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Aims and Scope

Optimization has been expanding in all directions at an astonishing rate
during the last few decades. New algorithmic and theoretical techniques have
been developed, the diffusion into other disciplines has proceeded at a rapid
pace, and our knowledge of all aspects of the field has grown even more
profound. At the same time, one of the most striking trends in optimization is
the constantly increasing emphasis on the interdisciplinary nature of the field.
Optimization has been a basic tool in all areas of applied mathematics,
engineering, medicine, economics and other sciences.

The series Optimization and Its Applications publishes undergraduate and
graduate textbooks, monographs and state-of-the-art expository works that
focus on algorithms for solving optimization problems and also study
applications involving such problems. Some of the topics covered include
nonlinear optimization (convex and nonconvex), network flow problems,
stochastic optimization, optimal control, discrete optimization, multi-
objective programming, description of software packages, approximation
techniques and heuristic approaches.
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Dedicated to Antanas Zilinskas on the occasion of his 60th
birthday




Antanas Zilinskas



Preface

Antanas Zilinskas was born on January 5, 1946 in Lithuania. He graduated
with a gold medal from 2nd Kaunas Gymnasium in 1963 and with a distinction
diploma of Electrical Engineering from Kaunas University of Technology in
1968. His Ph.D. studies (aspirantur) at Lithuanian Academy of Sciences lasted
from 1970 to 1973. The Candidate of Sciences (Ph.D.) degree in Technical Cy-
bernetics (1973) has been received from Kaunas University of Technology. The
Doctor of Mathematical Sciences degree (Habilitation, 1985) has been received
from St. Petersburg (Leningrad) University. The title Senior Research Fellow
(1980) has been conferred by the Presidium of Academy of Sciences, and the
title Professor (1989) by Vilnius Pedagogical University. He has been awarded
(with V. Saltenis and G. Dzemyda) Lithuanian National Award for scientific
achievements of 2001 for the research on “Efficient optimization methods and
their applications”.

A. Zilinskas joined the Institute of Mathematics and Informatics in 1973
starting with a position of junior research associate, worked as a senior re-
search associate reaching the highest rank of principal researcher which is his
main position now. Apart from working in the research institute he was a
lecturer at Vilnius Pedagogical University 1986-1988, where he founded a de-
partment of Informatics in 1988 and held a position of professor and head of
this department 1988-1993. He worked later as a professor of this department
until 2000. He founded a Department of Applied Informatics at Vytautas Mag-
nus University in 1994, and from then he holds a position of professor and head
of this department. A. Zilinskas taught Optimization theory and methods at
all levels; Operations research; Analysis of algorithms at all levels; Calculus,
Statistics, and Linear algebra for undergraduates.

A. Zilinskas held a visiting Konrad Zuse professorship at Dortmund Uni-
versity (1990/1991 academic year). As a visiting research professor he worked
also at Abo Akademi, Technical University Aachen, Copenhagen University,
London University (UCL).

A. Zilinskas is an academician of International Engineering Academy. He
is a member of American Mathematical Society, IEEE including Computer
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Society and Computational Intelligence Society, IFIP Working Group 7.6 on
Computer Aided Optimization Based Modeling and Optimization. He is a
member of editorial boards of international journals Journal of Global Opti-
mization, Control and Cybernetics, Informatica. He is a reviewer for Math-
ematical Reviews, Zentralblatt fiir Mathematic, book section of INFORMS
Interfaces.

Many projects were fulfilled by A. Zilinskas for industry in seventies and
eighties; e.g. the results of optimal design of magnetic deflection systems of
color TV sets, and of optimal design of pigment mixtures for paint technology
are referenced in the book Global Optimization, Springer, 1989, written with
A. Torn. He was a chairman of Lithuanian part of international project Com-
puting, Information Services and the Internet, which was fulfilled in 1996-1997
cooperating with Vixjo University (Sweden). He was a Managing Director of
TEMPUS project Modelling of Economics and Business Systems funded by
EU in 1997-2000 with participation of Vytautas Magnus University, Kaunas
University of Technology from Lithuania, and Copenhagen University (Den-
mark), Maastricht University (Netherlands) from EU. He was a partner (with
Prof. J. Calvin) in the project Probabilistic Analysis of Global Optimization
Algorithms funded by National Research Council (USA) under Collaboration
in Basic Science and Engineering Program 1998-2000.

A. Zilinskas has published more than 100 papers mainly on statistical
global optimization theory, algorithms and applications, 5 monographs and 6
textbooks; the titles of the monographs follow:

o Zilinskas, A.: Global Optimization: Axiomatic of Statistical Models; Algo-
rithms; Applications. Mokslas (1986) (in Russian),

Térn, A., Zilinskas, A.: Global Optimization. Springer (1989),

Saltenis, V., Zilinskas, A.: Search for Optimum. Nauka (1989),
Zhigljavsky, A., Zilinskas, A.: Methods of Search for Global Extremum.
Nauka (1991) (in Russian),

Zilinskas, A. (ed) System Analysis, Design and Optimization. Space Tech-
nology (1993},

He was a co-editor of the book

e Dzemyda, G., Saltenis, V., Zilinskas, A. (eds) Stochastic and Global Op-
timization. Kluwer (2002).

Current research interests of A. Zilinskas are statistical theory of global
optimization, optimization based modeling and design, analysis of multidi-
mensional data by means of visualization. Research is oriented to develop
statistical models of global optimization, implement and investigate the cor-
responding algorithms, and apply them to practical problems.

This book is dedicated to A. Zilinskas on the occasion of his 60th birthday.
The chapters cover research interests of A. Zilinskas. The book is divided into
six parts: I. Advanced Models in Optimization Theory; II. Interval Algorithms;
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I11. Deterministic Optimization Models and Algorithms; IV. Stochastic Algo-
rithms; V. Educational Aspects; and VI. Applications.

Part I consists of two chapters at the forefront of research. Chinchuluun
and Pardalos consider optimality conditions and duality for multiobjective
programming problems with generalized convexity. Floudas and Kreinovich
consider the problem of selecting the best auxiliary function within a given
global optimization technique.

Part IT consists of four chapters on interval algorithms for global optimiza-
tion. Kjgller, Kozine, Madsen and Stauning describe interval global optimiza-
tion and constraint propagation for solving systems of non-linear equations,
and combine them to improve performance of global optimization. Kosheleva
discusses optimal data compression under interval uncertainty. Pedamallu,
Ozdamar and Csendes present interval partitioning algorithm for continuous
constrained global optimization problems. Zilinskas and Bogle review estima-
tion of ranges of functions combining interval arithmetic and underestimating
interval arithmetic.

Part III consists of four chapters on deterministic optimization models
and algorithms. Antamoshkin and Masich consider heuristic algorithms for
a constrained pseudo-Boolean optimization problem. Sergeyev, Khalaf and
Kvasov review Lipschitz univariate constrained global optimization algorithms
for solving problems with multiextremal non-differentiable constraints. Szabé
and Specht review models and algorithms for the packing of equal circles in a
square. Saltenis presents simulation of wet film evolution for solving Euclidean
Steiner problem.

Part IV consists of four chapters on stochastic algorithms for global opti-
mization. Ali presents a probabilistic hybrid differential evolution algorithm.
Calvin concerns nonadaptive univariate optimization using Wiener process
model assuming that the function values are corrupted by independent Gaus-
sian noise. Hamilton, Savani and Zhigljavsky consider linear and maximum
likelihood estimators of the minimum of a function in global random search
methods. Molvalioglu, Zabinsky and Kohn presents a multi-particle version of
simulated annealing where points in the population interact with each other.

Part V concerns educational aspects of global optimization. Hendrix shows
how the concepts of global optimization algorithms may be introduced to
students and researchers. Mockus discusses Internet aided distance graduate
studies of the course on optimal sequential decisions with several objective
functions.

Part VI consists of five chapters on applications of global optimization.
Bernatavic¢iené, Dzemyda, Kurasova, Marcinkevi¢ius and Medvedev consider
visual analysis of multidimensional medical data. Ciegis describes applications
where global optimization is essential part of mathematical modeling cycle.
Fraga and Papageorgiou apply hybrid optimization for the design of optimal
water distribution networks. Kaminskas considers practical issues in the im-
plementation of self-tuning control systems. McAllister, Rajgaria and Floudas
address global pairwise sequence alignment problem in a mathematically-
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detailed, rigorous and generic manner using mixed-integer linear program-
ming.

On behalf of all the contributors of this Festschrift we would like to con-
gratulate Antanas Zilinskas on the occasion of his 60th birthday and to wish
him well and continued success in scientific career.

Abo, Finland Aimo Torn
Vilnius, Lithuania Julius Zilinskas
January 2006
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Multiobjective Programming Problems
Under Generalized Convexity*

Altannar Chinchuluun and Panos M. Pardalos

Department of Industrial and Systems Engineering, University of Florida,
Gainesville, FL32611, USA altannar@ufl.edu,pardalos@ufl.edu

Summary. In this chapter, we consider optimality conditions and duality for some
multiobjective programming problems with generalized convexity. In particularly,
the general multiobjective programming, multiobjective fractional programming and
multiobjective variational programming will be discussed.

1 Introduction

A multiobjective programming problem can be defined in the form

(MOP) min f(z)
st.zeS={zeX|gj(z)<0,j=12,...,q},

where f(z) = (f1, f2,--+, fp)T, filz) = : X — R are differentiable functions
on a nonempty open set X C R".

If all the objective functions f;, i = 1,...,p, and the constraint functions
gj, 5 = 1,...,q, are convex, then (MOP) is called a convex multiobjective

program. If at least one of the objective functions or the constraint set is
nonconvex, then MOP is a nonconvex multiobjective program.

Definition 1. A feasible point zo € S is efficient if and only if there exists no
point x € S such that fi(xz) < fi(zo) for alli=1,2,...,p and f;(z) < f;(z0)
for ot least one indez j € {1,2,...,p}.

Definition 2. A feasible point zo € S is weak efficient if and only if there
exists no point £ € S such that fi(z) < fi(zo) for all i =1,2,...,p.

We note that every efficient solution is weak efficient, however, the converse
is not always true.

Readers are referred to [Mie99, PSZ95, CP05] for more comprehensive
survey on multiobjective optimization.

* This research was partially supported by NSF, Air Force, and CRDF grants.
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Throughout this chapter, the following notations will be used: For z9 € S,
the index set of the equality constraints is denoted by I = {j|g;(z0) = 0}. If
z and y € R”, then

xgy@wzsyhzzjhuny
z<yez;<y,i=1,...,nand z #y,
z<yer; <y,i=1,...,n

For any a,b,c € R*, we also use the following notation:

ab _ asbs asbs asbs
c N e e )
Next, we present well known Karush-Kuhn-Tucker necessary optimality
conditions (see, for example, [Mie99]).

Theorem 1. Let zq € S be o (weak) efficient solution of Problem (MOP).
Suppose that a constraint qualification (Karush-Kuhn-Tucker constraint qual-
ification, etc.) is satisfied ot o € S. Then the following necessary optimality
conditions hold:

P q
Zuini(illo) + Zvngj(wo) =0 (1)

i=1 7=1
ngJ( 0)=0 forall j=1,2,...,q, (2)
20, v20. (3)

The present chapter is organized as follows. In the next section, we present
some generalized convexities. In Sect. 3, sufficient optimality conditions for
Problem (MOP) based on generalized convexity assumptions are discussed.
We also present Mond-Weir type dual of (MOP) and establish weak and strong
duality theorems. A special case of (MOP), a multiobjective fractional pro-
gramming problem, is considered in Sect. 5 while Sect. 6 discusses a multiob-
jective variational programming problem.

2 Generalized Convexity

Convexity plays an important role in optimality conditions and duality the-
ory of mathematical programming [Ber95, Roc70]. Various generalizations of
convexity have been introduced in the literature in order to relax convex-
ity assumptions [HM87, Pre92, HM82, HM87, Via82, Via83]. Hanson [Han81]
introduced the concept of invexity for scalar problems.

Definition 3. The scalar problem (MOP) (p = 1) is invex if there exists o
function : X x X — R™ such that

fi(z) = filzo) > Vf(zo)n(z, z0),
g(z) — g(z0) 2 Vg(zo)n(z,30), V1,20 € X.




Multiobjective Programming Problems Under Generalized Convexity 5

The definition of invexity in the sense of Hanson reduces to the notion of
convexity when n(z,zo) = z — zo.

Later, Jeyakumar and Mond [JM92] introduced V-invexity, which is an
extension of invexity, for multiobjective programming problems.

Definition 4. Let f : X — RP be a real vector function defined on an open
set X C R™ and each component of f be differentiable at xo. The function f
is said to be V-invex at xo € X if there exist a mapping n: X x X — R® and
a function o; : X x X - Ry \ {0} (i=1,...,p) such that, Yz € X,

fi(z) = filzo) > i(x, 7o)V fi(z0) ' n(z, 30).

Note that, when p = 1, the definition of V-invexity reduces to the notion of
convexity in the sense of Hanson with a;(z,2q) = 1.

Aghezzaf and Hachimi [AHOO] considered Problem (MOP) involving type
I functions defined by Hanson and Mond [HM87], and established some suffi-
cient optimality conditions and duality results for differentiable multiobjective
programming problems.

Definition 5. (f,g) is said to be type I with respect to n at zy € S if there
exists a vector function n(z,zo) defined on X x X such that, for all z € S,

f(z) = f(zo) 2 Vf(zo) n(z,z0)
~g(z0) 2 Vg(0) n(z, z0).

If (f,g) is invex in the sense of Hanson, then it is also type I. However, the
converse is not necessary true.

Preda [Pre92] introduced (F,p)-convexity which is an extension of F-
convexity defined by Hanson and Mond [HM82] and p-convexity defined by
[Via83]. Liang et al. introduced (F, o, p, d)-convexity, and obtained some cor-
responding optimality conditions and duality results for scalar nondifferen-
tiable fractional programming problems [LHP01] and differentiable multiob-
jective fractional programming problems [LHPO03]. More recently, Yuan et al.
[YLCPO05] introduced a unified formulation of generalized convexity, which was
called (C, a, p, d)-convexity, and considered nondifferentiable minimax frac-
tional programming problems involving the generalized convexity. Therefore,
Chinchuluun et al. [CYPO05] established optimality conditions and duality the-
orems for nondifferentiable multiobjective fractional programming problems
with (C, a, p,d) convexity.

Let 0 : X 5 R, 0: X s R a0 : X x X 5 R\ {0}, : X xX —
REN{0};d,d": X x X >R, d?: X x X — R ; and p! € RP, p? € RY.

Definition 6. A differentioble function § : X — R s said to be (strictly)
(C, «, p, d)-convex at g € S if, YV x € S, the inequality

8(z) — 6(z0)

alz, zo)

> (>)C(a,20)(V8(20)) ”%’
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where C' : X X X X R® — R is convex on R" with respect to the third argument
(denoted by Ciz4,)(+)) and Cig 4)(0) = 0 for any (x,70) € S X S, holds. The
function 8 is said to be (C, o, p, d)-convex over S if, ¥V zo € S, it is (C,, p,d)-
convexr at mo. In particular, 0 is said to be strongly (C,a,p,d)- convex or
(C, a)-convex with respect to p > 0 or p = 0, respectively.

Motivated by [HM87, HA04, CYPO05], Chinchuluun et al. [YCLP05] intro-
duced (C,a, p,d)-type I functions and considered nondifferentiable multiob-
jective programming problems with the generalized convexity.

Definition 7. (0,9) is said (C,«, p,d)-type I at o, if for all z € S we have
0(z) — 0(zo)

al (wa wO)

—(zo)

a? (ZL‘, 230)

prd' (z, z0)
al (wv 1}0) ’
p2d2($, $0)
a? (2}', $0) .

g C(z,wo)(ve(wo)) +
2 Cla,a0) (VI(0)) +

We note that the function C(; 4,) is applied to each §; (i = 1,...,p) and ¥;
(j=1,...,q), and results in a vector.

Definition 8. (6,9) is said pseudoquasi (strictly pseudoquasi) (C,c, p,d) -
type I at zg, iof for all z € S we have
171
P d ($7$0)
0 < C et 0
(m) < (_)9(:1}0) = (z,zo)(ve(wo)) + al(:I},:I}o) <0,
p2d2(2},2}0)

~9(20) £ 0= Clarao) (VO(20)) + 573

A

0.

Definition 9. (6,9) is said weak strictly-pseudoquasi (C, a, p,d)-type I at g,
if for all x € S we have

1.1
P d (Z‘, 'TO)
0($) g 0($0) = C(z,zo)(ve(wo)) + al ($,$0) < 0)
2 12
P d (ZL',.’L'())
=9(20) S0 = Cla,00)(VI(20)) + o2 30) s 0.

Definition 10. (8,9) is said strong pseudoquasi (wesk pseudoquasi)
(C,a, p,d)-type I at zq, if for all z € S we have

1.1
P d (CII,.’L'())
0(z) < ()8(z0) = Clo20)(VO(z0)) + "ol (z,70) <0,
2 .42
P d (ZL',.’L'())
_19(2}0) é 0 > C(z’zo)(V'ﬁ(Z}O)) + m § 0.

Note that for the scalar objective functions, the class of pseudoquasi
(C, o, p,d)-type I, the class of weak strictly-pseudoquasi (C, a, p,d)-type I,
and the class of strong pseudoquasi (C, a, p, d)-type I functions coincide.
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3 Sufficient Conditions
In this section, we present sufficient optimality conditions for Problem (MOP)
based on the notions of generalized convexity defined in the previous section.

Theorem 2. Assume that there exist u feasible solution z¢ for (MOP) and
vectors @ € R? and 0 € R? such that

a"V (o) + 97 Vg(wo) = 0, (4)
7 g(z0) = 0, (5)
a@>0,920. (6)

If (f, g1) is strong pseudoquasi (C, a, p, d)—type I at x¢ with
P

(z wo) (z,20)

Z: (z, o) + Z Yif a2(z,z0)

then xo is an efficient solution for (MOP).

0

IIV

; (7)

Proof. Suppose that zg is not an efficient solution of (MOP). Then there exists
a feasible solution z such that

f(z) < f(zo0) and gy(z0) =0
or
f(z) < fzo) and — gr(z0) 0.
According to the strong pseudoquasi assumption on (f, gs), it follows that

pld' (z, xo)

<0
al(z,zo)

Cla,a0) (Vf(0)) +

2 12
pIdI(wa 2:0)
Cizo)(V —m— <0,
(x, 0)( gj(illo)) + a%(ill,illo) =
Using the facts that @ > 0 and convexity of C, from the above inequalities,
we can conclude that

1 1 . 1 _pptd (2,2
Clo,20) —aTVf(zo) + —07 Vgr(zo) | + __ﬁ,r_p__(___i)_
T T T

al(ill,ajo)
1 _,p2di(z,x
+_6¥“pI2I( ; %o) <0,
T OLI(ZJ,JJ())
i
where 7 = 3~ @4; + Y ©;. This implies
i=1 jElI
d (z,z (z,30)
1 O
R IR LN

JjeI

which contradicts (7).
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In Theorem 1, we require that & > 0. In order to relax this condition, we
need to enforce other convexity conditions on (f, gr).

Theorem 3. Assume that there exist a feasible solution zo for (MOP) and
vectors 4 € RP and © € R? such that

TV f(zo) + 57 Vg(zo) = 0,

ETg(wo) :07
@>0,520. (10)

—_ o~
S O o
~—

If (f, g1) is weak strictly pseudoquasi (C, «, p, d)-type I at o with
23 :I}())
MRL LI e LaO B
i 5T JjerI :1} :I}())
then zo is an efficient solution for (MOP).

Theorem 4. Assume that there ezist a feasible solution zo for (MOP) and
vectors G € RP and 0 € R? such that the triplet (zo, @, ) sotisfies (8), (9) and
(10). If (f, gr) is pseudoquasi (C, a, p, d)-type I at o with

d (z,0) (z,z0)
Zuzpz +Zvjpja $$0)>0
jel
then xo is ¢ weak efficient solution for (MOP).
Remark 1. Proofs of Theorems 3 and 4 are similar to the one of Theorem 2.

Therefore, we can derive similar theorems to the above varying the convexity
assumptions on (f, g). These results also can be found in [YCLPO05].

4 Duality

In this section, we give some weak and strong duality relations between (MOP)
and its dual problems. In 1989, Egudo [Egu89] formulated a Mond-Weir type
dual program of a multiobjective programming problem.

(MOD)  max f( ) = (Aly )Jz(y),---,fp(y))T
s.t. X:qufz +Zv]Vg]
v g(y)ZO,’UERi,
Xp:uizl, w;>00GE=1,2,...,p), ye€ X CR?,

where f;, g; are differentiable functions defined in X.
Next, we present weak and strong duality relations between (MOP) and
(MOD).
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Theorem 5 (Weak Duality). Let zo be a feasible solution of (MOP) and
(y0,@, D) be a feasible solution of (MOD), and let any of the following hold:

(a)(f,g) is (C,a, p,d)-type I at yo, and
q

14
_ w @;(Zo,Yo) $0,y0)
i B0 | S ’2 >0, (11)

prr B H CON ) B CI T

() (f,vTg) is strong pseudoquasi (C,a, p,d)-type I at yo, and (11) holds.
(c) (uTf,vTg) is pseudoquasi (C,a, p,d)-type I at yo, fi(i =1,--- ,p), and

1 dl(w())yo) 2 d2($0)y0)
1 2 2 0
al(zo, yo) a?(xo,yo)

Then the following cannot hold.

f(zo) < f(yo).
Proof. Suppose that f(zq) < f(yo). By the hypothesis (a) and convexity of
Clag y0), it follows that

ZI: Ai fil@o) — filyo) + Zq: 25 95(%0) = g;(¥o) >3 Ai fi(zo) = fi(yo)

7 ai(zo,0)

1 d} (zo, o) + iﬁ'pgl (20, o)
" al(zo,y0) !

where 7 = 1+ 5. fi;. Since a7 g(yo) > 0, we have
=17

Z/\ .fz( fz yO zj:ﬂ? gj(y) < 0.

~ T o wo,yo wo,yo)

From the last two inequalities and the construction of (MOD), we can conclude
that

l q
- dl(ill() yo) d ($07y0)
E by 11_._’_____’_.__ + E 0. p2 217 - 0,
Pial Hibs a?(wo,yo)

which contradicts the assumption of the theorem. Parts (b) and (c) can be
proved similarly.

The following strong duality result can easily be derived from the previous
weak duality theorem.
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Theorem 6 (Strong Duality). Assume that a feasible solution zg € S sat-
isfies a generalized constraint qualification [Mae94]. Then there exist i € RP,
v € R such that (zo,@,v) is a feasible solution of (MOD) and v;g;(z0) = 0
(3 =1,2,...,q). Furthermore if the assumptions in the weak duality are sat-
isfied, then (zo, @, D) is an efficient solution of (MOD).

Some other types of dual programs were also introduced in the litera-
ture including Wolfe dual program [LHP03, AH00, AHO1, HA04], generalized
Mond-Weir dual program [AH00, YCLPO05] and Mixed type dual program
[YCLPO5, HA04].

5 Multiobjective Fractional Programming

Let us consider the multiobjective fractional programming problem:
. f(z) (fl(w) fa(z) fp(w))
MFP) min = , e 12
MER R ) = 0@ @ () -
s.t. h(z) £0
z€ X,

where X is an open subset of R”, and f;(-), ¢:(-) (i = 1,2,...,p) and h;(-)
(j =1,2,---,q) are real-valued differentiable functions defined on X. We also
assume that f;(z) > 0, g;(z) > 0 for each z € X.

Recently, Chinchuluun et al. [CYPO05] studied the multiobjective fractional
programming problem with (C, a, p, d)-convexity.

One of the properties of (C, a, p, d)-convex functions is given by the fol-
lowing theorem.

Lemma 1. Let X C RY be an open set. Suppose that 8(z) and 9(z) are real-
valued differentiable functions on X, and 6(z) >0, 9(z) > 0 for all z € X. If
0 and -9 are (C,a, p,d)-convex and regular at zo € X, then % s (C,a,p,d)-
convez at o, where d(w To) = J%w_wo)’p = g—(ﬂ)ﬂﬂl,&(w,wo) =

d(z,z0) = G(xo)+9(x
G2l and Cla mg) (V5 (w0)) = UEgitel. F2L20). Cla,m0) (W%(%;)V%(wo)).
Proof. We can write the following simple equality for any z € X.
0(z)  O(zo) _ 0(z) —0(z0) 0(x0)(V(z) — V(z0))

9(z)  d(zo)  I(a) ¥(z)d(z0)

By the definition of (C, a, p, d)-convexity, and the fact that 8 > 0, 3 > 0, the
above equation can be rewritten as follows.

1 0(z)  6(zo) 1 d(z, zo)
oz, 70) (ﬁ(m) - 19(250)) Z @) (C‘W’(w(””“” *”a(m))

(o) ,
gty (Gl - T90) + 035

+
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Using the convexity of C; 4,), it follows that

1 (0(:c) f(zo) > S 0(zo) + V(z0) (C(z . ( 7 92 (20)

alz,z0) \9(z)  9(zo) 9(z)9(zo) 20) + (o)
_ (ﬁ(wo)VH(:co) ~ 9($0)V19(x0))))
92(z0) 92(z0)

0(z0) + 9(zg) d(z,39)
(x)d(zo) oz, zo)

Denote

a(z, 7o) = MM’E - pﬂ@iﬁ@,g(w,wo) -

I(z) V(z0)

and

) 0  0(x0) + 9(z0) P(z0) 0
C(z,zo) (Vg(wo)) = ——(,)192($0) 0 C(z,zo) (————————-———H(wo) +?9($0)v5($0)) .

It is easy to prove that C is convex with respect to variable V%(wo). Therefore
¢ is (C, &, p, d)-convex at .

Based on Lemma 1, the following theorem can be derived using the similar
argument as in Theorem 2.

Theorem 7. Let xo be a feusible solution of Problem (MFP). Suppose that

P
there exist u = (u1,u2,...,up) €RE , u; >0 (6 =1,2,...,p), 3 u; =1, and
i=1
v = (v1,v2,...,04) € R such that
ZuV( ) %o +ZvJVh (z0) =0,
7=1

’Ujhj(il)()) ZO, j= 1,...,q

If fi, —g: (i = 1,2,...,p) are (C,q;,p;,d;)-convex, h; (j = 1,2,...,q) are
(C,Bj,k5,8;)-convex at o, and

P

11111}0
UsPf— + ViK; >0
2 zpz al 1} 1130 Z j J/B )_

where a;(z,z0) = ——Li(zogia‘(;g“)z"z"lo , pi = piLilzolteize) w;i(J;?) 2ol di(z,30) = J——Higf(f)o ,
i=1,2,...,p. Then z¢ is an efficient solution of Problem (MFP).

The Mond-Weir Dual of the problem (MFP) can be written in the form
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e JO) _ (W) B @Y
(MED) ma ) (2 )

s.t. Zu% ( ) )+évthj(y)—
y) >0

Zul_l, u; >0 (i=1,2,...,p), u e RE,
veRL, ye X

The following duality results, in nondifferentiable case, can also be obtained
in [CYPO5].

Theorem 8 (Weak Duality). Let zo be a feasible solution of Problem
(MFP) and (y0,G,7) be a feasible solution of (MFD). If f;, —g; (i =
1,2,...,p) are (C, oy, pi, di)-convex at yo, h; (7 =1,2,...,q) are (C, B, k;,6;)-
convez at yg, and

= . . i i ) = L Ji i J. —_
where @;(To,y0) = gi(yo)ai(zg yo} G = p; f(y;iai)(yO) and d;(zo,10) =

g9i(zo)

%l ,i1=1,2,...,p. Then the followz'ng cannot hold.

f(ﬁo) J(yo
g(fco) g(yo)

Ry

Theorem 9 (Strong Duality). Let zo be an efficient solution of (MFP).
Suppose that xo satisfies a generalized constraint qualification [Mae94]. Then
there exists (xo, @, 0) which is o feasible solution for (MFD). Then the objective
function values of (MFP) and (MFD) at the corresponding points are equal.

