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Series Editors’ Foreword

The series Advances in Industrial Control aims to report and encourage technol-
ogy transfer in control engineering. The rapid development of control technology
has an impact on all areas of the control discipline. New theory, new controllers,
actuators, sensors, new industrial processes, computer methods, new applications,
new philosophies. . . , new challenges. Much of this development work resides in
industrial reports, feasibility study papers and the reports of advanced collaborative
projects. The series offers an opportunity for researchers to present an extended ex-
position of such new work in all aspects of industrial control for wider and rapid
dissemination.

When assessing the performance of a control system, it is easy to overlook the
fundamental question of whether the actual system configuration and set up has all
the features and hardware that will enable the process to be controlled per se. If the
system can be represented by a reasonable linear model, then the characteristics of
a process that create limitations to achieving various control performance require-
ments can be identified and listed. Such information can be used to produce guide-
lines that give a valuable insight as to what a system can or cannot achieve in terms
of performance. In control systems analysis textbooks, these important properties
are often given under terms such as “input–output controllability” and “dynamic
resilience”.

It is interesting to see similar questions arising in the study of fault detection
and isolation (FDI) systems. At a fundamental level, the first question is not one
of the performance of the fault detection and analysis system, but of whether the
underlying process has the structure and properties to allow faults to be detected,
isolated and identified. As with the analysis of the control case, if the system can
be represented by a linear model then definitions and conditions can be given as to
whether the system is generically fault detectable, fault isolatable and fault identifi-
able. Fault detectability is about whether a system fault would cause changes in the
system outputs independently of the type and size of the fault, fault isolatability is
a matter of whether the changes in the system output caused by different faults are
distinguishable (from for example, system output changes caused by the presence
of a disturbance) and finally fault identifiability is about whether the mapping from
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viii Series Editors’ Foreword

the system output to the fault is unique since if this is so then the fault is identifiable.
With the fundamental conditions verified, the engineer can proceed to designing the
FDI system. All these issues, along with design techniques based on models with
demonstrative case study applications can be found in this comprehensive second
edition of Professor Steven Ding’s book Model-Based Fault Diagnosis Technique:
Design Schemes, Algorithms and Tools that has now entered the Advances in Indus-
trial Control series of monographs.

The key practical issues that complicate the design of a FDI system come from
two sources. Firstly from the process: Many process plants and installations are
often subject to unknown disturbances and it is important to be able to distinguish
these upsets from genuine faults. Similarly process noise, emanating from the mech-
anisms within the process and from the measurements sensors themselves, is usually
present in real systems so it is important that process measurement noise does not
trigger false alarms. The second set of issues arises from FDI design itself where
model uncertainty is present. This may exhibit itself as simply imperfect process-
operational knowledge with the result that the FDI system is either too sensitive or
too insensitive. Alternatively, model uncertainty (model inaccuracy) may well exist
and the designer will be advised to use a robust FDI scheme. Professor Ding pro-
vides solutions, analysis and discussion of many of these technical FDI issues in his
book.

A very valuable feature of the book presentation is the use of five thematic case
study examples used to illuminate the substantial matters of theory, algorithms and
implementation. The case study systems are:

• speed control of a dc motor;
• an inverted pendulum control system;
• a three-tank system;
• a vehicle lateral dynamical system; and
• a continuous stirred tank heater system.

Further, a useful aspect of these case study systems is that four of them are linked
to laboratory-scale experimental rigs, thus presenting the academic and engineering
reader with the potential to obtain direct applications experience of the FDI tech-
niques described.

The first edition of this book was a successful enterprise and since its publication
in 2008 the model-based FDI field has grown in depth and insight. Professor Ding
has taken the opportunity to update the book by adding more recent research findings
and including a new case study example from the industrial process area. The new
edition is a very welcome addition to the Advances in Industrial Control series.

M.J. Grimble
M.A. Johnson

Industrial Control Centre,
Glasgow, Scotland, UK



Preface

Model-based fault diagnosis is a vital field in the research and engineering domains.
In the past years since the publication of this book, new diagnostic methods and suc-
cessful applications have been reported. During this time, I have also received many
mails with constructive remarks and valuable comments on this book, and enjoyed
interesting and helpful discussions with students and colleagues during classes, at
conferences and workshops. All these motivated me to work on a new edition.

The second edition retains the original structure of the book. Recent results on the
robust residual generation issues and case studies have been added. Chapter 14 has
been extended to include additional fault identification schemes. In a new chapter,
fault diagnosis in feedback control systems and fault-tolerant control architectures
are addressed. Thanks to the received remarks and comments, numerous revisions
have been made.

A part of this book serves as a textbook for a Master course on Fault Diagno-
sis and Fault Tolerant Systems, which is offered in the Department of Electrical
Engineering and Information Technology at the University of Duisburg-Essen. It is
recommended to include Chaps. 1–3, 5, 7 (partly), 9, 10, 12–15 (partly) in this edi-
tion for such a Master course. It is worth mentioning that this book is so structured
that it can also be used as a self-study book for engineers in the application fields of
automatic control.

I would like to thank my Ph.D. students and co-worker for their valuable con-
tributions to the case study. They are Tim Könings (inverted pendulum), Hao Luo
(three-tank system and CSTH), Jedsada Saijai and Ali Abdo (vehicle lateral dy-
namic system), Ping Liu (DC motor) and Jonas Esch (CSTH).

Finally, I would like to express my gratitude to Oliver Jackson from Springer-
Verlag and the Series Editor for their valuable support.

Steven X. DingDuisburg, Germany
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Chapter 1
Introduction

Associated with the increasing demands for higher system performance and product
quality on the one hand and more cost efficiency on the other hand, the complexity
and the automation degree of technical processes are continuously growing. This
development calls for more system safety and reliability. Today, one of the most
critical issues surrounding the design of automatic systems is the system reliability
and dependability.

A traditional way to improve the system reliability and dependability is to en-
hance the quality, reliability and robustness of individual system components like
sensors, actuators, controllers or computers. Even so, a fault-free system operation
cannot be guaranteed. Process monitoring and fault diagnosis are hence becoming
an ingredient of a modern automatic control system and often prescribed by legisla-
tive authority.

Initiated in the early 1970s, the model-based fault diagnosis technique has devel-
oped remarkably since then. Its efficiency in detecting faults in a dynamic system
has been demonstrated by a great number of successful applications in industrial
processes and automatic control systems. Today, model-based fault diagnosis sys-
tems are fully integrated into vehicle control systems, robots, transport systems,
power systems, manufacturing processes, process control systems, just to mention
some of the application sectors.

Although developed for different purposes by means of different techniques, all
model-based fault diagnosis systems are common in the explicit use of a process
model, based on which algorithms are implemented for processing data that are
collected on-line and recorded during the system operation.

The major difference between the model-based fault diagnosis schemes lies in
the form of the adopted process model and particular in the applied algorithms.
There exists an intimate relationship between the model-based fault diagnosis tech-
nique and the modern control theory. Furthermore, due to the on-line requirements
on the implementation of the diagnosis algorithms, powerful computer systems are
usually needed for a successful fault diagnosis. Thus, besides the technological and
economic demands, the rapid development of the computer technology and con-
trol theory is another main reason why the model-based fault diagnosis technique is
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4 1 Introduction

nowadays accepted as a powerful tool to solve fault diagnose problems in technical
processes.

Among the existing model-based fault diagnosis schemes, the so-called observer-
based technique has received much attention since 1990s. This technique has been
developed in the framework of the well-established advanced control theory, where
powerful tools for designing observers, for efficient and reliable algorithms for data
processing aiming at reconstructing process variables, are available. The focus of
this book is on the observer-based fault diagnosis technique and related topics.

1.1 Basic Concepts of Fault Diagnosis Technique

The overall concept of fault diagnosis consists in the following three essential tasks:

• Fault detection: detection of the occurrence of faults in the functional units of the
process, which lead to undesired or intolerable behavior of the whole system.

• Fault isolation: localization (classification) of different faults.
• Fault analysis or identification: determination of the type, magnitude and cause

of the fault.

FD (fault detection) systems are the simplest form of fault diagnosis systems
which trigger alarm signals to indicate the occurrence of the faults. FDI (fault detec-
tion and isolation) or FDIA (fault detection, isolation and analysis) systems deliver
classified alarm signals to show which fault has occurred or data of defined types
providing the information about the type or magnitude of the occurred fault.

The model-based fault diagnosis technique is a relatively young research field
in the classical engineering domain of technical fault diagnosis, its development
is rapid and currently receiving considerable attention. In Fig. 1.1, a classification
of the technical fault diagnosis technique is given, and based on it, we first briefly
review some traditional fault diagnosis schemes, and explain their relationships to
the model-based technique, which is helpful to understand the essential ideas behind
the model-based fault diagnosis technique.

• Hardware redundancy based fault diagnosis: The core of this scheme, as shown
in Fig. 1.2, consists in the reconstruction of the process components using the
identical (redundant) hardware components. A fault in the process component is
then detected if the output of the process component is different from the one of its
redundant component. The main advantage of this scheme is its high reliability
and the direct fault isolation. The use of redundant hardware results in, on the
other hand, high costs and thus the application of this scheme is only restricted to
a number of key components.

• Signal processing based fault diagnosis: On the assumption that certain process
signals carry information about the faults of interest and this information is pre-
sented in the form of symptoms, a fault diagnosis can be achieved by a suitable
signal processing. Typical symptoms are time domain functions like magnitudes,
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Fig. 1.1 Classification of fault diagnosis methods

Fig. 1.2 Schematic description of the hardware redundancy scheme

arithmetic or quadratic mean values, limit values, trends, statistical moments of
the amplitude distribution or envelope, or frequency domain functions like spec-
tral power densities, frequency spectral lines, ceptrum, etc. The signal processing
based schemes are mainly used for those processes in the steady state, and their
efficiency for the detection of faults in dynamic systems, which are of a wide
operating range due to the possible variation of input signals, is considerably lim-
ited. Figure 1.3 illustrates the basic idea of the signal processing schemes.

• Plausibility test: As sketched in Fig. 1.4, the plausibility test is based on the check
of some simple physical laws under which a process component works. On the
assumption that a fault will lead to the loss of the plausibility, checking the plau-
sibility will then provide us with the information about the fault. Due to its simple
form, the plausibility test is often limited in its efficiency for detecting faults in a
complex process or for isolating faults.

The intuitive idea of the model-based fault diagnosis technique is to replace the
hardware redundancy by a process model which is implemented in the software
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Fig. 1.3 Schematic description of the signal processing based scheme

Fig. 1.4 Schematic description of the plausibility test scheme

form on a computer. A process model is a quantitative or a qualitative description
of the process dynamic and steady behavior, which can be obtained using the well-
established process modelling technique. In this way, we are able to reconstruct the
process behavior on-line, which, analogous to the concept of hardware redundancy,
is called software redundancy concept. Software redundancies are also called ana-
lytical redundancies.

Similar to the hardware redundancy schemes, in the framework of the software
redundancy concept the process model will run in parallel to the process and be
driven by the same process inputs. It is reasonable to expect that the reconstructed
process variables delivered by the process model will well follow the corresponding
real process variables in the fault-free operating states and show an evident deviation
by a fault in the process. In order to receive this information, a comparison of the
measured process variables (output signals) with their estimates delivered by the
process model will then be made. The difference between the measured process
variables and their estimates is called a residual. Hence, a residual signal carries the
most important message for a successful fault diagnosis:

if residual �= 0 then fault, otherwise fault-free.

The procedure of creating the estimates of the process outputs and building the dif-
ference between the process outputs and their estimates is called residual genera-
tion. Correspondingly, the process model and the comparison unit form the so-called
residual generator, as shown in Fig. 1.5.
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Fig. 1.5 Schematic description of the model-based fault diagnosis scheme

Residual generation can also be considered as an extended plausibility test, where
the plausibility is understood as the process input-output behavior and modelled
by an input-output process description. As a result, the plausibility check can be
replaced by a comparison of the real process outputs with their estimates.

Since no technical process can be modelled exactly and there often exist un-
known disturbances, in the residual signal the fault message is corrupted with model
uncertainties and unknown disturbances. Moreover, fault isolation and identification
require an additional analysis of the generated residual to distinguish the effects of
different faults. A central problem with the application of the model-based fault di-
agnosis technique can be expressed as filtering/extracting the needed information
about the faults of interests from the residual signals. To this end, two different
strategies have been developed:

• designing the residual generator to achieve a decoupling of the fault of interest
from the other faults, unknown disturbances and model uncertainties

• extracting the information about the fault of interest from the residual signals
by means of post-processing of the residuals. This procedure is called residual
evaluation.

The first strategy has been intensively followed by many of the research groups
working on model-based fault diagnosis techniques. One of the central schemes in
this area is the so-called observer-based fault diagnosis technique, which is also the
focus of this book. The basic idea behind the development of the observer-based
fault diagnosis technique is (i) to replace the process model by an observer which
will deliver reliable estimates of the process outputs (ii) to provide the designer
with the needed design freedom to achieve the desired decoupling using the well-
established observer theory.

In the framework of residual evaluation, the application of the signal processing
schemes is the state of the art. Among a number of evaluation schemes, the sta-
tistical methods and the so-called norm-based evaluation are the most popular ones
which are often applied to achieve optimal post-processing of the residual generated
by an observer. These two evaluation schemes have it in common that both of them
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create a bound, the so-called threshold, regarding to all possible model uncertain-
ties, unknown inputs and the faults of no interest. Exceeding the threshold indicates
a fault in the process and will release an alarm signal.

Integrated application of the both strategies, as shown in Fig. 1.3 as well as in
Fig. 1.5, marks the state of the art of the model and observer-based fault diagnosis
technique.

1.2 Historical Development and Some Relevant Issues

The study of model-based fault diagnosis began in the early 1970s. Strongly stim-
ulated by the newly established observer theory at that time, the first model-based
fault detection method, the so-called failure detection filter, was proposed by Beard
and Jones. Since then, the model-based FDI theory and technique went through a dy-
namic and rapid development and is currently becoming an important field of auto-
matic control theory and engineering. As shown in Fig. 1.6, in the first twenty years,
it was the control community that made the decisive contribution to the model-based
FDI theory, while in the last decade, the trends in the FDI theory are marked by en-
hanced contributions from

• the computer science community with knowledge and qualitative based methods
as well as the computational intelligence techniques

• the applications, mainly driven by the urgent demands for highly reliable and safe
control systems in the automotive industry, in the aerospace area, in robotics as
well as in large scale, networked and distributed plants and processes.

In the first decade of the short history of the model-based FDI technique, vari-
ous methods were developed. During that time the framework of the model-based
FDI technique had been established step by step. In his celebrated survey paper in
Automatica 1990, Frank summarized the major results achieved in the first fifteen
years of the model-based FDI technique, clearly sketched its framework and classi-
fied the studies on model-based fault diagnosis into

• observer-based methods
• parity space methods and
• parameter identification based methods.

In the early 1990s, great efforts have been made to establish relationships be-
tween the observer and parity relation based methods. Several authors from different
research groups, in parallel and from different aspects, have proven that the parity
space methods lead to certain types of observer structures and are therefore struc-
turally equivalent to the observer-based ones, even though the design procedures
differ. From this viewpoint, it is reasonable to include the parity space methodology
in the framework of the observer-based FDI technique. The interconnections be-
tween the observer and parity space based FDI residual generators and their useful
application to the FDI system design and implementation form one of the central
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Fig. 1.6 Sketch of the historic development of model-based FDI theory

Fig. 1.7 Schematic description of the parameter identification scheme

topics of this book. It is worth to point out that both observer-based and parity space
methods only deal with residual generation problems.

In the framework of the parameter identification based methods, fault decision is
performed by an on-line parameter estimation, as sketched in Fig. 1.7. In the 1990s,
there was an intensive discussion on the relationships between the observer and
parameter estimation FDI schemes. Comparisons between these two schemes have
been made on different benchmark case studies. These efforts led to a now widely
accepted point of view that both schemes have advantages and disadvantages in
different aspects, and there are arguments for and against each scheme.

It is interesting to notice that the discussion at that time was based on the com-
parison between an observer as residual generator and a parameter estimator. In fact,
from the viewpoint of the FDI system structure, observer and parameter estimation
FDI schemes are more or less common in residual generation but significantly differ-
ent in residual evaluation. The residual evaluation integrated into the observer-based
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Fig. 1.8 An alternative view of the parameter identification scheme

FDI system is performed by a feedforward computation of the residual signals, as
shown in Fig. 1.5, while a recursive algorithm is used in the parameter estimation
methods to process the residual signals aiming at a parameter identification and the
resulting parameter estimates are further fed back to the residual generator, as illus-
trated in Fig. 1.8. Viewed from this aspect, the parameter identification based fault
diagnosis system is structured in a feedback closed-loop, while the observer-based
FD system is open-loop structured.

The application of the well-developed adaptive observer theory to fault detection
and identification in the recent decade is the result of a reasonable combination of
the observer-based and parameter identification FDI schemes. The major difference
between the adaptive observer-based and parameter identification FDI schemes lies
in the residual generation. In other words, the adaptive observer-based FDI schemes
differ from the regular observer-based ones in residual evaluation.

In this book, our focus is on the residual generation and evaluation issues in the
framework of the observer and parity space based strategies. Besides the introduc-
tion of basic ideas, special attention will be paid to those schemes and algorithms
that are devoted to the analysis, design and synthesis of FDI systems.

1.3 Notes and References

To the author’s knowledge, the first book on the model-based fault diagnosis tech-
nique with a strong focus on the observer and parity space based FDI schemes was
published 1989 by Patton et al. [141]. For a long time, it was the only reference
book in this area and has made a decisive contribution to the early development of
the model-based FDI technique.

The next two monographs, published by Gertler in 1998 [76] and by Chen and
Patton in 1999 [25], address different issues of the model-based FDI technique.
While [76] covers a wide spectrum of the model-based FDI technique, [25] is ded-
icated to the robustness issues in dealing with the observer-based FDI schemes.
There are numerous books that deal with model-based FDI methods in part, for in-
stance [12, 15, 84] or address a special topic in the framework of the model-based
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fault diagnosis technique like [120, 157]. In two recent books by Patton et al. [142]
and Isermann [98], the latest results on model-based FDI technique achieved in the
last decade are well presented.

In the last three decades, numerous survey papers have been published. We divide
them into three groups, corresponding to the different development phases of the
model-based FDI technique, and give some representative ones from each group:

• introduction and establishment of the observer, parity space and parameter iden-
tification based FDI schemes [60, 79, 96, 181]

• robustness issues [61, 62, 65, 139]
• nonlinear, adaptive FDI schemes, application of computational intelligence [63,

108, 167].

Representative studies of the relationships between the observer and parity rela-
tion based methods can be found, for instance, in [35, 74, 90]. For the comparison
study on parameter identification and observer-based FDI schemes the reader is re-
ferred to [1, 32, 75].



Chapter 2
Basic Ideas, Major Issues and Tools
in the Observer-Based FDI Framework

In this chapter, we shall review the historical development of the observer-based
FDI technique, the major issues and tools in its framework and roughly highlight
the topics addressed in this book.

2.1 On the Observer-Based Residual Generator Framework

The core of the model-based fault diagnosis scheme shown in Fig. 1.5 is a pro-
cess model running parallel to the process. Today, it would be quite natural for
anyone equipped with knowledge of the advanced control theory to replace the pro-
cess model by an observer, in order to, for instance, increase the robustness against
the model uncertainties, disturbances, and deliver an optimal estimate of the process
output. But, thirty years ago, the first observer-based FDI system proposed by Beard
and Jones marked a historical milestone in the development of the model-based
fault diagnosis. The importance of their contribution lies not only in the applica-
tion of observer theory, a hot research topic at that time in the area of the advanced
control theory, to the residual generation, but also in the fact that their work cre-
ates the foundations for the observer-based FDI framework and opened the door
for the FDI community to the advanced control theory. Since that time, progress of
the observer-based FDI technique is closely coupled with the development of the
advanced control theory. Nowadays, the observer-based FDI technique is an active
field in the area of control theory and engineering.

Due to the close relation to the observer study, the major topics for the observer-
based residual generator design are quite similar to those concerning the observer
design, including:

• observer/residual generator design approaches
• reduced order observer/residual generator design and
• minimum order observer/residual generator design.

S.X. Ding, Model-Based Fault Diagnosis Techniques, Advances in Industrial Control,
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The major tools for the study of these topics are the linear system theory and
linear observer theory. A special research focus is on the solution of the so-called
Luenberger equations. In this book, Chap. 5 will address these topics.

It is well known that system observability is an important pre-requisite for the
design of a state observer. In the early development stage of the observer-based FDI
technique, system observability was considered as a necessary structural condition
for the observer construction. It has often been overlooked that diagnostic observers
(i.e., observers for the residual generation or diagnostic purpose) are different from
the well-known state observers and therefore deserve particular treatment. The wide
use of the state observers for the diagnostic purpose misled some researchers to the
erroneous opinion that for the application of the observer-based FDI schemes the
state observability and knowledge of the state space theory would be indispensable.
In fact, one of the essential differences between the state observer and diagnostic
observer is that the latter is primarily an output observer rather than a state observer
often used for control purposes.

Another misunderstanding of the observer-based FDI schemes is concerning the
role of the observer. Often, the observer-based FDI system design is understood as
the observer design and the FDI system performance is evaluated by the observer
performance. This leads to an over-weighted research focus on the observer-based
residual generation and less interest in studying the residual evaluation problems. In
fact, the most important role of the observer in an FDI system is to make the gen-
erated residual signals independent of the process input signals and process initial
conditions. The additional degree of design freedom can then be used, for instance,
for the purpose of increasing system robustness.

2.2 Unknown Input Decoupling and Fault Isolation Issues

Several years after the first observer-based FDI schemes were proposed, it was rec-
ognized that such FDI schemes can only work satisfactorily if the model integrated
into the FDI system describes the process perfectly. Motivated by this and cou-
pled with the development of the unknown input decoupling control methods in the
1980s, study on the observer-based generation of the residuals decoupled from un-
known inputs received strong attention in the second half of the 1980s. The idea
behind the unknown input decoupling strategy is simple and clear: if the gener-
ated residual signals are independent of the unknown inputs, then they can be di-
rectly used as a fault indicator. Using the unknown input observer technique, which
was still in its developing phase at that time, Wünnenberg and Frank proposed the
first unknown input residual generation scheme in 1987. Inspired and driven by this
promising work, unknown input decoupling residual generation became one of the
most addressed topics in the observer-based FDI framework in a very short time.
Since then, a great number of methods have been developed. Even today, this topic
is still receiving considerable research attention. An important aspect of the study
on unknown input decoupling is that it stimulated the study of the robustness issues
in model-based FDI.
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During the study on the unknown input decoupling FDI, it was recognized that
the fault isolation problem can also be formulated as a number of unknown input
decoupling problems. For this purpose, faults are, in different combinations, clus-
tered into the faults of interest and faults of no interest which are then handled as
unknown inputs. If it is possible to design a bank of residual generators that solves
unknown input decoupling FDI for each possible combination, a fault isolation is
then achieved.

Due to its duality to the unknown input decoupling FDI in an extended sense,
the decoupling technique developed in the advanced linear control theory in the
1980s offers one major tool for the FDI study. In this framework, there are numer-
ous approaches, for example, the eigenvalue and eigenstructure assignment scheme,
matrix pencil method, geometric method, just to mention some of them.

In this book, Chap. 6 is dedicated to the unknown input decoupling issues, while
Chap. 13 to the fault isolation study.

Already at this early stage, we would like to call the reader’s attention to the dif-
ference between the unknown input observer scheme and the unknown input resid-
ual generation scheme. As mentioned in the last section, the core of an observer-
based residual generator is an output observer whose existence conditions are dif-
ferent (less strict) from those for a (state) unknown input observer.

We would also like to give a critical comment on the original idea of the un-
known input decoupling scheme. FDI problems deal, in their core, with a trade-
off between the robustness against unknown inputs and the fault detectability. The
unknown input decoupling scheme only focuses on the unknown inputs without
explicitly considering the faults. As a result, the unknown input decoupling is gen-
erally achieved at the cost of the fault detectability. In Chaps. 7 and 12, we shall
discuss this problem and propose an alternative way of applying the unknown in-
put decoupling solutions to achieve an optimal trade-off between the robustness and
detectability.

2.3 Robustness Issues in the Observer-Based FDI Framework

From today’s viewpoint, application of the robust control theory to the observer-
based FDI should be a logical step following the study on the unknown input de-
coupling FDI. Historical development shows however a somewhat different picture.
The first work on the robustness issues was done in the parity space framework. In
their pioneering work, Chow and Willsky as well as Lou et al. proposed a perfor-
mance index for the optimal design of parity vectors if a perfect unknown input de-
coupling is not achievable due to the strict existence conditions. A couple of years
later, in 1989 and 1991, Ding and Frank proposed the application of the H2 and
H∞ optimization technique, a central research topic in the area of control theory
between the 80s and early 90s, to the observer-based FDI system design. Preced-
ing to this work, a parametrization of (all) linear time invariant residual generators
was achieved by Ding and Frank 1990, which builds, analogous to the well-known
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Youla-parametrization of all stabilization controllers, the basis of further study in
the H∞ framework. Having recognized that the H∞ norm is not a suitable expres-
sion for the fault sensitivity, Ding and Frank in 1993 and Hou and Patton in 1996
proposed to use the minimum singular value of a transfer matrix to describe the
fault sensitivity and gave the first solutions in the H∞ framework. Study on this
topic builds one of the mainstreams in the robust FDI framework.

Also in the H∞ framework, transforming the robust FDI problems into the so-
called Model-Matching-Problem (MMP), a standard problem formulation in the
H∞ framework, provides an alternative FDI system design scheme. This work has
been particularly driven by the so-called integrated design of feedback controller
and (observer-based) FDI system, and the achieved results have also been applied
for the purpose of fault identification, as described in Chap. 14.

Stimulated by the recent research efforts on robust control of uncertain sys-
tems, study on the FDI in uncertain systems is receiving increasing attention in
this decade. Remarkable progress in this study can be observed, since the so-called
LMI (linear matrix inequality) technique is becoming more and more popular in the
FDI community.

For the study on the robustness issues in the observer-based FDI framework,
H∞ technique, the so-called system factorization technique, MMP solutions, and
the LMI techniques are the most important tools.

In this book, Chaps. 7 and 8 are devoted to those topics.
Although the above-mentioned studies lead generally to an optimal design of

a residual generator under a cost function that expresses a trade-off between the
robustness against unknown inputs and the fault detectability, the optimization is
achieved regarding to some norm of the residual generator. In this design proce-
dure, well known in the optimal design of feedback controllers, neither the residual
evaluation nor the threshold computations are taken into account. As a result, the
FDI performance of the overall system, i.e. the residual generator, evaluator and
threshold, might be poor. This problem, which makes the FDI system design differ-
ent from the controller design, will be addressed in Chap. 12.

2.4 On the Parity Space FDI Framework

Although they are based on the state space representation of dynamic systems, the
parity space FDI schemes are significantly different from the observer-based FDI
methods in

• the mathematical description of the FDI system dynamics
• and associated with it, also in the solution tools.

In the parity space FDI framework, residual generation, the dynamics of the
residual signals regarding to the faults and unknown inputs are presented in the
form of algebraic equations. Hence, most of the problem solutions are achieved in
the framework of linear algebra. This brings with the advantages that (a) the FDI
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system designer is not required to have rich knowledge of the advanced control the-
ory for the application of the parity space FDI methods (b) the most computations
can be completed without complex and involved mathematical algorithms. More-
over, it also provides the researchers with a valuable platform, at which new FDI
ideas can be easily realized and tested. In fact, a great number of FDI methods and
ideas have been first presented in the parity space framework and later extended
to the observer-based framework. The performance index based robust design of
residual generators is a representative example.

Motivated by these facts, we devote throughout this book much attention to the
parity space FDI framework. The associated methods will be presented either paral-
lel to or combined with the observer-based FDI methods. Comprehensive compari-
son studies build also a focus.

2.5 Residual Evaluation and Threshold Computation

Despite of the fact that an FDI system consists of a residual generator, a resid-
ual evaluator together with a threshold and a decision maker, in the observer-based
FDI framework, studies on the residual evaluation and threshold computation have
only been occasionally published. There exist two major residual evaluation strate-
gies. The statistic testing is one of them, which is well established in the framework
of statistical methods. Another one is the so-called norm-based residual evaluation.
Besides of less on-line calculation, the norm-based residual evaluation allows a sys-
tematic threshold computation using well-established robust control theory.

The concept of norm-based residual evaluation was initiated by Emami-naeini et
al. in a very early development stage of the model-based fault diagnosis technique.
In their pioneering work, Emami-naeini et al. proposed to use the root-mean-square
(RMS) norm for the residual evaluation purpose and derived, based on the resid-
ual evaluation function, an adaptive threshold, also called threshold selector. This
scheme has been applied to detect faults in dynamic systems with disturbances and
model uncertainties. Encouraged by this promising idea, researchers have applied
this concept to deal with residual evaluation problems in the H∞ framework, where
the L2 norm is adopted as the residual evaluation function.

The original idea behind the residual evaluation is to create such a (physical) fea-
ture of the residual signal that allows a reliable detection of the fault. The L2 norm
measures the energy level of a signal and can be used for the evaluation purpose. In
practice, also other kinds of features are used for the same purpose, for instance, the
absolute value in the so-called limit monitoring scheme. In our study, we shall also
consider various kinds of residual evaluation functions, besides of the L2 norm, and
establish valuable relationships between those schemes widely used in practice, like
limit monitoring, trends analysis etc.

The mathematical tools for the statistic testing and norm-based evaluation are
different. The former is mainly based on the application of statistical methods, while
for the latter the functional analysis and robust control theory are the mostly used
tools.
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In this book, we shall in Chaps. 9 and 10 address both the statistic testing and
norm-based residual evaluation and threshold computation methods. In addition, a
combination of these two methods will be presented in Chap. 11.

2.6 FDI System Synthesis and Design

In applications, an optimal trade-off between the false alarm rate (FAR) and fault
detection rate (FDR), instead of the one between the robustness and sensitivity, is of
primary interest in designing an FDI system. FAR and FDR are two concepts that
are originally defined in the statistic context. In their work in 2000, Ding et al. have
extended these two concepts to characterize the FDI performance of an observer-
based FDI system in the context of a norm-based residual evaluation.

In Chap. 12, we shall revise the FDI problems from the viewpoint of the trade-off
between FAR and FDR. In this context, the FDI performance of the major residual
generation methods presented in Chaps. 6–8 will be checked. We shall concentrate
ourselves on two design problems: (a) given an allowable FAR, find an FDI system
so that FDR is maximized (b) given an FDR, find an FDI system to achieve the
minimum FAR.

FDI in feedback control systems is, due to the close relationship between the
observer-based residual generation and controller design, is a special thematic field
in the FDI study. In Chap. 15, we shall briefly address this topic.

2.7 Notes and References

As mentioned above, linear algebra and matrix theory, linear system theory, robust
control theory, statistical methods and currently the LMI technique are the major
tools for our study throughout this book. Among the great number of available books
on these topics, we would like to mention the following representative ones:

• matrix theory: [68]
• linear system theory: [23, 105]
• robust control theory: [59, 198]
• LMI technique: [16]
• statistical methods: [12, 111].

Below are the references for the pioneering works mentioned in this chapter:

• the pioneering contributions by Beard and Jones that initiated the observer-based
FDI study [13, 104]

• the first work of designing unknown input residual generator by Wünnenberg and
Frank [184]

• the first contributions to the robustness issues in the parity space framework by
Chow and Willsky, Lou et al., [29, 118], and in the observer-based FDI framework
by Ding and Frank [46, 48, 52] as well as Hou and Patton [91]
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• the norm-based residual evaluation initiated by Emami-naeini et al. [58]
• the FDI system synthesis and design in the norm-based residual evaluation frame-

work by Ding et al. [38].



Chapter 3
Modelling of Technical Systems

The objective of this chapter is to introduce typical models for the mathematical
description of dynamic systems. As sketched in Fig. 3.1, we consider systems con-
sisting of a process, also known as plant, actuators and sensors. The systems may
be, at different places, disturbed during their operation.

Our focus is on the system behavior in fault-free and faulty cases. We shall first
give a brief review of different model forms for linear dynamic systems, including:

• input–output description
• state space representation
• models with disturbances and model uncertainties as well as
• models that describe influences of faults.

These model forms are essential for the subsequent studies.
As one of the key tools for our study, coprime factorization will be frequently

used throughout this book. Coprime factorization technique links system modelling
and synthesis. This motivates us to address this topic in a separate section.

We shall moreover deal with modelling of faults in a feedback control system,
which is of a special interest for practical applications.

A further focus of this chapter is on the introduction of five technical and labo-
ratory processes that will be used to illustrate the application of those model forms
for the FDI purpose and serve as benchmark and case study throughout this book.

Fig. 3.1 Schematic description of the systems under consideration

S.X. Ding, Model-Based Fault Diagnosis Techniques, Advances in Industrial Control,
DOI 10.1007/978-1-4471-4799-2_3, © Springer-Verlag London 2013
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3.1 Description of Nominal System Behavior

Depending on its dynamics and the aim of modelling, a dynamic system can be de-
scribed in different ways. The so-called linear time invariant (LTI) system model
offers the simplest from and thus widely used in research and application domains.
We call disturbance-free and fault-free systems nominal and suppose that the nom-
inal systems are LTI. There are two standard mathematical model forms for LTI
systems: the transfer matrix and the state space representation. Below, they will be
briefly introduced.

Roughly speaking, a transfer matrix is an input–output description of the dy-
namic behavior of an LTI system in the frequency domain. Throughout this book,
notation Gyu(s),Gyu(z) ∈ LHm×ku∞ is used for presenting a transfer matrix from
the input vector u ∈Rku to the output vector y ∈Rm, that is,

y(s)=Gyu(s)u(s), y(z)=Gyu(z)u(z). (3.1)

It is assumed that Gyu(s) or Gyu(z) is a proper real-rational matrix. We use s to
denote the complex variable of Laplace transform for continuous-time signals or
z the complex variable of z-transform for discrete-time signals.

The standard form of the state space representation of a continuous-time LTI
system is given by

ẋ(t) = Ax(t)+Bu(t), x(0)= x0 (3.2)

y(t) = Cx(t)+Du(t) (3.3)

while for a discrete-time LTI system we use

x(k + 1) = Ax(k)+Bu(k), x(0)= x0 (3.4)

y(k) = Cx(k)+Du(k) (3.5)

where x ∈ Rn is called the state vector, x0 the initial condition of the system,
u ∈ Rku the input vector and y ∈ Rm the output vector. Matrices A,B,C,D are
appropriately dimensioned real constant matrices.

State space models can be either directly achieved by modelling or derived based
on a transfer matrix. The latter is called a state space realization ofGyu(s)= C(sI−
A)−1B +D and denoted by

Gyu(s)= (A,B,C,D) or Gyu(s)=
[
A B

C D

]
. (3.6)

In general, we assume that (A,B,C,D) is a minimal realization of Gyu(s).

Remark 3.1 The results presented in this book hold generally both for continuous
and discrete-time systems. For the sake of simplicity, we shall use continuous-time
models to describe LTI systems except that the type of the system is specified. Also
for the sake of simplifying notation, we shall drop out variable t so far no confusion
is caused.
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3.2 Coprime Factorization Technique

Coprime factorization of a transfer function (matrix) gives a further system rep-
resentation form which will be intensively used in our subsequent study. Roughly
speaking, a coprime factorization over RH∞ is to factorize a transfer matrix into
two stable and coprime transfer matrices.

Definition 3.1 Two transfer matrices M̂(s), N̂(s) in RH∞ are called left coprime
over RH∞ if there exist two transfer matrices X̂(s) and Ŷ (s) in RH∞ such that

[
M̂(s) N̂(s)

][ X̂(s)
Ŷ (s)

]
= I. (3.7)

Similarly, two transfer matrices M(s), N(s) in RH∞ are right coprime over RH∞
if there exist two matrices Y(s), X(s) such that

[
X(s) Y (s)

][M(s)
N(s)

]
= I. (3.8)

Let G(s) be a proper real-rational transfer matrix. The left coprime factorization
(LCF) ofG(s) is a factorization ofG(s) into two stable and coprime matrices which
will play a key role in designing the so-called residual generator. To complete the
notation, we also introduce the right coprime factorization (RCF), which is however
only occasionally applied in our study.

Definition 3.2 G(s) = M̂−1(s)N̂(s) with the left coprime pair (M̂(s), N̂(s)) over
RH∞ is called LCF of G(s). Similarly, RCF of G(s) is defined by G(s) =
N(s)M−1(s) with the right coprime pair (M(s),N(s)) over RH∞.

It follows from (3.7) and (3.8) that transfer matrices

[
M̂(s) N̂(s)

]
,

[
M(s)

N(s)

]

are respectively, right and left invertible in RH∞.
Below, we present a lemma that provides us with a state space computation al-

gorithm of (M̂(s), N̂(s)), (M(s),N(s)) and the associated pairs (X̂(s), Ŷ (s)) and
(X(s), Y (s)).

Lemma 3.1 Suppose G(s) is a proper real-rational transfer matrix with a state
space realization (A,B,C,D), and it is stabilizable and detectable. Let F and L
be so that A+BF and A−LC are Hurwitz matrix, and define

M̂(s) = (A−LC,−L,C, I), N̂(s)= (A−LC,B −LD,C,D) (3.9)

M(s) = (A+BF,B,F, I), N(s)= (A+BF,B,C +DF,D) (3.10)
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X̂(s) = (A+BF,L,C +DF,I), Ŷ (s)= (A+BF,−L,F,0) (3.11)

X(s) = (A−LC,−(B −LD),F, I), Y (s)= (A−LC,−L,F,0). (3.12)

Then

G(s)= M̂−1(s)N̂(s)=N(s)M−1(s) (3.13)

are the LCF and RCF of G(s), respectively. Moreover, the so-called Bezout identity
holds [

X(s) Y (s)

−N̂(s) M̂(s)

][
M(s) −Ŷ (s)
N(s)) X̂(s)

]
=
[
I 0
0 I

]
. (3.14)

In the textbooks on robust control theory, the reader can find the feedback control
interpretation of the RCF. For our purpose, we would like to give an observer inter-
pretation of the LCF and the associated computation algorithm for (M̂(s), N̂(s)).

Introduce a state observer

˙̂x =Ax̂ +Bu+L(y − ŷ), ŷ = Cx̂ +Du
with an observer gain L that ensures the observer stability. Consider output estima-
tion error r = y − ŷ. It turns out

y(s)− ŷ(s)= (C(sI −A)−1B +D)u(s)
−C(sI −A)−1(L(y(s)− ŷ(s))+Bu(s))−Du(s)

⇐⇒ (
I +C(sI −A)−1L

)(
y(s)− ŷ(s))= 0

⇐⇒ y(s)− ŷ(s)= 0.

On the other hand,

y(s)− ŷ(s) = (I −C(sI −A+LC)−1L
)
y(s)

− (C(sI −A+LC)−1(B −LD)+D)u(s).
It becomes evident that

M̂(s)y(s)− N̂(s)u(s)= 0 ⇐⇒ y(s)= M̂−1(s)N̂(s)u(s).

In fact, the output estimation error y − ŷ is the so-called residual signal, which will
be addressed in the sequel.

Note that

r(s)= [−N̂(s) M̂(s)
][u(s)
y(s)

]
(3.15)

is a dynamic system with the process input and output vectors u,y as its inputs and
the residual vector r as its output. It is called residual generator. In some literature,
[−N̂(s) M̂(s) ] is also called kernel representation of system (3.2)–(3.3).
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3.3 Representations of Systems with Disturbances

Disturbances around the process under consideration, unexpected changes within
the technical process as well as measurement and process noises are often modelled
as unknown input vectors. We denote them by d , ν or η and integrate them into the
state space model (3.2)–(3.3) or input–output model (3.1) as follows:

• state space representation

x(k + 1)=Ax(k)+Bu(k)+Edd(k)+ η(k) (3.16)

y(k)= Cx(k)+Du(k)+ Fdd(k)+ ν(k) (3.17)

with Ed , Fd being constant matrices of compatible dimensions, d ∈Rkd is a de-
terministic unknown input vector, η ∈Rkη , ν ∈Rkν are, if no additional remark is
made, white, normal distributed noise vectors with η∼N (0,Ση), ν ∼N (0,Σν).

• input–output model

y(z)=Gyu(z)u(z)+Gyd(z)d(z)+Gyν(z)ν(z) (3.18)

where Gyd(z) is known and called disturbance transfer matrix, d ∈ Rkd repre-
sents again a deterministic unknown input vector, ν ∼N (0,Σν).

Remark 3.2 In order to avoid involved mathematical handling, we shall address
stochastic systems in the discrete form.

3.4 Representations of System Models with Model Uncertainties

Model uncertainties refer to the difference between the system model and the reality.
It can be caused, for instance, by changes within the process or in the environment
around the process. Representing model uncertainties is a research topic that is re-
ceiving more and more attention. In this book, we restrict ourselves to the following
standard representations.

Consider an extension of system model (3.1) given by

y(s)=GΔ,yu(s)u(s)+GΔ,yd(s)d(s) (3.19)

where the subscript Δ indicates model uncertainties. The model uncertainties can
be represented either by an additive perturbation

GΔ,yu(s)=Gyu(s)+W1(s)ΔW2(s) (3.20)

or in the multiplicative form

GΔ,yu(s)=
(
I +W1(s)ΔW2(s)

)
Gyu(s) (3.21)
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where W1(s), W2(s) are some known transfer matrices and Δ is unknown and
bounded by σ̄ (Δ) ≤ δΔ, where σ̄ (·) denotes the maximum singular value of a ma-
trix.

Among a number of expressions for model uncertainties in the state space repre-
sentations, we consider an extended form of (3.2)–(3.3) given by

ẋ = Āx + �Bu+ �Edd, y = �Cx + �Du+ �Fdd (3.22)

Ā = A+ΔA, �B = B +ΔB, �C = C +ΔC (3.23)

�D =D +ΔD, �Ed =Ed +ΔE, �Fd = Fd +ΔF (3.24)

where the model uncertainties ΔA, ΔB , ΔC, ΔD, ΔE and ΔF belong to one of
the following three types:

• norm bounded type[
ΔA ΔB ΔE

ΔC ΔD ΔF

]
=
[
E

F

]
Δ(t)
[
G H J

]
(3.25)

where E, F , G, H , J are known matrices of appropriate dimensions and Δ(t) is
unknown but bounded by

σ̄ (Δ)≤ δΔ.
It is worth mentioning that (3.22)–(3.24) with norm bounded uncertainty (3.25)
can also be written as

ẋ = Ax +Bu+Edd +Ep, y = Cx +Du+ Fdd + Fp (3.26)

q =Gx +Hu+ Jd +Kp, p = Δ̃q, Δ̃= (I +ΔK)−1Δ (3.27)

on the assumption that (I +ΔK) is invertible.
• polytopic type[

ΔA ΔB ΔE

ΔC ΔD ΔF

]
= Co

{[
A1 B1 E1
C1 D1 F1

]
, . . . ,

[
Al Bl El
Cl Dl Fl

]}
(3.28)

where Ai , Bi , Ci , Di , Ei , Fi , i = 1, . . . , l, are known matrices of appropriate
dimensions and Co{·} denotes a convex set defined by

Co

{[
A1 B1 E1
C1 D1 F1

]
, . . . ,

[
Al Bl El
Cl Dl Fl

]}

=
l∑
i=1

βi

[
Ai Bi Ei
Ci Di Fi

]
,

l∑
i=1

βi = 1, βi ≥ 0, i = 1, . . . , l.

(3.29)

• stochastic type

[
ΔA ΔB ΔE

ΔC ΔD ΔF

]
=

l∑
i=1

([
Ai Bi Ei
Ci Di Fi

]
pi(k)

)
(3.30)
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with known matrices Ai , Bi , Ci , Di , Ei , Fi , i = 1, . . . , l, of appropriate dimen-
sions. pT (k)= [p1(k) · · · pl(k) ] represents model uncertainties and is expressed
as a stochastic process with

p̄(k)= E
(
p(k)
)= 0, E

(
p(k)pT (k)

)= diag
(
σ 2

1 , . . . , σ
2
l

)
where σi , i = 1, . . . , l, are known. It is assumed that (3.22) is given in the discrete
form and p(0), p(1), . . . , are independent and x(0), u(k), d(k) are independent
of p(k).

Remark 3.3 Note that model (3.22)–(3.23) with polytopic uncertainty (3.29) can
also be written as

ẋ =
(

l∑
i=1

βi(A+Ai)
)
x +
(

l∑
i=1

βi(B +Bi)
)
u+
(

l∑
i=1

βi(Ed +Ei)
)
d

y =
(

l∑
i=1

βi(C +Ci)
)
x +
(

l∑
i=1

βi(D +Di)
)
u+
(

l∑
i=1

βi(Fd + Fi)
)
d.

It is a polytopic system.

3.5 Modelling of Faults

There exists a number of ways of modelling faults. Extending model (3.18) to

y(s)=Gyu(s)u(s)+Gyd(s)d(s)+Gyf (s)f (s) (3.31)

is a widely adopted one, where f ∈ Rkf is a unknown vector that represents all
possible faults and will be zero in the fault-free case, Gyf (s) ∈ LH∞ is a known
transfer matrix. Throughout this book, f is assumed to be a deterministic time func-
tion. No further assumption on it is made, provided that the type of the fault is not
specified.

Suppose that a minimal state space realization of (3.31) is given by

ẋ = Ax +Bu+Edd +Ef f (3.32)

y = Cx +Du+ Fdd + Ff f (3.33)

with known matrices Ef ,Ff . Then we have

Gyf (s)= Ff +C(sI −A)−1Ef . (3.34)

It becomes evident that Ef , Ff indicate the place where a fault occurs and its in-
fluence on the system dynamics. As shown in Fig. 3.1, we divide faults into three
categories:
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• sensor faults fS : these are faults that directly act on the process measurement
• actuator faults fA: these faults cause changes in the actuator
• process faults fP : they are used to indicate malfunctions within the process.

A sensor fault is often modelled by setting Ff = I , that is,

y = Cx +Du+ Fdd + fS (3.35)

while an actuator fault by setting Ef = B , Ff =D, which leads to

ẋ =Ax +B(u+ fA)+Edd, y = Cx +D(u+ fA)+ Fdd. (3.36)

Depending on their type and location, process faults can be modelled by Ef = EP
and Ff = FP for some EP , FP . For a system with sensor, actuator and process
faults, we define

f =
⎡
⎣fAfP
fS

⎤
⎦ , Ef =

[
B EP 0

]
, Ff =

[
D FP I

]
(3.37)

and apply (3.32)–(3.33) to represent the system dynamics.
Due to the way how they affect the system dynamics, the faults described by

(3.32)–(3.33) are called additive faults. It is very important to note that the occur-
rence of an additive fault will not affect the system stability, independent of the
system configuration. Typical additive faults met in practice are, for instance, an
offset in sensors and actuators or a drift in sensors. The former can be described by
a constant, while the latter by a ramp.

In practice, malfunctions in the process or in the sensors and actuators often cause
changes in the model parameters. They are called multiplicative faults and gener-
ally modelled in terms of parameter changes. They can be described by extending
(3.22)–(3.24) to

ẋ = (Ā+ΔAF )x + (�B +ΔBF )u+Edd (3.38)

y = (�C +ΔCF )x + (�D +ΔDF )u+ Fdd (3.39)

where ΔAF , ΔBF , ΔCF , ΔDF represent the multiplicative faults in the plant, ac-
tuators and sensors, respectively. It is assumed that

ΔAF =
lA∑
i=1

AiθAi , ΔBF =
lB∑
i=1

BiθBi (3.40)

ΔCF =
lC∑
i=1

CiθCi , ΔDF =
lD∑
i=1

DiθDi (3.41)

where
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• Ai , i = 1, . . . , lA, Bi , i = 1, . . . , lB , Ci , i = 1, . . . , lC , and Di , i = 1, . . . , lD , are
known and of appropriate dimensions

• θAi , i = 1, . . . , lA, θBi , i = 1, . . . , lB , θCi , i = 1, . . . , lC , and θDi , i = 1, . . . , lD ,
are unknown time functions

Multiplicative faults are characterized by their (possible) direct influence on the
system stability. This fact is evident for the faults described by ΔAF . In case that
state feedback or observer-based state feedback control laws are adopted, we can
also see that ΔBF , ΔCF , ΔDF would affect the system stability.

Introducing

qM =GFx +HFu, fM =ΔF (t)qM (3.42)

GF =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

In×n
...

In×n
0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, HF =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

0
Iku×ku
...

Iku×ku

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

ΔF (t)= diag(θA1In×n, . . . , θAlA In×n, θB1Iku×ku, . . . , θBlB Iku×ku)

EF =
[
A1 · · · AlA B1 · · · BlB

]
, FF =

[
C1 · · · ClC D1 · · · DlD

]

we can rewrite (3.38)–(3.39) into

ẋ = Āx + �Bu+Edd +EFfM (3.43)

y = �Cx + �Du+ Fdd + FFfM. (3.44)

In this way, the multiplicative faults are modelled as additive faults. Also for this
reason, the major focus of our study in this book will be on the detection and identi-
fication of additive faults. But, the reader should keep in mind that fM is a function
of the state and input variables of the system and thus will affect the system stabil-
ity.

3.6 Modelling of Faults in Closed-Loop Feedback Control
Systems

Model-based fault diagnosis systems are often embedded in closed-loop feedback
control systems. Due to the closed-loop structure with an integrated controller that
brings the system in general robustness against changes in the system, special atten-
tion has been paid to the topic of fault detection in feedback control loops. In this
section, we consider modelling issues for a standard control loop with sensor, actua-
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Fig. 3.2 Structure of a standard control loop with faults

tor and process faults, as sketched in Fig. 3.2. Suppose that the process with sensors
and actuators is described by (3.16). Denote the control objective by z, reference
signal by w, the prefilter by Γ (s) and the control law by v(s)=K(s)y(s). For the
sake of simplifying the problem formulation, we only consider additive faults. The
overall system model with possible sensor, actuator and process faults is then given
by

ẋ =Ax +B(u+ fA)+Edd +EPfP (3.45)

y = Cx +D(u+ fA)+ Fdd + fS + FPfP (3.46)

u(s)=K(s)y(s)+ Γ (s)w(s). (3.47)

Depending on the signal availability and requirements on the realization of the
FDI strategy, there are two different ways of modelling the overall system dynam-
ics.

In the framework of the so-called open-loop FDI, it is assumed that input and
output vectors u and y are available. For the FDI purpose, the so-called open-loop
model (3.45)–(3.46) can be used, which contains all information needed for detect-
ing the faults. Note that this open-loop model is identical with the one introduced in
the last section.

In practice, it is often the case that u is not available. For instance, if the control
loop is a part of a large scaled system and is supervised by a remote central station,
where the higher level controller and FDI unit are located, and the reference signal
w, instead of process input signal u, is usually available for the FDI purpose. In
those cases, the so-called closed-loop FDI strategy can be applied. The closed-loop
FDI strategy is based on the closed-loop model with w and y as input and output
signals respectively. The nominal system behavior of the closed-loop is described
by

y(s)=Gyw(s)w(s), Gyw(s)=
(
I −Gyu(s)K(s)

)−1
Gyu(s)Γ (s) (3.48)

Gyu(s)=D +C(sI −A)−1B.
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The overall system model with the faults and disturbances is given by

y(s)=Gyw(s)w(s)+Gyd,cl(s)d(s)+GyfA,cl(s)fA(s)
+GyfP ,cl(s)fP (s)+GyfS,cl(s)fS(s) (3.49)

Gyd,cl(s)=
(
I −Gyu(s)K(s)

)−1(
Fd +C(sI −A)−1Ed

)
GyfA,cl(s)=

(
I −Gyu(s)K(s)

)−1(
D+C(sI −A)−1B

)
GyfP ,cl(s)=

(
I −Gyu(s)K(s)

)−1(
FP +C(sI −A)−1EP

)
GyfS,cl(s)=

(
I −Gyu(s)K(s)

)−1
.

From the viewpoint of residual generation, which utilizes the nominal model, it
may be of additional advantage to adopt the closed-loop FDI strategy. It is known
in control theory that, by means of some advanced control strategy, the dynam-
ics of the closed-loop system, Gyw(s), can be in a form easy for further handling.
For instance, using a decoupling controller will result in a diagonal Gyw(s), which
reduces an MIMO (multiple input, multiple output) system into a number of (de-
coupled) SISO (single input, single output) ones.

3.7 Case Study and Application Examples

In this section, five application examples will be introduced. They are used to il-
lustrate the modelling schemes described in the previous sections and serve subse-
quently as real case systems in the forthcoming chapters.

3.7.1 Speed Control of a DC Motor

DC (Direct Current) motor converts electrical energy into mechanical energy. Be-
low, the laboratory DC motor control system DR300 is briefly described.

Model of DC Motor Figure 3.3 is a schematic description of a DC motor, which
consists of an electrical part and a mechanical part. Define the loop current IA and

Fig. 3.3 Schematic
description of a DC motor
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Table 3.1 Parameters of laboratory DC motor DR300

Parameter Symbol Value Unit

Total inertia J 80.45 · 10−6 kg ·m2

Voltage constant CΦ 6.27 · 10−3 V/Rpm

Motor constant KM 0.06 Nm/A

Armature Inductance LA 0.003 H

Resistance RA 3.13 Ohm

Tacho output voltage KT 2.5 · 10−3 V/Rpm

Tacho filter time constant TT 5 ms

the armature frequency Ω as state variables, the terminal voltage UA as input and
the (unknown) load ML as disturbance, we have the following state space descrip-
tion

[
İA

Ω̇

]
=
[
−RA
LA

−CΦ
LA

KM
J

0

][
IA

Ω

]
+
[

1
LA

0

]
UA +

[
0

− 1
J

]
ML (3.50)

as well as the transfer

Ω(s)= 1

CΦ
(
1+ JRA

KMCΦ
s + JTARA

KMCΦ
s2
)UA(s)

− RA(1+ TAs)
KMCΦ

(
1+ JRA

KMCΦ
s + JTARA

KMCΦ
s2
)ML(s), TA = LA

RA
(3.51)

where the parameters given in (3.50) and (3.51) are summarized in Table 3.1.

Models of DC Motor Control System For the purpose of speed control, cascade
control scheme is adopted with a speed control loop and a current control loop. As
sketched in Fig. 3.4, the DC motor together with the current control loop will be
considered as the plant that is regulated by a PI speed controller.

The plant dynamics can be approximately described by

y(s) =Gyu(s)u(s)+Gyd(s)d(s) (3.52)

Gyu(s) = 8.75

(1+ 1.225s)(1+ 0.03s)(1+ 0.005s)
, Gyd(s)=− 31.07

s(1+ 0.005s)

with y = Umeas (voltage delivered by the Tacho) as output, the output of the speed
controller as input u and d =ML as disturbance.
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Fig. 3.4 Structure of the DC motor control system

With a PI speed controller set to be

u(s)=K(s)(w(s)− y(s)), K(s)= 1.6
1+ 1.225s

s
(3.53)

where w(s)=Ωref (s), the closed-loop-model is given by

y(s) =Gyw(s)w(s)+Gyd,cl(s)d(s) (3.54)

Gyw(s) = 14.00

s(1+ 0.03s)(1+ 0.005s)+ 14.00

Gyd,cl(s) = − 31.07(1+ 0.03s)

s(1+ 0.03s)(1+ 0.005s)+ 14.00
.

Modelling of Faults Three faults will be considered:

• an additive actuator fault fA
• an additive fault in Tacho fS1 and
• a multiplicative fault in Tacho fS2 ∈ [−1,0].

Based on (3.52), we have the open-loop structured overall system model

y(s)=Gyu(s)u(s)+Gyd(s)d(s)+GyfA(s)fA +GyfS1(s)fS1 +Δy(s)fS2
(3.55)

GyfA(s)=Gyu(s), Δy(s)= (Gyu(s)u(s)+Gyd(s)d(s)).
The closed-loop model can be achieved by extending (3.54) to

y(s) =Gyw(s)w(s)+Gyd,cl(s)d(s)+GyfA,cl(s)fA(s)
+GyfS1,cl(s)fS1(s)+Δycl(s) (3.56)

GyfA,cl(s) =
8.75s

(1+ 1.225s)(s(1+ 0.03s)(1+ 0.005s)+ 14.00)

GyfS1,cl(s) =
s(1+ 0.03s)(1+ 0.005s)

s(1+ 0.03s)(1+ 0.005s)+ 14.00
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Fig. 3.5 Schematic
description of an inverted
pendulum system

Δycl(s) =
(
1+Gyu(s)K(s)fS2

)−1(
Gyw(s)w(s)+Gyd,cl(s)d(s)

)
fS2

− (Gyw(s)w(s)+Gyd,cl(s)d(s)).

3.7.2 Inverted Pendulum Control System

Inverted pendulum is a classical laboratory system that is widely used in the educa-
tion of control theory and engineering. Below is a brief introduction to the laboratory
pendulum system LIP100 that is schematically sketched in Fig. 3.5.

The inverted pendulum system consists of a cart (pos. 6 in Fig. 3.5) that moves
along a metal guiding bar (pos. 5). An aluminum rod (pos. 9) with a cylindrical
weight (pos. 7) is fixed to the cart by an axis. The cart is connected by a transmission
belt (pos. 4) to a drive wheel (pos. 3). The wheel is driven by a current controlled
direct current motor (pos. 2) that delivers a torque proportional to the acting control
voltage us such that the cart is accelerated. This system is nonlinear and consists of
four state variables:

• the position of the cart r (marked by 6 in Fig. 3.5)
• the velocity of the cart ṙ
• the angle of the pendulum Φ as well as
• the angle velocity Φ̇ .

Among the above state variables, r is measured by means of a circular coil poten-
tiometer that is fixed to the driving shaft of the motor, ṙ by means of the Tacho
generator that is also fixed to the motor and Φ by means of a layer potentiometer
fixed to the pivot of the pendulum. The system input u is the acting control voltage
us that generates force F on the cart.

Nonlinear System Model The following nonlinear model describes the dynamics
of the inverted pendulum:

ṙ = β(Φ)(a32 sinΦ cosΦ + a33ṙ + a34Φ̇ cosΦ + a35Φ̇
2 sinΦ + b3F

)
(3.57)

Φ̇ = β(Φ)(a42 sinΦ + a43ṙ cosΦ + a44Φ̇ + a45Φ̇
2 cosΦ sinΦ + b4F cosΦ

)
(3.58)
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Table 3.2 Parameters of
laboratory pendulum system
LIP100

Constant Numerical value Unit

Kr 2.6 N/V

n11 14.9 V/m

n22 −52.27 V/rad

n33 −7.64 Vs/m

n44 −52.27 Vs/rad

M0 3.2 kg

M1 0.329 kg

M 3.529 kg

ls 0.44 m

Θ 0.072 kg m2

N 0.1446 kg m

N2
01 0.23315 kg2 m

N2/N2
01 0.0897

Fr 6.2 kg/s

C 0.009 kg m2/s

where

β(Φ) =
(

1+ N2

N2
01

sin2Φ

)−1

a32 = − N
2

N2
01

g, a33 =−ΘFr
N2

01

, a34 = NC

N2
01

, a35 = ΘN

N2
01

, a42 = MN

N2
01

g

a43 = FrN

N2
01

, a44 =−MC
N2

01

, a45 =− N
2

N2
01

, b3 = Θ

N2
01

, b4 =− N

N2
01

.

The parameters are given in Table 3.2.

Disturbances There are two types of frictions in the system that may consider-
ably affect the system dynamics. Theses are Coulomb friction and static friction,
respectively described by

Coulomb friction: Fc =−|Fc|sgn(r)

static friction: FHR =
{−μFn, ṙ = 0

0, ṙ �= 0.

To include their effects in the system model, F is extended to

Fsum = F + d
with d being a unknown input.
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Linear Model After a linearization at the operating point

r = 1, ṙ = 0, Φ = 0, Φ̇ = 0

and a normalization with ⎡
⎢⎢⎣
x1
x2
x3
x4

⎤
⎥⎥⎦=
⎡
⎢⎢⎣
n11r

n22Φ

n33ṙ

n44Φ̇

⎤
⎥⎥⎦

we have the following (linear) state space model of the inverted pendulum

ẋ = Ax +Bu+Edd, y = Cx + υ (3.59)

A =

⎡
⎢⎢⎣

0 0 −1.95 0
0 0 0 1.0
0 −0.12864 −1.9148 0.00082
0 21.4745 26.31 −0.1362

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

0
0

−6.1343
84.303

⎤
⎥⎥⎦

C =
⎡
⎣1 0 0 0

0 1 0 0
0 0 1 0

⎤
⎦ , Ed = B, u=KfF, υ ∼N (0,Συ)

where υ denotes the measurement noise.
It is worth noting that linear model (3.59) is valid under the following condi-

tions:

• |F | ≤ 20 N
• |r| ≤ 0.5 m
• |θ | ≤ 10°.

Discrete-Time Model By a discretization of model (3.59) with a sampling time
T = 0.03 s, we obtain the following discrete-time model

x(k + 1)=Adx(k)+Bdu(k)+Eddd(k), y(k)= Cx(k)+ υ(k) (3.60)

Ad =

⎡
⎢⎢⎣

1.0000 0.0001 −0.0569 0.0000
0 1.0097 0.0116 0.0300
0 −0.0038 0.9442 −0.0000
0 0.6442 0.7688 1.0056

⎤
⎥⎥⎦ , Bd =Edd =

⎡
⎢⎢⎣

0.0053
0.0373
−0.1789
2.4632

⎤
⎥⎥⎦ .

LCF of the Nominal Model To illustrate the coprime factorization technique
introduced in Sect. 3.2, we derive below an LCF for model (3.59). It follows from
Lemma 3.1 that for the purpose of an LCF of (3.59) the so-called observer gain
matrix L should be selected that ensures the stability of A − LC. Using the pole
assignment method with the desired poles s1 = −6.0, s2 = −6.5, s3 = −7.0, s4 =
−7.5, L is chosen equal to
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L=

⎡
⎢⎢⎣

6.9994 −0.0019 −1.9701
−0.2657 13.8231 1.6980
−0.0198 −0.1048 4.1265
−1.8533 68.0712 37.8692

⎤
⎥⎥⎦

which gives

A−LC =

⎡
⎢⎢⎣
−6.9994 0.0019 0.0198 0
0.2657 −13.8231 −1.6980 1.0000
0.0198 −0.0241 −6.0413 −0.0008
1.8533 −46.5747 −11.5303 −0.1362

⎤
⎥⎥⎦ .

As a result, the LCF of system (3.59) is given by

Gyu(s)= C(sI −A)−1B = M̂−1
u (s)N̂u(s)

M̂u(s)= I −C(sI −A+LC)−1L, N̂u(s)= C(sI −A+LC)−1B.

Model Uncertainty Recall that linear model (3.59) has been achieved by a lin-
earization at an operating point. The linearization error will cause uncertainties in
the model parameters. Taking it into account, model (3.59) is extended to

ẋ = (A+ΔA)x + (B +ΔB)u+ (Ed +ΔE)d, y = Cx + υ (3.61)[
ΔA ΔB ΔE

]=EΔ(t) [G H H
]

E =

⎡
⎢⎢⎣

0 0
0 0
1 0
0 1

⎤
⎥⎥⎦ , Δ(t)=

[
Δa32 Δa33 Δa34
Δa42 Δa44 Δa44

]
, G=

⎡
⎣0 1 0 0

0 0 1 0
0 0 0 1

⎤
⎦

H =
⎡
⎣ 0

3.2
0

⎤
⎦ , σ̄

(
Δ(t)
)≤ 0.38.

Modelling of Faults Additive sensor and actuator faults are considered. To model
them, (3.59) and (3.60) are respectively, extended to

ẋ =Ax +Bu+Edd +Ef f, y = Cx + Ff f + υ (3.62)

x(k + 1)=Adx(k)+Bdu(k)+Eddd(k)+Edf f (k) (3.63)

y(k)= Cx(k)+ Ff f (s)+ υ(k)
Ef =

[
B 0 0 0

]
, Edf =

[
Bd 0 0 0

]

Ff =
⎡
⎣0 1 0 0

0 0 1 0
0 0 0 1

⎤
⎦ , f =

⎡
⎢⎢⎣
f1
f2
f3
f4

⎤
⎥⎥⎦=
⎡
⎢⎢⎣
fA
fS1
fS2
fS3

⎤
⎥⎥⎦ .
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Closed-Loop Model An observer-based state feedback controller with a dis-
turbance compensation is integrated into LIP100 control system, which consists
of

• an observer [ ˙̂x
˙̂
d

]
=
[
A Ed
0 0

][
x̂

d̂

]
+
[
B

0

]
u+Le(y −Cx̂) (3.64)

which delivers an estimate for x and d respectively,
• a state feedback controller with a disturbance compensator

u=−Kx̂ − d̂ + Vw (3.65)

where the observer, feedback gains Le, K and the prefilter V are respectively,

Le =
[
L1
L2

]
=

⎡
⎢⎢⎢⎢⎣

6.9965 −0.0050 −1.9564
−0.4120 13.9928 −13.2084
−0.4231 0.0436 11.9597
2.5859 66.2783 −159.2450
0.4787 −0.2264 −7.8212

⎤
⎥⎥⎥⎥⎦

K = [−1.5298 1.8544 3.0790 0.4069
]
, V =−1.5298.

The overall system dynamics is described by
⎡
⎣ ẋėx
ėd

⎤
⎦ =
⎡
⎣A−BK BK Ed

0 A−L1C Ed
0 −L2C 0

⎤
⎦
⎡
⎣ xex
ed

⎤
⎦+
⎡
⎣0

0
1

⎤
⎦ ḋ

+
⎡
⎣B0

0

⎤
⎦Vw+

⎡
⎣ 0
−L1
−L2

⎤
⎦v+

⎡
⎣ Ef
(Ef −L1Ff )

−L2Ff

⎤
⎦f (3.66)

y = Cx + v + Ff f. (3.67)

3.7.3 Three-Tank System

Three-tank system sketched in Fig. 3.6 has typical characteristics of tanks, pipelines
and pumps used in chemical industry and thus often serves as a benchmark pro-
cess in laboratories for process control. The three-tank system introduced here is a
laboratory setup DTS200.

Nonlinear Model Applying the incoming and outgoing mass flows under con-
sideration of Torricellies law, the dynamics of DTS200 is modelled by

Aḣ1 =Q1 −Q13, Aḣ2 =Q2 +Q32 −Q20, Aḣ3 =Q13 −Q32
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Fig. 3.6 DTS200 setup

Table 3.3 Parameters of DTS200

Parameters Symbol Value Unit

cross section area of tanks A 154 cm2

cross section area of pipes sn 0.5 cm2

max. height of tanks Hmax 62 cm

max. flow rate of pump 1 Q1max 100 cm3/s

max. flow rate of pump 2 Q2max 100 cm3/s

coeff. of flow for pipe 1 a1 0.46

coeff. of flow for pipe 2 a2 0.60

coeff. of flow for pipe 3 a3 0.45

Q13 = a1s13 sgn(h1 − h3)
√

2g|h1 − h3|
Q32 = a3s23 sgn(h3 − h2)

√
2g|h3 − h2|, Q20 = a2s0

√
2gh2

where

• Q1, Q2 are incoming mass flow (cm3/s)
• Qij is the mass flow (cm3/s) from the ith tank to the j th tank
• hi(t), i = 1,2,3, are the water level (cm) of each tank and measured
• s13 = s23 = s0 = sn.

The parameters are given in Table 3.3.

Linear Model After a linearization at operating point h1 = 45 cm, h2 = 15 cm
and h3 = 30 cm, we have the following linear (nominal) model
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ẋ =Ax +Bu, y = Cx (3.68)

x = y =
⎡
⎣h1
h2
h3

⎤
⎦ , u=

[
Q1
Q2

]
, A=

⎡
⎣−0.0085 0 0.0085

0 −0.0195 0.0084
0.0085 0.0084 −0.0169

⎤
⎦

B =
⎡
⎣0.0065 0

0 0.0065
0 0

⎤
⎦ , C =

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ .

Model Uncertainty We consider the model uncertainty caused by the lineariza-
tion and model it into

ẋ = (A+ΔA)x +Bu, y = Cx, ΔA=Δ(t)H (3.69)

Δ(t)=
⎡
⎣Δ1(t) 0 0

0 Δ2(t) 0
0 0 Δ3(t)

⎤
⎦ , H =

⎡
⎣−0.0085 0 0.0085

0 −0.0195 0.0084
0.0085 0.0084 −0.0169

⎤
⎦

σ
(
Δ(t)
)≤ 1.3620.

Modelling of Faults Three types of faults are considered in this system:

• component faults: leaks in the three tanks, which can be modelled as additional
mass flows out of tanks,

θA1

√
2gh1, θA2

√
2gh2, θA3

√
2gh3

where θA1 , θA2 and θA3 are unknown and depend on the size of the leaks
• component faults: pluggings between two tanks and in the letout pipe by tank 2,

which cause changes in Q13, Q32 and Q20 and thus can be modelled by

θA4a1s13 sgn(h1 − h3)
√

2g|h1 − h3|, θA6a3s23 sgn(h3 − h2)
√

2g|h3 − h2|,
θA5a2s0

√
2gh2

where θA4, θA5, θA6 ∈ [−1,0] and are unknown
• sensor faults: three additive faults in the three sensors, denoted by f1, f2 and f3
• actuator faults: faults in pumps, denoted by f4 and f5.

They are modelled as follows:

ẋ = (A+ΔAF )x +Bu+Ef f, y = Cx + Ff f (3.70)

ΔAF =
6∑
i=1

AiθAi , A1 =
⎡
⎣−0.0214 0 0

0 0 0
0 0 0

⎤
⎦ , A2 =

⎡
⎣0 0 0

0 −0.0371 0
0 0 0

⎤
⎦

A3 =
⎡
⎣0 0 0

0 0 0
0 0 −0.0262

⎤
⎦ , A4 =

⎡
⎣−0.0085 0 0.0085

0 0 0
0.0085 0 −0.0085

⎤
⎦
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A5 =
⎡
⎣0 0 0

0 −0.0111 0
0 0 0

⎤
⎦ , A6 =

⎡
⎣0 0 0

0 −0.0084 0.0084
0 0.0084 −0.0084

⎤
⎦ , f =

⎡
⎢⎣
f1
...

f5

⎤
⎥⎦

Ef =
[

0 B
] ∈R3×5, Ff =

[
I3×3 0

] ∈R3×5.

Closed-Loop Model In DTS200, a nonlinear controller is implemented which
leads to a full decoupling of the three tank system into

• two linear sub-systems of the first order and
• a nonlinear sub-system of the first order.

This controller can be schematically described as follows:

u1 =Q1 =Q13 +A
(
a11h1 + v1(w1 − h1)

)
(3.71)

u2 =Q2 =Q20 −Q32 +A
(
a22h2 + v2(w2 − h2)

)
(3.72)

where a11, a22 < 0, v1, v2 represent two prefilters and w1, w2 are reference signals.
The nominal closed-loop model is

⎡
⎣ ẋ1
ẋ2
ẋ3

⎤
⎦ =
⎡
⎢⎣

(a11 − v1)x1
(a22 − v2)x2

a1s13 sgn(x1−x3)
√

2g|x1−x3|−a3s23 sgn(x3−x2)
√

2g|x3−x2|
A

⎤
⎥⎦ (3.73)

+
⎡
⎣v1 0

0 v2
0 0

⎤
⎦[w1

w2

]

while the linearized closed-loop model with the faults is given by

ẋ =
⎡
⎣a11 − v1 0 0

0 a22 − v2 0
0.0085 0.0084 −0.0169

⎤
⎦x +

⎡
⎣v1 0

0 v2
0 0

⎤
⎦[w1

w2

]
+ΔAFx + �Ef f

y = Cx + Ff f, �Ef =
⎡
⎣a11 − v1 0 0 0.0065 0

0 a22 − v2 0 0 0.0065
0 0 0 0 0

⎤
⎦ . (3.74)

3.7.4 Vehicle Lateral Dynamic System

In today’s vehicles, lateral dynamic models are widely integrated into control and
monitoring systems. The so-called one-track model, also called bicycle model, is
the simplest form amongst the existing lateral dynamic models, which is, due to its
low demand for the on-line computation, mostly implemented in personal cars.

One-track model is derived on the assumption that the vehicle is simplified as a
whole mass with the center of gravity on the ground, which can only move in x axis,
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Fig. 3.7 Kinematics of
one-track model

y axis, and yaw around z axis. The kinematics of one-track model is schematically
sketched in Fig. 3.7. It has been proven that one-track model can describe the vehicle
dynamic behavior very well, when the lateral acceleration under 0.4g on normal dry
asphalt roads. Further assumptions for one-track model are:

• the height of center of gravity is zero, therefore the four wheels can be simplified
as front axle and rear axle

• small longitudinal acceleration, v̇x ≈ 0, and no pitch and roll motion
• the equations of motion are described according to the force balances and torque

balances at the center of gravity (CG)
• linear tire model,

Fy = Cαα (3.75)

where Fy is the lateral force, Cα is the cornering stiffness, α is the side slip angle
• small angles simplification

{
αH =−β + lH r

vref

αV =−β + δ∗L − lV r
vref
.

The reader is referred to Table 3.4 for all variables and parameters used above and
below.

Nominal Model Let vehicle side slip angle β and yaw rate r be the state variables
and steering angle δ∗L the input variable, the state space presentation of the one-track
model is given by

ẋ = Ax +Bu, x =
[
x1
x2

]
=
[
β

r

]
, u= δ∗L (3.76)
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Table 3.4 Parameter of the one-track model

Physical constant Value Unit Explanation

g 9.80665 [m/s2] gravity constant

Vehicle parameters

iL 18.0 [–] steering transmission ratio

mR 1630 [kg] rolling sprung mass

mNR 220 [kg] non-rolling sprung mass

m mR +mNR [kg] total mass

lV 1.52931 [m] distance from the CG to the front axle

lH 1.53069 [m] distance from the CG to the rear axle

Iz 3870 [kg·m2] moment of inertia about the z-axis

vref [km/h] vehicle longitude velocity

β [rad] vehicle side slip angle

r [rad/s] vehicle yaw rate

δ∗L [rad] vehicle steering angle

C′αV 103600 [N/rad] front tire cornering stiffness

CαH 179000 rear tire cornering stiffness

A =
⎡
⎢⎣ −

C′αV+CαH
mvref

lHCαH−lV C′αV
mv2

ref
− 1

lHCαH−lV C′αV
Iz

− l2V C
′
αV+l2HCαH
Izvref

⎤
⎥⎦ , B =

⎡
⎣

C′αV
mvref

lV C
′
αV

Iz

⎤
⎦ .

Typically, a lateral acceleration sensor (ay) and a yaw rate sensor (r) are integrated
in vehicles and available, for instance, in ESP (electric stabilization program). The
sensor model is given by

y = Cx +Du, y =
[
y1
y2

]
=
[
ay
r

]
(3.77)

C =
[
−C′αV+CαH

m

lHCαH−lV C′αV
mvref

0 1

]
, D =

[
C′αV
m

0

]
.

Below are the one-track model and the sensor model for vref = 50

A =
[−3.0551 −0.9750

29.8597 −3.4196

]
, B =

[
1.12

40.9397

]
(3.78)

C =
[−152.7568 1.2493

0 1

]
, D =

[
56
0

]
.

By a sampling time of 0.1 s, we have the following discrete-time model

x(k + 1)=Adx(k)+Bdu(k), y(k)= Cx(k)+Du(k)
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Table 3.5 Typical sensor noise of vehicle lateral dynamic control systems

Sensor Test condition Unit Standard
variation σ

Yaw rate Nominal value [°/s] 0.2

Drive on the asphalt, even, dry road surface 0.2

Drive on the uneven road 0.3

Brake (ABS) on the uneven road 0.9

Lateral acceleration Nominal value [m/s2] 0.05

Drive on the asphalt, even, dry road surface 0.2

Drive on the uneven road 1.0

Brake (ABS) on the uneven road 2.4

where

Ad =
[

0.6333 −0.0672
2.0570 0.6082

]
, Bd =

[−0.0653
3.4462

]
. (3.79)

Disturbances In model (3.76)–(3.77), the influences of road bank angle αx , vehi-
cle body roll angle φR and roll rate pc have not been taken into account. Moreover,
sensor noises are inevitable. Generally, sensor noises can be modelled as steady
stochastic process with zero mean Gaussian distribution. But, in vehicle systems,
the variance or standard variance of sensor noises cannot be modelled as constant,
since at different driving situations, the sensor noises are not only caused by the
sensor own physical or electronic characteristic, but also strongly disturbed by the
vibration of vehicle chassis. In Table 3.5, typical sensor data are listed.

To include the influences of the above-mentioned disturbances, model (3.76)–
(3.77) is extended to

ẋ = Ax +Bu+Edd, y = Cx +Du+ Fdd + ν (3.80)

Ed =
[

1 0 0
0 1 0

]
, Fd =

[
0 0 1
0 0 0

]
, ν ∼N

(
0,

[
σay 0
0 σr

])

with unknown input vector d denoting the possible disturbances.

Model Uncertainties Below, major model parameter variations are summarized:

• Vehicle reference velocity vref : the variation of longitudinal vehicle velocity is
comparably slow, so it can be considered as a constant during one observation
interval

• Vehicle mass: when the load of vehicle varies, accordingly the vehicle spring
mass and inertia will be changed. Especially the load variation are very large
for the truck, but for the personal car, comparing to large total mass, the change
caused by the number of passengers can be neglected normally
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• Vehicle cornering stiffness Cα : Cornering stiffness is the change in lateral force
per unit slip angle change at a specified normal load in the linear range of tire.
Remember that the derivation of one track model is based on (3.75). Actually, the
tire cornering stiffness Cα depends on road–tire friction coefficient, wheel load,
camber, toe-in, wheel pressure etc. In some studies, it is assumed, based on the
stiffness of steering mechanism (steering column, gear, etc.), that

CαH = kC′αV . (3.81)

In our benchmark study, we only consider the parameter changes caused by Cα and
assume that

• C′αV = 103600+ΔCαV , ΔCαV ∈ [−10000,0] is a random number and
• CαH = kC′αV , k = 1.7278.

As a result, we have the following system model:

ẋ = (A+ΔA)x + (B +ΔB)u+Edd
(3.82)

y = (C +ΔC)x + (D +ΔD)u+ Fdd + ν

[
ΔA ΔB

]=ΔCαV
⎡
⎣−

1+k
mvref

klH−lV
mv2

ref

1
mvref

klH−lV
Iz

− l2V+kl2H
Izvref

lV
Iz

⎤
⎦

[
ΔC ΔD

]=ΔCαV
[
− 1+k

m
klH−lV
mvref

1
m

0 0 0

]
.

Modelling of Faults Three additive faults are considered in the benchmark:

• fault in lateral acceleration sensor, which can also be a constant or a ramp and
denoted by f1

• fault in yaw rate sensor, which can be a constant or a ramp and denoted by f2

• fault in steering angle measurement, which would be a constant and denoted by
f3. It is worth to remark that in practice a fault in the steering angle measurement
is also called sensor fault.

In Table 3.6, technical data of the above-mentioned faults are given.
Based on (3.80), the one-track model with the above-mentioned sensor faults can

be described by

ẋ = Ax +Bu+Edd +Ef f, y = Cx +Du+ Fdd + ν + Ff f (3.83)

Ef =
[

0 B
] ∈R2×3, Ff =

[
I2×2 D

]
, f =

⎡
⎣f1
f2
f3

⎤
⎦ .
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Table 3.6 Typical sensor faults

Sensor Faults

Offset Ramp

Yaw rate ±2°/s, ±5°/s, ±10°/s ±10°/s/min

Lateral acceleration ±2 m/s2, ±5 m/s2 ±4 m/s2/s, ±10 m/s2/s

Steering angle ±15°, ±30° –

3.7.5 Continuous Stirred Tank Heater

In this subsection, we briefly introduce a linear model of a laboratory setup con-
tinuous stirred tank heater (CSTH), which is a typical control system often met in
process industry.

System Dynamics and Nonlinear Model Figure 3.8 gives a schematic descrip-
tion of the laboratory setup CSTH, where water is used as the product and reactant.
Without considering the dynamic behaviors of the heat exchanger, the system dy-
namics can be represented by the tank volume VT , the enthalpy in the tank HT and
the water temperature in the heating jacket Thj and modelled by

⎡
⎣ V̇TḢT
Ṫhj

⎤
⎦=
⎡
⎢⎣

V̇in − V̇out

ḢhjT + Ḣin − Ḣout
1

mhj ·cp (Ph − ḢhjT )

⎤
⎥⎦ . (3.84)

The physical meanings of the process variables and parameters used above and in
the sequel are listed in Table 3.7. Considering that

ḢhjT = f (Thj − TT ), Ḣin = ṁincpTin, Ḣout = ṁoutcpTout =HT V̇out

VT

V̇in−V̇out := u1, Ph := u2 are the input variables, and the water level hT , the temper-
ature of the water in the tank TT as well as Thj are measurement variables satisfying

⎡
⎣ hTTT
Thj

⎤
⎦=
⎡
⎢⎣

VT
Aeff
HT
mT ·cp
Thj

⎤
⎥⎦

we have

⎡
⎣ V̇TḢT
Ṫhj

⎤
⎦=
⎡
⎢⎢⎣

0

f (Thj − HT
mT ·cp )+ ṁincpTin −HT V̇out

VT

−f (Thj− HT
mT ·cp )

mhj ·cp

⎤
⎥⎥⎦+
⎡
⎣1 0

0 0
0 1

mhj ·cp

⎤
⎦[u1

u2

]

(3.85)
with f denoting some nonlinear function.
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Fig. 3.8 Laboratory setup CSTH

Linear Model For our purpose, the nonlinear model (3.85) is linearized around
the operating point

⎡
⎣ VTHT
Thj

⎤
⎦=
⎡
⎣ 6.219

655.797
33.44

⎤
⎦ , V̇in = V̇out = 0.0369, u2 = 580

and on the assumption

Ḣin = ṁincpTin ≈ const

which results in the following (nominal) linear model:

ẋ =Ax +Bu, y = Cx, x =
⎡
⎣ VTHT
Thj

⎤
⎦ , y =

⎡
⎣ hTTT
Thj

⎤
⎦ (3.86)

A=
⎡
⎣ 0 0 0
−626.4371 −5.9406 · 10−3 36.55

0 0 −1.2019 · 10−3

⎤
⎦
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Table 3.7 Technical data of CSTH

Symbol Description Unit

VT water volume in the tank L

HT enthalpy in the tank J

Thj temperature in the heating jacket °C

V̇in, V̇out water flows in and out of the tank l
s

ḢhjT enthalpy flow from the jacket to the tank J
s

Ḣin, Ḣout enthalpy flows from in- and out-flowing water J
s

mhj water mass in the heating jacket kg

Ph electrical heater power W= J
s

hT water level in the tank m

TT water temperature in the tank °C

mT water mass in the tank kg

ṁin, ṁout mass flows in and out of the tank kg
s

Tin, Tout temperature of the in- and out-flowing water °C

Aeff the base area of the tank m2

cp heat capacity of water J
kg·◦C

B =
⎡
⎣1 0

0 0
0 30411.5241

⎤
⎦ , C =

⎡
⎣31.831 0 0

0 3.8578 · 10−5 0
0 0 1

⎤
⎦ .

Model Uncertainties and Unknown Inputs With an additional term in the state
equation,

Edd =
⎡
⎣ 1 0
−1 0
0 −1

⎤
⎦d, d ∈R2

the influence of unknown inputs is modelled. Together with the uncertainties caused
by the linearization, we have

ẋ = (A+ΔA)x + (B +ΔB)u+Edd, y = (C +ΔC)x (3.87)

ΔA=Aδ, ΔB =
⎡
⎣0 0

0 0
0 30411.5241

⎤
⎦ δ

ΔC =
⎡
⎣31.831 0 0

0 3.8578 · 10−5 0
0 0 0

⎤
⎦ δ, δ ∈ [−0.2,0.2].

Modelling of Faults Different kinds of faults will be considered in the benchmark
study. These include
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• leakage in the tank: A leakage will cause a change in the first equation in (3.84)
as follows

V̇T = V̇in − V̇out − θleak

√
2ghT = u1 − θA

√
2gVT
Aeff

(3.88)

where θA is a coefficient proportional to the size of the leakage. It is evident that
θA is a multiplicative component fault.

• an additive actuator fault in u1, denoted by f1
• additive faults in the temperate enmeshments, respectively denoted by f2 and f3.

As a result, we have the following overall model to described the system dynamics
when some of the above-mentioned faults occur:

ẋ = (A+ΔA+ΔAF )x + (B +ΔB)u+Ef f, y = (C +ΔC)x + Ff f + v
(3.89)

ΔAF =
⎡
⎣−0.008 0 0

0 0 0
0 0 0

⎤
⎦ θA, Ef =

⎡
⎣1 0 0

0 0 0
0 0 0

⎤
⎦

f =
⎡
⎣f1
f2
f3

⎤
⎦ , Ff =

⎡
⎣0 0 0

0 1 0
0 0 1

⎤
⎦

where v represents the measurement noises.

3.8 Notes and References

In this chapter, we have introduced different model forms for the presentation of lin-
ear dynamic systems, which are fundamental for the subsequent study. We suppose
that the nominal systems considered in this book are LTI. Modelling LTI systems by
means of a state space representation or transfer matrices is standard in the modern
control theory. The reader is referred to [23, 105] for more details.

Modelling disturbances and system uncertainties is essential in the framework
of robust control theory. In [59, 198, 199], the reader can find excellent background
discussion, basic modelling schemes as well as the needed mathematical knowledge
and available tools for this purpose.

In the framework of model-based fault diagnosis, it is the state of the art that
modelling of faults is realized in an analogous way to the modelling of disturbances
and uncertainties.

Coprime factorization technique is a standard tool in the framework of linear
system and robust control theory. In [59, 198, 199], the interested reader can find
well-structured and detailed description about this topic.

To illustrate the application of the introduced system modelling technique, five
laboratory and technical systems have been briefly studied. The first three systems,
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DC motor DR200, inverted pendulum LIP100 and three-tank system DTS200, are
laboratory test beds, which can be found in many laboratories for automatic con-
trol. It is worth mentioning that three-tank system DTS200 and inverted pendulum
LIP100 are two benchmark processes that are widely used in FDI study. There has
been a number of invited sessions dedicated to the benchmark study on these two
systems at some major international conferences. For the technical details of these
three systems, the reader is referred to the practical instructions, [4] for DTS200,
[5] for LIP100 and [6] for DR200. [125] is an excellent textbook for the study on
vehicle lateral dynamics. The one-track model presented in this chapter is an ex-
tension of the standard one given in [125], which has been used for a benchmark
study in the European project IFATIS [119]. The laboratory setup continuous stirred
tank heater is a product of the company G.U.N.T. Geraetebau GmbH [81]. A similar
setup has been introduced in [163] for the purpose of benchmark study.

A further motivation for introducing these five systems is that they will serve
as application examples for illustrating the results of our study in the forthcoming
chapters.



Chapter 4
Fault Detectability, Isolability and Identifiability

Corresponding to the major tasks in the FDI framework, the concepts of fault de-
tectability, isolability and identifiability are introduced to describe the structural
properties of a system from the FDI point of view. Generally speaking, we dis-
tinguish the system fault detectability, isolability and identifiability from the per-
formance based fault detectability, isolability and identifiability. For instance, the
system fault detectability is expressed in terms of the signature of the faults on
the system without any reference to the FDI system used (for the detection pur-
pose), while the performance based one refers to the conditions under which a
fault can be detected using some kind of FDI systems. Study on system fault de-
tectability, isolability and identifiability plays a central role in the structural anal-
ysis for the construction of a technical process and for the design of an FDI sys-
tem.

In this chapter, we shall introduce the concepts of system fault detectability, isola-
bility and identifiability, study their checking criteria and illustrate the major results
using the application examples.

4.1 Fault Detectability

In the literature, one can find a number of definitions of fault detectability, intro-
duced under different aspects. Recall that there are some essential differences be-
tween additive and multiplicative faults. One of these differences is that a mul-
tiplicative fault may cause changes in the system structure. In order to give a
unified definition which is valid both for additive and multiplicative faults, we
first specify our intention of introducing the concept of system fault detectabil-
ity.

First, system fault detectability should be understood as a structural property
of the system under consideration, which describes how a fault affects the system
behavior. It should be expressed independent of the system input variables, distur-
bances as well as model uncertainties. Secondly, system fault detectability should

S.X. Ding, Model-Based Fault Diagnosis Techniques, Advances in Industrial Control,
DOI 10.1007/978-1-4471-4799-2_4, © Springer-Verlag London 2013
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indicate if a fault would cause changes in the system output. Finally, it should be
expressed independent of the type and the size of the fault under consideration.
Bearing these in mind, we adopt an intuitive definition of system fault detectability,
which says: a fault is detectable if its occurrence, independent of its size and type,
would cause a change in the nominal behavior of the system output. To define it
more precisely, we assume that

• the following system model is under consideration

ẋ = (A+ΔAF )x + (B +ΔBF )u+Ef f (4.1)

y = (C +ΔCF )x + (D +ΔDF )u+ Ff f (4.2)

where, as introduced in Chap. 3, Gyu(s) = D + C(sI − A)−1B represents the
nominal system dynamics, f ∈ Rkf the additive fault vector and ΔAF , ΔBF ,
ΔCF , ΔDF the multiplicative faults given by

ΔAF =
lA∑
i=1

AiθAi , ΔBF =
lB∑
i=1

BiθBi (4.3)

ΔCF =
lC∑
i=1

CiθCi , ΔDF =
lD∑
i=1

DiθDi (4.4)

• a fault, either θi ∈ {θAi , θBi , θCi , θDi } or fi , is understood as a scalar variable and
unified denoted by ξi .

