estimation

In this section, we describe how to refine motion and duty cycles given the latent images.
Again, let B = (B1, . . . , Bn) be the blurred video frames and I = (I1, . . . , In) be the
underlying sharp frames that we want to recover. Let H = (H1, . . . , Hn) be the warps to
each frame from some reference frame. Let τ = (τ1, . . . , τn) denote the duty cycles of
each frame. We denote ψ = (H, τ ) for notational convenience. Hence both Ai, j and Ki
(defined in previous sections) are functions of H and τ , and we will subsequently write
them as Aψ

i, j and Kψ
i to reflect this. Since the correct warps and duty cycles should result

in a deblurred output with lower energy than incorrect ones, it is desirable to minimize
Eq. (2.32) over the whole sequence with respect to these variables as well. Hence we
aim to minimize the following energy function

E(I, ψ) =
n∑

j = 1

j+∑
i = j−

∥∥∥D−1
i

(
Kψ

i Aψ
i, jIj − Bi

)∥∥∥2
+ φ
(
Ij
)

. (2.33)

The minimization of Eq. (2.33) with respect to I amounts to MAP-deconvolution, which
we already addressed in the previous section; therefore the rest of this section will
describe how to minimize it with respect to ψ .

Pure translation
We start with pure translation for simplicity of presentation. In this case, the warps H can
be represented by the corresponding 2-component vectors h = (h1, . . . , hn). Thus we let
ψ = (h, τ ) for pure translation. Since the image prior φ(Ij) does not depend on ψ , it can
be ignored as far as the optimization of ψ is concerned. Also for conciseness we omit the
noise matrices D−1 from the subsequent notation, since it is simply a weighting factor
on each pixel. Furthermore, we will write E(I, ψ) as simply E(ψ) since minimization is
with respect to ψ . Hence

E(ψ) =
n∑

j = 1

j+∑
i = j−

∥∥∥Kψ
i Aψ

i, jIj − Bi

∥∥∥2
. (2.34)

Let Iψi, j = Aψ
i, jIj and Bψ

i, j = Kψ
i Iψi, j = Kψ

i Aψ
i, jIj, i.e. Iψi, j is the sharp frame i obtained by

warping Ij, and Bψ
i, j is the blurred version of Iψi, j. Therefore,

E(ψ) =
n∑

j = 1

j+∑
i = j−

∑
p∈pixels of Bi

δBi, j,p(ψ), (2.35)

where

δBi, j,p(ψ) =
(

Bψ
i, j(p)− Bi(p)

)2
. (2.36)

Here we use p to denote the 2-component vector representing a pixel’s location (xp, yp)
T

in the image. Thus it suffices to find the derivative of δBi, j,p(ψ), which in turn depends
on the derivative of Bψ

i, j(p) (with respect to ψ). Recall that in our model the blur kernel
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is determined by the relative warps to the two adjacent frames due the assumption of
piecewise linear motion, i.e.

Bψ
i, j(p) =

∫ τi

t =−τi
Iψi, j
(
p + t

(
hi+sign(t) − hi

))
dt, (2.37)

where sign(t) is 1 if t is positive and −1 otherwise. Thus it can be approximated by a
sequence of sampled points on the motion path for each point,

Bψ
i, j(p) =

1
2s + 1

s∑
k =−s

Iψi, j

(
p +

|k|
2s + 1

τi
(
hi + sign(k) − hi

))

=
1

2s + 1

s∑
k =−s

Ij

(
p +

|k|
2s + 1

τi
(
hi + sign(k) − hi

)
+
(
hi − hj

))
,

(2.38)

where constant s is the number of samples in each temporal direction (independent of
the duty cycles) used to approximate the blur kernel. In our case s = 50. The derivative
of Bψ

i, j(p) is

d
dψ

Bψ
i, j(p) = ∇Ij

(
pψ

i, j,k

)
· 1

2s + 1

s∑
k =−s

d
dψ

pψ
i, j,k, (2.39)

where

pψ
i, j,k = p +

|k|
2s + 1

τi
(
hi + sign(k) − hi

)
+
(
hi − hj

)
(2.40)

and ∇Ij is the image gradient of Ij. In the case of i = n and k > 0, hi − hi + 1 is replaced
with hi− 1 − hi as an approximation (since hn + 1 does not exist). The case of i = 1 and
k < 0 is handled similarly.

Full homography
The case for a homography is analogous. Recall that H = (H1, . . . , Hn) defines the
warps to each frame from some reference frame, and the relative warp to frame i from
frame j is thus Hi, j = H−1

j Hi. Let p now denote the homogeneous coordinates of a pixel,
i.e. p = (xp, yp, 1)T. Thus to extend the relationship between the energy function and ψ

from translation to general homography, we only need to rewrite Eqs. (2.38) and (2.40),
so that

Bψ
i, j(p) =

1
2s + 1

s∑
k =−s

Iψi, j

(
pψ

i, j,k

)
(2.41)

with

pψ
i, j,k = �

(
Hi, j

[
p +

|k|
2s + 1

τi
(
�
(
Hi+sign(k),i · p

)− p
)])

(2.42)
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where�(·) is the projection of points in homogeneous coordinates onto the image plane
z = 1, i.e.

�
(
(x, y, z)T

)
=
(x

z
,

y
z

, 1
)T

. (2.43)

Equation (2.42) uses the approximation that every pixel is moving at constant velocity
in between successive frames. The approximation is reasonable for videos since one
can expect the perspective change between successive frames to be small. We make the
further approximation that �(Hi + sign(k),i · p) ≈ Hi + sign(k),i · p, which is valid since the
perspective change in Hi + sign(k),i is small. Hence Eq. (2.42) simplifies to

pψ
i, j,k = �

(
H−1

j

[
Hi +

|k|
2s + 1

τi
(
Hi + sign(k) − Hi

)]
p
)

. (2.44)

The derivatives with respect to warps and duty cycles can be obtained using standard
matrix calculus with the chain rule. Hence, the energy function can be minimized via
gradient-based optimization methods (L-BFGS (Nocedal 1980) in our case).

2.5.2 Experiments

We evaluate our model on both synthetic and real videos. For energy minimization,
we use limited-memory BFGS (L-BFGS) of Nocedal (1980). Compared with
iterative reweighted least squares (IRLS), L-BFGS does not have the reweighting step
and requires only the value and the derivative of the energy function. In our experiments
we found it to converge slightly faster than IRLS and reach comparable energy levels.
As is outlined in Section 2.5, an image prior is used to regularize the output. The noise
levels of the input videos are automatically estimated using the method of Liu et al. (Liu,
Szeliski, Kang, Zitnick & Freeman 2008).

Synthetic videos
For quantitative evaluation, we generated synthetic blurred videos with ground truth
information. This is done by moving a virtual video camera in front of a high resolution
image, which serves as the scene to be recorded. Motion blur is generated by temporally
averaging consecutive frames. Since the virtual camera can have an arbitrarily high
frame rate, we have dense enough samples to accurately approximate the motion blur
kernel. We output the middle frame of the samples (of successive frames) that are used
to produce the blurred frame as the corresponding “true” sharp frame.

Figure 2.8 shows a sample frame from deblurring a sequence with synthesized motion
blur. The goal is to compare multi-image deconvolution against single-image deconvo-
lution. In this particular experiment, motion from an initial motion estimation and the
known duty cycle value were used. Hence no iterative refinement was performed. We
also did not use any image prior in this case since the purpose here is to compare multi-
image deconvolution against the single-image counterpart, the two of which differ only
in the data term (i.e. the part of the energy function excluding the image prior). For this
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Ground truth Blurred

Single-image deconvolution Multi-image deconvolution

Figure 2.8 Sample output frame from synthetic video sequence. The camera undergoes
translational motion. The result of multi-image deconvolution is sharper and has fewer ringing
artifacts than that of single-image deconvolution. [Reproduced from Li et al. (2010) with
permission from IEEE.]

experiment, seven blurred frames are used for reconstructing each deblurred frame for
multi-image deconvolution (the temporal radius r = 3). The results show that the image
restored using multi-image deconvolution exhibits noticeably fewer ringing artifacts,
demonstrating the advantage of using multiple observations.

Figure 2.9 shows the errors of motion, duty cycles, and restored frames, over the
whole 11-frame video sequence, plotted against the number of iterations completed.
The plots correspond to four different sequences with combinations of two types of
camera motions (translation and perspective rotation) and two duty cycle values
(approximately half and full). A temporal radius of 1 is used in these experiments.
Motion errors are expressed as average end-point errors (Baker, Scharstein, Lewis,
Roth, Black & Szeliski 2007) of warps between successive frames; restoration errors
are in the range 0–255. In all these experiments, the duty cycles are initialized to 1
for the entire sequence. As can be observed from the figures, the duty cycles converge
to the correct values even when the initial value is quite far away from the true values. In
the case where the initialization is close to the ground truth, the estimated values remain
close to the true values over the iterations. The experiments show that the estimation of
duty cycles is quite robust. Finding the correct duty cycles is essential for determining
the blur kernel size and subsequently for achieving good deblur performance. This is
reflected in the plots, where the restoration error is highly correlated with the duty cycle
error. Figure 2.10 shows a sample frame of the deblur output using the initial incorrect
duty cycles (left) and using the refined duty cycles (right) (after the last iterations). The
difference is dramatic.
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Figure 2.9 Errors of motion, duty cycles, and restoration (i.e. deblur output) on synthetic video
sequences, plotted against the number iterations completed. For the last two, the camera rotation
is out-of-plane, hence the perspective change. [Reproduced from Li et al. (2010) with
permission from IEEE.]

Initial output (iteration 0) Final output (last iteration)

Figure 2.10 Comparison of sample frames from the initial and the final deblurred output on the
synthetic sequence with rotational camera motion and a true duty cycle value of 0.495 (the last
plot in Figure 2.9). The initial duty cycle value is 1. [Reproduced from Li et al. (2010) with
permission from IEEE.]

One may notice that the decrease in motion error is far less than the decrease in duty
cycle and restoration errors, and that the sequences with perspective rotation have higher
motion error than the translation sequences. This is likely due to the approximations in
handling homographies, as described in Section 2.5.1. This, however, does not pose a
problem, since the motion estimation is still adequately accurate for reliable restoration.
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Result of Joshi et al. Our result

Result of Shan et al.Input video

Figure 2.11 Stitched panoramas. The input video was taken by a Canon SD1100. Gamma
correction is performed for all three methods. [Reproduced from Li et al. (2010) with permission
from IEEE.]

2.5.3 Real videos

Real-world video sequences are simply collected using the video mode of a point-and-
shoot camera. We used a Canon SD1100, a Canon A540, and a Flip HD for this purpose.
For the SD1100 and the A540, we performed gamma correction using published camera
response functions (CRF). We were not able to find the CRF for the Flip HD, and thus
simply used a gamma value of 1.8. For all the experiments, the initial duty cycle was
set to one-quarter, one-half, or one, depending on whether the sequence appears to have
a mild, moderate, or high degree of blur, respectively, and a temporal radius of r = 1 is
used.

Figure 2.11 shows the panorama stitched from a blurry video, and those stitched from
the deblurred outputs of Shan et al. (2008), Joshi et al. (2008), and our method, using
Microsoft Image Composite Editor (ICE). Our method produces a far more pleasant
result than the competing methods.

2.6 Discussion

In this chapter, we presented a unified model of camera shake blur that models
spatially varying blur as a function of 6D camera motion. We presented three methods
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for estimating the spatially varying blur that are fully automatic and do not require any
user input. The methods cover a spectrum of input data from single images, to hybrid
image and sensor data, to multiple images.

In all these methods, we have assumed the scene is static and the depth is planar.
A logical next step is to allow for some amount of local scene motion and depth vari-
ation. In this case, we would down-weight areas that are not consistent with the global
motion. This would also allow us to potentially remove moving objects or, alternatively,
keep a moving object intact by reinserting it at one selected time.
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3 Hybrid-imaging for motion deblurring
Moshe Ben-Ezra, Yu-Wing Tai, Michael S. Brown and Shree K. Nayar

3.1 Introduction

This chapter introduces a hybrid-imaging system for motion deblurring, which is an
imaging system that couples two or more cameras that function differently to perform
a unified task. The cameras are usually selected to have different specialized func-
tions. For example, a hybrid stereo camera presented by Sawhney et al. (Sawhney, Guo,
Hanna, Kumar, Adkins & Zhou 2001) utilizes two cameras with different spatial reso-
lutions to obtain high resolution stereo output.

In the context of this chapter, a hybrid-imaging system refers to a standard high
resolution camera, which we call the primary detector with an auxiliary low resolu-
tion camera called the secondary detector. The secondary detector shares a common
optical path with the primary detector, but operates at a significantly higher frame rate.

The primary detector produces a high resolution, high quality colour image but is
susceptible to motion blur, whereas the secondary detector output is a sequence of low
resolution, often monochromatic and noisy images of the same scene taken during the
exposure time of the primary detector. An example of the primary and secondary detec-
tors’ output is shown in Figure 3.1.

The image sequence produced by the secondary detector is of little visual use.
However, it contains information about the motion of the camera during the exposure,
or more precisely, the motion flow field of the image during integration time. While
the camera motion and the observed flow field are not identical (e.g. the observed flow
field includes information about moving objects in the scene as well as their depth),
the idea of hybrid-imaging motion deblurring is that given the image sequence from
the secondary detector, it would be possible to compute the blur function (or the PSF)
at every point of the high resolution image taken by the primary detector. Using this
PSF it is possible to subsequently deblur the primary detector’s image to obtain the
sought-after result – a high resolution non-blurred image.

3.2 Fundamental resolution tradeoff

An image is formed when light energy is integrated by an image detector over a time
interval. The total light energy received by a pixel during integration must be above a
minimum level for the light to be detected. This minimum level is determined by the
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Figure 3.1 Tradeoff between resolution and frame rates. Top: image from a high resolution, low
frame-rate camera; bottom: images from a low resolution, high frame-rate camera. [Adopted
from Tai, Du, Brown & Lin (2010).]
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Figure 3.2 The fundamental tradeoff between spatial resolution and temporal resolution of an
imaging system. While a conventional video camera (white circle) is a single operating point on
the tradeoff line, a hybrid-imaging system uses two different operating points (grey circles) on
the line, simultaneously. This feature enables a hybrid-imaging system to obtain the additional
information needed for non-blind motion deblurring. [Adopted from Ben-Ezra & Nayar (2004).]

signal-to-noise characteristics of the detector. Therefore, given such a minimum level
and an incident flux level, the exposure time required to ensure detection of the incident
light is inversely proportional to the area of the pixel. In other words, exposure time is
proportional to spatial resolution. When the detector is linear in its response, the above
relationship between exposure and resolution is also linear. This is the fundamental
tradeoff between the spatial resolution (number of pixels) and the temporal resolution
(number of images per second).

This tradeoff is illustrated by the solid line in Figure 3.2. The parameters of this line
are determined by the characteristics of the materials used by the detector, its efficiency,
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and the incident flux. Different points on the line represent cameras with different
spatio-temporal characteristics. For instance, a conventional video camera (shown as
a white circle) has a typical temporal resolution of 30 fps and a spatial resolution of
720 × 480 pixels.

Instead of relying on a single point on this tradeoff line, we could use two very
different operating points on the line to simultaneously obtain very high spatial reso-
lution with low temporal resolution, and very high temporal resolution with low spatial
resolution. This type of hybrid-imaging system is illustrated by the two grey circles
in Figure 3.2. This combined hybrid-imaging system is able to capture the necessary
additional information needed for non-blind motion deblurring.

3.3 Hybrid-imaging systems

We now describe three conceptual designs for a hybrid-imaging system. The simplest
design, which is illustrated in Figure 3.3(a), uses a rigid rig of two cameras: a high
resolution still camera as the primary detector and a low resolution video camera as the
secondary detector. Since the secondary detector is used for obtaining motion informa-
tion it can be monochromatic to collect more light energy. While a simple design, the
geometric calibration between the primary and secondary detectors is more complex
because the two cameras do not share the same optical axes. Additionally, this design

(a)

(b)

(c)

Secondary
Detector

Primary
Detector

Figure 3.3 Three conceptual designs of a hybrid-imaging system. (a) The primary and secondary
detectors are essentially two separate cameras; (b) the primary and secondary detectors share the
same lens by using a beamsplitter; (c) the primary and secondary detectors are located on the
same chip with different resolutions (pixel sizes). [Adapted from (Ben-Ezra & Nayar 2004).]
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requires recalibration when the main lens changes or its zoom setting varies. This
problem is addressed by the following two designs.

The second design shares the same lens for both detectors by splitting the incoming
light using a beamsplitter. This design, which is shown in Figure 3.3(b), requires simpler
calibration than the previous one due to the shared optics. An asymmetric beamsplitter
that passes most of the visible light to the primary detector and reflects non-visible
wavelengths towards the secondary detector, for example a ‘hot mirror’ (Optics n.d.),
would be preferred.

A third conceptual design, which is illustrated in Figure 3.3(c), uses a special chip
layout that includes the primary and the secondary detectors on the same chip. This chip
has a high resolution central area (the primary detector) and a low resolution periphery
(the secondary detector). Clearly, in this case, the primary and the secondary detec-
tors would not have the same field of view. However they will have sufficient data
to compute parametric motion models such as translation, similarity, or homographic
models. Such a chip can be implemented using binning technology now commonly
found in CMOS (and CCD) sensors (Inc. n.d.). Binning allows the charge of a group
of adjacent pixels to be combined before digitization. This enables the chip to switch
between a normal full-resolution mode (when binning is off) and a hybrid primary–
secondary detector mode (when binning is activated).

Figure 3.4(a) shows a prototype hybrid-imaging system using the camera rig design.
The primary detector of the system is a 3M pixel (2048 × 1536) Nikon CoolPix digital
camera equipped with a ×6 Kenko zoom lens. The secondary detector is a Sony DV
camcorder. The original resolution of the camcorder (720× 480) was reduced to 360×
240 to simulate a low resolution detector. The two sensors were calibrated using a cali-
bration target when the camera was static. The sensors are synchronized using a point

(b)(a)

Figure 3.4 The two implemented hybrid-imaging system prototypes. (a) A rig of two cameras:
the primary system consists of a 3M pixel Nikon CoolPix camera equipped with a ×6 Kenko
zoom lens; the secondary system is a Sony DV camcorder. The Sony images were reduced in
size to simulate a low resolution camera. [Adapted from (Ben-Ezra & Nayar 2004).] (b) A Point
Grey Dragonfly 2 camera, which captures images of 1024× 768 resolution at 25 fps (6.25 fps for
image deblurring examples), combined with a Mikrotron MC1311 camera that captures images
of 128 × 96 resolution at 100 fps. A beamsplitter is used to align their optical axes and
respective images. Video synchronization is achieved using a 8051 microcontroller. [Adapted
from (Tai, Du, Brown & Lin 2010).]
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of light feedback from the flash unit of the primary detector via a small reflector (not
shown).

The second design, shown in Figure 3.4(b), shows another prototype hybrid-imaging
system which is a variant of the beamsplitter design. The two cameras share the same
optical path and have well aligned pixel arrays but have different lenses. Camera
synchronization is achieved using an external 8051 microcontroller.

3.4 Shift invariant PSF image deblurring

The secondary detector captures a sequence of images at discrete time intervals that
code information regarding the motion flow and blur function of the primary detector.
In order to be able to use this information for motion deblurring we must first obtain the
discrete motion information from the image sequence and then compute a continuous
blur function that will be used at the motion deblurring stage.

3.4.1 Parametric motion computation

The first step is computing a 2D rigid (translation + rotation) parametric motion between
successive frames. We compute this motion using a multi-resolution iterative algorithm
that minimizes the following optical flow based error function (Lucas & Kanade 1981):

arg min
(u,v)

∑(
u
∂I
∂x

+ v
∂I
∂y

+
∂I
∂t

)2
(3.1)

where ∂I
∂x , ∂I

∂y , ∂I
∂t are the spatial and temporal partial derivatives of the image, and (u, v)

is the instantaneous motion at time t. This motion between the two frames is defined by
the following global rigid motion model:

[
u
v

]
=
[

cos θ sin θ �x
−sin θ cos θ �y

]⎡⎣x
y
1

⎤⎦ (3.2)

where (�x,�y) is the translation vector and θ is the rotation angle about the optical
axis.

In practice, the motion vectors are computed relative to a reference frame, typically
the middle of the sequence and the instantaneous frame to frame motion is derived from
that. This is possible because the overlap between frames is significantly larger than the
extent of the motion blur. Computing motion with respect to a reference frame is done
to prevent drifting by accumulating small errors between successive frames.

Note that the secondary detector, which has a short but non-zero integration time, may
also experience some motion blur, which can violate the constant brightness assump-
tion used in the motion computation. We therefore assume that the computed motion
displacement between two (slightly) motion-blurred frames is determined by the
centroids of the corresponding blur functions. We refer to this as the motion centroid
assumption.
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3.4.2 Shift invariant PSF estimation

The simplest blur function that we use is the shift-invariant point spread function (SI-
PSF) which assumes that the blur function is constant across all pixels of the image. In
practice, SI-PSF occurs when a camera equipped with a telephoto lens slightly rotates
about its x and y axes, but not about the optical axes, resulting in a nearly constant trans-
lational motion flow across the image plane. Such motion is likely to happen with scenic
and nature photographs taken by trained photographers, and is less likely to happen with
less trained photographers that tend to translate the camera or rotate it about the optical
axis, usually by pressing the shutter release button.

The discrete motion samples that are obtained by this motion need to be converted
into a continuous point spread function. To do that, we define the constraints that this
type of motion blur PSF must satisfy, and then use these constraints in the PSF estima-
tion.

A PSF can be treated as an energy distribution function, which can be represented by
a convolution kernel k : (x, y) �→ e, where (x, y) is a location and e is the energy level
at that location. The kernel k must satisfy the following energy conservation constraint:∫ ∫

k(x, y) dx dy = 1, (3.3)

which states that energy is neither lost nor gained by the blurring operation, i.e. k is
a normalized kernel. In order to define additional constraints that apply to a SI-PSF
motion blur, we use a time parameterization of the PSF with a path function f : t �→
(x, y) and an energy function h : t �→ e. Note that the functions f and h define a ridge
which belongs to a subset of all possible PSFs. Due to physical speed and acceleration
constraints, f(t) should be continuous and at least twice differentiable. By assuming
that the scene radiance does not change during image integration, we get the additional
constraint: ∫ t+δt

t
h(t) dt =

δt
tend − tstart

, δt > 0, tstart ≤ t ≤ tend − δt, (3.4)

where [tstart, tend] is the image integration interval. This constraint states that the amount
of energy which is integrated at any time interval is proportional to the length of the
interval.

Given these constraints and the motion centroid assumption from the previous
section, we can estimate a continuous motion blur PSF from the discrete motion samples,
as illustrated in Figure 3.5. First, we estimate the path f(t) by spline interpolation as
shown in Figure 3.5(a,b); spline curves are used because of their smoothness and twice
differentiability properties, which satisfy the speed and acceleration constraints. In order
to estimate the energy function h(t) we need to find the extent of each frame along
the interpolated path. This is done using the motion centroid assumption by splitting
the path f(t) into frames with a 1D Voronoi tessellation, as shown in Figure 3.5(b).
Since the constant radiance assumption implies that frames with equal exposure times
integrate equal amount of energy, we can compute h(t) for each frame as shown in
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(a)

(c) (d)

(b)

Figure 3.5 The computation of the continuous PSF from the discrete motion vectors. (a) The
discrete motion vectors which are samples of the function f : t �→ (x, y); (b) interpolated path f(t)
and its division into frames by Voronoi tessellation; (c) energy estimation for each frame; (d) the
computed PSF. [Adapted from Ben-Ezra & Nayar (2004).]

Figure 3.5(c). Note that all the rectangles in this figure have equal areas. Finally, we
smooth h(t) and normalize it to satisfy the energy conservation constraint. The resulting
PSF is shown in Figure 3.5(d). The end result of the above procedure is a continuous
motion blur PSF that can now be used for motion deblurring.

3.4.3 Image deconvolution

Given the estimated PSF we can deblur the high resolution image that was captured
by the primary detector using image deconvolution algorithms. Many such algorithms
exist, varying from early algorithms such as the well known Wiener filter (Wiener 1964),
and ratio-based iterative methods (Jansson 1997) to more recent image prior based
methods (Krishnan & Fergus 2009, Levin, Fergus, Durand & Freeman 2007, Bioucas-
Dias, Figueiredo & Oliveira 2006a, Dey, Blanc-Feraud, Zimmer, Roux, Kam, Olivo-
Marin & Zerubia 2006, Bioucas-Dias, Figueiredo & Oliveira 2006b). The selection of
the specific algorithm is application dependent and is orthogonal to the hybrid-imaging
framework.

The results reported in this chapter are based on the Richardson–Lucy iterative
deconvolution algorithm (Jansson 1997), which is a nonlinear ratio-based method. This
method maximizes a Poisson statistics image model likelihood function, yielding the
following iteration:

Ô(k+1)(x) = Ô(k)(x) · S(−x)⊗ I(x)
S ⊗ Ô(k)

(3.5)
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where I is the measured image, Ô(k) is the kth estimation of the result, Ô(0) = I, and S
is the convolution kernel (the PSG). Given that I and S are positive everywhere, Ô(k)
cannot be negative.

3.4.4 Examples – shift invariant PSF

The basic form of the hybrid-imaging system has been considered so far. Before
describing a more advanced form, results are shown for this basic setup. Figures 3.6
and 3.7 show results obtained by the first prototype system shown in Figure 3.4(a). The
figures show the input images from the primary and secondary detectors, the recovered
PSFs, the resulting deblurred images, and ground truth images taken using a tripod. The
ability to handle long exposure times (up to four seconds) and complex PSFs is, as seen
in these examples, one of the best advantages of hybrid-imaging framework.

3.4.5 Shift-invariant PSF optimization

While a direct computation of the PSF can already be used for motion deblurring, as
seen above, there may still be some inaccuracies in the PSF resulting from noise, insuf-
ficient resolution or insufficient frame rate of the secondary detector.

Low Resolution Image Sequence
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(b) Computed PSF(a) Input images

(c) Computed deblurred image (d) Ground truth image

Figure 3.6 Experimental results for outdoor building scene (focal length = 633 mm, exposure
time = 1.0 s). (a) Input images, including the motion-blurred image from the primary detector
and a sequence of low resolution frames from the secondary detector; (b) the computed PSF;
note the complexity of motion path and the energy distribution; (c) the deblurring result; note the
clarity of the text; (d) the ground truth image that was captured without motion blur using a
tripod. [Adopted from Ben-Ezra & Nayar (2004).]
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(b) Computed PSF(a) Input images

(c) Computed deblurred image (d) Ground truth image
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Figure 3.7 Experimental results for outdoor tower scene (focal length = 884 mm, exposure
time = 4.0 s). (a) Input images, including the motion-blurred image from the primary detector
and a sequence of low resolution frames from the secondary detector; (b) the computed PSF;
note the complexity of the motion path and energy distribution; (c) the deblurring result; (d) the
ground truth image that was captured without motion blur using a tripod. [Adopted from
Ben-Ezra & Nayar (2004).]

To further refine the PSF, it is possible to jointly use the multiple deconvolution and
back-projection constraints available from the hybrid camera input. This approach can
be formulated into a maximum a posteriori (MAP) estimation framework as
follows:

arg max
I,K

P(I, K|Ib, Ko, Il)

= arg max
I,K

P(Ib|I, K)P(Ko|I, K)P(Il|I)P(I)P(K)
= arg min

I,K
L(Ib|I, K) + L(Ko|I, K) + L(Il|I) + L(I) + L(K) (3.6)

where I and K denote the sharp images and the PSFs we want to estimate, Ib, Ko and
Il are the observed blur images, estimated PSFs from optical flows, and the low reso-
lution, high frame-rate images respectively, and L(·) = −log(P(·)). In this formula-
tion, the priors P(I) and P(K) are taken to be uniformly distributed. Assuming that
P(Ko|I, K) is conditionally independent of I, that the estimation errors of likelihood
probabilities P(Ib|I, K), P(Ko|I, K) and P(Il|I) follow Gaussian distributions, and that
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each observation of Ib, Ko and Il is independent and identically distributed, we can then
rewrite Eq. (3.6) as

arg min
I,K

N∑
i

∥∥Ibi − I ⊗ Ki
∥∥2 + λB

M∑
j

∥∥Ilj − d(I ⊗ h)
∥∥2 + λK

N∑
i

∥∥Ki − Koi

∥∥2

(3.7)

where λK and λB are the relative weights of the error terms. To optimize the above
equation for I and K, an alternating minimization strategy is used, as follows:

1. update It+1 = It +
∑N

i=1 Kt
i ∗ (Ibi − It ⊗ Kt

i) + λB
∑M

j=1 h ⊗ (u(W(Ilj)− d(It ⊗ h)));
2. update Kt+1

i = Kt
i + Ĩt+1 ∗ (Ibi − It+1 ⊗ Kt

i) + λK(Koi − Kt
i)

where Ĩ = I/
∑
(x,y) I(x, y), I(x, y) � 0, Ki(u, v) � 0, and

∑
(u,v) Ki(u, v) = 1. The two

update steps are processed in alternation until the change in I falls below a specified
level or until a maximum number of iterations is reached. The term W(Ilj) represents
the warped aligned observations. The reference frame to which these are aligned can be
any of the M low resolution images. Thus for each deblurred high resolution frame we
have up to M possible solutions. In our implementation, we set N = 3 in correspondence
with the current, previous and next frames, and M is set according to the relative camera
settings (4/16 for video/image deblurring in our implementation). We also initialize I0

as the currently observed blur image Ib, K0
i as the estimated PSF Koi from optical flows,

and set λB = λK = 0.5.
For more stable and flexible PSF refinement, the PSF is refined in a multi-scale

fashion as demonstrated in Fergus, Singh, Hertzmann, Roweis & Freeman (2006), and
Yuan, Sun, Quan & Shum (2007). Figure 3.8 illustrates the PSF refinement process. The
PSFs are estimated from motion flows of the observed low resolution images and then
downsampled to the coarsest level. After refinement at a coarser level, PSFs are then
upsampled and refined again. The multi-scale pyramid is constructed using a downsam-
pling factor of 1/

√
2 with five levels. The likelihood P(Ko|K) is applied at each level

of the pyramid with a decreasing weight, so as to allow more flexibility in refinement at
finer levels. Starting at a level coarser than the low resolution images allows the method
to recover from some of the errors in the PSF estimation.

(a) (b) (c) (d) (e)

Figure 3.8 Multi-scale refinement of a motion PSF (a–e) exhibit refined PSFs at progressively
finer scales. Our PSF refinement starts from the coarsest level. The result of each coarser level is
then upsampled and used as an initial PSF estimate for the next level of refinement. [Adopted
from Tai, Du, Brown & Lin (2010).]
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(a)

(c) (d)

(b)

Figure 3.9 Image deblurring using optimized shift invariant PSF. (a) Input; (b) result generated
by a direct (non optimized) PSF; (c) result generated by an optimized PSF; (d) the ground truth
sharp image. PSF and magnified regions are also shown. [Adopted from Tai, Du, Brown & Lin
(2010).]

3.4.6 Examples – optimized shift invariant PSF

Figure 3.9 presents an image deblurring using the hybrid imaging system shown in
Figure 3.4(b) and an optimized shift invariant PSF as described above. In this case the
direct estimation of the PSF had a small error, which produces artifacts in the deblurred
image. Applying the global optimization strategy, it is possible to refine the PSF to
obtain a better result.

3.5 Spatially-varying PSF image deblurring

A sequence of 2D rigid parametric motion described in Section 3.4.1, in the presence
of rotations about the optical axis (or possibly homographic or arbitrary optical flow),
results in spatially-varying and complex PSFs. These spatially-varying PSFs can be
expressed as K(x, y, u, v), where (x, y) is the image coordinate and (u, v) is the PSF coor-
dinate. For large sized PSFs, e.g. 65 × 65, this representation is impractical due to its
enormous storage requirements. One way to reduce the storage size is by constraining
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(a)

(c) (d)

(b)

Figure 3.10 Convolution with PSF decomposition. (a) Convolution result without PSF
decomposition, where full PSFs are generated on-the-fly per pixel using optical flow integration;
(b) convolution using 30 PCA-decomposed PSFs; (c) convolution using a patch-based
decomposition; (d) convolution using delta function decomposition of PSFs, with at most
30 delta functions per pixel. [Adopted from Tai, Du, Brown & Lin (2010).]

the motion path (Shan, Xiong & Jia 2007); however, in our approach we place no
constraints on possible motion. Instead, the spatially-varying PSFs are decomposed into
a set of P basis kernels kl whose mixture weights al are a function of image location:

K(x, y, u, v) =
P∑

l=1

al(x, y)kl(u, v). (3.8)

The convolution equation then becomes

I(x, y)⊗ K(x, y, u, v) =
P∑

l=1

al(x, y)(I(x, y)⊗ kl(u, v)). (3.9)

Alternatively, principal component analysis (PCA) can be used to determine the basis
kernels (Lauer 2002). PCA, however, does not guarantee positive PSF values, and may
lead to strong ringing artifacts, exemplified in Figure 3.10(b). The ringing artifacts in
the convolution result resemble the patterns of basis kernels.

Another method is to use a patch representation which segments images into many
small patches such that the local motion PSF is the nearly the same within each small
patch (Joshi, Szeliski & Kriegman 2008). However, for large and complex motion, the
patches need to be very small (generating a large volume of data) to obtain nearly iden-
tical motion in each patch. Larger patches will result with inaccurate PSFs leading to
discontinuity artifacts as shown in Figure 3.10(c).

Our approach uses a delta function representation, where each delta function repre-
sents a position (u, v) within a PSF. From the total 65 × 65 possible delta-functions in
the spatial PSF, we found it possible to select 600 distinct delta functions to provide
a sufficient approximation of the spatially-varying PSFs in the convolution process.



�

�

“9781107044364AR” — 2013/12/20 — 9:50 — page 69 — #83
�

�

�

�

�

�

3.5 Spatially-varying PSF image deblurring 69

0.101388

0.043137 0.049608 0.046667 0.022605

0.062437 0.057354 0.023986 0.000000

0.028823

Figure 3.11 PCA versus the delta function representation for PSF decomposition. The top row
illustrates the PSF decomposition using PCA, and the bottom row shows the decomposition
using the delta function representation. The example PSF is taken from among the
spatially-varying PSFs of Figure 3.10, from which the basis kernels are derived. Weights are
displayed below each of the basis kernels. The delta function representation not only guarantees
positive values of basis kernels, but also provides more flexibility in PSF refinement. [Adopted
from Tai, Du, Brown & Lin (2010).]

To further reduce space, to represent the PSF at each image pixel, it was sufficient to
use only 40 indexes with associated magnitudes into the selected delta functions.

To show the effectiveness of this approach, examples of basis kernel decomposition
using PCA and the delta function representation are shown in Figure 3.11. The delta
function representation also offers more flexibility in kernel refinement, while refine-
ments using the PCA representation are limited to the PCA subspace.

Combining Eqs. (3.9) and (3.7), our optimization function becomes

arg min
I,K

N∑
i

∥∥∥∥∥Ibi −
P∑
l

ail(I ⊗ kil)

∥∥∥∥∥
2

+ λB

M∑
j

∥∥Ilj − d(I ⊗ h)
∥∥2

+ λK

N∑
i

P∑
l

∥∥ailkil − aoil kil
∥∥2 . (3.10)

The corresponding iterative update rules are then

1. update It+1 = It +
∑N

i=1
∑P

l at
ilkil ∗

(
Ibi −

∑P
l at

il(I
t ⊗ kil)

)
+ λB

∑M
j=1 h⊗ (u (W(Ilj)

−d(It ⊗ h)
))

;

2. update at+1
il = at

il +
(

Ĩ′t+1 ∗
(

I′bi
−∑P

l at
il(I

′t+1 ⊗ kil)
))

· kil + λK(aoil − at
il)

where I′ and I′b are local windows in the estimated result and the blur image. This PSF
refinement can be implemented in a multi-scale framework for greater flexibility and
stability. The number of delta functions kil stored at each pixel position may be reduced
when an updated value of ail becomes insignificant. For greater stability, we process
each update rule five times before switching to the other.
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(a) (b) (c)

Figure 3.12 Image deblurring with spatial varying kernels from rotational motion. (a) Input;
(b) our spatially varying PSF results; (c) the ground truth sharp image. Close-ups are also
shown. [Adopted from Tai, Du, Brown & Lin (2010).]

3.5.1 Examples – spatially varying PSF

Figure 3.12 shows an example with in-plane rotational motion of a book. Our approach
can successfully deblur the image with spatially varying PSF. The book title is easily
legible after deblurring.

3.6 Moving object deblurring

The hybrid-imaging system can also be used to address the problem of motion blur due
to an object moving in front of a stationary (non-blurred) background. This problem
is difficult as the moving object ‘blends’ with the background and therefore it is not
enough to know the object’s blur function to deblur the image; the blurred object must
be separated from the background before it can be deblurred.

Assuming that the blending is linear, the deblurring operation can be expressed as:

O =
(
I − (B · M ⊗ S)

)⊗−1 S + B · M̄, (3.11)

where O is the deblurred image, I is the blurred input image, S is the PSF, ⊗−1 denotes
deconvolution, M is a segmentation mask for the shape of the foreground (non-blurred)
object, B is a clear and non-blurred background image, ⊗ denotes 2D convolution and
X̄ is the complement of X. The hybrid-imaging system can provide a good estimation
of the PSF for the moving object; this can be done by applying a tracking algorithm to
the low resolution (high frame-rate) sequence. Since we assume shift invariance within
an object, only a single feature needs to be tracked. It is also possible to extract a low
resolution mask (shape) of the foreground object using the secondary detector’s image.

Simulation results are shown in Figure 3.13. Figure 3.13(a) shows the original image,
which is synthetically blurred using a high resolution ground truth mask (not shown) to
form the blurred image shown in Figure 3.13(b). Figure 3.13(c) shows the blending
mask computed from the low resolution (simulative) secondary detector image, and
Figure 3.13(d) shows the blurred foreground component. The foreground component is
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(a) Original image

(d) Foregroundcomponent (e) Deblurred foreground (f) Composite result

(b) Blurred image (c) Blending mask

Figure 3.13 Object deblurring simulation result. (a) Original non-blurred image; (b) synthetically
blurred image; (c) blending (alpha) mask obtained from the secondary detector’s image
sequence; (d) blurred foreground obtained by subtracting the background component from the
primary detector’s blurred image; (e) deblurred image of the foreground object; (f) composite of
the deblurred foreground and the clear background using a low resolution mask obtained from
the secondary detector. [Adopted from Ben-Ezra & Nayar (2004).]

deblurred using PSF computed from the image sequence of the secondary detector, and
the deblurred foreground shown in Figure 3.13(e) is composited into a clean background
using the same mask to form the final result shown in Figure 3.13(f).

The extension of this method to a blurred background scenario, where it is possible
to obtain a clear non-blurred, or a clear deblurred image of the background, is straight-
forward. In this case Eq. (3.11) becomes:

O =
(
I − ((B ⊗ Sb) · M ⊗ Sf)

)⊗−1 Sf + B · M̄, (3.12)

where Sb and Sf are the PSFs of the background and foreground, respectively.
In many cases it might be difficult to obtain a clear background image of the scene.

In such cases, we need to estimate the foreground and background colours, given the
mask.

This is a form of the matting problem that can be expressed as:

I = αF + (1 − α)B (3.13)

where I is the observed image intensity, F, B and α are the foreground colour, back-
ground colour, and alpha value of the fractional occupancy of the foreground,
respectively.

The matting problem is an ill-posed problem as the number of unknown variables is
greater than the number of observations. Our approach assumes that object motion does
not cause motion blur in the high frame-rate camera, so the object appears sharp.

To extract the alpha matte of a moving object, we perform binary segmentation of
the moving object in the low resolution images, and then compose the binary segmenta-
tion masks with smoothing to approximate the alpha matte in the high resolution image.
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(a) (b) (c)

Figure 3.14 Image deblurring with translational motion. In this example, the moving object is a
car moving horizontally. We assume that the motion blur within the car is globally invariant.
(a) Input; (b) deblurred image; (c) the ground truth sharp image captured from another car of the
same model. Closeup views and the estimated global blur kernels within the motion blur layer
are also shown. [Adopted from Tai, Du, Brown & Lin (2010).]

The foreground colour F also must be estimated for deblurring. This can be done by
assuming a local colour smoothness prior on F and B and solving for their values with
Bayesian matting (Chuang, Curless, Salesin & Szeliski 2001). Given the solution of F
and B, the α solution can be refined by solving Eq. (3.13) in closed form. Refine-
ments of F, B, and α can be done in alternation to further improve the result. A recent
regularization-based method targeting for motion-blurred objects (Lin, Tai & Brown
2011) can also be included to enhance the matting results.

Once moving objects are separated, we deblur each layer separately as mentioned
before. An example of this method is shown in Figure 3.14.

3.7 Discussion and summary

This chapter introduced a hybrid-imaging system design targeting image deblurring due
to camera shake and, to some extent, moving objects in a scene. In this section, the
hybrid-imaging system is discussed in the broader context of motion deblurring.

The idea of the hybrid-imaging system is to allow for non-blind image deblurring,
where an additional detector is used to estimate the blur function. As such, it can be
considered a hardware assisted deblurring method. Like all hardware assisted methods,
the main disadvantage is the need for additional hardware. The cost and complexity
of the required hardware can be reduced significantly if the additional hardware is
embedded into the camera or the camera sensor.

The main advantage of the hybrid-imaging method over blind and user assisted
deblurring methods is robustness. Hybrid-imaging methods do not depend on the content
of the image to obtain the blurring function. Hybrid-imaging systems offer the following
additional advantages:

1. They can measure motion across inertial systems, for example when taking an image
from a moving train.
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2. They can detect depth-dependent motion, as well as object motion.
3. By sharing the same optics between the two sensors, a hybrid-imaging system can

automatically adjust its accuracy and scale to the focal length of the sensor which
can change when the lens is replaced or when a zoom lens is used.

4. As discussed in Section 3.4.5, the additional information from the secondary device
can be used in the deblurring processing as additional back-projection constraints to
improve PSF estimation and the deblurred result.

Finally, we note, that hybrid-imaging systems can be used in conjunction with other
deblurring methods by providing an initial estimate used in blind image deblurring.
They can also be useful for fusing in information with methods that use other types of
sensors, such as inertial sensors, to further improve the deblurring quality and robust-
ness.

Acknowledgements

This chapter is based on the work that appeared in Ben-Ezra & Nayar (2004) and Tai,
Du, Brown & Lin (2010) and we gratefully acknowledge IEEE for their permission to
reproduce large extracts here.

References

Ben-Ezra, M. & Nayar, S. (2004). Motion-based Motion Deblurring. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 26(6), 689–98.

Bioucas-Dias, J., Figueiredo, M. & Oliveira, J. (2006a). Adaptive total-variation image deconvo-
lution: A majorization–minimization approach. In Proceedings of the European Signal
Processing Conference, pp. 1–4.

Bioucas-Dias, J., Figueiredo, M. & Oliveira, J. (2006b). Total variation-based image deconvolu-
tion: a majorization–minimization approach. In IEEE International Conference on Acoustics,
Speech and Signal Processing, Vol. 2, p. II.

Chuang, Y., Curless, B., Salesin, D. H. & Szeliski, R. (2001). A Bayesian approach to digital
matting. In IEEE Conference on Computer Vision and Pattern Recognition, pp. 264–71.

Dey, N., Blanc-Feraud, L., Zimmer, C., Roux, P., Kam, Z., Olivo-Marin, J. & Zerubia, J. (2006).
Richardson–Lucy algorithm with total variation regularization for 3D confocal microscope
deconvolution, Microscopy Research and Technique, 69(4), 260–6.

Fergus, R., Singh, B., Hertzmann, A., Roweis, S. T. & Freeman, W. T. (2006). Removing camera
shake from a single photograph. ACM Transactions on Graphics, 25(3), pp. 787–94.

Inc., C. (n.d.). www.roper.co.jp.
Jansson, P. A. (1997). Deconvolution of Image and Spectra, 2nd edn. Academic Press.
Joshi, N., Szeliski, R. & Kriegman, D. (2008). PSF estimation using sharp edge prediction. In

IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8.
Krishnan, D. & Fergus, R. (2009). Fast image deconvolution using hyper-Laplacian priors.

Advances in Neural Information Processing Systems, 22, 1–9.

www.roper.co.jp.


�

�

“9781107044364AR” — 2013/12/20 — 9:50 — page 74 — #88
�

�

�

�

�

�

74 Hybrid-imaging for motion deblurring

Lauer, T. (2002). Deconvolution with a spatially-variant PSF. In SPIE Proceedings, Astronomical
Data Analysis II, Vol. 4847, pp. 167–73.

Levin, A., Fergus, R., Durand, F. & Freeman, W. (2007). Deconvolution using natural image
priors. Massachusetts Institute of Technology, Computer Science and Artificial Intelligence
Laboratory.

Lin, H., Tai, Y.-W. & Brown, M. S. (2011). Motion regularization for matting motion blurred
objects. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(11), 2329–36.

Lucas, B. & Kanade, T. (1981). An iterative image registration technique with an application to
stereo vision. In Proceedings of the Defense Advanced Research Projects Agency, pp. 121–30.

Optics, E. I. (n.d.). www.edmundoptics.com.
Sawhney, H., Guo, Y., Hanna, K., Kumar, R., Adkins, S. & Zhou, S. (2001). Hybrid stereo camera:

an IBR approach for synthesis of very high resolution stereoscopic image sequences. In ACM
Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques,
pp. 451–60.

Shan, Q., Xiong, W. & Jia, J. (2007). Rotational motion deblurring of a rigid object from a single
image. In IEEE International Conference on Computer Vision, pp. 1–8.

Tai, Y., Du, H., Brown, M. & Lin, S. (2010). Correction of spatially varying image and video
blur using a hybrid camera. IEEE Transactions on Pattern Analysis and Machine Intelligence,
32(6), 1012–28.

Wiener, N. (1964). Extrapolation, Interpolation, and Smoothing of Stationary Time Series. MIT
Press.

Yuan, L., Sun, J., Quan, L. & Shum, H. (2007). Image deblurring with blurred/noisy image pairs.
ACM Transactions on Graphics, 26(3), 1:1–10.

www.edmundoptics.com.


�

�

“9781107044364AR” — 2013/12/20 — 9:50 — page 75 — #89
�

�

�

�

�

�

4 Efficient, blind, spatially-variant
deblurring for shaken images
Oliver Whyte, Josef Sivic, Andrew Zisserman and Jean Ponce

In this chapter we discuss modelling and removing spatially-variant blur from
photographs. We describe a compact global parameterization of camera shake blur,
based on the 3D rotation of the camera during the exposure. Our model uses three-
parameter homographies to connect camera motion to image motion and, by assigning
weights to a set of these homographies, can be seen as a generalization of the standard,
spatially-invariant convolutional model of image blur. As such we show how existing
algorithms, designed for spatially-invariant deblurring, can be ‘upgraded’ in a straight-
forward manner to handle spatially-variant blur instead. We demonstrate this with algo-
rithms working on real images, showing results for blind estimation of blur parameters
from single images, followed by non-blind image restoration using these parameters.
Finally, we introduce an efficient approximation to the global model, which significantly
reduces the computational cost of modelling the spatially-variant blur. By approxi-
mating the blur as locally-uniform, we can take advantage of fast Fourier-domain convo-
lution and deconvolution, reducing the time required for blind deblurring by an order of
magnitude.

4.1 Introduction

Everybody is familiar with camera shake, since the resulting blur spoils many photos
taken in low-light conditions. Camera shake blur is caused by motion of the camera
during the exposure; while the shutter is open, the camera passes through a sequence of
different poses, each of which gives a different view of the scene. The sensor accumu-
lates all of these views, summing them up to form the recorded image, which is blurred
as a result. We would like to be able to deblur such images to recover the underlying
sharp image, which we would have captured if the camera had not moved.

In general, the problem of restoring an image after it has suffered some degradation
can be broken down into three stages: first, a generative model is needed to relate the
undegraded , ‘ideal’ or latent image (that we would like to recover) to the observed
image produced by the camera. Second, the parameters of this model must be estimated,
and finally the restored image can be reconstructed, given the model and the estimated
parameters.

This chapter is principally concerned with the first of these stages: a geometrically
motivated model of spatially-variant image blur due to camera shake, which we show
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can be (mostly) attributed to the rotation of the camera during exposure. We develop a
global descriptor for the generative model parameters of this non-uniform blur, analo-
gous to (but different from) a convolution kernel, and show that a more general class of
blurs can be modelled other than uniform.

Several authors have proposed models for spatially-variant blur, under different
assumptions about the scene and the camera, e.g. simple scene models with unconstrained
camera motion (Joshi, Kang, Zitnick & Szeliski 2010, Gupta, Joshi, Zitnick, Cohen &
Curless 2010, Tai, Tan & Brown 2011), constrained camera motion (Sawchuk 1974,
Klein & Drummond 2005, Shan, Xiong & Jia 2007, Tai, Kong, Lin & Shin 2010), or more
complex scene models (Šorel & Flusser 2008, Xu & Jia 2012). On the other hand, much
of the work on algorithms for deblurring camera shake assume that the blurred image is
simply a 2D convolution of a sharp image with a spatially-invariant filter (Fergus, Singh,
Hertzmann, Roweis & Freeman 2006, Shan, Jia & Agarwala 2008, Cho & Lee 2009),
despite the fact that real camera shake does not, in general, cause spatially-invariant
blur (Levin, Weiss, Durand & Freeman 2009), as shown in Figure 4.1. In this chapter
we aim to bridge this gap with a practical model for spatially-variant camera shake blur
that can also leverage advances in convolution-based deblurring algorithms.

We begin in Section 4.2 by deriving our geometric model, before discussing how it
can be implemented in practice in Section 4.3. In Section 4.4 we show how our model
can replace convolution in existing deblurring algorithms, with minimal algorithmic
changes. In Section 4.5 we describe an efficient approximation to the model, which
significantly reduces its computational cost. In Section 4.6 we present results on real
images, using our model to replace the uniform (convolution) blur model in an existing
algorithm for camera shake removal. In Section 4.7 we cover some implementation
considerations for our model.

Parts of this chapter are based on previously published work (Whyte, Sivic, Zisserman
& Ponce 2010, Whyte, Sivic & Zisserman 2011, Whyte et al. 2012).

4.2 Modelling spatially-variant camera shake blur

A camera may move in several different ways, and it is not necessarily obvious which
kinds of motion cause large changes in the view (and hence a large blur), and which
cause relatively small changes. Furthermore, even if the camera’s motion is fully known
for a given photograph, a model is needed to translate this physical 3D motion into
image-domain motion before we can begin to deblur the photograph.

We begin by considering the relative blurring effect of different camera motions, and
deriving a geometric model for camera shake. In Section 4.3 we develop this into a prac-
tical model for deblurring real images. In this work we limit our scope to photographs
of static scenes, i.e. the blur is solely due to the motion of the camera.

4.2.1 Components of camera motion

The pose of a camera incorporates two components: position and orientation. Intu-
itively, the position tells us where the camera is, while the orientation tells us which
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(a) An image blurred by camera shake (b) Deblurred using the estimated blur
descriptor

(c) Estimated global blur
descriptor

(d) Top: details from
blurred image; bottom:
corresponding local PSFs
generated by (c)

(e) Details from the
blurred (top) and
deblurred (bottom)
images

qX
qY

q Z

Figure 4.1 Modelling non-uniform blur in a shaken image. The blurred image (a) clearly exhibits
blur which is non-uniform, as highlighted at different locations in the image. Using the model
proposed in this work, we can describe this blur using a single global descriptor (c), which in
this case has been estimated from the blurred image itself, simply by modifying existing
algorithms for blind deblurring (see Section 4.4 for details). Having estimated the blur, the
standard Richardson–Lucy algorithm is used to estimate the sharp image. Close-ups of different
parts of the image (d) show the variation in the shape of the blur, which can be accurately
reproduced using our model, as shown by the local point spread functions generated from it.
As can be seen in the deblurred image in (b) and the close-ups in (e), different parts of the image,
blurred in different ways, can be deblurred to recover a sharp image. Reproduced from
Whyte et al. (2012) with permission, © Springer 2012.

way it is pointing, and both may vary while the camera’s shutter is open. In this section,
we discuss the contribution of each component to the image blur, and conclude that in
most cases of camera shake, the changes in orientation (rotation) of the camera during
exposure have a significantly larger blurring effect than the changes in position (trans-
lation).

Consider the simplified case shown in Figure 4.2 of a scene point P, at a distance D
from the camera, being imaged at the centre of the camera’s retina/sensor. During the
exposure, the camera moves, and the image of the point is blurred through a distance
δ pixels. In (a) the camera translates through a distance X parallel to the image plane,
while in (b) the camera rotates through an angle θ about its optical centre. By simple
trigonometry, we can see that in (a) the camera must translate by
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(a) Camera translation (b) Camera rotation

P

δ

X

D

F

P

δ

θ

Figure 4.2 Blur due to translation or rotation of the camera. In this simplified example, we
consider capturing a blurred image by either (a) translating the camera through a distance X
parallel to the image plane, or (b) rotating the camera through an angle θ about its optical centre.
We consider the scene point P at a distance D from the camera, whose image is blurred by δ
pixels as a result of either of the two motions. In most cases, for a given blur size δ the rotation θ
constitutes a significantly smaller motion of the photographer’s hands than the translation X
(see text for details). Reproduced from Whyte et al. (2012) with permission, © Springer 2012.