6 Multiobjective Variational Programming

In this section, we formulate a multiobjective variational programming prob-
lem and derive some optimality and duality results involving generalized
convexities. Several authors have been interested in optimality conditions
and duality relations for multiobjective variational programming problems
[MM94, NN97, MR00, KK02, BS03, KK05, AG05]. Following [MR00, KK02,
AGO5], we use the following notations. Let I = [a, ] be a real interval and
f:IxR*xR* - RP be a continuously differentiable function. In order to
consider f(t,z,%), where z : I — R™ with derivative &, denote the partial
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derivative of f with respect to t, z, and &, respectively, by f;, f., and f;, such

that

f_[or er) . _for  of

R 7 TR i L 7 TR O
Let C(I,R") denote the space of piecewise smooth functions z with norm
[zl = |z|loc + {| Dz]|oo, where the differentiation operation D is given by

¢
u=Dz & z(t)=1o+ /u(s)ds,
a

in which ¢ is given boundary value. Therefore, D = Bd; except at discontinu-
ities.

We now consider the following multiobjective continuous programming
problem:

b b b
(VP) min/f(t,w,:'c)dt: /fl(t,w,:'c)dt,...,/fp(t,w,:'c)dt
s.t. z(a) = to, z(b) = ty,
g(t,z, ) 0, tel,

where fi : I XR" xR* - R,i=1,...,p, 9, : IXR*xR* =R, j=1,...,q,
are continuously differentiable functions.
Let us denote the set of feasible set of (VP) by S, that is,

S:={z € C(I,R")|z(a) = to, z(b) = ts,9(t, =, %) < 0}.

In order to prove the strong duality theorem we will invoke the following
lemma due to Chankong and Haimes [CH83].

Lemma 2. A point zg € S is an efficient solution for (VP) if and only if z¢
solves ,Vk=1,... p,

b
Pk(il,‘()) min /fk(t,ill,il'})dt

s.t. z(a) = tg, z(b) = ty,
g(t,z, &) £0,

b b
/fj(t,ill,il'})dt § /fj(t,l‘o,j?o)dt, V] #k‘

Nahak and Nanda [NN97] considered the multiobjective variational prob-
lem under (F, p)-convexity on the functions involved, and formulated Mond-
Weir and Wolfe type dual programs for the problem. Recently, mixed type
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dual for the problem was introduced and the corresponding duality theorems
were derived under (F, p)-convexity in [AGO05]. Kim and Kim [KK02, KK05]
studied the multiobjective variational problem involving generalized convex-
ity called V-type I invex functions. This generalized convexity is based on the
generalized convexity, called V —invexity, by Jeyakumar and Mond [JM92].

We now study the problem based on (C, p, d)-convexity. Let us first redefine
(C, p, d)-convexity for the multiobjective variational program.

Definition 11. A function 0(t,z,%) : I X X x X — R is said to be (C,p,d)-
convex at zo € X if, V 2 € X, the inequality

b

b
/H(t,:c,d:)dt—-/H(t,wo,:to)dt

a
b

. d .
> /C(t,z,zo,i,fbo) <0z(t,l‘0,$0) - aai(t:xovzo)) dt

a
b

+p/d(t,$,w0)dt,

a

where C: I x R* x R* x R® x R* x R* — R" is a convex function with respect
to the last variable, holds. The function 8 is said to be (C, p, d)-convezr over X
if, Voo € X, it is (C, p, d)-convex at xo. In particular, 6 is said to be strongly
(C, p,d)- convex according to p > 0.

We also assume that the convex function C(t,w,woyi,io) : R* — R satisfies
Cla,20,8,30)(0) = 0 for any (t,z,x0,%,%0) € I x R* x R* x R* x R".

Definition 12. We say the problem (VP) is of (C, p, d)-type I invex at zg € S
if, for all x € S, we have

b b

/f(t,ac,a'c)dt—/f(t,wo,:'co)dt

a Q

b
) d .
/C(t,z,mo,:i:,:i:o) <fz(t,$o,$0) - a;ffc(t’xo,xo)) dt

a

v

b
+ ot /dl(t,w,wo)dt (13)

and
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b
- /g(t,$0,x0)dt

b
. d .
2 /C(t,z,zo,i,io) (gz(t,wo,wo) - Ezgz(t,wo,xo)> dt
a

b
+ p? /d2(t,w,w0)dt.

a

Definition 13. We say that the problem (VP) is of pseudoquasi (C, p, d)-type
I invex at £o9 € S with respect to u and X if, for all z € S, there exist some
vectors u € RP, u > 0, and a piecewise smooth function X : I — RY, the
implications

b P b p
[ S it a)a < /Zuzfz 2o, o)t
a =1

i=1

b
Y4
. d .
= /;uic(t,z,zo,ab,abo) (fiz(t>$o,$o) - Effi"”(t’wo’%)) dt
) =

+Zuzpz/ (t,z,30)dt <0

a

and

b
~/X:)‘J‘(t)gj(t,%o,:i:o)olt <0

a J=1

-

a J

M-a

. d .
)‘J C(t Z,20,%,%&0) (g]’z(t,il}o,xo) - E—t-gjab(t’wo’ '7;0)) dt
1

Il

b

g

+ 3Nt /d?(t,w,wo)dt < 0.
i=1 4

Let us state the following sufficient optimality conditions for (VP) with pseu-

doquasi (C, p, d)-type I invex functions.

Theorem 10 (Sufficient Optimality). Let zo € S. Suppose that there
exist 4 € RP, @ > 0, and a piecewise smooth function X : I — R?, A(t) > 0
such thaot
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£ : d
> (f;(t,fﬂo,dfo) it 760,330))

- b : od .
+Z¥m(¢mmm%gﬁmmm0=m 1)

b

[ 3 Rst01950, 20, e = o, (15)

a J=1

b

Z zpl/ T, Zo dt+ZA /d?(t,w,zo)dt >0 (16)

a

If the problem (VP) is pseudoquasi (C, p,d)-type I invez at To with respect to
@, A, then zo is an efficient solution for (VP).

Proof. Suppose to the contrary that zg is not an efficient solution for (VP).
Then, there exists a feasible solution z € S such that

b b

/fwa@ag/}muxw@

a a

which implies that

b, b,
/Z_:ﬂ (L, z, &) /Z_: @i fi(wo, 2o)d

By the hypothesis, we have

b
/Z'aic(t,z,zo,ab,io) (fi(t,wo,io) dtf (t, $0,~’C0)) dt

i=1
b

14
+ ) uip} /d%(t,w,wo)dt <0. (17)
=1 @

On the other hand, we can write (15) as

b

q
/ZS‘J gJ (t,z0,50)dt < 0.

o 4=1

Then it follows that
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b
q
- . . d ; ,
/Z Aj (W) Ct,z,m0,8,0) (gi(two,wo) - gggi(two,l‘o)) dt

o J=1

b

+ i A (t)p5 /df(t,z,xo)dt <0. (18)

i=1 a

We now, adding (17) and (18) together and applying the convexity assumption
of C, can have

b
P _
g d .. .
/C(t,z,wo,i,mo <Z '7__'1' ( t Zo, $0) tf%(t;ilnyZCO))
a

. <
d .
Z (%tlowo) dtii(t,wo,io)> dt

b

+Zu1p1/ (t,z,20) dt+Z)\ /dZ(twwo)dt<0

a j=1 a

where 7= 377 @ 4+ 3 0_ Aj(t). The last inequality conflicts the given con-
ditions (14) and (16).

Following Kiam and Kim [KK05] and Mishra and Mukherjee [MM94], we
consider the following Mond-Weir type dual problem to (VP).

(MVD) maX</f1tyy /{fp YY) )

s.t. y(a) = to, y(b) = ty,

. d .
Zui {f;(tvyay) - —C—lzf;(t,y’y)}
=1 . .
+Y A { ty, ) — dtg{;(t,y,y)}=0
J=1
b

[ A0tz vieq

Q

u€R, u>0, A(t) 20, tel,

We now state weak and strong duality relations between (VP) and (MVD)
without proofs since proofs are similar to that of Theorem 10.
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Theorem 11 (Weak Duality). Let zo and (yo, @, ) be feasible solutions for
(VP) and (MVD) respectively. If the problem (VP) is pseudoquasi (C,p,d)-

type I invex at yo with respect to @, A and the condition (16) holds, then the
following cannot hold:

b b
/f(t,fﬂo,ifo)dt</f(t,yo,yo)-

Theorem 12 (Strong Duality). Let o be an efficient solution for (VP).
We ulso assume that, for oll k € P, a constraint qualification for Py (o) at zg
is satisfied. Then there exist @ > 0 and piecewise smooth function A : I — RY,
A 2 0 such that (zo,, A) is feasible for (MVD). Further if the assumptions of
weak duality theorem are satisfied, then (zo,a,)\) is an efficient for (M VD).

7 Conclusions

In this chapter, we have discussed optimality conditions and duality results for
different multiobjective optimization problems under a generalized convexity
so called (C, o, p, d) convexity. We first established several sufficient optimal-
ity conditions for the general multiobjective programming problem. We have
also presented a Mond-Weir type dual of the program and presented weak and
strong duality theorems. It has been shown that the ratio of two (C, o, p, d)
convex functions is also (C, «, p, d) convex with different characteristics. Based
on this result, sufficient optimality conditions and duality theorems for frac-
tional multiobjective programming problems have been presented. In the last
section, we have formulated a multiobjective variational programming prob-
lem and shown its optimality conditions and duality results based on the
generalized convexity.
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1 Introduction

1.1 Global Optimization — an Important Practical Problem

In many practical situations, we have several possible actions, and we must
choose the best action. For example, we must find the best design of an object,
or the best control of a plant. The set of possible actions is usually charac-
terized by parameters xz = (z1,...,%,), and the result of different actions
(controls) is characterized by an objective function f(z).

In some cases, the objective function describes losses or expenses; in such
cases, the problem of finding the best action (design, or control) can be de-
scribed as the problem of global minimization, i.e., the problem of finding the
values « for which the function f(z) attains the smallest possible value.

In other cases, the objective function describes gain; in such cases, the
problem of finding the best action can be described as the problem of global
mazimization, i.e., the problem of finding the values z for which the function
f(z) attains the largest possible value.

Global minimization and global maximization are particular cases of global
optimization.

Similar problems arise in data processing, when we have a model char-
acterized by several parameters z;, and we need to find the values of these
parameters which provide the best fit for the data, i.e., for which the discrep-
ancy f(z) between the data and the model is the smallest possible.

Actual and potential real-world applications of global optimization are
overviewed, e.g., in [Pin96].
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1.2 Global Optimization is a Difficult Computational Problem

In general, the problem of finding the exact values z that minimize a given ob-
jective function f(z) is computationally difficult (NP-hard); see, e.g., [Vav9l].

Crudely speaking, NP-hardness means that (provided that P#NP) it is
not possible to have an algorithm that solves all optimization problems in
reasonable time. In other words, no matter how good is an algorithm for
solving global optimization optimization problems, there will always be cases
in which better results are possible.

1.3 Variety of Global Optimization Techniques

Since we cannot hope for a single algorithm for global optimization, new
algorithms are constantly designed, and the existing algorithms are constantly
modified. As a result, we have a wide variety of different global optimization
techniques and methods; see, e.g., [HP95].

There exist classes of objective functions for which efficient algorithms for
global optimization are possible. It is therefore natural to try to reduce general
hard-to-solve global optimization problems to problems from such classes.

One class for which global optimization is easier-to-solve is the class of
quadratic objective functions. Namely, it is known that a global optimum of
an objective function f(z) is attained at a point z at which all the partial
derivatives of this function are equal to 0. For a quadratic function f(z),

we can thus find the desired optimum by solving a system of linear equations
of

B = 0. It is therefore natural to find a minimum of f(z) by approximating a
Ty

function f(z) with a linear or quadratic expression — i.e., in effect, by consider
gradient descent-type techniques and/or their second-order analogues.

Another important class is the class of convex functions — for which there
are efficient algorithms for finding the global minimum. Not surprisingly, there
are numerous effective global optimization techniques that reduce the general
global optimization problems to convex ones; see, e.g., [Flo00, TS02].

In many real-life situations, the objective function is complex, and it is
difficult to approximate it by a quadratic and/or by a convex objective func-
tion on its entire domain. In such situations, it is reasonable to subdivide the
original domain into smaller subdomains and approximate f(z) by different
functions on different subdomains; see, e.g., [Kea96].

There also exist numerous heuristic and semi-heuristic techniques which
emulate the way optimization is done in nature: e.g., genetic algorithms simu-
late the biological evolution which, in general, leads to the birth and survival
individuals and species which are best fit for a given environment; see, e.g.,
[Mih96].
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1.4 Problem: Which Techniques is the Best?

We have already mentioned that there is a wide variety of different global
optimization techniques. Because of this variety, every time we have a new
optimization problem, we must select the best technique for solving this prob-
lem.

This selection problem is made even more complex by the fact that most
techniques for solving global optimization problems have parameters that need
to be adjusted to the problem or to the class of problems. For example, in
gradient methods, we can select different step sizes.

When we have a single parameter (or few parameters) to choose, it is
possible to empirically try many values and come up with an (almost) optimal
value. Thus, in such situations, we can come up with optimal version of the
corresponding technique.

In other approaches, e.g., in methods like convex underestimators (de-
scribed in detail in the next section), instead of selecting the value of single
number-valued parameter, we have select the auxiliary function. It is not prac-
tically possible to test all possible functions, so it is not easy to come up with
an optimal version of the corresponding technique.

1.5 What We Do in This Chapter

In this chapter, we consider the problem of selecting the best auxiliary func-
tion within a given global optimization technique. Specifically, we show that
in many such selection situations, natural symmetry requirements enable us
either to analytically solve the problem of finding the optimal auxiliary func-
tion, or at least reduce this problem to the easier-to-solve problem of finding
a few parameters.

In particular, for convex understimators, we show that we can thus explain
both the BB method [AAF98, ADAF98, Flo00, MF94] and its modifications
recently proposed in [AF04, AF06].

2 Case Study: Selecting Convex Underestimators

2.1 Why Convex Underestimators?

It is well known that convex functions are computationally easier to minimize
than non-convex ones; see, e.g., [Flo00]. This relative easiness is not only an
empirical fact, it also has a theoretical justification; see, e.g., [KK05, Vav91].

Because of this relative easiness, one of the approaches to minimization
of a non-convex function f(z) = f(z1,...,2,) (under certain constraints)
over a box [z1,zY] = [zF 2¥] x ... x [zL, zY] is to first minimize its convex
“underestimator”, i.e., a convex function L(z) < f(z).

¢ Since the new function L(z) is convex, it is easy to minimize;
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e since L(z) is an underestimator, i.e., L(z) < f(z), the minimum of L(z)
is a lower bound for the minimum of f(z).

By selecting L{z) as close to f(z) as possible, we can get estimates for min f(z)
which are as close to the actual minimum as possible.

The quality of approximation improves when the boxes become smaller.
So, to get more accurate bounds on min f(z), we can:

e Dbisect the box [z, zY] into sub-boxes,
e use the above technique to estimate min f over each sub-box, and
e return the smallest of these estimates as the lower bound for min f over

the entire box [z%, zY].

2.2 Example: aBB Techniques

A known efficient approach to designing a convex underestimator is the BB
global optimization algorithm [AAF98, ADAF98, Flo00, MF94], in which we
select an underestimator L(z) = f(z) + &(z), where

S(a)= - - (ai—ab)- (a¥ — ), (1)

i=1

Here, the parameters «; are selected in such a way that the resulting function
L{z) is convex and still not too far away from the original objective function

fz).

2.3 Natural Generalization of aBB Techniques

In many optimization problems, aBB techniques are very efficient, but in
some non-convex optimization problems, it is desirable to improve their per-
formance. One way to do that is to provide a more general class of methods,
with more parameters to tune.

In the aBB techniques, for each coordinate z;, we have a single parameter
o, affecting this coordinate. Changing «; is equivalent to a linear re-scaling
of z;. Indeed, if we change the unit for measuring z; to a new unit which
is A; times smaller, then all the numerical values become A; times larger:
z; = y; = gi(z;), where g;(z;) = A;-z;. In principle, we can have two different
re-scalings:

e z; = y; = g;(z;) = \; - z; on the interval [z¥ z;], and
e 1z, = z; = hi(zi) = pi - z; on the interval [z;,zY].

If we substitute the new values y; = g;(z;) and z; = h;(z;) into the formula
(1), then we get the following expression

&(z) = - Zai (gs(@s) — gi(el)) - (ha(el) = hi(s)). (2)
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For the above linear re-scalings, we get
o n
B(z) = -y - (s —zf) (2] - 22),
i=1

where Q; = ay; - Ay - ;.

From this viewpoint, a natural generalization is to replace linear re-scalings
gi(z;) and h;(z;) with non-linear ones, 1.e., to consider convex underestimators
of the type L(z) = f(z) + ¢(z), where &(z) is described by the formula (2)
with non-linear functions g;(z;) and h;(z;). Now, instead of selecting a number
«; for each coordinate ¢, we have an additional freedom of choosing arbitrary
non-linear functions g;(z;) and h;(x;). Which are the best choices?

2.4 Empirical Fact: Exponential Functions g;(x;) and h;(x;) Are
the Best

In [AF04, AF06], several different non-linear functions have been tried, and it
turned out that among the tested functions, the best results were achieved for
the exponential functions g;(z;) = exp(y; - ;) and h;(z;) = —exp(—; - ;).
For these functions, the expression (2) can be somewhat simplified: indeed,

ai - (gi(zs) — gi(z?)) - (hi(al) — ha(z:)) =
a; - (e — e'yi'zf‘) . (_e—'y,-.:cf’ Fe ) =
G - (1 —ev(@i—e)y (1 — el —ai)y,

~ def P S
where &; = a; - eYi(#i —=i),

2.5 Questions

Two related questions naturally arise:

o first, a practical question: an empirical choice is made by using only finitely
many functions; is this choice indeed the best — or there are other, even
better functions g;(z;) and h;(z;), which we did not discover because we
did not try them?

e second, a theoretical question: how can we explain the above empricial
fact?

2.6 Natural Idea of Symmetry: Intuitive Motivations
for Shift-Invariance

The starting (0) point for measuring each coordinate z; is often a matter of
arbitrary choice; e.g.:
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e Fahrenheit and Celsius scales use different starting points for measuring
temperature,
e different calendars use different starting points as Year 0,

etc.

If a selection of the functions g;(z;) and hi(z;) is “optimal” (in some
intuitive sense), then the results of using these optimal functions should not
change if we simply change the starting point for measuring z; - i.e., replace
each value z; with a new value z; + s, where s is the shift in the starting point.
Indeed, otherwise, if the “quality” of the resulting convex underestimators
changes with shift, we could apply a shift and get better functions g;(z;) and
hi(x;) - which contradicts to our assumption that the selection of g;(x;) and
hi(x;) is already optimal.

So, the “optimal” choices g;(z;) and g;(z;) can be determined from the
requirement that each component a; - (g;(z;) — g:(zX)) - (hs(zY) — hi(z;)) in
the sum (2) be invariant under the corresponding shift. Let us describe this
requirement in precise terms.

Definition 1. A pair of smooth functions (g(z), h(z))) from real numbers to
real numbers is shift-invariant if for every s and «, there exists &(a,s) such
that for every =¥, z, and 2V, we have

a - (g(z) — g(z")) - (h(zY) = h(z)) =
aa,s) - (g(z +s) — g(z” + ) - (h(zV + 5) — h(z + 5)). (3)

Comment. Smoothness is needed because smooth functions are easier to op-
timize, and we therefore want our techniques to preserve smoothness.

2.7 Consequences of Shift-Invariance

At first glance, shift invariance is a reasonable but weak property. It turns
out, however, that this seemingly weak property actually almost uniquely
determines the optimal selection of exponential functions:

Proposition 1. If a puir of functions (g(z), h(z)) is shift-invariant, then this
pair is either exponential or linear, i.e., each of the functions g(z) and h(z)
has the form g(z) = A+ C -exp(y-z) org(z) = A+ k- x.

Comments.

e For reader’s convenience, all the proofs are placed in a separate (last)
section.

e One can easily see that adding a constant to each of the functions g(z)
and h(z) does not change the expression (2), so we can safely assume that
each of these functions has the form g(z) = exp(y- z) and h(z) = z.
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2.8 Additional Symmetry * — —x and the Final Result

In addition to shift, another natural symmetry is changing the sign: e.g., for
electric charge, the fact that electrons are negatively charged is just a matter
of definition; we can as well consider them positively charged. If we require
that the expression (2) remain invariant if we change the sign, i.e., replace z
by —z, then we get the relation between g(z) and h(z): h(z) = —g(—1). So,
if a pair (g(z), h(z) is shift-invariant and sign-invariant, then:

e cither g(z) = exp(y - z) and h(z) = — exp(—7 - ),
e org(z) = h(z) =x.

In other words, the optimal generalized a BB scheme is either the original
aBB, or the scheme with exponential functions described in [AF04, AF06].
Thus, we have answers to both above questions:

e yes, the exponential functions are indeed optimal, and

e yes, we have a theoretical explanation of why they are optimal — because
they are the only pair of functions which satisfies the condition of symme-
try (shift-invariance and sign-invariance) that optimal pairs should satisfy.

2.9 Auxiliary Result: Scale Invariance

In addition to changing the starting point for z, we can also (as we have
mentioned) change a unit for measuring =z, i.e., consider scaling transforma-
tions £ — A - z. Shall we require scale-invariance as well? In other words,
shall we require that the expression (2) be invariant not only w.r.t. shifts but
w.r.t scalings as well?

We already know that there are only two shift-invariant solutions: ex-
ponential and linear functions. Out of these two solutions, only the linear
solution - corresponding to aBB — is scale-invariant. Thus, if we also require
scale-invariance, we restrict ourselves only to BB techniques — and miss on
(often better) exponential generalizations.

Since we cannot require both shift- and scale-invariance, a natural next
question is: what if we only require scale invariance?

Definition 2. A pair of smooth functions (g(z), h(z)) from real numbers to
real numbers is scale-invariant if for every A and «, there exists &(c, A) such
that for every z¥, z, and 2V, we have

a- (g(z) — g(z*)) - (h(zY) - h(z)) =
30, N) - (9(r - 2) — gr-29) - (-2 = h(A- 2)). )

Proposition 2. If a pair of functions (g(z), h(z)) is scale-invariant, then this
pair is either exponential or linear, i.e., each of the functions g(x) and h(z)
has the form g(z) = A- 27 or g(z) = A+ k- In(z).
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From the theoretical viewpoint, these functions may look as good as the
exponential functions coming from shift invariance, and in practice, they do
not work so well.

The problem with these solutions is that, as we have mentioned, we want
to preserve smoothness. Both linear and exponential functions which come
from shift-invariance are infinitely differentiable for all z and hence, adding
the corresponding term @(z) will not decrease the smoothness level of the
objective function.

In contrast, in general, the functions g(z) = z7 which come from scale
invariance are not infinitely differentiable at £ = 0. They are differentiable
only for integer values . So, if we use scale invariance to select a convex
underestimator, we end up with a new parameter v which only attains integer-
valued values and is, thus, less flexible than the continuous-valued parameters
coming from scale-invariance.

2.10 Auxiliary Shift-Invariance Results

Instead of an expression (2), we can consider an even more general expression

&(z) = — Zn:ai -ai(a, ) - bz, 2Y). (5)

Whet can we conclude from shift-invariance in this more general case?

Definition 3. A pair of smooth functions (a(z,z"),b(z,z")) from real num-
bers to real numbers is shift-invariant if for every s and «, there emists &(a, s)
such that for every =¥, z, and zY, we have

a-a(z,z”) b(z,zY) =
ala, s) -a(z + s,z +5) bz + 5,27 + ). (6)

Proposition 3. If a pair of functions (a(x,z%),b(z,zY)) is shift-invariant,
then .
a(z,z?) - b(z,zY) = A(z — 2%) - B(zY ~ 2) - e7®

for some functions A(z) and B(z) and for some real number .

Comment. If we additionally require that the expression a(z,z) - b(z,zV) be
invariant under £ — —z, then we conclude that B(z) = A(z).

Another shift-invariance result comes from the following observation. Both
aBB expression —(z — z¥) - (z¥ — z) and the generalized expression

(1 =@y (1 = v -a))

have the form a(z — z%) - a(zV — z) with a(0) = 0. The differences z — 2% and
zY — z come from the fact that we want these expressions to be shift-invariant.
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The product form makes sense, since we want the product to be 0 on each
border z = z¥ and z = 2V of the corresponding interval [z%, zV].

On the other hand, it is well known that optimizing a product is more
difficult than optimizing a sum; since we will be minimizing the expression
f(z) + &(z), it is therefore desirable to be able to reformulate it in terms of
the easier-to-minimize sum, e.g., as b(z — z¥) + b(z¥ — z) + c(zY - 2) for
some functions b and ¢ (for minimization purposes, ¢ does not depend on z
and is thus a constant). It is worth mentioning that both the BB expression
and its exponential generalization allow such representation:

1
e from the known equality a-b = 5((@ +b)2 — a® - b?), we conclude that

_(x_‘”L)'(xU—fE):%'(QT—IL)ZWL%'(?SU—@")Q— gV — 2P,

DO | b=t

e for the exponential function, simply multiplying the two sums leads to the
desired expression:

—(1— e’v-(z—zL)) (1- e’v'(zu—z)) = —14erE=z") L or@V-2) _ pr(a¥—ab)

Interestingly, the above two expressions are the only one which have this
easiness-to-compute property:

Definition 4. We say that a smooth function a(z) from real numbers to real
numbers describes an easy-to-compute underestimator if a(0) = 0, a’(0) # 0,
and there exist smooth functions b(z) and c(z) such that for every z, =¥, and

2V, we have

a(z —z%) - a(z¥ — 2) = b(z — z8) + b(2Y — z) + c(zV — 2T). (7)

Comment. The condition a’(0) # 0 comes from the fact that otherwise, for
small Az % 2 — 2L and 2V — z, each value a(z — z%) will be quadratic
in z — z¥, the resulting product will be fourth order, and we will not be
able to compensate for quadratic non-convex terms in the original objective
function f(z) — which defeats the purpose of using f(z) + ¥(z) as a convex
underestimator.

Proposition 4. The only functions which describe easy-to-compute underes-
timators are a(z) =k -z and a(z) = k- (1 —e7'").

Comment. This is already a second shift-invariance related results which se-
lects linear and exponential functions as “the best” in some reasonable sense.
In the following section, we show that this is not an accident: namely, we
will prove that any “natural” shift-invariant optimality cruetrion on the set of
all possible underestimator methods selects either a linear or an exponential
function.
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3 Selecting Convex Underestimatiors: From Informally
“Optimal” to Formally Optimal Selections

3.1 In the Previous Section, We Used Informal “Optimality”

In the above text, we argued that if a selection is optimal (in some reasonable
sense), than it is natural to expect that this selection should be shift-invariant.
We used this argument to justify the empirical selection of convex underesti-
mators.

In this section, we will go one step further, and explain that the empirical
selection is indeed optimal — in the precise mathematical sense of this word.

3.2 What Are We Selecting?

In effect, we are selecting the functions g(z) and h(z). However, as we have
mentioned earlier, what we are really interested in is the corresponding family
of functions

O(z) = —a - (g(z) ~ g(z")) - (h(=") - h(2)).

The difference is that (as we have mentioned) we can change one (or both) of
the functions g(z) and h(z) and still end up with the same class of functions.
For example, if we replace the original function g(z) with a new function
g(z) = A - g(z) + B, then we end up with the same class of functions &(z).
With this in mind, let us introduce the following definition.

Definition 5. By a family, we mean the family of functions
F={-a-(9(z) - g(z")) - (h(z") - h(z))}, (8)
where g(z) and h(z) are fized, and a goes over all real numbers.

Denotation. We will denote a family generated by functions g(z) and h(z) by
F(g, h).

In these terms, the question is how to select, out of all possible families,
the family which is optimal in some reasonable sense, i.e., which is optimal in
the sense of some optimality criterion.