Definition 4.1 Given system (4.1)–(4.2). A fault ξi is said detectable if for some u

∂y

∂ξi

∣∣∣∣
ξi=0

dξi �≡ 0. (4.5)

(4.5) is the mathematical description of a change in the system output caused
by the occurrence of a fault (from zero to a time function different from zero),
independent of its size and type. A fault becomes detectable if this change is not
constantly zero. In other words, it should differ from zero at least at some time
instant and for some system input.

The following theorem provides us with a necessary and sufficient condition for
the detectability of additive and multiplicative faults.

Theorem 4.1 Given system (4.1)–(4.2), then

• an additive fault fi is detectable if and only if

C(sI −A)−1Efi + Ffi �= 0 (4.6)

with Efi , Ffi denoting the ith column of matrices Ef , Ff respectively,
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• a multiplicative fault θAi is detectable if and only if

C(sI −A)−1Ai(sI −A)−1B �= 0 (4.7)

• a multiplicative fault θBi is detectable if and only if

C(sI −A)−1Bi �= 0 (4.8)

• a multiplicative fault θCi is detectable if and only if

Ci(sI −A)−1B �= 0 (4.9)

• a multiplicative fault θDi is detectable if and only if

Di �= 0. (4.10)

Proof While the proofs of (4.6), (4.8)–(4.10) are straightforward and thus omitted,
we just check (4.7). It turns out

∂y

∂θAi
= C ∂x

∂θAi
,

∂ẋ

∂θAi
=A ∂x

∂θAi
+Aix.

It yields

L
(
∂y

∂θAi

∣∣∣∣
θAi=0

)
= C(sI −A)−1Ai(sI −A)−1Bu(s)

with L denoting the Laplace transform (z-transform in the discrete time case)
Hence, for some u, t , ∂y

∂θAi
|θAi=0 �= 0 if and only if (4.7) holds. �

It can be easily seen from Theorem 4.1 that

• an additive fault is detectable as far as the transfer function from the fault to the
system output is not zero

• a multiplicative fault θDi is always detectable
• the detectability of multiplicative faults θBi and θCi can be interpreted as input

observability and output controllability, respectively
• a multiplicative fault θAi will cause essential changes in the system structure.

Also, it follows from Theorem 4.1 that initial changes in the system output caused
by the different types of the faults can be estimated. To this end, suppose that the
faults occur at time instant t0 and their size is small at beginning, then

• in case of an additive fault fi :

dΔx

dt
=AΔx +Efi fi, Δy = CΔx + Ffi fi, Δx(t0)= 0 (4.11)
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• in case of a multiplicative fault θAi :

d

dt

(
∂x

∂θAi

)
= A ∂x

∂θAi
+Aix

∣∣
θAi=0,

∂x

∂θAi
(t0)= 0

(4.12)

Δy ≈ ∂y

∂θAi

∣∣∣∣
θAi=0

θAi = C
∂x

∂θAi
θAi

where x |θAi=0 satisfies ẋ =Ax +Bu
• in case of multiplicative fault θBi :

d

dt

(
∂x

∂θBi

)
= A ∂x

∂θBi
+Biu, ∂x

∂θBi
(t0)= 0

(4.13)

Δy ≈ ∂y

∂θBi
θBi = C

∂x

∂θBi
θBi

• in case of a multiplicative fault θCi :

Δy ≈ ∂y

∂θCi
θCi = CixθCi , ẋ =Ax +Bu (4.14)

• in case of multiplicative fault θDi :

Δy ≈ ∂y

∂θDi
θDi =Diu(t)θDi . (4.15)

Comparing (4.11) with (4.12)–(4.15) makes it evident that

• detecting additive faults can be realized independent of the system input, and
• multiplicative faults can only be detected if u(t) �= 0. In other words, excitation

is needed for a successful detection of a multiplicative fault.

We see that transfer matrices

C(sI −A)−1Efi + Ff i, C(sI −A)−1Ai(sI −A)−1B

C(sI −A)−1Bi, Ci(sI −A)−1B, Di

give a structural description of the influences of the faults on the system output. For
this reason and also for our subsequent study on fault isolability and idenfiability,
we introduce the following definition.

Definition 4.2 Given system (4.1)–(4.2). Transfer matrices

C(sI −A)−1Efi + Ff i, C(sI −A)−1Ai(sI −A)−1B

C(sI −A)−1Bi, Ci(sI −A)−1B, Di

are called fault transfer matrices and denoted by Gfi (s), GθAi (s), GθBi (s), GθCi (s)
and GθDi (s) respectively, or in general by Gξi (s).
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Example 4.1 To illustrate the results in this section, we consider three-tank system
DTS200 given in Sect. 3.7.3. The fault transfer matrices of the five additive faults
are respectively

C(sI −A)−1Ef1 + Ff1 =
⎡
⎣1

0
0

⎤
⎦ , C(sI −A)−1Ef2 + Ff2 =

⎡
⎣0

1
0

⎤
⎦

C(sI −A)−1Ef3 + Ff3 =
⎡
⎣0

0
1

⎤
⎦ , C(sI −A)−1Ef4 +Ff4 =

⎡
⎢⎣

0.0065s+0.0002
(s2+0.0449s+0.0005)

0
0.0001s

(s2+0.0449s+0.0005)

⎤
⎥⎦

C(sI −A)−1Ef5 + Ff5 =
⎡
⎢⎣

0
0.0065s+0.0002

(s2+0.0449s+0.0005)
0.0001s

(s2+0.0449s+0.0005)

⎤
⎥⎦ .

It is evident that these five faults are detectable. As to the multiplicative faults, we
have the following fault transfer matrices

C(sI −A)−1A1(sI −A)−1B

= −0.0214(0.0065s2 + 0.0002s)

(s3 + 0.0449s2 + 0.0005s)2

⎡
⎣ s

2 + 0.0364s0.003 0
0.0001 0

0.0085s + 0.0002 0

⎤
⎦

C(sI −A)−1A2(sI −A)−1B

= −0.0371(0.0065s2 + 0.0002s)

(s3 + 0.0449s2 + 0.0005s)2

⎡
⎣0 0.0001

0 s2 + 0.0254s + 0.0001
0 0.0084s + 0.0001

⎤
⎦

C(sI −A)−1A3(sI −A)−1B

= −0.00000262s

(s3 + 0.0449s2 + 0.0005s)2

⎡
⎣ 0.0085s + 0.0002 0.0085s + 0.0002

0.0084s + 0.0001 0.0084s + 0.0001
s2 + 0.0280s + 0.0002 s2 + 0.0280s + 0.0002

⎤
⎦

C(sI −A)−1A4(sI −A)−1B

= 0.0000085

(s3 + 0.0449s2 + 0.0005s)2

⎡
⎣−6.5s4 − 0.281s3 − 0.003s2 0.1s3 + 0.003s2

0.0055s3 + 0.0001s2 −0.001s2

6.5s4 + 0.227s3 + 0.0002s2 0.1s3 − 0.002s2

⎤
⎦

C(sI −A)−1A5(sI −A)−1B

= −0.0111(0.0065s2 + 0.0002s)

(s3 + 0.0449s2 + 0.0005s)2

⎡
⎣0 0.0001

0 s2 + 0.0254s + 0.0001
0 0.0084s + 0.0001

⎤
⎦
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C(sI −A)−1A6(sI −A)−1B

= 0.0000084

(s3 + 0.0449s2 + 0.0005s)2

⎡
⎣ −0.001s2 0.055s3 + 0.002s2

0.1s3 + 0.002s2 −6.5s4 − 0.21s3 − 0.002s2

−0.1s3 − 0.002s2 6.5s4 + 0.227s3 + 0.003s

⎤
⎦.

As a result, all these multiplicative faults are detectable.

4.2 Excitations and Detection of Multiplicative Faults

In this section, we briefly address the issues with excitation signals, which are, as
shown above, needed for detecting multiplicative faults. Let Gξi (s) be the fault
transfer (matrix) of a multiplicative fault and satisfy

rank
(
Gξi (s)

)= κ(>0)

then we can find a κ-dimensional subspace Uexc,ξi so that for all u ∈ Uexc,ξi

Gξi (s)u(s) �= 0.

From the viewpoint of fault detection, subspace Uexc,ξi contains all possible input
signals that serve as an excitation for fault detection.

Definition 4.3 Let Gξi (s) be the fault transfer matrix of a multiplicative fault ξi .

Uexc,ξi =
{
u
∣∣Gξi (s)u(s) �= 0

}
(4.16)

is called excitation subspace with respect to ξi .

Mathematically, we can express the fact that detecting an additive fault, say ξi , is
independent of exciting signals by defining

Uexc,ξi =
{
u ∈Rku

}
.

In this way, we generally say the following.

Definition 4.4 System (4.1)–(4.2) is sufficiently excited regarding to a fault ξi if

u ∈ Uexc,ξi . (4.17)

With this definition, we can reformulate the definition of the fault detectability
more precisely.

Definition 4.5 Given system (4.1)–(4.2). A fault ξi is said to be detectable if for
u ∈ Uexc,ξi

∂y

∂ξi

∣∣∣∣
ξi=0

dξi �≡ 0. (4.18)
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Remark 4.1 In this book, the rank of a transfer matrix is understood as the so-called
normal rank if no additional specification is given.

4.3 Fault Isolability

4.3.1 Concept of System Fault Isolability

For the sake of simplicity, we first study a simplified form of fault isolability prob-
lem, namely distinguishing the influences of two faults. An extension to the isolation
of multiple faults will then be done in a straightforward manner.

Consider system model (4.1)–(4.2) and suppose that the faults under considera-
tion are detectable. We say any two faults, ξi , ξj , i �= j , are isolable if the changes
in the system output caused by these two faults are distinguishable. This fact can
also be equivalently expressed as: any simultaneous occurrence of these two faults
would lead to a change in the system output. Mathematically, we give the following
definition.

Definition 4.6 Given system (4.1)–(4.2). Any two detectable faults, ξ = [ξi ξj ]T ,
i �= j , are isolable, when for u ∈ Uexc,ξi ∩ Uexc,ξj

∂y

∂ξ

∣∣∣∣
ξ=0

dξ �≡ 0. (4.19)

It is worth mentioning that detecting a fault in a disturbed system requires distin-
guishing the fault from the disturbances. This standard fault detection problem can
also be similarly formulated as an isolation problem for two faults.

In a general case, we say that a group of faults are isolable if any simultaneous
occurrence of these faults would lead to a change in the system output. Define a
fault vector

ξ = [ξ1 · · · ξl
]T (4.20)

which includes l structurally detectable faults to be isolated.

Definition 4.7 Given system (4.1)–(4.2). The faults in fault vector ξ are isolable,
when for all u ∈⋂l

i=1 Uexc,ξi

∂y

∂ξ

∣∣∣∣
ξ=0

dξ �≡ 0. (4.21)

We would like to call reader’s attention on the similarity between the isolability
of additive faults and the so-called input observability which is widely used for the
purpose of input reconstruction. Consider system
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ẋ =Ax +Ef f, y = Cx + Ff f, x(0)= 0.

It is called input observable, when y(t)≡ 0 implies f (t)≡ 0. Except the assumption
on initial condition x(0), the physical meanings of the isolability of additive faults
and input observability are equivalent.

4.3.2 Fault Isolability Conditions

With the aid of the concept of fault transfer matrices, we now derive existence con-
ditions for the structural fault isolability.

Theorem 4.2 Given system (4.1)–(4.2), then any two faults with fault transfer ma-
trices Gξi (s), Gξj (s), i �= j , are isolable if and only if

rank
[
Gξi (s) Gξj (s)

]= rank
(
Gξi (s)

)+ rank
(
Gξj (s)

)
. (4.22)

Proof It follows from (4.11)–(4.15) that changes in the output caused by ξi , ξj can
be respectively written as

L−1(Gξi (s)zi(s)), L−1(Gξj (s)zj (s))

where

zi(s)= L(dfi) for ξi = fi or zi(s)= L
(
dξiu(t)

)
for ξi ∈ {θAi , θBi , θCi , θDi }

with u ∈Uexc,ξi ∩Uexc,ξj . Since

∂y

∂ξ

∣∣∣∣
ξ=0

dξ = ∂y

∂ξi

∣∣∣∣
ξ=0

dξi + ∂y

∂ξj

∣∣∣∣
ξ=0

dξj

it holds that if ξ is not isolable, then

∀t, ∂y

∂ξ

∣∣∣∣
ξ=0

dξ = 0

⇐⇒ L
(
∂y

∂ξi

∣∣∣∣
ξ=0

dξi

)
+L
(
∂y

∂ξj

∣∣∣∣
ξ=0

dξj

)
= 0

⇐⇒ [
Gξi (s) Gξj (s)

][ zi(s)
zj (s)

]
= 0

⇐⇒ rank
[
Gξi (s) Gξj (s)

]
< rank

(
Gξi (s)

)+ rank
(
Gξj (s)

)
.

The theorem is thus proven. �
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An extension of the above theorem to a more general case with a fault vector
ξ = [ξ1 · · · ξl ]T is straightforward and hence its proof is omitted.

Corollary 4.1 Given system (4.1)–(4.2), then ξ with fault transfer matrix

Gξ(s)=
[
Gξ1(s) · · · Gξl (s)

]

is isolable if and only if

rank
(
Gξ(s)

)=
l∑
i=1

rank
(
Gξi (s)

)
. (4.23)

In order to get a deeper insight into the results given in Theorem 4.2 and Corol-
lary 4.1, we study some special cases often met in practice.

Suppose that the faults in fault vector ξ = [ξ1 · · · ξl ]T are additive faults. Then
the following result is evident.

Corollary 4.2 Given system (4.1)–(4.2) and assume that ξi , i = 1, . . . , l ≤ kf are
additive faults. Then, these l faults are isolable if and only if

rank
(
Gξ(s)

)= l. (4.24)

This result reveals that, to isolate l different faults, we need at least an l-
dimensional subspace in the measurement space spanned by the fault transfer ma-
trix. Considering that rank(Gξ (s))≤min{m, l}withm as the number of the sensors,
we have the following claim which is easy to check and thus useful for the practical
application.

Claim Additive faults are isolable only if the number of the faults is not larger than
the number of the sensors.

Denote the minimal state space realization of Gξ(s) by

Gξ(s)= C(sI −A)−1Eξ + Fξ .

Check condition (4.24) can be equivalently expressed in terms of the matrices of the
state space representation.

Corollary 4.3 Given system (4.1)–(4.2) and assume that ξi , i = 1, . . . , l ≤ kf , are
additive faults. Then these l faults are isolable if and only if

rank

[
A− sI Eξ
C Fξ

]
= n+ l. (4.25)
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Proof The proof becomes evident by noting that

[
A− sI Eξ
C Fξ

][
(A− sI )−1 (sI −A)−1Eξ

0 I

]

=
[

I 0
C(A− sI )−1 C(sI −A)−1Eξ + Fξ

]

=⇒ rank

[
A− sI Eξ
C Fξ

]

= rank

([
A− sI Eξ
C Fξ

][
(A− sI )−1 (sI −A)−1Eξ

0 I

])

= rank

[
I 0

C(A− sI )−1 C(A− sI )−1Eξ + Fξ
]

= n+ rank
(
C(A− sI )−1Eξ + Fξ

)
. �

Recalling that for additive faults the fault isolability introduced in Definition 4.7
is identical with the concept of input observability known and intensively studied in
the literature, we would like to extend our study

• to find out alternative conditions for checking conditions (4.24) or (4.25)
• to compare them with the results known in the literature and
• to gain a deeper insight into the isolability of additive faults, which will be helpful

for some subsequent studies in the latter chapters.

To simplify our study, we first considerGξ(s)= C(sI −A)−1Eξ . It follows from
Cayley–Hamilton theorem that

C(sI −A)−1Eξ = 1

φ(s)
C

(
n∑
i=1

Sis
n−i
)
Eξ = 1

φ(s)
C

(
n∑
i=1

αi(s)A
i−1

)
Eξ (4.26)

φ(s)= det(sI −A)= sn + a1s
n−1 + a2s

n−2 + · · · + an−1s + an
Si = Si−1A+ ai−1I, S1 = I, i = 2, . . . , n

α1(s)= sn−1 + a1s
n−2 + · · · + an−1, . . . , αn−1(s)= s + a1, αn(s)= 1

which can be rewritten into

C(sI −A)−1Eξ = 1

φ(s)

[
α1(s)I α2(s)I · · · αn(s)I

]
⎡
⎢⎢⎢⎣

CEξ
CAEξ
...

CAn−1Eξ

⎤
⎥⎥⎥⎦ . (4.27)
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It is obvious that if

rank

⎡
⎢⎢⎢⎣

CEξ
CAEξ
...

CAn−1Eξ

⎤
⎥⎥⎥⎦< l

then there exists a u which yields
⎡
⎢⎢⎢⎣

CEξ
CAEξ
...

CAn−1Eξ

⎤
⎥⎥⎥⎦u= 0 =⇒ C(sI −A)−1Eξu= 0.

In other words,

rank

⎡
⎢⎢⎢⎣

CEξ
CAEξ
...

CAn−1Eξ

⎤
⎥⎥⎥⎦= l (4.28)

builds a necessary condition for the fault isolability. We would like to call reader’s
attention that (4.28) is not a sufficient condition for the fault isolability. To see it, we
consider a special case with m= 1, m< l < n and (C,A) being observable, that is,

rank

⎡
⎢⎢⎢⎣

C

CA
...

CAn−1

⎤
⎥⎥⎥⎦= n.

It immediately becomes clear that (4.28) is satisfied. But, the system is, due tom< l,
not isolable, as can be seen from Corollary 4.2.

Remark 4.2 We would like to point out that (4.28) is, in some publications, claimed
as a necessary and sufficient condition for the input observability, which is, as shown
above, not correct.

Below, we shall derive some sufficient conditions on the assumption that m ≥ l
and (4.28) holds. Note that the orders (highest power) of αi(s), i = 1, . . . , n, given
in (4.26) are different. If for some j ∈ {1, . . . , n}

rank
(
CAj−1Eξ

)= l (4.29)

then (4.27) can be rewritten into

C(sI −A)−1Eξ = 1

φ(s)

(
αj (s)I +

n∑
i=1,i �=j

αi(s)Qi

)
CAj−1Eξ
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where Qi ∈Rm×m, i = 1, . . . , n, i �= j , are some matrices. Considering that

rank

(
αj (s)I +

n∑
i=1,i �=j

αi(s)Qi

)
=m≥ l, rank

(
CAj−1Eξ

)= l

we finally have

rank
(
C(sI −A)−1Eξ

)= l.
This proves the following theorem.

Theorem 4.3 Given C(sI − A)−1Eξ as defined in (4.26) with m ≥ l and satisfy-
ing (4.28). Assume that for some j ∈ {1, . . . , n}, rank(CAj−1Eξ)= l. Then

rank
(
C(sI −A)−1Eξ

)= l.
In the framework of linear system theory, CAiEξ , i = 0,1, . . . , are called

Markov matrices. Theorem 4.3 provides us with a sufficient condition for check-
ing the isolability of additive faults by means of Markov matrices.

It is interesting to note that according to (4.26) C(sI − A)−1Eξ can also be
rewritten into

C(sI −A)−1Eξ

= [an−1I · · · a1I I
]
⎡
⎢⎢⎢⎢⎣

CEξ 0 . . . 0

CAEξ CEξ
. . .

...
...

...
. . . 0

CAn−1Eξ CAn−2Eξ . . . CEξ

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

I

Is
...

I sn−1

⎤
⎥⎥⎥⎦ .

(4.30)

This form is important in studying various algebraic properties of the so-called par-
ity space methods.

In a similar manner like the proof of Theorem 4.3, we are able to prove the
following theorem that gives an alternative sufficient condition for the isolabil-
ity.

Theorem 4.4 Given C(sI − A)−1Eξ . Let Γi = CSiEξ , i = 1, . . . , n, where Si is
defined in (4.26), and assume that for some j ∈ {1, . . . , n}

rank(Γj )= l (4.31)

then rank(C(sI −A)−1Eξ)= l.

The above discussion and the results given in Theorems 4.3 and 4.4 can be easily
extended to the general form of system model C(sI − A)−1Eξ + Fξ . To this end,
we extend the state space description as follows
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[
ẋ

ξ̇

]
=
[
A Eξ
0 0

][
x

ξ

]
+
[

0
I

]
ξ̇ := Āx̄ + �Eξ ξ̇ (4.32)

y = [C Fξ
][x
ξ

]
:= �Cx̄, x̄ =

[
x

ξ

]
. (4.33)

It is easy to prove that given C(sI − A)−1Eξ + Fξ condition (4.28) can then be
equivalently written as

rank

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�C�Eξ�CĀ�Eξ
...

�CĀn�Eξ
...

�CĀn+l−1�Eξ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= rank

⎡
⎢⎢⎢⎣

Fξ
CEξ
...

CAn−1Eξ

⎤
⎥⎥⎥⎦= l (4.34)

while conditions (4.29) and (4.31) respectively as

rank
(�CĀj−1�Eξ

)=
{

rank(Fξ )= l, if j = 1
rank(CAj−2Eξ)= l, if j ∈ {2, . . . , n+ 1} (4.35)

rank(�Γj )= l, j ∈ {0, . . . , n}, �Γ0 =
[
anI · · · a1I I

]
⎡
⎢⎢⎢⎣

0
...

0
Fξ

⎤
⎥⎥⎥⎦= Fξ

(4.36)

�Γj =
[
anI an−1I · · · a1I I

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

0
Fξ
CEξ
...

CAi−1Eξ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, j ∈ {1, . . . , n}. (4.37)

We now review the conditions for the fault isolability of multiplicative faults.
Although Corollary 4.1 holds for both additive and multiplicative faults, the forms
of the fault matrices of multiplicative faults reveal that isolating multiplicative faults
may demand for more sensors. To illustrate it, we first take a multiplicative process
fault as an example. Remember that in this case the fault transfer matrix is C(sI −
A)−1Ai(sI −A)−1B , which can be written as

C(sI −A)−1Ai(sI −A)−1B =
([
A Ai
0 A

]
,

[
0
B

]
,
[
C 0

]
,0

)
.
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As a result, this multiplicative process fault can span a subspace with a dimension
equal to

rank
(
C(sI −A)−1Ai(sI −A)−1B

)=min{m,ku} := κ.
To isolate such a (single) fault, we need at least κ sensors.

As to multiplicative sensor and actuator faults, it seems that their fault transfer
matrices, Ci(sI − A)−1B , C(sI − A)−1Bi , would span a lower dimensional sub-
space, for instance in case that

rank(Ci)= 1, rank(Bi)= 1.

On the other hand, if those faulty sensors and actuators are embedded in a feed-
back control loop, for instance with u = Ky, then they will cause change in the
eigendynamics of the closed-loop system. In other words, they will affect the sys-
tem performance like a multiplicative process fault. Again, to isolate these faults,
additional sensors are demanded.

In practice, in particular in systems with integrated feedback control loops, it is
often the case that the system (reference) input keeps constant or changes slowly
over a relatively long time interval. On the assumption of a constant vector u, we
introduce the concept of weak isolability of multiplicative faults.

Definition 4.8 Given system (4.1)–(4.2) and let

θ =
⎡
⎢⎣
θ1
...

θl

⎤
⎥⎦

with multiplicative faults θi , i = 1, . . . , l. θ is called weakly isolable, if for all con-
stant vector u ∈⋂l

i=1 Uexc,θi

∂y

∂θ

∣∣∣∣
θ=0

dθ �≡ 0.

The theorem given below follows directly from Corollary 4.1 and the definition
of weak isolability of multiplicative faults.

Theorem 4.5 Given system (4.1)–(4.2) and let

θ =
⎡
⎢⎣
θ1
...

θl

⎤
⎥⎦

be a multiplicative fault vector with fault transfer matrix

Gθ(s)=
[
Gθ1(s) · · · Gθl (s)

]
.
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Then, θ is weakly isolable if and only if for all constant vector u ∈⋂l
i=1 Uexc,θi

rank
[
Gθ1(s)u · · · Gθl (s)u

]= l.
Comparing the results given in Corollary 4.1 and the above theorem makes it

evident that the existence condition for a weak isolability of multiplicative faults
can be remarkably relaxed.

Example 4.2 Consider again three-tank system DTS200. It is evident that it is im-
possible to isolate all eleven faults, since we only have three sensors. However, if
we are able to divide the faults into different groups and assume that faults from
only one group can occur simultaneously, then a fault isolation becomes possible.
For instance, if we divide the additive faults into two groups, a group with the sen-
sor faults and a group with the actuator faults, then we have, using the fault transfer
matrices given in the last section,

rank

[
A− sI Eξs
C Fξs

]
= 6

and

rank

[
A− sI Eξa
C Fξa

]
= 5

where

Eξs = 0, Fξs =
⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ , Eξa =

[
Ef4 Ef5

]
, Fξa = 0.

Thus, it follows from Corollary 4.2 that these additive faults are isolable on the
above assumption. As for the multiplicative faults, it follows from Corollary 4.1
that a group with three faults is generally not isolable. In fact, if it is assumed that
the six multiplicative faults are divided into three groups with (a) group 1: θ1, θ2
(b) group 2: θ3, θ4 (c) group 3: θ5, θ6, then using the fault transfer matrices given in
the last section, we are able to prove that these faults are isolable.

4.4 Fault Identifiability

Roughly speaking, the concept of system fault identifiability is understood as a char-
acterization of system structure that is essential to re-construct faults from the sys-
tem output and input. From the mathematical viewpoint, fault identifiability charac-
terizes the mapping from the system output to the faults under consideration. If this
mapping is unique, then the faults are identifiable. Usually, we intend to express
this mapping in terms of the model from the faults to the system output, then the
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fault identifiability is equivalent to the model invertibility. Motivated by this fact,
we introduce the concept of fault identifiability in terms of, different from the fault
detectability and isolability, fault transfer matrices.

Definition 4.9 Given system (4.1)–(4.2) and let

Gξ(s)=
[
Gξ1(s) · · · Gξl (s)

]

be the fault transfer matrix of fault vector ξ = [ξ1 · · · ξl ]T . ξ is called identifiable
if Gξ(s) is invertible and its inverse is stable and causal.

Note that the requirements on the stability and causality of the inverse ofGξ(s) is
an expression for the realizability of inversingGξ(s). It is evident that without these
two requirements, the fault identifiability would be equivalent to the fault isolability.
In another word, the fault isolability is a necessary condition for the faults to be
identifiable.

To understand the idea behind the definition of the fault identifiability, we now
consider different types of faults respectively. Let f (s) be a vector of additive faults
with fault transfer matrix Gf (s). As shown in (4.11), the change of y(s) caused by
f (s) can be written as

Δy(s)=Gf (s)f (s).
If Gf (s) is invertible and its inverse is stable and causal, then it is possible to re-
construct f (s) based on the relation

f (s)=G−1
f (s)Δy(s). (4.38)

Thus, fault vector f is identifiable. For a multiplicative fault θBi , we have

Δy(s)=GθBi (s)L
(
u(t)θBi

)

withGθBi (s)= C(sI −A)−1Bi . According to Definition 4.9, the idenfiability of θBi
means it is possible to reconstruct u(t)θBi based on

L
(
u(t)θBi

)=G−1
θBi
(s)Δy(s) := βθBi (s). (4.39)

Since system input u(t) is generally on-line available, an identification of the fault
θBi can be achieved using the relation

θBi =
(
uT (t)u(t)

)−1
uT (t)βθBi

(t) for u(t) �= 0. (4.40)

Analog to (4.39) and (4.40), we have the relations

L
(
u(t)θCi

)=G−1
θCi
(s)Δy(s) := βθCi (s) (4.41)

θCi =
(
uT (t)u(t)

)−1
uT (t)βθCi

(t) for u(t) �= 0
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L
(
u(t)θDi

)=D−1
i Δy(s)= βθDi (s) (4.42)

θDi =
(
uT (t)u(t)

)−1
uT (t)βθDi

(t) for u(t) �= 0

for multiplicative faults θCi and θDi , respectively. Again, we can see that identifying
a multiplicative fault requires not only the invertibility of the fault transfer matrix
but also a sufficient excitation.

As to a multiplicative fault θAi , remember that the change in y caused by θAi can
only be approximated by

Δy(s)≈GθAi (s)L
(
u(t)θAi

)
, GθAi

(s)= C(sI −A)−1Ai(sI −A)−1B

in case of a small θAi . In general, we have

d

dt

(
∂x

∂θAi

)
= (A+AiθAi )

∂x

∂θAi
+Aix, ∂x

∂θAi
(t0)= 0

(4.43)

ẋ = (A+AiθAi )x +Bu, Δy = C ∂x

∂θAi
θAi .

It is evident that an identification of θAi would become very difficult.

Example 4.3 Consider three-tank system DTS200 with the fault transfer matrices
derived in Example 4.1. Since ∀s

rank

[
A− sI 0
C I3×3

]
= 6

the inverse of the transfer matrix of the sensor faults is stable and causal. According
to Definition 4.9, these faults are identifiable. In against, the additive actuator faults
and the multiplicative process faults are not identifiable.

4.5 Notes and References

Due to their important role in the FDI study, much attention has been devoted to the
concepts of fault detectability and isolability. In the early study, fault detectability
and isolability have often been defined in terms of the performance of the FDI sys-
tems used. Differently, in most of the recent publications on this topic, fault de-
tectability and isolability are expressed in terms of the structural properties of the
system under consideration. In order to distinguish these two different ways of defin-
ing fault detectability and isolability, we have adopted the notation system fault de-
tectability and isolability to underline the original idea behind the introduction of
these two concepts. They are used to indicate the structural properties of the system
under consideration from the FDI viewpoint.

Definitions of fault detectability and isolability can be found in the books pub-
lished recently, for instance [15, 25, 76, 142]. The interested reader may wonder
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about many different definitions of fault detectability and isolability. One may also
notice that most of these definitions are related to the additive faults. It is one of our
motivations to define fault detectability and isolability both for additive and multi-
plicative faults in a unified framework.

Confusion of the definition of fault detectability and isolability is often caused
by the way of defining faults. In some publications, a fault is also understood as
a vector. In this case, fault detectability requires a full (column) rank of the fault
transfer matrix to ensure that the occurrence of any fault would cause changes in
the system output. On the other hand, this definition yields a conflict with the fault
isolability defined on the assumption that a fault is a scalar variable and a fault vector
represents a number of faults. For this reason, in our study a fault is understood as
a scalar variable. This way of addressing faults also allows a unified handling of
additive and multiplicative faults.

In [92], the concept of input observability has been introduced. It has been, in
its original study, motivated by the input identification problem. Due to its close
relation to the FDI problems, this concept has been lately reformulated as fault de-
tectability for additive faults, see, for instance, [116]. As pointed out above and
shown in Sect. 4.3.2, the input observability is identical with the fault isolability
defined in our study. We would like to call attention of the interested reader that in
Sect. 4.3.2 we have restudied the existence conditions for the input observability.



Part II
Residual Generation



Chapter 5
Basic Residual Generation Methods

The objective of this chapter is to establish a framework and to lay foundations
for the study on model-based residual generation. We shall address the concepts
of analytical redundancy and residual generation on the assumption of a perfect
system model, as sketched in Fig. 5.1, and introduce a general description form of
model-based redundancy and residual generators. On this basis, tasks of designing
model-based residual generators will be formulated.

Three types of residual generators including:

• fault detection filter (FDF)
• diagnostic observer (DO)
• parity relation based residual generator (PRRG)

will be introduced in this chapter. The main attention is paid to:

• the implementation and design forms of these residual generators,
• characterization of the solutions and
• interconnections among the different types of residual generators.

Fig. 5.1 Schematic description of model-based residual generation

S.X. Ding, Model-Based Fault Diagnosis Techniques, Advances in Industrial Control,
DOI 10.1007/978-1-4471-4799-2_5, © Springer-Verlag London 2013
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5.1 Analytical Redundancy

The concept analytical redundancy stands generally for an analytical re-construction
of quantities or parts of the system under monitoring. For the purpose of residual
generation, known as a comparison between system measurements and their redun-
dancy, the analytical redundancy is understood as a re-construction of the measured
quantities of the system under consideration.

Consider the following nominal model that describes the transfer behavior of the
system or a part of the system under monitoring,

y(s)=Gyu(s)u(s) (5.1)

where y(s) represents the measured variable, for which a redundancy will be built,
and u(s) a process variable that may be the process input or even a measured vari-
able. A natural and in practice often applied method to re-construct y(s) is an on-line
parallel computation of input–output relationship (5.1)

ŷ(s)=Gyu(s)u(s)
where ŷ(s) stands for an estimate of y(s) and is called analytical or software redun-
dancy. Although this kind of redundancy promises an easy on-line implementation,
its application in practice is questionable. In order to explain it, we extend the sys-
tem model (5.1) to

y(s)=Gyu(s)u(s)+C(sI −A)−1x(0)+Δy(s) (5.2)

which includes the influence of the process initial state x(0) and model uncertainty
Δy(s), where the state space realization of Gyu(s) is assumed to be (A,B,C,D).
It turns out

r(s)= y(s)− ŷ(s)= C(sI −A)−1x(0)+Δy(s) (5.3)

which means, in other words,

• the variation of r(t) from zero caused by x(0) �= 0 disappears only when the
process is stable (i.e., A is stable), and even in this case the convergent rate ex-
clusively depends on the position of the eigenvalues of A in the complex plane

• the influence of the model uncertainty is not suppressed.

As a result, the reconstructed variable may strongly differ from the original one (the
measured one).

From the viewpoint of control theory, the reason for the above-mentioned prob-
lems is evidently the so-called open-loop structure. A known solution is, therefore,
to modify the structure of the system (5.1) in such a way that a feedback loop is
built. A reasonable and typical form of such a modification is given by

ŷ(s)=Gyu(s)u(s)+ L̄(s)
(
y(s)− ŷ(s)). (5.4)
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In comparison with the open-loop structured system (5.1), we see that the added
term L̄(s)(y(s)− ŷ(s)) acts as a correction on ŷ(s) that ensures a limited variation of
ŷ(s) from y(s). This system is closed-loop structured and is of, by a suitable choice
of the feedback matrix L̄(s), the properties required for a redundancy system:

I. r(s)= y(s)− ŷ(s)= 0 for all u(s) (5.5)

II. lim
t→∞
(
y(t)− ŷ(t))= 0 for all x(0) (5.6)

III. the convergent rate is arbitrarily assignable (5.7)

IV. the influence of Δy(s) is suppressed. (5.8)

We now consider how to choose L̄(s).
It follows from (5.2) and (5.4) that

y(s)− ŷ(s) =Gyu(s)u(s)+C(sI −A)−1x(0)+Δy(s)
−Gyu(s)u(s)− L̄(s)

(
y(s)− ŷ(s)) (5.9)

and furthermore
(
I + L̄(s))(y(s)− ŷ(s))= C(sI −A)−1x(0)+Δy(s).

Do an LCF of C(sI −A)−1 (see Sect. 3.2),

C(sI −A)−1 = (I −C(sI −A+LC)−1L
)−1

C(sI −A+LC)−1

with L ensuring A−LC stable. Recall our task is to select L̄(s) so that (5.5)–(5.8)
are fulfilled. To this end, we have to, knowing from linear system theory, cancel the
poles of transfer function matrix C(sI − A)−1, which are obviously the zeros of
matrix I −C(sI −A+LC)−1L. Setting

I + L̄(s)= (I −C(sI −A+LC)−1L
)−1

and noting the following equality

(
I −C(sI −A+LC)−1L

)−1 = I +C(sI −A)−1L (5.10)

give

I + L̄(s)= I +C(sI −A)−1L =⇒ L̄(s)= C(sI −A)−1L. (5.11)

Substituting (5.11) into (5.9) yields

y(s)− ŷ(s)= C(sI −A+LC)−1x(0)+ (I −C(sI −A+LC)−1L
)
Δy(s).

On the assumption that (C,A) is observable, by choosing L suitably we can ar-
bitrarily assign the poles of C(sI − A + LC)−1 and simultaneously suppress the
influence of Δy(s).
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It is evident that the system (5.4) with L̄(s) given by (5.11) satisfies conditions
(5.4)–(5.8). However, a slight modification is needed such that (5.4) is presented in
a suitable form for an on-line implementation. To this end, consider the relation

ŷ(s)=Gyu(s)u(s)+C(sI −A)−1L
(
y(s)− ŷ(s))

⇐⇒ (
I +C(sI −A)−1L

)
ŷ(s)=Gyu(s)u(s)+C(sI −A)−1Ly(s)

and thus, by Lemma 3.1 and (5.10),

ŷ(s) = (D +C(sI −A+LC)−1(B −LD))u(s)
+C(sI −A+LC)−1Ly(s). (5.12)

With the aid of these relations, (5.12) can be brought into a compact form

ŷ(s)= N̂u(s)u(s)−
(
M̂u(s)− I

)
y(s) (5.13)

with M̂u(s), N̂u(s) denoting an LCF of Gyu(s), that is, Gyu(s)= M̂−1
u (s)N̂u(s).

(5.13) describes a dynamic system whose input is u(s), y(s) and output an esti-
mate of y(s). This system is stable and will converge to y(s), independent of u(s),
x(0), with an arbitrarily assignable velocity.

Let’s write (5.12) in the state space

˙̂x =Ax̂ +Bu+L(y −Cx̂ −Du) (5.14)

ŷ = Cx̂ +Du. (5.15)

It becomes evident that it is the well-known state observer. We call therefore sys-
tem (5.13) or equivalently (5.14)–(5.15) output observer. As an estimate for y(s),
ŷ(s) and the associated algorithm are also called soft- or virtual sensor or analytical
redundancy.

We summarize the main results of this section in a theorem.

Theorem 5.1 Given a transfer function matrix Gyu(s) ∈ LRm×ku with the state
space realization (A,B,C,D), then signal ŷ(s) delivered by system (5.13) or equiv-
alently (5.14)–(5.15) re-constructs y(s) in the sense of (5.5)–(5.8).

The output observer builds the core of a residual generator. As will be shown in
the next section, residual generator design can be reduced to the construction of an
output observer.

Remark 5.1 The original idea of using system model to construct redundancy and
residual signals goes back to the works by Beard and Jones, in which a state ob-
server in a quite similar form to (5.14)–(5.15) was used for the purpose of the out-
put re-construction. Since then, this approach is widely and successfully used in
dealing with FDI problems under the name observer-based approach and has now
become one of most powerful techniques in the field of model-based fault diagnosis.
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Unfortunately, the expression observer-based approach often leads to the misunder-
standing that a state observer is necessary. This is also the reason why we have paid
much attention to the introduction of analytical redundancy construction using pro-
cess input–output relationship.

We would like to conclude this section with the following comments:

• What we need for the residual generation is the input–output behaviors of the
process under consideration.

• The state observer form (5.14)–(5.15) provides us with a numerical solution for
the purpose of creating analytical redundancy. It is not the only solution and, in
some cases, also not the best one.

• The use of the state observer form (5.14)–(5.15) is based on the assumption that
Gyu(s) has the state space realization (A,B,C,D). Known from the linear sys-
tem theory, it means that only observable and controllable parts of the process
are taken into account. From the viewpoint of residual generation, the system ob-
servability and controllability are in fact not necessary for the use of the so-called
observer-based FDI scheme.

5.2 Residuals and Parameterization of Residual Generators

In the context of FDI study, a residual signal is understood as an indicator for the
possible faults. The most important characteristic features of a residual, r(s), are

I. lim
t→∞ r(t)= 0 for all u(t), x(0) and Δy(t)= 0 (5.16)

II. r(s)=Grf (s)f (s), Grf (s) �= 0 (5.17)

where Grf (s) denotes a transfer matrix from the fault vector f to the residual vec-
tor r . Using the output observer (5.13), we are able to generate a residual by a
comparison of ŷ(s) with y(s):

r(s)= y(s)− ŷ(s)= M̂u(s)y(s)− N̂u(s)u(s). (5.18)

On the other hand, we know that a signal constructed by for example, R(s)(y(s)−
ŷ(s)), where R(s) �= 0 is some (stable) transfer matrix or vector, is also a residual
in the sense of (5.16)–(5.17). This motivates us to ask: What is the general form of
a residual generator? It is reasonable to assume that all residual generators can be
expressed in terms of

r(s)= F(s)u(s)+H(s)y(s), F (s),H(s) ∈RH∞ (5.19)

where F(s) and H(s) represent two stable systems with appropriate dimension.
Thus, the answer to the above question can be concretely re-formulated as a search
for the existence conditions for F(s) and H(s), under which residual r(s) fulfills
conditions (5.16)–(5.17).
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Substituting (5.1) into (5.19) yields

r(s)= F(s)u(s)+H(s)Gyu(s)u(s)=
(
F(s)+H(s)Gyu(s)

)
u(s).

We see that the system (5.19) delivers a residual only if

F(s)+H(s)Gyu(s)= 0

which can be further written into

F(s)Mu(s)+H(s)Nu(s)= 0 (5.20)

with (Mu(s),Nu(s)) denoting a RCF pair of Gyu(s). The following theorem shows
under which conditions (5.20) holds.

Theorem 5.2 Let

• (M̂u(s), N̂u(s)) and (Mu(s),Nu(s)) be left and right coprime factorization pair
of transfer function matrix Gyu(s) ∈ LRm×ku

• Y(s), X(s), Ŷ (s), X̂(s) be RH∞-matrices with appropriate dimensions that sat-
isfy the Bezout identity (3.14)

• K(s) be a kr × km-dimensional RH∞-matrix.

Then, the set of RH∞-matrices F(s), H(s) satisfying

F(s)Mu(s)+H(s)Nu(s)=K(s) (5.21)

is given by

F(s)=K(s)X(s)−R(s)N̂u(s), H(s)=K(s)Y (s)+R(s)M̂u(s) (5.22)

where R(s) belongs to RH∞ and is a kr ×m-dimensional RH∞ parameterization
matrix. Furthermore, for every kr ×m-dimensional RH∞ parameterization matrix
R(s), F(s), H(s) satisfying (5.22) ensure that (5.21) holds.

Proof Suppose F(s) and H(s) satisfy (5.21) and define

R(s)= [F(s) H(s)
][−Ŷ (s)

X̂(s)

]

which, considering that F(s), H(s), X̂(s) and Ŷ (s) are RH∞ matrices, belongs to
RH∞. It results in

[
F(s) H(s)

]= [K(s) R(s)
][Mu(s) −Ŷ (s)
Nu(s) X̂(s)

]−1

from which (5.22) follows. To prove that every F(s), H(s) given by (5.22) satisfy
(5.21) we use the double Bezout identity (3.14). Suppose F(s), H(s) satisfy (5.22).
Then,
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F(s)Mu(s)+H(s)Nu(s)

= [K(s) R(s)
][ X(s) Y (s)

−N̂u(s) M̂u(s)

][
Mu(s)

Nu(s)

]

= [K(s) R(s)
][I

0

]
=K(s).

Hence, they ensure that (5.21) holds. �

Setting K(s) in Theorem 5.2 equal to null-matrix gives all solutions of (5.20)
and thus a parameterization of all residual generators.

Theorem 5.3 Given transfer function matrixGyu(s) ∈ LRm×ku with a left coprime
factorization pair (M̂u(s), N̂u(s)), then

r(s)=R(s)(M̂u(s)y(s)− N̂u(s)u(s)
)

(5.23)

represents a parameterization form of LTI residual generators in the sense that

• for every residual generator we can find a RH∞-matrix R(s) such that the resid-
ual generator is expressed in terms of (5.23)

• for every R(s) ∈RH∞ system (5.23) delivers a residual satisfying (5.16)–(5.17).

A comparison with (5.18) reveals that any residual generator can be considered
as an extension of an output observer-based residual generator. Recall that

M̂u(s)y(s)− N̂u(s)u(s)= y(s)− ŷ(s)
where ŷ is delivered by (5.14)–(5.15). Thus, we can also write any residual generator
in the state space representation form as follows. Let R(s)= (AR,BR,CR,DR) and
xR denote the state vector of dynamic system R(s). It holds

[ ˙̂x
ẋR

]
=
[
A−LC 0
−BRC AR

][
x̂

xR

]
+
[

B L

−BRD BR

][
u

y

]
(5.24)

r = [−DRC CR
][ x̂
xR

]
+ [−DRD DR

][u
y

]
. (5.25)

In this context, any residual generator is a composition of an output observer and a
dynamic system R(s). These two parts may take different functions:

• the output observer builds the core of the residual generator and is used to recon-
struct system behavior so that the preliminary form of residual signal, y(s)− ŷ(s),
provides us with information about the variation of the system operation from its
nominal value

• the dynamic system R(s) acts as a signal filter and can, by a suitable selection,
help us to obtain significant characteristics of faults, as will be discussed in the
forthcoming chapters. Thus, R(s) is also called post-filter.
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Example 5.1 Consider the laboratory system CSTH given in Sect. 3.7.5. We would
like to parameterize all residual generators for CSTH according to Theorem 5.3.
Below are the achieved results:

M̂u(s)=
⎡
⎣ M̂11(s) M̂12(s) M̂13(s)

M̂21(s) M̂22(s) M̂23(s)

M̂31(s) M̂32(s) M̂33(s)

⎤
⎦ , N̂u(s)=

⎡
⎣ N̂11(s) N̂12(s)

N̂21(s) N̂22(s)

N̂31(s) N̂32(s)

⎤
⎦

M̂11(s)= s

s + 100
, M̂12(s)= 0, M̂13(s)= 0

M̂21(s)= 626.4s + 7.592× 10−4

s2 + 3s + 2
, M̂22(s)= s + 0.0059

s + 2

M̂23(s)= −36.55s − 0.04816

s2 + 5s + 6
, M̂31(s)= 0, M̂32(s)= 0

M̂33(s)= s + 0.0012

s + 3
, N̂11(s)= 31.83

s + 1
, N̂12(s)= 0

N̂21(s)= 1.994× 104

s2 + 3s + 2
, N̂22(s)= −1.111× 106

s2 + 5s + 6
, N̂31(s)= 0

N̂32(s)= 3.041× 104

s + 3

The parameterization form of the all residual generators is expressed by

r(s)=R(s)(M̂u(s)y(s)− N̂u(s)u(s)
)
, R(s) ∈RH∞.

5.3 Issues Related to Residual Generator Design
and Implementation

Having addressed the parameterization form of LTI residual generators, we are now
faced with a practical task: how to design a residual generator described by (5.23).
Taking a look at (5.23) and recalling the meaning of R(s), M̂u(s) and N̂u(s) make
it clear that there exist indeed two design parameters (parameter matrices): the ob-
server gain matrix L and the post-filter R(s). The question arises: How to choose L
and R(s)?

Remember that the main objective of applying a residual generator is to make
the residual signal as sensitive to faults as possible and simultaneously as robust as
possible against the model uncertainty. For this reason, we first study the dynamics
of residual generator (5.23). Let us consider system model of the form

y(s)=Gyu(s)u(s)+Gyf (s)f (s)+Δy(s)
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and substitute it into (5.23). We immediately see that the dynamics of residual gen-
erator (5.23) is governed by

r(s)=R(s)M̂u(s)
(
Gyf (s)f (s)+Δy(s)

)
. (5.26)

Obviously, the problem of residual generator design can be simply formulated as
finding R(s) ∈RH∞ and L ensuring the stability of matrix A−LC such that

• R(s)M̂u(s)Gf (s) is as large as possible and simultaneously
• R(s)M̂u(s)Δy(s) is as small as possible.

In fact, the so-called observer-based residual generation approaches reported during
the last three decades serve only for one purpose, i.e. finding R(s) and L, although
different mathematical and control theoretical tools have been applied, the structures
of residual generators are various and the achieved results appear quite different.
These approaches will be described in the subsequent sections of this chapter.

We now have two different forms of residual generators, (5.23) and (5.26). (5.23)
presents an explicit form that describes the structure and the possible algorithm for
the on-line implementation. We call it implementation form of residual generators.
In some references, it is also called computational form. Note that all variables and
transfer matrices used in (5.23) are known or measurable. In against, the variables f ,
Δy in (5.26) are unknown. Thus, (5.26) is an internal form that provides us with the
dynamics of the FDI system and used for the purpose of residual generator design.
For this reason, we call it design form of residual generators.

Remark 5.2 There exist a variety of methods for the on-line realization of imple-
mentation form (5.23). We can use, for instance, the state space realization similar
to (5.14)–(5.15) or transfer matrices. It is independent of the method used for the
determination of L and R(s). Our main attention in the following will be paid to
the methods of residual generator design. The reader should keep in mind that the
on-line implementation can be carried out independent of the design form used. One
can use for example, state space scheme for the on-line implementation even if L
and R(s) are calculated by means of a frequency domain approach.

In our subsequent study, (5.23) and (5.26) will play an essential role for the intro-
duction and analysis of residual generation schemes. We call them therefore general
forms of residual generators.

5.4 Fault Detection Filter

Fault detection filter (FDF) is the first type of observer-based residual generators
proposed by Beard and Jones in the early 1970s. Their work marked the beginning
of a stormy development of model-based FDI techniques.

Core of an FDF is a full-order state observer

˙̂x =Ax̂ +Bu+L(y −Cx̂ −Du) (5.27)
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which is constructed on the basis of the nominal system model Gyu(s) = C(sI −
A)−1B +D. Built upon (5.27), the residual is simply defined by

r = y − ŷ = y −Cx̂ −Du. (5.28)

Introducing variable e= x − x̂ yields

ė= (A−LC)e, r = Ce.
It is evident that r has the characteristic features of a residual when the observer
gain matrix L is so chosen that A − LC is stable. In this case, x̂ also provides a
unbiased estimation for x, that is,

lim
t→∞
(
x(t)− x̂(t))= 0.

The advantages of an FDF lie in its simple construction form (5.27)–(5.28) and, for
the reader who is familiar with the modern control theory, in its intimate relationship
with the state observer design and especially with the well-established robust control
theory by designing robust residual generators.

We see that the design of an FDF is in fact the determination of the observer gain
matrix L. To increase the degree of design freedom, we can switch a matrix to the
output estimation error y(s)− ŷ(s), that is,

r(s)= V (y(s)− ŷ(s)). (5.29)

As discussed in the last section, (5.27)–(5.28) can be interpreted as a state space
realization of M̂u(s)y(s) − N̂u(s)u(s). It thus turns out that an FDF is indeed a
special form of residual generator (5.23), namely the post-filter is a unit matrix for
an FDF given by (5.27)–(5.28) or a certain algebraic matrix for an FDF given by
(5.27) and (5.29). A disadvantage of FDF scheme lies in the on-line implementation
due to the full-order state observer, since in many practical cases a reduced order
observer can provide us with the same or similar performance but with less on-line
computation. This is one of the motivations for the development of Luenberger type
residual generators, also called diagnostic observers.

Example 5.2 Given CSTH with model (3.84). For the residual generation purpose,
an FDF of form (5.27)–(5.28) is designed with the same observer gain as used in the
LCF, that is,

L=
⎡
⎣ 0.0314 0 0
−1.6238× 107 5.1689× 104 9.4743× 105

0 0 2.9988

⎤
⎦

which ensures a stable FDF with poles

s1 =−3, s2 =−2, s3 =−1.
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5.5 Diagnostic Observer Scheme

The diagnostic observer (DO) is, thanks to its flexible structure and similarity to the
Luenberger type observer, one of mostly investigated model-based residual genera-
tor forms.

5.5.1 Construction of Diagnostic Observer-Based Residual
Generators

The core of a DO is a Luenberger type (output) observer described by

ż=Gz+Hu+Ly, ŷ =Wz+ V y +Qu (5.30)

where z ∈Rs , s denotes the observer order and can be equal to or lower or higher
than the system order n. Although most contributions to the Luenberger type ob-
server are focused on the first case aiming at getting a reduced order observer, higher
order observers will play an important role in the optimization of FDI systems.

Assume Gyu(s)= C(sI −A)−1B +D, then matrices G, H , L, Q, V and W to-
gether with a matrix T ∈Rs×n have to satisfy the so-called Luenberger conditions,

I. G is stable (5.31)

II. T A−GT = LC, H = T B −LD (5.32)

III. C =WT + VC, Q=D− VD (5.33)

under which system (5.30) delivers a unbiased estimation for y, that is,

lim
t→∞
(
y(t)− ŷ(t))= 0. (5.34)

To show its application to residual generation, we consider a dynamic system with
e = T x − z as its state vector and y − ŷ as its output. It turns out, according to
(5.31)–(5.33),

ė=Ge, y − ŷ =We (5.35)

which ensures (5.34). On account of (5.35),

r = V ∗(y − ŷ), V ∗ �= 0 (5.36)

builds a residual vector, whose dynamics is described by

ż=Gz+Hu+Ly (5.37)

r = V ∗y − V ∗Wz− V ∗V y − V ∗Qu= Vy −Wz−Qu (5.38)
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where

V = V ∗(I − V ), W = V ∗W, Q= V ∗Q.
Thus, for the residual generator design condition III given by (5.33) should be re-
placed by

III. V C −WT = 0, Q= VD. (5.39)

Remember that in the last section it has been claimed all residual generator design
schemes can be formulated as the search for an observer gain matrix and a post-filter.
It is therefore of practical and theoretical interest to reveal the relationships between
matrices G, L, T , V and W solving Luenberger equations (5.31), (5.32), (5.39) and
observer gain matrix as well as post-filter.

A comparison with the FDF scheme makes it clear that

• the diagnostic observer scheme may lead to a reduced order residual generator,
which is desirable and useful for on-line implementation

• we have more degree of design freedom but, on the other hand
• more involved design.

Having shown the importance of Luenberger equations (5.31)–(5.32), (5.39) in de-
signing diagnostic observers, we concentrate our attention in the following on their
solutions.

Remark 5.3 On account of its importance in observer design, solution of Luen-
berger equations has received much attention in the 1970s and 1980s, and a large
number of algorithms and studies have been published during this period. On the
other hand, unlike most of observer design approaches, in which the observers are
usually designed for the estimation of unmeasurable variables, the objective of using
a diagnostic observer is to re-construct measured variable. This difference, being ob-
servable by III condition (5.33), also motivated studies on characteristic properties
of the special form of Luenberger conditions given by (5.31)–(5.32), (5.39).

5.5.2 Characterization of Solutions

In this subsection, a characterization of the solutions of Luenberger equations (5.31),
(5.32) and (5.39) will be derived. Some results will be used in the sequel and help
us get an insight into the structure of observer-based residual generators. We shall
concentrate ourselves on the following topics:

• existence conditions
• minimum system order and
• parameterization of solutions.

Without loss of generality, we first make the following assumptions:
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• the pair (C,A) is given in the canonical observer form, that is,

A =
⎡
⎢⎣
Ā11 · · · Ā1m
...

. . .
...

Ām1 · · · Āmm

⎤
⎥⎦ ∈Rn×n, C = [C1 · · · Cm

] ∈Rm×n

Āii =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 āii1
1 0 0 · · · 0 āii2
0 1 0 · · · 0 āii3
...

. . .
...

. . .
...

...

0 · · · 0 1 0 āiiσi−1
0 · · · 0 0 1 āiiσi

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
∈Rσi×σi , i = 1, . . . ,m

Āij =

⎡
⎢⎢⎣

0 · · · 0 ā
ij

1
...

. . .
...

...

0 · · · 0 ā
ij
σj

⎤
⎥⎥⎦ ∈Rσj×σi , m≥ i > j, j = 1, . . . ,m− 1

Āij =
⎡
⎢⎣

0 · · · 0 ā
ij

1
...

. . .
...

...

0 · · · 0 ā
ij
σi

⎤
⎥⎦ ∈Rσi×σj , m≥ j > i, i = 1, . . . ,m− 1

Ci =
[

0 · · · 0 ēi
] ∈Rm×σi , i = 1, . . . ,m

ē�i =
[

0 · · · 0 1 c̄ii+1 · · · c̄im
]� ∈R1×m, i = 1, . . . ,m

where σ1, . . . , σm are the observability indices satisfying σ1, . . . , σm ≥ 1,∑m
i=1 σi = n. We denote the minimum and maximum observability indices with

σmin =mini σi and σmax =maxi σi respectively
• the residual is a scalar variable, that is, r ∈ R, and thus Q, V , W will in the

following be replaced by q , v, w, respectively
• matrices G, w take the following form

G= [Go g
]
, Go =

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0
1 0 · · · 0
...

. . .
. . .

...

0 · · · 1 0
0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎦
∈Rs×(s−1), g =

⎡
⎢⎣
g1
...

gs

⎤
⎥⎦ ∈Rs

(5.40)

w = [0 · · · 0 1
] ∈Rs . (5.41)

Note that (5.40)–(5.41) represents the observability canonical normal of the
residual generator

ė=Ge, r =we.
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It is well known that by a suitable regular state transformation every observable pair
can be transformed into the form (5.40)–(5.41). Therefore, the last assumption loses
no generality.

To begin with our study, we split A into two parts

A = Ao +LoC, Ao = diag(Ao1, . . . ,Aom) (5.42)

Aoi =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0
1 0 0 · · · 0
0 1 0 · · · 0
...

. . .
...

. . .
...

0 · · · 0 1 0

⎤
⎥⎥⎥⎥⎥⎦
∈Rσi×σi , i = 1, . . . ,m, LoC ∈Rn×n

LoC =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 ā11
1 0 · · · 0 ā12

1 · · · 0 · · · 0 ā1m
1

...
. . .

...
...

...
. . .

...
...

. . .
...

. . .
...

...

0 · · · 0 ā11
σ1

0 · · · 0 ā12
σ1

· · · 0 · · · 0 ā1m
σ1

...
. . .

...
...

...
. . .

...
...

. . .
...

. . .
...

...

0 · · · 0 ām1
1 0 · · · 0 ām2

1 · · · 0 · · · 0 āmm1
...

. . .
...

...
...

. . .
...

...
. . .

...
. . .

...
...

0 · · · 0 ām1
σm

0 · · · 0 ām2
σm

· · · 0 · · · 0 āmmσm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The pair (C,Ao) is of an interesting property that is described by Lemma 5.1 and
will play an important role in the following study.

Lemma 5.1 Equation

poC + p1CAo + · · · + piCAio + psCAso = 0, s ≥ 0 (5.43)

holds if and only if

piCA
i
o = 0, i = 0, . . . , s. (5.44)

Furthermore, vectors pi , i = 0, . . . , s, satisfy

pi = 0, i = 0, . . . , σmin − 1; piCA
i
o = 0, i = σmin, . . . , σmax − 1 (5.45)

and pi , i ≥ σmax, are arbitrarily selectable.

Proof Firstly, note that Aio = 0, i ≥ σmax, hence we have

pjCA
j
o = 0, for all pj , j ≥ σmax and so

poC + p1CAo + · · · + psCAso = 0 ⇐⇒ poC + p1CAo + · · · + plCAlo = 0

with l =
{
σmax − 1 for s ≥ σmax
s for s < σmax.
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We now prove (5.44) as well as (5.45). To this end, we utilize the following fact:
for a row vector q(�= 0)= [q1 · · · qm ] ∈Rm we have

qCA
j
o =
[
q̄1 · · · q̄m

]
, j ≥ 0

with the row vector q̄i ∈Rσi satisfying

for j ≥ σi, q̄i = 0, and

for j < σi, q̄i =
[

0 · · · 0 qēi 0 · · · 0
]

where the entry qēi lies in the (σi− j)th place. Thus, the nonzero entries of two row
vectors piCAio and pjCA

j
o , i �= j , are in different places. This ensures that (5.43)

holds if and only if

pjCA
j
o = 0, j = 0, . . . , l.

Note that rank(CAjo)= rank(C)=m, j = 0, . . . , σmin − 1. Hence, we finally have:
for j = 0, . . . , σmin − 1

pjCA
j
o = 0 ⇐⇒ pj = 0.

The lemma is thus proven. �

We now consider (5.32) and rewrite it into

TAo −GT = L̄C, L̄= L− T Lo, Ao =A−LoC
and furthermore
[
T sAo
tsAo

]
−[Go g

][T s
ts

]
=
[
L̄s
l̄s

]
C ⇐⇒

[
T sAo
tsAo

]
−GoT s =

[
L̄s
l̄s

]
C+gts

(5.46)
where

T =
[
T s
ts

]
, T s =

⎡
⎢⎣
t1
...

ts−1

⎤
⎥⎦ , L̄=

[
L̄s
l̄s

]
, L̄s =

⎡
⎢⎣
l̄1
...

l̄s−1

⎤
⎥⎦ .

Writing Go as

Go =
[
G1 0
0 1

]
, G1 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0
1 0 · · · 0
...

. . .
. . .

...

0 · · · 1 0
0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎦
∈R(s−1)×(s−2)
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and considering the last row of (5.46) result in

tsAo − ts−1 = l̄sC + gsts ⇐⇒ ts−1 = tsAo − (l̄sC + gsts). (5.47)

Repeating this procedure leads to

ts−2 = ts−1Ao − (l̄s−1C + gs−1ts)

= tsA2
o − (l̄s−1C + l̄sCAo)− (gs−1ts + gstsAo)

...

t2 = t3Ao − (l̄3C + g3ts)

= tsAs−2
o − (l̄3C + · · · + l̄sCAs−3

o

)− (g3ts + · · · + gstsAs−3
o

)
t1 = t2Ao − (l̄2C + g2ts)

= tsAs−1
o − (l̄2C + · · · + l̄sCAs−2

o

)− (g2ts + · · · + gstsAs−2
o

)
.

(5.48)

Finally, from the first row of (5.46) we have

t1Ao = l̄1C + g1ts . (5.49)

(5.47)–(5.49) give a kind of characterization of all solutions of (5.32), based on
which we are going to derive the existence condition of residual generators.

To this end, we first consider (5.39). Since v �= 0, it is evident that the equation

wT − vC = 0 ⇐⇒ [
w −v ]

[
T

C

]
= 0

is true if and only if the last row of matrix T linearly depends on the rows of C.
Based on this fact, the following existence condition can be derived.

Remark 5.4 It is worth pointing out that the above fact is contrary to the existence
condition of a Luenberger type state observer which requires the linear indepen-
dence of the rows of T from the ones of C. The reason for this is that state ob-
servers and observer-based residual generators are used for different purposes: state
observers are used for the estimation of unmeasurable state variables, while the
observers for the residual generation are used for the estimation of the output vari-
ables.

Theorem 5.4 (5.32) and (5.39) are solvable if and only if

s ≥ σmin. (5.50)

Proof Here, we only prove the necessity. The sufficiency will be provided below in
form of an algorithm. The fact that the last row of matrix T is linearly dependent on
the rows of C can be expressed by

ts = v̄sC
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for some v̄s �= 0. This leads to

ts−1 = tsAo − (l̄sC + gsts)= v̄sCAo − (l̄sC + gsts)
...

t1 = v̄sCAs−1
o − (l̄2C + · · · + l̄sCAs−2

o

)− (g2ts + · · · + gstsAs−2
o

)
.

Substituting t1 into (5.49) gives

v̄sCA
s
o −
(
l̄1C + l̄2CAo + · · · + l̄sCAs−1

o

)= g1ts + g2tsAo + · · · + gstsAs−1
o

and further

v̄sCA
s
o − (l̄1 + g1v̄s)C − · · · − (l̄s + gsv̄s)CAs−1

o = 0.

Following Lemma 5.1, we know that the above equation holds only if

s ≥ σmin.

Thus, the necessity is proven. �

Based on this theorem, we can immediately claim the following corollary.

Corollary 5.1 Given system Gu(s) = C(sI − A)−1B + D, the minimal order of
residual generator (5.37)–(5.38) is σmin.

We now derive an algorithm for the solution of (5.31), (5.32) and (5.39), which
also serves as the proof of the sufficiency of Theorem 5.4.

We begin with the following assumption

ts = v̄sC, v̄s �= 0

and suppose s ≥ σmin. According to (5.47)–(5.48) we have

ts−1 = v̄sCAo − (l̄s + gsv̄s)C (5.51)
...

t1 = v̄sCAs−1
o − (l̄2 + g2v̄s)C − · · · − (l̄s + gsv̄s)CAs−2

o . (5.52)

Substituting t1 into (5.49) yields

v̄sCA
s
o − (l̄1 + g1v̄s)C − (l̄2 + g2v̄s)CAo − · · · − (l̄s + gsv̄s)CAs−1

o = 0. (5.53)

Following Lemma 5.1, (5.53) is solvable if and only if

v̄sCA
s
o = 0, v̄s �= 0 (5.54)

(l̄s + gsv̄s)CAs−1
o = 0, . . . , (l̄σmin+1 + gσmin+1v̄s)CA

σmin
o = 0 (5.55)

l̄σmin + gσmin v̄s = 0, . . . , l̄1 + g1v̄s = 0 (5.56)
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and furthermore, since s ≥ σmin, (5.54)–(5.56) are solvable. In order to simplify the
notation, we introduce vectors v̄i , i = σmin, . . . , s − 1, defined by

v̄i = l̄i+1 + gi+1v̄s , (l̄i+1 + gi+1v̄s )CA
i
o = 0.

With the aid of these results, the following theorem becomes evident.

Theorem 5.5 Given s ≥ σmin, then matrices L, T , v, w defined by

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 v̄σmin · · · v̄s
0 · · · v̄σmin · · · v̄s 0
...

. . .
...

. . .
...

...

0 v̄σmin · · · v̄s · · · 0
v̄σmin · · · v̄s 0 · · · 0
...

. . .
...

...
. . .

...

v̄s−1 v̄s 0 0 · · · 0
v̄s 0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C

CAo
...

CA
s−σmin−1
o

CA
s−σmin
o

...

CAs−2
o

CAs−1
o

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.57)

L = L̄+ T Lo, L̄=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−g1v̄s
−g2v̄s
...

−gσmin v̄s−v̄σmin − gσmin+1v̄s
...

−v̄s−2 − gs−1v̄s
−v̄s−1 − gsv̄s

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.58)

w = [0 · · · 0 1
]
, v = v̄s (5.59)

solve (5.32) and (5.33) for all g1, g2, . . . , gs that ensure the stability of G, where
v̄σmax−1, . . . , v̄σmin are the solution of the following equations

v̄σmax−1CA
σmax−1
o = 0, . . . , v̄σminCA

σmin
o = 0 (5.60)

v̄σmax , . . . , v̄s are arbitrarily selectable and v̄s �= 0.

The proof follows directly from (5.51)–(5.56) as well as Lemma 5.1.
Together with (5.60), Theorem 5.5 provides us with an algorithm for the solution

of Luenberger equations for the residual generator design. We see that the solution of
(5.32) and (5.39) is reduced to the solutions of equations given by (5.60). From σmax
up, increasing the order s does not lead to an increase in computation. In fact, once
(5.60) are solved for v̄σmax−1, . . . , v̄σmin , we are able to design residual generators of
arbitrary order without additional computation.

From the above algorithm, we know that the solution for (5.32) and (5.39) is
usually not unique, since the solutions of equations given by (5.60) is not unique
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(see also below) and, if s ≥ σmax, vectors v̄i , i = σmax, . . . , s, are also arbitrarily
selectable. It is just this degree of freedom that can be utilized for designing FDI
systems. This also motivates the study on the parameterization of solutions, which
builds the basis of a successful optimization.

For our purpose, we first rearrange the matrix T given by (5.57) as a row vector:

T =
⎡
⎢⎣
t1
...

ts

⎤
⎥⎦ new arrangement−→ [

t1 · · · ts
] := t̂

then we have, following Theorem 5.5,

t̂ = [ v̄σmin v̄σmin+1 · · · v̄s
]
Q

Q =

⎡
⎢⎢⎢⎢⎣

CA
σmin−1
o · · · C 0 · · · 0

CA
σmin
o · · · CAo C

. . .
...

...
. . .

...
. . .

. . . 0
CAs−1

o · · · CA
s−σmin
o CA

s−σmin−1
o · · · C

⎤
⎥⎥⎥⎥⎦ .

Let us introduce the notation

Nbasis = diag(Nσmin , . . . ,Nσmax−1, Im×m, . . . , Im×m)

where Ni ∈R(m−mi)×m, i = σmin, . . . , σmax − 1, stands for the basis matrix of left
null space of matrix CAio with

mi = rank
(
CAio
)
.

It is evident that any vector [ v̄σmin v̄σmin+1 · · · v̄s ] can be written as[
v̄σmin v̄σmin+1 · · · v̄s

]= v̄Nbasis

where v̄ �= 0 is a vector of appropriate dimension. This gives the following theorem.

Theorem 5.6 Given s ≥ σmin, then matrix T that solves (5.32) can be parameter-
ized by

t̂ = v̄Nbasis

⎡
⎢⎢⎢⎢⎣

CA
σmin−1
o · · · C 0 · · · 0

CA
σmin
o · · · CAo C

. . .
...

...
. . .

...
. . .

. . . 0
CAs−1

o · · · CA
s−σmin
o CA

s−σmin−1
o · · · C

⎤
⎥⎥⎥⎥⎦ . (5.61)

The proof is evident and therefore omitted.
It follows from Theorems 5.5 and 5.6 that

• for every solution of (5.32), we are able to find a vector v̄ �= 0 such that this
solution can be brought into the form given by (5.61)
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• on the other hand, given a vector v̄ �= 0 we have a T and further a solution
for (5.32).

In this sense, the vector v̄ �= 0 is called the parameterization vector. Note that

rank(Nbasis)= number of the rows of Nbasis

=m(s − σmax + 1)+
σmax−1∑
i=σmin

(m−mi)

≤m(s + 1− σmin)= number of the columns of Nbasis (5.62)

and moreover

rank

⎡
⎢⎢⎢⎢⎣

CA
σmin−1
o · · · C 0 · · · 0

CA
σmin
o · · · CAo C

. . .
...

...
. . .

...
...

. . . 0
CAs−1

o · · · CA
s−σmin
o CA

s−σmin−1
o · · · C

⎤
⎥⎥⎥⎥⎦

=m(s + 1− σmin)= number of the rows. (5.63)

Thus, we have the following corollary.

Corollary 5.2 (5.32) hasm(s−σmax+1)+∑σmax−1
i=σmin

(m−mi) linearly independent
solutions.

Remark 5.5 If s < σmax, the number of the linearly independent solutions is given
by
∑s

i=σmin
(m−mi).

Remember that at the beginning of this sub-section we have made the assumption
that the observable pair (C,A) is presented in the canonical form. This assumption
can be removed by noting the fact that the results given Theorems 5.5 and 5.6 are
all expressed in terms of the observability indices, matrices Ao, CAio. It is known
from the linear control theory that the observability indices, matrix Ao are structural
characteristics of a system under consideration that are invariant to a regular state
transformation. Moreover, for any regular state transformation, say Tst , we have

TA−GT = LC ⇐⇒ T TstT
−1
st ATst −GT Tst = LCTst

vC −wT = 0 ⇐⇒ vCTst −wT Tst = 0

H = T B −LD ⇐⇒ H = T TstT −1
st B −LD

that is, the solutions G, H , L, q , v, w and so that the construction of the residual
generator are invariant to the state transformation Tst . This implies that the achieved
results hold for every observable pair. In the next sub-section, we are going to dis-
cuss this point in more details.
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5.5.3 A Numerical Approach

Based on the result achieved in the last sub-section, we now present an approach to
solving Luenberger equations (5.31)–(5.32) and (5.39).

We first consider Theorem 5.5, in which a solution is provided on the assumption
of available Ao and Lo. Although Ao and Lo can be determined by (a) transforming
(C,A) into observer canonical form (b) solving equation LoC = A − Ao for Lo,
the required calculation is involved and in many cases too difficult to be managed
without a suitable CAD program. For this reason, further study is, on account of
Theorem 5.5, carried out aiming at deriving an explicit solution similar to the one
given by Theorem 5.5 but expressed in terms of system matrices A, C.

For our purpose, the following lemma is needed.

Lemma 5.2 Given matrices Ao, B , C, E, F and Lo with appropriate dimensions,
then we have for i = 1, . . . , s

⎡
⎢⎢⎢⎢⎢⎣

F

CE

CAoE
...

CAioE

⎤
⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎣

I 0 0 · · · 0
−CL0 I 0 · · · 0
−CAoL0 −CL0 I · · · 0

...
...

. . .
. . .

...

−CAioL0 −CAi−1
o L0 · · · −CL0 I

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

F

CE

CĀ0E
...

CĀi0E

⎤
⎥⎥⎥⎥⎥⎦

(5.64)

E = E −LoF, Āo =Ao +LoC⎡
⎢⎢⎢⎣

C

CAo
...

CAio

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

I 0 · · · 0

−CLo I
. . .

...
...

. . .
. . . 0

−CAi−1
o Lo · · · −CLo I

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

C

C(Ao +LoC)
...

C(Ao +LoC)i

⎤
⎥⎥⎥⎦ . (5.65)

The proof is straightforward and thus omitted.
Let us introduce matrix H1 defined by

H1 =

⎡
⎢⎢⎢⎢⎣

−CAσmin−1
o Lo · · · −CLo I 0 · · · 0

−CAσmin
o Lo · · · −CAoLo −CLo I

. . .
...

...
. . .

...
...

. . .
. . . 0

−CAs−1
o Lo · · · −CAs−σmin

o Lo −CAs−σmin−1
o Lo · · · −CLo I

⎤
⎥⎥⎥⎥⎦.

Note that

H1

⎡
⎢⎢⎢⎣

C

CA
...

CAi

⎤
⎥⎥⎥⎦=
⎡
⎢⎢⎢⎣
CA

σmin
o

CA
σmin+1
o

...

CAso

⎤
⎥⎥⎥⎦
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whose proof can readily be obtained by using equality (5.65). It turns out

[
v̄σmin v̄σmin+1 · · · v̄s

]
⎡
⎢⎢⎢⎣
CA

σmin
o

CA
σmin+1
o

...

CAso

⎤
⎥⎥⎥⎦= ṽsH1

⎡
⎢⎢⎢⎣

C

CA
...

CAs

⎤
⎥⎥⎥⎦= 0

where v̄σmin , v̄σmin+1, . . . , v̄s satisfy (5.60) and ṽs is some nonzero vector. We now
define a new vector

vs =
[
vs,0 vs,1 · · · vs,s

]= ṽsH1

and then apply (5.65) to (5.57)–(5.58). As a result, we obtain

T =

⎡
⎢⎢⎢⎣
vs,1 vs,2 · · · vs,s−1 vs,s
vs,2 · · · · · · vs,s 0
...

. . .
. . .

...
...

vs,s 0 · · · · · · 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

C

CA
...

CAs−2

CAs−1

⎤
⎥⎥⎥⎥⎥⎦
, L=−

⎡
⎢⎢⎢⎣
vs,0
vs,1
...

vs,s−1

⎤
⎥⎥⎥⎦− gvs,s

H =

⎡
⎢⎢⎢⎣
vs,1 vs,2 · · · vs,s−1 vs,s
vs,2 · · · · · · vs,s 0
...

. . .
. . .

...
...

vs,s 0 · · · · · · 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

C

CA
...

CAs−2

CAs−1

⎤
⎥⎥⎥⎥⎥⎦
B +

⎡
⎢⎢⎢⎣
vs,0
vs,1
...

vs,s−1

⎤
⎥⎥⎥⎦D + gvs,sD

=

⎡
⎢⎢⎢⎣
vs,0 + g1vs,s
vs,1 + g2vs,s

...

vs,s−1 + gsvs,s

vs,1 vs,2 · · · vs,s−1 vs,s
vs,2 · · · · · · vs,s 0
...

. . .
. . .

...
...

vs,s 0 · · · · · · 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

D

CB

CAB
...

CAs−2B

CAs−1B

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

v = vs,s, q = vD = vs,sD.

We are now in a position to remove the assumption, on which Theorem 5.5 is de-
rived. To this end, we suppose that (C,A) is given in the observer canonical form
and the system under consideration is given by PAP−1, CP−1, PB with P denot-
ing any regular state transformation. Note that

T A−GT = LC ⇐⇒ T P−1PAP−1 −GTP−1 = LCP−1 (5.66)

H = T B −LD ⇐⇒ H = T P−1PB −LD (5.67)

vC −wT = 0 ⇐⇒ vCP−1 −wTP−1 = 0 (5.68)
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⎡
⎢⎢⎢⎣
vs,1 vs,2 · · · vs,s−1 vs,s
vs,2 · · · · · · vs,s 0
...

. . .
. . .

...
...

vs,s 0 · · · · · · 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

CP−1

CP−1PAP−1

...

...

CP−1(PAP−1)s−1P−1

⎤
⎥⎥⎥⎥⎥⎥⎦
= T P−1 (5.69)

vs

⎡
⎢⎢⎢⎣

C

CA
...

CAs

⎤
⎥⎥⎥⎦= 0 ⇐⇒ vs

⎡
⎢⎢⎢⎣

CP−1

CP−1PAP−1

...

CP (PAP−1)s

⎤
⎥⎥⎥⎦= 0. (5.70)

We finally have the following theorem.

Theorem 5.7 Given system model Gyu(s)= C(sI −A)−1B +D and suppose that
s ≥ σmin and

vs

⎡
⎢⎢⎢⎣

C

CA
...

CAs

⎤
⎥⎥⎥⎦= 0, vs =

[
vs,0 vs,1 · · · vs,s

]
(5.71)

then matrices L, T , H , q , v, w defined by

T =

⎡
⎢⎢⎢⎣
vs,1 vs,2 · · · vs,s−1 vs,s
vs,2 · · · · · · vs,s 0
...

. . .
. . .

...
...

vs,s 0 · · · · · · 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

C

CA
...
...

CAs−2

CAs−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.72)

L = −

⎡
⎢⎢⎢⎣
vs,0
vs,1
...

vs,s−1

⎤
⎥⎥⎥⎦− gvs,s, w = [0 · · · 0 1

]
, v = vs,s (5.73)

[
H

q

]
=

⎡
⎢⎢⎢⎢⎢⎣

vs,0 + g1vs,s vs,1 vs,2 · · · vs,s−1 vs,s
vs,1 + g2vs,s vs,2 · · · · · · vs,s 0

...
...

. . .
. . .

...
...

vs,s−1 + gsvs,s vs,s 0 · · · 0 0
vs,s 0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

D

CB

CAB
...

CAs−2B

CAs−1B

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(5.74)
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solve the Luenberger equations (5.31)–(5.32) and (5.39), where vector g should be
so chosen that the matrix G is stable.

It is clear that once the system matrices are given we are able to calculate the
solution of Luenberger equations (5.31)–(5.32) and (5.39) using (5.72)–(5.73). To
this end, we provide the following algorithm.

Algorithm 5.1 (Solution of Luenberger equations (5.31)–(5.32) and (5.39))

S1: Set s ≥ σmin
S2: Solve (5.71) for vs,0, . . . , vs,s
S3: Select g such that G given in (5.40) is stable
S4: Calculate L, T , H , q , v, w according to (5.72)–(5.74).

We see that the major computation of the above approach consists in solving
(5.71). It reminds us of the so-called parity space approach. In fact, the main ad-
vantage of this approach is, as will be shown in the next sections, its intimate con-
nections to the parity space approach and to parameterization form presented in the
last sub-section, which are useful for such applications like robust FDI, analysis and
optimization of FDI systems.

Example 5.3 Given CSTH with model (3.84). We now design a diagnostic observer
based residual generator using Algorithm 5.1. Below is the design procedure with
the achieved result:

S1: Set s = 3
S2: Solve (5.71), which results in

vs =
[

7.5920× 10−4 0.0059 −0.0014 0 1 8.473× 10−7 0

1.1363× 10−7 −1.0183× 10−9 0 −6.7648× 10−10

1.2239× 10−12
]

S3: Set

g =
⎡
⎣−13.125
−17.75
−7.5

⎤
⎦ =⇒ G=

⎡
⎣0 0 −13.125

1 0 −17.75
0 1 −7.5

⎤
⎦

which results in three poles at −1.5, −2.5 and −3.5, respectively
S4: Calculate L, T , H , q , v, w, which gives

H =
⎡
⎣−2.7462× 10−9 0.0258

1.6348× 10−11 −3.0998× 10−5

0 3.722× 10−8

⎤
⎦

L=
⎡
⎣−7.592× 10−4 −0.0059 0.0014

0 −1 −8.4728× 10−7

0 −1.1871× 10−7 1.0275× 10−9

⎤
⎦
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T =
⎡
⎣−2.7462× 10−9 3.8577× 10−5 8.4746× 10−7

1.6348× 10−11 4.3839× 10−12 −1.0193× 10−9

0 −2.6097× 10−14 1.2239× 10−12

⎤
⎦

v = [0 −6.7648× 10−10 1.2239× 10−12
]

w = [0 0 1
]
, q = 0.

Example 5.4 We now design a minimum order diagnostic observer for the inverted
pendulum system LIP100 that is described in Sect. 3.7.2. It follows from Corol-
lary 5.1 that the minimum order of a DO is the minimum observability index of the
system under consideration. For LIP100 whose model can be found in (3.59), the
minimum observability index is 1. Below is the design procedure for a minimum
order DO:

S1: Set s = 1
S2: Solve (5.71), which results in

υs =
[

0 0.0870 0.6552 −0.3272 −0.0006 0.6754
]

S3: Select g =−3. Note that for s = 1, G= g =−3
S4: Calculate L, T , H , q , v, w, which gives

H = −4.1433, L= [−0.9815 −0.0887 1.3710
]
, q = 0

w = 1, T = [−0.3272 −0.0006 0.6754 0
]

v = [−0.3272 −0.0006 0.6754
]
.

To make an impression on the reader how a residual signal responds to the occur-
rence of a fault, we show in Fig. 5.2 the response of the generated residual signal to
a unit step fault occurred in the sensor measuring the angular position of the inverted

Fig. 5.2 Response of the
residual signal to a sensor
fault
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pendulum at 20 s. We can see that due to the initial condition the residual generator
needs two seconds before delivering a zero residual signal in the fault-free situation.
Mathematically, it is described by the requirement (5.16), that is,

lim
t→∞ r(t)= 0 for all u(t), x(0).

In practice, such a time interval is considered as the calibration time and is a part of
a measurement or monitoring process. In this context, in our subsequent study, we
do not take the influence of the initial conditions into account. From Fig. 5.2, we
can further see that the residual signal has a strong response to the fault.

5.5.4 An Algebraic Approach

The original version of the approach presented in this sub-section was published by
Ge and Fang in their pioneering work in the late 1980s. In a modified form, the key
points of this approach are summarized in the following theorem.

Theorem 5.8 Given system modelGyu(s)= C(sI−A)−1B+D and s ≥ σmin, then
matrices L, T , V , W defined by

L = −c(G)X, T = YJ (5.75)

V =WTC�(CC�)−1
, WT CTN = 0 (5.76)

solve the Luenberger equations (5.31)–(5.32) and (5.39), where matrix G should be
chosen stable, X ∈Rs×m is an arbitrary matrix, and

CN ∈ R(n−m)×n and rank

[
C

CN

]
= n, CCTN = 0 (5.77)

Y = [X GX · · · Gn−1X
]

(5.78)

c(s) = det(sI −A)= ansn + an−1s
n−1 + · · · + a1s + a0

(5.79)
c(G) = anGn + an−1G

n−1 + · · · + a1G+ a0I

J =

⎡
⎢⎢⎢⎣
anCA

n−1 + an−1CA
n−2 + · · · + a2CA+ a1C

anCA
n−2 + an−1CA

n−3 + · · · + a2C
...

anC

⎤
⎥⎥⎥⎦ . (5.80)

Proof Substituting (5.75) into the left side of (5.32) yields

TA−GT = YJA−GYJ =X
n∑
i=1

aiCA
i −

n∑
i=1

aiG
iXC.
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Since

a0C +
n∑
i=1

aiCA
i = 0

we obtain

TA−GT =−a0XC −
n∑
i=1

aiG
iXC =−c(G)XC = LC.

That (5.75) solves (5.32) is proven. Note VC =WT given by (5.39) means WT
belongs to the range of C, which, considering CTN spans the null-space of C, equiv-
alently implies WTCTN = 0. Furthermore, multiplying the both sides of VC =WT
by CT gives

VCCT =WTCT ⇐⇒ V =WTCT (CCT )−1
.

Hence, the theorem is proven. �

It is evident that the design freedom is provided by the arbitrary selection of
matrix X, possible solutions of equation WTCTN = 0 that are generally not unique.
We summarize the main results in the following algorithm.

Algorithm 5.2 (Solution of Luenberger Equations by Ge and Fang)

S0: Set X, G
S1: Calculate c(s)= det(sI −A) for a0, a1, . . . , an
S2: Calculate L, T according to (5.75)
S3: Solve WTCTN = 0 for W
S4: Set V subject to (5.76).

Example 5.5 We now design a DO for LIP100 using Algorithm 5.2. To this end,
model (3.59) is used. Below is the design procedure for s = 3:

S0: Set

X =
⎡
⎣0.0800 0.0100 0.0600

0.0300 0.0500 0.0700
0.0400 0.0900 0.0200

⎤
⎦ , G=

⎡
⎣0 0 −0.0600

1 0 −0.1100
0 1 −0.6000

⎤
⎦

S1: Calculate c(s)= det(sI −A) for a0, . . . , a4, which results in

a4 = 1.0, a3 = 2.0510, a2 =−21.2571

a1 = −37.7665, a0 = 0
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S2: Calculate L, T according to (5.75):

T =
⎡
⎣−3.0167 −0.0001 3.3422 0.0191
−2.7498 0.0194 −0.0042 0.0001
−1.5346 0.0011 0.1656 −0.0026

⎤
⎦

L =
⎡
⎣−0.0092 −0.0199 −0.0118

2.8479 0.0020 2.0485
1.8291 −0.0954 2.7117

⎤
⎦

S3: Solve WTCTN = 0 for W :

W =
⎡
⎣0.1000 −33.5522 0

0 10.0000 0.2216
1.0000 0 7.4350

⎤
⎦

S4: Set V subject to (5.76):

V =
⎡
⎣ 91.9611 −0.6512 0.4766
−27.8384 0.1943 −0.0056
−14.4267 0.0082 4.5736

⎤
⎦ .

5.6 Parity Space Approach

In this section, we describe the parity space approach, initiated by Chow and Willsky
in their pioneering work in the early 1980s. Although a state space model is used
for the purpose of residual generation, the so-called parity relation, instead of an
observer, builds the core of this approach. The parity space approach is generally
recognized as one of the important model-based residual generation approaches,
parallel to the observer-based and the parameter estimation schemes.

5.6.1 Construction of Parity Relation Based Residual Generators

A number of different forms of parity space approach have, since the work by Chow
and Willsky, been introduced. We consider in the following only the original one
with a state space model of a linear discrete-time system described by

x(k + 1) = Ax(k)+Bu(k)+Edd(k)+Ef f (k) (5.81)

y(k) = Cx(k)+Du(k)+ Fdd(k)+ Ff f (k). (5.82)

Without loss of generality, we also assume that rank(C)=m.
For the purpose of constructing residual generator, we first suppose f (k) = 0,

d(k) = 0. Following (5.81)–(5.82), y(k − s), s ≥ 0, can be expressed in terms of
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x(k− s), u(k− s), and y(k− s + 1) in terms of x(k− s), u(k− s + 1), u(k− s) as
follows

y(k − s) = Cx(k − s)+Du(k − s)
y(k − s + 1) = Cx(k − s + 1)+Du(k − s + 1) (5.83)

= CAx(k − s)+CBu(k − s)+Du(k − s + 1).

Repeating this procedure yields

y(k − s + 2) = CA2x(k − s)+CABu(k − s)+CBu(k − s + 1)

+Du(k − s + 2), . . . , (5.84)

y(k) = CAsx(k − s)+CAs−1Bu(k − s)+ · · · +CBu(k + 1)+Du(k).
Introducing the notations

ys(k) =

⎡
⎢⎢⎢⎣

y(k − s)
y(k − s + 1)

...

y(k)

⎤
⎥⎥⎥⎦ , us(k)=

⎡
⎢⎢⎢⎣

u(k − s)
u(k − s + 1)

...

u(k)

⎤
⎥⎥⎥⎦ (5.85)

Ho,s =

⎡
⎢⎢⎢⎣

C

CA
...

CAs

⎤
⎥⎥⎥⎦ , Hu,s =

⎡
⎢⎢⎢⎢⎣

D 0 · · · 0

CB D
.. .

...
...

. . .
. . . 0

CAs−1B · · · CB D

⎤
⎥⎥⎥⎥⎦ (5.86)

allows us to re-write (5.83)–(5.84) into the following compact form

ys(k)=Ho,sx(k − s)+Hu,sus(k). (5.87)

Note that (5.87), the so-called parity relation, describes the input and output rela-
tionship in dependence on the past state vector x(k− s). It is expressed in an explicit
form, in which

• ys(k) and us(k) consist of the temporal and past outputs and inputs, respectively
and are known

• matrices Ho,s and Hu,s are composite of system matrices A, B , C, D and also
known

• the only unknown variable is x(k − s).
The underlying idea of the parity relation based residual generation lies in the

utilization of the fact, known from the linear control theory, that for s ≥ n the fol-
lowing rank condition holds:

rank(Ho,s)≤ n < the row number of matrix Ho,s = (s + 1)m.
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This ensures that for s ≥ n there exists at least a (row) vector vs(�= 0) ∈R(s+1)m

such that

vsHo,s = 0. (5.88)

Hence, a parity relation based residual generator is constructed by

r(k)= vs
(
ys(k)−Hu,sus(k)

)
(5.89)

whose dynamics is governed by, in case of f (k)= 0, d(k)= 0,

r(k)= vs
(
ys(k)−Hu,sus(k)

)= vsHo,sx(k − s)= 0.