X =
δ

F
D, (4.1)

where F is the camera’s focal length, while in (b) the camera must rotate through an
angle

θ = tan−1
(
δ

F

)
. (4.2)

If we make the common assumption that the camera’s focal length F is approximately
equal to the width of the sensor, say 1000 pixels, then to cause a blur of δ = 10 pixels
by translating the camera, we can see from Eq. (4.1) that X = 1

100 D. Thus the required
translation grows with the subject’s distance from the camera, so for a subject just 1 m
away, we must move the camera by X = 1 cm to cause the blur. When photographing
a subject 30 m away, such as a large landmark, we would have to move the camera by
30 cm!

To cause the same amount of blur by rotating the camera, on the other hand, we can
see from Eq. (4.2) that we would need to rotate the camera by θ = tan−1

(
1

100

)
� 0.6◦,

independent of the subject’s distance from the camera. To put this in terms of the motion
of the photographer’s hands, if the camera body is 10 cm wide, such a rotation could be
caused by moving one hand just 1 mm forwards or backwards relative to the other.
Provided the subject is more than 1 m from the camera, this motion is at least an order
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of magnitude smaller than for a translation of the camera causing an equivalent amount
of blur.

In reality, both the position and orientation of the camera vary simultaneously during
the exposure. However, if the camera only undergoes small changes in position (trans-
lations), then following the discussion above, we can assert that the variations in the
camera’s orientation (rotations) are the only significant cause of blur.

From now on, we assume that the translational component of camera motion does
not cause any blur. Furthermore, we assume that all rotations occur about the camera’s
optical centre. Note, however, that a camera rotation about a centre that is not the optical
centre can be written as a rotation about the optical centre composed with a translation;
these translations will generally be small if the centre of rotation is not far from the
optical centre. As we shall see in the following section, this model of camera motion
leads to spatially-variant blur.

4.2.2 Motion blur and homographies

Under a pinhole camera model, and assuming that the scene being photographed is
static, rotations of a camera about its optical centre induce projective transformations of
the image being observed. In other words, the image observed at one camera orientation
is related to the image at any other by a 2D projective transformation, or homography.
For an uncalibrated camera, this is a general 8-parameter homography, but for a camera
with known internal parameters, the homography H is specified by three parameters and
is given by

H = KRK−1, (4.3)

where the 3 × 3 matrix R is a rotation matrix describing the orientation of the camera,
and K is the camera’s internal calibration matrix (Hartley & Zisserman 2004). In this
work, we assume that the calibration matrix K is known (see Section 4.2.3).

The rotation matrix R has only three parameters. We adopt here the ‘angle-axis’
parameterisation, in which a rotation is described by the angle θ moved about an
axis a (a unit-norm 3-vector). This can be summarised in a single 3-vector θ = θa =
(θX, θY, θZ). R is then given by the matrix exponential

Rθ = e[θ ]× , (4.4)

where

[θ ]× =

⎡⎣ 0 −θZ θY
θZ 0 −θX

−θY θX 0

⎤⎦ . (4.5)

We fix our 3D coordinate frame to have its origin at the camera’s optical centre. The
axes are aligned with the camera’s initial orientation, such that the XY-plane is aligned
with the camera sensor’s coordinate frame and the Z-axis is parallel to the camera’s
optical axis, as shown in Figure 4.3(a). In this configuration, θX describes the ‘pitch’ of
the camera, θY the ‘yaw’, and θZ the ‘roll’, or in-plane rotation, of the camera.
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(a) Orientation of camera axes (b) Y -axis rotation of the camera

(c) Z-axis rotation of the camera (d) Arbitrary sequence of rotations

Figure 4.3 Our coordinate frame with respect to initial camera orientation, and the paths followed
by image points under different camera rotations. We define our coordinate frame (a) to have its
origin at the camera’s optical centre, with the X and Y axes aligned with those of the camera’s
sensor, and the Z axis parallel to the camera’s optical axis. Under single-axis rotations of the
camera, for example about its Y-axis (b), or its Z-axis (c), the paths traced by points in the image
are visibly curved and non-uniform across the image. This non-uniformity remains true for
general camera shakes (d), which do not follow such simple single-axis rotations, but rather take
arbitrary paths through camera pose space. The focal length of the camera in this simulation is
equal to the width of the image, the principal point is at the image’s centre, and the pixels are
assumed to be square. Reproduced from Whyte et al. (2012) with permission, © Springer 2012.

Having defined the type of image transformations we expect to occur while the shutter
is open, we can write out the image degradation model. Let T denote the exposure time
of the photograph. While the shutter is open, the camera passes through a sequence of
orientations θ t, t ∈ [0, T]. As discussed above, at each pose θ t, the sensor is exposed to
a projectively transformed version of the sharp image f, where the projective transfor-
mation Ht is given by Eqs. (4.3)–(4.5). The noiseless blurred image g∗ is then modelled
as the integral over the exposure time T of all the transformed versions of f:

g∗(x) =
∫ T

0
f
(
Htx
)

dt, (4.6)

where, with a slight abuse of notation, we use g∗(x) to denote the value of g∗ at the 2D
image point represented by the homogeneous vector x, and similarly for f.

Under this model, the apparent motion of scene points may vary significantly across
the image. Figure 4.3 demonstrates this, showing the paths followed by points in an
image under a Y-axis rotation, a Z-axis rotation, and an arbitrary sequence of rotations
of the camera. Under the (in-plane) Z-axis rotation, the paths vary significantly across
the image. Under the (out-of-plane) rotation about the Y-axis, the paths, while varying
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considerably less, are still non-uniform. It should be noted that the degree of non-
uniformity of this out-of-plane motion is dependent on the focal length of the camera,
decreasing as the focal length increases. However, it is typical for consumer cameras to
have focal lengths of the same order as their sensor width, as is the case in Figure 4.3. In
addition, it is common for camera shake to include an in-plane rotational motion. From
this, it is clear that modelling camera shake as a convolution with a spatially-invariant
kernel is insufficient to fully describe its effects (see also Figure 4.1).

In general, a blurred image has no temporal information associated with it, so it is
convenient to replace the temporal integral in Eq. (4.6) by a weighted integral over a set
of camera orientations:

g∗(x) =
∫

f
(
Hθ x

)
w(θ) dθ , (4.7)

where the weight function w(θ) encodes the camera’s trajectory in a time-agnostic
fashion. The weight will be zero everywhere except along the camera’s trajectory, and
the value of the function at a point θ along the trajectory corresponds to the duration the
camera spent at the orientation θ .

4.2.3 Camera calibration

In order to compute the homography in Eq. (4.3) that is induced by a particular rotation
of the camera, we need to know the camera’s calibration matrix K. For the results shown
in this chapter, we assume that K takes the standard form

K =

⎡⎣ F 0 x0
0 F y0
0 0 1

⎤⎦ . (4.8)

This corresponds to a camera whose sensor has square pixels, and whose optical axis
intersects the sensor at (x0, y0), referred to as the principal point. We recover the focal
length of the camera from the image’s EXIF tags, and assume that the principal point
is at the centre of the image (which is typically sufficient for modelling homographies
caused by camera rotations (Szeliski 2004)).

The radial distortion present in many digital cameras can represent a significant devi-
ation from the pinhole camera model. Rather than modelling the distortion explicitly,
we pre-process images with the commercially available PTLens software1 to remove
it. A second distortion present in many digital images comes from a nonlinear intensity
mapping applied by the camera storing the image, sometimes referred to as ‘gamma
correction’. In this work, we either use raw camera output images which do not have
this nonlinearity, or preprocess the blurred images with the inverse mapping.

4.2.4 Uniform blur as a special case

One consequence of our model for camera shake is that it includes spatially-invariant
blur as a special case, and thus gives the conditions under which such a blur model

1 http://epaperpress.com/ptlens/

http://epaperpress.com/ptlens/
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is applicable. Given the definitions of R, K and H in Eqs. (4.3), (4.8) and (4.4), and
assuming θZ = 0, it can be shown (Whyte 2012) that for small θX, θY, as F →∞,

Hθ →
⎡⎣ 1 0 FθY

0 1 −FθX
0 0 1

⎤⎦ , (4.9)

which simply amounts to a translation of the image. Thus we can see that if the focal
length of the camera is large (e.g. if the camera is zoomed-in) and there is no in-plane
rotation, the blur which results from camera motion will be approximately spatially-
invariant.

4.3 The computational model

Real cameras are equipped with a discrete set of pixels, and output a discrete set of
samples of the discrete image, denoted by the vector g ∈ R

N
+ , where N = H × W

pixels for an image with H rows and W columns. We consider the sharp image also to
be discrete: f ∈ R

N
+ . We use i to index into the discrete image g, i.e. gi = g(xi), where

xi is the coordinate of the ith pixel. Likewise, we use j to index into the sharp image
f, such that fj = f (x′j) for a coordinate x′j. Finally, we note that to evaluate an image at
arbitrary (sub-pixel) locations, we interpolate from nearby pixels. In this work, we use
bilinear interpolation, whereby sub-pixel values of an image, say g(x), are interpolated
as a linear combination of the four nearest pixels.

In this discrete setting, we write the blurred image as a linear function of the sharp
image:

g∗i =
∑

j
Aij fj, (4.10)

or in matrix-vector notation,
g∗ = Af, (4.11)

where the N × N matrix A captures the discrete point spread function (PSF). Each row
of the matrix A corresponds to a single blurred pixel in g, and captures the fact that each
blurred pixel is a weighted sum of multiple sharp pixels. In most cases of blur, the light
received by each pixel in g comes from a relatively small number of nearby pixels in f.
As a result, the PSF matrix A for an image is usually sparse (i.e. contains a relatively
small number of non-zero values).

We discretise the camera orientation space into a 3D volumetric grid of size NX ×
NY × NZ, and assign each orientation θ (k) a weight wk, for k ∈ {1, . . . , K}, where K =
NXNYNZ. The set of weights w forms a global descriptor for the camera shake blur in
an image, and by analogy with convolutional blur, we refer to w as the blur kernel.

Figure 4.1(c) shows a visualisation of w, where the cuboidal volume of size NX ×
NY × NZ is shown, with the points inside representing the non-zero elements of w in
3D. The kernel has also been projected onto the three back faces of the cuboid to aid
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visualisation, with white areas corresponding to a large value, and black corresponding
to zero.

Each element wk corresponds to a camera orientation θ (k), and consequently to a
homography Hk, so that in the discrete setting, the blurred image g∗ is modelled as a
weighted sum of a set of projectively-transformed versions of f:

g∗ =
∑

k
wkT(k)f, (4.12)

where T(k) is the N × N matrix which applies homography Hk to the sharp image f.
The matrix T(k) is very sparse. For example, if bilinear interpolation is used when trans-
forming the image, each row has only four non-zero elements corresponding to the
interpolation weights for each pixel. By writing out Eq. (4.12) for a single pixel, we
obtain the discrete analog of Eq. (4.7):

g∗i =
∑

k
wk

(∑
j

T (k)ij fj
)

, (4.13)

where i and j index the pixels of the blurred image and the sharp image, respectively. For
a blurred pixel g∗i with coordinate vector xi, the sum

∑
j T (k)ij fj interpolates the value of

the sub-pixel location f (Hkxi). We will return to how Hk and the corresponding matrices
T(k) are sampled in Section 4.7.

Due to the bilinear form of Eq. (4.13), note that when either the blur kernel or the
sharp image is known, the blurred image is linear in the remaining unknowns, i.e.

given w, g∗ = Af, where Aij =
∑

k
T (k)ij wk, (4.14)

given f, g∗ = Bw, where Bik =
∑

j
T (k)ij fj. (4.15)

In the first form, A ∈ R
N×N is a large sparse matrix, whose rows each contain a local

blur filter acting on f to generate a blurred pixel. In the second form, when the sharp
image is known, each column of B ∈ R

N×K contains a projectively transformed copy
of the sharp image. We will use each of these forms in the following sections.

In contrast to this model, when the PSF is spatially-invariant, we denote the discrete
convolution kernel by a, and write

g∗ = a ∗ f. (4.16)

4.4 Blind estimation of blur from a single image

In this section, we demonstrate the effectiveness of the spatially-variant blur model
presented in Section 4.3 by using it for blind deblurring of images acquired under
camera shake. We consider single-image deblurring, where only a blurred image is
available, and use our model to replace the spatially-invariant blur model in an existing
algorithm for blind deblurring; specifically, applying our model within the algorithm
proposed by Cho & Lee (2009).
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‘Blind’ estimation of PSFs directly from images has a long history (Gull & Skilling
1984, Ayers & Dainty 1988, Fish, Brinicombe, Pike & Walker 1995), however the
particular case of camera-shake blur has attracted significant attention recently (Fergus
et al. 2006, Shan et al. 2008, Cai, Ji, Liu & Shen 2009, Cho & Lee 2009, Levin
et al. 2009, Xu & Jia 2010, Gupta et al. 2010, Harmeling, Hirsch & Schölkopf 2010,
Krishnan, Tay & Fergus 2011).

The method of Cho & Lee (2009) is similar in spirit to many other MAP-type algo-
rithms recently proposed (Shan et al. 2008, Cai et al. 2009, Xu & Jia 2010, Krishnan
et al. 2011), and proceeds by alternately updating the blur kernel and latent image, in a
multi-scale framework. The algorithm iterates over three main steps. In the first step, a
set of nonlinear filters are applied to the current estimate f̂ of the sharp image, in order
to predict the locations and magnitudes of step edges in the sharp image. This is done
using a bilateral filter (Tomasi & Manduchi 1998) to denoise the image, followed by
a shock filter (Osher & Rudin 1990) to enhance sharp edges, producing an image f̂′.
Finally, the derivatives of f̂′ are computed, and thresholded based on their orientation
and magnitude, to produce a set of sparse edge maps {p(q)}.

In the second step, these predicted edges are used to estimate the blur kernel by
solving a linear least-squares problem. Having found the kernel â that minimises this
problem, any elements whose value are below a threshold are set to zero. This encour-
ages sparsity in the kernel, and ensures that all the elements are positive. In the third step
the sharp image is estimated, using the current estimate of the blur kernel â to decon-
volve the blurred image and obtain an improved estimate of the sharp image f̂. This step
is also performed by solving a linear least-squares problem.

These three steps are applied iteratively, working from coarse to fine in a multi-scale
framework. The iterative process generally converges quickly at each scale, and 5–7
iterations are typically sufficient. The kernel-update and image-update sub-problems
involved in the algorithm of Cho & Lee (2009) are linear least-squares by virtue of the
fact that convolution is a bilinear operation on the sharp image and the blur kernel. The
fact that our blur model (given in Eq. (4.13)) is bilinear in the sharp image and blur
kernel, is the key feature that allows it to be applied within this, and other deblurring
algorithms.

Although we have chosen the algorithm of Cho & Lee (2009) to apply our blur model,
we note that many MAP-style blind deblurring algorithms consist of the same basic
blocks, alternating between updating the kernel and the latent image by solving linear
least-squares sub-problems, often in a multi-scale framework (Shan et al. 2008, Xu &
Jia 2010, Krishnan et al. 2011). As such, the following discussion can apply equally
well to a number of algorithms.

4.4.1 Updating the blur kernel

The general form of the spatially-invariant kernel-update problem (the second step) in
the algorithm of Cho & Lee (2009) is

min
a

‖a ∗ f − g‖2
2 + β ‖a‖2

2 , (4.17)
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where the first data reconstruction term measures how well the blur kernel a applied to
the current estimate of the latent image f reconstructs the observed blurred image g, and
the second term, weighted by a scalar parameter β, is the �2 regularisation of the blur
kernel a. Note that in Cho & Lee’s (2009) formulation, the data term replaces f with the
sparse edge maps p(q) produced by the nonlinear filtering of the current estimate of the
latent image f̂, i.e. has the form

∥∥a ∗ p(q) − d(q) ∗ g
∥∥2

2, where q indexes over the first
and second-order spatial derivatives, and d(q) are spatial derivative filters.

When applying our spatially-variant blur model, we modify the problem given by
Eq. (4.17) to update the spatially variant kernel w as

min
w

‖Bw − g‖2
2 + β

∑
k

wk, s.t. ∀k wk � 0, (4.18)

where B is given by Eq. (4.15). Here we have substituted our blur model into the data-
reconstruction term, and replaced the �2 Tikhonov regularisation with �1 regularisation
and non-negativity constraints on the kernel. Now, instead of simply a linear least-
squares problem to update w, we have an instance of the Lasso problem (Tibshirani
1996), for which efficient optimisation algorithms exist (Efron, Hastie, Johnstone &
Tibshirani 2004, Kim, Koh, Lustig, Boyd & Gorinevsky 2007, Mairal, Bach, Ponce
& Sapiro 2010). Similarly to Cho & Lee (2009) we use sparse edge maps p(q) which
result, after expanding B using Eq. (4.15), in a data term of the form

∥∥∑
k wkT(k)p(q)−

d(q) ∗ g
∥∥2

2.
The need for the �1 (instead of the simpler �2) regularisation arises from the differ-

ences between our kernel and convolution kernels. Fundamentally, our kernels cover a
larger space of image transformations than convolution kernels (3-parameter homogra-
phies instead of 2D image translations), and we must estimate more parameters from the
same amount of data. As a result, the PSF estimation process is liable to become poorly
conditioned, due to an increased amount of ambiguity in the data-reconstruction term.
We have observed that when simply replacing the convolution in Eq. (4.17) with our
model, but without changing the regularisation, the resulting 3D kernels contain many
non-zeros spread smoothly throughout, and do not produce good deblurred outputs (see
Figure 4.4). On the other hand, with �1 regularisation, the optimisation is more likely to
choose between ambiguous camera orientations than spreading non-zero values across
all of them. In the remainder of the chapter, we refer to the original algorithm of Cho &
Lee as MAP-�2, and our �1 regularised version as MAP-�1.

In addition to the use of �1 regularisation, we note that in order to constrain the 3D
kernel adequately, we require data from all regions of the image. This can be seen by
considering a vertical blur at the left or right-hand side of the image. Such a blur could
be explained either by a rotation of the camera about its X axis, or a rotation about its
Z axis. In order to resolve this ambiguity, we would need to look at other regions of the
image. To ensure that we use observations from all parts of the image when updating
the kernel, we modify the construction of the edge-maps p(q) from the filtered sharp
image f̂′. We simply subdivide the image into 3 × 3 regions, and apply the gradient
thresholding step independently on each.
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-PAM)b(egamiderrulB)a( �2, uniform

(c) MAP-�2, non-uniform (d) MAP-�1, non-uniform

(a) (b) (c) (d)

Figure 4.4 Blind deblurring of real camera shake. A hand-held image with camera shake (a),
captured with a shutter speed of 1 s, with the results of blind deblurring using the algorithm of
Cho & Lee with (b) a uniform blur model and (c–d) our spatially-varying blur model.
The estimated kernels are shown inset in the deblurred results. The result using our blur model in
the MAP-�1 algorithm (d) shows more detail and fewer artefacts than those using the uniform
blur model, as can be seen in the zoomed-in portions shown in the last row. Also shown is the
result when using our blur model with �2 regularisation on the kernel (c). As can be seen, the �2
regularisation is not sufficient to produce a good estimate of the kernel, and results in a deblurred
output containing many artefacts. The rotational blur kernels in (c–d) cover ±0.7◦ in θX and θY
and ±1.4◦ in θZ.
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4.4.2 Updating the latent image

The latent image update (the third step) in the algorithm of Cho & Lee (2009) is
performed in a similar way to many non-blind deblurring algorithms (Xu & Jia 2010,
Krishnan & Fergus 2009) by solving a linear least-squares problem of the form

min
f

‖a ∗ f − g‖2
2 + α

∥∥dx ∗ f
∥∥2

2 + α
∥∥dy ∗ f

∥∥2
2 , (4.19)

where dx and dy represent horizontal and vertical derivative filters, and α is a regularisa-
tion weight. Note that in Cho & Lee’s (2009) formulation, the data term also takes into
account the derivatives of f and g as well as the intensities (i.e.

∥∥a∗(d(q) ∗ f)−d(q) ∗g
∥∥2

2
is also penalised, for various derivative filters d(q)).

To apply our blur model, we simply replace the convolution in the data reconstruction
term and update the latent image as

min
f
‖Af − g‖2

2 + α
∥∥dx ∗ f

∥∥2
2 + α

∥∥dy ∗ f
∥∥2

2 , (4.20)

where A is given by Eq. (4.14). We minimise Eq. (4.20) using conjugate-gradient
descent (Shewchuk 1994).

Note that at this point, we are not able to take full advantage of the speed optimisa-
tions proposed by Cho & Lee (2009), due to their use of Fourier transforms to compute
convolutions and to perform direct minimisation of Eq. (4.19) in the frequency domain.
However, in the following section we will describe an efficient approximation of the
spatially-variant blur model which enables this.

4.5 Efficient computation of the spatially-variant model

Due to the additional computational expense incurred by using a spatially-variant blur
model instead of a spatially-invariant one, both blind and non-blind deblurring under
this model can be very time consuming. As seen in the previous section, MAP-type
deblurring algorithms typically involve solving linear least-squares problems, mini-
mising ‖Af − g‖2

2 with respect to f, and ‖Bw − g‖2
2 with respect to to w. As defined

in Eq. (4.14) and (4.15), the matrices A and B involve sums over a set of homographies
{T(k)}, where the size k of the set can be large, of the order of hundreds or thousands.

In iterative minimisation algorithms for solving such least-squares problems, we
must repeatedly compute arbitrary matrix-vector multiplications involving A and B. For
images with millions of pixels these matrices are generally too large to fit into memory,
and the matrix-vector products must be computed on the fly, by explicitly warping the
image for each homography T(k). This is by far the biggest bottleneck in the use of our
model, and means that both blind PSF estimation and non-blind deblurring are signifi-
cantly slower than for spatially-invariant blur.

To reduce the running time of the whole deblurring process, in this section we propose
an efficient approximation to the blur model from Eq. (4.12), based on the locally-
uniform ‘efficient filter flow’ proposed by Hirsch, Sra, Schölkopf & Harmeling (2010).
We begin by describing the approximation in Section 4.5.1, before demonstrating in
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Section 4.5.2 how it can be used to compute the matrix-vector products necessary for
the kernel update step (Eq. (4.18)) very quickly. In Section 4.5.3 we describe how this
approach allows us to update the sharp image (Eq. (4.20)) directly in the frequency
domain (instead of using iterative methods). The approximation allows blind deblurring
to be performed an order of magnitude faster than when using the exact forward model.
Note that concurrently with our work, Hirsch, Schuler, Harmeling & Schölkopf (2011)
proposed a similar model for efficiently computing spatially-variant camera-shake blur.

4.5.1 A locally-uniform approximation for camera shake

Hirsch et al. (2010) observe that in some cases of spatially-variant image blur, the blur
may vary slowly and smoothly across the image. In these cases, it is reasonable to
approximate spatially-variant blur as locally-uniform. Following this observation, they
propose a model for spatially-variant blur, whereby the sharp image f is covered with a
coarse grid of P overlapping patches, each of which is modelled as having a spatially-
invariant blur. The overlapping patches ensure the blur varies smoothly, while allowing
the forward model to be computed using P small convolutions. Hirsch et al. (2010)
assign each patch r a spatially-invariant blur filter a(r), and their model is given by:

g∗ =
P∑

r = 1
C(r)�

(
a(r) ∗ (m ◦ C(r)f

))
, (4.21)

where C(r) is a matrix that crops the rth patch of the image f (thus C(r)� reinserts
it via zero-padding). The vector m is the Bartlett–Hann window, and · ◦ · represents
the Hadamard (element-wise) product. Note that this model can be computed very
efficiently by computing the discrete Fourier transforms of each patch and filter using
the Barlett–Hann window fast Fourier transform (FFT), multiplying them element-wise
in the frequency domain, and then taking the inverse discrete Fourier transform of
the result. Under varying assumptions, different authors have also proposed locally-
uniform models of spatially-variant blur, which take similar forms to Eq. (4.21)
(Nagy & O’Leary 1998, Vio, Nagy, Tenorio & Wamsteker 2005, Tai, Du, Brown &
Lin 2010).

In their original work, Hirsch et al. (2010) parameterise the blur using a separate filter
a(r) for each patch r. Likewise Harmeling et al. (2010), who apply this model to single-
image camera shake removal, also estimate a separate filter per patch using the MAP
algorithm of Cho & Lee (2009). One weakness of this approach is that in textureless
regions, the algorithm of Cho & Lee may fail, and so heuristics are needed to encourage
similarity between neighbouring filters, and to detect and replace failed local kernel
estimates.

Given the forward blur model for camera shake in Eq. (4.12), which is parameterised
by a single set of weights w, we can in fact write each a(r) in terms of w. For each patch
r, we choose a(r) to be the point spread function for the central pixel ir, which is given
by the irth row of A. Since A is linear in w, we can construct a matrix J(r) such that
a(r) = C(r)J(r)w. The elements of each J(r) are simply a rearrangement of the elements
of the matrices T(k); J (r)jk = T (k)irj .
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(a) Approximately 3 × 4 patches (b) Approximately 6 × 8 patches

(c) Approximately 12 × 16 patches (d) Exact model

Figure 4.5 Approximating spatially-variant blur by combining uniformly-blurred, overlapping
patches. Using the model described in Section 4.5.1, we can efficiently compute approximations
to the spatially-variant blur model in Eq. (4.12). With a small number of patches (a), the PSF at
each pixel is visibly the sum of different blurs from overlapping patches. As more patches are
used (b–c), the approximation becomes increasingly close to the exact model (d) – at 12 × 16
patches it is almost indistinguishable.

Having written each filter a(r) in terms of w, we can then substitute this into Eq. (4.21)
to obtain the following approximation of the forward model from Eq. (4.12):

g∗ = Af = Bw �
P∑

r = 1
C(r)�

((
C(r)J(r)w

) ∗ (m ◦ C(r)f
))

. (4.22)

This equation allows the forward model to be computed quickly using only a handful
of small convolutions, which can be performed efficiently in the frequency domain.
Figure 4.5 shows how the quality of the locally uniform approximation varies with the
number of patches being used, compared to the exact model. In all our experiments, we
use a grid of 6 × 8 patches.

4.5.2 Updating the blur kernel

In iterative algorithms for estimating the blur kernel w from Eq. (4.18), we typically
need to compute the gradient of ‖Bw − g‖2

2 with respect to w, which involves com-
puting B�y for arbitrary y and B�B. In addition to being able to compute the forward
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model quickly, Eq. (4.22) provides us with a fast approximate way of computing these
products using one convolution per patch:

B�y �
P∑

r = 1
J(r)�C(r)�

((
m ◦ C(r)f

)⊗ (C(r)y)) (4.23)

B�B �
P∑

r = 1
J(r)�C(r)�XCorrMatrix

((
m ◦ C(r)f

)⊗ (C(r)f))C(r)J(r), (4.24)

where · ⊗ · represents 2D correlation, and the function XCorrMatrix constructs the
full cross-correlation matrix from a cross-correlation vector between two signals by
replicating and shifting elements. A cross-correlation matrix M for a pair of signals
u and v stores their inner-product at all possible translations of both signals. Assuming
appropriate boundary conditions, each row of M is simply a shifted version of the cross-
correlation u ⊗ v.

4.5.3 Updating the latent image fast, non-iterative non-blind deconvolution

The locally-uniform approximation allows the forward model and its derivatives to be
computed much faster using the FFT, such that we can quickly compute the A�y and
A�A products needed to perform gradient-based optimisation of the sharp image in
Eq. (4.20). However, for spatially-invariant blur, the fastest way of updating the sharp
image (in Eq. (4.19)) is not using iterative methods such as conjugate-gradient descent,
but rather using non-iterative frequency-domain deconvolution, which we outline below.
In this section we extend this method to handle spatially-variant blur, via the locally-
uniform approximation.

When blur is spatially-invariant, using Parseval’s theorem, Eq. (4.19) can be
transformed into N independent 1D quadratic minimisations in the frequency domain,
allowing the solution to be obtained directly by pixel-wise division in the frequency
domain (Gamelin 2001):

f̂ = F−1

(
F (a)∗ ◦ F (g)

F (a)∗ ◦ F (a) + α
(
F (dx)∗ ◦ F (dx) + F (dy)∗ ◦ F (dy)

)) , (4.25)

where F ( · ) takes the 2D discrete Fourier transform (computed using the Barlett–Hann
window fast Fourier transform), and F−1 ( · ) the inverse Fourier transform.

However, for spatially-variant blur, the locally-uniform approximation does not
immediately permit this. Even though each patch has a spatially-invariant blur, the fact
that the patches overlap means that the reconstruction of any blurred pixel will involve
several patches. This can be seen by inserting the locally-uniform model into the non-
blind deblurring problem in Eq. (4.20), and checking that the sum over patches lies
inside the data-reconstruction term:

min
f

∥∥∥∥∥
P∑

r = 1
C(r)�

(
a(r) ∗ (m ◦ C(r)f)

)− g

∥∥∥∥∥
2

2

+ α
∥∥dx ∗ f

∥∥2
2 + α

∥∥dy ∗ f
∥∥2

2. (4.26)

Thus, this equation cannot be minimised independently for each patch.



�

�

“9781107044364AR” — 2013/12/20 — 9:50 — page 91 — #105
�

�

�

�

�

�

4.5 Efficient computation of the spatially-variant model 91

In order to be able to estimate each patch independently, one simple solution is to
use Jensen’s inequality to obtain an upper bound on Eq. (4.26), taking the sum over
patches outside the data-reconstruction term, and expanding the regularisation terms to
also penalise individual patches. Having done this, we minimise the upper bound instead
of the original cost. We define the set of blurred patches {g (r)} and sharp patches {f (r)}
such that g(r) = m ◦ C(r)g and f (r) = m ◦ C(r)f, and estimate each deblurred patch f̂ (r)
by solving

min
f (r)

∥∥a(r) ∗ f (r) − g(r)
∥∥2

2 + α
∥∥dx ∗ f (r)

∥∥2
2 + α

∥∥dy ∗ f (r)
∥∥2

2 (4.27)

for each patch. This can be done using the direct frequency-domain method of
Eq. (4.25). Next, we estimate the full deblurred image f̂ that best matches the deblurred
patches {f̂ (r)} by minimising

∑P
r = 1
∥∥m ◦ C(r)f − f̂ (r)

∥∥2
2. This problem can be solved

independently for each pixel, yielding the following solution:

f̂ =
∑

r C(r)�(m ◦ f̂ (r))∑
r C(r)�(m ◦ m)

. (4.28)

In Figure 4.6 we compare this method of non-blind deblurring to other possibilities
for solving Eq. (4.20) with spatially-variant camera shake blur. The fast independent
method produces results which are visually very similar to those obtained using the
exact model, in a significantly shorter amount of time. Using this direct deconvolution
method to update the latent image via Eq. (4.20) during blind deblurring provides an
additional speed improvement, compared to the use of conjugate-gradient descent with
the approximate forward model.

As a demonstration of the speed-up achievable with this approximation, the examples
in Figures 4.4, 4.6 and 4.7 all took more than three hours for blind deblurring using the
exact model (implemented in Matlab and C), compared to under six minutes using the
approximation presented in this section (implemented in Matlab). The results shown
in this chapter were all produced using the approximation. The reduction in computa-
tional complexity can be quantified by comparing the exact model in Eq. (4.13) with the
approximate model in Eq. (4.22). Evaluating Eq. (4.13) requires O

(
NK
)

operations,
where N is the number of pixels in the image and K is the number of non-zeros in
w, whereas Eq. (4.22) requires O

(
N log N

)
operations (due to the use of the FFT to

compute the convolution). For a camera shake blur, O
(
K
)
� O

(√
N
)
, and thus the

approximation provides a significant reduction in computational complexity. For a
complete discussion of the computational complexity, as well as a full derivation of
the equations presented here, please refer to Whyte (2012).

Application to other non-blind deblurring algorithms
The fast, non-iterative method for non-blind deblurring presented in this section can
be used as a building block in more sophisticated non-blind deblurring algorithms.
A number of recent algorithms, which place sparse-gradient priors on the deblurred
image (Krishnan & Fergus 2009, Wang, Yang, Yin & Zhang 2008, Shan et al. 2008),
or which use more robust data-reconstruction terms (Yan, Zhang & Yin 2009, Xu & Jia
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(a) Blurred image and estimated blur
kernel

(b) Conjugate gradient descent
(20 iterations), exact model, 442 s

(c) Conjugate gradient descent
(20 iterations), approximate model,
137 s

(d) Direct independent
deconvolution of patches, 4 s

(a) (b) (c) (d)

Figure 4.6 Least-squares non-blind deblurring using the exact and approximate forward models.
Given a blurred image of size 1024 × 768 and blur kernel (a), this figure shows the results and
computation times for least-squares deconvolution with �2 gradient regularisation, using (b)
conjugate-gradient descent (CG) with the exact forward model, (c) CG with the approximate
forward model, and (d) direct deconvolution using the approach described in Section 4.5.3.
The results are visually similar using all three methods. Using CG with the approximate forward
model is much faster than with the exact model, however the direct approach takes only a
fraction of the time of either of these.

2010), involve solving sub-problems of the form of Eq. (4.19), which has a quadratic
data-reconstruction term and quadratic regularisation. As such, the non-iterative method
presented in this section can be used to extend these more sophisticated algorithms to
handle spatially-variant blur, without a substantial increase in processing time. The
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(a) Blurred image (b) Some local PSFs for (d), magnified

(c) MAP-�2, uniform (d) MAP-�1, non-uniform

Figure 4.7 Blind deblurring of real camera shake. The result of blind deblurring on a real camera
shake image (a), captured with a shutter speed of 1 s, using the MAP approach of Cho & Lee
with both the uniform and non-uniform blur models. Also shown in (b) are some of the local
PSFs generated from the blur kernel in (d) at various points in the image. In the blurred image,
most of the text on the book cover is too blurred to read. Deblurring the image with the uniform
blur model (c) allows some of the text on the cover of the book to be read, however, after
deblurring with our non-uniform model (d), all but the smallest text becomes legible.
The estimated kernels for the two models are shown inset in the deblurred results. The blur
kernel in (d) covers ±0.4◦ in θX and θY, and ±0.9◦ in θZ. Reproduced from Whyte et al. (2012)
with permission, © Springer 2012.
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results shown in Section 4.6 use the algorithm of Krishnan & Fergus (2009), modified
in this way, to perform the final non-blind deblurring.

4.6 Single-image deblurring results

In this section we present results of single-image deblurring using the MAP-�1
algorithm to estimate the spatially-variant PSF, with comparisons to results obtained
with the original algorithm of Cho & Lee (2009) on real data. Having estimated the PSF,
we apply the non-blind deblurring algorithm of Krishnan & Fergus (2009) to estimate
the final deblurred image. This algorithm is easily adapted to non-uniform blur since it
involves repeated minimisations of quadratic cost functions similar to Eq. (4.20).

Figure 4.4 shows a blind deblurring result on an image blurred by real camera shake.
Our algorithm is able to model and remove the blur, while the results with the original
algorithm contain visible artefacts. This is explained by both the wide field of view,
and the fact that the kernels estimated using our algorithm exhibit significant in-plane
rotation. Also shown is the result of using �2 regularisation on the spatially-variant
kernel. As discussed in Section 4.4.1, the kernel produced is not sparse, and as a result
the deconvolved output exhibits many artefacts compared to the MAP-�1 result.

Figure 4.7 shows another example of single-image deblurring, using the MAP algo-
rithm. While the uniform blur kernel provides a reasonable estimate of the true blur, and
allows us to resolve some of the text on the book’s cover, the use of our non-uniform
blur model provides a clear improvement, and makes almost all the text legible.

Additional blind deblurring results of real camera shakes are shown in Figures 4.1
and 4.6.

4.6.1 Limitations and failures

Since the MAP approach to blind deblurring attempts to solve a non-convex minimi-
sation problem, it is not possible to guarantee a globally optimal solution. However, in
practice we have found the MAP-�1 algorithm to be capable of deblurring a wide range
of images with large blurs – the blurs removed in this chapter are up to 35 pixels wide
(e.g. Figure 4.7) – for both uniform and non-uniform blur. For our model, this corre-
sponds to around 3–5◦ of rotation around each axis for a photograph whose width and
focal length are both 1000 pixels. This is due in large part to the multi-scale approach;
by finding a sequence of solutions at increasingly fine resolutions, the large scale struc-
tures in the blur kernel and sharp image are resolved before the fine details.

Nevertheless, failures do occur and Figure 4.8 shows such a case. We have observed
failures caused by several factors, including a high level of noise in the input images,
an excessively large blur, or an unknown nonlinear camera response function. Also, the
algorithm may fail when the edge-based heuristics which guide the blind deblurring do
not match the particular image being estimated; for example, in an image that contains
only fine-scale texture with no large-scale step edges.
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(a) Blurred image (b) Deblurred result from
MAP-�1 algorithm

(c) Kernel estimated by
MAP-�1 algorithm

qY

q Z

qX

Figure 4.8 Blind deblurring failures. A blurred image (a) with the deblurred result (b) and
kernel (c) estimated by the MAP-�1 algorithm. This image contains a large amount of noise, and
was captured with a camera-phone whose response function is unknown. As a result, the
algorithm fails to estimate a good kernel, and instead returns a kernel which is close to a delta
function.

Since we have assumed that camera translation has a negligible blurring effect, our
model (and the uniform model too) is unlikely to produce good results on images
for which this is not true, due to the depth-dependent blur produced. As discussed in
Section 4.2, this is unlikely to be a problem on most shaken images, except for close-up
photos where the subject is less than about 1 m from the camera.

4.7 Implementation

The implementation of the algorithm of Cho & Lee (2009) is our own, and we use this
implementation for both uniform and non-uniform blur models when comparing results.
A binary executable for Cho & Lee’s (2009) algorithm is available, however we did not
observe an improvement in the results obtained, and thus use our own implementation
to permit a fairer comparison between the results from the uniform and non-uniform
blur models. The implementation of the non-blind deblurring algorithm of Krishnan &
Fergus (2009) is based on Matlab code made available online by the authors2.

Sampling the set of rotations
One important detail to consider is how finely to discretise the orientation parameter
θ . In the discrete case, each grid point θ (k) corresponds to a transformation matrix
T(k) in the sum in Eq. (4.12). Undersampling the space of orientations will affect our
ability to reconstruct the blurred image accurately, but sampling it too finely will lead
to unnecessary computation. Since the kernel is defined over the three parameters θX,
θY and θZ, doubling the sampling resolution increases the number of kernel elements
by a factor of eight. In practice, we have found that a good choice of grid spacing is
that which corresponds to a maximum displacement of 1 pixel in the image. Since we
are fundamentally limited by the resolution of our images, reducing the spacing further

2 http://cs.nyu.edu/~dilip/research/fast-deconvolution/

http://cs.nyu.edu/~dilip/research/fast-deconvolution/
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leads to redundant orientations, which are indistinguishable from their neighbours. We
set the size of the 3D kernel in terms of the size of the blur we are attempting to remove,
typically a few degrees along each dimension of θ , e.g. [−5◦, 5◦].

Multiscale implementation
Most successful blind kernel estimation algorithms here are applied within a multiscale
framework, starting with a coarse representation of image and kernel, and repeatedly
refining the estimated kernel at higher resolutions. In the case of single-image deblur-
ring, this is essential to avoid poor local minima; however, in our case, it is also impor-
tant for computational reasons. At the original image resolution, the kernel may have
thousands or tens of thousands of elements, however very few of these should have
non-zero values.

Thus, in all of the applications presented in this chapter, which estimate the kernel
iteratively, we use our current estimate of the kernel ŵs at a scale s to constrain our
estimate at the next iteration. To do this, we define an ‘active region’ where ŵs is non-
zero , and constrain the non-zeros at the next iteration to lie within this region. By
clamping many kernel elements to zero, we eliminate a large amount of computation
and memory requirements associated with estimating those elements’ values. We first
build Gaussian pyramids for the blurred image, and at the coarsest scale s = 0, define the
active region to cover the full kernel. At each iteration, we find the non-zero elements
of our current estimate of the kernel ŵs, and dilate this region using a 3 × 3 × 3 cube
to define the active region for the next iteration. When moving from one scale s to the
next scale s+1, we upsample ŵs using bilinear interpolation, find the non-zero elements
of this upsampled kernel and, as before, dilate this region using a 3 × 3 × 3 cube. This
initialises the active region for our next estimate ŵs+1. We repeat this process at each
scale until we have found the optimal kernel at the finest scale.

This approach is generally effective at reducing the computational burden of the
kernel estimation without reducing accuracy. However, problems may occur if the blur
kernel contains long faint structures, as it is possible for these to be clamped to zero at
a coarse scale and never be recovered.

Running time
For a 1024 × 768 image, our C implementation of the exact model in Eq. (4.12) takes
approximately 5 s to compute, compared to 2 s for our Matlab implementation of the
approximate forward model in Eq. (4.22), on an Intel Xeon 2.93 GHz CPU.

Our implementation, in Matlab and C, of the MAP-�1 algorithm for spatially-variant
blur takes over three hours to deblur a 1 MP (1024 × 768) image, depending on the
size of the blur. This is a significant departure from the spatially-invariant algorithm
of Cho & Lee (2009), who report deblurring times of under one minute using their C++

implementation. Using the efficient approximation described in Chapter 4.5, we are able
to perform blind deblurring of the same images, using our spatially-variant blur model
in under six minutes.
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4.8 Conclusion

In this chapter we have proposed a geometrically-derived model for blur caused by
camera shake. For a static scene and a camera with known focal length, we have shown
that the blur caused by camera rotation can be modelled using a weighted set of homo-
graphies, and have proposed a practical formulation of this model in which the blurred
image is bilinear in the sharp image and the weights. We have applied our model for
spatially-variant camera shake blur within an existing camera shake removal algorithm,
and validated the model with experiments demonstrating superior results compared to
the spatially-invariant blur model. We have also described how an efficient approxima-
tion for spatially-variant blur can be used to reduce the computational cost of computing
the spatially-variant forward blur model.

Although we have demonstrated our model only in the algorithm of Cho & Lee (2009)
for blind deblurring, it could equally be used with more recent algorithms which have
shown superior results, such as those of Xu & Jia (2010) and Krishnan et al. (2011).
Equally, faster or more sophisticated methods for non-blind deblurring, such as those
of Afonso, Bioucas-Dias & Figueiredo (2010) and Zoran & Weiss (2011), could be
extended to use our spatially-variant blur model.

Interested readers can access an online demonstration of the blind deblurring
algorithm at http://www.di.ens.fr/willow/research/deblurring/.
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5 Removing camera shake in
smartphones without hardware
stabilization

Filip Šroubek and Jan Flusser

5.1 Introduction

Processing images becomes an everyday practice in a wide range of applications in
science and technology and we rely on our images with ever growing emphasis. Our
understanding of the world is however limited by measuring devices that we use to
acquire images. Inadequate measuring conditions together with technological limita-
tions of the measuring devices result in acquired images that represent a degraded
version of the “true” image.

Blur induced by camera motion is a frequent problem in photography – mainly when
the light conditions are poor. As the exposure time increases, involuntary camera motion
has a growing effect on the acquired image. Image stabilization (IS) devices that help
to reduce the motion blur by moving the camera sensor in the opposite direction are
becoming more common. However, such a hardware remedy has its limitations as it
can only compensate for motion of a very small extent and speed. Deblurring the image
offline using mathematical algorithms is usually the only choice we have to obtain a
sharp image. Motion blur can be modeled by convolution and the deblurring process is
called deconvolution, which a well-known ill-posed problem. In general, the situation
is even more complicated, since we usually have no or limited information about the
blur shape.

We can divide the deconvolution methods into two categories: methods that estimate
the blur and the sharp image directly from the acquired image (blind deconvolution),
and methods that use information from other sensors to estimate the blur (semi-blind
deconvolution).

The main contribution of this chapter is to illustrate that blur estimation with built-
in inertial sensors is possible and to implement image deblurring on a smartphone,
which works in practical situations and is relatively fast, making it acceptable for a
general user.

5.2 Image acquisition model

In order to perform successful image deblurring, it is important to correctly model
the acquisition process. A commonly used model is the following. Let u(x) : � ⊂
R

2 → R, x = [x, y], be an original latent image describing a real scene, where � is
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(a) Out-of-focus blurs (b) Camera shake blurs

Figure 5.1 Examples of real camera blurs. (a) Blur caused by an out-of-focus lens with different
lens parameters (focal length and aperture size); notice the polygonal shape clearly visible in the
central image, which corresponds to the aperture opening of a 7-blade diaphragm; (b) blurs
caused by camera motion during exposure.

a rectangular image support. A first-order approximation of degradation acting on u is
twofold: degradation linear operator H and additive noise n. Then the output of acqui-
sition is a degraded image g given by a relation

g = Hu + n . (5.1)

The difficulty with H is that it is ill-conditioned, which means that during inversion noise
n gets amplified and the solution is unstable. We face an ill-posed inverse problem that
requires special handling.

5.2.1 Space-invariant model

The most common type of degradation, which is considered in this chapter, is
convolution:

[Hu](x, y) = h ∗ u =
∫
�

u(s, t)h(x − s, y − t) ds dt , (5.2)

This definition extends to any number of dimensions and not just R2. For example, in
confocal microscopy, convolution is in R

3. Function h is a convolution kernel (or simply
blur) and defines the behavior of the convolution operator. It is also called a point spread
function (PSF), because h is an image the device would acquire after measuring an ideal
point source δ(x) (delta function). Image blur due to camera motion or improper camera
focus setting can be in simple cases modeled by convolution. The PSF size influences
the degree of blurring and the PSF shape reflects the physical nature of blurring. For
example, an out-of-focus camera lens causes PSFs of various shapes depending on the
lens aperture, while camera motion causes curvy PSFs, where the curve shape is related
to the trajectory of the motion; see Figure 5.1. There are a wide range of imaging
devices in which the acquisition process can be modeled by convolution. Apart from
devices with classical optical systems, such as digital cameras, optical microscopes or
telescopes, convolution degradation occurs also in atomic force microscopy (AFM) or
scanning tunneling microscopy (STM), where the PSF shape is related to the measuring
tip shape. Media turbulence (e.g. the atmosphere for terrestrial telescopes) can cause
blurring that can be modeled by convolution, and there are many more examples.
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5.2.2 Space-variant model

To make convolution more general, it is often necessary to allow the PSF to change over
the image. This is called space-variant convolution, though strictly speaking it is no
longer mathematical convolution. Using space-variant convolution we can model more
general degradations, such as blur induced by complex camera motion and rotation,
out-of-focus blur in a wide-depth scene, or blur due to hot-air turbulence.

The operator H can be written in a form naturally generalizing standard
convolution as

[Hu](x, y) =
∫
�

u(s, t)h(x − s, y − t, s, t) ds dt (5.3)

with h now dependent on the position (x, y) in the image. Convolution in Eq. (5.2) is a
special case of Eq. (5.3) with h(s, t, x, y) = h(s, t) for any position (x, y). It is valid to
refer to h(s, t, x, y) as a space-variant PSF (or kernel), for the function h(s, t, x, y) taken
as a function of two variables with fixed x and y, describes how a delta function at (x, y)
spreads its energy in space after degradation by H. In many real scenarios h changes
slowly with respect to (x, y) as discussed in Section 5.3.3. In this case, the operator H
can be locally approximated by convolution with h̃(s, t) = h(s, t, x, y) in a neighborhood
of the point (x, y).

It is worth noting that we can interpret the physical meaning of the PSF in two
different ways. The standard view is that the PSF tells us how a point source is spread in
space. The blurred image is obtained by spreading every pixel and summing the contri-
butions of all pixels. The other interpretation is that the PSF is a weighted window.
The blurred image is calculated by performing weighted averaging around every pixel.
In the case of space-invariant convolution both views are equivalent. However in the
case of space-variant convolution, this is not true and we assume the first interpretation,
which describes the physical nature of the blurring phenomenon.

In practice, we work with a discrete representation, where the same notation can be
used with the following differences: PSF h is defined on a discrete set of coordinates,
the integral in Eq. (5.3) becomes a sum, operator H corresponds to a matrix and u to a
vector obtained by concatenating columns of the image into one long vector. Using the
vector–matrix notation, Eq. (5.1) may be written as

g = Hu + n . (5.4)

In the space-invariant case, H is a convolution matrix (block Toeplitz matrix with
Toeplitz blocks) and each column of H corresponds to the same kernel. In the space-
variant case, as each column corresponds to a different position (x, y), it may contain a
different kernel h(s, t, x, y).

5.3 Inverse problem

A standard formulation of the image deblurring problem is a stochastic one (Campisi &
Egiazarian 2007) which assumes that images and PSFs are random vector fields
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(Rosenfeld & Kak 1982) with known prior probability density functions p(u) and p(h),
respectively. The Bayesian paradigm dictates that the inference on the latent image and
PSF should be based on the posterior probability

p(u, h|g) ∝ p(g|u, h)p(u)p(h) , (5.5)

where u and h are assumed to be independent. The conditional density p(g|u, h) is given
by our model Eq. (5.1) and is equal to the probability density function of noise n,
which is typically normally distributed, p(n) = N(0, σ 2). The prior p(u) forces some
type of image statistical characteristics – typically we assume sparse distribution (e.g.
Laplacian) of image derivatives (Rudin, Osher & Fatemi 1992). The prior p(h) can be
similar to p(u), but it is often rectified to force positivity. Estimating the pair (Û, ĥ)
is equivalent to maximizing the posterior p(u, h|g), which is commonly referred to as
the maximum a posteriori (MAP) approach. Note that maximization of the posterior is
equivalent to minimization of −log p(u, h|g).

5.3.1 MAP and beyond

The classical solution to the blind deconvolution problem is maximizing the posterior
probability p(u, h|g) with respect to both u and h (known as the MAPu,h approach).
However, the posterior has a very uneven shape with many local peaks, and alternating
maximization often returns an incorrect solution.

Typically the priors are defined in some other domain than the image domain and
are assumed to be independent and sparse, p(u) = �ip(φi(u)), where φi is a function
mapping the image into the other domain. A common choice of φ is an image gradient
with p favoring sparse distributions, i.e. log p(u) = −∑i

1
2γ |∇ui|p +C for 0 � p � 1. In

the vector matrix notation this can be expressed as log p(u) = − 1
2γ uTLp

uu, where Lp
u is

a symmetrical sparse matrix with elements related to ∇u. In the case of p = 2 (Gaussian
prior), L2

u is independent of u and is equal to the Laplacian, which we denote simply
as L. A detailed derivation of these relations is provided in Sroubek & Flusser (2005).

The most common method of finding MAPu,h is to alternate between minimization
of −log p(u, h|g) with respect to u and h. It is a well-known fact that this leads to the
so-called “no-blur” solution, i.e. the most probable solution is that h is a delta function
and u = g, which is clearly a solution we want to avoid. It is important to note that
the posterior p(u, h|g) has a local extreme for the true u and h, which can be reached
if we initialize the alternating minimization close to the true solution. Many authors
(Molina, Mateos & Katsaggelos 2006, Fergus, Singh, Hertzmann, Roweis & Freeman
2006, Jia 2007, Shan, Jia & Agarwala 2008, Levin, Weiss, Durand & Freeman 2009)
tried to alleviate this problem by searching for more sophisticated priors that would
better match the natural image statistics. Unfortunately, mainly due to the fact that
blur reduces image variance, most of these priors still favor the blurred image over the
sharp one as pointed out by Levin et al. (2009). Levin further demonstrated in Levin,
Weiss, Durand & Freeman (2011) that a proper estimator matters more than the shape
of priors. Marginalizing the posterior with respect to the latent image u and maximizing
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p(h|g) =
∫

p(u, h|g)du leads to the correct solution. This is referred to as the MAPh
approach. Once we estimate ĥ, we can estimate the sharp image as

uMAP = argmax
u

p(u, h = ĥ|g). (5.6)

The marginalized probability p(h|g) can be expressed in a closed form only for simple
priors that are not sparse. Otherwise approximation methods such as variational Bayes
(Miskin & MacKay 2000, Fergus et al. 2006) or the Laplace approximation (Galatsanos,
Mesarovic, Molina & Katsaggelos 2000) must be used. For example, using the Laplace
approximation

log p(h|g) ≈ log p(u = uMAP, h|g)− 1
2

log|A| + C , (5.7)

where |A| denotes determinant of the variance of p(u = uMAP, h|g) with respect to u. If
we assume a simple Gaussian prior, log p(u) = −∑i

1
2γ |φi(u)|2 + C = − 1

2γ uTLu + C

then the Laplace approximation is exact with A = HTH
σ 2 + L

γ
, uMAP has a closed-form

solution and so does p(h|g). In a general case of sparse priors, we can use the above
equation as an update equation for ĥ = argmaxh p(h|g) and also iteratively update uMAP

in Eq. (5.6). The variational Bayes factorizes the posterior p(u, h|g) and approximates
it by q(u)q(h), which can then be solved by alternating maximization. As derived in
Molina et al. (2006), for example, the variational Bayes leads to a very similar update
equation (Eq. (5.7)) for h, where the second term 1

2 log|A| is replaced by 1
2 hTcov(q(u))h.