3.3 What is an Optimality Criterion?

When we say that some optimality criterion is given, we mean that, given two
different families F' and F”’, we can decide whether the first or the second one
is better, or whether these families are equivalent w.r.t. the given criterion.
In mathematical terms, this means that we have a pre-ordering relation < on
the set of all possible families.
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3.4 We Want to Solve an Ambitious Problem: Enumerate All
Families that are Optimal Relative to Some Natural Criteria

One way to approach the problem of choosing the “best” family F is to select
one optimality criterion, and to find a family that is the best with respect
to this criterion. The main drawback of this approach is that there can be
different. optimality criteria, and they can lead to different optimal solutions.
It is, therefore, desirable not only to describe a family that is optimal relative
to some criterion, but to describe all families that can be optimal relative
to different natural criteria®. In this section, we are planning to implement
exactly this more ambitious task.

3.5 Examples of Optimality Criteria

Pre-ordering is the general formulation of optimization problems in general,
not only of the problem of choosing a family F'. In general optimization theory,
in which we are comparing arbitrary alternatives o', o', ..., from a given
set A, the most frequent case of such a pre-ordering is when a numerical
criterion is used, i.e., when a function J : A — R is given for which o’ < a”
iff J(a') < J(a").

Several natural numerical criteria can be proposed for choosing a function
J. For example, we can take, as a criterion, the average number of iterations
that lead to determining all global minima with a given relative accuracy
(average in the sense of some natural probability measure on the set of all
problems).

Alternatively, we can fix a class of problems, and take the largest number
of iterations for problems of this class as the desired (numerical) optimality
criterion.

Many other criteria of this type can be (and have actually been) proposed.
For such “worst-case” optimality criteria, it often happens that there are
several different alternatives that perform equally well in the worst case, but
whose performance differ drastically in the average cases. In this case, it makes
sense, among all the alternatives with the optimal worst-case behavior, to
choose the one for which the average behavior is the best possible. This very
natural idea leads to the optimality criterion that is not described by one
numerical optimality criterion J(a): in this case, we need two functions: J(a)
describes the worst-case behavior, Ja(a) describes the average-case behavior,
and a < b iff either Jy(a) < Jy(b), or Ji(a) = J1(b) and Jr(a) < Jo(b).

We could further specify the described optimality criterion and end up
with one natural criterion. However, as we have already mentioned, the goal

3 In this phrase, the word “natural” is used informally. We basically want to say
that from the purely mathematical viewpoint, there can be weird (“unnatural”)
optimality criteria. In our text, we will only consider criteria that satisfy some re-
quirements that we would, from the common sense viewpoint, consider reasonable
and natural.
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of this chapter is not to find one family that is optimal relative to some
criterion, but to describe all families that are optimal relative to some natural
optimality criteria. In view of this goal, in the following text, we will not
specify the criterion, but, vice versa, we will describe a very general class of
noetural optimality criteria.

So, let us formulate what “natural” means.

3.6 What Optimality Criteria are Natural?

We have already mentioned that the value z often represents the value of
some measured quantity, and that the numerical value of a measured quantity
changes if we select a new starting point. It is natural to require that the
relative quality of two families does not depend on the choice of the starting
point.

How does replacing a starting point change the family F'? If we replace a
starting point by a new one that is smaller by a constant s, then the quantity
that was initially described by a value z will be described by a new value
x + s. Correspondingly, z is replaced by z¥ + s, and 2V by zV + s. Thus,
after this shift T, the original family (8) turns into the new family

T,(F) € {~a- (g(z +5) = g(z® +5)) - (B + ) — h(z + 9))}.  (9)

In these terms, the above requirement is that if F' is better than F', then the
“shifted” F (i.e., the family T, (F)) should be better than the “shifted” F'
(i.e., than T,(F")).

There is one more reasonable requirement for a criterion, that is related
with the following idea: If the criterion does not select a single optimal family,
i.e., if it considers several different families equally good, then we can always
use some other criterion to help select between these “equally good” ones,
thus designing a two-step criterion. If this new criterion still does not select a
unique family, we can continue this process until we arrive at a combination
multi-step criterion for which there is only one optimal family. Therefore, we
can always assume that our criterion is final in this sense.

Definition 6. By an optimality criterion, we mean a pre-ordering (i.e., a
transitive reflexive relation) < on the set A of all possible families. An opti-
mality criterion < is called:

o shift-invariant if for oll F, F', and s, F < F' implies T;(F) < Ts(F").
e final if there exists one and only one family F that is preferable to oll the
others, i.e., for which F' < F for all F' # F.

Proposition 5.

o If a family F is optimal w.r.t. some shift-invariant final optimality cri-
terion, then this family F is generated by linear or exponential functions
g(z) and h(z).
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e For every two exponential or linear functions g(z) and h(z), there exists a
shift-invariant final optimality criterion for which the only optimal family
is F(g,h).

Comments.

e In other words, if the optimality criterion satisfies the above-described
natural properties, then the optimal convexr underestimator is generated
by linear or exponential functions.

e If in addition to shift-invariance, we also require sign-invariance, then we
conclude that either both functions g(z) and h(z) are linear (as in aBB),
or both are exponential (as in the empirically best generalization of «aBB).

4 Other Cases when a Symmetry-Based Approach Leads
to Optimal Techniques for Solving Global Optimization
Problems

Similar symmetry-based ideas have been applied to produce an optimal aux-
iliary function in other aspects of global optimization. Let us overview the
main results obtained by following this direction.

4.1 Optimal Bisection

As we have mentioned, applying the optimization technique to the original
function (or its convex underestimator) on the original box {z%, zV] is not
always the best strategy. One way to improve the optimization algorithm is
to subdivide (e.g., bisect) the box into several sub-boxes and apply optimiza-
tion techniques to these sub-boxes. Some of these sub-boxes must be further
subdivided, etc. Two natural questions arise:

e which box should we select for bisection?
e which variable shall we use to bisect the selected box?

To answer both questions, several heuristic techniques have been proposed,
and there has been an extensive empirical comparative analysis of these tech-
niques. It turns out that for both questions, the symmetry-based approach
enables us to theoretically justify the empirical selection:

e Until recently, for subdivision, a box B was selected for which the com-
puted lower bound f(B) was the smallest possible. Recently (see, e.g,
[CG98, CGCO0]), it was shown that the optimization algorithms converge
much faster if we select, instead, a box B with the largest possible value
of the ratio -

;- 1(B)

" 7(B) - £(B)

0
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where fis a current upper bound on the actual global minimum. In [KC01],

we give a symmetry-based theoretical justification for this empirical crite-

rion. Namely, we condider all possible indictaor functions I( f(B), f(B), f),

and we show that: B

- first, that the empirically best criterion Iy is the only one that is in-
varient w.r.t. some reasonable symmetries — namely, shift and scaling;
and

— second, that this criterion is optimal in some (symmetry-related) rea-
sonable sense.

e We can bisect a given box in n different ways, depending on which of n
sides we decided to halve. So, the natural question appears: which side
should we cut? i.e., where to bisect a given box? Historically the first idea
was to cut the longest side (for which z¥ — 2 — max). It was shown (in
[Rat92, Rat94]) that much better results are achieved if we choose a side
i for which |d;|(z¥ — zF) — max, where d; is the known approximation

for the partial derivative 8f . In [KK98], we consider arbitrary selection
w.
criteria, i.e., functions '
S(f,dl,...,dn,mf,mgj,...,xﬁ,mg),
which map available information into an index S € {1,2,...,n}, and we

show that the empirically best box-splitting strategy is the only scale-
invariant one — and is, thus, optimal under any scale-invariant final opti-
mality criterion.

4.2 Optimal Selection of Penalty (Barrier) Functions

A similar approach can be used for reducing constraint optimization to
non-constrained one. A well-known Lagrange multiplier method minimizes
a function f(z) under a constraint g(z) = 0 by reducing it to the un-
constrained problem of optimizing a new objective function f(z) + X - g(z).
One of the known approaches to solving a similar problem with a constraint
g(z) > 01is the penalty (barrier) method in which we reduce the original prob-
lem to the un-constrained problem of optimizing a new objective function
f(@)+A-g(z) + u- P(g(z)), for an appropriate (non-linear) penalty function
P(y). Traditionally, the most widely used penalty functions are P(y) = y-ln(y)
and P(y) = y°.

In [NK97], we show that the only y-scale-invariant families {\-y+pu-P(y)}
are families corresponding to P(y) = y - In(y) and P(y) = y* for some real
number «. Thus, under any scale-invariant optimality criterion, the optimal
penalty function must indeed take one of these forms.

This example also shows that we can go beyond theoretical justification
of empirically best heuristic, towards finding new optimal heuristics: indeed,
for penalty functions, instead of single-parameter families {A-y + A - P(y)},
we can consider multiple-parameter families
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for several functions Py(y), ..., Pm(y). In this case, the optimal functions have
also been theoretically found: they are of the type

Pi(y) = L% - (In(y))"

for real (or complex) values ; and non-negative integer values of p;.

4.3 Other Examples

Similar symmetry-based techniques provide an explanation of several other
empirically optimal techniques:

sometimes, it is beneficial to (slightly) enlarge the original (non-
degenerate) box [z%,zY] and thus improve the performance of the al-
gorithm; the empirically efficient “epsilon-inflation” technique [Rum80,
Rum92]

zF, 2V = (1 +e)zF —e- 2V, (1 + )2V — e 2F)
was proven to be the only shift- and scale-invariant technique and thus,
the only one optimal under an arbitrary shift-invariant and scale-invariant
optimality criterion [KSM97] (see also [Rum98]);
by using shift-invariance, we explain why the probability proportional to
exp(—v - f(z)) is optimal in simulated annealing [NK97],
by using scale- and shift-invariance, we explain why exponential and power
re-scalings of the objective function are optimal in genetic algorithms
[NK97];
by using appropriate symmetries, we also explain, in [ISKS02], the empiri-
cally optimal selection of probabilities in swarm (“ant”) optimization (see,
e.g., [KESO1]).

5 Proofs

5.1 Proof of Proposition 1

For a = 1, the condition (3) takes the form

where we denoted C(s) =

(9(z) - g(z")) - (h(zV) — h(w)) =
C(s) - (9(z +5) = g(a® +5)) - (A(z” + ) = h(z +9)), (10)

ef a(1,s). To simplify this equation, let us separate

the variables:
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e let us move all terms containing % to the left-hand side — by dividing
both sides by (g(z + s) — g(z¥ + s)), and

e let us move all terms containing z¥ to the right-hand side — by dividing
both sides by (h(zV) — h(z)).

As a result, we arrive at the following equation:

g(z) — g(z*) _ h(zY + s) — h(z + s)
glz +35) —glal +s) (s)- h(zY) — h(z) ' (11)

Let us denote the left-hand side of this equation by A. By definition, the value
A depends on z, s, and z¥. Since 4 is equal to the right-hand side, and the
right-hand side does not depend on z!, the expression A cannot depend on
1t s0 A = A(z,s), ie.,

g(z) — g(z")
g(z + 8) — g(z¥ +s)

= A(z,s). (12)

Multiplying both sides by the denominator, we conclude that

9(z) — g(z®) = A(z,s) - (g(z + ) — g(z" +5)). (13)

Differentiating both sides by z¥, we conclude that

—g'(z") = —A(z,s) - ¢'(z" + ), (14)
i.e., equivalently,
g'(zh)  _
T@E T = A(z,s). (15)

In this equation, the left-hand side does not depend on z, so the right-hand
does not depend on z either, i.e., A(z,s) = A(s). Thus, (13) takes the form

a(s) - (g(z) — g(z")) = (9(z + 5) — g(z” + 9)), (16)

where we denoted a(s) def 1/A(s).

The function g(z) is smooth, hence the function a(s) is smooth too — as the
ratio of two smooth functions. Differentiating both sides of (16) with respect
to s and taking s = 0, we get

a-(g(z) - g(z")) = (¢'(2) - ¢'(z")), (17)

def
where a = a’(0).
To simplify this equation, let us separate the variables, i.e., let us move all
the term depending on z to the right-hand side and all the terms depending
on z to the left-hand side. As a result, we arrive at the following;

g (@") —a-g(z") =g¢'(z) — a- g(z). (18)
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The right-hand side is a function of x only, but since it is equal to the left-
hand side — which does not depend on z at all — it is simply a constant. If we
denote this constant by b, we get the following equation:

g'(z)—a-g(z) =", (19)
ie.,
dg
and p
g
=d 21
a-g-+b ¢ )

1
When a = 0, integrating both sides of this equation, we get 7 cglz) =xz+C,

ie., glz)=b-z+b-C. When a # 0, then for g(x) def g(z) + é, we get
a

1
hence B In(g(z)) = 2+ C thence In(g(z)) = a-z+a-C,s0 g(z) = C-expla-z)

b
and g(z) = g(z) — e C - exp(a - z) + Cy for some constants C, a, and Cj.

The proposition is proven.

5.2 Proof of Proposition 2

By introducing new variables X = In(z), X% = In(z?), and XV = In(zY)
so that z = exp(X), z¥ = exp(XT), and 2V = exp(XV), and by introducing
new functions G(X) = g(exp(z)) and H(X) = h(exp(z)), one can easily check
that if the pair (g(z), h(z)) is scale-invariant, then the new pair (G(X), H(X))
is shift-invariant.

We already know, from Proposition 1, how shift-invariant pairs look like:
we have either G(X) = A+ C -exp(y- X) or G(X) = A+ k- X. From the
definition of G(X), we conclude that g(z) = G(ln(z)); thus, we have either
g9(z) = A+C-exp(vy-In(z)) = A+C-z" or g(z) = A+k-In(z). The proposition
is proven.

5.3 Proof of Proposition 3
For o = 1, the shift invariance requirement (6) takes the form
C(s)-alz +s,z% + ) - bz + 5,27 +5) = a(z,zL) - b(z,2Y), (23)

where C(s) def &(1,s). Let us separate the variables by dividing both sides of

this equation by a(z,z) and b(z,zY); we then get
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alz +s,a¥ +35)  blx+s,2¥ + )
a(z, zt) N b(z,zV)

C(s) -

(24)

The left-hand side £ of this equality depends only on 2, ¥, and s. Since it

is equal to the right-hand side, which does not depend on z” at all, we can
conclude that ¢ only depends on z and s:

C(s)- ﬂfb;’—(———i—:—z———z)—ks) ={(z,s), (25)

i.e., equivalently,
a(z+s,zl +5) -

={(z, s), 26
oy =) (26)
~ aef £(z,5) . . : .

where £(z,s) = Ok For convenience (and without losing generality), we

can describe £ as depending on z and z + s:
a(z + 5,27 + 5)
—_ =N 27
a(z,z¥) (=2 45). @)

where N(z,a) e U(z,a - z).
We can perform the transition from z to z + s in one step, as above, or we
can first go to z + (—z) = 0, and then to 0 + (z + s) = £ + s. We then have

alz +s,z% + s
Moo +5) = S0 =

a(0+ (z + s), (z¥ — z) + (z + 5)) . a(z + (—z),zt ~ )

a(0,z% — z) a(z, ) - (28)
N0,z + s) - N(=,0),
o N(z,z+s)=N(0,z+s)  N(z,0). (29)

For s = 0, (27) leads to N(z,z) = 1, hence from (29), we conclude that

N(0,z) - N(z,0) = 1 thence N(z,0) = m; thus, (29) takes the form

n(z + $)

N(z,z +s) = (@)

: (30)

where n(z) e Y (0, z). Substituting (30) into the formula (27), we conclude

that ot L, ) (@ L)
alz+ s,z +35)  alz,x
wmrs ) (31)

L

In particular, for s = —z*, we conclude that
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a(z,z*)  a(z — XE)0)

n(z) = n(z—zL)’ (32)
ie.,
a(z,z¥) = Ao(z — 2*) - n(a), (33)
where Ag(z) def a:lz(;())) Similarly, b(z,zY) = Bo(zY — z) - m(z) for some
functions B(z) and m(z). Hence,
a(z,2") - b(z,5Y) = Ao(z — 2") - Bo(z" ~ ) - p(z), (34)

def
where p(z) = m(z) - n(z).
In this expression, the terms Ag(z—2z) and Bo(zY —z) are shift-invariant,
so shift-invariance (23) of the product (34) means that C(s) - p(z + s) = p(z)
for all z and s, i.e., that

p(z +s) = c(s) - p(z), (35)

where c¢(s) def 1/C(s). Since the functions a and b are smooth, the functions

p and ¢ are smooth as well. Differentiating both sides of (35) w.r.t. s and

substituting s = 0, we conclude that p'(z) = - p(z), where 7 def ¢'(0), hence

d
£ =7-p, —i—p =v-dz, and In(p(z)) = v -z + Cy; thus, p(z) = Cy - exp(y - z).

Since exp(y-z) = exp(v-(z —z¥))-exp(y-zT), (34) takes the desired form
a(z,z%) bz, 2V) = Az — a¥) - Bo(zV —z) - 7", (36)

where A(z) def Ag(z) - Co - exp(7y - ). The proposition is proven.

5.4 Proof of Proposition 4

. . . def def
For convenience, let us introduce new variables X = z—z% and Y = 2V —1.

In terms of these variables, 2V — 2% = X 4+ Y, and thus, the desired formula
(7) takes the form

a(X) aY) =bX)+bY) +c(X +Y). (37)
Differentiating both sides of this equality w.r.t. Y, we conclude that
a(X) d(Y)=b(Y)+ (X +Y). (38)
Differentiating once again, this time w.r.t. X, we conclude that
d(X)-d'(Y)=d"(X+Y). (39)

In particular, for Y = 0, we get
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a(X) d(0) = "(X). (40)
Substituting this expression for ¢''( X) into the formula (39), we conclude that
d(X)-d'(Y)=d (X +Y)-a(0). (41)
Dividing both sides by a'(0), we get

d(X) a(Y) a(X+Y)

a
. . , 4
d0) @O @0 (42
ie.,
AX +Y) = A(X) - A(Y), (43)
def @' (X) . . . .
where A(X) = — 0 Differentiating both sides of (43) by Y and substituting
a

Y = 0, we conclude that A'(X) = - A(X), where v def A’(0). Similarly to

the proof of Proposition 3, we get A(X) = Cy - exp(y - X) for some constant
C). Therefore, a'(X) = a'(0) - A(X) = Cs - exp(~y - X), where Cy def a'(0) - C4.
Thus:

e Ify=0, we get a'(X) = Cy, hence a(X) = Cy - X + (3 for some constant
C5. From the condition a(0) = 0, we conclude that C3 = 0.

e Ifv#0,then a(X) = Cs-exp(y-X)+Cy, where Cs def % Here too, from
the condition that a(0) = 0, we conclude that a(X) = Cy - (1 —exp(vy- X)).

The proposition is proven.

5.5 Proof of Proposition 5

We have already shown, in the proof of Proposition 1, that:

e for linear or exponential functions, the corresponding family is shift-
invariant, and

e vice versa, that if a family is shift-invariant, then it has the form F(g, h)
for some linear or exponential functions g(z) and h(z).

1°. To prove the first part of Proposition 5, we thus need to show that for
every shift-invariant and final optimality criterion, the corresponding optimal
family Fip¢ is shift-invariant, i.e., that Tg(Fopt) = Fope for all s. Then, the
result will follow from Proposition 1.

Indeed, the transformation T is invertible, its inverse transformation is a
shift by —s: T;"! = T_,. Now, from the optimality of F,p¢, we conclude that
for every F' € A, T;1(IF') < Fypt. From the invariance of the optimality
criterion, we can now conclude that F' < Ts(Fypt). This is true for all F' € 4
and therefore, the family T'(Fopt) is optimal.
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But since the criterion is final, there is only one optimal indicator function;
hence, T (Fopt) = Fopt- S0, the optimal family is indeed invariant and hence,
due to Proposition 1, it coincides with F'(g, h) for some linear or exponential
functions g(z) and h(z). The first part is proven.

2°. Let us now prove the second part of Proposition 5. Let g(z) and h(z) be
fixed linear or exponential functions, and let Fy = F(g, h) be the correspond-
ing family. We will then define the optimality criterion as follows: F' < F' iff
F' is equal to this Fp.

Since the family Fj is shift-invariant, thus the defined optimality criterion
is also shift-invariant. It is also clearly final.

The family Fy is clearly optimal w.r.t. this shift-invariant and final opti-
mality criterion. The proposition is proven.
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1 Introduction

We consider the problem of finding the global minimum of a function f: D —
R where D C R™ is a compact right parallelepiped parallel to the coordinate
axes:
. .
" = argmin f(x). (1)

In the following a compact right parallelepiped parallel to the coordinate
axes is denoted a boz.

Methods for solving global optimization problems have been investigated
for many years, see for instance [Fle87], [HW04], [HPT00], [NW99], [TZ87].
For some classes of problems, e.g. analytically defined functions with a modest,
number of variables, interval methods have been very successful, [HWO04].

In this chapter we describe a new branch-and-bound type method for solv-
ing (1). The method is an extension of the classical interval global optimization
method (see for instance [HWO04], [Moo76], [Ske74]), which is often denoted
the Moore-Skelboe algorithm. This method iteratively investigates sub-boxes
of D using monotonicity tests and interval Newton methods for reducing the
set guaranteed to contain all solutions. The extension to be described uses
constraint propagation (CP) in each iteration to further reduce this set, with-
out losing solutions. Such a combination has previously been used by several
authors, for instance [Kea03], [GBHO1], [HMD97], [Mes04]. To the best of our
knowledge we are the first, however, to apply CP for finding rigorous bounds
for the set of stationary points, i.e., enclosing the solutions to the non-linear
set. of equations f'(x) = 0.

In the classical interval global optimization method such an inclusion is
also applied, using some variation of the interval Newton method, [Moo66].
However the two inclusion methods CP and Newton are of quite different
natures.

Under non-singularity conditions the classical (iterative) interval method
for solving non-linear equations has a quadratic asymptotic convergence rate.
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However the initial box X(o) for the iteration often has to be quite narrow.
If a box X contains more than one solution then f”(z) is singular for some
z € X, and then the interval Newton method cannot be applied.

The CP method for enclosing solutions to a set of non-linear equations
is normally not so sensitive to narrow starting boxes and to singularities in
f". However its ultimate convergence rate is often slower than the interval
Newton method. Therefore CP may be used to provide an initial reduction
whereas the classical interval method provides the ultimate convergence.

We describe the two methods and their combination in Sect. 2. The im-
plementation and two numerical illustrations are described in Sect. 3.

2 Description of the Method

The method is a combination of a version of the Moore-Skelboe algorithm
for interval global optimization and a version of the constraint propagation
method for solving a system of non-linear equations.

In Subsection 2.1 we describe the interval global optimization algorithm
which is a branch-and-bound algorithm combined with the Krawczyk algo-
rithm [Kra69] for solving the non-linear equation f'(z) = 0. In Subsection
2.2 the constraint propagation algorithm for finding bounds for the solutions
to f'(z) = 0 is described, and in Subsection 2.3 this constraint propagation
algorithm is incorporated into the Moore-Skelboe algorithm.

2.1 The Basic Interval Method

The algorithm is rigorous, i.e., it is guaranteed that all solutions are located.
It is a branch and bound type method. At any stage of the algorithm we
have the candidate set S. This is a finite set of sub-boxes Sy € D having
the property that the set of solutions to (1), X*, is contained in the union of
{S(ky}- The aim is to reduce the candidate set, and to do that, let F’ be an
interval extension of f (see [Mo066]), and notice that

min{L(Se)} < f* < min{f(@)} = )

where L(S()) is the lower bound of F'(S()) and z is a random point in S.
Therefore, if
L(Sw) >, (3)

then S, can be discarded from the candidate set. Otherwise, we can get
sharper bounds by splitting S into two smaller subregions. If n = 1 then
the splitting is done by simple bisection, and in multiple dimensions we bisect
in the direction of the largest component of the radius of S(y.

Suppose that we not only have access to the interval extension F', but also

0 0
to an interval extension F' of the grodient f' = (——f —f—) and the

oz’ Oz,
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9% f
Oz, 0z,

Hessian f' = ( ) This information can be used in two ways:

1. Monotonicity. If 0 ¢ (F’(S(k)))i, then f is monotone in the component
z; on the subdomain S(). Therefore, we can reduce the ith component of the
interval vector S to its lower (respectively upper) bound if (F'(S())), > 0
(respectively (F”(S(r))), < 0). Furthermore, if this reduced candidate is in-
terior to the original domain D, then we can discard it from S because all
components of the gradient at an interior minimizer are zero.

2. Stationary points. Since an interior minimizer is a solution of the equa-
tion f'(z) = 0 we can use an interval equation solver to locate this minimizer.
We prefer Krawczyk’s method, [CMNO02], [Kra69], which is a version of the
interval Newton method based on the operator

K@ X) = s—Hf(z)+ (I - HJ(X)(X —x). (4)

Here, z € X, I = diag(1,...,1) is the unit matrix, J is an interval extension
the Jacobian of f' (i.e., the Hessian f”) and H is an arbitrary matrix in R**™.
For efficiency reasons H should be chosen close to the inverse of f'(z). K has
the following properties

e If z* is a solution then z* € X = z* € K(z,X).
o If K(z,X) C X then there exists a solution z* in K(z, X).

Therefore the nested sequence
X(s+1) = X(s)ﬂK(:Ij(s),X(s)) with Z(s) EX(S) s=0,1,... (5)
has the properties

o Ifz" € X(o) then 2" € X,y ,s=1,2, ...

e If X(,) = 0 then no solution exists in X(,), and thus no solution exists in
X(O).

Furthermore it has been proved that

e If {X()} is convergent to «* and f'(z*) is non-singular then the rate of
convergence of (5) is quadratic.

Using (5) from Xy = X = S, there are three possible results:

a) If X = 0 for some value of s then X contains no root. If X
is interior in D, then we can discard X from the candidate set,
otherwise we can reduce it to the union of its non-interior edges.

b)  {X()} converges to x*. If (5) is stopped after iteration number
s then any solution contained in X is also contained in X, 1.
Therefore the set of points in X which are not in X441y, X \
X(s+1), can be discarded from further search.

c) The iteration (5) stalls, maybe because X is too wide. Use the
splitting strategy to reduce the width.
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Now we are ready to outline the algorithm. Let w(X) denote the width of
the interval X. We use the condition

w(Swy) < 0 (6)

to decide when no further search should be done. Sub-boxes satisfying (6) are
stored in the result set R. S is the Candidate Set. 7 is the threshold value
used in (2),(3), and we choose z, as the mid point of the interval S(.

In each iteration we wish to pick the most promising box from S. This is
chosen as the interval Sy which has the smallest lower bound L(S(4))-

For simplicity we assume that all minimizers are interior in D. Then the
algorithm has the following structure:

Algorithm MS:
S(l) =D
S = {S(l)}
ri= f(mid(S(,)))
while S # § do
X := the most promising box in S
remove X from S
if Monotone(X) then { see 1. above }
R.X:=90
else if ( 2a or 2b ) then  { see 2. above }
X is reduced to R_X
else { split }
R_X = (X;,Xo) where X = X; UX,
end
{ R-X contains 0, 1 or 2 elements }
withall Z € R.X
7 := min{r, f(mid(Z))
if w(F(Z))<éthen R:=RUZ
else S:=5U”Z
end
end { while }

This algorithm locates all solutions to (1), i.e., all solutions are contained
in R which is the union of sub-boxes each of which having width less than
d. Algorithm MS has proven to be very efficient for problems with a rather
modest number of variables (up to 15-20, say). If the number of variables is
higher then the computing time may be severe since the worst case complexity
of the algorithm is exponential. Under special circumstances, however, the
algorithm may be efficient, even for a large number of variables.

2.2 Constraint Propagation

Constrained propagation is here considered as an interval method for solving
equations, as described in [KK05] and [Sem94]. It is used as a method to reduce
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the set of possible candidates for a solution. The reduction is done rigorously,
i.e., the method guarantees that no solution contained in the candidate set is
lost.