Vectors satisfying (5.88) are called parity vectors, the set of which,

Ps = {vs | vsHo,s = 0} (5.90)

is called the parity space of the sth order.
In order to study the influence of f , d on residual generator (5.89), the as-

sumption that is now removed. Let us repeat procedure (5.83)–(5.84) for f (k) �= 0,
d(k) �= 0, which gives

ys(k)=Ho,sx(k − s)+Hu,sus(k)+Hf,sfs(k)+Hd,sds(k)
where

fs(k) =

⎡
⎢⎢⎢⎣

f (k − s)
f (k − s + 1)

...

f (k)

⎤
⎥⎥⎥⎦ , Hf,s =

⎡
⎢⎢⎢⎢⎣

Ff 0 · · · 0

CEf Ff
. . .

...
...

. . .
. . . 0

CAs−1Ef · · · CEf Ff

⎤
⎥⎥⎥⎥⎦ (5.91)

ds(k) =

⎡
⎢⎢⎢⎣

d(k− s)
d(k − s + 1)

...

d(k)

⎤
⎥⎥⎥⎦ , Hd,s =

⎡
⎢⎢⎢⎢⎣

Fd 0 · · · 0

CEd Fd
. . .

...
...

. . .
. . . 0

CAs−1Ed · · · CEd Fd

⎤
⎥⎥⎥⎥⎦ . (5.92)

Constructing a residual generator according to (5.89) finally results in

rs(k)= vs
(
Hf,sfs(k)+Hd,sds(k)

)
, vs ∈ Ps. (5.93)

We see that the design parameter of the parity relation based residual generator is the
parity vector whose selection has decisive impact on the performance of the residual
generator.

Remark 5.6 One of the significant properties of parity relation based residual gen-
erators, also widely viewed as the main advantage over the observer-based ap-
proaches, is that the design can be carried out in a straightforward manner. In fact,



5.6 Parity Space Approach 101

it only deals with solutions of linear equations or linear optimization problems. In
against, the implementation form (5.89) is surely not ideal for an on-line realization,
since it is presented in an explicit form, and thus not only the temporal but also the
past measurement and input data are needed and have to be recorded.

Remark 5.7 The requirement on the past measurement and input data is one of
the reasons why the parity space approach is mainly applied to the discrete-time
dynamic systems.

5.6.2 Characterization of Parity Space

Due to its simple form as a solution of (5.88) a characterization of the parity space
seems unnecessary. However, some essential questions are open:

• What is the minimum order of a parity space?
Remember that s ≥ n presents a sufficient condition for (5.88). This implies that
the order of the designed residual generator is at least as high as the one of the
system under consideration. Should it be? Dose there exist a lower order residual
generator?

• How to parameterize the parity space for a given s?
As will be shown in the forthcoming chapters, parameterization of the parity
space plays an important role in optimization of parity relation based FDI sys-
tems.

• How to select the order of the parity space?
• Are there relationships between the parity space approach and the observer-based

approaches?

Finding out suitable answers to these questions motivates a study on the characteri-
zation of parity space.

To begin with, we introduce the following notation for vs

vs =
[
v0,s v1,s · · · vs,s

]
, vi,s ∈Rm, i = 0, . . . , s.

Notice that (5.88) is identical with (5.71) given in Theorem 5.7, which is neces-
sary and sufficient for solving Luenberger equations (5.31)–(5.32) and (5.39). This
relationship reveals the following theorems.

Theorem 5.9 The minimum order of the parity space is σmin.

Theorem 5.10 Given s ≥ σmin, then vs = [v0,s · · · vs−1,s vs,s ] ∈ Ps can be writ-
ten as

vs = v̄H1, v̄ = [ v̄σmin v̄σmin+1 · · · v̄s−1 v̄s
]

where

v̄j ∈ Qj, Qj =
{
q | qCAjo = 0

}
, σmin ≤ j ≤ s (5.94)
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H1 =

⎡
⎢⎢⎢⎢⎣

−CAσmin−1
o Lo · · · −CLo I 0 · · · 0

−CAσmin
o Lo · · · −CAoLo −CLo I

. . .
...

...
. . .

...
...

. . .
. . . 0

−CAs−1
o Lo · · · −CAs−σmin

o Lo −CAs−σmin−1
o Lo · · · −CLo I

⎤
⎥⎥⎥⎥⎦.

A0 is defined in (5.42).

Theorem 5.11 Assume that s ≥ σmin and let

rank
(
CA

j
o

)=mj , NjCA
j
o = 0, j = σmin, . . . , s.

Then the base matrix Qbase,s of the parity space Ps can be described by

Qbase,s =Qbase,sH1, Qbase,s = diag(Nσmin , . . . ,Nσmax−1,Nσmax , . . . ,Ns)

Nσmax =Nσmax+1 = · · · =Ns = Im×m (5.95)

and the dimension of the parity space Ps is given by

dim(Ps)=
{∑s

i=σmin
(m−mi), σmin ≤ s < σmax

m(s − σmax + 1)+∑σmax−1
i=σmin

(m−mi), s ≥ σmax.
(5.96)

Theorem 5.10 gives another way to express the parity vectors defined by (5.88). It
shows that all parity vectors vs can be characterized by vectors v̄j , j = σmin, . . . , s,
which belong to the subspacesQj defined by (5.94). In other words, the selection of

parity vectors only depends on the solution of equations v̄jCA
j
o = 0, σmin ≤ j ≤ s.

Theorem 5.11 shows that the degree of freedom for the selection of a parity vector
is the sum of the dimensions of subspaces Qj , j = σmin, . . . , s.

The results presented in Theorems 5.9–5.11 have not only answered the questions
concerning the structure of the parity space but also shown an intimate relationships
between the observer-based and the parity relation based approaches.

5.6.3 Examples

Example 5.6 Consider nominal system model

y(z)= bnz
n + bn−1z

n−1 + · · ·b1z+ b0

zn + an−1zn−1 + · · · + a1z+ a0
u(z). (5.97)

A trivial way to construct a parity space based residual generator for (5.97) is (a) to
rewrite the system into its minimum state space realization form and (b) to solve
(5.88) for vs design the residual generator and finally (c) to construct the residual
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generator according to (5.89). On the other side, it follows from Cayley–Hamilton
theorem that

An+an−1A
n−1+· · ·+a1A+a0I = 0 =⇒ [

a0 · · · an−1 1
]
⎡
⎢⎢⎢⎣

c

cA
...

cAn

⎤
⎥⎥⎥⎦= 0

where A, c denote the system matrices of the minimum state space realization of
Gyu(s). That means

vs =
[
a0 · · · an−1 1

]
(5.98)

is a parity space vector of system (5.97). To construct the residual generator based
on vs given by (5.98), (5.89) is used, which yields

r(k) = vsys(k)− vsHu,sus(k)
= y(k)+ · · · + a1y(k − s + 1)+ a0y(k − s)− vsHu,sus(k).

It follows from (5.97) that vsHu,s should satisfy

vsHu,s =
[
b0 · · · bn−1 bn

]
.

As a result, the residual generator is given by

r(k)= [a0 · · · an−1 1
]
ys(k)−

[
b0 · · · bn−1 bn

]
us(k). (5.99)

It is interesting to note that residual generator (5.99) can be directly derived from
the nominal transfer function without a state space realization. In fact, (5.99) can
be instinctively achieved by moving the characteristic polynomial zn+ an−1z

n−1+
· · · + a1z+ a0 to the left side of (5.97). Study on this example will be continued in
the next section, which will show an interesting application of this result.

Example 5.7 We now design a PRRG for the inverted pendulum system LIP100.
For our purpose, we set s = 4 and compute a parity vector using matrices A and C
given in discrete time model (3.60), which leads to

vs =
[
vs,0 vs,1 vs,2 vs,3 vs,4

]
, vs,0 =

[−0.3717 0.0606 −0.0423
]

vs,1 =
[

0.7175 0.1338 0.0038
]
, vs,2 =

[−0.1150 −0.1324 0.0034
]

vs,3 =
[−0.1152 −0.3999 0.0040

]
, vs4 =

[−0.1155 0.3260 0.0056
]
.

5.7 Interconnections, Comparison and Some Remarks

In the 1990s, study on interconnections among the residual generation approaches
has increasingly received attention. In this section, we focus our study on the inter-
connections between the design parameters as well as the comparison of dynamics
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of the different types of residual generators presented in the last sections. We shall
also make some remarks on the implementation and design forms of these residual
generation approaches.

5.7.1 Parity Space Approach and Diagnostic Observer

We first study the interconnections between the design parameters of the parity
space and diagnostic observer approaches, that is, interconnections between L, T ,
H , q , v, w and parity vector vs . The following two theorems give an explicit ex-
pression for these connections.

Theorem 5.12 Given system model (5.81)–(5.82) and a parity vector vs =
[vs,0 vs,1 · · · vs,s ], then matrices L, T , H , q , v, w defined by

T =

⎡
⎢⎢⎢⎣
vs,1 vs,2 · · · vs,s−1 vs,s
vs,2 · · · · · · vs,s 0
...

. . .
. . .

...
...

vs,s 0 · · · · · · 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

C

CA
...
...

CAs−2

CAs−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.100)

[
H

q

]
=

⎡
⎢⎢⎢⎢⎢⎣

vs,0 + g1vs,s vs,1 vs,2 · · · vs,s−1 vs,s
vs,1 + g2vs,s vs,2 · · · · · · vs,s 0

...
...

. . .
. . .

...
...

vs,s−1 + gsvs,s vs,s 0 · · · 0 0
vs,s 0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

D

CB

CAB
...

CAs−2B

CAs−1B

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(5.101)

L=−

⎡
⎢⎢⎢⎣
vs,0
vs,1
...

vs,s−1

⎤
⎥⎥⎥⎦− gvs,s, w = [0 · · · 0 1

]
, v = vs,s (5.102)

solve the Luenberger equations (5.31)–(5.32), (5.39), where matrixG is given in the
form of (5.40) with g ensuring the stability of matrix G.

Theorem 5.13 Given system model (5.81)–(5.82) and observer-based residual gen-
erator (5.37)–(5.38) with matrices L, T , v, w solving the Luenberger equations
(5.31)–(5.32), (5.39) and G satisfying (5.40), then vector vs = [vs,0 vs,1 · · · vs,s ]
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with

vs,s = v,

⎡
⎢⎢⎣
vs,0
vs,1
...

vs,s−1

⎤
⎥⎥⎦=−L− gv

belongs to the parity space Ps .

These two theorems are in fact a reformulation of Theorem 5.7 and the proof is
thus omitted.

It is interesting to notice the relationship between vsHu,s and H , q as defined in
(5.89) and in (5.37)–(5.38), respectively. Suppose that g = 0, then

vsHu,s =
[
vs,0 vs,1 · · · vs,s

]
⎡
⎢⎢⎢⎣

D 0 · · · 0

CB D
.. .

...
...

. . .
. . . 0

CAs−1B · · · CB D

⎤
⎥⎥⎥⎦

:= [hv,0 hv,1 · · · hv,s
]

[
H

q

]
=
[
T B −LD
vs,sD

]
=

⎡
⎢⎢⎣
vs,0 vs,1 · · · vs,s
vs,1 · · · vs,s 0
...

. . .
. . .

...
vs,s 0 · · · 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

D
CB
...

CAs−1B

⎤
⎥⎥⎦=
⎡
⎢⎢⎣
hv,0
hv,1
...
hv,s

⎤
⎥⎥⎦ .

(5.103)
That means we can determine H , q , as far as vsHu,s is known, by just rearranging
row vector vsHu,s into a column vector without any additional computation, and
vice versa.

Theorems 5.12–5.13 reveal a one-to-one mapping between the design parame-
ters of observer and parity relation based residual generators. While Theorem 5.12
implies that for a given parity vector there exists a set of corresponding observer-
based residual generators with g being a parameter vector, Theorem 5.13 shows
how to calculate the corresponding parity vector when an observer-based residual
generator is provided.

Now, questions may arise: Is there a difference between the residuals delivered
respectively, by a diagnostic observer and its corresponding parity relation based
residual generator? Under which conditions can we get two identical residuals de-
livered respectively by these two types of residual generators? To answer these ques-
tions, we bring the DO

z(k + 1)=Gz(k)+Hu(k)+Ly(k), r(k)= vy(k)−wz(k)− qu(k)
into a similar form like the parity relation based residual generator given by (5.89)

r(k) = vy(k)− qu(k)−wz(k)
= vy(k)− qu(k)−w(Gz(k − 1)+Hu(k − 1)+Ly(k − 1)

)
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= vy(k)− qu(k)−wGsz(k − s)−wHu(k− 1)− · · ·
−wGs−1Hu(k − s)−wLy(k− 1)− · · · −wGs−1Ly(k − s).

Recalling (5.72)–(5.73) in Theorem 5.7 and noting that

wGi = [0 · · · 0 1 wg · · · wGi−1g
]

it turns out

wGiL=− [0 · · · 0 1 wg · · · wGi−1g
]
⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣
vs,0
vs,1
...

vs,s−1

⎤
⎥⎥⎥⎦+ gvs,s

⎞
⎟⎟⎟⎠

= [vs,0 vs,1 · · · vs,s−1 vs,s
]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

0
Im×m
wgIm×m

...

wGi−1gIm×m
wGigIm×m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

wGiH =wGi(T B −LD)= [0 · · · 0 1 wg · · · wGi−1g
] ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎣
vs,1 vs,2 · · · vs,s−1 vs,s
vs,2 · · · · · · vs,s 0
...

. . .
. . .

...
...

vs,s 0 · · · · · · 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

C

CA
...
...

CAs−2

CAs−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
B +

⎡
⎢⎢⎢⎣
vs,0
vs,1
...

vs,s−1

⎤
⎥⎥⎥⎦D + gvs,sD

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= [vs,0 vs,1 · · · vs,s−1 vs,s
]
⎡
⎢⎢⎢⎢⎣

D 0 · · · 0

CB D
.. .

...
...

. . .
. . . 0

CAs−1B · · · CB D

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

0
Iku×ku
wgIku×ku

...

wGi−1gIku×ku
wGigIku×ku

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

which finally results in

r(k)=−wGsz(k − s)+ vs
(
Īysys(k)−Ho,s Īusus(k)

)
(5.104)
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where

Īys =

⎡
⎢⎢⎢⎣

Im×m 0 · · · 0

wgIm×m
. . .

. . .
...

...
. . .

. . . 0
wGs−1gIm×m · · · wgIm×m Im×m

⎤
⎥⎥⎥⎦

Īus =

⎡
⎢⎢⎢⎣

Iku×ku 0 · · · 0

wgIku×ku
. . .

. . .
...

...
. . .

. . . 0
wGs−1gIku×ku · · · wgIku×ku Iku×ku

⎤
⎥⎥⎥⎦ .

Comparing (5.104) with (5.89) evidently shows the differences between these two
types of residual generators:

• in against to the parity relation based residual generators, the DO does not
possess the s-step dead-beat property, that is, the residual r(k) depends on
z(k − s), . . . , z(0), if g �= 0

• the construction of the DO depends on the selection g, and in this sense, we can
also say that the DO possesses more degree of design freedom.

On the other hand, setting g = 0 leads to

wGs = 0, Īys = Im(s+1)×m(s+1), Īus = Iku(s+1)×ku(s+1).

Thus, under condition g = 0 the both types of residual generators are identical. It is
interesting to note that in this case

[−L
v

]
=

⎡
⎢⎢⎢⎢⎢⎣

vs,0
vs,1
...

vs,s−1
vs,s

⎤
⎥⎥⎥⎥⎥⎦
. (5.105)

Remember that a residual signal is originally defined as the difference between the
measurement or a combination of the measurements and its estimation. This can,
however, not be directly recognized from the definition of the parity relation based
residual signal, (5.89). The above comparison study reveals that

r(k)= vs
(
ys(k)−Hu,sus(k)

)
can be equivalently written as

z(k + 1)=Gz(k)+Hu(k)+Ly(k), r(k)= vy(k)−wz(k)− qu(k).
It is straightforward to demonstrate that wz(k) + qu(k) is in fact an estimate for
vy(k). Thus, a parity relation based residual signal can also be interpreted as a com-
parison between vy(k)= vs,sy(k) and its estimation.
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5.7.2 Diagnostic Observer and Residual Generator of General
Form

Our next task is to find out the relationships between the design parameters of the
diagnostic observer and the ones given by the general residual generator

r(s)=R(s)(M̂u(s)y(s)− N̂u(s)u(s)
)

(5.106)

whose design parameters are observer matrix L and post-filter R(s). We study two
cases: s ≤ n and s > n.

Firstly, s ≤ n:
We only need to demonstrate that for s < n the diagnostic observer (5.37)–(5.38)

satisfying (5.31)–(5.32), (5.39) can be equivalently written into form (5.106). Let us
define

T ∗ =
[
T

T1

]
∈Rn×n, T1 ∈R(n−s)×n, rank

(
T ∗
)= n (5.107)

T1A−G1T1 = L1C, G1 ∈R(n−s)×(n−s) is stable, G∗ =
[
G 0
0 G1

]

(5.108)

H ∗ = T ∗B −L∗D ∈Rn×ku, L∗ =
[
L

L1

]
, W ∗ = [W 0

] ∈Rm×n

(5.109)

and extend (5.32) and (5.39) as follows

TA−GT = LC =⇒ T ∗A−G∗T ∗ = L∗C (5.110)

VC −WT = 0 =⇒ VC −W ∗T ∗ = 0 (5.111)

H = T B −LD =⇒ H ∗ = T ∗B −L∗D. (5.112)

Note that choosing, for instance, T1 as a composite of the eigenvectors of A−LoC
and L1 = T1Lo guarantees the existence of (5.108), where Lo denotes some matrix
that ensures the stability of matrix A−LoC. Since

W(sI −G)−1(Hu(s)+Ly(s))
=W ∗(sI −G∗)−1(

H ∗u(s)+L∗y(s))
=W ∗T ∗

(
sI −A+ T ∗−1

L∗C
)−1

T ∗−1(
H ∗u(s)+L∗y(s))

= VC(sI −A+ T ∗−1
L∗C
)−1((

B − T ∗−1
L∗D
)
u(s)+ T ∗−1

L∗y(s)
)

the residual generator

r(s)= Vy(s)+Qu(s)−W(sI −G)−1(Hu(s)+Ly(s))
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can be equivalently written as

r(s)= V (M̂u(s)y(s)− N̂u(s)u(s)
)

with

M̂u(s) = I −C
(
sI −A+ T ∗−1

L∗C
)−1

T ∗−1
L∗ (5.113)

N̂u(s) = D+C
(
sI −A+ T ∗−1

L∗C
)−1(

B − T ∗−1
L∗D
)
. (5.114)

We thus have the following theorem.

Theorem 5.14 Every diagnostic observer (5.37)–(5.38) of order s < n can be con-
sidered as a composite of a fault detection filter and post-filter V .

Remark 5.8 Theorem 5.14 implies that the performance of any diagnostic observer
(5.37)–(5.38) of order s < n can be delivered by an FDF together with an algebraic
post-filter.

Now s > n:
We first demonstrate that for s > n the diagnostic observer (5.37)–(5.38) satisfy-

ing (5.31)–(5.32), (5.39) can be equivalently written into form (5.106). To this end,
we introduce following matrices

T ∗ = [To T
] ∈Rs×s , To ∈Rs×(s−n), rank

(
T ∗
)= s (5.115)

ToAr −GTo = 0, Ar ∈R(s−n)×(s−n) is stable, A∗ =
[
Ar 0
0 A

]

(5.116)

B∗ =
[

0
B

]
∈Rs×ku, C∗ = [0 C

] ∈Rm×s (5.117)

L∗ = T ∗−1
L=
[
L1
L2

]
, L1 ∈R(s−n)×m, L2 ∈Rn×m (5.118)

and extend (5.32) and (5.39) to

TA−GT = LC =⇒ T ∗A∗T ∗−1 −G= LC∗T ∗−1 (5.119)

VC −WT = 0 =⇒ VC∗ −WT ∗ + [WTo 0
]= 0 (5.120)

H = T B −LD =⇒ H = T ∗B∗ −LD. (5.121)

Since G is stable, there does exist To satisfying (5.116). Applying (5.115)–(5.118)
to the DO

r(s)= Vy(s)+Qu(s)−W(sI −G)−1(Hu(s)+Ly(s))
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results in

W(sI −G)−1(Hu(s)+Ly(s))
=WT ∗(sI −A∗ +L∗C∗)−1

T ∗−1(
Hu(s)+Ly(s))

= [WTo VC
] (
sI −A∗ +L∗C∗)−1((

B∗ −L∗D)u(s)+L∗y(s))
and furthermore

r(s)= V (I −C(sI −A+L2C)
−1L2

)
y(s)

−WTo(sI −Ar)−1L1
(
I −C(sI −A+L2C)

−1L2
)
y(s)

+WTo(sI −Ar)−1L1
(
D +C(sI −A+L2C)

−1(B −L2D)
)
u(s)

− V (C(sI −A+L2C)
−1(B −L2D)+D

)
u(s) (5.122)

which, by setting

M̂u(s) = I −C(sI −A+L2C)
−1L2 (5.123)

N̂u(s) = D+C(sI −A+L2C)
−1(B −L2D) (5.124)

R(s) = V −WTo(sI −Ar)−1L1 (5.125)

finally gives

r(s) = Vy(s)+Qu(s)−W(sI −G)−1(Hu(s)+Ly(s))
= R(s)(M̂u(s)y(s)− N̂u(s)u(s)

)
. (5.126)

We see that for s > n the DO (5.37)–(5.38) can be equivalently written into form
(5.106), in which the post-filter is a dynamic system.

Solve equation
[
T −o
T −
][
To T

]=
[
I(s−n)×(s−n) 0

0 In×n

]

for To, T −o , T −, then we obtain

L= ToL1 + T L2 =⇒ L1 = T −o L, L2 = T −L.
The following theorem is thus proven.

Theorem 5.15 Given diagnostic observer (5.37)–(5.38) of order s > n with G, L,
T , V , W solving the Luenberger equations (5.31)–(5.32) and (5.39), then it can be
equivalently written into

r(s) = R(s)(M̂u(s)y(s)− N̂u(s)u(s)
)

(5.127)

M̂u(s) = I −C
(
sI −A+ T −LC)−1

T −L (5.128)
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N̂u(s) = D+C
(
sI −A+ T −LC)−1(

B − T −LD) (5.129)

R(s) = V −WTo(sI −Ar)−1To
−L. (5.130)

We are now going to show that for a given residual generator of form (5.106) we
are able to find a corresponding diagnostic observer (5.37)–(5.38). For this purpose,
we denote the state space realization of R(s) with Dr +Cr(sI −Ar)−1Br . Since

Cr(sI −Ar)−1BrM̂u(s)=
[

0 Cr
](
sI −

[
AL 0
BrC Ar

])−1 [−L
Br

]

Cr(sI −Ar)−1BrN̂u(s)=
[

0 Cr
](
sI −

[
AL 0
BrC Ar

])−1 [
BL
BrD

]

DrM̂u(s)=Dr −DrC(sI −AL)−1L

DrN̂u(s)=DrD +DrC(sI −AL)−1BL

it is reasonable to define

G=
[
A−LC 0
BrC Ar

]
, L̄=

[
L

−Br
]
, W = [DrC Cr

]
(5.131)

V =Dr, H =
[
B −LD
BrD

]
, Q=−DrD. (5.132)

Note that [
I

0

]
A−G

[
I

0

]
= L̄C, W

[
I

0

]
= VC (5.133)

H =
[
I

0

]
B − L̄D, Q=−VD (5.134)

ensure that residual generator

r(s)= Vy(s)+Qu(s)−W(sI −G)−1(Hu(s)+ L̄y(s))
satisfies Luenberger conditions (5.31)–(5.32), (5.39).

The discussion on the possible applications of the interconnections revealed in
this sub-section will be continued in the next sub-section.

5.7.3 Applications of the Interconnections and Some Remarks

In literature, parity relation based residual generators are often referred to as open-
loop structured, while the observer-based residual generators as closed-loop struc-
tured. We would like to call reader’s attention that the both schemes have the iden-
tical dynamics (under the condition that the eigenvalues are zero), also regarding
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to the unknown inputs and faults, as will be shown in the sequel. From the control
theoretical viewpoint, the observer-based residual generators are, thanks to their
closed-loop configuration, less sensitive to the uncertainties in system parameters
than the parity relation based residual generators.

A further result achieved by the above study indicates that the selection of a parity
space vector is equivalent with the selection of the observer gain matrix, the feed-
back matrix (i.e., feedback of system output y) of an s-step dead-beat observer. In
other words, all design approaches for the parity relation based residual generation
can be used for designing observer-based residual generators, and vice versa.

What is then the primal difference between the parity relation based and the
observer-based residual generators? The answer can be found by taking a look at
the implementation forms of the both types of residual generators: the implemen-
tation of the parity relation based residual generator is realized in a non-recursive
form, while the observer-based residual generator represents a recursive form. From
the system theoretical viewpoint, the parity relation based residual generator is an
FIR (finite impulse response) filter, while the observer-based one is an IIR (infinite
impulse response) filter.

A similar fact can also be observed by the observer-based approaches. Under
certain conditions the design parameters of a residual generator can be equivalently
converted to the ones of another type of residual generator, also the same perfor-
mance can be reached by different residual generators.

This observation makes it clear that designing a residual generator can be carried
out independent of the implementation form adopted later. We can use, for instance,
the parity space approach for the residual generator design, then transform the pa-
rameters achieved to the parameters needed for the construction of a diagnostic
observer and finally realize the diagnostic observer for the on-line implementation.
The decision for a certain type of design form and implementation form should be
made on account of

• the requirements on the on-line implementation
• which approach can be readily used to design a residual generator that fulfills the

performance requirements on the FDI system
• and of course, in many practical cases, the available design tools and designer’s

knowledge of design approaches.

Recall that the parity space based system design is characterized by its simple
mathematical handling. It only deals with matrix- and vector-valued operations.
This fact attracts attention from industry for the application of parity space based
methods. Moreover, the one-to-one mapping between the parity space approach
and the observer-based approach described in Theorems 5.12 and 5.13 allows an
observer-based residual generator construction for a given a parity vector. Based on
this result, a strategy called parity space design, observer-based implementation has
been developed, which makes use of the computational advantage of parity space
approaches for the system design (selection of a parity vector or matrix) and then
realizes the solution in the observer form to ensure a numerically stable and less con-
suming on-line computation. This strategy has been for instance successfully used
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Table 5.1 Comparison of different residual generation schemes

Type FDF PRRG DO

Order s = n s ≤ n s > n s ≤ n s > n

Design parameters v, L vs vs G, L, v, w G, L, v, w

Design freedom v, L vs vs vs , G vs , G

Solution form LTI algebra algebra LTI or algebra LTI or algebra

Implement. form recursive non-recurs. non-recurs. recursive recursive

Dynamics OEE + v OEE + v OEE + R(s) OEE + v OEE + R(s)

in the sensor fault detection in vehicles and highly evaluated by engineers in indus-
try. It is worth mentioning that the strategy of parity space design, observer-based
implementation can also be applied to continuous-time systems.

Table 5.1 summarizes some of important properties of the residual generators
described in this section, which may be useful for the selection of design and imple-
mentation forms. In this table,

• “solution form” implies the required knowledge and methods for solving the re-
lated design problems. LTI stands for the needed knowledge of linear system
theory, while algebra means for the solution only algebraic computation, in most
cases solution of linear equations, is needed

• “dynamics” is referred to the dynamics of LTI residual generator (5.23). OEE+v
implies a composite of output estimation error and an algebraic post-filter, OEE+
R(s) a composite of output estimation error and a dynamic post-filter.

5.7.4 Examples

Example 5.8 We now extend the results achieved in Example 5.6 to the construc-
tion of an observer-based residual generator. Suppose that (5.97) is a discrete-time
system. It follows from Theorem 5.12 and (5.103) that

z(k + 1)=Gz(k)+Hu(k)+Ly(k), r(k)= vy(k)−wz(k)− qu(k)

with

G =

⎡
⎢⎢⎢⎣

0 0 · · · 0
1 0 · · · 0
...

. . .
. . .

...

0 · · · 1 0

⎤
⎥⎥⎥⎦ , H = T B −LD =

⎡
⎢⎣
b0
...

bn−1

⎤
⎥⎦ , L=−

⎡
⎢⎢⎢⎣
a0
a1
...

an−1

⎤
⎥⎥⎥⎦

q = bn, v = 1, w = [0 · · · 0 1
]
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builds a residual generator. If we are interesting in achieving a residual generator
whose dynamics is governed by

C(s)= zn + gn−1z
n−1 + · · · + g1z+ g0

then the observer gain matrix L should be extended to

L=−
⎡
⎢⎣
a0
...

an−1

⎤
⎥⎦−
⎡
⎢⎣
g0
...

gn−1

⎤
⎥⎦

Note that in this case the above achieved results can also be used for continuous-time
systems.

In summary, we have some interesting conclusions:

• given a transfer function, we are able to design a parity space based residual gen-
erator without any involved computation and knowledge of state space realization

• the designed residual generator can be extended to the observer-based one. Once
again, no involved computation is needed for this purpose

• the observer-based form can be applied both for discrete and continuous time
systems.

We would like to mention that the above achieved results can also be extended to
MIMO systems.

Example 5.9 We now apply the above result to the residual generator design for our
benchmark DC motor DR300 given in Sect. 3.7.1. It follows from (3.52) that

Gyu(s)= b0

s3 + a2s2 + a1s + a0

a2 = 234.0136, a1 = 6857.1, a0 = 5442.2, b0 = 47619

which yields

vs =
[
a0 a1 a2 1

]
. (5.135)

Now, we design an observer-based residual generator of the form

ż=Gz+Hu+Ly, r = vy −wz− qu (5.136)

without the knowledge of the state space representation of the system. To this end,
using Theorem 5.12 and (5.103) with vs given in (5.135) results in

G =
⎡
⎣0 0 g1

1 0 g2
0 1 g3

⎤
⎦ , H =

⎡
⎣b0

0
0

⎤
⎦ , L=−

⎡
⎣a0
a1
a2

⎤
⎦−
⎡
⎣g1
g2
g3

⎤
⎦
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q = 0, v = 1, w = [0 0 1
]
.

To ensure a good dynamic behavior, the eigenvalues of matrix G are set to be
−10,−10,−10, which leads to

⎡
⎣g1
g2
g3

⎤
⎦=
⎡
⎣−1000
−300
−30

⎤
⎦

and further

L=−
⎡
⎣4442.2

6557.1
204

⎤
⎦ .

5.8 Notes and References

Analytical redundancy and residual signal are two strongly relevant concepts. In the
context of process monitoring and fault diagnosis, as addressed in this book, they
can be viewed as equivalent. The analytical redundancy is referred to the model-
based re-construction of the process output (measurement) and thus can be used
as soft-sensor. On the basis of analytical redundancy, residual signal can be built,
and vice versa. From the system theoretical viewpoint, this means that the core of
residual generation consists in the output estimation.

The general form and parameterization of all LTI stable residual generators were
first derived and introduced by Ding and Frank [47]. The FDF scheme was proposed
by Beard [13] and Jones [104]. Their work is widely recognized as marking the be-
ginning of the model-based FDI theory and technique. Both FDF and DO techniques
have been developed on the basis of linear observer theory, to which O’Reilly’s book
[136] gives an excellent introduction.

The parameterization of LTI residual generators plays an important role in the
subsequent study. It is helpfully to keep in mind that

• any residual generator is a dynamic system with the process input u and output y
as its inputs and the residual signal r as its output

• independent of its order (reduced or higher order) and its form (a single system
or a bank of sub-systems), any residual generator can be expressed and parame-
terized in term of the general form (5.23).

Only few references concerned characterization of DO and parity space ap-
proaches can be found in the literature. For this reason, an extensive and systematic
study on this topic has been included in this chapter. The most significant results are

• the necessary and sufficient condition for solving Luenberger equations (5.31)–
(5.32), (5.39) and its expression in terms of the solution of parity equation (5.88)

• the one-to-one mapping between the parity space and the solutions of the Luen-
berger equations
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• the minimum order of diagnostic observers and parity vectors and
• the characterization of the solutions of the Luenberger equations and the parity

space.

Some of these results are achieved based on the work by Ding et al. [35] (on DO)
and [54] (on the parity space approach). They will also be used in the forthcoming
chapters.

The original versions of numerical approaches proposed by Ge and Fang as well
as Ding at al. have been published in [73] and [35], respectively.

Accompanied with the establishment of the framework of the model-based fault
detection approaches, comparison among different model-based residual generation
schemes has increasingly received attention. Most of studies have been devoted to
the interconnections between FDF, DO on the one hand and parity space approaches
on the other hand, see for instance, the significant work by Wünnenberg [183]. Only
a few of them have been dedicated to the comparison between DO and factorization
or frequency approach. A part of the results described in the last section of this
chapter was achieved by Ding and his co-worker [51].

An interesting application of the comparison study is the strategy of parity space
design, observer-based implementation, which can be applied both for discrete- and
continuous-time systems and allows an easy design of observer-based residual gen-
erators. In [155], an application of this strategy in practice has been reported. It is
worth emphasizing that this strategy also enables an observer-based residual gener-
ator design based on the system transfer function, instead of the state space repre-
sentation, as demonstrated in Example 5.9.

A further interesting application of the one-to-one mapping between the par-
ity space and the solutions of the Luenberger equations is the so-called data-
driven design of observer-based fault detection systems, which enables designing
an observer-based residual generator using the recorded process data [44].



Chapter 6
Perfect Unknown Input Decoupling

In this chapter, we address issues of generating residual signals which are decoupled
from disturbances (unknown inputs). In this context, such a residual generator acts
as a fault indicator. It is often called unknown input residual generator. Figure 6.1
sketches the objective of this chapter schematically.

6.1 Problem Formulation

Consider system model (3.31) and its minimal state space realization (3.32)–(3.33).
It is straightforward that applying a residual generator of the general form (5.23) to
(3.31) yields

r(s)=R(s)M̂u(s)
(
Gyd(s)d(s)+Gyf (s)f (s)

)
. (6.1)

Fig. 6.1 Residual generation with unknown input decoupling

S.X. Ding, Model-Based Fault Diagnosis Techniques, Advances in Industrial Control,
DOI 10.1007/978-1-4471-4799-2_6, © Springer-Verlag London 2013
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Remember that for the state space realization (3.32)–(3.33), residual generator
(5.23) can be realized as a composition of a state observer and a post-filter,

˙̂x =Ax̂ +Bu+L(y −Cx̂ −Du), r(s)=R(s)(y(s)−Cx̂(s)−Du(s)).
It turns out, by setting e= x − x̂,

ė= (A−LC)e+ (Ed −LFd)d + (Ef −LFf )f
r(s)=R(s)(Ce(s)+ Fdd(s)+ Ff f (s))

which can be rewritten into, by noting Lemma 3.1,

r(s) = R(s)(N̂f (s)f (s)+ N̂d(s)d(s)) (6.2)

N̂f (s) = C(sI −A+LC)−1(Ef −LFf )+ Ff
N̂d(s) = C(sI −A+LC)−1(Ed −LFd)+ Fd

with an LCF ofGyf (s)= M̂−1
f (s)N̂f (s) andGyd(s)= M̂−1

d (s)N̂d(s). It is interest-
ing to notice that

M̂u(s)= M̂d(s)= M̂f (s)= I −C(sI −A+LC)−1L.

Hence, we assume in our subsequent study, without loss of generality, that

M̂u(s)Gyd(s), M̂u(s)Gyf (s) ∈RH∞.

For the fault detection purpose, an ideal residual generation would be a residual
signal that only depends on the faults to be detected and is simultaneously inde-
pendent of disturbances. It follows from (6.1) that this is the case for all possible
disturbances and faults if and only if

R(s)M̂u(s)Gyf (s) �= 0 and R(s)M̂u(s)Gyd(s)= 0. (6.3)

Finding a residual generator which satisfies condition (6.3) is one of the mostly
studied topics in the FDI area and is known as, among a number of expressions,
perfect unknown input decoupling.

Definition 6.1 Given system (3.31). Residual generator (5.23) is called perfectly
decoupled from the unknown input d if condition (6.3) is satisfied. The design
of such a residual generator is called perfect unknown input decoupling problem
(PUIDP).

In the following of this chapter, we shall approach PUIDP. Our main tasks con-
sist in

• study on the solvability of (6.3)
• presentation of a frequency domain approach to PUIDP



6.2 Existence Conditions of PUIDP 119

• design of unknown input fault detection filter (UIFDF)
• design of unknown input diagnostic observer (UIDO) and
• design of unknown input parity relation based residual generator.

6.2 Existence Conditions of PUIDP

In this section, we study

• under which conditions (6.3) is solvable and
• how to check those existence conditions.

6.2.1 A General Existence Condition

We begin with a re-formulation of (6.3) as

R(s)M̂u(s)
[
Gyf (s) Gyd(s)

]= [Δ 0
]

(6.4)

with Δ �= 0 as some RH∞ transfer matrix. Since

rank
(
M̂u(s)

)=m
and R(s) is arbitrarily selectable in RH∞, the following theorem is obvious.

Theorem 6.1 Given system (3.31), then there exists a residual generator

r(s)=R(s)(M̂u(s)y(s)− N̂u(s)u(s)
)

such that (6.3) holds if and only if

rank
[
Gyf (s) Gyd(s)

]
> rank

(
Gyd(s)

)
. (6.5)

Proof If (6.5) holds, then there exists a R(s) such that

R(s)M̂u(s)Gyd(s)= 0 and R(s)M̂u(s)Gyf (s) �= 0.

This proves the sufficiency. Suppose that (6.5) does not hold, that is,

rank
[
Gyf (s) Gyd(s)

]= rank
(
Gyd(s)

)
.

As a result, for all possible R(s)M̂u(s) one can always find a transfer matrix T (s)
such that

R(s)M̂u(s)Gyf (s)=R(s)M̂u(s)Gyd(s)T (s).
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Thus, R(s)M̂u(s)Gyd(s)= 0 would lead to

R(s)M̂u(s)Gyf (s)= 0

that is, (6.3) can never be satisfied. This proves that condition (6.5) is necessary
for (6.3). �

The geometric interpretation of (6.5) is that the subspace spanned by Gyf (s) is
different from the subspace spanned by Gyd(s), that is, Im(Gyf (s)) �⊂ Im(Gyd(s)).
Note that

rank
[
Gyf (s) Gyd(s)

]≤m
(6.5) also means

rank
(
Gyd(s)

)
<m.

In other words, the subspace spanned by Gyd(s) should be smaller than the m-
dimensional measurement space. From the viewpoint of system structure, this can
be understood as: the number of the unknown inputs that have influence on y(s)
(output controllability) or equivalently that are observable from y(s) (input observ-
ability) should be smaller than the number of sensors. For the purpose of residual
generation, those unknown inputs that have no influence on the measurements and
those measurements that are decoupled from the faults are of no interest. Bering it
in mind, below we continue our study on the assumption

kd < m, rank
[
Gyf (s) Gyd(s)

]=m. (6.6)

Although (6.5) sounds compact, simple and has a logic physical interpretation, its
check, due to the rank computation of the involved transfer matrices, may become
difficult. This motivates the derivation of alternative check conditions which are
equivalent to (6.5) but may require less special mathematical computation or knowl-
edge.

Example 6.1 Consider the inverted pendulum system LIP100 described in
Sect. 3.7.2. Suppose that we are interested in achieving a perfect decoupling from
the friction d . It is easy to find out

rank
[
Gyf (s) Gyd(s)

]= 3> rank
(
Gyd(s)

)= 1.

Thus, following Theorem 6.1, for this system the PUIDP is solvable.

6.2.2 A Check Condition via Rosenbrock System Matrix

We now consider minimal state space realization (3.32)–(3.33), that is, Gyf (s) =
(A,Ef ,C,Ff ), Gyd(s)= (A,Ed,C,Fd). Let us do the following calculation
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[
A− sI Ed
C Fd

][
(sI −A)−1 (sI −A)−1Ed

0 Ikd×kd

]

=
[ −In×n 0
C(sI −A)−1 C(sI −A)−1Ed + Fd

]

[
A− sI Ef Ed
C Ff Fd

]⎡⎣ (sI −A)
−1 (sI −A)−1Ef (sI −A)−1Ed

0 Ikf×kf 0
0 0 Ikd×kd

⎤
⎦

=
[ −In×n 0 0
C(sI −A)−1 C(sI −A)−1Ef + Ff C(sI −A)−1Ed + Fd

]

from which we immediately know

rank

[
A− sI Ed
C Fd

]
= rank

[ −In×n O

C(sI −A)−1 Gyd(s)

]

= n+ rank
(
C(sI −A)−1Ed + Fd

)
(6.7)

rank

[
A− sI Ef Ed
C Ff Fd

]
= rank

[ −In×n 0 0
C(sI −A)−1 Gyf (s) Gyd(s)

]

= n+ rank
[
Gyf (s) Gyd(s)

]
. (6.8)

Thus, we have the following theorem.

Theorem 6.2 Given Gyf (s) = C(sI − A)−1Ef + Ff and Gyd(s) = C(sI −
A)−1Ed + Fd , then (6.3) holds if and only if

rank

[
A− sI Ed
C Fd

]
< rank

[
A− sI Ef Ed
C Ff Fd

]
≤ n+m. (6.9)

Given a transfer matrix G(s)= C(sI −A)−1 +D, matrix

[
A− sI B

C D

]

is called Rosenbrock system matrix of G(s). Due to the importance of the concept
Rosenbrock system matrix in linear system theory, there exist a number of algo-
rithms and CAD programs for the computation related to properties of a Rosenbrock
system matrix. This is in fact one of the advantages of check condition (6.9) over the
one given by (6.5). Nevertheless, keep it in mind that a computation with operator s
is still needed.

A check of existence condition (6.9) can be carried out following the algorithm
given below.
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Algorithm 6.1 (Solvability check of PUIDP via Rosenbrock system matrix)

S1: Calculate

rank

[
A− sI Ef Ed
C Ff Fd

]
, rank

[
A− sI Ed
C Fd

]

S2: Check (6.9). The PUIDP is solvable if it holds, otherwise unsolvable.

Example 6.2 Given CSTH with model (3.87) and suppose that the model uncer-
tainty is zero and additive faults are considered. We now check the solvability of the
PUIDP. To this end, Algorithm 6.1 is applied, which leads to

S1: Compute

rank

[
A− sI Ef Ed
C Ff Fd

]
= 6, rank

[
A− sI Ed
C Fd

]
= 5

S2: Check

rank

[
A− sI Ef Ed
C Ff Fd

]
> rank

[
A− sI Ed
C Fd

]
.

Thus, the PUIDP is solvable.

6.2.3 An Algebraic Check Condition

As mentioned in the last chapter, the parity space approach provides us with a design
form of residual generators, which is expressed in terms of an algebraic equation,

r(k)= vs
(
Hf,sfs(k)+Hd,sds(k)

)
, vs ∈ Ps. (6.10)

From (6.10), we immediately see that a parity relation based residual generator de-
livers a residual decoupled from the unknown input ds(k) if and only if there exists
a parity vector such that

vsHf,s �= 0 and vsHd,s = 0. (6.11)

Taking into account the definition of parity vectors, (6.11) can be equivalently
rewritten into

vs
[
Hf,s Ho,s Hd,s

]= [Δ 0 0
]

with vectorΔ �= 0, from which it becomes clear that residual r(k) is decoupled from
ds(k) if and only if

rank
[
Hf,s Ho,s Hd,s

]
> rank

[
Ho,s Hd,s

]
. (6.12)
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Comparing (6.12) with (6.9) or (6.5) evidently shows the major advantage of the
check condition (6.12), namely the needed computation only concerns determining
matrix rank, which can be done using a standard mathematical program.

Remember that a diagnostic observer can also be brought into a similar form like
a parity relation based residual generator, as demonstrated in the last chapter. It is
reasonable to prove the applicability of condition (6.12) to the design of diagnostic
observers decoupled from the unknown inputs.

We begin with transforming the design form of diagnostic observer

e(k+ 1) =Ge(k)+ (T Ef −LFf )f (k)+ (T Ed −LFd)d(k) (6.13)

r(k) = we(k)+ vFf f (k)+ vFdd(k) (6.14)

into a non-recursive form using the similar computation procedure like the one given
in Theorem 5.7, in which H = T B − LD is replaced by T Ed − LFd as well as
T Ef −LFf . It turns out

r(z)=wGsz−se(z)+ vs
(
Hf,s Īf sfs(z)+Hd,s Īdsds(z)

)
(6.15)

where

vs =
[
vs,0 vs,1 · · · vs,s

] ∈ Ps, w = [0 · · · 0 1
]

Īf s =

⎡
⎢⎢⎢⎢⎣

Ikf×kf O · · · O

wgIkf×kf
. . .

. . .
...

...
. . .

. . . O

wGs−1gIkf×kf · · · wgIkf×kf Ikf×kf

⎤
⎥⎥⎥⎥⎦

Īds =

⎡
⎢⎢⎢⎢⎣

Ikd×kd O · · · O

wgIkd×kd
. . .

. . .
...

...
. . .

. . . O

wGs−1gIkd×kd · · · wgIkd×kd Ikd×kd

⎤
⎥⎥⎥⎥⎦

fs(z)=

⎡
⎢⎢⎢⎣
f (z)z−s

...

f (z)z−1

f (z)

⎤
⎥⎥⎥⎦ , ds(z)=

⎡
⎢⎢⎢⎣
d(z)z−s

...

d(z)z−1

d(z)

⎤
⎥⎥⎥⎦ .

We immediately see that choosing vs satisfying (6.11) yields

r(z)=wGsz−se(z)+ vsHf,s Īf sfs(z)
that is, the residual signal is decoupled from the unknown input.

We have seen that (6.11) is a sufficient condition for the construction of a di-
agnostic observer decoupled from the unknown input. Moreover, (6.15) shows the
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dependence of the residual dynamics on g. Does the selection of g influence the
solvability of PUIDP? Is (6.11) also a necessary condition? A clear answer to these
questions will be given by the following study.

Note that

rank

⎡
⎢⎢⎢⎣

w

wG
...

wGs−1

⎤
⎥⎥⎥⎦= s

thus, a decoupling from d only becomes possible if

T Ef −LFf �= 0 or vFf �= 0 (6.16)

T Ed −LFd = 0 and vFd = 0. (6.17)

Remember that (Theorem 5.7)

L=−

⎡
⎢⎢⎢⎣
vs,0
vs,1
...

vs,s−1

⎤
⎥⎥⎥⎦− gvs,s

(6.16)–(6.17) can be rewritten into

[
I g

0 1

][
T v̄s−1
0 vs,s

][
Ef Ed
Ff Fd

]
=
[
Δ1 0
Δ2 0

]

=⇒
[
T v̄s−1
0 vs,s

][
Ef Ed
Ff Fd

]
=
[
Δ3 0
Δ4 0

]
(6.18)

where

v̄s−1 =

⎡
⎢⎢⎢⎣
vs,0
vs,1
...

vs,s−1

⎤
⎥⎥⎥⎦ , Δ3 �= 0 or Δ4 �= 0.

Since

T =

⎡
⎢⎢⎢⎢⎣

vs,1 vs,2 · · · vs,s−1 vs,s

vs,2
. . .

. . . vs,s 0
...

. . .
. . .

. . .
...

vs,s 0 · · · · · · 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

C

CA
...
...

CAs−2

CAs−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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(6.18) is, after an arrangement of matrix T into a vector, equivalent to

vsHd,s = 0 and vsHf,s �= 0, vs ∈ Ps.
It is evident that the solvability of the above equations is independent of the choice
of g and so the eigenvalues of G.

We have proven the following theorem.

Theorem 6.3 Given Gyf (z) = C(zI − A)−1Ef + Ff and Gyd(z) = C(zI −
A)−1Ed + Fd , then a diagnostic observer of order s delivers a residual decoupled
from the unknown input if and only (6.11) or equivalently (6.12) holds. Furthermore,
the eigenvalues of the diagnostic observer are arbitrarily assignable.

An important message of Theorem 6.3 is that

• the parity relation based residual generator and the diagnostic observer have the
same solvability conditions for the PUIDP and furthermore

• upon account of the discussion on the relationships between the different types of
residual generators, the algebraic check conditions expressed in terms of (6.11)
or equivalently (6.12) are applicable for all kinds of residual generators.

We now summarize the main results of this subsection into an algorithm.

Algorithm 6.2 (An algebraic check of the solvability of PUIDP)

S1: Form Ho,s , Hf,s , Hd,s
S2: Check (6.12). If it holds for some s, the PUIDP is solvable.

Example 6.3 We consider again CSTH with model (3.87) and suppose that additive
faults are considered. We now check the solvability of the PUIDP by means of
Algorithm 6.2. We have first formedHo,s ,Hf,s andHd,s for s = 0,1,2 respectively.
In the second step,

rank
[
Hf,s Ho,s Hd,s

]
, rank

[
Ho,s Hd,s

]

have been computed for different values of s. The results are: for s = 0

rank
[
Hf,s Ho,s Hd,s

]= 3= rank
[
Ho,s Hd,s

]

for s = 1

rank
[
Hf,s Ho,s Hd,s

]= 6> rank
[
Ho,s Hd,s

]= 5

for s = 2

rank
[
Hf,s Ho,s Hd,s

]= 9> rank
[
Ho,s Hd,s

]= 7.

Thus, the PUIDP is solvable.
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6.3 A Frequency Domain Approach

The approach presented in this section provides a so-called frequency domain solu-
tion for the residual generator design problem: given general residual generator in
the design form

r(s)=R(s)M̂u(s)
(
Gyd(s)d(s)+Gyf (s)f (s)

) ∈R (6.19)

find such a post-filter R(s) ∈RH∞ that ensures

R(s)M̂(s)Gyd(s)= 0 and R(s)M̂u(s)Gyf (s) �= 0. (6.20)

In order to illustrate the underlying idea, we first consider a simple case

M̂u(s)Gyd(s)=
[
g1(s)

g2(s)

]

with scalar (stable) functions g1(s), g2(s). Setting

R(s)= [g2(s) −g1(s)
]

gives

R(s)M̂u(s)Gyd(s)= g2(s)g1(s)− g1(s)g2(s)= 0.

We see from this example that the solution is based on a simple multiplication and
an addition of transfer functions. No knowledge of modern control theory, the state
space equations and associated calculations are required.

We now present an algorithm to approach the design problem stated by (6.19)–
(6.20). We suppose m> kd and

rank
[
Gyf (s) Gyd(s)

]
> rank

(
Gyd(s)

)

and denote

M̂u(s)Gyd(s)= �Gd(s)=
⎡
⎢⎣
ḡ11(s) · · · ḡ1kd (s)
...

. . .
...

ḡm1(s) · · · ḡmkd (s)

⎤
⎥⎦ ∈RHm×kd∞ .

Algorithm 6.3 (A frequency domain solution)

S1: Set initial matrix T (s)= Im×m
S2: Start a loop: i = 1 to i = kd

S2-1: When ḡii (s)= 0,
S2-1-1: set ki = i + 1 and check ḡki i (s)= 0?
S2-1-2: If it is true, set ki = ki + 1 and go back to Step 2-2-1, otherwise
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S2-1-3: set

Tki =
⎡
⎢⎣
t11 · · · t1m
...

. . .
...

tm1 · · · tmm

⎤
⎥⎦ , tkk =

{
1 : k �= i and ki
0 : k = i or ki

tkl =
{

0 : (k �= l) and (k �= ki and l �= i or k �= i and l �= ki)
1 : (k �= l) and (k = ki and l = i or k = i and l = ki)

�Gd(s)= Tki �Gd(s), T (s)= Tki T (s)

S2-2: Start a loop: j = i + 1 to j =m:

Tij (s) =
⎡
⎢⎣
t11(s) · · · t1m(s)

...
. . .

...

tm1(s) · · · tmm(s)

⎤
⎥⎦

tkk(s) =
{

1 : k �= j or k = j and ḡj i (s)= 0

ḡii (s) : k = j and ḡj i (s) �= 0

tkl(s) =
{

0 : k �= l and k �= j and l = i
−ḡj i(s) : k = j and l = i

�Gd(s) = Tij (s)�Gd(s), T (s)= Tij (s)T (s)

S3: Set

R(s)= [O(m−kd )×kd I(m−kd )×(m−kd )
]
T (s).

To explain how this algorithm works, we make the following remark.

Remark 6.1 All calculations in the above algorithm are multiplications and addi-
tions of two transfer functions, in details

• S2-1 serves as finding ḡii (s) �= 0 by a row exchange ḡii (s) (�= 0).
• After completing S2-2 we have

ḡjj (s) �= 0, j = 1, . . . , i, ḡkj (s)= 0, k > j ≤ i.

• When the loop in S2 is finished, we obtain

∏
ki

Tki

∏
i,j

Tij (s)�Gd(s)=

⎡
⎢⎢⎢⎢⎢⎣

ĝ11(s)

0 ĝ22(s) Δ
...

. . .
. . .

0 · · · 0 ĝkdkd (s)

0 · · · · · · 0

⎤
⎥⎥⎥⎥⎥⎦
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where ĝii (s) �= 0, i = 1, . . . , kd andΔ denotes some transfer matrix of no interest.
Since Tki and Tij (s) are regular transformations, the above results are ensured.

• It is clear that

R(s) = [0(m−kd )×kd I(m−kd )×(m−kd )
]
T (s)
∏
ki

Tki

∏
i,j

Tij (s) and so

R(s)�Gd(s) =
[

0(m−kd )×kd I(m−kd )×(m−kd )
]
⎡
⎢⎢⎢⎢⎢⎣

ĝ11(s)

0 ĝ22(s) Δ
...

. . .
. . .

0 · · · 0 ĝkdkd (s)

0 · · · · · · 0

⎤
⎥⎥⎥⎥⎥⎦

= 0.

We have seen that the above algorithm ensures that the residual generator of the
form

r(s)=R(s)(M̂u(s)y(s)− N̂u(s)u(s)
)

delivers a residual perfectly decoupled from the unknown input d .

6.4 UIFDF Design

The problem to be solved in this section is the design of UIFDF that is formulated
as: given system model

ẋ(t) = Ax(t)+Bu(t)+Ef f (t)+Edd(t) ∈Rn (6.21)

y(t) = Cx(t)+Du(t)+ Ff f (t) ∈Rm (6.22)

and an FDF

˙̂x(t) = Ax̂(t)+Bu(t)+L(y(t)− ŷ(t)) (6.23)

r(t) = v(y(t)− ŷ(t)), ŷ(t)= Cx̂(t)+Du(t) (6.24)

find L, v such that residual generator (6.23)–(6.24) is stable and

vC(sI −A+LC)−1Ed = 0

v
(
C(sI −A+LC)−1(Ef −LFf )+ Ff

) �= 0.

We shall present two approaches:

• the eigenstructure assignment approach and
• the geometric approach.
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6.4.1 The Eigenstructure Assignment Approach

Eigenstructure assignment is a powerful approach to the design of linear state space
feedback system, as it can be shown easily that the closed-loop system structure like
(sI −A+LC) depends entirely on the eigenvalues and the left and right eigenvec-
tors of A−LC.

The eigenstructure approach proposed by Patton and co-worker is dedicated to
the solution of equation

vC(sI −A+LC)−1Ed = 0 (6.25)

for L,v. To this end, the following two well-known lemmas are needed.

Lemma 6.1 Suppose matrix A−LC ∈Rn×n has eigenvalues λi , i = 1, . . . , n and
the associated left and right eigenvectors αi ∈R1×n, βi ∈Rn×1, then we have

αiβj = 0, i = 1, . . . , n, j �= i, j = 1, . . . , n.

Lemma 6.2 Suppose matrix A − LC ∈ Rn×n can be diagonalized by similarity
transformations and has eigenvalues λi , i = 1, . . . , n and the associated left and
right eigenvectors αi ∈ R1×n, βi ∈ Rn×1, then the resolvent of A − LC can be
expressed by

(sI −A+LC)−1 = β1α1

s − λ1
+ · · · + βnαn

s − λn .

Below are two sufficient conditions for the solution of (6.25).

Theorem 6.4 If there exists a left eigenvector of matrix A−LC, αi , satisfying

αi = vC and αiEd = 0

for some v �= 0, then (6.25) is solvable.

Proof The proof becomes evident by choosing v so that vC = αi and considering
Lemmas 6.1–6.2:

vC(pI −A+LC)−1Ed = αi
(
β1α1

p− λ1
+ · · · + βnαn

p− λn
)
Ed = αiβi

p− λi αiEd = 0.

�

Theorem 6.5 Given Ed whose columns are the right eigenvectors of A−LC, then
(6.25) is solvable if there exists a vector v so that for some

vCEd = 0.
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The proof is similar to Theorem 6.4 and is thus omitted.
Upon account of Theorem 6.4, Patton et al. have proposed an algorithm for the

eigenstructure assignment approach.

Algorithm 6.4 (Eigenstructure assignment approach by Patton and Kangethe)

S1: Compute the null space of CEd , N , i.e. NCEd = 0
S2: Determine the eigenstructure of the observer
S3: Compute the observer matrix L using an assignment algorithm
S4: Set v =wN , w �= 0.

Theorem 6.6 follows directly from Lemmas 6.1–6.2 and provides us with a nec-
essary and sufficient condition.

Theorem 6.6 Suppose that matrix A− LC ∈Rn×n can be diagonalized by simi-
larity transformations and has eigenvalues λi , i = 1, . . . , n and the associated left
and right eigenvectors αi ∈R1×n, βi ∈Rn×1, then (6.25) holds if and only if there
exist v, L such that

vCβ1α1Ed = 0, . . . , vCβnαnEd = 0. (6.26)

Note that (6.26) holds if and only if vCβi = 0 or αiEd = 0 and there exists an
index k, 0< k < n, so that

vCβi = 0, i = 1, . . . , k, αiEd = 0, i = k+ 1, . . . , n.

Let the j th column of Ed , edj , be expressed by

edj =
n∑
i=1

kjiβi

then we have

αiEd = 0, i = k + 1, . . . , n =⇒ kji = 0, i = k + 1, . . . , n, j = 1, . . . , kd

=⇒ edj =
k∑
i=1

kjiβi, j = 1, . . . , kd .

This verifies the following theorem.

Theorem 6.7 (6.25) holds if and only if Ed can be expressed by

Ed =
[
β1 · · · βk

]
E∗, E∗ ∈Rk×kd , vC

[
β1 · · · βk

]= 0.

From the viewpoint of linear control theory, this means the controllable eigenval-
ues of (A−LC,Ed), λ1, . . . , λk , are unobservable by vC. Since v �= 0 is arbitrarily
selectable, Theorem 6.7 can be reformulated as the following corollary.
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Corollary 6.1 (6.25) holds if and only if Ed can be expressed by

Ed =
[
β1 · · · βk

]
E∗, E∗ ∈Rk×kd , rank

(
C
[
β1 · · · βk

])
<m.

Now, we introduce some well-known definitions and facts from the linear system
theory and the well-established eigenstructure assignment technique:

• zi is called invariant or transmission zero of system (A,Ed,C), when

rank

[
A− ziI Ed
C 0

]
< n+min{m,kd}.

• Vectors γi and θi satisfying

[
γi θi

][A− ziI Ed
C 0

]
= 0

are called state and input direction associated to zi , respectively.
• Observer matrix L defined by

L=
⎡
⎢⎣
α1
...

αn

⎤
⎥⎦
−1⎡
⎢⎣
p1
...

pn

⎤
⎥⎦ , αi = piC(A− λiI )−1

ensures

αi(λiI −A+LC)= 0, i = 1, . . . , n

that is, λi is the eigenvalue of A−LC and vi the left eigenvector.
• Let λi = zi , pi =−θi , αi = γi , then we have

αi(A− λiI )− piC = 0, αiEd = 0.

Following algorithm is developed on the basis of Corollary 6.1 and the above-
mentioned facts.

Algorithm 6.5 (An eigenstructure assignment approach)

S1: Determine the invariant zeros of system (A,Ed,C) defined by

rank

[
A− ziI Ed
C 0

]
< n+min{m,kd}, i = k+ 1, . . . , n

S2: Solve

[
γi θi

][A− ziI Ed
C 0

]
= 0, i = k+ 1, . . . , n

for γi , θi
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S3: Set

λi = zi, pi =−θi, αi = γi, i = k+ 1, . . . , n

S4: Define λi , αi , pi , i = 1, . . . , k satisfying

αi = piC(A− λiI )−1, i = 1, . . . , k, rank

⎡
⎢⎣
α1
...

αn

⎤
⎥⎦= n

S5: Set

L=
⎡
⎢⎣
α1
...

αn

⎤
⎥⎦
−1⎡
⎢⎣
p1
...

pn

⎤
⎥⎦

S6: Solve ⎡
⎢⎣
α1
...

αn

⎤
⎥⎦[β1 · · · βk

]=
[

Ik×k
0(n−k)×k

]

for β1, . . . , βk
S7: If

rank
(
C
[
β1 · · · βk

])
<m

then solve

vC
[
β1 · · · βk

]= 0

for v.

Note that the condition that there exists a vector v so that vCEd = 0 can equiva-
lently be reformulated as the solution of equations

vC =wT, T Ed = 0, T ∈R(n−kd )×n.

Furthermore, the requirement that the rows of T are the left eigenvectors of matrix
A−LC leads to

TA− T
⎡
⎢⎣
λk+1 0 0

0
. . . 0

0 0 λn

⎤
⎥⎦= T LC.

This verifies that Luenberger conditions (5.31)–(5.33) are necessary for the use of
the eigenstructure assignment approach provided above.



6.4 UIFDF Design 133

6.4.2 Geometric Approach

The so-called geometric approach is one of the fields in the control theory, where
elegant tools for the design and synthesis of control systems are available. On the
other hand, the application of the geometric approach requires a profound mathe-
matical knowledge.

The pioneering work of approaching the design and synthesis of FDF by geo-
metric approach was done by Massoumnia, in which an elegant solution to the FDF
design has been derived. In this subsection, we shall briefly describe the geometric
approach to the FDF design without elaborate handling of its mathematical back-
ground.

The core of the geometric approach is the search for an observer matrix L that
makes (A− LC,Ed,C) maximally uncontrollable by d . It is the dual form of the
geometric solution to the disturbance decoupling (control) problem (DDP) by means
of a state feedback controller. Below, we briefly describe an algorithm for this pur-
pose, which is presented as the dual form of the algorithm proposed by Wonham for
the DDP-controller design.

The addressed problem is formulated as follows: given system

ẋ = (A−LC)x +Edd, y = Cx (6.27)

find L such that the pair (A−LC,Ed) becomes maximally uncontrollable. The ter-
minology maximally uncontrollable is used to express the uncontrollable subspace
with the maximal dimension. We shall also use maximal solution to denote the max-
imally dimensional solution X of an equation MX = 0 (or XM = 0) for a given M .

Algorithm 6.6 (Computation of observer gain L for generating maximally uncon-
trollable subspace)

S0: Setting initial condition: find a maximal solution of

ETd V0 = 0

for V0

S1: Find a maximal solution of

Wi

[
CT Vi−1

]= 0, i = 1,2, . . .

for Wi

S2: Find a maximal solution of
[
ETd
WiA

T

]
Vi = 0, i = 1,2, . . .

for Vi
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S3: Check

rank(Vi)= rank(Vi−1).

If no, increase i = i + 1 and go to Step 1, otherwise set �V = Vi
S4: Find a solution of

AT �V = [CT �V ]
[
K

P

]

for (K,P )
S5: Solve

K = LT �V
for the observer gain L.

Remark 6.2 Steps S0 to S3 are the algebraic version of the algorithm proposed by
Wonham for the computation of the supremal (AT ,CT )-invariant subspace con-
tained in the null-space of ETd . As a result, the dual representation of system (6.27)
becomes maximally unobservable.

The following lemma is known in the geometric control framework, based upon
which a UIFDF can be designed.

Lemma 6.3 Suppose L makes (A − LC,Ed) maximally uncontrollable by d , i.e.
((A− LC)T ,ETd ) is maximally unobservable. Then by a suitable choice of output
and state bases, V and T , the resulting realization can be described by

T (A−LC)T −1 =
[
Ā11 Ā12

0 Ā22

]
, T Ed =

[ �Ed1
0

]
, �C = VCT −1 =

[�C1 X

0 �C2

]

(6.28)

where the realization (Ā11, �Ed1,�C1) is perfectly controllable and X denotes some
matrix.

Remark 6.3 A system (A,B,C) is called perfectly controllable if

∀λ,
[
A− λI B

C 0

]
has full row rank.

Let Lmax be the observer gain that makes (A− LmaxC,Ed) maximally uncon-
trollable by d . When �C2 �= 0, we construct, according to Lemma 6.3, the following
FDF:[

ż1
ż2

]
=
[
Ā11 −L11�C1 X̃

0 Ā22 −L22�C2

][
z1
z2

]
+ T Bu+ T (Lmax +L0V )y

r = [0 v2
](
Vy −

[�C1 X

0 �C2

][
z1
z2

])
, v2 �= 0 (6.29)
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with X̃ = Ā12 −L12�C2 −L11X,

T L0 =
[
L11 L12
0 L22

]
(6.30)

and L11, L22 ensuring the stability of Ā11 −L11�C1 and Ā22 −L22�C2. Introducing

z=
[
z1
z2

]
, e= T x − z=

[
e1
e2

]

gives
[
ė1
ė2

]
=
[
Ā11 −L11�C1 X̃

0 Ā22 −L22�C2

][
e1
e2

]
+
[ �Ed1

0

]
d (6.31)

r = [0 v2
][�C1 X

0 C2

][
e1
e2

]
= v2�C2e2. (6.32)

It is evident that residual signal r is perfectly decoupled from d .
It is straightforward to rewrite (6.29) into the original FDF form (6.23)–(6.24)

with

L= Lmax +L0V, v = [0 v2
]
V (6.33)

as well as

x̂ = T −1z.

Below is a summary of the above results in the form of an algorithm.

Algorithm 6.7 (The geometric approach based UIFDF design)

S1: Determine Lmax that makes (A−LmaxC,Ed,C) maximally uncontrollable by
using Algorithm 6.6

S2: Transform (A − LmaxC,Ed,C) into (6.28) by a state (T ) and an output (V )
transformation (controllability and observability decomposition)

S3: Select L0 satisfying (6.30) and ensuring the stability of Ā11−L11�C1 and Ā22−
L22�C2

S4: Construct FDF (6.29) or in the original form (6.23)–(6.24) with L, v satisfying
(6.33).

Remember that the construction of residual generator (6.29) is based on the as-
sumption that �C2 �= 0. Without proof, we introduce the following necessary and
sufficient condition for �C2 �= 0, which is known from the geometric control the-
ory.

Theorem 6.8 Under the same conditions as given in Lemma 6.3, we have

• �C2 �= 0 if and only if rank(C) > rank(Ed)
• (Ā22,�C2) is equivalent to
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(Ā22,�C2)∼
([
Ā221 0
Ā222 Ā223

]
,
[�C21 0

])

where (Ā221,�C21) is perfectly observable, the eigenvalues of matrix Ā223 are the
invariant zeros of (A,Ed,C) and they are unobservable.

An immediate result of the above theorem is the following corollary.

Corollary 6.2 Given system model

y(s)=Gyu(s)u(s)+Gyd(s)d(s)
with Gyu(s) = (A,B,C) and Gyd(s) = (A,Ed,C), then there exists an FDF that
is decoupled from d if and only

rank

[
A− sI Ed
C 0

]
< n+m

and Gyd(s)= (A,Ed,C) has no unstable invariant zero.

We know from Theorem 6.8 that there exists an observer matrix L such that
(A−LC,Ed,C) can be brought into (6.28) with �C2 �= 0 if and only if

rank

[
A− sI Ed
C 0

]
< n+m.

Moreover, if

rank

[
A− sI Ed
C 0

]
< rank

[
A− sI Ef Ed
C 0 0

]
≤ n+m

then by suitably choosing output and state bases, V and T , the resulting realization
can be described by equations of the form

T (A−LC)T −1 =
[
Ā11 Ā12

0 Ā22

]
, �C = VCT −1 =

[�C1 X

0 �C2

]

T Ed =
[ �Ed1

0

]
, T Ef =

[ �Ef 1�Ef 2

]

where �Ef 2 �= 0. As a result, constructing an FDF according to (6.29) yields

[
ė1
ė2

]
=
[
Ā11 −L11�C1 X̃

0 Ā22 −L22�C2

][
e1
e2

]
+
[ �Ed1

0

]
d +
[ �Ef 1�Ef 2

]
f

r = [0 v2
][�C1 X

0 C2

][
e1
e2

]

=⇒ r(s)= v2C2(sI − Ā22 +L22�C2)
−1�Ef 2f (s)
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i.e. a fault detection is achievable. Recall Corollary 6.2, we have

Corollary 6.3 Given system model

y(s)=Gyu(s)u(s)+Gyf (s)f (s)+Gyd(s)d(s)
with Gyu(s) = (A,B,C), Gyf (s) = (A,Ef ,C) and Gyd(s) = (A,Ed,C), then
there exists an FDF that solves PUIDP if

rank

[
A− sI Ed
C 0

]
< rank

[
A− sI Ef Ed
C 0 0

]
≤ n+m (6.34)

and the invariant zeros of Gyd(s) are stable.

It is interesting to notice the fact that, if there exists a UIFDF, then we are also
able to construct a reduced order residual generator decoupled from d . To this end,
we consider FDF (6.29). Instead of constructing a full order observer, we now define
the subsystem regarding to z2, that is,

ż2 = (Ā22 −L22�C2)z2 + T2Bu+ T2(Lmax +L0V )y
(6.35)

r = v2(V2y − �C2z2)

with

T :=
[
T1
T2

]
, V :=

[
V1
V2

]
.

It is evident that (6.35) is a reduced order residual generator which is decoupled
from d .

Recall that residual generator (6.29) becomes unstable if system (A,Ed,C) has
unstable invariant zeros. This problem can be solved by constructing a reduced order
residual generator. Without loss of generality, suppose that after applying Algorithm
6.7 (Ā22,�C2) is of the form

Ā22 =
[
Ā221 0
Ā222 Ā223

]
, �C2 =

[�C21 0
]

(6.36)

as described in Theorem 6.8, that is,

T (A−LC)T −1 =
⎡
⎣ Ā11 Ā121 Ā122

0 Ā221 0
0 Ā222 Ā223

⎤
⎦

(6.37)

�C = VCT −1 =
[�C1 X1 X2

0 �C21 0

]
, T Ed =

⎡
⎣ �Ed1

0
0

⎤
⎦ .
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Corresponding to the decomposition given in (6.37), we now further split z2, L22
and T2 into

z2 =
[
z21
z22

]
, L22 =

[
L221
L222

]
, T2 =

[
T21
T22

]

and construct the following residual generator

ż21 = (Ā221 −L121�C21)z21 + T21Bu+ T21(Lmax +L0V )y
(6.38)

r = v2(V2y − �C21z21).

It is straightforward to prove that for e21 = T21x − z21

ė21 = (Ā221 −L121�C21)e21, r = v2�C21e21.

That means residual generator (6.38) is stable and perfectly decoupled from d .

Corollary 6.4 Given system model

y(s)=Gyu(s)u(s)+Gyd(s)d(s)
with Gyu(s)= (A,B,C) and Gyd(s)= (A,Ed,C) and suppose that

rank

[
A− sI Ed
C 0

]
< n+m.

Then residual generator (6.38) delivers a residual signal decoupled from d .

A very useful by-product of the above discussion is that residual generator (6.38)
can be designed to be of the minimum order and decoupled from d . This will be
handled at the end of this chapter.

Algorithm 6.8 (The geometric approach based design of reduced order residual
generator)

S1: Determine Lmax that makes (A−LmaxC,Ed,C) maximally uncontrollable by
using Algorithm 6.6

S2: Transform (A − LmaxC,Ed,C) into (6.28) by a state and an output transfor-
mation (controllability and observability decomposition)

S3: Transform (Ā22,�C2) into (6.36) by a state transformation (observability de-
composition)

S4: Select L221 ensuring the stability of Ā221 −L221�C21
S5: Construct residual generator (6.38).

The results achieved in this section can be easily extended to the systems de-
scribed by (3.32)–(3.33) with Fd �= 0. To this end, we can, as done in the former
chapters, rewrite (3.32)–(3.33) into
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⎡
⎣ ẋḋ
ḟ

⎤
⎦ =
⎡
⎣A Ed Ef

0 0 0
0 0 0

⎤
⎦
⎡
⎣ xd
f

⎤
⎦+
⎡
⎣B0

0

⎤
⎦u+

⎡
⎣0
I

0

⎤
⎦ ḋ +

⎡
⎣0

0
I

⎤
⎦ ḟ (6.39)

y = [C Fd Ff
]⎡⎣ xd

f

⎤
⎦+Du. (6.40)

Note that

rank

⎡
⎢⎢⎣
A− sI Ed Ef

0 −sI 0
0 0 −sI
C Fd Ff

0
I

0

0
0
I

0 0

⎤
⎥⎥⎦ = rank

[
A− sI Ed Ef
C Fd Ff

]
+ kd + kf

rank

⎡
⎣A− sI Ed

0 −sI
C Fd

0
I

0

⎤
⎦ = rank

[
A− sI Ed
C Fd

]
+ kd .

It holds

rank

⎡
⎢⎢⎣
A− sI Ed Ef

0 −sI 0
0 0 −sI
C Fd Ff

0
I

0

0
0
I

0 0

⎤
⎥⎥⎦≤ n+ kd + kf +m

⇐⇒ rank

[
A− sI Ed Ef
C Fd Ff

]
≤ n+m

rank

⎡
⎣A− sI Ed

0 −sI
C Fd

0
I

0

⎤
⎦< n+ kd +m ⇐⇒ rank

[
A− sI Ed
C Fd

]
< n+m.

Recall further the definition of invariant zeros, the results given in Theorem 6.8 and
Corollary 6.2 can be extended to the following corollary.

Corollary 6.5 Given system model (3.32)–(3.33), then there exists an FDF that
ensures a perfect unknown input decoupling if

rank

[
A− sI Ed
C Fd

]
< rank

[
A− sI Ed Ef
C Fd Ff

]
≤ n+m (6.41)

and the invariant zeros of Gyd(s)= Fd +C(sI −A)−1Ed are stable.

Example 6.4 We now apply Algorithm 6.7 to the design of a full order UIFDF
for the benchmark system LIP100 described by (3.59). This UIFDF should deliver
residual signals decoupled from the unknown input d . Using Algorithm 6.6, we
obtain
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Lmax =

⎡
⎢⎢⎣

0 0.0000 −1.9503
−1.0026 −0.0000 −13.7555
0.0091 1.4339 0.1250

0 0 0

⎤
⎥⎥⎦ .

It is followed by the computation of the state and output transformation matrices,
which results in

T =

⎡
⎢⎢⎣
−0.0000 0.0000 −0.0725 0.9974
−0.0255 −0.0000 0.9970 0.0725
−0.9997 −0.0002 −0.0254 −0.0018
0.0002 −1.0000 −0.0000 −0.0000

⎤
⎥⎥⎦ , V =

⎡
⎣0 0 1

0 1 0
1 0 0

⎤
⎦ .

To ensure the desired dynamics, L11 and L22 are selected as follows, from which
L0 is computed

T L0 =

⎡
⎢⎢⎣

0.7037 1.0000 1.0000
0 0.1903 −0.5547
0 0.0143 −1.9641
0 −3.8969 2.0962

⎤
⎥⎥⎦ .

Finally, set

[
0 v2

]=
[

0 −0.500 −1.000
0 0.750 1.500

]

and based on which v as well as L are determined. Having designed L, v, a residual
generator of the form (6.29) is constructed. In Fig. 6.2, the response of the two
residual signals to different faults is sketched. These faults occurred after the 15th
second. It can be seen that in the fault-free time interval (before the 10th second) the
residual signals are almost zero, although the disturbances are different from zero.
It demonstrates a perfect decoupling.

Fig. 6.2 Response of the
residual signals to faults
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6.5 UIDO Design

The UIDO design addressed in this section is formulated as: given system model
(3.32)–(3.33) and diagnostic observer

ż(t) =Gz(t)+Hu(t)+Ly(t) (6.42)

r(t) = vy(t)−wz(t)− qu(t) (6.43)

that satisfies Luenberger conditions (5.31)–(5.32) and (5.39), and thus whose design
form is described by

ė(t) =Ge(t)+ (T Ef −LFf )f (t)+ (T Ed −LFd)d(t) (6.44)

r(t) = we(t)+ vFf f (t)+ vFdd(t) (6.45)

find G,L,T , v,w such that residual generator (6.42)–(6.43) is stable and

wC(sI −G)−1(Ed −LFd)+ vFd = 0 (6.46)

wC(sI −G)−1(Ef −LFf )+ vFf �= 0. (6.47)

6.5.1 An Algebraic Approach

In this subsection, the approach by Ge and Fang to the DO design is extended to the
construction of UIDO. Suppose that

Fd = 0, Ff = 0 and
[
Ed Ef

]= In×n, kd < m.

Then, there exists an UIDO if and only if

T Ed = T
[
Ikd×kd

0

]
= 0

which is, by denoting the ith column of T with ti , equivalent to

ti = 0, i = 1, . . . , kd .

Based on the method introduced in Chap. 5, Ge and Fang have proposed a recursive
algorithm to the design of a UIDO satisfying (6.46). To this end, they have proven
the following theorem.

Theorem 6.9 Let

T =
⎡
⎢⎣
T1
...

Ts

⎤
⎥⎦ , G=

⎡
⎢⎢⎢⎣
q 0 · · · 0
1 q · · · 0
...

. . .
. . .

...

0 · · · 1 q

⎤
⎥⎥⎥⎦ (6.48)
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where T ∈Rs×n,G ∈Rs×s and s is the order of the DO, then

Ti =
i−1∑
k=0

1

k!Vi−kC
dk

dqk
Q(q), i = 1, . . . , s (6.49)

Q(q) =
n∑
j=1

aj

j−1∑
k=0

qkAj−1−k, X =
⎡
⎢⎣
X1
...

Xs

⎤
⎥⎦ (6.50)

provide an equivalent solution with the one given in Theorem 5.8 for the Luenberger
equations, where q denotes the eigenvalue being arbitrarily selectable.

The proof is straightforward and thus omitted. The relevant literature is cited in
Sect. 6.10.

6.5.2 Unknown Input Observer Approach

In the early 1980s, the so-called unknown input observer (UIO) design received
much attention due to its importance in robust state estimation and observer-based
robust control. Consider system model

ẋ(t)=Ax(t)+Bu(t)+Edd(t), y(t)= Cx(t). (6.51)

A UIO is a Luenberger type observer that delivers a state estimation x̂ independent
of unknown input d in the sense that

lim
t→∞
(
x(t)− x̂(t))= 0 for all u(t), d(t), x0. (6.52)

Making use of x̂, a residual signal can be constructed as follows

r(t)= y(t)−Cx̂(t).
This is the way that is widely used to design UIDO, also for the reason that the
technique of designing UIO is well established.

It is worth pointing out that the primary objective of using a UIO is to re-construct
the state variables. It is different from the one of residual generation, where only
measurements have to be re-constructed. In the next subsections, we shall present
some approaches to the design of UIO only for the residual generation purpose.

We now outline the underlying idea of the UIO design technique. It follows from
(6.51) that

ẏ(t)−CAx(t)−Cu(t)= CEdd(t). (6.53)

Assume that

rank(CEd)= rank(Ed)= kd (6.54)
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then there exists a matrix Mce satisfying

MceCEd = Ikd×kd . (6.55)

Multiplying the both sides of (6.53) by Mce gives

Mce

(
ẏ(t)−CAx(t)−Cu(t))= d(t).

This means, using ẏ (y(k+ 1) for discrete-time systems), an estimation of the state
vector x̂ and the input vector u, the unknown input vector d can be constructed by

d̂(t)=Mce

(
ẏ(t)−CAx̂(t)−Cu(t)).

On account of d̂ , we are able to construct a full order state observer, on the assump-
tion of available ẏ, as follows

˙̂x =Ax̂ +Bu+Ed(CEd)−1(ẏ −CAx̂ −CBu)+L(y −Cx̂) (6.56)

whose estimation error is evidently governed by

ė= (A−LC −EdMceCA)e, e= x − x̂.
In case that there exists an observer matrix L such that matrix A−LC−EdMcdCA

is stabilizable, observer (6.56) satisfies (6.52).
Note that observer (6.56) requires knowledge of ẏ, which may cause troubles

by the on-line implementation. To overcome this difficulty, modification is made.
Introduce a new state vector

z(t)= x̂(t)−EdMcey(t)

and a matrix

T = I −EdMceC. (6.57)

It turns out

ż = (T A−LC)z+ T Bu+ ((T A−LC)EdMce +L
)
y (6.58)

x̂ = z+EdMcey. (6.59)

It is clear that for all d , u, x0

lim
t→∞
(
z(t)− T x(t))= 0, lim

t→∞
(
x(t)− x̂(t))= 0

and furthermore, setting G= TA−LC and after some calculations, we have

TA−GT = ((T A−LC)EdMce +L
)
C, H = T B.
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This means system (6.58)–(6.59) is a Luenberger type unknown input observer, and
by setting

r = v((I −CEdMce)y −Cz
)
, v �= 0 (6.60)

we get a UIDO.

Algorithm 6.9 (UIO based residual generation)

S0: Check the existence conditions given in Corollary 6.6. If they are satisfied, go
to the next step, otherwise stop

S1: Compute Mce according to (6.55) and further T according to (6.57)
S2: Selection of L that ensures the stability of A−LC −EdMceCA

S3: Construct residual generator following (6.58) and (6.60).

It can be seen that the core of UIO technique is the re-construction of the un-
known input d , which requires condition (6.54) or equivalently (6.55). Furthermore,
to ensure the stability of observer (6.56) or equivalently (6.58), the pair (C,T A)
should be observable or at least detectable. In summary, we have the following the-
orem.

Theorem 6.10 Given system model (6.51) and suppose

Condition I:

rank(CEd)= rank(Ed)= kd
Condition II: (C,T A) is detectable, where

T = I −EdMceC

then there exists a UIO in the sense of (6.52).

Remark 6.4 It can be demonstrated that Conditions I and II are also necessary con-
ditions for the existence of a UIO. It is interesting to notice that matrix T is singular.
This can be readily seen by observing the fact

T Ed =Ed −EdMceCEd = 0.

Thus, by a suitable transformation we are able to find a reduced order UIO.

Notice the following equality

rank

[
λI −A Ef
C 0

]
= rank

([
λI −A Ef
C 0

][
I 0

MceCA I

])

= rank

[
λI −A+EfMceCA Ef

C 0

]
= rank

[
λI − TA Ef

C 0

]
.
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This means if (C,T A) is undetectable, then (A,Ef ,C) has at least one unstable
transmission zero, that is, there exists at least one λo ∈ C+ such that

rank

[
λoI −A Ef
C 0

]
< n+ kf

since the fact (C,T A) is undetectable implies there exists at least one λo ∈ RHP
such that

rank

[
λoI −A
C

]
< n.

Hence, Theorem 6.10 can be reformulated as the following corollary.

Corollary 6.6 Given system model (6.51), then there exists a UIO in the sense of
(6.52) if

• rank(CEd)= kd
• (A,Ef ,C) has no unstable transmission zero.

In a number of publications, it has been claimed that Conditions I and II stated
in Theorem 6.10 are necessary for the construction of UIDO in the form of (6.58)
and (6.60). It should be pointed out that these two conditions are not equivalent to
the solvability conditions of the PUIDP described at the beginning of this chapter.
To illustrate it, we only need to consider the case

rank(CEd) < rank(Ed) and m> kd

which does not satisfy Condition I in Theorem 6.10. In against, following Theo-
rem 6.1 the PUIDP is solvable in this case, that is, we should be able to find a
residual generator that is decoupled from the unknown input vector d .

We now check a special case: m= kd . Since

MceCEd = I ⇐⇒ CEdMce = I =⇒ CT = C(I −EdMceC)= 0

we claim that (C,T A) is not observable for m = kd . In other words, we are able
to construct a UIDO of form (6.58) and (6.60) whose eigenvalues are arbitrarily
assignable only if m> kd . Indeed, following (6.60) we have for m= kd

r = v((I −CEdMce)y −Cz
)=−vCz.

Multiplying the both sides of (6.58) by C gives

Cż=−CLCz.
Moreover, notice that

lim
t→∞
(
z(t)− T x(t))= 0 =⇒ lim

t→∞C
(
z(t)− T x(t))= lim

t→∞Cz(t)= 0.
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Thus, it is evident that for m = kd the residual r is independent of the fault vector
f (t) and therefore it cannot be used for the purpose of fault detection.

The above-mentioned two cases reveal that approaching the UIDO design using
the UIO technique may restrict the solvability of the problem. The reason lies in the
fact that UIDO and UIO have different design aims. While a UIO is in fact used to
reconstruct the state variables, the design objective of a UIDO is to reconstruct mea-
surable state variables for the purpose of generating analytical redundancy. The real-
ization of these different aims follows different strategies. By the design of UIO, an
exact estimation of the unknown input is required such that the influence of the un-
known input can totally be compensated. In comparison, an exact compensation of
the unknown input is not necessary by a UIDO. Therefore, the existence conditions
of UIO are, generally speaking, stronger than the ones of UIDO. In the following
subsections, two approaches to the design of UIDO will be presented.

Example 6.5 In this example, we design a UIO for the vehicle lateral dynamic sys-
tem aiming at generating a residual signal decoupled from the (unknown) road bank
angle. As described in Sect. 3.7.4, the linearized model of this system is described
by

ẋ(t)=Ax(t)+Bu(t)+Edd(t), ỹ(t)= y(t)−Du(t)= Cx(t)
with the system matrices given in (3.78). For our purpose, Algorithm 6.9 is used.
After checking the existence conditions, which are satisfied, Mce,T , L and v are
determined, respectively:

Mce =
[−0.0065 0

]
, L=−

[
1 0
0 1

]
, T =

[
0 0.0082
0 1

]
, v = [1 1

]
.

Finally, UIO (6.58) is constructed, which delivers a residual signal on account
of (6.60).

6.5.3 A Matrix Pencil Approach to the UIDO Design

Using matrix pencil to approach the design of UIDO was initiated by Wünnenberg
in the middle 1980s and lately considerably further developed by Hou and Patton.

The core of the matrix pencil approach consists in a transformation of an arbitrary
matrix pencil to its Kronecker canonical form. For the required knowledge of matrix
pencil, the matrix pencil decomposition and Kronecker canonical form, we refer the
reader to the references given at the end of this chapter. We introduce the following
lemma.

Lemma 6.4 An arbitrary matrix pencil −pE +A can be transformed to the Kro-
necker canonical form by a regular transformation, that is, there exist regular con-
stant matrices P and Q such that

P(−sE+A)Q= diag(−sI +Jf ,−sJinf +I,−sEr+Ar,−sEc+Ac,0) (6.61)
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where

• −sI + Jf is the finite part of the Kronecker form, Jf contains the Jordan
blocks Jfi• −sJinf + I is the infinite part of the Kronecker form, Jinf contains the Jordan
blocks Jinf i with

Jinf i =

⎡
⎢⎢⎢⎢⎣

0 1
. . .

. . .

. . . 1
0

⎤
⎥⎥⎥⎥⎦

• −sEr + Ar is the row part of the Kronecker form. It is a block diagonal matrix
pencil with blocks in the form

−pEri +Ari =−p
[
Iri×ri 0

]+ [0 Iri×ri
]

of the dimension ri × (ri + 1)
• −sEc+Ac is the column part of the Kronecker form. It is a block diagonal matrix

pencil with blocks in the form

−sEci +Aci =−s
[
Ici×ci

0

]
+
[

0
Ici×ci

]

of the dimension (ci + 1)× ci
• 0 denotes the zero matrix of appropriate dimension.

There exists a number of numerically stable matrix pencil decomposition meth-
ods for the computation of the regular transformation described above, for instance
we can use the one proposed by Van Dooren.

Remark 6.5 It is evident that Kronecker blocks −sI + Jf , −sJinf + I , −sEr +Ar
have full row rank.

Corresponding to system model (3.32)–(3.33) and the original form of residual
generation, r = y − ŷ, we introduce the following matrix pencil

Ã− sẼ =
[
A− sI B 0 Ef Ed
C D −I Ff Fd

]
. (6.62)

That means we consider a dynamic system, whose inputs are the process input vec-
tor u and output vector y, and output is difference between the process output y and
its estimate ŷ delivered by the parallel model.

Suppose a regular transformation by P1 leads to

P1

[
Ed
Fd

]
=
[

0
Ẽd

]
, rank(Ẽd)= kd
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and denote

P1

[−sI +A B 0 Ef Ed
C D −I Ff Fd

]
=
[−sE1 +A1 B1 Ẽf 0

× Δ Δ Ẽd

]

where Δ and × denote constant matrices and matrix pencil of appropriate dimen-
sions, respectively, and their forms and values are not of interest. Then, by a suitable
regular transformation of the form, we obtain

diag(P, I )P1

[
A− sI B 0 Ef Ed
C D −I Ff Fd

]
diag(Q, I)

= diag(P, I )

[
A1 − sE1 B1 Ẽf 0
× Δ Δ Ẽd

]
diag(Q, I)

=
⎡
⎣Ae − sEe 0 B̃11 Ẽf 1 0

0 Ac − sEc B̃12 Ẽf 2 0
× × Δ Δ Ẽd

⎤
⎦ (6.63)

where P , Q are regular matrices that transform the matrix pencil A1 − sE1 into its
Kronecker canonical form and the matrix pencil Ae− sEe is the composite of finite,
infinite and row parts of the Kronecker form which have full row rank, as stated in
Lemma 6.4. Since it is supposed that

rank

[
A− sI
C

]
= n

that is, (C,A) is observable, the 0 block in (6.61) disappears.
Due to its special form, matrix pencilAc− sEc can also be equivalently rewritten

into [
Ao − sI
Co

]

where Ao − sI and Co are diagonal matrices with blocks in the form

Aoi − sIi =

⎡
⎢⎢⎢⎢⎣

−s
1

. . .