In the case of the simple Gaussian prior, cov(q(u)) = A−1. Both in the Laplace approx-
imation Eq. (5.7) and the variational Bayes, the second term plays a crucial role, since
it favors kernels with more blur and penalizes the “no-blur” solution. This brings us to
an interesting conclusion that the iterative algorithms of the approximation techniques
are very similar to the classical MAPu,h approach with an additional term that penalizes
blurs close to delta functions. This conclusion suggests that even MAPu,h should work
if a better numerical method is applied.

There are several other modifications (or maybe better to say tweaks) used in blind
deconvolution methods, which are often only briefly mentioned in the literature but
we believe play a key role and largely improve results in practice. The first one is
that in the blur estimation step we use ∇u instead of u. From the perspective of the
data model this formulation is equivalent, since ∇g = h ∗ ∇u. One possible reason
for the advantage of derivatives is that it fits better with our model that the image
prior is a product of independently and identically distributed variables. An algebraic
explanation is that the deconvolution system solved in every iteration is better condi-
tioned. The second modification is that the current blind deconvolution methods, such
as Xu & Jia (2010), start the estimation process with a very high noise variance (σ 2) and
slowly decrease it to the correct level. A similar idea is used in simulated annealing and
has the effect that low frequencies (overall shape) of blurs are estimated first and then
the high frequencies (details). The third modification is that the blur and image are esti-
mated in a coarse-to-fine framework, using pyramidal representation of the input blurred
image. This has an effect similar to the second modification. However, numerically, the



�

�

“9781107044364AR” — 2013/12/20 — 9:50 — page 105 — #119
�

�

�

�

�

�

5.3 Inverse problem 105

coarser levels have smaller dimensions and so are easier to solve. It is thus possible that
a combination of the coarse-to-fine approach and a gradual variance decrease make the
whole system more robust in practice. Last but not least, it is necessary to constrain h to
avoid local minima. Recent methods propose to use prior p(h) such that only positive
values are allowed and sometimes support constraints are also added. Blur kernels are
in general much smaller than the image and it is therefore wise to constrain the blur
support and effectively decrease the dimensionality of the problem.

5.3.2 Getting more prior information

There are various ways to get additional information about the degradation process so
that the blind deconvolution problem addressed in the previous Section 5.3.1 is better
conditioned and thus easier to solve.

One approach is to use multiple degraded images of the same scene. This is called
multichannel blind deconvolution. The estimation of blurs from multiple observed
images is based on a simple but fundamental idea. Let us assume that we have k > 1
images gk that are derived from the original image u according to our space-invariant
model

gk = hk ∗ u + n . (5.8)

The PSF hk is different for every k. Let ĥk denote our estimated PSFs. In the case of no
noise, for every pair of images gi, gj, i �= j

gi ∗ ĥj − gj ∗ ĥi = 0 , (5.9)

if ĥk = hk. This simple relation, which exists only in the multichannel case, gives us
means to estimate PSFs directly from blurred images and forms the key idea of all the
multichannel blind methods discussed below.

One of the earliest intrinsic multichannel (MC) blind deconvolution methods (Schulz
1993) was designed particularly for images blurred by atmospheric turbulence.
Harikumar et al. (Harikumar & Bresler 1999) proposed an indirect algorithm, which
first estimates the blur functions (published earlier for 1D signals in Gurelli & Nikias
(1995)) and then recovers the original image by standard non-blind methods.

Giannakis et al. (Giannakis & Heath 2000) developed a similar algorithm based
on Bezout’s identity of coprime polynomials which finds restoration filters, and by
convolving the filters with the observed images recovers the original image. Pai et al.
(Pai & Bovik 2001) suggested two MC restoration algorithms that estimate the orig-
inal image from the null space directly, or from the range of a special matrix. Another
direct method based on the greatest common divisor was proposed in Pillai & Liang
(1999). Interesting approaches based on the ARMA (autoregressive moving average)
model are given in Haindl & Šimberová (2002). MC blind deconvolution, based on
the Bussgang algorithm, was proposed in Panci, Campisi, Colonnese & Scarano (2003)
and performs well on spatially uncorrelated data, such as binary text images and spiky
images. Most of the algorithms lack the necessary robustness since they do not include



�

�

“9781107044364AR” — 2013/12/20 — 9:50 — page 106 — #120
�

�

�

�

�

�

106 Removing camera shake in smartphones without hardware stabilization

any noise assumptions in their derivation and miss regularization terms. Šroubek et al.
proposed an iterative MC algorithm (Šroubek & Flusser 2003) that performs well even
on noisy images. It is based on least-squares deconvolution by anisotropic regulariza-
tion of the image and between-channel regularization of the blurs. Another drawback of
the MC methods is that the observed images must be spatially aligned, which is seldom
true. A first attempt in this direction was done by Šroubek et al. in Sroubek & Flusser
(2005), where they proposed MC blind deconvolution of images which are mutually
shifted by unknown vectors. The same team extended this idea to superresolution in
Šroubek, Cristóbal & Flusser (2007). In superresolution, the physical resolution of the
image is increased, which is equivalent to considering both convolution and downsam-
pling in the degradation operator H.

Another possibility is to acquire a pair of images: one correctly exposed but
blurred and one underexposed (noisy) but sharp. Then we can apply the above MC
blind deconvolution methods, which are even better posed, as demonstrated in Tico,
Trimeche & Vehvilainen (2006), Yuan, Sun, Quan & Shum (2007), Šorel & Šroubek
(2009).

Blind deconvolution in the MC framework is in general a well-posed inverse problem
due to the existence of the relations in Eq. (5.9). However, in many practical situations
we do not have multiple observations of the same scene, which would differ only by the
convolution kernel, and we must revert to the single-channel methods in Section 5.3.1
or try parametric methods.

Parametric methods assume a certain set of plausible blurs that are fully described
by a few parameters. Inference is done on the parameters and not on the blur function
itself, which would be an intractable problem since the dimensionality of the blur func-
tions is too high. A classical example is the blur caused by camera motion, which is
limited by six degrees of freedom of a rigid body motion, most commonly decomposed
to three rotations and three translations. The main obstacle when dealing with this type
of blur is that for translations, the blur depends on scene distance (depth). As a conse-
quence, under general camera motion, we need to estimate the depth map, which makes
the algorithm complicated and time consuming. Nevertheless, there are algorithms that
work satisfactorily, assuming certain additional constraints on the camera motion. We
refer interested readers to Šorel & Flusser (2008), Šorel, Šroubek & Flusser (2010),
Favaro, Burger & Soatto (2004), and references therein.

Here we describe a more practical approach that exploits the fact that certain types
of camera motion can be neglected in practice. The most common assumption is that
all camera translations can be neglected, making the blur independent of scene depth.
Validity of this assumption is discussed in Section 5.4. Many devices, such as modern
smartphones, are now equipped with inertial sensors (gyroscopes and accelerometers)
that can give us very accurate information about camera motion. If we are able to recon-
struct the camera path then we can recover blur and perform nonblind image deblur-
ring. This idea was recently described in Joshi, Kang, Zitnick & Szeliski (2010) using
an expensive measuring apparatus consisting of a DSLR camera and a set of inertial
sensors, where image deblurring is performed offline on a computer. Another possi-
bility is to attach an auxiliary high-speed camera of lower resolution to estimate the
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PSF using optical flow techniques as discussed in Ben-Ezra & Nayar (2004), Tai, Du,
Brown & Lin (2010). Later, in Section 5.5, we demonstrate that image deblurring is
feasible on modern smartphones without requiring any other devices.

A versatile approach applied recently in Hirsch, Schuler, Harmeling & Scholkopf
(2011) is to express the operator of blurring in a specially chosen set of PSF
bases Bi

Hu =
∑

i
diBiu (5.10)

which allows us to work with spatially varying blur in a manner similar to common
convolution. In this case, Bi are operators (in the discrete case, matrices) that perform
image warping such that images Biu correspond to all possible transforms (rotations in
our case) within a specified range of motions. Note however, that unlike common convo-
lution such operators do not commute. The set of weights di, which are our unknown
parameters, are referred to as kernels or motion density functions.

Whyte et al. (Whyte, Sivic, Zisserman & Ponce 2010) consider rotations about three
axes up to several degrees and describe blurring by the corresponding three-dimensional
kernel. For blind deconvolution, it uses a straightforward analogy of the well-known
blind deconvolution algorithm (Fergus et al. 2006) based on marginalization over the
latent sharp image. The only difference is that it uses Eq. (5.10) instead of convolu-
tion. For deblurring, following the kernel estimation phase, it uses the corresponding
modification of the Richardson–Lucy algorithm.

Gupta et al. (Gupta, Joshi, Zitnick, Cohen & Curless 2010) adopted a similar approach
but instead of rotations about x and y axes, consider translations in these directions.
Because of the dependence of translation on depth, they require that the scene is approx-
imately planar and perpendicular to the optical axis. Interestingly, in this case it is
not necessary to know the real distance because the corresponding kernel works in
pixel units. They first estimate locally valid convolution kernels by the original blind
deconvolution algorithm (Fergus et al. 2006) and estimate the corresponding sharp
image patches. In the second step, they estimate the kernels di from Eq. (5.10) using
the knowledge of both the observed image and an estimate of the sharp image made
up of the uniformly distributed patches from the previous step. They do not use all the
patches but choose iteratively a subset of patches and check consistency with the rest
by a RANSAC-like algorithm. The image is regularized by standard smoothness priors
applied separately on derivatives in the x and y directions. The kernel is regularized to
be sparse by a ‖.‖p norm applied on kernel values and to be continuous using a quadratic
penalty on the kernel gradient.

An obvious advantage of the kernel model Eq. (5.10) is that it is very robust with
respect to local non-existence of texture as well as local inaccuracies of the model used,
such as sensor saturation for example. On the other hand, it may be considerably more
time consuming than algorithms based on local approximation by convolution described
in the next section. Another disadvantage is that the actual motion may be more compli-
cated and it is difficult to combine Eq. (5.10) with other models.
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Figure 5.2 Kernel interpolation. If image blur varies slowly, we can estimate convolution kernels
on a grid of positions and approximate kernels in the rest of the image by interpolation of four
adjacent kernels.

5.3.3 Patch based

There are several types of blur that can be assumed to change slowly with position,
which allows the approximation of blurring locally by convolution. Under this assump-
tion we can estimate locally valid convolution kernels that give us a local estimate of
the PSF. This usually holds for motion blurs caused by camera shake and optical aber-
rations. For out-of-focus blur it holds only for approximately planar scenes.

The kernels are usually estimated at a set of regularly spaced positions. For estima-
tion we can use one of many available blind deconvolution methods, working either
with a single image (Fergus et al. 2006, Xu & Jia 2010) or, using more precise methods,
working with multiple images (Sroubek & Flusser 2005). If it is possible to change
camera settings, we can also fuse information from one blurred and one noisy/
underexposed image (Tico et al. 2006, Yuan et al. 2007, Šorel & Šroubek 2009).

Once the local convolution kernels are computed, they can be used to estimate the
PSF for an arbitrary position (x, y). The simplest possibility is to divide the image to
a set of regularly spaced patches, each with an assigned PSF. The patch size is chosen
such that the patches overlap and the reconstructed image is generated by blending the
reconstructed patches. Blending must be tuned to minimize blocking artifacts that tend
to appear around patch boundaries.

A more elaborate but only slightly more computationally demanding method is to
assign the estimated kernels just to patch centers (instead of the whole patch) and
approximate the PSF h in intermediate positions by bilinear interpolation as indicated
in Figure 5.2. An advantage of this solution is that the PSF changes smoothly, thus
avoiding the blocking artifacts. Moreover, the corresponding operator H can be
computed in time comparable with the time of standard convolution using the fast
Fourier transform (FFT) (Stockham 1966, Nagy & O’Leary 1998). The main reason
why this works is because simple formulae for blur operators are created as a linear
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combination of a finite set of convolution kernels. Indeed, if the PSF h is defined as a
combination of kernels

∑
i wihi, then

Hu =
∑

i
(wiu) ∗ hi . (5.11)

For linear interpolation, the weight functions wi(x, y) satisfy the constraint∑
i wi(x, y) = 1 for an arbitrary position (x, y), and wi(x, y) = 1 in the center (x, y) of the

window where the kernel hi was estimated. In Šorel & Šroubek (2009) the authors use
this model to deblur an image, provided that another underexposed image taken with
sufficiently short shutter time is available. The same model in a more versatile setup
working with only one input image and using a recent blind deconvolution method
(Cho & Lee 2009) is shown in Harmeling, Michael & Scholkopf (2010).

If the blur changes faster across the image, linear interpolation is not realistic and
produces false PSFs, which consequently leads to artifacts in the reconstructed image.
More advanced techniques, such as shape-preserving PSF morphing proposed in Šroubek,
Šorel, Horackova & Flusser (2013), should then be used instead.

5.4 Pinhole camera model

Let us consider the image a camera captures during its exposure window. Light from
a scene point xw = [xw, yw, zw]T projects on the image plane at a location x = [x, y]T;
see Figure 5.3. Using homogeneous coordinates in the image plane x̄ = [dxT, d]T, the
relation to xw is given by

x̄ = K[Rxw + t] , (5.12)

Figure 5.3 Pinhole camera model. A 3D point xw in the world coordinate system xw, yw, zw
projects into the image plane x, y at the position x. The projection is defined by a camera intrinsic
matrix, which is primarily a function of the camera focal length f. Due to camera motion during
exposure, the projected point draws a trace (2D curve) T (x, τ), which is a function of time τ .



�

�

“9781107044364AR” — 2013/12/20 — 9:50 — page 110 — #124
�

�

�

�

�

�

110 Removing camera shake in smartphones without hardware stabilization

where R (3 × 3) and t (3 × 1) are the camera rotation matrix and translation vector,
respectively. Upper triangular matrix K (3× 3) is the camera intrinsic matrix. The third
element d of the homogeneous coordinates corresponds to distance. The camera intrinsic
matrix is typically of the form

K =

⎡⎣fsx 0 cx
0 fsy cy
0 0 1

⎤⎦ , (5.13)

where f is the camera focal length, [cx, cy] is the image center and [sx, sy] is the pixel
scale.

During the exposure window the camera position and orientation may change and
therefore the extrinsic parameters R and t are functions of time τ . The projected point
x moves along a curve parametrized by τ , which we denote as T (x, τ) and call a
point trace:

T (x, τ) : x̄(τ ) = K
[

R(τ )K−1x̄0 +
1
d0

t(τ )
]

, (5.14)

where x̄0 = [xT, 1]T = [x, y, 1] is the initial location of the point in the image plane using
normalized homogenous coordinates, and d0 is the initial distance of the corresponding
3D point xw from the camera (see Figure 5.3 for an illustration of the point trace).
Assuming a constant illuminance over the exposure period, the light energy emitted
from the point is distributed evenly (with respect to time) over the trace T . This effec-
tively gives us a time parametrization of a point spread function for a given point x,
which forms the blur operator H. The space-variant PSF h(s, t, X) corresponds precisely
to the rendered trace T (x, τ). The point trace as defined in Eq. (5.14) is in the homoge-
nous coordinates T (x, τ) = [d(τ )x(τ ), d(τ )]T. The space-variant PSF h(s, t, x) can then
be expressed as follows:

h(s, t, x) =
1
T

∫
δ

([
s
t

]
− x(τ )

)
d τ , (5.15)

where T is the exposure time. The point trace in Eq. (5.14) depends on camera intrinsic
parameters K and distance d0. Unlike the camera parameters (focal length, image center
and pixel scale), which are usually known or can easily be estimated for any camera
model, the distance of 3D points (the depth map) are not readily available. We cannot
assume that the depth map is known in practice. However, only camera translation t(τ )
is influenced by the distance, and rotation R(τ ) is independent. The translation term in
Eq. (5.14) is 1

d0
Kt(τ ) and after substitution for K we see that the translation vector is

multiplied by a factor f
d0

in the x and y directions, and by a factor 1
d0

in the z direction.
Typical phone cameras have a focal length of several millimeters and objects that we
shoot are usually at least a few meters away, thus both factors are small numbers and the
influence of camera translation is negligible. Figure 5.4 illustrates influence of a 1 mm
camera translation in the x or y direction as a function of the distance of the object from
the camera. For typical phone cameras, a scene projected into the camera image plane
moves by less than a pixel if the objects are more than 2 m away.
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Figure 5.4 Influence of a 1 mm translation in x and y axes as a function of object distance from a
camera with a 28 mm focal length (35 mm equivalent). Even for relatively large sensors of 8 MP,
if the objects are 3 m away from the camera, a 1 mm translation in the plane perpendicular to the
optical axis produces a shift of less than 1 pixel in the image plane.

The above discussion allows us to focus on purely rotational motion of the camera
and this provides us with one additional benefit. Smartphones are equipped both with
accelerometers and gyroscopes. Accelerometers measure translation acceleration, which
is the second derivative of t(τ ), and gyroscopes measure angular velocity, which is
proportional to the first derivative of R(τ ). To estimate the translation vector t one has
to perform a double integration of accelerometer data along time. On the other hand,
estimation of the rotation matrix R is done by single integration of gyroscope data over
time. In double integration, accelerometer noise quickly amplifies and precision deteri-
orates shortly afterwards. This is not the case for the gyroscope data, which can give a
relatively precise estimation of rotational angles throughout the camera exposure time.
Since we assume only rotation in our camera motion model, the approximated point
trace T ′ is given by

T ′(x, τ) : x̄(τ ) = KR(τ )K−1x̄0 . (5.16)

The rotation matrix R is a function of three angles φx(τ ), φy(τ ) and φz(τ ), which are
estimated from gyroscope data – the three angular speeds ωx(τ ), ωy(τ ) and ωz(τ ) – by

φx(τ ) =
∫ τ

0
ωx(t) dt , φy(τ ) =

∫ τ

0
ωy(t) dt , φz(τ ) =

∫ τ

0
ωz(t) dt . (5.17)

Knowing the camera intrinsic parameters (K) and having the data stream from gyro-
scopes (ωx(τ ), ωy(τ ) and ωz(τ )), we can generate PSFs h(s, t, x) at any position x in the
image plane using Eqs. (5.15)–(5.17).
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5.5 Smartphone application

This section illustrates that blur estimation with built-in inertial sensors is possible
and we developed an implementation of image deblurring on a smartphone, which
works in practical situations and is relatively fast, so as to be acceptable for a general
user.

As a testing platform, we have chosen a Samsung Galaxy S II smartphone with an
Android OS. It is equipped with all the apparatus needed for our experiments; namely,
a relatively high-quality camera, motion sensors, a fast CPU, and enough RAM to
perform computations. A block diagram of the deblurring application is shown in
Figure 5.5.

We first discuss the space-invariant implementation, which assumes a single PSF in
the entire image. Then we show a simple patch-based extension for the space-variant
implementation, which applies the space-invariant method in a patch-wise manner,
which is still manageable on the tested smartphone platform.

5.5.1 Space-invariant implementation

During the photo acquisition, samples of angular velocity are recorded using the
embedded gyroscopes, which are later trimmed to fit the exposure period. An estimation
of the PSF is rendered by integrating the curve position from the recorded gyroscope
data using Eqs. (5.15) and (5.16) for X in the center of the image.

Figure 5.5 The block diagram of the smartphone application. During camera exposure, the
application records data from the built-in gyroscopes. The data is processed and PSFs are
estimated. The captured photo is divided into overlapping patches; Wiener deconvolution is
performed on every patch and the reconstructed patches are blended to generate the sharp photo.
The whole process for a 3 MP photo, entirely done on the smartphone, takes around six seconds.
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Table 5.1 Computational time (in milliseconds) of the FFT transform of grayscale images with different
sizes and different CPU settings.

Resolution No NEON, no hardware FPU NEON, 1 core NEON, 2 cores

1536 × 1152 2900 185 110
2048 × 1536 5300 330 195
2050 × 1538 – 1000 540
3264 × 2448 21200 1450 800

State-of-the-art non-blind deconvolution methods use sparse image priors and the
solution is usually found by some iterative minimization algorithms, such as in Shan
et al. (2008). However the limited computational power of the smartphone prevents us
from implementing these sophisticated deconvolution methods. We thus use a simple
and fast Wiener filter in the form

Û = G
H∗

|H|2 +�
, (5.18)

where � is an estimation of the inverse signal-to-noise ratio (SNR), and G, H and Û
are discrete Fourier transforms of the observed image g, PSF h and the estimated latent
imageÛ, respectively.

Filtering in the frequency domain treats the image as a periodic function, which
causes ringing artifacts around image borders. To overcome this problem, several tech-
niques were proposed in the literature (Liu & Jia 2008, Šorel 2012). We have found it
sufficient to preprocess the input image g by blending the opposite image borders at the
extremities of the PSF, which creates a smooth transition and eliminates the artifacts.

The intensity values of the output image Û sometimes lie outside the 8-bit range
(0–255), therefore we added optional normalization with clipping of outliers. The normal-
ization is especially useful in the case of larger blurs and scenes with high
illumination.

To convert images between the frequency and spatial domains, we use the FFT algo-
rithm implemented in the FFTW library. Utilizing a fast ARM Cortex-A9 CPU with two
cores and support for a SIMD instruction set (NEON), FFTW proved to be remarkably
fast on the tested smartphone; see Table 5.1.

Images are acquired with the native camera with a resolution of 3264 × 2448 which
we then rescale to 2048× 1536 to take advantage of a better performance of the FFTW
when the image size is a factor of small primes. Image downsampling has a negligible
effect on the image quality, because native camera resolution is unnecessarily high. The
optical system of the camera has a very small aperture, which, because of diffraction
and optical aberrations, limits the number of pixels that can be effectively captured by
the image sensor.

To perform Wiener filtering, the FFT must be applied several times: once for the PSF
and twice (forward and backward) for each color channel. That yields a total of 7 FFT
operations. With some overhead of bitmap transfers, the deconvolution phase for the
image resolution 2048 × 1536 takes about 2.6 s. The whole process, starting from the
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(a) Captured image (b) Reconstructed image (c) PSF

Figure 5.6 Examples of space-invariant deconvolution on the smartphone.

moment the camera shutter closes, takes a little over 6 s. This includes image resizing,
PSF estimation, compressing and saving the original and deblurred image files.

In Figure 5.6 we display several of our results together with the PSFs calculated from
the gyroscope data. The results were all computed with the signal-to-noise parameter
� set to 0.01. This value was determined experimentally to provide the best looking
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(a) Captured image (b) Reconstructed image (c) PSF

Figure 5.7 An example of reconstruction artifacts in the space-invariant implementation due to
the space-variant nature of degradation.

results. The original intention was to set � in proportion to the ISO value extracted
from EXIF data of the photo, which should determine the amount of noise present in
the image. However, we found the dependency of � on ISO negligible. This behavior
can be explained by the denoising step performed internally by the camera module.

5.5.2 Space-variant implementation

Performance of the space-invariant implementation (as seen in Figure 5.6) is by no
means consistent. Deconvolved images are impaired by visual anomalies worsening
their appearance. Most often these anomalies manifest as ringing artifacts surrounding
sharp edges in the picture, as demonstrated in Figure 5.7.

The main cause is the space-variant nature of the blur that has not been considered so
far. The space-variant PSFs are particularly noticeable when rotation around the z axis
is significant. Smartphones are equipped with wide-angle lenses with a field of view
of approximately 60◦. This means that camera projection causes rotation around the x
and y axes to produce strongly space-variant blur in areas close to image borders. Using
relationships in Eqs. (5.15) and (5.16) allows us to render a correct PSF at every pixel
of the image. However to perform image deblurring with space-variant PSFs would be
computationally expensive since we cannot use the Wiener filter. Instead we break the
image into overlapping patches and generate one PSF in every patch using Eq. (5.16) at
the center of the patch. An example of dividing the image into 6 × 8 patches with
25% overlap and generating the corresponding PSFs is illustrated in Figure 5.8. In
every patch we apply the Wiener filter (including edge tapering and normalization) as
described in the space-invariant implementation in Section 5.5.1. Due to patch over-
laps, we blend the reconstructed patches by weighting them with appropriate Hamming
windows which produces the final image without noticeable seams between patches;
see Figure 5.12(d).

Another reason for space-variant blur, which is not connected with camera motion,
but inherent to the camera hardware design, is the shutter mechanism. Contrary to
systems with a mechanical shutter, CMOS sensors in cheap cameras are continuously
illuminated. The readout from the CMOS sensor takes several tens of milliseconds,
which results in a picture taken not at a single moment, but with a slight time delay
between the first and last pixel row. This process, called rolling shutter, is therefore
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Figure 5.8 Patch-based space-variant reconstruction. The input image is divided into
6 × 8 patches with 25% overlap. In the center of every patch, we estimate the corresponding
PSF using data from smartphone gyroscopes.

Figure 5.9 A snapshot (exposure time 1/14 s) of a point grid displayed on an LCD screen
showing the rolling shutter effect. The middle column shows a series of blur kernels rendered
using data from the gyroscope sensor shifted in time. Blurs were created from sensor data
starting 0–60 ms after a synchronization timestamp.

another cause of the blur variance as the PSF depends on the vertical position in the
image. The correct approach to PSF estimation is thus shifting the inertial sensor data
in time according to the vertical position in the image. An example in Figure 5.9 illus-
trates the rolling shutter effect. We took a snapshot of an LCD screen displaying a grid
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of white points on a black background. Due to camera motion, the points appear as
streaks on the captured image. To accurately model the PSFs at every position, it is
necessary to shift the exposure-time window in which the gyroscope data are fetched.
Let us assume that we know the precise moment when the camera exposure starts. At
the top row of the image there is no delay between the exposure start and the time when
we start reading gyroscope data. As we move down towards the bottom rows, the delay
increases as these rows are exposed later. As illustrated in Figure 5.9 for the particular
testing device, the delay between reading the first and the last row of the image is around
60 ms.

5.6 Evaluation

Removal of camera shake based on gyroscope data, as proposed in the previous section,
should give better results than the fully blind deconvolution methods discussed in
Section 5.3.1. To illustrate the algorithm’s performance, we compare the outcome of
the proposed smartphone application in Figure 5.10(b) with the state-of-the-art single-
channel blind deconvolution in Figure 5.10(c) proposed by Xu et al. in (Xu & Jia 2010).
Apart from being far more computationally demanding, Xu’s method is unable to esti-
mate the correct blurs in most of the test images we have taken with the smartphone.

The angular speed estimated by gyroscopes is obviously not absolutely precise. To
quantify the effect of gyroscope additive noise, we have conducted the following
synthetic experiment. A test image was synthetically convolved with a PSF that was
rendered using some gyroscope samples recorded previously with our mobile application
and an additive noise (SNR = 40 dB) was added to the image. The generated blurred

(a) Captured image (b) Reconstructed with (c) Reconstructed with
gyroscope blind method

Figure 5.10 Comparison of reconstruction methods. (a) Input blurred image; (b) estimated sharp
image and PSF with our smartphone application using gyroscope data; (c) state-of-the-art blind
deconvolution method proposed by Xu & Jia (2010).



�

�

“9781107044364AR” — 2013/12/20 — 9:50 — page 118 — #132
�

�

�

�

�

�

118 Removing camera shake in smartphones without hardware stabilization
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Figure 5.11 PSNR of the original and deblurred image as a function of additive gyroscope noise.
Gaussian noise of standard deviation 0–0.1 rad/s was added to gyroscope samples (angular
velocity in rad/s). The deconvolution algorithm was then applied using computed blur kernels
based on these altered gyroscope measurements. The graph shows mean values of
50 realizations for each of the noise levels.

image imitated a photo that one typically acquires with a smartphone. We then tried to
deblur the image using the same gyroscope samples but this time corrupted by additive
noise to simulate errors in sensor measurement. The PSNR, where PSNR = 10log10
(|�|2552/‖u−Û‖2) (dB), of the results as a function of noise standard deviation (rad/s)
in gyroscope samples is summarized in Figure 5.11. The graph clearly shows that the
performance of deblurring quickly deteriorates as the noise level increases. Note that
a fall of 1 dB in PSNR has a dramatic visual effect on the image quality. The gyro-
scope noise level typically encountered in motion sensors inside mobile devices (in our
case, a Samsung Galaxy S II) is 0.007 rad/s for our sampling rate, which is depicted
by the vertical dashed line in the graph. We can see that this noise level is associated
with a relatively small drop in PSNR, which is one of the reasons for the satisfactory
performance of the proposed smartphone application.

In Figure 5.12 we demonstrate the performance of the space-variant implementa-
tion from Section 5.5.2. The smartphone implementation divides the acquired image in
Figure 5.12(a) into 6×8 patches of 384×384 pixels with 25% overlap. PSFs generated
from gyroscope data in every patch are illustrated in Figure 5.12(c). The reconstruction
of the sharp image (Figure 5.12(d)) takes about seven seconds on the testing device.
For comparison, we also show the space-invariant implementation in Figure 5.12(b),
which assumes only one PSF is generated for the center of the image. In this particular
case, the space-variant nature of the PSFs was profound and therefore the image shows
noticeable ringing artifacts.
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(b) Space-invariant deblurring(a) Captured image

(d) Space-variant deblurring(c) Gyroscope generated blurs

Figure 5.12 An example of space-variant reconstruction. Due to the space-variant nature of the
blur, which is clearly visible in (c), the space-invariant deblurring in (b) produces reconstruction
artifacts. On the other hand, performing deconvolution patch-wise with correct blurs gives
satisfactory results (d).

5.7 Conclusions

The first half of this chapter gives an overview of current trends in blind deconvolution
methodology using Bayesian inference. Image deblurring is inherently an ill-posed
problem and we need to search for techniques that make it better posed. In general,
there are two ways to achieve this. We must either include priors, which penalize inap-
propriate images and incorrect blur kernels, or we use additional information from other
sources, such as multiple images of the same scene, parametric models or information
from inertial sensors. Our main consideration is blur caused by camera shake, which is
very common in real life and even though space-variant, can be easily parametrized.

The second half of the chapter presents an image deblurring method that can effec-
tively remove blur caused by camera motion using information from inertial sensors –
gyroscopes. The proposed method is fully implemented on a smartphone device, which
is to our knowledge the first attempt in this direction and renders the method particularly
appealing for end users. We have demonstrated that the space-invariant simplification
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for certain camera motions is plausible, but simultaneously we have uncovered intrinsic
sources of space-variant blur. The space-variant implementation of the deblurring algo-
rithm solves the complex camera motion and rolling shutter issues, which can both be
modeled by space-variant blur.

There are several topics for future research. Implementing smarter deblurring algo-
rithms that avoid ringing artifacts is viable and clearly a tempting improvement.
Gyroscope data are not precise but one can use the calculated PSFs as an initial esti-
mate and apply modified blind deconvolution methods to improve their accuracy.

Acknowledgment
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6 Multi-sensor fusion for motion
deblurring
Jingyi Yu

This chapter presents multi-sensor fusion techniques for motion deblurring. With recent
advances in digital imaging, the use of high resolution, high-speed, or high dynamic
range cameras has become common practice. However, thus far no single image sensor
can satisfy the diverse requirements of all the current industrial camera applications. For
example, high-speed (HS) cameras can capture fast motion with little motion blur but
require expensive sensors, bandwidth and storage. The image resolution in HS cameras
is often much lower than many commercial still cameras. This is mainly because the
image resolution needs to scale linearly with the exposure time (Ben-Ezra & Nayar
2003) to maintain the signal-to-noise ratio (SNR), i.e. a higher speed maps to a lower
resolution. In addition, the relatively low bandwidth on the usual interfaces such as
USB 2.0 or FireWire IEEE 1394a restricts the image resolution especially when
streaming videos at 100–200 fps.

The problem of acquiring high quality imagery with little motion under low light is
particularly challenging. To guarantee enough exposures, one can choose to use either a
wide aperture or a slow shutter. For example, by coupling a wide aperture with fast shut-
ters, we can capture fast motions of scene objects with low noise. However, wide aper-
tures lead to a shallow depth-of-field (DoF) where only parts of the scene can be clearly
focused. In contrast, by coupling a slow shutter with a narrow aperture, one can capture
all depth layers in focus. The drawback here is that slow shutters are vulnerable to fast
moving objects and will lead to severe motion blurs in the acquired images. Recent
advances in computational cameras suggest that it may be possible to fuse heteroge-
neous types of cameras. In this chapter, we present two multi-sensor fusion techniques
for handling fast motions at regular or low light conditions.

6.1 Introduction

Our multi-sensor fusion framework falls in the category of imaging hardware-based
solutions. It can be viewed as an extension to the hybrid-imaging system of Ben-Ezra &
Nayar (2003). A hybrid-imaging system usually uses a rig of two cameras. The sensor
in Ben-Ezra & Nayar (2003) combines a low resolution high speed video camera and a
high resolution low-speed SLR camera. To deblur the SLR image, it tracks the motion
of the video camera and then uses it to compute the PSF in the SLR. Their solution can
allow parallax between the SLR and the video cameras if the motion is shift-invariant,
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although it does not actively use the parallax for other purposes (e.g. scene geometry
recovery). Certain object motions can also be handled by their system (Ben-Ezra &
Nayar June 2004). In a similar vein, the design in Tai, Du, Brown & Lin (2010) aligns
the video and the SLR cameras to the same viewpoint using a beamsplitter and then
applies an iterative optimization algorithm to deblur multiple moving objects.

Our multi-sensor fusion solution (Li, Yu & Chai 2008) differs from these hybrid-
imaging systems in several ways. First, we use more than two sensors and assume rela-
tively large baselines between the sensors. As a result, images across the sensors will
exhibit strong parallax. Second, we actively use the parallax (e.g. via stereo vision) to
simultaneously estimate the moving objects’ depths and deblur the images. Finally, we
show that it is possible to integrate more than two types of sensors for other computer
vision tasks such as enhancing low-light imaging.

6.2 Hybrid-speed sensor

We construct a hybrid-speed sensor that comprises a pair of high-speed color (HS-C)
cameras and a single high resolution color (HR-C) camera (Li et al. 2008). In our real
implementation, we use a pair of Point Grey Dragonfly Express cameras as the HS-C
cameras. The Dragonfly Express captures images of resolution 320×240 at 120 fps. We
also position a Point Grey Flea2 camera on top of the two Dragonfly cameras. The Flea2
serves as the HR-C camera and captures images of resolution 1024× 768 at 7.5 fps. We
use the software solution provided by Point Grey to synchronize the HS-C cameras and
the HR-C camera so that every HR-C frame synchronizes with 16 HS-C frames. These
three cameras are connected to two SIIG FireWire 800 3-Port PCI-E cards. We attach
all three camera modules to a wood plate and mount it on two tripods, as shown in
Figure 6.1. Each camera uses a micro-lens with a 4.8 mm focal length. The two HS-Cs
are positioned about 7.5 cm away from each other and the HR-C camera is placed above
the two HS-C cameras.

Flea2

Dragonfly
Express 1

Dragonfly
Express 2

Figure 6.1 Our hybrid-speed sensor for depth estimation and motion deblurring. This sensor
combines a Point Grey Flea2 camera that serves as the HR-C camera and two Point Grey
Dragonfly Express cameras that serve as the HS-C cameras. [Adopted from Li et al. (2008).]
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Figure 6.2 The processing pipeline using our hybrid-speed sensor for motion deblurring and
depth map super-resolution. We first estimate the motion flows M1 and M2 in two HS-C
sequences. We then warp the flow to the HR-C camera as M0. To motion deblur the HR-C
image, we estimate the PSF from M0 and use the Richardson–Lucy algorithm to deblur the
image. To construct a high resolution depth map D0, we warp the low resolution depth map
estimated from the HS-C cameras to the downsampled HR-C, and use joint bilateral filters to
upsample the D′

0. [Adopted from Li et al. (2008).]

An overview of our HR motion deblurring and depth map super-resolution frame-
work is shown in Figure 6.2. We assume each frame I0 in the HR-C camera maps to two
HS-C sequences S1(t) and S2(t) (t = 1 . . .K, and in our case, K = 16). We first estimate
the motion flow fields M1 and M2 in S1 and S2 and warp them onto I0 as M0. Next,
we estimate the PSF in I0 from M0 and apply the Richardson–Lucy (R–L) algorithm to
deblur I0. Recall that I0 corresponds to K consecutive HS-C frames, therefore I0 can be
deblurred using K different PSFs, each derived from the relative motions with respect to
a specific HS-C frame. We use Ĩ0(t) to represent the deblurred result of I0 for frame t. To
generate the super-resolution depth map, we first compute a low resolution depth map
DL(t) between S1(t) and S2(t). We then warp DL(t) to the downsampled HR-C camera
as D′

0(t) and then upsample D′
0(t) using a joint bilateral filter, whose spatial kernel is

defined on D′
0(t) and range kernel defined on Ĩ0(t).

6.3 Motion deblurring

6.3.1 Motion flow estimation

We first partition each frame in the HS-C camera into multiple foreground regions �f
i

and a background region �b. To do so, we simply take a background image without
any foreground objects and then use foreground/background subtraction followed by a
graph-cut (Boykov & Funka-Lea 2006) to extract the foreground regions. We then group
all foreground pixels into separate connected regions. We assume that each region has
homogeneous motion and that the regions do not overlap. We also use the estimated
disparity map to establish correspondences between the foreground regions in the two
HS-C cameras. This allows us to individually motion-deblur each foreground region
using the method described in Section 6.3.3. Notice that since our system captures a
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sequence of images, it is also possible to directly composite the background image by
applying a median filter across the frames.

To estimate the motion flow in each region �f
i, we assume an affine motion model

between two consecutive frames although we can concatenate several successive frames
to form more complex motions. We apply a multi-resolution iterative algorithm (Bergen,
Anandan, Hanna & Hingorani 1992) to minimize the energy function:

arg minp
∑

x

[
I(w(x; p))− I′(x)

]2
w(x; p) =

(
p1x + p2y + p3
p4x + p5y + p6

)
(6.1)

where p corresponds to the motion flow parameter, and w is the warping function. In our
case, we estimate the motion flow in each HS-C camera, i.e. I = Sj(t) and I′ = Sj(t + 1),
j = 1, 2. At each frame, we use the Gauss–Newton method to find the optimal motion
(Baker & Matthews 2004).

6.3.2 Motion warping

Once we have estimated the motion flow for every foreground region �f
i in each HS-C

camera, we warp the the motion flow to the HR-C camera. Denote M1(t) and M2(t) as
the estimated motion flow samples in S1 and S2 at frame t. To compute the motion flow
sample M0(t) in the HR-C image I0, we first establish the correspondences between
S1(t) and S2(t). We use scale-invariant feature transform (SIFT) detection (Lowe 2004)
to process S1(t) and S2(t) and then perform a global matching. To remove outliers, our
algorithm uses random sample consensus (RANSAC) with projective transformations
as its precondition.

Given a pair of corresponding feature points p1 and p2 in S1(t) and S2(t), we connect
p1 with S1 camera’s center-of-project (COP) to form a ray r1. We then project r1 onto
the HR-C image I0 as a line l1. We apply a similar process to p2 to obtain line l2. Finally
we intersect l1 and l2 to obtain p0, as shown in Figure 6.3(a).

To estimate the motion flow of p0 in the HR-C camera I0, we assume p0’s corre-
sponding point p1 in S1(t) moves to q1 by motion flow M1(t), and p2 in S2(t) moves
to q2 by M2(t). Similar to the way in which we find p0, we then combine q1 and q2 to
find their corresponding point q0 in I0. We use the displacement between p0 and q0 as a
motion flow sample. To improve robustness, we average multiple motion flow samples
to compute M0(t).

Since our method combines the correspondences and the HS-C’s motion flow, our
camera is able to model more complex motions than the system proposed by Ben-
Ezra and Nayar. In Ben-Ezra & Nayar (2003), the motion flow in the HR-C camera
is assumed to be identical to the one estimated by the HS-C camera. This is only valid
for planar motions. Our method estimates the motion flow for each foreground region
�

f
i separately, and warps it using the correspondences. Therefore, we can compute the

motion flow for each foreground object in I0, even if they lie at different depths or
move along different trajectories. Notice that the accuracy of our motion warping relies
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(a) (b)
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Figure 6.3 Motion estimation. (a) For each correspondence pair p1 and p2 in the HS-C pair, we
project the ray that passes through p1 in S1(t) onto I0 as l1. We similarly project p2 as l2 in I0.
Finally, we compute the intersection point of l1 and l2 to find the corresponding point p0; (b) to
estimate the motion flow of p0 in I0, we use the motion flow in the HS-C cameras to find q0 and
treat p0q0 as its motion flow. [Adopted from Li et al. (2008).]

heavily on camera calibrations. In our implementations, we use the method discussed
in Zhang (2000) to calibrate all three cameras.

6.3.3 PSF estimation and motion deblurring

Recall that every HR-C frame maps to K (K = 16) HS-C frames, therefore, we can
compute the PSF with respect to each frame t. To do so, we concatenate all K discrete
motion samples M0(t), t = 1 . . .K to form a single motion path. Ben-Ezra and Nayar
proposed to use the motion centroid to construct a Voronoi tessellation for interpolating
the motion path smoothly. Notice that our HS-C camera captures at a very high frame
rate, therefore each motion sample usually only covers three to five pixels in the HR-C
image. To estimate the kernel accurately, first we align the motion path with the center
of the kernel appropriately, then resample each M0(t) into N subpixels (N = 50 in our
experiment). Next, we count the number of subpixels Np falling into p for each pixel p
covered by M0(t) in the kernel. Finally, we use this count Np to estimate the weight of
entry p in the kernel and normalize the kernel to arrive at the PSF.

Once we estimate the PSF, we can deblur the HR-C image using existing
image deconvolution algorithms (Fergus, Singh, Hertzmann, Roweis & Freeman 2006,
Yitzhaky, Mor, Lantzman & Kopeika 1998). In our implementation, we choose to use
the R–L iterative deconvolution algorithm. The R–L deconvolution always produces
non-negative gray level values and works better than linear methods if the blur kernel is
known and the noise level in the image is low. Before applying the R–L algorithm, we
first estimate the masks for each of the foreground regions in the HR-C image, obtained
by using the technique presented in Section 6.3.1. These masks are used to composite
deblurred results into a common background image. In Figures 6.4 and 6.5, we show
the motion results on captured dynamic scenes.
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(a) (b)

Figure 6.4 Motion deblurring results in a dynamic scene. The book was quickly passed over from
one hand to the other; (a) shows two original HR-C frames, and (b) shows the deblurred results
using our approach. [Adopted from Li et al. (2008).]

(a) (b) (c) (d)

Figure 6.5 Motion deblurring results with spatially varying kernels. (a) and (b) show the two
HS-C sequences; (c) shows the HR-C image with strong motion blur; (d) shows the motion
deblurred results using our method. Notice the front and back train are moving in opposite
directions at different speeds. Our method is able to motion deblur both objects. [Adopted from
Li et al. (2008).]

6.4 Depth map super-resolution

Next, we show how to use the deblurred HR-C image for generating super-resolution
depth maps.
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(a) (b) (c) (d)

Figure 6.6 Depth map super-resolution results for a static scene. (a) shows the input images from
the HS-C and HR-C cameras; (b) shows the depth map from the HS-C camera pair. The result is
upsampled using bilinear interpolation for comparison; (c) shows the reprojected low resolution
depth map onto the HR-C camera. The warped map is very noisy and contains holes; (d) shows
the upsampled results using the joint bilateral filters. [Adopted from Li et al. (2008).]

6.4.1 Initial depth estimation

First we use the two HS-C cameras and apply the graph-cut algorithm (Kolmogorov &
Zabih 2002) to estimate a low resolution disparity map with respect to the left HS-C
camera. We then convert it to the depth map DL. Next, we warp DL to the downsampled
HR-C camera as D′

0. We adopt a similar notation as in Zhang (2000): every pixel p1 in
DL is mapped to its corresponding pixel p0 in D′

0 as:

p0 = (A0 R0) (A1 R1)
−1 (p1 − A1 T1) + A0 T0 (6.2)

where p is the homogeneous coordinate of the pixel as (sx, sy, s)T, s represents the depth
of the point, A1 and A0 are the camera intrinsic matrices of the HS-C camera S1 and
the downsampled HR-C camera. R and T are extrinsic to the cameras. Here we down-
sample the HR-C to have the same spatial resolution as the HS-C camera to reduce
holes caused by missing data in the reprojected depth map. A sample depth map DL is
shown in Figure 6.6(b). Notice the depth map is incomplete because of the large baseline
between the two HS-C cameras. This is less problematic since we focus on capturing
the depth map of the moving foreground objects. However, the foreground can exhibit
some serious artifacts. For example, in Figure 6.7, the left boundary of the foreground
object in the depth map (c) partially merges with the background and the silhouette of
the toy train lacks fine details. We use the joint bilateral upsampling to reduce these
artifacts.

We choose to warp the depth map to the HR-C camera instead of warping the HR-C
image to the HS-C camera, mainly because the depth-based warping inevitably corrupts
the quality of the image by introducing holes near occlusion boundaries. Since our goal
is to construct a high resolution depth map, it is more preferable to maintain the quality
of the high resolution image than the low resolution depth map.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 6.7 Results on a toy train scene using our hybrid-speed sensor. (a) Shows the
motion-blurred image from the HR-C camera; (b) shows the motion deblurred result using the
method described in Section 6.3; (c) shows the low resolution depth map. We upsample the map
using bilinear interpolation to compare it with the bilateral filtered results; (d) is the reprojected
depth map; (e) shows the upsampling result using joint bilateral filters; (f) shows further
improved results using the joint median filter; (g) shows closeup images of the depth maps.
[Adopted from Li et al. (2008).]

6.4.2 Joint bilateral upsampling

To enhance the warped depth map, we use the joint bilateral filters. The basic bilat-
eral filter is an edge-preserving filter (Tomasi & Manduchi 1998) that uses both a
spatial filter kernel and a range filter kernel evaluated on the data values themselves.
A joint bilateral filter chooses the range filter from a second guidance image. It can
effectively combine flash and no-flash pairs (Petschnigg, Szeliski, Agrawala, Cohen,
Hoppe & Toyama 2004, Eisemann & Durand 2004), upsample the low resolution expo-
sure maps, and enhance the low resolution range maps (Kopf, Cohen, Lischinski &
Uyttendaele 2007, Yang, Yang, Davis & Nister June 2007). In our method, we also use
the joint bilateral filter for depth map super-resolution.
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Our joint bilateral filter combines the low resolution depth map D′
0 and the motion

deblurred high resolution image Ĩ0. It computes the value at each pixel p in the high
resolution depth map D0 as:

D0(p) =
1

Wp

∑
q∈�\�

Gs(‖ p − q ‖)Gr
( ∣∣∣Ĩ0(p)− Ĩ0(q)

∣∣∣ )D′
0(q)

Wp =
∑

q∈�\�
Gs(‖ p − q ‖)Gr

(∣∣∣Ĩ0(p)− Ĩ0(q)
∣∣∣) (6.3)

where Gs is the spatial kernel centered over p and Gr is the range kernel centered at the
image value at p in Ĩ0;� is the spatial support of the kernel Gs. Wp is the normalization
factor. Since the warped low resolution depth map D′

0 contains holes, we exclude the
points � that correspond to the holes.

To emphasize the color difference in the range kernel, we choose∣∣∣Ĩ0(p)− Ĩ0(q)
∣∣∣ = max

(∣∣rp − rq
∣∣ , ∣∣gp − gq

∣∣ , ∣∣bp − bq
∣∣) (6.4)

where r, g, b are the color channels of the pixel in Ĩ0. In Figure 6.6(c), we show the
reprojected low resolution depth map of resolution 320 × 240 and the enhanced high
resolution depth map in Figure 6.6(d). The joint bilateral filter significantly improves
the quality of the depth map by filling in the missing holes and partially correcting the
inaccurate boundaries (e.g. the background between the engine and carriage of the toy
train in Figure 6.6). However, the resulting boundaries still appear blurry due to the
spatial Gaussian. Although we can re-apply the joint bilateral filters on the upsampled
depth image to further improve the boundaries, we implement a simple scheme based
on the observation that with a large enough spatial support �, there should be enough
pixels with a similar color and depth to pixel p. To do so, we apply a joint median filter:
we first pick N pixels from� that have the closest color to p and then apply the median
filter on the depth values of these N pixels. In our experiment, we choose N to be 20%
of all pixels in �.

6.4.3 Results and discussion

In Figures 6.4 and 6.5, we show the motion deblurring results using our hybrid camera.
In Figure 6.4(a), we apply a motion deblurring algorithm to a dynamic scene: the book
was quickly passed over from the right hand to the left hand. Notice that the texts on
the book are unrecognizable in the original HR-C frames, but are clearly readable in the
deblurred results shown in Figure 6.4(b). The hand holding the textbook is also effec-
tively deblurred. In Figure 6.5, we use the hybrid camera to deblur spatially varying
kernels. The foreground and the background toy trains are moving in opposite direc-
tions at different speeds. Since our method estimates the PSF for each individual train
separately, using the method discussed in Section 6.3 we are able to effectively deblur
both objects.

In Figure 6.6, we validate our joint bilateral filter method for depth map super resolu-
tion in a static scene. We position a toy train on top of the rails. Notice the toy train has
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(a) (b) (c) (d)

Figure 6.8 Closeup views of a toy train scene. (a) Shows two frames from the HS-C cameras;
(b) shows a cropped region of the HR-C image; (c) shows the motion deblurred result; (d) shows
the reconstructed high resolution depth map. [Adopted from Li et al. (2008).]

complex contours. If we simply upsample the low resolution depth map obtained from
the HS-C cameras, the details of the contours disappear. Using joint bilateral upsam-
pling, we are able to recover these fine details and partially correct the erroneous bound-
aries in the depth map (e.g. the V-shaped contour between the engine and the carriage).

Finally, we show how to use the hybrid camera to motion deblur the HR-C image
and reconstruct the high resolution depth map simultaneously. Figure 6.8 shows the
results using our system in a toy train scene. We mount a star-shaped object on top
of the toy train to emphasize the accuracy of the recovered depth maps. The HS-C
and HR-C inputs are shown in Figures 6.8(a) and 6.7(a), and the deblurred results are
shown in Figures 6.8(c) and 6.7(b). Our method effectively reduces the motion blur by
recovering the text on the toy train and the contour of the star-shaped object, although
we also observe some ringing artifacts caused by the R–L deconvolution.

In Figure 6.7, we show the depth super-resolution results using joint bilateral filters.
We choose a large enough kernel size σs for the spatial Gaussian to fill in the missing
data. In this example, we set σs to be 35. We normalize the depth map to have inten-
sity between 0 and 1, and we set σr of the range Gaussian to be 0.02. Figure 6.7(c)
shows the depth map from the HS-C pair and Figure 6.7(d) shows the warped result.
The reprojected depth map is very noisy and contains many holes. Using the joint bilat-
eral filter, the depth map is significantly enhanced (Figure 6.7(e)). The seams at the
occlusion boundaries are further enhanced (Figure 6.7(f)) using the joint median filter.
Closeups are shown at the bottom of Figure 6.7. The typical upsampling rate in our
experiments is 9. Due to the camera calibration requirement, we did not further down-
sample the HS-C camera to demonstrate a higher upsampling rate, although it could
easily be achieved if we used a different HR-C camera with a higher resolution.

6.5 Extensions to low-light imaging

Our hybrid-speed sensor assumes sufficient light. However, under low light, the high-
speed cameras can incur severe noise due to insufficient exposure and produce incorrect
blur kernel estimations. In this section, we briefly discuss our recent work on extending
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(c)(b)

Camera Array

(a)

Grasshopper
(monochrome)

 Flea2
(monochrome)

Flea2
(color)

Figure 6.9 Our heterogeneous sensor for low-light imaging. (a) Our heterogeneous sensor
consists of four cameras; (b) and (c) show the mounting of the sensor for indoor and outdoor
applications. [Adopted from Li et al. (2013).]

the hybrid-speed sensor to low light imaging. We modify the sensor by combining a
single high-speed monochrome (HS-M) camera, a pair of high resolution monochrome
(HR-M) cameras, and a single high resolution RGB color (HR-C) camera. The HR-M
cameras use a wide aperture and a relatively slow shutter for acquiring images with a
low level of noise whereas the HS-M camera uses fast shutters for capturing motion
blur-free images on fast moving objects. The HR-C camera is used to capture color
information about the scene and it uses slow shutters to reduce the color noise. We call
this sensor the heterogenous sensor.

6.5.1 Sensor construction

Figure 6.9 shows the construction of the heterogenous sensor: it consists of one Point
Grey Grasshopper high-speed monochrome (HS-M) camera (top-left), one Flea2 high
resolution color (HR-C) camera (top-right), and two Point Grey Flea2 high resolu-
tion monochrome (HR-M) cameras (bottom). All the cameras are equipped with the
same Rainbow 16mm C-mount F1.4 lens. We mount the four cameras on a T-slotted
aluminum grid, which is then mounted on two conventional tripods for indoor appli-
cations. To deal with the long working range of outdoor applications, we also build a
giant “tripod” from a six foot step ladder to hold the camera array grid, as shown in
Figure 6.9(c). Since the observable regions of the cameras overlap substantially, we use
Zhang’s algorithm (Zhang 2000) directly for camera calibration.