The method is based on the sub-definite calculations. In order to solve a
desired equation or inequality, the constraint corresponding to the value of
the expression needs to be propugated through the expression. For instance,
if we wish to find which values of x € R satisfy the inequality 3z —2 > 5
then the feasible interval of function values [5, 0o} is propagated through the
expression 3z — 2 until the set of feasible values of z is calculated.

Knowing the bounds of the whole expression, we first calculate the bounds
of 3z and then the bounds of z. A very convenient way of illustrating how the
method works (and actually the way to implement it too) is by constructing a
calculus tree for the expression and propagating the constraint through it, see
Fig. 1. The calculus tree is made in such a way that each node corresponds to
an operator in the expression of the function and each leaf in the tree being
either a variable or a constant.

The operators can be both binary and unary, i.e., the nodes of the tree
can have either one or two children. In the context of global optimization con-
straint propagation is used to locate the set of stationary points, i.e., solving
the equation f'(z) = 0. This equation is called the propagated constraint.

Thus the initial feasible set of function values, i.e., the interval attached
to the root of the calculus tree representing f'(z), is [0,0]. Furthermore, the
ranges of values for the independent variables are assigned. Finally interval
values of the other nodes are assigned; if nothing is known a priori then the
value [— inf, + inf] is assigned to these nodes. Thus, all nodes in the tree are
assigned an interval value. The constraint propagation method intends to
reduce the interval ranges without loosing any solution.

Based on the propagated constraint the method works by walking through
the calculation tree and updating the ranges of values attached to the nodes.
For each calculation the intersection with the previous range is used. The
method continues until no further changes in the values attached to the nodes
can be made. The method does not necessarily provide precise bounds for the
solutions, however no solution inside the initial interval of the variables is lost.

Following [Sem94] we base the propagation on a so-called code list. For
each node in the expression tree the code list displays the interaction between
the node and its neighbours. Thus each function in the code list consists of just
one operator, the one that defines the corresponding node in the tree, or its
inverse operator. The technique is illustrated through the following example.
Example 1. We wish to solve the equation

(fllz)=) € —-2-2=0. (7)

The calculus tree for the function e* — z — 2 is shown in Fig. 2. Since the
exponential is positive the initial value of the corresponding node, denoted
by t1, is included in the interval ]0, co]. Equation (7) implies that the node
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[7/3,400]

Fig. 1. The calculus tree corre-
sponding to 3z — 2. The initial
bound on the expression and the
propagated bounds are shown as in-

Fig. 2. Calculus tree for the function e* —
z — 2 including the initial intervals for the

tervals
nodes. The node names t1,t3,#3 refer to
the code list in Table 1
Table 1. The code list for the function e® —z — 2
fiitii=exp(z)Nt forz:=Int)Na faita=(t1 —z)Nts
farti:=(t2+2)Nt fsix:=(1—t)Nz fortz =z +2)Nt:

f7:t3 = (t2—2)ﬁt3

denoted by t3 has the value 0 attached. The variables ¢{; and x are a priori
only known to belong to the real line [—o0, oo].

As one can immediately see the code list is more than just another form
for writing the mathematical expression for the function. There are only three
operators in (7), however the code list consists of seven expressions. The reason
for this is that the functions fo, fi, f6 and f5 are inferred from fi, f3 and
f7, thus giving the opportunity to move up and down the calculus tree and
propagate the constraint.

Now the idea is to reduce the intervals using the code list and the known
inclusions. This goes on until no further reduction takes place. We start from
below in the code list (Table 1) and move upwards: Since t3 = 0 we obtain
ta = 2. Next f5 gives the interval [-2, oo] for z. This implies that ¢; is reduced
to [exp(-2),00]= [0.135,00] by fi. If we repeat this sweep we obtain further
reductions in #; and z, however the rate of reduction is rather slow. In the
global optimization problem (1) the variables are finitely bounded. Therefore,
let us repeat the example starting with finite bounds on z, z € [—1000, 1000].
Again we obtain {3 = 0 and ¢y = 2 initially. Then we obtain the values given
in Table 2 (in order to be rigorous we round intervals outwards).
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Table 2. The first fifteen steps for the example (7)

Step ‘Working Sub-definite values

num. function ts ta t1 X
0 {0,0] [—oo0, +00] [0, +-o0] [—1000, +1000]
1 f6 [27 2]
2 fs [—2, 1000]
3 fa [0, 1002]
4 f2 [~2,6.91]
5 h {0.13,1002]
6 fs [—-1.87,6.91]
7 fa [0.13,8.91]
8 f2 [—1.87,2.19]
9 f1 [0.15,8.91]
10 fs [—1.85,2.19]
11 fa [0.15,4.19]
12 f2 [~1.85,1.43]
13 f [0.15,4.18]
14 fa [0.15,3.43]
15 f2 [—1.85,1.24]

In practice the code list is easily derived from the corresponding calculus
tree. The picture of the tree actually represents how the tree or DAG (Directed
Acyclic Graph) looks in our implementation. This is illustrated in Table 1 and
Fig. 2.

Schematically the constraint propagation method as described in [KKO05],
[Sem94] is the following:

Algorithm CP

1. Execute all the functions of the constructed code list.
2. If the value of any variable has been changed after the execution of one of
the functions, then mark all functions having this variable as an argument.
. If the set of marked functions is empty then stop.
4. Select and execute an arbitrary function from the set of marked functions
and go to 2.

[J%)

The algorithm corresponds to going up and down the calculus tree, executing
the functions of the code list, until no more changes can be made in the node
values. As the propagation can go both upwards and downwards a node that
can tentatively be changed is included into the set of marked functions, the
active function set. It keeps the track of the updates of the node values.

The selection in (4) can be done in numerous ways. If a node value in
the calculus tree has been changed, then one could for instance update the
values of its children or one could update the values of all of the neighbours
of the node. Such a small difference can play a big role in the performance of
constraint propagation, however it is not clear which choice is generally the
best.
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However, our experience indicates that in connection with the global opti-
mization algorithm the most efficient is to perform only one sweep and stop,
i.e., in Example 1 we would stop after step number 5. This is because the
major changes often take place in the first sweep.

2.3 Algorithm MS Extended with Constraint Propagation

The Krawczyk method (5) and the Algorithm CP both intend to solve a non-
linear set of equations (f'(z) = 0). However they perform quite differently.
Krawczyk provides fast convergence to a narrow (machine precision) box when
the necessary condition is satisfied. Unfortunately the box X o) often has to be
quite narrow around the solution in order for Krawczyk to converge. The CP
is normally not as quickly convergent as Krawczyk and the limit box cannot
be expected to be as narrow as that provided by Krawczyk, especially when
the function expression is complex. However CP does not necessarily need a
narrow initial box. Therefore CP may often be be used to provide an initial
reduction whereas Krawczyk provides the ultimate convergence. CP may even
reduce boxes with more than one stationary point. This is demonstrated in
Fig. 3.
Figure 3 shows the contour plot for the function

f(w):($%+$2—11)2+($1+w§—7)2+3.

If we apply CP with the starting box [—2, 2] x [-2, 2], then the algorithm will

reduce the box to the small one, just containing the two stationary points.
These observations indicate that a combination of the two methods may

exploit the strong sides of each of them. Therefore we use Algorithm CP if

F(X)-axes
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Fig. 3. Contour plots. Constraint
propagation tightening the box
{-2,2] x [-2,2] to a narrow box

Fig. 4. Illustration of the problem

around the two stationary points
marked as dots

occurring when implementing the in-
verse of the function y = 2
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the Krawczyk method does not provide any reduction in Algorithm MS. In
other words we use both methods as root finding methods in Algorithm MS.
This is done by first employing one of them; if no progress has been made
then we apply the other. If the candidate has still not been reduced then it is
split into two. Thus the only difference compared with Algorithm MS is that
instead of one interval method for solving f'(x) = 0 two interval methods are
tried.
The combined algorithm is the following;:

Algorithm MSCP:
S(l) =D
S:={Su}
7= f(mid(S(1)))
while S # @ do
X := the most promising box in S
remove X from S
if Monotone(X) then { see 1. in Subsection 2.1 }
R_X:=0
else if (2a or 2b ) then  { see 2. in Subsection 2.1 }
X is reduced to R_ X
else if ( CP works ) then
X is reduced to R_X
else { split }
R_X = (Xl,Xg) where X = Xl UX2
end
{ R-X contains 0, 1 or 2 elements }
with all Z € R_.X
7 = min{r, f(mid(Z))
if wF(Z))<éthen R:=RUZ
else S:=5UZ
end
end { while }

3 Implementation and Numerical Results

Algorithm MSCP has been implemented in C++ using SUN’s Interval package
(Suninterval). We have tested the programme on several problems. Here we
illustrate the results on two examples only.

3.1 Implementation

When implementing Constraint Propagation a tree-structure is used. In fact,
the constraint programming implementation is an extension of the automatic
differentiation library FADBAD [CFG*02], [SB03], which implements forward
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and backward differentiation. FADBAD has been extended in such a way that
the expression trees used to store functions and derivatives are reused for
implementing the constraint propagation.

Thus the integrated programme automatically calculates first and second
derivatives as well as the CP code, and the user only has to programme the
expression for f(z).

A discussion of some implementation issues can be found in [KKO05],
Sect. 7. Here we shall only mention one difficulty which is connected with
power functions. We illustrate the problem by considering the square opera-
tor, y = 2. The problem occurs because the inverse operator splits into two,
+vz and —/z. Thus in such a case a more complicated tree structure is
needed which might give rise to exponential growth in the amount of space
needed to store the tree.

The situation is illustrated in Fig. 4. When intersecting the two new in-

tervals X; = +vX and Xy = —vX with the previous interval value KXprev
we have the following three cases:

If XprewN X1 =0 then X,ey := Xpres N X2, and no problem occurs.

If Xprev N Xo =0 then X,.ey := Xprey N X1, and no problem occurs.

If Xprew N X1 # 0 and Xprep N Xo # 0 then Xy splits into two unless
0 € X. In order to avoid this problem we let X,., be the hull of the two
non-empty intersections.

Our implementation can be formulated as follows:

Xnew = (Xota N X1) | J(Xota N Xa),

where | is the interval hull of the union.

This implementation is of course rigorous, however it is pessimistic, since
we throw away information by taking the hull. This may cause a slower con-
vergence rate of the CP algorithm, and a sharp implementation of inverse
power functions is planed in the future.

3.2 Some Numerical Tests

In order to investigate the efficiency of Algorithm MSCP it has been tested on
several problems. Some of these tests are described in [KK05] where different
variations of the implementation are examined.

The most important results of these tests are the following:

e Since Algorithm CP as described in Subsection 2.2 is running the same
simple equations in each CP iteration, it can be expected to provide most
of the reduction at the beginning. Does it matter whether Algorithm CP
is run until the end, where no further reduction of the interval is possible
(as it is described in Subsection 2.2), or is it better to run Algorithm CP
just once down the tree, i.e., to execute each working function in the code
list only once, as described in [Mes04]?
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On the test examples tried it turned out that Algorithm MSCP was about
twice as fast when the one-loop implementation of Algorithm CP was used
rather than running full CP in each iteration.

e Krawczyk’s method (4) was tested in a loop as described in (5) as well as
in just one iteration of (5). Like Algorithm CP Krawczyk’s method gives
the largest reduction in the first iteration. And on the test examples tried
in [KK05] it also turned out that Algorithm MSCP was fastest when only
one loop of (5) was used, rather than running full iteration each time.

In the test examples below we have used these results: For (5) as well as
for Algorithm CP only one loop is run in each iteration of Algorithm MSCP.

The first illustration is the so-called Schwefel test problem [Sch81] which
is tested for several values of n:

fla) =Y (-zisin(vED)}, D =[1500]"

Figure 5 shows the performance of the two algorithms for n =
1,2, ... ,18,30. It is seen that although the computing time is exponen-
tial in n for both algorithms, Algorithm MSCP is far better than Algorithm
MS. The numbers of splits show the same tendency as the CPU time. The
computing times for n = 15 are approximately 10 hours for Algorithm MS
and 18 seconds for Algorithm MSCP.

Figure 5 illustrates some tendencies we also have seen in other examples:
The constraint programming is very efficient when power functions are in-
volved, and it is not so sensitive as Algorithm MS to an increasing number of
variables, i.e., the factor in the exponential growth is much smaller. In other
words: The more variables the better Algorithm MSCP compares with the
classical Algorithm MS.

It is easily seen that the number of splits in Algorithm MS cannot be less
than the number of splits in Algorithm MSCP. However, the amount of work
per split is higher for Algorithm MSCP, and we have seen examples where the
CPU time for the latter method is higher. This is for instance the case for the
so-called Levy function, [HW04], when the number of variables is less than 6.
It is the following:

flx)y= sin(37rﬁv1)—!—nz_:{(wi—l)Z(l—f—sin2 (372i41))}+ (20— 1) (14sin? (37zi41)),

“where the initial box is D = [-5, 5]". This function has a very large number of
local minimizers: For n = 5,6,7 it is approximately 10°, 108, 108, respectively.
In this case the number of splits for Algorithm MSCP is about half of the
number of splits in Algorithm MS. The computing times for Algorithm MS are
11, 83 and 537 seconds for n = 5, 6, 7, respectively, whereas the corresponding
computing times for Algorithm MSCP are 12, 80 and 330 seconds, respectively.
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Time/Variables for the Schwefel problem
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Fig. 5. Plot showing the CPU times and the number of interval splits when applying
the two algorithms Algorithm MS and Algorithm MSCP to the Schwefel problem
forn=1,2, ... ,18,30

We have made an experimental comparison with R. Baker Kearfott’s opti-
mization package GlobSol [Kea03], release November 2003, which also uses
a combination of interval global optimization and constraint propagation.
GlobSol has a lot of features and is a much more complex programme than
Algorithm MSCP. Like Algorithm MSCP GlobSol includes automatic differ-
entiation. In order to make a fair comparison we used the mode in GlobSol
where it is assumed that no solution exists at the boundary of D.

In general it turned out that for many problems GlobSol was faster than
Algorithm MSCP. When power functions are involved in calculating f, how-
ever, Algorithm MSCP is much faster than GlobSol. For problems where we
could increase the number of variables n, both programmes illustrated an
exponential growth similar to that displayed in Fig.5.
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The two examples in this chapter are typical for the comparisons: For
the Levy function, n = 7, GlobSol used 54 seconds to find the solution with
high accuracy whereas Algorithm MSCP used 5.5 minutes. For the Schwefel
problem Algorithm MSCP was much faster when n is large. For n = 10
GlobSol used 2.5 minutes to to find the solution with high accuracy whereas
Algorithm MSCP used 1 second. For n = 13 the CPU times were 50 minutes
for GlobSol and 6 seconds for Algorithm MSCP.

4 Conclusion

The classical interval global optimization algorithm has proved to be very ef-
ficient for a large class of problems, especially when the number of variables
is modest, [HW04]. We combine this method with constrained propagation,
as a tool for enclosing the set of stationary points. The combination has been
implemented and tested, and two typical test examples are displayed in this
chapter. An important fact that can be concluded from the tests in [KKO05]
is, that the use of constraint propagation makes each iteration of the global
optimization algorithm more time consuming, however the number of itera-
tions and bisections is often reduced, sometimes drastically. This fact is crucial
when dealing with the problems with high number of variables.
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1 Introduction

The existing image and data compression techniques try to minimize the mean
square deviation between the original data f(z,y,z) and the compressed-
decompressed data f(w, i/, 2). In many practical situations, reconstruction that
only guaranteed mean square error over the data set is unacceptable.

For example, if we use the meteorological data to plan a best trajectory for
a plane, then what we really want to know are the meteorological parameters
such as wind, temperature, and pressure along the trajectory. If along this
line, the values are not reconstructed accurately enough, the plane may crash;
the fact that on average, we get a good reconstruction, does not help.

In general, what we need is a_compression that guarantees that for each

(z,y), the difference |f(z,y, 2) — f(z,y, z)| is bounded by a given value A, i.e.,
that the actual value f(z,y,z) belongs to the interval

[f(z,y, Z) - A: f(waya Z) + A]

In this chapter, we describe new efficient techniques for data compression
under such interval uncertainty.

2 Optimal Data Compression: A Problem

2.1 Data Compression Is Important

At present, so much data is coming from measuring instruments that it is
necessary to compress this data before storing and processing. We can gain
some storage space by using lossless compression, but often, this gain is not
sufficient, so we must use lossy compression as well.
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2.2 Successes of 2-D Inmage Compression

In the last decades, there has been a great progress in image and data com-
pression. In particular, the JPEG2000 standard (see, e.g., [TMO02]) uses the
wavelet transform methods together with other efficient compression tech-
niques to provide a very efficient compression of 2D images.

Within this standard, we can select different bitrates (i.e., number of bits
per pixel that is required, on average, for the compressed image), and depend-
ing on the bitrate, get different degrees of compression.

When we select the highest possible bitrate, we get the lossless compres-
sions that enables us to reconstruct the original image precisely. When we
decrease the bitrate, we get a lossy compression; the smaller the bitrate, the
more the compressed/decompressed image will differ from the original image.

In principle, it is possible to use these compression techniques to compress
2D measurement data as well.

2.3 Compressing 3-D Data: Layer-by-Layer Approach

It is also possible to compress 3D measurement data f(z,y, z), e.g., meteoro-
logical measurements taken in different places (z,y) at different heights z.

One possibility is simply to apply the 2D JPEG2000 compression to each
horizontal layer f(z,y, zo).

2.4 Compressing 3-D Data: An Approach that Uses KLT
Transform

Another possibility, in accordance with Part 2 of JPEG2000 standard [TM02],
is to first apply the Karhunen-Loeve (KLT) transform to each vertical line.
Specifically, we:

e compute the average value
= 1
floy=5 D flz.y.2)
z,y

of the analyzed quantity at a given height z, where NV is the overall number
of horizontal points (z,y);
e compute the covariances between different heights:

V(o) = 5 S (y,2) = ) - (F(o0, ) - Flaa)

z,y

e find the eigenvalues A\; and the eigenvectors ey (z) of the covariance matrix
V (21, z2); we sort these eigenvectors into a sequence

e1(2),ea(z),...

so that
Al > (A2l >0
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e finally, we represent the original 3D data values f(z,y, z) as a linear com-
bination ~
F@,5,2) = F(2) + 3 an(a,y) - exl2)
k

of the eigenvectors e(z).

2.5 An Approach that Uses KLT Transform: Details

How can we implement, this approach?

e The first two steps are straightforward.

e The third step (computing eigenvalues and eigenvectors) is a known com-
putational problem for which many standard software packages provides
an efficient algorithmic solution.

e So, to specify how this method can be implemented, we must describe how
the last step can be implemented, i.e., how we can represent the original
3D data as a linear combination of the eigenvectors.

First, why is such a representation possible at all? It is known (see, e.g.,
[TMO02]), that in general, the eigenvalues of a covariance matrix form a or-
thonormal basis in the space of all V,-dimensional vectors

e = {e(z)} = (e(1),e(2),...,e(N:)).
By definition of a basis this means, in particular, for every (z,y), the corre-
sponding difference vector

def

dw,y(z) = f($7yvz) - fT(Z)

can be represented as a linear combination of these eigenvalues, i.e., that for
every z, we have

doy(2) = flz,y,2 Zak z,y) - ex(2),

where by ax(z,y), we denoted the coefficient at ey (z) in the corresponding
expansion. From this formula, we get the desired representation of f(z,y,z).

How can we actually compute this representation? Since the vectors ey (z)
form an orthonormal basis, we can conclude that for the expansion of the
vector dg,,, each coefficient ax(z,y) at ex(2) is a dot (scalar) product of the
vector dg , and the k-th vector ex(z) from the basis, i.e., that

def
ak(w,y) :cy * €k = Zdzy(z ek )

Substituting the expression for d, ,(z) into this formula, we conclude that

ak(z,y) =Y _(f(z,,2) = [(2)) - ex(2).

z
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Comment. Actually, instead of using this explicit (thus fast-to-compute) for-
mula, we can use even faster formulas of the so-called fust KLT transform
(see, e.g., [TM02]).

2.6 KLT Transform: Result

As a result of the KLT approach, we represent the original 3-D data as a
sequence of the horizontal slices ax(z,y):

e the first slice a1 (z,y) corresponds to the main (1-st) eigenvalue;
o the second slice as(z,y) corresponds to the next (2-nd) eigenvalue;
etc.

b

with the overall intensity decreasing from one slice to the next one.
Next, to each of these slices ay (z,y), we apply a 2D JPEG2000 compression
with the appropriate bit rate by depending on the slice k.

2.7 Decompressing 3-D Data: KLT-Based Approach

To reconstruct the data, we so the following;:

e First, we apply JPEG2000 decompression to each slice; as a result, we get
the values a[ ’“]( ,Y).

e Second, based on these reconstructed slices, we now reconstruct the origi-
nal 3-D data data as

fla,y.2) = F(2) + Za“’”(:v,y) en(2).

2.8 Data Compression as an Optimization Problem: an Informal
Introduction

Different bit rate allocations by, lead to different quality of (lossy) compression,
i.e., to different quality of the corresponding decompressed data.

Among all possible compression schemes that guarantee the given recon-
struction accuracy (in some reasonable sense), we want to find the scheme for
which the average bitrate .

3 def
b o Z,:‘ bi

is the smallest possible.

In some cases, the bandwidth is limited, i.e., we know the largest possible
average bitrate by. In such cases, among all compression schemes with b < by,
we must find a one for which the compression/decompression error is the
smallest possible.
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2.9 JPEG2000 Approach Is Tailored Towards Image Processing
and Towards Mean Square Error (MSE)

In the JPEG2000-based approach, for compressing measurement data, we use
image compression techniques.

The main objective of image compression is to retain the quality of the
image. From the viewpoint of visual image quality, the image distortion can
be reasonably well described by the mean square difference MSE (a.k.a. L2-
norm) between the original image I(z,y) and the compressed-decompressed

image f(a:,y)

As a result, sometimes, under the L?-optimal compression, an image may
be vastly distorted at some points (z,y), and this is OK as long as the overall
mean square error is small.

2.10 For Data Compression, MSE May Be a Bad Criterion

When we compress measurement results, our objective is to be able to repro-
duce each individual measurement result with a certain guaranteed accuracy.

In such a case, reconstruction that only guaranteed mean square error over
the data set is unacceptable: for example, if we use the meteorological data
to plan a best trajectory for a plane, what we really want to know are the
meteorological parameters such as wind, temperature, and pressure along the
trajectory.

If along this line, the values are not reconstructed accurately enough, the
plane may crash. The fact that on average, we get a good reconstruction, does
not help.

2.11 An Appropriate Criterion for Data Compression

What we need is a compression that guarantees the given accuracy for all
pixels, i.e., that guarantees that the L°°-norm

gl;;)glf(w,y,z) - f(z,y, Z)|

is small.

In other words, what we need is a compression that guarantees that for
each (z,y), the difference |f(z,y,2) — f(z,y,2)| is bounded by a given value
A. ie., that the actual value f(z,y, z) belongs to the interval

[f(wayvz) - A,]?(:E,y,z) + A}

Comment. In engineering applications of interval computations, “interval un-
certainty” usually means that the problem’s parameters are uncertain param-
eters, known only with interval uncertainty.

In the above data compression problem, we have a non-parametric prob-
lem, so the traditional engineering meaning of interval uncertainty does not
apply. In our problem, by interval uncertainty, we mean guaranteed bounds
on the loss of accuracy due to compression.
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2.12 Need for Optimal Data Compression under Interval
Uncertainty

There exist several compressions that provide guaranteed bounds on the
loss of accuracy due to compression. For example, if for each slice, we use
the largest possible bitrate (corresponding to lossless compression), then
ar(z,y) = ar(z,y) hence f(z,y,2) = f(z,y,z), ie., there is no distortion
at all.

What we really want is, among all possible compression schemes that guar-
antee the given upper bound A on the compression/decompression error, to
find the scheme for which the average bitrate

—def 1
h = — . b
N, ZI;’”

is the smallest possible.

In some cases, the bandwidth is limited, i.e., we know the largest possible
average bitrate by. In such cases, among all compression schemes with b < by,
we must find a one for which the L compression/decompression error is the
smallest possible.

2.13 What We Have Done

In this chapter, on the example of meteorological data, we describe how we
can use an interval-motivation overestimator to find a good quality data com-
pression.

3 The Use of Interval-Motivated Overestimator

3.1 What Exactly We Do

Specifically, we use JPEG2000 to compress 3D measurement data with guar-
anteed accuracy. We are following the general idea of Part 2 of JPEG2000
standard; our main contribution is selecting bitrates which lead to a mini-
mization of L> norm as opposed to the usual L2-norm.

3.2 Let Us Start Our Analysis with a 2-D Case

Before we describe how to compress 3-D data, let us consider a simpler case of
compressing 2-D data f(z,y). In this case, for each bitrate b, we can apply the
JPEG2000 compression algorithm corresponding to this bitrate value. After
compressing/decompressing the 2-D data, we get the values f(z,y) which
are, in general, slightly different from the original values f(z,y).

In the interval approach, we are interested in the L error
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D) & max O a,y) — fz,y)].

The larger the bitrate b, the smaller the error D(b). When the bitrate is high
enough, so high that we can transmit all the data without any compression,
then the error D(b) becomes 0.

Our objective is to find the smallest value b for which the L error D(b)
does not exceed the given threshold A. For the 2-D case, we can find this opti-
mal bepy by using the following iterative bisection algorithm. In the beginning,
we know that the desired bitrate lies between 0 and the bitrate B correspond-
ing to lossless compression; in other words, we know that b € [b™,b%], where
b~ =0 and bT = B.

On each iteration of the bisection algorithm, we start with an interval
[b~,b7%] that contains bepy and produce a new half-size interval still contains

bopt. Specifically, we take a midpoint bmiq dlef (b~ +b")/2, apply the JPEG2000
compression with this bitrate, and estimate the corresponding value D (byiq).
Then:

o If D(bnig) < A, this means that bop, < bmid, SO We can replace the original
interval [b™,b*] with the half-size interval [0, bmida].

o If D(bmia) > A, this means that bopy > bmig, sO we can replace the original
interval [b™,b"] with the half-size interval [byiq, b*].

After each iteration, the size of the interval halves. Thus, after £ iterations,
we can determine b,y with accuracy 27*.

3.3 3-D Problem Is Difficult

In the 3-D case, we want to find the bitrate allocation &y,...,by, that lead
to the smallest average bit rate b among all the allocations that fit within the
given interval, i.e., for which the L™ compression/decompression error does
not exceed the given value A:

D(by,by,...) < A

For each bit-rate allocation, we can explicitly compute this error, but there
are no analytic formulas that describe this dependence, so we end up having
to optimize a complex function with a large number of variables b;.

Such an optimization is known to be a very difficult task, because the
computational complexity of most existing optimization algorithms grows ex-
ponentially with the number of variables. There are theoretical results show-
ing that in general, this growth may be inevitable; to be more precise, this
problem is known to be NP-hard; see, e.g., [Vav9l].
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3.4 Main Idea: Using an (Interval-Motivated) Overestimator

In our case, the problem is, e.g., to find, among all bitrate allocations
(br,ba,...) with b < by, the one for which the L™ compression/decompression
error D(by,by,...) is the smallest possible.

Since it is difficult to minimize the original function D(by,...), we:

e design an easier-to-optimize overestimator
D(by,ba,...) > D(by,bs,...),
and then

e find the values b; that minimize his overestimator E(bl, S

As a result, we find an allocation b; guaranteeing that l~)(b1, )< lN)mm and
thus, that D(by,...) < Duyin.
Comments.

e Since, in general, D(by,...) < D(by,...), the resulting allocation is only
suboptimal with respect to D(by,...).

e Overestimators and underestimators are a known tool in global optimiza-
tion; see, e.g., [F1o00].

e The ideas of underestimators and overestimators are in good accordance
with the main ideas behind interval computations; see, e.g., Appendix.