. . .
. . .

1 −s

⎤
⎥⎥⎥⎥⎦ , Coi =

[
0 · · · 1

]
.

Corresponding to it, we denote

[
B̃12 Ẽf 2

]∼
[
Bo Efo
Do Ffo

]
.

In conclusion, we have, after carrying out the above-mentioned transformations,[
A− sI B 0 Ef Ed
C D −I Ff Fd

]



6.5 UIDO Design 149

∼

⎡
⎢⎢⎣
Ae − sEe 0 B̃11 Ẽf 1 0

0 Ao − sI Bo Efo 0
0 Co Do Ffo 0
× × Δ Δ Ẽd

⎤
⎥⎥⎦ . (6.64)

From the linear system theory, we know

• (Co,Ao) is observable
• denoting the state vector of the sub-system (Ao,Bo,Co) by xo, then there exists

a matrix T such that xo = T x.

Thus, based on sub-system model

ẋo =Aoxo +Bo
[
u

y

]
+Efof, ro = Coxo +Do

[
u

y

]
+ Ffof (6.65)

we are able to construct a residual generator of the form

˙̂xo = Aox̂o +Bo
[
u

y

]
+Lo

(
ro −Cox̂o −Do

[
u

y

])
(6.66)

r = Cox̂o +Do
[
u

y

]
(6.67)

whose dynamics is governed by

ėo = (Ao −LoCo)eo + (Ef o −LoFfo)f, r = Coeo + Ffof
with eo = xo − x̂o.

Naturally, the above-mentioned design scheme for UIDO is realizable only if
certain conditions are satisfied. The theorem given below provides us with a clear
answer to this problem.

Theorem 6.11 The following statements are equivalent:

• There exists a UIDO
• In (6.64), block (Ao,Bo,Co,Do) exists and

[
Efo
Ff o

]
�= 0

• The following condition holds true

rank

[
sI −A Ed
−C Fd

]
< rank

[
sI −A Ef Ed
−C Ff Fd

]
≤ n+m.

Due to the requirement on the knowledge of Kronecker canonical form and de-
composition of matrix pencil, we omit the proof of this theorem and refer the in-
terested reader to the references given at the end of this chapter. Nevertheless, we
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can see that the existence condition for a UIDO being designed by the matrix pen-
cil approach described above is identical with the one stated in Theorem 6.2. This
condition, as we have illustrated, is weaker than the one for UIO.

As a summary, the design algorithm for UIDO using the matrix pencil approach
is outlined below.

Algorithm 6.10 (The matrix pencil approach to the design of UIDO)

S1: Decompose the matrix pencil (6.62) into (6.64) by regular transformations
S2: Define UIDO according to (6.66)–(6.67) by choosing Lo properly.

6.5.4 A Numerical Approach to the UIDO Design

The approach stated below is in fact a summary of the results presented in
Sects. 5.7.1 and 6.2.3.

Consider system model (3.32)–(3.33). As shown in Sects. 5.7.1 and 6.2.3, resid-
ual generator

z(k + 1)=Gz(k)+Hu(k)+Ly(k), r(k)= vy(k)−wz(k)− qu(k) (6.68)

delivers a residual signal r whose dynamics, expressed in the non-recursive form, is
governed by

r(z)=wGsz−se(z)+ vs
(
Hf,s Īf sfs(z)+Hd,s Īdsds(z)

)
where

G = [Go g
]
, Go =

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0
1 0 · · · 0
...

. . .
. . .

...

0 · · · 1 0
0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎦
∈Rs×(s−1) (6.69)

g =
⎡
⎢⎣
g1
...

gs

⎤
⎥⎦ , vs

⎡
⎢⎢⎢⎣

C

CA
...

CAs

⎤
⎥⎥⎥⎦= 0, vs =

[
vs,0 · · · vs,s

]
(6.70)

w = [0 · · · 0 1
]
, v = vs,s, q = vD (6.71)

H = T B −LD, L=−

⎡
⎢⎢⎢⎣
vs,0
vs,1
...

vs,s−1

⎤
⎥⎥⎥⎦− gvs,s (6.72)
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T =

⎡
⎢⎢⎢⎢⎣

vs,1 vs,2 · · · vs,s−1 vs,s

vs,2 · · · . . . vs,s 0
...

. . .
. . .

. . .
...

vs,s 0 · · · · · · 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

C

CA
...
...

CAs−2

CAs−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.73)

Īf s =

⎡
⎢⎢⎢⎢⎣

Ikf×kf O · · · O

wgIkf×kf
. . .

. . .
...

...
. . .

. . . O

wGs−1gIkf×kf · · · wgIkf×kf Ikf×kf

⎤
⎥⎥⎥⎥⎦

Īds =

⎡
⎢⎢⎢⎢⎣

Ikd×kd O · · · O

wgIkd×kd
. . .

. . .
...

...
. . .

. . . O

wGs−1gIkd×kd · · · wgIkd×kd Ikd×kd

⎤
⎥⎥⎥⎥⎦

fs(z) =

⎡
⎢⎢⎢⎣
f (z)z−s

...

f (z)z−1

f (z)

⎤
⎥⎥⎥⎦ , ds(z)=

⎡
⎢⎢⎢⎣
d(z)z−s

...

d(z)z−1

d(z)

⎤
⎥⎥⎥⎦ .

Following Theorem 6.3, under condition

rank
[
Hf,s Ho,s Hd,s

]
> rank

[
Ho,s Hd,s

]
we are able to solve equations

vsHf,s �= 0 and vs
[
Ho,s Hd,s

]= 0 (6.74)

for vs such that residual generator (6.68) becomes a UIDO, that is, its dynamics
fulfills

e(k + 1)=Ge(k)+ (T Ef −LFf )f (k), r(k)=we(k)+ vFf f (k)
in the recursive form or equivalently

r(z)=wGsz−se(z)+ vsHf,s Īf sfs(z)
in the non-recursive form.

In summary, we have the following algorithm.

Algorithm 6.11 (The UIDO design approach by Ding et al.)

S1: Solve (6.74) for vs
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S2: Choose g and set G, H , L, q , T , v, w according to (6.69)–(6.72)
S3: Construct residual generator according to (6.68).

Example 6.6 We continue our study in Example 6.3 and now design a UIDO for
CSTH. Remember that we have found out that beginning with s = 1 condition (6.74)
is satisfied. Below, we design a reduced order UIDO (for s = 1) using the above
algorithm.

S1: Solve (6.74) for vs

vs,0 =
[−7.5920× 10−4 −0.0059 0.0014

]
vs,1 =

[−1.2119× 10−6 −1 3.2124× 10−19
]

S2: g is chosen to be

g =−1.5

and compute H , L, q , T , v, w, which results in

T = [−3.8577× 10−5 −3.8577× 10−5 3.2124× 10−19
]

L= [7.5738× 10−4 −1.4940 −0.0014
]

H = [−3.8577× 10−5 9.7693× 10−15
]

v = [−1.2119× 10−6 −1 3.2124× 10−19
]
, q = 0, w = 1.

S3: Construct residual generator according to (6.68) using the obtained system ma-
trices.

6.6 Unknown Input Parity Space Approach

With the discussion in the last subsection as background, the parity space approach
introduced in the last chapter can be readily extended to solving the PUIDP. Since
the underlying idea and the solution are quite similar to the ones given in the last
subsection, below we just give the algorithm for the realization of the unknown input
parity space approach without additional discussion.

Algorithm 6.12 (The unknown input parity space approach)

S1: Solve

vsHf,s �= 0 and vs
[
Ho,s Hd,s

]= 0

for vs
S2: Construct residual generator as follows

r(k)= vs
(
ys(k)−Hu,sus(k)

)
.
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Note that the application of this algorithm leads to a residual signal decoupled
form d :

r(k)= vs
(
ys(k)−Hu,sus(k)

)= vsHf,sfs(k).

6.7 An Alternative Scheme—Null Matrix Approach

Recently, Frisk and Nyberg have proposed an alternative scheme to study residual
generation problems and in particular to solve PUIDP. Below, we briefly introduce
the basic ideas of this scheme.

Consider system model (3.31) and rewrite it into

[
y(s)

u(s)

]
=
[
Gyd(s) Gyf (s) Gyu(s)

0 0 I

]⎡⎣ d(s)f (s)

u(s)

⎤
⎦ . (6.75)

Now, we are able to formulate the residual generation problem in an alternative
manner, that is, find a dynamic system R(s) ∈RH∞ with y and u as its inputs and
residual signal r as its output so that

R(s)

[
Gyu(s)

I

]
u(s)= 0 (6.76)

=⇒ r(s)=R(s)
[
y(s)

u(s)

]
=R(s)

[
Gyd(s) Gyf (s) Gyu(s)

0 0 I

]⎡⎣ d(s)f (s)

u(s)

⎤
⎦

=R(s)
[
Gyd(s) Gyf (s)

0 0

][
d(s)

f (s)

]
. (6.77)

In particular, if there exists a R(s) ∈RH∞ such that

R(s)

[
Gyd(s) Gyu(s)

0 I

]
= 0 (6.78)

then we have

r(s)=R(s)
[
y(s)

u(s)

]
=R(s)

[
Gyf (s)

0

]
f (s). (6.79)

Note that solving (6.78) is a problem of finding null matrix of

[
Gyd(s) Gyu(s)

0 I

]
.

In this way, solving PUIDP is transformed into a problem of finding a null ma-
trix. Nowadays, there exist a number powerful algorithms and software tools that
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provide us with numerically reliable and computationally efficient solutions for
(6.78).

It is worth mentioning that application of the so-called minimal polynomial basis
method for solving (6.78) leads to a residual generator of the minimum order.

6.8 Discussion

Having addressed the existence conditions and solutions for the PUIDP in the previ-
ous sections, we would like to discuss their interpretation. Generally speaking, the
dimension of the subspace spanned by those residual vectors decoupled from the
unknown input vector is equal to

dim(rd)=m− kd (6.80)

with rd denoting the residual vector decoupled from the unknown input vector. In
fact, this claim follows from (6.78) and (6.79) immediately and means the decou-
pling is achieved on the basis of information delivered by the embedded sensors.
Moreover, remember that after a successful decoupling

rd(s)=R(s)
[
Gyf (s)

0

]
f (s).

with R(s) ∈RH(m−kd )×(m+ku)∞ . As a result, the projection of some detectable fault
vectors, that is, f (s) satisfying Gyf (s)f (s) �= 0, onto the residual subspace may
become zero, or in other words, the fault detectability may suffer from a unknown
input decoupling. One should keep these two facts in mind by dealing with PUIDP.
In the next chapter, we shall also present an alternative solution.

6.9 Minimum Order Residual Generator

Remember that the minimum order of a parity relation or an observer-based residual
generator is given by the minimum observability index σmin. How can we design a
UIDO or a parity relation based unknown input residual generator of a minimum
order? The answer to this question is of practical interest, since a minimum order
residual generator implies minimal on-line computation.

In Sects. 6.5.1, 6.4.2 and 6.7, we have mentioned that

• the algebraic approach by Ge and Fang
• the geometric approach and
• the minimal polynomial basis method

can be used to construct residual generators of a minimum order. Below, we shall
introduce two approaches in details.
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6.9.1 Minimum Order Residual Generator Design by Geometric
Approach

In this subsection, we propose a design procedure for constructing minimum order
UIFDF based on the results achieved in Sect. 6.4.2.

Assume that the existence condition (6.41) for a UIFDF is satisfied. Then, apply-
ing Algorithm 6.8 leads to an observable pair (�C21, Ā221) as shown in (6.36). Now,
instead of constructing a residual generator described by (6.38), we reconsider

ż21 = Ā221z21 + T21Bu+ T21Lmaxy = Ā221z21 + �Bū (6.81)

ȳ = V2y = �C21z21 (6.82)

with

�B = [T21B T21Lmax
]
, ū=

[
u

y

]
.

Suppose that the minimum observability index of the observable pair (�C21, Ā221)

is σ2,min. It is known from Chap. 5 that the minimum order residual generator for
(6.81)–(6.82) is σ2,min and we are able to apply Algorithm 5.1 to design a (minimum
order) residual generator with s = σ2,min.

To show that σ2,min is also the minimum order of (reduced order) UIFDF, we call
the reader’s attention to the following facts: Given system model (6.27)

• any pair (L,V ) that solves the PUIDP leads to

(A−LC,Ed,V C)

∼
([
Ã11 Ã12

0 Ã22

]
,

[
Ẽd1

0

]
,

[
C̃11 C̃12

0 C̃22

])

• the subspace spanned by (Ã11, Ẽd1, C̃11) includes the perfect controllable sub-
space (Ā11, �Ed1,�C1) given in Lemma 6.3

• by a suitable selection of a pair (L̃1, Ṽ1),

(Ã11 − L̃1C̃11, Ẽd1, Ṽ1C̃11)

∼
([
Ã11,11 Ã11,12

0 Ã11,22

]
,

[
Ẽd1,1

0

]
,

[
C̃11,11 C̃11,12

0 C̃11,22

])

where (Ã11,11, Ẽd1,1, C̃11,11) is perfect controllable.
• Due to the special form of

([
Ã11,22 X

0 Ã22

]
,

[
C̃11,22 X

0 C̃22

])
(6.83)

with X denoting some block of no interest, it is evident that the minimum order
of the residual generator for the pair (6.83) is not larger than the minimum order
of the residual generator for the pair (Ã22, C̃22)
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• the pair (6.83) is equivalent to the pair (Ā22,�C2) given in Theorem 6.8.

Based on these facts, the following theorem becomes clear.

Theorem 6.12 Given system (6.21)–(6.22) and suppose that the PUIDP is solv-
able. Then, using Algorithms 6.8 and 5.1, a minimum order UIFDF can be con-
structed.

Algorithm 6.13 (The geometric approach based design of minimum order residual
generator)

S1: Apply Algorithm 6.8 to system (6.21)–(6.22) and bring the resulted system into
form (6.81)–(6.82)

S2: Find the minimum observability index σ2,min and set s = σ2,min

S3: Using Algorithm 5.1 to construct a minimum order residual generator.

Example 6.7 We now apply Algorithm 6.13 to design a minimum order UIDO for
the benchmark system LIP100. For this purpose, we continue our study in Exam-
ple 6.4, from which we can find out

σ2,min = 1

and thus set s = 1. It follows the determination of the observer gain that is set to
be −1.0 and the other system matrices (parameters). Figure 6.3 gives the response
of the residual signal to different (simulated) sensor faults which have occurred at
t = 15 s and 25 s, respectively. Note that the residual signal is totally decoupled
from the disturbance.

Fig. 6.3 Response of the
residual signal generated by a
minimum order UIDO
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6.9.2 An Alternative Solution

A natural way to approach the reach for a minimum order residual generator is a
repeated use of Algorithm 6.12 or 6.11 by increasing s step by step. This implies,
however, equation

vsHf,s �= 0 and vs
[
Ho,s Hd,s

]= 0 (6.84)

should be repeatedly solved, which, for a large s, results in an involved computation
and may also lead to some numerical problems, for instanceHo,s,Hd,s may become
ill-conditioned. Below is an approach that offers a solution to this problem.

Recall that a parity vector can be parametrized by

vs =ws �Qbase,s , ws �= 0, Qbase,s = diag(Nσmin , . . . ,Nσmax−1,Nσmax , . . . ,Ns)

NiCA
i
o = 0, i = 1, . . . , σmax−1, Nσmax =Nσmax+1 = · · · =Ns = Im×m

and further vsHd,s by

vsHd,s =ws �Qbase,s �Hd,s
with Ao, Lo as defined in (5.42). Note that the elements of matrix Ao are either
one or zero, hence computation of high power of Ao is not critical. Moreover, for
s ≥ σmax we have Aso = 0. Taking into account these facts, the following algorithm
is developed, which can be used to determine the minimum order parity vector that
ensures a residual generation decoupled from the unknown inputs.

Algorithm 6.14 (Calculation of minimum order parity vector)

S1: Transform (C,A) into its observer canonical form and determine the observ-
ability indices and matrices Ao,Lo

S2: Set initial conditions

s = σmin, �Hd,s =
[
H̃d,s Fd

]
, H̃d,s =

[
CAo

s−1�Ed · · · C�Ed
]

Po = �Qbase,s =Nsigmamin , NsigmaminCAo
σmin = 0

S3: Solve

wsPo �Hd,s = 0.

If it is solvable, then set

vs =wsPoH1,s

and end
S4: If s = σmin + σmax, no solution and end
S5: If s < σmax − 1, set

s = s + 1, �Hd,s =
[ �Hd,s−1 0

H̃d,s Fd

]
, H̃d,s =

[
CAo

s−1�Ed · · · C�Ed
]
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Po = diag(�Qbase,s−1,Ns), NsCA
s
o = 0

and go to S3
S6: If s = σmax − 1, set

s = s + 1, �Hd,s =
[ �Hd,s−1 0
H̃d,s Fd

]
, H̃d,s =

[
CAo

s−1�Ed · · · C�Ed
]

Po = diag(�Qbase,s−1, Im×m)

and go to S3
S7: Form the first kd columns of �Hd,s as a new matrix Ĥd,s , remove them from

�Hd,s and define the rest of �Hd,s as new �Hd,s , that is,

�Hd,s = �Hd,s(kd + 1, α)

where α denotes the column number of the old �Hd,s and �Hd,s(kd + 1, α) the
columns from the kd + 1 to the last one

S8: Set

s = s + 1, �Hd,s =
[ �Hd,s−1 0

H̃d,s Fd

]
, H̃d,s =

[
CAo

σmax−1�Ed · · · C�Ed
]

and solve

P1Ĥd,s = 0

for P1 and set

Po = diag(P1�Qbase,s−1, Im×m)

and go to S3.

The purpose of Algorithm 6.14 is to solve

vs
[
Ho,s Hd,s

]= 0

for vs with the minimum order. The underlying ideas behind it are

• to do it iteratively,
• to utilize the facts

– for s = σmax, CAso = 0 and so for P �= 0

P

⎡
⎢⎣
CAo

i�Ed
...

CAo
s�Ed

⎤
⎥⎦= 0 =⇒ diag(P1, Im×m)

⎡
⎢⎣
CAo

i�Ed
...

CAo
s�Ed

⎤
⎥⎦= 0
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where

P1

⎡
⎢⎣
CAo

i�Ed
...

CAo
s−1�Ed

⎤
⎥⎦= 0

– given matrices Q1, Q2 of appropriate dimensions the solvability of the follow-
ing two equations

P
[
Q1 Q2

]= 0

and

P1P2Q2 = 0, P2Q1 = 0

are identical, moreover P = P1P2.

In comparison with a direct solution of (6.84), Algorithm 6.14 has the following
advantages:

• The highest power of Ao is limited to σmax − 1
• The maximally dimensional linear equation to be solved is

wsPo

⎡
⎢⎢⎢⎢⎣

Fd 0 · · · 0

C�Ed Fd
. . .

...
...

. . .
. . . 0

CAo
σmax−1�Ed · · · C�Ed Fd

⎤
⎥⎥⎥⎥⎦= 0

which is the case for s = σmax + σmin and whose dimension is not larger than
m(σmax+1)× kd(σmax+1). Note that in the same case a direct solution of (6.84)
implies

vs

⎡
⎢⎢⎢⎢⎣

C Fd 0 · · · 0

CA CEd Fd
. . .

...
...

...
. . .

. . . 0
CAσmax+σmin CAσmax+σmin−1Ed · · · CEd Fd

⎤
⎥⎥⎥⎥⎦= 0

whose dimension amounts to

m(σmax + σmin + 1)× (n+ kd(σmax + σmin + 1)
)
.

It is worth to mention that the one-to-one mapping between the parity vector and
DO design also allows applying Algorithm 6.14 for the design of minimum order
UIDO.



160 6 Perfect Unknown Input Decoupling

6.10 Notes and References

Unknown input decoupling has been an attractive research topic in the past two
decades. In this chapter, we have only introduced some representative methods aim-
ing at demonstrating how to approach the relevant issues around this topic.

The existence conditions for the PUIDP, expressed in terms of the rank of transfer
matrices, was first derived by Ding and Frank [47]. Using matrix pencil technique,
Patton and Hou [92] have given a proof of the check condition described by the rank
of Rosenbrock system matrix, which, different from the proof given in Sect. 6.2.2,
requires the knowledge of the matrix pencil technique. The existence conditions
expressed by the rank of parity space matrices Ho,s , Hd,s have been studied by
Chow and Willsky [29], and subsequently by Wünnenberg [183]. The existence
condition (6.11) and the results described in Sect. 6.2.3 have been lately presented,
for instance by Ding et al. [51].

Concerning the solution of the PUIDP, we have introduced different methods.
Significant contributions to the frequency domain approaches have been made by
Frank with his co-worker [47, 64] and Viswanadham et al. [171]. The eigenstruc-
ture assignment approach presented in Sect. 6.4.1 is a summary of the work by
Patton and his research group [144]. Massoumnia [123] has initiated the application
of the geometric theory to the FDI system design. Considering that the reader with-
out profound knowledge of the advanced control theory may not be familiar with
the geometric control theory, we have adopted a modified form for the description
of this approach. Most of those results can be, in the dual form, found in the books
by Wonham [182] and Kailath [105]. Algorithm 6.6 is given in [14]. UIDO and
parity space type residual generator design are the two topics in the field of model-
based FDI which received much attention in the last two decades. The contributions
by Chow and Willsky [29] using the parity space approach, by Ge and Fang [73]
(see Sect. 6.5.1) and by Wünnenberg and Frank [184] using the Kronecker canon-
ical form are the pioneering works devoted to these topics, in which, above all, the
original ideas were proposed. Their works have been followed by a great number
of studies, for example, the one on the use of UIO technique proposed by Hou and
Müller [89], the matrix pencil approach developed by Patton and Hou [92], in which
matrix pencil decompositions are necessary and thus the use of a matrix pencil de-
composition technique proposed by Van Dooren [55] is suggested, as well as the
work by Wünnenberg [183], just mentioning some of them. We would like to point
out that in this chapter we have only presented the original and simplest form of the
UIO technique, although it is one of widely used approaches and exists in numerous
presentation forms, see, for instance, [90, 170]. The reason why we did not present
it in more details lies in the fact that the application of this approach for the FDI
purpose is restricted due to the existence conditions. Recall that the UIO is used
for the state estimation, while for a residual generation only an estimation of the
process output is needed. As a result, the existence conditions for UIO are stronger
than the ones for the other approaches described in this chapter. We refer the reader
to the survey papers, for example, [60–62], and the references given there for more
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information about UIO design technique. The alternative scheme for residual gen-
eration and PUIDP solution by means of null matrix formulation has been proposed
in [67, 166].

It is worth to emphasize that a unknown input decoupling is achieved

• at the cost of fault detectability and
• on the basis of sufficient information delivered by the embedded sensors.

A careful check of the possible degradation of the fault detectability before the re-
alization of a unknown input decoupling is helpful.

Finally, we would like to mention that only few studies on the design of mini-
mum or low order residual generators have been reported, although such residual
generators are of practical interest, due to their favorable on-line computation.



Chapter 7
Residual Generation with Enhanced Robustness
Against Unknown Inputs

It has been early recognized that the restriction on the application of the perfect
decoupling technique introduced in the last chapter may be too strong for a realistic
dissemination of this technique in practice. Taking a look at the general existence
condition for a residual generator perfectly decoupled from unknown inputs,

rank
(
Gyd(s)

)
<m

it becomes clear that a perfect decoupling is only possible when enough number of
sensors are available. This is often not realistic from the economic viewpoint. Fur-
thermore, if model uncertainties are unstructured and disturbances possibly appear
in all directions of the measurement subspace, the decoupling approaches intro-
duced in the last chapter will fail.

Since the pioneering work by Lou et al., in which the above problems were, for
the first time, intensively and systematically studied and a solution was provided,
much attention has been devoted to this topic. The rapid development of robust con-
trol theory in the 1980s and early 1990s gave a decisive impulse for the establish-
ment of a framework, in which approaches and tools to deal with robustness issues
in the FDI field are available. The major objective of this chapter is to present those
advanced robust FDI approaches and the associated tools, which are becoming pop-
ular for the robust residual generator design. Different from a perfect decoupling,
the residual generators addressed in this chapter will be designed in the context of
a trade-off between the robustness against the disturbances and the sensitivity for
the faults. As a result, the generated residual signal will also be influenced by the
disturbances, as shown in Fig. 7.1.

Generally speaking, robust FDI problems can be approached in three different
manners:

• making use of knowledge of the disturbances
A typical example is the Kalman filter approach, in which it is assumed that the
unknown input is white noise with known variances

• approximating Gyd(s) by a transfer matrix Gyd(s) which, on the one hand, sat-
isfies the existence conditions for a PUID and, on the other hand, provides an
optimal approximation (in some sense) to the original one

S.X. Ding, Model-Based Fault Diagnosis Techniques, Advances in Industrial Control,
DOI 10.1007/978-1-4471-4799-2_7, © Springer-Verlag London 2013
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Fig. 7.1 Schematic description of robust residual generation

It is evident that the design procedure of this scheme would consist of two steps:
the first one is the approximation and the second one the solution of PUIDP based
on Gyd(s)

• designing residual generators under a certain performance index
A reasonable extension of the PUIDP is, instead of a perfect decoupling, to make
a compromise between the robustness against the unknown input and the sensi-
tivity to the faults. This compromise will be expressed in terms of a performance
index, under which the residual generator design will then be carried out.

In the forthcoming sections, we are going to describe the first and the last types of
schemes, and concentrate ourselves, however, on the third one, due to its important
role both in theoretical study and practical applications.

7.1 Mathematical and Control Theoretical Preliminaries

Before we begin with our study on the robustness issues surrounding the FDI sys-
tem design, needed mathematical and control theoretical knowledge and associated
tools, including

• norms for signals and systems
• algorithms for norm computation
• singular value decomposition (SVD)
• co-inner–outer factorization (CIOF)
• H∞ solutions to model matching problem (MMP) and
• linear matrix inequality (LMI) technique,

will be introduced in this section. Most of them are standard in linear algebra and
robust control theory. The detailed treatment of these topics can be found in the
references given at the end of this chapter.
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7.1.1 Signal Norms

In this subsection, we shall answer the question: how to measure the size of a signal.
Measuring the size of a signal in terms of a certain kind of norm is becoming the

most natural thing in the world of control engineering. A norm is a mathematical
concept that is originally used to measure the size of functions. Given signals u, v

u=
⎡
⎢⎣
u1
...

un

⎤
⎥⎦ ∈Rn, v =

⎡
⎢⎣
ν1
...

νn

⎤
⎥⎦ ∈Rn

then a norm must have the following four properties:

I. ‖u‖ ≥ 0
II. ‖u‖ = 0⇐⇒ u= 0

III. ‖au‖ = |a|‖u‖, a is a constant
IV. ‖u+ v‖ ≤ ‖u‖ + ‖v‖.

Next, three types of norms, which are mostly used in the control engineering and
also for the FDI purpose, are introduced.

L2 (l2) Norm The L2 (l2) norm of a vector-valued signal u(t) (u(k)) is defined
by

‖u‖2 =
(∫ ∞

0
uT (t)u(t) dt

)1/2

or ‖u‖2 =
( ∞∑
k=0

uT (k)u(k)

)1/2

. (7.1)

The L2 (l2) norm is associated with energy. While uT (t)u(t) or uT (k)u(k) is gen-
erally interpreted as the instantaneous power, ‖u‖2 stands for the total energy.

In practice, the root mean square (RMS) value , instead of L2 (l2) norm, is often
used. The RMS value measures the average energy of a signal over a time interval
and is defined by

‖u‖RMS =
(

1

T

∫ T

0
uT (τ)u(τ) dτ

)1/2

or ‖u‖RMS =
(

1

N

N−1∑
k=0

uT (k)u(k)

)1/2

.

(7.2)
It follows from the Parseval theorem that the size computation of a signal can also
be carried out in the frequency domain:

∫ ∞
0

uT (t)u(t) dt = 1

2π

∫ ∞
−∞

uT (−jω)u(jω)dω

for the continuous-time signal and

∞∑
k=0

uT (k)u(k)= 1

2π

∫ π

−π
uT
(
e−jθ
)
u
(
ejθ
)
dθ
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for the discrete-time signal, where

u(jω)=F
(
u(t)
)

and u
(
ejθ
)=F

(
u(k)
)

with F denoting the Fourier transformation.
In the FDI study, we are often interesting in checking whether the peak amplitude

of a vector-valued residual is below a given threshold. To this end, we introduce next
the so-called peak-norm.

Peak Norm The peak norm of u ∈Rn is defined by

‖u‖peak = sup
t

(
uT (t)u(t)

)1/2 or ‖u‖peak = sup
k

(
uT (k)u(k)

)1/2
.

Peak norm is also called L∞ (l∞) norm.

Remark 7.1 By introducing the above definitions we have supposed that the signal
under consideration is zero for t < 0, that is, it starts at time t = 0.

A direct application of the signal norms in the FDI field is the residual evaluation,
where the size (in the sense of a norm) of the residual signal will be on-line calcu-
lated and then compared with a given threshold. Since evaluation over the whole
time or frequency domain is usually unrealistic, introducing an evaluation window
is a practical modification. For our purpose, following definitions are introduced:

‖u‖2,ψ =
(∫ t2

t1

uT (t)u(t) dt

)1/2

or ‖u‖2,ψ =
(

k2∑
k=k1

uT (k)u(k)

)1/2

(7.3)

‖u‖2,φ =
(

1

2π

∫ ω2

ω1

uT (−jω)u(jω)dω
)1/2

(7.4)

‖u‖peak,ψ = sup
t∈ψ
(
uT (t)u(t)

)1/2 or ‖u‖peak,ψ = sup
k∈ψ
(
uT (k)u(k)

)1/2 (7.5)

where ψ = (t1, t2) or ψ = (k1, k2) and φ = (ω1,ω2) stand for the time and fre-
quency domain evaluation windows.

Note that a discrete-time signal over a time interval can also be written into a
vector form. For instance, in our study on parity space methods, we have used the
notation ds(k),

ds(k)=

⎡
⎢⎢⎢⎣

d(k)

d(k+ 1)
...

d(k + s)

⎤
⎥⎥⎥⎦

to represent the disturbance in the time interval [k, k+ s]. Thus, in this sense, we are
also able to use vector norms to the calculation of the size of a (discrete-time) signal.
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Corresponding to the above-mentioned signal norms, we introduce following vector
norms: given u ∈Rn

2 (Euclidean) Norm

‖u‖E =
(

n∑
i=1

u2
i

)1/2

. (7.6)

∞ Norm

‖u‖∞ = max
1≤i≤n

|ui |. (7.7)

It is obvious that the computation of a vector norm is much more simple than the
one of a signal norm.

7.1.2 System Norms

In this subsection, we shall answer the question: how to measure the size of a system.
Consider a dynamic system y(s)=G(s)u(s). For our purpose, we only consider

those LTI systems, which are causal and stable. Causality means G(t)= 0 for t < 0
with G(t) as impulse response. Mathematically, the causality requires that G(s) is
proper, that is,

lim
s→∞G(s) <∞.

A system is called strictly proper if

lim
s→∞G(s)= 0.

System G(s) or G(z) is called stable if it is analytic in the closed RHP (Re(s)≥ 0)
or for |z| ≤ 1.

One way to describe the size of the transfer matrix G(s) is in terms of norms for
systems or norms for transfer matrices. There are two different ways to introduce
norms for systems. From the mathematical viewpoint,G is an operator that maps the
vector-valued input function u to the vector-valued output function y. The operator
norm ‖G‖p is defined in terms of the norms of input and output functions as follows:

‖G‖p = sup
u �=0

‖y‖p
‖u‖p = sup

u �=0

‖Gu‖p
‖u‖p . (7.8)

It is thus also known as induced norm.
Suppose that the input signal u is not fixed and can be any signal of L2 (l2) norm.

It turns out

sup
u �=0

‖y‖2

‖u‖2
= sup
u �=0

‖Gu‖2

‖u‖2
= sup
ω∈[0,∞]

σ̄
(
G(ω)

)
(7.9)
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for continuous-time systems and

sup
u �=0

‖y‖2

‖u‖2
= sup
u �=0

‖Gu‖2

‖u‖2
= sup
θ∈[0,2π]

σ̄
(
G
(
ejθ
))

for discrete-time systems, where σ̄ (G(ω)) or σ̄ (G(ejθ )) denotes the maximum sin-
gular value ofG(jω) orG(ejθ ). This induced norm equals to the H∞ norm ofG(s)
(G(z)) defined by

H∞ Norm

‖G‖∞ = sup
ω∈[0,∞]

σ̄
(
G(ω)

)
or ‖G‖∞ = sup

θ∈[0,2π]
σ̄
(
G
(
ejθ
))
. (7.10)

H∞ norm can be interpreted as the amplification of a transfer matrix that maps the
input signal with finite energy but being any kind of signals into the output signal.
Remember that in the design form of a residual generator,

r(s)=R(s)M̂u(s)
(
Gyf (s)f (s)+Gyd(s)d(s)

)

both signals, d(s), f (s), are unknown. If their energy level is bounded, then H∞
norm can be used to measure their influence on the residual signal. It is interesting
to note that even if the input signal u is not L2 bounded but ‖u‖RMS <∞, we
have

sup
u �=0

‖y‖RMS

‖u‖RMS
= sup

ω
σ̄
(
G(ω)

)= ‖G‖∞. (7.11)

In the FDI study, for y(s) ∈Rm,‖y‖peak is often used for the purpose of residual
evaluation. In this case,

Peak-to-Peak Gain

‖G‖peak = sup
u �=0

‖y‖peak

‖u‖peak
(7.12)

is useful for the threshold computation.
A further induced norm is the so-called generalized H2 norm,

Generalized H2 Norm

‖G‖g = sup
u �=0

‖y‖peak

‖u‖2
(7.13)

which is rarely applied in the control theory but provides us with a helpful tool
to answer the question: how large does the disturbance (input variable) with
bounded energy cause instantaneous power change in the residual signal (output
variable)?
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Another norm for transfer matrices is

H2 Norm

‖G‖2 =
(

1

2π

∫ ∞
−∞

trace
(
GT (−jω)G(jω))dω

)1/2

or (7.14)

‖G‖2 =
(

1

2π

∫ 2π

0
trace
(
GT
(
e−jθ
)
G
(
ejθ
))
dθ

)1/2

. (7.15)

H2 norm is not an induced norm, but widely used in the control theory. Given trans-
fer matrix G, when the input is a realization of a unit variance white noise process,
then the H2 norm of G equals to the expected RMS value of the output. A well-
known application example of the H2 norm is the optimal Kalman filter, in which
the H2 norm of the transfer matrix from the noise to the estimation error is mini-
mized.

Motivated by the study on parity space methods, we introduce next some norms
for matrices. Compared with the norms for transfer function matrices, the norms
for matrices are computationally much simpler. Let G ∈ Rm×n be a matrix with
elements Gi,j , i = 1, . . . ,m, j = 1, . . . , n, then we have

Matrix Norm Induced by the 2 Norm for Vectors Which is also called spectral
norm:

‖G‖2 = sup
u �=0

‖Gu‖2

‖u‖2
= σ̄ (G)=

(
max
i
λi
(
GTG

))1/2
. (7.16)

Frobenius-Norm

‖G‖F =
(

m∑
i=1

n∑
j=1

|Gij |2
)1/2

=
(

n∑
i=1

λi
(
GTG

))1/2

. (7.17)

∞ Norm

‖G‖∞ =max
i

n∑
j=1

|Gij |

which also equals to the induced norm by the∞ norm for vectors, that is,

max
i

n∑
j=1

|Gij | = sup
u �=0

‖Gu‖∞
‖u‖∞ . (7.18)

7.1.3 Computation of H2 and H∞ Norms

Suppose system G(s) has a minimal state space realization G(s) = D + C(sI −
A)−1B and A is stable, then
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• for continuous-time systems ‖G‖2 is finite if and only if D = 0 and

‖G‖2 = trace
(
CPCT

)= trace
(
BTQB

)
(7.19)

where P , Q are respectively the solution of Lyapunov equations

AP + PAT +BBT = 0, QA+ATQ+CT C = 0 (7.20)

• for discrete-time systems

‖G‖2 = trace
(
CPCT +DDT

)= trace
(
BTQB +DTD

)
(7.21)

where P , Q are respectively the solution of Lyapunov equations

APAT − P +BBT = 0, ATQA−Q+CT C = 0. (7.22)

Unlike the H2 norm, an iterative procedure is needed for the computation of the H∞
norm, where an algorithm of determining whether ‖G‖∞ < γ will be repeatedly
used until

inf
γ

{‖G‖∞ < γ
} := ‖G‖∞

is found. Below is the so-called Bounded Real Lemma that characterizes the set
{‖G‖∞ < γ }.

Lemma 7.1 Given a continuous time system G(s)=D+C(sI −A)−1B ∈RH∞,
then ‖G‖∞ < γ if and only if

R := γ 2I −DTD > 0

and there exists P = PT ≥ 0 satisfying the Riccati equation

P
(
A+BR−1DT C

)+ (A+BR−1DTC
)T
P + PBR−1BT P

+CT (I +DR−1DT
)
C = 0.

Lemma 7.2 Given a discrete time system G(z) = D + C(zI − A)−1B ∈ RH∞,
then ‖G‖∞ < γ if and only if ∃X ≥ 0 such that

γ 2I −DTD −BTXB > 0

ĀT XĀ−X− ĀT XG(I +XG)−1XĀ+ γ 2Q= 0

Ā=A+B(γ 2I −DTD
)−1

DTC, G=−B(γ 2I −DTD
)−1

BT

Q= CT (γ 2I −DTD
)−1

C

and (I +XG)−1Ā is stable.
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We see that the core of the above computation is the solution of Riccati equations
which may be, when the system order is very high, computationally consuming.
There exists a number of CAD programs for that purpose.

In Sect. 7.1.7, an LMI based algorithm will be introduced for the H∞ norm
computation as well as the computation of other above-mentioned norms.

7.1.4 Singular Value Decomposition (SVD)

The SVD of a matrix G ∈Rn×k with rank(G)= γ is expressed by

G=UΣV T (7.23)

where U ∈Rn×n, V ∈Rk×k ,

UUT = In×n, V V T = Ik×k, Σ =
[

diag(σ1, . . . , σγ ) 0
0 0

]
(7.24)

with σ1 ≥ σ2 ≥ · · · ≥ σγ > 0 denoting the singular values of G. The SVD of G ∈
Rn×k is of the following two interesting properties:

‖G‖F =
∥∥UΣV T ∥∥

F
= ‖Σ‖F =

γ∑
i=1

σi (7.25)

‖G‖2 =
∥∥UΣV T ∥∥2 = ‖Σ‖2 = σ1. (7.26)

7.1.5 Co-Inner–Outer Factorization

Inner–outer factorization (IOF) technique is a powerful tool for solving robustness
related control problems. For the FDI purpose, the so-called co-inner–outer factor-
ization (CIOF) plays an important role. Roughly speaking, a CIOF of a transfer
matrix G(s) is a decomposition of G(s) into

G(s)=Gco(s)Gci(s) (7.27)

where Gci(s) is called co-inner and satisfies Gci(jω)G
∗
ci(jω) = I for all ω (for

continuous-time systems) or G∗(ejθ )G(ejθ ) = I for all θ ∈ [0,2π] (for discrete-
time systems) and Gco(s) is called co-outer and has as its zeros all the (left) ze-
ros of G(s) in the LHP and on the jω-axis, including at infinity (for continuous-
time systems), or within |z| ≤ 1 (for discrete-time systems). IOC is a dual form
of CIOF and thus the IOC of G(s) can be expressed in terms of the CIOF of
GT (s) = (Gco(s)Gci(s))

T =Gi(s)Go(s). Gi(s), Go(s) are respectively called in-
ner and outer of G(s).
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In most of textbooks on robust control, study is mainly focused on IOF instead
of CIOF. Also, it is generally presented regarding to continuous-time systems. Next,
we shall introduce the existence conditions for CIOF and the associated algorithms
by “translating” the results on IOF into the ones of CIOF based on the duality.

We first introduce some relevant definitions. A rational matrix G(s) is called
surjective if it has full row rank for almost all s and injective if it has full column
rank for almost all s. A co-outer is analytic in C+ and has a left inverse analytic
in C+. If there exists G−(s) ∈RH∞ such that G−(s)G(s)= I , then G(s) is called
left invertible in RH∞.

The following results are well-known in the robust control theory.

Lemma 7.3 Assume that G(s) ∈ LHm×k∞ is surjective and

• in case of a continuous-time system: ∀ω ∈ [0,∞]
rank
(
G(jω)

)=m ⇐⇒ G(jω)G∗(jω) > 0 (7.28)

• in case of a discrete-time system: ∀θ ∈ [0,2π]
rank
(
G
(
ejθ
))=m ⇐⇒ G

(
ejθ
)
G∗
(
ejθ
)
> 0 (7.29)

then there exists a CIOF

G(s)=Gco(s)Gci(s). (7.30)

Lemma 7.4 Assume that G(s) ∈ LHm×k∞ is surjective and ∀ω ∈ [0,∞]
G(jω)G∗(jω) > 0. (7.31)

Then there exists an LCF G(s)= M̂−1(s)N̂(s) that also gives a CIOF

G(s)= M̂−1(s)N̂(s)=Gco(s)Gci(s) (7.32)

with Gco(s) = M̂−1(s) as co-outer and Gci(s) = N̂(s) ∈ RH∞ as co-inner. This
factorization is unique up to a constant unitary multiple. If G(s) ∈ RH∞, then
G−1

co (s) ∈RH∞. Furthermore, assume that the realization of G(s)= (A,B,C,D)
with A ∈Rn×n is detectable and ∀ω ∈ [0,∞]

rank

[
A− jωI B

C D

]
= n+m. (7.33)

Then the above LCF can be expressed by

M̂(s) = (A−LC,L,−QC,Q)
N̂(s) = (A−LC,B −LD,QC,QD) ∈RH∞ (7.34)

Q = (DDT
)−1/2

, L= (YCT +BDT
)(
DDT

)−1
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where Y ≥ 0 is the stabilizing solution of the Riccati equation

AY + YAT +BBT − (YCT +BDT
)(
DDT

)−1(
CY +DBT )= 0. (7.35)

Lemma 7.5 Assume that G(z) ∈ LHm×k∞ is surjective and ∀θ ∈ [0,2π]
G
(
ejθ
)
G∗
(
ejθ
)
> 0. (7.36)

Then there exists an LCF G(z)= M̂−1(z)N̂(z) that also gives a CIOF

G(z)= M̂−1(z)N̂(z)=Gco(z)Gci(z) (7.37)

with Gco(z) = M̂−1(z) as co-outer and Gci(z) = N̂(z) ∈ RH∞ as co-inner. If
G(z) ∈RH∞, then G−1

co (z) ∈RH∞. This factorization is unique up to a constant
unitary multiple. Furthermore, assume that the realization of G(z)= (A,B,C,D)
with A ∈Rn×n is detectable and ∀θ ∈ [0,2π]

rank

[
A− ejθ I B

C D

]
= n+m. (7.38)

Then the above LCF can be expressed by

M̂(s)= (A−LC,L,−RC,R), N̂(s)= (A−LC,B−LD,RC,RD)∈RH∞

R = (DDT +CXCT )−1/2
, L= (ATXCT +BDT

)(
DDT +CXCT )−1

(7.39)

where X ≥ 0 is the stabilizing solution of the Riccati equation

ADX
(
I +CT (DDT

)−1
CX
)−1

ATD −X+BDT⊥D⊥BT = 0 (7.40)

AD =A−CT
(
DDT

)−1
DBT .

Note that Lemmas 7.4 and 7.5 establish an important connection between CIOF
and LCF, which is useful for our latter study.

In Lemmas 7.3–7.5, the LCF is achieved on the assumption that the transfer
matrix is surjective. Removing this condition, the LCF would be computationally
more involved. Below, we introduce a result by Oara and Varga for a general CIOF.
For the sake of simplification, we restrict ourselves to the continuous-time systems.

Lemma 7.6 LetG(s) ∈RHm×k∞ be a real rational matrix of rank r . A CIOFG(s)=
Gco(s)Gci(s) with Gci(s) co-inner and Gco(s) co-outer, can be computed using the
following two-step algorithm:

• Column compression by all-pass factors: G is factorized as

G(s)= [ G̃(s) 0
]
Ga(s)
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where Ga(s) is square and inner, G̃(s) ∈RHm×r is injective and has the same
zeros in C+ as G(s), and its zeros in C− include the zeros of G−1

a (s). By this
step, Ga(s) is chosen to have the smallest possible Mcmillan degree which is
equal to the sum of all right minimal indices of G(s). The computation of Ga(s)
amounts to solving for the stabilizing solution of a standard Riccati equation.
G(s) can be rewritten intoG(s)= G̃(s)Ga1(s), whereGa(s)= [Ga1(s) G̃a(s) ],
Ga1(s) ∈Rr×k is inner.

• Dislocation of zeros by all-pass factors. G̃(s) is further factorized as G̃(s) =
Go(s)Ga2(s), where Ga2(s) is square, inner and Go(s) is injective and has no
zeros in C+. By this step,Ga2(s) is chosen to have the smallest possible Mcmillan
degree which is equal to the number of zeros of G̃(s) in C+. The computation of
Ga2(s) is achieved by solving a Lyapunov equation.

The CIOF is finally given by

G(s)=Gco(s)Gci(s), Gco(s)=Go(s), Gci(s)=Ga2(s)Ga1(s). (7.41)

7.1.6 Model Matching Problem

H∞ optimization technique is one of the most celebrated frameworks in the control
theory, which has been well established between the 1980s and 1990s. The appli-
cation of H∞ optimization technique to the FDI system design is many-sided and
covers a wide range of topics like design of robust FDF, fault identification, handling
of model uncertainties, threshold computation etc.

MMP is a standard problem formulation in the H∞ framework. Many approaches
to the FDI system design can be, as will be shown in the next sections, re-formulated
into an MMP. The MMP met in the FDI framework is often of the following form:
given T1(s), T2(s) ∈RH∞, find R(s) ∈RH∞ so that

∥∥T1(s)−R(s)T2(s)
∥∥∞ −→min. (7.42)

The following result offers a solution to the MMP in a way that is very helpful for
the FDI system design.

Lemma 7.7 Given (scalar) transfer functions T1(s), T2(s), R(s) ∈RH∞ and as-
sume that T2(s) has zeros s = si , i = 1, . . . , p, in the RHP, then

min
R(s)∈RH∞

∥∥T1(s)−R(s)T2(s)
∥∥∞ = λ̄1/2(T ) (7.43)

where λ̄(T ) denotes the maximum eigenvalue of matrix T which is formed as fol-
lows:
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• form

P1 =

⎡
⎢⎢⎣

1
s1+s∗1 · · · 1

s1+s∗p
· · · 1

si+s∗j · · ·
1

sp+s∗1 · · · 1
sp+s∗p

⎤
⎥⎥⎦ ,

(7.44)

P2 =

⎡
⎢⎢⎢⎣

T1(s1)T
∗
1 (s1)

s1+s∗1 · · · T1(s1)T
∗
1 (sp)

s1+s∗p
· · · T1(si )T

∗
1 (sj )

si+s∗j · · ·
T1(sp)T

∗
1 (s1)

sp+s∗1 · · · T1(sp)T
∗
1 (sp)

sp+s∗p

⎤
⎥⎥⎥⎦

• set

T = P−1/2
1 P2P

−1/2
1 . (7.45)

It follows from Lemma 7.7 that the model matching performance depends on the
zeros of T2(s) in the RHP. Moreover, if T1(s)= κ , a constant, then

∥∥T1(s)−R(s)T2(s)
∥∥∞ = |κ|. (7.46)

These two facts would be useful for our subsequent study.

7.1.7 Essentials of the LMI Technique

In the last decade, the LMI technique has become an important formulation and
design tool in the control theory, which is not only used for solving standard robust
control problems but also for multi-objective optimization and handling of model
uncertainties. As FDI problems are in their nature a multi-objective trade-off, that
is, enhancing the robustness against the disturbances, model uncertainty and the
sensitivity to the faults simultaneously, application of the LMI technique to the FDI
system design is currently receiving considerable attention.

In the H∞ framework, the Bounded Real Lemma that connects the H∞ norm
computation to an LMI plays a central role. Next, we briefly introduce the “LMI-
version” of the Bounded Real Lemma for continuous and discrete systems.

Lemma 7.8 Given a stable LTI system G(s) = D + C(sI − A)−1B , then
‖G(s)‖∞ < γ if and only if there exists a symmetric Y with

⎡
⎣A

T Y + YA YB CT

BT Y −γ I DT

C D −γ I

⎤
⎦< 0, Y > 0. (7.47)
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Lemma 7.9 Given a stable LTI system G(z) = D + C(zI − A)−1B , then
‖G(z)‖∞ < γ if and only if there exists a symmetric X with

⎡
⎢⎢⎣
−X XA XB 0
ATX −X 0 CT

BT X 0 −γ I DT

0 C D −γ I

⎤
⎥⎥⎦< 0, X > 0. (7.48)

Recently, a generalization of the above lemmas, the so-called GKYP-Lemma
(Generalized Kalman–Yakubovic–Popov) has been proposed, which establishes the
equivalence between a frequency domain inequality in finite frequency intervals and
a matrix inequality. This result has also been successfully applied to the FDF design.
For our purpose, we introduce a simplified form of the GKYP-lemma.

Lemma 7.10 Given transfer matrix

G(s)=D +C(sI −A)−1B

and a symmetric matrix Π ∈R(n+m)×(n+m), then the following two statements are
equivalent:

(i) the finite frequency inequality

[
G(−jω)

I

]T
Π

[
G(jω)

I

]
< 0, ∀ω ∈Ω (7.49)

where Ω is given by

Ω =
⎧⎨
⎩
|ω| ≤�l : low frequency range
|ω| ≥�h: high frequency range
�1 ≤ ω ≤�2: middle frequency range.

(ii) there exist n× n-dimensional Hermitian matrices P , Q> 0 such that

[
A B

I 0

]T
Ξ

[
A B

I 0

]
+
[
C D

0 I

]T
Π

[
C D

0 I

]
< 0 (7.50)

where

Ξ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[−Q P

P � 2
l

]
, |ω| ≤�l

[Q P

P −� 2
hQ

]
, |ω| ≥�h

[ −Q P−j�cQ
P−j�cQ −�1�2Q

]
, �1 ≤ ω ≤�2, �c = �1+�2

2 .
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In the LMI framework, the so-called Schur complement is often used for check-
ing the definiteness of a matrix. Given matrix

A=
[
A11 A12
A21 A22

]

and suppose that A11 > 0 (A11 < 0), then

A> 0 (A < 0) (7.51)

if and only if

Δ=A22 −A21A
−1
11 A12 > 0 (Δ < 0) (7.52)

where Δ is known as the Schur complement of A.

7.2 Kalman Filter Based Residual Generation

In this section, we present one of the first residual generation schemes, the Kalman
filter based residual generation.

Consider a discrete-time dynamic system described by

x(k + 1)=Ax(k)+Bu(k)+Ef f (k)+Eηη(k) (7.53)

y(k)= Cx(k)+Du(k)+ Ff f (k)+ ν(k) (7.54)

where x(k) ∈Rn, u(k) ∈Rku , y(k) ∈Rm are the state, input, output vectors of the
system, f (k) ∈ Rkf stands for the fault vector. η(k) ∈ Rkη , ν(k) ∈ Rm represent
process and measurement noise vectors. It is evident that for such a system there
exists no residual generator decoupled from the unknown inputs η(k), ν(k).

On the other hand, from the well-established stochastic control theory we know
that a Kalman filter delivers residual that is a white Gaussian process if the noise sig-
nals η(k), ν(k) are white Gaussian processes and independent of initial state vector
x(0) with

E
[
η(i)ηT (j) η(i)νT (j)

ν(i)ηT (j) ν(i)νT (j)

]
=
[
Ση SηvT

SvηT Σν

]
δij , δij =

{
1, i = j
0, i �= j (7.55)

Σν > 0, Ση ≥ 0, E
[
η(k)
]= 0, E

[
ν(k)
]= 0 (7.56)

E
[
x(0)
]= x̄, E

[(
x(0)− x̄)(x(0)− x̄)T ]= Po. (7.57)

The Kalman filter technique makes use of this fact and performs a fault detection in
two steps:
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• residual generation using a Kalman filter
• residual evaluation by doing the so-called Generalized Likelihood Ratio (GLR)

test that allows us to detect changes in the residual signal. In Chap. 11, the GLR
test will be briefly presented.

In this section, we devote our attention to the problem of residual generation
using a Kalman filter. We suppose that the noises η(k), ν(k) and the initial state
vector x(0) have the properties described by (7.55)–(7.57).

A Kalman filter is, although structured similar to an observer of full order, a
time-varying system given by the following recursions:

Recursive Computation for Optimal State Estimation

x̂(0)= x̄ (7.58)

x̂(k + 1)=Ax̂(k)+Bu(k)+L(k)(y(k)−Cx̂(k)−Du(k)). (7.59)

Recursive Computation for Kalman Filter Gain

P(0)= Po (7.60)

P(k + 1)=AP(k)AT −L(k)Re(k)LT (k)+EηΣηETη (7.61)

L(k)= (AP(k)CT +EηSηvT )R−1
e (k) (7.62)

Re(k)=Σν +CP(k)CT (7.63)

where x̂(k) denotes the estimation of x(k) and

P(k)= E
[(
x(k)− x̂(k))(x(k)− x̂(k))T ] (7.64)

is the associated estimation error covariance.
The significant characteristics of Kalman filter is

• the state estimation is optimal in the sense of

P(k)= E
[(
x(k)− x̂(k))(x(k)− x̂(k))T ]=min

• the so-called innovation process e(k)= y(k)−Cx̂(k)−Du(k) is a white Gaus-
sian process with covariance

E
(
e(k)eT (k)

)=Re(k)=Σν +CP(k)CT .
The underlying idea of applying Kalman filter to solve FDI problems lies in making
use of the second property. Let residual signal r(k) be the innovation process

r(k)= e(k)= y(k)−Cx̂(k)−Du(k).
Under the normal operating condition, that is, fault-free, r(k) should be a zero mean
white Gaussian process. When a fault occurs, that is, f (k) �= 0, the change in the
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mean value can be determined, for instance, by means of a GLR test that will be
discussed in the next part. In such a way, a successful fault detection is performed.
Note that the signal Cx̂(k)+Du(k) is in fact an optimal estimation of the measure-
ment y(k).

Remark 7.2 Although given in the recursive form, the Kalman filter algorithm
(7.58)–(7.59) is highly computation consuming. The most involved computation
is P(k), (Σν + CP(k)CT )−1, which may also cause numerical stability problem.
There are a great number of modified forms of the Kalman filter algorithm. The
reader is referred to the references given at the end of this chapter.

Suppose the process under consideration is stationary, then

lim
k→∞L(k)= L= constant matrix

which is subject to

L= (APCT +EηSTηv)R−1
e (7.65)

with

Y = lim
k→∞P(k), Re =Σν +CPCT . (7.66)

It holds

P =APAT −LReLT +EηΣηETη . (7.67)

(7.67) is an algebraic Riccati equation whose solution P is positive definite if the
pairs (A,Eη) and (C,A) are respectively, controllable and observable. It thus be-
comes evident that given system model (7.53)–(7.54) the gain matrix L can be
calculated off-line by solving Riccati equation (7.67). The corresponding residual
generator is then given by

x̂(k + 1) = Ax̂(k)+Bu(k)+L(y(k)−Cx̂(k)−Du(k))
(7.68)

r(k) = y(k)−Cx̂(k)−Du(k).

Note that we now have in fact an observer of the full-order.
Below is an algorithm for the on-line implementation of the Kalman filter algo-

rithm given by (7.58)–(7.63).

Algorithm 7.1 (On-line implementation of Kalman filter)

S0: Set x̂(0), P(0) as given in (7.58) and (7.60)
S1: Calculate Re(k), L(k), x̂(k), according to (7.62)–(7.63) and (7.59)
S2: Increase k and calculate P(k + 1) according to (7.61)
S3: Go S1.
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Remark 7.3 The off-line set up (S0) is needed only for one time, but S1–S3 have to
be repeated at each time instant. Thus, the on-line implementation, compared with
the steady-state Kalman filter, is computationally consuming. For the FDI purpose,
we can generally assume that the system under consideration is operating in its
steady state before a fault occurs. Therefore, the use of the steady-state type residual
generator (7.68) is advantageous. In this case, the most involved computation is
finding a solution for Riccati equation (7.67), which, nevertheless, is carried out off-
line, and moreover for which there exist a number of numerically reliable methods
and CAD programs.

Example 7.1 In this example, we design a steady Kalman filter for the vehicle lateral
dynamic system. For our purpose, the linearized, discrete time model is used with

A =
[

0.6333 −0.0672
2.0570 0.6082

]
, B =

[−0.0653
3.4462

]

C =
[−152.7568 1.2493

0 1.0000

]
, D =

[
56
0

]
, Ef =

[
0 0 −0.0653
0 0 3.4462

]

Ff =
[

1 0 56
0 1 0

]
, Eη =

[−0.0653
3.4462

]
.

Using the given technical data, we get

Ση = 0.0012, Σν =
[

0.0025 0
0 1.2172e− 5

]

and based on which the observer gain matrix has been computed

L=
[−0.0025 −0.0086

0.0122 0.9487

]
.

7.3 Robustness, Fault Sensitivity and Performance Indices

Beginning with this section, we shall study the FDI problems in the context of
a trade-off between the robustness against the disturbances and sensitivity to the
faults. To this end, we are first going to find a way to evaluate the robustness and
sensitivity and then to define performance indices that would give a fair evaluation
of the trade-off between the robustness and sensitivity.

To simplify the notations, in this section we express a residual generator in terms
of

r =Hd(P )d +Hf (P )f (7.69)

where r stands for residual vector which is either r(s) for the residual generators in
the recursive form (observer-based residual generators) or rs(k) for the residual gen-
erators in the non-recursive form (parity space residual generators). Corresponding



7.3 Robustness, Fault Sensitivity and Performance Indices 181

to it, we have

Hd(P )=R(s)M̂u(s)Gyd(s), Hf (P )=R(s)M̂u(s)Gyf (s) (7.70)

or

Hd(P )= VsHd,s, Hf (P )= VsHf,s (7.71)

where variable P is used to denote design parameters, which are, in case of a resid-
ual generator in the recursive form, the post-filter R(s) and the observer matrix L,
and the parity vector Vs for a residual generator in the non-recursive form.

7.3.1 Robustness and Sensitivity

A natural way to evaluate the robustness of residual generator (7.69) against d is the
use of an induced norm, which is formally defined by

Rd :=
∥∥Hd(P )∥∥= sup

d �=0

‖Hd(P )d‖
‖d‖ . (7.72)

It is well known that this is a worst-case evaluation of the possible influence of d
on r .

Compared with the robustness, evaluation of sensitivity of an FDI system to the
faults is not undisputed. The way of using an induced norm like

Sf,+ =
∥∥Hf (P )∥∥= sup

f �=0

‖Hf (P )f ‖
‖f ‖ (7.73)

is popular and seems even logical. However, when we take a careful look at the
interpretation of (7.73), which means a best-case handling of the influence of f
on r , the sense of introducing (7.73) for the sensitivity becomes questionable. A
worst-case for the sensitivity evaluation should, in fact, be the minimum influence
of f on r , which can be expressed in terms of

Sf,− =
∥∥Hf (P )∥∥− = inf

f �=0

‖Hf (P )f ‖
‖f ‖ . (7.74)

Note that Sf,− is not a norm, since there may exist f �= 0 such that Hf (P )f = 0.
This is also the reason why in some cases the sensitivity defined by (7.74) makes
less sense.

Both Sf,+, Sf,− have been adopted to measure the sensitivity of the FDI system
to the faults, although Sf,− was introduced much late than Sf,+.

We would like to remark that both Sf,+, Sf,− are some extreme value of transfer
matrix. From the practical viewpoint, it is desired to define an index that gives a fair
evaluation of the influence of the faults on the residual signal over the whole time
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or frequency domain and in all directions in the measurement subspace. We shall
introduce such an index at the end of this chapter, after having studied the solutions
under the standard performance indices.

7.3.2 Performance Indices: Robustness vs. Sensitivity

With the aid of the introduced concepts of the robustness and sensitivity we are now
able to formulate our wish of designing an FDI system: the FDI system should be
as robust as possible to the disturbances and simultaneously as sensitive as possible
to the faults. It is a multi-objective optimization problem: given (7.69), find P such
that

Rd→min and simultaneously Sf →max.

It is well known that solving a multi-objective optimization problem is usually much
more involved than solving a single-objective optimization. Driven by this idea, a
variety of attempts have been made to reformulate the optimization objective as a
compromise between the robustness and sensitivity. A first kind of these perfor-
mance indices was introduced by Lou et al., which takes the form

JS−R = sup
P

(αf Sf − αdRd), αf ,αd > 0 (7.75)

where αf ,αd are some given weighting constants. Wünnenberg and Frank sug-
gested to use the following the performance index

JS/R = sup
P

Sf

Rd
(7.76)

which, due to its intimate connection to the sensitivity theory, is widely accepted.
Currently, the index of the form

Rd < γ and Sf > β (7.77)

becomes more popular, where γ , β are some positive constant. The FDI system
design is then formulated as maximizing β and minimizing γ by selecting P .

7.3.3 Relations Between the Performance Indices

Next, we are going to demonstrate that the above-introduced three types of indices
are equivalent in a certain sense.

Suppose that

PS/R,opt = arg
(

sup
P

JS/R

)
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then it follows from (7.69) that for any constant ϑ , ϑPS/R,opt also solves supP JS/R .
This means that the optimal solution to the ratio-type optimization is unique up to
a constant. To demonstrate the relationship between the optimal performance under
indices (7.76) and (7.77), suppose that Popt solves

max
P
β and min

P
γ subject to (7.77)

and yields

∥∥Hf (Popt)
∥∥= β1,

∥∥Hd(Popt)
∥∥= γ1 =⇒ ‖Hf (Popt)‖

‖Hd(Popt)‖ = α =
β1

γ1
.

On the other hand, PS/R,opt ensures that ∀ϑ > 0

‖Hf (PS/R,opt)‖
‖Hd(PS/R,opt)‖ =

‖ϑHf (PS/R,opt)‖
‖ϑHd(PS/R,opt)‖ ≥ α.

As a result, it is possible to find a ϑ such that

∥∥ϑHf (PS/R,opt)
∥∥≥ β1 and

∥∥ϑHd(PS/R,opt)
∥∥= γ1. (7.78)

To illustrate the relation between optimizations under (7.76) and (7.75), suppose
that PS−R,opt solves

sup
P

JS−R = sup
P

(
αf
∥∥Hf (P )∥∥− αd∥∥Hd(P )∥∥)

and results in

αf
∥∥Hf (PS−R,opt)

∥∥− αd∥∥Hd(PS−R,opt)
∥∥= η, ∥∥Hd(PS−R,opt)

∥∥= θ
=⇒ αf ‖Hf (PS−R,opt)‖

‖Hd(PS−R,opt)‖ = αd + η

θ
.

Once again, we are able to find a ϑ such that

αf ‖ϑHf (PS−R,opt)‖
‖ϑHd(PS−R,opt)‖ ≥ αd + η

θ
and

∥∥ϑHd(PS−R,opt)
∥∥= θ

=⇒ αf
∥∥ϑHf (PS−R,opt)

∥∥− αd∥∥ϑHd(PS−R,opt)
∥∥≥ η. (7.79)

(7.78) and (7.79) demonstrate that the optimal solution under ratio-type performance
index (7.76) is, up to a constant, equivalent to the ones under indices (7.75) and
(7.77). With this fact in mind, we consider, in this chapter, mainly optimizations
under indices (7.76) and (7.77), which are also mostly considered in recent studies.
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7.4 Optimal Selection of Parity Matrices and Vectors

In this section, approaches to optimal selection of parity vectors will be presented.
The starting point is the design form of the parity relation based residual generator

r(k)= Vs
(
Hd,sds(k)+Hf,sfs(k)

)
, Vs ∈ Ps (7.80)

where r(k) ∈ Rα , α denotes the dimension of the parity space of order s, which,
following Theorem 5.11, is given by

α =
s∑

i=σmin

(m−mi), for σmin ≤ s < σmax

= m× (s − σmax + 1)+
σmax−1∑
i=σmin

(m−mi), for s ≥ σmax.

Our task is to choose Vs under a given performance index. Recall that it holds for
VsHd,s , VsHf,s with Vs ∈ Ps that

VsHd,s = V sQbase,sHd,s := V sHd,s (7.81)

VsHf,s = V sQbase,sHf,s := V sHf,s (7.82)

with Qbase,s being the base matrix of parity space and V s �= 0 an arbitrary matrix
with appropriate dimensions. Hence, residual generator (7.80) can be re-written into

r(k)= V s
(
Hd,sds(k)+Hf,sfs(k)

)
. (7.83)

We suppose that

rank(Hd,s)= the row number of Hd,s

that is, the PUIDP is not solvable, which motivates us to find an alternative way to
design the parity matrix Vs .

7.4.1 Sf,+/Rd as Performance Index

The idea of using the ratio of the robustness (Rd ) to the sensitivity (Sf ) was initiated
by Wünnenberg and Frank in the middle 1980s. We first consider the case

Sf,+ = sup
f �=0

‖Hf f ‖
‖f ‖

and express the performance index in terms of

JS,+/R = max
Vs∈Ps

Sf,+
Rd

=max
V s

‖V sHf,s‖
‖V sHd,s‖

(7.84)
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where ‖ · ‖ denotes some induced norm of a matrix. Doing an SVD of Hd,s gives

Hd,s = UΣV T , UUT = Iα×α (7.85)

VV T = Iβ×β, Σ = [diag(σ1, . . . , σα) 0α×(β−α)
]

(7.86)

where β is the column number of Hd,s , i.e.

β = kd(s + 1− σmax).

Let

V s = ṼsS−1UT , S = diag(σ1, . . . , σα). (7.87)

It turns out

‖V sHd,s‖ =
∥∥Ṽs [ Iα,α 0α×(β−α)

]∥∥.
Following the definitions of Frobenius-norm, 2 and∞ norms for a matrix, we have

∥∥Ṽs [ Iα,α 0α×(β−α)
]∥∥
F
= ‖Ṽs‖F (7.88)∥∥Ṽs [ Iα,α 0α×(β−α)

]∥∥
2 = σ̄ (Ṽs)= ‖Ṽs‖2 (7.89)∥∥Ṽs [ Iα,α 0α×(β−α)

]∥∥∞ = ‖Ṽs‖∞. (7.90)

Note that for the induced norms like 2 and∞ norm

‖V sHf,s‖ =
∥∥ṼsS−1UTHf,s

∥∥≤ ‖Ṽs‖∥∥S−1UTHf,s

∥∥.
As a result, the following inequality holds: ∀Ṽs �= 0

‖V sHf,s‖
‖V sHd,s‖

= ‖ṼsS
−1UTHf,s‖
‖Ṽs‖

≤ ‖Ṽs‖‖S
−1UTHf,s‖
‖Ṽs‖

= ∥∥S−1UTHf,s

∥∥.
In other words, we have

JS,+/R ≤
∥∥S−1UTHf,s

∥∥.
On the other hand, it is evident that setting Ṽ = I gives

‖V sHf,s‖
‖V sHd,s‖

= ∥∥S−1UTHf,s

∥∥

thus, we finally have

JR,+/S =max
V s

‖V sHf,s‖
‖V sHd,s‖

= ∥∥S−1UTHf,s

∥∥.
This proves the following theorem.
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Theorem 7.1 Given system (7.83), then

V s = S−1UT (7.91)

solves the optimization problems

JS/R,2 =max
V s

‖V sHf,s‖2

‖V sHd,s‖2
, JS/R,∞ =max

V s

‖V sHf,s‖∞
‖V sHd,s‖∞

(7.92)

which results in

JS/R,2 = max
V s

‖VsHf,s‖2

‖VsHd,s‖2
= ∥∥S−1UTHf,s

∥∥
2 (7.93)

JS/R,∞ = max
V s

‖V sHf,s‖∞
‖VsHf,s‖∞

= ∥∥S−1UTHd,s

∥∥∞. (7.94)

Note that the optimal solution (7.91) solves all above-mentioned two optimiza-
tion problems. This fact is of great interest for the sensitivity and performance anal-
ysis of FDI systems.

We now summarize the main results achieved above into an algorithm.

Algorithm 7.2 (Solution of optimization problem Sf,+/Rd )

S1: Do an SVD on Hd,s

S2: Set V s according to (7.91).

Next, we study the relationship between the optimization problems whose solu-
tions are presented above and the optimal design of parity vectors under the perfor-
mance index

J =max
vs

vsHf,sH
T

f,sv
T

vsHd,sH
T

d,sv
T

(7.95)

which was introduced by Wünnenberg and Frank and is now one of the mostly used
performance indices. To begin with, we take a look at the solution of optimization
problem (7.95). Let the optimal solution be denoted by vs,opt and rewrite (7.95) into

vs,opt
(
JHd,sH

T

d,f −Hf,sH
T

f,s

)
(vs,opt)

T = 0.

By an SVD of Hd,s,Hd,s =UΣV T , we obtain

vs,opt
(
JUΣΣTUT −Hf,sH

T

f,s

)
(vs,opt)

T = 0.

Setting

vs,opt = v̄sS−1UT
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yields

J v̄s(v̄s)
T − v̄sS−1UTHf,s

(
v̄sS

−1UTHf,s

)T = 0.

It is clear that choosing the nominal eigenvector corresponding to the maximal

eigenvalue of matrix S−1UTHf,sH
T

f,sUS
−1 as v̄s , that is,

v̄s
(
λmaxI − S−1UTHf,sH

T

f,sUS
−1)= 0, v̄s(v̄s)

T = 1 (7.96)

with λmax being the maximal eigenvalue of matrix S−1UTHf,sH
T

f,sUS
−1, gives

J = λmax. (7.97)

Theorem 7.2 Given system (7.83), then the optimal solution of (7.95) is given by

vs,opt = v̄sS−1U� (7.98)

with v̄s solving (7.96), and in this case

J =max
vs

vsHf,sH
T

f,sv
T
s

vsHd,sH
T

d,sv
T
s

= λmax. (7.99)

Comparing J in (7.95) with JS/R,2 and noting the fact

λmax = σ̄
(
H
T

f,sUS
−1)= σ̄ (S−1UTHf,s

)
we immediately see

J = J 2
S/R,2. (7.100)

This reveals the relationship between both the performance indices and verifies that
the optimal solution is not unique. In fact, we have

JS/R,2 =max
V s

‖V sHf,s‖2

‖V sHd,s‖2
=max

vs

‖vsHf,s‖2

‖vsHd,s‖2
.

Nevertheless, both the FDI systems have quite different fault detectability, as the
discussion in Chap. 12 will show.

Bringing (7.96) into the following form

v̄s
(
λmaxI − S−1UTHf,sH

T

f,sUS
−1)= 0

⇐⇒ v∗s
(
JHd,sH

T

d,s −Hf,sH
T

f,s

)= 0 (7.101)

shows that the optimization problem (7.95) is equivalent to a generalized eigenvalue–
eigenvector problem defined by (7.101). The maximal eigenvalue is the optimal
value of performance index J , and the corresponding eigenvector is the optimal
parity vector.
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7.4.2 Sf,−/Rd as Performance Index

As mentioned in the last section

Sf,− = inf
fs(k)�=0

‖Hf,sfs(k)‖
‖fs(k)‖

is also a reasonable index to evaluate the fault sensitivity. However, it is not a norm.
For this reason, we restrict our attention just to the following case

Sf,− = σ(V sHf,s)

where σ(V sHf,s) denotes the minimum singular value of matrix Hf,s . It is worth
noting that if V sHf,s has full column rank, then

inf
fs(k)�=0

‖V sHf,sfs(k)‖
‖fs(k)‖ = σ(V sHf,s).

Analogous to the calculation made in the last subsection we have

JS,−/R =max
V s

Sf,−
Rd

=max
V s

σ (V sHf,s)

‖V sHd,s‖2
=max

Ṽs

σ (ṼsS
−1UTHf,s)

‖Ṽs‖2
.

Since

σ
(
ṼsS

−1UTHf,s

)≤ σ̄ (Ṽs)σ (S−1UTHf,s

)
and σ̄ (Ṽs)= ‖Ṽs‖2, it turns out

Theorem 7.3 Given system (7.83), then

V s = S−1UT (7.102)

solves the optimization problem

JS,−/R =max
V s

Sf,−
Rd

=max
V s

σ (V sHf,s)

‖V sHd,s‖2
(7.103)

which results in

JS,−/R = σ
(
S−1U�Hf,s

)
.

It is very interesting to notice that the optimal solution

V s = S−1UT

recalling the results described in Theorem 7.1, solves both optimization problems
Sf,+/Rd and Sf,−/Rd .
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As mentioned previously, the optimization solution is not unique. Setting

Vs = vs = v̄sS−1UT

where v̄s is the eigenvector corresponding to the minimum eigenvalue of matrix

S−1UTHf,sH
T

f,sUS
−1, that is,

v̄s
(
S−1UTHf,sH

T

f,sUS
−1 − λminI

)= 0, λmin �= 0, v̄s(v̄s)
T = 1

delivers the same performance value,

JS,−/R = σ
(
S−1UTHf,s

)
.

On the other hand, in this case

JS,+/R <max
V s

JS.+/R

that is, the solution is not optimal in the sense of JS,+/R .
We see that different optimal solutions may provide us with considerably differ-

ent system performance. The question which one is the best one can only be an-
swered in the context of an analysis of FDI system performance. This is the central
topic in Chap. 12.

Let σi(·) denote the ith singular value of a matrix. Since

σi
(
ṼsS

−1UTHf,s

)≤ σ̄ (Ṽs)σi(S−1UTHf,s

)
we have

max
V s

σi(V sHf,s)

‖V sHd,s‖2
=max

Ṽs

σi(ṼsS
−1UTHf,s)

σ̄ (Ṽs)
(7.104)

≤max
Ṽs

σ̄ (Ṽs)σi(S
−1UTHf,s)

σ̄ (Ṽs)
= σi
(
S−1UTHf,s

)
(7.105)

and so the following theorem.

Theorem 7.4 Given system (7.83), then

V s = S−1UT (7.106)

solves the optimization problem

JS/R,σi =max
V s

σi(VsHf,s)

‖VsHd,s‖2
for all i (7.107)

for which we have

max
V s

σi(VsHf,s)

‖VsHd,s‖2
= σi
(
S−1UTHf,s

)
.
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We would like to call reader’s attention that Theorems 7.1 and 7.3 are indeed
two special cases of Theorem 7.4. From the practical viewpoint, performance index
JS/R,σi gives a fair evaluation of the influence of the faults on the residual signal
over the time interval [k − s, k] and in all directions in the measurement subspace.
For these reasons, solution (7.106) is called unified parity space solution.

7.4.3 JS−R as Performance Index

The first version of the performance index in the JS−R form was proposed by Lou
et al. We consider in the following a modification form expressed in terms of

JS−R =max
V s

(
αf ‖V sHf,s‖ − αd‖V sHd,s‖

)
, αf ,αd > 0 (7.108)

where ‖ · ‖ denotes 2 and ∞ norms of a matrix. Since JS−R is proportional to the
size of parity matrix V s , we suppose that ‖V s‖ = 1, that is, we are only interested
in those nominal solutions.

Repeating the same procedure adopted in the previous two subsections allows us
to rewrite (7.108) into

JS−R =max
V s

(
αf ‖V sHf,s‖ − αd‖V sHd,s‖

)≤ ‖Ṽs‖(αf ∥∥S−1UTHf,s

∥∥− αd)

with V s = ṼsS−1UT . Thus, we claim

Theorem 7.5 Given system (7.83), then the optimal solution

V s = S−1UT

‖S−1UT ‖ (7.109)

leads to

JS−R = αf ‖S−1UTHf,s‖ − αd
‖S−1UT ‖ . (7.110)

Recall that the optimization problems JS,+/R , JS,−/R are independent of the size
of V s , that is, for all κ �= 0

V s = κS−1UT

also solves the optimization problems JS,+/R , JS,−/R , and furthermore

JS,+/R =
∥∥S−1UTHf,s

∥∥.
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It leads to

Corollary 7.1 JS,+/R , JS,−/R , JS−R have the identical solution:

V s = S−1UT

‖S−1UT ‖ . (7.111)

Definition 7.1 Given system (7.83).

V s = S−1UT

‖S−1UT ‖
is called nominal unified solution of parity matrix.

From the mathematical viewpoint, V s satisfying (7.111) can be interpreted as the
inverse of the amplitude of Hd,s and used for weighting Hf,s , that is,

r(k) = V s
(
Hd,sds(k)+Hf,sfs(k)

)

= S−1UT

‖S−1UT ‖Hf,sfs(k)+ [ I 0α×(β−α) ]V T
‖S−1UT ‖ ds(k).

From the FDI viewpoint, this solution ensures that the influence of the faults will be
stronger weighted at the places where the influence of the disturbances is weaker.
In this manner, an optimal trade-off between the robustness against the disturbances
on the one side and the fault sensitivity on the other side is achieved. We would like
to call reader’s attention that this idea will also be adopted in the observer-based
residual generator design.

Corollary 7.2 It holds

JS−R = αf JS,+/R − αd
‖S−1UT ‖ . (7.112)

It follows from (7.112) that increasing JR/S,+ simultaneously enhances JR−S
and vice verse. This also verifies our previous statement that the performance indices
(7.76) and (7.75) are equivalent.

Analogous to the discussion in the last two subsections, it can readily be demon-
strated that

• the optimal solution V s satisfying (7.111) also solves the optimization problem

max
V s,‖V s‖=1

(
αf σi(V sHf,s)− αd‖V sHd,s‖2

)= αf σi(S
−1UTHf,s)− αd
‖S−1UT ‖

(7.113)
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• the optimal parity vector

vs = v̄s S−1UT

‖S−1UT ‖ , v̄s v̄
T
s = 1

where v̄s is the eigenvector corresponding to the maximum eigenvalue of matrix
S−1UTHf,s , solves the optimization problem

max
vs ,‖vs‖2=1

(‖vsHf,s‖2 − ‖vsHd,s‖2
)
.

7.4.4 Optimization Performance and System Order

Until now, our study on the parity space relation based residual generation has been
carried out for a given s. Since s is a design parameter, the question may arise: How
can we choose a suitable s?

The fact that the choice of the system order s may have considerable influence
on the optimization performance has been recognized, but only few attention has
been devoted to this subject. In this subsection, we will find out an answer to this
problem, which may, although not complete, build a basis for further investiga-
tion.

To begin with, we concentrate ourselves on a modified form of the optimization
problem (7.95), for which the following theorem is known.

Theorem 7.6 The inequality

min
vs∈Ps

vsHd,sH
�
d,sv

�
s

vsHf,sH
�
f,sv

�
s

= λmin,s > min
vs+1∈Ps+1

vs+1Hd,s+1H
�
d,s+1v

�
s+1

vs+1Hf,s+1H
�
f,s+1v

�
s+1

= λmin,s+1

(7.114)
holds.

The proof of this theorem is considerably involved, hence it is omitted. We refer
the interested reader to a paper by Ding et al. listed at the end of this chapter.

Remark 7.4 It can be shown that the performance index λmin,s converges to a limit
with s→∞.

Theorem 7.6 reveals that increasing the order of parity space does really im-
prove the system robustness and sensitivity. On the other hand, increasing s means
more on-line computation. Thus, a compromise between the system performance
and the on-line implementation is desired. To this end, we propose the following
algorithm.
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Algorithm 7.3 (Selection of s)

S0: Set the initial value of the order of parity relation s (note that it should be larger
than or equal to σmin) and a tolerance

S1: Calculate the base matrix Qbase,s and Qbase,sHf,s , Qbase,sHd,s
S2: Solve the generalized eigenvalue–eigenvector problem
S3: If λmin,s−1 − λmin,s ≤ tolerance, end, otherwise go back to S1.

We would like to point out that a repeated calculation of S1 is not necessary. In
fact, once the system model is transformed into the canonical observer form and
equations NjCA

j
o = O , σmin ≤ j ≤ σmax − 1, are solved, we can determine the

base matrix of the parity space and Qbase,sHf,s , Qbase,sHd,s for different s without
solving additional equations (see also Sects. 5.6.2 and 6.9.). This fact promises a
strong reduction of computation for a (sub-)optimal selection of the order of the
parity matrices.

Remembering that

JS/R,2 =
√
λmax, JS−R,2 =max

V s

(‖V sHf,s‖2−‖V sHd,s‖2
)= αf JS,+/R − αd

‖S−1UT ‖2

the following corollary becomes clear.

Corollary 7.3 The inequalities

max
Vs∈Ps

‖VsHf,s‖2

‖VsHd,s‖2
> max
Vs+1∈Ps+1

‖Vs+1Hf,s+1‖2

‖Vs+1Hd,s+1‖2
(7.115)

max
Vs∈Ps
(
αf ‖VsHf,s‖2 − αd‖VsHd,s‖2

)

> max
Vs+1∈Ps+1

(
αf ‖Vs+1Hf,s+1‖2 − αd‖Vs+1Hd,s+1‖2

)
(7.116)

max
Vs∈Ps
(‖vsHf,s‖2 − ‖vsHd,s‖2

)

> max
Vs+1∈Ps+1

(‖vs+1Hf,s+1‖2 − ‖vs+1Hd,s+1‖2
)

(7.117)

hold.

In fact, we can expect that the results of Theorem 7.6 as well as Corollary 7.3 are
applicable for other performance indices.

7.4.5 Summary and Some Remarks

In this section, we have introduced a number of performance indices and, based
on them, formulated and solved a variety of optimization problems. Some of them
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sound similar but have different meanings, and the others may be defined from dif-
ferent aspects but have identical solutions. It seems that a clear classification and
a summary of the approaches described in this section would be useful for the
reader to get a deep insight into the framework of model-based residual generation
schemes.

We have defined two types of performance indices

Type I: JS/R = max
Vs∈Ps

‖VsHf,s‖
‖VsHd,s‖ =max

V s

‖V sHf,s‖
‖V sHd,s‖

(7.118)

Type II: JS−R = max
Vs∈Ps
(
αf ‖VsHf,s‖ − αd‖VsHd,s‖

)

= max
V s

(
αf ‖V sHf,s‖ − αd‖V sHd,s‖

)
(7.119)

and each of them can be expressed in three different forms, depending on which of
the norms, 2 or ∞ norm, or the minimum singular value is used for the evaluation
of the robustness and sensitivity. It is worth noting that the minimum singular value
σ(VsHf,s) is not a norm, but it, together with ‖VsHd,s‖2, measures the worst-case
from the FDI viewpoint.

A further variation of (7.118) and (7.119) is given by the selection of parity ma-
trix V s : it can be a α × α-dimensional matrix or just a α-dimensional row vector,
where α denotes the number of the rows of Hd,s =Qbase,sHd,s . Of course, V s can
also be a θ×α-dimensional matrix with 1≤ θ ≤ α, the results will remain the same.

Considering the fact that the solution of the optimization problem Type I is inde-
pendent of ‖V s‖ and the one of Type II is proportional to ‖V s‖, we have introduced
the concept of nominal optimal solution whose size (norm) is one (‖V s‖ = 1). The
most significant results derived in this section can then be stated as follows:

• Given V s ∈Rα×α , then

V s = S−1UT

‖S−1UT ‖
is the nominal optimal solution for the both types optimization problems, inde-
pendent of which norm is used

• The optimal value of performance index JR/S is

JS,+/R =
∥∥S−1UTHf,s

∥∥, JS,−/R = σ
(
S−1UTHf,s

)
and JS−R is

JS−R,+ = αf ‖S−1UTHf,s‖ − αd
‖S−1UT ‖ , JS−R,− = αf σ(S

−1UTHf,s)− αd
‖S−1UT ‖2

.

Either for V s ∈Rα×α or for vs ∈Rα these results always hold.

The last statement is worth a brief discussion. We see that using a parity vector
or a parity matrix has no influence on the optimal value of the performance indices.
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But these two different constructions do have considerably different influences on
the system performance. Taking a look at the design form,

r(k)= Vs
(
Hd,sds(k)+Hf,sfs(k)

)
, Vs ∈ Ps

shows the role of Vs evidently: It is a filter and selector. From the geometric view-
point, it spans a subspace and thus allows only the signals, whose components lie
in this subspace, to have an influence on the residual r(k). When Vs is selected as
a vector, the dimension of the subspace spanned by vs is one, i.e. it selects signals
only in one direction. Of course, in this direction the ratio of the robustness to the
sensitivity is optimal in a certain sense, but if the strength of the fault in this direc-
tion is weak, a fault detection will become very difficult. In contrast, choosing Vs to
be matrix ensures that all components of the fault will have influence on the resid-
ual, although in some directions the ratio of the robustness to the sensitivity may be
only suboptimal. Following this discussion, it can be concluded that

• if we have information about the faults and know they will appear in a certain di-
rection, then using a parity vector may reduce the influence of model uncertainties
and improve the sensitivity to the faults

• in other cases, using a parity matrix is advisable.

Another interesting aspect is the computation of optimal solutions. All of derived
results rely on the SVD of Hd,s =Qbase,sHd,s ,

Hd,s =UΣV T , UUT = Iα×α, V V T = Iβ×β
Σ = [diag(σ1, . . . , σα) 0α×(β−α)

]= [S 0α×(β−α)
]
.

Remark 7.5 The assumption made at the beginning of this section,

rank(Hd,s)= the row number of Ĥd,s

does not lead to the loss of generality of our results. In fact, if rank(Hd,s)= β , then
an SVD of Hd,s results in

Hd,s = UΣV T , UUT = Iα×α, V V T = Iβ×β
Σ =

[
diag(σ1, . . . , σβ)

0(α−β)×β

]
.

Note that there exists a matrix S− ∈Rα×α such that

S−Σ = Iβ×β.

It is easy to prove that by replacing S−1 with S− all results and theorems derived in
this section hold true.
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In case that the 2 norm is used, we have an alternative way to compute the solu-
tion, namely by means of the generalized eigenvalue–eigenvector problem,

V s
(
Hf,sH

T

f,s − λHd,sH
T

d,s

)= 0, VsV
T
s = I.

For V s ∈ Rα×α , V s consists of all the eigenvectors, while for vs ∈ Rα , vs is the
eigenvector corresponding to the maximum eigenvalue. Thanks to the work by Wün-
nenberg and Frank, the generalized eigenvalue–eigenvector problem as the solution
is much popular than the one of using SVD, although many of numerical solutions
for the generalized eigenvalue–eigenvector problem are based on the SVD.

Finally, we would like to place particular emphasis on the application of the
achieved results to the design of observer-based residual generators. We have, in
Sect. 5.7.1, shown the interconnections between the parity space and observer-based
approaches, and revealed the fact that the observer-based residual generator design
can be equivalently considered as a selection of a parity vector or matrix. Thus,
the results achieved here are applicable for the design of observer-based residual
generators. To illustrate it, consider the non-recursive design form of observer-based
residual generators given by

r(z)=wGsz−se(z)+ vs
(
Hf,s Īf,sfs(z)+Hd,s Īd,sds(z)

)
, vs ∈ Ps.

Let g = 0, i.e. the eigenvalues of matrix G equal zero, we have

r(k)= vs
(
Hf,sfs(k)+Hd,sds(k)

)

or in a more general form

r(k)= Vs
(
Hf,sfs(k)+Hd,sds(k)

)
.

This is just the form, on account of which we have derived our results. Once vs or Vs
is determined under a given performance index, we can set the parameter matrices
of the residual generator according to Theorem 5.12.

7.5 H∞ Optimal Fault Identification Scheme

In this section, we briefly discuss about the H∞ optimal fault identification problem
(OFIP), one of the most popular topics studied in the FDI area. The OFIP is formu-
lated as finding residual generator (5.23) such that β (>0) is minimized under a
given γ (>0), where

∥∥R(s)Gd(s)∥∥∞ < γ,
∥∥I −R(s)Gf (s)∥∥∞ < β (7.120)

=⇒ ‖f (s)−R(s)Gf (s)f (s)‖2

‖f ‖2
≤ β subject to

∥∥R(s)Gd(s)∥∥∞ < γ.
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Considering that it is often unnecessary to re-construct f (s) over the whole fre-
quency domain, a weighting matrixW(s) ∈RH∞ can be introduced, which defines
the frequency range of interest, and the H∞ OFIP (7.120) is then reformulated into∥∥R(s)Gd(s)∥∥∞ < γ,

∥∥W(s)−R(s)Gf (s)∥∥∞ < β. (7.121)

Although H∞ OFIP is a formulation for the purpose of fault identification, it has
been originally used for the integrated design of robust controller and FDI. From
the fault detection viewpoint, H∞ OFIP or its modified form (7.121) can also be
interpreted as a reference model-based design scheme, which is formulated as: given
reference model rref = f , find R(s) so that

‖r − rref ‖2 = ‖r − f ‖2 −→min

⇐⇒ min
R(s)∈RH∞

∥∥[ I −R(s)Gf (s) R(s)Gd(s)
]∥∥∞.

One essential reason for the wide application of H∞OFIP solutions is that it is of
the simplest MMP form. Maybe for this reason, in the most studies, optimization
problem (7.120) or its modified form (7.121) are considered as being solvable and
no special attention has been paid to the solution. The following discussion calls for
more attention to this topic.