We build a single workstation with an Intel SC5400BASE-NA chassis to control and
synchronize these cameras, and stream the image data to the storage device. All the
cameras are connected to this workstation via PCI-E FireWire adaptors. The use of a
FireWire bus allows us to synchronize the cameras using Point Grey software. In our
system, the HS-M camera captures images at 640×480×8 bit at 120 fps, the two HR-M
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Low Res Mono
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Blur Free
120 fps

High Res Color
Medium Noise

Motion Blur
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Figure 6.10 Simultaneous deblurring and denoising using our heterogenous sensor. [Adopted
from Li et al. (2013).]

cameras work at 1024×768×8 bit at 30 fps, and the Flea2 color camera captures color
images of size 1024 × 768 × 24 bit at 7.5 fps. To stream these ∼100 MB/s image data,
we connect the workstation to an external SATA disk array as the data storage device.
It is capable of writing data at 500 MB/s when configured to RAID 0, as shown in
Figure 6.9(b).

To improve the SNR in low-light imaging, we choose to use two HR-M cameras since
they gather significantly more light than the HR-C for the same sensor. This is because
monochrome sensors do not use the “Bayer array” for color filtering. Bayer arrays can
commonly filter out approximately two-thirds of the incoming light at every pixel. Also,
monochrome sensors are responsive to a much wider range of spectrums and hence have
higher light efficiency. In addition, we use wide apertures on the monochrome cameras.
However, due to large apertures the resulting images have a shallow DoF, i.e. they
exhibit strong blurs for out-of-focus regions. Our solution is to use two HR-M cameras
focusing at different parts of the scene to extend the DoF.

6.5.2 Processing pipeline

In our heterogenous sensor, every color frame region Ihrc
i captured by the HR-C camera

maps to four pairs of synchronized high resolution grayscale frames Ihrmj
p (p = 4i, . . . , 4i+

3; j = 0, 1) by the two HR-Ms, and to 16 synchronized low resolution grayscale images
Ihsm
q (q = 16i, . . . , 16i + 15) by the HS-M. Figure 6.10 shows our system pipeline for

fusing the imagery data. Specifically, we use the HR-M images as the spatial prior to
denoise HS-M and HR-C images. We then estimate motion flow using denoised HS-M
sequences to deblur the HR-C images.

The most challenging task in the pipeline is to denoise the HS-M camera using the
HR-M camera pair. Recall that the HR-M and HS-M sensors use different exposure
settings, therefore we first conduct feature-preserving tone-mapping (Mertens, Kautz
& Van Reeth 2007) on the low dynamic range HS-M image to match the intensity
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level of the HR-M images. The tone-mapped HS-M image has enhanced contrast but
still exhibits strong noise. Hence we use the HR-M images to denoise the HS-M ones.
However, the three sensors are separated by relatively large baselines and their images
exhibit strong parallax. We therefore conduct a patch-based denoising scheme: for each
noisy patch in the HS-M image, we first locate its corresponding patches in the HR-M
images via multi-view block matching, and then impose them as spatial priors in total
variation (TV) based denoising (Li et al. 2013).

The analysis of motion flows in the HS-M sequence also enables the separation of
static versus moving regions in the HR-C image. For the static region, we only need
conduct denoising and we apply the same TV-based denoising scheme by using patches
from the HR-M cameras. To deblur the moving regions, we adopt a similar approach to
Section 6.3 to estimate the PSF in the HR-C image. The main difference is that the HR-C
image is corrupted by both blur and noise under low light. As a result, direct deconvolu-
tion can lead to large errors. Our approach is to apply the simultaneous deblur/denoise
scheme (Wang, Yang, Yin & Zhang 2008, Krishnan & Fergus 2009, Li et al. 2013).

6.5.3 Preliminary results

We have conducted preliminary experiments on our heterogeneous sensor.

Synthetic scenes
To compare our hybrid denoising algorithm with BM3D quantitatively, we generate a
pseudo multi-camera array and render the scene using Autodesk R© 3ds Max R©. Specifi-
cally, the HR-M cameras are rendered at a resolution of 1024 × 768 with aperture f/8,
the HS-M camera at 640 × 480 with aperture f/22, and the HR-C at 1024 × 768 also
with aperture f/22. All cameras have a focal length of 135 mm. We construct a scene
with a moving paper cup with constant velocity 66.18 cm/s parallel to the image plane
of the sensor. We focus one HR-M camera on the front of the table and the second
one on the background orchid. To simulate motion blurs, we render 16 frames from the
HR-C camera and average them as the motion-blurred HR-C image. To simulate noisy
HS-M and HR-C images, we add zero-mean Gaussian noise of variance 0.09 and 0.03,
respectively.

Figure 6.11 shows our denoised HS-M images. We compare our approach with BM3D
(Dabov, Foi, Katkovnik & Egiazarian 2007) using the peak signal-to-noise ratio (PSNR)
in decibels (dB). Our algorithm not only outperforms BM3D by 0.24 dB but also
preserves fine details better, such as the texture of the table, the text on the paper
cup, and the contour of the background orchid. In Figure 6.12, we show our deblur-
ring/denoising result of the synthetic HR-C image. We first estimate the motion infor-
mation of the paper cup from the denoised HS-M image sequence and then compute
the PSF to conduct non-blind deconvolution of the HR-C image. Finally, we apply our
hybrid denoising technique. The deblurring/denoising process is applied on individual
color channels and the results are then combined. Our approach is able to partially
recover the text on the moving cup, even though it is corrupted by noise. It also increases
the PSNR from 17.69 dB to 22.95 dB on the HR-C image.
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Figure 6.11 Path-based denoising on a sample image in a synthetic scene. From left to right: the
synthesized low-light image captured by the HS-M camera, the BM3D denoising result, and our
result. [Adopted from Li et al. (2013).]

Figure 6.12 Image deblurring/denoising on a sample HR-C image. From left to right: the
motion-blurred HR-C image, our deblurring/denoising result, and closeup views of the moving
object. [Adopted from Li et al. (2013).]

Real scenes
Figure 6.13 shows an indoor scene of a toy train moving in front of a cluttered back-
ground. We focus one HR-M camera on the toy train and chocolate box at the front, and
the second on the book in the background. Defocus variations due to large apertures
can be clearly observed in (b) and (c). The use of large apertures, however, signifi-
cantly reduces the noise. In fact, the HR-M images exhibit very low noise and hence are
suitable for denoising the HS-M and HR-C images using our patch-based denoising.
Specifically, we first boost the contrast of the HS-M image (a) via feature-preserving
tone mapping and the result is shown in (d). However the closeup views show that
the contrast-enhanced result is still severely degraded. By applying our denoising algo-
rithm, we can significantly reduce the noise while preserving local details such as the
text on the background book and the contour of the foreground train. In contrast, the
results using BM3D appear overly smooth and exhibit artifacts near edge boundaries.
For example, the closeup view (e) shows that the BM3D result exhibits a special diag-
onal scanline noise pattern (possibly caused by the rolling shutter).
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(a) (b) (c)

(d) (e) (f)

Figure 6.13 Patch-based denoising on a sample image of an indoor scene. (a) Shows the low-light
image captured by the HS-M camera; (b) and (c) show the large aperture stereo image pair from
HR-M cameras; (d) shows the contrast enhanced (a); (e) and (f) show the denoising results of (d)
by BM3D and our method. [Adopted from Li et al. (2013).]

In Figure 6.14, we show the deblurred result on the HR-C image. We first use the
denoised HS-M sequence to estimate the PSF of the motion-blurred region in HR-C
and then simultaneously denoise/deblur the region. In this example, we only apply the
multi-view block matching algorithm on the green channel. This is because a typical
Bayer array contains twice as many green as red or blue sensors and the green channel is
less noisy. Our approach is able to reconstruct the contours of the moving train, partially
recover the text on it, and significantly reduce the noise.

6.6 Discussion and summary

We have presented two multi-sensor fusion techniques for reducing motion blurs under
sufficient and low-light conditions. Our solution leverages the latest advances on high-
speed, high resolution and multi-spectral sensors by integrating multiple types of sensors
into a unified imaging system. The multi-sensor fusion solution eliminates the need for
co-axial setups or the requirement of shift-invariant kernels in hybrid-imaging systems.
It actively exploits the parallax across the sensors for simultaneous depth estimation and
image deblurring/denoising. A downside of our solution, however, is that the system
tends to be bulky and less portable since three or more sensors are generally needed.
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Figure 6.14 Deblurring/denoising result on a sample HR-C frame. Left: the HR-C frame
(contrast-enhanced) corresponding to the HS-M/HR-M sequences in Figure 6.13; right: the
deblurred/denoised result. [Adopted from Li et al. (2013).]

Our hybrid-speed sensor aims to handle fast motions under sufficient lighting condi-
tions robustly. The sensor consists of a pair of high-speed color (HS-C) cameras and a
single high resolution color (HR-C) camera. The HS-C cameras are able to capture fast
motion with little motion blur. They also form a stereo pair and can estimate the low
resolution depth map. We estimate the motion flows in the HS-C cameras and then warp
them using the depth map onto the HR-C camera to get the PSFs for motion deblurring.
The HR-C image, once deblurred, is then used to super-resolve the depth map.

We have also demonstrated preliminary work on extending our hybrid-speed sensor
to low-light imaging. We configured a heterogenous sensor by combining a high-speed
monochrome (HS-M) camera, two high resolution (HR-M) cameras, and a single high
resolution RGB color (HR-C) camera. The HR-M cameras use large apertures to gather
more light. The HS-M camera captures fast motions without motion blurs but produces
noisy images. The HR-C camera provides color information of the scene using a slow
shutter but incurs strong motion blurs. We strategically fuse the heterogenous imagery
data from the sensors to conduct simultaneous denoising and deblurring. We are currently
conducting more thorough experiments on both synthetic and real scenes.

Our multi-sensor fusion solutions can potentially be applied to a range of imaging
tasks beyond deblurring. For example, if we ignore motion blurs, we can simplify the
hybrid-speed sensor to a hybrid-resolution stereo camera by coupling one high reso-
lution color camera with one low resolution monochrome camera. Our recent work
(Yu, Thorpe, Yu, Grauer-Gray, Li & Yu 2011) has shown that such sensors can be
used to recover high quality depth maps at interactive speeds and in addition synthesize
dynamic refocusing effects. Our hybrid-speed sensor can also be fine-tuned to acquire
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high resolution, high-speed 3D videos. In particular, we can adjust the frame rate and
the resolution of the sensors to enable more accurate PSF estimation and reliable deblur-
ring. More sophisticated super-resolution techniques such as dictionary learning based
methods can be used to generate high resolution depth maps for creating 3D video
content.
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7 Motion deblurring using fluttered
shutter
Amit Agrawal

Motion blur is the consequence of relative motion between the camera and the scene
within the camera’s exposure (shutter) time. While a sharp photo might be restored
computationally using deblurring algorithms, can we assist motion deblurring by mod-
ifying the imaging process itself ? Motion deblurring systems modify the traditional
image capture to simplify or help the subsequent deblurring process. Such systems
include but are not limited to (a) coded exposure cameras which modulate the light
integration pattern so as to make the resulting point spread function (PSF) invertible;
(b) auxiliary low spatial resolution high frame-rate cameras to help in PSF estima-
tion; and (c) auxiliary sensors such as gyroscopes/inertial measurement units (IMUs) to
assist in PSF estimation. Current digital single lens reflex (SLR) cameras and lenses
also incorporate image stabilization for handling limited motion blur, which will detect
user hand-shake and shift the image parallel to the image plane appropriately. In this
chapter, we describe coded exposure photography for motion deblurring.

7.1 Related work

Capture time solutions
Using a fast shutter speed (short exposure time) can reduce motion blur, but increases
noise and penalizes static parts of the scene. High-speed cameras capture fast motion but
require expensive sensing, bandwidth and storage, along with brilliant scene lighting.
A high-speed camera also fails to exploit the inter-frame coherence. Edgerton (1951–
63) has shown visually stunning results for high-speed objects using a modest exposure
time but an extremely narrow-duration flash. Flash, however, is impractical in outdoor
or distant scenes. In addition, it captures an instant of the action and fails to indicate the
general movement in the scene.

Smarter cameras
To overcome camera shake, newer cameras optically stabilize their lenses. Adaptive
optical elements controlled by inertial sensors compensate for camera motion to reduce
blur (Canon 2006, Nikon 2005). Alternatively, some CMOS cameras perform multiple
high-speed frame captures within normal exposure time, enabling multiple image-based
motion blur removal (Liu & Gamal 2001). These methods are able to produce clear
and crisp images, given a reasonable exposure time. Ben-Ezra and Nayar (Ben-Ezra &
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Nayar 2004) proposed a hybrid imaging system that accurately estimates the PSF using
an auxiliary low resolution high frame-rate camera, enabling deblurring even after long
exposure times. These methods compensate for camera motion but do not respond to
object motion within the scene.

Coded sampling
Binary and continuous codes are commonly used in signal processing to modulate sig-
nals with a broadband response. These include chirps that sweep the carrier over a wide
frequency band during the pulse interval. Maximum length sequences (m-sequences)
and modified uniformly redundant arrays (MURAs) are popular choices for coding and
decoding by circular convolution. Coded-aperture astronomical imaging uses MURA
codes (Gottesman & Fenimore 1989) to improve the signal-to-noise ratio while cap-
turing X-ray and gamma-ray wavelengths unsuitable for conventional lenses. However,
motion blur corresponds to linear convolution which is equivalent to circular convolu-
tion with a zero-padded sequence, and MURA codes are thus not optimal. Broadband
codes also find wide application in spread spectrum coding for noise-robust commu-
nication and in code division multiplexing (CDMA) that minimizes interference with
adjacent broadcast channels.

7.2 Coded exposure photography

In conventional imaging, the shutter is opened at the start of the exposure time and
remains fully open for the entire exposure duration. The exposure time defines a tem-
poral box filter resulting in a low-pass non-invertible PSF, leading to high spatial-
frequency content being lost in the blurred image. Deblurring motion blur due to fast
moving objects thus becomes an ill-posed problem.

Coded exposure photography (Raskar, Agrawal & Tumblin 2006) is an image capture
method that reduces the loss of high spatial frequencies in blurred images. The coded
exposure camera flutters the camera’s shutter open and closed during the exposure time
with a pseudo-random binary sequence. This results in modulation of the light falling
on the sensor, and modifies the PSF to become broadband or invertible. Unlike the
temporal box filter, the flutter pattern preserves all spatial frequencies. The deblurring
process thus becomes well-posed and the sharp photo can be easily recovered.

7.3 Image deconvolution

Let us assume 1D object motion parallel to the sensor plane with constant velocity. For
a conventional camera, the PSF h(x) corresponds to a box filter

h(x) = 1/k, 0 < x < k, (7.1)

where k is the blur size in pixels. We call such blur flat blur. The captured blurred image
i(x) can be modeled as a convolution of the sharp image of the object s(x) with the
motion PSF h(x):
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i(x) = s(x) ∗ h(x) + n(x), (7.2)

where ∗ denotes the convolution operator and n(x) denotes image noise. Since convo-
lution in the spatial domain corresponds to multiplication in the frequency domain,

I(ω) = S(ω)× H(ω) + N(ω), (7.3)

where ω denotes the frequency and capitalized symbols denote the respective Fourier
transforms. Inverse filtering (Jain 1988) can recover an estimate of the sharp image as

Ŝ(ω) =
I(ω)H∗(ω)
|H(ω)|2 . (7.4)

However, if H(ω) contains zeros, inverse filtering becomes ill-posed and noise is
severely amplified (Tikhonov & Arsenin 1977). The Fourier transform of the box
filter is a sinc function, which is zero at certain frequencies, thereby making deblur-
ring ill-posed. To overcome this problem, several previous algorithms have chosen
their reconstruction from the range of possible solutions using maximum-likelihood
estimation approaches such as Wiener filtering (Jain 1988) and the Richardson–Lucy
algorithm (Richardson 1972, Lucy 1974). The latter is a nonlinear ratio-based method
that produces non-negative gray level values.

Rather than leaving the shutter open for the duration of the exposure, the coded
exposure camera “flutters” it open and closed in a rapid irregular binary sequence. The
resulting blur pattern is called coded blur. The fluttering modulates the integration of
motion on and off in such a way that the resultant point spread function has maximum
coverage in the Fourier domain. Although the object motion is unknown a priori, the
temporal pattern can be chosen so that the convolved (blurred) image preserves the
higher spatial frequencies of moving objects and allows us to recover them by a rela-
tively simple decoding process.

7.3.1 Motion model

For 1D motion, the discrete equation for each motion line can be written as

i = As + n, (7.5)

where A(n+k−1)×n denotes the 1D circulant motion smear matrix for object size n, and
s, i and n denote the vectors of the sharp object, the blurred object, and noise intensities
along each motion line, respectively. The estimated deblurred image is then given by

ŝ = (ATA)−1ATi = s + (ATA)−1ATn. (7.6)

Assuming noise to be zero mean, independently and identically distributed (IID)
Gaussian noise with variance σ 2, the covariance matrix of the estimation error, ŝ− s, is
equal to

 = (ATA)−1ATσ 2A(ATA)−T = σ 2(ATA)−1. (7.7)
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Figure 7.1 The 1D motion blur process. Left: a time–space projection for a moving object
chopped with a code. Right: a linear system to transform the unknown image into a blurred
photo. Figure courtesy of Raskar et al. (2006). Reproduced with permission from ACM.

Given a finite exposure time of T seconds, we subdivide the integration time into
m time slices, called chops, so that each chop is T/m seconds long. The on/off chop
pattern then is a binary sequence of length m. The motion blur process is a time–space
projection (Figure 7.1), where motion in T seconds causes a linear blur of k pixels.
Hence, within one single chop’s duration, the smear covers k/m pixels. Consider the
simple case of an object moving vertically in front of a black background and evaluated
along a vertical scan line as shown in Figure 7.1. If the object length is n pixels and blur
size is k pixels, the total blurred size is (n + k − 1). Our goal is to find the best estimate
of the n pixels from the given blurred image.

The smear matrix A can be obtained as follows. Each pixel in the unknown image s
contributes to a total of k pixels after smearing. The first column of the circulant matrix
A is the PSF vector of length k followed by n − 1 zeros. Each subsequent column is
obtained from the previous one by cyclically permuting the entries one step forward. In
the case of flat blur, the time–space projection of an input signal of length n creates a
response with a trapezoidal intensity profile. The ramps have a span of k pixels each and
the plateau is n − k − 1 pixels long. For coded blur, the overall intensity profile shape
is still trapezoidal, but the shutter’s rapid flutter changes the ramps to a more jagged
shape as shown in Figure 7.1. Figure 7.2 shows a comparison of traditional imaging
with coded exposure imaging for a moving test pattern.

7.4 Code selection

Our goal is to select a temporal code that improves the invertibility of the deconvolution
process. We analyze the invertibility by studying the condition number of the coding
matrix and the variance of the frequency spectrum of the code. The invertibility of the
smearing matrix A, in the presence of uncertainty and noise, can be judged by standard
matrix conditioning analysis. The condition number is the ratio of the largest to the
smallest singular value of A and indicates the sensitivity of the solution to the noise in
the input image. We note that the eigenvalues of a circulant matrix correspond to the
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Close

Open
Shutter

Time
Close

Open
Shutter

Time

Traditional Exposur                           Coded exposure

(a) Blurred Photo (b) Blurred photo

(c) Deblurred Image (d) Deblurred image

(e) Photo of Test Setup (f) Photo of test target

Figure 7.2 The key idea behind coded exposure is to temporally sample the motion with
minimum loss of spatial frequencies. (a,b) Photos of a moving target pattern with varying spatial
frequencies show that motion blur in conventional exposure loses high spatial frequencies, but
coded exposure preserves those frequencies with attenuated magnitudes; (c,d) the deblurred
results show recovered spatial frequencies; (e,f) images of the static scene. Figure courtesy of
Raskar et al. (2006). Reproduced with permission from ACM.

magnitude of the discrete Fourier tranform (DFT) of the first column of the circulant
matrix and that each column in A is the PSF vector padded with zeros. Based on this
observation, we choose a coded sequence with a broadband frequency response so that
the corresponding condition number for the smearing matrix is as small as possible.

In theory, we could modulate the opacity of the filter continuously over time to
achieve a broadband frequency response, e.g. using a chirp-like function. However,
in practice, binary (on/off) opacity switching with fixed chop duration is much easier
to implement. Choices for broadband binary codes include Walsh–Hadamard codes,
maximum length sequences, and MURA codes. The MURA sequence may seem the
obvious choice as its discrete Fourier transform is flat. However, for motion blurring,
circular convolution occurs with the PSF vector of length k padded with n − 1 zeros,
where n is the size of the object in pixels. The DFT of a MURA pattern without
zero padding is flat. However, the DFT can resolve only the discrete frequencies with
exactness. There is spectral leakage for components falling between the DFT bins. Zero
padding results in greater resolution in the frequency components and shows the weak-
ness of MURA patterns. Thus, a MURA is not optimal for zero-padded patterns, and
prompted our search for the best possible code.

Because the decoding involves inversion of the frequency spectrum, we also add a
smoothness constraint to our search for the best binary chop pattern. The frequency
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(a) PSF DFT (b) Decoding filter DFT (c) Log singular values

(d) Covariance: box (e) Covariance: MURA (f) Covariance: ours
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Figure 7.3 Frequency, covariance and matrix conditionality analysis of codes. Each 52-length
code is padded with 300 zeros. (a) DFT of flat blur is a sinc function and frequencies with sharp
dips are lost. MURA code is better than box filter but the variance of the frequency magnitudes
is high compared to our code. Our coded filter is more efficient with a nearly constant broadband
response; (b) DFT of decoding filters show that box and MURA filters require significant
amplification of certain high frequencies; (c) the condition number can be analyzed using
singular values of the smearing matrix; (d,e,f) noise covariance matrix of A has large diagonal
and sub-diagonal entries for box and MURA code, indicating ringing and banding artifacts in
the deblurred results. Figure courtesy of Raskar et al. (2006). Reproduced with permission
from ACM.

response should have low variance so that a mis-estimation of the PSF will not cause
strong changes in amplification for nearby but incorrect spatial frequencies during
decoding. Note that the frequency response of both the box filter sequence and the
padded MURA sequence (Figure 7.3) includes deep dips or zeros, producing a high
variance for both. These spikes in the frequency domain lead to the spurious amplifica-
tion of frequencies during deconvolution.

Finally, one must decide the sequence length m. An ideal chop count is the one equal
to the blur size k. Ideally, the camera would feature an auto-flutter mode to decide m
on the fly – based on sensed optical flow, a form of motion-adaptation similar to the
autofocus feature. Given our hardware constraints, we settled for a compromise value
by experimentation, choosing a sequence of m = 52 chops with a 50% duty cycle, i.e.
with 26 ones and zeros. The first and last bit of the code should be 1, which results in
50C24 ≈ 1.2 × 1014 choices. Among them, there are a multitude of potential candi-
dates with acceptable frequency magnitude profiles but different phases. We computed
a near-optimal code by implementing a randomized linear search and considered
approximately 3 × 106 candidate codes. We chose a code that (i) maximizes the
minimum of the magnitude of the DFT values and (ii) minimizes the variance of the
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DFT values. The near-optimal 52 length code we found was 1010000111000001010000
110011110111010111001001100111. The plots in Figure 7.3 demonstrate that the
chosen code is a significant improvement over padded MURA code.

7.5 Linear solution for deblurring

Since the coded exposure leads to a well-conditioned linear system, one can use least-
squares estimation to solve for the deblurred image ŝ (Eq. (7.6)):

ŝ = A†i, (7.8)

where A† is the pseudo-inverse of A. The input image can have a motion blur k different
from the code size m. To handle it, we first expand/shrink the given blurred image by a
factor of m/k. We then estimate the deblurred image and scale it back by k/m.

Figure 7.4 shows an example comparing our code with a traditional exposure camera.
Figure 7.4(g) shows that while post-processing algorithms such as Richardson–Lucy
can reduce noise amplification, they also reduce image sharpness. In contrast, the coded
exposure solution can give a sharp reconstruction even without using any image priors.

7.5.1 Background estimation

We now address the problem of motion blur due to an opaque object moving in front
of a stationary (non-blurred) but non-zero-valued background. This is a commonplace
but difficult case because the moving object blends with the background. Thus, one also
needs to estimate the background simultaneously. In the case of a non-zero background,
the blurred image is given by

i = As + Absb + n, (7.9)

where s is the moving foreground object, sb is the static background and Ab is the
background attenuation matrix. Ab is a diagonal matrix whose elements attenuate the
static background. Ab can be written as

Ab = I − diag(A × I(n+k−1)×1), (7.10)

where I(n+k−1)×1 is a vector of length (n + k − 1) with all 1’s, and diag(v) returns a
square matrix by placing the vector v on the main diagonal. The solution for the sharp

image and background
[

s
sb

]
is obtained simultaneously as

[
s
sb

]
= K†i, (7.11)

where K =
[

A Ab
]

is the combined matrix.
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Figure 7.4 Comparison between short and traditional exposures. The blur k is between 118
and 121 pixels. (a,b,c) Shutter sequence and corresponding photos; (d) experimental setup
with toy train; (e,f) deblurred results using a linear solution; (g) photo of static toy train;
(h) flat blurred image deblurred using Richardson–Lucy (RL) algorithm. Figure courtesy
of Raskar et al. (2006). Reproduced with permission from ACM.

7.5.2 Motion generalization

Applying image warping can permit our technique to decode a much broader set of
simple motions that project as affine transforms, in plane rotations around a fixed center,
as well as to allow movement in perspective along lines that meet at a vanishing point.
While the PSF of the coded blur is nonlinear and position-dependent, several linear
motions can be warped to produce an image with spatially invariant uniform-length
displacement vectors aligned with image scan lines (e.g. Figures 7.5 and 7.6). As motion
blur follows this same displacement vector field, the warped image provides uniform-
width coded-blur regions that are now suitable for decoding. To produce the final result,
we simply apply the inverse warp to return the decoded image to its original geometric
form.

In the case of perspective warp, rectification can be applied after estimating the van-
ishing point of motion lines. Following rectification, all the warped motion lines are
parallel in the camera image space. We used this technique for Figures 7.5 and 7.6.
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(a) Blurred image

(b) Rectified crop

(c) Deblurred image

Figure 7.5 Simple motion generalization. (a) Photo of a fast moving vehicle with a blur of
k = 235 pixels, which is 24% of the vehicle length in the image. We click on four points shown
in gray to specify motion lines; (b) an approximate crop of the rectified motion lines; (c) despite
vignetting on the left, high spatial frequencies are recovered in the deblurred result. Figure
courtesy of Raskar et al. (2006). Reproduced with permission from ACM.

(a) Blurred image

(b) Rectified crop

(c) Deblurred image

Figure 7.6 Coded exposure enables recovery of fine details in the deblurred image. (a) Photo of a
fast moving vehicle; (b) user clicks on four points to rectify the motion lines and specifies a
rough crop; (c) deblurred result. Note that all sharp features on the vehicle (such as text) have
been recovered. Figure courtesy of Raskar et al. (2006). Reproduced with permission from
ACM.



�

�

“9781107044364AR” — 2013/12/20 — 9:50 — page 150 — #164
�

�

�

�

�

�

150 Motion deblurring using fluttered shutter

In-plane rotations (e.g. a rotating fan) create motion lines that form concentric circles
around the center of rotation. These can be handled by deblurring in polar coordinates.

7.6 Resolution enhancement

Coded exposure motion deblurring can also be used to enhance the resolution (super-
resolution) of a moving object (Agrawal & Raskar 2007). Both motion deblurring and
image super-resolution are ill-posed problems. Using a coded-exposure camera, the
combined problems of deblurring and resolution enhancement can be solved. As the
blur size increases, the resolution of the moving object can be enhanced by a larger
factor, albeit with a corresponding increase in the reconstruction noise.

Let r denote the resolution enhancement factor (REF) and k denote the size of blur
(in pixels) in the low resolution sensor output. Let n and nr = n×r denote the size of the
object in the low resolution and desired high resolution grid, respectively. The observed
image i(x) will be smeared in the blur direction and will have t = n + k − 1 samples
due to linear convolution. Combining deblurring and super-resolution, we can relate the
desired high resolution image s(x) to the low resolution blurred image i(x) as

i = Dr × Ar × s + n, (7.12)

where Ar is the smearing matrix representing motion blur in the high resolution grid
and Dr is the decimation matrix which transforms a high resolution image into a low
resolution image. Each row of Dr has only r ones, with each column having at most a
single one. Each column of Ar corresponds to a circularly shifted PSF vector of length
r × k zero-padded to the length nr, representing linear convolution.

A simple counting argument shows that the number of observations t in the low
resolution motion-blurred image should be greater than the number of unknowns nr
for resolution enhancement. Thus,

t � nr, (7.13)
⇒ (n + k − 1) � n × r, (7.14)
⇒ k � n × (r − 1) + 1. (7.15)

Consequently, motion blur k has to be larger than the size of the object in the direction
of motion by a factor of r − 1, where r is the factor of resolution enhancement. For
example, if r = 4, the object should move more than three times its size in the direction
of motion. Thus, as the size of the blur k increases, the REF can be increased. However,
in practice, this results in more deconvolution noise and may not be desirable.

Figure 7.7 shows an example of resolution enhancement deblurring on a standard
resolution chart. Camera pixel resolution is insufficient to capture individual alternating
lines in a static image of a standard resolution chart (top left), since they span only
n = 18 pixels. Upsampling by four times fails to reveal the alternating lines. Blurring
the object horizontally results in a smear of t = 74 pixels with motion blur k = 57 pixels.
The bottom row shows that resolution enhancement deblurring can reveal more details
in comparison with standard deblurring followed by bicubic upsampling.
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Figure 7.7 Top row, left to right: static image of the resolution chart, 4× upsampled image,
captured blurred image and cropped blurred image. Bottom row, left to right: resolution
enhancement deblurring, standard deblurring followed by 4× upsampling, ground truth image.
Figure courtesy of Agrawal & Raskar (2007). Reproduced with permission from IEEE.

7.7 Optimized codes for PSF estimation

So far we have discussed how to optimize the code for making the deconvolution or
motion PSF invertible. However, the problem of PSF estimation still remains even if
the PSF is made invertible. One needs to estimate the motion of moving objects in order
to deblur them. Now we will describe codes that also help in automatic PSF estima-
tion (Agrawal & Xu 2009).

We use the motion from blur (MFB) approach presented in Dai & Wu (2008) for PSF
estimation. This approach analyzes motion blur as alpha matting and requires locally
smooth foreground/background. Although this approach was demonstrated for estimat-
ing the PSF using a traditional camera, we show that the motion from blur constraint
also holds for coded exposures, for those parts of the blur that correspond to continuous
ones in the code (Figure 7.8). In the case of analyzing motion blur as alpha matting,
the “foreground” corresponds to the blurred object. Since alpha matting requires locally
smooth foreground/background, the optimal code for invertibility does not work well
for PSF estimation because it leads to non-smooth blur. Furthermore, since the MFB
algorithm relies on locally smooth alpha values to compute alpha gradients, PSF esti-
mation becomes even more difficult. The key idea is to find an invertible code which
also results in smooth blur for some parts of the blur profile to help in PSF estimation.
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Figure 7.8 Left: motion from blur constraint holds for a coded exposure for those parts of the blur
which correspond to the ones in the code. In traditional cameras, the slope of α equals 1/k for a
blur size k. For a coded exposure, the slope increases by a factor of m/q. Middle: synthetic
example showing a polygon-shaped object moving horizontally. Right: corresponding blur
profiles obtained from blurred synthetic images. Figure courtesy of Agrawal & Xu (2009).
Reproduced with permission from IEEE.

7.7.1 Blur estimation using alpha matting

Let M(x) be a binary indicator function for the object. When the object moves in front of
the background sb(x), the captured blurred image i(x) is given by the sum of the blurred
foreground object and partial background as

i(x) = s(x) ∗ h(x) + (1 − M(x) ∗ h(x))sb(x). (7.16)

This is similar to Eq. (7.9). Comparing with the familiar matting equation I = αF +
(1 − α)B (Smith & Blinn 1996), we get

B ∼ sb(x), α ∼ M(x) ∗ h(x), F ∼ s(x) ∗ h(x)
M(x) ∗ h(x)

. (7.17)

Note that the “foreground” for the matting algorithm is not the actual object s(x), but the
blurred object which depends on the PSF h(x). Although matting algorithms can handle
complex α (such as hair, smoke, etc.) and thus discontinuous i(x), they require both
the foreground and background to be locally smooth. For a traditional camera, since
the PSF is a box function, it results in a smooth foreground. Motion blur estimation
algorithms based on alpha matting have shown very good results on images captured
using a traditional camera. However, deblurring is ill-posed due to h being low pass.
Now we describe how to choose the code that results in a smooth blur as well as an
invertible PSF.

7.7.2 Motion from blur

We first show that motion from blur constraint also holds for coded exposure cameras.
The constraint is given by Dai & Wu (2008)

∇α · k = ±1, (7.18)
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where k = [kx, ky] denotes the blur vector1. This constraint assumes h(x) to be a box
filter (traditional camera). For coded exposure, h(x) is a sum of shifted box functions
of varying sizes. Thus, this constraint still holds for each set of continuous ones in the
code c(x). Let q =

∑
c(x) be the total number of ones in the code. If the object moves

with constant speed, the motion from blur constraint changes to

∇α · k = ±m
q

, if c(x) = 1, (7.19)

since the PSF h(x) is normalized to 1. When the code is zero, no light is integrated, and
hence α remains constant (∇α = 0) within that time period. Only for those parts of the
blur for which the code equals one does the constraint hold, as shown in Figure 7.8.

7.7.3 Code selection

Codes having the same deblurring performance could differ significantly in their result-
ing blur profiles. Consider two m = 31 codes:

C1 = 1010101011100111101110101111011,
C2 = 1111111111111000010011101000111.

Both codes have the same number of ones (q = 21), and would thus allow the same
amount of light. Figure 7.9 shows the magnitude of the DFT for both codes after zero
padding. The minimum DFT magnitude is the same for both codes. In fact, the increases
in deconvolution noise for C1 and C2 are 19.7 and 20.09 dB, respectively (compared
to 35.7 dB for traditional cameras). These two codes will therefore result in similar
deblurring performances. However, they result in significantly different blur profiles.
The number of transitions for C1 equals 18, compared to 8 for C2, and C2 has a 13-long
continuous string of ones. As shown in Figure 7.9, the blur profile corresponding to C2
will be smooth at one end, with a minimum number of discontinuities compared with
the blur profile corresponding to C1. Thus, for the same deblurring performance, one
could possibly choose a code which results in smooth blur for some parts of the entire
motion blur. Since most alpha matting algorithms require local smoothness within a
neighborhood (e.g. 3× 3), minimizing the number of transitions in the code will reduce
discontinuities in the foreground and result in better alpha map estimation. Moreover,
the smoothly changing alpha values within the same region also allow better computa-
tion of gradients, facilitating PSF estimation.

Thus, the criteria for choosing the optimal code for PSF estimation and invertibility
are (a) minimize deconvolution noise, (b) minimize transitions in code, and (c) maxi-
mize the run length of continuous ones. These criteria compete with each other. Note
that the first and the last bit of the code has to be a 1, otherwise it will reduce to a code
of smaller length. Thus, in general the search space is of order 2m−2 for code length m.
For a small m, the search space is small and all possible codes can be tested. For a larger
m, the search space is large and a sampling strategy is used by randomly sampling one
million codes from the search space.
1 Assuming constant velocity object motion in image plane.
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Figure 7.9 Two different codes C1 and C2 with the same deblurring performance but different
blur profiles. Left: the DFT magnitude shows that although the minimum for C1 and C2 is same
(horizontal line), C1 attenuates low frequencies much more than C2. Right: C2 has a small
number of transitions and a long consecutive string of 1’s. This results in a smooth blur profile
for C2 on one side which helps with PSF estimation. Figure courtesy of Agrawal & Xu (2009).
Reproduced with permission from IEEE.

A fast procedure for code search is as follows. Fix the number of continuous ones
(p) in the code. For simplicity, set the first p bits to one. The search space is reduced
to 2m−p−2. Among these codes, choose all the codes for which the deconvolution noise
is smaller than some threshold (e.g. 20 dB) and pick the one which has the minimum
number of transitions. If none of the codes satisfies the noise criteria, p is decreased
by one and the search is repeated. The code C2 as described above is found using this
approach for m = 31 and p = 13 by testing only 231−13−2 = 65 536 codes in 6.7 s on a
standard PC. Thus, we see that optimized codes can be found quickly.

7.7.4 Results

Now we show real results on PSF estimation and deblurring using the codes C1 and C2
as described above. Notice that C2 is optimized for both PSF estimation and
invertibility, while C1 is optimized only for invertibility. To compare the results with a
traditional camera, its exposure time is reduced by m/q to ensure the same light level.
The traditional camera image will therefore have reduced blur by the same factor.

The PSF estimation algorithm follows (Dai & Wu 2008), where alpha matting is per-
formed first (using Levin, Lischinski & Weiss (2008)) to obtain the alpha values. How-
ever, we further improve the MFB algorithm to handle the aperture problem by using
a weighted least squares (WLS) estimator. Since α-gradient values αx and αy together
give information about the edge directions, we cluster them into eight quadrants. Specif-
ically, we divide the samples into eight clusters depending on whether the gradients αx,
αy are >τ , <−τ , or ∈[−τ , τ ], where τ is a threshold (e.g. 0.02). We ignore the clusters
where both αx, αy are ∈[−τ , τ ], since those pixels do not give any useful information in
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Traditional Coded C1 Coded C2k = [28.78,-5.36] k = [54.8,-5.08] k = [42.09,-10.88]

Figure 7.10 Top: blurred photos. Middle: alpha maps with inliers. Bottom: deblurred results.
PSF estimation for traditional cameras is good but deblurring is poor due to non-invertible PSFs.
Bad PSF estimation for code C1 leads to poor deblurring. For C2, the estimated PSF is good, as
proved by the deblurring result. Input images are rotated using the estimated motion angle
before deblurring to make the motion horizontal. For C1, an incorrectly estimated angle cannot
be used to rectify the input image. Figure courtesy of Agrawal & Xu (2009). Reproduced with
permission from IEEE.

the presence of noise. Then a WLS estimation is performed, where the weights are the
inverse of the cluster sizes. This ensures that edges having different directions get equal
weights in blur estimation, so that the estimation is not biased towards a particular edge
direction.

Figure 7.10 shows real results on a toy motorcycle, where the motion is non-
horizontal in the image plane. The captured blurred photos and deblurred results are
shown in the top and bottom rows, respectively, for traditional and coded exposure cam-
eras using C1 and C2 codes. Note that the estimated PSF using C2 is close to ground
truth, as shown by the good deblurring result. PSF estimation for traditional cameras is
also good but deblurring is bad due to the PSF being non-invertible. Figure 7.10
(middle row) also shows inliers (a different color for each cluster) obtained from the
MFB algorithm. For traditional cameras, inliers span all parts of the blur as expected
while, for coded blur, the α-motion blur constraint only holds for those parts of the blur
that correspond to 1’s in the code. Note that for C2, most of the inliers are present in
one end of the blur, corresponding to the long string of 1’s in C2. However, for C1,
inliers are scattered all over the blur which shows that the alpha estimation and MFB
algorithm were not successful. Figure 7.11 also shows the ground truth photo and the
deblurring result for C1 if the PSF estimated using C2 is used. This clearly demonstrates
that the deblurring performances for C1 and C2 are similar. However, C2 assists in PSF
estimation, while C1 does not.
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Ground Truth Coded C1

Figure 7.11 Left: ground truth sharp image. Right: deblurring result for C1, using the motion PSF
estimated from C2, shows that the deblurring performances are similar for C1 and C2, but PSF
estimation fails using C1 (see Figure 7.10, middle image in the bottom row). Figure courtesy of
Agrawal & Xu (2009). Reproduced with permission from IEEE.

Trigger

111111100110001Shutter

Coded Exposure CameraCamera

PIC

Trigger

Figure 7.12 Left: prototype coded-exposure camera with a ferro-electric liquid crystal shutter.
Right: coded exposure implementation on an off-the-shelf machine vision camera using an
external hardware trigger. Figures courtesy of Raskar et al. (2006) & Agrawal & Xu (2009),
respectively. Reproduced with permission from IEEE/ACM.

7.8 Implementation

The coded exposure camera can be built using a standard off-the-shelf SLR camera as
shown in Figure 7.12. We used an 8 MP Canon Pro 1 digital still camera and inter-
faced it to a PIC microcontroller connected to the camera’s hot shoe. The PIC controls
a Displaytech ferroelectric shutter placed over the camera lens, and drives the shutter to
follow the binary coded sequence, when triggered by the hotshoe signals. The ferroelec-
tric shutter’s on/off contrast is high (1000 : 1) and switching time is less than 100μs.
However, the ferroelectric shutter costs ≈$500 and requires an external microcontroller
for control. In addition, the external shutter leads to vignetting in images, it has limited
contrast (opaque versus transparent), and loses light even when it is transparent due to
its polarization layers.
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Coded exposure can also be implemented on consumer grade machine vision cameras
by on-chip fluttered integration with zero additional cost, and so avoid the above issues.
In fact, it can be achieved with any camera that supports IEEE DCAM Trigger mode 5.
This trigger mode supports multiple pulse-width triggers with a single readout. We used
the Dragonfly2 camera from Point Grey (Point Grey 2006) to obtain the results shown
in Figure 7.10. The camera is triggered using the parallel port of a PC. Each bit of the
code corresponds to 1 ms of the exposure time in the implementation. To implement
a particular code, the camera is triggered at 0 → 1 transition and held until the next
1 → 0 transition. For example, for the code 11101000011, three triggers will be sent
at 0, 4 and 9 ms and held for a duration of 3, 1 and 2 ms, respectively. Note that the
number of triggers is not equal to the number of ones in the code; for each continuous
set of ones, one trigger is sent.

7.9 Analysis

7.9.1 Noise analysis

We now compare coded exposure deblurring with traditional exposure deblurring in
terms of noise amplification using linear system analysis. Noise amplification in deblur-
ring depends on the condition number of the smear matrix A. Assuming zero mean IID
Gaussian noise with variance σ 2, the covariance matrix of the estimation error, ŝ− s, is
equal to

 = (ATA)−1ATσ 2A(ATA)−T = σ 2(ATA)−1. (7.20)

Figure 7.3 shows the absolute of the covariances matrices (assuming σ 2 = 1). For tradi-
tional exposure (flat blur),  has large off-diagonal entries, indicating that noise in any
one pixel severely affects several other pixels in the deblurred image. For the 52 chop
sequence that we have used, the effect of the off-diagonal entries in the corresponding
 matrix is significantly reduced.

The root mean square error (RMSE) of the estimation error is given by

RMSE = σ

√
trace(ATA)−1

n
. (7.21)

Thus, the noise amplification factor f is given by

f =

√
trace(ATA)−1

n
. (7.22)

Note that the noise amplification factor only depends on the smear matrix A, and hence
the PSF. For a traditional camera, assuming an object length of 300 pixels and a blur of
52 pixels, the noise amplification factor f = 38.45 dB. In contrast, using the 52 length
sequence for the coded exposure camera, f = 18.70 dB, giving a noise improvement
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of 19.75 dB. However, since the coded exposure camera is on approximately half the
time, it loses half the light compared to a traditional camera. To compare the signal-to-
noise ratio (SNR), the light loss should be taken into account as described in Agrawal
& Raskar (2009).

Using coded exposure, one can deblur the image to the extent of the motion within a
single chop. Let us compare this to an image captured with an exposure of a single chop,
which is equal to T/m seconds. As the cumulative exposure time for coded exposure is
roughly T/2, SNR is potentially better by a factor of m/2 in the blurred region. A key
advantage with respect to a short exposure photo is that in the areas without motion blur
(which do not need to be deblurred), coded exposure cameras can record a sharp image
with reduced noise.

7.9.2 Resolution analysis

Now we analyze the choice of the code length for coded exposure. A long code (large
m) subdivides the exposure time finely and allows decoding of a large amount of blur,
but it proves ineffective for small amounts of blur. Conversely, a short code (k > m) has
a longer duration per chop and blur within a single chop cannot be resolved. We would
like to keep the ratio k/m close to 1 pixel per chop to achieve best possible sampling
of the blur. Figure 7.13 shows the captured images and the corresponding deblurred
results for the test pattern with varying spatial frequencies for blur sizes 44, 78 and
193. Note that when the blur is 193 pixels, high frequencies (fourth row from bottom of
test pattern) are not recovered. Thus, as the blur size k differs from chop count m, the
decoding fails to resolve very fine frequencies. However, in practice, we do not need to
know the blur size to determine the code length. Using the 52 chop code, we were able
to handle motion blur ranging from k = 27 to k = 300 pixels.

Figure 7.13 For a given code size m, the resolution of the deblurred image is related to blur size k.
Top row: blurred images corresponding to k = 44, 78 and 193 respectively using a code length of
m = 52. Bottom row: corresponding deblurred images. Note that at k = 193, high frequencies
(fourth row from bottom of chart) are not recovered, but they are recovered when k = 44.
Figure courtesy of Raskar et al. (2006). Reproduced with permission from ACM.
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7.10 Summary

In this chapter, we explained the concept of coded exposure photography for motion
deblurring. Motion blur leads to the loss of high spatial frequencies in the captured
photo. While traditional image processing algorithms attempt to recover the lost infor-
mation utilizing image priors, coded exposure modifies the imaging process itself to
avoid the loss of high frequency information in the first place. This allows even linear
algorithms to recover a sharp image without any image priors. However, we believe that
combining image-based priors with smart capture time decisions will further improve
the quality of the deconvolved image.

We showed how to design codes that make the PSF invertible. However, such codes
result in non-smooth blur and could make PSF estimation worse. We then described how
to design codes that also assist in PSF estimation while being invertible. We also showed
that the resolution of a motion-blurred object can be increased while simultaneously
deblurring, in certain cases.

Current Point Grey cameras allow on-chip fluttering which is the same for all pix-
els. In the future, red, green and blue pixels might each use a different binary code that
exploits the Bayer grid (color sensor interleaving) for finer spatio-temporal resolution.
We have explored constant duration codes, but variable width codes may prove bene-
ficial in videos to adapt to intra-frame motion. The coded exposure photography may
also inspire a manual or automatic motion knob on cameras. The camera can have an
auto-flutter facility, similar to autofocus systems, wherein the camera electronics can
determine the best code sequence length and duration on the fly. An ultrasound sensor
or an auxiliary low resolution camera (Ben-Ezra & Nayar 2004) can trigger fluttering
by detecting and measuring object motion. As the coded sequencing preserves the look
and feel of the conventional flat motion-blurred image, we feel that the camera manu-
facturers could add fluttered integration without annoying uninterested consumers.

The trend in computational photography is to capture coded information smartly,
which allows greater post-capture image processing. We believe that coded exposure
offers a promising avenue for computational methods to improve motion photography.
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8 Richardson–Lucy deblurring for
scenes under a projective motion
path
Yu-Wing Tai and Michael S. Brown

8.1 Introduction

Motion blur from camera egomotion is an artifact in photography caused by the relative
motion between the camera and an imaged scene during exposure. Assuming a static
and distant scene, and ignoring the effects of defocus and lens aberration, each point
in the blurred image can be described as the convolution of the unblurred image by a
point spread function (PSF) that describes the relative motion trajectory at that point’s
position. The aim of image deblurring is to reverse this convolution process to recover
the clear image of the scene from the captured blurry image as shown in Figure 8.1.

A common assumption in existing motion deblurring algorithms is that the motion
PSF is spatially invariant. This implies that all pixels are convolved with the same
motion blur kernel. However, as discussed by Levin, Weiss, Durand & Freeman (2009)
the global PSF assumption is often invalid. In their experiments, images taken with
camera shake exhibited notable amounts of rotation that attributed to spatially varying
motion blur within the image. Figure 8.2 shows a photograph that illustrates this effect.
As a result, Levin et al. (2009) advocated the need for a better motion blur model as
well as image priors to help regularize the solution space when performing deblurring.
This chapter addresses the former issue by introducing a new and compact motion blur
model that is able to describe spatially varying motion blur caused by a camera under-
going egomotion.

We refer to this blur model as the projective motion blur model as it represents the
degraded image as an integration of the clear scene under a sequence of planar projec-
tive transforms (i.e. homographies). Figure 8.3 shows a diagram of this representation.
One key benefit of this model is that it is better suited to represent camera egomo-
tion than the conventional kernel-based PSF parameterization that would require the
image to be segmented into uniform blur regions, or worse, a separate blur kernel per
pixel. However, because our approach is not based on convolution with an explicit
PSF, it has no apparent frequency domain equivalent. One of the key contributions
of this chapter is to show how our blur model can be used to extend the conventional
pixel-domain Richardson–Lucy (RL) deblurring algorithm. We refer to this modified RL
algorithm as the projective motion Richardson–Lucy algorithm. Similar to the conven-
tional RL deblurring, regularization based on various priors can be incorporated in our
algorithm.
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(a) RMS: 47.27 (b) RMS: 10.51 (c) RMS: 10.35 (d) Ground truth

Figure 8.1 (a) An image degraded by spatially varying motion blur due to camera egomotion;
(b) the result from our basic algorithm; (c) our result with added regularization; (d) ground truth
image. The RMS errors are also shown below each image. © IEEE 2011.

Figure 8.2 This example demonstrates the spatially varying nature of camera shake. The motion
paths of the saturated point light sources (shown zoomed-in) represent the PSF at various
locations in the image. It is clear that the PSFs are not uniform in appearance. © IEEE 2011.

=∫ ...

...

Blur image

dt

Figure 8.3 Our input image is considered the integration of an image scene under projective
motion. © IEEE 2011.

We note that the idea of using a sequence of homographies to model camera shake
blur was independently proposed by Whyte, Sivic, Zisserman & Ponce (2010) and Joshi,
Kang, Zitnick & Szeliski (2010). Our chapter is focused on developing the projec-
tive motion blur model and the associated RL algorithm. As such, we assume that the
motion path is given. The works in Whyte et al. (2010) and Joshi et al. (2010) address
more clearly the problem of estimating the unknown motion. As part of our chapter, we
also describe methods useful for estimating the projective motion path in Section 8.5.
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As with other camera shake deblurring approaches, we assume that the scene is distant
and void of moving objects.

The remainder of this chapter is organized as follows: Section 8.2 discusses related
work; Section 8.3 details our motion blur model; Section 8.4 derives the projective
motion Richardson–Lucy deconvolution algorithm; Section 8.5 discusses potential
methods that can be used to estimate the projective motion path; Section 8.6 provides
analysis of the convergence properties of our algorithm, its sensitivity to noise, and
comparisons with other approaches. A discussion and summary of this work is presented
in Section 8.7.

8.2 Related work

Existing work targeting image blur due to camera egomotion has assumed a global
PSF for the entire image. When the blur PSF is known, or can be estimated, well-
known deblurring algorithms such as Richardson–Lucy (Richardson 1972, Lucy 1974)
and Wiener filter (Wiener & Norbert 1949) can be applied to deblur the image. Due to
poor kernel estimation, or convolution with PSFs that result in unrecoverable frequen-
cies, these conventional deblurring algorithms can introduce undesirable artifacts in the
deblurred result such as “ringing” and amplification of image noise.

Consequently, research addressing image deblurring, including camera shake and
other types of blur, typically target either blur kernel estimation or ways to regularize
the final result, or both. For example, Dey et al. (Dey, Blanc-Fraud, Zimmer, Kam,
Roux, Olivo-Marin & Zerubia 2004) and Chan and Wong (Chan & Wong 1998) utilized
total variation regularization to help ameliorate ringing and noise artifacts. Fergus et al.
(Fergus, Singh, Hertzmann, Roweis & Freeman 2006) demonstrated how to use a vari-
ational Bayesian approach combined with gradient-domain statistics to estimate a more
accurate PSF. Raskar et al. (Raskar, Agrawal & Tumblin 2006, Agrawal & Raskar 2007)
coded the exposure to make the PSF more suitable for deconvolution. Jia (Jia 2007)
demonstrated how to use an object’s alpha matte to better compute the PSF. Levin
et al. (Levin, Fergus, Durand & Freeman 2007) introduced a gradient sparsity prior
to regularize results for images exhibiting defocus blur. This prior is also applicable
to motion-blurred images. Yuan et al. (Yuan, Sun, Quan & Shum 2008) proposed a
multiscale approach to progressively recover blurred details while Shan et al. (Shan,
Jia & Agarwala 2008) introduced regularization based on high order partial derivatives
to reduce image artifacts. Cho and Lee (Cho & Lee 2009) introduced a fast almost
real-time deconvolution algorithm utilizing sharp edge prediction. Krishnan and Fergus
(Krishnan & Fergus 2009) proposed hyper-Laplacians priors for fast deconvolution. Xu
and Jia (Xu & Jia 2010) separated the kernel estimation and deconvolution into two
phases and applied L1-norm regularization in the frequency domain for fast kernel esti-
mation and deconvolution. Cho et al. (Cho, Wang & Lee 2011) used the EM approach to
handle outliers in non-blind deconvolution. Tai and Lin (Tai & Lin 2012) used motion-
aware filtering to remove image noise before deconvolution which was shown to be
effective.
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These previous approaches all work under the uniform PSF assumption. As
mentioned in Section 8.1, camera egomotion causes a spatially varying motion blur
and this aberration cannot be modeled accurately with a uniform PSF. Prior work has
recognized the need to handle non-uniform motion blur for camera egomotion, moving
objects, and defocus blur. For example, early work by Sawchuk (1974) addressed motion
blur from a moving camera by first using a log-polar transform to transform the image
such that the blur could be expressed as a spatially invariant PSF. The range of motion
that could be addressed was limited to rotation and translation. When addressing moving
objects, the input image can be segmented into multiple regions each with a constant
PSF as demonstrated by Levin (Levin 2006), Bardsley et al. (Bardsley, Jefferies, Nagy &
Plemmons 2006), Cho et al. (Cho, Matsushita & Lee 2007) and Li et al. (Li, Yu &
Chai 2008). Such segmented regions, however, should be small to make the constant
PSF assumption valid for the spatially varying motion blur in camera shake motion. For
example, Tai et al. (Tai, Du, Brown & Lin 2008, Tai, Du, Brown & Lin 2010) extended
the hybrid camera framework used by Ben-Ezra and Nayar (Ben-Ezra & Nayar 2004) to
estimate a PSF per pixel using an auxiliary video camera. This need for a per-pixel PSF
revealed the futility of relying on the conventional kernel-based PSF model for spatially
varying blur due to egomotion.