3.5 Explicit Formula for the Overestimator
Since we use the KLT, the difference
f(ﬂl,y, Z) - f($7ya Z)

is equal to
> (an(z,y) — @y (z,y) - en(2).
k
Therefore, once we know the L>-norms

Dy (by) lef max!ak(w y) — agcb’“](

z,y

. Y)

of the compression/decompression errors of each slice, we can conclude that

‘ak(fﬂ y) - Gl ',y)l < Di(by),
hence, that
|(@x(a,9) — @ (@) - ex()| < Delbn) - B,

where def
E, = m?xlek(z)|.

Thus, the desired L* error is bounded by
D(by,..) ¥ ZDk bi) -
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3.6 Resulting Algorithm: Derivation

In accordance with the above idea, to get the (suboptimal) bitrate allocation
b;, we must minimize the function

D(by,...) = Di(bx) - By
k

under the constraint that

Zbkzzvz.bo.
k

By using the Kuhn-Tucker approach, we can reduce this problem to the un-
constrained problem, namely, to the problem of finding stationary points of

the function
> Di(bi) - Ex+ A=Y b — N, - bo.
k k

By definition of a stationary point, derivatives w.r.t. all the variables b; should
be 0s, so we end up with the equation

A
—Dy(b) = B
where the parameters X should be selected based on the value bg.

It can be easily shown that the other problem, the problem of minimizing
the average bitrate under the constraint that the compression/decompression
error does not exceed A, leads to the same equation.

As we have mentioned, the function Dy (b) decreases when b increases, so
Dj, (b) < 0, with Dj (b) — 0 as b grows. It is therefore reasonable to represent

the desired equation as
A
D (b)) = —.
D)l = 7
What are the bounds on A\? The larger by, the smaller A\. From the above
formula, we conclude that

A = |Dy(be)] - Ek,

hence

A< 4 (s D)) - B

80 et
A< AE mkin/lk.
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3.7 Algorithm: Description

Once we know, for each slice &, the dependence Dy (b) of the corresponding
L*-error on the bitrate b, we can find the desired (suboptimal) values by as
follows.

At first, we compute the above-described values A, and A. We know that
A < [A7,AT] := [0, A]. We use bisection to sequentially halve the interval
containing A and eventually, find the optimal value .

Once we know an interval [A~, A*] that contains A, we pick its midpoint
Amid, and then use bisection to find, for each k, the value by for which

)\mid

! —
Di(bo] = 5

Based on these by, we compute the average bitrate b.

o Ifd > by, this means that we have chosen too small Apjq, so we replace
the original A-interval with a half-size interval [Amia, AT].

e Similarly, if b < by, we replace the original A-interval with a half-size
interval [A~, Amia]-

After k iterations, we get A with the accuracy 27%, so a few iterations are
sufficient. Once we are done, the values by corresponding to the final Ayiq are
returned as the desired bitrates.

The only remaining question is how to determine the dependence Dy(b).
In principle, we can try, for each layer &, all possible bitrates b, and thus get
an empirical dependence Dy (b).

We have shown, that this dependence can be described by the following
analytical formula:

e Ay -(b—bg)* for all the values b until a certain threshold by, and
o As- 2% for b > bg.

(This model is a slight modification of a model from [MF98].) So, instead of
trying all possible values b, it is sufficient to try a few to determine the values
of the parameters A4;, by, and a corresponding to the given layer.

3.8 Results

To test our algorithm, we applied it to 3-D meteorological data:

temperature T,

pressure P,

the components U, V, and W of the wind speed vector, and
the waver vapor missing ratio WV.

For meteorological data, the resulting compression indeed leads to a much
smaller L* error bound Ayeyw than the L error bound Aygg corresponding
to the bitrate allocation that optimizes the MSE error. The ratio Ayew/AMsE
decreases:
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e from 0.7 for bg = 0.1
e t00.5for by =0.5
e to<0.1forby>1.

These results are shown in Fig. 1 that describes how, for different compression

methods, the Maximum Absolute Error (MAE) A depends on the average
bitrate b:

e the solid line corresponds to the new method, in which the objective is to
minimize the Maximum Absolute Error (MAE) A; as we have mentioned,
to maximize this error, we must use multiple bit rates (MBR), i.e., different
different rates for different horizontal “slices” ay(z,y);

the dotted line describes the dependence of MAE A on the average bitrate
b within the Part 2 JPEG2000 approach, when the individual bitrates by
are selected to minimize the Mean Square Error (MSE);

for comparison, the dashed line describes the dependence of MAE A on

the average bitrate b if we use the same bit rate b, = b for all slices, i.e.,
if we use one bit rate (OBR).

35 T T
1
1
1
30_ .. ‘ ................................... —
1
1 .
' : :
\ ——"MBR (MAE min)
' . MBR (MSE min)
] |
1

MAE (%)

Bit rates

Fig. 1. Dependence of the Maximum Absolute Error A on the average bitrate b for

different compression techniques
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A The Relation between Interval Computations
and the Ideas of Underestimators and Overestimators

The idea of an overestimator is very similar to the experience of interval
computations; see, e.g., [JKDWO1].

In many areas of science and engineering, we are interested in the value of
a physical quantity y that is difficult (or even impossible) to measure directly.
To measure such quantities, we find auxiliary easier-to-measure quantities
T1,..., Ty that are related to y by a known algorithm y = g(z;,...,2,) — an
algorithm that, in general, computes a complex functions with a large number
of variables. Then, we measure z;, and apply the algorithm f to the results
Zy,..., T, of measuring ;. As a result, we get an estimate § = ¢g(Z,,...,Zp)
for y.

Since the measured values Z; are, in general, slightly different from the
actual values z;, a natural question is: what is the error of the resulting esti-
mate?

In many practical situations, the only information that we have about the
measurement errors Ax; def T; —x; of direct measurements is the upper bounds
A; on |Az;| guaranteed by the manufacturer of the measuring instrument. In
such situations, the only information that we have about the actual value z;
is that z; lies in the interval x; e [Z; — Ai,Z; + A;]. In this case, the only
information that we have about y is that y belongs to the range

def
y=g(X1,...,%,) = {g(z1,...,2p) |1 €ExX1 & ... &y € Xp ).

It is known that computing this range exactly is an NP-hard problem; see,
e.g., [KLRK97]. Crudely speaking, NP-hard means that we cannot have an
algorithm that always finished in reasonable time and that always produces
the exact range.

The objective of interval computation is find guaranteed bounds for the
actual value of y. Since we cannot find the exact range y, researchers in interval
computations design algorithms that provide us with an enclosure Y 2y
for the actual range. The lower bound of this enclosure is a (guaranteed)
underestimator, and the upper of this enclosure is an overestimator.
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Summary. Constrained Optimization Problems (COP’s) are encountered in many
scientific fields concerned with industrial applications such as kinematics, chemical
process optimization, molecular design, etc. When non-linear relationships among
variables are defined by problem constraints resulting in non-convex feasible sets,
the problem of identifying feasible solutions may become very hard. Consequently,
finding the location of the global optimum in the COP is more difficult as compared
to bound-constrained global optimization problems.

This chapter proposes a new interval partitioning method for solving the COP.
The proposed approach involves a new subdivision direction selection method as well
as an adaptive search tree framework where nodes (boxes defining different variable
domains) are explored using a restricted hybrid depth-first and best-first branching
strategy. This hybrid approach is also used for activating local search in boxes with
the aim of identifying different feasible stationary points. The proposed search tree
management approach improves the convergence speed of the interval partitioning
method that is also supported by the new parallel subdivision direction selection rule
(used in selecting the variables to be partitioned in a given box). This rule targets
directly the uncertainty degrees of constraints (with respect to feasibility) and the
uncertainty degree of the objective function (with respect to optimality). Reducing
these uncertainties as such results in the early and reliable detection of infeasible
and sub-optimal boxes, thereby diminishing the number of boxes to be assessed.
Consequently, chances of identifying local stationary points during the early stages
of the search increase.

The effectiveness of the proposed interval partitioning algorithm is illustrated on
several practical application problems and compared with professional commercial
local and global solvers. Empirical results show that the presented new approach is
as good as available COP solvers.

Key words: continuous constrained optimization, interval partitioning approach,
practical applications.
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1 Introduction

Many important real world problems can be expressed in terms of a set of
nonlinear constraints that restrict the domain over which a given performance
criterion is optimized, that is, as a Constrained Optimization Problem (COP).
In the general COP with a non-convex objective function, discovering the lo-
cation of the global optimum is NP-hard. Locating feasible solutions in a
non-convex feasible space is also NP-hard. Solution approaches using deriva-
tives developed for solving the COP might often be trapped in infeasible
and/or sub-optimal sub-spaces if the combined topology of the constraints
is too rugged. The same problem exists in the discovery of global optima in
non-convex bound-constrained global optimization problems. The COP has
augmented complexity as compared to bound-constrained problems due to
the restrictions imposed by highly non-linear relationships among variables.

Existing global optimization algorithms can be categorized into determin-
istic and stochastic methods. Extensive surveys on global optimization exist
in the literature ([TZ89)], and recently by [PR02]). Although we cannot cover
the COP literature in detail within the scope of this chapter, we can cite deter-
ministic approaches including Lipschitzian methods [HJL92, Pin97]; branch
and bound methods (e.g., [AS00]); cutting plane methods [TTT85]; outer
approximation [HTD92]; primal-dual method [BEG94, FV93]; alpha-Branch
and Bound approach [AMF95], reformulation techniques [SP99]; interior point
methods [MNW*01, FGW02] and interval methods [CR97, Han92, Kea96c].

Interval Partitioning methods (/P) are Branch and Bound techniques
(B&B) that use inclusion functions, therefore, we elaborate more on B&B
among deterministic methods. B&B are partitioning algorithms that are com-
plete and reliable in the sense that they explore the whole feasible domain and
discard sub-spaces in the feasible domain only if they are guaranteed to ex-
clude feasible solutions and/or local stationary points better than the ones
already found. B&B are exhaustive algorithms that typically rely on generat-
ing lower and upper bounds for boxes in the search tree, where tighter bounds
may result in early pruning of nodes. For expediting B&B, feasibility and op-
timality based variable range reduction techniques [RS95, RS96}, convexifica-
tion [T'S02, TS04], outer approximation [BHR92] and constraint programming
techniques in pre- and post-processing phases of branching have been devel-
oped [RS96]. The latter resulted in an advanced methodology and software
called Branch and Reduce algorithm (BARON, [Sah96, Sah03]).

Here, we propose an interval partitioning approach that recursively sub-
divides the continuous domain over which the COP is defined. This IP con-
ducts reliable assessment of sub-domains while searching for the globally op-
timal solution. Theoretically, /P has no difficulties in dealing with the COP,
however, interval research on the COP is relatively scarce when compared
with bound constrained optimization. Robinson [Rob73] uses interval arith-
metic only to obtain bounds for the solution of the COP, but does not at-
tempt to find the global optimum. Hansen and Sengupta [HS80] first use IP



An Interval Partitioning Approach for Constrained Qptimization 75

to solve the inequality COP. A detailed discussion on interval techniques for
the general COP with both inequality and equality constraints is provided in
[RR88] and [Han92], and some numerical results using these techniques have
been published later [Wol94, Kea96a]. An alternative approach is presented
in [ZB03] for providing ranges on functions.

Conn et al.[CGT94] transform inequality constraints into a combination
of equality constraints and bound constraints and combine the latter with a
procedure for handling bound constraints with reduced gradients. Computa-
tional examination of feasibility verification and the issue of obtaining rigorous
upper bounds are discussed in [Kea94] where the interval Newton method is
used for this purpose. In [HW93], interval Newton methods are applied to
the Fritz John equations that are used to reduce the size of sub-spaces in
the search domain without bisection or other tessellation. Experiments that
compare methods of handling bound constraints and methods for normaliz-
ing Lagrange multipliers are conducted in [Kea96b]. Dallwig et al. [DNS97]
propose software (so called GLOPT) for solving bound constrained optimiza-
tion and the COP. GLOPT uses a Branch and Bound technique to split the
problem recursively into subproblems that are either eliminated or reduced in
size. The authors also propose a new reduction technique for boxes and novel
techniques for generating feasible points. Kearfott presented GlobSol (e.g. in
[Kea03]), which is an I P software that is capable of solving bound constrained
optimization problems and the COP.

A new I'P is developed by Markét [Mar03] for solving COP problems with
inequalities where new adaptive multi-section rules and a box selection cri-
terion are presented [MFCCO05]. Kearfott [Kea04] provides a discussion and
empirical comparisons of linear relaxations and alternate techniques in val-
idated deterministic global optimization. Empirical results show that linear
relaxations are of significant value in validated global optimization. Finally,
in order to eliminate the subregion of the search spaces, Kearfott [Kea05]
proposes a simplified and improved technique for validation of feasible points
in boxes, based on orthogonal decomposition of the normal space to the con-
straints. In the COP with inequalities, a point, rather than a region, can be
used, and for the COP with both equalities and inequalities, the region lies in
a smaller-dimensional subspace, giving rise to sharper upper bounds.

In this chapter, we propose a new adaptive tree search method that we
used in /P to enhance its convergence speed. This approach is generic and
it can also be used in non-interval B&B approaches. We also develop a new
subdivision direction selection rule for IP. This rule aims at reducing the un-
certainty degree in the feasibility of constraints over a given sub-domain as
well as the uncertainty in the box’s potential for containing the global opti-
mum. We show, on a test bed of practical applications, that the resulting I P
is a viable method in solving the general COP with equalities and inequal-
ities. The results obtained are compared with commercial softwares such as
BARON, Minos and other solvers interfaced with GAMS (www.gams. com).
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2 Interval Partitioning Algorithm for the COP
2.1 Problem Definition

A COP is defined by an objective function, f(z;,...,z,) to be maximized

over a set of variables, V = {z1,...,2,}, with finite continuous domains:
X; = [X,X] for z;, 1 = 1,...,n, that are restricted by a set of constraints,
C= {Cl,...,C,«}.

Constraints in C are linear or nonlinear equations or inequalities that are
represented as follows:
g’i(mlv"'7$n) <0:1= 17“'1k1

hi(.’El,...,ZJn):O 7,:k+1,,7

An optimal solution of a COP is an element z* of the search space X (X =
Xy X --- x X)) that meets all the constraints, and whose objective function
value, f(z*) > f(z) for all feasible elements z € X.

COP problems are difficult to solve because the only way parts of the
search space can be discarded is by proving that they do not contain an op-
timal solution. It is hard to tackle general nonlinear COP with computer
algebra systems, and in general, traditional numeric algorithms cannot guar-
antee global optimality and completeness in the sense that the solution found
may be only a local optimum. It is also possible that the approximate search
might result with an infeasible result despite the fact that a global optimum
exists. Here, we propose an Interval Partitioning Algorithm (I P) to identify
z* in a reliable manner.

2.2 Basics of Interval Arithmetic and Terminology

Denote the real numbers by z,y,..., the set of compact intervals by I :=
{[a,b] | @ < b, a,b € R}, and the set of n-dimensional intervals (also called
simply intervals or boxes) by I™. Capital letters will be used for intervals.
Every interval X € I is denoted by [X, X], where its bounds are defined by
X = inf X and X = sup X. For every a € R, the interval point [a,a] is also
denoted by a. The width of an interval X is the real number w(X) = X - X.
Given two intervals X and Y, X is said to be tighter than Y if w(X) < w(Y).

Given (Xi,...,X,) € [, the corresponding box X is the Cartesian product
of intervals, X = X;x ...x X,,, where X € [™. A subset of X, Y C X, isa
sub-box of X. The notion of width is defined as follows: w(X| x ... x X,) =
maxi<i<n w(X;), and w(X;) = X, - X;.

Interval arithmetic operations are set theoretic extensions of the corre-
sponding real operations. Given X, Y& I, and an operation w € {+,—,-, +},
we have: XwY = {zwy |z € X,y € Y}.

Due to properties of monotonicity, these operations can be implemented by
real computations over the bounds of intervals. Given two intervals X = [a, b]
and Y = [¢,d]
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la,b] +[e,d] = [ea + ¢, b+ d]

la,b] — [¢,d] = [a — d,b — (]

(a,b] -[e,d] = [min{ac, ad, be, bd}, max{ac, ad, be, bd}]
[

la,b] / [e,d] = [a,b] [1/d,1/c]if O ¢ [c,d].

The associative law and the commutative law are preserved over it. However,
the distributive law does not hold. In general, only a weaker law is verified,
called subdistributivity.

Interval arithmetic is particularly appropriate to represent outer approxi-
mations of real quantities. The range of a real function f over an interval X
is denoted by f(X), and it can be computed by interval extensions.

Definition 1. (Interval extension): An interval extension of o real function
f:Dy CR" —» R is a function F : [" — [ such that VX € [", X € Dy =
H(X)={f(z) |z e X} C F(X).

Interval extensions are also called interval forms or inclusion functions.
This definition implies the existence of infinitely many interval extensions of
a given real function. In a proper implementation of interval extension based
inclusion functions the outward rounding must be made to be able to provide
a mathematical strength reliability.

The most common extension is known as the natural extension. It means
that procedure when we substitute each occurrence of variables, operations
and functions by their interval equivalents [RR88]. Natural extensions are in-
clusion monotonic (this property follows from the monotonicity of operations).
Hence, given a real function f, whose natural extension is denoted by F, and
two intervals X and Y such that X C Y, the following holds: F(X) C F(Y).
We denote the lower and upper bounds of the function interval range over a
given box Y as F(Y) and F(Y), respectively.

Here, it is assumed that for the studied COP, the natural interval exten-
sions of f, g and h over X are defined in the real domain. Furthermore, F
(and similarly, G and H) are a-convergent over X, that is, for all ¥ C X
w(F(Y)) - w(f(Y)) < cw(Y)®, where ¢ and « are positive constants.

An interval constraint is built from an interval function and a relation sym-
bol, which is extended to intervals. A constraint being defined by its expression
(atomic formula and relation symbols), its variables, and their domains, we
will consider that an interval constraint has interval variables (variables that
take interval values), and that each associated domain is an interval.

The main guarantee of interval constraints is that if its solution set is
empty, it has no solution over a given box Y, then it follows that the solution
set of the COP is also empty and the box Y can be reliably discarded. In
a similar manner, if the upper bound of the objective function range, F(Y),
over a given box Y is less than or equal to the objective function value of
a known feasible solution, (the Current Lower Bound, CLB) then Y can be
reliably discarded since it cannot contain a better solution than the CLB.
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Below we formally provide the conditions where a given box Y can be
discarded reliably based on the ranges of interval constraints and the objective
function.

In a partitioning algorithm, each box Y is assessed for its optimality and
feasibility status by calculating the ranges for F', G, and H over the domain
of Y.

Definition 2. (Cut-off test based on optimality:) If F(Y) < CLB, then box
Y s called a sub-optimal bozx.

Definition 3. (Cut-off test bused on feasibility:) If G,(Y) > 0, or 0 ¢ H;(YV)
for any i, then box Y is called an infeasible box.

Definition 4. If F(Y) < CLB, and F(Y) > CLB, then Y is called an in-
determinate box with regard to optimality. Such o box holds the potential of
containing z* if it is not an infeasible boz.

Definition 5. If (G;(Y) < 0, and Gi(Y) > 0), or (0 € Hy(Y) # 0) for
some i, and other constrainis are consistent over Y, then Y is called an
indeterminate box with regard to feasibility and it holds the potential of con-
taining z* if it is not a sub-optimal boz.

Definition 6. The degree of uncertainty of an indeterminate box with respect

to optimality is defined as: PFy = F(Y) — CLB.

Definition 7. The degree of uncertainty, PG% (PH.) of an indeterminate
inequality (equality) constraint with regard to feasibility is as: PG = G;(Y),
and PHY, = H,(Y) + |H,;(Y)|.

Definition 8. The total feasibility uncertainty degree of o box, INFy , is the
sum of uncertainty degrees of equalities and inequalities that are indeterminate
over Y.

The proposed subdivision direction selection rule (Interval Inference Rule,
IIR) targets an immediate reduction in INFy and PFy and chooses those
specific variables to bisect a given parent box. The I'P described in the fol-
lowing section uses the feasibility and optimality cut-off tests in discarding
boxes and applies the new rule I1R in partitioning boxes.

2.3 Interval Partitioning Algorithm

Under reasonable assumptions, I P is a reliable convergent algorithm that sub-
divides indeterminate boxes to reduce INFy and PFy by nested partitioning,.
In terms of subdivision direction selection, convergence depends on whether
the direction selection rule is balanced [CR97]. The contraction and the -
convergence properties enable this. The reduction in the uncertainty levels of
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boxes finally lead to their elimination due to sub-optimality or infeasibility
while helping I P in ranking remaining boxes in a better fashion.

A box that becomes feasible after nested partitioning still can have uncer-
tainty with regard to optimality unless it is proven that it is sub-optimal. The
convergence rate of I P might be very slow if we require nested partitioning to
reduce a box to a point interval that is to the global optimum. Hence, since a
box with a high PFy holds the promise of containing the global optimum, we
propose to use a local search procedure that can identify stationary points in
such boxes.

Usually, IP continues to subdivide available indeterminate and feasible
boxes until either they are all deleted or interval sizes of all variables in ex-
isting boxes are less than a given tolerance. Termination can also be forced
by limiting the number of function evaluations and/or CPU time. In the fol-
lowing, we describe our proposed I P that has a flexible stage-wise tree man-
agement feature. Our I P terminates if the CLB does not improve at the end
of a tree stage as compared with the previous stage. This stage-wise tree also
enables us to apply the best-first box selection rule within a restricted sub-
tree (economizing memory usage) as well as to invoke local search in a set of
boxes.

The tree management system in the proposed IP maintains a stage-wise
branching scheme that is conceptually similar to the iterative deepening ap-
proach [Kor85]. The iterative deepening approach explores all nodes generated
at a given tree level (stage) before it starts assessing the nodes at the next
stage. Exploration of boxes at the same stage can be done in any order, the
sweep may start from best-first box or the one on the most right or most
left of that stage. On the other hand, in the proposed adaptive tree manage-
ment system, a node (parent box) at the current stage is permitted to grow
a sub-tree forming partial succeeding tree levels and to explore nodes in this
sub-tree before exhausting the nodes at the current stage.

If a feasible solution (and C'LB) is not identified yet, boxes in the sub-
tree are ranked according to descending IV Fy, otherwise they are ranked
in descending order of F(Y). A box is selected among the children of the
same parent according to either box selection criterion, and the child box is
partitioned again continuing to build the same sub-tree. This sub-tree grows
until the Total Area Deleted (I'AD) by discarding boxes fails to improve in
two consecutive partitioning iterations in this sub-tree. Such failure triggers
a call to local search where all boxes not previously subjected to local search
are processed by the procedure Feasible Sequential Quadratic Programming
(FSQP, [2T96, LZT97]), after which they are placed back in the list of pend-
ing boxes and exploration is resumed among the nodes at the current stage.
Feasible and improving solutions found by FSQP are stored (that is, if a fea-
sible solution with a better objective function value is found, C LB is updated
and the solution is stored).

The above adaptive tree management scheme is achieved by maintaining
two lists of boxes, By and B,.; that are the lists of boxes to be explored
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at the current stage s and the next stage s + 1, respectively. Initially, the
set of indeterminate or feasible boxes in the pending list Bs consists only of
X and Bg,; is empty. As child boxes are added to a selected parent box,
they are ordered according to the current ranking criterion. Boxes in the
sub-tree stemming from the selected parent at the current stage are explored
and partitioned until there is no improvement in TAD in two consecutive
partitioning iterations.

At that point, partitioning of the selected parent box is stopped and all
boxes that have not been processed by local search are sent to the FSQP mod-
ule and processed to identify feasible and improving point solutions if FSQP
is successful in doing so. From that moment onwards, child boxes generated
from any other selected parent in Bj are stored in B, irrespective of further
calls to FSQP in the current stage. When all boxes in B have been assessed
(discarded or partitioned), the search moves to the next stage, s+1, starting
to explore the boxes stored in Bg.t;.

In this manner, a lesser number of boxes (those in the current stage) are
maintained in primary memory and the search is allowed to go down to deeper
levels within the same stage, increasing the chances to discard boxes. On the
other hand, by enabling the search to also explore boxes horizontally across
at the current stage, it might be possible to find feasible improving solutions
faster by not partitioning parent boxes that are not so promising (because we
are able to observe a larger number of boxes).

The tree continues to grow in this manner taking up the list of boxes of the
next stage after the current stage’s list of boxes is exhausted. The algorithm
stops either when there are no boxes remaining in B, and Bsy; or when
there is no improvement in CLB as compared with the previous stage. The
proposed I P algorithm is described below.

IP with adaptive tree management

Step 0. Set tree stage, s = 1. Set future stage, r = 1. Set non-improvement
counter for TAD: nc = 0. Set By, the list of pending boxes at stage s
equal to X, By = {X}, and Bsyq = 0.

Step 1. If By = § and C LB has not improved as compared to the stage s —1,
or, both B; = 0 and By, = @, then STOP.

Else, if By = 0 and B,y # 0, then set s — s+ 1, set r «+ s, and continue.
Pick the first box Y in B, and continue.

1.1 If Y is infeasible or suboptimal, discard Y, and go to Step 1.

1.2 If Y is sufficiently small, evaluate m, its mid-point, and if it is a feasible
improving solution, update CL B, reset nc « 0, and store m. Remove Y
from B, and go to Step 1.

Step 2. Select variable(s) to partition (use the subdivision direction selection
rule ITR). Set v = number of variables to partition.

Step 3. Partition Y into 2Y non-overlapping child boxes. Check T'AD, if it
improves, then reset nc < 0, else set nc «+ nc+ 1.

Step 4. Remove Y from Bj, add 2Y boxes to B,.
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1™ Call FSQP: 2" Call FSQP:
3,568,911, 17,18, 19, 21, 22,
12,13, 14, 15,16 24,25, 26,27, 28
Stage | Stage2

Explanation: 3, 5, 6, 8,9, 11, 12,13, 14, 15, and 16 are in
Stage 17s list and should be explored before moving to Stage
2. All their children are placed in Stage 2’s list after the first
FSQP call in Stage 1. There might be more than one FSQP
calls in Stage 1; this does not affect the placement of children

Fig. 1. Implementation of the adaptive iterative deepening procedure

4.1. If nc > 2, apply FSQP to all (previously unprocessed by FSQP) boxes
in By and Bg.1, reset nc + 0. If FSQP is called for the first time in stage
s, then set 7 + s + 1. Go to Step 1.

4.2. Else, go to Step 1. The adaptive tree management system in IP is
illustrated in Fig. 1 on a small tree where node labels indicate the order
of nodes visited.

The adaptive tree management system in IP is illustrated in Fig. 1 on a
small tree where node labels indicate the order of nodes visited.

2.4 A New Subdivision Direction Selection Rule for IP

The order in which variable domains are partitioned has an impact on the
convergence rate of IP. In general, variable selection is made according to
widest variable domain rule or largest function rate of change in the box.
Here, we develop a new numerical subdivision direction selection rule, Interval
Inference Rule (ITR), to improve IP’s convergence rate by partitioning in
parallel, those variable domains that reduce PFy and INFy in immediate
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child boxes. Hence, new boxes are formed with an appropriate partitioning
sequence resulting in diminished uncertainty caused by the overestimation in
the indeterminate objective function range and constraint ranges.

Before ITR is applied, the objective f and each constraint g and h are
interpreted as binary trees that represent recursive sub-expressions hierarchi-
cally. Such binary trees enable interval propagation over all sub-expressions of
the constraints and the objective function [BMV94]. Interval propagation and
function trees are used by [Kea91] in improving interval Newton approach by
decomposition and variable expansion, by [SP99] in automated problem re-
formulation, by [Sah03] and by [TS04] where feasibility based range reduction
is achieved by tightening variable bounds.

After interval propagation is carried out over the sub-expressions in a bi-
nary tree, II R traverses this tree to label its nodes so as to identify the pair
of variables (source variables) that are most influential on the constraint’s or
the objective’s uncertainty degree. The presented interval subdivision direc-
tion selection rule is an alternative of earlier rules as those published in [CR97],
[RCY5], and [CGCO0]. This pair of variables are identified for each constraint
and the objective function, and placed in the pool of variables whose domains
will be possibly partitioned in the next iteration. We make sure that the pool
at least contains the source variables for the objective function and therefore,
the number of variables to be bisected in parallel is at least two. The total pool
resulting from the traversal of f, ¢ and h is screened and its size is reduced
by allocating weights to variables and re-assessing them.