To simplify the discussion, we consider continuous-time systems and assume that
f ∈R and Gf (s) has a RHP-zero s0. It follows from Lemma 7.7 that for any given
weighting factor W(s) ∈RH∞

min
R∈RH∞

∥∥W(s)−R(s)Gf (s)∥∥∞ =
∣∣W(s0)∣∣. (7.122)

In case that W(s)= 1, we have

min
R∈RH∞

∥∥1−R(s)Gf (s)∥∥∞ = 1. (7.123)

Note that in (7.123) setting R(s)= 0 gives ‖1−R(s)Gf (s)‖∞ = 1, and as a result,
we have

r(s)= 0 =⇒ f (s)− r(s)= f (s) =⇒ ‖f (s)− r(s)‖2

‖f (s)‖2
= 1.

That means zero is the best estimation for f (s) (although may not be the only one)
in the sense of (7.123) and the estimation error equals to f (s). Consider further that

R(s)= 0 =⇒ R(s)Gd(s)= 0 =⇒ ∥∥R(s)Gd(s)∥∥∞ = 0

then it becomes evident that R(s) = 0 also solves H∞ OFIP. Of course, such an
estimation with a relative estimation error equal to

‖f (s)− r(s)‖2

‖f (s)‖2
= 1

is less useful in practice.



198 7 Residual Generation with Enhanced Robustness Against Unknown Inputs

Generally speaking, (7.122) reveals that adding a weighting matrix W(s) does
not automatically ensure a good estimation performance. On the other hand, it pro-
vides us with a useful relation, based on which the weighting matrix can be suitably
selected. (7.122) can be understood that W(s) should have a RHP-zero structure
similar to the one of Gf (s), that is, if s0 is a RHP-zero of Gf (s), then the best
solution can be achieved as s0 is also a zero of W(s).

In Chap. 14, we shall study H∞ OFIP in more details.

7.6 H2/H2 Design of Residual Generators

Beginning with this section, we study design schemes for the residual generator
(5.23) whose dynamics is governed by

r(s) = R(s)M̂u(s)
(
Gyd(s)d(s)+Gyf (s)f (s)

)
= R(s)(Gd(s)d(s)+Gf (s)f (s)), R(s) ∈RH∞. (7.124)

The major difference between these schemes lies in the performance index, under
which the residual generator design is formulated as an optimization problem. The
design problem addressed in this section is the so-called H2/H2 design scheme,
which is formulated as follows.

Definition 7.2 (H2/H2 design) Given system (7.124), find a transfer vector R(s) ∈
RH∞ that solves

sup
R(s)∈RH∞

J2(R)= sup
R(s)∈RH∞

‖R(s)Gf (s)‖2

‖R(s)Gd(s)‖2
. (7.125)

H2/H2 design has been proposed in 1989 and was the first design scheme using
the JS/R type performance index for the post-filter design. It has been inspired by
the optimal selection of parity vectors proposed by Wünnenberg. This can also be
observed by the solution to (7.125) that is given in the next theorem.

Theorem 7.7 Given continuous-time system (7.124), then

sup
R(s)∈RH∞

J2(R) = sup
R(s)∈RH∞

‖R(s)Gf (s)‖2

‖R(s)Gd(s)‖2
= λ1/2

max(ωopt) (7.126)

λmax(ωopt) = sup
ω
λmax(ω)

where λmax(ω) is the maximal eigenvalue of the generalized eigenvalue–eigenvector
problem

vmax(jω)
(
Gf (jω)G

∗
f (jω)− λmax(ω)Gd(jω)G

∗
d(jω)

)= 0 (7.127)
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with vmax(jω) being the corresponding eigenvector. The optimal solution Ropt(s) is
given by

Ropt(s)= qb(s)vmax(s), qb(s) ∈RHm
2 (7.128)

where qb(s) represents a band pass filter at frequency ωopt, which gives

1

2π

∫ ∞
−∞

Ropt(jω)Gd(jω)G
∗
d(jω)R

∗
opt(jω)dω

≈ vmax(jωopt)Gd(jω)G
∗
d(jω)v

∗
max(jωopt). (7.129)

Proof The original proof given by Ding and Frank consists of three steps:

Step 1: prove that the optimization problem

J = sup
R(p)∈RH∞

‖R(p)Gf (p)‖2

α
with constraint 0<

∥∥R(p)Gd(p)∥∥2 ≤ α
(7.130)

is equivalent to a generalized eigenvalue–eigenvector problem;
Step 2: find the solution for the generalized eigenvalue–eigenvector problem;
Step 3: prove

sup
R(p)∈RH∞

J2(R)= J.

Here, we only outline the first step. The next two steps are straightforward and
the reader can refer to the paper by Ding and Frank given at the end of this chapter.

Note that (7.130) is, according to the duality theorem, equivalent to

J =− sup
β≥0

inf
R

(
−αβ − S

(
Ẽf (ω)R̃(ω)

α

)
+ βS(Ẽf (ω)R̃(ω))

)

where S(·) is an operator,

S
(
Ẽd(ω)R̃(ω)

)=
∫ ∞
−∞

trace
(
Ẽd(ω)R̃(ω)

)
dω

S
(
Ẽf (ω)R̃(ω)

)=
∫ ∞
−∞

trace
(
Ẽf (ω)R̃(ω)

)
dω

Ẽd(ω)=ETd (−jω)Ed(jω), Ẽf (ω)=ETf (−jω)Ef (jω)
R̃(ω)=RT (−jω)R(jω).

It turns out

J = inf
α≥0

(αβ)



200 7 Residual Generation with Enhanced Robustness Against Unknown Inputs

with variable β satisfying ∀ω

− Ẽf (ω)
α

+ βẼd(ω)≥ 0 ⇐⇒ αβẼd(ω)− Ẽf (ω)≥ 0. (7.131)

(7.131) can be equivalently written as

αβ ≥ λmax(ω)

with λmax(ω) denoting the maximal eigenvalue of matrix pencil

Ẽf (ω)− λmax(ω)Ẽd(ω).

As a result, we finally have

J = inf
α≥0

(αβ)= λmax(ω). �

Suppose that Gd(s) is left invertible in RH∞, that is, ∀ω ∈ [0,∞]
Gd(jω)G

∗
d(jω) > 0. (7.132)

It follows from Lemma 7.4 that we are able to do a CIOF of Gd(s)

Gd(s)=Gdo(s)Gdi(s)

with a left invertible co-outer Gdo(s) and co-inner Gdi(s). Let

Ropt(s)= qb(s)v̄max(s)G
−1
do (s)

with

v̄max(jω)
(
G−1

do (jω)Gf (jω)G
∗
f (jω)G

−∗
do (jω)− λmax(ω)I

)= 0. (7.133)

In other words, in this case

sup
R(s)∈RH∞

J2(R)= λmax(ωopt), λ
1/2
max(ωopt)= sup

ω
σ̄
(
G−1

do (jω)Gf (jω)
)
.

Without proof, we give the analogous result of the above theorem for discrete-
time systems. The interested reader is referred to the paper by Zhang et al. listed at
the end of this chapter.

Corollary 7.4 Given discrete-time system (7.124), then

sup
R(z)∈RH∞

J2(R) = sup
R(z)∈RH∞

‖R(z)Gf (z)‖2

‖R(z)Gd(z)‖2
= λ1/2

max(θopt)

λmax(θopt) = sup
θ

λmax(θ)
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where λmax(θ) is the maximal eigenvalue of the generalized eigenvalue–eigenvector
problem

pmax
(
ejθ
)(
Gf
(
ejθ
)
G
∗
f

(
ejθ
)− λmax(θ)Gd

(
ejθ
)
G
∗
d

(
ejθ
))= 0 (7.134)

with pmax(e
jθ ) being the corresponding eigenvector. The optimal solution Ropt(z)

is given by

Ropt(z)= fθopt(z)p(z)

where fθopt(z) is an ideal band pass with the selective frequency at θopt, which sat-
isfies

∀qT (z) ∈RH2, fθopt

(
ejθ
)
q
(
ejθ
)= 0, θ �= θopt

(7.135)∫ 2π

0
fθopt

(
ejθ
)
q
(
ejθ
)
q∗
(
ejθ
)
f ∗θopt

(
ejθ
)
dθ = q(ejθopt

)
q∗
(
ejθopt
)
.

Although the H2/H2 design is the first approach proposed for the optimal design
of observer-based residual generators using the advanced robust control technique,
only few study has been devoted to it. In our view, there are two reasons for this sit-
uation. The first one is that the derivation of the solution, different from the standard
H2 control problem, is somewhat involved. The second one is that the implemen-
tation of the resulting residual generator seems unpractical. The reader may notice
that the most significant characterization of an H2/H2 optimal residual generator is
its bandpass property. It is this feature that may considerably restrict the application
of H2/H2 optimal residual generator due to the possible loss of fault sensitivity. On
the other hand, this result is not surprising. Remember the interpretation of the H2
norm as the RMS value of a system output when this system is driven by a zero
mean white noise with unit power spectral densities. It is reasonable that an opti-
mal fault detection will be achieved at frequency ωopt, since at other frequencies the
relative influence of the fault, whose power spectral density is, as assumed to be a
white noise, a constant, would be definitively smaller. Unfortunately, most kinds of
faults are deterministic and therefore H2/H2 design makes less practical sense.

7.7 Relationship Between H2/H2 Design and Optimal Selection
of Parity Vectors

The analogous form between the H2/H2 solution (7.134) and the optimal selection
of parity vectors (7.101) motivates our discussion in this section. For our purpose,
we consider discrete time model

x(k + 1) = Ax(k)+Bu(k)+Edd(k)+Ef f (k) (7.136)

y(k) = Cx(k)+Du(k)+ Fdd(k)+ Ff f (k). (7.137)
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Suppose that {gd(0), gd(1), . . .} is the impulse response of system (7.136)–(7.137)
to the unknown disturbances d . Apparently,

gd(0)= Fd, gd(1)= CEd, . . . , gd(s)= CAs−1Ed, . . . . (7.138)

We can then express matrix Hd,s in parity space residual generator (5.93) in terms
of the impulse response as follows

Hd,s =

⎡
⎢⎢⎢⎢⎣

gd(0) 0 · · · 0

gd(1) gd(0)
. . .

...
...

. . .
. . . 0

gd(s) · · · gd(1) gd(0)

⎤
⎥⎥⎥⎥⎦ .

Write the parity vector vs as

vs =
[
vs,0 vs,1 · · · vs,s

]

where the row vector vs,i ∈Rm, i = 0,1, . . . , s. Then, we have

vsHd,s =
[
ϕ(s) ϕ(s − 1) · · · ϕ(0)

]

with

ϕ(i)=
i∑
l=0

ρi−lgd(l), ρi = vs,s−i , i = 0,1, . . . , s.

Let s go to infinity. It leads to

lim
s→∞vsHd,s =

[
ϕ(∞) · · · ϕ(0)

]
(7.139)

and in this case

ϕ(i) =
i∑
l=0

ρi−lgd(l)= ρ(i)⊗ gd(i)=Z−1(P(z)Gd(z)) (7.140)

P(z) = Z
[
ρ(i)
]
, ρ(i)= {ρ0, ρ1, . . .} (7.141)

where ⊗ denotes the convolution. (7.141) means that P(z) is the z-transform of the
sequence {ρ0, ρ1, . . .}. According to the Parseval Theorem, we have

lim
s→∞vsHd,sH

T
d,sv

T
s =

∞∑
i=0

ϕ(i)ϕT (i)

= 1

2π

∫ 2π

0
P
(
ejθ
)
Gyd
(
ejθ
)
G∗yd
(
ejθ
)
P ∗
(
ejθ
)
dθ (7.142)
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with Gyd(z)= C(zI −A)−1Ed + Fd . Similarly, it can be proven that

lim
s→∞vsHf,sH

T
f,sv

T
s =

1

2π

∫ 2π

0
P
(
ejθ
)
Gyf
(
ejθ
)
G∗yf
(
ejθ
)
P ∗
(
ejθ
)
dθ (7.143)

with Gyf (z)= C(zI −A)−1Ef + Ff . On the other hand, for a given residual gen-
erator

r(z)=R(z)(M̂u(z)y(z)− N̂u(z)u(z)
)

(7.144)

we can always construct a parity vector, as stated in the next lemma.

Lemma 7.11 Given system (7.136)–(7.137) and a residual generator (7.144) with
R(z) ∈RH1×m∞ . Then the row vector defined by

v = [ · · · CĀ2B CĀB CB D
]

(7.145)

where (Ā,B,C,D) is the state space realization of R(z)M̂u(z), belongs to the par-
ity space Ps (s→∞).

Proof Assume that (Ar,Br,Cr,Dr) is a state space realization of R(z). Recalling
Lemma 3.1, we know that

Ā=
[
A−LC 0
−BrC Ar

]
, B =

[
L

Br

]
, C = [−DrC Cr

]
, D =Dr.

It can be easily obtained that

lim
s→∞vHo,s = lim

s→∞
[ · · · CĀ2B CĀB CB D

]
⎡
⎢⎢⎢⎣

C

CA

CA2

...

⎤
⎥⎥⎥⎦

= lim
s→∞

[ · · · CrArBr CrBr Dr
]
⎡
⎢⎢⎢⎣

C

C(A−LC)
C(A−LC)2

...

⎤
⎥⎥⎥⎦ . (7.146)

For a linear discrete time system

λ(k+ 1)= (A−LC)λ(k), δ(k)= Cλ(k) (7.147)

with any initial state vector λ(0)= λ0 ∈Rn, apparently

δ(0)= Cλ0, δ(1)= C(A−LC)λ0, δ(2)= C(A−LC)2λ0, . . . .
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Since R(z) ∈ RH 1×m∞ and L is selected to ensure the stability of A− LC, the cas-
cade connection of system (7.147) and R(z) is stable. So

lim
k→∞Z−1{R(z)δ(z)}= 0.

Note that

lim
k→∞Z−1{R(z)δ(z)}= lim

s→∞
[ · · · CrArBr CrBr Dr

]
⎡
⎢⎢⎢⎣

Cλ0
C(A−LC)λ0

C(A−LC)2λ0
...

⎤
⎥⎥⎥⎦

we get

lim
s→∞

[ · · · CrArBr CrBr Dr
]
⎡
⎢⎢⎢⎣

C

C(A−LC)
C(A−LC)2

...

⎤
⎥⎥⎥⎦λ0 = 0

for any initial state vector λ0 ∈Rn. Thus, it can be concluded that

lim
s→∞

[ · · · CrArBr CrBr Dr
]
⎡
⎢⎢⎢⎣

C

C(A−LC)
C(A−LC)2

...

⎤
⎥⎥⎥⎦= 0.

At last, from (7.146) we obtain

lim
s→∞vHo,s = 0

i.e. the vector v defined by (7.145) belongs to the parity space Ps (s→∞). The
lemma is thus proven. �

It is of interest to note that vector v is indeed composed of the impulse response
of the residual generator R(z)M̂u(z) = D + C(zI − Ā)−1B , which is given by
{D,C B,CĀB,CĀ2B, . . .}. Based on the above analysis, the following theorem
can be obtained.

Theorem 7.8 Given system (7.136)–(7.137) and assume that vs,opt, Js,opt and
Ropt(z), Jopt are the optimal solutions of optimization problems

Js,opt = max
vs∈Ps

Js = max
vs∈Ps

vsHf,sH
T
f,sv

T
s

vsHd,sH
T
d,sv

T
s

= vs,optHf,sH
T
f,sv

T
s,opt

vs,optHd,sH
T
d,sv

T
s,opt

(7.148)

Jopt = max
R(z)∈RH1×m∞

J
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= max
R(z)∈RH1×m∞

∫ 2π
0 R(ejθ )M̂u(e

jθ )Gyf (e
jθ )G∗yf (ejθ )M̂∗

u(e
jθ )R∗(ejθ ) dω∫ 2π

0 R(ejθ )M̂u(ejθ )Gyd(ejθ )G
∗
yd(e

jθ )M̂∗
u(e

jθ )R∗(ejθ ) dω

=
∫ 2π

0 Ropt(e
jθ )M̂u(e

jθ )Gyf (e
jθ )G∗yf (ejθ )M̂∗

u(e
jθ )R∗opt(e

jθ ) dθ∫ 2π
0 Ropt(ejθ )M̂u(ejθ )Gyd(ejθ )G

∗
yd(e

jθ )M̂∗
u(e

jθ )R∗opt(e
jθ ) dθ

(7.149)

respectively. Then

lim
s→∞Js,opt = Jopt (7.150)

P(z)=Ropt(z)M̂u(z) (7.151)

where

P(z)=Z
[
ρ(i)
]
, ρ(i)= {vs→∞,opt,s , vs→∞,opt,s−1, . . . , vs→∞,opt,0}. (7.152)

Proof Let vs→∞,opt denote the optimal solution of optimization problem (7.148)
as s → ∞. Remembering Theorem 7.6 and the associated remark, it follows
from (7.141)–(7.143) that for any LCF of Gyu(z) = M̂−1

u (z)N̂u(z), the post-filter
Ro(z)given by

Ro(z)= P(z)M̂−1
u (z)

where P(z) is defined by (7.152), leads to

J |R(z)=Ro(z) = lim
s→∞Js,opt = lim

s→∞ max
vs∈Ps

Js =max
s

max
vs∈Ps

Js ≤ max
R(z)∈RH1×m∞

J.

(7.153)
We now demonstrate that

J |R(z)=Ro(z) = Jopt = max
R(z)∈RH1×m∞

J. (7.154)

Suppose that (7.154) does not hold. Then, the optimal solution of optimization prob-
lem (7.149), denoted by Rc(z) ∈RH 1×m∞ and different from Ro(z), should lead to

J |R(z)=Rc(z) = max
R(z)∈RH1×m∞

J > J |R(z)=Ro(z). (7.155)

According to Lemma 7.11, we can find a parity vector v ∈ Ps whose components
are just a rearrangement of the impulse response of Rc(z)M̂u(z). Moreover, because
of (7.141)–(7.143), we have

Js |vs=v = J |R(z)=Rc(z). (7.156)

As a result, it follows from (7.153), (7.155) and (7.156) that

Js |vs=v >max
s

max
vs∈Ps

Js
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which is an obvious contradiction. Thus, we can conclude that

Jopt = max
R(z)∈RH1×m∞

J = J |R(z)=Ro(z) = lim
s→∞Js,opt

and

Ro(z)= P(z)M̂−1
u (z) :=Ropt(z)

solve optimization problem (7.149). The theorem is thus proven. �

Theorem 7.8 gives a deeper insight into the relationship between the parity space
approach and the H2/H2 design and reveals some interesting facts when the order
of the parity relation s increases:

• The optimal performance index Js,opt of the parity space approach converges to a
limit which is just the optimal performance index Jopt of the H2/H2 optimization.

• There is a one-to-one relationship between the optimal solutions of optimization
problems (7.148) and (7.149) when the order of the parity relation s→∞. Since
Ropt(z) is a band-limited filter, the frequency response of vs→∞,opt is also band-
limited.

The above result can be applied in several ways, for instance:

• for multi-dimensional systems, the optimal solution of the H2/H2 design can be
approximately computed by at first calculating the optimal solution of the parity
space approach with a high order s and then doing the z-transform of the optimal
parity vector. It is worth noticing that numerical problem may be met for some
systems, especially when A is unstable.

• In the parity space approach, a high order s will improve the performance index
Js,opt but, on the other hand, increase the on-line computational effort. To de-
termine a suitable trade-off between performance and implementation effort, the
optimal performance index Jopt of the H2/H2 design can be used as a reference
value.

• Based on the property that the frequency response of vs→∞,opt is band-limited,
advanced parity space approaches can be developed to achieve both a good per-
formance and a low order parity vector. For instance, infinite impulse response
(IIR) filter and wavelet transform have been introduced, respectively, to design
optimized parity vector of low order and good performance.

Example 7.2 Given a discrete-time system modelled by (7.136)–(7.137), where

A =
[

1 −1.30
0.25 −0.25

]
, B =

[
2
1

]
, C = [0 1

]
(7.157)

Ed =
[

0.4
0.5

]
, Ef =

[
0.6
0.1

]
, D = Fd = Ff = 0.
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Fig. 7.2 The optimal
performance Js,opt vs. s

Fig. 7.3 The frequency
response of the optimal parity
vector vs,opt vs. s

As system (7.157) is stable, matrix L in the LCF can be selected to be zero ma-
trix and thus M̂u(z) is an identity matrix. To solve the generalized eigenvalue–
eigenvector problem (7.134) to get θopt that achieves λmax(θopt) = supθ λmax(θ),
note that

λmax(θ)= 0.0125+ 0.01 cos θ

0.41− 0.4 cos θ
.

Therefore, the optimal performance index of the H2/H2 design is Jopt = 2.25 and
the selective frequency is θopt = 0.

Figure 7.2 demonstrates the change of the optimal performance index Js,opt with
respect to the order of the parity relation s. From the figure, it can be seen that
Js,opt increases with the increase of s and, moreover, Js,opt converges to Jopt when
s→∞. Figure 7.3 shows the frequency responses of the optimal parity vector vs,opt

when s is chosen as 20,50,100 and 200, respectively. We see that the bandwidth of
the frequency response of vs,opt becomes narrower and narrower with the increase
of s.
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7.8 LMI Aided Design of FDF

Comparing with the methods introduced in the last two sections, an FDF with its
fixed structure offers a lower degree of design freedom. On the other hand, for its
design the available approaches for robust observers can be directly applied. For this
reason, the FDF design is currently receiving much attention.

In this section, we deal with the optimal design of FDF under different perfor-
mance indices. Recall that for a given system described by (3.32)–(3.33), an FDF
delivers a residual whose dynamics with respect to the faults and unknown inputs is
described by

r(s) = N̂d(s)d(s)+ N̂f (s)f (s) (7.158)

N̂d(s) = C(sI −A+LC)−1(Ed −LFd)+ Fd (7.159)

N̂f (s) = C(sI −A+LC)−1(Ef −LFf )+ Ff . (7.160)

Our main objective is to find an observer matrix L such that N̂d(s) is smaller than a
given bound and simultaneously N̂f (s) is as large as possible. We shall use the H2
and H∞ norms as well as the so-called H− index to measure the size of these two
transfer matrices. To this end, the LMI technique will be used as a mathematical
tool for the problem solution.

7.8.1 H2 to H2 Trade-off Design of FDF

We begin with a brief review of the H2 optimization problem described by

min
L

∥∥C(sI −A+LC)−1(Ed −LFd)
∥∥

2. (7.161)

Remark 7.6 Remember that for a continuous-time system its H2 norm exists only
if it is strictly proper. For a discrete-time system,

∥∥Fd +C(zI −A+LC)−1(Ed −LFd)
∥∥

2

= trace
(
CPCT

)+ trace
(
FdF

T
d

)
= trace(Ed −LFd)T Q(Ed −LFd)+ trace

(
FTd Fd

)

where P , Q are respectively the solutions of two Lyapunov equations. Thus,

min
L

∥∥Fd +C(zI −A+LC)−1(Ed −LFd)
∥∥

2

⇐⇒ min
L

∥∥C(zI −A+LC)−1(Ed −LFd)
∥∥

2.

For this reason, we only need to consider the optimization problem (7.161).
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Theorem 7.9 Given system C(sI − A + LC)−1(Ed − LFd) or C(zI − A +
LC)−1(Ed −LFd) and suppose that

A1. (C,A) is detectable
A2. Fd has full row rank with FdFTd = I
A3. for a continuous-time system

[A−jωI Ed
C Fd

]
or for a discrete-time system[

A−ejθ I Ed
C Fd

]
has full row rank for all ω ∈ [0,∞] or θ ∈ [0,2π],

then the minimum

min
L

∥∥C(sI −A+LC)−1(Ed −LFd)
∥∥

2 =
(
trace
(
CXCT

))1/2
or

min
L

∥∥C(zI −A+LC)−1(Ed −LFd)
∥∥

2 =
(
trace
(
CYCT

))1/2

is achieved by

L= L2 =XCT +EdFTd or (7.162)

L= L2 =
(
AYCT +EdFTd

)(
I +CYCT )−1 (7.163)

where matrix X ≥ 0 solves the Riccati equation

(
A−EdFTd C

)
X+X(A−EdFTd C)T −XCT CX+EdETd −EdFTd FdETd = 0

(7.164)

⇐⇒ (A−L2C)X+X(A−L2C)
T +XC�CX+EdETd −EdFTd FdETd = 0

(7.165)

and matrix Y ≥ 0 solves the Riccati equation

(A−L2C)Y (A−L2C)
T − Y + (Ed −L2Fd)(Ed −L2Fd)

T = 0. (7.166)

This theorem is a dual result of the well-known H2 optimization of the state
feedback controller,

min
K

∥∥(C −DK)(sI −A−BK)−1E
∥∥

2

the proof is therefore omitted.

Remark 7.7 In A2, if FdFTd �= I we are able to find an output transformation V to
ensure that VFdFTd V

T = I as far as Fd has full row rank. Assumption A3 ensures
that no zeros lie on the imaginary axis and at infinity.

Recall that the optimal design of FDF differs from the optimal estimation mainly
in its additional requirement on the sensitivity to the faults. This requires to add
an additional optimization objective to (7.161). Next, we are going to introduce
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a design scheme, starting from Theorem 7.9, that allows a compromise between the
robustness and the fault sensitivity.

Set L= L2+ΔLwith L2 given in (7.162) and bring the dynamics of the residual
generator (7.158) into

ė = (A−L2C)e+ (Ed −L2Fd)d + (Ef −L2Ff )f + v
v = −ΔL(y − ŷ), e= x − x̂, r = y − ŷ = Ce+ Fdd + Ff f

with x̂ denoting the state variable estimation delivered by the FDF. Let Trd(s) denote
the dynamic part of the transfer matrix from d(s) to r(s), i.e.

Trd(s)d(s)= C(sI −A+L2C)
−1((Ed −L2Fd)d(s)+ v(s)

)
.

Since for f = 0

v(s) = −ΔL(Ce(s)+ Fdd(s))
= −ΔL(C(sI −A+L2C)

−1((Ed −L2Fd)d(s)+ v(s)
)+ Fdd(s))

= −(I +ΔLC(sI −A+L2C)
−1)−1

×ΔL(C(sI −A+L2C)
−1(Ed −L2Fd)+ Fd

)
d(s)

we obtain

Trd(s)d(s)= C(sI −A+L2C)
−1(Ed −L2Fd)d(s)+C(sI −A+L2C)

−1α(s)

α(s)= (I +ΔLC(sI −A+L2C)
−1)−1

(−ΔL)β(s)
β(s)= C(sI −A+L2C)

−1(Ed −L2Fd)d(s)+ Fdd(s)
=⇒ Trd(s)d(s)= C(sI −A+L2C)

−1(Ed −L2Fd)d(s)

+C(sI −A+L2C +ΔLC)−1(−ΔL)β(s).
Note that U(s) := C(sI − A + L2C)

−1(Ed − L2Fd) + Fd is co-inner and
U(−s)(C(sI −A+L2C)

−1(Ed −L2Fd))
T ∈RH⊥∞, thus we finally have

∥∥Trd(s)∥∥2
2 =
∥∥C(sI −A+L2C)

−1(Ed −L2Fd)
∥∥2

2

+ ∥∥C(sI −A+ (L2 +ΔL)C
)−1

(ΔL)
∥∥2

2. (7.167)

With the aid of (7.167), we are able to formulate our design objective as finding ΔL
such that

A− (L2 +ΔL)C is stable (7.168)
∥∥Trd(s)∥∥2<γ ⇐⇒ ∥∥C(sI −A+ (L2+ΔL)C

)−1
ΔL
∥∥2

2<γ
2 − trace

(
CXCT

)
(7.169)
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∥∥C(sI −A+ (L2 +ΔL)C
)−1(

Ef − (L2 +ΔL)Ff
)∥∥

2 →max. (7.170)

Following the computing formula for the H2 norm, (7.168)–(7.170) can further be
reformulated as: for the continuous-time system

max
ΔL

trace
(
(Ef −ΔLFf )T W(Ef −ΔLFf )

)
(7.171)

trace
(
ΔLTWΔL

)
< γ 2 − trace

(
CXCT

) := γ1 (7.172)

(AL2 −ΔLC)W +W(AL2 −ΔLC)T +CT C = 0, W > 0
(7.173)

AL2 =A−L2C, Ef =Ef −L2Ff

and for the discrete-time system

max
ΔL

trace
(
(Ef −ΔLFf )T Z(Ef −ΔLFf )

)
(7.174)

trace
(
ΔLT ZΔL

)
< γ 2 − trace

(
CYCT

) := γ1 (7.175)

(AL2 −ΔLC)T Z(AL2 −ΔLC)−Z +CT C = 0, Z > 0. (7.176)

SettingΔL= P L̄, P =W−1 for the continuous-time case andΔL= P L̄, P = Z−1

for the discrete-time case leads respectively, to

trace
(
ΔLTWΔL

)= trace
(
L̄T P L̄

)
, trace

(
ΔLT ZΔL

)= trace
(
L̄T P L̄

)
trace
(
(Ef −ΔLFf )T W(Ef −ΔLFf )

)
= trace

(
(WEf − L̄Ff )T P (WEf − L̄Ff )

)
trace
(
(Ef −ΔLFf )T Z(Ef −ΔLFf )

)
= trace

(
(ZEf − L̄Ff )T P (ZEf − L̄Ff )

)
.

Using Schur complement, we have that
∥∥C(sI −AL2 +ΔLC)−1ΔL

∥∥
2 = trace

(
L̄T P L̄

)
< γ1

and (AL2 − P L̄C) is stable if and only if

• for the continuous-time system: there exist Q1, W such that

ATL2
W +WAL2 −CT L̄T − L̄C +CT C < 0 (7.177)[
W L̄

L̄T Q1

]
> 0, trace(Q1) < γ1 (7.178)

• for the discrete-time system: there exist Q2, Z such that
[

Z ZAL2 − L̄C
ATL2

Z −CT L̄T Z −CT C
]
> 0 (7.179)
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[
Z L̄

L̄T Q2

]
> 0, trace(Q2) < γ1. (7.180)

In summary, we obtain the following optimization design scheme for FDF.

Theorem 7.10 The optimization problem (7.168)–(7.170) is equivalent to

• for continuous-time systems

max
W,L̄

trace
(
(WEf − L̄Ff )T W−1(WEf − L̄Ff )

)
(7.181)

subject to

ATL2
W +WAL2 −CT L̄T − L̄C +CT C < 0 (7.182)[
W L̄

L̄T Q1

]
> 0, trace(Q1) < γ1 (7.183)

• for discrete-time systems

max
Z,L̄

trace
(
(ZEf − L̄Ff )T Z−1(ZEf − L̄Ff )

)
(7.184)

subject to

[
Z ZAL2 − L̄C

ATL2
Z −CT L̄T Z −CT C

]
> 0 (7.185)

[
Z L̄

L̄T Q2

]
> 0, trace(Q2) < γ1. (7.186)

On account of the above-achieved results, following algorithm for the H2 to H2
optimal design of FDF is proposed.

Algorithm 7.4 (H2 to H2 optimization of continuous-time FDF)

S1: Solve Riccati equation (7.164) for X > 0 and further L2
S2: Solve optimization problem (7.182)–(7.183) for L̄, W
S3: Set the optimal solution as follows:

L=XCT +EdFT +W−1L̄.

Algorithm 7.5 (H2 to H2 optimization of discrete-time FDF)

S1: Solve Riccati equation (7.166) for Y > 0
S2: Solve optimization problem (7.185)–(7.186) for L̄, Z
S3: Set the optimal solution as follows:

L= (AYCT +EdFTd )(I +CYCT )−1 +Z−1L̄.
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Remark 7.8 Notice that the cost functions (7.181) and (7.184) are nonlinear re-
garding to W or Z. Moreover, due to the constraints (7.183) and (7.186), the terms
(L̄Ff )

T W−1(L̄Ff ) and (L̄Ff )T Z−1(L̄Ff ) are bounded. On account of this fact,
the cost functions can be replaced by

max
W,L̄

trace
(
E
T

fWEf − FTf L̄T Ef −ETf L̄Ff
)

as well as

max
Z,L̄

trace
(
E
T

f ZEf − FTf L̄T Ef −ETf L̄Ff
)
.

Example 7.3 We now apply Algorithm 7.4 to CSTH. We suppose that measurement
noises are present in the sensor signals and model them by extending Ed , Fd to

Ed =
⎡
⎣ 1 0 0 0 0
−1 0 0 0 0
0 −1 0 0 0

⎤
⎦ , Fd =

⎡
⎣0 0 1 0 0

0 0 0 1 0
0 0 0 0 1

⎤
⎦ .

Solving Riccati equation (7.164) gives

L2 =
⎡
⎣ 1 −2.5059× 10−5 1.0683× 10−9

−20.6761 5.4969 36.2828
3.4006× 10−8 0.0014 0.9988

⎤
⎦

trace
(
CXCT

)= 32.83.

In the next step, optimization problem (7.182)–(7.183) is solved for L̄, W with
γ1 ≤ 33.83,

W =
⎡
⎣5.9700× 108 1.9494× 108 2.4094× 107

1.9494× 108 2.2890× 108 2.0032× 107

2.4094× 107 2.0032× 107 5.4298× 108

⎤
⎦

L̄ =
⎡
⎣−2.3967× 108 2.8763× 107 1.3089× 107

2.8763× 107 −1.4415× 108 1.2289× 107

1.3089× 107 1.2289× 107 −2.9848× 108

⎤
⎦ .

Finally, the optimal solution is

L= L2 +W−1L̄=
⎡
⎣ 0.3866 0.3509 0.0151
−20.0304 4.5646 36.3721

0.0275 0.0429 0.4451

⎤
⎦ .

7.8.2 On the H− Index

Remember the discussion on the fault sensitivity in Sect. 7.3.1, which provides us
with reasonable arguments to evaluate the fault sensitivity by means of the so-called
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Sf,− index. In this subsection, we shall address the definition of Sf,− index for a
transfer matrix and its computation. This index is called H− index and will be, in-
stead of the H∞ norm or the H2 norm as required in (7.170), used for the evaluation
of the fault sensitivity.

Definition 7.3 Given system y(s)=G(s)u(s). The strict H− index of G(s) is de-
fined by

∥∥G(s)∥∥− = inf
u �=0

‖G(s)u(s)‖2

‖u(s)‖2
. (7.187)

Note that ‖G(s)‖− is not a norm. For instance, if the row number of G(s) is
smaller than its column number, then there exists some u(s) �= 0 so that G(s)u(s)=
0 and therefore ‖G(s)‖− = 0. Consider that an evaluation of those faults, which are
structurally undetectable (see Chap. 4), makes no sense. We are only interested in
evaluation of the minimum value of ‖G(s)u(s)‖2, for ‖u(s)‖2 = 1, which is differ-
ent from zero. Since

∥∥G(s)u(s)∥∥2 =
1

2π

∫ ∞
−∞

u∗(jω)G∗(jω)G(jω)u(jω)dω

we have the nonzero minimum value of ‖G(s)u(s)‖2

• for surjective G(s)
∥∥G(s)∥∥− =min

ω
σ
(
GT (jω)

)
or min

θ
σ
(
GT
(
ejθ
))

• for injective G(s)
∥∥G(s)∥∥− =min

ω
σ
(
G(jω)

)
or min

θ
σ
(
G
(
ejθ
))

where σ(·) denotes the minimum singular value of a matrix.

For the FDI purpose, we introduce the following definition.

Definition 7.4 Given system y(s)=G(s)u(s). The H− index ofG(s) is defined by
∥∥G(s)∥∥− =min

ω
σ
(
GT (jω)

)
or min

θ
σ
(
GT
(
ejθ
))

for surjective G(s) satisfying

∀ω, G(−jω)GT (jω) > 0 or ∀θ, G
(
e−jθ
)
GT
(
ejθ
)
> 0 (7.188)

and ∥∥G(s)∥∥− =min
ω
σ
(
G(jω)

)
or min

θ
σ
(
G
(
ejθ
))

for injective G(s) satisfying

∀ω, GT (−jω)G(jω) > 0 or ∀θ, GT
(
e−jθ
)
G
(
ejθ
)
> 0. (7.189)
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Remark 7.9 Note that if both (7.188) and (7.189) are satisfied, then

min
ω
σ
(
GT (jω)

)=min
ω
σ
(
G(jω)

)
, min

θ
σ
(
GT
(
ejθ
))=min

θ
σ
(
G
(
ejθ
))
.

Moreover,

∀ω, G(−jω)GT (jω) =G(jω)GT (−jω) and

∀θ, G
(
e−jθ
)
GT
(
ejθ
) =G(ejθ )GT (e−jθ ).

Next, we study the computation of the H− index of a transfer matrix as defined
in Definition 7.4. We start with a detailed discussion about continuous-time systems
and give the “discrete-time version” at the end of the discussion. Our major results
rely on the following lemma.

Lemma 7.12 Let A, B , P , S, R be matrices of compatible dimensions with P ,
R symmetric, R > 0 and (A,B) stabilizable. Suppose either one of the following
assumptions is satisfied:

A1. A has no eigenvalues on the imaginary axis
A2. P ≥ 0 or P ≤ 0 and (P,A) has no unobservable modes on the imaginal axis.

Then, the following statements are equivalent:

I. The para-Hermitian rational matrix

Φ(s)=
[
BT
(−sI −AT )−1

I

][
P S

ST R

][
(sI −A)−1B

I

]

satisfies

Φ(jω) > 0 for all 0≤ ω ≤∞
II. There exists a unique real and symmetric X such that

(
A−BR−1ST

)T
X+X(A−BR−1ST

)−XBR−1BTX+ P − SR−1ST = 0

and that A−BR−1ST −BR−1BTX is stable.

Lemma 7.12 is a standard result in the robust control theory. Hence, its proof is
omitted.

Theorem 7.11 Given system G(s)=D+C(sI −A)−1B with

A1. DTD − γ 2I > 0 and
A2. (C,A) has no unobservable modes on the imaginary axis,

then the inequality

(
C(−jωI −A)−1B +D)T (C(jωI −A)−1B +D)> γ 2I (7.190)
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holds for all ω, including at infinity, if and only if there exists a symmetric matrix X
such that

ĀT X+XĀ−XBR−1BTX+CT (I −DR−1DT
)
C = 0 (7.191)

with

Ā=A−BR−1DTC, R =DTD − γ 2I.

Proof The proof is straightforward. We first substitute

P = CT C, S = CTD, R =DTD − γ 2I

into Φ(s) given in Lemma 7.12, which gives

Φ(s) =
[
BT
(−sI −AT )−1

I

][
CT C CTD

DT C DTD − γ 2I

][
(sI −A)−1B

I

]

= (BT (−sI −AT )−1
CT +DT

)(
C
(
sI −AT )−1

B +D)− γ 2I.

As a result, Φ(jω) > 0⇐⇒ (7.190) holds. Finally, using Lemma 7.12 the theorem
is proven. �

With the proof of Theorem 7.11, the following corollary becomes evident.

Corollary 7.5 Given system G(s)=D+C(sI −A)−1B with

A1. DDT − γ 2I > 0 and
A2. (A,B) has no uncontrollable modes on the imaginary axis,

then inequality

(
C(jωI −A)−1B +D)(C(−jωI −A)−1B +D)T > γ 2I (7.192)

holds for all ω, including at infinity, if and only if there exists a symmetric matrix Y
such that

ĀY + Y ĀT − YCT R−1CY +B(I −DTR−1D
)
BT = 0 (7.193)

with

Ā=A−BDT R−1C, R =DDT − γ 2I.

Remember that with the H− index defined in Definition 7.4 we are only interest-
ing in the minimal nonzero singular value of a transfer matrix, which is equivalent
to, for given G(s)= C(sI −A)−1B +D,

G∗(jω)G(jω) > 0, ∀ω
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if G(s) is injective or

G(jω)G∗(jω) > 0, ∀ω
if G(s) is surjective. Note that ∀ω

I. G∗(jω)G(jω) > 0 ⇐⇒ rank

[
A− jωI B

C D

]
= n+ k

II. G(jω)G∗(jω) > 0 ⇐⇒ rank

[
A− jωI B

C D

]
= n+m

where n, k, m denote the number of the state variables, the inputs and the outputs
respectively. Hence, it also ensures that there exists no unobservable mode on the
imaginary axis in case I and no uncontrollable mode on the imaginary axis in case II.
As a result of Theorem 7.11, Corollary 7.5 and the above discussion, we have

Theorem 7.12 Given system G(s)=D+C(sI −A)−1B that satisfies

A1. (a) DTD − γ 2I > 0, if G(s) is injective, or (b) DDT − γ 2I > 0, if G(s) is
surjective

A2. (a) for G(s) being injective ∀ω ∈ [0,∞]

rank

[
A− jωI B

C D

]
= n+ k (7.194)

or (b) for G(s) being surjective ∀ω ∈ [0,∞]

rank

[
A− jωI B

C D

]
= n+m (7.195)

then for a given constant γ > 0 the following two statements are equivalent:

S1. H− index satisfies ∥∥G(s)∥∥− > γ (7.196)

S2. for case (a) there exists a symmetric matrix X such that

XĀ+ ĀT X−XBR−1BTX+CT (I −DR−1DT
)
C = 0 (7.197)

Ā=A−BR−1DC, R =D�D− γ 2I

or for case (b) there exists a symmetric matrix Y such that

ĀY + Y ĀT − YCT R−1CY +B(I −DTR−1D
)
BT = 0 (7.198)

Ā=A−BDT R−1C, R =DDT − γ 2I.

(7.197) and (7.198) are Riccati equations, which can also be equivalently re-
formulated as Riccati inequalities. To this end, different methods are available. Next,
we introduce one approach proposed by Zhang and Ding.
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Recalling Lemma 7.4 and its dual form for the IOF, we can, under condition
(7.194) or (7.195), factorize G(s)=D +C(sI −A)−1B ∈RH∞ into

G(s)= M̂−1(s)N̂(s)=N(s)M−1(s)

where N̂(s), N(s) are co-inner and inner respectively and M̂−1(s),M−1(s) ∈
RH∞. It turns out that

∥∥G(s)∥∥− =
∥∥M−1(s)

∥∥− = 1

‖M(s)‖∞ (7.199)

for G(s) being injective and satisfying (7.194) and

∥∥G(s)∥∥− =
∥∥M̂−1(s)

∥∥− = 1

‖M̂(s)‖∞
(7.200)

for G(s) being surjective and satisfying (7.195). As a result, the requirement that
‖G(s)‖− > γ can be equivalently expressed by

∥∥M(s)∥∥∞ <
1

γ
or
∥∥M̂(s)∥∥∞ <

1

γ
. (7.201)

The following theorem follows directly from (7.201) and the Bounded Real Lemma,
Lemma 7.8.

Theorem 7.13 Given G(s) =D + C(sI − A)−1B ∈RHm×k∞ and γ > 0, suppose
that

I. for G(s) being injective

∀ω, rank

[
A− jωI B

C D

]
= n+ k, DTD − γ 2I > 0

II. for G(s) being surjective

∀ω, rank

[
A− jωI B

C D

]
= n+m, DDT − γ 2I > 0

then ‖G(s)‖− > γ if and only if for case I there exists X =XT such that

XA+ATX+CT C+ (XB+CTD)(γ 2I −DTD
)−1(

BTX+DTC
)
> 0 (7.202)

and for case II there exists Y = YT such that

YAT +AY +BBT + (YCT +BDT
)(
γ 2I −DDT

)−1(
CY +DBT )> 0. (7.203)

Proof We only prove (7.202) for case I. (7.203) for case II is a dual result of (7.202).
It follows from Bounded Real Lemma that for ‖M(p)‖∞ < 1

γ
there exists a matrix

P > 0
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Ψ (P )= (A−BF)P + P(A−BF)T +BVV T BT

+ (BVV T −XFT )
(

1

γ 2
I − VV T

)−1(
VV T BT − FX)< 0 (7.204)

where, as a dual result of Lemma 7.4,

V = (DTD
)−1/2

, F = (DTD
)−1(

BTQ+DT C
)

(7.205)

with Q≥ 0 being the solution of Riccati equation

QA+ATQ+CT C − (QB +CTD)(DTD
)−1(

BTQ+DTC
)= 0. (7.206)

Substituting (7.205) into the left side of (7.204) yields

Ψ (P )=AP + PAT − PFTDTDFP + (B(DTD
)−1 − PFT )

×
{(
DTD

)+
(

1

γ 2
I − (DTD

)−1
)−1}((

DTD
)−1

BT − FP )

=AP + PAT − PFTDTDFP + (B(DTD
)−1 − PFT )(DTD

)
× (DTD − γ 2I

)−1(
DTD

)((
DTD

)−1
BT − FP )

=AP + PAT − PFTDTDFP + (B − PQB − PCTD)
× (DTD − γ 2I

)−1(
BT −BTQP −DT CP

)
.

Let X =Q− P−1. Then we have

P−1Ψ (P )P−1 = (Q−X)A+AT (Q−X)− FTDTDF

+ (XB +CTD)(DTD− β2I
)−1(

BTX+DT C
)
.

Because P is a non-singular matrix, (7.204) holds if and only if P−1Ψ (P )P−1<0.
By noting that (7.205) and (7.206) imply QA + ATQ − FTDTDF = −CT C,
(7.204) is equivalent to

XA+ATX+CT C+ (XB+CTD)(γ 2I −DTD
)−1(

BTX+DTC
)
> 0. (7.207)

The theorem is thus proven. �

Without proof, we introduce the “discrete-time” version of Theorem 7.13.

Corollary 7.6 Given G(z) = D + C(zI − A)−1B ∈RHm×k∞ and γ > 0, suppose
that
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I. for G(z) being injective

∀θ ∈ [0,2π], rank

[
A− ejθ I B

C D

]
= n+ k

II. for G(z) being surjective

∀θ ∈ [0,2π], rank

[
A− ejθ I B

C D

]
= n+m

then ‖G(z)‖− > γ if and only if for case I there exists X =XT such that

DTD+BTXB − γ 2I > 0

ĀT XĀ−X− ĀT XG(I +XG)−1XĀ+ γ 2Q> 0 (7.208)

⇐⇒ ATXA−X− ẼT (DTD+BTXB − γ 2I
)−1

Ẽ +CT C > 0 (7.209)

Ā=A+B(γ 2I −DTD
)−1

DT C, G=−B(γ 2I −DTD
)−1

BT

Q= CT (γ 2I −DTD
)−1

C, Ẽ = BTXA+DTC

or for case II there exists Y = YT such that

DDT +CYCT − γ 2I > 0

ĀY ĀT −X− ĀYG(I + YG)−1Y ĀT + γ 2Q> 0 (7.210)

⇐⇒ AYAT − Y − F̃ T (DD+CYCT − γ 2I
)−1

F̃ +BBT > 0 (7.211)

Ā=A+BDT
(
γ 2I −DDT

)−1
C, G=−CT (γ 2I −DDT

)−1
C

Q= B(γ 2I −DDT
)−1

BT , F̃ = CYAT +DBT .

The following result is achieved by Wang and Yang, which provides us with a
matrix inequality computation of H− index in a finite frequency range.

Theorem 7.14 Given G(s)=D+C(sI −A)−1B,γ > 0 and let

Π =
[−I 0

0 γ 2I

]

then the following two statements are equivalent:

(i)

GT (−jω)G(jω)≥ γ 2, ∀ω ∈Ω



7.8 LMI Aided Design of FDF 221

(ii) there exist n× n-dimensional Hermitian matrices P , Q> 0 such that

[
A B

I 0

]T
Ξ

[
A B

I 0

]
+
[
C D

0 I

]T
Π

[
C D

0 I

]
< 0 (7.212)

where Ω is the frequency range and Ξ is a matrix, both of them are defined in
Lemma 7.10.

Proof Since

[
G(−jω)

I

]T
Π

[
G(jω)

I

]
=−GT (−jω)G(jω)+ γ 2

we have
[
G(−jω)

I

]T
Π

[
G(jω)

I

]
< 0 ⇐⇒ GT (−jω)G(jω) > γ 2.

The equivalence between the two statements follows from Lemma 7.10. �

In the next subsections, the H− index and its LMI aided computation will be
integrated into the FDF design.

7.8.3 H2 to H− Trade-off Design of FDF

The so-called H2 to H− sub-optimal design of FDF is defined as follows: Find L
such that

I. A−LC is stable (7.213)

II.
∥∥C(sI −A+LC)−1(Ed −LFd)

∥∥
2 < γ (7.214)

III.
∥∥C(sI −A+LC)−1(Ef −LFf )+ Ff

∥∥− →max (7.215)

where it is assumed that C(sI −A+LC)−1(Ef −LFf )+Ff ∈RHm×kf∞ is injec-
tive and for continuous-time systems

∥∥C(sI −A+LC)−1(Ef −LFf )+ Ff
∥∥−

=min
ω
σ
(
C(jωI −A+LC)−1(Ef −LFf )+ Ff

)
> 0

as well as for discrete-time systems
∥∥C(sI −A+LC)−1(Ef −LFf )+ Ff

∥∥−
=min

θ
σ
(
C
(
ejθ I −A+LC)−1

(Ef −LFf )+ Ff
)
> 0.
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Analogous to the derivation given in Sect. 7.8.1, we first set L = L2 + ΔL and
re-formulate the optimization problem as finding ΔL such that

I. A− (L2 +ΔL)C is stable (7.216)

II.
∥∥C(sI −A+ (L2 +ΔL)C

)−1
ΔL
∥∥2

2 < γ
2 − trace

(
CXCT

)= γ1 or
(7.217)

II.
∥∥C(sI −A+ (L2 +ΔL)C

)−1
ΔL
∥∥2

2 < γ
2 − trace

(
CYCT

)= γ1 (7.218)

III.
∥∥C(sI −A+ (L2 +ΔL)C

)−1
(Ef −ΔLFf )+ Ff

∥∥− →max. (7.219)

Recall that conditions I and II can be expressed in terms of the following LMIs:

• for continuous-time systems there exist Q1, Y1 such that

ATL2
Y1 + Y1AL2 −CT L̄T − L̄C +CT C < 0 (7.220)[
Y1 L̄

L̄T Q1

]
> 0, trace(Q1) < γ1 (7.221)

• for the discrete-time system: there exist Q2, Z1 such that
[

Z1 Z1AL2 − L̄C
ATL2

Z1 −CT L̄T Z1 −CT C
]
> 0 (7.222)

[
Z1 L̄

L̄T Q2

]
> 0, trace(Q2) < γ1 (7.223)

where

ΔL= P L̄, P = Y−1
1 or P = Z−1

1 , AL2 =A−L2C

and L2 is the H2 optimal observer gain as given in Theorem 7.9. It follows from
Theorem 7.13, Corollary 7.6 and Schur complement that we can reformulate (7.219)
as

max
ΔL,Y2=YT2

γ2 subject to (7.224)

[
DDT − γ 2

2 I ẼTf Y2 + FTf C
Y2Ẽf +CT Ff Y2AL +ATLY2 +CT C

]
> 0

for continuous-time systems and

max
ΔL,Z2=ZT2

γ2 subject to (7.225)

[
FTf Ff + ẼTf Z2Ẽf − γ 2I ẼTf Z2AL + FTf C

ATLZ2Ẽf +CT Ff ATLZ2AL −Z2 +CT C

]
> 0
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for discrete-time systems, where

AL =AL2 −ΔLC, Ẽf =Ef − (L2 +ΔL)Ff =Ef −ΔLFf .
In summary, the H2 to H− sub-optimal design of FDF can be formulated as the

following optimization problem with nonlinear matrix inequalities (NMI):

• for continuous-time systems

max
L̄,Y1,Y2=YT2

γ2 subject to (7.226)

ATL2
Y1 + Y1AL2 −CT L̄T − L̄C +CT C < 0[
Y1 L̄

L̄T Q1

]
> 0, trace(Q1) < γ1

[
DDT − γ 2

2 I ẼTf Y2 + FTf C
Y2Ẽf +CT Ff Y2AL +ATLY2 +CT C

]
> 0

• for discrete-time systems

max
L̄,Z1,Z2=ZT2

γ2 subject to (7.227)

[
Z1 Z1AL2 − L̄C

ATL2
Z1 −CT L̄T Z1 −CT C

]
> 0

[
Z1 L̄

L̄T Q2

]
> 0, trace(Q2) < γ1

[
FTf Ff + ẼTf Z2Ẽf − γ 2I ẼTf Z2AL + FTf C

ATLZ2Ẽf +CT Ff ATLZ2AL −Z2 +CT C

]
> 0.

Remark 7.10 Optimization problems (7.226) and (7.227) have been formulated on
the assumption that C(sI −A+LC)−1(Ef −LFf )+ Ff is injective. In case that
it is surjective, using the dual principle we are able to derive the solution.

Remark 7.11 (7.226) and (7.227) are optimization problems with NMI constraints.
Such optimization problems can be solved in an iterative way. We refer the reader
to some literatures on this topic which are given at the end of this chapter.

7.8.4 H∞ to H− Trade-off Design of FDF

The so-called H∞ to H− optimization of FDF is formulated as finding L such that

I. A−LC is stable (7.228)
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II.
∥∥C(sI −A+LC)−1(Ed −LFd)+ Fd

∥∥∞ < γ (7.229)

III.
∥∥C(sI −A+LC)−1(Ef −LFf )+ Ff

∥∥− →max. (7.230)

The basic idea of solving the above optimization problem is, again, to transform
it into an optimization problem with matrix inequalities as constraints. Initiated by
Hou and Patton in 1997, study on the H∞ to H− optimization of FDF has received
considerable attention. In this subsection, we only introduce an essential formulation
of this optimization problem. For further details and results published in the past,
we refer the reader to the literature cited at the end of this chapter.

To ensure the existence of a nonzero minimum H− index, we assume that

C(sI −A+ LC)−1(Ef − LFf )+ Ff ∈RHm×kf∞ is injective and for continuous-
time systems

∥∥C(sI −A+LC)−1(Ef −LFf )+ Ff
∥∥−

=min
ω
σ
(
C(jωI −A+LC)−1(Ef −LFf )+ Ff

)
> 0 (7.231)

as well as for discrete-time systems

∥∥C(sI −A+LC)−1(Ef −LFf )+ Ff
∥∥−

=min
θ
σ
(
C
(
ejθ I −A+LC)−1

(Ef −LFf )+ Ff
)
> 0. (7.232)

Once again, we would like to mention that using the dual principle a solution for the
surjective case can also be found. For the sake of simplicity, we only concentrate
ourselves on the injective case.

It follows from Lemmas 7.8 and 7.9 that requirements (7.228) and (7.229) can
be written into a matrix inequality form

• for continuous-time systems: there exists a Y > 0 such that

⎡
⎣ (A−LC)

T Y + Y(A−LC) Y (Ed −LFd) CT

(Ed −LFd)T Y −γ I FTd
C Fd −γ I

⎤
⎦< 0 (7.233)

• for discrete-time systems: there exists a X > 0 such that

⎡
⎢⎢⎣

−X X(A−LC) X(Ed −LFd) 0
(A−LC)T X −X 0 CT

(Ed −LFd)T X 0 −γ I FTd
0 C Fd −γ I

⎤
⎥⎥⎦< 0. (7.234)

Combining (7.233), (7.234) with the results given in Theorem 7.13, Corollary 7.6
leads to the following re-formulation of H∞to H− optimization (7.228)–(7.230):
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• for continuous-time systems:

max
L,Y>0,Y1=YT1

γ1 subject to (7.235)

⎡
⎣ (A−LC)

T Y + Y(A−LC) Y (Ed −LFd) CT

(Ed −LFd)T Y −γ I FTd
C Fd −γ I

⎤
⎦< 0

[
FTf Ff − γ 2

1 (Ef −LFf )T Y1 + FTf C
Y1(Ef −LFf )+CT Ff Y1(A−LC)+ (A−LC)T Y1 +CT C

]
> 0

• for discrete-time systems:

max
L,X,X1=XT1

γ1 subject to (7.236)

⎡
⎢⎢⎣

−X X(A−LC) X(Ed −LFd) 0
(A−LC)T X −X 0 CT

(Ed −LFd)T X 0 −γ I FTd
0 C Fd −γ I

⎤
⎥⎥⎦< 0

[
Π11 Π12

ΠT
12 Π22

]
> 0

Π11 = FTf Ff + (Ef −LFf )T X1(Ef −LFf )− γ 2
1 I

Π12 = (Ef −LFf )T X1(A−LC)+ FTf C
Π22 = (A−LC)T X1(A−LC)−X1 +CT C.

Again, solving (7.235) and (7.236) deals with an optimization with NMI constraints
and requires the application of advanced nonlinear optimization technique.

7.8.5 H∞ to H− Trade-off Design of FDF in a Finite Frequency
Range

Based on the GKYP-lemma, Wang and Yang proposed an approach to the H∞ to
H− design of FDF in a finite frequency range. In this subsection, we briefly intro-
duce the basic idea of this approach.

The design problem is formulated as: given Grd(s)= C(sI −A+LC)−1(Ed −
LFd)+Fd andGrf (s)= C(sI −A+LC)−1(Ef −LFf )+Ff , as well as γ,β > 0,
find L such that ∀ω ∈Ω

I. GTrd(−jω)Grd(jω) < γ 2 (7.237)

II. GTrf (−jω)Grf (jω) > β2 (7.238)
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where Ω is the frequency range defined in Lemma 7.10. We would like to call
reader’s attention that for the FDI purpose the conditions I and II should be satisfied
in the same frequency range.

It follows from Lemma 7.10, (7.237) can be equivalently expressed by

[
A−LC Ed −LFd

I 0

]T
Ξ

[
A−LC Ed −LFd

I 0

]

+
[
CT C CT Fd
FTd C FTd Fd − γ 2I

]
< 0 (7.239)

while (7.238), according to Theorem 7.14, by

[
A−LC Ef −LFf

I 0

]T
Ξ

[
A−LC Ef −LFf

I 0

]

+
[−CT C −CT Ff
−FTf C β2I − FTf Ff

]
< 0. (7.240)

Wang and Yang have an algorithm to approach the above matrix inequalities. The
reader is referred to the reference given at the end of this chapter.

7.8.6 An Alternative H∞ to H− Trade-off Design of FDF

Although the approach proposed in the last subsection provides an elegant LMI so-
lution to the H∞ to H− trade-off design, it is computationally involved and delivers
often only local optimum. We now derive an alternative solution to the same prob-
lem with less computation and guaranteeing the global optimum.

Assume that C(sI −A+LC)−1(Ef −LFf )+Ff ∈RHm×kf∞ is surjective and
satisfies

∀ω, rank

[
A− jωI Ef

C Ff

]
= n+m or

∀θ ∈ [0,2π], rank

[
A− ejθ I Ef

C Ff

]
= n+m.

for discrete-time systems. It follows from Lemma 7.4 or Lemma 7.5 that setting

L0 =
(
YCT +EfFTf

)(
Ff F

T
f

)−1
, V0 = α

(
Ff F

T
f

)−1/2
, α > 0 or

(7.241)

L0 =
(
ATXCT +EfFTf

)(
Ff F

T
f +CXCT

)−1
, V0 = α

(
Ff F

T
f +CXCT

)−1/2

(7.242)
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leads to
∥∥V0
(
C(jωI −A+L0C)

−1(Ef −L0Ff )+ Ff
)∥∥− = α or

∥∥V0
(
C
(
ejθ I −A+L0C

)−1
(Ef −L0Ff )+ Ff

)∥∥− = α
where Y is the solution of Riccati equation

AY + YAT +EfETf −
(
YCT +EfFTf

)(
Ff F

T
f

)−1(
CY + FfETf

)= 0 (7.243)

and X the one of

ADX
(
I +CT (Ff FTf )−1

CX
)−1

ATD −X+EfFTf⊥Ff⊥ETf = 0 (7.244)

AD =A−CT
(
Ff F

T
f

)−1
FfE

T
f .

Note that the dynamics of the corresponding FDF is, considering continuous-time
systems, governed by

r(s)= N̂f,0(s)f (s)+ N̂d,0(s)d(s) (7.245)

with

Gyd(s)= M̂−1
f,0(s)N̂f,0(s), Gyd(s)= M̂−1

d,0(s)N̂d,0(s)

M̂u,0(s)= M̂f,0(s)= M̂d,0(s)= V0
(
I −C(sI −A+L0C)

−1L0
)

(7.246)

N̂f,0(s)= V0
(
C(sI −A+L0C)

−1(Ef −L0Ff )+ Ff
)

(7.247)

N̂d,0(s)= V0
(
C(sI −A+L0C)

−1(Ed −L0Fd)+ Fd
)
. (7.248)

Next, we would like to demonstrate that L0, V0 given in (7.241) or (7.242) solve the
optimization problem of finding L, V such that

I. A−LC is stable (7.249)

II.
∥∥VC(sI −A+LC)−1(Ed −LFd)+ VFd

∥∥∞ < γ (7.250)

III.
∥∥VC(sI −A+LC)−1(Ef −LFf )+ VFf

∥∥− →max. (7.251)

Remember that the dynamics of an FDF is generally described by

r(s)= N̂f (s)f (s)+ N̂d(s)d(s)= M̂u(s)
(
Gyf (s)f (s)+Gyd(s)d(s)

)
which can be further written as

r(s)= M̂u(s)M̂
−1
f,0(s)

(
N̂f,0(s)f (s)+ N̂d,0(s)d(s)

)
.

Suppose that L, V ensure
∥∥N̂d(s)∥∥∞ =

∥∥M̂u(s)M̂
−1
f,0(s)N̂d,0(s)

∥∥∞ < γ
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and make
∥∥N̂f (s)∥∥− =

∥∥M̂u(s)M̂
−1
f,0(s)N̂f,0(s)

∥∥− = α

‖M̂u(s)M̂
−1
f,0(s)‖∞

reaching its maximum. Considering the following relations (see also (7.200))
∥∥N̂d,0(s)∥∥∞ ≤

∥∥M̂f,0(s)M̂
−1
u (s)

∥∥∞
∥∥M̂u(s)M̂

−1
f,0(s)N̂d,0(s)

∥∥∞∥∥N̂f,0(s)∥∥− =
∥∥M̂f,0(s)M̂

−1
u (s)M̂u(s)M̂

−1
f,0(s)N̂f,0(s)

∥∥−
≥ ‖N̂f (s)‖−
‖M̂f,0(s)M̂

−1
u (s)‖∞

= α

‖M̂f,0(s)M̂
−1
u (s)‖∞‖M̂u(s)M̂

−1
f,0(s)‖∞

and setting

α = (∥∥(Ff FTf )−1/2(
I −C(jωI −A+L0C)

−1L0
)
M̂−1
u (jω)

∥∥∞)−1

we get
∥∥N̂d,0(s)∥∥∞ ≤

∥∥M̂u(s)M̂
−1
f,0(s)N̂d,0(s)

∥∥∞ =
∥∥N̂d(s)∥∥∞ < γ

∥∥N̂f,0(s)∥∥− ≥ ‖N̂f (s)‖−
‖M̂u(s)M̂

−1
f,0(s)‖∞

= ∥∥N̂f (s)∥∥−.

This result verifies that L0, V0 given in (7.241) or (7.242) do solve the optimization
problem (7.249)–(7.251) and thus proves the following theorem.

Theorem 7.15 L0, V0 given in (7.241) or (7.242) with

0< α <
γ

‖(Ff FTf )−1/2(C(jωI − Ā)−1Ef + Ff )‖∞
or (7.252)

0< α <
γ

‖(Ff FTf +CXCT )−1/2(C(ejθ I − Ā)−1Ef + Ff )‖∞
(7.253)

Ā=A−L0C, Ef =Ef −L0Ff

solve the optimization problem (7.249)–(7.251).

It is worth noting that for the determination of L0, V0 only the solution of one
Riccati equation is needed. Moreover, the solution is analytically achievable and
ensures a global optimum.

Remark 7.12 We would like to mention that L0, V0 given in (7.241) or (7.242) also
solves

sup
L,V

‖VC(sI −A+LC)−1(Ef −LFf )+ VFf ‖−
‖VC(sI −A+LC)−1(Ed −LFd)+ VFd‖∞
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where α (>0) can be any constant. In Sect. 12.3, we shall prove it. We would like to
call reader’s attention that this result also verifies the comparison study in Sect. 7.3.

Algorithm 7.6 (H∞ to H− trade-off design of FDF—an alternative solution)

S1: Compute L0, V0 according to (7.241) or (7.242)
S2: Set α satisfying (7.252) or (7.253).

Example 7.4 In this example, we design an H∞ to H− optimal FDF for the bench-
mark vehicle dynamic system via Algorithm 7.6. To this end, system model (3.78)
in Sect. 3.7.4 is slightly modified, where

C′αV = 103600+ΔCαV , ΔCαV ∈ [−10000,0]

is rewritten as

C′αV = 98600+ΔCαV , ΔCαV ∈ [−5000,5000].

This change is due to the need in the late study. It results in

A =
[−2.9077 −0.9762

28.4186 −3.2546

]
, B =

[
1.0659
38.9638

]

C =
[−145.3844 1.1890

0 1.0000

]
, D =

[
53.2973

0

]

with

Ef =
[

0 0 1.0659
0 0 38.9638

]
, Ff =

[
1 0 53.2973
0 1 0

]
.

The achieved results are

L0 =
[

0.0200 0.0002
0.7308 0.0707

]
, V0 =

[
0.0188 0

0 1

]
.

7.8.7 A Brief Summary and Discussion

In this section, we have presented numerous approaches to the optimal design of
FDF regarding to four different performance indices:

• H2/H2 optimization
• H2 to H− optimization
• H∞ to H− optimization
• H∞ to H− optimization in a finite frequency range.
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Remember that our design objective is indeed a multi-objective optimization, i.e.
minimizing the influence of the disturbances on the residual and simultaneously
maximizing the one of the possible faults. The underlying idea adopted here for
solving such optimization problems is to reduce the multi-objective optimization
problem to a single optimization problem with constraints. To this end, the well-
established robust control theory and LMI-techniques have been used. As a result,
all requirements and constraints given in the form of norms of transfer function
matrices are equivalently expressed in terms of matrix inequalities. Although these
matrix inequalities look formally linear, part of them is indeed bilinear related to the
optimization parameters.

Bearing in mind the main objective of our handling, we shall continue our study
without detailed dealing with the solution for the formulated optimization problems.
At the end of this chapter, however, a number of references are given, where the
reader is provided with useful materials like essentials, algorithms and even software
solutions for such problems.

The reader might notice that the H∞ norm has not been taken into account for
measuring the influence of faults. This is mainly due to the difficulty met by han-
dling the inequality ∥∥N̂f (s)∥∥∞ > γ > 0.

A further discussion upon this will be carried out in the subsequent sections.

7.9 The Unified Solution

In the last sections, different norms and indices have been used to describe the in-
fluence of the unknown disturbances and faults on the residual signal. Remember
that both the H∞ norm and index H− are some extreme value of a transfer function
matrix. From the practical viewpoint, it is desired to define an index that gives a
fair evaluation of the influence of the faults on the residual signal over the whole
frequency domain and in all directions in the measurement subspace.

The major objective of this section is to introduce an index for a practical eval-
uation of the fault sensitivity and, based on it, to achieve an optimal design of the
observer-based FD systems.

7.9.1 Hi/H∞ Index and Problem Formulation

Consider system (7.124). To simplify our discussion, we first focus on the
continuous-time systems. The extension to the discrete-time systems is straight-
forward and will be given at the end of this section.

For our purpose, we now introduce a definition of fault sensitivity and, associated
with it, the so-called Hi/H∞ performance index. Recall that the singular values



7.9 The Unified Solution 231

of a matrix give a measurement of the “gain” in each direction of the subspace
spanned by the matrix. In this context, all singular values σi(R(jω)Gf (jω)), ω ∈
[0,∞], together build a natural measurement of the fault sensitivity. They cover all
directions of the subspace spanned by R(jω)Gf (jω). In comparison, ‖RGf ‖− or
‖RGf ‖∞ or their representations in a finite frequency range are only extreme points
in this subspace. It holds ∀ω ∈ [0,∞],

‖RGf ‖− ≤ σi
(
R(jω)Gf (jω)

)≤ ‖RGf ‖∞ (7.254)

Associated with it, we introduce the following definition.

Definition 7.5 (Hi/H∞ design) Given system (7.124) and let σi(R(jω)Gf (jω)),
i = 1, . . . , kf , be the singular values of R(jω)Gf (jω).

Ji,ω(R)= σi(R(jω)Gf (jω))

‖R(s)Gd(s)‖∞
(7.255)

is called Hi/H∞ performance index.

We would like to call reader’s attention that Hi/H∞ index indicates a set of (kf )
functions. It is clear that J∞(R) and J0(R),

J∞(R)= ‖R(s)Gf (s)‖∞‖R(s)Gd(s)‖∞
, J0(R)= infω σ(R(jω)Gf (jω))

‖R(s)Gd(s)‖∞
are only two special functions in the set of Ji,ω(R).

Under Hi/H∞ performance index, we now formulate the residual generator de-
sign as finding R(s) ∈ RH∞ such that for all σi(R(jω)Gf (jω)), i = 1, . . . , kf ,
ω ∈ [0,∞], Ji,ω(R) is maximized, that is,

sup
R(s)∈RH∞

Ji,ω(R)= sup
R(s)∈RH∞

σi(R(jω)Gf (jω))

‖R(s)Gd(s)‖∞
. (7.256)

It is worth emphasizing that (7.256) is a multiobjective (kf objectives!) optimization
and the solution of (7.256) would also solve

sup
R(s)∈RH∞

‖R(s)Gf (s)‖∞
‖R(s)Gd(s)‖∞

and sup
R(s)∈RH∞

infω σ(R(jω)Gf (jω))

‖R(s)Gd(s)‖∞
(7.257)

which have been discussed in the previous sections.

7.9.2 Hi/H∞ Optimal Design of FDF: The Standard Form

Now, we are going to solve (7.256). For our purpose, we first assume that

∀ω ∈ [0,∞], Gd(jω)G
∗
d(jω) > 0. (7.258)
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This assumption will be removed in the next section. It follows from Lemma 7.4 that
Gd(s) can be factorized into Gd(s) = M̂−1

0 (s)N̂0(s), where M̂−1
0 (s) is a co-outer,

N̂0(s) a co-inner of Gd(s). Let R(s)=Q(s)M̂0(s) for some Q(s) ∈RH∞. It then
turns out that ∀ω ∈ [0,∞] and for all σi(R(jω)Gf (jω)), i = 1, . . . , kf ,

Ji,ω(R)= σi(Q(jω)M̂0(jω)Gf (jω))

‖Q(s)‖∞ ≤ σi
(
M̂0(jω)Gf (jω)

)
. (7.259)

On the other hand, setting R(s)= M̂0(s) leads to

∀ω,σi
(
R(jω)Gf (jω)

)
Ji,ω(R)= σi

(
M̂0(jω)Gf (jω)

)

i.e. ∀ω ∈ [0,∞], i = 1, . . . , kf , the postfilter R(s)= M̂0(s) leads to the maximum
Ji,ω(R). As a result, the following theorem is proven.

Theorem 7.16 Given system (7.124) and assume that (7.258) holds, then ∀ω ∈
[0,∞] and σi(R(jω)Gf (jω)), i = 1, . . . , kf ,

Ropt(s)= arg
(

sup
R(s)∈RH∞

Ji,ω(R)
)
= M̂0(s) (7.260)

where M̂−1
0 (s) is a co-outer of Gd(s).

Theorem 7.16 reveals that Ropt(s) leads to a simultaneous optimum of perfor-
mance index (7.256) in the whole subspace spanned by Gd(jω). It also covers the
special case (7.257). For this reason, Ropt(s) is called the unified solution. It can be
shown (see Chap. 12) that the unified solution delivers not only an optimal solution
in the sense of (7.256) or (7.257) but also an optimal trade-off in the sense that given
an allowable false alarm rate, the fault detection rate is maximized. This also gives a
practical explanation why the unified solution, different from the existing optimiza-
tion methods, solves (7.256) simultaneously for all σi(R(jω)Gf (jω)), ω ∈ [0,∞],
i = 1, . . . , kf .

Applying Ropt(s) to (7.124) yields

r(s)= N̂0(s)d(s)+ M̂0(s)Gf (s)f (s) (7.261)

and in the fault-free case ‖r‖2 = ‖d‖2. In the above expression, M̂0(jω) can be
considered as a weighting matrix of the influence of f on r . Remember that M̂0(s)

is the inverse of the co-outer of Gd(s), and the co-outer of a transfer matrix can be
interpreted as the magnitude profile of the transfer matrix in the frequency domain.
In this context, it can be concluded that the optimal solution is achieved by inversing
the magnitude profile of Gd(s). As a result, the influence of d on r becomes uniform
in the whole subspace spanned by the possible disturbances, while the influence of
f on r is weighted by the inverse of the magnitude profile of Gd(jω), that is, where
Gd(jω) is strong (weak), Gf (jω) will be weakly (strongly) weighted.
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Remark 7.13 Remember that in Sect. 7.8.6, we have derived a solution for the opti-
mization problem

sup
R(s)∈RH∞

J0(R)= infω σ(R(jω)Gf (jω))

‖R(s)Gd(s)‖∞
which is different from the one given above. This shows that the solution for this
problem is not unique. In Chap. 12, we shall further address this issue.

Following Lemma 7.4, the results given in Theorem 7.16 can also be presented
in the state space form. To this end, suppose that the minimal state space realization
of system (7.124) is given by

ẋ(t)=Ax(t)+Bu(t)+Edd(t)+Ef f (t)
(7.262)

y(t)= Cx(t)+Du(t)+ Fdd(t)+ Ff f (t).
Using an FDF for the purpose of residual generation,

˙̂x(t)=Ax̂(t)+Bu(t)+L(y(t)− ŷ(t))
(7.263)

ŷ(t)= Cx̂(t)+Du(t), r(t)= V (y(t)− ŷ(t))

gives

r(s)= V (M̂u(s)Gyd(s)d(s)+ M̂u(s)Gyf (s)f (s)
)

= V (N̂d(s)d(s)+ N̂f (s)f (s)) (7.264)

M̂u(s)= I −C(sI −A+LC)−1L= M̂d(s)= M̂f (s)

N̂d(s)= Fd +C(sI −A+LC)−1(Ed −LFd)
N̂f (s)= Ff +C(sI −A+LC)−1(Ef −LFf )
Gd(s)= M̂−1

d (s)N̂d(s), Gf (s)= M̂−1
f (s)N̂f (s).

The following theorem represents a state space version of the optimal solution
(7.260) and gives the optimal design for L, V .

Theorem 7.17 Given system (7.262) that is detectable and satisfies ∀ω ∈ [0,∞]

rank

[
A− jωI Ed

C Fd

]
= n+m (7.265)

and the residual generator (7.263), then

Lopt =
(
EdF

T
d + YdCT

)(
FdF

T
d

)−1
, Vopt =

(
FdF

T
d

)−1/2 (7.266)
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with Yd ≥ 0 being the stabilizing solution of the Riccati equation

AYd +YdAT +EdETd −
(
EdF

T
d +YdCT

)(
FdF

T
d

)−1(
FdE

T
d +CYd

)= 0 (7.267)

deliver an optimal FDF (7.263) in the sense of ∀ω, σi(V N̂f (jω)), i = 1, . . . , kf ,

sup
L,V

Ji,ω(L,V )= sup
L,V

σi(V N̂f (jω))

‖V N̂d(s)‖∞
= σi
(
VoptN̂f,opt(jω)

)
(7.268)

N̂f,opt(s)= Ff +C(sI −A+LoptC)
−1(Ef −LoptFf ).

The proof of this theorem follows directly from Lemma 7.4 and Theorem 7.16.
Theorem 7.17 provides us not only with a state space expression of optimization

problem (7.256) but also with the possibility for a comparison with the existing
methods from the computational viewpoint. Remember that most of the LMI aided
design methods handle the optimization problems as a multi-objective optimization.
As a result, the solutions generally include two Riccati LMIs. In comparison, the
unified solution only requires solving Riccati equation (7.267) and thus demands
for less computation.

Example 7.5 We now design an FDF using the unified solution for the benchmark
system LIP100. Our design purpose is to increase the system robustness against
the unknown inputs including measurement noises. Based on model (3.59) with the
extended Ed , Fd (to include the measurement noises)

Ed =
[

0 B
]
, Fd =

[
I3×3 0

]

we get

Lopt =

⎡
⎢⎢⎣

1.5580 0.4517 −0.8677
0.4517 11.7384 −2.7548
−0.8677 −2.7548 3.8811
3.0234 72.7919 −47.2420

⎤
⎥⎥⎦ , Vopt = I3×3.

7.9.3 Discrete-Time Version of the Unified Solution

In this subsection, we shall briefly present the analogous version of Theorems 7.16
and 7.17 for discrete-time systems without proof.

Theorem 7.18 Given system (7.124) and assume that

∀θ ∈ [0,2π], Gd
(
ejθ
)
G
∗
d

(
ejθ
)
> 0. (7.269)
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then ∀θ ∈ [0,2π], and σi(R(ejθ )Gf (ejθ )), i = 1, . . . , kf ,

Ropt(z)= arg
(

sup
R(s)∈RH∞

Ji,ω(R)
)
= M̂0(z) (7.270)

where M̂−1
0 (z) is a co-outer of Gd(z).

Theorem 7.19 Given system

x(k + 1) = Ax(k)+Bu(k)+Edd(k)+Ef f (k)
y(k) = Cx(k)+Du(k)+ Fdd(k)+ Ff f (k)

that is detectable and satisfies ∀θ ∈ [0,2π]

rank

[
A− ejθ I Ed

C Fd

]
= n+m.

Then residual generator

x̂(k + 1) = (A−LoptC)x̂(k)+ (B −LoptD)u(k)+Lopty(k)

r(k) = Vopt
(
y(k)−Cx̂(k)−Du(k))

with

Lopt =−LTd , Vopt =Wd (7.271)

delivers residual signal r(k) that is optimum in the sense that ∀θ ∈ [0,2π] and
σi(V N̂f (e

jθ ))

sup
L,V

σi(V N̂f (e
jθ ))

‖V N̂d(z)‖∞
= σi
(
VoptN̂f,opt

(
ejθ
))

N̂f,opt(z)= Ff +C(zI −A+LoptC)
−1(Ef −LoptFf ).

In (7.271), Wd is the left inverse of a full column rank matrix H satisfying HdHT
d =

CXdC
T + FdFTd , and (Xd,Ld) is the stabilizing solution to the DTARS (discrete-

time algebraic Riccati system)
[
AXdA

T −Xd +EdETd AXdC
T +EdFTd

CXdA
T + FdETd CXdC

T + FdFTd

][
I

Ld

]
= 0. (7.272)

7.9.4 A Generalized Interpretation

In this subsection, we give an interpretation of the unified solution, which general-
izes the performance index Hi/H∞. To this end, we first introduce the following
definitions.
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Given two matrices P1(�) ≥ 0, P2(�) ≥ 0, which are of the same dimension
and function of real variable � ∈Φ . Then

P1(�)≥ P2(�)

means

∀� ∈Φ P1(�)− P2(�)≥ 0.

Let Ψ be a set of matrices which are of the same dimension and function of real
variable � ∈Φ . P(�) ∈ Ψ is called the maximum when

∀Pi(�) ∈ Ψ, � ∈Φ P(�)≥ Pi(�).
Now, for our purpose we introduce the following two optimization problems,

sup
L,V

N̂T
f (−jω)N̂f (jω)
‖N̂d(s)‖2∞

∀ω ∈ [0,∞] (7.273)

for the continuous-time systems and

sup
L,V

N̂T
f (e

−jθ )N̂f (ejθ )
‖N̂d(z)‖2∞

∀θ ∈ [0,2π] (7.274)

for the discrete-time systems. It is evident that

(
N̂T
f (−jω)N̂f (jω)
‖N̂d(s)‖2∞

)1/2

,

(
N̂T
f (e

−jθ )N̂f (ejθ )
‖N̂d(z)‖2∞

)1/2

describe the magnitude of the fault transfer matrix at frequency ω or θ , normal-
ized by the maximum gain of the disturbance matrix. Thus, the optimization prob-
lems defined in (7.273) and (7.274) can be exactly interpreted as an optimization
of the sensitivity and robustness ratio in the whole subspace spanned by N̂f (jω)
(or N̂f (ejθ )) and over the whole frequency domain. Below, we demonstrate that the
unified solution solves (7.273) and (7.274). The major result is summarized in the
following two theorems.

Theorem 7.20 Given system (7.262) that is detectable and satisfies ∀ω ∈ [0,∞]

rank

[
A− jωI Ed

C Fd

]
= n+m (7.275)

then the unified solution (7.266) delivers an optimal FDF in the sense that ∀ω ∈
[0,∞]

sup
L,V

N̂T
f (−jω)N̂f (jω)
‖N̂d(s)‖2∞

= N̂T
f,opt(−jω)N̂f,opt(jω). (7.276)
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Proof It is known that the unified solution (7.266) leads to

∀ω, N̂d,opt(jω)N̂
T
d,opt(−jω)= I

N̂d,opt(jω)= Vopt
(
Fd +C(sI −A+LoptC)

−1(Ed −LoptFd)
)
.

Then for all R(s) ∈RH∞

J (R)= N̂
T
f (−jω)RT (−jω)R(jω)N̂f (jω)

‖R(s)N̂d,opt(s)‖2∞
= N̂

T
f (−jω)RT (−jω)R(jω)N̂f (jω)

‖R(s)‖2∞
(7.277)

≤ N̂T
f (−jω)N̂f (jω), ∀ω ∈ [0,∞]. (7.278)

Note that setting R(s)= I leads to ∀ω ∈ [0,∞]

J (R)= N̂T
f (−jω)N̂f (jω)

i.e. ∀ω ∈ [0,∞] R(s)= I leads to the maximum J (R). On the other hand, for any
L, V setting different from Lopt, Vopt , it holds for N̂d(s)

N̂d(s)= V
(
Fd +C(pI −A+LC)−1(Ed −LFd)

)= V M̂−1(s)N̂d,opt(s)

N̂d,opt(s)= Vopt
(
Fd +C(pI −A+LoptC)

−1(Ed −LoptFd)
)

M̂(s)= Vopt
(
I −C(pI −A+LoptC)

−1(Lopt −L)
)
.

Notice that

(
I −C(pI −A+LoptC)

−1(Lopt −L)
)−1

= I +C(pI −A+LC)−1(Lopt −L) ∈RH∞.

Hence, N̂d(s) can be written into

N̂d(s)=R(s)N̂d,opt(s)

R(s)= V (I +C(pI −A+LC)−1(Lopt −L)
)
V −1

opt ∈RH∞.

As a result of (7.277)–(7.278) we conclude that Lopt, Vopt provide the optimal solu-
tion in the sense of (7.276). �

Theorem 7.21 Given system (7.124) that is detectable and satisfies ∀θ ∈ [0,2π]

rank

[
A− ejθ I Ed

C Fd

]
= n+m (7.279)
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then the unified solution (7.271) delivers an optimal FDF in the sense of ∀θ ∈
[0,2π]

sup
L,V

N̂T
f (e

−jθ )N̂f (ejθ )
‖N̂d(z)‖2∞

= N̂T
f,opt

(
e−jθ
)
N̂f,opt

(
ejθ
)
. (7.280)

The proof is similar to the proof of Theorem 7.20 and thus omitted.
The above two theorems provide us with a new interpretation of the unified so-

lution, which extends the applicability of the unified solution and also solves the
known H∞/H∞, H−/H∞ and Hi/H∞ optimization problems as a special case of
(7.276) and (7.280).

7.10 The General Form of the Unified Solution

Due to the complexity, the study in this section will focus on continuous-time sys-
tems. Recall that the unified solution proposed in the last section is based on as-
sumption (7.258) or its state space expression (7.265), that is, Gd(s) is surjective
and has no zero on the jω-axis or at infinity. Although it is standard in the robust
control theory and often adopted in the observer-based residual generator design,
this assumption may considerably restrict the application of design schemes. For
instance, the case rank(Fd) < m, which is often met in practice, leads to invalidity
of (7.265). Another interesting fact is that for kd < m a PUID can be achieved, as
shown in Chap. 6. It is evident that for kd < m (7.258) does not hold.

It is well-known that a zero ωi on the jω-axis or at infinity means that a distur-
bance of frequency ωi or with infinitively high frequency will be fully blocked. Also,
for kd < m there exists a subspace in the measurement space, on which d has no in-
fluence. From the FDI viewpoint, the existence of such a zero or subspace means
a “natural” robustness against the unknown disturbances. Moreover, remember that
the unified solution can be interpreted as weighting the influence of the faults on
the residual signal by means of inversing the magnitude profile ofGd(s). Following
it, around zero ωi , say ω ∈ (ωi ± Δω), the influence of the faults on the residual
signal will be considerably strongly weighted by M̂0(jω) (because σi(M̂

−1
0 (jω))

is very small). From this observation we learn that it is possible to make use of the
information about the available zeros on the jω-axis or at infinity or the existing
null subspace of Gd(s) to improve the fault sensitivity considerably while keeping
the robustness against d . This is the motivation and the basic idea behind our study
on extending the unified solution so that it can be applied to system (7.124) without
any restriction.

Our extension study consists of two parts: (a) a special factorization of Gd(s) is
developed, based on it (b) an approximated “inverse” of Gd(s) in the whole mea-
surement subspace will be derived.
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7.10.1 Extended CIOF

For our purpose of realizing the idea of the unified solution, under the assumption
that Gd(s) ∈RHm×kd∞ ,

rank
(
Gd(s)

)=min{m,kd}

Gd(s) will be factorized into

Gd(s)=Gdo(s)G∞(s)Gjω(s)Gdi(s) (7.281)

with co-inner Gdi(s), left invertible Gdo(s), Gjω(s) having the same zeros on the
jω-axis and G∞(s) having the same zeros at infinity as Gd(s). This special fac-
torization of Gd(s) is in fact an extension of the standard CIOF introduced at the
beginning of this chapter.

We present this factorization in the form of an algorithm.

Algorithm 7.7 (Algorithm for the extended CIOF)

S0: Do a column compression by all-pass factors as described in Lemma 7.6:

Gd(s)= G̃(s)Ga1(s)

S1: Do a dislocation of zeros for G̃(s)by all-pass factors: G̃(s)=Go(s)Gi1(s).
Denote the zeros and poles of Go(s) in C− by si,−

S2: Set s = a + λ with a satisfying

∀si,− Re(si,−) < a < 0 (7.282)

and substitute s = a + λ into Go(s): G1(λ)=Go(a + λ)=Go(s).
We denote the zeros of G1(λ) corresponding to the zeros of Go(s) in Cjω , C−
and at infinity by λi,jω , λi,− and λi,∞ respectively. It follows from (7.282) that
Re(λi,jω) > 0, Re(λi,−) < 0, λi,∞ =∞. Also, all poles of G1(λ) are located
in C−.

S3: Do a CIOF of G1(λ) following Lemma 7.6: G1(λ)=G1o(λ)G1i (λ)

S4: Substitute λ= s − a into G1i (λ), G1o(λ) and set Go(s) equal to

Go(s)=G1(λ)=G1i (s − a)G1o(s − a)=GTjω(s)G1o(s).

Remembering that λi,jω is corresponding to a zero ofGo(s) in Cjω , it is evident
that Gjω(s) has as its zeros all the zeros of G(s) on the imaginary axis. Noting
that s = a+ λ, a < 0, it can be further concluded that G1o(s) only has zeros in
C− as well as at infinity and the poles of Gjω(s), G1o(s) are all located in C−.
Denote the zeros and poles of G1o(s) in C− by si,−.
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S5: Set s = c
λ−1 and substitute it into G1o(s)

G1o(s)=G1o

(
c

λ− 1

)
=G2(λ)

where c is a constant satisfying

∀si,−, c >
(Im(si,−))2

|Re(si,−)| +
∣∣Re(si,−)

∣∣ (7.283)

S6: Do a CIOF on G2(λ) following Lemma 7.6: G2(λ)=G2o(λ)G2i (λ)

S7: Substitute λ= c+s
s

into G2i (λ), G2o(λ) and set G1o(s)equal to

G2(λ)=G2o

(
c+ s
s

)
G2i

(
c+ s
s

)
=Gdo(s)G∞(s).

It is evident that G∞(s) has as its zeros only zeros of Gd(s) at infinity. Denote a
zero or a pole of G2o(λ) in C− by λj,− ∈ C−. It turns out

s = c

λj,− − 1
= c(Re(λj,−)− 1)− c Im(λj,−)j
(Re(λj,−)− 1)2 + (Im(λj,−))2 .

Since c > 0, Re(λj,−) < 0, we have Re(s) < 0⇐⇒ s ∈ C−. It can thus be concluded
that the poles of GT∞(s), Gdo(s) lie in C−, and Gdo(s) is right invertible in RH∞.
As a result, the desired factorization

Gd(s)=Gdo(s)G∞(s)Gjω(s)Gdi(s), Gdi(s)=Ga1(s)Gi1(s).

is achieved. Below is some remarks on the above algorithm.

Remark 7.14 S0 is necessary only if kd > m. Note that G1i (λ) is inner and G1o(λ)

is an outer factor whose zeros belong to C− and at infinity. It is straightforward to
prove that after S5 the zeros ofG1o(s) at infinity and in C− are located in C+ and C−
of the λ-complex plane, respectively. Also the poles of G1o(s) are in C− of the λ-
complex plane. Note that G2i (λ) is inner and has as its zeros all the zeros of G2(λ)

in C+. Since G2(λ) has no zero in Cjω and at infinity, G2o(λ) is right invertible
in RH∞.