The impetus of this work is to introduce a better blur model for camera egomotion.
The utility of this projective motion path model has already been demonstrated by Tai
et al. (Tai, Kong, Lin & Shin 2010) for deblurring moving objects and Li et al. (Li,
Kang, Joshi, Seitz & Huttenlocher 2010) for generating sharp panoramas from motion-
blurred image sequences. As previously mentioned, Whyte et al. (2010) and Joshi et al.
(2010) independently proposed a similar blur formulation and correction algorithms.
Whyte et al. (2010) showed the camera shake was mostly related to rotational motion
about the camera’s optical axis and developed an algorithm to determine the motion
path under this assumption. Joshi et al. (2010) exploited motion inertia to estimate the
camera motion. The motion blur model proposed by these works is identical to the one
we present. Recent work has leveraged this new blur model to estimate the spatially
varying blur kernel using filter flow (Hirsch, Schuler, Harmeling & Scholkopf 2011) or
multiple images (Cho, Cho, Tai & Lee 2012).

8.3 The projective motion blur model

In this section, we describe our blur model based on a planar projective motion path.
This model will be used in the following section to derive the deblurring algorithm.

In photography, the pixel intensity of an image is determined by the amount of light
received by the imaging sensor over the exposure time:

I(x) =
∫ T

0
δI(x, t) dt ≈

N∑
i=1
�I(x, ti), (8.1)

where I(x) is the image recorded after exposure; δI(x, t) and its discrete equivalent
�I(x, ti) refer to the image captured by the sensor within an infinitesimal time interval
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dt at time instance t; [0, T] is the total exposure time and x is a 3 × 1 vector indicating
the homogenous pixel coordinates. In our model, we assume N (the discrete sampling
rate over exposure time) is large enough so that the difference between continuous inte-
gration and discrete integration is negligible.

When there is no relative motion between the camera and the scene, assuming the
effects of sensor noise are small, �I(x, t1) ∼= �I(x, t2) ∼= · · · ∼= �I(x, tN) and I(x) ∼=
N�I(x, t0) � I0(x) is a clear image. When there is relative motion, I(x) is the summation
of multiple unaligned images �I(x, ti). For a static distant scene, the relative motion
causes a planar projective transform in the image plane, i.e. �I(x, ti) = �I(hix, ti−1).
Here, hi is a homography1 defined by a 3×3 non-singular matrix up to a scalar. Suppose
all hi are known, we can then express�I(x, ti) by I0(x) using the following formulation:

�I (x, ti) = �I

⎛⎝ i∏
j=1

hjx, t0

⎞⎠ =
1
N

I0 (Hix) , (8.2)

where Hi =
∏i

j=1 hj is also a homography. Hence, we obtain our projective motion blur
model as:

B(y) =
N∑

i=1
�I (x, ti) =

1
N

N∑
i=1

I0 (Hix) , (8.3)

where B(y) is the motion-blurred image, and I0(x) is the clear image we want to esti-
mate. According to our model, the blur image is the average of multiple clear images,
each of which is a planar projective transformation of the clear image I0(x).

Figure 8.4 illustrates the relationship between our blur model and the conventional
representation. The conventional spatially invariant PSF representation is a special case
of our model for which every hi is a translation. Note that for in-plane translational
motion, the conventional kernel-based model provides a more compact representation
of the motion blur than our model. However, in the cases of other motions, e.g. in-
plane/out-of-plane rotation, our projective motion model is more compact and
intuitive.

8.4 Projective motion Richardson–Lucy

In this section, we describe how to modify the Richardson–Lucy algorithm to incor-
porate our blur model. To do so, we first give a brief review of the Richardson–Lucy
algorithm (Richardson 1972, Lucy 1974) and then derive our algorithm in a similar
manner. For simplicity, the term I is used instead of I0 to represent the clear image to be
estimated.

1 We use a homography for its ability to model all planar transformations. More restrictive transformations,
e.g. rotation, translation, can be used instead when prior knowledge of the camera’s motion path is known.
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Motion Path Conventional Representation
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Figure 8.4 This figure compares our blur model and the conventional model. Given the motion
path (PSF), a conventional model uses a rectangular kernel (analogous to an image patch) to
represent the PSF. In comparison, our model uses a sequence of transformation matrices. For
rotational motion, our representation encodes the rotation via a sequence of homographies
naturally, while the conventional approach would need to store pixelwise PSFs. © IEEE 2011.

8.4.1 Richardson–Lucy deconvolution algorithm

The derivation in this section of the Richardson–Lucy deconvolution algorithm
(Richardson 1972, Lucy 1974) is based on the work by Shepp and Vardi (Shepp &
Vardi 1982). In particular, the derivation from Shepp and Vardi shows that the RL algo-
rithm can be considered a maximum likelihood solution using the Poisson distribution
to model the likelihood probability P(B, k|I):

P(B, k|I) =
∏
x∈I

g(x)B(x)e−g(x)

B(x)! , (8.4)

g(x) =
∑
y∈k

I(y)k(x − y), (8.5)

where B is the observed motion-blurred image, k is the motion PSF, i.e.
∑

y∈k k(y) = 1,
I is the clear image we want to estimate, and g(x) is a convolution process for a pixel
located at x. Equation (8.4) assumes that the likelihood probability is conditionally inde-
pendent for each x. Since

∑
y∈k k(y) = 1 and

∑
x∈B B(x) =

∑
x∈I I(x), the overall inten-

sity is preserved.
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In Shepp & Vardi (1982), Shepp and Vardi show that Eq. (8.4) is a concave function
by showing the matrix of second derivatives of Eq. (8.4) is negative semi-definite. In
order to optimize Eq. (8.4), it follows from Theorem 2.19(e) of Vardi (1969) that the
sufficient conditions for I to be a maximizer of Eq. (8.4) are the Kuhn–Tucker conditions
where all x satisfy:

I(x)
∂

∂I(x)
ln

(∏
x∈I

g(x)B(x)e−g(x)

B(x)!

)
= 0, (8.6)

and
∂

∂I(x)
ln

(∏
x∈I

g(x)B(x)e−g(x)

B(x)!

)
� 0, if I(x) = 0. (8.7)

To obtain an iterative update rule for the RL algorithm, we use the first condition in
Eq. (8.6)2, for all x ∈ I:

I(x)
∂

∂I(x)
ln

(∏
x∈I

g(x)B(x)e−g(x)

B(x)!

)
= 0,

I(x)
∑
x∈I

∂

∂I(x)
(B(x)ln(g(x))− g(x)− ln(B(x)!)) = 0,

I(x)
∑
x∈I

B(x)
g(x)

∂

∂I(x)
g(x)− I(x)

∑
x∈I

∂

∂I(x)
g(x) = 0,

I(x)
∑
y∈k

B(y)
g(y)

k(y − x)− I(x)
∑
y∈k

k(y − x) = 0.

Since
∑

y∈k k(y) = 1, we have
∑

y∈k k(y − x) = 1. After adding the iteration index, t,
we get:

I t+1(x) = I t(x)
∑
y∈k

B(y)∑
z∈k I t(z)k(y − z)

k(y − x). (8.8)

Utilizing the convolution operation for the whole image, we obtain the RL algorithm:

I t+1 = I t × k̃ ⊗ B
k ⊗ I t , (8.9)

where k̃ is the transpose of k that flips the shape of k upside down and left to right, ⊗ is
the convolution operation and × is a pixel-wise multiplication operation. To under-
stand Eq. (8.9), we consider that B′t = k ⊗ I t is the prediction of a blurred image
according to the current estimation of clear image I t and the given point spread function
k. Thus, B/B′t are the residual errors (by pixel-wise division) between the real blurred
image B and the predicted blurred image B′t. The correlation operation (k̃⊗) integrates
the residual errors distributed according to k̃. The update rule in Eq. (8.9) essentially

2 The second condition in Eq. (8.7) is used to relate the RL algorithm with the EM algorithm (Dempster,
Laird & Rubin 1977) for the convergence proof. For further details, we refer readers to Shepp & Vardi
(1982).
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computes a clear image I∞ that would generate the blurred image B, given a known
point spread function k. Typically, the algorithm starts with an initial guess of I 0 = B.

8.4.2 Projective motion Richardson–Lucy algorithm

With the basic Richardson–Lucy algorithm, we can derive our projective motion
Richardson–Lucy algorithm. From the projective motion blur model defined in Eq. (8.3),
we can integrate the motion path at each pixel location y and define a spatially varying
motion PSF ky:

B(y) =
1
N

N∑
i=1

I(Hix) =
∑
x∈ky

I(x)ky(x), (8.10)

and

ky(x) =

⎧⎨⎩
1
N

, if x = H−1
i y

0, otherwise
, (8.11)

where
∑

x∈ky
ky(x) =

∑N
i=1

1
N = 1. Because x = H−1

i y does not correspond to a discrete
integer pixel coordinate, bicubic interpolation is used to estimate the pixel values for
the points x.

Substituting and replacing Eq. (8.5) with Eq. (8.10) for the RL algorithm, we get:

I t+1(x) = I t(x)
∑
y∈kx

B(y)∑
z∈ky

I t(z)ky(z)
k̃x(y), (8.12)

which is the general form for spatially varying motion deblurring using the RL algo-
rithm. The motion path in k̃x is the reverse direction of the motion path in kx.

Since the motion path in kx, according to Eq. (8.10), can be described by a sequence of
homographies, H1 . . .HN, we can also group the motion path of k̃x. Grouping the motion
path of k̃x forms a new sequence of homographies which is the original homography
sequence but with each matrix inverted and applied in reverse order, i.e. H−1

N . . .H−1
1 .

For each point along the motion path in H1 . . .HN, H−1
N . . .H−1

1 reverse the transforma-
tion and integrate the errors along the motion path. Thus, we obtain the iterative update
rule for the projective motion blur model:

I t+1 = I t × 1
N

N∑
i=1

Et(H−1
i x), (8.13)

where Et(x) = B(x)
1
N
∑N

i=1 I t(Hix)
is the residual error between the real blurred image B and

the predicted blurred image B′t = 1
N
∑N

i=1 I t(Hix). Note that although we computed the
per-pixel motion PSF during the derivation, Eq. (8.13) processes the image as a whole
and does not need to reconstruct the per-pixel motion PSF explicitly. This is similar
to the global convolution and correlation process in the conventional RL algorithm.
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Motion blur image, B

Synthetic blur image, B´Intermediate result, I t

(result at 20th iteration)
Residual error image, E t Integrated errors Updated result, I t+1

Figure 8.5 Overview of the projective motion RL algorithm. Given the current estimation I t, we
compute a synthetic blur image B′ according to the given motion in terms of Hi. The residual
error image Et = B/B′ is computed by pixel-wise division. The residual errors are then integrated
according to H−1

i to produce an updated estimation I t+1. The I t+1 is then used as the initial
guess for the next iteration. This process is repeated until convergence or after a fixed number of
iterations. In our implementation, the number of iterations is fixed to 500. © IEEE 2011.

In essence, our approach replaces the convolution and correlation operators in the conven-
tional RL algorithm with a sequence of forward projective motions and their inverses
via the homographies. Figure 8.5 illustrates our projective motion RL algorithm.

8.4.3 Gaussian noise

If we assume that the image statistics follow a Gaussian distribution instead of a Poisson
distribution, we can model the likelihood probability P(B, k|I) as follows:

arg max
I

P(B, k|I),

= arg max
I

∏
x∈I

exp

(
−‖g(x)− B(x)‖2

σ 2
g

)
,

= arg min
I

∑
x∈I

‖g(x)− B(x)‖2, (8.14)

where g(x) =
∑

y∈k I(y)k(x − y) is defined in Eq. (8.5), and σ 2
g is the variance of a

Gaussian distribution. To solve Eq. (8.14), we can derive an additive update rule based
on the gradient descent method as follows:

I t+1(x) = I t(x) +
∑
y∈k

(
B(y)−

∑
z∈k

I t(z)k(y − z)

)
k(y − x),

I t+1 = I t + k̃ ⊗ (B − k ⊗ I t). (8.15)

Similarly, for our projective motion blur model, we obtain:

I t+1 = I t +
1
N

N∑
i=1

E′t
(

H−1
i x
)

, (8.16)
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where E′t(x) = B(x) − 1
N
∑N

i=1 I t(Hix) is the residual error obtained by pixel-wise
subtraction.

If we introduce regularization as a prior model P(I), we now have to maximize a
posterior probability P(I|B, k). After some mathematical rearrangement, we can obtain
the following energy function for minimization:

arg max
I

P(I|B, k),

= arg max
I

P(B, k|I)P(I),
= arg min

I

∑
x∈I

‖g(x)− B(x)‖2 + λR(I), (8.17)

where ‖g(x) − B(x)‖2 is the data term, and R(I) = −σ 2
g
λ

log(P(I)) is the regularization
term.

Computing the derivative of Eq. (8.17), we can obtain another set of iterative update
rules based on the gradient decent method:

I t+1 = I t + k̃ ⊗ (B − k ⊗ I t) + λ∇R(I t), (8.18)
and

I t+1 = I t +
1
N

N∑
i=1

E′t(H−1
i x) + λ∇R(I t), (8.19)

for the conventional motion blur model and our projective motion blur model,
respectively.

8.5 Motion estimation

Although the focus of this chapter is the derivation of our projective motion path blur
model and its associated deblurring algorithm, for completeness we describe some
promising methods to compute the projective motion within the exposure time. General
algorithms for motion estimation are an area for future research.

Auxiliary hardware or imaging modifications
A direct method to estimate camera motion in terms of homographies during the expo-
sure is to use a hybrid camera (Ben-Ezra & Nayar 2004, Tai, Du, Brown & Lin 2010)
that captures an auxiliary high frame-rate low resolution video. From the auxiliary
video, the motion trajectory at each pixel (i.e. optical flow) can be computed as shown
in Tai, Du, Brown & Lin (2010) and a sequence of homographies can be fitted to each
frame. Another promising hardware coupling is the use of accelerometer and inertial
sensors for estimating the camera’s motion as demonstrated in Hong, Rahmati, Wang &
Zhong (2008) and Joshi et al. (2010). Recently, Tai et al. (Tai, Kong, Lin & Shin 2010)
showed how a coded exposure could be used to capture an image containing a motion-
blurred moving object. Through the analysis of motion discontinuities protected by the
coded exposure, homographies describing the motion path could be computed.
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Uniform motion assumption
If the motion blur is caused by a constant motion path over the exposure time, then the
path can be described as h1 = h2 = · · · = hN. According to the definition of Hi =

∏i
j=1 hj,

we find

hi = N
√

HN, 1 � i � N. (8.20)

Thus, we can obtain hi by computing the Nth matrix root (Bini, Higham & Meini 2005)
of HN, and the estimation of the series of hi is reduced to the estimation of HN. The
easiest technique to estimate this uniform motion is described by Shan et al. (Shan,
Xiong & Jia 2007) which relies on the user to supply image correspondences to establish
the transformation. Another highly promising technique is that proposed by Dai and
Wu (Dai & Wu 2008) that uses the blurred objects alpha matte to estimate HN. In our
experiments, we use a former approach in Shan et al. (2007). Recently, Li et al. (2010)
proposed a method to estimate a global homography between successful video images
to perform mosaicing. The frames could also be deblurred using a motion path model
similar to that proposed in this chapter.

Recently, Whyte et al. (2010) used a variational approach to estimate the weight of
quantized rotation parameters without the need for auxiliary hardware or a uniform
assumption. Their estimation of the motion PSF, however, is not sufficiently accu-
rate, leading to deconvolution artifacts in the deblurred result. This work concurrently
showed a method to estimate the spatially varying PSF using blurred and noisy image
pairs.

8.6 Experiment results

In this section, we empirically examine our algorithm’s convergence properties by plot-
ting the RMS error against the number of iterations. Robustness is analyzed by
comparing the results with different amounts of additive noise. We also evaluate the
quality of our projective motion RL algorithm with and without regularization by
creating a set of synthetic test cases. Our results are also compared with the spatially
invariant deblurring method, e.g. Levin et al. (2007), with synthetic test cases that
resemble real motion-blurred images caused by camera shake. Finally, we show results
on real images for which the projective motion paths were estimated using the methods
described in Section 8.5.

8.6.1 Convergence analysis

While the conventional RL algorithm guarantees convergence, in this section we empiri-
cally examine the convergence of our projective motion RL algorithm. At each iteration,
we compute the log ratio log (I t+1/I t) and the RMS error of the current result against the
ground truth image. We run our algorithm for a total of 5 000 iterations for each case.
The convergence rates of our basic projective motion RL regularized algorithm with
fixed regularization weight (λ = 0.5 for an intensity range between 0 and 255) and the
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Basic algorithm With regularization (λ = 0.5) With regularization
(decreasing λ)
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Figure 8.6 Convergence rates of our projective motion RL algorithm. The first row shows the plot
of I t+1/I t, the second row shows the plot of RMS errors against the number of iterations for our
basic algorithm, regularized algorithm with fixed weight (λ = 0.5), and regularized algorithm
with decreasing weight (linearly from 1 to 0) as the number of iterations increase. Note that the
motion blur is different for the two test cases. The third row shows the input motion blur image
and intermediate results at the 20th, 50th, 100th, 500th and 5000th iterations for the basic
algorithm. © IEEE 2011.

regularized algorithm with decreasing regularization weight (linearly from 1 to 0) are
compared. The RMS error is plotted with respect to the ground truth image. Figure 8.6
shows the graphs of RMS errors versus the number of iterations.

Typically, our method converges within 300 to 400 iterations for both the basic algo-
rithm and the regularized algorithm with fixed regularization weight. As the number of
iterations increases, the difference of RMS errors between successive iterations
decreases; however, after 500 iterations the visual improvement in the deblurred result
is unnoticeable as shown in some intermediate results in Figure 8.6. We found that
the algorithm with regularization produced RMS errors that were higher than those
produced using the basic algorithm. The main reason is that the test cases demonstrated
here are noise-free, and the regularization tends to smooth out high frequency details
resulting in higher RMS errors. However, as we will show in the next subsection, when
noise is present in the image, incorporating regularization becomes effective. Using the
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decreasing regularization weight scheme we still observe a decrease in RMS errors,
even at 5 000 iterations. This approach also achieves RMS errors lower than both the
basic algorithm and the regularized algorithm using a fixed regularization weight. This
convergence study confirms the effectiveness of this scheme observed by Shan et al.
(2008), and Yuan et al. (2008).

8.6.2 Noise analysis

To test for the robustness of our algorithm, we added different amounts of zero-mean
Gaussian noise to the synthetic blur images. To simulate sensor noise, the added image
noise does not undergo the convolution process, and is independent of the motion blur
effect.

Figure 8.7 and Figure 8.8 show our deblurring results with different amounts of Gaus-
sian noise3 added. We show results of our algorithm with and without regularization. For
this experiment, we use the Poisson noise model with total variation regularization4. The
test pattern is a resolution chart. As expected, our deblurring results without regulariza-
tion amplify image noise just like other deblurring algorithms. The quality of our deblur-
ring algorithm degrades as the amount of noise increases. In addition, larger motions
tend to produce noisier results. In such cases, the added noise in the image around the
center of rotation becomes less apparent than that in image regions with larger motion
blur (i.e. the image boundaries). In the presence of image noise, the regularization term
becomes important to improve the visual quality of the results. Better results can be
achieved by increasing the regularization weight as the noise level increases. The differ-
ence between the regularized and un-regularized results are significant both in terms of
visual quality and RMS errors. However, when the amount of image noise added is very
large, e.g. σ 2 � 20, the regularization term cannot suppress image noise effectively.

8.6.3 Qualitative and quantitative analysis

Figure 8.1 has already shown a synthetic example of spatially varying motion blur with
known hi. To further evaluate our algorithm quantitatively, we have created a test set
consisting of fifteen test cases and five test images: Mandrill, Lena, Cameraman, Fruits
and PAMI. The Mandrill example contains significant high frequency details in the hair
regions. The Lena example contains both high frequency details, smooth regions and
also step edges. The Cameraman image is a monotone image but with noise added
independently to each RGB channel. The Fruits example also contains high frequency
details and smooth regions. Lastly, the PAMI example is a text-based binary image (i.e.
black and white). For each test case, we add additional Gaussian noise (σ 2 = 2) to
simulate camera sensor noise. The parameter settings are the same for all test cases and
the values we used are the same as in the implementation of Levin et al. (2007).

Our results for the RMS of the input motion-blurred image, the RMS of the deblurred
image using our basic projective motion RL algorithm, and the RMS of the deblurred
3 The noise variance σ 2 of Gaussian noise added are with respect to an intensity range between 0 and 255.
4 For details of regularization, please refer to Tai, Tan & Brown (2011).
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σ2 = 2 σ2 = 5 σ2 = 10 σ2 = 20 σ2 = 40

RMS = 27.35 RMS = 47.70 RMS = 63.92 RMS = 77.21 RMS = 89.53

RMS = 21.61 RMS = 32.28 RMS = 47.68 RMS = 70.53 RMS = 87.35

Figure 8.7 Evaluation on the robustness of our algorithm by adding different amounts of noise to
blurred images. Top row: noisy blurred image, the amplitude of noise is determined by the noise
variance (σ 2). Second row: deblurring results with our basic projective motion RL algorithm.
Third row: deblurring results with total variation regularization. In the presence of image noise,
our deblurring algorithm amplified the image noise in deblurred results. The effects of
regularization hence become significant in suppressing amplified image noise. © IEEE 2011.

image with regularization (total variation) are shown in Figure 8.9. Our projective
motion RL is effective, especially when regularization is used with our suggested imple-
mentation scheme. These test cases also demonstrate that our approach is effective
in recovering spatially varying motion blur that satisfied our projective motion blur
assumption. We note that in some test cases, e.g. examples from the Fruits test case, the
RMS errors of the deblurred results are larger than the RMS errors of the input motion-
blurred images. This is due to the effects of amplified noise; after noise suppression
with regularization, the reverse is true.

8.6.4 Comparisons with spatially invariant method

To evaluate our projective motion blur model for the motion blur effects caused by
camera shake, another test set was created to simulate blur from camera shake motion.
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σ2 = 2 σ2 = 5 σ2 = 10 σ2 = 20 σ2 = 40

RMS = 55.71 RMS = 71.00 RMS = 92.34 RMS = 113.72 RMS = 128.96

RMS = 65.60RMS = 58.86 RMS = 81.46 RMS = 106.05 RMS = 126.08

Figure 8.8 Evaluation on the robustness of our algorithm by adding different amount of noise in
blurred images. Top row: noisy blurred image, the amplitude of noise is determined by the noise
variance (σ 2). Second row: deblurring results with our basic projective motion RL algorithm.
Third row: deblurring results with total variation regularization. In the presence of image noise,
our deblurring algorithm amplified the image noise in deblurred results. The effects of
regularization hence become significant in suppressing amplified image noise. © IEEE 2011.

Our results are compared with results obtained using a spatially invariant blur model
based on the deblurring algorithm in Levin et al. (2007).

This test set consists of eight test cases and five images: Doll, Einstein, Lotus, Tower
and Palace. For each test case, we first use homographies to approximate the shape
and intensity variation of “real” motion blur kernels. The real kernels are from the
ground truth kernels in the data provided by Levin et al. (2009). Figure 8.10 shows their
ground truth kernels and our approximated kernels using homographies to describe the
projective motion path. Since Levin et al. locked the z-axis rotation handle of the tripod
when they captured the images, their data does not contain any rotation. However, real
camera shake usually contains a small amount of rotation. We added one degree of rota-
tion in total to the overall motion path to simulate the effects of in-plane rotation of
camera shake as shown in Figure 8.11. Although the motion blur of this test set contains
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Figure 8.9 RMS pixel errors for different examples and test cases in our synthetic trials. We
compare the RMS of the input blur image, the deblurred image using basic projective motion RL
and the deblurred image using projective motion RL with (total variation) regularization.
© IEEE 2011.

Figure 8.10 Top row: ground truth PSF from Levin et al. (2009). Bottom row: our approximated
PSF using projective motion paths. © IEEE 2011.

rotation, the effect of rotation is almost invisible from the motion-blurred images them-
selves since the translational motion dominates the effects of motion blur. However,
when we apply a spatially invariant motion deblurring algorithm (Levin et al. 2007) to
these images, the effects of rotation are obvious. Similar to the previous test set, we also
added Gaussian noise (σ 2 = 2) to simulate camera sensor noise.

Figure 8.12 shows the RMS errors of our results (with TV regularization) compared
with the results from Levin et al. (2007) using nine different PSFs sampled at different
locations of the image. We use the source code provided by Levin et al. (2007) with
parameter λ = 0.001 to obtain the results for comparison. Our results consistently
produce smaller RMS errors and less visual artifacts when compared to the results
from Levin et al. (2007). These test cases also show the insufficiency of conventional
spatially invariant motion to model camera shake. Levin et al. (2007) obtain good
results around local regions where the PSF is sampled; however, visual artifacts become
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Figure 8.11 Our simulated spatially varying motion blur PSF for camera shake. From the
approximated kernels in Figure 8.10, we included 1 degree of rotation (in total) in the motion
path. This was done by first estimating the PSF using homographies (Figure 8.10) and then
introducing a rotation in the motion path of a single degree distributed over the whole range of
motion. To demonstrate the effect of this rotation, we reconstructed the PSFs at nine different
positions in the image. These reconstructed PSFs will be used by a spatially invariant motion
deblurring algorithm (Levin et al. 2007) for comparison. With only 1 degree of rotation we can
see a significant change to the camera shake PSFs in different regions of the image. Rotational
motion for real camera shake (e.g. as shown in Figure 8.2) would be larger than shown here.
© IEEE 2011.
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Figure 8.12 We compare our results with the spatially invariant motion deblurring algorithm
in Levin et al. (2007). The RMS pixel errors for different examples and test cases are shown. For
the results of Levin et al. (2007), we sampled the PSF at nine different locations in the images
and therefore obtained nine different PSFs for deblurring. Our results are compared to the results
from Levin et al. (2007) using all nine PSFs. Our approach consistently produces smaller RMS
errors in all examples for all test cases. © IEEE 2011.
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(a) (b) (c) (d)

Figure 8.13 image deblurring using globally invariant kernels. (a) Input from a hybrid camera
where the high frame-rate low resolution images are also shown; (b) result generated
by Ben-Ezra & Nayar (2003) (standard RL algorithm from Matlab); (c) result from our
projective motion RL with regularization; (d) the ground truth sharp image. Close-up views and
the estimated global blur kernels are also shown. © IEEE 2011.
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Figure 8.14 Example of zoomed-in motion. (a) Blurred input image and user markups for motion
estimation; (b) our result from using the basic projective motion RL algorithm; (c) our result
including regularization; (d) ground truth image. © IEEE 2011.

increasingly noticeable as we move further away from the sampled point of the PSF used
for deconvolution.

8.6.5 Real examples

Figure 8.13 shows an example of global motion blur obtained from our previous work
using a hybrid camera system (Tai, Du, Brown & Lin 2010). To obtain the motion path
homographies, we use the motion vectors in the low resolution high frame-rate camera
as a set of point correspondences and fit a global homography per low resolution frame.
We also show the effectiveness of our regularization compared with previous results.
Our approach achieves comparable results with Tai, Du, Brown & Lin (2010), however
we do not use the low resolution images for regularization as in Tai, Du, Brown & Lin
(2010).

Figures 8.14 and 8.15 show more real examples with zoomed-in motion5 and rota-
tional motion, respectively. These input images were obtained with a long exposure time
and a low ISO setting. The motion-blurred matrix HN is obtained by fitting the transfor-
mation matrix with user markup as shown in Figures 8.14(a) and 8.15(a), respectively.
Each hi is computed by assuming the motion is uniform. We show the deblurred results
from our algorithm without and with regularization in (b) and (c). The ground truth

5 The approach in Shan et al. (2007) only discusses how to estimate rotational motion, but the estimation
for zoom motion can be derived using a similar method.
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(a) (b) (c) (d)

Figure 8.15 Example of rotational motion. (a) Blurred input image and user markups for motion
estimation; (b) our result from using the basic projective motion RL algorithm; (c) our result
including regularization; (d) ground truth image. © IEEE 2011.

image is shown in (d) for comparison. We note that our real examples contain more
visual artifacts than the synthetic examples. This is due to estimation errors in hi. The
effects of image noise in our real examples are not as significant as in our synthetic test
case due to the long exposure time. We also note that the motions in our real examples
are not as large as in our synthetic example.

8.7 Discussion and conclusion

This chapter has introduced two contributions for addressing image blur due to camera
egomotion. The first is a formulation of the motion blur as an integration of the scene
that has undergone a motion path described by a sequence of homographies. The
advantage of this motion blur model is that it can parameterize camera egomotion
better than conventional approaches which rely on a uniform blur kernel. In addition,
this “kernel-free” formulation more closely models the physical phenomena causing the
blur. Our second contribution is an extension to the RL deblurring algorithm to incor-
porate our motion blur model in a correction algorithm. We have outlined the basic
algorithm and provided details on incorporating state-of-the-art regularization. Exper-
imental results have demonstrated the effectiveness of our approach on a variety of
examples.

We will now discuss issues and limitations of this blur model, as well as convergence,
running time, and future work.

8.7.1 Conventional PSF representation versus projective motion blur model

While this chapter advocates a new blur model for camera egomotion to replace the
conventional kernel-based approach, we note that the conventional representation has
several advantages. First, the kernel-based PSF provides an easy to understand and intu-
itive representation of “point spread” about a point. Second, the kernel-based model can
include other global blurring effects (e.g. defocus) and motion blur in a unified repre-
sentation, while our representation only targets motion blur from camera motion. Third,
by assuming the motion blur is the same globally, image deconvolution can be done
in the frequency domain, while our projective motion RL algorithm can only be done



�

�

“9781107044364AR” — 2013/12/20 — 9:50 — page 180 — #194
�

�

�

�

�

�

180 Richardson–Lucy deblurring for scenes under a projective motion path

(a) (b) (c) (d)

Figure 8.16 Case of non-projective motion (images from Tai, Kong, Lin & Shin (2010)).
(a) Input; (b–d) deblurring results with different motion PSFs estimated from different areas of
the face. © IEEE 2011.

in the spatial domain. As demonstrated several times in this chapter, the conventional
representation, however, is not suitable for dealing with spatially varying motion blur.
For such cases, our projective motion RL formulation becomes advantageous.

8.7.2 Limitations

Our projective motion RL algorithm has several limitations similar to other deblurring
algorithms. A fundamental limitation to our algorithm is that the high frequency details
that have been lost during the motion blur process cannot be recovered. Our algorithm
can only recover the hidden details that remain inside the motion blur images. Another
limitation is that our approach does not deal with moving or deformable objects or
scenes with occlusion and/or disocclusion, or with significant depth variation.
Figure 8.16, for instance, shows an object with out-of-plane rotational motion and a
large variation in relative depth captured with a coded exposure camera. Here, we
assume the motion to be strictly horizontal, and estimate the motion PSF using only
local observations around the mouth (b), ear (c), and chair (d). Our deblurring results
accurately recovered scene details only for the local regions used for PSF estimation;
other regions are distorted by the incorrect PSF. Better results could potentially have
been obtained by first segmenting the image into different regions, each of which satisfy
the projective motion model, and then applying our motion deblurring algorithm on each
region separately. The problem with occlusions, disocclusions and depth variations is
common to existing deblurring techniques, since the exhibited image blur cannot be
adequately represented by a PSF in such cases. Other limitations of our approach include
the problem of pixel color saturations and severe image noise, as demonstrated in our
experiments.

8.7.3 Running time analysis

Our current implementation takes about 15 minutes to run 500 iterations on an image
size 512 × 512 with an Intel(R) CPU L2400 @ 1.66 GHz and 512 MB of RAM. The
running time of our algorithm depends on several factors, including image size |I|,
number of discrete sampling N (number of homographies), and the number of itera-
tions T. Hence, the running time of our algorithm is O(|I|NT). Comparing our running
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time to approaches which reconstruct pre-pixel PSF for deblurring (e.g. Tai, Du, Brown
& Lin (2010)), their running time is O(|I|MT) where M is the window size of the square
blur kernel used to represent the PSF. Our approach has a significant advantage with
N � M. In our experiments, we found that N = 50 is sufficient to model very large
variations over the projective motion path. However, a conventional PSF kernel size M
can be as large as 31 × 31 = 961 for small to mid-range motion. We also note that the
majority of our running time is spent in the bicubic interpolation process – necessary
when applying the homographies. Significant speed-ups could undoubtedly be obtained
with better implementation exploiting a GPU to perform the image warping.
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9 HDR imaging in the presence of
motion blur
C.S. Vijay, C. Paramanand and A.N. Rajagopalan

9.1 Introduction

Digital cameras convert incident light energy into electrical signals and present them
as an image after altering the signals through different processes which include sensor
correction, noise reduction, scaling, gamma correction, image enhancement, color
space conversion, frame-rate change, compression, and storage/transmission (Nakamura
2005). Although today’s camera sensors have high quantum efficiency and high signal-
to-noise ratios, they inherently have an upper limit (full well capacity) for accumulation
of light energy. Also, the sensor’s least acquisition capacity depends on its pre-set sensi-
tivity. The total variation in the magnitude of irradiance incident at a camera is called the
dynamic range (DR) and is defined as DR = (maximum signal value)/(minimum signal
value). Most digital cameras available in the market today are unable to account for the
entire DR due to hardware limitations. Scenes with high dynamic range (HDR) either
appear dark or become saturated. The solution for overcoming this limitation and esti-
mating the original data is referred to as high dynamic range imaging (HDRI) (Debevec
& Malik 1997, Mertens, Kautz & Van Reeth 2007, Nayar & Mitsunaga 2000).

Over the years, several algorithmic approaches have been investigated for estimation
of scene irradiance (see, for example, Debevec & Malik (1997), Mann & Picard (1995),
Mitsunaga & Nayar (1999)). The basic idea in these approaches is to capture multiple
images of a scene with different exposure settings and algorithmically extract HDR
information from these observations. By varying the exposure settings, one can control
the amount of energy received by the sensors to overcome sensor bounds/limits. The
camera exposure is defined as

(
πd2/4

)
.�t, where d is the aperture diameter and �t is

the exposure time (Mitsunaga & Nayar 1999). Hence the exposure settings can be varied
either by changing the aperture diameter or by changing the exposure duration. Since
changing the aperture affects the depth of field, varying exposure times/shutter speeds
is preferable. The exposure times needed for a real scene can vary from values as small
as 1

500 s to as high as 3 s. An important and practical issue associated with long exposure
times in cameras is that of image blurring, especially in HDR imaging where one has
to capture images using long exposure times. While a camera can be held still for the
shorter exposures, it would be extremely difficult for a photographer to hold a camera
steady for longer periods while taking multiple shots of a static scene. Any incidental
shake of the camera will result in motion blur. Although one can resort to tripods to
avoid motion blur, carrying such sturdy accessories can be cumbersome. Worse still,
tripods are off-limits in locations such as heritage sites.
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The problem of restoring motion-blurred images has been widely studied in the
literature. A lot of approaches exist that simultaneously solve for the latent image and
the blur kernel (blind deconvolution) (Cai, Ji, Liu & Shen 2012, Shan, Jia, Agarwala
et al. 2008, Fergus, Singh, Hertzmann, Roweis & Freeman 2006, Levin, Weiss, Durand
& Freeman 2011). To reduce the ill-posedness of the motion deblurring problem, tech-
niques exist that use more than one observation of the scene (Sroubek & Flusser 2005,
Yuan, Sun, Quan & Shum 2007). In all these restoration techniques, blurring is assumed
to be space invariant. However, camera shake typically results in space-variant blur
due to camera rotation during image capture (Levin, Weiss, Durand & Freeman 2009,
Whyte, Sivic, Zisserman & Ponce 2010). In fact, the influence of rotation on blurring
is more significant than that of translation. Thus, in real scenarios, the space-invariant
convolution model is inadequate to describe the blurring process.

Recent techniques have addressed the problem of non-uniform (i.e. space-variant)
motion deblurring (Gupta, Joshi, Lawrence Zitnick, Cohen & Curless 2010, Tai, Tan &
Brown 2011, Whyte et al. 2010) by modeling the blurred observation as an average of
projectively transformed instances of the original image. For this model, Tai et al. (2011)
developed a deblurring scheme based on the Richardson–Lucy algorithm.
However, they do not address the problem of estimating the blurring function. Gupta
et al. (2010) describe motion blur in terms of a motion density function (MDF) which
denotes the camera motion. Their estimates of MDF and deblurred image are based on
an existing space-invariant deblurring technique (Shan et al. 2008). Whyte et al. (2010)
use a similar model but consider the camera motion to be composed of rotations about
all three axes. Using the blind deblurring framework of Fergus et al. (2006), they esti-
mate the blur kernel. None of the above non-uniform deblurring works addresses the
variation of blur due to parallax effects. For the case of translational camera motion,
Sorel & Flusser (2008) proposed a technique to restore space-variantly blurred images
by jointly solving for the latent image as well as the scene depth map. Blur variation due
to parallax has also been exploited for estimating the depth map of a scene (Paramanand
& Rajagopalan 2012). All the algorithms mentioned above are applied on intensity
images and the scenes are assumed to be well lit. The effect of saturation and such
outliers on deblurring has been discussed in Cho, Wang & Lee (2011) and Whyte, Sivic
& Zisserman (2011). In a very recent work (Kim, Tai, Kim, Brown & Matsushita 2012),
the effect of camera’s nonlinear response on deblurring has been explored.

While the standard deblurring works do not consider the high dynamic nature of a
scene, the problem of jointly estimating the HDR scene irradiance, the mapping between
image intensity and irradiance, and blur kernels from motion blurred observations was
first addressed in a recent work by Lu, Huang, Wu, Cheng & Chuang (2009). However,
they consider a space-invariant blur model which restricts the camera motion to in-plane
translations. Although this is a good step forward, it is limited in scope as the effect of
rotation on blur is greater than that of translation (Whyte et al. 2010) and hence cannot
be ignored.

In this chapter, we discuss a method to obtain the HDR image of a scene from a
set of differently exposed observations which are likely to have been affected by non-
uniform motion blur. While capturing multiple images with a handheld camera, when



�

�

“9781107044364AR” — 2013/12/20 — 9:50 — page 186 — #200
�

�

�

�

�

�

186 HDR imaging in the presence of motion blur

Figure 9.1 Multiple exposed images where longer exposures are motion-blurred.

the exposure time is short, there is less possibility of an observation getting blurred.
However, when the exposure duration is long, it is highly probable that the observation
gets blurred. Consequently, we consider a scenario wherein the input image set consists
of blurred longer exposures and non-blurred shorter exposures. The scene is assumed
to be far enough from the camera that blur variations due to parallax effects are negli-
gible. Although the images that are captured with longer exposure times are blurred,
they contain information not present in the less exposed images. Figure 9.1 shows one
such image set. One simplistic solution would be to restore the blurred observations and
then reconstruct the HDR image using existing methods. However, such an approach is
not effective because blind deblurring does not always guarantee good quality output.
In our approach, we estimate the latent scene irradiance from the given set of observa-
tions. In our framework, we judiciously exploit the tight coupling that inherently exists
between the latent scene irradiance and each of the differently exposed and blurred
observations. Our deblurring step subsumes all the blurred observations, thereby leading
to a robust estimate. To model space-variant blur, we adopt the notion of transforma-
tion spread function (TSF) (Paramanand & Rajagopalan 2010, Vijay, Paramanand &
Rajagopalan 2012, Vijay, Paramanand, Rajagopalan & Chellappa 2013), also known as
the motion density function (Gupta et al. 2010). In the TSF model, a blurred observa-
tion is considered to be a weighted average of differently transformed versions of the
latent image. We first estimate the TSFs of each of the blurred images using locally esti-
mated point spread functions (PSFs). We follow such an approach because we found
that this leads to a more accurate and straightforward solution rather than attempting to
estimate the TSF directly as in Whyte et al. (2010). To estimate the local PSFs, we use
patches from the observations and consider the blur to be space invariant within a patch.
After estimating the TSFs, we formulate a cost function to arrive at the scene irradiance
that best explains the given input observations. We impose total variation prior on the
irradiance for regularization. Thus, we simultaneously achieve the twin objectives of
deblurring and HDR imaging.

9.2 Existing approaches to HDRI

In this section, we briefly introduce different HDRI approaches proposed over the years.
These include hardware-based HDRI techniques as well as algorithmic attempts. While
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the aim is to provide an overview, those with direct relevance to our work are subse-
quently elaborated.

9.2.1 Spatially-varying pixel exposures

A hardware-based approach for HDR imaging was proposed in Brajovic & Kanade
(1996). Their design involved an atypical image sensor in which each sensor element
included a measuring component to find the time it takes to attain full potential well
capacity (saturation). Since the response of all the sensors is assumed to be identical, the
measured time in a pixel is proportional to scene irradiance. The HDR irradiance image
is derived using these time durations. The approach, although attractive, is restricted by
resolution and fabrication costs. Besides, incorporation of such a sensor in a handheld
camera is susceptible to motion blur.

Nayar & Mitsunaga (2000) introduced the idea of varying pixel sensitivities for
HDR imaging. They identified different ways to spatially vary the exposures, including:
(i) fixing different sensor sensitivities for adjacent pixels during fabrication; (ii) applying
an optical mask to the sensor array; (iii) using different integration times for adjacent
pixels; and (iv) embedding different apertures (micro-lenses) for the potential wells of
the pixels. The energy recorded at these pixels depends on both sensitivity and scene
irradiance. Hence, this approach results in different measurements in adjacent pixels but
represents similar irradiance values, assuming similar irradiance values are incident on
adjacent pixels. This spatio-exposure sampling is exploited to compute a high dynamic
range image of the scene.

9.2.2 Multiple exposures (irradiance)

The use of multiple exposures is the most widely known and followed approach for
HDR imaging. In digital imaging, a wide range of irradiance quantities are mapped to
a handful of intensity values; these intensity values are dependent on exposure settings.
Varying the exposure settings remaps the scene irradiance to a different set of intensi-
ties. Thus, different mappings of the scene irradiance can be exploited to derive the
original HDR image. Algorithms based on this approach were initially proposed in
Mann & Picard (1995), Debevec & Malik (1997), and Mitsunaga & Nayar (1999). It
is well known that the incident irradiance is developed, refined and digitized to obtain
an intensity image. These processes can be equivalently represented by a nonlinear
function known as the camera response function (CRF), which is a mapping between
the total accumulated light energy in the sensors and the intensity image. Given the
exposure duration, the mapping to the irradiance values from the intensity image can
be viewed as the inverse of the CRF. Mann & Picard (1995) assume the CRF to be a
gamma curve. The associated parameters of the expression are estimated using the input
images. However, in this chapter, we discuss the irradiance recovery method proposed
by Debevec & Malik (1997) since not all CRFs can be defined by gamma curves. In
Debevec & Malik (1997), a non-parametric and generic form is considered for the
CRF by assuming a smooth function. Mitsunaga & Nayar (1999) proposed that the
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CRF could be modeled as a polynomial function and showed that the CRF can be esti-
mated without accurate knowledge of the exposure durations. Since modern cameras
can be expected to provide exposure durations accurately, the method in Debevec &
Malik (1997) is widely followed. The final HDR irradiance image is then calculated
as a weighted average of irradiance maps corresponding to all the input images. The
HDR result is stored in radiance formats such as .hdr, OpenEXR or radiance RGBE. In
order to be able to display these images on regular screens, they are tone-mapped to low
dynamic range (LDR) intensity images. We give more details in Section 9.3.

9.2.3 Multiple exposures (direct)

Attempts have also been made to obtain HDR tone-mapped equivalent images directly
from differently exposed intensity images (Mertens et al. 2007, Raman & Chaudhuri
2009, Raskar, Ilie & Yu 2005, Ward 2003). These approaches generate an HDR equiv-
alent (lookalike) LDR image by compositing differently exposed images. Note that
compositing directly on image intensity does not lead to the generation of HDR irra-
diance images. Composition is carried out by finding a weighted average of the input
images. The resultant LDR image can be encoded in common 8 bits/channel. These
methods are easy to implement, do not require tone mapping, and are faster.

Several multi-exposure fusion methods exist in the literature. The weights of the
exposures are determined using features derived from the images. Mertens et al. (2007)
weigh the exposures based on local contrast, saturation and well-exposedness of a pixel.
Ward (2003) chooses the weights based on the median threshold bitmap (MTB) of each
of the exposures. Fattal, Lischinski & Werman (2002) and Raskar et al. (2005) propose
fusion based on the gradient images of different frames. The result in all these tech-
niques is a well-composed LDR image. All the works, except for Ward (2003), assume
that the frames in the dataset are registered and that the scene is static.

To give some insight into feature and weight selection, in Mertens et al. (2007),
the contrast measure (C) of an image is obtained by finding the absolute value of the
Laplacian filter output when applied on the grayscale version of the image. The color
saturation (S) at each pixel is derived from the standard deviation of values corre-
sponding to the RGB channels. The well-exposedness (G) of a pixel is calculated from
a Gaussian curve which is defined in terms of image intensity values. While the mid-
intensity corresponds to the mean of the Gaussian function, the variance is defined by
the user. Once the parameters C, S and G are obtained for a pixel (u, v) in the jth image,
the weights are derived as

Wu,v, j = (Cu,v, j)
ωC + (Su,v, j)

ωS + (Gu,v, j)
ωG (9.1)

where ωC,ωS and ωG are user-assigned values representing the prominence of different
measures (typically close to unity). The fused output from NE observations or exposures
(denoted by Z) is obtained as

Iu,v =

∑NE
j=1 Wu,v, jZu,v, j∑NE

j=1 Wu,v, j
. (9.2)
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The weight maps corresponding to input images act as corresponding alpha masks. For
seamless blending, fusion is implemented at different resolutions using image pyramids
of the masks and input frames.

Although the idea of combining information from multiple images is straightforward,
there are restrictions too (in either the irradiance domain or the intensity domain). When
there are misalignments between different observations due to relative motion during
image capture, or when some of the images suffer from motion blur, the resultant
HDR image will be erroneous. While misalignments can be somewhat accounted for
by performing registration (Ward 2003), motion blur is not straightforward to handle.

9.3 CRF, irradiance estimation and tone-mapping

Given several digitized intensity images captured with different exposure times, each
of the images can be associated with the same scene irradiance (assuming no rela-
tive motion). Initially, the inverse CRF must be estimated from the differently exposed
images. The second step is to estimate the scene irradiance by averaging the irradiance
images obtained by mapping each of the input intensity images to the irradiance domain
(using the estimated inverse CRF). The scene irradiance must be finally tone-mapped
for display purposes. We now discuss each of these steps in detail.

9.3.1 Estimation of inverse CRF and irradiance

The relation between the different intensity images and the irradiance image can be
written as Zij = f(Ei�tj) where Z denotes the observed intensity image, E is the irradi-
ance image,�tj is the exposure duration of the jth input image and i is the spatial index
(Debevec & Malik 1997). The CRF f in the above equation is assumed to be smooth,
monotonic and invertible. After taking the natural logarithm, the imaging relation can
be written as ln f−1 (Zij

)
= ln (Ei) + ln

(
�tj
)
. Let us denote the log-inverse of the CRF

i.e. ln f−1 by g.
The objective of HDR imaging is to find E given NE different input observations

Z1, Z2, . . . , ZNE and corresponding exposure durations �tj for the jth observation. If g
is known, then the irradiance image can be calculated as

E =
exp

(
g(Zj)

)
�tj

(9.3)

Considering Zmin and Zmax as the minimum and maximum intensity values of the
images, Debevec & Malik (1997) calculate (Zmax − Zmin + 1) values of the log-inverse
CRF g and the values of E at Nq pixel locations by minimizing the following cost
function

�(E, g) =
Nq∑
i=1

NE∑
j=1

([
g(Zij)− lnEi − ln�tj

])2 + λ
Zmax−1∑

z=Zmin+1

[
g′′(z)

]2 (9.4)
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where λ is the smoothness parameter chosen appropriately for the amount of noise
expected in Z, and g′′ represents the second derivative of g. The choice of Nq is discussed
subsequently.

The following points are to be noted (Debevec & Malik 1997):

1. Since the above objective function can result in a scaled version of Ei and g, i.e.
a scaled g + ε will be balanced by ((lnEi) + ε) in the cost function, an additional
constraint of g(Zmid) = 0 is added, with Zmid = (Zmin + Zmax)/2.

2. Since the CRF is expected to be highly nonlinear, especially at very high and very
low intensities, weights are introduced to enhance the contribution of mid-intensities
in the cost function. A 256-point (for every intensity) hat function w which gives
highest weight to mid-intensity is used to derive the weight maps. The modified cost
function is given by

�(E, g) =
Nq∑
i=1

NE∑
j=1

(
w(Zij)

[
g(Zij)− lnEi − ln�tj

])2 + λ
Zmax−1∑

z=Zmin+1

[
w(z)g′′(z)

]2
(9.5)

3. This is an overdetermined problem and it is not necessary to use all available pixels
of the input image in estimation. If NE different images are available, the minimum
number of pixels Nq required for estimation has to be greater than (Zmax − Zmin)/
(NE − 1). These Nq pixels are chosen from regions in the input frame having low
variations in intensity and with a reasonably even distribution between Zmin and
Zmax.

Having recovered the log-inverse CRF g, any of the intensity images Zj can be
mapped to a corresponding irradiance image E. However, there will be inconsisten-
cies among these irradiance images due to the nonlinearity of the CRF (ideally, they
should all map to the same irradiance image). The differences between irradiance maps
are greater at pixels with very low or high intensities, i.e. the sensors which were either
saturated or insensitive. Hence, the final scene irradiance is obtained as a weighted
average to render robustness to the solution and is calculated as

lnEi =

∑NE
j=1 w(Zij)

(
g(Zij)− ln�tj

)
∑NE

j=1 w(Zij)
, 1 � i � NT (9.6)

where Ei is the irradiance value corresponding to pixel location i and NT is the total
number of pixels in E. Using multiple images to calculate E has the advantage of both
noise and artifact suppression. The estimated HDR irradiance image cannot be directly
displayed and must be tone-mapped before it can be viewed on general 8-bit display
systems.

9.3.2 Tone-mapping

The HDR irradiance image can only be displayed on special-purpose display system-
s which are not yet commercially prevalent (Seetzen, Heidrich, Stuerzlinger, Ward,
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Whitehead, Trentacoste, Ghosh & Vorozcovs 2004). General display systems cannot
handle the floating point, high-bit resolution of irradiance values. Hence, the HDR im-
ages need to be tone-mapped to low dynamic range (LDR) images. Several algorithms
have been proposed to carry out this conversion effectively (Bae, Paris & Durand 2006,
Drago, Myszkowski, Annen & Chiba 2003, Durand & Dorsey 2002, Fattal et al. 2002,
Reinhard, Stark, Shirley & Ferwerda 2002). The objective of tone-mapping algorithms
is to convincingly represent the HDR images on LDR displays, while preserving visu-
ally important features (Reinhard, Heidrich, Pattanaik, Debevec, Ward & Myszkowski
2010).

In the popular algorithm of Reinhard et al. (2002), a user-specified middle-gray value
a is accepted for the displayed image on a scale from 0 to 1. The world luminance of
the HDR image is then linearly mapped as L(u, v) = (a/L̄w)Lw(u, v), where Lw is the
input world luminance derived from the scene irradiance map, and L̄w is the log-average
luminance. The final display luminance is obtained as Ld(u, v) = [L(u, v)]/[1 + L(u, v)].
This operator ensures compression of high intensities and delivers luminance in the
display range. We too use this method to tone-map our results. While the algorithm in
Reinhard et al. (2002) attempts to faithfully reproduce the HDR image, techniques such
as Durand & Dorsey (2002) can provide artistic mappings of the scene irradiance.