2.4.1 Interval Partitioning Algorithm

Before the lubeling process IIR.Tree can be applied on a constraint expres-
sion, it has to be parsed and intervals have to be propagated through all
sub-expression levels. This is achieved by calling an Interval Library at each
(molecular) sub-expression level of the binary tree from bottom to top starting
from atomic levels (variables or constants).

A binary tree representing a constraint is built as follows. Leaves of the
binary tree are atomic elements, i.e., they are either variables or constants. All
other nodes represent binary expressions of the form (Left @ Right). A binary
operator “@” is an arithmetic operator (-, 4+, -, + ) having two branches
(“Left”, “Right”) that are themselves recursive binary sub-trees. However,
mathematical functions such as In, exp, sin, etc. are unary operators. In such
cases, the argument of the function is always placed in the “Left” branch. For
instance, the binary tree for the expression 1 — (10z; 4+ 62,25 — 62324) = 0 is
illustrated in Fig. 2.

Variable intervals in the box are z; = [-2.0,4.0], z» = [0.0,10.0],
z3 = [—2.0,1.0], and z4 = [-10.0,0.0]. In Fig. 2, dotted arrows linking argu-
ments with operator nodes show how intervals are propagated starting from
the bottom leaves (variables). Once a level of the tree is completed and the
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[-339, 261]

Level 0

Level 1

Level 2

Level 3

Level 4

Level §

[-2, 4] [0, 10] [-2,1] [-10, 0]

Fig. 2. Interval propagation for the expression 1 — (10z; + 6z122 — 6z324) = 0

corresponding sub-expression intervals are calculated according to basic inter-
val operations, they are linked by next level operators. This procedure goes
on until the topmost “root” node representing the whole constraint is reached
resulting in the constraint range of [-339, 261].

We now describe the IIR_Tree labeling procedure. Suppose a binary tree
is constructed for a constraint and its source variables have to be identified
over a given box Y. The labeling procedure called ITR_Tree accomplishes this
by tree traversal. We take the expression depicted in Fig. 2 as an indeter-
minate equality constraint. In Fig. 3, the path constructed by ITR_Tree on
this example is illustrated graphically. Straight lines in the figure indicate the
propagation tree, dashed arrows indicate binary decisions, and arrows with
curvature indicate the path constructed by ITR Tree.

For illustrating how [IR_Tree works on a given constraint or objective
function over domain Y, we introduce the following notation.

Q*: a parent sub-expression at tree level k (k = 0 is root node),
L*¥+1 and R¥*+1: immediate Left and Right sub-expressions of Q* at level k+1,

[Qk,@k]: interval bounds of the parent sub-expression Q¥,
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[-339, 261]

[-10, 20]

[-2,4] [0, 10) [-2,1] [-10, 0]

Fig. 3. Implementation of ITR Tree over the binary tree for 1 — (10z1 + 6z122 —
6z3z4) =0

k41 k-+1
] ]

(LM T and [RF*! R
sub-expressions,

L¥: labeled bound at level k.

IIR starts by labeling () when the constraint is an inequality. Hence,
the target is G;(Y) for inequalities so as to reduce PG%, and in equalities
the target is the max{QO,GO}. That is, max{|H,(Y)|,H;(Y)} is targeted
to reduce PHY. If the expression concerns the objective function f, then
IIR_ Tree labels F(Y) at the root node in order to minimize PFy .

Here, we have an equality (in Fig. 2) and hence, I IR labels QO. That 1s,
we label the bound that gives max {|-339], |261|}, which is -339, as A° at the
root node. Next, we determine the pair of interval bounds {L' — El} that
results in -339. Hence, LIQRI = ()°. We then compare the absolute values of
individual bounds in this pair and take their maximum as the label at level
k+1. That is, A' = max{|L|,|B'|} = R' = 340.

The procedure is applied recursively from top to bottom; each time search-
ing for the bound pair resulting in the labeled bound A**! till a leaf (a vari-

: interval bounds of immediate left and right
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able) is hit. Once this forward tree traversal is over, all leaves in the tree
corresponding to the selected variable are set to ” Closed” status. The proce-
dure then backtracks to the next higher level of the tree to identify the other
leaf in the couple of variables that produce the labeled bound. All steps of the
labeling procedure carried out in the example are provided below in detail.
Level 0: [Q°, Q"] = [~339,261]. 4° = Q°.

a@b = L' — R'= {1-340} = -339. A! = max{|L'|, |R'|} = max{|1],
340} = 340 =R
Level 1: [Q", Q'] = [~260, 340]

a@b = {~20 + (—240) or 40 + 300} = 340 = a@b = L + R%. A% =
max{|Z’|, |R’|} = max{|40], |300|} = 300 = &".

Level 2: [Q*, Q] = [~240, 300]

a@b = {(~120) — 120 or 240 — (=60)} = 300 = a@b = L’ — R®. A% =
max{|Z’|, |R®|} = max{|240], | — 60|} = 240 = L.

Level 3: [Q%, Q"] = [~120, 240]

aB@b = {6 (—20) or 6 x 40} = 240 = a@b = T'+«E'. 4t = max{lf4|,
IR'|} = max{[6], |40} =40 = R".

Level 4: [Q°, Q"] = [~20, 40]

a@b = {-2x0or —2+10 or 4+ 0 or 4 x 10} = 40 = a@b = "R
A5 = max{|Z°|, |B’[} = max{|4], |10} =10 = &

The bound R leads to leaf zo. The leaf pertaining to z, is “Closed” from
here onwards, and the procedure backtracks to Level 4. Then, the labeling
procedure leads to the second source variable, z; .

Note that the uncertainty degree of the parent box is 600 whereas when
it is sub-divided into four sibling boxes by bisecting the two source variables,
the uncertainty degrees of sibling boxes become 300, 330, 420, and 390. If the
parent box were sub-divided using the largest width variable rule (z, and z4),
then the sibling uncertainty degrees would have been 510, 600, 330, and 420.

2.4.2 Restricting Parallelism in Multi-variable Partitioning

When the number of constraints is large, there might be a large set, of variables
resulting from the local application of 1T R_Tree to the objective function and
each constraint. Here, we develop a priority allocation scheme to narrow down
the set of variables (selected by IIR) to be partitioned in parallel. In this
approach, all variable pairs identified by ITR_Tree are merged into a single
set Z. Then, a weight w; is assigned to each variable z; € Z and the average
w is calculated. The final set of variables to be partitioned is composed of the
two source variables of f and all other source variables z; € Z with w; > W
pertaining to the constraints.
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Then w; is defined as a function of several criteria: PGY (or PHY) of
constraint g; for which z; is identified as a source variable, the number of times
z; exists in g;, total number of multiplicative terms in which z; is involved
within g;. Furthermore, the existence of z; in a trigonometric and/or even
power sub-expression in g; is included in w; by inserting corresponding flag
variables. When a variable z; is a source variable to more than one constraint,
the weight calculated for each such constraint is added to result in a total w;
defined as

wj = }: [PF;//PHmax""PGg’//PGmax"f‘Eji/ej"max’f‘aji/aj,max+tji+pji]/5

i€IC;
where
IC;: set of indeterminate constraints (over Y') where z; is a source
variable,
TIC: total set of indeterminate constraints,
PH nap: max{PH} Y,
ieETIC i
PGray: max{PG%},
ieTIC
ej;: number of times x; exists in constraint i €IC},
€jmas:  Max{ej},
leICJ
aji: number of multiplicative terms z; is involved in constraint i€IC},
Gjmaz: Max {aji},
1elCj
ti: binary parameter indicating that z; exists in a trigonometric
expression in constraint i € ICj,
Dji: binary parameter indicating that z; exists in an even power or

abs expression in constraint i € IC;.

3 Solving COP Applications with IP

3.1 Selected Applications

The following applications have been selected to test the performance of the
proposed IP.

1. Planar Truss Design [HWY03]

Consider the planar truss with parallel chords shown in Fig. 4 under the
action of a uniformly distributed factored load of p = 25 kN/m, including the
dead weight of approximately 1 kN/m. The truss is constructed from bars of
square hollowed cross-section made of steel 37. For chord members, limiting
tensile stresses are 190 MPa, for other truss members 165 MPa.

The members are divided into four groups according to the indices shown
in Fig. 4. The objective of this problem is to minimize the volume of the
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P=25kN/m

WWWWWWWWWWWWQ{

4a=12m

Fig. 4. Optimal design of a planar truss with parallel chords

truss, subject to stress and deflection constraints. Substituting material prop-
erty parameters and the maximum allowable deflection that is 3.77 cm, the
optimization model can be simplified. However, the original model is a dis-
crete constrained optimization problem [HWYO03], which is converted into a
continuous optimization problem described below.

Maximize f = —(600 x A1 + 2910.4 * Ay + 750 % A3 + 1747.9 x A;) (cm?®),
subject to:

Al Z 30.0 sz,

Ay > 24.0 cm?,

Ay > 14.4 cm?,

Ay > 11.2 cm?, and

313920/A, + 497245/ A5 + 22500/ A5 + 67326/ A4 < 25200 (IKN-cm).

The first four inequalities are the stress constraints, while the last one is
the deflection constraint.

The search space is: 4; = [30,1000], Ay = [24,1000], A3 = [14.4, 1000},
A4 =[11.2,1000].

Here A, is the area in cmy with indices i = 1,2, 3, 4. The objective function
is a simple linear function, but the deflection constraint turns the feasible
domain into a non-convex one.

Hsu et. al [ HWYO03] report an optimal design point for the original discrete
model as A = (55, 37.5,15,15), and the minimum volume of the truss for this
solution is 179,608.5. However, for a continuous model, we find a minimum
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volume of the truss as 176,645.373 using the IP and other solvers used in the
comparison.

2. Pressure Vessel Design [HWYO03]

Figure 5 shows a cylindrical pressure vessel capped at both ends by hemi-
spherical heads. This compressed air tank has a working pressure of 3,000 psi
and a minimum volume of 750 feet®. The design variables are the thickness of
the shell and head, and the inner radius and length of the cylindrical section.
These variables are denoted by ), 9,23 and x4, respectively. The objective
function to be minimized is the total cost, including the material and form-
ing costs expressed in the first two terms, and the welding cost in the last
two terms. The first constraint restricts the minimum shell thickness and the
second one, the spherical head thickness. The 37¢ and 4** constraints repre-
sent minimum volume required and the maximum shell length of the tank,
respectively. However, the last constraint is redundant due to the given search
domain. The original model for this application is again a discrete constrained
optimization problem. The continuous model is provided below.

Maximize f = —(0.62247,2314 + 1.77812,72 + 3.16612274 + 19.847213)
subject to:

—z7 +0.0193z3 <0,

—z5 + 0.00954z5 < 0,

(—mzizy — 4723/3)/1296000 + 1 < 0, and

z4 — 240 < 0.

The search space is: z; = [1.125,2], x5 = [0.625,2], 23 = [40,60], 74, =
[40,120]. Hsu et. al [HWYO03] list the reported optimal costs obtained by
different formulations as given in Table 1. The least cost reported by IIR
for designing a pressure vessel subjected to the given constraints is 7198.006.
Other solvers report the same objective function value.

Table 1. List of the reported optimal costs obtained by different formulations

Problem Formulation Reported optimal solution Reference
Continuous -7198.01 [HWY03]
Discrete -7442.02 [HWY03]
Discrete -8129.14 [San88]
Mixed discrete -7198.04 [KK94)

3. Simplified Alkylation Process [BLW80, Pri]

This model describes a simplified alkylation process. The nonlinearities
are bounded in a narrow range and introduce no additional computational
burden.
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Fig. 5. Pressure vessel design

The design variables for the simplified alkylation process are olefins feed,
isobutane recycle, acid feed, alkylate yield, isobutane makeup, acid strength,
octane number, iC4 olefin ratio, acid dilution factor, F4 performance number,
alkyate error, octane error, acid strength error, and F4 performance number
error. The objective function maximizes profit per day. The constraints repre-
sent alkylate volumetric shrinkage equation, acid material balance, isobutane
component, balance, alkylate definition, octane number definition, acid dilu-
tion factor definition, and F4 performance number definition. The model is
provided below.

Maximize f = 5.0dz3z4 + 0.352135 + 3.36314 — 6.321 22
subject to:

z; — 0.81967213114754101 25 — 0.81967213114754101z,4 = 0,

—3zo + 3212 = —1.33,

22.2z5 + z7211 = 35.82 (acid material balance),

—0.325z5 — 0.01098z¢ + 0.00038$% + Tax1g = 0.57425,

0.98z4 — z5(z4 + 0.01z127) =0,

1129 — 23(0.13167z6 — 0.0067z2 + 1.12) = 0,

10213 + 714 — Z326 = O (isobutane component balance).

The search space is: 1 = [1,5], 22 = [0.9,0.95], z3 = [0, 2], 24 = [0,1.2],
x5 = [0.85,0.93], ¢ = [3,12], 27 = [1.2,4], zg = [1.45,1.62], z9 = [0.99,1.01],
T10 = [0.99,1.01], z; = [0.9,1.112], 12 = [0.99,1.01], z13 = [0,1.6], 214 =
[0,2]. The optimal solution for alkylation process is 1.765.

4. Stratified Sumple Design [Pri]

The problem is to find a sampling plan that minimizes the related cost
and yields variances of the population limited by an upper bound.
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Maximize f = —(x1 + z2 + 23 + 24)

subject to
0.16/x1 + 0.36/x2 + 0.64/x3 + 0.64/z4 — 0.010085 < 0,
4/x1 +2.25/22 + 1/z5 + 0.25/z, — 0.0401 < 0.

The search space is z; = [100, 400000}, zo = [100,300000], z3 = [100,
200000}, and z; = [100,100000]. The optimum value for this problem is -
725.479.

5. Robot [Pri, BFG87]

This model is designed for the analytical trajectory optimization of a robot
with seven degrees of freedom.

Maximize f = —((z1 — 28)% + (22 — 29)? + (23 — T10)? + (24 — 211)2+
(25 — £12)? + (36 — 213)% + (27 — 214)?)

subject to
COS X1 + COS Ty + COSZ3 + COSZT4 + COS Ty + cosxg + 0.5 % coszy = 4,
sinxy + sinzg + sinzz + sin x4 + sin x5 + sinzg + 0.5 * sinz; = 4.

The search space is z; = [-10,10], 7 = 1,2,3,4,...,14. The optimal solu-
tion for this problem is 0.0.

4 Numerical Results

The numerical results are provided in Table 2. We compare IP results
with five different solvers that are linked to the commercial software GAMS
(www.gams.com) and FSQP [ZT96, LZT97], the code was provided by AEM
[Aem]. The solvers used in this comparison are BARON [Sah03], Conopt
[Dru96], LGO [Pin97], Minos [MS87], and Snopt [GMS97].

For each application we report the absolute deviation from the global
optimum obtained at the end of the run and the CPU time necessary for
each run in new Standard Time Units (STU, [SNS*02] 105 times as defined
in [TZ89]). All runs were executed on a PC with 256 MB RAM, 2.4 GHz P4
Intel CPU, on Windows platform. The I P code was developed with Visual
C++ 6.0 interfaced with the PROFIL interval arithmetic library [Knu94] and
FSQP. One new STU is equivalent to 229.819 seconds on our machine. GAMS
solvers were run until each solver terminates on its own without restricting
the CPU time used or the number of iterations made. FSQP was run with a
maximum number of iterations allowed, that is 100 in this case. However, in
these applications FSQP never reached this iteration limit. /P was run until
no improvement in the CLB was obtained as compared with the previous
stage of the search tree. However, if a feasible solution has not been found
yet, the stopping criterion became the least feasibility degree of uncertainty,
INFy.
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Table 2. Comparison of results obtained. The problem names (global optimum val-
ues) are Pressure Vessel (-7198.006), Planar Truss (-176645.373), Alkyl (1.765), and
Sample (-725.479), respectively. For the IIR method the number of stages, FSQP
calls, and the average number of variables in parallel (maximal/minimal), and the
number of function calls were (2, 18, 3.04/4.2, 402), (2, 27, 3/4.2, 257), (2, 631,
4.04/5.3, 8798), and (6, 917, 3.56/4.3, 12000), respectively. The summary of the av-
erage results for the first 4 problems is: for the number of stages is 3.000, the number
of FSQP calls is 398.250, and the average number of function calls is 5364.25. For
the 5., robot optimization the global optimum was zero, and the efficiency measures
(1, 1, 2.25/3.2, 62). The final summary provides the following average figures: the
number of stages is 2.600, the number of FSQP calls is 318.800, and the average
number of function calls is 4303.800

Probl. Dim. Performance IIR. FSQP Baron Conopt LGO Minos Snopt
Deviation 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 4 CPU(STU) 0.000 0.000 0.001 0.000 0.000 0.000 0.000
Deviation 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 4 CPU(STU) 0.001 0.000 0.001 0.000 0.000 0.000 0.000
Deviation 0.000 0.000 0.000 0.000 0.0001.765 0.000
3 14 CPU(STU) 0.263 0.000 0.292 0.000 0.003 0.000 0.000
Deviation 1.200 26706.5 1.158 1.201 oo 1.168 0.000
4 4 CPU(STU) 0.056 0.000 0.000 0.000 0.002 0.000 0.000

Summary Avg. deviation  0.300 6676.625 0.290 0.300 0.000 0.733  0.000
Std. dev. for it~ 0.600 13353.25 0.579 0.601 0.000 0.881  0.000
Avg. CPU time 0.080 0.000 0.073 0.000 0.001 0.000 0.000

# best solutions 3 3 3 3 3 2 4

# unsolved probl. 0 0 0 0 1 0 0

Deviation 0.000 0.000 NA 271 5.463 343.022 13.391
5 14 CPU(STU) 0.000 0.000 0.000 0.046 0.001 0.000

Final sum. Avg. deviation  0.240 5341.300 0.290 5.659 1.366 69.191 2.678
Std. dev. for it 0.537 11943.51 0.579 11.994 2.732 153.078 5.989
Avg. CPU time 0.064 0.000 0.073 0.000 0.010 0.000 0.000
# best solutions 4 4 3 3 3 2 4
# unsolved probl. 0 0 1 0 1 0 0

In Table 2, we report additional information for IP. For each application,
we report the number of tree stages where I'P stops, the number of times
FSQP is invoked, the average number of variables partitioned in parallel for a
parent box (the maximum and minimum numbers are also indicated in paren-
thesis), and the number of function calls invoked outside FSQP. We provide
two summaries of results obtained excluding and including the robot applica-
tion. The reason for it is that BARON is not enabled to solve trigonometric
models.

When we analyze the results, we observe that Snopt identifies the optimum
solution for four of the applications excluding the robot problem. However, its
performance is inferior for the robot problem as compared to I P and FSQP.
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For the robot application, FSQP identifies the global optimum solution in the
initial box itself (stage zero in IP). That is why IP stops at the first stage.
The performance of the local optimizers, Minos and Conopt, is significantly
inferior in this problem. In the pressure vessel and planar truss applications,
all GAMS solvers, IP and FSQP identify the global optimum with short CPU
times (I P and BARON take longer CPU time). For the Alkyl problem, Minos
is stuck at a local stationary point while BARON and IP take longer CPU
times. In the Sample application, LGO does not converge and FSQP ends up
with a very inferior solution. On the other hand, I'P runs for 6 tree stages and
results in an absolute deviation that is comparable with those of BARON,
Conopt and Minos.

When the final summary of the results is analyzed, we observe that IP’s
performance is as good as BARON’s (which is a complete and reliable solver)
in identifying the global optimum and regarding CPU time. The use of FSQP
in IP (rather than the Generalized Reduced Gradient local search procedure
available in BARON) becomes an advantage for IP in the solution of the
robot problem. Furthermore, I P does not have any restrictions in dealing with
trigonometric functions. The impact of interval partitioning on performance is
particularly observed in the Sample application where FSQP fails to converge.
For these applications, the number of tree stages that I P has to run for is quite
small (two) except for the Sample problem. The average number of variables
partitioned in parallel in I P varies between 2 and 4. The dynamic parallelism
imposed by the weighting method seems to be effective as it is observed that
different scales of parallelism are adopted for different applications.

5 Conclusion

A new interval partitioning approach (I P) is proposed for solving constrained
optimization applications. This approach has two supportive features: a flex-
ible tree search management strategy and a new variable selection rule for
partitioning parent boxes. Furthermore, the proposed IP method is inter-
faced with the local search FSQP that is invoked when no improvement is
detected regarding the area of disposed boxes. FSQP is capable of identifying
feasible stationary points quickly within the restricted areas of boxes.

The tree management strategy proposed here can also be used in non-
interval partitioning algorithms such as BARON and LGO. It is effective in
the sense that it allows going deeper into selected promising parent boxes while
providing a larger perspective on how promising a parent box is by comparing
it to all other boxes available in the box list of the current stage. The proposed
variable selection rule is able to make an inference related to the pair of vari-
ables that have most impact on the uncertainty of a box’s potential to contain
feasible and optimal solutions. By partitioning the selected maximum impact
variables these uncertainties are reduced in the immediate sibling boxes after
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the parent is partitioned. The latter results in earlier disposal of boxes due to
their sub-optimality and infeasibility.

This whole framework enhances the convergence speed of the interval par-
titioning algorithm in the solution of COP problems. In the numerical results
it is demonstrated that the proposed I P can compete with available commer-
cial solvers on several COP applications. The methodology developed here
is generic and can be applied to other areas of global optimization such as
the continuous Constraint Satisfaction Problem (CSP) and box-constrained
global optimization.
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1 Introduction

Interval arithmetic is a valuable tool in numerical analysis and modeling. In-
terval arithmetic operates with intervals defined by two real numbers and
produces intervals containing all possible results of corresponding real op-
erations with real numbers from each interval. An interval function can be
constructed replacing the usual arithmetic operations by interval arithmetic
operations in the algorithm calculating values of functions. An interval value
of a function can be evaluated using the interval function with interval ar-
guments and determines the lower and upper bounds for the function in the
region defined by the vector of interval arguments.

A disadvantage of interval arithmetic is the dependency problem which
causes widening of computed intervals and overestimation, i.e. the interval
value of the function is much wider than the range of real function values. In
this chapter the ways to estimate ranges of functions using standard interval
arithmetic and special inner interval arithmetic are reviewed.

2 Interval Arithmetic

Interval arithmetic is proposed in [Moo66]. Interval arithmetic operates with
real intervals £ = [z,Z] = {z € R|z < 2z < T}, defined by two real numbers
z € Rand T € RN, z < T. In this chapter interval arithmetic proposed
in [Moo66] is called standard interval arithmetic to distinguish from other
interval arithmetic reviewed. For any real arithmetic operation z o y the cor-
responding standard interval arithmetic operation Z o 7 is defined as an oper-
ation whose result is an interval containing every possible number produced
by the real operation with the real numbers from each interval. The standard
interval arithmetic operations are defined as:
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T+Yy= [z-f—g,:c—ky‘],
Z-7=[z-75T-y],
( [zy,Z7], z>0,5>0,
zy, 77 , z>0,730,
Ty, 27) z>0,5<0,
(27,77], £30,7>0,
T xy = ¢ |min(z7, Ty), max(zy, ng)] , 230,730,
B Zy, zy], £30,5<0,
27, Ty] z<0,5>0,
27, zy] , £<0,730,
( [Z7, 23], T<0,7<0,
([2/9,%/y],Z>0,5>0,
Z/7,2/y], 2> 0,7 <0,
/7 = z/y,z/y] , 22 0,7 >0,
=) =B/Y2/y], 20,7 <0,
z/y,Z/y], Z <0, >0,
L Z/y,2/79) ,£<0,7<0.

Computers with limited precision can not represent all real numbers ex-
actly. To guarantee the interval enclosure outward rounding should be used:
during interval computation the number representing the lower end of the
resulting interval (z) should be rounded toward —oo and the number repre-
senting the upper end of the resulting interval () should be rounded toward
+00. Standard interval arithmetic with outward rounding may be used to
find guaranteed interval enclosure of the result of real operations, while real
arithmetic may produce incorrect results because of rounding errors in real
computations. Although computers with limited precision can not represent
all real numbers exactly, they can represent guaranteed enclosures using in-
tervals, for example T = [3.1415, 3.14186].

Because of the necessary outward rounding in interval arithmetic, the im-
plementation of interval arithmetic is not straightforward. Publicly available
C and C++ packages for interval arithmetic are investigated and compared
experimentally in [21105]. The speed of interval arithmetic operations and
width of resulting intervals have been investigated with experimental com-
parisons. Experiments have shown that commercial SUN Forte C++ interval
library [Sun01] is the fastest and most accurate from the investigated imple-
mentations of interval arithmetic. However when the commercial library is
not available or a different platform is used, the freely available C++ inter-
val library filib++ [LTG'01] is preferable. Moreover it is editable contrary
to the integrated interval arithmetic library for the SUN Forte Compiler, and
therefore it is the most preferable for implementation of non standard interval
arithmetic reviewed in the following sections.

An interval function can be constructed replacing the usual arithmetic
operations by the interval arithmetic operations in the algorithm for calcula-
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tion values of the function. An interval value of the function can be evaluated
using the interval function with interval arguments. The resulting interval al-
ways encloses the range of real function values in the hyper-rectangular region
defined by the vector of interval arguments:

{fX)XeX,XeR" XeR"} Cf(X),

where f: R" = R, f: [R,R]" — [R, R]. Because of this property the interval
value of the function can be used as the lower and upper bounds for the
function in the region.

The bounds may be used in global optimization to detect the sub-regions of
the feasible region which cannot contain a global minimizer. Such sub-regions
may be discarded from further search. The first version of interval global op-
timization algorithm was oriented to minimization of a rational function by
bisection of sub-domains [Ske74]. Interval methods for global optimization
were further developed in [Moo77, Han78a, Han78b], where the interval New-
ton method and the test of strict monotonicity were introduced. A thorough
description including theoretical as well as practical aspects can be found
in [HWO03] where the very efficient interval global optimization method in-
volving monotonicity and non-convexity tests and the special interval Newton
method is described. The method assumes that the objective function is twice
continuously differentiable. The mathematical expressions of the functions
should be available. If the monotonicity and non-convexity tests and interval
Newton method are not used the method can minimize even noncontinuous
functions, but then it is not so efficient.

A branch and bound technique is usually used to construct interval global
optimization algorithms. An iteration of a classical branch and bound algo-
rithm processes a node in the search tree representing an yet unexplored sub-
space of the solution space. Iterations have three main components: selection
of the node to process, bound calculation, and branching. The rules of selec-
tion, branching and bounding differ from algorithm to algorithm. All interval
global optimization branch and bound algorithms use the hyper-rectangular
partitions and branching is usually performed bisecting the hyper-rectangle
into two. The bounding rule describes how the bounds for a minimum are
found. In interval global optimization algorithms bounds are estimated using
interval arithmetic.

A disadvantage of standard interval arithmetic is the dependency prob-
lem [HWO03]: when a given variable occurs more than once in interval com-
putation, it is treated as a different variable in each occurrence. This causes
widening of computed intervals and overestimation of the range of function
values.

For example, for real arithmetic, definitions

22+ 2y = (z+ 29z = (z+y)* —y°

are equal. However, if £ = [-1,1] and § = [~1, 1], intervals
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ZZ + 2@: [_273]1 (E"_ QE)Z = [_3»3]» (Z"‘y)z - QQ = [_174]

overestimate the range of real function values [—1, 3] by 25--50%.

The tightness of bounds is a very important factor for efficiency of branch
and bound based global optimization algorithms. An experimental model of
interval arithmetic with controllable tightness of bounds to investigate the im-
pact of bounds tightening in interval global optimization is proposed in [2206].
The experimental results on efficiency of tightening bounds are presented for
several test and practical problems. Experiments have shown that the rela-
tive tightness of bounds strongly influences efficiency of global optimization
algorithms based on branch and bound approach combined with interval arith-
metic.