It should be mentioned that IOF (CIOF) is a classic thematic field of advanced
control theory, in which research attention is mainly devoted to those systems with
special properties, for example, strictly proper systems (systems with zeros at infin-
ity) or systems with jω-zeros. Our study on the extended CIOF primarily serves as a
mathematical formulation. It is based on an available CIOF and focused on the fac-
torization of the co-outer into three parts:Gdo(s) which is RH∞-invertible,G∞(s),
Gjω(s) with all zeros at infinity and on the jω-axis. As will be demonstrated below,
knowledge of those zeros can be utilized to improve the fault detection performance.
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7.10.2 Generalization of the Unified Solution

We are now in a position to extend and generalize the unified solution. Recalling the
idea behind the unified solution and our discussion at the beginning of this section,
our focus is on approximating the inverse of Gdo(s)G∞(s)Gjω(s) by a post-filter
in RH∞. To this end, we shall approach the inverse of Gjω(s), G∞(s), Gdo(s)

separately.
Remember that Gjω(s) has as its zeros all the zeros of G(s) on the jω-axis.

Define G̃jω(s) by Gjω(s − ε), ε > 0. Note that all zeros of G̃jω(s) are located in
C−. If ε is chosen to be small enough, then we have G̃−1

jω(s) as an approximation of
the inverse of Gjω(s) with

G̃−1
jω(s)Gjω(s)≈ I, G̃−1

jω(s)=G−1
jω(s − ε) ∈RH∞. (7.284)

To approximate the inverse of G∞(s), we introduce G̃∞(s) = G∞( s
εs+1 ), ε > 0,

whose zeros are − 1
ε
∈ C−. Thus, choosing ε small enough yields

G̃−1∞ (s)G∞(s)≈ I, G̃−1∞ (s)=G−1∞
(

s

εs + 1

)
∈RH∞. (7.285)

Recalling that Gdo(s) =GTo (s) is left invertible in RH∞, for m = kd the solution
is trivial, that is, G−do(s) = G−1

do (s). We study the case m > kd . As described in
Lemma 7.6, using a row compression by all-pass factors Gdo(s) can be factorized
into

Gdo(s)=Gdo,1(s)
[
Gdo,2(s)

0

]
∈RHm×kd (7.286)

with Gdo,1(s) ∈ RHm×m, Gdo,2(s) ∈ RHkd×kd . Both Gdo,1(s), Gdo,2(s) are in-
vertible in RH∞. (7.286) means that Gd(s) only spans an m × kd -dimensional
subspace of the m×m-dimensional measurement space. In order to inverse Gd(s)
in the whole measurement space approximately, we now extend Gd(s) and d(s) to

Gd,e(s)=
[
Gd(s) 0

] ∈RHm×m, de(s)=
[
d(s)

0

]
∈Rm

which yields no change in the results achieved above. As a result, we have

Gd,e(s)=Gdo,1
[
Gdo,2(s)G∞(s)Gjω(s) 0

0 0

]
Gdi(s)

Gdi(s)=
[
Gdi(s) 0

0 I

]
is co-inner.

Since
[Gdo,2(s)G∞(s)Gjω(s) 0

0 0

]
is not invertible, we introduce

[
Gdo,2(s)G∞(s)Gjω(s) 0

0 δI

]
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with a very small constant δ to approximate it. Together with (7.284)–(7.286), we
now define the optimal post-filter as

Ropt(s)=
[
G̃−1
jω(s)G̃

−1∞ (s)G−1
do,2(s) 0

0 1
δ
I

]
G−1
do,1(s). (7.287)

Ropt(s) satisfying (7.287) is an approximation of the inverse of the magnitude profile
of Gd(s). In order to understand it well, we apply Ropt(s) to residual generator

r(s)=R(s)(Gd(s)d(s)+Gf (s)f (s))
and study the generated residual signal. It turns out

r(s)=Ropt(s)
(
Gd(s)d(s)+Gf (s)f (s)

)

=Ropt(s)
(
Gd,e(s)de(s)+Gf (s)f (s)

)=
[
r1(s)

r2(s)

]

=
[
G̃−1
jω(s)G̃

−1∞ (s)G∞(s)Gjω(s)Gdi(s)d(s)+Gf 1(s)f (s)
1
δ
Gf 2(s)f (s)

]
(7.288)

with [
Gf 1(s)

Gf 2(s)

]
=
[
G̃−1
jω(s)G̃

−1∞ (s)G−1
do,2(s) 0

0 1
δ
I

]
G−1
do,1Gf (s).

Note that d has no influence on r2(s). Following the basic idea of the unified solu-
tion, the transfer function of the faults to r2(s) should be infinitively large weighted.
In solution (7.287), this is realized by introducing factor 1

δ
. It is very interesting to

notice that in fact r2(s) corresponds to the solution of the full disturbance decou-
pling problem, where only this part of the residual vector is generated and used for
the FD purpose. This also means that the dimension of the residual vector, m− kd ,
is smaller than the dimension of the measurement m. In against, the unified solution
results in a residual vector with the same dimension like the measurement vector,
which allows also to detect those faults, which satisfy Gf 2(s)f (s)= 0 and thus are
undetectable using the full disturbance decoupling schemes.

In case m= kd , the solution is reduced to

Ropt(s)= G̃−1
jω(s)G̃

−1∞ (s)G−1
do (s). (7.289)

Summarizing the results achieved in this and the last sections, the unified solution
can be understood as the inverse of the magnitude profile of Gd(s) and described in
the following general form: given system (7.124),

{
the unified solution is given by (7.287) if m> kd
the unified solution is given by (7.289) if m≤ kd . (7.290)

Note that if Gd(s) has no zero in Cjω or at infinity, then G̃jω(s)= I or G̃∞(s)= I .
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We would like to call reader’s attention to the fact that the unified solution will
be re-studied in Chap. 12 under a more practical aspect. The physical meaning of
the unified solution will be revealed.

Example 7.6 We now illustrate the discussion in this subsection by studying the
following example. Consider system (7.124) with

r(s)=
⎡
⎣ r1(s)r2(s)

r3(s)

⎤
⎦ , f (s)=

[
f1(s)

f2(s)

]
, d(s)=

[
d1(s)

d2(s)

]

Gyu(s)=

⎡
⎢⎢⎣

s

s2+3s+2
s2−s+1
s2+3s+2

1
s+1

⎤
⎥⎥⎦ , Gf (s)=

⎡
⎢⎣

s+5
s2+4s+1

0
1

s2+4s+1
0

0 1

⎤
⎥⎦

Gd(s)=
[
Gd1(s)

0

]
, Gd1(s)=

[
(s+1)(s+4)
s2+4s+1

1
s2+4s+1

s+5
s2+4s+1

s+2
s2+4s+1

]
.

G
T

d (s) has two zeros at −3,∞. Moreover, it is evident that r3(s)= f2(t), i.e. a full
decoupling is achieved. However, using r3(t) f1 cannot be detected. In the follow-
ing, we are going to apply the general optimal solution given in (7.290) to solve
the FD problem. It will be shown that using (7.290) we can achieve the similar
performance of detecting f2 as using the full decoupling scheme. In addition, f1
can also be well detected and the zero at infinity can be used to enhance the fault
sensitivity. We now first apply the algorithm given in the last section to achieve the
special factorization (7.281) and then compute the optimal solution according to

(7.290). Considering that G
T

d1(s) has only zeros in C− and at ∞, we start from S5.

Let c= 4.5 and substitute s = c
λ−1 into G

T

d1(s),

G
T

d1(s)=G2(λ)=
⎡
⎣

4(λ+3.5)(λ+0.125)
λ2+16λ+3.25

5(λ−1)(λ−0.1)
λ2+16λ+3.25

(λ−1)2

λ2+16λ+3.25
2(λ−1)(λ+1.25)
λ2+16λ+3.25

⎤
⎦ .

G2(λ) has poles at −15.7942,−0.2058 and zeros at 1,−0.5. As the next step, do
an IOF of G2(λ) using Lemma 7.6. It results in G2(λ)=G2i (λ)G2o(λ), where

G2i (λ)=
[

0.8321 0.5547
−0.5547(s−1)

s+1
0.8321(s−1)

s+1

]

G2o(λ)=
⎡
⎣ 2.7735(λ2+4.35λ+0.725)

λ2+16λ+3.25
3.0509(λ2−2.3182λ−0.3182)

λ2+16λ+3.25
3.0509(λ2+2.6364λ+0.0455)

λ2+16λ+3.25
4.4376(λ2+0.1562λ+0.5312)

λ2+16λ+3.25

⎤
⎦ .

Note thatG2i (λ) has a pole at−1 and a zero at 1 andG2o(λ) has poles at−15.7942,
−0.2058 and zeros −1, −0.5. The next step is to transform G2i (λ), G2o(λ) back to
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the s-plane by letting λ= 4.5+s
s

. It yields

GT∞(s)=
[

0.8321 0.5547
−1.2481
s+2.25

1.8721
s+2.25

]

Go(s)=
⎡
⎣ 0.8321(s2+4.7037s+3.3333)

s2+4s+1
−0.2465(s2+0.875s−12.375)

s2+4s+1
0.5547(s2+5.6667s+5.5)

s2+4s+1
0.3695(s2+5.75s+12)

s2+4s+1

⎤
⎦

where GT∞(s) has a pole at −2.25 and zero at ∞, Go(s) has poles at −3.7321,
−0.2679 and zeros at −3, −2.25. Thus, GTd1(s)=GT∞(s)Go(s),

Gd(s)=
[
Gd1(s)

0

]
=
[
GTo (s)G∞(s)

0

]
.

As a result, the optimal post filter Ropt(s) is given by

Ropt(s)=
[
G̃−1∞ (s)(GTo (s))

−1 0
0 1

δ
I

]
with

G̃−1∞ (s)=
[

0.8321 0.5547
−0.2465(1+2.25ε)s−0.5547

εs+1
0.3698(1+2.25ε)s+0.8321

εs+1

]

G−To =
⎡
⎣ 0.8321(s2+5.75s+12)

s2+5.25s+6.75
−1.2481(s2+5.6667s+5.5)

s2+5.25s+6.75
0.5547(s2+0.875s−12.375)

s2+5.25s+6.75
1.8721(s2+4.7037s+3.3333)

s2+5.25s+6.75

⎤
⎦

and the small positive numbers ε, δ are selected as ε = 0.01, δ = 0.01. The optimal
performance indexes Ji,ω(Ropt), i = 1,2 are shown in Fig. 7.4. It can be read from
the figure that

J∞(Ropt)=max
i,ω

Ji,ω(Ropt)= 99.1(≈ 40 dB)

J0(Ropt)=min
i,ω

Ji,ω(Ropt)≈ 0.

We would like to point out that, if ε→ 0, the value of J∞(Ropt) will converge to
1
δ
= 100. It is evident that J∞(Ropt) will become infinitively large as δ goes to zero.

7.11 Notes and References

The topics addressed in this chapter build one of the vital research fields in the area
of the model-based fault diagnosis technique. The results presented in Sects. 7.5–
7.10 mark the state of the art of the model- and observer-based FDI methods. After
working with this chapter, we can identify the major reasons for this development:
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Fig. 7.4 Optimal
performance index
Ji,ω(Ropt), i = 1,2

• the development of these methods are well and similarly motivated
They are driven by the increasing needs for enhanced robustness against distur-
bances and simultaneously by the demands for reliable and fault sensitive residual
generation

• the ideas behind these methods are similar
The residual generation problems are formulated in terms of robustness and sen-
sitivity and then solved in the framework of the robust control theory

• each method and design scheme is coupled with a newly developed method in the
framework of the robust control theory
The duality between the control and estimation problems enables a direct ap-
plication of advanced control theory and technique to approaching the residual
generation problems.

Due to this close coupling with the advanced control theory, needed preliminar-
ies of the advanced control theory have first been introduced in this chapter. We
refer the reader to [56, 59, 158, 198, 199] for the essential knowledge of signal
and system norms, the associated norm computation and the H2/H∞ technique. To
our knowledge, [16, 154] are two mostly cited literatures in the area of the LMI
technique, which contain both the needed essentials and computational skills. The
factorization technique plays an important role in our study. We refer the reader to
[199] for a textbook styled presentation on this topic and [135, 164] for a deeper
study, for which some special mathematical knowledge is required.

The proofs of Lemmas 7.1–7.5 are given in [199], the proof of Lemma 7.6 in
[135] and the one of Lemma 7.7 on the MMP solution in [56]. The LMI version of
the Bounded Real Lemma, Lemmas 7.8–7.9, is well known, see for instance [16].
The GKYP-lemma is given in [99].

The Kalman filter technique is standard and can be found in almost any standard
textbooks of control engineering, see for instance [7, 24]. Patton and Chen [140] ini-
tiated the technique of residual generator design via an approximation of unknown
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input distribution matrices and made the major contributions to it. The study on the
comparison of different performance indices presented in Sect. 7.3 gives us a deeper
insight into the optimization strategies. To our knowledge, no study has been pub-
lished on this topic. The optimal selection of parity matrices and vectors addressed
in Sect. 7.4 is mainly due to the work by Ding and co-worker [34, 35, 37]. They
extended the first results by Chow and Willsky [29, 118] and by Wünnenberg [183]
in handling residual generator design by means of the parity space technique and
gave a systematic and complete procedure to the residual generator design.

Although the H2/H2 design is the first approach proposed in [46, 117] for the
optimal design of observer-based residual generators using the advanced robust con-
trol technique, only few study has been devoted to it. The interesting result on the
relationship between the parity vector and H2/H2 solution has been recently pub-
lished by Zhang et al. [191]. Based on it, Ye et al. [185, 186] have developed time-
frequency domain approaches for the residual generator design.

The core of an observer-based residual generator is an observer or post-filter
based residual generator. Some works have formulated the design problems in the
framework of H2 or H∞ or mixed H2/H∞ filtering [57, 106, 107, 121, 134], or us-
ing the game theory [30]. The H∞/H∞ design problem was first proposed and
solved in [48], lately in [64, 146, 153]. In the literature, few results have been
reported on the LMI technique based solution of H∞/H∞ design. Most relevant
works are focused on the FDF design with H∞ robustness against disturbances, see,
for instance, [26, 57, 134] or [107]. Although it has been proposed and addressed
in 1993 [52], H−/H∞ design problem has been extensively studied after the pub-
lication of the first LMI solution to this problem in [91]. The discussion about the
H− index in Sect. 7.8.2 is based on the work by Zhang and Ding [187] and strongly
related to the results in [91, 116, 147]. Roughly speaking, there are three different
design schemes relating to the H− index

• LMI technique based solutions, which also build the mainstream of the recent
study on observer-based FD

• H∞ solution by means of a reformulation of H−/H∞ design into a standard H∞
problem as well as

• factorization technique based solutions.

In this chapter, we have studied the first and the third schemes in the extended
details. The second one has been briefly addressed. The most significant contribu-
tions to the first scheme are [91, 114, 116, 147, 178], while [88, 148] have provided
solutions to the second scheme. It is worth to mention the work by Wang and Yang
[177], in which the H−/H∞ design is approached in a finite frequency range. Such
a design can considerably increasing the design efficiency in comparison with the
standard LMI design approaches.

In [39], the factorization technique has been used for the first time to get a com-
plete solution. This work is the basis for the development of the unified solution. A
draft version of the unified solution has been reported in [36]. Further contributions
to this scheme can be found in [100, 117, 188, 189].

The unified solution plays a remarkable role in the subsequent study. The fact that
the unified solution offers a simultaneous solution to the multi-objective Hi/H∞
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(including H−/H∞, H∞/H∞ and H−/H∞ in a finite frequency range) optimiza-
tion problem with, in comparison with the LMI solutions, considerably less compu-
tation is only one advantage of the unified solution, even though it seems attractive
for the theoretical study. It will be demonstrated, in Chap. 12, that the general form
of the unified solution leads to an optimal trade-off between the false alarm rate and
fault detection rate and thus meets the primary and practical demands on an FDI
system. This is the most important advantage of the unified solution. We would like
to call reader’s attention that the study on the extended CIOF in Sect. 7.10.1 primar-
ily serves as a mathematical formulation. Aided by this formulation, we are able to
prove that making use of information provided by those zeros at the jω-axis will
lead to an improvement of the fault detection performance. It is worth mentioning
that for running an extended CIOF a standard CIOF is needed. To this end, those
methods for strictly proper systems [82] or for systems with jω-zeros [87] or for a
more general class of systems [83] are useful.



Chapter 8
Residual Generation with Enhanced Robustness
Against Model Uncertainties

In this chapter, we shall deal with robustness problems met by generating residual
signals in uncertain systems. As sketched in Fig. 8.1, model uncertainties can be
caused by changes in process and in sensor or actuator parameters. These changes
will affect the residual signal and result in poor FDI performance. The major objec-
tive of addressing the robustness issues is to enhance the robustness of the residual
generator against model uncertainties and disturbances without significant loss of
the faults sensitivity.

Model uncertainties may be present in different forms. It makes the handling of
FDI in uncertain systems much more complicated than FDI for systems with un-
known inputs. Bearing in mind that there exists no systematic way to address FDI
problems for uncertain systems, in this chapter we shall focus on the introduction of
some basic ideas, design schemes and on handling of representative model uncer-
tainties.

Fig. 8.1 Schematic description of residual generation in a uncertain dynamic system
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8.1 Preliminaries

The major mathematical tool used for our study is the LMI technique introduced in
the last chapter. Next, we shall introduce some additional mathematical preliminar-
ies that are needed for the study on uncertain systems.

8.1.1 LMI Aided Computation for System Bounds

The following lemma plays an important role in boundness computation for uncer-
tain systems.

Lemma 8.1 Let G, L, E and F(t) be real matrices of appropriate dimensions with
F(t) being a matrix function and F(t)T F (t)≤ I . Then

(a) for any ε > 0,

LF(t)E +ET FT (t)LT ≤ 1

ε
LLT + εET E (8.1)

(b) for any ε > 0, P > 0 satisfying P−1 − εET E > 0,

(
G+LF(t)E)P (G+LF(t)E)T ≤G(P−1 − εET E)−1

GT + 1

ε
LLT . (8.2)

Consider a system

ẋ = Āx + �Edd, y = �Cx + �Fdd (8.3)

Ā = A+ΔA, �C = C +ΔC, �Ed =Ed +ΔE, �Fd = Fd +ΔF (8.4)

with polytopic uncertainty

[
ΔA ΔE

ΔC ΔF

]
=

l∑
i=1

βi

[
Ai Ei
Ci Fi

]
,

l∑
i=1

βi = 1, βi ≥ 0, i = 1, . . . , l. (8.5)

It holds

Lemma 8.2 Given system (8.3)–(8.5) and a constant γ > 0, then

‖y‖2 < γ ‖d‖2

if there exists P > 0 so that ∀i = 1, . . . , l⎡
⎣ (A+Ai)

T P + P(A+Ai) P (Ed +Ei) (C +Ci)T
(Ed +Ei)T P −γ I (Fd + Fi)T
C +Ci Fd + Fi −γ I

⎤
⎦< 0. (8.6)

The proof of this lemma can be found in the book by Boyd et al. (see the reference
given at the end of this chapter). Along with the lines of this proof, we can find an
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LMI solution for the computation of the H− index by extending Theorem 7.13 to
the systems with polytopic uncertainties. Without proof, we summarize the results
into the following lemma.

Lemma 8.3 Given system (8.3)–(8.5) and a constant γ > 0, suppose that for
i = 1, . . . , l

∀ω, rank

[
Āi − jωI �Ed,i�Ci �Fd,i

]
= n+ kd, �F T

d,i
�Fd,i > γ

Āi =A+Ai, �Ci = C +Ci, �Ed,i =Ed +Ei, �Fd,i = Fd + Fi
then

‖y‖2 > γ ‖d‖2

if there exists P = PT so that ∀i = 1, . . . , l
[
ĀTi P + P Āi + �CTi �Ci P �Ed,i + �CTi �Fd,i�ET

d,iP + �F T
d,i
�Ci �F T

d,i
�Fd,i − γ 2I

]
> 0.

8.1.2 Stability of Stochastically Uncertain Systems

Given a stochastically uncertain system

x(k + 1)=
(
A+

l∑
i=1

Aipi(k)

)
x(k) (8.7)

where pi(k), i = 1, . . . , l, represents a stochastic process with

E
(
pi(k)

)= 0

E
([
p1(k) · · · pl(k)

]T [
p1(k) · · · pl(k)

])= diag(σ1, . . . , σl).

σi (>0), i = 1, . . . , l, are known. It is further assumed that p(0),p(1), . . . , are inde-
pendent and x(0) is independent of p(k). The stability of (8.7) should be understood
in the context of statistics. The so-called mean square stability serves for this pur-
pose.

Definition 8.1 Mean square stability: Given system (8.7) and denote

M(k)= E
(
x(k)xT (k)

)
.

The system is called mean-square stability if for any x(0)

lim
k−→∞M(k)= 0.
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It is straightforward that

M(k + 1)=AM(k)AT +
l∑
i=1

σ 2
i AiM(k)A

T
i .

Lemma 8.4 Given system (8.7). It is mean square stable if and only if there exists
P > 0 so that

APAT − P +
l∑
i=1

σ 2
i AiPA

T
i < 0.

We refer the reader to the book by Boyd et al. for a comprehensive study on
systems with stochastic uncertainties.

8.2 Transforming Model Uncertainties into Unknown Inputs

As introduced in Chap. 3, systems with norm-bounded uncertainties can be de-
scribed by

ẋ = Āx + �Bu+ �Edd +Ef f, y = �Cx + �Du+ �Fdd + Ff f (8.8)

Ā = A+ΔA, �B = B +ΔB, �C = C +ΔC (8.9)

�D =D +ΔD, �Ed =Ed +ΔE, �Fd = Fd +ΔF (8.10)

where [
ΔA ΔB ΔE

ΔC ΔD ΔF

]
=
[
E

F

]
Δ(t)
[
G H J

]
(8.11)

with known E, F , G, H , J , which are of appropriate dimensions, and unknown
Δ(t) which is bounded by

σ̄ (Δ)≤ δΔ. (8.12)

Applying residual generator

r(s)=R(s)(M̂u(s)y(s)− N̂u(s)u(s)
)
, R(s) ∈RH∞ (8.13)

to (8.8)–(8.10) yields

ẋ = Āx + �Bu+ �Edd +Ef f
ė = (A−LC)e+ (ΔA−LΔC)x + (ΔB −LΔD)u

+ (�Ed −L�Fd)d + (Ef −LFf )f (8.14)

r(s) = R(s)(Ce+ΔCx +ΔDu+ �Fdd + Ff f ). (8.15)



8.2 Transforming Model Uncertainties into Unknown Inputs 253

It is evident that system (8.14)–(8.15) is stable if and only if the original system (8.8)
is stable and the observer gain L is so chosen that A−LC is stable. For this reason,
we assume in the following study that for any Δ(t) (8.8) is stable.

Note that, due to (8.11), (8.14) and (8.15) can be further written into

ė= (A−LC)e+ (E −LF)ϕ + (Ed −LFd)d + (Ef −LFf )f
r(s)=R(s)(Ce+ Fϕ + Fdd + Ff f )

ϕ =Δ [G H J
]
⎡
⎣xu
d

⎤
⎦ .

Let

d̃ =
[
ϕ

d

]
, E

d̃
= [E Ed

]
, F

d̃
= [F Fd

]

we have

ė= (A−LC)e+ (E
d̃
−LF

d̃
)d̃ + (Ef −LFf )f (8.16)

r(s)=R(s)(Ce+ F
d̃
d̃ + Ff f ) (8.17)

that is, the dynamics of the residual generator is now represented by (8.16)–(8.17).
In this way, the influence of the model uncertainty of the norm bounded type is
modelled as a part of the unknown input vector d̃ . Thanks to its standard form,
optimal design of (8.16)–(8.17) can be realized using the approaches presented in
Chap. 7.

Remark 8.1 Note that ϕ is a function of d and f , which can be expressed by

ϕ =ΔG(xd + xf )+Δ
[
H J

][u
d

]

with

ẋd = Āxd + �Bu+ �Edd, ẋf = Āxf + �Bu+Ef f.
In the fault-free case,

d̃ =
[
ϕ

d

]
, ϕ =Δ [G H J

]⎡⎣xdu
d

⎤
⎦ .

Thus, the unified solution can be achieved based on (8.16)–(8.17), even if d̃ depends
on f .

This way of handling model uncertainties can also be extended to dealing with
other types of model uncertainties. It is worth pointing out that modelling the model
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uncertainty as unknown input vector may lead to a conservative design of the resid-
ual generator, since valuable information about the structure of the model uncer-
tainty has not been taken into account.

8.3 Reference Model Based Strategies

8.3.1 The Basic Idea

Among the existing FDI schemes for uncertain systems, the so-called reference
model-based scheme has received considerable attention. The basic idea behind this
scheme is the application of a reference model. In this way, similar to the solution of
the H∞ OFIP, the original FDI problem can be transformed into a standard design
problem

min
L,R(s)∈RH∞

sup
Δ,f,d

‖rref − r‖2∥∥∥∥
[
u
d
f

]∥∥∥∥
2

with respect to (8.8)–(8.10) (8.18)

with rref denoting the reference model. (8.18) is an MMP and there exist a number
of methods to approach (8.18). The major difference between those methods lies in
the definition of the reference model.

The earliest and most studied strategy is to handle the FDI problems in the form
of the H∞ OFIP. That means the reference model rref is defined as

rref (s)= f (s) or rref (s)=W(s)f (s) (8.19)

with a given weighting matrix W(s) ∈ RH∞. This method has been first intro-
duced in solving the integrated design of controller and FD unit and lately for
the FD purpose, where optimization problem (8.18) is solved in the H∞/μ frame-
work.

As mentioned in Sect. 7.5 in dealing with the solution of H∞ OFIP, the per-
formance of the FDI systems designed based on reference model (8.19) strongly
depends on the system structure regarding to the faults and on the selection of
the weighting matrix W(s). Next, we shall present an approach proposed by
Zhong et al., which provides us with a more reasonable solution for the FDF de-
sign.

8.3.2 A Reference Model Based Solution for Systems
with Norm-Bounded Uncertainties

The proposed approach consists of a two-step procedure for the design of FDI sys-
tem:
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• Find the unified solution for system (8.8)–(8.10) with Δ(t)= 0. Let Lopt, Vopt be
computed according to (7.266) and

rref (s)=Grref f (s)f (s)+Grref d(s)d(s) (8.20)

Grref f (s)= Vopt
(
C(sI −A+LoptC)

−1(Ef −LoptFf )+ Ff
)

Grref d(s)= Vopt
(
C(sI −A+LoptC)

−1(Ed −LoptFd)+ Fd
)

• Solve optimization problem

min
L,V

sup
Δ,f,d

‖rref − r‖2∥∥∥∥
[
u
d
f

]∥∥∥∥
2

(8.21)

by means of a standard LMI optimization method.

Comparing reference models (8.19) and (8.20) makes it clear that including the
influence of d in the reference model is the distinguishing difference between (8.20)
and (8.19). At the first glance, it seems contradictory that d is integrated into the
reference model, though reducing the influence of d is desired. On the other hand,
we have learnt from the unified solution that the optimum is achieved by a suit-
able trade-off between the influences of the faults and disturbances. Simply reduc-
ing the influence of the disturbances does not automatically lead to an optimal
trade-off.

Now, we describe the second step of the approach, that is, the solution of (8.21),
in the extended detail.

Let xref be the state vector of the reference model and

ẋref =Aref xref +Ef,ref f +Ed,ref d, rref = Cref xref + Ff,ref f + Fd,ref d

(8.22)

Aref =A−LoptC, Ef,ref =Ef −LoptFf , Ed,ref =Ed −LoptFd

Cref = VoptC, Ff,ref = VoptFf , Fd,ref = VoptFd.

Recalling that the dynamics of residual generator (8.13) with R(s) = V (i.e.,
an FDF) can be written as

[
ẋ

ė

]
=
[

Ā 0
ΔA−LΔC A−LC

][
x

e

]
x +
[ �B
ΔB −LΔD

]
u

+
[ �Ed�Ed −L�Fd

]
d +
[

Ef
Ef −LFf

]
f (8.23)

r = V
([
ΔC C

][x
e

]
+ΔDu+ �Fdd + Ff f

)
(8.24)

it turns out
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ẋo = (Ao +ΔAo)xo + (Eo,d̄ +ΔEo,d̄ )d̄ (8.25)

rref − r = (Co +ΔCo)xo + (Fo,d̄ +ΔFo,d̄ )d̄ (8.26)

with

xo =
⎡
⎣xref

x

e

⎤
⎦ , d̄ =

⎡
⎣ ud
f

⎤
⎦

Ao =
⎡
⎣Aref 0 0

0 A 0
0 0 A−LC

⎤
⎦ , Co =

[
Cref 0 −VC ]

Eo,d̄ =
⎡
⎣ 0 Ed,ref Ef,ref

B Ed Ef
0 Ed −LFd Ef −LFf

⎤
⎦

Fo,d̄ =
[

0 Fd,ref − VFd Ff,ref − VFf
]

ΔAo =
⎡
⎣0 0 0

0 ΔA 0
0 ΔA−LΔC 0

⎤
⎦=
⎡
⎣ 0

E

E −LF

⎤
⎦Δ(t) [0 G 0

]

ΔCo =
[

0 −VΔC 0
]=−VFΔ(t) [0 G 0

]

ΔEo,d̄ =
⎡
⎣ 0 0 0

ΔB ΔE 0
ΔB −LΔD ΔE −LΔF 0

⎤
⎦=
⎡
⎣ 0

E

E −LF

⎤
⎦Δ(t) [H J 0

]

ΔFo,d̄ =
[−VΔD −VΔF 0

]=−VFΔ(t) [H J 0
]
.

The following theorem builds the basis for the solution of (8.21).

Theorem 8.1 Given system (8.25)–(8.26) and suppose that

xo(0)= 0 and ΔT (t)Δ(t)≤ I.

Then ∫ ∞
0
(rref − r)T (rref − r) dt < γ 2

∫ ∞
0

d̄T d̄ dt (8.27)

if there exist some ε > 0 and P > 0 so that

⎡
⎢⎢⎣
ATo P + PAo + ε�GT �G PEo,d̄ + ε�GT �H CTo P �E
ET
o,d̄
P + ε �HT �G −γ 2I + ε �HT �H FT

o,d̄
0

Co Fo,d̄ −I −VF
�ET P 0 −FT V T −εI

⎤
⎥⎥⎦< 0 (8.28)
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where

�G= [0 G 0
]
, �H = [H J 0

]
, �ET = [0 ET (E −LF)T ] .

Proof Let

V (x)= xTo Pxo, P > 0.

It holds

(rref − r)T (rref − r)− γ 2d̄T d̄ + V̇ (t) < 0

=⇒
∫ ∞

0
(rref − r)T (rref − r) dt − γ 2

∫ ∞
0

d̄T d̄ dt +
∫ ∞

0
V̇ (t) dt

=⇒
∫ ∞

0
(rref − r)T (rref − r) dt − γ 2

∫ ∞
0

d̄T d̄ dt < 0.

Since

(rref − r)T (rref − r)− γ 2d̄T d̄ + V̇ (t)

= [xTo d̄T
]([ (Co +ΔCo)T

(Fo,d̄ +ΔFo,d̄ )T
][
Co +ΔCo Fo,d̄ +ΔFo,d̄

]

−
[

0 0
0 γ 2I

])[
xo
d̄

]

+ [xTo d̄T
]([ (Ao+ΔAo)T P +P(Ao+ΔAo) P (Eo,d̄ +ΔEo,d̄ )

(Eo,d̄ +ΔEo,d̄ )T P 0

])[
xo
d̄

]

it turns out

[
(Co +ΔCo)T
(Fo,d̄ +ΔFo,d̄ )T

][
Co +ΔCo Fo,d̄ +ΔFo,d̄

]−
[

0 0
0 γ 2I

]

+
[
(Ao +ΔAo)T P + P(Ao +ΔAo) P (Eo,d̄ +ΔEo,d̄ )

(Eo,d̄ +ΔEo,d̄ )T P 0

]
< 0

=⇒
∫ ∞

0
(rref − r)T (rref − r) dt − γ 2

∫ ∞
0

d̄T d̄ dt < 0. (8.29)

Applying the Schur complement we can rewrite (8.29) into

⎡
⎣ (Ao +ΔAo)

T P + P(Ao +ΔAo) P (Eo,d̄ +ΔEo,d̄ ) (Co +ΔCo)T
(Eo,d̄ +ΔEo,d̄ )T P −γ 2I (Fo,d̄ +ΔFo,d̄ )T

Co +ΔCo Fo,d̄ +ΔFo,d̄ −I

⎤
⎦< 0

(8.30)
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⇐⇒
⎡
⎢⎣
ATo P + PAo PEo,d̄ CTo

ET
o,d̄
P −γ 2I FT

o,d̄

Co Fo,d̄ −I

⎤
⎥⎦

+
⎡
⎢⎣
ΔATo P + PΔAo PΔEo,d̄ ΔCTo

ΔET
o,d̄
P 0 ΔFT

o,d̄

ΔCo ΔFo,d̄ 0

⎤
⎥⎦< 0.

Split the second matrix in the above inequality into

⎡
⎢⎣
ΔATo P + PΔAo PΔEo,d̄ ΔCTo

ΔET
o,d̄
P 0 ΔFT

o,d̄

ΔCo ΔFo,d̄ 0

⎤
⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�E1�E2�E3
0
0
0

−VF

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
Δ(t)
[

0 G 0 H J 0 0
]

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ẽ1

Ẽ2

Ẽ3
0
0
0

−VF

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
Δ(t)
[

0 G 0 H J 0 0
]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

,

⎡
⎣
�E1�E2�E3

⎤
⎦= P �E.

Then, according to Lemma 8.1, we know that (8.30) holds if there exists a ε > 0 so
that

⎡
⎢⎣
ATo P + PAo PEo,d̄ CTo

ET
o,d̄
P −γ 2I FT

o,d̄

Co Fo,d̄ −I

⎤
⎥⎦+ 1/ε

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�E1�E2�E3
0
0
0

−VF

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�E1�E2�E3
0
0
0

−VF

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

+ ε [0 G 0 H J 0 0
]T [0 G 0 H J 0 0

]
< 0.

Finally, applying the Schur complement again yields
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⎡
⎢⎢⎢⎣
ATo P + PAo + ε�GT �G PEo,d̄ + ε�GT �H CTo P �E
ET
o,d̄
P + ε �HT �G −γ 2I + ε �HT �H FT

o,d̄
0

Co Fo,d̄ −I −VF
�ET P 0 −FT V T −εI

⎤
⎥⎥⎥⎦< 0.

The theorem is thus proven. �

Remark 8.2 The assumptions

xo(0)= 0 and ΔT (t)Δ(t)≤ I
do not lead to the loss of the generality of Theorem 8.1. If xo(0) �= 0, it can be
considered as an additional unknown input. In case thatΔT (t)Δ(t)≤ΔΔI , δΔ �= 1,
we define

�Δ(t) = Δ(t)/√δΔ[
0 G̃ 0 H̃ J̃ 0

] = [0 G 0 H J 0
]√
δΔ.

As a result, Theorem 8.1 holds.

Remark 8.3 If ∫ ∞
0
(rref − r)T (rref − r) dt ≤ γ 2

∫ ∞
0

d̄T d̄ dt

instead of (8.27) is required, condition (8.28) can be released and replaced by⎡
⎢⎢⎢⎣
ATo P + PAo + ε�GT �G PEo,d̄ + ε�GT �H CTo P �E
ET
o,d̄
P + ε �HT �G −γ 2I + ε �HT �H FT

o,d̄
0

Co Fo,d̄ −I −VF
�ET P 0 −FT V T −εI

⎤
⎥⎥⎥⎦≤ 0

ATo P + PAo + ε�GT �G< 0.

Based on Theorem 8.1, the optimization problem (8.21) can be reformulated as

min
L,V

γ subject to (8.31)

⎡
⎢⎢⎢⎣
ATo P + PAo + ε�GT �G PEo,d̄ + ε�GT �H CTo P �E
ET
o,d̄
P + ε �HT �G −γ 2I + ε �HT �H FT

o,d̄
0

Co Fo,d̄ −I −VF
�ET P 0 −FT V T −εI

⎤
⎥⎥⎥⎦< 0 (8.32)

for some P > 0, ε > 0. For our purpose of solving (8.31), let

P =
⎡
⎣P11 P12 0
P21 P22 0
0 0 P33

⎤
⎦ , L= P−1

33 Y.
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Then (8.32) becomes an LMI regarding to P > 0,V ,Y and ε > 0, as described by

NT =N = [Nij ]7×7 < 0

where

N11 =
[
Aref 0

0 A

]T [
P11 P12
P21 P22

]
+
[
P11 P12
P21 P22

][
Aref 0

0 A

]
+
[

0 0
0 εGTG

]

N12 = 0, N13 =
[
P11 P12
P21 P22

][
0
B

]
+
[

0
εGT

]
H

N14 =
[
P11 P12
P21 P22

][
Ed,ref

Ed

]
+
[

0
εGT

]
J, N15 =

[
P11 P12
P21 P22

][
Ef,ref

Ef

]

N16 =
[
CTref

0

]
, N17 =

[
P11 P12
P21 P22

][
0
E

]

N22 = AT P33 + P33A−CT YT − YC, N23 = 0, N24 = P33Ed − YFd
N25 = P33Ef − YFf , N26 =−CT V T , N27 = P33E − YF
N33 = −γ 2I + εHT H, N34 = εHT J, N35 = 0, N36 = 0

N37 = 0, N44 =−γ 2I + εJ T J, N45 = 0, N46 = FTd,ref − FTd V T

N47 = 0, N55 =−γ 2I, N56 = FTf,ref − FTf V T , N57 = 0

N66 = −I, N67 =−VF, N77 =−εI.
As a result, we have an LMI solution that is summarized in the following algorithm.

Algorithm 8.1 (LMI solution of optimization problem (8.31)

S0: Form matrix N = [Nij ]7×7
S1: Given γ > 0, find P > 0, Y,V and ε > 0 so that N < 0
S2: Decrease γ and repeat S1 until the tolerant value is reached
S3: L= P−1

33 Y .

Since for Δ(t) = 0 the influence of u(t) on r(t) is nearly zero, neither in refer-
ence model (8.19) nor in (8.20) u(t) is included. However, we see that the system
input u(t) does affect the dynamics of the residual generator. It is thus reasonable
to include u(t) as a disturbance into the FDI system design. On the other side, it
should be kept in mind that u(t), different from d(t), is on-line available. In order
to improve the FDI system performance, knowledge of u(t) should be integrated
into FDI system design and operation. This can be done, for instance, in form of
an adaptive threshold or the so-called threshold selector, as will be shown in the
Chap. 9.

Remark 8.4 The above-presented results have been derived for continuous-time sys-
tems. Analogous results for discrete-time systems can be achieved in a similar way.
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For this purpose, inequality (8.2) in Lemma 8.1 is helpful. It would be a good exer-
cise for the interested reader.

Example 8.1 In this example, we design an FDF for the benchmark system LIP100
by taking into account the model uncertainty. In Sect. 3.7.2, the model uncertainty
is well described, which is mainly caused by the linearization error. For our design
purpose, the unified solution is used for the construction of the reference model
and Algorithm 8.1 is applied to compute the observer gain L and post-filter V .
Remember that the open loop of the inverted pendulum system is not asymptotically
stable. Thus, different from our previous study on this benchmark, the closed loop
model of LIP100 builds the basis for our design. For the sake of simplicity, we
assume that a state feedback controller is used, which places the closed loop poles
at −3.1, −3.2, −3.3, −3.4. We are in a position to design the FDF.

• Design of the reference model: The reference model is so designed that it is robust
against unknown input and measurement noises. It results in

Lopt =

⎡
⎢⎢⎣

0.9573 0.7660 −0.4336
0.7660 2.8711 −0.1150
−0.4336 −0.1150 2.4230
2.7583 4.4216 −23.0057

⎤
⎥⎥⎦ , Vopt =

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦

• Determination of L, V via Algorithm 8.1: We get

L= 1.0× 103

⎡
⎢⎢⎣

0.0492 0.0057 0.0065
0.0093 0.0785 −0.0112
0.1353 0.0975 0.6871
−1.2433 −0.9790 0.1355

⎤
⎥⎥⎦

V =
⎡
⎣0.4990 0.0552 0.2519

0.0375 0.1743 0.0324
0.2030 −0.0390 0.3551

⎤
⎦

with γ = 1.3662.

8.4 Residual Generation for Systems with Polytopic
Uncertainties

In this section, we address residual generation for systems with polytopic uncertain-
ties. As described in Chap. 3, those systems are modelled by

ẋ = Āx + �Bu+ �Edd, y = �Cx + �Du+ �Fdd (8.33)

Ā = A+ΔA, �B = B +ΔB, �C = C +ΔC
�D =D +ΔD, �Ed =Ed +ΔE, �Fd = Fd +ΔF
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with

[
ΔA ΔB ΔE

ΔC ΔD ΔF

]
=

l∑
i=1

βi

[
Ai Bi Ei
Ci Di Fi

]

(8.34)
l∑
i=1

βi = 1, βi ≥ 0, i = 1, . . . , l.

Two approaches will be presented. The first one is based on the reference model
scheme, while the second one is an extension of the LMI based H−to H∞ design
scheme.

8.4.1 The Reference Model Scheme Based Scheme

For our purpose, we apply again reference model (8.22) and formulate the residual
generator design as finding L, V such that γ > 0 is minimized, where γ is given in
the context of ∫ ∞

0
(rref − r)T (rref − r) dt < γ 2

∫ ∞
0

d̄T d̄ dt (8.35)

and rref − r is governed by

ẋo = (Ao +ΔAo)xo + (Eo,d̄ +ΔEo,d̄ )d̄
rref − r = (Co +ΔCo)xo + (Fo,d̄ +ΔFo,d̄ )d̄

with xo, d̄ , Ao, Eo,d̄ , Co, Fo,d̄ defined in (8.25)–(8.26) and

ΔAo =
l∑
i=1

βiĀi, Āi =
⎡
⎣0 0 0

0 Ai 0
0 Ai −LCi 0

⎤
⎦

ΔCo =
l∑
i=1

βi�Ci, �Ci =−
[

0 VCi 0
]

ΔEo,d̄ =
l∑
i=1

βi�Ei, �Ei =
⎡
⎣ 0 0 0

Bi Ei 0
Bi −LDi Ei −LFi 0

⎤
⎦

ΔFo,d̄ =
l∑
i=1

βi�Fi, �Fi =
[−VDi −VFi 0

]
.

It follows from Lemma 8.2 that for given γ > 0 (8.35) holds if there exists P > 0
so that ∀i = 1, . . . , l
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⎡
⎣ (Ao + Āi)

T P + P(Ao + Āi) P (Eo,d̄ + �Ei) (Co + �Ci)T
(Eo,d̄ + �Ei)T P −γ I (Fo,d̄ + �Fi)T

Co + �Ci Fo,d̄ + �Fi −γ I

⎤
⎦< 0. (8.36)

Setting

P =
⎡
⎣P11 P12 0
P21 P22 0
0 0 P33

⎤
⎦> 0, L= P−1

33 Y (8.37)

yields

(8.36) ⇐⇒ Ni =NT
i = [Njk]6×6 < 0, i = 1, . . . , l (8.38)

with

N11 =
[
Aref 0

0 A+Ai
]T [

P11 P12
P21 P22

]
+
[
P11 P12
P21 P22

][
Aref 0

0 A+Ai
]

N12 =
[

0
ATi P33 −CTi Y T

]
, N13 =

[
P11 P12
P21 P22

][
0

B +Bi
]

N14 =
[
P11 P12
P21 P22

][
Ed,ref

Ed +Ei
]
, N15 =

[
P11 P12
P21 P22

][
Ef,ref

Ef

]

N16 =
[

CTref
−CTi V T

]
, N22 =AT P33 −CT YT + P33A− YC

N23 = P33Bi − YDi, N24 = P33(Ed +Ei)− Y(Fd + Fi)
N25 = P33Ef − YFf , N26 =−CT V T , N33 =−γ I, N34 = 0

N35 = 0, N36 =−DT
i V

T , N44 =−γ I, N45 = 0

N46 = FTd,ref − (Fd + Fi)T V T , N55 =−γ I, N56 = FTf,ref − FTf V T

N66 =−γ I.

Based on this result, the optimal design of residual generators for systems with
polytopic uncertainties can be achieved using the following algorithm.

Algorithm 8.2 (LMI solution of (8.35))

S0: Form matrix Ni = [Nkj ]6×6, i = 1, . . . , l
S1: Given γ > 0, find P > 0 satisfying (8.37), Y , V so that Ni < 0
S2: Decrease γ and repeat S1 until the tolerant value is reached
S3: Set L according to (8.37).

Example 8.2 In our previous examples concerning the laboratory system CSTH,
we have learned that the linearization model works only in a neighborhood around
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the linearization point. In Sect. 3.7.5, the linearization errors are modelled into
the polytopic type uncertainty. In this example, we design an FDF for CSTH un-
der consideration of the polytopic type uncertainty. The design procedure consists
of

• Design of a reference model: For this purpose, the unified solution is applied to
the linearization model with

Ed =
⎡
⎣ 1 0 0 0 0
−1 0 0 0 0
0 −1 0 0 0

⎤
⎦ , Fd =

⎡
⎣0 0 1 0 0

0 0 0 1 0
0 0 0 0 1

⎤
⎦ .

The resulted observer gain and post-filter (of the reference model) are

Lopt =
⎡
⎣ 0.4335 −5.0212× 10−6 0.0293
−4.1431 4.5001× 10−4 −1.2486
0.9335 −4.8167× 10−5 0.4651

⎤
⎦ , Vopt = I.

• Determination of L, V via Algorithm 8.2:

V =
⎡
⎣ −0.0287 −6.0234× 10−4 −0.0765
−6.0234× 10−4 0.8383 −3.2865× 10−4

−0.0765 −3.2865× 10−4 0.1092

⎤
⎦

Y =
⎡
⎣ 0.6875 −6.9326× 10−4 1.7917× 10−4

−6.9326× 10−4 −1.6439× 10−4 −0.0043
1.7917× 10−4 −0.0043 −0.0418

⎤
⎦

L=
⎡
⎣−0.0053 0.0199 0.0959

13.6894 0.4763 −40.6624
−3.6616 0.1452 3.4484

⎤
⎦ , γ = 8.8402.

In our simulation study, we first compare the residual signals generated respectively
by FDFs with and without considering the polytopic uncertainty. Figure 8.2 shows
the residual signal in the fault-free case and verifies a significant performance im-
provement, as the residual generator is designed by taking into account the poly-
topic uncertainty. To demonstrate the application of the FDF designed above, an
actuator fault is generated at t = 25 s. Figure 8.3 shows a successful fault detec-
tion.

Using the analog version of Lemma 8.2 for discrete-time systems, it is easy to
find an LMI solution of a reference model based design of the discrete-time residual
generator given by

x̂(k + 1)=Ax̂(k)+Bu(k)+L(y(k)− ŷ(k)) (8.39)

ŷ(k)= Cx̂(k)+Du(k), r(k)= V (y(k)− ŷ(k)). (8.40)
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Fig. 8.2 Residual signal
regarding to xp , generated by
FDF with and without
considering polytopic
uncertainty

Fig. 8.3 Response of
residual signal regrading to
xp to an actuator fault

To this end, the unified solution described in Theorem 7.19 will be used as reference
model and the design problem is formulated as finding L, V such that γ > 0 is
minimized, where γ is given by

∞∑
k=0

(
rref (k)− r(k)

)T (
rref (k)− r(k)

)
< γ 2

∞∑
k=0

d̄T (k)d̄(k). (8.41)

Without derivation, we present below the LMI solution of this optimization problem:

min
V,P>0,Y

γ subject to

Ni =NT
i = [Njk]8×8 < 0, i = 1, . . . , l (8.42)
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where

N11 =−
[
P11 P12
P21 P22

]
, N12 = 0, N13 =

[
P11 P12
P21 P22

][
Aref 0

0 A+Ai
]

N14 = 0, N15 =
[
P11 P12
P21 P22

][
0

B +Bi
]
, N16 =

[
P11 P12
P21 P22

][
Ed,ref

Ed +Ei
]

N17 =
[
P11 P12
P21 P22

][
Ef,ref

Ef

]
, N18 = 0, N22 =−P33

N23 =
[

0 P33Ai − YCi
]
, N24 = P33A− YC, N25 = P33Bi − YDi

N26 = P33(Ed +Ei)− Y(Fd + Fi), N27 = P33Ef − YFf , N28 = 0

N33 =N11, N34 = 0, N35 =N36 =N37 = 0, N38 =
[
CTref
CTi V

T

]

N44 =N22, N45 =N46 =N47 = 0, N48 =−CT V T , N55 =−γ I
N56 =N57 = 0, N58 =−DT

i V
T , N66 =N55, N67 = 0

N68 = FTd,ref − (Fd + Fi)T V T , N77 =N55, N78 = FTf,ref − FTf V T

N88 =−γ I.

8.4.2 H− to H∞ Design Formulation

Denote the dynamics of residual generator (8.23)–(8.24) by

ẋr =Arxr +Bru+Er,dd +Er,f f, r = Crxr +Dru+ Fr,dd + Fr,f f

Ar =
[
A 0
0 A−LC

]
+

l∑
i=1

βi

[
Ai 0

Ai −LCi 0

]
:=Ar,0 +

l∑
i=1

βiAr,i

Br =
[
B

0

]
+

l∑
i=1

βi

[
Bi

Bi −LDi
]
:= Br,0 +

l∑
i=1

βiBr,i

Cr =
[

0 VC
]+

l∑
i=1

βi
[
VCi 0

] := Cr,0 +
l∑
i=1

βiCr,i

Dr =
l∑
i=1

βiVDi :=
l∑
i=1

βiDr,i , Fr,d = VFd +
l∑
i=1

βiV Fi := Fr,0 +
l∑
i=1

βiFr,i

Er,d =
[

Ed
Ed −LFd

]
+

l∑
i=1

βi

[
Ei

Ei −LFi
]
:=Er,0 +

l∑
i=1

βiEr,i
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Er,f =
[

Ef
Ef −LFf

]
, Fr,f = VFf .

Along with the idea of the H− to H∞ design of residual generators presented in
Sect. 7.8.4, we formulate the residual generator design as finding L, V such that∥∥Cr(sI −Ar)−1 [Br Er,d

]+ [Dr Fr,d
]∥∥∞ < γ (8.43)∥∥Cr(sI −Ar)−1Er,f + Fr,f

∥∥− →max . (8.44)

It follows from Lemmas 8.2–8.3 that (8.43)–(8.44) can be equivalently written into

max
L,V,P>0,Q=QT

γ1 subject to (8.45)

⎡
⎢⎢⎣

NP P (Br,0 +Br,i) P (Er,0 +Er,i) (Cr,0 +Cr,i)T
(Br,0 +Br,i)T P −γ I 0 DT

r

(Er,0 +Er,i)T P 0 −γ I FTr,d
Cr,0 +Cr,i Dr Fr,d −γ I

⎤
⎥⎥⎦< 0

(8.46)

NP = (Ar,0 +Ar,i)T P + P(Ar,0 +Ar,i), i = 1, . . . , l
[
NQ + (Cr,0 +Cr,i)T (Cr,0 +Cr,i) QEr,f + (Cr,0 +Cr,i)T Fr,f

ETr,fQ+ FTr,f (Cr,0 +Cr,i) F Tr,f Fr,f − γ 2
1 I

]
> 0 (8.47)

NQ = (Ar,0 +Ar,i)T Q+Q(Ar,0 +Ar,i), i = 1, . . . , l.

As mentioned in our study on the H− to H∞ design, (8.45)–(8.47) are an optimiza-
tion problem with NMI constraints, which can be approached by advanced nonlinear
optimization technique.

8.5 Residual Generation for Stochastically Uncertain Systems

In this section, we deal with residual generation for stochastically uncertain systems,
which, as introduced in Chap. 3, are described by

x(k + 1)= Āx(k)+ �Bu(k)+ �Edd(k)+Ef f (k) (8.48)

y(k)= �Cx(k)+ �Du(k)+ �Fdd(k)+ Ff f (k) (8.49)

Ā=A+ΔA, �B = B +ΔB, �C = C +ΔC
�D =D+ΔD, �Ed =Ed +ΔE, �Fd = Fd +ΔF

where ΔA, ΔB , ΔC, ΔD, ΔE and ΔF represent model uncertainties satisfying

[
ΔA ΔB ΔE

ΔC ΔD ΔF

]
=

l∑
i=1

([
Ai Bi Ei
Ci Di Fi

]
pi(k)

)
(8.50)
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with known matrices Ai , Bi , Ci ,Di , Ei , Fi , i = 1, . . . , l, of appropriate dimensions.
pT (k) = [p1(k) · · · pl(k) ] represents model uncertainties and is expressed as a
stochastic process with

p̄(k)= E
(
p(k)
)= 0, E

(
p(k)pT (k)

)= diag(σ1, . . . , σl)

where σi , i = 1, . . . , l, are known. It is further assumed that p(0), p(1),. . ., are
independent and x(0), u(k), d(k), f (k) are independent of p(k). For the purpose of
residual generation, the FDF

x̂(k + 1)=Ax̂(k)+Bu(k)+L(y(k)− ŷ(k)) (8.51)

ŷ(k)= Cx̂(k)+Du(k), r(k)= V (y(k)− ŷ(k)) (8.52)

is considered in the sequel.

8.5.1 System Dynamics and Statistical Properties

For our purpose, the dynamics and the statistical properties of residual generator
(8.51)–(8.52) will first be studied. Introducing the following notations,

xr(k)=
[

x(k)

x(k)− x̂(k)
]
, Ar,0 =

[
A 0
0 A−LC

]
, Ar,i =

[
Ai 0

Ai −LCi 0

]

Ar =Ar,0 +
l∑
i=1

Ar,ipi(k), Br,0 =
[
B

0

]
, Br,i =

[
Bi

Bi −LDi
]

Br = Br,0 +
l∑
i=1

Br,ipi(k), Cr,0 =
[

0 VC
]
, Cr,i =

[
VCi 0

]

Cr = Cr,0 +
l∑
i=1

Cr,ipi(k), Dr,i = VDi, Dr =
l∑
i=1

Dr,ipi(k)

Er,0 =
[

Ed
Ed −LFd

]
, Er,i =

[
Ei

Ei −LFi
]
, Er =Er,0 +

l∑
i=1

Er,ipi(k)

Fr,0 = VFd, Fr,i = VFi, Fr = Fr,0 +
l∑
i=1

Fr,ipi(k)

Er,f =
[

Ef
Ef −LFf

]
, Fr,f = VFf

we have

xr(k + 1) = Arxr(k)+Bru(k)+Erd(k)+Er,f f (k) (8.53)
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r(k) = Crxr(k)+Dru(k)+ Frd(k)+ Fr,f f (k). (8.54)

Note that the overall system (the plant + the residual generator) is mean square
stable only if the plant is mean square stable, since the observer gain L has no
influence on system (8.48). In the following of this section, the mean square stability
of the plant is assumed. Remember that p(k) is independent of d(k), u(k), x(k), e(k)
and p̄(k)= 0. Thus, the mean of r(k) can be expressed by

x̄r (k + 1) = Ar,0x̄r (k)+Br,0u(k)+Er,0d(k)+Er,f f (k)
r̄(k) = Cr,0x̄r (k)+ Fr,0d(k)+ Fr,f f (k)

which is equivalent to

ē(k + 1) = (A−LC)ē(k)+ (Ed −LFd)d(k)+ (Ef −LFf )f (k) (8.55)

r̄(k) = V (Cē(k)+ Ff d(k)+ Ff f (k)) (8.56)

where x̄r (k)= E(xr(k)), ē(k)= E(e(k)), r̄(k)= E(r(k)).

8.5.2 Basic Idea and Problem Formulation

Note that the mean of the residual signal given by (8.55)–(8.56) is exactly presented
in a form, to which the unified solution can be used. Bearing in mind the stochastic
property of the model uncertainty, we introduce the following performance index

J = E
(
r(k)− rref (k)

)T (
r(k)− rref (k)

)
(8.57)

which will be minimized by selecting L and V . In (8.57), rref (k) stands for the
reference model given by

xref (k + 1)=Aref xref (k)+Ef,ref f (k)+Ed,ref d(k)

rref (k)= Cref xref (k)+ Ff,ref f (k)+ Fd,ref d(k)

Aref =A−LoptC, Ef,ref =Ef −LoptFf , Ed,ref =Ed −LoptFd

Cref = VoptC, Ff,ref = VoptFf , Fd,ref = VoptFd

with Lopt, Vopt chosen using the unified solution described in Theorem 7.19. It is
evident that J is a standard evaluation of the difference between the residual signal
r and the reference model rref in the statistic context. Since

E
(
r(k)− rref (k)

)T (
r(k)− rref (k)

)
= E
(
r(k)− r̄(k))T (r(k)− r̄(k))+ (r̄(k)− rref (k)

)T (
r̄(k)− rref (k)

)
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we formulate the design problem as finding L, V such that for some given γ > 0

(
r̄(k)− rref (k)

)T (
r̄(k)− rref (k)

)−→min (8.58)

subject to σ 2
r (k)= E

(
r(k)− r̄(k))T (r(k)− r̄(k)) is bounded.

Next, we shall derive an LMI solution for (8.58).

8.5.3 An LMI Solution

For our purpose of solving optimization problem (8.58), we are first going to find
LMI conditions for

(
r̄(k)− rref (k)

)T (
r̄(k)− rref (k)

)
< α2

1

k−1∑
j=0

(
dT (j)d(j)+ f T (j)f (j))

+ α2
2

(
dT (k)d(k)+ f T (k)f (k)) (8.59)

σ 2
r (k) < γ

2
1

k−1∑
j=0

(
dT (j)d(j)+ f T (j)f (j)+ uT (j)u(j))

+ γ 2
2

(
dT (k)d(k)+ f T (k)f (k)+ uT (k)u(k)) (8.60)

for some α1 > 0, α2 > 0, γ1 > 0, γ2 > 0. We start with problem (8.59). Introducing
notions

ξ(k) =
[
ē(k)

xref (k)

]
, d̄(k)=

[
d(k)

f (k)

]
, Aξ =

[
A−LC 0

0 Aref

]

Cξ =
[
VC −Cref

]
, Eξ,d̄ =

[
Ed −LFd Ef −LFf
Ed,ref Ef,ref

]

Fξ,d̄ =
[
VFd − Fd,ref VFf − Ff,ref

]

yields

ξ(k + 1)=Aξξ(k)+Eξ,d̄ d̄(k) (8.61)

r̄(k)− rref (k)= Cξξ(k)+ Fξ,d̄ d̄(k). (8.62)

The following theorem provides an LMI condition for (8.59).

Theorem 8.2 Given system (8.61)–(8.62), the constants α1 > 0, α2 > 0 and sup-
pose that ξ(0)= 0, then ∀k
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(
r̄(k)− rref (k)

)T (
r̄(k)− rref (k)

)
< α2

1

k−1∑
j=0

(
dT (j)d(j)+ f T (j)f (j))

+ α2
2

(
dT (k)d(k)+ f T (k)f (k))

if the following three LMI’s hold for some P > 0

⎡
⎢⎣

P PAξ PEξ,d̄
ATξ P P 0

ET
ξ,d̄
P 0 I

⎤
⎥⎦ > 0 (8.63)

[
P CTξ

Cξ α2
1I

]
≥ 0 (8.64)

[
I FT

ξ,d̄

Fξ,d̄ α2
2I

]
≥ 0. (8.65)

Proof Let

V (j)= ξT (j)P ξ(j), P > 0, j = 1, . . . .

It is evident that

V (j + 1)− V (j) < d̄T (j)d̄(j) (8.66)

ensures

ξT (k)P ξ(k) <

k−1∑
j=0

d̄T (j)d̄(j). (8.67)

(8.66) is equivalent with

[
ATξ
ET
ξ,d̄

]
P
[
Aξ Eξ,d̄

]−
[
P 0
0 I

]
< 0. (8.68)

If (8.67) holds, then

CTξ Cξ ≤ α2
1P =⇒ ξT (k)CTξ Cξ ξ(k) < α

2
1

k−1∑
j=0

d̄T (j)d̄(j). (8.69)

Applying the Schur complement yields

⎡
⎢⎣
P−1 Aξ Eξ,d̄
ATξ P 0

ET
ξ,d̄

0 I

⎤
⎥⎦ > 0 ⇐⇒

⎡
⎢⎣

P PAξ PEξ,d̄
ATξ P P 0

ET
ξ,d̄
P 0 I

⎤
⎥⎦> 0
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CTξ Cξ ≤ α2
1P ⇐⇒

[
P CTξ

Cξ α2
1I

]
≥ 0.

Since(
r̄(k)− rref (k)

)T (
r̄(k)− rref (k)

)≤ ξT (k)CTξ Cξ ξ(k)+ d̄T (k)F Tξ,d̄Fξ,d̄ d̄(k)

F T
ξ,d̄
Fξ,d̄ ≤ α2

2I ⇐⇒
[
I FT

ξ,d̄

Fξ,d̄ α2
2I

]
≥ 0

=⇒ d̄T (k)F T
ξ,d̄
Fξ,d̄ d̄(k)≤ α2

2 d̄
T (k)d̄(k)

the theorem is proven. �

The solution of (8.60) is somewhat involved. We start with some preliminary
work. Define

V (k)= E
(
xTr (k)

�Pxr(k)
)

(8.70)

for some �P > 0. We know from the basic statistics that

V (k)= E
[
eTxr (k)

�Pexr (k)
]+ E

(
x̄Tr (k)

�P x̄r(k)
)
, exr (k)= xr(k)− x̄r (k)

and moreover

E
[
eTxr (k)

�Pexr (k)
]= trace

(�PExr (k)), Exr (k)= E
[
exr (k)e

T
xr
(k)
]
.

Hence,

V (k + 1)= trace
(
MAExr (k)

)+
⎡
⎢⎢⎣
x̄r (k)

u(k)

d(k)

f (k)

⎤
⎥⎥⎦
T

M1

⎡
⎢⎢⎣
x̄r (k)

u(k)

d(k)

f (k)

⎤
⎥⎥⎦ (8.71)

where

Exr (k)= E
(
exr (k)e

T
xr
(k)
)
, MA =ATr,0�PAr,0 +

l∑
i=1

σ 2
i A

T
r,iPAr,i

M1 =

⎡
⎢⎢⎢⎢⎣

ATr,0

BTr,0

ETr,0

ETr,f

⎤
⎥⎥⎥⎥⎦
�P [Ar,0 Br,0 Er,0 Er,f

]

+
l∑
i=1

σ 2
i

⎡
⎢⎢⎢⎣
ATr,i

BTr,i

ETr,i
0

⎤
⎥⎥⎥⎦ �P
[
Ar,i Br,i Er,i 0

]
. (8.72)
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Suppose

M1 <

⎡
⎢⎢⎣
�P 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I

⎤
⎥⎥⎦ . (8.73)

Note that (8.73) also implies

MA < �P
then we have

V (k + 1) < E
[
eTxr (k)

�Pexr (k)
]+ x̄Tr (k)�P x̄r(k)

+ dT (k)d(k)+ uT (k)u(k)+ f T (k)f (k)
= V (k)+ dT (k)d(k)+ uT (k)u(k)+ f T (k)f (k) (8.74)

which leads to

V (k) <

k−1∑
j=0

[
dT (j)d(j)+ uT (j)u(j)+ f T (j)f (j)]

=⇒ trace
(�PExr (k))+ x̄Tr (k)P x̄r (k)

<

k−1∑
j=0

[
dT (j)d(j)+ uT (j)u(j)+ f T (j)f (j)]. (8.75)

We now consider σ 2
r (k) and write it into

σ 2
r (k)= trace

(
MCExr (k)

)+ x̄Tr (k)M2x̄r (k)+
⎡
⎣ u(k)d(k)

f (k)

⎤
⎦
T

M3

⎡
⎣ u(k)d(k)

f (k)

⎤
⎦

MC = CTr,oCr,o +
l∑
i=1

σ 2
i C

T
r,iCr,i , M2 =

l∑
i=1

σ 2
i C

T
r,iCr,i ≤MC (8.76)

M3 =
l∑
i=1

σ 2
i

⎡
⎢⎣
DT
r,i

F Tr,i
0

⎤
⎥⎦[Dr,i Fr,i 0

]
. (8.77)

As a result, if

trace
(
MCExr (k)

)+ x̄Tr (k)M2x̄r (k)≤ γ 2
1

(
trace
(�PExr (k))+ x̄Tr (k)�P x̄r(k))

(8.78)

M3 ≤ γ 2
2 (8.79)
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then it holds

σ 2
r (k) < γ

2
1

k−1∑
j=0

[
dT (j)d(j)+ uT (j)u(j)+ f T (j)f (j)]

+ γ 2
2

(
dT (k)d(k)+ f T (k)f (k)+ uT (k)u(k)).

It is evident that (8.78) holds, when

MC ≤ γ 2
1
�P . (8.80)

In summary, we have proven the following theorem.

Theorem 8.3 Given system (8.53)–(8.54) and constants γ1 > 0, γ2 > 0. Then (8.60)
holds if there exists �P > 0 so that

M1 <

⎡
⎢⎢⎣
�P 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I

⎤
⎥⎥⎦ (8.81)

MC ≤ γ 2
1
�P (8.82)

M3 ≤ γ 2
2 (8.83)

where M1, MC , M3 are respectively, defined in (8.72), (8.76), (8.77).

Remark 8.5 It follows from Lemma 8.4 that the LMI (8.73) ensures the stability of
the overall system.

Starting from Theorems 8.2 and 8.3, we are now in a position to describe opti-
mization problem (8.58) more precisely. The design objective is to solve the opti-
mization problem

min
L,V

(
w1α

2
1 +w2α

2
2

)
(8.84)

subject to (8.63)–(8.65) and (8.81)–(8.83) for given constants γ1 > 0, γ2 > 0. In this
formulation, w1, w2 are two weighting factors whose values depend on the bounds
of the L2 norm and L∞ of u, d , f . Let P matrix given in (8.63)–(8.65) be

P =
[
P1 0
0 P2

]
> 0

and set �P matrix given in (8.81)–(8.83) equal to

�P =
[
P3 0
0 P1

]
> 0. (8.85)
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Moreover, define

L= P−1
1 Y.

As a result, (8.63)–(8.65) can be respectively, rewritten into

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

P1 0 N1 0 N2 N3
0 P2 0 P2Aref P2Ed,ref P2Ef,ref

N T
1 0 P1 0 0 0

0 ATrefP2 0 P2 0 0

N T
2 ETd,refP2 0 0 I 0

N T
3 ETf,refP2 0 0 0 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
> 0 (8.86)

N1 = P1A− YC, N2 = P1Ed − YFd, N3 = P1Ef − YFf⎡
⎢⎣
P1 0 CT V T

0 P2 −CTref

VC −Cref α2
1I

⎤
⎥⎦≥ 0 (8.87)

⎡
⎢⎣

I 0 FTd V
T − FTd,ref

0 I FTf V
T − FTf,ref

VFd − Fd,ref VFf − Ff,ref α2
2I

⎤
⎥⎦≥ 0. (8.88)

As to (8.81)–(8.83), a reformulation is needed. To this end, rewrite M1, MC and M3

into

M1 =
[
NT

0 NT
1 · · · NT

l

]
⎡
⎢⎢⎢⎣

�P 0 · · · 0
0 σ 2

1
�P · · · 0

...
. . .

. . .
...

0 · · · 0 σ 2
l
�P

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
N0
N1
...

Nl

⎤
⎥⎥⎥⎦

N0 =
[
Ar,0 Br,0 Er,0 Er,f

]
, Ni =

[
Ar,i Br,i Er,i 0

]
, i = 1, . . . , l

MC =
[
CTr,0 CTr,1 · · · CTr,l

]
⎡
⎢⎢⎢⎣
I 0 · · · 0
0 σ 2

1 I · · · 0
...

. . .
. . .

...

0 · · · 0 σ 2
l I

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
Cr,0
Cr,1
...

Cr,l

⎤
⎥⎥⎥⎦

M3 =
[
T Tr,1 · · · T CTr,l

]
⎡
⎢⎣
σ 2

1 I · · · 0

0
. . . 0

0 · · · σ 2
l I

⎤
⎥⎦
⎡
⎢⎣
Tr,1
...

Tr,l

⎤
⎥⎦

Tr,i =
[
Dr,i Fr,i 0

]
, i = 1, . . . , l.
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Then applying the Schur complement yields

(8.81) ⇐⇒

⎡
⎢⎢⎢⎢⎢⎣

−P̃ NT
0 NT

1 · · · NT
l

N0 −�P−1 0 · · · 0
N1 0 −(σ 2

1
�P )−1 · · · 0

...
...

. . .
. . .

...

Nl 0 · · · 0 −(σ 2
l
�P)−1

⎤
⎥⎥⎥⎥⎥⎦
< 0

⇐⇒

⎡
⎢⎢⎢⎢⎢⎣

−P̃ NT
0
�P NT

1
�P · · · NT

l
�P

�PN0 −�P 0 0
�PN1 0 −σ−2

1
�P · · · 0

...
...

. . .
. . .

...
�PNl 0 · · · 0 −σ−2

l
�P

⎤
⎥⎥⎥⎥⎥⎦
< 0 (8.89)

P̃ =

⎡
⎢⎢⎣
�P 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I

⎤
⎥⎥⎦

(8.82) ⇐⇒

⎡
⎢⎢⎢⎢⎢⎣

−γ 2
1
�P CTr,0 CTr,1 · · · CTr,0l

Cr,0 −I 0 · · · 0
Cr,1 0 −σ−2

1 I · · · 0
...

...
. . .

. . .
...

Cr,l 0 · · · 0 −σ−2
l I

⎤
⎥⎥⎥⎥⎥⎦
≤ 0 (8.90)

(8.83) ⇐⇒

⎡
⎢⎢⎢⎣
−γ 2

2 I T Tr,1 · · · T Tr,r

Tr,1 −σ−2
1 I · · · 0

...
. . .

. . .
...

Tr,l · · · 0 −σ−2
l I

⎤
⎥⎥⎥⎦≤ 0. (8.91)

Note that

�PN0 =
[
P3A 0 P3B P3Ed P3Ef

0 P1A− YC 0 P1Ed − YFd P1Ef − YFf
]

�PNi =
[
P3Ai 0 P3Bi P3Ei 0

0 P1Ai − YCi P1Bi − YDi P1Ei − YFi 0

]

Cr,0 =
[

0 VC
]
, Cr,i =

[
VCi 0

]
, i = 1, . . . , l

Tr,i =
[
VDi V Fi 0

]
, i = 1, . . . , l.

Thus, (8.86)–(8.91) are LMIs regarding to P1, P2, P3, Y , V . It allows us to use the
following algorithm to solve (8.84).
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Algorithm 8.3 (LMI aided FDI design for stochastically uncertain systems)

S0: Set α1, α2, γ1, γ2 and w1, w2
S1: Find P1 > 0, P2 > 0, P3 > 0, Y,V so that (8.86)–(8.91) are satisfied
S2: Decrease (w1α

2
1 +w2α

2
2) and repeat S1 until the tolerant value is reached

S3: Set L= P−1
1 Y .

Remark 8.6 The solution may become conservative due to definition (8.85). Using
an iterative algorithm, this problem can be solved.

Example 8.3 In this example, we continue our study on the benchmark vehicle dy-
namic system (see Sect. 3.7.4). Our purpose is to design an FDF via Algorithm 8.3,
which takes into account the stochastic change in C′αV . To this end, the discrete time
system model (3.79) with a slight modification

C′αV = 98600+ΔCαV , ΔCαV ∈ [−5000,5000]
is adopted. ΔA, ΔB are respectively,

ΔA=
[

0.9854 0.0001
0.1419 0.9836

]
, ΔB =

[
0.0054
0.1963

]
.

We assume that only yaw rate measurement is available for the fault detection pur-
pose. Our design procedure is as follows:

• Design of the reference model:

Lopt =
[

0.1899
1.4433

]
, Vopt = 5.6204.

• Under the setting w1 =w2 = 1, we get

V = 0.0044, P1 =
[

9.3759 0.2417
0.2417 0.0064

]
, P2 =

[
1.6828 −0.2225
−0.2225 0.0707

]

P3 =
[

1.6287 0.0657
0.0657 0.0272

]
, Y =

[−0.6480
−0.0166

]
, L=

[−0.0814
0.4749

]

α1 = 27.6533, α2 = 5.6344.

8.5.4 An Alternative Approach

In the above presented approach, the optimization objective is described by (8.58).
Alternatively, we can also define

k∑
j=0

(
r̄(j )− rref (j)

)T (
r̄(j )− rref (j)

)
< α2

k∑
j=0

(
dT (j)d(j)+ f T (j)f (j)) (8.92)
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subject to

k∑
j=0

σ 2
r (j) < γ

2
k∑
j=0

(
dT (j)d(j)+ f T (j)f (j)+ uT (j)u(j)) (8.93)

as a cost function and formulate the design problem as finding L, V so that α2 is
minimized for a given constant γ 2. Its solution can be easily derived along with the
lines given above and the standard solution for H∞ norm computation (Bounded
Real Lemma). Next, we sketch the basic steps of the solution and give the design
algorithm. We assume that ξ(0) = 0, exr (0) = 0. It follows from Lemma 7.9 that
(8.92) holds if and only if there exists a P > 0 so that

⎡
⎢⎢⎢⎣
−P PAξ PEξ,d̄ 0
ATξ P −P 0 CTξ

ET
ξ,d̄
P 0 −αI FT

ξ,d̄

0 Cξ Fξ,d̄ −αI

⎤
⎥⎥⎥⎦< 0.

Setting

P =
[
P1 0
0 P2

]
> 0, L= P−1

1 Y

leads to
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−P1 0 N13 0 N15 N16 0
0 −P2 0 P2Aξ P2Ed,ref P2Ef,ref 0
NT

13 0 −P1 0 0 0 CT V T

0 ATrefP2 0 −P2 0 0 −CTref

NT
15 ETd,refP2 0 0 −αI 0 NT

75

NT
16 ETf,refP2 0 0 0 −αI NT

76
0 0 VC −Cref N75 N76 −αI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0 (8.94)

N13 = P1A− YC, N15 = P1Ed − YFd, N16 = P1Ef − YFf
N75 = VFd − Fd,ref , N76 = VFf − Ff,ref .

To find a sufficient LMI condition for (8.93), we introduce

V (j)= E
[
eTxr (j)

�Pexr (j)
]

and consider

σ 2
r (j)− γ 2(dT (j)d(j)+ f T (j)f (j)+ uT (j)u(j))+ V (j + 1)− V (j) < 0

which ensures that (8.93) holds. Remember that

σ 2
r (j) = E

[
rT (j)r(j)

]−E
(
r̄(j )T r̄(j)

)
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V (j) = E
[
xTr (j)

�Pxr(j)
]−E

(
x̄Tr (j)

�P x̄r(j)
)
.

It turns out

E
[
rT (j)r(j)

]+ E
[
xTr (j + 1)�Pxr(j + 1)

]− E
[
xTr (j)

�Pxr(j)
]

− γ 2(dT (j)d(j)+ f T (j)f (j)+ uT (j)u(j))
− (E(r̄(j )T r̄(j))+ E

(
x̄Tr (j + 1)�P x̄r(j + 1)

)− E
(
x̄Tr (j)

�P x̄r(j)
))
< 0

which is equivalent to
⎡
⎢⎢⎢⎢⎣

ATr,0

BTr,0

ETr,0

ETr,f

⎤
⎥⎥⎥⎥⎦
�P [Ar,0 Br,0 Er,0 Er,f

]−
⎡
⎢⎢⎣
�P 0 0 0
0 γ 2I 0 0
0 0 γ 2I 0
0 0 0 γ 2I

⎤
⎥⎥⎦

+
l∑
i=1

σ 2
i

⎡
⎢⎢⎢⎣
ATr,i CTr,i

BTr,i DT
r,i

ETr,i F Tr,i
0 0

⎤
⎥⎥⎥⎦
[ �P 0

0 I

][
Ar,i Br,i Er,i 0
Cr,i Dr,i Fr,i 0

]
< 0 (8.95)

⎡
⎢⎢⎢⎢⎣

ATr,0

BTr,0

ETr,0

ETr,f

⎤
⎥⎥⎥⎥⎦
�P [Ar,0 Br,0 Er,0 Er,f

]−
⎡
⎢⎢⎣
�P 0 0 0
0 γ 2I 0 0
0 0 γ 2I 0
0 0 0 γ 2I

⎤
⎥⎥⎦< 0. (8.96)

It is evident that (8.95) implies (8.96). Now, let

�P =
[
P3 0
0 P1

]
> 0

and apply Schur complement to (8.95). We have for (8.95)
⎡
⎢⎢⎢⎢⎢⎢⎣

P̃ NT
0
�P ÑT

1 P̂ · · · ÑT
l P̂�PN0 �P 0 0

P̂ Ñ1 0 σ−2
1
�P · · · 0

...
...

. . .
. . .

...

P̂ Ñl 0 · · · 0 σ−2
l
�P

⎤
⎥⎥⎥⎥⎥⎥⎦
> 0 (8.97)

where

P̃ =

⎡
⎢⎢⎣
�P 0 0 0
0 γ 2I 0 0
0 0 γ 2I 0
0 0 0 γ 2I

⎤
⎥⎥⎦
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�PN0 =
[
P3A 0 P3B P3Ed P3Ef

0 P1A− YC 0 P1Ed − YFd P1Ef − YFf
]

P̂ Ñi =
⎡
⎣P3Ai 0 P3Bi P3Ei 0

0 P1Ai − YCi P1Bi − YDi P1Ei − YFi 0
VCi 0 VDi V Fi 0

⎤
⎦ , i = 1, . . . , l.

In summary, we have the following algorithm.

Algorithm 8.4 (An alternative approach to LMI aided FDI design for stochastically
uncertain systems)

S0: Set α > 0 and γ > 0
S1: Find P1 > 0, P2 > 0, P3 > 0, Y,V so that (8.94) and (8.97) are satisfied
S2: Decrease α > 0 and repeat S1 until the predefined tolerant value is reached
S3: Set L= P−1

1 Y .

8.6 Notes and References

In this chapter, we have focused our study on the application of the LMI technique to
dealing with the robustness issues surrounding the design of residual generators for
systems with model uncertainties. Although different types of model uncertainties
have been addressed, the underlying ideas of the presented methods are similar.
The core of these methods is the application of a reference model. In this way,
similar to the solution of the H∞ OFIP, the original residual generation problem is
transformed into a, more or less, standard MMP problem.

A key and also critical point surrounding the reference model-based residual gen-
eration strategy is the selection of the reference model. Among the different selec-
tion schemes, handling the residual generation in the H∞ OFIP framework is the
most popular one, where the faults themselves or the weighted faults are defined as
the reference model. This method has been first introduced in solving the integrated
design of controller and FD unit [126, 160] and lately for the residual generation
purpose [26, 66, 120, 148], where the optimization problem can also be solved in
the H∞/μ framework [199]. Significantly different from it, disturbances are inte-
grated into the reference model used in our study in this chapter. The basic idea
behind such a reference model is the trade-off between the robustness and fault de-
tectability. This idea has been first proposed by Zhong et al. [196], where the unified
solution is, due to its optimal trade-off, adopted as reference model. The methods
presented in this chapter are the results of the application of this idea to the systems
with different kinds of model uncertainties, where the LMI technique as the tool for
the solution plays a central role. We refer the reader again to [16, 154] for the needed
knowledge of the LMI technique. A comprehensive discussion on Lemma 8.1 can
be found in [179].
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We would like to call reader’s attention to the systematical and comprehensive
study on the interpretation of the unified solution in Chap. 12. It will be demon-
strated that the unified solution provides us with a reference model that is optimum
in the sense of a trade-off between the false alarm rate and the fault detectability.

Another way of handling residual generation problems for uncertain systems is
to extend the H−/H∞ or H∞/H∞ solutions [21, 22]. For instance, [151] proposed
to solve H∞ and H−H∞ problems in the H∞/μ framework. [88] developed a two-
step scheme, in which H−/H∞ design of the residual generator is first transformed
and solved by means of the LMI technique and then in the second step the fault
sensitivity performance is addressed with the aid of μ-synthesis.

Comparing with the study in the previous two chapters, the reader may notice that
the results presented in this chapter are considerably limited. This is also the state
of the art in the model-based FDI technique. If we say, the results in Chaps. 6 and 7
mark the state of the art of yesterdays’ and today’s FDI technique respectively, then
it can be concluded that the study on the model-based FDI for uncertain systems
would be a major topic in the field of the model-based FDI technique in the coming
years.



Part III
Residual Evaluation and Threshold

Computation



Chapter 9
Norm-Based Residual Evaluation and Threshold
Computation

In this and the next two chapters, we shall study residual evaluation and threshold
computation problems. The study in the last part has clearly shown that the residual
signal is generally corrupted with disturbances and uncertainties caused by param-
eter changes. To achieve a successful fault detection based on the available residual
signal, further efforts are needed. A widely accepted way is to generate such a fea-
ture of the residual signal, by which we are able to distinguish the faults from the
disturbances and uncertainties. Residual evaluation and threshold setting serve for
this purpose. A decision on the possible occurrence of a fault will then be made by
means of a simple comparison between the residual feature and the threshold, as
shown in Fig. 9.1.

Fig. 9.1 Schematic description of residual evaluation and threshold generation

S.X. Ding, Model-Based Fault Diagnosis Techniques, Advances in Industrial Control,
DOI 10.1007/978-1-4471-4799-2_9, © Springer-Verlag London 2013
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Depending on the type of the system under consideration, there exist two residual
evaluation strategies. The statistic testing is one of them, which is well established
in the framework of statistical methods. Another one is the so-called norm-based
residual evaluation. Besides the less on-line calculation, the norm-based residual
evaluation allows a systematic threshold computation using the well-established ro-
bust control theory.

In this chapter, we shall focus on the norm-based residual evaluation and the as-
sociated threshold computation, as sketched in Fig. 9.1. The statistic testing methods
and the integration of the norm-based and statistic methods will be addressed in the
next two chapters.

9.1 Preliminaries

The concepts with the signal and system norms introduced in Sects. 7.1 and 8.1 are
essential for our study in this chapter.

Remember that in Sect. 7.1 we have introduced the so-called peak-to-peak gain
and the generalized H2 norm. Both of them are the induced system norm and
useful for our study in this chapter. Below, we present the known results on the
LMI aided computation of these two norms, published by Scherer et al. in their
celebrated paper entitled multiobjective output-feedback control via LMI optimiza-
tion.

Lemma 9.1 Given system

G : ẋ =Ax +Edd, y = Cx, x(0)= 0.

Then for a given constant γ > 0

‖G‖g < γ ⇐⇒ ‖y‖peak < γ ‖d‖2

if and only if there exists a P > 0 so that
[
AT P + PA PEd
ETd P −I

]
< 0,

[
P CT

C γ 2I

]
> 0.

Lemma 9.2 Given system

G : ẋ =Ax +Edd, y = Cx + Fdd, x(0)= 0

where d is bounded by

∀t, dT (t)d(t)≤ 1.

Then for a given constant γ > 0

‖G‖peak < γ ⇐⇒ ‖y‖peak < γ ‖d‖peak

if there exist λ > 0, μ> 0 and P > 0 so that
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[
AT P + PA+ λP PEd

ETd P −μI
]
< 0

⎡
⎣λP 0 CT

0 (γ −μ)I FTd
C Fd γ I

⎤
⎦> 0.

The following two lemmas are the extension of Lemmas 9.1 and 9.2 to the sys-
tems with polytopic uncertainties. For their proof, the way of handling polytopic
uncertainty described in the book by Boyd et al. can be adopted.

Lemma 9.3 Given system

G : ẋ = (A+ΔA)x + (Ed +ΔE)d, y = (C +ΔC)x,x(0)= 0

[
ΔA ΔE

ΔC 0

]
=

l∑
i=1

βi

[
Ai Ei
Ci 0

]

l∑
i=1

βi = 1, βi ≥ 0, i = 1, . . . , l.

Then for a given constant γ > 0

‖G‖g < γ ⇐⇒ ‖y‖peak < γ ‖d‖2

if there exists a P > 0 so that ∀i = 1, . . . , l,
[
(A+Ai)T P + P(A+Ai) P (Ed +Ei)

(Ed +Ei)T P −I
]
< 0

[
P (C +Ci)T

C +Ci γ 2I

]
> 0.

Lemma 9.4 Given system

G : ẋ = (A+ΔA)x + (Ed +ΔE)d, y = (C +ΔC)x + (Fd +ΔF)d, x(0)= 0

[
ΔA ΔE

ΔC ΔF

]
=

l∑
i=1

βi

[
Ai Ei
Ci Fi

]

l∑
i=1

βi = 1, βi ≥ 0, i = 1, . . . , l.

Then for a given constant γ > 0

‖G‖peak < γ ⇐⇒ ‖y‖peak < γ ‖d‖peak

if there exist λ > 0, μ> 0 and P > 0 so that ∀i = 1, . . . , l,
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[
(A+Ai)T P + P(A+Ai)+ λP P (Ed +Ei)

(Ed +Ei)T P −μI
]
< 0

⎡
⎣ λP 0 (C +Ci)T

0 (γ −μ)I (Fd + Fi)T
C +Ci Fd + Fi γ I

⎤
⎦> 0.

9.2 Basic Concepts

In practice, the so-called limit monitoring and trend analysis are, due to their sim-
plicity, widely used for the purpose of fault detection. For a given signal y, the
primary form of limit monitoring is

y < ymin or y > ymax =⇒ alarm, a fault is detected

ymin ≤ y ≤ ymax =⇒ no alarm, fault-free

where ymin, ymax denote the minimum and maximum values of y in the fault-free
case. They are also called threshold.

The trend analysis of a signal y can be in fact interpreted as limit monitoring of
ẏ, and thus formulated as

ẏ < ẏmin or ẏ > ẏmax =⇒ alarm, a fault is detected

ẏmin ≤ ẏ ≤ ẏmax =⇒ no alarm, fault-free.

Also widely accepted in practice is the root-mean-square (RMS) (see also Sect. 7.1),
denoted by ‖ ·‖RMS, that measures the average energy of a signal over a time interval
(0, T ). The fault detection problem is then described by:

‖y‖RMS < ‖y‖RMS,min or ‖y‖RMS > ‖y‖RMS,max

=⇒ alarm, a fault is detected

‖y‖RMS,min ≤ ‖y‖RMS ≤ ‖y‖RMS,max =⇒ no alarm, fault-free

with ‖y‖RMS,min, ‖y‖RMS,max as minimum and maximum values of ‖y‖RMS.
In order to overcome the difficulty with noises, the average value of a signal over

a time interval [t, t + T ], instead of its maximum/minimum value or RMS, is often
used for the purpose of fault detection. In this case, the limit monitoring can be
formulated as:

ȳ(t)= 1

T

∫ t+T

t

r̄(τ ) dτ < ȳmin or ȳ(t)= 1

T

∫ t+T

t

r̄(τ ) dτ > ȳmax

=⇒ alarm, a fault is detected

ȳmin ≤ ȳ(t)≤ ȳmax =⇒ no alarm, fault-free

where ȳmin, ȳmax represent the minimum and maximum value of ȳ(t), respectively.
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In summary, it is the state of the art in practice that for the purpose of fault
detection an evaluation function is first defined, which gives some mathematical
feature of the signal, and, based on it, a threshold is established. The last step is
then the decision making. In the subsequent sections, we shall study these issues in
a more generalized form.

9.3 Some Standard Evaluation Functions

Consider a dynamic process. Driven by the process input signal u, the value or
average value or the energy of the process output y may become very large. In order
to achieve an efficient and highly reliable FDI, it is reasonable to analyze the system
performance on account of a residual signal instead of y. In our subsequent study
in this chapter, we assume that for the FDI purpose a residual vector, r ∈ Rkr , is
available. Next, we describe some standard evaluation functions which are in fact a
generalization of the above-mentioned evaluation functions of y.

Peak Value The peak value of residual signal r is defined and denoted by, for
continuous-time r(t)

Jpeak = ‖r‖peak := sup
t≥0

∥∥r(t)∥∥, ∥∥r(t)∥∥=
(

kr∑
i=1

r2
i (t)

)1/2

(9.1)

and for discrete-time r(k)

Jpeak = ‖r‖peak := sup
k≥0

∥∥r(k)∥∥, ∥∥r(k)∥∥=
(

kr∑
i=1

r2
i (k)

)1/2

. (9.2)

The peak value of r is exactly the peak norm of r , as introduced in Sect. 7.1. Using
the peak value of r , the limit monitoring problem can be reformulated as

Jpeak > Jth,peak =⇒ alarm, a fault is detected

Jpeak ≤ Jth,peak =⇒ no alarm, fault-free

where Jth,peak is the so-called threshold defined by

Jth,peak = sup
fault-free

∥∥r(t)∥∥peak or Jth,peak = sup
fault-free

∥∥r(k)∥∥peak. (9.3)

Also, we can use the peak value of ṙ or Δr(k)= r(k+ 1)− r(k) to reformulate the
trend analysis. Let

Jtrend = ‖ṙ‖peak = sup
t≥0

∥∥ṙ(t)∥∥ for the continuous time case (9.4)



290 9 Norm-Based Residual Evaluation and Threshold Computation

Jtrend =
∥∥Δr(k)∥∥peak = sup

k≥0

∥∥Δr(k)∥∥ for the discrete time case (9.5)

Jth,trend = sup
fault-free

∥∥ṙ(t)∥∥peak or Jth,peak = sup
fault-free

∥∥Δr(k)∥∥peak (9.6)

then

Jtrend > Jth,trend =⇒ alarm, a fault is detected

Jtrend ≤ Jth,trend =⇒ no alarm, fault-free.