9.4 HDR imaging under uniform blurring

A technique for obtaining HDR images from differently exposed, blurred input images
was first proposed by Lu et al. (2009). The input consists of blurred intensity images Zj,
where j is the temporal index taking the values 1, 2, . . . , NE. As discussed in
Section 9.3.1, given the inverse CRF f−1, each intensity image can be mapped to
the corresponding irradiance image through the inverse camera response function as
Bj = [f−1(Zj)]/�tj. Note that f−1 is the inverse CRF and not the log-inverse CRF, and
Bj represents the vectorized blurred irradiance image. Lu et al. (2009) formulate the
problem of simultaneously estimating the irradiance image, the camera response func-
tion, and blur kernels using alternating minimization. Based on the assumption that the
convolution of the latent irradiance with the kernel is equal to the irradiance-domain
equivalent of the blurred input image, Lu et al. (2009) obtain a cost function of the form

O1(E, Hj) =
NE∑
j=1

∥∥HjE − Bj
∥∥2 + λ2

1
∥∥Hj
∥∥2 + λ2

2 ‖E‖2 (9.7)

where E is the vectorized latent irradiance image, Hj represents the blurring associated
with the jth blurred input image, and the terms λ1 and λ2 denote the Tikhonov regular-
ization parameters. This cost is minimized using the Landweber method (Engl, Hanke
& Neubauer 1996) alternately for E and the NE different blur kernels Hj. The inverse
CRF f−1 is estimated by inserting E and H estimated in the previous iteration into a cost
function which is derived from Eq. (9.5)) as
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O2(f−1) =
Nq∑
i=1

NE∑
j=1

(
w(Zij)

[
f−1(Zij)− (HjE)�tj

])2

+ λ
Zmax−1∑

z=Zmin+1

[
w(z)

(
f−1
)′′
(z)
]2

(9.8)

where w,�tj and Nq are as defined in Section 9.3.1. Even though this is a good step
forward, it falls short of being able to handle real-world situations. A major drawback
of this approach is the assumption of a uniform blur model, which is not adequate for
practical scenarios.

9.5 HDRI for non-uniform blurring

While capturing images with handheld cameras, the possibility of incurring motion blur
depends on exposure time. For short exposure times, it is reasonable to assume that no
blurring will occur since the displacement of the camera will be negligible during that
period. With a handheld camera, images captured beyond a certain exposure duration
typically get blurred. The unblurred shorter exposures provide focused scene irradi-
ance information only in certain regions. While the longer exposures contain informa-
tion that is not available in the shorter exposures, that information cannot be utilized
directly because it is blurred. We now discuss and develop a technique to estimate the
latent unblurred HDR irradiance from differently exposed and possibly blurred images.
Since we allow for camera rotations, the blur kernel can vary at every image point.
Consequently, a single blur kernel is not adequate to model blurring in this situation.
We adopt the TSF model (Paramanand & Rajagopalan 2010) for handling non-uniform
motion blur in the HDR imaging problem. The details of the TSF model, estimation of
the TSF from locally determined blur kernels (PSFs), PSF estimation, and latent irradi-
ance estimation, will now be described.

9.5.1 Image accumulation

As per our earlier discussion in Section 9.3.1, the pixel intensity value in an image is
a monotonic but nonlinear function of the irradiance and exposure period (�t). The
accumulated light energy in time �t is given by

X =
∫ �t

t=0
E dt. (9.9)

For a static scene and for a still camera, X = E�t and the relation between irradiance and
final intensity may be written as Z = f (E�t). Given the intensity image and CRF, the
estimate of irradiance can then be obtained as E = f−1(Z)/�t where f−1 is the inverse
of the smooth and monotonous CRF.

For a static scene with constant depth (i.e. a fronto-parallel planar scene or a distant
scene with negligible depth changes), when there is camera shake, at each instant of
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time during exposure, the 2D irradiance image is the projection of the 3D scene. The
image intensity corresponding to accumulated energy over the exposure duration �t is
given by

Z = f
(∫ �t

t=0
�t (E) dt

)
(9.10)

where Z is the final intensity image and �t refers to the transformation operation
(homography) at time instant t. Note that �t reflects the camera motion at time t, i.e.
it yields the path of camera motion. When integrating over time, the temporal informa-
tion is lost. But this is not an issue since the temporal information is not relevant to our
problem. Rather than averaging over time, we adopt the TSF model (Paramanand &
Rajagopalan 2010) which averages the warped images over transformations to describe
the blurred image.

9.5.2 TSF and its estimation

The TSF can be understood as follows. For a flat static scene, the blurred image resulting
from camera shake can be described as a weighted sum of warped versions of the orig-
inal image, the TSF itself being a function that assigns non-negative weights to the
homographies corresponding to each warp. In other words, the TSF is a mapping from
a set of homographies to non-negative scalar values in the range [0,1].

We extend the notion of TSFs to the irradiance domain by observing that the irradi-
ance images received at different instants (within the exposure duration) are differently
warped versions of the latent irradiance image. The homographies are due to the rela-
tive motion between camera and scene. For a scene with constant depth do, the 2D
images projected at different instances of time (due to camera motion) can be related
by a homography (Hartley & Zisserman 2000). Let H denote the transformation space
(i.e. the space of homographies) where a transformation is a point in H that describes
the homography between incident images through the relation

Pν
(

R +
1
do

T [0 0 1]
)

P−1
ν , (9.11)

where Pν is a 3×3 camera matrix, R is a 3×3 rotation matrix, and T is a 3×1 translation

vector [TX TY TZ]T. The matrix Pν is assumed to be of the form Pν =

⎡⎣ ν 0 0
0 ν 0
0 0 1

⎤⎦
where ν denotes the focal length. The rotation matrix R can be expressed in terms of a
matrix exponential as R = e� where

� =

⎡⎣ 0 −θz θy
θz 0 −θx

−θy θx 0

⎤⎦ .

The terms θx, θy and θz represent the angles of rotation about the three standard axes
(Whyte et al. 2010). Based on the TSF model (Whyte et al. 2010, Paramanand &
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Rajagopalan 2010, Gupta et al. 2010), the blurred intensity image Z in Eq. (9.10)) can
be equivalently expressed as

Z = f

(( NH∑
k=1

[
h̄TSF (ϒk)

]
ϒk(E)

)
�t

)
(9.12)

where ϒk is a point in H and is given by Eq. (9.11)), h̄TSF is the TSF which maps to a
non-negative value that denotes the fraction of the total exposure duration spent by the
camera in transformation ϒk, while NH is the total number of homographies in H (after
discretization). We assume that the bounds on H (as considered in the problem) and
the sampling rate provide a sufficient number of transformations (NH) to approximately
represent the blurred image. Thus, the total energy accumulated can be viewed as the
sum of differently weighted and warped versions of the latent irradiance image projected
over the exposure duration.

A camera has 6 degrees of freedom, viz. 3 translations (tx, ty and tz) and 3 rotations
(yaw θy, pitch θx, and roll θz). However, when the scene is largely flat and static (as
assumed in this work), the blur induced by (small) out-of-plane rotations is akin to that
of translation. Also, while capturing images using handheld cameras, the variation in
tz can be treated as negligible (Gupta et al. 2010). Hence, the motion can be described
using only in-plane translations and rotation i.e. tx, ty and θz (Gupta et al. 2010, Whyte,
Sivic, Zisserman & Ponce 2012). These three dimensions constitute our 3D transforma-
tion space H. As mentioned earlier, each point in this space corresponds to a different
transformation or homography. The discrete relation in the argument of f in Eq. (9.12))
can be written as a linear equation Z = f ([K · E] ·�t), where K is a large sparse
matrix with non-zero elements derived from TSF coefficients h̄TSF(ϒk) and bilinearly
interpolated weights representing non-integer pixel locations resulting from ϒk (Whyte
et al. 2010). Every discrete TSF h̄TSF can be associated with a corresponding matrix K.

Each of the given blurred observations is related to the latent scene irradiance by
a different TSF and each of these TSFs must be estimated in order to solve for the
unblurred scene irradiance. In Whyte et al. (2010) and Gupta et al. (2010), a blind
estimation method is used for finding the TSF. We believe that such an approach is not
suitable for finding multiple TSFs simultaneously since it does not fully utilize the infor-
mation available in different observations. The procedure that we employ to estimate the
TSF is described next.

For a given blurred observation, the local PSFs at each pixel location can be related
to the TSF as

h (u, v; m, n) =
NH∑
k=1

h̄TSF (ϒk) δd
(

m −
(

uk
ϒ − u

)
, n −

(
vk
ϒ − v

))
(9.13)

where
(
uk
ϒ , vk

ϒ

)
denotes the position to which (u, v) goes when transformation ϒ−1

k is
applied, h is the PSF at (u, v), and δd denotes the 2D Kronecker delta function. From
Eq. (9.13)), we note that each local PSF can be considered as a weighted sum of the
components of the TSF of the image, i.e. each PSF (vectorized) can be related to the



�

�

“9781107044364AR” — 2013/12/20 — 9:50 — page 195 — #209
�

�

�

�

�

�

9.5 HDRI for non-uniform blurring 195

TSF as h+l = Mlh̄TSF where l = 1 . . .Np, and Ml is a matrix whose entries are determined
by the location pl of the blur kernel and interpolation coefficients. When Np such PSFs
are given, stacking these PSF relations leads to the linear relation ĥ = Mh̄TSF where M
is a large sparse matrix derived from Mls and ĥ is a vector consisting of local PSFs.

Unlike optical defocus which has a large spatial support, it is important to note that
camera shake results in motion that can be represented with only a small subset of
transformations. Hence, a sparsity prior can be fittingly enforced on the TSF h̄TSF.
Several other works dealing with camera motion blur also use this constraint (Fergus
et al. 2006, Whyte et al. 2010, Yuan et al. 2007). The TSF can then be derived by
minimizing the cost function

�(h̄TSF) =
∥∥∥ĥ − Mh̄TSF

∥∥∥
2

+ λs
∥∥h̄TSF

∥∥
1 (9.14)

While the least-squares term in Eq. (9.14)) ensures consistency with the observed blur
kernels, the sparsity constraint is imposed by the l1-norm term. To minimize the cost
function, we use the toolbox available in Liu, Ji & Ye (2009). We discuss the estimation
of local PSFs in the following subsection.

We conducted an experiment to evaluate the effectiveness of the TSF estimation from
locally determined PSFs. Although the experiment was carried out using images in the
intensity domain, the approach is valid even on irradiance images. The transformation
space was defined as follows: tx and ty ranged between −11 and 11 in steps of 1 pixel,
θ took values between 0◦ and 2.5◦ in steps of 0.25◦. Along the θ axis, the TSF had
nonzero values only between 1◦ and 1.75◦, as plotted in the fourth row of Figure 9.2. On
blurring the reference image (Figure 9.2(a)) with the TSF, we obtained the observation
shown in Figure 9.2(b). Using patches cropped from four different locations (marked
in Figures 9.2(a,b)), we estimated the blur kernels. The PSFs were of size 33 × 33 and
these are shown in the second row of Figure 9.2. With these blur kernels, the TSF was
estimated using the proposed method. The components of the estimated TSF for angles
between 1◦ and 1.75◦ are shown in the fifth row of Figure 9.2. From the fourth and
fifth rows of Figure 9.2, we can see that our estimate is quite close to the ground truth
value. Furthermore, the blur kernels generated using the estimated TSF (third row of
Figure 9.2) closely match the observed blur kernels (second row of Figure 9.2). The
rms error between the observation of Figure 9.2(b) and the image obtained by blurring
the reference image with the estimated TSF was found to be only 1.1% of the maximum
image intensity. This serves to demonstrate that the TSF was estimated quite accurately
from locally derived PSFs.

9.5.3 PSF estimation

Given NE observations, those which were captured below a certain exposure time are
assumed not to have undergone blurring. In order to find the local PSFs of a blurred
frame Zs, local patches from Zs and a non-blurred shorter exposure (say) Zr are cropped
in such a way that the pixels contain intensities in the mid-range so as to avoid the
clipping effects. If there are multiple non-blurred observations, then Zr corresponds to
the one with the longest exposure duration. Note that the intensities of images Zr, Zs
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(a) (b)

Figure 9.2 (a) Original image; (b) blurred observation. Second row: blur kernels determined from
patches. Third row: blur kernels obtained by the estimated TSF. Fourth row: true TSF. Fifth
row: estimated TSF.

are not directly comparable. Therefore, the estimation operation is carried out in the
irradiance domain using the knowledge of the inverse CRF. Within a blurred frame,
we consider Np different image patches at image locations p1, p2, . . . , pNp . The blur is
assumed to be locally space-invariant. For each blurred patch in Zs, it is reasonable to
assume that Bs

pl
= Er

pl
∗hs

pl
where Bs

pl
is the irradiance patch in Zs at location pl, Er

pl
is the

corresponding latent irradiance image patch obtained from Zr (an unblurred frame), hs
pl

is the blur kernel at location pl of the blurred frame Zs, and ∗ denotes convolution. We
apply a mask m to limit any inconsistencies that might arise due to the truncating nature
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(a) (b) (c) (d)

Figure 9.3 Example of PSF estimation. (a) Selected patches are marked in the blurred image;
(b) closeups of the cropped patches; (c) the corresponding true PSFs; and (d) the estimated PSFs
for each patch.

of the CRF. Each input image has a corresponding mask which is derived based on its
intensity values. A single equivalent mask m is applied here to restrict the unreliable
pixels in both image patches. The details of mask generation are elaborated later. Each
of the blur kernels hs

pl
is individually estimated by minimizing

�(hs
pl
) =
∥∥∥(m · Bs

pl
− m ·

(
hs

pl
∗ Er

pl

))∥∥∥2
(9.15)

using the conjugate gradient method. The same procedure is followed for estimating the
local PSFs of all the blurred frames. Note that the entire estimation scheme is carried
out in the irradiance domain. Figure 9.3(a) shows a synthetically blurred image. The
image patches (at locations marked in Figure 9.3(a)), the true PSFs, and estimated PSFs
corresponding to these patches are shown in Figures 9.3(b–d), respectively. Note that
the PSFs have been estimated accurately by solving Eq. (9.15)). The variations in the
PSFs across spatial locations clearly reveal the space-variant nature of the underlying
blur.

9.5.4 Irradiance image recovery

The objective of our work is to recover the deblurred HDR latent irradiance image.
Given NE differently exposed intensity images Z1, Z2 . . . ZNE , each input image Zj is
associated with its corresponding TSF h̄ j

TSF, for j = 1, 2, . . . , NE. The TSFs of the non-
blurred observations consist of a unit weight at the transformation corresponding to zero
translation and rotation. Small misalignments across frames are accounted for inherently
in the TSF model, i.e., when an observation is transformed (but not blurred) with respect
to the reference image, its TSF will have a unity entry at a position corresponding to
its transformation. When there are large shifts across frames, although they can still
be represented by TSFs, for the ease of computation, one can align them using any
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established image registration technique. The irradiance image map Bj corresponding
to the observation Zj is given by Bj = f−1(Zj)/�tj, where �tj is the exposure time of
the observation Zj. Note that the inverse CRF

(
f−1) is independent of the scene. Hence,

it can be determined offline. In our algorithm, we assume that the knowledge of the
inverse CRF

(
f−1) is available. For a particular camera setting, by using the standard

algorithm in Debevec & Malik (1997), one can determine the inverse CRF.
In order to achieve deblurring and to estimate the latent HDR irradiance image E, the

cost function can be formulated as
NE∑
j=1

‖KjE − Bj‖2 (9.16)

where the term KjE represents the blurring of E by the jth TSF. We replace the summa-
tion in Eq. (9.16)) by concatenating all the blurred irradiance images (Bjs) into a single
vector B̃ and the corresponding Kjs into a single matrix K̃ to arrive at ‖K̃E − B̃‖2.
Considering the nonlinearity of the CRF, we introduce a mask in Eq. (9.16)) which is
derived based on the grayscale image equivalent of the observations Zj. When mapped
to an irradiance domain, a pixel which is saturated in different exposures or is close
to zero leads to different irradiance values, whereas image intensities that are neither
too low nor too high get mapped to comparable irradiances. Hence, we propose to use
masks to remove inconsistencies in the cost function caused by the CRF. The mask
is generated from a 256-point (corresponding to each intensity value) Tukey window
(Tukey 1967) which has a smooth transition at both ends when going from 0 to 1. The
smoothness is controlled by a parameter α. The Tukey window for α = 0.2 is shown
in Figure 9.4(a). In Figures 9.4(b,c), we show the masks obtained for images captured
at exposure times 1

30 s and 1 s, respectively. Observe that both saturated and low inten-
sity pixels are assigned negligible weights. In order to maintain color balance, the same

(b) (c)

(a)
50 100 150 200 250

0

0.2

0.4

0.6

0.8

1

intensity value

Tukey window for masking

α=0.2

Figure 9.4 (a) Plot of Tukey window function; (b,c) input observations corresponding to different
exposure times and their respective masks.
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mask is applied to all three color channels. On incorporating the effect of masking, we
get a modified cost function

‖m̄ · [K̃E] − m̄ · B̃‖2 (9.17)

where m̄ is a large diagonal matrix containing masks corresponding to each of the
observations.

For regularization, we employ the total variation (TV) prior which incorporates
smoothness as well as preserves edges. The latent irradiance image E is obtained by
minimizing the following cost function

O(E) = ‖m̄K̃E − m̄B̃‖2 + λTV

∫
�

|∇E| dx. (9.18)

To incorporate the TV prior, we employ the half-quadratic scheme (following the
method in Sroubek & Flusser (2005)). The cost function is iteratively minimized by
the conjugate gradient method. The derivative of the cost is given by

∂O
∂E

= m̄.K̃T
(

m̄.
(

K̃E − B̃
))

− λTV

(
div
( ∇E
|∇E|

))
(9.19)

where K̃T represents the adjoint of the blurring operation and corresponds to inverse
warping (Tai et al. 2011). The term K̃E is obtained by blurring E with each Kj present
in K̃. It must be noted that in our implementation, we do not generate the matrices m̄
or K̃. Instead of evaluating the term K̃E by matrix multiplication, we directly blur the
irradiance image E using the TSFs (through warping and averaging). Also, we directly
mask the pixel locations instead of generating the matrix m̄.

To summarize, the steps involved in the proposed method for estimating the latent
scene irradiance from a multi-exposure dataset consisting of blurred images are given
below:

1. Calculate (offline) the log-inverse CRF (Section 9.3.1), and map each input image to
the irradiance domain.

2. Estimate the PSFs using the highest exposed non-blurred irradiance image and the
blurred image (Section 9.5.3).

3. Compute the TSF associated with each blurred image using the locally derived PSFs.
4. Reconstruct the scene irradiance (Section 9.5.4).
5. Tone-map for display purposes.

9.6 Experimental results

Initially, we show the results of our scheme on an image set in which we synthetically
blurred the longer exposures. The first row of Figure 9.5 shows a set of images captured
at different exposures with a camera placed on a tripod. Two longer exposures that were
captured at 1

2 s and 2 s were blurred using known TSFs. The TSFs were chosen in such
a way that they replicated blurring caused by a real camera shake. The support for the
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(a)

(c) (d)

(e) (f)

(b)

Figure 9.5 First row: different unblurred exposures captured from a still camera.
(a,b) Synthetically blurred longer exposures; (c) tone-mapped HDR image derived from
non-blurred images; (d) HDR obtained from separately deblurred images; (e) result obtained
from Lu et al. (2009); (f) result of our method.
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TSFs was defined as follows: tx and ty took integer values in the range [−12, 12], and
θz ranged between [−1.5◦, 1.5◦] in steps of 0.25◦. On blurring, the observations were
obtained as shown in Figures 9.5(a,b). These images, along with the unblurred shorter
exposures, were used as input images. In the input image set, some of the regions that
are not visible in the shorter exposures are visible only in the blurred longer exposures.
When the original un-blurred set (first row of Figure 9.5) was used to determine the irra-
diance using the method in Debevec & Malik (1997), the tone-mapped HDR image was
obtained as shown in Figure 9.5(c). Since this result was obtained in an ideal scenario,
it can be considered as a ground truth reference. When we performed irradiance estima-
tion by using the deblurred estimates of blurred longer exposures (using the technique
in Whyte et al. (2010)) along with the unblurred shorter exposures, the HDR image
was estimated as shown in Figure 9.5(d). It is quite apparent that the resultant image in
Figure 9.5(d) has a significant residual blur. Figure 9.5(e) shows the result obtained by
the method proposed in Lu et al. (2009) for our non-uniformly blurred data. Although
the image has been deblurred in certain regions such as the illuminated parts and the
book title, residual blur can be seen in the outer region where the effect of rotation is
greater. This is not surprising since the method in Lu et al. (2009) is not equipped to
handle non-uniform blur. The result of our method is shown in Figure 9.5(f), wherein
we can see that all the regions of the scene are well illuminated, as well as sharp. Our
result is comparable to the ground truth shown in Figure 9.5(c).

Figure 9.6 shows the result of our method on two different sets of real data. The
first set shown in the first row of Figure 9.6 has images of size 640 × 480 captured
at exposure times 1

15 , 1
8 , 1

2 and 2 s. Among the observations, the two longest exposures
were motion-blurred due to camera shake. We observe that the motion-blurred frames
contain information about the lower portion of the scene which is not visible in the
less-exposed frames. The second set shown in the second row of Figure 9.6 shows
three images whose exposure durations were 1

8 , 1
3 and 1 s, respectively. In this set, the

observations corresponding to 1
3 and 1 s are blurred.

The estimated HDR images (after tone-mapping) using our method are shown in
Figures 9.6(a,b), wherein we observe that the images are well-lit and there are no satu-
rated regions. Also, the blurred information present in the longer exposures has been
restored while retaining the information from the shorter exposures. We show closeup
patches from the longest exposed images and the estimated HDR image (side-by-side) in
the last two rows of Figure 9.6. From the zoomed-in patches, it is clear that smearing in
the longest exposure is not present in the resultant image. In the patches corresponding
to the second set, we observe that the result is shifted with respect to the input blur
patches. This shift is due to the compensation for the misalignment between input
patches. The results further reinforce the fact that our method satisfactorily achieves
the twin objectives of HDR imaging and deblurring.

Next we considered an outdoor scene. The three observations (shown earlier in
Figure 9.1) were captured with exposure times 1

100 , 1
50 and 1

2 s, respectively, from a
handheld camera. The longest exposed image captured at 1

2 s was found to be blurred.
By applying the proposed method on this dataset, the deblurred HDR result was obtained
as shown in Figure 9.7(a). We observe that the resultant image is deblurred and also
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(a) (b)

Figure 9.6 Top two rows: input images corresponding to two different scenes. (a,b) Estimated
HDR images using the proposed scheme. Bottom two rows: closeups of blurred data (available
only in the longer exposures) and the corresponding patches in the output images.

well illuminated. We show the zoomed-in patches from the observations and the resul-
tant images in the two columns of Figure 9.7(b). While patches in the top three rows are
from the three observations, the bottom row contains patches from the estimated HDR
image. We observe that the railings are visible only in the longest exposure of 1

2 s, but
are blurred. However, in our final result, the railings appear deblurred. Also, the darker
background region behind the railing is visible in the result. In the second closeup which
corresponds to a brightly illuminated region, information is available only in the shorter
non-blurred exposures but is completely saturated in the longer exposures. The closeups
from the estimated result highlight the effectiveness of our algorithm.

When the convolution model of Lu et al. (2009) was applied, we obtain the result as
shown in Figure 9.7(c). Although this result is correctly lit in all regions, deblurring is
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(b)(a)

(c) (d)

Figure 9.7 Real HDR imaging experiment with blurred longer exposures captured using a
handheld camera. (a) The final deblurred HDR result; (b) closeup patches from the input
observations are shown in the top three rows while the corresponding output patches from our
method are shown in the bottom row; (c) result obtained using the convolution model of Lu
et al. (2009); (d) zoomed-in patches from (c).

not completely achieved. The image appears sharp in the center and in regions where the
scene was brightly illuminated (as can be seen in the top two patches of Figure 9.7(d)).
However, the third patch in Figure 9.7(d) shows residual blur near the railings. This
result again demonstrates the effectiveness of our method for space-variant blurring
situations.

9.7 Conclusions and discussions

We discussed an approach to estimate the high dynamic range irradiance of a static
scene from a set of observations captured from a handheld camera. We considered that
among the observations, the longer exposures underwent non-uniform motion blur due
to camera shake. A two-step procedure was proposed in which we first obtained the
TSF of each blurred image, then estimated the latent scene irradiance. We exploited the
linear relationship between the TSF of an observation with its local PSFs and devel-
oped an elegant method for TSF estimation. The scene irradiance was then estimated by
minimizing a suitably derived cost involving all the frames.
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There are many directions in which to proceed further. In our method, we assumed
that only the longer exposures were blurred. However, our framework can be extended
to the scenario wherein all the observations are blurred. While capturing images of
a 3D scene, blur will generally vary due to parallax effects. Estimation of latent scene
irradiance under such conditions would be quite challenging. Also, the problem of HDR
imaging of a dynamic scene affected by camera shake is potentially an interesting one
to tackle.
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10 Compressive video sensing to tackle
motion blur
Ashok Veeraraghavan and Dikpal Reddy

10.1 Introduction

Spatial resolution of imaging devices is steadily increasing: mobile phone cameras
have 5–10 MP while point-and-shoot cameras have 12–18 MP. As the spatial resolu-
tion of imaging devices increases, the effect of either camera or subject motion on the
captured images is magnified, resulting in the acquisition of heavily blurred images.
Since the motion-blur kernel is a low pass kernel, the high frequencies in the image are
heavily attenuated. Deblurring the effects of such low pass blur kernels results in the
introduction of significant high frequency artifacts. When the size of the blur kernel is
small, these artifacts can be mitigated by the use of appropriate image regularizers that
allow for the hallucination of the high frequency detail. Unfortunately there are several
scenarios in which such a technique, relying primarily on image regularization, cannot
be directly applied. They fall into the following three main categories.

1. Large motion
The resolution of image sensors are rapidly increasing, while the hands of photographers
are not becoming any steadier. This results in ever larger sizes of blur kernels. While
image regularization allows us to handle blur kernels of a moderate size (say about
10–15 pixels), larger blur kernels test the ability of even modern deblurring algorithms,
especially in regions of high texture. Such large motion blur kernels necessitate active
approaches that shape the blur kernel to be invertible in order to handle these robustly.

2. Object motion
Object motion causes blur that is spatially variant. In particular, the blur kernel depends
on the local velocity of the objects. To apply traditional image deblurring techniques
we require object segmentation which is a hard problem in itself. We can avoid explicit
object segmentation by solving a video estimation problem with the help of video priors.

3. Complex camera motion
Complex camera motions such as those due to an unsteady hand during long expo-
sures result in a spatially variant blur. Deblurring such images requires complex motion
models. We pose deblurring as a video estimation problem, thereby allowing us to
accommodate complex camera motions.
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10.1.1 Video compressive sensing to handle complex motion

Traditional methods for image deblurring make strict assumptions about the camera
or scene motion and when these assumptions hold true, the observed blurry image
can be represented as a spatially invariant convolution of the sharp image with a blur
kernel. Unfortunately, there are several practical scenarios, as mentioned above, when
this simplistic assumption breaks down. Traditional image deblurring techniques suffer
significant performance degradation when this occurs. An alternative viewpoint of image
deblurring that sidesteps the spatial invariance assumption, is to reformulate the image
deblurring problem as a video estimation problem. Over the last few years, multiple
methods have been developed that follow this line of enquiry, resulting in the ability to
acquire sharp high temporal resolution videos from one or more acquired blurred images
(Takeda & Milanfar 2011, Gupta, Agrawal, Veeraraghavan & Narasimhan 2010, Bub,
Tecza, Helmes, Lee & Kohl 2010, Gu, Hitomi, Mitsunaga & Nayar 2010, Sankara-
narayanan, Turaga, Baraniuk & Chellappa 2010, Veeraraghavan, Reddy & Raskar 2011,
Marcia & Willett 2008, Hitomi, Gu, Gupta, Mitsunaga & Nayar 2011). Two common
characteristics of these methods are as follows.

1. Coded multiplexing
An imaging architecture that allows for coded multiplexed measurements to be obtained
on the sensor. Typically, codes are carefully written to optimize reconstruction perfor-
mance. While the specifics of the imaging architecture vary, these different choices
provide a rich tradeoff between complexity of the architecture and optimality of the
multiplexing measurements that can be acquired.

2. Statistical priors on video
Since multiple frames from a video get multiplexed onto a single acquired image, the
resulting system of equations is under-determined. These methods assume some statis-
tical redundancy in the form of video priors to help solve this under-determined system
of equations. The rich choice of reconstruction algorithms allows for a tradeoff between
computational complexity and reconstruction performance.

In this chapter, we describe one particular imaging architecture and reconstruction
algorithm that we proposed originally in 2011 (Reddy, Veeraraghavan & Chellappa
2011). However, other video compressive sensing techniques (Gupta et al. 2010, Bub
et al. 2010, Gu et al. 2010, Sankaranarayanan et al. 2010, Veeraraghavan et al. 2011,
Marcia & Willett 2008, Hitomi et al. 2011) tackling image deblurring inherit similar
advantages and result in similar performance characteristics.

10.2 Related work

High-speed and high efficiency sensors
Sensors with high quantum efficiency and very low thermal noise (usually achieved by
active cooling) are necessary if we need to completely avoid motion blur at acquisi-
tion time for fast moving subjects. Moreover, when acquiring videos, apart from light
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sensitivity, high communication bandwidth is also necessary to acquire images at fast
frame rates. Such high-speed cameras are expensive due to the requirement of high light
sensitivity and large communication bandwidth. These cameras (www.photron.com)
usually have limited on-board memory with a dedicated bus connecting the sensor. The
acquisition time is limited by the on-board memory. For example, the $300K high-
speed FastCam SA5 video camera can capture, at most, 3 seconds of video at 7 500 fps
and 1 MP.

Single/multi image spatial super-resolution
The size of the motion blur kernel is dependent on the resolution of the sensor – more
pixels within the same imaging area implies larger motion blur in pixels. This suggests
that acquiring a slightly lower resolution image followed by image super-resolution
may be a reasonable choice for certain applications, given the maturity of image super-
resolution algorithms. Unfortunately, there are fundamental limits to such methods
(Lin & Shum 2004, Baker & Kanade 2000). Recent methods tackle this problem either
by using matching high–low resolution image pairs (Freeman, Jones & Pasztor 2002)
or by modeling images as compressible in appropriate transform basis (Sun, Xu &
Shum 2008). These methods have enabled image super-resolution even from a single
image (Fattal 2007, Glasner, Bagon & Irani 2010).

Temporal super-resolution
Spatial super-resolution from multiple images (Borman & Stevenson 1998, Park, Park
& Kang 2003) is a classical problem which has been studied extensively. Shechtman
et al. (Shechtman, Caspi & Irani 2005) perform spatio-temporal super-resolution by
using multiple cameras with staggered exposures. Similarly, Wilburn et al. (Wilburn,
Joshi, Vaish, Talvala, Antunez, Barth, Adams, Horowitz & Levoy 2005) use a dense
30 fps camera array to generate a 1000 fps video. Recently Agrawal et al. (Agrawal,
Gupta, Veeraraghavan & Narasimhan 2010) showed that combining this idea with per
camera flutter shutter (FS) (Raskar, Agrawal & Tumblin 2006) significantly improves
the performance of such staggered multi-camera high-speed acquisition systems.
Ben-Ezra (Ben-Ezra & Nayar 2004) built a hybrid camera where motion is measured
using an additional higher frame-rate sensor and then used to estimate the point spread
function for deblurring.

Traditional motion deblurring
When a fast phenomenon is acquired via a low frame-rate camera, one can either
obtain noisy and aliased sharp images using short exposures, or blurred images using
long exposures. Motion deblurring has made great progress by incorporating spatial
regularization terms within the deconvolution framework (Shan, Jia, Agarwala et al.
2008, Fergus, Singh, Hertzmann, Roweis & Freeman 2006). Novel hardware architec-
tures (Raskar et al. 2006, Levin, Sand, Cho, Durand & Freeman 2008) have also been
designed to improve deconvolution. These techniques require the knowledge of motion
magnitude and/or direction and cannot handle general scenes exhibiting complex
motion.



�

�

“9781107044364AR” — 2013/12/20 — 9:50 — page 210 — #224
�

�

�

�

�

�

210 Compressive video sensing to tackle motion blur

Compressive sensing (CS) of videos
One of the non-traditional techniques for tackling motion blur is to treat the motion
blur problem as a compressive video reconstruction problem. In such an approach,
instead of modeling an acquired blurred image as a convolution of the sharp image
with an unknown blur kernel, the captured blurred image is modeled as a particular set
of linear measurements of the underlying video. This reformulation provides a signif-
icant advantage since complex scenarios such as nonlinear object motion, multiple
independent motions, and spatially invariant blur, can be handled easily in a single
framework.

Over the last five years, several examples of such a viewpoint have emerged with
a host of imaging architectures and corresponding reconstruction algorithms. Existing
methods for video CS assume multiple random linear measurements at each time
instant, using either a coded aperture (Marcia & Willett 2008) or a single pixel camera
(SPC) (Duarte, Davenport, Takhar, Laska, Sun, Kelly & Baraniuk 2008). Given such a
sequence of compressive measurements, prior models about the transform domain spar-
sity of the video are used to reconstruct the videos. Vaswani (2008) shows that videos
with slowly changing dynamics need far fewer measurements for subsequent frames
once the first frame is recovered using a standard number of measurements. This is
achieved by modeling the sparse coefficients in every frame as a dynamical system,
allowing the model to predict only the non-zero coefficients in a newly acquired frame,
thus requiring fewer measurements. Park and Wakin (Park & Wakin 2009) present an
algorithm for compressive video reconstruction by using a motion-compensated wavelet
basis to sparsely represent the spatio-temporal volume. Such methods have achieved
only moderate success since (a) the temporal redundancy of videos is not explicitly
modeled, and (b) the hardware architectures need to be highly engineered and/or are
expensive.

Gu et al. (2010) proposed a coded rolling shutter architecture for spatio-temporal
tradeoff by exploiting the fact that one can proactively control the exposure time and
duration of different rows of a rolling shutter sensor. Flutter shutter (Raskar et al. 2006),
which was originally proposed for better conditioning the spatially invariant motion blur
problem, has since been extended to be applicable to periodic scenes (Veeraraghavan
et al. 2011) and more general scene motions (Holloway, Sankaranarayanan, Veeraragha-
van & Tambe 2012) by posing as a compressive video reconstruction problem. For the
class of videos that can be adequately modeled as a linear dynamical system, Sankara-
narayanan et al. (2010) provide a method for acquiring videos compressively using the
SPC architecture. Both approaches can only handle periodic/dynamic texture scenes,
while P2C2 can capture arbitrary videos. Gupta et al. (2010) show how per-pixel tem-
poral modulation allows flexible post-capture spatio-temporal resolution tradeoff. Sim-
ilarly, Bub et al. (2010) propose a spatio-temporal tradeoff of captured videos which
have limited light throughput and, unlike Gupta et al. (2010), lack flexible resolution
tradeoff. Recently, dictionary learning and sparse representations have been shown to
be a powerful technique for performing video compressive sensing (Hitomi et al. 2011)
and such algorithms, while computationally expensive, are making significant perfor-
mance improvements.
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10.3 Imaging architecture

10.3.1 Programmable pixel compressive camera

To handle the challenging scenarios laid out above, in this chapter we present an imaging
architecture (Figure 10.1), known as the programmable pixel compressive camera
(P2C2). P2C2 consists of a normal 25 fps, low resolution video camera, with a high
resolution, high frame-rate modulating device such as a liquid crystal on silicon (LCOS)
or a digital micromirror device (DMD) array. The modulating device modulates each
pixel independently in a pre-determined random fashion at a higher rate than the acqui-
sition frame rate of the camera. Thus, each observed frame at the camera is a coded
linear combination of the voxels of the underlying high-speed video frames. The effect
of the spatial light modulator is to make the blur observed at every pixel coded, thereby
making the linear mixing better conditioned. The underlying high resolution, high-speed
frames are recovered from the captured low resolution frames by exploiting temporal
redundancy in the form of brightness constancy, and spatial redundancy through trans-
form domain sparsity in a convex optimization framework. The advantage of recov-
ering a video over recovering a single image is that this allows for easy handling of
spatially varying blur kernels that result due to both complex camera motion and/or
subject motion.

10.3.2 Prototype P2C2

We implement P2C2 with an LCOS mirror SXGA-3DM from Forth Dimension Displays
as a spatio-temporal modulator. The mirror has 1280 × 1024 pixels and each pixel can
be fluttered (binary) independently at maximum rate of 3.2 kHz. This imposes an upper
limit of 3200 fps on the frame rate of the recovered video. LCOS works by flipping
the polarization state of incoming light and therefore needs to be used with a polar-
izing beamsplitter and the necessary relay optics, as shown in Figure 10.2. The scene
is focused on the LCOS device which modulates this incoming light. The Point Grey
Dragonfly2 sensor (1024× 768 pixels at 25 fps) is in turn focused on the LCOS mirror.

10.3.3 P2C2 as a underdetermined linear system

Let the intensity of the desired high frame-rate video be x(s, t)where s = (r, c) ∈ [1 N]×
[1 N] are the row and column coordinates respectively, and t ∈ [1 T] the temporal
coordinates. We call the higher rate frames xt “sub-frames”, since the acquired frames
are formed by integrating them. P2C2 captures the modulated intensities y(sl, tl) where
sl = (rl, cl) ∈ [1 N/Ls] × [1 N/Ls] and tl ∈ [1 T/Lt] are its spatial and temporal
coordinates. Ls and Lt are the spatial and temporal sub-sampling factors respectively.
The captured frame ytl is related to sub-frames xt as

ytl = D

⎛⎝ tlLt∑
t=(tl−1)Lt+1

xtφt

⎞⎠ (10.1)
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Camera operating at 25 fps

0.25 megapixel
sensor array

Spatio-temporal mask modulates every
pixel independently. Mask has

1 megapixel and modulates at 200 fps

Captured modulated
low res frames from

25 fps cameraFast moving scene

Captured
modulated low

res frames
from 25 fps

camera

Convex optimization
based reconstruction

algorithm

Brightness constancy
constraints temporally

Wavelet domain
sparsity spatially

Reconstructed high frame-
rate, high res video at

200 fps and 1 megapixel

Figure 10.1 Programmable pixel compressive camera (P2C2). Each pixel of a low frame-rate,
low resolution camera is modulated independently with a fast, high resolution modulator (LCOS
or DMD). The captured modulated low resolution frames are used with accompanying
brightness constancy constraints and a wavelet domain sparsity model in a convex optimization
framework to recover high resolution, high-speed video. Since deblurring is solved as a video
estimation problem, spatially varying blur can be handled effectively. (Figure reproduced from
Reddy et al. (2011) with permission from IEEE.)

Objective
Lens

Polarizing
beamsplitter

Camera Lens

LCOS Mirror

Figure 10.2 Prototype. Illustration of the optical setup. (Figure reproduced from Reddy et al.
(2011) with permission from IEEE.)

where φ is the spatio-temporal modulation function (achieved by LCOS as shown in
Figure 10.2) and xtφt is the modulation of the sub-frame at t with a mask. D(·) denotes
a spatial subsampling operation to account for the possibility that the camera could also
be spatially modulated at a sub-pixel resolution. Notice that Lt sub-frames are modu-
lated with Lt independent high resolution random masks and then integrated to produce
one spatio-temporally subsampled frame of captured video (as shown in Figure 10.3).
Moving objects exhibit motion blur in each of the captured frames. The size of this
motion blur kernel is proportional to the object velocity, while the kernel shape is
controlled by the local per-pixel modulation function applied using the LCOS modu-
lator. As a consequence of the modulation using LCOS, the local blur kernel is no
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Figure 10.3 Camera architecture. At every pixel the camera independently modulates the
incoming light at sub-frame durations and then integrates it. For example, the 3D spatio
temporal volume of a golf ball is modulated with a random mask at sub-frame durations and
then integrated into a frame. A frame captured by our camera has the code embedded in the blur.
(Figure reproduced from Reddy et al. (2011) with permission from IEEE.)

longer a box function, but rather becomes better conditioned allowing preservation of
high frequency detail.

Since the observed pixel intensities y are linear combinations of the desired voxels
x, with the weights given by the modulation function φ, Eq. (10.1) can be written in
matrix-vector form as

y = �x, (10.2)

where� is the matrix representing per-pixel modulation followed by integration in time
and spatial subsampling. x and y are the vectorized forms of desired high-speed voxels x
(eg. 256×256×32 voxels) and the captured video y (128×128×4 video) respectively,
corresponding to a temporal downsampling of 8 and spatial downsampling of 2. The
optimization term enforcing fidelity of the recovered sub-frames to the captured frames
is given by Edata = ‖y −�x‖2

2.

10.4 High-speed video recovery

As we described earlier, instead of deblurring the coded blurred images and obtaining a
single deblurred image, we attempt to recover a short video. The number of unknown
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pixel intensities in this short video is much larger than attempted in Eq. (10.2), and there-
fore the resulting set of linear equations is severely under-determined. To solve for sub-
frames x, a prior on spatio-temporal video volume should be incorporated. Most natural
video sequences are spatio-temporally redundant. Sparsity of video in some transform
domains is an important piece of prior information and is often used in compression,
video denoising and even compressive video acquisition. Temporally, object and/or
camera motion preserve the appearance of objects in consecutive frames and this fact
is used in video compression schemes such as Moving Picture Experts Group (MPEG).
We exploit both forms of redundancy to solve the system of under-determined equations
arising from Eq. (10.2). The basic algorithm was originally developed and presented in
Reddy et al. (2011).

10.4.1 Transform domain sparsity

Each sub-frame is sparse in the appropriate transform domain and we enforce this prop-
erty in our recovery through �1 regularization of its transform coefficients. The regu-
larization term enforcing spatial sparsity of sub-frames is Espatial =

∑T
t=1 β‖�−1xt‖1,

where xt is the vectorized sub-frame xt and � the transform basis.

10.4.2 Brightness constancy as temporal redundancy

We exploit the brightness constancy (BC) constraint distinctly from, and in addition to,
the spatial transform domain sparsity regularization. Consider three consecutive frames
of a club hitting a ball in Figure 10.4. The points p1, p2 and p3 correspond to the same
point on the golf club in frames x1, x2 and x3 respectively. If relative displacement of
these points is estimated, then their pixel intensities in Eq. (10.2) can be constrained to
be equal, i.e. the brightness at these pixels is constant x(p2, 2)− x(p1, 1) = 0 (backward
flow) and x(p2, 2)− x(p3, 3) = 0 (forward flow). This effectively decreases the number
of unknowns by 2. The system becomes significantly less under-determined if BC
constraints at other points are known as well. The sub-frame BC constraints over the
entire video volume are then given by

Backward flow Forward flow Occluded point in x3

Figure 10.4 Brightness constancy constraints at p1, p2 and p3 and optical flow consistency check
at q2 and q3. (Figure reproduced from Reddy et al. (2011) with permission from IEEE.)
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�x = 0 (10.3)

where every row of matrix � is the relevant BC equation of a spatio-temporal point
(s, t). We incorporate these constraints in the optimization by adding a BC regularization
term EBC = λ‖�x‖2

2.

Recovery algorithm

Initialization
Given optical flow, BC constraints are incorporated through EBC. But optical flow can
be determined only when the sub-frames are available. Hence, we iteratively determine
the sub-frames and the optical flow in an alternating fashion. We begin by estimating
the sub-frames without any BC constraints. In the first iteration we trade-off spatial
resolution to recover frames at a desired temporal resolution. We assume that each sub-
frame xt is an upsampled version of a lower spatial resolution frame: xt = U(zt) where
zt is a vectorized

[
N

Ls
√

Lt
× N

Ls
√

Lt

]
image and U(·) is a linear upsampling operation such

as bilinear interpolation. The initial estimate is given by solving

z0 = arg min
T∑

t=1
β‖�−1U(zt)‖1 + ‖y −�U(z)‖2

2. (10.4)

The estimate x0 = U(z0) does not capture all the spatial detail and is noisy but it
preserves the motion information accurately as shown in Figure 10.5(a). We estimate
optical flow (Liu 2009) on the initial estimate (Figure 10.5(b)) and perform consistency
checks to trim the flow (Figure 10.5(c)) as described in Section 10.4.2. Only the consis-
tent flow is used to build the BC constraint matrix �0 for the next iteration. This flow
initialization is noisy but preserves enough detail to improve reconstructions at succes-
sive iterations. When the flow at a spatio-temporal pixel (r, c, t) is sub-pixel, we treat the
pixel intensity as bilinearly interpolated by the closest pixels in the consequent frame.

Figure 10.5 Progression of algorithm. Clockwise, from top left: (a) two sub-frames from the
initialization; (b) forward and backward OF at respective sub-frames; (c) corresponding forward
and backward consistency maps; (d) sub-frames from the next iteration incorporate BC
constraints only at white pixels from (c). (Figure reproduced from Reddy et al. (2011) with
permission from IEEE.)
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Optimization
We minimize the total energy function, which also includes the term EBC, built using
matrix �k−1 from previous iterations:

xk = arg min
T∑

t=1
β‖�−1xt‖1 + ‖y −�x‖2

2 + λ‖�k−1x‖2
2 . (10.5)

The above problem is convex but the problem size is significantly large. Even for a
moderate-sized video of 256× 256 pixels and 32 frames, we need to solve for 2 million
variables. We use a fast algorithm designed for large systems, based on fixed point
continuation (Hale, Yin & Zhang 2007), to solve the optimization problem. In all our
experiments we fix the parameters at β = 10−5 and λ = 10−1. In practice, our algorithm
converges in about five iterations.

10.5 Experimental results

10.5.1 Simulation on high-speed videos

Figure 10.6 shows example reconstructions of high-speed sub-frames at 16× temporal
super-resolution. Note that while normal camera frames are highly blurred, the recon-
struction retains sharpness and high frequency texture detail is maintained. Several
of our examples contain complex and nonlinear motion. Most examples also contain

Figure 10.6 Importance of brightness constancy. All results are 16× temporal super-resolution.
Shown are the original high-speed frames, motion-blurred frames and reconstructions with and
without BC. Notice the huge improvement in reconstruction SNR due to BC. The results in
column 4 and its necessary OF were computed in an alternating fashion using an iterative
procedure on the observations. OF was not assumed to be available. ‘Golf’ and ‘Recoil’
high-speed videos courtesy of Tech Imaging. (Figure reproduced from Reddy et al. (2011) with
permission from IEEE.)
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Figure 10.7 Effect of spatio-temporal upsampling factors on Dancers video. Notice that our
reconstructions retain visual fidelity even in the presence of complex non-rigid multi-body
motions and occlusions. High-speed video courtesy of Tech Imaging. (Figure reproduced from
Reddy et al. (2011) with permission from IEEE.)

several objects moving independently, causing occlusions and disocclusions. To better
understand the quality of reconstruction with varying spatio-temporal compression
factors, examine Figure 10.7. This video contains highly complex motions, where
different dancers are performing different movements. There is significant non-rigidity
in motion and challenging occlusion effects. Note that our reconstruction retains high
fidelity even at high compression factors. Even a compression factor of 4 × 4 × 4 = 64
produces acceptable visual quality and 24 dB PSNR.

10.5.2 Results on P2C2 prototype datasets

We captured several datasets using our prototype device. The camera was operated at
23 fps and the speed of the mask was 8 flips per frame. This allows us to reconstruct the
sub-frames at a frame rate of 184 fps (23 × 8). We note that in our experimental setup
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Figure 10.8 Results from LCOS prototype. Top row: using one frame from a normal 23 fps
camera, our recovered video and zoom-in insets are shown. The fourth and fifth columns show
the x–t slices of the original and recovered videos. Middle and bottom rows: two images from a
normal 23 fps camera and four recovered images are shown. (Figure reproduced from Reddy
et al. (2011) with permission from IEEE.)

we were limited by the field of view since the beamsplitter size forced us to use a lens
with a large focal length.

In Figure 10.8, we show three different datasets. In the pendulum dataset, the letters
C, V, P, R were affixed to four out of five of the balls and the pendulum was swung.
As shown in the X–T slices, the balls and the letters had significant acceleration and
changes in direction of motion. The recovered frames are much sharper than the original
23 fps frames, as shown in the inset. Note that the characters are much clearer in the
reconstructed frame despite a 40 pixel blur in each captured frame. Also, the X–T slice
clearly shows reconstruction quality. On the other hand, a fine feature such as the thread
is blurred out since the flow corresponding to it is hard to recover.

Next, we rotate a fan and capture it at 23 fps and reconstruct sharper and clearer
frames at 184 fps, as shown in the white inset. During recovery, we do not assume
that motion is rotational. Note that the normal camera frame has intensities integrated
from both the fan blade and the background mesh, as shown in the black inset. We can
handle this sub-frame occlusion in our recovery as indicated by the clear background
and foreground in the recovered frame.

Finally, we drop a marble in water, capture it at 23 fps, and reconstruct at 184 fps.
Again, we do not assume any motion path but still recover the curved path of the marble.
Note that despite specularities in the scene, the algorithm is robust.
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10.6 Conclusions

In this chapter, we presented an alternative viewpoint for tackling motion blur in images.
If we reformulate the motion deblurring problem as one of recovering video from
an underdetermined set of linear observations, then this naturally allows us to tackle
complex scenarios, such as non-uniform motion, multiple independent motions and
spatially variant point spread functions, without the need for explicit segmentation.
While the contents of this chapter focus exclusively on programmable pixel compres-
sive cameras (Reddy et al. 2011), we note that other video compressive sensing tech-
niques (Gupta et al. 2010, Bub et al. 2010, Gu et al. 2010, Sankaranarayanan et al. 2010,
Veeraraghavan et al. 2011, Marcia & Willett 2008, Hitomi et al. 2011) inherit similar
advantages, resulting in similar performance characteristics.
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11 Coded exposure motion deblurring
for recognition
Scott McCloskey

This chapter addresses the use of deblurring to improve the performance of
image-based recognition, where motion blur may suppress key visual detail. A key
difference between recognition and photographic uses of imagery is the extent to which
they require a faithful rendering of the real world. For aesthetic photography, where the
goal is to produce a pleasant-looking result, image processing does not generally need
to produce an accurate rendition. As an example, film and digital camera designers have
long preferred to render colors with unrealistically high saturation in order to match the
photographer’s recollection. Though not intentionally distorting reality, motion deblur-
ring methods using outside information in the form of gradient or edge priors (Jia
2007, Shan, Jia & Agarwala 2008, Fergus, Singh, Hertzmann, Roweis & Freeman 2006,
Fergus, Weiss & Torralba 2009, Shan, Xiong & Jia 2007) can be used to produce visu-
ally pleasing images.

When an image’s ultimate purpose is to facilitate recognition, the use of prior infor-
mation can be problematic. The methods presented in this chapter are intended to
improve the robustness of image-based recognition to subject motion, and we illus-
trate this using iris-based biometric identification. Because iris biometrics may be used
in criminal prosecutions, it requires that the image faithfully renders the real world.
Though widely accepted in the computer vision community, even simple concepts such
as regularization are problematic when applied to recognition. For motion deblurring, a
regularized estimate of the sharp image would satisfy

arg min
J
(‖f1(J)− I‖ + λf2(J)) , (11.1)

where I represents the motion-blurred image, f1 models the blurring process applied
to the estimated latent image J, and f2 evaluates the smoothness of its argument. The
problem of using such an approach for biometrics is that, when λ =/ 0, the estimated
sharp image may not be the one that minimizes the data term ‖f1(J) − I‖. Put another
way, the smoothness term may select one latent image estimate, instead of another, that
is more consistent with the observed image. This may be sufficient to create reasonable
doubt in the veracity of any identification arising from the deblurred image.

In order to avoid these issues, this chapter develops motion deblurring methods which
do not rely on priors for deblurring. In order to avoid the need for such priors, we
pursue motion deblurring via a computational photographic technique that captures
enough iris texture for positive identification. Specifically, we develop an image capture
and processing system based on coded exposure. While the basic approach to coded
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exposure-based image capture had been outlined in previous work (Raskar, Agrawal &
Tumblin 2006, Agrawal & Xu 2009, Agrawal & Raskar 2007, Agrawal & Raskar 2009),
additional algorithms and hardware implementations were needed in order to automate
capture, and to evaluate the method’s effectiveness.

Throughout this chapter, we consider shift-invariant blur of objects moving along
a linear trajectory. For iris recognition, this arises when a stationary camera captures
subjects undergoing motion parallel to the sensor. Though subject motion trajectories
are generally 2D, relatively short exposure times allow for good approximations using
1D trajectories. We use the standard shift-invariant convolution model

I = J ∗ B + η, (11.2)

where I represents the captured (motion-blurred) image, J represents the sharp latent
image (which we need for identification), B represents the blur point spread function
(PSF), and η represents noise. By common convention, we denote image domain quan-
tities (e.g. the blur PSF) as characters such as B and Fourier domain quantities (e.g.
the blur optical transfer function) as the corresponding character with a hat, such as B̂.
The modulation transfer function (MTF), |B̂|, is of particular importance in this chapter.
One-dimensional functions in the primal domain (e.g. the PSF) are indexed by i, and
their Fourier equivalents by k. Two-dimensional functions in the primal domain are
indexed by x and y, whereas those in the Fourier domain are indexed by u and v.

While the linear, shift-invariant model does not address shift-variant effects due to
camera rotation, it is a good model for a number of iris recognition devices that capture
images from people as they stand facing the camera. Even when trying to stand still,
people generally sway from side to side. Though this may seem like a trivial amount of
motion, the next section describes how this impacts iris recognition performance.