Standard interval arithmetic provides guaranteed bounds but sometimes
they are too pessimistic. Standard interval arithmetic is used in global op-
timization providing guaranteed solutions, but there are problems for which
the time of optimization is too long. We hope that it is possible to construct
global optimization algorithms using estimates of ranges of functions instead
of interval bounds. In this chapter the methods to estimate ranges of functions
using interval arithmetic and special inner interval arithmetic are reviewed.

3 Random Interval Arithmetic

Random interval arithmetic (RIA) proposed in [ALO1] is obtained by choosing
the standard or inner interval operations randomly with the same probability

at each step of the computation. The inner interval arithmetic operations are
defined as:

Z+inY=[2+YVZ+y],
Z-my=[z-yvT-7],

([zy Vv Ty], z>0,y>0,
2y, 27], £>0,730,
zZyVzy], z>0,7<0,
:gy_,fg], z>50,y>0,

TXinf = J [max (27, Ty), min(zy, Zy)] , £3 0,7 3 0,
| Zma), £50,7<0,

[zy vy, <0,y >0,

zy,Ty], £<0,y30,

\ [y v 23], £<0,7<0,

([z/yVvZ/y],Z>0,7>0,
Z/yvaz/y),2>0,7<0,

T/l = [__a_i/y,f/'y“], £30,5>0,
slmg Z/y,z/y], £30,5<0,
z/yVzZ/y], T <0,7 >0,

L [Z/yv eyl 2<0,5<0,
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where [a V b} = [min(a, b), maz(a, b)].

Reference [ALO1] suggests estimating the range of function values using a
number of sample intervals evaluated using RIA. The estimation is based on
the assumptions that the distribution of the centres of the evaluated intervals
is normal with a very small relative standard deviation and the distribution
of the radii is normal but taking only positive values. The mean value of the
centres ficentres, the mean value of the radii p,44;; and the standard deviations
of the radil ¢,44i; Of the intervals computed using RIA are used to evaluate
an approximate range of the function

[,Ucentres =+ (,Uradii + aoradii)] 3 (1)

where « is between 1 and 3 depending on the number of samples and the
desired probability that the exact range is included in the estimated range. It
is suggested in [ALO1] that a compromise between efficiency and robustness
can be obtained using a = 1.5 and 30 samples. Experimental results presented
in [ALO1] for some functions over small intervals show that RIA provides tight
estimates of the ranges of the considered function values with probability
close to 1. However, in their experiments, the intervals of variables of the
function considered were small. In the case of large intervals of variables, and
particularly for multivariable functions, the obtained estimates for a range of
function values frequently do not fully enclose the range of function values.

4 Balanced Random Interval Arithmetic

For the application of RIA to global optimization and modeling it is impor-
tant to extend these ideas to the case of functions defined over large multi-
dimensional regions. Balanced random interval arithmetic (BRIA) proposed
in [ZB04] extending the ideas of [ALO1], is obtained by choosing the standard
and inner interval operations at each step of the computation randomly with
predefined probabilities of the standard and inner operations. A number of
sample intervals are evaluated using BRIA. It is assumed that the distribution
of centres of the evaluated balanced random intervals is normal and that the
distribution of radii is folded normal [JK95], also known as absolute normal,
because the radii cannot be negative. The range of values of the function in
the defined region is estimated using the mean values (1) and the standard
deviations (o) of centres and radii of the evaluated balanced random intervals:

[,Ucentres + (3-Ogcentres + Uradis + 3‘00ra(liz')] . (2)

If the estimated range exceeds the standard interval function in the same
region, the evaluated interval is intersected with the standard interval while
not reducing the probability that the estimated range contains all the values
of function in the region.
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The result of BRIA is equal to the result of standard interval arithmetic
when the predefined probability of standard interval operations is equal to 1
and the probability of inner interval operations is equal to 0. The result of
BRIA is equal to the result of inner interval arithmetic when the predefined
probability of standard interval operations is equal to 0 and the probability
of inner interval operations is equal to 1. BRIA provides wider or narrower
ranges depending on the predefined probabilities. The values used for the
predefined probabilities depend on the balance required between tightness of
resulting intervals and the probability that resulting intervals contain all the
values of the function.

The sample mean value and the sample standard deviation of centres dis-
tributed by normal distribution may be estimated using simple formulas

1 N
Heentres = ’N" Z centre;,
i

1 N
Ocentres = N——I 'g 1 (centrei - ,Ucentres)Qa

where centre; = (f; + fi)/2. The sample standard deviation of centres dis-
tributed by normal distribution can be estimated using the second moment:

_ 2
Ocentres = \/MZCentres — Keentreso

1 ;
— .2
Macentres = 3 Z centres; .

Second and fourth moments are needed to estimate the sample mean value
and the sample standard deviation of radii distributed by a folded normal

distribution:
3M. M
2 di dradii
Mradis = \/\/ radii )

3M. -M
2 adi dradii
Oradii = \/mQ \/ rodis >

M2radu = ’N" Z ad”
=1

2

Z

1 »
M4radii = Z a'd”ia

i=1

2|

where radii; = (fi — f;)/2.
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The Kolmogorov-Smirnov test [Dar57, PFTW92] can be used to test the
acceptability of the sample to the hypothetical distribution. The Kolmogorov-
Smirnov statistic is the maximum value of the absolute difference between two
cumulative distribution functions. A routine for evaluation of the significance
level to disprove the null hypothesis that the distributions are the same, is
implemented in [PFTW92]. Cumulative distribution function of the hypothet-
ical distribution should be provided. The cumulative distribution function of
a normal distribution is known:

exp ( ——-:-‘I—QE> dt.
0\/27r 202

The cumulative distribution function of the folded normal distribution is:

P(z)

These functions can be defined using the complementary error function im-
plemented in [PFTW92]:

P(z)=1- lerﬁ;((j\[)
1

__ 1 L “To BN,
Ps(z) = erfc(g\/_> erfc( 0\/§>’ > 0.

For example the balanced random interval values of a multidimensional
scaling stress function with data from soft drinks testing [Mat96] were com-
puted for a randomly generated subregion. The histograms of centres and
radii of a sample of 1000 interval function values computed using BRIA are
presented in Fig. 1. Values of the predefined probability (0.5 and 0.6) of the
standard interval arithmetic operations are shown. The centres and radii of
interval function values computed using standard and inner interval arith-
metics are shown as vertical lines and denoted by ‘inner’ and ‘standard’. The
mean values of the centres and radii move towards the centre and radius of the
standard interval when the probability of standard interval operations is in-
creasing. The sample means and the sample standard deviations of the centres
and radii of the generated random intervals are presented above the figures.
The graphs of normal distributions for centres and the folded normal distribu-
tions for radii with the evaluated sample means and standard deviations are
also shown in Fig. 1. The histograms of centres and radii of the random inter-
vals are similar to the theoretical distributions. The Kolmogorov-Smirnov test
was used to test the acceptability of the hypothetical distributions. P-values
of tests, denoted PKS, are presented below the figures. The Kolmogorov-
Smirnov test supports our observation: at the standard significance level 0.05
the theoretical hypotheses should be accepted.

When the predefined probability of the standard interval operations is 0.5,
the standard or inner interval operations are chosen with the same probability.
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centers: u=135.80, 6=3.29 centers: n=140.65, 6=3.45
nner standard nner standard
u-3.0c u+3.00 u-3.0c w+3.00
PKS=0.99 PKS=0.82
radii: u=7.80, 0=11.94 radii: u=21.63, 0=13.38
nner standard nner standard
1 ﬁTﬂTFrh-,jo
PKS=0.65 PKS=0.77
a) 0.5 b) 0.6

Fig. 1. The histograms of centres and radii of balanced random intervals with shown
values of the predefined probability of the standard interval arithmetic operations
for the multidimensional scaling function

Therefore, Fig. 1a may represent results of RIA as well. However, the standard
deviation of centres is not small, therefore (2) is preferable to (1).

The disadvantage of BRIA (and RIA as well) is that computations with
this arithmetic use more calculations than with standard interval arithmetic,
because the number of random intervals that must be evaluated. When 30
samples are used, BRIA is more than 31 times more expensive than standard
interval arithmetic. Another disadvantage is the assumption that distributions
of centres and radii of the evaluated balanced random intervals are normal
and folded normal respectively. The assumption is not true when computations
involve a small number of arithmetic operations, what was shown in [ZB03]
for simple mathematical global optimization test functions.

5 Underestimating Interval Arithmetic

Kaucher arithmetic [Kau77, KNZ96} defining underestimates is useful to es-
timate how much standard interval bounds overestimate the range of values
of function. A regularized version of Kaucher arithmetic proposed in [ZZ05]
assumes regularity of the dependency between variables. The main difference
from the underestimates to inner interval arithmetic concerns underestimating
of the results of multiplication. In the underestimation assuming regularity of
the dependency between variables, multiplication is defined as:

>00rz<0,7<0,
qunderg: [M(g,f’ bl H ay <00rz<0,y>0,
(1(2, 7,7, ), (2, 7,3, 9)] , otherwise,
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where

(502—(’01)1/2“?01(‘!/2*!!1) > 1
)

Tay1, ( 2(z2—@1)(y2—y1)
To—Z —T -

(@, @2,y 92) = T1y2, ea st g <O
_(wayr—2191)® otherwise.

4(z2—w1)(y2—y1)’

The exact range of function values is between the results of overestimating
interval arithmetic and underestimating interval arithmetic.

6 Non-Random Methods for the Estimation of Ranges
of Functions

Estimates of the ranges of function values estimated from the results of
standard interval arithmetic and inner interval arithmetic are investigated
in [Zil06). There, balanced interval arithmetic (BIA) is defined as the weighted
mean of the resulting standard and inner intervals of the function:

pex f(X) +(1=pe) x |, (X)), (3)

where the predefined coefficient 0 < pc < 1 defines the balance between stan-
dard and inner resulting intervals. Similarly, it is possible to balance standard
and inner intervals in every interval operation defining balanced in every op-
eration interval arithmetic (BIEOIA):

Zopg=pcx (Tog) + (1 —pc) x (ZomF). (4)

The other way to estimate the ranges of function values investigated
in [Zil06] was called scaled interval arithmetic (SIA), which is acquired from
the standard interval by scaling its radius:

(£ X)) +T7 (X)) /22 pex (F(X) - (X)) /2] (5)

Similarly as with BIEOIA, it is possible to scale the radii of standard in-
tervals in every interval operation defining scaled in every operation interval
arithmetic (SIEOQIA):

zo,7=[(zog+Tog) 2pex (Tog-207) /2. O

BIA, BIEOIA, STA and SIEOIA provide wider or narrower ranges depend-
ing on the predefined coefficient. The values used for the predefined coefficient
depend on the balance required between tightness of resulting intervals and
the probability that resulting intervals contain all the values of the function.
When the predefined coefficient is equal to 1, the results of BIA, BIEOIA, SIA
and SIEOIA are equal to the results of standard interval arithmetic. When the
predefined coefficient is equal to 0, the results of BIA and BIEOIA are equal




106 Julius Zilinskas and Tan David Lockhart Bogle

to the results of inner interval arithmetic, and the results of SIA and SIEOIA
are intervals with zero width and centres equal to the centres of resulting
standard intervals.

The ranges of the values of the functions in random regions have been
estimated using different ways proposed in [Zil06] with different values of
the predefined coefficient and using BRIA with different values of predefined
probability of standard interval arithmetic operations. Two criteria have been
used in comparison of estimates of ranges: the success rate and the mean ratio
of widths of estimated ranges and bounds evaluated using standard interval
arithmetic.

The success rate shows which part of the ranges of the values of the given
function over random regions is estimated successfully using the given way
with given predefined coefficient or predefined probability. Successful estima-
tion means estimation of ranges which enclose all values of the function in
the region. When estimated ranges for the values of the function are used in
global optimization, the success rate determines the reliability of the global
optimization algorithm. The algorithm is more reliable when the success rate
is higher.

The mean ratio of widths shows how estimated ranges are tighter than
bounds evaluated using standard interval arithmetic. As estimated ranges
can not be wider than bounds evaluated using standard interval arithmetic,
the mean ratio of 1.0 means that the widths of estimated ranges are equal
to the widths of bounds evaluated using standard interval arithmetic. When
estimated ranges of the values of the function are used in global optimization,
the mean ratio of widths determines the speed of the global optimization
algorithm. The mean ratio of widths is smaller when estimated ranges are
tighter and subregions are discarded earlier. So, the algorithm is faster when
the mean ratio of widths is smaller.

The estimation of ranges is more reliable when the success rate grows ear-
lier, therefore it is more reliable when the curve representing the success rate
depending on the value of predefined probability or coefficient is higher. The
ranges are tighter when the mean ratio of widths grows later, therefore the
estimated ranges are more tighter when the curve representing the mean ra-
tio of widths depending on the value of predefined probability or coefficient
is lower. However both criteria depend on the predefined probability or co-
efficient and are related to each other. The relationship between the success
rate and mean ratio of widths shown in [Zil06] is more informative. The esti-
mation is more reliable with tighter ranges when the curve representing the
relationship is higher. Moreover the value of the mean ratio of widths when the
success rate reaches 1.0 shows what possible improvement against standard
interval bounds may be reached using estimates of the ranges of the function
values. If the value of the mean ratio of widths is 70%, improvement of 30%
may be reached. The results of the experiments summarized in Table 1 show
that ranges estimated using BIA compete with ranges estimated using BRIA.
BIEOIA is a little bit less promising, SIA is even less promising, and SIEOQIA
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is not promising. It is important to note that these ways require much less
computations than BRIA.

Table 1. Possible improvement against standard interval bounds when using esti-
mates of ranges for test functions of global optimization

fest function BRIA (2) BIA (3) BIEOIA (4) SIA (5) SIEOIA (6)
Multidimensional scaling 30% 30% 15% 10% -
Separation 60% 60% 60% 60% 60%
Paviani 30% 40% 40% 40% -
Goldstein and Price 40% - - - -

Six Hump Camel Back 15% 15% - - -
Shekel 5, 7, 10 10% 10% - - -
Levy 4, 5, 6, 7 515%  515%  5-15% : -

7 Conclusions

In this survey methods to estimate ranges of functions using standard interval
arithmetic and inner interval arithmetic have been reviewed. Balanced random
interval arithmetic proves to be promising but expensive. Computationally
cheaper non-random balanced interval arithmetic is less tight but may be
a good alternative. Although estimates are experimentally investigated on
a several test functions for global optimization, there is a lack of results of
applying of them to solve practical global optimization problems. This would
be most promising direction of further research in the area.
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1 Introduction

Unconstrained pseudo-Boolean optimization is an issue that studied enough
now. Algorithms that have been designed and investigated in the area
of unconstrained pseudo-Boolean optimization are applied successfully for
solving various problems. Particularly, these are local optimization meth-
ods [AL97, AM04a, PS82] and stochastic and regular algorithms based on
local search for special function classes [ASS90, BSV02, WWO02]. More-
over, there is a number of algorithms for optimization of functions given
in explicit form: Hammer’s basic algorithm that was introduced in [HR68§]
and simplified in [BHO02]; algorithms for optimization of quadratic functions
[AFLS01, FH00, HS89], etc. Universal optimization methods are also used suc-
cessfully: genetic algorithms, simulated annealing, tabu search [Gol89, Sch95].

If there are constraints on the binary variables, one of ways to take into
account it as is well known is construction and optimization of an generalized
penalty function. Shortcoming of this approach is existence of a large number
of local optima of the generalized function that will be shown below. If an
accessible region is a connected one then this issue can be partly eliminated,
for example, by using local search with a stronger system of neighborhoods.
Extension of search neighborhood reduces the number of local optima which
locate mainly not far one from another in this case.

If an accessible region is unconnected then using penalty functions and
unconstrained optimization methods get complicated because the accessible
region is usually too small with respect to optimization space. That makes
difficult searching feasible solution.

In this chapter some heuristic procedures of boundary point search are
considered for a constrained pseudo-Boolean optimization problem. Exper-
imental investigation of the algorithms are described, recommendations for
their applying are given.
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2 Basic Definitions

Consider some definitions that are necessary for describing optimization algo-
rithm work [AMO04b, ASS90].

e A pseudo-Boolean function is called a real function of binary variables:
f: BY - R' where By = {0,1}, B} = By X By X -+ X Bs.

e Points X', X2 € B} are called k-neighboring points if they differ in k coor-
dinate value, k = 1,n. 1-neighboring points are called simply neighboring.

e The set Ox(X), k = 0,7, of all point of BY, that are k-neighboring to a
point X, is called a k-th [evel of the point X.

e A point set W(X°, X" = {XO X' ... X'} C B is called a path between
points X° and X' if for Vi = 1,...,] the point X’ is a neighboring to
Xi-1

e A set A C BJ is called a connected set if for VX% X! € A the path
W(X° X" C A exists.

e A point X* € BP, for which f(X*) < f(X), VX € O0,(X™), is called a
local minimum of pseudo-Boolean function f.

¢ A pseudo-Boolean function that has an unique local minimum is called an
unimodal on BY function.

e An unimodal function f is called monotonic on By if VX* € O (X*), k =
T f(XP1) < F(XF),VXETT € Opr (XF) U 01 (XF).

Example: A polynomial of binary variables
m
80($1,. ,$n) = Za'j H Ty,
Jj=1 1E€EL;

where §; C 1,...,n, is an unimodal and monotonic pseudo-Boolean function
fora; >0, j =1,m.

3 Problem Statement

Consider the problem of the following form

C(X) %X.?S%XB;’ (1)

where C(X) is a monotonically increasing from X° pseudo-Boolean function,
S C B¥ is a certain subregion of the binary variable space; it is determined
by a given constraint system, for example:

Aj(X) < Hj,j=T1,m. (2)

In the general case a set of feasible solutions S is a unconnected set.
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4 Properties of a Set of Feasible Solutions
of the Problem

e A point Y € A is a boundary point of the set A if there exist X € O1(Y)
for which X ¢ A.

e A point Y € 04(X°) N A is called a limiting point of the set A with the
basic point X° € A if for VX € O1(Y) N 0;41(X% X ¢ A4 holds.

e A constraint that determine a subregion of the binary variable space is
called active if the optimal solution of the conditional problem do not
coincide with the optimal solution of the appropriate problem without
taking the constrain into account. Consider some properties of a feasible
solution set [AMO04Db].

e If the object function is a monotonic unimodal function and the constraint
is active then the optimal solution of the problem 1 is a point that belongs
to the subset of limiting points of the feasible solution set S with the basic
point X in which the object function takes the lowest value:

(4] . .
C(X") = eréllgl; C(X).

¢ Consider a problem 1 with a constraint 2. If the constraint function 2 is
an unimodal function then the set S of feasible solutions of the problem 1
is a connected set.

¢ A number of limiting points of a connected feasible solution set for the
problem 1 equals s < spax = CL"/Q], where (/2] is the integer part of the
value n/2. In case of s = smax all limiting point belong to O, ;5 (X?) if n
is even and to O(n_l)/g(XO) (OI‘ O(n+1)/2(X0)) if n is odd.

5 Transfer to Unconstrained Optimization

One of ways to take into account constraints in conditional problems is con-
struction a generalized penalty function.
Counsider the generalized function

m
F(X)=C(X)~r x> max{0, 4;(X) ~ H;} (3)
=1
for a problem 1 with constraints 2.
In this case the following conclusion occurs [AMO03].

Conclusion 1 The limiting points of the set S of the feasible points of the
primary problem 1-2 with the basic point X° are point of local mazima for
generalized penalty function 3 with parameter r satisfying the condition

C(Z) - C(X")

ey max{0, 4;(Z) - H;}

r>

for every limiting point X' € Ox(X°) and every point Z € O 1(Xo)NO1(X").
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So, a problem 1-2 is identical to the problem

F(X) =~ max. (4)

in which a number of local maxima (in case of connectivity of the feasible
solution set) s < Spax = C,[l"/ 2 In general case, when feasible set is not
connected, a number of local maxima theoretically can amount to 2771,

The problem 4 is solved by known search methods: local search, genetic
algorithms, simulated annealing, etc.

The essential shortcoming of this approach is loss of the monotonicity prop-
erty for an object function C(X). By addition of even simple (for example,
linear) constraints the generalized function becomes a polymodal nonmono-
tonic function with exponential number of local maxima.

6 Heuristic Algorithms for Boundary Point Search

For any heuristic of boundary point search we will consider a pair of algo-
rithms — primary and dual. A primary algorithm starts search from the fea-
sible area and moves in a path of increasing of the objective function until
it finds a limiting point of feasible area. Otherwise, a dual algorithm keeps
search in the unfeasible area in a path of decreasing of the objective function
until it finds some available solution.

Total scheme of primary search algorithm

1. Put X1 == XO, i = 1.

2. In accordance with a rule we choose X;,1 € 0;(X°)NO;(X;)NS. If there
are no such point then go to 3; else { = ¢ + 1 and repeat the step.

3. Xopt = Xfl:.+_1.

Total scheme of dual search algorithm

1. Put X; € 0,(X%),i=1.

2. In accordance with a rule we choose X;;1 € O, ;(X°)NOy(X;)NS. If
Xit1 € S then go to 3; else 7 = ¢ + 1 and repeat the step.

3. Xo;ot = Xi+1.

From these schemes we can see that a primary algorithm finds a limiting
point of the feasible area, but a dual algorithm finds a boundary point which
may be not a limiting one. So a primary algorithm finds a better solution then
dual in the most cases for problems with a connected set of feasible solutions.
If we will use a primary algorithm for a problem with a unconnected feasible
area then solution received in result may be far from the optimal because
feasible and unfeasible solutions will rotate in a path of increasing of the
objective function. For these cases a dual algorithm is more useful, because
this rotation do not play any role for it. For improving the solution that given
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by the dual algorithm, it is recommended to apply the corresponding primary
algorithm. Such improving is very significant in practice.

Boundary point search algorithms considered below differs by only a rule
of choice of a next point in step 2 of the total schemes.

Search Rules

Rule 1. Random search of boundary points (RSB)

A point X;4, is chosen by random way. Each point in the next step can
be chosen with equal probabilities. For real-world problems these probabilities
can be not equal but they are calculated in the basis of problem specific before
search starts.

Rule 2. Greedy algorithm
A point X, is chosen according to the condition

A(Xi+1) = max A(X7),
7

where X7 € 0;(X° N 0,(X;) N S for a primary algorithm and X7 €
O0n—i(X%) N O (X;) for a dual one.

The function A(X) is chosen from problem specific, for example:

the objective function A(X) = C(X),

specific value A(X) = C'(X)/A(X) (for only constraint) and so on.
Rule 8. Adaptive random search of boundary points (ARSB)

A point X;4; is chosen by random way in accordance with a probability
vector o '

P' = (p1,p1,---,P7),

where J is the number of points from which choice is made.

. A(X7) - —
p'l' = -_——-7] = 17Q]5

VAR O
where X7 € 0;(X°) n 0:(X;) N S for a primary algorithm and X’ €
On-i(X°) N O1(X;) for a dual one. ARSB is a addition to the greedy al-
gorithm.
Rule 4. Modificated random search of boundary points (MRSB)

A point X, is chosen according to the condition

AMXi41) = max A(X7),

where X" are points chosen accordance with the rule 1, r = 1R Risa
algorithm parameter.

A greedy algorithm is regular algorithm, so it finds equivalent solutions
under restart from a certain point. Other algorithms can be started several
times and the best solution can be selected from found solutions. Run time of
each algorithm start is constrained by
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n(n + 1)

T

but average run time of a greedy algorithm and ARSB is significant larger
then for other because they look over all point of the next level in each step
in distinction from RSB and MRSB which look over only one and R points
correspondingly in each step in the dual scheme.

Further we consider applying the described algorithms for a real-world
problem which has been solved by the authors for an aluminium plant in
Krasnoyarsk. Formalization of the problem as a pseudo-Boolean optimization
problem has been realized also by the authors. The obtained model is char-
acterized by large dimension and an unconnected set of feasible solutions.

T <

7 Optimization of Loading of Foundry Branches
Capacities

Production of different kind is produces in foundry branches (FB). There is
specialization in every FB by kind of production which can be produced by
its foundry machines (FM). There is a quantity of orders for production. To
each order there corresponds volume, a kind of production and term of per-
formance. The kind of production is characterized by productivity for change
(only 3 changes in a day). Replacement made on FM production demands its
recustomizing borrowing one change. It is necessary to load thus FB capac-
ities that orders were carried out all, production was made in regular more
intervals in time, and the number of recustomizings of FM equipment was
minimal.

Input data:

I is a number of days for planning;

J is a number of FB;

K; is a number of FM in j-th FB, j =1, J;

L is a number of orders for production that produces on FM (and corre-
sponding number of production kinds);

V; is productivity of I-th kind of production for change on FM, | =1, L:

T; is term of performance of [-th order (for production of l-th kind) on
FM, l=1,L;

W, is volume of I-th order (for production of 1-th kind) on FM,l =1, L;

zj characterizes specialization of FB:

o 1 FM of j-th FB can make production of I-th kind,
=10 otherwise;

« is the factor of rigidity of restriction on demand of uniformity of production
ondays, 0 < a < 1.
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Variables:
For model construction introduce following binary variables:
Y = {yiju} € By,
X = {fcijkl} € BY,
where By = {0,1}, BY = By x By X --- X By, is a set of binary variables.

1 production of I-th kind is made in i-th day on k-th FM
Yijkl = of j-th FB,
0 otherwise;

1 production of /-th kind is started to make in i-th day
Tijhl = on k-th FM of j-th FB,
0 otherwise.

Total dimension of a binary vector ¥ (and X) is

J
n:IxLxZKj.

g=1
Remarks:
L zije < yijuVi, i, k, 1.
2. Tyjet = Yijer X (1 — Yi1,je)Ve, 5, 5, yojee = OV, 4, K, 1), (5)

7.1 Optimization Model

1. The objective function and the main constraints

C(X) — min, (6)
A(Y)> Wil =1L, (7)

2 I - _ 171 I lL=1 Wl
Ai(Y)ZOéXW,’L:l,I,OZE(O,l),W :f) (8)

where
2

I L I K, L
Cx)y=>" Z Zwijm Zzzzymz X (1= ¥i-1,4u1),

i=1 ]:J k=1 l=1 i=1 j:1 k=1 l=1

—

K;
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K;

J
ZZVI X Yijht X (2 +Yi1 r),

T
i=1 j=1 k=1
J K; L
AW =D Vi X g X (24 Yic1m),

J=1 k=1 1=1

.

Yokl — O’Vjvkal'

2. The additional constraints

L L
D yiir 1O _wiyw),i=11,j =17 k=1K,, (9)

=1 =1

Yiji < zji(Tigm < 2),i=1,1,j=1,J,k=1,K;,l =1,L. (10)

7.2 Model Properties

1.

There are two spaces of binary variables (denote their by BX and BY)
corresponding vectors X and Y. For each point ¥ € BY a unique point
X € BX corresponds, components of which are determined by relation 5.
Several points Y € BY (with different value of constraint function) can
correspond to the point X € BX.

. The objective function 6 is linear and unimodal monotonic in the space

BX with the minimum point X° = (0,...,0). In the space BY the objec-
tive function is quadratic and unimodal nonmonotonic with the minimum
point Y0 = (0,...,0).

. The constraint function 7 and 8 in the space BY are quadratic and

unimodal monotonic pseudo-Boolean functions with the minimum point
Y? = (0,...,0). In the space BX the constraint functions unequivocally
are not certain.

. The feasible solution set in the spaces BX and BY is limited from above

by I x EJ.L_l K j-th level of the minimum point (X° and Y°) according to
the constraint 9. In the space BY this level corresponds to the case when
production is produces on each BM in every day.

. The feasible solution set is an unconnected set, in general case (in the space

BY).