Often, for the practical implementation ṙ is replaced by ˆ̇r ,
ˆ̇r(s)= s

αs + 1
r(s) (9.7)

with 0< α� 1 or Δr(k) by

Δr(k)= r(k)− r(k − 1). (9.8)

As for the average value evaluation, we define for the continuous-time case

Javerage =
∥∥r(t)∥∥average = sup

t≥0

∥∥r̄(t)∥∥peak, r̄(t)= 1

T

∫ t+T

t

r(τ ) dτ (9.9)

and for the discrete-time case

Javerage =
∥∥r(k)∥∥average = sup

k≥0

∥∥r̄(k)∥∥peak, r̄(k)= 1

N

N∑
j=1

r(k + j) (9.10)

and moreover,

Jth,average = sup
fault-free

∥∥r(t)∥∥average or sup
fault-free

∥∥r(k)∥∥average. (9.11)

As a result, the decision logic for detecting a fault is

Javerage > Jth,average =⇒ alarm, a fault is detected

Javerage ≤ Jth,average =⇒ no alarm, fault-free.

The following modified form of average value r̄ given in (9.9) or (9.10) is often
adopted

˙̄r(t) = −τ r̄(t)+ r(t) (9.12)

r̄(k + 1) = (1− β)r̄(k)+ r(k) (9.13)

where 0< τ � 1 and 0� β < 1.
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RMS Value As introduced in Sect. 7.1, the RMS value of r is defined by, for the
continuous-time case,

JRMS =
∥∥r(t)∥∥RMS =

(
1

T

∫ t+T

t

∥∥r(τ )∥∥2
dτ

)1/2

(9.14)

and for the discrete-time case,

JRMS =
∥∥r(k)∥∥RMS =

(
1

N

N∑
j=1

∥∥r(k + j)∥∥2

)1/2

. (9.15)

JRMS measures the average energy of r over time interval (t, t + T ) as well as
(k, k + N). Remember that the RMS of a signal is related to the L2 norm of this
signal. In fact, it holds

∥∥r(t)∥∥2
RMS ≤

1

T

∥∥r(t)∥∥2
2 (9.16)

as well as

∥∥r(k)∥∥2
RMS ≤

1

N

∥∥r(k)∥∥2
2. (9.17)

Let

Jth,RMS = sup
fault-free

‖r‖RMS

be the threshold, then the detection logic becomes

JRMS > Jth,RMS =⇒ alarm, a fault is detected

JRMS ≤ Jth,RMS =⇒ no alarm, fault-free.

9.4 Basic Ideas of Threshold Setting and Problem Formulation

From the engineering viewpoint, the determination of a threshold is to find out the
tolerant limit for disturbances and model uncertainties under fault-free operation
conditions. There are a number of factors that can significantly influence this proce-
dure. Among them are

• the dynamics of the residual generator
• the way of evaluating the unknown inputs (disturbances) and model uncertainties

as well as
• the bounds of the unknown inputs and model uncertainties.

Next, we shall briefly address these issues.
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9.4.1 Dynamics of the Residual Generator

We assume that the system model is given by (8.8)–(8.10), where the model uncer-
tainties are either the norm-bounded type (8.11) or the polytopic type (8.34).

Remark 9.1 The model uncertainty of the stochastic type given in (8.50) will be
handled in a separate chapter.

Applying residual generator (8.13) to this process model yields

ẋ = Āx + �Bu+ �Edd +Ef f (9.18)

ė = (A−LC)e+ (ΔA−LΔC)x + (ΔB −LΔD)u
+ (�Ed −L�Fd)d + (Ef −LFf )f (9.19)

r(s) = R(s)(Ce+ΔCx +ΔDu+ �Fdd + Ff f ). (9.20)

Note that the modified forms (9.7) or (9.8) of the trend analysis or (9.12) as well
as (9.13) of the average value analysis can be handled as a filtering of the residual
signal and thus included in the post-filter R(s). Hence, without loss of generality,
we use below (9.18)–(9.20) to represent all the three possible forms of the resid-
ual signal under consideration. Let’s denote the minimal state space realization and
the state vector of R(s) by (Ap,Bp,Cp,Dp) and xp , respectively with subscript
p standing for post-filter. For our purpose, write (9.18)–(9.20) into the following
compact form

ẋr = (Ar +ΔAr)xr + (Ed,r +ΔEr)dr +Er,f f (9.21)

r = (Cr +ΔCr)xr + (Fd,r +ΔFr)dr + Fr,f f (9.22)

where

xr =
⎡
⎣ xe
xp

⎤
⎦ , Ar =

⎡
⎣A 0 0

0 A−LC 0
0 BpC Ap

⎤
⎦ , ΔAr =

⎡
⎣ ΔA 0 0
ΔA−LΔC 0 0
BpΔC 0 0

⎤
⎦

dr =
[
u

d

]
, Er,d =

⎡
⎣B Ed

0 Ed −LFd
0 BpFd

⎤
⎦ , ΔEr =

⎡
⎣ ΔB ΔE

ΔB −LΔD ΔE −LΔF
BpΔD BpΔF

⎤
⎦

Er,f =
⎡
⎣ Ef
Ef −LFf
BpFf

⎤
⎦ , Cr =

[
0 DpC Cp

]
, ΔCr =

[
DpΔC 0 0

]

Fr,d =
[

0 DpFd
]
, ΔFr =

[
DpΔD DpΔF

]
, Fr,f =DpFf .
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In case of the norm-bounded model uncertainty

ΔAr =
⎡
⎣ E

E −LF
BpF

⎤
⎦Δ(t) [G 0 0

]
, ΔEr =

⎡
⎣ E

E −LF
BpF

⎤
⎦Δ(t) [H J

]

ΔCr = DpFΔ(t)
[
G 0 0

]
, ΔFr =DpFΔ(t)

[
H J

]
, ΔT (t)Δ(t)≤ δΔI

while for the polytopic uncertainty

ΔAr =
l∑
i=1

βiAr,i , Ar,i =
⎡
⎣ Ai 0 0
Ai −LCi 0 0
BpCi 0 0

⎤
⎦

ΔEr =
l∑
i=1

βiEr,i , Er,i =
⎡
⎣ Bi Ei
Bi −LDi Ei −LFi
BpDi BpFi

⎤
⎦

ΔCr =
l∑
i=1

βiCr,i , Cr,i =
[

0 0 DpCi
]

ΔFr =
l∑
i=1

βiFr,i , Fr,i =
[
DpDi DpFi

]
.

9.4.2 Definitions of Thresholds and Problem Formulation

Recall that the threshold is understood as the tolerant limit for the unknown inputs
and model uncertainties during the fault-free system operation. Under this consid-
eration, the threshold can be generally defined by

Jth = sup
f=0,d,Δ

J

withΔ denoting the model uncertainties and J the feature of the residual signal like
Jpeak, Jtrend , JRMS defined in the last subsection. Also, the way of evaluating the un-
known inputs plays an important role by the determination of thresholds. Typically,
the energy level and the maximum value of unknown inputs are adopted in practice
for this purpose. In this context, we introduce below different kinds of thresholds to
cover these possible practical cases.

Definition 9.1 Suppose that dr is bounded by and in the sense of

‖dr‖peak ≤ ‖d‖peak + ‖u‖peak ≤ δd,∞ + δu,∞. (9.23)
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Then the threshold Jth,peak,peak is defined by

Jth,peak,peak = sup
‖dr‖peak≤δd,∞+δu,∞
f=0, σ̄ (Δ)≤δΔ

Jpeak (9.24)

for the norm-bounded uncertainty or

Jth,peak,peak = sup
‖dr‖peak≤δd,∞+δu,∞
f=0, βi , i=1,...,l

Jpeak (9.25)

for the polytopic uncertainty.

Jth,peak,peak measures the maximum (instantaneous) change in r caused by the
instantaneous (bounded) changes of Δ, dr . Note that Jth,peak,peak can be reached
even if the energy level of signal dr may be very low but its size at some time
instance is very large.

Definition 9.2 Suppose that dr is bounded by and in the sense of

‖dr‖2 ≤ δd,2 + δu,2 and ‖dr‖peak ≤ δd,∞ + δu,∞. (9.26)

Then the threshold Jth,peak,2 is defined by

Jth,peak,2 = sup
‖dr‖2≤δd,2+δu,2‖dr‖peak≤δd,∞+δu,∞
f=0, σ̄ (Δ)≤δΔ

Jpeak (9.27)

for the norm-bounded uncertainty or

Jth,peak,2 = sup
‖dr‖2≤δd,2+δu,2‖dr‖peak≤δd,∞+δu,∞
f=0, βi , i=1,...,l

Jpeak (9.28)

for the polytopic uncertainty.

Although Jth,peak,2 also measures the maximum change in r , but different from
Jth,peak,peak, Jth,peak,2 does it with respect to the bounded energy in dr .

Definition 9.3 Suppose that dr is bounded by and in the sense of

‖dr‖2 ≤ δd,2 + δu,2.
Then the threshold Jth,RMS,2 is defined by

Jth,RMS,2 = sup
‖dr‖RMS≤δd,2+δu,2
f=0, σ̄ (Δ)≤δΔ

JRMS (9.29)
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for the norm-bounded uncertainty or

Jth,RMS,2 = sup
‖dr‖RMS≤δd,2+δu,2
f=0, βi , i=1,...,l

JRMS (9.30)

for the polytopic uncertainty.

Jth,RMS,2 measures the maximum change in the (average) energy level of r in
response to the model uncertainty and unknown inputs which are of certain energy
level.

In practice, aiming at an early fault detection on the one hand and a low false
alarm rate on the other hand, δd,∞ is often set low and Jth,peak,peak is used to activate
the computation of Jth,peak,2 or Jth,RMS,2. While Jth,peak,2 is generally set higher
than Jth,peak,peak, due to the assumption on the energy level of dr , Jth,RMS,2 requires
an observation of the residual signals over a (long) time window. This scheme is
used to reduce the false alarm rate.

Remark 9.2 Although the input signal u is treated as a “unknown input”, the avail-
able information about it will be used to realize the so-called adaptive threshold,
which will then recover the performance.

From the mathematical and system theoretical viewpoint, the above-defined
thresholds can be understood as induced norms or “system gains”. In this context,
we are able to formulate the threshold computation as an optimization problem:

• Computation of Jth,peak,peak

Jth,peak,peak =minγ (δd,∞ + δu,∞) with γ subject to (9.31)

∀dr satisfying (9.23),Δ either norm-bounded or polytopic

sup
t≥0

∥∥r(t)∥∥≤ γ sup
t≥0

∥∥dr(t)∥∥ or sup
k≥0

∥∥r(k)∥∥≤ γ sup
k≥0

∥∥dr(k)∥∥.

• Computation of Jth,peak,2

Jth,peak,2 =minγ1(δd,2 + δu,2)+ γ2(δd,∞ + δu,∞) with γ1 subject to (9.32)

∀dr satisfying (9.26),Δ either norm-bounded or polytopic

sup
t≥0

∥∥r(t)∥∥≤ γ1
∥∥dr(t)∥∥2 or sup

k≥0

∥∥r(k)∥∥≤ γ1
∥∥dr(k)∥∥2.

Remark 9.3 The term γ2(δd,∞ + δu,∞) in (9.32) is due to the existence of Fd,r +
ΔFr , by which dr will act on r instantaneously. In the section dealing with the
computation of Jth,peak,2, we shall explain it in more detail.
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• Computation of Jth,RMS,2

Jth,RMS,2 =minγ (δd,2 + δu,2) with γ subject to (9.33)

∀T ,dr satisfying (9.26),Δ either norm-bounded or polytopic∥∥r(t)∥∥2 ≤ γ
∥∥dr(t)∥∥2 or

∥∥r(k)∥∥2 ≤ γ
∥∥dr(k)∥∥2.

Using the LMI technique, we shall derive algorithms for solving these problems.
This is the major objective of the rest of the sections in this chapter.

9.5 Computation of Jth,RMS,2

In this section, we address the computation of Jth,RMS,2 for the systems with both
the norm-bounded and polytopic model uncertainty.

9.5.1 Computation of Jth,RMS,2 for the Systems
with the Norm-Bounded Uncertainty

For our purpose, we first give a theorem, which builds the basis for the computation
of Jth,RMS,2.

Theorem 9.1 Given system (9.21)–(9.22) with the norm-bounded uncertainty and
γ > 0, and suppose that xr(0)= 0, ΔT (t)Δ(t)≤ I , then

∥∥r(t)∥∥2 < γ
∥∥dr(t)∥∥2

if there exist ε > 0, P > 0 so that

⎡
⎢⎢⎣
ATr P + PAr + ε�GT �G PEr,d + ε�GT �H CTr P �E
ETr,dP + ε �HT �G −γ 2I + ε �HT �H FTd,r 0

Cr Fd,r −I DpF�ET P 0 FTDT
p −εI

⎤
⎥⎥⎦< 0 (9.34)

where

�G= [G 0 0
]
, �H = [H J

]
, �E =

⎡
⎣ E

E −LF
BpF

⎤
⎦ . (9.35)

The proof of this theorem is similar with the one of Theorem 8.1 and follows
directly from the Bounded Real lemma and Lemma 8.1.

The “discrete-time version” of Theorem 9.1 is given below.
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Theorem 9.2 Given system

xr(k + 1) = (Ar +ΔAr)xr(k)+ (Ed,r +ΔEr)dr(k)
r(k) = (Cr +ΔCr)xr(k)+ (Fd,r +ΔFr)dr(k)

with the norm-bounded uncertainty, where all system matrices are identical with the
ones used in (9.21)–(9.22), and γ > 0, and suppose that xr(0)= 0,ΔT (k)Δ(k)≤ I ,
then ∥∥r(k)∥∥2 < γ

∥∥dr(k)∥∥2 (9.36)

if there exist η > 0, P > 0 so that

⎡
⎢⎢⎢⎢⎢⎣

−P 0 PAr PEr P �E
0 −I Cr Fr DpF

ATr P CTr η�GT �G− P η�GT �H 0

ETd,rP FTd,r η �HT �G η �HT �H − γ 2I 0
�ET P FTDT

p 0 0 −ηI

⎤
⎥⎥⎥⎥⎥⎦
< 0 (9.37)

with �E, �G, �H as defined in (9.35).

Proof Due to the similarity to Theorem 8.1, we only briefly sketch the proof. It is
evident that (9.36) holds if
[
(Ar +ΔAr)T (Cr +ΔCr)T
(Ed,r +ΔEr)T (Fd,r +ΔFr)T

][
P 0
0 I

][
Ar +ΔAr Ed,r +ΔEr
Cr +ΔCr Fd,r +ΔFr

]

−
[
P 0
0 γ 2I

]
< 0.

Recall that

[
ΔAr ΔEr
ΔCr ΔFr

]
=

⎡
⎢⎢⎣

E

E −LF
BpF

DpF

⎤
⎥⎥⎦Δ(k)

[
G 0 0 H J

]
.

It follows from Lemma 8.1 that the above inequality holds, provided that for some
ε > 0

[
ATr CTr
ETd,r F Td,r

]⎛⎜⎜⎝
[
P 0
0 I

]−1

− ε

⎡
⎢⎢⎣

E

E −LF
BpF

DpF

⎤
⎥⎥⎦
⎡
⎢⎢⎣

E

E −LF
BpF

DpF

⎤
⎥⎥⎦
T⎞
⎟⎟⎠
−1 [

Ar Er
Cr Fr

]

+ 1

ε

[
G 0 0 H J

]T [
G 0 0 H J

]−
[
P 0
0 γ 2I

]
< 0.
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Now, applying the Schur complement yields
⎡
⎢⎢⎢⎢⎢⎣
ε

⎡
⎣

E
E−LF
BpF

DpF

⎤
⎦
⎡
⎣

E
E−LF
BpF

DpF

⎤
⎦
T

−
[
P 0
0 I

]−1 [
Ar Er
Cr Fr

]

[
ATr CTr

ETd,r F
T
d,r

] [
1
ε
�GT �G−P 1

ε
�GT �H

1
ε
�HT �G 1

ε
�HT �H−γ 2I

]

⎤
⎥⎥⎥⎥⎥⎦
< 0

⇐⇒

⎡
⎢⎢⎢⎢⎢⎢⎣

−P 0 PAr PEr P �E
0 −I Cr Fr DpF

ATr P CTr
1
ε
�GT �G− P 1

ε
�GT �H 0

ETd,rP FTd,r
1
ε
�HT �G 1

ε
�HT �H − γ 2I 0

�ET P FTDT
p 0 0 − 1

ε
I

⎤
⎥⎥⎥⎥⎥⎥⎦
< 0.

Finally, setting η= 1
ε

completes the proof. �

With the aid of Theorems 9.1 and 9.2 as well as the relation between the L2 norm
and the RMS, (9.16) or (9.17), we have the following.

Algorithm 9.1 (Computation of Jth,RMS,2 for the systems with the norm-bounded
uncertainty)

S0: Substitute �G, �H in (9.35) by �G/√δΔ, �H/√δΔ
S1: Solve optimization problem

minγ subject to (9.34) or (9.37)

for ε > 0, P > 0 and set γ ∗ =minγ
S2: Set

Jth,RMS,2 = γ ∗(δd,2 + δu,2)√
T

or Jth,RMS,2 = γ ∗(δd,2 + δu,2)√
N

. (9.38)

Example 9.1 In this example, we illustrate the application of the above algorithm
to the threshold computation via the laboratory system DC motor DR300. In order
to demonstrate that the proposed approach is also applicable for systems modelled
in terms of transfer functions, our study is based on the input-output description of
the DC motor DR300 given in Sect. 3.7.1. We assume that the gain of the nominal
model is uncertain with

Gyu(s)= b0 +Δ
s3 + a2s2 + a1s + a0

where Δ ∈ [−√δΔ,√δΔ], δΔ = 10000, and moreover the measurement y is cor-
rupted with a noise,

y(s)=Gyu(s)u(s)+ 0.01d, ‖d‖2 ≤ δd,2 = 1.8.
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Fig. 9.2 Threshold and the
evaluated residual signal:
Δ=−100, fA = 0.05 V,
occurred at t = 25 s

We now apply the residual generator developed in Example 5.9 to this system. It
leads to

ė=Ge+ [ΔH −0.01L
][u
d

]
, r =we+ [0 0.01

][u
d

]

with

ΔH =
⎡
⎣Δ0

0

⎤
⎦ =⇒

[
E

F

]
Δ(t)
[
G H J

]=
⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦Δ(t)

[
0 0 0 1 0

]
.

By solving optimization problem

minγ subject to (9.34) or (9.37)

we get

γ ∗ = 0.27.

On the assumption that δu,2 = 2.1 and the evaluation time window T = 10 s, the
threshold is finally set to be

Jth,RMS,2 = γ ∗(δd,2 + δu,2)√
10

= 0.33.

To verify the design result, simulations with different faults are made. Figures 9.2
and 9.3 show the threshold and the responses of the evaluated residual signal to an
actuator fault and a sensor fault.
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Fig. 9.3 Threshold and the
evaluated residual signal:
Δ=−100, fS1 =−0.25 V,
occurred at t = 25 s

9.5.2 Computation of Jth,RMS,2 for the Systems with the Polytopic
Uncertainty

Now, we consider system (9.21)–(9.22) with the polytopic uncertainty. The follow-
ing two theorems follow directly from Lemma 8.2 and its “discrete-time version”.

Theorem 9.3 Given system (9.21)–(9.22) with the polytopic uncertainty and γ > 0,
and suppose that xr(0)= 0, then∥∥r(t)∥∥2 < γ

∥∥dr(t)∥∥2 (9.39)

if there exists P > 0 so that ∀i = 1, . . . , l,⎡
⎣ (Ar +Ar,i)

T P + P(Ar +Ar,i) P (Er,d +Er,i) (Cr +Cr,i)T
(Er,d +Er,i)T P −γ I (Fr,d + Fr,i)T

Cr +Cr,i Fr,d + Fr,i −γ I

⎤
⎦< 0.

(9.40)

Theorem 9.4 Given system

xr(k + 1) = (Ar +ΔAr)xr(k)+ (Ed,r +ΔEr)dr(k)
r(k) = (Cr +ΔCr)xr(k)+ (Fd,r +ΔFr)dr(k)

with the polytopic uncertainty, where all system matrices are identical with the ones
used in (9.21)–(9.22), and γ > 0, and suppose that xr(k)= 0, then∥∥r(k)∥∥2 < γ

∥∥dr(k)∥∥2 (9.41)

if there exists a P > 0 so that ∀i = 1, . . . , l,
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⎡
⎢⎢⎣

−P P(Ar +Ar,i) P (Er,d +Er,i) 0
(Ar +Ar,i)T P −P 0 (Cr +Cr,i)T
(Er,d +Er,i)T P 0 −γ I (Fr,d +Fr,i)T

0 Cr +Cr,i Fr,d +Fr,i −γ I

⎤
⎥⎥⎦< 0. (9.42)

Based on Theorems 9.3 and 9.4, we have the following algorithm.

Algorithm 9.2 (Computation of Jth,RMS,2 for the systems with the polytopic uncer-
tainty)

S1: Solve optimization problem

minγ subject to (9.40) or (9.42)

for P > 0 and set γ ∗ = arg(minγ )
S2: Set

Jth,RMS,2 = γ ∗(δd,2 + δu,2)√
T

or Jth,RMS,2 = γ ∗(δd,2 + δu,2)√
N

.

Example 9.2 We continue our study in Example 8.2, in which an FDF is designed
for CSTH with polytopic model uncertainty. Our objective is now to compute the
corresponding Jth,RMS,2 via Algorithm 9.2. We assume that δd,2 is bounded by 2
and the evaluation window is 5 s. The computation of S1 gives

γ ∗ = 40.1872.

Following it, we have

Jth,RMS,2 = 40.1872(2+ δu,2)√
5

.

In our simulation, δu,2 is on-line estimated (see Sect. 9.8). In Fig. 9.4, both the RMS
value of the residual signal and the corresponding threshold are shown, where a fault
in TT sensor occurred at t = 25 s.

Fig. 9.4 Residual response
and threshold
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9.6 Computation of Jth,peak,peak

9.6.1 Computation of Jth,peak,peak for the Systems
with the Norm-Bounded Uncertainty

We start with the (sufficient) condition for
∥∥r(t)∥∥peak < γ

∥∥dr(t)∥∥peak

under the assumption that f = 0, xr(0)= 0 and a given γ > 0.

Theorem 9.5 Given system (9.21)–(9.22) with the norm-bounded uncertainty and
γ > 0, suppose that xr(0)= 0, ‖dr(t)‖peak ≤ 1, ΔT (t)Δ(t)≤ I . Then

∥∥r(t)∥∥peak < γ

if there exist λ > 0, μ> 0, ε1 > 0, ε2 > 0, P > 0 so that
⎡
⎢⎣
PAr +ATr P + λP + ε1�GT �G PEd,r + ε1�GT �H P �E

ETd,rP + ε1 �HT �G −μI + ε1 �HT �H 0
�ET P 0 −ε1I

⎤
⎥⎦ < 0 (9.43)

⎡
⎢⎢⎢⎣

γ I Cr Fd,r γ 1/2DpF

CTr λP − ε2�GT �G −ε2�GT �H 0

FTd,r −ε2 �HT �G (γ −μ)I − ε2 �HT �H 0

γ 1/2(DpF)
T 0 0 ε2I

⎤
⎥⎥⎥⎦ ≥ 0 (9.44)

where �E, �G, �H are given in (9.35).

The proof of this theorem can be achieved along with the lines in the proof of
Lemma 9.2 provided by Scherer et al., together with the application of Lemma 8.1,
see also the proof of the next theorem.

Theorem 9.6 Given system

xr(k + 1) = (Ar +ΔAr)xr(k)+ (Er,d +ΔEr)dr(k)
r(k) = (Cr +ΔCr)xr(k)+ (Fr,d +ΔFr)dr(k)

with the norm-bounded uncertainty, where all system matrices are identical with the
ones used in (9.21)–(9.22), and γ > 0, and suppose that

xr(0)= 0, ΔT (k)Δ(k)≤ I, dTr (k)dr(k)≤ 1

then ∥∥r(k)∥∥peak < γ
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if there exist λ > 0, μ> 0, ε1 > 0, ε2 > 0, P > 0 so that

⎡
⎢⎢⎢⎣

P PAr PEr,d P �E
ATr P (1− λ)P − ε1�GT �G −ε1�GT �H 0

ETr,dP −ε1 �HT �G μI − ε1 �HT �H 0
�ET P 0 0 ε1I

⎤
⎥⎥⎥⎦ > 0 (9.45)

⎡
⎢⎢⎢⎣

γ I Cr Fr,d γ 1/2DpF

CTr λP − ε2�GT �G −ε2�GT �H 0

FTr,d −ε2 �HT �G (γ −μ)I − ε2 �HT �H 0

γ 1/2(DpF)
T 0 0 ε2I

⎤
⎥⎥⎥⎦ ≥ 0 (9.46)

where �E, �G, �H are given in (9.35).

Proof Let

V
(
xr(k)

)= xTr (k)Pxr(k)
for some P > 0 and assume that

V
(
xr(k)

)
<
μ

λ
(9.47)

for 0< λ< 1, μ> 0. Note that V (x(k)) satisfying

V
(
xr(k + 1)

)+ (λ− 1)V
(
xr(k)

)
<μ, V

(
x(0)
)= 0 (9.48)

is bounded by the solution of difference equation

V
(
xr(k + 1)

)= (1− λ)V (xr(k))+μ
that is,

V
(
xr(k)

)
<
μ

λ
.

On the other hand, matrix inequality

[
(Ar +ΔAr)T
(Ed,r +ΔEr)T

]
P
[
(Ar +ΔAr) (Ed,r +ΔEr)

]

+ (1− λ)
[
P 0
0 0

]
<μ

[
0 0
0 I

]
(9.49)

ensures that ∀dT (k)d(k)

V
(
xr(k + 1)

)+ (λ− 1)V
(
xr(k)

)
<μdT (k)d(k) =⇒ V

(
xr(k)

)
<
μ

λ
.



304 9 Norm-Based Residual Evaluation and Threshold Computation

Thus, (9.47) holds if (9.49) is satisfied. Note that ∀dr ,Δ(k), bounded by ‖dr‖peak ≤ 1
and ΔT (k)Δ(k)≤ I , respectively,

rT (k)r(k)≤ γ (γ dTr (k)dr (k)+ λV
(
xr(k)−μdTr (k)dr(k)

)
=⇒ rT (k)r(k) < γ 2 (9.50)

if (9.47) holds. Moreover, (9.50) can be expressed in terms of matrix inequality

γ−1
[
(Cr +ΔCr)T
(Fd,r +ΔFr)T

][
Cr +ΔCr Fd,r +ΔFr

]≤
[
λP 0
0 (γ −μ)I

]
. (9.51)

According to Lemma 8.1, we know that for η1 > 0, η2 > 0
[
ATr

ETd,r

](
P−1 − η1�E�ET

)−1 [
Ar Ed,r

]+ 1

η1

[ �GT
�HT

][�G �H ]

<

[
(1− λ)P 0

0 μI

]

γ−1

[
CTr

FTd,r

](
I − η2DpF(DpF)

T
)−1 [

Cr Fd,r
]+ 1

η2

[ �GT
�HT

][�G �H ]

≤
[
λP 0
0 (γ −μ)I

]

are sufficient for (9.49) and (9.51), respectively. Applying the Schur complement,
we have⎡
⎢⎢⎣
P−1 − η1�E�ET Ar Ed,r

ATr (1− λ)P − 1
η1
�GT �G − 1

η1
�GT �H

ETd,r − 1
η1
�HT �G μI − 1

η1
�HT �H

⎤
⎥⎥⎦> 0

⇐⇒

⎡
⎢⎢⎢⎢⎣

P PAr PEd,r P �E
ATr P (1− λ)P − 1

η1
�GT �G − 1

η1
�GT �H 0

ETd,rP − 1
η1
�HT �G μI − 1

η1
�HT �H 0

�ET P 0 0 1
η1
I

⎤
⎥⎥⎥⎥⎦> 0

⎡
⎢⎢⎢⎢⎣

γ I Cr Fd,r γ 1/2DpF

CTr λP − 1
η2
�GT �G − 1

η2
�GT �H 0

FTd,r − 1
η2
�HT �G (γ −μ)I − 1

η2
�HT �H 0

γ 1/2(DpF)
T 0 0 1

η2
I

⎤
⎥⎥⎥⎥⎦≥ 0.

The theorem is finally proven by setting ε1 = 1
η1

, ε2 = 1
η2

. �
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Algorithm 9.3 (Computation of Jth,peak,peak for the systems with the norm-bounded
uncertainty)

S0: Substitute �G, �H in (9.35) by �G/√δΔ, �H/√δΔ
S1: Solve optimization problem

minγ subject to (9.43)–(9.44) or (9.45)–(9.46)

forλ > 0, μ> 0, ε1 > 0, ε2 > 0, P > 0 and set γ ∗ =minγ
S2: Set

Jth,peak,peak = γ ∗(δd,∞ + δu,∞). (9.52)

9.6.2 Computation of Jth,peak,peak for the Systems
with the Polytopic Uncertainty

Consider system (9.21)–(9.22) with the polytopic uncertainty. Following Lemma 9.4
and its “discrete-time version”, we have the following theorem.

Theorem 9.7 Given system (9.21)–(9.22) with the polytopic uncertainty and γ > 0,
and suppose that xr(0)= 0, then

∥∥r(t)∥∥peak < γ
∥∥dr(t)∥∥peak

if there exist λ > 0, μ> 0 and P > 0 so that ∀i = 1, . . . , l,

[
(Ar +Ar,i)T P + P(Ar +Ar,i)+ λP P (Er,d +Er,i)

(Er,d +Er,i)T P −μI
]
< 0 (9.53)

⎡
⎣ λP 0 (Cr +Cr,i)T

0 (γ −μ)I (Fr,d + Fr,i)T
Cr +Cr,i Fr,d + Fr,i γ I

⎤
⎦≥ 0. (9.54)

Theorem 9.8 Given system

xr(k + 1) = (Ar +ΔAr)xr(k)+ (Er,d +ΔEr)dr(k)
r(k) = (Cr +ΔCr)xr(k)+ (Fr,d +ΔFr)dr(k)

with the polytopic uncertainty, where all system matrices are identical with the ones
used in (9.21)–(9.22), and γ > 0, and suppose that xr(k)= 0, then

∥∥r(k)∥∥peak < γ
∥∥dr(k)∥∥peak
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if there exist λ > 0, μ> 0 and P > 0 so that ∀i = 1, . . . , l,
⎡
⎣ P P(Ar +Ar,i) P (Er,d +Er,i)
(Ar +Ar,i)T P (1− λ)P 0
(Er,d +Er,i)T P 0 μI

⎤
⎦> 0 (9.55)

⎡
⎣ λP 0 (Cr +Cr,i)T

0 (γ −μ)I (Fr,d + Fr,i)T
Cr +Cr,i Fr,d + Fr,i γ I

⎤
⎦≥ 0. (9.56)

Algorithm 9.4 (Computation of Jth,peak,peak for the systems with the polytopic un-
certainty)

S1: Solve optimization problem

minγ subject to (9.53)–(9.54) or (9.55)–(9.56)

for λ > 0, μ> 0 and P > 0 and set γ ∗ =minγ
S2: Set

Jth,peak,peak = γ ∗(δd,∞ + δu,∞).

9.7 Computation of Jth,peak,2

9.7.1 Computation of Jth,peak,2 for the Systems
with the Norm-Bounded Uncertainty

Consider system (9.21)–(9.22) with the norm-bounded uncertainty. It is evident that
dr(t) acts directly on r(t) via the crossing matrix Fr,d+ΔFr . The maximum change
in r(t) caused by dr(t) via Fr,d +ΔFr is given by γ ∗2 (δd,∞ + δu,∞) with

sup
σ̄ (Δ(t))≤δΔ

(
Fr,d +DpFΔ(t)�H

)T (
Fr,d +DpFΔ(t)�H

)≤ γ ∗2 I

where �H is given in (9.35). Using Lemma 8.1, γ ∗2 can be determined by solving

γ ∗2 = min
η3>0

γ2 subject to (9.57)

⎡
⎢⎣

I Fr,d DpF

FTr,d γ2I − η3 �HT �H 0

FTDT
p 0 η3I

⎤
⎥⎦≥ 0.

Write r into two parts,

r = r1 + r2, r1 = (Cr +ΔCr)xr , r2 = (Fd,r +ΔFr)dr .
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Using Lemmas 9.1 and 8.1, we are able to compute the boundedness of the influence
of dr on r1, as stated in the following theorem.

Theorem 9.9 Given system

ẋr = (Ar +ΔAr)xr + (Ed,r +ΔEr)dr
r1 = (Cr +ΔCr)xr

with the norm-bounded uncertainty, where all system matrices are identical with the
ones used in (9.21)–(9.22), and γ1 > 0, and suppose that xr(0)= 0,ΔT (t)Δ(t)≤ I ,
then ∥∥r1(t)∥∥peak < γ1

∥∥dr(t)∥∥2

if there exist η1 > 0, η2 > 0, P > 0 so that
⎡
⎢⎣
ATr P + PAr + η1�GT �G PEr,d + η1�GT �H P �E
ETr,dP + η1 �HT �G η1 �HT �H − γ 2

1 I 0
�ET P 0 −η1I

⎤
⎥⎦< 0 (9.58)

⎡
⎢⎣

−I Cr DpF

CTr −P + η2�GT �G 0

FTDT
p 0 −η2I

⎤
⎥⎦≤ 0 (9.59)

where �E, �G, �H are given in (9.35).

The proof of this theorem is similar to the one of the next theorem.

Theorem 9.10 Given system

xr(k + 1) = (Ar +ΔAr)xr(k)+ (Er,d +ΔEr)dr(k)
r1(k) = (Cr +ΔCr)xr(k)

with the norm-bounded uncertainty, where all system matrices are identical with the
ones used in (9.21)–(9.22), and γ1 > 0, and suppose that

xr(0)= 0, ΔT (k)Δ(k)≤ I
then ∥∥r1(k)∥∥peak < γ1

∥∥dr(k)∥∥2

if there exist η1 > 0, η2 > 0, P > 0 so that
⎡
⎢⎢⎢⎣
−P PAr PEr,d P �E
ATr P η1�GT �G− P η1�GT �H 0

ETr,dP η1 �HT �G η1 �HT �H − γ 2
1 I 0

�ET P 0 0 −η1I

⎤
⎥⎥⎥⎦< 0 (9.60)
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⎡
⎣ −I Cr DpF

CTr −P + η2�GT �G 0

FTDT
p 0 −η2I

⎤
⎦≤ 0 (9.61)

where �E, �G, �H are given in (9.35).

Proof Let

V
(
xr(k)

)= xTr (k)Pxr(k)
for some P > 0. Considering that

V
(
xr(k + 1)

)− V (xr(k))< γ 2
1

∥∥dr(k)∥∥2 (9.62)

yields

V
(
xr(k)

)
< γ 2

1

k−1∑
j=0

∥∥dr(j)∥∥2

we have

r1(k) < γ
2
1

k−1∑
j=0

∥∥dr(j)∥∥2

provided that

(Cr +ΔCr)T (Cr +ΔCr)≤ P. (9.63)

We now express (9.62) in terms of matrix inequality:
[
(Ar +ΔAr)T
(Er,d +ΔEr)T

]
P
[
Ar +ΔAr Er,d +ΔEr

]−
[
P 0
0 γ 2

1 I

]
< 0. (9.64)

Using Lemma 8.1 leads to a sufficient condition for (9.64) as well as (9.63), respec-
tively

⎡
⎢⎢⎢⎣
−P PAr PEr,d P �E
ATr P η1�GT �G− P η1�GT �H 0

ETr,dP η1 �HT �G η1 �HT �H − γ 2
1 I 0

�ET P 0 0 −η1I

⎤
⎥⎥⎥⎦< 0

⎡
⎣ −I Cr DpF

CTr −P + η2�GT �G 0

FTDT
p 0 −η2I

⎤
⎦≤ 0

for some η1 > 0, η2 > 0. �

Algorithm 9.5 (Computation of Jth,peak,2 for the systems with the norm-bounded
uncertainty)
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S0: Substitute �G, �H in (9.35) by �G/√δΔ, �H/√δΔ
S1: Solve optimization problem (9.57) for γ ∗2
S2: Solve optimization problem

minγ1 subject to (9.58)–(9.59) or (9.60)–(9.61)

for η1 > 0, η2 > 0, P > 0 and set γ ∗1 =minγ1

S3: Set

Jth,peak,2 = γ ∗1 (δd,2 + δu,2)+ γ ∗2 (δd,∞ + δu,∞). (9.65)

9.7.2 Computation of Jth,peak,2 for the Systems with the Polytopic
Uncertainty

We now study the computation of Jth,peak,2 for system (9.21)–(9.22) with the poly-
topic uncertainty.

In order to evaluate the influence of dr(t) on r(t) via the crossing matrix Fr,d +
ΔFr , we propose to solve the following optimization problem: finding γ ∗2 such that
∀i = 1, . . . , l,

(Fr,d + Fr,i)T (Fr,d + Fr,i)≤ γ ∗2 I. (9.66)

For the evaluation of the influence of L2 norm of dr on r1 we have the following
two theorems which are a straightforward extension of Lemma 9.3 and its “discrete-
time version”.

Theorem 9.11 Given system

ẋr = (Ar +ΔAr)xr + (Ed,r +ΔEr)dr
r1 = (Cr +ΔCr)xr

with the polytopic uncertainty, where all system matrices are identical with the ones
used in (9.21)–(9.22), and γ1 > 0, and suppose that xr(0)= 0, then

∥∥r1(t)∥∥peak < γ1
∥∥dr(t)∥∥2

if there exist P > 0 so that ∀i = 1, . . . , l,

[
(Ar +Ar,i)T P + P(Ar +Ar,i) P (Er,d +Er,i)

(Er,d +Er,i)T P −I
]
< 0 (9.67)

[
P (Cr +Cr,i)T

Cr +Cr,i γ I

]
≥ 0. (9.68)
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Theorem 9.12 Given system

xr(k + 1) = (Ar +ΔAr)xr(k)+ (Er,d +ΔEr)dr(k)
r1(k) = (Cr +ΔCr)xr(k)

with the polytopic uncertainty, where all system matrices are identical with the ones
used in (9.21)–(9.22), and γ1 > 0, and suppose that xr(k)= 0, then

∥∥r1(k)∥∥peak < γ1
∥∥dr(k)∥∥2

if there exists P > 0 so that ∀i = 1, . . . , l,

⎡
⎣ −P P(Ar +Ar,i) P (Er,d +Er,i)
(Ar +Ar,i)T P −P 0
(Er,d +Er,i)T P 0 −γ 2

1 I

⎤
⎦< 0 (9.69)

[ −I Cr +Cr,i
(Cr +Cr,i)T −P

]
≤ 0. (9.70)

Algorithm 9.6 (Computation of Jth,peak,2 for the systems with the polytopic uncer-
tainty)

S1: Solve optimization problem (9.66) γ ∗2
S2: Solve optimization problem

minγ1 subject to (9.67)–(9.68) or (9.69)–(9.70)

for P > 0 and set γ ∗1 =minγ1
S3: Set

Jth,peak,2 = γ ∗1 (δd,2 + δu,2)+ γ ∗2 (δd,∞ + δu,∞).

9.8 Threshold Generator

The thresholds derived in the last sections have it in common that they are constant
and a function of a bound on the input vector u. Since u is generally on-line available
during process operation, substituting the bound on u by an on-line computation
would considerably reduce the threshold size and thus increase the fault detection
sensitivity. Those thresholds which are driven by the system input signals, as shown
in Fig. 9.1, are known as adaptive thresholds or threshold selectors. Analog to the
concept of residual evaluator, we call them threshold generator.

While the bound on the peak of δu,∞ can be easily replace by the instantaneous
value ∥∥u(t)∥∥=√uT (t)u(t) or

∥∥u(k)∥∥=√uT (k)u(k)
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δu,2 will be approximated by

∥∥u(t)∥∥2,T =
(∫ t+T

t

∥∥r(τ )∥∥2
dτ

)1/2

or
∥∥u(k)∥∥2,N =

(
N∑
j=1

∥∥r(k + j)∥∥2

)1/2

in an iterative way or with a weighting, e.g.

∥∥u(k)∥∥2
2,j+1 =

∥∥u(k)∥∥2
2,j +

∥∥r(k + j + 1)
∥∥2 or

∥∥u(k)∥∥2
2,j+1 = α

∥∥u(k)∥∥2
2,j +

∥∥r(k + j + 1)
∥∥2

with 0< α ≤ 1.
The three kinds of constant thresholds introduced in the last sections, Jth,RMS,2,

Jth,peak,peak and Jth,peak,2 given by (9.38), (9.52) and (9.65) respectively, will be
replaced by the threshold generators

J
g

th,RMS,2(t)=
γ ∗δd,2√

T
+ γ ∗∥∥u(t)∥∥RMS or

J
g

th,RMS,2(k)=
γ ∗δd,2√
N

+ γ ∗∥∥u(k)∥∥RMS

(9.71)

J
g

th,peak,peak(t)= γ ∗δd,∞ + γ ∗
∥∥u(t)∥∥ or

J
g

th,peak,peak(k)= γ ∗δd,∞ + γ ∗
∥∥u(k)∥∥ (9.72)

J
g

th,peak,2(t)= γ ∗1 δd,2 + γ ∗2 δd,∞ + γ ∗1
∥∥u(t)∥∥2,T + γ ∗2

∥∥u(t)∥∥ or

J
g

th,peak,2(k)= γ ∗1 δd,2 + γ ∗2 δd,∞ + γ ∗1
∥∥u(k)∥∥2,N + γ ∗2

∥∥u(k)∥∥ (9.73)

where the superscript g stands for generator.
It is interesting to notice that the threshold generators consist of two parts: a

constant part and a time varying part. This time varying part depends on the instan-
taneous energy change in the input signals. In other words, under different operating
conditions, expressed in terms of the input signals, the threshold will be different.
In this context, the threshold generator is an adaptive threshold. Since

J
g

th,RMS,2 ≤ Jth,RMS,2, J
g

th,peak,peak ≤ Jth,peak,peak, J
g

th,peak,2 ≤ Jth,peak,2

it is clear that substituting the thresholds by the corresponding threshold generators
will enhance the fault detection sensitivity.

Example 9.3 In this example, we replace the constant threshold computed in Ex-
ample 9.1 by a threshold generator and repeat the simulation. It follows from (9.71)
that

J
g

th,RMS,2(t)= 0.15+ 0.27
∥∥u(t)∥∥RMS
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Fig. 9.5 Threshold generator
and the evaluated residual
signal: Δ=−100,
fA = 0.006 V, occurred at
t = 25 s

Fig. 9.6 Threshold generator
and the evaluated residual
signal: Δ=−100,
fS1 =−0.125 V, occurred at
t = 25 s

where ‖u(t)‖RMS will be on-line computed. Figures 9.5 and 9.6 show the threshold
generator and the responses of the evaluated residual signal to an actuator fault and
a sensor fault.

Comparing Figs. 9.5 and 9.6 with Figs. 9.2 and 9.3, we clearly see that the thresh-
old generator scheme delivers higher fault detectability, also in case of a large size
input signal.

9.9 Notes and References

Although the norm-based residual evaluation was initiated by Emami-naeini et al.
[58] two decades ago, only few research results on this topic have been published,
see for instance [48, 64, 93, 103, 148]. On the other hand, in practice limit mon-
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itoring and trend analysis schemes are very popular, where the determination of
thresholds plays a central role. It is the state of the art in practice that thresholds are
generally determined based on experiences or by means of real tests and simulation.

The results and algorithms presented in this chapter are a considerable extension
of the results reported in [42]. They have been achieved in the norm-based frame-
work and therefore may lead to a conservative threshold setting. Even though, they
provide the system designer with a reliable and reasonable estimate of the value
range of the thresholds. It can save a great number of real tests and therefore are
valuable both from the technical and economic viewpoint.

It is worth to mention that in this chapter only issues of residual evaluation in
the time domain have been addressed. Similar study can also be done in the fre-
quency domain. In that case, the residual signals will be evaluated in the frequency
domain after, for instance, an FFT (fast Fourier transform). Frequency domain eval-
uation of residual signals is standard in the field of oscillation detection and con-
ditional monitoring [28]. Given a frequency domain residual evaluation function,
the threshold determination and computation can be realized for example, using the
LMI method for the system norm computation in a finite frequency range, which
has been presented in Sect. 7.8.5. Also, the methods given in [176, 177] provide us
with a powerful tool to deal with the threshold computation.

The major tools used for our study in this chapter is the robust control theory
and LMI technique. We refer the reader to [16, 154] as well as [198] for the needed
knowledge and computation skills in this area.

The proofs of Lemmas 9.1, 9.2 on the generalized H2 norm and peak-to-peak
gain can be found in [154] and as well as in [16]. The extension of these results to
the systems with polytopic model uncertainties, as given in Lemmas 9.3 and 9.4, is
schematically described in [16].

A major conclusion of this chapter is that for different application purposes dif-
ferent residual evaluation functions and correspondingly different induced norms
should be used. This conclusion also reveals the deficit in the current research. The
efforts for achieving an optimization without considering the evaluation function
and the associated threshold computation can result in poor FDI performance. Re-
search on the optimization schemes under performance indices different from the
H∞ or H2 norm is urgently demanded in order to fill in the gap between the theo-
retical study and practical applications.



Chapter 10
Statistical Methods Based Residual Evaluation
and Threshold Setting

10.1 Introduction

The objective of this chapter is to present some basic statistical methods which are
typically applied for residual evaluation, threshold setting and decision making.

In working with this chapter, the reader will observe that the way of problem
handling and the mathematical tools used for the problem solutions are significantly
different from those presented in the previous chapters. We shall first introduce some
elementary statistical testing methods and the basic ideas behind them. Although no
dynamic process is taken into account, those methods and ideas build the basis for
the study in the subsequent sections. A further section is devoted to the criteria
for the selection of thresholds. In the last section, we shall briefly address residual
evaluation issues for stochastic dynamic processes, as sketched in Fig. 10.1.

10.2 Elementary Statistical Methods

In this section, a number of elementary statistical methods are introduced.

10.2.1 Basic Hypothesis Test

The problem under consideration is formulated as follows: Given a model

y = θ + ε ∈R

with ε ∼ N (0, σ 2) (i.e., normally distributed with zero mean and variance σ 2),
θ = 0 or |θ |> 0, a number of samples of y, y1, . . . , yN , and a constant α > 0 (the so-
called significance level), find a threshold Jth such that

prob
{|ȳ|> Jth | θ = 0

}
< α, ȳ = 1

N

N∑
i=1

yi (10.1)

S.X. Ding, Model-Based Fault Diagnosis Techniques, Advances in Industrial Control,
DOI 10.1007/978-1-4471-4799-2_10, © Springer-Verlag London 2013
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Fig. 10.1 Schematic description of statistic testing based residual evaluation and decision making

where prob{|ȳ|> Jth | θ = 0} denotes the probability that |ȳ|> Jth under condition
θ = 0. It is well known that the probability prob{|ȳ|> Jth | θ = 0} is the false alarm
rate if the following decision rule is adopted:

|ȳ| ≤ Jth : θ = 0 (H0, null hypothesis) (10.2)

|ȳ| > Jth : θ �= 0 (H1, alternative hypothesis). (10.3)

From the viewpoint of fault detection, the above mathematical problem is the answer
to the fault detection problem: Given system model, how can we select the threshold
towards a reliable detection of the change (fault) in θ based on the samples of the
output y? In the problem formulation and the way of approaching the solution, we
can observe some key steps:

• the objective is formulated in the statistical context: the probability of a false deci-
sion, that is, prob{|ȳ|> Jth | θ = 0}, should be smaller than the given significance
level α

• an estimation of the mean value of y based on the samples, ȳ = 1
N

∑N
i=1 yi , is

included in the testing process
• the decision is made based on two hypotheses: H0, the null hypothesis, means no

change in θ , while H1, the alternative hypothesis, means a change of θ .

Throughout this chapter, these three key steps to the problem solutions will play an
important role.

The solutions of the above-formulated problem are summarized into two algo-
rithms, depending on whether σ is known. For details, the interested reader is re-
ferred, for instance, to the textbook by Lapin.
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Algorithm 10.1 (Computing Jth if σ is known)

S1: Determine the critical normal deviate zα/2 using the table of standard normal
distribution

prob{z > zα/2} = α/2 (10.4)

S2: Set Jth

Jth = zα/2 σ√
N

(10.5)

since ȳ is normally distributed with

E(ȳ)= 0, var(ȳ)= σ 2

N
. (10.6)

Algorithm 10.2 (Computing Jth if σ is unknown)

S1: Determine tα/2 using the table of t distribution with degree of freedom equal
N − 1, i.e.

prob{t > tα/2} = α/2 (10.7)

S2: Set Jth

Jth = tα/2 s√
N
, s2 =

∑N
i=1(yi − ȳ)2
N − 1

(10.8)

where

t = ȳ

s/
√
N

satisfies Student distribution with the degree of freedom equal to N − 1.

Remark 10.1 The idea behind the above algorithm is an estimation of the variance σ
by s.

It is clear that for the purpose of change detection, following on-line computation
(evaluation of the samples of y) is needed: In case that σ is known it is

ȳ = 1

N

N∑
i=1

yi

otherwise ȳ and

s =
√∑N

i=1(yi − ȳ)2
N − 1

.
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10.2.2 Likelihood Ratio and Generalized Likelihood Ratio

Likelihood ratio (LR) methods are very popular in the framework of change detec-
tion. In this subsection, we briefly introduce two basic versions of these methods.
We refer the interested reader to the excellent monograph by Basseville and Niki-
forov for details on the topics introduced in this and the next subsections.

Given the system model

y = θ + ε, ε ∼N
(
0, σ 2), θ =

{
θ0 = 0, H0 (no change)
θ1, H1 (change but constant)

the log likelihood ratio for data yi is defined by

s(yi)= ln
pθ1(yi)

pθ0(yi)
= 1

2σ 2

[
(yi − θ0)

2 − (yi − θ1)
2], pθ (yi)= 1√

2πσ
e
− (yi−θ)2

2σ2

(10.9)
where pθ(yi) is the probability density of y for y = yi . The basic idea of the LR
methods can be clearly seen from the decision rule

s(yi)=
{
<0, H0 (θ = 0) is accepted
>0, H1 (θ = θ1) is accepted.

Note that s(yi) > 0 means pθ1(yi) > pθ0(yi), i.e. given yi the probability of θ = θ1

is higher than the one of θ = θ0. Thus, it is reasonable to make a decision in favor
of H1.

In case that N samples of y, yi , i = 1, . . . ,N , are available, the (log) LR is
defined by

SN1 =
N∑
i=1

si =
N∑
i=1

ln
pθ1(yi)

pθ0(yi)
= 1

2σ 2

N∑
i=1

[
(yi − θ0)

2 − (yi − θ1)
2]

= θ1 − θ0

σ 2

N∑
i=1

(
yi − θ1 + θ0

2

)
. (10.10)

We distinguish two different cases: θ1 is known and θ1 is unknown.

Detection when θ1 (>0) Is Known and θ0 = 0 Note that

SN1 > 0 ⇐⇒
N∑
i=1

(
yi − θ1 + θ0

2

)
=

N∑
i=1

(
yi − θ1

2

)
> 0

⇐⇒ 1

N

N∑
i=1

yi >
θ1

2
(10.11)
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and moreover

1

N

N∑
i=1

yi ∼N
(

0,
σ 2

N

)
.

Thus, given allowed false alarm rate α, the following algorithm can be used to com-
pute the threshold.

Algorithm 10.3 (Computing Jth if θ1 is known)

S1: Determine zα ≥ θ1
2 using the table of standard normal distribution

prob{z > zα} = α

S2: Set Jth

Jth = zα σ√
N
. (10.12)

It is interesting to see the interpretation of condition (10.11). Recall that
1
N

∑N
i=1 yi gives in fact an estimate of the mean value of y based on the avail-

able samples. (10.11) tells us: if the estimate of the mean value is larger than θ1
2 ,

then a change is detected. This is exactly what we would instinctively do in such a
situation.

Detection when θ1 Is Unknown and θ0 = 0 In practice, it is the general case
that θ1 is unknown. For the purpose of detecting change in θ with unknown θ1, the
so-called generalized likelihood ratio (GLR) method was developed, where θ1 is
replaced by its maximum likelihood estimate. The maximum likelihood estimate of
θ1 is an estimate achieved under the cost function that the LR is maximized. Thus,
the maximum LR as well as the maximum likelihood estimate of θ1 are the solution
of the following optimization problem

max
θ1
SN1 = max

θ1

1

2σ 2

N∑
i=1

[
y2
i − (yi − θ1)

2]

= max
θ1

1

2σ 2

[
1

N

(
N∑
i=1

yi

)2

−N(θ1 − ȳ)2
]

(10.13)

=⇒ θ̂1 = arg max
θ1
SN1 = ȳ =

1

N

N∑
i=1

yi, max
θ1
SN1 =

1

2σ 2N

(
N∑
i=1

yi

)2

⇐⇒ max
θ1
SN1 =

1

2σ 2/N
(ȳ)2. (10.14)
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It is of practical interest to notice that

• the maximum likelihood estimate of θ1 is the estimate of the mean value, ȳ =
1
N

∑N
i=1 yi

• the maximum LR, 1
2σ 2/N

(ȳ)2, is always larger than zero and thus
• a suitable threshold should be established to avoid high false alarm rate.

Note that the distribution of 1
σ 2/N

(ȳ)2 is χ2(1). Therefore, given a significant
level α, the following algorithm can be used to compute the threshold.

Algorithm 10.4 (Computing Jth if θ1 is unknown)

S1: Determine χα using the table of χ2-distribution with 1 degree of freedom

prob{χ > χα} = α

S2: Set Jth

Jth = χα/2. (10.15)

For the both cases, the decision rule is

SN1 =
{
<Jth, H0 (θ = 0) is accepted
>Jth, H1 (θ �= 0) is accepted

which ensures that false alarm rate is not larger than α.
It has been theoretically proven that the LR based change detection leads to a

minimization of the missed detection rate for a given false alarm rate.
For the on-line implementation of the above-described LR methods, computation

of SN1 is needed, which is

ȳ = 1

N

N∑
i=1

yi

in case that θ1 is known and otherwise

1

2σ 2N

(
N∑
i=1

yi

)2

.

10.2.3 Vector-Valued GLR

In this subsection, the vector-valued GLR test is presented. Given the system
model
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y = θ + ε, ε ∼N (0,Σ), θ =
{
θ0, no change
θ1, change

where y, θ, ε ∈ Rn and the probability density of Gaussian vector y is defined
by

pθ,Σ(y)= 1√
(2π)n det(Σ)

e−
1
2 (y−θ)T Σ−1(y−θ). (10.16)

Hence, the LR for given vector y satisfies

s(y)= ln
pθ1(y)

pθ0(y)
= 1

2

[
(y − θ0)

T Σ−1(y − θ0)− (y − θ1)
T Σ−1(y − θ1)

]
.

On the assumption that θ0 = 0 and N (vector-valued) samples of y, yk , k =
1, . . . ,N , are available, the maximum likelihood estimate of θ1 and the maximum
LR are given by

max
θ1
SN1 = max

θ1

1

2

[
N∑
k=1

yTk Σ
−1yk −

N∑
k=1

(yk − θ1)
T Σ−1(yk − θ1)

]

= max
θ1

1

2

[
N∑
k=1

yTk Σ
−1yk −

N∑
k=1

yTk Σ
−1yk

−N
(
θT1 Σ

−1θ1 − 2θT1 Σ
−1 1

N

N∑
i=1

yk

)]

= max
θ1

1

2

[
NȳT Σ−1ȳ −N(ȳ − θ1)

T Σ−1(ȳ − θ1)
]
, ȳ = 1

N

N∑
i=1

yk

=⇒ θ̂1 = arg max
θ1
SN1 = ȳ =⇒ max

θ1
SN1 =

N

2
ȳT Σ−1ȳ. (10.17)

Once again, we can see that also in the vector-valued case, the maximum like-
lihood estimate of θ1 is ȳ = 1

N

∑N
i=1 yk . Since ȳ is an n-dimensional vector

with

ȳ ∼N (0,Σ/N).

NȳT Σ−1ȳ is distributed as a χ2(n). As a result, the following algorithm can be
used for computing the threshold if the decision rule is defined as

SN1 =
{
<Jth, H0 (θ = 0) is accepted
>Jth, H1 (θ �= 0) is accepted.
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Algorithm 10.5 (Computing Jth if vector θ1 is unknown)

S1: Determine χα using the table of χ2-distribution with n degrees of freedom

prob{χ > χα} = α
S2: Set Jth

Jth = χα/2. (10.18)

10.2.4 Detection of Change in Variance

Given the system model

y = θ + ε ∈R, ε ∼N
(
0, σ 2

0

)

a number of samples of y, y1, . . . , yN and a constant α > 0 (the significance level),
find a statistic and a threshold Jth such that the change in variance (assume that
σ 2 > σ 2

0 ) can be detected with a false alarm rate smaller than α. We present two
testing methods for our purpose.

Testing with the χ2 Statistic Given by Lapin The statistic

χN1 :=
(N − 1)s2

σ 2
0

, s2 =
∑N

i=1(yi − ȳ)2
N − 1

(10.19)

has the standard χ2 sampling distribution with the degree of freedom equal toN−1.
Thus, given α, the threshold is determined by (using the standard χ2 distribution
table)

Jth = χ2
α, prob

{
χ2 > χ2

α

}= α. (10.20)

The decision rule is

χN1 =
{
<Jth, H0 (σ

2 ≤ σ 2
0 ) is accepted

>Jth, H1 (σ
2 > σ 2

0 ) is accepted.

Testing Using GLR Given by Basseville and Nikiforov For this purpose, first
consider LR which is described by

SN1 =
N∑
i=1

si =
N∑
i=1

ln
pσ1(yi)

pσ0(yi)
=N ln

σ0

σ1
+ 1

2σ 2
0

N∑
i=1

y2
i −

1

2σ 2
1

N∑
i=1

y2
i .

Thus, solving the optimization problem



10.2 Elementary Statistical Methods 323

max
σ1

SN1 = max
σ1

(
N ln

σ0

σ1
+ 1

2σ 2
0

N∑
i=1

y2
i −

1

2σ 2
1

N∑
i=1

y2
i

)
(10.21)

=⇒ σ̂ 2
1 = arg max

σ1
SN1 =

1

N

N∑
i=1

y2
i

SN1 = lnσ0 − N

2

[
1+ ln

(
1

N

N∑
i=1

y2
i

)]
+ 1

2σ 2
0

N∑
i=1

y2
i

gives the GLR.

10.2.5 Aspects of On-Line Realization

The above-presented detection methods can be realized on-line in different ways.

On-Line Implementation with a Fixed Sample Size N In this case, the decision
rule, for instance for the GLR test, is defined by

S
(k+1)N
kN+1 =

{
<Jth, H0 (θ = 0) is accepted
>Jth, H1 (θ �= 0) is accepted

S
(k+1)N
kN+1 =

N∑
i=1

skN+i =
(k+1)N∑
i=kN+1

ln
pθ1(yi)

pθ0(yi)
.

The observation will be stopped after the first sample of size N for which the deci-
sion is made in favor of H1 (θ �= 0). Note that in this case the maximal (possible)
delay is N × Ts , where Ts is the sampling time.

On-Line Implementation in a Recursive Manner In practice, for the reason of
achieving a sufficiently large sample size and continuously computing the LR, GLR
is often realized in a recursive form. For this purpose, we define

Sk = 1

2k

(
k∑
i=1

yi

)T
Σ−1

(
k∑
i=1

yi

)
= 1

2k
ΣT
y,kΣ

−1Σy,k

Σy,k =
k∑
k=i

yi , k = 1, . . . ,

and write Sk+1 into
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Sk+1 = 1

2(k + 1)

(
k+1∑
i=1

yi

)T
Σ−1

(
k+1∑
i=1

yi

)

= 1

2

[
1

(k + 1)
ΣT
y,kΣ

−1Σy,k + 1

(k + 1)

(
2ΣT

y,kΣ
−1yk+1 + yTk+1Σ

−1yk+1
)]

= k

(k + 1)
Sk + 1

(k + 1)

(
Σy,k+1 −

1

2
yk+1

)T
Σ−1yk+1.

Based on it, the following recursive calculation is introduced:

Sk+1 = αSk + (1− α)
(
Σy,k+1 − 1

2
yk+1

)T
Σ−1yk+1, S0 = 0 (10.22)

Σy,k+1 = Σy,k + yk+1

where 0 < α < 1 and acts as a forgetting factor. In order to avoid Σy,k being too
large, ȳk := 1

k
Σy,k can be replaced by

ȳk+1 = αȳk + (1− α)yk+1, ȳ0 = 0.

As a result, (10.22) can then be written into

Sk+1 = αSk +
(
ȳk+1 − (1− α)

2
yk+1

)T
Σ−1yk+1 (10.23)

and, in case that 1− α is very small, furthermore

Sk+1 = αSk + ȳTk+1Σ
−1yk+1. (10.24)

Setting a Counter An effective way to make the decision making procedure to
be robust against strong noises is to set a counter. Let

I{Sk>Jth}

be an indicator that the GLR is larger than the threshold, i.e.

I{Sk>Jth} =
{

1, Sk > Jth
0, Sk < Jth.

Then the stopping rule is set to be

ta =min

{
k :

N∑
i=0

I{Sk−i>Jth} > η
}

where η is a threshold for the number of the crossings of threshold Jth.
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10.3 Criteria for Threshold Computation

In the last section, the threshold is determined in such a way that the admissible
false alarm rate will not be exceeded. In this section, we first study this criterion
from the theoretical viewpoint and then present a number of different criteria for the
threshold computation given by Mcdonough and Whalen.

10.3.1 The Neyman–Pearson Criterion

Let us introduce notations

Pf = prob(D1 |H0), Pm = prob(D0 |H1)

for the probability that decision for H1 is made (D1) in case of no change (H0) and
the probability that decision for H0 is made (D0) as the change is present (H1),
respectively, that is,

false alarm rate = Pf
missed detection rate = Pm.

The scheme adopted in the last section for the threshold computation can then be
formulated as: Given an admissible false alarm rate Pf,a , the threshold should be
selected such that

Pf = prob(D1 |H0)≤ Pf,a. (10.25)

It is also desired that the missed detection rate is minimized under the condition that
(10.25) is satisfied. It leads to the following optimization problem:

minPm =min prob(D0 |H1) subject to Pf = prob(D1 |H0)≤ Pf,a. (10.26)

Note that

Pm = prob(D0 |H1)= 1− prob(D1 |H1)

and Pd := prob(D1 | H1) means the detection rate, thus optimization problem
(10.26) can be equivalently reformulated as:

maxPd =max prob(D1 |H1) subject to Pf = prob(D1 |H0)≤ Pf,a. (10.27)

Optimization problem (10.27) is called Neyman–Pearson criterion. On the assump-
tions that

• the conditional densities

p0(y) := p(H0 | y), p1(y) := p(H1 | y)
are known

• there exist no unknown parameters in p0(y), p1(y)
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the so-called Neyman–Pearson lemma provides a solution to the optimization prob-
lem (10.27), which can be roughly stated as follows: Given p0(y) (�=0), p1(y)

and Pf,a

• if p1(y)/p0(y) < Jth, choose H0

• if p1(y)/p0(y) > Jth, choose H1

• Jth is determined by

prob
(
p1(y)/p0(y) > Jth

∣∣H0
)= Pf,a. (10.28)

Following Neyman–Pearson lemma, it becomes clear that the LR method introduced
in the last section for the case of both θ0, θ1 being known ensures a maximum fault
detection rate. Moreover, the GLR provides us with a sub-optimal solution, since
p1(y) contains a unknown parameter (θ1 is unknown and estimated).

10.3.2 Maximum a Posteriori Probability (MAP) Criterion

Consider again the system model

y = θ + ε, ε ∼N (0,Σ), θ =
{
θ0, no change
θ1, change.

Assume that a posteriori probability θ is available, that is,

P0 = prob(θ = θ0), P1 = prob(θ = θ1) are known

then it turns out

p1(y)= p(H1 | y)= py(y |H1)P1

py(y)
, p0(y)= p(H0 | y)= py(y |H0)P0

py(y)
.

Now consider the (log) LR

s(y)= ln
p1(y)

p0(y)
= ln

py(y |H1)P1

py(y |H0)P0
= ln

py(y |H1)

py(y |H0)
+ ln

P1

P0
.

The MAP criterion results in a decision in favor of H1 if s(y)= ln p1(y)
p0(y)

> 0, other-
wise H0. Thus, following the MAP criterion, the threshold is computed by solving

ln
py(Jth |H1)

py(Jth |H0)
+ ln

P1

P0
= 0. (10.29)

For instance, for the above-given system model we have
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ln
py(Jth |H1)

py(Jth |H0)
+ ln

P1

P0
= θ1 − θ0

σ 2

(
Jth − θ1 + θ0

2

)
+ ln

P1

P0

=⇒ ln
py(Jth |H1)

py(Jth |H0)
+ ln

P1

P0
= 0 ⇐⇒ θ1 − θ0

σ 2

(
Jth − θ1 + θ0

2

)
= ln

P0

P1

=⇒ Jth = σ 2

θ1 − θ0
ln
P0

P1
+ θ1 + θ0

2
.

To determine the false alarm rate, the probability

prob(y > Jth |H0)

will be calculated.

10.3.3 Bayes’ Criterion

Bayes’ criterion is a general criterion which allows us to make a decision among a
number of hypotheses. For the sake of simplicity, we only consider the case with
two hypotheses, H0 and H1.

The basic idea of the Bayes’ criterion consists in the introduction of a cost func-
tion of the form

J = C00P(D0 |H0)P0 +C10P(D1 |H0)P0 +C01P(D0 |H1)P1

+C11P(D1 |H1)P1 (10.30)

where P0 = prob(H0), P1 = prob(H1) and are assumed to be known, Cij , i, j =
0,1, is the “cost” for choosing decision Di when Hj is true. Thus, it is reasonable
to assume that

∀i, j Cij,i �=j > Cii .

The decision rule is then derived based on the minimization of the cost function J .
For this purpose, (10.30) is rewritten into

J = C00
(
1− P(D1 |H0)

)
P0 +C01

(
1− P(D1 |H1)

)
P1

+C10P(D1 |H0)P0 +C11P(D1 |H1)P1

= C00P0 +C01P1 +
∫ [

P0(C10 −C00)p0(y)+ P1(C11 −C01)p1(y)
]
dy

where p0(y), p1(y) stand for the densities of H0, H1. It turns out that

P0(C10 −C00)p0(y)+ P1(C11 −C01)p1(y) < 0

=⇒ p1(y)

p0(y)
>
P0(C10 −C00)

P1(C01 −C11)
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will reduce the cost function. As a result, the threshold is defined

Jth = ln
P0

P1
+ ln

C10 −C00

C01 −C11

and the decision rule is

s(y)= ln
p1(y)

p0(y)

{
>Jth = ln P0

P1
+ ln C10−C00

C01−C11
, decision for H1

<Jth = ln P0
P1
+ ln C10−C00

C01−C11
, decision for H0.

10.3.4 Some Remarks

It is evident that the main difference among the above-introduced methods consists
in the fact that using Neyman–Pearson strategy the prior probabilities of H0, H1 are
not needed, while Bayes’ criterion and MAP criterion are based on them.

It is remarkable that all three methods lead to the computation of (log) LR.
Neyman–Pearson scheme is mostly suitable for the solution of the fault detection
problem formulated as: Given an admissible false alarm rate, find a threshold and a
decision rule such that the missed detection rate is minimized, although the GLR
may only give a sub-optimal solution. On the other hand, the Neyman–Pearson
scheme is a traditional statistical method whose core is performing hypotheses tests
towards decisions consistent with sample evidence. In against, Bayes’ and MAP
schemes allow to make a decision even if the usual sample data are not available.
In particular, Bayes’ criterion takes into account the possible “costs” for a decision.
This will make the whole decision procedure more reasonable.

It should be pointed out that the Bayes’ scheme can also be extended to the case
where the probabilities of H0, H1 are not available. In this case, the worst case due
to the unknown P0, P1 = 1− P0 should be taken into the optimization procedure.
For instance, instead of minimizing J in (10.30) a so-called minmax optimization
problem is solved:

max
P0,P1=1−P0

min
Cij

J

= max
P0,P1=1−P0

min
Cij

[
C00P(D0 |H0)P0 +C10P(D1 |H0)P0
+C01P(D0 |H1)P1 +C11P(D1 |H1)P1

]
.

10.4 Application of GLR Testing Methods

The methods presented in this section are in fact the application and extension of the
above introduced methods to the solution of fault detection problems met in linear
dynamic systems.
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10.4.1 Kalman Filter Based Fault Detection

Consider an LTI system given by

x(k + 1) = Ax(k)+Bu(k)+Ef f (k)+ η(k) (10.31)

y(k) = Cx(k)+Du(k)+ Ff f (k)+ ν(k) (10.32)

where η(k) ∼ N (0,Ση), ν(k) ∼ N (0,Σν) are independent white noises. Using a
steady Kalman filter introduced in Sect. 7.2 an innovation process

r(k)= V (y(k)−Cx̂(k)−Du(k)), y(k)−Cx̂(k)−Du(k)∼N (0,Σr) (10.33)

is created with white Gaussian process r(k) ∼ N (0, I ), V = Σ−1/2
r , Σr = Σν +

CYCT , when f (k) = 0. We are interested in detecting those faults whose energy
level is higher than a tolerant limit Lf , i.e.

∥∥f (k)∥∥
s
=
√√√√ 1

s + 1

s∑
i=0

f T (k − i)f (k − i)=
{≤Lf , Ho (fault-free)
>Lf , H1 (fault)

(10.34)

by using r(k) as the residual signal and on the assumption that r(k− i), i = 0, . . . , s,
are available for the detection purpose. Next, we apply the GLR scheme to solve this
problem.

Write the available residual data into a vector

rk−s,k =

⎡
⎢⎢⎢⎣

r(k − s)
r(k − s + 1)

...

r(k)

⎤
⎥⎥⎥⎦ .

It turns out

rk−s,k = rk−s,k,0 + rk−s,k,f (10.35)

where rk−s,k,0 represents the fault-free and stochastic part of the residual signal

rk−s,k,0 ∼N (0, Σ̃r ), Σ̃r = diag(I, . . . , I )

and rk−s,k,f is described by

rk−s,k,f = Ase(k − s)+Mf,sfk−s,k, fk−s,k =

⎡
⎢⎢⎢⎢⎣

f (k − s)
...
...

f (k)

⎤
⎥⎥⎥⎥⎦
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As =

⎡
⎢⎢⎢⎣

VC

VCĀ
...

V CĀs

⎤
⎥⎥⎥⎦ , Mf,s =

⎡
⎢⎢⎢⎢⎣

VFf 0

VC�Ef . . .
. . .

...
. . .

. . . 0
VCĀs−1�Ef · · · VC�Ef VFf

⎤
⎥⎥⎥⎥⎦

with e(k) denoting the mean of the state estimate delivered by the Kalman filter (see
Sect. 7.2), that is,

e(k + 1)= Āe(k)+ �Ef f (k), Ā=A−LC, �Ef =Ef −LFf (10.36)

and L the observer gain given by (7.65). We assume that e(k)= 0 before the fault
occurs.

For our purpose, the GLR for the given model (10.35) is computed as follows

2Sk−s,k = 2 ln
sup‖f (k)‖s>Lf p‖fk−s,k‖>Lf (rk−s,k)
sup‖f (k)‖s≤Lf p‖fk−s,k‖≤Lf (rk−s,k)

=− sup
‖f (k)‖s≤Lf

[−(rk−s,k − r̄k−s,k)T (rk−s,k − r̄k−s,k)] (10.37)

+ sup
‖f (k)‖s>Lf

[−(rk−s,k − r̄k−s,k)T (rk−s,k − r̄k−s,k)] (10.38)

whose solution can be approached by solving optimization problems (10.37) and
(10.38) separately. To this end, we first assume that e(k − s) is small enough so
that

r̄k−s,k = rk−s,k,f ≈Mf,sfk−s,k. (10.39)

Note that

∥∥f (k)∥∥2
s
= 1

s + 1
f Tk−s,kfk−s,k

=⇒ ∥∥f (k)∥∥2
s
≤ L2

f

=⇒ f Tk−s,kfk−s,k ≤ (s + 1)L2
f := L̄2

f (10.40)

we have for ‖f (k)‖s ≤ Lf

f̂k−s,k,0 = arg sup
‖f (k)‖s≤Lf

[−(rk−s,k − r̄k−s,k)T (rk−s,k − r̄k−s,k)]

= arg inf
1
s+1f

T
k−s,kfk−s,k≤L2

f

[
(rk−s,k −Mf,sfk−s,k)T (rk−s,k −Mf,sfk−s,k)

]

and for ‖f (k)‖s > Lf
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f̂k−s,k,1 = arg sup
‖f (k)‖s>Lf

[−(rk−s,k − r̄k−s,k)T (rk−s,k − r̄k−s,k)]

= arg inf
1
s+1f

T
k−s,kfk−s,k>L2

f

[
(rk−s,k −Mf,sfk−s,k)T (rk−s,k −Mf,sfk−s,k)

]
.

On the assumption that Mf,s is right invertible, that is, of full row rank, we
have

f̂k−s,k,0 =MT
f,s

(
Mf,sM

T
f,s

)−1
rk−s,k

if rTk−s,k(Mf,sM
T
f,s)

−1rk−s,k ≤ L̄2
f ,

f̂k−s,k,0 =MT
f,s

(
Mf,sM

T
f,s

)−1
rk−s,k

L̄f√
rTk−s,k(Mf,sM

T
f,s)

−1rk−s,k

if rTk−s,k(Mf,sM
T
f,s)

−1rk−s,k > L̄2
f , and

f̂k−s,k,1 =MT
f,s

(
Mf,sM

T
f,s

)−1
rk−s,k

if rTk−s,k(Mf,sM
T
f,s)

−1rk−s,k > L̄2
f ,

f̂k−s,k,1 =MT
f,s

(
Mf,sM

T
f,s

)−1
rk−s,k

L̄f + ε√
rTk−s,k(Mf,sM

T
f,s)

−1rk−s,k

if rTk−s,k(Mf,sM
T
f,s)

−1rk−s,k ≤ L̄2
f , where ε > 0 is an arbitrarily small constant. It

turns out

2Sk−s,k =

⎧⎪⎪⎨
⎪⎪⎩
−rTk−s,k(1− L̄f+ε√

rTk−s,k(Mf,sM
T
f,s )

−1rk−s,k
)2rk−s,k, Γ ≤ L̄2

f

rTk−s,k(1− L̄f√
rTk−s,k(Mf,sM

T
f,s )

−1rk−s,k
)2rk−s,k, Γ > L̄2

f

(10.41)

where

Γ = rTk−s,k
(
Mf,sM

T
f,s

)−1
rk−s,k.

As a result, the decision rule follows from (10.41) directly and is described
by

rTk−s,k
(
Mf,sM

T
f,s

)−1
rk−s,k ≤ L̄2

f : H0 (10.42)

rTk−s,k
(
Mf,sM

T
f,s

)−1
rk−s,k > L̄2

f : H1. (10.43)

Thus, rTk−s,k(Mf,sM
T
f,s)

−1rk−s,k builds the evaluation function (testing statistic) for
our fault detection purpose.



332 10 Statistical Methods Based Residual Evaluation and Threshold Setting

Next, we study the following two problems: (a) given residual evaluation function
rTk−s,k(Mf,sM

T
f,s)

−1rk−s,k and threshold Jth = L̄2
f , find the false alarm rate defined

by

α = prob
(
rTk−s,k

(
Mf,sM

T
f,s

)−1
rk−s,k > Jth

∣∣ ∥∥f (k)∥∥
s
≤ Lf

)
(10.44)

(b) given residual evaluation function rTk−s,k(Mf,sM
T
f,s)

−1rk−s,k and allowable false
alarm rate α, find the threshold. To solve these two problems, let

γ = λ−1
min

(
Mf,sM

T
f,s

)
(10.45)

with λmin(Mf,sM
T
f,s) denoting the minimum eigenvalue of matrix Mf,sM

T
f,s . The

false alarm rate α can then be estimated by means of

α ≤ prob
(
rTk−s,krk−s,k > γ Jth

∣∣ ∥∥f (k)∥∥
s
≤ Lf

)
. (10.46)

Considering that in the fault-free case rTk−s,krk−s,k is noncentrally χ2 distributed
with noncentrality parameter

f Tk−s,kMf,sM
T
f,sfk−s,k ≤ L̄2

f λmax
(
Mf,sM

T
f,s

)
and the degrees of the freedom equals to the dimension of rk−s,k , the probability in
(10.46) can be computed using the noncentral χ2 distribution.

To solve the second problem, we can directly use the following relation

prob
(
χ2(dim(rk−s,k), δ̄2)> Jth)= α (10.47)

δ̄2 = L̄2
f λmax

(
Mf,sM

T
f,s

)

for the determination of Jth by given α, where dim(rk−s,k), δ2 stand for the degrees
of the freedom and the (maximum) non-centrality parameter of the non-central χ2

distribution, respectively.

Algorithm 10.6 (Threshold computation)

S1: Computation of L̄2
f λmax(Mf,sM

T
f,s)

S2: Determination of Jth according to (10.47).

Algorithm 10.7 (Computation of false alarm rate)

S1: Computation of γ , γ L̄2
f and L̄2

f λmax(Mf,sM
T
f,s)

S2: Computation of prob(χ2(dim(rk−s,k), δ̄2) > γ L̄2
f ).

Algorithm 10.8 (On-line realization)

S1: Computation of evaluation function

rTk−s,k
(
Mf,sM

T
f,s

)−1
rk−s,k

S2: Comparison between rTk−s,k(Mf,sM
T
f,s)

−1rk−s,k and threshold Jth.
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Remember that the above solution is achieved on the assumption of (10.39). We
now remove this assumption. Let

f̄k−s,k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

e(k − s)
f (k − s)

...

...

f (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, �Mf,s =

⎡
⎢⎢⎢⎢⎢⎣

VC VFf 0

VCĀ VC�Ef . . .
. . .

...
...

. . .
. . . 0

VCĀs V CAs−1�Ef · · · VC�Ef VFf

⎤
⎥⎥⎥⎥⎥⎦

and rewrite r̄k−s,k into

r̄k−s,k = rk−s,k,f = �Mf,s f̄k−s,k.

Since e(k − s) is driven by the fault, we replace our original problem formulation
(10.34) by

‖r̄k−s,k‖ =
√

1

s + 1
r̄Tk−s,k r̄k−s,k =

{≤Lr̄ , Ho (fault-free)
>Lr̄, H1 (fault)

(10.48)

where Lr̄ is a constant determined by

Lr̄ =
∥∥VC(zI − Ā)−1�Ef

∥∥∞Lf . (10.49)

That means, we now define the fault detection problem in terms of the influence of
the fault on the mean of the residual signal. Thus, instead of estimating the fault
vector itself, we are going to estimate r̄k−s,k under the condition (10.48). Applying
the GLR to the given model (10.35) yields

2Sk−s,k = 2 ln
sup‖r̄k−s,k‖>Lr̄ p‖r̄k−s,k‖>Lr̄ (rk−s,k)
sup‖r̄k−s,k‖≤Lr̄ p‖r̄k−s,k‖≤Lr̄ (rk−s,k)

=− sup
‖r̄k−s,k‖≤Lr̄

[−(rk−s,k − r̄k−s,k)T (rk−s,k − r̄k−s,k)] (10.50)

+ sup
‖r̄k−s,k‖>Lr̄

[−(rk−s,k − r̄k−s,k)T (rk−s,k − r̄k−s,k)]. (10.51)

Along with the way of solving (10.37) and (10.38), we can find out that for
‖r̄k−s,k‖ ≤ Lr̄

ˆ̄rk−s,k,0 = arg sup
‖r̄k−s,k‖≤Lr̄

[−(rk−s,k − r̄k−s,k)T (rk−s,k − r̄k−s,k)]

= rk−s,k
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if rTk−s,krk−s,k ≤ L2
r̄ and

ˆ̄rk−s,k,0 = arg sup
‖r̄k−s,k‖≤Lr̄

[−(rk−s,k − r̄k−s,k)T (rk−s,k − r̄k−s,k)]

= rk−s,k Lr̄√
rTk−s,krk−s,k

if rTk−s,krk−s,k > L2
r̄ , as well as for ‖r̄k−s,k‖>Lr̄

ˆ̄rk−s,k,1 = arg sup
‖r̄k−s,k‖>Lr̄

[−(rk−s,k − r̄k−s,k)T (rk−s,k − r̄k−s,k)]

= rk−s,k
if rTk−s,krk−s,k > L2

r̄ and

ˆ̄rk−s,k,0 = arg sup
‖r̄k−s,k‖>Lr̄

[−(rk−s,k − r̄k−s,k)T (rk−s,k − r̄k−s,k)]

= rk−s,k Lr̄ + ε√
rTk−s,krk−s,k

if rTk−s,krk−s,k ≤ L2
r̄ , where ε > 0 is a arbitrarily small constant. It leads to

2Sk−s,k =

⎧⎪⎨
⎪⎩
−rTk−s,k(1− Lr̄+ε√

rTk−s,krk−s,k
)2rk−s,k, rTk−s,krk−s,k ≤ L2

r̄

rTk−s,k(1− Lr̄√
rTk−s,krk−s,k

)2rk−s,k, rTk−s,krk−s,k > L2
r̄ .

(10.52)

Thus, the decision rule can be defined as

rTk−s,krk−s,k ≤ L2
r̄ : H0 (10.53)

rTk−s,krk−s,k > L2
r̄ : H1 (10.54)

with rTk−s,krk−s,k as the testing statistic. Similar to the study in the first part of this
section, we are able to estimate the false alarm rate α by applying decision rule
(10.53) and (10.54) or determine the threshold for a given allowable false alarm rate
α, as described in the following two algorithms.

Algorithm 10.9 (Computation of false alarm rate)

S1: Compute Lr̄ , δ̄2
r = L2

r

S2: Compute

α ≤ prob
(
χ2(dim(rk−s,k), δ̄2

r

)
> γL2

r̄

)
. (10.55)
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Algorithm 10.10 (Threshold computation)

S1: Compute δ̄2
r

S2: Solve

prob
(
χ2(dim(rk−s,k), δ̄2

r

)
> Jth

)= α (10.56)

for Jth.

10.4.2 Parity Space Based Fault Detection

Applying the parity space method to system (10.31) and (10.32) yields

rk−s,k =Σ−1/2V

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎣
y(k − s)

...

y(k)

⎤
⎥⎦−

⎡
⎢⎢⎢⎢⎣

D 0

CB
.. .

. . .

...
. . .

. . . 0
CAs−1B · · · CB D

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

u(k − s)
...
...

u(k)

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

(10.57)

=Σ−1/2(Mf fk−s,k + εk−s,k) (10.58)

where V is the parity matrix,

Mf,s = V

⎡
⎢⎢⎢⎢⎣

Ff 0

CEf
. . .

. . .

...
. . .

. . . 0
CAs−1Ef · · · CEf Ff

⎤
⎥⎥⎥⎥⎦

εk−s,k = V

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

v(k − s)
...
...

v(k))

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣

0

C
.. .

...
. . .

. . .

CAs−1 · · · C 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

η(k − s)
...
...

η(k)

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠∼N (0,Σ).

Again, we are interested in detecting those faults whose energy level is higher than
a tolerant limit Lf , that is,

∥∥f (k)∥∥
s
=
√√√√ 1

s + 1

s∑
i=0

f T (k − i)f (k − i)=
{≤Lf , Ho (fault-free)
>Lf , H1 (fault).

(10.59)

Comparing (10.58) with (10.35) makes it clear that we are able to use the same
method to solve the above-defined fault detection problem. Thus, without a detailed
derivation, we give the major results in the following two algorithms.
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Algorithm 10.11 (Threshold computation)

S1: Compute δ̄2 = L̄2
f λmax(Σ

−1/2Mf,sM
T
f,sΣ

−1/2)

S2: Solve

prob
(
χ2(dim(rk−s,k), δ̄2)> Jth)= α

for Jth.

Algorithm 10.12 (Computation of false alarm rate)

S1: Compute γ L̄2
f and δ̄2 = L̄2

f λmax(Σ
−1/2Mf,sM

T
f,sΣ

−1/2)

S2: Compute the false alarm rate prob(χ2(dim(rk−s,k), δ̄2) > γ L̄2
f ).

In the above two algorithms, the parameters γ , L̄2
f are identical with the ones

given in (10.45) and (10.40).

Remark 10.2 The above results have been achieved on the assumption that Mf,s is
invertible. In case that it does not hold, we can replace Mf,s by its approximation
which is then invertible.

Example 10.1 To illustrate the application of Algorithm 10.6, we consider three
tank system DTS200 given in Sect. 3.7.3. In order to get more insight into the system
design and threshold computation, we design two different Kalman filters, based
on model (3.68). The first one is a Kalman filter driven only by one sensor (the
level sensor of tank 1). Such a residual generator is often integrated into a bank of
residual generators for the isolation purpose, see Sect. 13.4.1. Under the assumption
that

Ση = 0.1I3×3, Συ = 0.1

the observer gain is given by

L=
⎡
⎣0.6179

0.0741
0.1798

⎤
⎦ .

Suppose that Lf = 0.05 and the length of the evaluation window s = 15, then we
get

L̄2
f λmax

(
Σ−1/2Mf,sM

T
f,sΣ

−1/2)= 0.2804.

In the next step, Jth is determined according to (10.47). Setting α = 0.05 re-
sults in

Jth = 26.7553.
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Fig. 10.2 Testing statistic
and the threshold: one sensor
case

Figure 10.2 provides us with a simulation result of the testing statistic and
threshold by a offset fault (5 cm) in sensor 1 at t = 12 s. The second Kalman
filter is designed using all three sensor signals. For Ση = Συ = 0.1I3×3, we
get

L=
⎡
⎣ 0.6178 4.2789× 10−8 2.1232× 10−4

4.2789× 10−8 0.6175 2.0765× 10−4

2.1232× 10−4 2.0765× 10−4 0.6176

⎤
⎦ .

On the assumption Lf = 0.1 and length of evaluation window s = 15, it turns
out

L̄2
f λmax

(
Σ−1/2Mf,sM

T
f,sΣ

−1/2)= 1.1218.

On the demand of α = 0.05, we have

Jth = 28.1120.

Figure 10.3 gives a simulation result of the testing statistic and threshold by the
same offset sensor fault (f = 5 cm, t = 12 s) like the last simulation. Comparing
both the simulation results, we can evidently see that fault detectability is enhanced
with more measurements.

10.5 Notes and References

In this chapter, essentials of statistic methods for the residual evaluation and deci-
sion making have been briefly reviewed. In Sect. 10.2, basic ideas, important con-
cepts and basic statistic testing tools have been introduced. For the basic knowledge
and elementary methods of probability and statistics, we have mainly referred to



338 10 Statistical Methods Based Residual Evaluation and Threshold Setting

Fig. 10.3 Testing statistic
and the threshold: three
sensors case

the book by Lapin [110]. By the introduction of the LR and GLR technique, the
monograph by Basseville and Nikiforov [12] serves as a major reference.

The discussion in Sect. 10.3 about criteria for threshold computation is intended
for providing the reader with deeper background information about the LR method
and other useful alternative schemes. It is mainly based on [124]. It is worth to
point out that application of the Bayesian technique to FDI is receiving considerable
attention. We refer the reader to [94] for an excellent survey on this topic.

From the FDI viewpoint, Sect. 10.4 builds the main focus of this chapter. Along
with the ideas presented in [12] and equipped with the skill of applying the GLR
technique to solve change detection problems learned from [12], we have intro-
duced two methods for detecting faults in stochastic systems. They serve as a bridge
between the model-based FDI methods presented in the previous chapters and the
statistical methods, and build the basis for an extended study in the forthcoming
chapter.

We would like to emphasize that the statistical methods introduced in this chap-
ter is only a small part of the statistical methods based FDI framework. For more
detailed and comprehensive study, we refer the reader to the excellent monographs
by Basseville and Nikiforov [12] and by Gustafsson [84] as well as the frequently
cited book [111]. There also are a great number of excellent papers, for instance
[9–11, 109, 193].



Chapter 11
Integration of Norm-Based and Statistical
Methods

In this chapter, we study the integration of norm-based and statistical methods to
address FDI in systems with both deterministic disturbances and stochastic uncer-
tainties. Three schemes with different solution strategies and supported by different
tools will be presented. The first scheme deals with FDI in systems with determin-
istic disturbances and stochastic noises, while the second and third ones address
systems with stochastically varying parameters.

11.1 Residual Evaluation in Stochastic Systems
with Deterministic Disturbances

As sketched in Fig. 11.1, in this section we continue our study started in the last
chapter. We consider systems modelled by

x(k + 1) = Ax(k)+Bu(k)+Edd(k)+Ef f (k)+ η(k) (11.1)

y(k) = Cx(k)+Du(k)+ Fdd(k)+ Ff f (k)+ ν(k). (11.2)

The terms Edd(k), Fdd(k) represent the influence of some deterministic unknown
inputs with known distribution matrices Ed , Fd and vector of unknown inputs
d(k) ∈Rkd , which is bounded by

∀k,
√√√√ k∑
i=k−s

dT (i)d(i)≤ δd

with s denoting the length of the evaluation window. η(k) ∈ Rn, v(k) ∈ Rm are
assumed to be discrete time, zero-mean, white noise and satisfy

E
([
η(i)

v(i)

][
ηT (j) vT (j)

])=
[
Q S

ST R

]
δij .