11.1 Motion sensitivity of iris recognition

Iris matching is an excellent application of motion deblurring because the fine texture
needed for recognition is easily lost when the subject moves even slightly. The ANSI
standard for iris image interchange (ANS ANSI standard INCITS M1/03-0590) requires
that the iris image retains at least 60% contrast at spatial frequencies up to two line
pairs per millimeter on the iris. Using traditional image capture – where linear, constant
velocity motion induces a rectangular PSF – even 1

4 mm of subject motion during image
exposure will reduce contrast to 0% at two line pairs per millimeter. Even if lighting
levels are sufficient to use an exposure time of 1

400 s, the use of a traditional shutter will
preclude any subject velocity greater than 1

10 m/s.
In cases where image quality is insufficient for interchange, i.e. saving the iris image

and template into an enrollment database, it may still be possible to recognize someone
from a traditional, motion-blurred image. For the purpose of future comparison, we
begin by evaluating iris recognition performance on deblurred images degraded by
linear, constant velocity motion blur observed through a stationary camera with a tradi-
tional shutter. We take the iris images used as part of the ICE evaluation (Phillips,



�

�

“9781107044364AR” — 2013/12/20 — 9:50 — page 224 — #238
�

�

�

�

�

�

224 Coded exposure motion deblurring for recognition

1

0.98

0.96

0.94

0.92

Ve
ri

fi
ca

ti
o

n
 R

at
e 

(V
R

)

0.9

0.88

0.86

0.84
10–6 10–4

False Acceptance Rate (FAR)
10–2

8 pixel blur
16 pixel blur
24 pixel blur
32 pixel blur

100

Figure 11.1 ROC curves for synthetically deblurred images from the ICE dataset, using a
traditional shutter. Iris matching performance degrades sharply as a function of blur magnitude
in traditional shutter images, even when the correct deblurring is applied.

Scruggs, O’Toole, Flynn, Bowyer, Schott & Sharpe 2007), apply convolution with rect-
angular PSFs of various sizes, add Gaussian noise with σ = 1 gray level, and decon-
volve the PSF. Black-box matching is performed using an algorithm (POSE) similar to
the classic Daugman method (Daugman 1993). We measure the verification rate (VR),
false rejection rate (FRR) and the false acceptance rate (FAR) as performance metrics.
For a given threshold Hamming distance τ , two iris images are considered a computed
match if the Hamming distance computed by POSE is less than or equal to τ . FRR, FAR
and VR are defined as:

FRR(τ ) =
Nr(τ )

Nsr
, FAR(τ ) =

Na(τ )

Nsa
, (11.3)

VR(τ ) = 1 − FRR(τ ), (11.4)

where

• Na(τ ) is the number of iris matches that do not belong to the same subject as the test
sample and the scores are lower than the threshold τ ;

• Nr(τ ) is the number of iris matches that belongs to the same subject as the test sample
and the scores are greater than the threshold τ ;

• Nsr is the total number of enrolled samples that belong to the test subject;
• Nsa is the total number of enrolled samples that do not belong to the test subject.

Figure 11.1 shows the receiver operator characteristic (ROC) curves. Separate ROC
curves are given for different blur extents (8, 16, 24, and 32 pixels) corresponding to a
range of subject motions ( 1

3 , 2
3 , 1, and 4

3 mm) over the exposure duration. From this, we
can see that traditional motion blur reduces iris matching performance significantly even
when the motion blur is perfectly linear and removed by deconvolution. This degrada-
tion can be understood as a consequence of the spatial frequencies lost due to the use of a



�

�

“9781107044364AR” — 2013/12/20 — 9:50 — page 225 — #239
�

�

�

�

�

�

11.2 Coded exposure 225

traditional shutter. The Fourier transform of its rectangular PSF is a sinc function which
equals zero at a number of lost spatial frequencies. The original iris texture at these
frequencies is not contained in the captured image I; the only content at those frequen-
cies is due to the noise η. The deconvolution process amplifies this noise, but cannot
reintroduce the lost iris texture. The number of lost spatial frequencies increases with
the number of pixels in the rectangular PSF, which explains the reduced iris matching
performance as a function of PSF size.

11.2 Coded exposure

Though not motivated by iris recognition performance, the problem of lost spatial
frequencies in motion blur is exactly the problem addressed by the computational photo-
graphic technique known as coded exposure (Raskar et al. 2006). Because losing spatial
frequencies is a direct result of the shape of the PSF arising from a traditional shutter,
the fundamental idea of coded exposure is to temporally modulate light in order reshape
the PSF and avoid lost frequencies. Doing this does not avoid motion blur in the image,
but rather makes the motion blur invertible at all spatial frequencies by a numerically
stable deconvolution.

This section develops the steps of a coded exposure imaging system with the intent
of capturing sharp images of moving irises (illustrated in Figure 11.2). First, the coded
exposure image is captured by manipulating a shutter during image acquisition. Next,
the coded exposure image and the shutter’s open/close sequence are used to estimate the
direction and extent of blur. Finally, the shutter sequence and blur estimate are used to
define a stable deconvolution which produces an estimated latent image. Each of these
steps is described in the following subsections.

11.2.1 Sequence selection for image capture

Conceptually, the shutter is any mechanism that modulates exposure in the captured
image, and may include a mechanical shutter (as used in a single lens reflex camera), an
electro-optical mechanism (e.g. the LCD shutter used in Raskar et al. (2006)), or image
formation from multiple exposures. The shutter’s timing sequence is represented as a
binary sequence [S(0) S(1) . . . S(N − 1)] of length N, where S(i) = 1 if the shutter is
open during the ith chop, and S(i) = 0 indicates that the shutter is closed. Together with
the temporal duration of each chop tchop, the shutter sequence specifies the camera’s

Image
capture

Captured image

Estimate
blur

De-blur

Final image

Figure 11.2 The stages of coded exposure image capture and deblurring.
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Figure 11.3 The impact of velocity on coded exposure performance. For a particular shutter
sequence, the PSF/MTF depends on the subject velocity. Top left: the MTFs of motion through a
particular fluttering shutter for object velocities of 3 pixels/ms (solid line) and 6 pixels/ms
(dashed line). Top right: reference image of the stationary target. Middle row: coded exposure
images of a dot moving left to right at 3, 4, and 6 pixels/ms. Bottom row: deblurred images.
Although the reconstructed image quality is good for object speeds of 3 pixels/ms (bottom left),
there are lost frequencies at 6 pixels/ms (bottom right) and the reconstruction has noticeable
artifacts.

behavior during image capture. Note that the shutter mechanism used may place restric-
tions on the minimum value of tchop, as discussed in McCloskey (2010).

Since a fluttering shutter is closed for part of the capture time, we distinguish between
the exposure time (how long the shutter is open during capture, tchop

∑
i S(i)) and the

capture time (from the first shutter open to the last shutter close, including closed shutter
periods, Ntchop). Though the exposure and capture times of a traditional shutter are
equal, the flutter shutter’s capture time can be as much as twice the exposure time. When
comparing traditional and flutter shutter images, one must choose between comparing
equal exposure or capture times. In order to keep the magnitude of shot noise fixed,
this chapter presents images with equal exposure times. As a result, the coded exposure
images will have a greater blur extent than the traditional images.

Though the shutter sequence is one determinant, the effective PSF also depends on
the object’s velocity1. Because of the PSF’s dependence on velocity, a particular shutter
sequence defines a family of PSFs, as illustrated in Figure 11.3. A notable member of
1 Though the velocity on the image sensor depends both on the object’s real-world velocity and its distance

from the camera, it is the image velocity that determines the PSF.
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this family, which we refer to as the “nominal” PSF, is effective when the object moves
over a range of N pixels during exposure with a fluttering sequence composed of N
chops. In this case the effective PSF (we will call it BN) is equal to a scaled version of
the chop sequence S,

BN(i) =
S(i)∑

S(i)
, for i = 0, 1, . . . , N − 1. (11.5)

In this case, which has been considered in Raskar et al. (2006) and Agrawal & Xu
(2009), the Fourier transform B̂N of the PSF BN will be the same as that of the chop
sequence S (up to a scale factor). Presuming that S was chosen to preserve all frequen-
cies, this nominal PSF is invertible and the sharp image can be recovered.

In the general case, however, the PSF is a stretched version of the chop sequence
and may not be invertible. In fact, no chop sequence can generate a family consisting
of invertible PSFs – i.e. those avoiding lost spatial frequencies – for all velocities. In
particular, if the object moves over 2N pixels during the course of exposure, the effective
PSF will be

B2N =
1

2
∑

S(t)
· [S(0) S(0) S(1) S(1) . . . S(N − 1) S(N − 1)], (11.6)

where · represents an element-wise multiplication of the sequence. As we will now
demonstrate, B2N suffers lost frequencies for any choice of S.

L E M M A 11.1 Let S be an arbitrary chop sequence of length N. The effective PSF B2N
for an object that moves over 2N pixels during exposure will have a lost frequency at
k = N

2 .

Proof Let A =
1

2
∑

S(t)
.

B̂2N(k) = A
N−1∑
t=0

S(t)
(

e−i 2π
N k(2t+1) + e−i 2π

N k2t
)

= A
N−1∑
t=0

S(t)e−i 2π
N kt
(

e−i 2π
N k(t+1) + e−i 2π

N kt
)

B̂2N

(
N
2

)
= A

N−1∑
t=0

S(t)e−iπ t
(

e−iπ(t+1) + e−iπ t
)

= A
N−1∑
t=0

S(t)e−iπ t0 = 0 (11.7)

It can similarly be shown that PSFs of the general form

BκN =
1

κ
∑

S(t)
∗
⎡⎣S(0) . . . S(0)︸ ︷︷ ︸

κ times

, . . . S(N − 1) . . . S(N − 1)︸ ︷︷ ︸
κ times

⎤⎦ , (11.8)



�

�

“9781107044364AR” — 2013/12/20 — 9:50 — page 228 — #242
�

�

�

�

�

�

228 Coded exposure motion deblurring for recognition

will have at least κ − 1 lost frequencies. It can also be shown that for any object that
moves over more than 2N pixels, the MTF will have at least one zero in the range
0 � k � N

2 . The implication is that the invertibility of coded exposure blur depends
on subject velocity ν, and that a coded exposure camera needs to adapt the shutter
timing to subject motion. One trivial way to enforce a constant PSF length is to estimate
subject velocity and set tchop = N

ν
, but this has the side effect of reducing the image’s

exposure time and thus increasing the relative contribution of noise. In order to avoid
this, we choose to pre-compute a bank of shutter sequences and use an estimate of
subject motion to select between them at capture time.

For any given length, there are many shutter sequences whose nominal PSFs avoid
lost frequencies, and we need to choose amongst them. In addition to presenting a 52
chop shutter sequence, Raskar et al. (2006) present a method by which other shutter
sequences may be selected. Random PSFs are sampled, and the one satisfying argmaxB
mink ‖B̂(k)‖ is chosen as per the code provided by Amit Agrawal. We demonstrate
the inadequacy of this max–min criterion using 750 equal exposure PSFs: a traditional
shutter PSF with 42 open shutter chops, and 749 random permutations thereof. For
each of the 750 PSFs, we synthetically blurred the 100 test images from the Berkeley
Segmentation Dataset (BSD) (Martin, Fowlkes, Tal & Malik 2001), added noise (Gaus-
sian with σ = 1 relative to intensities in [0,255]), deblurred, and computed the RMSE
versus the original image. Figure 11.4 shows the histogram of mean RMSE values for
these PSFs, and illustrates two important points. First, that even a random coded expo-
sure PSF will give much lower RMSE than a traditional shutter. Second, it shows that
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Figure 11.4 Coded exposure PSF design using natural image criteria. Left: the histogram shows
the average RMSE over 100 images using the traditional shutter (RMSE = 75; right dashed line)
and 749 equal exposure coded PSFs. The PSF satisfying the max–min criterion has RMSE = 16
(left dashed line), about 30% worse than the best. Right: with natural image statistics, we select a
PSF providing near-optimal reconstruction while finding the actual RMSE on a small subset of
the search space. As compared to chance and max–min sampling, the proposed algorithm
produces significantly better results. Note: the leftmost point on the x-axis is at 1

50 , not 0.
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Table 11.1 Complete list of metrics collected to find the optimal PSFs.

Number of open shutter periods m1
MTF minimum m2 = mink|B̂(k)|
MTF mean m3 = meank(|B̂(k)|)
MTF variance m4 = vark(|B̂(k)|)
Prior-weighted mean m5 = meank

|B̂(k)|
k+1

Number of lost frequencies m6 = ‖{k where |B̂(k)| < 10−10}‖
Weighted lost frequencies m7 =

∑
k
χ(k)
k+1 , where χ(k) = 1 ⇐⇒ |B̂(k)| < 10−10

the max–min criterion is insufficient, as the PSF satisfying it produces an RMSE 30%
worse than the optimal, comparable to random selection.

The failure of the max–min criterion to produce the best PSF can be understood by
recalling that natural images have rapidly diminishing power in higher spatial frequen-
cies (our model for natural image statistics is described in the next section). The max–
min criterion selects a contrast-preserving PSF without differentiating, based on which
frequency corresponds to the minimum – despite natural images having highly uneven
power distribution. Since natural images have more power in low frequencies, we
improve RMSE performance by finding PSFs which preserve higher contrast in those
areas.

In addition to the MTF minimum, we computed a number of other metrics on the 750
PSFs. The complete list of metrics collected is shown in Table 11.1. In order to use these
metrics to find the optimal PSF, we learn a function mapping a vector of the metrics to
average RMSE. With the metrics and RMSE computed for the 750 PSFs, we use linear
regression (Matlab’s \ operator) to find weights w such that the quantity

7∑
i=0

wimi (11.9)

best fits the mean RMSE, with m0 = 1 included to provide an offset term. We use
a combination of natural image-weighted metrics and synthetic blurring/deblurring to
choose a PSF that provides low reconstruction RMSE. The high-level steps of our algo-
rithm are outlined in Figure 11.5, as follows.

Training
1. Generate a small set of PSFs.
2. Compute the metrics m1,2,...7 for each PSF.
3. Find the actual RMSE for these PSFs over a representative set of images.
4. Using these actual RMSEs and computed metrics on the PSFs, learn weights w1,2,...,7

by regression.

Testing
1. Compute metrics m1,2,...,7 for each PSF in the search space.
2. Predict each PSF’s RMSE performance using the weighting and Eq. (11.9).
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Figure 11.5 The stages of our shutter selection algorithm.

3. Construct a small candidate set containing the best PSFs according to the predicted
RMSE.

4. Find the actual RMSEs over the images for the PSFs in the small set of candidates,
and choose the one with the lowest actual RMSE.

In order to evaluate this algorithm’s effectiveness, we selected an additional 7500
equal-exposure PSFs. For each, we find both the metrics listed in Table 11.1 and the
ground truth RMSE over the 100 BSD images.

From this data, we simulate 1000 runs of our algorithm. For each, we randomly select
5000 of the 7500 PSFs as the search space and use our method to find the best one. We
compare the actual RMSE of that PSF to the one with the ground truth optimal RMSE in
the space. Ideally the difference would be 0, indicating that we have found the best PSF
of those in the search space. Figure 11.4 shows a plot of this difference as a function of
the size of the candidate set. Over the 1000 trials, the average RMSE of the best PSF
was 12.00, and the average RMSE of the PSF with the best weighted combination of
metrics was 12.74 (a difference of 0.74, or 6.2%) indicating that, while the weighted
metrics out-perform the max–min criterion, the projection does not generally produce
the optimum PSF. When the 1% of the PSFs with the best projected RMSE are evaluated
to find their actual RMSE, the difference narrows to 0.26 (2.2%), and is further reduced
as the candidate set is enlarged (the dashed curve). For comparison, we show that if
the candidate set is comprised of randomly-selected PSFs instead of using our metric
weighting, the comparable algorithm would produce the solid curve. Likewise, if the
candidate set were formed using the max–min criterion, the algorithm would produce
the dash–dot curve. Our algorithm produces an actual RMSE that is closer to that of the
optimal PSF, significantly improving on the criteria from Raskar et al. (2006).

In our coded exposure system, we precompute several optimal shutter sequences of
varying lengths, and select the required sequence based on an estimate of the subject
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velocity. This allows us to capture images without losing spatial frequencies, but the
velocity estimate is not precise enough to use directly in deblurring. In order to address
this, we have developed the image-based blur estimation algorithm detailed in the next
section.

11.2.2 Blur estimation

Though the original coded exposure demonstration depended on manual blur estimation
by a user, subsequent work has addressed automatic coded blur estimation. Dai and Wu
(Dai & Wu 2008) treat motion blur as an alpha matte for estimating the PSF. Like the
coded exposure PSF estimation of Agrawal and Xu (Agrawal & Xu 2009), the implicit
assumption in alpha-matte-based PSF estimation is the existence of a high-contrast edge
in the latent sharp image. We have found that these methods work poorly on iris images,
due to a lack of high-contrast edges. Iris images often have high contrast on the pupil/iris
boundary but the pupil’s diameter can easily be shorter than the blur extent, making
alpha matte methods impractical.

In this section, we develop an alternative method to estimate the coded exposure PSF
from a single input image. Instead of making a strong assumption about the image’s
content in the spatial domain, we assume that the image contains only the motion-
blurred object, and that the object’s texture obeys a natural image prior. Relative to
our prior expectation that the object’s amplitude spectrum is smooth, we note that the
local minima and maxima of a coded exposure MTF (recall Figure 11.3) induce similar
minima/maxima in the blurred image’s amplitude spectrum, and that these inflection
points can be used to estimate the moving object’s velocity.

PSF modeling
In order to describe our PSF estimation method, we first formalize the relationship
between the PSF and object motion. The normalized PSF B(x) describes what propor-
tion of the exposure of a moving scene point goes to each pixel x. As we have demon-
strated, it is a function of both the shutter sequence S(t) and the subject velocity ν.
We measure the motion parameters (displacement and velocity) in units of pixels, e.g.
velocity as pixels/chop.

A pixel x gets exposed to a moving point when its image passes through x, and expo-
sure duration w(x) is inversely proportional to velocity ν(x):

w(x) =
1
ν(x)

. (11.10)

Note that while our immediate concern is constant velocity motion, it is natural to
describe the velocity and displacement of more general motions in terms of t. Thus, we
can rewrite w(x) = 1/[ν(t(x))], where t(x) is the inverse of the displacement function
x(t). For our model, we assume that x(t) is monotonic throughout the shutter sequence,
i.e. there is no back and forth motion during exposure.
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Figure 11.6 PSF modeling for constant velocity motion. Top row: the time–velocity function (thin
dashed line) sampled by the shutter (thick solid line representing open shutter segments). Bottom
row: the corresponding PSFs.

Finally, we combine the shutter sequence and the exposure w(x) to compute the un-
normalized PSF B0(x)2 as:

B0(x) = S(t(x))w(t(x)) =
S(t(x))
ν(t(x))

. (11.11)

Equation (11.11) indicates that the PSF can be viewed as an envelope of w(x) sampled
by the shutter pattern S(t) as shown in Figure 11.6. To derive the PSF for arbitrary
motions, we simply need to derive t(x).

For constant velocity motion at νc pixels/chop, we assume the first exposed pixel is
the zeroth pixel, and we have x(t) = νc · t and t(x) = x/νc. The PSF is thus:

B0(x) =
S(t(x))
νc

=
S( x
νc
)

νc
, x = 0, . . . , νc(N − 1). (11.12)

Since the last exposed pixel coordinate has x(Ms) = νcMs, we can compute the
normalized PSF as:

B(x) =
B0(x)∑νc(N−1)

x=0 B0(x)
=

S( x
νc
)

νcEs
, x = 0, . . . , νc(N − 1) (11.13)

where Es = tchop
∑N−1

i=0 S(i) is the total exposure time.
Equation (11.13) indicates that varying the velocity νc will result in spatial scaling in

the PSF B(x), while the envelope of B(x) remains a rectangle. An example is shown in
Figure 11.6.

2 B0(x) is later be normalized to the unit-area PSF B(x).
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Our goal is to recover the PSF by analyzing the amplitude spectrum of a blurred
image. Recall that the process of motion blur can be modeled as standard convolution:

I = J ∗ B + η, (11.14)

where ∗ is the convolution operator, I is the coded exposure image, J is the latent sharp
image, B is the blur kernel, and η is Gaussian noise. By the convolution theorem, the
amplitude spectrum of Eq. (11.14) is:

|Î| = |ĴB̂| + |η̂| = |Ĵ||B̂| + |η̂|. (11.15)

Since η̂ has constant expected amplitude at all frequencies, noise is an offset in the
frequency domain and can be ignored in our analysis of relative spectral power.

Power spectrum statistics
Our PSF estimation algorithm is based on power spectrum statistics in natural images,
as modeled by Eq. (11.15). Van der Schaaf and van Hateren (van der Schaaf & van
Hateren 1996) have shown that collections of natural images without motion blur can
be modeled as having circular power spectrum statistics that follow the 1/ω-exponent
model: if we parameterize |Ĵ| in polar coordinates (ω,φ) where ω is the radius (absolute
frequency) and φ is the angle, we can average |Ĵ| over φ for every ω and the resulting
circular averaged power spectrum circω(|Ĵ|) ≈ C/ωm, where m and C are constants.
Statistically, if we assume every frequency is an independent and identically distributed
random variable, the expected value of |Ĵ(u, v)| is:

E
[∣∣∣Ĵ(u, v)

∣∣∣] =
C

(u2 + v2)m/2
. (11.16)

Figure 11.7 shows example traces of the amplitude spectra of five natural images. From
this we can see that the 1/ω-exponent model, which is known to hold for collections of
natural images, also holds for individual images.

Our goal is to use power spectrum statistics to recover the coded exposure PSF from
the blurred image I. Because we are interested in linear subject motion, we consider
natural image statistics after the 2D amplitude spectrum is projected onto a line l that
corresponds to the motion direction. We rotate the Fourier plane so that l is aligned
with the u axis and apply the projection by integrating over v. This process can be
alternatively viewed as applying a Radon transform (Toft 1996) along the v direction.
In the discrete case, we can compute the linear averaged amplitude spectrum of an image
|Ĵ| as:

Ru[|Ĵ|] =
1
V

V∑
v=0

|Ĵ(u, v)|, (11.17)

where V is the v-dimension resolution. Ru[|Ĵ|] represents the horizontal power spectrum
statistics and can be approximated using Eq. (11.16) as:

Ru[|Ĵ|] ≈ E

[
1
V

V∑
v=0

|Ĵ(u, v)|
]

=
1
V

V∑
v=0

C
(u2 + v2)m/2

. (11.18)
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Figure 11.7 Power spectrum statistics on five randomly selected images (top row) from the BSD
image set. Bottom left: the circular power spectrum vs the spatial frequency ω in a log–log scale.
The lines show the fits of the 1/ω-exponent model to points reflecting image data. The scaling of
the vertical axis belongs to the top trace. Bottom right: the linear statistics along v vs u in a
log–log scale. The curves show our estimated linear statistics from the circular statistics. For
clarity, traces in both plots are shifted −1, −2, −3, and −4 log-units.

Figure 11.7 illustrates that our Ru estimation still provides good agreement with an
image’s spectrum even after projection. We can further apply the Ru operator to the
amplitude spectrum model of convolution (Eq. (11.15)):

Ru[|Î|] =
V∑

v=0
|Ĵ(u, v)||B̂(u)| = |B̂(u)| · Ru[|Ĵ|]. (11.19)

Equation (11.19) allows us to separate Ru[|Ĵ|] and |B̂|. We can further take the log of
Eq. (11.19) as:

log (Ru[|I|]) = log (|B|) + log (Ru[|J|]) . (11.20)

PSF estimation algorithm
Figure 11.8 outlines the steps of our motion estimation algorithm. We first determine
the motion direction and rotate the image to align it with the u axis. For every candidate
velocity ν, we compute its PSF Bν , MTF |B̂ν |, and then use them to estimate the latent
image amplitude spectrum |Ĵν | = |Î|/|B̂ν |. We then compute the linear statistics Ru[|Ĵν |],
and Ru[|Î|]. Finally, we compute the match score μ between log(|B̂ν |) and log(Ru[|Î|])−
log(Ru[|Ĵν |]). The optimal velocity ν corresponds to the one that maximizes μ.

Estimating the motion direction
We adopt a similar approach to Oliveira, Figueiredo & Bioucas-Dias (2007) that finds
the direction with the most muted high frequencies. This assumes that the latent sharp
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Figure 11.8 Steps of our statistical PSF estimation algorithm.

image is roughly isotropic, i.e. the power spectrum distribution along all directions have
similar characteristics (variance, mean values). Because the iris region is circular, the
power spectrum is relatively isotropic. Since 1D motion blur attenuates the middle- and
high-frequency information in the direction of motion, it detects the direction in which
they are most muted. We do this by inspecting the Radon-power spectrum of the blurred
image in all directions and choosing the one with the largest variance.

Computing linear statistics of |Ĵν |
A crucial step in our motion estimation algorithm is to derive the linear statistics of
|Ĵν | = |Î|/|B̂ν |. When Ĵν is motion blur free, it should follow 1/ω-exponent distribution.
To estimate C and m, we compute the discrete circular averaged power spectrum and
apply line fitting between log(circω[|Ĵν |]) and log(ω). We then approximate the linear
statistics Ru[|Ĵν |] using Eq. (11.18).

Matching log-linear statistics
Recall that our ultimate goal is to match f1 = log(|B̂ν |) and f2 = log(Ru[|Î|]) − log
(Ru[|Ĵν |]) under some metric μ. A native μ is to measure the squared difference at
sampled points on f1 and f2. Since the power spectra of images generally have much
smaller values in high frequency, directly computing the correlation between the esti-
mate f1 and f2 results in unequal contributions from different frequencies.

Instead, we employ a metric based on the signs of the function derivatives to treat all
frequencies equally. Specifically, we use a derivative sign function �(·):

�(f(u)) =

⎧⎪⎪⎨⎪⎪⎩
1,

df
du

� 0

−1,
df
du
< 0

(11.21)

where f is a 1D function on u.
Finally, we sample f1 and f2 at discrete points u1, u2, . . ., un, and compute:

μ(f1, f2) =
n∑

i=1
�
(
f1(ui)

)
�
(
f2(ui)

)
. (11.22)
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PSF size estimate: 35
(image res: 640*480)

(a) (b) (c) (d)

Figure 11.9 Motion estimation and deblurring results on an iris image. (a) The ground truth
blur-free image; (b) the blurred image caused by constant velocity motion under coded exposure;
(c) the matching metric μ vs velocity; (d) the deblurred results using our estimated velocity.

PSF estimation results
We have applied our technique to all of the publicly available flutter shutter images
(Raskar et al. 2006) and have found that our method produces estimates that are within
1 pixel of the ground truth values, giving high quality reconstructions. In order to test
additional cases, including irises, we have acquired test images using a Point Grey
Flea R©2 camera triggered via the serial port of the controlling computer. The camera
supports an external shutter mode that accumulates exposure over several chops, after
which a single readout produces the flutter shutter image. We captured the images from
a fixed camera observing a motion stage to which textured objects were attached. Our
motion stage can change velocity via voltage controls. To measure the ground truth
velocity, we use a step edge calibration target and measure its blurred width in an image
with a known exposure time. We use the 52 chop sequence from Raskar et al. (2006)
and obtain the ground truth PSF using Eq. (11.13).

Figure 11.9 shows an example acquired using this setup, with an iris moving from
right to left with a constant velocity. The motion is axis-aligned horizontally, and our
estimated motion direction is within 1◦ of this ground truth. The plot shows the matching
metric μ computed over a range of potential velocities, which has a pronounced peak
at exactly the ground truth value (35 pixels). The resulting PSF estimate is used to
deblur the captured image, giving a deblurred result that looks very similar to the image
captured without motion. The iris template extracted from our deblurred image was
successfully matched to a separate image of the same eye. Iris recognition was unsuc-
cessful on a Lucy–Richardson (Lucy 1974) deblurred traditional image captured with
the same setup.

11.2.3 Deblurring

The example in the previous section was illustrated using the flutter shutter deblur-
ring code provided in Raskar et al. (2006), which performs least squares deconvo-
lution via matrix inversion. For the purposes of iris identification, the simplicity of
this deconvolution method is useful. In light of the issues that were discussed in this
chapter’s introduction, we have avoided using methods that impose prior assumptions
about image appearance in the deblurring step. By definition, the solution to the least
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squares deconvolution avoids this because the deblurred image must agree most with
the observed image. When the observed image contains noise, of course, that compo-
nent will be amplified by deconvolution and the result will not exactly match the desired
latent image. Handling this noise component is the reason that prior terms are added to
regularized deconvolution so, in exchange for transparency in deblurring, we should
expect that a least squares solution will have more noise-related artifacts.

In order to understand how the choice of non-blind deblurring impacts the quality
of latent images estimated for other purposes, however, we have performed exper-
iments with two more modern deblurring methods. In particular, we have used the
sparse deconvolution technique from Levin et al. (Levin, Fergus, Fergus, Durand &
Freeman 2007) and the fast deconvolution method of Krishnan and Fergus (Krishnan &

Figure 11.10 Comparison of non-blind deblurring on synthetic coded exposure images. From top
to bottom are the outputs from Raskar, Krishnan, and Levin. Execution times are 0.3 s (Raskar),
1.3 s (Krishnan), and 46.3 s (Levin). In raster order, the RMSEs of the first four latent image
estimates are 9.3, 9.1, 8.3, and 8.2.
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Fergus 2009). These methods are compared to the least squares deconvolution from
Raskar et al. (2006). In all cases, we use the default parameter values provided with the
implementation.

First we tested the three deblurring techniques on synthetically blurred BSD images
with several coded exposure PSFs. Figure 11.10 shows the deblurred images from the
three methods. The methods used by Raskar and Krishnan produce results that are quite
similar to the ground truth, and can be compared quantitatively. On the surfer image,
their methods give RMSEs of 9.3 and 8.3, respectively. On the tree image, the RMSEs
are 9.1 and 8.2. The output of Levin’s method looks enough like the ground truth for
us to think that the parameters are correct, but the images are compressed horizontally
(preventing a quantitative evaluation) and have banding artifacts near the left and right
edges. From a quality point of view, these results (and several others not shown) indicate
that Krishnan’s method produces RMSEs about 10% lower than Raskar’s, and Levin’s
method has significant artifacts. On these small images (321×481 pixels), the execution
times for the methods are 0.3 s (Raskar), 1.3 s (Krishnan), and 46.3 s (Levin).

Figure 11.11 shows deblurring results derived from real coded exposure images taken
with our camera. Because these images are larger, we do not evaluate Levin’s method

Figure 11.11 Comparison of non-blind deblurring on real coded exposure images. The top row
shows the outputs from Raskar, the bottom row shows the results from Krishnan. Using the
publicly available code for Levin’s method failed to produce a reasonable result on the robot
image, so results are omitted.
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which takes in excess of 1 minute to deblur. In the granola image (left column), we note
that Krishnan’s method produces black band artifacts in the bottom right inset. Upon
close inspection, we find that Raskar’s output has slightly higher noise. Both show a
similar amount of ringing in the upper left inset region, likely due to the motion being
slightly off-axis. In the robot image (right column), Raskar’s result is once again noisier
and Krishnan’s result still has artifacts near the edges. On these 800×600 pixel images,
Raskar and Krishnan’s methods run reasonably fast (around 1 s), and Levin’s method
takes more than 1 minute.

In summary, then, we have not found that these newer deblurring techniques give
decisively better latent image estimates than least squares deconvolution. While
Krishnan’s method produces consistently lower RMSEs on synthetically blurred images
(by about 10%), it also produces banding artifacts in real camera images. Levin’s
method occasionally produces very nice results, but is unacceptably slow.

11.3 Coded exposure performance on iris recognition

11.3.1 Synthetic experiments

In order to illustrate the improved robustness of flutter shutter imagery to motion, we
first performed synthetic experiments using the NIST iris challenge evaluation (ICE)
dataset (Phillips et al. 2007). We simulate motion-blurred capture and deblurring and
attempt to match those images to the sharp images of the dataset. We use the same
process as in Section 11.1 to synthesize motion-blurred images for coded exposure.
For the flutter shutter images, the blur PSF B is a flutter shutter PSF generated using
the method of Section 11.2.1, with equivalent exposures to the 8, 16, 24, and 32 pixel
rectangle PSFs used in Section 11.1, and images are deblurred using the deconvolution
code provided in Raskar et al. (2006).

Figure 11.12 shows the ROC curves for the synthetic images. For comparison, we
include the ROC curves from traditional imaging presented earlier. The curves in the left
plot show the performance of the deblurred traditional shutter images, which degrades
sharply as the degree of blur increases. The curves in the right plot show the perfor-
mance of the deblurred flutter shutter images, and demonstrate consistent performance
despite increasing blur. These curves validate our claim that, when deblurred with the
correct blur estimate, flutter shutter images are more useful than traditional shutter
images for iris matching.

11.3.2 Real image experiments

Because the amount of effort involved in capturing an ICE-scale test set for both tradi-
tional and coded exposure imaging was too daunting, we carried out only a small scale
validation on real-world images. To do this, we made 4 × 6 in photographic prints
of several iris images and taped them to our motion rig. We manually selected the
shutter sequence to match the motion velocity (which was set via voltage controls),
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Figure 11.12 ROC curves for synthetically deblurred images from the ICE dataset, using a
traditional shutter (left) and a flutter shutter (right).

Figure 11.13 Real image results for iris deblurring Top row: deblurred images from our coded
exposure camera, all of which can be matched to another image of the same iris; bottom
row: deblurred iris images from a traditional shutter camera, only one of which (furthest right)
can be matched to another image of the same iris.

and captured left-to-right lateral motion. We used the automated blur estimation method
from Section 11.2.2, the deblurring code from Raskar et al. (2006), and our black-box
iris matching method. Figure 11.13 shows a few example results from these tests, where
we were able to generate useful iris images from coded exposure in cases where tradi-
tional imaging failed to produce a match.

Beyond these anecdotal cases, we have found that coded exposure produces signif-
icantly more matches than traditional imaging, but fewer than our simulations would
suggest. There are several contributing factors, including non-lateral motion from an
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imprecise motion rig and image degradation resulting from photographing a print of the
eye instead of the eye itself.

11.4 Barcodes

While iris recognition serves as a motivating application of our coded exposure imaging
system, there are other uses. We note that many industrial applications of imagery
make similar demands with respect to motion tolerance. Barcode scanning, for instance,
involves targets with texture on the same fine scale as iris recognition and, though
error correction codes provide some robustness, performance degrades significantly
with motion blur. Because of the ubiquity of barcode scanning in modern life – Walmart
alone was reported to scan 5000 items per second during its busiest sales day in 2012
– improved performance on moving objects could save everyone time in the checkout
lines.

In Xu & McCloskey (2011), we demonstrated that most of the components of the
coded exposure system described in this chapter could be reused for barcode capture.
The most interesting difference between the barcode and iris systems arises from the fact
that barcode images do not obey our natural image prior. Because 2D barcodes consist
largely of black and white squares on a rectangular lattice, their power spectra are highly
anisotropic, and our blur estimation method does not work as reliably as on other image
types. In order to address this, we developed a joint blur estimation and deblurring
routine that takes advantage of a different aspect of barcode image statistics, namely,
that when sharply focused, the intensity histogram of a barcode image is bimodal. We
also show that when deblurred with the wrong PSF length, the intensity histogram is
smoothed. So, in order to estimate the blur extent without the natural image prior, we
deblur the barcode image over a range of PSF lengths and measure an energy func-
tion which is low for bimodal intensity distributions. The deblurred image producing
the minimum energy is taken as the estimated latent image, which we show can be
decoded. Examples for different 2D barcode symbologies are shown in Figure 11.14,
illustrating cases where coded exposure produces a decodable image and traditional
image deblurring cannot.

11.5 More general subject motion

Having shown that coded exposure deblurring can improve the performance of iris
matching and barcode scanning in cases of linear, constant velocity translation, it is
natural to consider extensions to more general types of subject motion. Our previous
work (Ding, McCloskey & Yu 2010) has addressed blur estimation for other motion
types, extending the method from Section 11.2.2 to handle cases of acceleration and
harmonic motion. Whereas the constant velocity method searches over different veloc-
ities ν for the PSF Bν that best accounts for inflections in the coded exposure image’s
amplitude spectrum, the more general algorithm searches over motion parameters α
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(a) Regular input
image

(b) Deblurring
with LR algorithm

(c) Flutter shutter
input image

(d) Deblurring
with flutter shutter

(e) Regular input
image

(f) Deblurring
with LR algorithm

(g) Flutter shutter
input image

(h) Deblurring
with flutter shutter

Figure 11.14 Coded exposure deblurring of 2D barcodes. Comparisons between traditional
imaging and coded exposure deblurring with Data Matrix (top row) and Aztec symbologies
(bottom row).

for the PSF Bα that explains the image’s inflections. For the case of lateral motion
with constant acceleration, values of α form a two-dimensional search space of initial
and final speeds. For harmonic motion, α is the tuple of amplitude, angular speed, and
initial phase. For both cases, we derive closed form expressions for the PSF similar
to the constant velocity case from Eq. (11.13), and show that the matching metric
from Eq. (11.22) finds the correct value of α. An example of constant acceleration is
shown in Figure 11.15. While this example shows the ability to estimate the correct
motion parameters, artifacts are present in the deblurred image. This is because the
shutter sequence was designed to optimally preserve image content for constant velocity
motion, and the MTF under acceleration may not be invertible. This suggests the need
to design shutter sequences for, and detect the presence of, accelerated motion.

11.6 Implications of computational imaging for recognition

Though we have shown that coded exposure motion deblurring improves the perfor-
mance of black-box iris matching, this work has exposed unforeseen issues with the
recognition algorithms themselves. Figure 11.16 shows two images of the same iris
captured and deblurred by our coded exposure system. These images are very similar,
in that they were acquired with the same camera, show an iris moving with the same
velocity, and appear to the human visual system to be nearly identical. Despite this,
the two images give very different Hamming distance scores when compared to a third
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Figure 11.15 PSF estimation and deblurring for constant acceleration. A toy car slides down a
slanted track at 55◦ and the camera is rotated so the motion appears horizontal. For clarity, a
piece of textured cardboard was attached to the car. Top left: coded exposure capture of the
accelerating train; top center: the best deblurred image using a constant velocity PSF model; top
right: the deblurred image using our estimate of the PSF due to acceleration. The bottom row
shows the inset regions of the corresponding images.

Figure 11.16 Nearly identical deblurred flutter shutter images of the same eye, moving at the
same velocity, taken with two different shutter sequences. As a result of differences in their
noise spectra, only the left image matches an image of the same iris.

(traditionally acquired) image of the same iris. The left image gives a distance of 0.26
(considered a match), and the right a distance of 0.37 (not a match). The difference
between the two images, which results in the divergent match scores, arises from the
use of different shutter sequences during capture. Because the two shutter sequences
have MTFs with different inflection points, the amplification applied at a given spatial
frequency during deblurring will also differ. Presuming that the imaging noise η has a
flat power spectrum (which is the case for Gaussian noise) in the coded exposure image,
the deblurred images will have different noise power spectra due to the differing amplifi-
cation. The process of generating an iris template from the deblurred images is sensitive
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to these differences because it applies a Gabor filter with a certain center frequency
and bandwidth. When the two shutters’ MTFs differ significantly in this band of spatial
frequencies, the iris templates can differ significantly despite high visual similarity.

While this analysis is given for iris recognition, it is possible to show similar issues
with other recognition tasks. Person detection and object recognition, to take two exam-
ples from modern computer vision, often use a histogram of oriented gradients (HOG)
(Kläser, Marszalek & Schmid 2008) feature based on differences in intensity between
pixels at a given distance. Because this inter-pixel distance corresponds to a certain
spatial frequency, these recognition methods are also sensitive to frequency-specific
noise considerations arising from some computational cameras. While most recogni-
tion methods do not have an explicit model for the power spectrum of their input
images, training and testing them on image sets acquired with a traditional shutter
implicitly imposes an assumption that the MTFs smoothly roll off from DC to the
Nyquist frequency. As deblurred images from computational cameras become more
prevalent, recognition methods that use them should be modified in order to account for
these differences.

11.7 Conclusion

In this chapter, we have developed a motion deblurring system based on coded expo-
sure, and have demonstrated that it allows for both iris recognition and barcode scan-
ning in situations where traditional imaging fails to produce a useful image. In order to
account for the velocity dependence of coded exposure, we have introduced a method
to generate near-optimal shutter sequences by incorporating the statistics of natural
images. We have further developed a coded exposure PSF estimation method based
on the same model for natural image statistics, which avoids problematic assumptions
about the presence of high-contrast edges in the scene. We have also shown how the
blur estimation method can be extended to handle more general object motion types,
particularly acceleration.

For the problem of designing coded exposure shutter sequences that are optimal
for motions other than linear, constant velocity translation remains an open area of
research. In addition, our work with iris recognition has presented another open ques-
tion: how should recognition methods handle imagery from non-traditional cameras?
Having shown that imagery from a coded exposure camera produces unexpected results,
and anticipating that computational cameras will be increasingly adopted in the future,
this is a problem which will eventually need to be addressed.
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12 Direct recognition of motion-blurred
faces
Kaushik Mitra, Priyanka Vageeswaran and Rama Chellappa

The need to recognize motion-blurred faces is vital for a wide variety of security appli-
cations ranging from maritime surveillance to road traffic policing. While much of the
theory in the analysis of motion-blurred images focuses on restoration of the blurred
image, we argue that this is an unnecessary and expensive step for face recognition.
Instead, we adopt a direct approach based on the set-theoretic characterization of the
space of motion-blurred images of a single sharp image. This set lacks the nice property
of convexity that was exploited in a recent paper to achieve competitive results in real-
world datasets (Vageeswaran, Mitra & Chellappa 2013). Keeping this non-convexity in
mind, we propose a bank of classifiers (BoC) approach for directly recognizing motion-
blurred face images. We divide the parameter space of motion blur into many different
bins in such a way that the set of blurred images within each bin is a convex set. In each
such bin, we learn support vector machine (SVM) classifiers that separate the convex
sets associated with each person in the gallery database. Our experiments on synthetic
and real datasets provide compelling evidence that this approach is a viable solution for
recognition of motion-blurred face images.

12.1 Introduction

A system that can recognize motion-blurred faces can be of vital use in a wide variety
of security applications, ranging from maritime surveillance to road traffic policing.
Figure 12.1 shows two possible maritime surveillance scenarios: shore-to-ship (the
camera is mounted on-shore and the subjects are in the ship), and ship-to-shore (the
camera is on the ship and the subjects are moving on-shore). A third scenario, not
shown, is ship-to-ship (the camera is mounted on a ship and the subjects are on another
ship). In all these cases, the face images have significant motion blur due to relative
motion between the camera and subjects. In this chapter, we address the problem of
recognizing faces from motion-blurred images. An obvious approach of recognizing
blurred faces would be to deblur the images first and then recognize it using tradi-
tional face recognition techniques (Nishiyama, Hadid, Takeshima, Shotton, Kozakaya &
Yamaguch 2010). However, this approach involves solving the challenging problem
of blind image deconvolution (Kundur & Hatzinakos 1996, Levin, Weiss, Durand &
Freeman 2009). We avoid this step and propose a direct approach for face recogni-
tion. Recently, in Vageeswaran et al. (2013), we have shown that the set of all images
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(a) (b)

Figure 12.1 Images captured by a distant camera for maritime surveillance, which could involve
one of three scenarios: (a) shore-to-ship (the camera is mounted on-shore and the subjects are in
the ship); (b) ship-to-shore (the camera is on the ship and the subjects are moving on-shore); and
a third, not shown, ship-to-ship (the camera is mounted on a ship and the subjects are on another
ship).

obtained by blurring a given image forms a convex set. Further, this convex set is given
by the convex hull of shifted versions of the original image. Based on this set-theoretic
characterization, we proposed a direct approach for recognizing blurred face images.
However, if we restrict our attention to only motion-blurred images, then this set is no
longer a convex set; hence we cannot use the face recognition algorithm proposed in
Vageeswaran et al. (2013). In this chapter, we propose a discriminative model-based
face recognition algorithm that takes into account the non-convex nature of the motion-
blurred image sets.

We specifically consider motion blur along a single direction, which arises when the
camera and/or the subject are moving in a linear fashion. This type of motion blur is
characterized by the direction and size of the blur kernel. We show that the set of such
motion-blurred images (obtained from a sharp image) is a non-convex set. This non-
convexity arises mainly because of the directional nature of the motion blur. However,
if we fix the direction of blur, then all the blurred images along that direction form a
convex set. Keeping this conditional convexity in mind, we propose a bank of classifiers
approach for directly recognizing motion-blurred face images. We divide the parameter
space of motion blur into many different bins in such a way that the set of blurred
images within each bin is a convex set. In each such bin, we learn SVM classifiers that
separate the convex sets associated with each person in the gallery database. Given a
probe image, we use the SVM classifiers at each bin to find its likely identity at each
bin. Finally, we use the majority rule to arrive at the final identity.

To summarize, the main technical contributions of this chapter are:

• We show that the set of motion-blurred images obtained from a single sharp image is
a non-convex set. The directional nature of motion blur is responsible for this non-
convexity. Given a particular direction, the set of motion-blurred images along that
direction is a convex set.

• Based on this set-theoretic characterization, we propose a motion blur robust face
recognition algorithm, which avoids solving the problem of blind image
deconvolution.
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• We use the conditional convexity property of motion blur to propose a bank of
classifiers-based face recognition algorithm. This is a discriminative approach and
hence it scales well with the number of face classes and training images per
class.

12.1.1 Related work

Face recognition from blurred images can be classified into four major approaches. In
one approach, the blurred image is first deblurred and then used for recognition. This is
the approach taken in Hu & de Haan (2006) and Nishiyama et al. (2010). The drawback
of this approach is that we first need to solve the challenging problem of blind image
deconvolution. Though there have been many attempts at solving this (Richardson 1972,
Kundur & Hatzinakos 1996, Levin 2006, Fergus, Singh, Hertzmann, Roweis & Freeman
2006, Levin et al. 2009, Shan, Jia & Agarwala 2008, Likas & Galatsanos 2004, Jia 2007,
Cho & Lee 2009, Yitzhaky, Mor, Lantzman & Kopeika 1998), it is not an essential step
for the face recognition problem. Also, in Nishiyama et al. (2010), statistical models are
learned for each blur kernel type and amount; this step might become infeasible when
we try to capture the complete space of blur kernels.

In another approach, blur-invariant features are extracted from the blurred image
and then used for recognition – Ahonen, Hadid & Pietikainen (2004) and Gopalan,
Taheri, Turaga & Chellappa (2012) follow this approach. In Ahonen, Rahtu, Ojansivu
& Heikkila (2008), the local phase quantization (LPQ) (Ojansivu & Heikkil 2008)
method is used to extract blur invariant features. Though this approach works very
well for small blurs, it is not very effective for large blurs (Nishiyama et al. 2010).
In Gopalan et al. (2012), a “blur” subspace is associated with each image and face
recognition is performed by measuring the distance of the blurred probe image from
these subspaces. It has been shown that the “blur” subspace of an image contains all
the blurred version of the image. However, this analysis does not take into account the
convexity constraint that the blur kernels satisfy (blur coefficients are non-negative and
sum up to 1), and hence the “blur” subspace will include many other images apart from
the blurred images.

The third approach is the direct recognition approach. This is the approach taken in
Stainvas & Intrator (2000) and by us (Vageeswaran et al. 2013). In Stainvas & Intrator
(2000), artificially blurred versions of the gallery images are created and the blurred
probe image is matched to them. Again, it is not possible to capture the whole space of
blur kernels using this method.

Finally, the fourth approach is to jointly deblur and recognize the blurred probe image
(Zhang, Yang, Zhang, Nasrabadi & Huang 2011). However, this involves solving for
the original sharp image, blur kernel and identity of the face image, and hence it is a
computationally intensive approach.

Set theoretic approaches for signal and image restoration have been considered in
Combettes (1996), Trussell & Civanlar (1984), and Combettes & Pesquet (2004). In
these approaches the desired signal space is defined as an intersection of closed convex
sets in a Hilbert space, with each set representing a signal constraint. Image deblur-
ring has also been considered in this context (Trussell & Civanlar 1984), where the
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non-negativity constraint of the images has been used to restrict the solution space. We
differ from these approaches as our primary interest lies in recognizing blurred faces
rather than restoring them.

The rest of the chapter now covers the following. In Section 12.2 we provide a set-
theoretic characterization of the space of motion-blurred images. In Section 12.3 we
present the bank of classifiers approach for recognizing motion-blurred face images,
and in Section 12.4 we perform experiments to evaluate our algorithm against other
standard algorithms.

12.2 The set of all motion-blurred images

We review the convolution model for blur and, based on this model, we compare and
contrast the set of all blurred images with the set of only motion-blurred images. In
Vageeswaran et al. (2013), it is shown that the set of all blurred images is a convex set.
However, we show here that the set of only motion-blurred images is non-convex.

12.2.1 Convolution model for blur

A pixel in a blurred image is a weighted average of the pixel’s neighborhood in the
original sharp image. Thus, blur is modeled as a convolution operation between the
original image and a blur filter-kernel which represents the weights (Bovik 2009). Let
I be the original image and H be the blur kernel of size (2k + 1) × (2k + 1), then the
blurred image Ib is given by

Ib(r, c) = I ∗ H(r, c) =
k∑

i=−k

k∑
j=−k

H(i, j)I(r − i, c − j) (12.1)

where ∗ represents the convolution operator and r, c are the row and column indices
of the image. Blur kernels also satisfy the following properties: their coefficients are
non-negative, H � 0, and sum up to 1 (i.e.

∑k
i=−k

∑k
j=−k H(i, j) = 1). The blur kernel

for motion blur has additional structure such as being linear along a certain direction.

12.2.2 The set of all blurred images versus the set of motion-blurred images

The set of all blurred images B obtained from I is given by:

B � {I ∗ H|H ≥ 0, ‖H‖1 = 1} (12.2)

This set is clearly convex since given any two blur kernels Hi and Hj, both satisfying
H � 0 and ‖H‖1 = 1, their convex combination (λHi + (1 − λ)Hj, 0 � λ � 1) will also
satisfy the above mentioned constraints. Moreover, this set is the convex hull of shifted
versions of the image I. This is because the set (H|H � 0, ‖H‖1 = 1) can be expressed
as the convex hull of H matrices with a single non-zero entry. These H matrices in turn
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Figure 12.2 The set of all blurred images (which is a convex set) vs the set of only motion-blurred
images (which is a non-convex subset of the original convex set).

gives rise to shifted versions of the original image I and thus the set of blurred images
is the convex hull of these shifted images; see Vageeswaran et al. (2013).

Now, we consider the set of motion-blurred images. Motion blur arises due to the
movement of the camera or the subject at the time of exposure. If the relative motion
between the camera and the subject is linear, then the blur is along a single direction. If
the motion blur is along a particular direction, say θ , then the blur kernel H satisfies the
following conditions (Bovik 2009):

H(i, j) > 0 if arctan(i/j) = θ , else H(i, j) = 0. (12.3)

With this definition of motion blur, we show that the set of all motion-blurred images
is non-convex, see Figure 12.2. We prove this by producing two motion blur kernels,
whose convex combination does not satisfy the motion blur kernel constraints, and
hence is not a motion blur kernel. Consider the horizontal motion blur kernel

H1 =

⎛⎝ 0 0 0
1/3 1/3 1/3
0 0 0

⎞⎠
and the vertical motion blur kernel

H2 =

⎛⎝ 0 1/3 0
0 1/3 0
0 1/3 0

⎞⎠ .
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Their convex combination, corresponding to λ = 0.5, is

H3 =

⎛⎝ 0 1/6 0
1/6 1/3 1/6
0 1/6 0

⎞⎠ ,

which is clearly not a motion blur kernel. Thus the set of motion blur images is not a
convex set. However, if we consider a particular direction of motion blur θ , then the set
of images blurred along that direction is a convex set. Furthermore, this convex set is
given by the convex hull of shifted images along that direction. Again, this is because
the blur kernel H is the convex hull of H matrices that are shifted impulse functions
along the direction θ , which give rise to shifted images along θ . We use the above
set-theoretic analysis to propose a face recognition algorithm that can handle motion-
blurred images robustly.

12.3 Bank of classifiers approach for recognizing motion-blurred faces

We design our face recognition algorithm based on the above set-theoretic characteri-
zation. We first divide the parameter space of motion blur, direction, and size of blur,
into a certain number of bins. Within each bin the set of blurred images is a convex set,
and is given by the convex hull of appropriately shifted versions of the sharp image. We
use these shifted images as training data to learn a system of SVM classifiers for each
bin, that distinguishes among the number of face classes C. Combining these systems of
SVM classifiers for each bin, we get a bank of classifiers. Given a motion-blurred probe
image, we use this entire bank of classifiers to identify the correct class. Figure 12.3
gives an overview of our BoC approach. In the following paragraphs, we describe our
algorithm in more detail.

Motion blur is characterized by the direction (θ ) and size of blur (S) (Bovik 2009).
We divide the size of blur into a certain number of bins, say Ns. For each blur size, we
divide the angle space (between 0 and 180◦) into a certain number of equally spaced
bins, say Nθs . We choose the number of angle bins as a function of the blur size. This
is because we are working with discrete kernels. For instance, for a kernel size of 3 we
choose the angle bin centers at 0, 45, 90, 135, 180◦; for size 5 we choose bin centers at
0, 22.5, 45, . . . , 180◦. The total number of bins in the parameter space is N =

∑
Nθs , for

s = 1, . . . , NS.
From our analysis in Section 12.2.2, the set of motion-blurred images obtained from

a sharp image within each bin is a convex set. This set is a convex hull of shifted
images which depends on the direction and size of motion blur kernel determined by
the particular bin. To find these shifted images we find the non-zero entries of the blur
kernel H. If the blur angle of the bin is between θ1 � θ < θ2 and the blur size is K×K,
then the non-zero entries of the blur kernel are given by:

H(i, j) > 0 if θ1 � arctan(j/i) < θ2. (12.4)
There are as many shifted images as the number of non-zero entries in H and each
shifted image is obtained by convolving the sharp image with a kernel that is a shifted
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Figure 12.3 The bank of classifiers (BoC) approach for recognizing motion-blurred face images.
Here we show three such systems corresponding to the appropriately shaded bin.

delta function. These shifted images then define the convex hull for the bin. We use these
shifted images as the training data for learning SVM classifiers as described below.