Thus the problem solution is defined completely by the variables Y, but it

does not hold for the variables X. But the objective function from X has good
constructive properties so that optimum search on X is more efficient then
on Y. As the constraint function 7, 8 from X are not defined, we should find
values of these functions from the corresponding point Y. There are perhaps
several such points

X oY, Ys,... Yy

L]
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in some of them the solution may be feasible but in other not. As the constraint
functions are monotonic here then for a certain X we should choose a such Y
that belongs to the most possible level (with the most values of the functions):

_ h
Y = arg max Z Yiskt | >
Yah=LH \ i 5k
whereY), = (Y1111, -+, YIJK, L)

One of algorithms of this transformation is presented below.
Algorithm 1 of transformation X to Y

1. Put Ny, =0,5=1,J, k=1,K;; i =1.

2. Forj=1,J, k—lK] =1,L do: if x5 = 1 then Ny = 1.

3. Forj=1,J,k=1,K;,1=1,Ldo:if Nj; = then y;js; = 1 else y;;14 = 0.
4. If i < I then 7 = z+1andt02.

At the same time the solution Y received from the found best vector
Xopt by this way may corresponds to situation when a quantity of let out
production is more higher then the requisite value (this does not contradict
to the constructed model but this can influent on uniformity of capacities
loading which is optimized on the next stage). So when the first stage of
search has ended, we should define Y,,; by the rule

Kopt > 11, Y2,..., Y,

- : i
Yopt = arg | Jnin o Z Yiikt
Yi: AHY)2WLI=TE\ 5
In this case the transformation algorithm has some differences from the

previous.
Algorithm 2 of transformation X to Y

la. Put yym =0,i=1,1J,5= Jk—lK],l—le—l

2. Forj=1,J,k=1,K;, 1= if Z36 = 1 then Ny, = 1.

3. Forj=1,J,k=1K,,1 do: if Ny, = ! and A}(Y) < W then
Yijel = L.

4. If i < I theni =1+ 1 and to 2.

_L__
1L

Here the condition 4} (Y) < W, is added in the step 3, and the step la is
added also for possibility of this calculation. There are no any needs in this
transformation during the search. It is necessary only for determining result

=
opt-
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7.3 Optimization Algorithms

The dual algorithms RSB, greedy and MRSB have been used for solving the
problem. The algorithm ARSB has not been considered for this problem be-
cause of its excessive large run time by frequent start. One start of ARSB
can very rarely give a solution which is better then the solution given by the
greedy algorithm. The start point of search is the point of the unconstraint
minimum of the objective function X® = (0, ...,0). A found solution has been
improved by the corresponding primary algorithm.

Moreover, the problem has been solved by the genetic algorithm (GA). To
realize GA we have chosen a scheme that effective worked for multiple solving
other combinatorial optimization problems.

Results of the experiments shows that the most effective algorithms (by
precision and run time) from the considered ones for this problem are the
greedy algorithm and MRSB. The other algorithms under hard constraints
on the variables do not find any accessible solution at all. It is a sequel of
problem specific: a large amount of different constraints and, as a result, a
comparative small accessible region.

The average results of solving 10 problems of month planning capacity
loading are presented in Table 1. The average values of input data:

I=381,J=3K =12 K, =9,K;=7,L =36,a =0.5,
Vi € [40,50], W, € [20,25000].

Herewith the total dimension of the binary vector is n = 31248.

The number of algorithm starts L has been chosen so that the run time
nearly equals to the run time of one start of the greedy algorithm. In this case
the run time equals to T' ~ 8 x 10°.

Table 1. Results of solving the problem

Algorithm Number of starts L Found solution Cop:
RSB 2000 Not found

Greedy 1 49

MRSB, R = 1000 12 47

MRSB, R = 100 60 52

MRSB, R =10 200 Not found

GA'’ - Not found

MRSB is a more flexible procedure in compare with the greedy algorithm
as the first one allows to select the parameters L and R that influence on

! GA parameters: tournament selection with the tournament value 5, population
value 100, the largest number of generations 8000, mutation probability 0.0001,
uniform crossover
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algorithm run time and solution precision. The greedy algorithm does not
allow that possibility and run time may be overmuch large under high di-
mensions. What about their efficiency, precision of the found solutions differs
unessentially under nearly equivalent run time.

8 Conclusion

The algorithms of boundary point search shows high efficiency for solving
the pseudo-Boolean optimization problem with unconnected accessible region.
The most efficient algorithms for the considered problem are the dual algo-
rithms MRSB and greedy.
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Summary. In this chapter, Lipschitz univariate constrained global optimization
problems where both the objective function and constraints can be multiextremal
and non-differentiable are considered. The constrained problem is reduced to a dis-
continuous unconstrained problem by the index scheme without introducing addi-
tional parameters or variables. It is shown that the index approach proposed by
R.G. Strongin for solving these problems in the framework of stochastic information
algorithms can be successfully extended to geometric algorithms constructing non-
differentiable discontinuous minorants for the reduced problem. A new geometric
method using adaptive estimates of Lipschitz constants is described and its con-
vergence conditions are established. Numerical experiments including comparison of
the new algorithm with methods using penalty approach are presented.

Key words: Global optimization, multiextremal constraints, geometric algorithms,
index scheme.

1 Introduction

Let us consider the one-dimensional global optimization problem of the finding
of the value f* and a point z* such that

f*=f(")=min{f(z) : z € [a,b], gj(z) <0, 1 <j<m} (1)

where f(z) and g;(z), 1 < j < m, are multiextremal Lipschtiz functions
(particularly, this means that they can be non-differentiable). We suppose

* This research was supported by the following grants: FIRB RBNEOIWBBB,
FIRB RBAUO1JYPN, and RFBR 04-01-00455-a.
** Corresponding author
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also that the objective function f(z) and the constraints can be partially
defined. This means that a constraint g;i(z) is defined only at subregions
where g;(z) < 0 and f(z) is defined only over subregions of [a, b] where all
the constraints are satisfied.

It is not easy to find a traditional algorithm for solving problem (1). For
example, the penalty approach requires that f(z) and g;(z), 1 < i < m, are
defined over the whole search interval [a, b]. At first glance it seems that at the
regions where a function is not defined it can be simply filled in with either a
big number or the function value at the nearest feasible point. Unfortunately,
in the context of Lipschitz algorithms, incorporating such ideas can lead to
infinitely high Lipschitz constants, causing degeneration of the methods and
non-applicability of the penalty approach.

It is worthy to notice that not only problem (1) but univariate global
optimization problems in general (and in contrast to one-dimensional local
optimization problems that have been very well studied in the past) continue
to attract attention of many researchers (see [CZ99, HJ95, Lam99, LS95,
MSB96, Pij72, Ser98, SFP01, Str78, WC96]). These happens at least for two
reasons. First, there exists a large number of applications where it is neces-
sary to solve such problems (see [Bro58, DGMS95, DGMS96, HJ95, PKS87,
RWPD85, SDGM99, Str78]). Second, there exist numerous approaches (see,
e.g., [FP96, HP95, HT96, Mla92, PR90, Pin96, SGO1, Str78, SS00, TZ89,
Zhi91]) enabling to generalize to the multidimensional case the methods pro-
posed for solving univariate problems.

Let us return now to problem (1) and study its internal properties. We des-
ignate subdomains of the interval [a, b] corresponding to the set of constraints
from (1) as

Ql = [G"b]a Qj-+—1 = {ZL‘ € Qj : gj(x) SO}, 1 S] Sm7 (2)

Ql QQQ 2 QQm Q Qm+1-
We introduce the number M such that

QM # 2, Qu4r = Qmyz... = Qi = 2. (3)

If the feasible region of problem (1) is not empty then Q1 # @ and M =
m + 1. In the opposite case M indicates the last subset (); from (2) such that
Q; # 2. Note that since the constraints g;(z), 1 < j < m, are multiextremal,
the admissible region @)p,4+1 and regions @, 1 < j < m, can be collections of
several disjoint subregions. We suppose hereafter that all of them consist of
intervals of a finite length.

In order to unify the description process we shall use the designation
gm+1(z) 2 f(z). Now we can write the Lipschitz conditions for the functions
gj(w)71 <j<m+1,

"

|g9i(e) —g;(@ ) |<Lj |2 =2 |, 2,2 €Q;, 1<j<m+1, (4)



Global Optimization with Multiextremal Non-differentiable Constraints 125

0<Lj<oo, 1<j<m+1 (5)

A promising approach called the index scheme has been proposed in
[Str84] (see also [BS02, SM95, SM86, SS00]) in combination with informa-
tion stochastic Bayesian algorithms for solving problem (1), (4), (5). An im-
portant advantage of the index scheme is that it does not introduce addi-
tional variables and/or parameters by opposition to classical approaches in
[Ber96, Ber99, HP95, HT96, NW99]. It has been recently shown in [SFP01]
that the index scheme can be also successfully used in combination with the
Branch-and-Bound approach if the Lipschitz constants L;, 1 < 5 < m + 1,
from (4), (5) are known a priori.

However, in practical applications the Lipschitz constants L;,1 < j <
m + 1, are very often unknown. Thus, the problem of their estimating arises
inevitably. If there exists an additional information allowing us to obtain a
priori fixed constants K;, 1 < j < m + 1, such that

L;<K;<oo, 1<5<m+1,

then the algorithm IBBA from [SFPO01] can be used. In this chapter, we con-
sider the case where there is no any additional information about the Lipschitz
constants. A new global algorithm adaptively estimating the Lipschitz con-
stants (GEA) during the search is proposed and studied both theoretically
and numerically.

The rest of the chapter is organized as follows. The index scheme and
a theoretical material required for describing the new method is given in
Sect. 2. The new algorithm is described in Sect. 3. Finally, Sect. 4 contains
computational results and a brief conclusion.

2 Theoretical Background

Let us describe the index scheme briefly. By using the designation (2), (3) we
can rewrite problem (1), (4), (5) as the problem of finding a point z3%, and
the corresponding value g3, such that

*

gn = gu(zhy) = min{gm(z) 1z € Qum}. (6)

The values z%,, g}, coincide with the global solution of the problem (1) if
M =m +1, i.e, when the original problem (1) is feasible. We associate with
every point of the interval [a, b] the index

v=u(z), 1<v <M,
which is defined by the conditions

g9;(2) <0, 1 <j<v-1 gz) >0, (7)
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where for v = m + 1 the last inequality is omitted. We shall call trial the
operation of evaluation of the functions g;(z), 1 < j < v(z), at a point z.
Thus, the index scheme considers constraints one at a time at every point
where it has been decided to try to calculate the objective function g,,41(z).
Each constraint g;(z) is evaluated at a point z only if all the inequalities

gj(z) €0, 1 <5 <,

have been satisfied at this point. In its turn the objective function gm41(z) is
computed only for those points where all the constraints have been satisfied.

Let us introduce now an auxiliary function ¢(z) defined over the interval
[a, ] as follows

0,if v(z) <m+1
Gyrs if v(@) = m+1

p(z) = Juv(z) — { (8)
where gy ., is the solution to problem (1) and to problem (6) in the case
M=m+ 1.

The following proposition (see [Str84, SM86, SS00]) describes important
properties of the function ¢(z):

Proposition 1. The function o(x) from (8) enjoys the following properties:

i. if a point z € [a,b] has an index v(z) < m+ 1 then p(z) > 0,
#. if u point T € [a,b] has an index v(z) = m+ 1 then o(z) > 0;
i1, if a point x € [a,b] has an index v(x) = m+1 and gimy1(z) = g}, then
it follows (z) = 0;
. the function () can have points of discontinuity at the points y such
that for x < y,x € Q;, and for x > y,x € Q4,1 # j, i.e., at the borders of
the domains Q;,1 <j < m+ L.

Thus, the global minimizer of the original constrained problem (1) coin-
cides with the solution z* of the following unconstrained discontinuous prob-
lem

¢(z") = min{p(z) : z € [q,b]}, (9)
in the case M = m + 1 and gy, y1(z*) = gy,41- Obviously, the value g;, .,
used in the construction (8) is unknown; it is adaptively estimated during the
work of methods using the index scheme.

Suppose now that k trials have been executed at some points

a=%9< 1 <...<;<...<zp =b (10)

and the index v; = v(z;), 0 <7 < k, have been calculated in accordance with
(7). Naturally, since the value g% ., from (8) is unknown, it is not possible
to evaluate the function (z) for the points = having the index v(z) = m + 1.

In order to overcome this difficulty, we introduced the function ¢y (z) which
is evaluated at the points x; and gives us the values z; = @i (z;), 0 <1 < k,
as follows
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. 0, if v(z)<m+1
ok(z) = gy(z)(m) - {227 if v(z)=m+1 (11)
where the values
zp = min{gpsi(z;) : 0<i <k, vy =m+1}, (12)

estimates g%, ., from (8). It can be seen from (8), (11), and (12) that

ek(@i) = ¢(m:)

if v(z;) <m+1and
0 < (i) < (i)

if v(z;) = m + 1. In addition, the function ¢k(z) is non-positive at points z
having the index v(z) = m + 1 and the value gn,yi(z) < 2}, e,

ee(2) 0, z€{z:gmt1(z) <z} (13)
The points xz;, 0 <14 < k, form subintervals
[i—1, 2] Ca, b}, 1 <1<k,
and there exist the following three types of them:

i. intervals [z;-1, z;] such that v;_y = v;;
ii. intervals [z;_1,%;] such that v;_ < v;;
iii. intervals [£;—1, ;] such that ;1 > v;.

It has been shown in [SFPO1] that if the Lipschitz constants from (4), (5) are
known, then for the function ¢ (z) from (11) over every subinterval [z;_1, ;]
of the interval [a, b] it is possible to construct a discontinuous index minorant
function v;(z) with the following properties

bi(z) < wrlz), =€ Qu,

where .
QW:[wi—lami}mQW) Z/;'—_—ma,X{l/w‘._l,l/wl}.

Note that the introduced notion of the discontinuous index minorant function
is weaker than the usual definition of a minorant function. In fact, nothing is
required with regard to behavior of ¥;(z) over [z;-1, 2]\ Qv and;(z) can
be greater than wi(x) on this sub domain. This is done because over every
subinterval [z;_,,z;] we are interested only at the subregion @ 4; correspond-
ing to the maximal index 7.

It has been also shown in [SFP01] that it is possible to find explicitly the
value v} defined as follows

0.5(zi—1 + 2; = Ly, (z; — x_1)), viey = v,
¥ =< zi— Ly (2 — 21 —2i1/Lu,_)), vio1 <uwi (14)
2i1 — Ly, (% — 251 — 2/ Ly}, viel > v,
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¥ < min{yi(z) 1z € Q).
The algorithm IBBA from [SFPO01] sequentially updates the function v;(z)
during its work in such a way that the estimate 2z} of the global minimum f*
of the original problem (1) is sequentially improved. At each iteration & of the
algorithm the value f* can be bounded as follows

e Wt + 2,2,
where
Pk = min{y! : 1 <i <k}
However, the IBBA obtains these nice results by working with a priori known
Lipschitz constants from (4), (5). In the next Section, we describe a new
algorithm that adaptively estimates them during its work.

3 A New Geometric Index Algorithm Adaptively
Estimating Lipschitz Constants

In the new algorithm GEA, we propose to substitute the unknown values,
L;,1 < j <m+1, of the Lipschitz constants by their adaptively recalculated
during each iteration k estimates A; = A;(k),1 < j < m + 1, using the
information obtained from executing trials at the points x;, 0 < i < k, from
(10). We calculate the estimate

Aj =max{f max{\;:v; =5,0<i<k}}, 1<ji<m+1, (15)

where a value \; estimates the Lipschitz constant L,, at a point z; having the
index v; and the parameter £ > 0 is a small number reflecting our supposition
that the objective function and constraints are not just constants over [a, b],
te, L; > & 1< j<m-++1. The values ; are calculated as follows

(max{| zj — zj-1 | (z; —xj-1)"": j=4,1+1}, fvio1=vi =vip
max{| zi — zi—1 | (@ —xic1) 7", zi(wigr — @) 7MY, if vio) = v <vig
max{| zip1 — 2z | (g1 — )7, zi(mi —zim1) '}, i vic) > v = v
max{z(z;i — zi—1)7", zi(Titr — 2i) 7'}, if vy <wicy, v < Vi
Ai = zi(zi — @i1) 7!, ifviel > v > v
zi(Tip1r — x3) 7, ifvic) < vy < viga
| 2zi — zic1 | (B — @ic1) 77, if vicr = v > v
| zig1r — 20 | (@igr — @)1, fviy <vi =vigr

0, otherwise

(16)
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Naturally, when ¢ = 0 or 7 = k, only one of the two expressions in the first
four cases are defined and are used to calculate A;.

Thus, in (15), in order to estimate the value L; we find all the points z;
having the index v; = j and take the maximum of the values A; corresponding
to these points if it is greater than &, and & in the opposite case. The following
theorem holds.

Theorem 1. If the Lipschitz constants L; > £,1 < j < m+1, then the values
Aj from (15) are underestimates of the Lipschitz constants Lj,1 < j <m+1,
and the following inequalities hold

£<A; <L, 1<j<m+1

Proof. This fact follows from (15), (16), and Proposition 1. O

We are ready now to describe the new algorithm GEA. Suppose that k +
1,k > 1, trails have been already executed in a way at points

z° =a,z :b,mz,ms,...,wi,...mk—l,mk (17)
and their indexes and the value
M* = max{v(z'): 0 < i < k} (18)

have been calculated. The value M* defined in (18) estimates the maximal
index M from (3) during the search. The choice of the point z*+' &k > 1,
where the next trial will be executed is determined by the rules presented
below.

Step 1. The points z°, ...., 2% of the previous k iterations are renumbered by
subscripts in order to form the sequence (10). Thus, two numerations are
used during the work of the algorithm. The record z* from (17) means
that this point has been generated during the i-th iteration of the GEA.
The record z; indicates the place of the point in the row (10). Of course,
the second enumeration is changed during every iteration.

Step 2. Recalculate the estimate z; from (12) and associate with the points
z; from (10) the values z; = pi(2;),0 < i < k, where the values ¢ (%)
are from (11).

Calculate the current estimates A;(k), 1 < j < m 4+ 1, of the Lipschitz
constants Lj, 1 < j < m+ 1, as follows:

Ay = Aj(k) = max{A; (k= 1), 4;(k)}, 1<j<m+1,

where A;(k), 1 < j < m+ 1, at the right part of this formula are given
by (15) and A;(k — 1), 1 < j < m+ 1, are the estimates of the Lipschitz
constants L;, 1 < j < m + 1, calculated at the previous iteration k — 1.
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Step 3. For each interval [z,_1, 3], 1 <1i < k, calculate the characteristic of
the interval

0.5 [Zz‘—l +zi—rdy (z; — 51?1‘—1)} , Vil1 =
R; = Zi — TA,/i (2}1 — T3 — Zi—l/TAVi_l)a vioy < Vi, (19)
Zi—1 — T/l,/i_l(aﬁi ~T;—1 — Zi/TA,/z.), Vi >

where r > 1 is the reliability parameter of the method.
Step 4. Find an interval ¢t corresponding to the minimal characteristic, i.e.,

t =min{argmin{R; : 1 < ¢ < k}}. (20)
Step 5. If for the interval [z;—;, z;], where ¢ is from (20), the stoping rule
T — Lo S € (21)

is satisfied for a preset accuracy € > 0, then Stop - the required accuracy
has been reached. In the opposite case go to Step 6.
Step 6. Execute the (k + 1)-th trial at the point

ZhH = {0-5[$t—1 + T+ (20-1 — 2) [ (rAy,)), v = 1 (22)

T 10.5(z -1 +x), if vp—1 # w,

and evaluate its index v(z**1).
Step 7. If v(z*¥+1) > M* then perform two additional trials at the points

"2 = 0.5(zp—y + 2k, (23)

oh 3 = 0.5(aM! 4 2y), (24)
calculate their indexes, set k = k + 3, and go to Step 8. If v(z*+!) < M*
and there is only one point z7 with the maximal index M*, i.e., v = M*,
then execute two additional trials at the points

a2 = 0.5(zp 1 + z7), (25)

ght3 = 0.5(z1 + 2741), (26)

if 0 < T < k, calculate their indexes, set £ = k + 3, and go to Step 8. If
T = 0 then the trial is executed only at the point (26). Analogously, if
T = k then the trial is executed only at the point (25). In these two cases
calculate the index of the additional point, set k¥ = k + 2 and go to Step
8. In all the remaining cases set k = k£ + 1 and go to Step 8.

Step 8. Calculate M* and go to Step 1.

The introduced algorithm constructs an auxiliary function similar to the
discontinuous minorant ;(z). The difference consists of the substitution of
the unknown Lipscitz constants L; by their adaptively recalculated during
each iteration k estimates A4; = A;(k),1 < j < m + 1, multiplied by the
reliability parameter r > 1. Thus, the characteristics R; estimate the values ¢}
from (14). Before proving a theorem establishing sufficient global convergence
conditions of the new method we need the following lemma.
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Lemma 1. Let T be a limit point of the sequence {z*} generated by the algo-
rithm GEA proposed above and i = i(k) be the number of an interval [x,—1, x;)
containing this point in the course of the k-th iteration. Then,

kllglo fci(k) - wi(k)_l =0. (27)

Proof. Since the point Z is a limit point of the trial sequence {z*} generated
by the GEA, there exists an infinite number of iterations k such that the
interval [xi(k).,l,xi(k)] containing this point will be subdivided in the course
of this iteration into two subintervals

[$i~1,y], [?J,ﬂvz]

The point y = z*¥*" is determined by formulae (22)-(26) and n can vary from
1 to 3. Thus, in order to prove (27) it is sufficient to show that the following
contracting estimate

max{z; — ¥,y — Ti-1} <alz; —xi—1), 05<a<l, (28)

holds for all the cases (22)—(26).
In the cases (23)-(26) and (22) with »; # v;—1 we obtain (28) immediately
by taking « = 0.5. In the case (22) with »4 = v;_; we can write that

2 — Tt = — 05z F x4 (zio — 2)/(rA)] <
0.5[(x; — Timy)+ | zic1 — 2 | /(rA)] < 051 + 77 1) (@i — m4-1)
taking into account that we have v; = v, and due to (15), (16) it follows
| 2s = 2zi-1 | Ay — i)

An analogous estimate can be obtained for the difference z*+! — z;_;. Thus,
(28) is proved for the case (22) with v; = 14—; also because we can take
a = (r+1)/(2r). It is clearly satisfies the condition 0.5 < @ < 1 since r > 1.
This last observation concludes the proof. O

Let us now formulate and prove a theorem describing sufficient conditions
of global convergence of the algorithm GEA.

Theorem 2. Let the feasible region Qmi1 # @ consist of intervals having
finite lengths, £* be any solution to problem (1), and j = j(k) be the number
of an interval [z;_y,z;] containing this point during the k-th iteration. Then,
if for k > k* the following conditions

TAVj_l > Cj~—1» 7‘/1,,3. > Cj, (29)
Cj1=zj—1[/(z" —zj1), Cj=2z;/(z; —z"). (30)

take place, then the point x* will be a limit point of the trial sequence {z*}
generated by the GEA.
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Proof. Let us return to the interval [z;—1, ;] from Lemma 1 containing a limit
point Z of the sequence {z*}. Since it contains the limit point, it follows from
(19), Proposition 1, and Lemma, 1 that

k—y00 k—o0

because for all k the values z; > 0,1 <i <k.

Let us estimate now the characteristic R(j(k)) of the interval [z;_y,z;]
the global minimizer z* belongs to during the k-th iteration. It follows from
(30) that

zj-1=Cja(2" —zj), 2 = Cjlz; —z"). (32)

Consider first the case v;_; = v;. From (32) we obtain

zj + zj—1 <max{Cj_1,C;}(z; — x;_1).
From this estimate, (19), and (29) we can derive that

R; =0.5[zj_1 +2; —rd, (z; —xj-1)] <

O.5[max{Cj_1,Cj}(wj - iI}j_l) - 7‘/1”]. (.’I?j - :L‘];l)] < 0. (33)
In the case v;_1 < v; we obtain from (19), (29), and (32) that
Rj =25 — TA,,j (:I}j —Zj-1 — ij]/T/l,,]_l) =
Ci(xy — ") —rdAy (x5 —xj 1)+ Apz5 1 /A, =
Cj(:tj — :I}*) — 7“/1,/]. (23]' — :I}j_1) + C]-_l(:c* — .’I,'j_l)/l,/j//l,/j_l <
Ci(zy —z") —rAy, (x; —x51) +17hy, (2% —2y_1) =
(Cj - T‘A,/j)(illj — 113*) < 0. (34)

By a complete analogy we can obtain the estimate R; < 0 in the case v;_; >
;.
’ Assume now, that z* is not a limit point of the sequence {z*}. Then, there
exists a number ) such that for all k > @ the interval [z;_,,z;],; = j(k), is
not changed, i.e., new trial points will not fall into this interval.

Consider again the interval [z;_1, ;] from Lemma 1 containing the limit
point Z. It follows from (31), (33), and (34) that there exists a number N such
that

R(i(k)) > R(j(k))

for all k > k* = max{Q@, N}. This means that starting from £* the charac-
teristic of the interval [z,—;,z,],7 = ¢(k),k > k*, is not minimal and due to
Step 4 of the GEA, the interval [z;_1, z;] will not be chosen for the further
subdivision until a trial will not fall into the interval [z,_1,z;]. Hence, a trial
will fall into the interval [z;_;,z;] because Z is a limit point and infinitely
many points should fall in it. Thus, our assumption that z* is not a limit
point was false and we have proved the theorem. O
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4 Numerical Comparison

The new algorithm has been numerically compared with the following meth-
ods:

- The method proposed by Pijavskii (see [HJ95, Pij72]) combined with the
penalty approach used to reduce the constrained problem to an uncon-
strained one; this method is indicated hereafter as PEN. The Lipschitz
constant of the obtained unconstrained problem is supposed to be known
as it is required by Pijavskii algorithm.

— A method (indicated hereafter as GPEN) where a piece-wise linear auxiliary
function is constructed similarly to Pijavskii algorithm and the penalty
approach is used to reduce the constrained problem to an unconstrained
one. The Lipschitz constant of the obtained unconstrained problem is
assumed to be unknown and is estimated adaptively during the search by
the value

Ky =7 -max{¢, max{| z; — zi—1 | (&; —xi—1) "' : 1 <4 < k}},

where z;,0 < 1 < k, are trial points, r > 1 is the reliability parameter of
the method, and £ is a small positive constant (having the same sense as
in (15)).

— The method IBBA from [SFPO01] using the index scheme in combination
with the Branch-and-Bound approach and the known Lipschitz constants
L;;1<j<m+1,from (4), (5).

Ten non-differentiable test problems introduced in [FSP02] have been used
in all the experiments (since there were several misprints in the original pa-
per [FSPO02], the accurately verified formulae have been applied, which are
available at http://wwwinfo.deis.unical.it/~yaro/constraints.html). In this set of
tests, problems 1-3 have one constraint, problems 4-7 two constraints, and
problems 8-10 three constrains. The same accuracy ¢ = 1074(b — a) with b
and a from (1) and the same value £ = 107° from (15) have been used in all
the experiments for all the methods.

In Table 1 and in Table 2, results for the PEN, taken from [FSP02}, and
for the GPEN with the parameter r = 1.2 are presented, respectively. The
constrained problems were reduced to the unconstrained ones as follows

fP* (113) = f((ll) + P* max {Oagl(x)ag2($)a <3 9N, (:C)} . (35>
The coefficient P* has been computed by the following rules:

1. P* has been chosen equal to 15 for all the problems and it has been
checked if the found solution (XPEN, FPEN) for each problem belongs or
not to the feasible subregions;

2. if it does not belong to the feasible subregions, the coefficient P* has been
iteratively increased by 10 starting from 20 until a feasible solution has
been found. Particularly, this means that a feasible solution has not been
found in Table 1 for the problem 5 when P* was equal to 15.
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Table 1. Numerical results obtained by the PEN

Problem XPEN FPEN P Trials Evaluations
1 1.258104 4.174415 15 247 494
2 1.959536 -0.079023 15 241 482
3 9.400529 —4.400529 15 917 1834
4 0.332786 3.346203 15 273 819
5 0.