For each bin of the blur parameter space we learn a system of SVM classifiers to
distinguish between the C-face classes: one-versus-all SVM classifiers (Hsu & Lin
2002). Thus for each face class, we have a bank of N classifiers. Given a test image,
we query it against this bank of classifiers and find the likely class for each bin. We
finally choose the class that occurs the most number of times.

12.4 Experimental evaluation

In this section, we first analyze the performance sensitivity of our proposed algorithm
BoC with the blur angle and size bins. We then study the recognition performance
of BoC on synthetically generated motion-blurred images from the PIE dataset (Sim,
Baker & Bsat 2002) and on a real dataset Remote (Ni & Chellappa 2010). We compare
it with competing algorithms for blur robust recognition such as direct recognition of
blurred faces (DRBF) (Vageeswaran et al. 2013) and LPQ (Ojansivu & Heikkil 2008).

12.4.1 Sensitivity analysis of the BoC approach

In our BoC approach we divide the parameter space of motion blur, and the direc-
tion and size of blur, into many bins and learn the SVM classifier for each bin. Here
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Figure 12.4 Sensitivity of the recognition rate of BoC with blur angle and size bins, (a) angle
sensitivity plot; (b) size sensitivity plot.

we study the sensitivity of the recognition rate with respect to the blur angle and size
bins. For this we use the PIE dataset (Sim et al. 2002) which has 68 subjects and the
face images are of size 64 × 64. The training and testing sub-folders are chosen such
that their pose and illumination conditions are roughly constant. We choose sub-folders
(c27–f 21, c27–f 20) for training and (c27–f 9, c27–f 11) for testing. We bin the kernel
size into 7 bins corresponding to sizes (3, 5, . . . , 15). For each kernel size, we bin the
angle space appropriately to get a total of N = 89 bins. At each bin and for each face
class, we generate training images, which are shifted versions of the original sharp
image and learn SVM classifiers based on them. To study the sensitivity of recogni-
tion rate with respect to blur angle, we blur the test images with a blur kernel of angle
90◦ and a sequence of different blur sizes: 7, 9, 11, 13, 15. We then use the learned SVM
classifiers at different angle bins (with the correct kernel size) to compute the recog-
nition rate, see Figure 12.4(a). The recognition rate is quite good and is almost 100%
for the correct angle bin of 90◦. As we go further away from the correct angle bin, the
performance falls off. The decrease in performance also depends on the size of blur
kernel. For small blur sizes �9, the performance is largely insensitive to the bin angles,
but for larger blur sizes (�11) we start to observe a bell-shaped curve. In Figure 12.4(b),
we study the sensitivity of recognition rate with blur size. We blur the test images with
a blur kernel of angle 0◦ and a sequence of blur sizes: 13, 15, 17, 19, 21, 23, 25. We then
use the learned SVM classifiers at different blur size bins (of angle 0◦) to compute
the recognition rate. For small blur sizes �17, the recognition rate is almost 100%
for the correct blur size bins, but for large blur sizes �19, performance falls off even
at the correct bin. This is because at large blur sizes, convex hulls corresponding to
different face classes either intersect or are very close to one another. Hence, it becomes
difficult for the SVM classifier to learn an appropriate decision surface.

12.4.2 Performance evaluation on synthetically generated motion-blurred images

We synthetically blur the PIE dataset with many motion blur kernels and compare
our BoC approach with other algorithms such as DRBF (Vageeswaran et al. 2013),
FADEIN+LPQ (Nishiyama et al. 2010) and local binary patterns (LBP) (Ahonen et al.
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Figure 12.5 Recognition results for synthetically generated motion-blurred images.

2004). We use face images with a frontal pose (c27) and good illumination (f21, f20) as
our gallery and c27–(f9, f11, f12) as the probe. We vary the blur size from 3 to 15, and
at each blur size we randomly generate 10 different blur angles. Figure 12.5 shows the
mean recognition rate versus blur size. BoC gives the best performance followed by
DRBF, LPQ and LBP. At each blur size, we also show the standard deviation as error
bars. Since we model the blur direction explicitly in BoC, the standard deviation for
BoC is almost zero, whereas for the other algorithms it is much larger.

12.4.3 Performance evaluation on the real dataset REMOTE

We test our algorithm on the REMOTE dataset where the images have been captured
in an unconstrained manner (Ni & Chellappa 2010, Chellappa, Ni & Patel 2011). The
images were captured in two settings: ship-to-shore and shore-to-ship. The distance
between the camera and the subjects ranges from 5 m to 250 m. Since there are moving
objects in the scene and images were captured from a moving camera, the images have
significant motion blur. This dataset has 17 subjects. The gallery folder of the dataset
has 5 frontal, sharp and well-illuminated images for each subject. The probe folder is
divided into three sub-folders: (i) blur only, (ii) illumination only, and (iii) blur and illu-
mination. We use the blur sub-folder for our experiment. This sub-folder has 75 probe
images, see Figure 12.6. We register the images as a preprocessing step and normalize
the size of the images to 120 × 120 pixels. We then evaluate the recognition perfor-
mance of our algorithm and compare it with other state of the art algorithms such as
DRBF (Vageeswaran et al. 2013), the partial least squares (PLS)-based face recognition
algorithm (Chellappa et al. 2011), the sparse representation-based face recognition algo-
rithm (SRC) (Wright, Yang, Ganesh, Sastry & Ma 2009), LPQ, and PCA+LDA+SVM
(Ni & Chellappa 2010). We plot the recognition rate versus the number of gallery
images in Figure 12.7. Our algorithm BoC outperforms the other algorithms signifi-
cantly when the number of gallery of images is three or less. It is noteworthy that the
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Figure 12.6 Sample probe images from REMOTE dataset (Ni & Chellappa 2010).
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Figure 12.7 Recognition results on the unconstrained dataset REMOTE. We plot the recognition
rate vs number of gallery images for BoC, DRBF (Vageeswaran et al. 2013), PLS-based face
recognition algorithm (Chellappa et al. 2011), a sparse representation-based face recognition
algorithm SRC (Wright et al. 2009), LPQ, and PCA+LDA+SVM (Ni & Chellappa 2010).

other algorithms use more informative features (e.g. PLS uses Gabor-Jets, LBP and
histograms of oriented gradients (HOG)), which likely makes them robust to illumina-
tion and registration effects. Hence, it would be interesting to see the effects of modeling
illumination and pose in our BoC framework.

12.5 Discussion

We address the problem of recognizing faces from motion-blurred images. We show that
the set of motion-blurred images obtained from a single sharp image is a non-convex



�

�

“9781107044364AR” — 2013/12/20 — 9:50 — page 256 — #270
�

�

�

�

�

�

256 Direct recognition of motion-blurred faces

set. The main reason for this non-convexity is the directional nature of motion blur.
However, if we fix the direction of blur, then all the blurred images along that direction
form a convex set. Keeping this conditional convexity in mind, we propose a bank of
classifiers approach for directly recognizing motion-blurred faces. This is a discrimi-
native approach and hence it scales well with the number of face classes and training
images per class. Our experiments on both synthetic and real datasets show that our
algorithm gives state of the art performance. In future, we would like to model the
effect of illumination and pose in our framework.
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13 Performance limits for motion
deblurring cameras
Oliver Cossairt and Mohit Gupta

13.1 Introduction

A number of computational imaging (CI) based motion deblurring techniques have been
introduced to improve image quality. These techniques use optical coding to measure a
stronger signal level instead of a noisy short exposure image. However, the performance
of these techniques is limited by the decoding step, which amplifies noise. While it is
well understood that optical coding can increase performance at low light levels, little
is known about the quantitative performance advantage of computational imaging in
general settings.

In this chapter, we derive the performance bounds for various computational imaging-
based motion deblurring techniques. We then discuss the implications of these bounds
for several real-world scenarios. The scenarios are defined in terms of real-world
lighting (e.g. moonlit night or cloudy day, indoor or outdoor), scene properties (albedo,
object velocities) and sensor characteristics. The results show that computational
imaging techniques do not provide a significant performance advantage when imaging
with illumination brighter than typical indoor lighting. This is illustrated in Figure 13.1.
These results can be readily used by practitioners to decide whether to use CI and,
if so, to design the imaging system. We also study the role of image priors on the
decoding steps. Our empirical results show that the use of priors reduces the perfor-
mance advantage of CI techniques even further.

Scope
The analysis in this chapter focuses on techniques that use optical coding to preserve
high frequencies in the blur kernels so that deblurring becomes a well-conditioned
problem. These techniques assume that the blur kernel is known a priori. The anal-
ysis is limited to techniques that acquire a single image and follow a linear imaging
model. In particular, we consider two classes of techniques: (a) coded exposure based
techniques (e.g. Raskar, Agrawal & Tumblin (2006)), and (b) camera motion based
techniques (Levin, Sand, Cho, Durand & Freeman 2008, Cho, Levin, Durand &
Freeman 2010). The coded exposure based techniques selectively block light during
camera exposure, whereas the camera motion based techniques move the camera along
a particular trajectory during image capture.

Our analysis assumes the motion blur point spread function (PSF) is known.
Methods for determining the PSF include estimation using blind deconvolution
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Figure 13.1 Performance of motion deblurring cameras for naturally occurring lighting
conditions. We show that motion deblurring cameras (solid curve) give a negligible performance
gain over conventional (impulse) imaging (dotted line) if the illumination level is higher than
that of a typical living room. The plot assumes the following scene and sensor characteristics:
average scene reflectivity is 0.5, object motion is 50 pixels/s, aperture setting is F/2.1, pixel size
is 1μm, quantum efficiency is 0.5, and read noise standard deviation is 4e−.

(Fergus, Singh, Hertzmann, Roweis & Freeman 2006, Shan, Jia & Agarwala 2008),
and measurement using inertial sensors (Joshi, Kang, Zitnick & Szeliski 2010). We
do not consider techniques that acquire multiple images, such as a blurred/non-blurred
pair (Yuan, Sun, Quan & Shum 2007), a flash/no-flash pair (Krishnan & Fergus 2009),
or an image stack (Cai, Ji, Liu & Shen 2009, Agrawal, Xu & Raskar 2009). Finally,
our analysis does not consider techniques that require nonlinear computations such as
motion estimation between frames (Zhang, Deshpande & Chen 2010).

Evaluation methodology
We evaluate the performance of different techniques compared to the corresponding
impulse imaging technique that acquires a single short exposure blur-free image. In
the rest of the chapter, we refer to a conventional camera that captures short exposure,
motion blur-free images as an impulse camera. Impulse imaging measures the desired
signal directly without the need for any computational decoding, although the image
may be noisy due to low signal strength. Figure 13.2 illustrates the comparison between
computational (coding-based) and impulse imaging techniques for motion deblurring.

We use image quality as a metric for performance. The theoretical performance
bounds are derived in terms of the SNR metric. In addition, we provide empirical
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I

Motion Deblurring Camera Impulse Imaging

Figure 13.2 Motion deblurring versus impulse imaging. Left: the motion deblurring cameras
discussed here can be modeled using the linear image formation model given by Eq. (13.1).
In order to recover the desired image, these techniques require an additional decoding step,
which amplifies noise. Right: impulse imaging (capturing a short exposure, motion blur free
image) measures the signal directly without requiring any decoding.

results for several other perceptually motivated metrics (Wang, Bovik, Sheikh &
Simoncelli 2004, Wang & Bovik 2002, Sheikh & Bovik 2006).

Assumptions
The analysis in this chapter assumes that the motion blur kernel (resulting from camera
or object motion) is spatially invariant across the entire image. The coded exposure
based techniques require the motion to be the same for all scene objects in order to
achieve a spatially invariant motion blur kernel. On the other hand, the camera motion
based techniques are designed to achieve a spatially-invariant motion blur kernel even
in the case of scene objects having different velocities. We assume an affine model
for image noise; both the signal-independent and the signal-dependent components are
modeled as additive Gaussians.

Related work
Harwit and Sloane analyzed optically coded image acquisition in the context of spec-
trometers (Harwit & Sloane 1979). They showed that in the absence of photon noise,
the optimal measurement scheme corresponds to Hadamard matrices, and provides
a significant performance advantage over impulse imaging (impulse imaging in the
context of spectrometers corresponds to taking measurements over a narrow spectral
band, so that no decoding is required post-capture). Ratner and Schechner (Ratner &
Schechner 2007, Ratner, Schechner & Goldberg 2007) extended these results to derive
optimal measurement matrices in the presence of photon noise. Ihrke et al. (Ihrke,
Wetzstein & Heidrich 2010) analyzed the noise performance of different light field
cameras and color filter array imagers. The performance gain of multiplexing, as derived
in these papers, depends on the measurement matrices. Recently, Tendero (Tendero
2012) studied the performance gain of coded exposure cameras (Raskar et al. 2006)
with respect to conventional impulse imaging, for motion deblurring. The general
conclusion of the above mentioned works was that CI techniques do not give a signif-
icant performance advantage at high light levels. Agrawal and Raskar also analyzed
the performance of CI motion deblurring cameras (Agrawal & Raskar 2009), but they
analyzed how performance varies with increasing exposure time. In contrast, we analyze
how performance varies with increasing light levels, which allows us to determine
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practical settings when CI gives a notable advantage. In this chapter, we focus on
deriving theoretical performance bounds for CI based motion deblurring cameras. For
similar bounds on CI techniques applicable in different domains (e.g. defocus deblur-
ring, light-field imaging), the reader is referred to Cossairt, Gupta & Nayar (2012), and
Cossairt (2011).

13.2 Performance bounds for flutter shutter cameras

To begin this section, we consider scenes that consist of objects moving with constant
linear motion, resulting in images with a spatially-invariant motion blur. The motion
may be the result of camera motion, object motion, or a combination of the two.
However, for the time being, we assume that the motion is identical for each point in
the scene, and furthermore that the direction and magnitude of motion is known. Note
that this implicitly assumes that we have measured the motion blur PSF at the time of
capture. This restriction will be somewhat relaxed in the next section when we consider
motion-invariant cameras, which are designed to work over a range of object motions.

Since the motion blur is identical for each pixel, and the blur is inherently 1D, we
may use a linear image formation model (see Figure 13.2) (Cossairt et al. 2012, Cossairt
2011):

g = Hf + η, (13.1)

where g is the vector of measurements of size N representing a scanline of pixels in the
image along the direction of motion. The same equation can be used to express image
formation for each scanline in the image. In this equation, f is the vector of pixel values
corresponding to an all-in-focus scanline and η is a vector of noise values measured at
each pixel. H is the measurement matrix which is a Toeplitz (convolution) matrix. We
adopt the convention where the entries of H are between 0 and 1. For the impulse camera
the exposure time is set so that motion blur is less than one pixel. Then the measurement
matrix is the identity (H = I), and the camera measures the signal f directly. If we
increase the exposure time by a factor of C, we introduce a box-shaped motion blur
function, corresponding to a banded-diagonal measurement matrix with entries of 1 all
contained within a bandwidth of C. This measurement matrix is poorly conditioned with
several empty singular values. The flutter shutter camera was introduced to solve this
exact problem (Raskar et al. 2006). This camera temporally modulates the exposure to
effectively zero out some of the diagonals in the banded diagonal matrix. Exactly which
diagonals are zeroed depends on the flutter sequence that is used.

There are several important factors to consider when designing a flutter shutter
camera. The first is the choice of the temporal sequence of on/off patterns that is used
over the duration of the exposure (see Figure 13.2). The flutter sequence determines
how the motion blur is encoded in captured images, and will have a dramatic effect on
motion deblurring performance. The length L of the flutter sequence results in an expo-
sure time that is L times greater than an impulse camera. The sum of “on" values in the
flutter sequence C determines the amount of light captured by the flutter camera. Greater
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values for C imply both more captured light (which increases SNR), and a larger shutter
sequence (which amplifies more noise after deblurring). As we will see, this quantity
will play an important role in determining the optimal flutter shutter performance.

Flutter sequences have been identified that significantly improve the conditioning of
the measurement matrix H (Raskar et al. 2006), but a globally optimal flutter sequence
has yet to be discovered. Initially, this may seem like a major limitation that prevents
comprehensive analysis of flutter shutter cameras. However, as we show in this chapter,
it is possible to derive an upper bound on the best possible performance that can be
achieved with a flutter shutter camera without explicit knowledge of optimal flutter
sequences.

In Eq. (13.1), each element of the noise vector η is assumed to be independently
sampled from a zero mean Gaussian distribution N (0, σ 2). We consider an affine noise
model where there are two sources of noise, signal-independent read noise, and signal-
dependent photon noise1. The photon noise can be approximated by a Gaussian with
variance equal to the measured signal level J (in photons). Let the variance of the read
noise be σ 2

r . The total noise variance is:

σ 2 = J + σ 2
r . (13.2)

An estimate of the signal can be found as:

f∗ = H−1g. (13.3)

The mean-squared error (MSE) for the estimate f∗ is given by Harwit & Sloane (1979):

MSE =
σ 2

N
Tr(H−tH−1), (13.4)

where Tr() is the matrix trace operator.

Performance gain
In order to compute the performance gain of a motion deblurring camera, we compare
the signal-to-noise ratio (SNR) of the recovered signal with the signal captured using
impulse imaging (i.e. using a shorter exposure). The SNR is defined as SNR =
J/
√

MSE.
Denoting σ 2

i as the noise variance for the impulse camera, the MSE is just equal to
the variance MSEi = σ 2

i . Let σ 2
c be the noise variance for the measurement made with

the motion deblurring camera. The performance gain G is the ratio of the SNR for the
motion deblurring camera to the SNR of the impulse camera:

G =

√
MSEi
MSEc

(13.5)

=

√
N

Tr(H−tH−1)

σi
σc

. (13.6)

1 We ignore the effect of dark current noise, which is typically negligible when exposure times remain less
than around one second.
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When the noise is signal independent (σi = σc), the matrix that maximizes the gain for
masking-based techniques is the S-matrix (Harwit & Sloane 1979) (note that the optimal
matrix may not always be realizable). However, when the noise is signal dependent, the
optimal measurement matrix, and hence the performance gain, depend on the matrix
light throughput C(H), which is the sum of elements in each row of the measurement
matrix2 H, and is a measure of the amount of light captured if H is used as the measure-
ment matrix. For example, if H is the identity matrix, C(H) = 1. On the other hand, if
H is the S-matrix, C(H) ≈ N/2. Consequently, the S-matrix captures significantly more
light. Similarly, if H is a flutter coding matrix, C(H) represents the total “on" time of
the flutter sequence, indicating that the flutter camera captures C(H) more light than an
impulse camera. In the remainder of the chapter, we drop the argument H from C(H)
for brevity.

Optimal measurement matrices
The problem of identifying optimal measurement matrices (that result in maximum
gain) for masking-based CI techniques was explored by Ratner et al. (Ratner &
Schechner 2007, Ratner et al. 2007). They found an analytic expression for the lower
bound of the trace term:

Tr(H−tH−1) � N(CN − 2C + 1)
(N − C)C2 . (13.7)

Suppose the average signal level for the impulse camera is J, so that the total noise
σ 2

i = J + σ 2
r . The CI technique captures C times more light. Hence, the total noise is

σ 2
c = C J + σ 2

r . Substituting these and Eq. (13.7) in Eq. (13.6), we get an expression for
the maximum SNR gain G for matrices with a given light throughput C:

G(C) �
√
(N − C)C2

CN − 2C + 1
J + σ 2

r
C J + σ 2

r
. (13.8)︸ ︷︷ ︸

decoding term
︸ ︷︷ ︸
noise term

The righthand side of Eq. (13.8) consists of two competing terms. As light throughput
is increased, the noise-dependent term decreases while the decoding-dependent term
increases. There is an optimal light throughput Cmax for which the SNR gain achieves
the maximum value of Gmax.

13.2.1 Optimal flutter shutter performance

In this section, we derive a performance bound for flutter shutter cameras that is
independent of the signal size N and the measurement matrix H (defined by the flutter
sequence). The bound depends only on the signal strength, and the camera read noise
levels. In comparison, the previous result (Eq. (13.8)) gives the maximum SNR gain G

2 We consider matrices for which all the rows have the same sum, which is always the case for flutter
shutter coding matrices.
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for coding matrices with a light throughput C and a signal size N. We first derive an
upper bound on the decoding term in Eq. (13.8):

C2(N − C)
NC − 2C + 1

=
(N − C)C2

NC − C2 + C2 − 2C + 1

=
(N − C)C2

C(N − C) + (C − 1)2

� (N − C)C2

C(N − C)

� C. (13.9)

Next, we derive an upper bound on the noise term:

J + σ 2
r

C J + σ 2
r

=
1
C

C J + C σ 2
r

C J + σ 2
r

� 1
C

C J + σ 2
r + C σ 2

r
C J + σ 2

r

� 1
C

(
1 +

C σ 2
r

C J + σ 2
r

)

� 1
C

(
1 +

σ 2
r
J

)
. (13.10)

By substituting the bounds in Eqs. (13.9) and (13.10) in Eq. (13.8), we get the upper
bound on the performance gain of any flutter shutter camera:

G <

√
1 +

σ 2
r
J

. (13.11)

Equation (13.11) expresses the best possible SNR gain that can be achieved for any
flutter shutter camera, measured relative to an impulse camera with a sufficiently shorter
exposure to remove motion blur.

As a final note, we point out that the same analysis applies if we consider constant
speed spatially-invariant motion along an arbitrary 2D trajectory. Then the PSF becomes
2D instead of 1D. The coding matrix H in Eq. (13.1) becomes block Toeplitz, and the
quantities f and g both represent a lexicographical reordering of the pixels in a 2D image.
As a result, the same upper bound on performance given by Eq. (13.11) holds.

It is also possible to relax the assumption of objects moving at a constant speed.
Let vimp be the speed at which a scene object was moving during the impulse imaging
exposure. The speed is sufficiently low to prevent any motion blur. Then, if the object
moves with a non-constant speed (but always higher than vimp) during the exposure
of the motion deblurring camera, the entries of the measurement matrix H will be in
the continuous range [0–1], instead of being limited to only 0 or 1. It can be shown
(Harwit & Sloane 1979) that even in this case, the bound in Eq. (13.11) holds. Finally,
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we point out that while this chapter assumed that the flutter sequence is the same for all
pixels on the sensor, it is also feasible to consider the possibility that a unique flutter
sequence is applied to each pixel. This would correspond to a nondiagonal coding
matrix H. However, the derivation in this chapter holds for arbitrary coding matrices,
and therefore the bound in Eq. (13.11) will continue to hold in this case as well.

13.3 Performance bound for motion-invariant cameras

In the previous section, we derived an upper bound on the performance for masking-
based multiplexing systems, which allowed us to determine the best possible perfor-
mance that can be achieved for a flutter shutter camera. In this section, we extend this
analysis to motion-based cameras, where the camera is moved along a specified trajec-
tory during image capture. The performance bound for this class of cameras is given
as:

G <

√
2
(

1 +
σ 2

r
J

)
. (13.12)

Note that the performance bound is higher than exposure-coding-based cameras
(Eq. (13.11)) since motion-based cameras do not block light. In the following, we derive
this bound. The analysis closely follows the treatment given in Levin, Fergus, Durand &
Freeman (2007), Cho et al. (2010), Cossairt et al. (2012), Cossairt (2011). Readers not
interested in the detailed derivation may skip directly to Section 13.4.

13.3.1 Space–time analysis

Motion-invariant cameras do not attenuate any of the light reaching the sensor. Instead,
they utilize camera motion to encode motion blur in a manner that can easily be
removed via deconvolution. The camera motion is chosen so that blur becomes inde-
pendent of object velocity, resulting in an image formation model that is entirely shift
invariant. In practice, this means that either the direction of motion must be known a
priori (Levin et al. 2007), or multiple images must be captured with complimentary
camera motion (Cho et al. 2010). For simplicity, we begin by considering the case of
1D motion blur where objects in the scene move with varying speed, but in the same
(known) direction. We model our scene as a 2D space–time volume l(x, t) (where x
is measured in pixels) consisting of objects moving at different speeds s (measured in
pixels/s). We assume the speed of objects is bounded so that |s| < Smax. Ignoring the
effects at occlusion boundaries, the scene can be expressed as a summation of point
sources moving at different speeds. The motion blur induced by object motion will
depend on the speed of the point source. We characterize the motion blur by consid-
ering the space–time volume produced by a point source lp with unit flux moving at a
constant velocity s:

lp(x, t) = δ(x − s · t). (13.13)
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A stationary camera captures a photograph by integrating the space–time volume
along the temporal direction with an exposure duration of T. The image produced by
a moving point source is the motion-dependent 1D PSF hs(x), where the subscript s
denotes dependence on object speed:

hs(x) =
∫ T/2

−T/2
lp(x, t) dt (13.14)

=
∫ T/2

−T/2
δ(x − s · t) dt (13.15)

=
1
|s|  

(
x
|s|T

)
, (13.16)

where the rect function is defined as

 (x) =

{
1 if |x| < 1/2

0 otherwise.
(13.17)

Thus we are left with the familiar line-shaped motion blur PSF with length |s|T. In
particular, we note that if we set the exposure time such that T = 1/Smax, this will
ensure that the motion blur will always be less than a pixel. The PSF will be a (Dirac)
delta function with a magnitude T for each object in the scene, regardless of the exact
speed at which it is moving.

In contrast, a motion-invariant camera uses a longer exposure time in conjunction
with camera motion in an attempt to produce a blur that is independent of object motion.
In this case, we use an exposure time that is C times greater, and therefore collects
C times as much light. The quantity C is analogous to the matrix light throughput in
Section 13.2. Thus, we expect to be able to follow a similar procedure where we derive
an expression for the SNR gain that is decomposed into decoding and noise-dependent
terms (see Eq. (13.8)). This expression will allow us to derive the best possible motion-
invariant performance that occurs with the optimal choice of C.

A motion-invariant camera moves along the motion path f(t) during exposure. The
PSF of this camera is then given by

hs(x) =
∫ C·T/2

−C·T/2
lp(x − f(t), t) dt. (13.18)

=
∫ ∞

−∞
k(x − s · t, t) dt, (13.19)

where we have introduced the 2D integration kernel for the motion-invariant camera

k(x, t) = δ(x − f(t))  
(

t
C · T

)
. (13.20)

Referring to Eq. (13.19), the motion-invariant camera PSF is a 1D projection of the
2D integration kernel. According to the Fourier slice theorem, the optical transfer
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function (OTF) is then given by a slice of the Fourier transform of the integration kernel
K(ωx,ωt) (see (Wikipedia 2013b) for an illustration):

Hs(ωx) = K(ωx, sωx), (13.21)

where ωx are spatial frequencies measured per-pixel. Equation (13.21) tells us how to
relate the motion-dependent OTF to the Fourier transform of the integration kernel,
which is itself determined by the camera motion path. If we consider the set of objects
moving at velocities in the range |s| < Smax, we can see that the OTF will be maximized
when energy in K(ωx,ωt) is concentrated within the double wedge in frequency space
given by |ωt| < Smax|ωx| (see Figure 5 in Levin et al. (2007) for an illustration). Further-
more, to ensure that the OTF (and consequently also the PSF) is motion invariant, we
want to enforce that the K(ωx,ωt) remains constant while speed s is allowed to vary, but
spatial frequency ωx remains fixed. However, it can be shown that (Levin et al. 2007)∫

|K(ωx,ωt)|2 dωt � C · T. (13.22)

The importance of Eq. (13.22) can be understood as follows. For a fixed ωx, the
optimal kernel K will only contain energy along a line in frequency space of length
2Smax|ωx|. However, if we integrate |K|2 along this line, the result can be no greater than
C · T. Therefore, the best possible motion-invariant camera will be one that produces an
integration kernel given by

|K(ωx,ωt)|2 � C · T
2Smax|ωx| . (13.23)

Since the optimal kernel is independent of ωt, the slicing operation given by Eq. (13.21)
does not alter the result. The OTF then becomes invariant to object motion and is simply
given by

|H(ωx)|2 � C · T
2Smax|ωx| . (13.24)

Note that while the righthand side of Eq. (13.24) represents the upper bound on the
OTF for any motion-invariant camera, it may not be possible to achieve this upper
bound exactly. However, Levin et al. show that the upper bound can be approximately
met when a motion path of constant acceleration is used f(t) = a0 · t2 (Levin et al. 2007).

For the general case of 2D motion blur, we consider 3D integration kernels given
by k(x, y, t), arbitrary object motion given by the velocity vector s = (sx, sy), and a 2D
camera motion path given by f(t) = (fx(t), fy(t)). Again we assume the maximum object
speed is bounded so that |s| < Smax. In the Fourier domain, the energy of the optimal
3D integration kernel K(ωx,ωy,ωt) is concentrated on the double inverted cone where
ωt � Smax

√
ω2

x + ω2
y (Cho et al. 2010). The upper bound on the OTF for a 2D motion-

invariant camera is then given by

|H(ωx)|2 � C · T

2Smax
√
ω2

x + ω2
y

. (13.25)
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13.3.2 Optimal motion-invariant performance

Because the motion-invariant camera produces a blur that is independent of object
motion, the image formation of Eq. (13.1) can be described as a convolution

g(x, y) = h(x, y) ∗ f(x, y) + ψ(x, y), (13.26)

where g is the captured blurred image, f is the focused image, and ψ is the sensor noise.
In the Fourier domain, this equation becomes:

G(ωx,ωy) = H(ωx,ωy)F(ωx,ωy) +�(ωx,ωy), (13.27)

where F is the focused image spectrum, H is the optical transfer function (OTF) of the
camera, � is the noise spectrum, and G is the captured image spectrum. An estimate of
the focused image can be found as

F∗(ωx,ωy) =
G(ωx,ωy)

H(ωx,ωy)
, (13.28)

and the expected MSE can be written as

MSE = E
[
‖F∗(ωx,ωy)− F(ωx,ωy)‖2

]
(13.29)

= σ 2
∫ 1/2

−1/2

∫ 1/2

−1/2

1
‖H(ωx,ωy)‖2 dωx dωy, (13.30)

where E denotes expectation with respect to the noise �, and σ 2 is the noise variance.
Equation (13.30) is analogous to Eq. (13.4), except here MSE is calculated in the contin-
uous domain. The bounds in the integral are set to (ωx,ωy) ∈ {−1/2, 1/2} because we
have implicitly assumed the function F to be bandlimited. From this expression, we
can derive the best possible performance that can be achieved for any motion-invariant
camera.

As mentioned previously, an impulse camera will remove motion blur by setting the
exposure time T so that the maximum blur size is equal to one pixel and T = 1/Smax. To
make our notation consistent with Section 13.2, we normalize our temporal coordinates
so that T = 1. For the impulse camera, the OTF is then given by OTF(ωx,ωy) = 1 so
that the MSE is simply

MSEi = σ 2
i . (13.31)

Substituting the upper bound on the 2D motion-invariant OTF, given by Eq. (13.25),
into Eq. (13.30) gives a lower bound on the MSE for any motion-invariant camera:

MSEm �
σ 2

m

(√
2 + asinh(1)

)
3C

� σ 2
m

2C
. (13.32)

Substituting Eqs. (13.32) and (13.31) into Eq. (13.5) and using the bound expressed by
Eq. (13.10), results in the bound given by Eq. (13.12). This bound expresses the best
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possible SNR gain that can be achieved for any motion invariant camera, measured
relative to a static camera with a sufficiently shorter exposure to remove motion blur.

As a final note, we mention that while the theoretical analysis in this section assumed
constant motion, in practice, the conclusions are applicable for small deviations from
these assumptions.

13.4 Simulations to verify performance bounds

Equations (13.11) and (13.12) are noteworthy because they provide the maximum
possible SNR gain for any motion deblurring camera. In Figure 13.3, we show the simu-
lated performance for motion deblurring cameras. The SNR gain of each technique is
calculated using Eq. (13.6), and the result is plotted against the ratio of photon to read
noise variance (J/σ 2

r ). Figure 13.4 shows motion deblurring performance for the flutter
shutter (Raskar et al. 2006) and motion-invariant (Levin et al. 2008) cameras. For the
motion-invariant camera, the optimal value of C was chosen for each signal level. For
the flutter shutter camera, the optimal 52-length code for each signal level was found
using brute force search (note that for very small signal levels, the length of the optimal
flutter code may be larger than 52). As expected, both the techniques performed at or
below the performance bound given by Eq. (13.12).

Implication of the bounds
The bounds in Eqs. (13.11) and (13.12) imply that the performance gain for compu-
tational imaging is significant only when the average signal level J is considerably
smaller than the read noise variance σ 2

r . The read noise variance for currently avail-
able sensors ranges from less than one grey level (on a scale of [0–255]) for high
quality DSLR cameras to approximately five grey levels for low quality machine vision
cameras (Schechner, Nayar & Belhumeur 2007). Typical daylight illumination results
in signal strengths that are considerably greater than these read noise variance values.
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Figure 13.3 Verification of the performance bound using simulations: motion deblurring
performance for the flutter shutter (Raskar et al. 2006) and motion-invariant cameras (Levin
et al. 2008). Both techniques perform at or below the performance bound given by Eq. (13.12).
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(a) Performance using MSE metric (b) Performance using SSIM metric

(c) Performance using VIF metric (d) Performance using UQI metric

Figure 13.4 Simulated performances for the flutter shutter camera using: (a) the mean-squared
error metric; (b) the structural similarity metric; (c) the visual information fidelity metric; (d) the
universal quality index metric. Several reconstruction techniques are applied, including linear
inversion, Gaussian prior on derivatives, total variation prior, and BM3D prior. The SNR gain is
always less than the bound given by Eq. (13.12), regardless of the prior or metric used.

13.5 Role of image priors

Thus far, we have not considered the role of image priors. Priors can be used to improve
image quality, both for computational and impulse imaging (Levin et al. 2007, Zhou &
Nayar 2009). The improvement depends on the type of priors and image coding used.
In addition, our analysis thus far used MSE as the quality metric for images because it
makes the derivation of performance bounds tractable. However, a number of metrics
have been introduced which measure the perceived image quality (Wang et al. 2004,
Sheikh & Bovik 2006, Wang & Bovik 2002, Gaubatz 2013). In this section we analyze
the effect of various priors and metrics on performance.

Image priors
We can think of the estimate f∗ given in Section 13.2 as the maximum likelihood (ML)
estimate of the following optimization problem:

f∗ML = arg max
f

P(f|g) (13.33)
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= arg min
f
‖f − Hg‖2, (13.34)

where P(f|g) is the probability of the unknown image f given the measurement g, which
is Gaussian due to the properties of the measurement noise vector η. If we have knowl-
edge of the probability distribution of our unknown image P(f), then we can improve
performance by finding the maximum a posteriori (MAP) estimate:

f∗MAP = arg max
f

P(g|f)P(f) (13.35)

= arg min
f
‖f − Hg‖2 + λlog(P(f)), (13.36)

where the constant λ determines how much significance to attach to the prior. The
image prior can essentially be thought of as a way to coerce the optimization problem
to produce more probable estimates of the unknown image. In this section, we consider
three image priors. Firstly, we consider a Gaussian prior on the distribution of gradients
in the image (Levin et al. 2007, Hasinoff, Kutulakos, Durand & Freeman 2009) of the
form:

log(PGauss(f)) = −‖∇f‖2
2, (13.37)

where ∇ is the first order finite difference matrix, which calculates a discrete approx-
imation to the gradient operator. In this case, because the prior is Gaussian, the MAP
estimate can be calculated directly as:

f∗MAP = (∇ t∇ + HtH)−1Htg. (13.38)

We also consider the total variation (TV) prior (Bioucas-Dias & Figueiredo 2007,
Chambolle 2004) which has the form:

log(PTV(f)) = −‖∇f‖1. (13.39)

In this case, there is no direct way to calculate the MAP estimate, and an iterative
algorithm must be used. We use the TwIST algorithm (Bioucas-Dias & Figueiredo 2007)
to solve Eq. (13.36) and find a MAP estimate.

Lastly, we consider the current state-of-the-art BM3D algorithm (Dabov, Foi,
Katkovnik & Egiazarian 2007). Although it is hard to write a single linear expression
for this prior (because of nonlinear shrinkage in the 3D spectrum domain), it is possible
to calculate a MAP estimate numerically.

Image quality metrics
In Section 13.2, we established MSE as the metric for evaluating images. We now
extend this formalization to more general metrics. We can define a general form for
any similarity metric S(f, f∗) that measures how close our estimate f∗ is to the actual
image f. The MSE metric can then be defined as

SMSE(f, f∗) =
1

‖f − f∗‖2
2

. (13.40)
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The interpretation here is that the smaller the MSE, the more similar the estimate f∗
relative to the true image f. The performance gain for any metric can then be written as

G =

√
Sc(f, f∗)
Si(f, f∗)

, (13.41)

where Sc is the metric applied to the computational camera, and Si is the metric applied
to the corresponding impulse camera. For the MSE metric, the definition remains the
same as the expression given in Eq. (13.6). However, with this general definition in
place, we are now free to use other metrics to evaluate performance. Note that because
we have defined SNR gain in terms of a similarity metric instead of an error metric, the
term for the computational camera appears in the numerator instead of the denominator.
In addition to MSE, we use the following image quality metrics to measure perfor-
mance: structural similarity (SSIM) (Wang et al. 2004), visual information fidelity (VIF)
(Sheikh & Bovik 2006), and universal quality index (UQI) (Wang & Bovik 2002). We
use the MeTriX MuX visual quality assessment package to calculate performance using
these metrics (Gaubatz 2013).

Simulations
Figure 13.4 shows the simulated performance of a flutter shutter camera. Since the
performance of reconstruction algorithms can be image dependent, we report the
performance averaged over a large dataset of images. For this simulation, we use the
Caltech 101 image database of 9140 different images (L. Fei-Fei & Perona 2004). For
each image, we simulate the performance under ten different photon to read noise ratios
(J/σ 2

r ). Performance is shown for the MSE, SSIM, VIF, and UQI metrics, and for each
plot, the performance gain G is plotted on a log scale. Thus, a value of zero corresponds
to a performance gain of G = 1, meaning that both computational and impulse imaging
have the same performance. The solid black lines correspond to the performance bound
expressed by Eq. (13.12). The dotted lines correspond to performance gain using direct
linear inversion (i.e. estimating the image using Eq. (13.3)), as well as Gaussian, TV,
and BM3D priors.

There are two interesting observations to be made from these plots. First, in most
cases, image priors boost the performance of impulse imaging more than motion
deblurring cameras. As a result, the performance advantage of motion deblurring over
impulse imaging is reduced even further, especially at low light levels. Thus, the perfor-
mance bound expressed by Eq. (13.12) is the tightest when no prior is used.

The second observation is that the bound derived using linear inversion and the MSE
metric (solid black curve) appears to be an upper bound for performance across all
metrics and priors. This is surprising because it is well known that MSE does not
accurately measure perceived image quality. Nonetheless, the upper bound expressed
by Eq. (13.12) does appear to provide a consistent upper bound on performance regard-
less of the image quality metric used.



�

�

“9781107044364AR” — 2013/12/20 — 9:50 — page 273 — #287
�

�

�

�

�

�

13.6 When to use computational imaging 273

Isrc (lux)

3,849

104

Sunny
Day

384.9

103

Cloudy
Day

1

Full
moon Twilight

3.85

10

Indoor
Lighting

38.49

102

.39

Quarter
moon

Starry 
night

7 x 10-4 4 x 10-3

10-22 x 10-3

J (e-)

Figure 13.5 Relating typical lighting conditions for photography to average photon counts. The
top row shows typical illuminance values in lux (Wikipedia 2013a). The bottom row shows the
photon counts calculated using Eq. (13.42) assuming an average reflectivity of R = 0.5, quantum
efficiency of q = 0.5, and exposure time of t = 1/50 s, aperture setting of F/2.1, and pixel size of
� = 1μm.

13.6 When to use computational imaging

Equations (13.11) and (13.12) provide performance bounds for motion deblurring
cameras in terms of the sensor read noise σr and the average signal level J of the impulse
image. In order to determine when motion deblurring is advantageous, we have derived
an expression for the signal level J in terms of the scene and sensor-dependent parame-
ters (see appendix for a derivation):

J ≈ 1015 (F/#)−2 t Isrc R︸ ︷︷ ︸
scene

dependent

q�2︸︷︷︸
sensor

dependent

, (13.42)

where F/# is the ratio of focal length to aperture size of the lens, t is the exposure time,
Isrc is the incident illuminance given in lux, R is the average reflectivity of the scene, q is
the quantum efficiency of the sensor, and� is the pixel size in meters. In Figure 13.5, we
give values of J corresponding to several commonly encountered lighting conditions.

Scene-dependent parameters
The F/# of the camera will typically depend on the depth range of the scene. Assuming
we want the entire depth range to be in focus, a larger depth range will require stopping
down to smaller apertures to reduce defocus blur to within one pixel. Similarly, the
exposure time t depends on the range of scene velocities. Higher velocities will require
the impulse camera to have a short exposure to reduce motion blur to within one pixel.
Finally, the signal level is directly proportional to the illumination brightness Isrc and
the object albedo R.

Sensor-dependent parameters
Different sensors have different quantum efficiencies and pixel sizes. Quantum effi-
ciency q for commercially available sensors is quite high, usually greater than 0.5. For
today’s sensors, the size of pixels � has a wide range, from 1μm for small cell phone
sensors to nearly 10μm for large format sensors.
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13.6.1 Rule of thumb

When using one of today’s commercial grade image sensors (DSLRs, cell-phone
cameras, machine vision sensors), motion deblurring cameras will only yield signifi-
cant performance benefits when the illuminance is less than 100 lux (typical living room
lighting).

This implies that when the illuminance is above 100 lux, it is better to capture the
impulse image without any blur (using a small exposure time).

We support this rule of thumb with several simulations. We consider both the lighting
conditions (e.g. moonlit night or cloudy day, indoor or outdoor) and scene properties
(albedo, speed, range of object velocities). In all our examples, we assume an average
reflectivity of R = 0.5, quantum efficiency of q = 0.5, and read noise of σr = 4e−, which
is typical for today’s CMOS sensors (Clark 2013).

Motion deblurring simulations
Here we show a simulation of both flutter shutter and motion-invariant cameras. For
these simulations, we used a pixel size of � = 5μm, aperture setting of F/20 and the
impulse camera exposure time t = 1

50 s. For the flutter shutter camera, we used the 52
digit long sequence given in Raskar et al. (2006) to simulate a fluttered image captured
with an exposure time of 52·t = 1.02 s. For the motion invariant camera, we synthesized
the PSF produced from a camera moving with constant acceleration and exposure time
of 1.02 s. We simulated the effect of photon and read noise, and decoded the captured
image using Eq. (13.3). The simulated images are shown in Figures 13.6 and 13.7. Both
the flutter shutter and motion-invariant cameras perform worse than impulse imaging
when the illuminance is greater than 100 lux.

In Figure 13.8, we show a contour plot of the SNR gain bound3 given by Eq. (13.12)
versus the illuminance (Isrc) and the maximum speed of objects (given in pixels/s).
Note that this bound holds for flutter shutter and motion-invariant cameras alike, and it
is independent of the particular flutter sequence, motion trajectory, and exposure time of
the camera. As the maximum object speed increases, the exposure time of the impulse
camera must be reduced to avoid motion blur. We can observe that motion deblurring
cameras never give an SNR gain greater than 2 when the illuminance is greater than
100 lux.

13.7 Relationship to other computational imaging systems

In addition to motion deblurring cameras, a number of other computational cameras
have been introduced to improve performance in terms of image quality. Like motion
deblurring cameras, they use optical coding to increase light throughput to obtain
a stronger signal. These techniques follow the linear imaging model of Eq. (13.1).

3 Although the SNR bound is derived assuming no priors and MSE metric, we have observed empirically
that it bounds the performance of CI techniques irrespective of the prior and the image quality metric
(see Section 13.5).
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Figure 13.6 Simulated performance for the flutter shutter camera. The parameters for the
simulation are given in Section 13.6.1. Top row: image blurred by the flutter sequence given
in Raskar et al. (2006); second row: results after linear deblurring; third row: results from the
impulse camera (shorter exposure); fourth row: results after deblurring the images in the first
row with the BM3D algorithm (Dabov et al. 2007); last row: results for denoising the images in
the third row with the BM3D algorithm. Gaussian distributed read noise and Poisson distributed
photon noise is added to each image. The illumination Isrc increases from left to right. Without
the prior, the flutter shutter camera has higher SNR when Isrc < 100 lux.

In addition, for each of these cameras, there is a corresponding conventional imaging
technique that can measure the signal directly without the need for any decoding
(impulse imaging). Indeed, it has been shown that many computational cameras obey
the same performance bound as motion deblurring cameras (Cossairt et al. 2012,
Cossairt 2011). The following are a few examples.

13.7.1 Example computational cameras

Defocus blur
Coded aperture masks have been used to deblur defocused images (Levin et al. 2007,
Veeraraghavan, Raskar, Agrawal, Mohan & Tumblin 2007, Zhou & Nayar 2009, Zhou,
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Figure 13.7 Simulated performance for a motion-invariant camera. The parameters for the
simulation are given in Section 13.6.1. Top row: image blurred by the 1D motion invariant
camera from Levin et al. (2007); second row: results after linear deblurring; third row: results
from the impulse camera (shorter exposure); fourth row: results after deblurring the images in
the first row with the BM3D algorithm (Dabov et al. 2007); last row: results for denoising the
images in the third row with the BM3D algorithm. Gaussian distributed read noise and Poisson
distributed photon noise is added to each image. The illumination Isrc increases from left to
right. Without the prior, the motion invariant camera has higher SNR when Isrc < 100 lux.

Lin & Nayar 2011). There are also several techniques that extend the depth of field
(DOF) by producing a depth-independent blur that can be inverted without the need
for depth estimation (Chi & George 2001, E. R. Dowski & Cathey 1995, Ojeda-
Castaneda, Landgrave & Escamilla 2005, Häusler 1972, Kuthirummal, Nagahara, Zhou
& Nayar 2010, Cossairt, Zhou & Nayar 2010, Cossairt & Nayar 2010, Guichard,
Nguyen, Tessières, Pyanet, Tarchouna & Cao 2009). Assuming the blur kernel to be
shift invariant, the measurement matrix H is a circulant matrix, where each row of the
matrix encodes the defocus blur kernel. g is the captured blurred image and f is the
extended depth of field (EDOF) image. The corresponding impulse imaging technique
is to capture images with a stopped down aperture (H is equal to the identity matrix I).
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Figure 13.8 When to use motion deblurring. The average signal level is calculated using
Eq. (13.42) with the parameters outlined in Section 13.6.1. Shown is a contour plot of the SNR
gain bound vs the illuminance and the exposure time of the impulse camera. The SNR gain is
always negligible when the illuminance is greater than 100 lux (typical indoor lighting).

Multiplexed light fields
CI techniques for capturing light fields include placing a transmissive mask either at the
lens aperture (Liang, Lin, Wong, Liu & Chen 2008), or near the sensor (Veeraraghavan
et al. 2007, Lanman, Raskar, Agrawal & Taubin 2008). The measurement matrix H is
again block circulant. Each pixel measures a linear combination of ray intensities (g),
and the light field (f) must be recovered by demultiplexing the captured data. In contrast,
a light field camera can also be built by placing a mask consisting of an array of pinholes
near the sensor (Horstmeyer, Euliss, Athale & Levoy 2009), or by capturing a sequence
of images with a shifting pinhole in the aperture (Liang et al. 2008). These techniques
are the impulse imaging counterparts of multiplexed light field capture.

Multiplexing color and spectrum
Mask-based Hadamard multiplexing is used for point (Harwit & Sloane 1979) and
imaging (Hanley, Verveer & Jovin 1999) spectrometers. Here, H is the spectral mixing
matrix, g is the vector of multiplexed spectral samples and f is the vector of narrowband
spectral samples (desired). The impulse imaging counterpart is capturing narrowband
spectral samples (Chakrabarti & Zickler 2011). Color filter arrays (CFAs) that multi-
plex color have been proposed to capture three color images with more light throughput
than RGB Bayer filters (Baer, Holland, Holm & Vora 1999, Ihrke et al. 2010) (impulse
imaging).

Multiplexed illumination
Measuring the appearance of a scene under varying illumination is useful for
scene relighting and estimating depth. These measurements can be multiplexed by
measuring the appearance of a scene when illuminated by linear combinations of
light sources (Schechner et al. 2007, Ratner & Schechner 2007, Ratner et al. 2007).
Here, H is the measurement ensemble, g is the vector of acquired (multiplexed) image
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intensities and f is the vector of intensities corresponding to only single sources. Here,
the impulse imaging counterpart is capturing images by turning on only one light source
at a time.

13.8 Summary and discussion

In this chapter, we analyzed the performance of a variety of computational imaging-
based motion deblurring techniques (coded exposure and camera motion-based tech-
niques), and derived a bound on their performance in terms of SNR. Implementing a
motion deblurring camera can add a further, often significant, cost to a conventional
imaging system4. In order to justify the extra cost, a practitioner may ask the question:
What is the performance advantage of a motion deblurring camera with respect to a
corresponding impulse camera? Since motion deblurring cameras capture more light
than impulse imaging, it may appear that they should result in a higher signal-to-noise
ratio (SNR). However, motion deblurring cameras require a computational decoding
step (see Figure 13.2) which amplifies noise, thereby lowering the SNR. We have shown
that motion deblurring cameras provide a significant performance advantage only if the
average signal level is significantly lower than the sensor read noise variance. These
results can be readily used by practitioners. For instance, it was shown that motion
deblurring cameras do not provide a significant performance advantage when imaging
with illumination brighter than typical indoor lighting.

The role of sensor quality
High quality sensors are carefully engineered to have low read noise, albeit with an
added cost. In applications where low quality (high read noise) sensors are used, motion
deblurring cameras can enhance performance even when illuminance is greater than
100 lux. In these situations, however, the additional cost required to implement coding
should be weighed against the cost of improving performance by simply switching to a
high quality sensor.

Task-specific imaging
Our aim in this chapter is to analyze the performance of motion deblurring cameras
insofar as the final goal is to capture high quality images. If a further task is to be
performed on the captured images (e.g. tracking, face recognition, intrusion detection),
reconstruction algorithms can benefit from task-specific priors (as opposed to priors
based on natural image statistics). Moreover, in this case, the performance should be
evaluated in terms of task-specific metrics. While such task-specific priors and image
quality metrics are beyond the scope of this chapter, we believe they form an interesting
direction for future research.

4 While this is generally true, flutter shutter cameras have been implemented without significant hardware
modifications using specific industrial camera models (Agrawal & Raskar 2009).
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Appendix

Lighting conditions

For a Lambertian scene with average reflectance R that is lit by a source with illumi-
nance Isrc (given in units of lux), the average illuminance falling on the detector (also in
units of lux) is (Horn 1986)

Idet =
1
4

1
F/#2 EsrcR .

Given a quantum efficiency q, an exposure time of t s, and a pixel size of �m, the
average energy in joules collected by a pixel is (DeCusatis 1997)

E = K
1
4

1
F/#2 IsrcRq�2t,

where K = 1
680 W/lm is the conversion factor between photometric and radiometric units

when the detector spectral response is matched to the photopic spectral response of the
standard human observer. The energy (in joules) of a single photon is given by �c/λ,
where � is Planck’s constant, and c is the speed of light. The average number of photons
collected by a pixel is then

J = K
λ

4�c
1

F/#2 IsrcR q�2 t.

Assuming a mean wavelength of λ = 0.55μm, the average number of photons becomes

J ≈ 1015 1
F/#2 IsrcR q�2 t.
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variable splitting, 9
variance, 7, 16, 103–105, 116, 135, 143, 144, 146,

157, 169, 173–175, 188, 229, 235, 262, 268,
269, 278

variational, 16, 104, 163, 171, 175, 180, 181
velocity, 37–40, 43, 46, 51, 226, 231, 232, 234, 236,

242–244
video, 51, 207, 208, 212, 214
view-dependent, 33
vignetting, 149, 156
visual, 2, 7, 11–13, 26, 27, 44, 57, 172, 173, 176,

179, 217, 272
Voronoi, 127
voronoi, 62, 63
voxel, 36, 211, 213
Walsh–Hadamard, 145
warp, 33, 66, 125, 126, 129–132, 138, 148, 181,

193, 194, 199
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wavelength, 60
wavelet basis, 210
weight, 3, 4, 10, 13, 18, 25, 49, 66, 68, 75, 81–83,

87, 88, 97, 102, 127, 154, 155, 171–173,
188–190, 193, 194, 197, 198, 229, 230, 249

wide-angle lenses, 115
Wiener, 1, 2, 5, 6, 12, 112, 113, 115, 163
wiener filter, 63

window, 21, 69, 102, 109, 110, 117, 181
X-ray, 142
yaw, 79
zero mean, 135, 173, 262
zero padding, 145
zero-padding, 88
zoom, 60, 73, 82, 86, 162, 178, 201–203, 218
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