S.X. Ding, Model-Based Fault Diagnosis Techniques, Advances in Industrial Control,
DOI 10.1007/978-1-4471-4799-2_11, © Springer-Verlag London 2013
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Fig. 11.1 FDI in systems with deterministic disturbances and stochastic noises

Further, η(k), v(k) are assumed to be statistically independent of the input vector
u(k).

Our objective is to detect the fault vector f (k) ∈Rkf if it differs from zero.

11.1.1 Residual Generation

For the residual generation purpose, we use, without loss of generality, an FDF

x̂(k + 1) = (A−LC)x̂(k)+ (B −LD)u(k)+Ly(k)
r(k) = V (y(k)−Cx̂(k)−Du(k)) ∈Rmr

which yields

e(k + 1) = Āe(k)+ �Edd(k)+ �Ef f (k)+ η̄(k) (11.3)

r(k) = V (Ce(k)+ Fdd(k)+ Ff f (k)+ v(k)) (11.4)

with

e(k)= x(k)− x̂(k), η̄(k)= η(k)−Lv(k)
Ā=A−LC, �Ed =Ed −LFd, �Ef =Ef −LFf .

The observer matrix L and post-filter V can be selected for example, using the
unified solution or Kalman-filter scheme.
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In the steady state, the means of e(k), r(k), ē(k) = E(e(k)), r̄(k) = E(r(k)),
satisfy

ē(k + 1)= Āē(k)+ �Edd(k)+ �Ef f (k) (11.5)

r̄(k)= V (Cē(k)+ Fdd(k)+ Ff f (k)). (11.6)

For our purpose, we write r̄(k) into

r̄(k)= rd(k)+ rf (k)
with

rd(z) = V
(
C(zI − Ā)−1�Ed + Fd

)
d(z)

rf (z) = V
(
C(zI − Ā)−1�Ef + Ff

)
f (z).

Note that in the fault-free case the mean of the residual signal is bounded by

‖rd‖k−s,k =
√√√√ k∑
i=k−s

rTd (i)rd(i)≤
∥∥V (C(zI − Ā)−1�Ed + Fd

)∥∥∞δd := δrd (11.7)

for all k. On the assumption of the steady stochastic process, the covariance matrix
of r(k) is given by

E
(
r(k)− r̄(k))(r(k)− r̄(k))T = V (CPCT +R)V T (11.8)

where P > 0 solves

ĀP ĀT − P +Σ = 0

Σ = [I −L ]
[
Q S

ST R

][
I

−LT
]
=Q−LST − SLT +LRLT .

To simplify the study, it is supposed that

V = (CPCT +R)−1/2
.

11.1.2 Problem Formulation

Along with the lines in Sect. 10.4, we formulate two problems for our study.

Problem 1 Given {r(i), i = k − s, . . . , k}, find a residual evaluation function (test-
ing statistic), ‖r‖e , a threshold Jth and compute the false alarm rate defined by

α = prob
{∥∥r(k)∥∥

e
> Jth

∣∣ f = 0
}
. (11.9)
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Problem 2 Given {r(i), i = k − s, . . . , k}, an allowable false alarm rate α and the
residual evaluation function (testing statistic), ‖r‖e, as defined in Problem 1, find a
threshold Jth such that

prob
{∥∥r(k)∥∥

e
> Jth

∣∣ f = 0
}≤ α. (11.10)

These two problems are of strong practical interests.

11.1.3 GLR Solutions

Below, we use the GLR method to solve the above two problems. For this purpose,
the GLR for given r(i), i = k − s, . . . , k, is computed. It results in

2Skk−s = 2
k∑

i=k−s
si = 2 log

sup‖rd‖k−s,k≤δrd ,f �=0
∏k
i=k−s pf �=0(r(i))

sup‖rd‖k−s,k≤δrd ,f=0
∏k
i=k−s pf=0(r(i))

= − sup
‖rd‖k−s,k≤δrd ,f=0

[
−

k∑
i=k−s

(
Δrd(i)

)T
Δrd(i)

]

+ sup
‖rd‖k−s,k≤δrd ,f �=0

[
−

k∑
i=k−s

(
Δrd,f (i)

)T
Δrd,f (i)

]
(11.11)

where

pf �=0
(
r(i)
)= 1√

(2π)mr
e−

1
2 (Δrd,f (i))

T Δrd,f (i)

pf=0
(
r(i)
)= 1√

(2π)mr
e−

1
2 (Δrd (i))

T Δrd,f (i)

Δrd(i)= r(i)− rd(i), Δrd,f (i)= r(i)− rd(i)− rf (i).

Introduce the notations

Δrd,k−s,k = rk−s,k − rd,k−s,k, Δrd,f,k−s,k = rk−s,k − rd,k−s,k − rf,k−s,k

rk−s,k =

⎡
⎢⎢⎢⎢⎣

r(k − s)
...
...

r(k)

⎤
⎥⎥⎥⎥⎦ , rd,k−s,k =

⎡
⎢⎢⎢⎢⎣

rd(k − s)
...
...

rd(k)

⎤
⎥⎥⎥⎥⎦ , rf,k−s,k =

⎡
⎢⎢⎢⎢⎣

rf (k − s)
...
...

rf (k)

⎤
⎥⎥⎥⎥⎦

then we have
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2Skk−s = − sup
‖rd‖k−s,k≤δrd f=0

[−(Δrd,k−s,k)T Δrd,k−s,k]

+ sup
‖rd‖k−s,k≤δrd ,f �=0

[−(Δrd,f,k−s,k)T Δrd,f,k−s,k]. (11.12)

Moreover, the boundedness of rd(k) gives

rTd,k−s,krd,k−s,k =
k∑

i=k−s
rTd (i)rd(i)≤ δ2

rd
.

Next, we compute the LR estimate for rd,k−s,k :

r̂d,k−s,k,0 = arg sup
rTd,k−s,krd,k−s,k≤δ2

rd
fk−s,k=0

[−(Δrd,k−s,k)T Δrd,k−s,k]

= rk−s,k, if rTk−s,krk−s,k ≤ δ2
rd

r̂d,k−s,k,0 = arg sup
rTd,k−s,krd,k−s,k≤δ2

rd
fk−s,k=0

[−(Δrd,k−s,k)T Δrd,k−s,k]

= rk−s,k δrd√
rTk−s,krk−s,k

, if rTk−s,krk−s,k > δ2
rd

r̂d,k−s,k,1 = arg sup
rTd,k−s,krd,k−s,k≤δ2

rd
fk−s,k �=0

[−(Δrd,f,k−s,k)T Δrd,f,k−s,k]= 0

as well as for rf,k−s,k

r̂f,k−s,k,1 = arg sup
rTd,k−s,krd,k−s,k≤δ2

rd
fk−s,k �=0

[−(Δrd,f,k−s,k)T Δrd,f,k−s,k]= rk−s,k.

As a result, we have

2Skk−s =
⎧⎨
⎩

0 for rTk−s,krk−s,k ≤ δ2
rd

rTk−s,krk−s,k(1−
δrd√

rTk−s,krk−s,k
)2 for rTk−s,krk−s,k > δ2

rd
. (11.13)

Recall that in the context of the GLR scheme a decision for a fault will be made
if Skk−s > 0. Thus, it follows from (11.13) that the probability of a false alarm (the
false alarm rate) equals to
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α = prob
(
Skk−s > 0

∣∣ fk−s,k = 0
)= prob

(
rTk−s,krk−s,k > δ2

rd

∣∣ fk−s,k = 0
)
. (11.14)

In this way, rTk−s,krk−s,k defines a residual evaluation function (testing statistic) and

δ2
rd

the threshold. For the computation of the false alarm rate, we need a further
study on the testing statistic rTk−s,krk−s,k . Remember that in the fault-free case

Δrd,f (i)∼N (0, I ) =⇒ Δrd,k−s,k ∼N (0, I ). (11.15)

Thus, for f = 0, rTk−s,krk−s,k is noncentrally χ2 distributed with the degree of free-

dom equal to mr(s + 1) and the noncentrality parameter rTd,k−s,krd,k−s,k . Consider
that

α = prob
(
rTk−s,krk−s,k > δ2

rd

∣∣ fk−s,k = 0
)

= 1− prob
(

max
d
rTk−s,krk−s,k ≤ δ2

rd

∣∣ fk−s,k = 0
)
.

Hence, α is bounded by

α ≤ 1− prob
(
χ2(mr(s + 1), δ2

rd

)≤ δ2
rd

)
(11.16)

where χ2(mr(s + 1), δ2
rd
) denotes χ2 distribution with the degree of the freedom

equal to mr(s + 1) and the noncentrality parameter δ2
rd

. As a result, Problem 1 is
solved.

We summarize the major result in the following algorithms.

Algorithm 11.1 (Computation of α for given statistic and threshold)

S1: Compute δ2
rd

according to (11.7)
S2: Form Σ̃ according to (11.15)
S3: Compute prob(χ2(mr(s + 1), δ2

rd
) ≤ δ2

rd
) and finally the bound of α using

(11.16).

Algorithm 11.2 (On-line realization)

S1: Compute testing statistic

rTk−s,krk−s,k

S2: Comparison between the testing statistic threshold Jth = δ2
rd

.

Now, we solve Problem 2 for given testing statistic rTk−s,krk−s,k and an allowable
false alarm rate α. It follows from (11.16) that the threshold Jth can be determined
by solving

α = 1− prob
(
χ2(mr(s + 1), δ2

rd

)≤ Jth). (11.17)

It leads to the following algorithm.
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Algorithm 11.3 (Threshold computation)

S1: Compute δ2
rd

S2: Determine Jth according to (11.17).

11.1.4 An Example

Example 11.1 We continue our study in Example 10.1, where a fault detection sys-
tem is designed for the three-tank system benchmark. Now, in addition to the noises,
offset in the sensors is taken into account and modelled as unknown inputs by

Fdd, Fd = I and d ∈R3.

It is assumed that d is bounded by δd = 0.005. Our design objective is to determine
the threshold Jth using Algorithm 11.3. For the residual generation purpose, we use
the same two Kalman filters designed in Example 10.1, that is, (a) a Kalman filter
driven by the level sensor of tank 1 (b) a Kalman filter driven by all three sensors.
Under the same assumptions with α = 0.05, we have

Case (a) with one sensor: Jth = 26.3291

Case (b) with three sensors: Jth = 65.1979.

Figures 11.2 and 11.3 show the simulation results of the testing statistic and thresh-
old by an offset fault (5 cm) in sensor 1 at t = 12 s, with respect to the designed FD
systems.

Fig. 11.2 Testing statistic
and the threshold: one sensor
case
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Fig. 11.3 Testing statistic
and the threshold: three
sensors case

11.2 Residual Evaluation Scheme for Stochastically Uncertain
Systems

In Sect. 8.5, we have studied the residual generation problems for stochastically
uncertain systems. The objective of this section is to address the residual evaluation
problems, as sketched in Fig. 11.4.

Fig. 11.4 FDI in systems with deterministic disturbances and stochastic uncertainties
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11.2.1 Problem Formulation

As studied in Sect. 8.5, we consider system model

x(k + 1) = Āx(k)+ �Bu(k)+ �Edd(k)+Ef f (k) (11.18)

y(k) = �Cx(k)+ �Du(k)+ �Fdd(k)+ Ff f (k) (11.19)

where

Ā = A+ΔA, �B = B +ΔB, �C = C +ΔC
�D =D +ΔD, �Ed =Ed +ΔE, �Fd = Fd +ΔF.

ΔA, ΔB , ΔC, ΔD, ΔE and ΔF represent model uncertainties satisfying

[
ΔA ΔB ΔE

ΔC ΔD ΔF

]
=

l∑
i=1

([
Ai Bi Ei
Ci Di Fi

]
pi(k)

)
(11.20)

with known matrices Ai , Bi , Ci ,Di , Ei , Fi , i = 1, . . . , l, of appropriate dimensions.
pT (k) = [p1(k) · · · pl(k) ] represents model uncertainties and is expressed as a
stochastic process with

p̄(k)= E
(
p(k)
)= 0, E

(
p(k)pT (k)

)= diag(σ1, . . . , σl)

where σi , i = 1, . . . , l, are known. It is further assumed that p(0),p(1), . . . , are
independent and x(0), u(k), d(k), f (k) are independent of p(k).

For the purpose of residual generation, an FDF

x̂(k + 1)=Ax̂(k)+Bu(k)+L(y(k)− ŷ(k)) (11.21)

ŷ(k)= Cx̂(k)+Du(k), r(k)= V (y(k)− ŷ(k)) (11.22)

is used. The dynamics of the above residual generator is governed by

xr(k + 1) = Arxr(k)+Bru(k)+Erd(k)+Er,f f (k) (11.23)

r(k) = Crxr(k)+Dru(k)+ Frd(k)+ Fr,f f (k) (11.24)

xr(k) =
[

x(k)

x(k)− x̂(k)
]
=
[
x(k)

e(k)

]

and the mean of r(k) is

ē(k + 1) = (A−LC)ē(k)+ (Ed −LFd)d(k)+ (Ef −LFf )f (k) (11.25)

r̄(k) = V (Cē(k)+ Fdd(k)+ Ff f (k)). (11.26)

The matricesAr , Br , Cr ,Dr ,Er , Fr ,Er,f and Fr,f in (11.23)–(11.24) are described
in Sect. 8.5. We assume that the system is mean square stable.
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In the remainder of this section, the standard variance of r(k) is denoted by

σr(k)= E
[(
r(k)− r̄(k))T (r(k)− r̄(k))]= E

[
eTr (k)er (k)

]
with

er(k)= r(k)− r̄(k).
It is the objective of our study in this section that a residual evaluation strategy will
be developed and integrated into a procedure of designing an observer-based FDI
system. This residual evaluation strategy should take into account a prior knowledge
of the model uncertainties and combine the statistic testing and norm-based resid-
ual evaluation schemes. Note that the residual signal considered in the last section
is assumed to be a normal distributed. Differently, we have no knowledge of the
distribution of the residual signal addressed in this section.

The problems to be addressed in the next subsections are

• selection of a residual evaluation function and
• threshold determination for the given residual evaluation function and an allow-

able false alarm rate α.

11.2.2 Solution and Design Algorithms

A simplest way to evaluate the residual signal is to compute its size at each time
instant and compare it with a threshold. Considering that r(k) is a stochastic process
whose distribution is unknown, it is reasonable to set the threshold equal to

Jth =
√

sup
d,f=0

r̄T (k)r̄(k)+
√
β sup
d,u

σr(k) (11.27)

and define the decision logic as

J =
√
rT (k)r(k) > Jth =⇒ fault (11.28)

J =
√
rT (k)r(k)≤ Jth =⇒ fault-free (11.29)

where β (>1) is some constant used to reduce the false alarm rate. In (11.27), the
first term represents the bound on the mean value of the residual signal in the fault-
free case, while the second term, considering the stochastic character of r(k), is used
to express the expected deviation of r(k) from its mean value.

It is evident that the above decision logic with threshold (11.27) may result in a
high false alarm rate if the standard variance of r(k) is large. For this reason, we
propose the following residual evaluation function

J =
√√√√
(

1

N

N∑
i=1

r(k − i)
)T(

1

N

N∑
i=1

r(k − i)
)

(11.30)
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for some N . In fact

1

N

N∑
i=1

r(k − i)

is the average of the residual signal over the time interval (k − N,k), which is
influenced by both the additive and multiplicative faults. The following theorem
reveals an important statistical property of evaluation function (11.30).

Theorem 11.1 Given system model (11.23)–(11.24) and suppose that the system is
mean square stable, that is, E(xTr (k)xr(k)) and E[eTx (k)ex(k)] with

ex(k)= xr(k)− x̄r (k)

are bounded. Then,

E
(

1

N

N∑
i=1

er(k − i)
)T(

1

N

N∑
i=1

er(k − i)
)
≤ η

N

where η > 0 is some constant.

Proof Note that for i > 0

E
[
eTr (k)er (k − i)

]= E
[
eTx (k − i)

(
Cr,0A

i
r,0

)T
Cr,0ex(k − i)

]

+ trace

⎛
⎜⎝E
⎡
⎣xr(k − i)u(k − i)
d(k− i)

⎤
⎦
⎡
⎣xr(k − i)u(k − i)
d(k− i)

⎤
⎦
T

Qi

⎞
⎟⎠

Qi =
l∑

j=1

σ 2
j

⎡
⎢⎣
ATr,j

BTr,j

ETr,j

⎤
⎥⎦(Cr,0Ai−1

r,0

)T [
Cr,j Dr,j Fr,j

]
.

It leads to

E
[(

N∑
i=1

er(k − i)
)T( N∑

i=1

er(k − i)
)]

=
N∑
i=1

E
[
eTr (k − i)er (k − i)

]

+
N∑
j=2

j−1∑
i=1

(
E
[
eTr (k − i)er (k − j)

]+ E
[
eTr (k − j)er (k − i)

])
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=
N∑
i=1

E
[
eTr (k − i)er (k − i)

]+
N∑
j=2

(
Ψj +Ψ T

j

)

with

Ψj = E
[
eTx (k − j)

(
j−1∑
i=1

Cr,0A
i
r,0

)T
Cr,0ex(k − j)

]

+ trace

⎛
⎜⎝E
⎡
⎣xr(k − j)u(k − j)
d(k− j)

⎤
⎦
⎡
⎣xr(k − j)u(k − j)
d(k− j)

⎤
⎦
T

Qj

⎞
⎟⎠ .

Recall that

(I −Ar,0)
j−1∑
i=1

Air,0 =Ar,0
(
I −Aj−1

r,0

)

and moreover, considering that the size of all eigenvalues of Ar,0 is smaller than
one, we also have ∀j

j−1∑
i=1

Air,0 = (I −Ar,0)−1Ar,0
(
I −Aj−1

r,0

)

is bounded by

lim
j→∞

j−1∑
i=1

Air,0 = (I −Ar,0)−1Ar,0.

It turns out

Ψj +Ψ T
j =E

[
eTx (k− j)Φjex(k− j)

]+ trace

⎛
⎜⎝E
⎡
⎣xr(k− j)u(k− j)
d(k− j)

⎤
⎦
⎡
⎣xr(k− j)u(k− j)
d(k− j)

⎤
⎦
T

Πj

⎞
⎟⎠

Φj = Γ Tj CTr,0Cr,0 +CTr,0Cr,0Γj ,Πj =
j−1∑
i=1

(
Qi +QT

i

)

j−1∑
i=1

Qi =
l∑
i=1

σ 2
i

⎡
⎢⎣
Ar,i

BTr,i

ETr,i

⎤
⎥⎦Γ Tj CTr,0 [Cr,i Dr,i Fr,i

]

Γj = (I −Ar,0)−1Ar,0
(
I −Aj−1

r,0

)
.

Note ∀j Φj , Πj are bounded, that is, ∃εΦ, εΠ so that

∀j σmax(Φj )≤ εΦ, σmax(Πj )≤ εΠ
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we have

E
[(

N∑
i=1

er(k − i)
)T( N∑

i=1

er(k − i)
)]

≤
N∑
i=1

σr(k − i)+ εΦ
N∑
j=2

E
[
eTx (k − j)ex(k − j)

]

+ εΠ
N∑
j=2

E

⎡
⎣xr(k − j)u(k − j)
d(k− j)

⎤
⎦
T ⎡
⎣xr(k − j)u(k − j)
d(k− j)

⎤
⎦≤ ηN

η=max
d,u

σr(k)+ εΦ max
d,u

E
[
eTx (k)ex(k)

]+ εΠ max
d,u

E
[
xTr (k)xr (k)

]

+ εΠ max
d,u

(
uT (k)u(k)+ dT (k)d(k)) (11.31)

where, due to the boundedness of E[eTx (k)ex(k)] and E[xTr (k)xr (k)], η is a constant
and independent of N . It results in finally

E
(

1

N

N∑
i=1

er(k − i)
)T(

1

N

N∑
i=1

er(k − i)
)

= 1

N2
E
[(

N∑
i=1

er(k − i)
)T( N∑

i=1

er(k − i)
)]
≤ η

N
.

The theorem has thus been proven. �

Note that
√√√√E
(

1

N

N∑
i=1

r(k − i)
)T

E
(

1

N

N∑
i=1

r(k − i)
)
≤
√√√√ 1

N

N∑
i=1

(
r̄T (k − i)r̄(k − i))

≤
√

max
k,d,f=0

r̄T (k)r̄(k) := δr̄max .

We have, following Theorem 11.1,

EJ 2 = E
(

1

N

N∑
i=1

r(k − i)
)T

E

(
1

N

N∑
i=1

r(k − i)
)

+E

[(
1

N

N∑
i=1

er(k − i)
)T(

1

N

N∑
i=1

er(k − i)
)]
≤ δ2

r̄max
+ η

N
. (11.32)
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(11.32) and Theorem 11.1 reveal that for N→∞

E
[(

1

N

N∑
i=1

er(k − i)
)T(

1

N

N∑
i=1

er(k − i)
)]
→ 0 (11.33)

EJ 2 ≤ δ2
r̄max

(11.34)

i.e. J will deliver a good estimate for the mean value of the residual signal.
Motivated and guided by the above discussion, we propose, corresponding to

evaluation function (11.30), the following general form for setting the threshold:

Jth =
√
δ2
r̄max

+ β(N)σr,max(k), σr,max(k)= sup
d,u

σr(k) (11.35)

where β(N) is a constant for a given N . In this way, the problem of determining
the threshold is reduced to find β(N). Next, we approach this problem for a given
allowable false alarm rate α. To this end, we first introduce the well-known Tcheby-
cheff Inequality, which says: for a given random number x and a constant ε > 0
satisfying ε2 ≥ E(x − x̄)2, it holds

prob
(|x − x̄| ≥ ε)≤ E(x − x̄)2

ε2
. (11.36)

Recall that the false alarm rate is defined by

prob(J > Jth | f = 0)

and moreover

prob
(
J > Jth | f = 0

) = prob
(
J − E(J ) > Jth − E(J )

∣∣ f = 0
)

≤ prob(J − E(J ) > Jth | f = 0)

≤ prob
(∣∣J − E(J )

∣∣≥ Jth ∣∣ f = 0
)
.

If follows from the Tchebycheff Inequality that setting

Jth =
√
δ2
r̄max

+ β(N)σr,max

which satisfies

E(J − EJ )2

J 2
th

≤ EJ 2

J 2
th

≤ δ2
r̄max

+ η
N

δ2
r̄max

+ β(N)σr,max
≤ α

=⇒ β(N)≥ (1− α)δ2
r̄max

+ η
N

ασr,max
(11.37)

ensures

prob(J > Jth | f = 0)≤ α.
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From (11.37), it can be seen that a lower allowable false alarm rate α requires a
larger β(N).

To complete our design procedure, it remains to find δ2
r̄max

and σr,max as well as

E[eTx (k)ex(k)] and E[xTr (k)xr (k)] which are needed for the computation of thresh-
old (11.35) as well as η in (11.31). Using the LMI technique introduced in Chap. 8,
we obtain the following results.

Theorem 11.2 Given system model (11.25)–(11.26), γ1 > 0, and assume that

∥∥d(k)∥∥2 ≤ δd,2, ∀k
√
dT (k)d(k)≤ δd,∞.

Then, ∀k
r̄T (k)r̄(k)≤ γ1δ

2
d,2 + γ2δ

2
d,∞ := δ2

r̄max
(11.38)

if the following two LMI’s hold for some P > 0

⎡
⎣ P P(A−LC) P (Ed −LFd)
(A−LC)T P P 0
(Ed −LFd)T P 0 I

⎤
⎦> 0 (11.39)

[
P CT V T

VC γ1I

]
≥ 0 (11.40)

where γ 1/2
2 denotes the maximum singular value of matrix VFd .

Proof The proof of this theorem is straightforward. Indeed, it follows from (11.26)
that √

r̄T (k)r̄(k)≤
√(
VCē(k)

)T
V Cē(k)+

√(
VFdd(k)

)T
V Fd(k).

Thus, according to the discrete time version of Lemma 9.1 the first term is bounded
by √(

VCē(k)
)T
VCē(k)≤ γ 1/2

1 δd,2

and the second term by

√(
VFd(k)

)T
V Fd(k)≤ σmax(V Fd)δd,∞ = γ 1/2

2 δd,∞. �

Theorem 11.3 Given system model (11.23)–(11.24) and γ1 > 0, γ2 > 0, and as-
sume that ∥∥d(k)∥∥2 ≤ δd,2, ∀k

√
dT (k)d(k)≤ δd,∞.

Then, ∀k
σr(k) = E

[(
r(k)− r̄(k))T (r(k)− r̄(k))]
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≤ γ1

k−1∑
j=0

(
dT (j)d(j)+ uT (j)u(j))+ γ2

(
dT (k)d(k)+ uT (k)u(k)) (11.41)

≤ γ1δ
2
d,2+γ2δ

2
d,∞+γ1

k−1∑
j=0

(
uT (j)u(j)

)+γ2u
T (k)u(k) :=σr,max(u) (11.42)

if the following matrix inequalities hold for some P > 0 so that

M1 <

⎡
⎣P 0 0

0 I 0
0 0 I

⎤
⎦ , MC ≤ γ1P, MD ≤ γ2I (11.43)

M1 =
⎡
⎢⎣
ATr,0

BTr,0

ETr,0

⎤
⎥⎦P [Ar,0 Br,0 Er,0

]+
l∑
i=1

σ 2
i

⎡
⎢⎣
ATr,i

BTr,i

ETr,i

⎤
⎥⎦P [Ar,i Br,i Er,i

]

(11.44)

MC = CTr,oCr,o +
l∑
i=1

σ 2
i C

T
r,iCr,i (11.45)

MD =
l∑
i=1

σ 2
i

[
DT
r,i

F Tr,i

][
Dr,i Fr,i

]
. (11.46)

The proof of this theorem is identical with the one of Theorem 8.3 and is thus
omitted here.

Theorem 11.4 Given system model (11.23)–(11.24) and γ1 > 0, γ2 > 0, and as-
sume that

max
∥∥d(k)∥∥2 ≤ δd,2

then ∀k and for γ = γ−1
2 (1+ γ1),

E
[
eTx (k)ex(k)

]
< γ

k−1∑
j=0

(
dT (j)d(j)+ uT (j)u(j)) (11.47)

≤ γ δ2
d,2 + γ

k−1∑
j=0

(
uT (j)u(j)

) := σx,max(u) (11.48)

if the following matrix inequalities hold for some P > 0
[
ATr,0PAr,0 − P ATr,0P B̃r,0

B̃Tr,0PAr,0 −γ1I

]
≤ 0, B̃r,0 =

[
Br,0 Er,0

]
(11.49)
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M1 <

⎡
⎣P 0 0

0 I 0
0 0 I

⎤
⎦ (11.50)

P ≥ γ2I (11.51)

where M1 is given in (11.44).

Proof By proving Theorem 8.3, it has been shown that for given P > 0

trace
(
PEx(k)

)+ x̄Tr (k)P x̄r (k) <
k−1∑
j=0

(
dT (j)d(j)+ uT (j)u(j))

if (11.50) is true. Since

x̄Tr (j)P x̄r (j)≤ γ1

k−1∑
j=0

(
dT (j)d(j)+ uT (j)u(j))

⇐⇒ γ1

k−1∑
j=0

(
dT (j)d(j)+ uT (j)u(j)− x̄Tr (j + 1)P x̄r (j + 1)

+ x̄Tr (j)P x̄r (j)
)≥ 0

⇐⇒ (11.49) holds

it turns out

γ2E
[
eTx (k)ex(k)

]
< (1+ γ1)

k−1∑
j=0

(
dT (j)d(j)+ uT (j)u(j))

when

P ≥ γ2I.

The theorem is thus proven. �

Theorem 11.5 Given system model (11.23)–(11.24) and γ > 0, and assume that

max
∥∥d(k)∥∥2 ≤ δd,2

then ∀k and for ε = γ−1

E
[
xTr (k)xr(k)

]
< ε

k−1∑
j=0

(
dT (j)d(j)+ uT (j)u(j)) (11.52)
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≤ εδ2
d,2 + ε

k−1∑
j=0

(
uT (j)u(j)

) := δ2
xr
(u) (11.53)

if there exists P > 0 so that

M1 <

⎡
⎣P 0 0

0 I 0
0 0 I

⎤
⎦ (11.54)

P ≥ γ I (11.55)

where M1 is given in (11.44).

Proof In the proof of Theorem 8.3, it has been shown that for given P > 0

E
[
xTr (k)Pxr(k)

]
<

k−1∑
j=0

(
dT (j)d(j)+ uT (j)u(j))

if (11.54) holds. As a result, for given γ > 0,P ≥ γ I leads to

γ E
[
xTr (k)xr (k)

]
<

k−1∑
j=0

(
dT (j)d(j)+ uT (j)u(j)).

The theorem is thus proven. �

We would like to call reader’s attention to the fact that the bounds of σx(k), σr(k)
as well as E(xTr (k)xr (k)) are respectively a function of the input signal u(i), i ∈
[k −N,k). As a result, the threshold defined by (11.35) is an adaptive threshold or
a threshold generator driven by u(k).

Based on the above theorems, we are now able to present the following algorithm
for the threshold computation by a given false alarm rate α and evaluation window
[k −N,k).

Algorithm 11.4 (Threshold computation)

S1: Compute η defined by (11.31) using the results given in Theorems 11.3–11.5
S2: Determine β(N) as defined by(11.37)
S3: Set Jth according to (11.35).

Remark 11.1 We would like to emphasize that increasing N may significantly de-
crease the threshold and thus enhance the fault detectability. But, this is achieved at
the cost of an early fault detection.
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11.3 Probabilistic Robustness Technique Aided Threshold
Computation

In this section, we introduce a new strategy for the computation of thresholds and
false alarm rate. This study is motivated by the observation that a new research line
has recently, parallel to the well-developed robust control theory, emerged, where
the robust control problems are solved in a probabilistic framework. Comparing
with the method introduced in the last section, the implementation of this technique
demands less involved computation and the threshold setting is less conservative.
It opens a new and effective way to solve FD problems and builds an additional
link between the traditional statistic testing and the norm-based residual evaluation
methods.

11.3.1 Problem Formulation

Consider the system model

ẋ = Āx + �Bu+ �Edd, y = �Cx + �Du+ �Fdd (11.56)

Ā = A+ΔA, �B = B +ΔB, �C = C +ΔC
�D = D+ΔD, �Ed =Ed +ΔEd, �Fd = Fd +ΔFd

where ΔA, ΔB , ΔC, ΔD, ΔEd , ΔFd represent model uncertainties satisfying
[
ΔA ΔB ΔEd
ΔC ΔD ΔFd

]
=
[
E

F

]
Σ
[
G H J

]

with known matrices E, F , G, H , J of appropriate dimensions. Different to the
similar model form introduced in Chap. 3,Σ represents a norm-bounded uncertainty
and is expressed in terms of a random matrix with a known probability distribution
fΣ over its support set Σ , Σ := {Σ : σ̄ (Σ)≤ η}, where σ̄ (·) denotes the maximal
singular value of a matrix.

As described in Chap. 3, we model the influence of faults by

ẋ = (Ā+ΔAF )x + (�B +ΔBF )u+ �Edd +Ef f (11.57)

y = (�C +ΔCF )x + (�D +ΔDF )u+ �Fdd + Ff f (11.58)

where ΔAF , ΔBF , ΔCF , ΔDF and Ef f , Ff f represent multiplicative and addi-
tive faults in the plant, actuators and sensors, respectively. It is assumed that f ∈Rkf
is a unknown vector, Ef , Ff are known matrices with appropriate dimensions and
ΔAF , ΔBF , ΔCF , ΔDF are unknown. To simplify the notation, we shall use

F =
[
ΔAF ΔBF
ΔCF ΔDF

]
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to denote the set of multiplicative faults so that F = 0, f = 0 indicate the fault-free
case and otherwise there exists at least one fault.

For the residual generation purpose, an observer-based fault detection system of
the following form

˙̂x =Ax̂+Bu+L(y− ŷ), ŷ = Cx̂+Du, r(s)=R(s)(y(s)− ŷ(s)) (11.59)

is applied, where R(s) ∈RH∞ denotes the post-filter. The dynamics of the above
residual generator is governed by

r(s)=R1(s)ϕu,d(s)+R2(s)d(s) (11.60)

ẋ = Āx + �Bu+ �Edd, ϕu,d =Σ(Gx +Hu+ Jd) (11.61)

with

R1(s)=R(s)
(
F +C(sI −A+LC)−1(E −LF))

:=Dr1 +Cr(sI −Ar)−1Br1

R2(s)=R(s)
(
Fd +C(sI −A+LC)−1(Ed −LFd)

)
:=Dr2 +Cr(sI −Ar)−1Br2.

For the purpose of residual evaluation, the L2 norm of r(t) is used:

J = ‖r‖2 =
(∫ ∞

0
rT (t)r(t) dt

)1/2

.

We know that

J ≤ sup
{
‖r‖2 : ‖d‖2 ≤ δd,‖ϕu,d‖2 ≤ sup

d,u

‖ϕu,d‖2

}
(11.62)

≤ ‖R1‖∞ sup
d,u

‖ϕu,d‖2 + ‖R2‖∞δd (11.63)

where sup‖d‖2 = δd .
We would like to emphasize:

• the system model is assumed to be stable and (A,C) is detectable
• due to the existence of model uncertainty, the residual signal is also a function

of the system input u. Since u and its norms are, different from the unknown
inputs, known during the on-line implementation, this information should be used
to improve the performance of the FD system. As a result, the threshold is driven
by u

• although the following study can be carried out on the basis of (8.23)–(8.24),
we adopt (11.60)–(11.61) for our study, because it will lead to a considerable
simplification of the problem handling.
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We now begin with the formulation of the problems to be solved in this section.
Let the false alarm rate FAR be defined as

FAR= prob
{‖r‖2 > Jth

∣∣ F = 0, f = 0
}
. (11.64)

Our first problem to be addressed in this section is to estimate FAR by a given
threshold Jth. It follows from (11.63) that

prob{J ≤ Jth | F = 0, f = 0}
≥ prob

{
‖R1‖∞ sup

d,u

‖ϕu,d‖2 + ‖R2‖∞δd ≤ Jth
}

=⇒ FAR= 1− prob{J ≤ Jth | F = 0, f = 0} ≤ 1− ρ (11.65)

ρ = prob
{
‖R1‖∞ sup

d,u

‖ϕu,d‖2 + ‖R2‖∞δd ≤ Jth
}

= prob

{
sup
d,u

‖ϕu,d‖2 ≤ Jth − ‖R2‖∞δd
‖R1‖∞

}
. (11.66)

Thus, the problem of estimating FAR is reduced to find an estimate for ρ when Jth
is given.

On the other hand, following the definition of FAR and (11.65), we have, for a
given (allowable) FARa ,

ρ ≥ 1−FARa ⇒ 1−ρ ≤ FARa ⇒ prob{J > Jth | F = 0, f = 0} ≤ FARa.

As a result, the second problem of finding Jth so that the real FAR is smaller than
FARa can be formulated as finding Jth so that the following inequality holds

ρ ≥ 1− FARa. (11.67)

11.3.2 Outline of the Basic Idea

It is clear that the core of the problems to be solved is the computation of the proba-
bility that an inequality related to the random matrix Σ holds. We propose to solve
those two probabilistic problems formulated in the last subsection using the proce-
dure given below:

• Denote inequality

sup
d,u

‖ϕu,d‖2 ≤
(
Jth − ‖R2‖∞δd

)
/‖R1‖∞

by g(Σ) ≤ θ , where θ is independent of Σ . Find an algorithm to compute the
norms used in g(Σ) on the assumption that Σ is given
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• GenerateN matrix samples ofΣ,Σ1, . . . ,ΣN on the assumption that the random
matrix Σ is uniformly distributed in the spectral norm ball

• Generate N samples g(Σ1), . . . , g(ΣN) using the algorithms developed in the
first step

• Construct an indicator function of the form

I
(
Σi
)=
{

1, if g(Σi)≤ θ
0, otherwise

i = 1, . . . ,N

• An estimation for prob{g(Σ)≤ θ} is finally given by 1
N

∑N
i=1 I (Σ

i).

In the following of this section, we are going to realize this idea step by step.

11.3.3 LMIs Used for the Solutions

We now consider inequality

sup
d,u

‖ϕu,d‖2 ≤
(
Jth − ‖R2‖∞δd

)
/‖R1‖∞.

It follows from (11.61) that

sup
d,u

‖ϕu,d‖2 = ‖Ψu‖∞‖u‖2 + ‖Ψd‖∞δd

where

‖Ψu‖∞ = sup
{‖ϕu‖2 : ‖u‖2 = 1

}
Ψu : ẋu = Āxu + �Bu, ϕu =Σ(Gxu +Hu)

‖Ψd‖∞ = sup
{‖ϕd‖2 : ‖d‖2 = 1

}
Ψd : ẋd = Āxd + �Edd, ϕd =Σ(Gxd + Jd).

Hence, the above inequality can be further written into

‖Ψu‖∞‖u‖2 + ‖Ψd‖∞δd ≤
(
Jth − ‖R2‖∞δd

)
/‖R1‖∞. (11.68)

Note that the term on the right side of (11.68) is independent of the model uncer-
tainty regarding to Σ . We denote it by

θ := (Jth − ‖R2‖∞δd
)
/‖R1‖∞ (11.69)

where ‖R1‖∞,‖R2‖∞ can be computed, according to Lemma 7.8 by solving the
following LMI problem:
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‖Ri‖∞ =minβi := βimin, i = 1,2 subject to (11.70)⎡
⎣A

T
r P + PAr PBri CTr
BTriP −βiI DT

ri

Cr Dri −βiI

⎤
⎦< 0, P > 0.

Differently, both ‖Ψu‖∞ and ‖Ψd‖∞ depend on Σ and will be computed, again
using Lemma 7.8, as follows:

‖Ψu‖∞ =minγ1 := γ1 min(Σ) subject to (11.71)⎡
⎣ (A+EΣG)

T P + P(A+EΣG) P (B +EΣH) (ΣG)T

(B +EΣH)T P −γ1I (ΣH)T

ΣG ΣH −γ1I

⎤
⎦< 0, P > 0

‖Ψd‖∞ =minγ2 := γ2 min(Σ) subject to (11.72)⎡
⎣ (A+EΣG)

T P + P(A+EΣG) P (Ed +EΣJ) (ΣG)T

(Ed +EΣJ)T P −γ2I (ΣJ )T

ΣG ΣJ −γ2I

⎤
⎦< 0, P > 0.

As a result, inequality (11.68) can be rewritten into

γ1 min(Σ)‖u‖2 + γ2 min(Σ)δd := g(Σ)≤ θ. (11.73)

11.3.4 Problem Solutions in the Probabilistic Framework

Assume that the probability distribution fΣ of Σ over its support set Σ is given.
Using (11.70)–(11.73), our original problems can be reformulated as:

Problem 1 Estimate ρ for a given Jth

ρ = prob
{
g(Σ)≤ θ}. (11.74)

Problem 2 For a given admissible FARa , determine Jth such that

FAR= prob(J > Jth | F = 0, f = 0)≤ FARa. (11.75)

The core of these two problems is the computation of the probability that some
LMIs are solvable. For this purpose, the so-called probabilistic robustness technique
can be used in the form of the procedure described in Sect. 11.3.2. In the framework
of the probabilistic robustness technique, the so-called randomized algorithms pro-
vide an effective method to generate samples of a matrix Σ uniformly distributed
in the spectral norm ball. Assume that g(Σ) is a Lebesgue measurable function
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of Σ and N matrix samples of Σ,Σ1, . . . ,ΣN , are generated. Then an empirical
estimation of the probability of g(Σ)≤ θ is given by

ρ̂ = nϕ

N

where nϕ is the number of the samples for which g(Σi)≤ θ holds. It is well known
that for any ε ∈ (0,1) and δ ∈ (0,1), if

N ≥ log 2
δ

2ε2
(11.76)

then it holds

prob
{|ρ̂ − ρ| ≤ ε}≥ 1− δ, ρ = prob

{
g(Σ)≤ θ}. (11.77)

In fact, ε describes the accuracy of the estimate and δ the confidence. In the follow-
ing, we focus our attention on the application of the probabilistic robustness tech-
nique for solving the above-defined Problems 1 and 2. We refer the interested reader
to the references given at the end of this chapter for the details of the randomized
algorithms.

To solve Problem 1, we propose the following algorithm.

Algorithm 11.5 (Solution of Problem 1)

S1: Generation of N matrix samples Σ1, . . . ,ΣN using available randomized al-
gorithms, where N is chosen to satisfy (11.76) for given ε and δ

S2: Construction of indicator functions for given Jth: for i = 1, . . . ,N

I2
(
Σi
)=
{

1, if γ1 min(Σ
i)‖u‖2 + γ2 min(Σ

i)δd ≤ θ
0, otherwise

(11.78)

S3: Computation of the empirical probability

ρ̂N = 1

N

N∑
i=1

I2
(
Σi
)
. (11.79)

As a result, we have an estimation for FAR, denoted by FARe ,

FARe = 1− ρ̂N . (11.80)

According to (11.77), we know that

prob
{|FARe − FAR| ≤ ε}= prob

{|ρ̂N − ρ| ≤ ε}≥ 1− δ (11.81)

⇐⇒ prob
{|FARe − FAR|> ε}≤ δ.

(11.81) gives the confidence of FARe as an estimate of FAR.
For the solution of Problem 2, we propose the following algorithm.
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Algorithm 11.6 (Solution of Problem 2)

S1: Generation of N matrix samples Σ1, . . . ,ΣN using available randomized al-
gorithms, where N is chosen to satisfy (11.76) for given ε and δ

S2: Computation of

θi = γ1 min
(
Σi
)‖u‖2 + γ2 min

(
Σi
)
δd, i = 1, . . . ,N

S3: Construction of indicator functions

I i2
(
Σj
)=
{

1, if θj ≤ θi
0, otherwise

i, j ∈ {1, . . . ,N}

S4: Computation of

ρ̂iN =
1

N

N∑
j=1

I i2
(
Σj
)

(11.82)

S5: Determination of threshold for given FARa and ε

Jth = β1 minθ
k + β2 minδd, θk = γ1 min

(
Σk
)‖u‖2 + γ2 min

(
Σk
)
δd (11.83)

k = arg min
i∈(1,...,N)

{
ρ̂iN

∣∣ ρ̂iN ≥ 1− FARa + ε
}
.

We now check the real false alarm rate

FAR= prob{J > Jth | F = 0, f = 0}
with Jth satisfying (11.83). Since

Pr
{∣∣ρ̂kN − 1+ FAR

∣∣≤ ε}≥ 1− δ
we finally have that setting Jth according to (11.83) ensures

prob{FARa − ε̃ ≤ FAR≤ FARa} ≥ 1− δ
where ε̃ is some constant larger than zero. Thus, the requirement that FAR≤ FARa
is satisfied with a probability not smaller than 1− δ.

11.3.5 An Application Example

We now study an application example and illustrate the results achieved in this sec-
tion. The system under consideration is again the benchmark system vehicle lateral
dynamics introduced in Sect. 3.7.4. In our study, it is assumed that only yaw rate
sensor is used. The purpose of our study is to
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• estimate the FAR of an observer-based FD system designed based on (3.78),
where the false alarms are caused by the stochastic model uncertainty due to C′αV
and CαH

• compute the threshold for the observer-based FD system under a given FAR.

The following assumptions are made:

• C′αV = CoαV + ΔCαV , ΔCαV ∈ [−10000,0] is a random number with uniform
distribution

• CαH = kC′αV , k = 1.7278.

For our study, (3.76)–(3.77) are rewritten with u= δ∗L, y = r and

A =
⎡
⎣ −

(1+k)CoαV
mvref

(klH−lV )Co′αV
mv2

ref
− 1

(klH−lV )Co′αV
Iz

− (l2V+kl2H )CoαV
Izvref

⎤
⎦ , B =

⎡
⎣

CoαV
mvref

lV C
o
αV

Iz

⎤
⎦

ΔA =
⎡
⎣−

1+k
mvref

klH−lV
mv2

ref

klH−lV
Iz

− l2V+kl2H
Izvref

⎤
⎦ΔCαV , ΔB =

[
1

mvref
lV
Iz

]
ΔCαV

ΔC = 0, ΔD = 0, ΔEd = 0, ΔFd = 0.

For the purpose of residual generation, the following observer is used

[
dβ̂
dt

dr̂
dt

]
=
⎡
⎣ −

(1+k)CoαV
mvref

(klH−lV )Co′αV
mv2

ref
− 1

(klH−lV )Co′αV
Iz

− (l2V+kl2H )CoαV
Izvref

⎤
⎦
[
β̂

r̂

]
+
⎡
⎣

CoαV
mvref

lV C
o
αV

Iz

⎤
⎦u+

[
l1
l2

]
(r − r̂)

residual signal Δr = r − r̂

with l1 = 10.4472, l2 = 31.7269.
In our study, different driving maneuvers have been simulated by CARSIM, a

standard program for the simulation of vehicle dynamics. Here, results are pre-
sented, which have been achieved using the input data generated by CARSIM dur-
ing the so-called Double Lane Changing (DLC), a standard driving maneuver for
simulation.

The Sample Size N It follows from (11.76) that for given δ = 0.02, ε = 0.01,

N ≥ log 2
δ

2ε2
= 10000.

N = 10000 has been used in our study.
In Table 11.1, FAR estimations with respect to different threshold values,

achieved using Algorithm 11.5, are listed, while in Table 11.2 the result of the
threshold computation for different FARa , using Algorithm 11.6, is included.
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Table 11.1 Estimation of
FAR for a given threshold The given threshold Jth 0.078 0.080 0.082 0.084

Estimation of FAR (%) 8.43 6.22 3.90 1.38

Table 11.2 Computation of
threshold for a given FARa The given FARa (%) 10 5 2

The achieved threshold Jth 0.0766 0.0811 0.0836

11.3.6 Concluding Remarks

It is well known that the sample size N plays an important role in estimating empiri-
cal probability. Increasing N will improve the estimation performance but also lead
to higher computation costs. For this reason, effective algorithms should be used
for solving the above-mentioned problems. The reader is referred to the references
given at the end of this chapter for such algorithms. Also for the same reason, our
study has been carried out on the basis of (11.60) instead of the original form, in
order to avoid norm computations for systems of the 2nth order (the order of the
system + the order of the observer).

The solution of Problem 1 is useful for the analysis of observer-based FD sys-
tems. It is shown that for a given constant threshold the FAR will be a function of
system input signals. To ensure a constant FAR, the adaptive threshold should be
adopted, as demonstrated by the solution of Problem 2. The solution of Problem 2
provides a useful tool to set a suitable threshold and to integrate it into the design of
observer-based FD systems. The introduction of the adaptive threshold ensures that
the requirement on the FAR will be satisfied for all possible operation states of the
process under consideration.

The basic idea behind our study in this section is the application of the proba-
bilistic robustness theory for computing the thresholds and FAR. Different from the
known norm-based residual evaluation methods, in which the threshold computation
is based on the worst-case handling of model uncertainty and unknown inputs, our
study leads to the problem solutions in the probabilistic framework and may link the
well-established statistic testing methods and the norm-based evaluation methods.

Although the study carried out in this section aims at solving the fault detection
problem, it is expected that the achieved results can also be extended to solving the
fault isolation problem if statistical knowledge of faults, for instance their probabil-
ity distribution, is available.

The methods presented here can also be extended to the cases, where L∞ norm
or the modified forms of L2, L∞ norms like RMS or peak value are used as residual
evaluation function.



366 11 Integration of Norm-Based and Statistical Methods

11.4 Notes and References

In this chapter, we have introduced three different schemes for the purpose of resid-
ual evaluation and threshold setting. They have one in common: the integration of
the norm-based methods and statistical methods builds the core of these schemes.

Section 11.1 is in fact an extension of the discussion in Sect. 10.4. Some of the
results have been provisionally published in [43]. [85] also addresses fault detection
in systems with both stochastic and deterministic unknown inputs, where the influ-
ence of the deterministic unknown inputs is, however, decoupled from the residual
signal by means of solving the PUIDP (see Chap. 6). In our view, the most important
message of this section is that the integration of the norm-based and statistic based
methods may help us to improve the performance of FDI systems. As mentioned in
the previous chapter, the reader is referred to [10, 12] for the needed knowledge of
the GLR technique.

Motivated by the observation in practice that a priori knowledge of the model
uncertainties is generally limited, the study in Sect. 11.2 has been devoted to those
systems, which are corrupted with stochastically uncertain changes in the model
parameters. Different from the study in Sect. 11.1, we have only information about
mean values and variances instead of the distribution of the stochastically uncertain
variables. To handle such systems and to solve the associated FDI problems, the
LMI technique based analysis and synthesis methods for systems with multiplicative
stochastic noises are adopted as a tool, which has been introduced in Chap. 8. For
more details and the needed mathematical skills, we refer the reader again to [16,
154]. We would like to call reader’s attention to the fact that the key to link the norm-
based methods and statistical handling, as done in this section, is the Tchebycheff
Inequality [137]. This idea has first been proposed by Li et al. [112].

The probabilistic robustness technique is a new research line that has recently,
parallel to the well-developed robust control theory, emerged [18–20, 162]. This
technique allows to solve robust control problems in a probabilistic framework and
opens a new and effective way to solve fault detection problems. The design scheme
presented in Sect. 11.3 is the preliminary result achieved by the first application of
the probabilistic robustness technique to addressing the fault detection problems.
A draft version of this scheme has been reported in [41]. An advanced study with
an application can be found in [150, 190]. In our view, the probabilistic robustness
technique is an alternative way to build a bridge between the well-established statis-
tic testing schemes and the norm-based methods.
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Chapter 12
Integrated Design of Fault Detection Systems

The objective of this chapter is the design of model-based fault detection sys-
tems. In the literature related to the model-based FDI technique, this task is of-
ten (mis)understood as the design of a residual generator. In the last part, we have
studied the residual evaluation issues and learned the important role of the residual
evaluation unit in an FDI system. A three-step design procedure with

• construction of a residual generator under a given performance index
• definition of a suitable residual evaluation function and, based on it
• determination of a threshold

seems a logical consequence of our study in the last two parts towards the design of
the model-based FDI system.

On the other hand, it is of considerable practical interests to know if an integrated
design of the fault detection system, that is, the design of the residual generator,
evaluator and threshold in an integrated manner instead of separate handling of these
units, will lead to an improvement of the FD system performance. This question is
well motivated by the observation that the residual evaluation function and threshold
computation have not been taken into account by the development of the optimal
residual generation methods, as introduced in Part II. A residual generator optimized
under some performance index does not automatically result in an optimal fault
detection system. Now, a critical question may arise: what is the criterion for an
optimal fault detection system?

Having studied the last two parts, the reader should have gained the impression
that many model-based FDI problems have been handled in the context of the ad-
vanced control theory and an optimum FD system is understood in the context of
robustness vs. sensitivity.

In practice, essential requirements on a fault diagnosis system are generally ex-
pressed in terms of a lower false alarm rate and a higher fault detection rate, and
an optimal trade-off between them is of primary interest in designing an FD system.
In this context, a separate study on residual generation, evaluation and threshold
computation makes less sense. To achieve a successful design of a model-based
FD system, an integrated handling of residual generator, evaluator and threshold is

S.X. Ding, Model-Based Fault Diagnosis Techniques, Advances in Industrial Control,
DOI 10.1007/978-1-4471-4799-2_12, © Springer-Verlag London 2013
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Fig. 12.1 Integrated design of fault detection systems

needed. False alarms are caused by disturbances and model uncertainties. In order to
reduce them, thresholds are introduced, which result, in turn, in a reduction of fault
detection rate. The core of designing a fault detection system is to find out a suitable
trade-off between the false alarm rate and the fault detection rate. In fact, the con-
cepts robustness and sensitivity are the “translation” of false alarm rate and fault
detection rate into the language of control theory. Unfortunately, their application is
mostly restricted to the residual generator design.

In this chapter, we shall study the integrated design of fault detection systems,
as sketched in Fig. 12.1, and introduce two design strategies. A further focus of our
study is to re-view some residual generation methods introduced in Part II in the
context of the trade-off between the false alarm rate and the fault detection rate.

12.1 FAR and FDR

As introduced in the last two chapters, false alarm rate (FAR) and fault detection
rate (FDR) are two concepts that are originally defined in the statistic framework.
Suppose that r is a residual vector that is a stochastic process corrupted with the
unknown input vector d and the fault vector f . We denote the residual evaluation
function, also called testing statistic, by J = ‖r‖e and the corresponding threshold
by Jth, and suppose that the fault detection decision logic is

J ≤ Jth =⇒ fault-free (12.1)

J > Jth =⇒ faulty. (12.2)
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Definition 12.1 The probability FAR

FAR= prob(J > Jth | f = 0) (12.3)

is called false alarm rate in the statistical framework.

Definition 12.2 The probability FDR

FDR= prob(J > Jth | f �= 0) (12.4)

is called fault detection rate in the statistical framework.

Definition 12.3 The probability

1− FDR= prob(J ≤ Jth | f �= 0) (12.5)

is called missed detection rate (MDR) in the statistical framework.

For FD systems with deterministic residual signals, it is obvious that new defini-
tions are needed. Ding et al. have first introduced the concepts FAR and MDR in the
context of a norm-based residual evaluation. Below, we shall concentrate ourselves
on the establishment of a norm-based framework, which will help us to evaluate the
performance of a model-based FD system in the context of the trade-off between
the FAR and FDR.

To simplify the presentation, we first introduce the following notations. We de-
note the residual generator by Gr and suppose that Gr generates a residual vector r
which is driven by the unknown input vector d , the fault vector f and affected by
the model uncertainty Δ. We assume that d is bounded by

‖d‖ ≤ δd
where ‖ · ‖ stands for some signal norm. We denote the norm-based evaluation of r
by

J = ‖r‖e
threshold by Jth, and suppose that the decision logic (12.1)–(12.2) is adopted for
the detection purpose.

The objective of introducing the concept FAR is to characterize the FD system
performance in terms of the intensity of false alarms during system operation. A
false alarm is created if

J > Jth for f = 0. (12.6)

Definition 12.4 Given residual generator Gr and Jth, the set ΩFA(Gr , Jth) defined
by

ΩFA(Gr , Jth)=
{
d | (12.6) is satisfied

}
(12.7)

is called set of disturbances that cause false alarms (SDFA).
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The size of SDFA indicates the number of the possible false alarms and thus
builds a direct measurement of the FD system performance regarding to the intensity
of false alarms. On the other hand, it is very difficult to express FAR in terms of the
size of SDFA and moreover the determination of the size of SDFA depends on Jth.
For this reason, we introduce the following simplified definition for FAR.

Consider that in the fault-free case ∀d , Δ,

‖r‖e ≤ γ ‖d‖ ≤ γ δd
with γ denoting the induced norm defined by

γ = sup
f=0,Δ,‖d‖=1

‖r‖e.

Thus, a threshold equal to γ δd will guarantee a zero FAR. It motivates us to intro-
duce the following definition.

Definition 12.5 FAR given by

FAR= 1− Jth

γ δd
(12.8)

is called FAR in the norm-based framework.

Note that for Jth = 0

FAR= 1, ΩFA(Gr ,0)=max
Jth

ΩFA(Gr , Jth) (12.9)

that is, ∀Jth > 0, ΩFA(Gr , Jth)⊆ΩFA(Gr ,0)

and for Jth = γ δd
FAR= 0, ΩFA(Gr , γ δd)=min

Jth
ΩFA(Gr , Jth) (12.10)

that is, ∀Jth < γ δd, ΩFA(Gr , γ δd)⊆ΩFA(Gr , Jth).

The introduction of the concept FDR is intended to evaluate the FD system per-
formance from the viewpoint of fault detectability, which is understood as the set of
all detectable fault. Recall that a fault is detected if

J > Jth for f �= 0. (12.11)

We have

Definition 12.6 Given residual generator Gr and Jth, the set ΩDE(Gr , Jth) defined
by

ΩDE(Gr , Jth)=
{
f | (12.11) is satisfied

}
(12.12)

is called set of detectable faults (SDF).
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The size of SDF is a direct measurement of the FD system performance regarding
to the fault detectability. Similar to the case with the FAR, we now introduce the
simplified definition of FDR in the norm-based framework. For our purpose, we
call reader’s attention to the fact that on the assumption d = 0, Δ= 0,

∀f �= 0, ‖r‖e ≥ ξ‖f ‖
where

ξ = inf
f �=0,d=0,Δ=0

‖r‖e. (12.13)

Suppose that those f vectors whose size is larger than δf,min are defined as faults
to be detected. Then, setting threshold equal to ξδf,min will give a 100 % fault
detection. Bearing this in mind, we have

Definition 12.7 FDR given by

FDR= ξδf,min

Jth
(12.14)

is called FDR in the norm-based framework.

Note that on the assumption d = 0, Δ= 0 we have for Jth = ξδf,min

ΩDE(Gr , ξδf,min)= max
Jth≥ξδf,min

ΩDE(Gr , Jth).

According to this definition, given an FDR, the threshold should be set as

Jth = ξδf,min

FDR
. (12.15)

12.2 Maximization of Fault Detectability by a Given FAR

In this section, we present an approach in the norm-based framework, which will
lead to a trade-off between the FDR and FAR, expressed in terms of maximizing the
number of detectable faults by a given FAR. Our focus is not only on the derivation
of this approach but also on an evaluation of the existing optimal residual generation
approaches in the context of the trade-off strategy.

12.2.1 Problem Formulation

For the sake of simplicity, we consider system model

y(s)=Gyu(s)u(s)+Gyd(s)d(s)+Gyf (s)f (s) (12.16)
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apply residual generator

r(s)=R(s)(M̂u(s)y(s)− N̂u(s)u(s)
)
, R(s) ∈RH∞ (12.17)

for the residual generation purpose, and use L2 norm as the residual evaluation
function.

Recall that according to detection logic (12.1)–(12.2) a fault can be detected if
and only if

‖r‖2 > Jth

⇐⇒ ∥∥R(s)(�Gd(s)d(s)+ �Gf (s)f (s))∥∥2 > Jth—detection condition
(12.18)

and in the fault-free case if

‖r‖2 =
∥∥R(s)�Gd(s)d(s)∥∥2 > Jth—false alarm condition (12.19)

then a false alarm will be released, where

�Gd(s)= M̂u(s)Gyd(s), �Gf (s)= M̂u(s)Gyd(s)

and are assumed to be stable.
Suppose that the allowable FAR is now given. It follows from the false alarm

condition (12.19) and the definition of FAR that the threshold should be set as

Jth = (1− FAR)
∥∥R(s)�Gd(s)∥∥∞δd . (12.20)

For our design purpose, we formulate the trade-off design problem as follows:

Problem of Maximizing SDF Under a Given FAR (PMax-SDF) Given FAR
and Jth setting according to (12.20), find Ropt,DE(s) ∈RH∞ so that

∀R(s) ∈RH∞, ΩDE(R,Jth)⊆ΩDE(Ropt,DE,Jth). (12.21)

(12.21) means that ΩDE(Ropt,DE,Jth, d) is the maximum SDF and thus should
give the maximum FDR. At the end of the next subsection, we shall prove that
maximizing SDF is equivalent to maximizing FDR.

12.2.2 Essential Form of the Solution

In this subsection, we shall outline the basic idea and present a solution for PMax-
SDF on the following assumptions:

A1:

rank
(
Gd(s)

)= rank
(�Gd(s))= kd =m (12.22)

A2: The co-outer of �Gd(s)=Gdo(s)Gdi(s), Gdo(s), is left invertible in RH∞, i.e.
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∀ω ∈ [0,∞], �Gd(jω)�G∗d(jω) > 0 for continuous-time systems (12.23)

∀θ ∈ [0,2π], �Gd
(
eθj
)�G∗d(eθj )> 0 for discrete-time systems. (12.24)

We now start with addressing the solution of PMax-SDF. Let

R(s)=Q(s)G−1
do (s)

with Q(s) ∈RH∞ standing for an arbitrarily selectable matrix of appropriate di-
mension. It yields

J − Jth =
∥∥Q(s)G−1

do (s)
�Gf (s)f (s)+Q(s)Gdi(s)d(s)

∥∥
2

− (1− FAR)‖Q(s)Gdi(s)‖∞δd .
Considering that

∥∥Q(s)Gdi(s)∥∥∞ =
∥∥(Q(s)Gdi(s))∗∥∥∞ =

∥∥Q(s)∥∥∞∥∥Q(s)G−1
do (s)

�Gf (s)f (s)+Q(s)Gdi(s)d(s)
∥∥

2

≤ ∥∥Q(s)∥∥∞
∥∥G−1

do (s)
�Gf (s)f (s)+Gdi(s)d(s)

∥∥
2

it turns out ∀Q(s) �= 0 ∈RH∞

J − Jth ≤
∥∥Q(s)∥∥∞

∥∥(G−1
do (s)

�Gf (s)f (s)+Gdi(s)d(s)
∥∥

2 − (1− FAR)δd
)

which means
∥∥G−1

do (s)
�Gf (s)f (s)+Gdi(s)d(s)

∥∥
2 − (1− FAR)δd > 0 (12.25)

is a necessary condition, under which fault f (s) becomes detectable. We have
proven the following theorem.

Theorem 12.1 Given system (12.16), residual generator (12.17), FAR and thresh-
old setting (12.20), a fault f (s) can then be detected only if (12.25) holds.

Note that setting Q(s)= I and therefore R(s)=G−1
do (s) leads to

J − Jth =
∥∥G−1

do (s)
�Gf (s)f (s)+Gdi(s)d(s)

∥∥
2 − (1− FAR)δd .

This means that (12.25) is also a sufficient condition for f (s) to be detectable, pro-
vided that R(s) is set to be G−1

do (s). This result provides us with the proof of the
solution for PMax-SDF, which is summarized into the following theorem.

Theorem 12.2 Given system (12.16), residual generator (12.17), FAR and thresh-
old setting (12.20), then

Ropt,DE(s)=G−1
do (s) (12.26)

is the optimal solution of PMax-SDF (12.21).
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The following corollary follows from Lemmas 7.4 and 7.5.

Corollary 12.1 Given system (12.16), residual generator (12.17), FAR and thresh-
old setting (12.20), then

Ropt,DE(s)= M̂d(s) (12.27)

solves PMax-SDF (12.21).

Theorem 12.2 and Corollary 12.1 reveal that the unified solution given in The-
orem 7.10 for continuous-time systems and Theorem 7.19 for discrete-time sys-
tems solves the PMax-SDF. That also explains why the unified solution does deliver
the highest fault sensitivity in the sense of Hi/H∞ index. We refer the reader to
Sect. 7.9 for the detailed discussion and description of the unified solution. Below
is a summary of some important properties:

• Theorems 7.11 and 7.19 provide us with the state space form of the solu-
tion (12.27).

• The solution (12.27) ensures that

σmin(Ropt,DE(jω)�Gf (jω))
‖Ropt,DE�Gd(s)‖∞

= sup
R(s)∈RH∞

σmin(R(jω)�Gf (jω))
‖R(s)�Gd(s)‖∞

as well as

σmin(Ropt,DE(e
jθ )�Gf (ejθ ))

‖Ropt,DE(z)�Gd(z)‖∞
= sup
R(z)∈RH∞

σmin(R(e
jθ )�Gf (ejθ ))

‖R(z)�Gd(z)‖∞
thus, it also results in maximizing the FDR

FDR = ξδf,min

Jth
= σmin(Ropt,DE(jω)�Gf (jω))δf,min

(1− FAR)δd
as well as

FDR = ξδf,min

Jth
= σmin(Ropt,DE(e

jθ )�Gf (ejθ ))δf,min

(1− FAR)δd
.

• The threshold is given by

Jth = (1− FAR)δd . (12.28)

12.2.3 A General Solution

In this subsection, we remove Assumptions A1–A2 and present a general solution.
Having learned that the unified solution given in Theorem 7.10 solves the PMax-

SDF on the Assumptions A1–A2, it is reasonable to apply the general form of the
unified solution given in Sect. 7.10 to deal with our problem. Similar to Sect. 7.10,
due to the complexity we only consider continuous-time systems in the following
study.
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As described in Sect. 7.10, any given �Gd(s) can be factorized, by means of an
extended CIOF (see Algorithm 7.7), into

�Gd(s)=Gdo,1
[
Gdo,2(s)G∞(s)Gjω(s) 0

0 0

][
Gdi(s) 0

0 I

]
(12.29)

where Gdo,1(s), Gdo,2(s) are invertible in RH∞ and Gdi(s) ∈RH∞ is co-inner.
Note that the zero-blocks in the above transfer matrices exist only if Assumption A1
is not satisfied, that is,

rank
(
Gd(s)

)= rank
(�Gd(s))= kd < m.

As a result, the generalized unified solution is given by

Ropt(s)=
[
G̃−1
jω(s)G̃

−1∞ (s)G−1
do,2(s) 0

0 1
δ
I

]
G−1
do,1(s) (12.30)

where δ > 0 is some constant that can be enough small and G̃−1
jω(s), G̃

−1∞ (s) sat-
isfy (7.284)–(7.285). We now check if the generalized unified solution (12.30)
solves the PMax-SDF.

Recall that applying (12.30) to (12.17) yields

r(s)=Ropt(s)
(�Gd(s)d(s)+ �Gf (s)f (s))

=
[
r1(s)

r2(s)

]
=
[
G̃−1
jω(s)G̃

−1∞ (s)G∞(s)Gjω(s)Gdi(s)d(s)+Gf 1(s)f (s)
1
δ
Gf 2(s)f (s)

]

(12.31)

with
[
Gf 1(s)

Gf 2(s)

]
=
[
G̃−1
jω(s)G̃

−1∞ (s)G−1
do,2(s) 0

0 1
δ
I

]
G−1
do,1
�Gf (s).

It turns out

J − Jth =
∥∥G̃−1

jω(s)G̃
−1∞ (s)G∞(s)Gjω(s)Gdi(s)d(s)+Gf 1(s)f (s)

∥∥
2

+ 1

δ

∥∥Gf 2(s)f (s)
∥∥

2

− (1− FAR)
∥∥G̃−1

jω(s)G̃
−1∞ (s)G∞(s)Gjω(s)Gdi(s)

∥∥∞δd
≈ ∥∥G̃−1

jω(s)G̃
−1∞ (s)G∞(s)Gjω(s)Gdi(s)d(s)+Gf 1(s)f (s)

∥∥
2

+ 1

δ

∥∥Gf 2(s)f (s)
∥∥

2 − (1− FAR)δd .
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Thus, any fault f (s) that causes

∥∥G̃−1
jω(s)G̃

−1∞ (s)G∞(s)Gjω(s)Gdi(s)d(s)+Gf 1(s)f (s)
∥∥

2 +
1

δ

∥∥Gf 2(s)f (s)
∥∥

2

> (1− FAR)δd (12.32)

will be detected. On the other hand, for any R(s) = Q(s)Ropt(s), Q(s)(�= 0) ∈
RH∞, it holds

J − Jth ≤ ‖Q‖∞
(∥∥G̃−1

jω(s)G̃
−1∞ (s)G∞(s)Gjω(s)Gdi(s)d(s)+Gf 1(s)f (s)

∥∥
2

+ 1
δ

∥∥Gf 2(s)f (s)
∥∥

2 − (1− FAR)δd

)
.

(12.33)
Summarizing (12.32)–(12.33) gives the proof of the following theorem.

Theorem 12.3 Given system (12.16), residual generator (12.17), FAR and thresh-
old setting (12.20), then

Ropt,DE(s)=
[
G̃−1
jω(s)G̃

−1∞ (s)G−1
do,2(s) 0

0 1
δ
I

]
G−1
do,1(s) (12.34)

solves the PMax-SDF.

It is very interesting to note that any fault f (s) satisfying

Gf 2(s)f (s) �= 0,
∥∥Gf 2(s)f (s)

∥∥
2 > (1− FAR)δdδ

can be detected. Since δ can be set enough small, we can claim that any fault f (s)
with Gf 2(s)f (s) �= 0 can be detected. Recall that Gf 2(s) is spanned by the null
space of Gd(s), that is,

Gf 2(s)=G⊥d (s)Gf (s), G⊥d (s)Gd(s)= 0. (12.35)

Thus, any fault, which can be decoupled from the unknown input vector d(s) in the
measurement subspace, can be detected.

Below is the algorithm for the optimal design of FD systems in the context of
maximizing the fault detectability by a given FAR.

Algorithm 12.1 (Optimal design of FD systems by given FAR)

S1: Bring �Gd(s) into (12.29)
S2: Find G̃−1

jω(s), G̃
−1∞ (s) according to (7.284) and (7.285)

S3: Set Ropt,DE(s) according to (12.30)
S4: Set threshold Jth according to (12.28).
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12.2.4 Interconnections and Comparison

In this subsection, we study the relationships between the solution (12.27), that is,
the unified solution, and the design approaches presented in Chaps. 6 and 7.

Relationship to the PUIDP In Chap. 6, we have studied the PUIDP and learned
that under condition

rank
[
Gd(s) Gf (s)

]
> rank

(
Gd(s)

)= kd (12.36)

there exists a residual generator R(s) so that

r(s)=R(s)(�Gd(s)d(s)+ �Gf (s)f (s))=R(s)�Gf (s)f (s).
As a result, the threshold will be set equal to zero. We denote the set of all detectable
faults using the solution to the PUIDP by

ΩDE(R,0)=
{
f
∣∣R(s)�Gf (s)f (s) �= 0

}
.

It follows from (12.35) and the associated discussion that

∀f ∈ΩDE(R,0)

we also have

f ∈ΩDE

(
Ropt,DE, (1− FAR)δd

)
.

On the other hand, it is evident that for any f satisfying

Gf 2(s)f (s)= 0∥∥G̃−1
jω(s)G̃

−1∞ (s)G∞(s)Gjω(s)Gdi(s)d(s)+Gf 1(s)f (s)
∥∥

2 > (1− FAR)δd

it holds

f ∈ΩDE

(
Ropt,DE, (1− FAR)δd

)
but f /∈ΩDE(R,0).

In this way, we have proven the following theorem, which demonstrates that the
solution (12.27) provides us with a better fault detectability in comparison with the
PUID scheme.

Theorem 12.4 Given system (12.16), residual generator (12.17) and assume that
(12.36) holds, then

ΩDE(R,0)⊂ΩDE

(
Ropt,DE, (1− FAR)δd

)
. (12.37)
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Relationship to H2/H2 Optimal Design Scheme For the sake of simplicity,
we only consider continuous-time systems and assume (a) FAR is set to be zero
(b) Assumptions A1–A2, (12.22)–(12.23), are satisfied. In Sect. 7.6, the solution of
optimization problem is given by

sup
q(s)∈RH∞

‖q(s)�Gf (s)‖2

‖q(s)�Gd(s)‖2
= ‖qb(s)vmax(s)G

−1
do (s)

�Gf (s)‖2

‖qopt(s)vmax(s)‖2
= λ1/2

max(ωopt)

vmax(jω)
(
G−1
do (jω)

�Gf (jω)�G∗f (jω)
(
G−1
do (jω)

)∗ − λmax(ω)
)= 0

λmax(ωopt)=max
ω
λmax(ω), ωopt = arg max

ω
λmax(ω).

Here, qb(s) represents a band pass filter at frequency ωopt, which gives

(
1

2π

∫ ∞
−∞

qb(jω)vmax(jω)Φ(ω)v
∗
max(jω)q

∗
b (jω)dω

)1/2

=
(

1

2π

∫ ωopt+θ

ωopt−θ
qb(jω)vmax(jω)Φ(ω)v

∗
max(jω)q

∗
b (jω)dω

)1/2

≈ (vmax(jωopt)Φ(ωopt)v
∗
max(jωopt)

)1/2
Φ(ω)=G−1

do (jω)
�Gf (jω)�G∗f (jω)

(
G−1
do (jω)

)∗
.

Since

qb(jω)vmax(jω)v
∗
max(jω)q

∗
b (jω)=

vmax(jωopt)Φ(ωopt)v
∗
max(jωopt)

λmax(ωopt)

the threshold Jth,2 should be set as

Jth,2 =
√
vmax(jωopt)Φ(ωopt)v∗max(jωopt)

λmax(ωopt)
δd

with Δθ = 2θ . Denote the SDF achieved by using H2/H2 optimal scheme with

ΩDE(qopt, Jth,2) =
{
f
∣∣ ∥∥qopt(s)

(
Gdi(s)d(s)+G−1

do (s)
�Gf (s)f (s)

)∥∥
2 > Jth,2

}
qopt(s) = qb(s)vmax(s). (12.38)

Considering
∥∥qopt(s)

(
Gdi(s)d(s)+G−1

do (s)
�Gf (s)f (s)

)∥∥
2

≤ ∥∥qopt(s)
∥∥∞
∥∥Gdi(s)d(s)+G−1

do (s)
�Gf (s)f (s)

∥∥
2

=
√
vmax(jωopt)Φ(ωopt)v∗max(jωopt)

λmax(ωopt)

∥∥Gdi(s)d(s)+G−1
do (s)

�Gf (s)f (s)
∥∥

2
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we know ∥∥qopt(s)
(
Gdi(s)d(s)+G−1

do (s)
�Gf (s)f (s)

)∥∥
2 > Jth,2

only if

√
vmax(jωopt)Φ(ωopt)v∗max(jωopt)

λmax(ωopt)

∥∥Gdi(s)d(s)+G−1
do (s)

�Gf (s)f (s)
∥∥

2

>

√
vmax(jωopt)Φ(ωopt)v∗max(jωopt)

λmax(ωopt)
δd

=⇒ ∥∥Gdi(s)d(s)+G−1
do (s)

�Gf (s)f (s)
∥∥

2 > δd. (12.39)

Recall that the last inequality is exactly the fault detection condition if the unified
solution is used, that is, for any f

f ∈ΩDE(qopt, Jth,2)

it also holds

f ∈ΩDE(Ropt,DE, δd).

On the other hand, since qopt(s) is a vector-valued post-filter with a (strongly) lim-
ited band, there do exist faults which belong to ΩDE(Ropt,DE, δd) but lead to

qopt(s)G
−1
do (s)

�Gf (s)f (s)= 0 or

qopt(jωopt)G
−1
do (jωopt)�Gf (jωopt)f (jωopt)≈ 0

and thus

f (s) /∈ΩDE(qopt, Jth,2).

This proves that the solution (12.27) provides us with a better fault detectability than
the H2/H2 scheme, as summarized in the following theorem.

Theorem 12.5 Given system (12.16) and residual generator (12.17), then

ΩDE(qopt, Jth,2)⊂ΩDE(Ropt,DE, δd). (12.40)

Relationship to H∞/H∞ and H−/H∞ Optimal Schemes Recall that
H∞/H∞ and H−/H∞ are respectively formulated as

sup
R(s)∈RH∞

‖R(s)�Gf (s)‖∞
‖R(s)�Gd(s)‖∞

and sup
R(s)∈RH∞

‖R(s)�Gf (s)‖−
‖R(s)�Gd(s)‖∞

. (12.41)

Since in both formulations, the influence of d is evaluated by L2 norm, the thresh-
old setting should follow (12.20). It is clear that both ΩDE(R∞/∞, (1 − FAR)δd)
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and ΩDE(R−/∞, (1− FAR)δd), that is, the sets of detectable faults that are deliv-
ered by an H∞/H∞ and an H−/H∞ optimal residual generator, should belong to
ΩDE(Ropt,DE, δd). Without proof, we provide the following theorem.

Theorem 12.6 Given system (12.16) and residual generator (12.17), then

ΩDE

(
R∞/∞, (1− FAR)δd

) ⊂ΩDE

(
Ropt,DE, (1− FAR)δd

)
(12.42)

ΩDE

(
R−/∞, (1− FAR)δd

) ⊂ΩDE

(
Ropt,DE, (1− FAR)δd

)
. (12.43)

At the end of this subsection, we would like to evaluate the solutions to H∞
OFIP scheme and compare different reference model-based FD schemes introduced
in Chap. 8 in the context of the trade-off between the FAR and FDR.

Consider H∞ OFIP scheme given in Sect. 7.5 and the reference model based
design scheme with reference model rref = f . They can be unifiedly formulated as
finding R(s) so that

‖r − f ‖2 = ‖r − rref ‖2 −→min (12.44)

⇐⇒ min
R(s)∈RH∞

∥∥[I −R(s)�Gf (s) R(s)�Gd(s)
]∥∥∞.

In this context, we rewrite detection condition into
∥∥R(s)(�Gd(s)d(s)+�Gf (s)f (s))∥∥2 > Jth,ref ⇐⇒ ∥∥rref +(r−rref )

∥∥
2 > Jth,ref .

Since ∥∥rref + (r − rref )
∥∥

2 ≤ ‖rref ‖2 + min
R(s)∈RH∞

‖r − rref ‖2

for a good optimization with a (very) small minR(s)∈RH∞ ‖r − rref ‖2, the detection
condition, under a given FAR, can be approximately expressed by

‖rref ‖2 > Jth,ref = (1− FAR)δd
∥∥Ropt,ref (s)�Gd(s)

∥∥∞ (12.45)

Ropt,ref (s) = arg min
R(s)∈RH∞

∥∥[I −R(s)�Gf (s) R(s)�Gd(s)
]∥∥.

For our comparison purpose, we now apply the unified solution as the reference
model,

rref ,SDF(s)= N̂d(s)d(s)+ M̂d(s)�Gf (s)f (s)
and re-write detection condition into

∥∥R(s)(�Gd(s)d(s)+ �Gf (s)f (s))∥∥2 > Jth,ref ,SDF

⇐⇒ ∥∥rref ,SDF + (r − rref ,SDF)
∥∥

2 > Jth,ref ,SDF.

Under the same FAR, the detection condition, by a good optimization, is approxi-
mately given by
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‖rref ,SDF‖2 > Jth,ref ,SDF = (1− FAR)δd . (12.46)

Following Corollary 12.1, the residual signal generated by means of H∞ OFIP so-
lutions or the reference model based design scheme with reference model rref = f ,
would lead, under the same FAR, to a poorer fault detectability than the resid-
ual signal generated by the reference model based design scheme with reference
model rref ,SDF .

In summary, our above discussion evidently demonstrates that the optimal solu-
tion (12.34) delivers the best fault detectability for a given FAR.

12.2.5 Examples

The following two examples are used to illustrate our discussion in the last subsec-
tion.

Example 12.1 Given system model

y(s)=
[

s−1
s2+1.5s+0.5

s−1
s+0.5

]
d(s)+

[
1
s+1

1
s2+2s+1

0 1
s+1

]
f (s).

and assume that FAR is required to be 0. It is easy to prove that

R(s)=
[
−1 1

s+1

]

delivers a residual signal decoupled from d(s), that is,

r(s)=R(s)y(s)=
[
− 1
s+1 0

]
f (s)=− 1

s + 1
f1(s), f (s)=

[
f1(s)

f2(s)

]
.

The corresponding SDF is

ΩDE(R,0)=
{
f
∣∣ f1(s) �= 0

}
.

In comparison, applying Algorithm 12.1 yields

Ropt,DE(s)=
[
s+0.5
s+1 0
0 1

δ

][
0 1
−1 1

s+1

]
(12.47)

which leads to

[
r1(s)

r2(s)

]
=
[
s−1
s+1
0

]
d(s)+

[
0 s+0.5

s2+2s+1
− 1
δ

1
s+1 0

][
f1(s)

f2(s)

]
.

Thus, for a enough small 1
δ
,
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ΩDE(Ropt,DE, δd)

= {f ∣∣ f1(s) �= 0
}∪
{
f

∣∣∣
∥∥∥∥ s − 1

s + 1
d(s)+ s + 0.5

s2 + 2s + 1
f2(s)

∥∥∥∥
2
> δd

}

=ΩDE(R,0)∪
{
f

∣∣∣
∥∥∥∥ s − 1

s + 1
d(s)+ s + 0.5

s2 + 2s + 1
f2(s)

∥∥∥∥
2
> δd

}
.

This result verifies the result in Theorem 12.4.

Example 12.2 In this example, we concentrate ourselves on the detection of f2(s)

given in the above example, that is, we consider system model

y2(s)= s − 1

s + 0.5
d(s)+ 1

s + 1
f (s). (12.48)

We first design an H2/H2 optimal residual generator. To this end, we compute
λmax(ω) and ωopt,

1

1+ jω
1

1− jω − λmax(ω)
jω− 1

0.5+ jω
−jω− 1

0.5− jω = 0

⇐⇒ λmax(ω)= 0.25+ω2

(1+ω2)2
=⇒ ωopt =

√
0.5.

In the next step, we design a band pass around ωopt,

qb,2(s)= 1

s2 + 0.001s + 0.7
(12.49)

which delivers a (sub-)optimum

max
qb(s)

‖qb(s) 1
s+1‖2

‖qb(s) s−1
s+0.5‖2

= λ1/2
max(ωopt)≈

‖qb,2(s) 1
s+1‖2

‖qb,2(s) s−1
s+0.5‖2

.

Note (12.48) is a single output system. Hence, with the above post-filter also an
H∞/H∞ optimum is reached, that is,

max
qb(s)

‖qb(s) 1
s+1‖2

‖qb(s) s−1
s+0.5‖2

=max
qb(s)

‖qb(s) 1
s+1‖∞

‖qb(s) s−1
s+0.5‖∞

= λ1/2
max(ωopt).

Next, for our comparison purpose, we design an H−/H∞ optimal residual gener-
ator. Remember that the H−/H∞ optimal design is not unique (see also the next
section), we have decided to use the one which is different from the unified solution
given in (12.47), as shown below,

R−/∞(s)= s + 1

αs + 1
, α = 0.005 (12.50)
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and yields

‖ s+1
αs+1

1
s+1‖−

‖ s+1
αs+1

s−1
s+0.5‖∞

≈max
R(s)

‖R(s) 1
s+1‖−

‖R(s) s−1
s+0.5‖∞

=max
ω

√
0.25+ω2

1+ω2
.

In comparison, the optimal solution proposed in this section is given by

Ropt,DE(s)= s + 0.5

s + 1
(12.51)

which delivers

‖ s+0.5
s+1

1
s+1‖−

‖ s+0.5
s+1

s−1
s+0.5‖∞

=max
ω

√
0.25+ω2

1+ω2
.

Below, we compare the performance of residual generators (12.49), (12.50) and
(12.51) by means of two simulation cases:

Case I : d(t) is a white noise, f (t) = 10(t − 20) sin(3t)

Case II : d(t) is a white noise, f (t) = 5(t − 20) sin(0.5t).

Figures 12.2, 12.3, 12.4 show the simulation results using the three residual gen-
erators, the H2/H2 optimal residual generator (12.49) (qb,2(s)), H−/H∞ optimal
residual generator (12.50) (R−/∞(s)) and the residual generator Ropt,DE(s) 12.51)
designed using the approach proposed in this section, for Case I and Figs. 12.5, 12.6,
12.7 for Case II. We can see that residual generator Ropt,DE(s) is sensitive to the
faults in both cases, while qb,2(s) delivers a good FD performance only in Case II
and the FD performance of R−/∞(s) is poor in both cases. These results confirm
the theoretical results achieved in this section and demonstrate.

Fig. 12.2 Response of the
residual signal generated by
an H2/H2 optimal residual
generator (Case I)



386 12 Integrated Design of Fault Detection Systems

Fig. 12.3 Response of the
residual signal generated by
an H−/H∞ optimal residual
generator (Case I)

Fig. 12.4 Response of the
residual signal generated by
the residual generator
designed using the unified
solution (Case I)

In Sect. 12.4, we shall briefly study the application of the trade-off approach
proposed in this section to the stochastic systems.

12.3 Minimizing False Alarm Number by a Given FDR

The last section has shown that the unified solution provides an optimal trade-off
in the sense that by a given allowable FAR, the fault detectability is maximized.
From the practical viewpoint, it is of considerable interest to approach the dual
form of the above trade-off, that is, by a given FDR, how to achieve a minimiza-
tion of false alarm number. This is the objective of this section. Beside of problem
formulation and solution, we shall, in this section, address the interpretation of the
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Fig. 12.5 Response of the
residual signal generated by
an H2/H2 optimal residual
generator (Case II)

Fig. 12.6 Response of the
residual signal generated by
an H−/H∞ optimal residual
generator (Case II)

developed trade-off scheme and the comparison of the achieved solution with the
existing ones.

12.3.1 Problem Formulation

Again, we consider system model (12.16) and residual generator (12.17). The fault
detection condition and false alarm condition are respectively given in (12.18) and
(12.19). We formulate our problem as the following:

Problem of Minimizing SDFA Under a Given FDR (PMin-SDFA) Given
FDR in the context of Definition 12.7 and Jth setting according to (12.15), find
Ropt,FA(s) ∈RH∞ so that
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Fig. 12.7 Response of the
residual signal generated by
the residual generator
designed using the unified
solution (Case II)

∀R(s) ∈RH∞, ΩFA(Ropt,FA, Jth)⊆ΩFA(R,Jth). (12.52)

It is evident that applying Ropt,FA(s) would ensure the least number of false
alarms.

12.3.2 Essential Form of the Solution

In the subsequent discussion, it is first assumed that

∀ω ∈ [0,∞], �Gf (jω)�G∗f (jω) > 0 for continuous-time systems (12.53)

∀θ ∈ [0,2π], �Gd
(
eθj
)�G∗d(eθj )> 0 for discrete-time systems (12.54)

and

m= kf . (12.55)

As a result, the co-outer of �Gf (s) = Gfo(s)Gf i(s), Gfo(s), is left invertible
in RH∞. Note that, assumptions (12.53)/(12.54) and (12.55) also ensure that
‖�Gf (s)‖− > 0. These two assumptions will be removed in the next subsection.

Theorem 12.7 Given system model (12.16), residual generator (12.17) and FDR,
assume that �Gf (s) ∈ RH∞ satisfies (12.53)/(12.54) and (12.55) and �Gd(s) ∈
RH∞, then

Ropt,FA(s)=G−1
f o(s) ∈RH∞ (12.56)

is the solution of PMin-SDFA (12.52).
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Proof Do an LCF of �Gf (s) = Gfo(s)Gf i(s), where G−1
f o(s) ∈ RH∞, Gf i(s) ∈

RH∞ and Gf i(s) is a co-inner. Assume that

R(s)=Q(s)G−1
f o(s), Q(s) ∈RH∞.

Then, false alarm condition (12.19) can be rewritten into

∥∥Q(s)G−1
f o(s)

�Gd(s)d(s)
∥∥

2 −
δf,min

FDR

∥∥Q(s)Gf i(s)∥∥− > 0. (12.57)

Note that
∥∥Q(s)Gf i(s)∥∥− ≤

∥∥Q(s)∥∥−
∥∥Gf i(s)∥∥∞ =

∥∥Q(s)∥∥−∥∥Q(s)G−1
f o(s)

�Gd(s)d(s)
∥∥

2 ≥
∥∥Q(s)∥∥−

∥∥G−1
f o(s)

�Gd(s)d(s)
∥∥

2.

It turns out

∥∥Q(s)∥∥−
(∥∥G−1

f o(s)
�Gd(s)d(s)

∥∥
2 −

δf,min

FDR

)

≤ ∥∥Q(s)G−1
f o(s)

�Gd(s)d(s)
∥∥

2 −
δf,min

FDR

∥∥Q(s)Gf i(s)∥∥−.
As a result,

∥∥Q(s)∥∥− > 0,
∥∥G−1

f o(s)
�Gd(s)d(s)

∥∥
2 −

δf,min

FDR
> 0 (12.58)

lead to (12.57). In other words, (12.58) is sufficient for a false alarm. Hence, any d
satisfying (12.58) will result in

∥∥R(s)�Gd(s)d(s)∥∥2 −
δf,min

FDR

∥∥R(s)�Gf (s)∥∥−
= ∥∥Q(s)G−1

f o(s)
�Gd(s)d(s)

∥∥
2 −

δf,min

FDR

∥∥QGf i(s)∥∥− > 0.

Considering that (12.58) can be achieved by setting R(s)=G−1
f o(s), we finally have

∀Q(s) ∈RH∞ with ‖Q(s)‖− > 0,

ΩFA

(
G−1
f o, Jth

)⊆ΩFA

(
QG−1

f o, Jth
)

which is equivalent to (12.52). The theorem is proven. �

Theorem 12.7 provides us with an approach, by which we can achieve an optimal
trade-off in the sense of minimizing the FAR under a given FDR in the context of
norm-based residual evaluation. It is interesting to notice that the role of post-filter
Ropt,FA(s) is in fact to inverse the magnitude profile of �Gf (s). As a result, we have

∥∥Ropt,FA(s)�Gf (s)
∥∥− =

∥∥Ropt,FA(s)�Gf (s)
∥∥∞ = 1. (12.59)
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Moreover, the residual dynamics is governed by

r(s)=G−1
f o(s)

�Gd(s)d(s)+Gf i(s)f (s)
and the threshold Jth should be set, according to (12.15), as

Jth = δf,min

FDR

∥∥Ropt,FA(s)�Gf (s)
∥∥− = δf,min

FDR
. (12.60)

Note that in case of weak disturbances, Ropt,FA(s) also delivers an estimation of the
size of the fault (i.e., the energy of the fault), as

‖r‖2 ≈
∥∥Gf i(s)f (s)∥∥2 = ‖f ‖2. (12.61)

We would like to mention that the application of the well-established factorization
technique to the problem solution is very helpful for getting a deep insight into
the optimization problem. Different from the LMI solutions, the interpretation of
(12.56) as the inverse of the magnitude profile of �Gf (s) is evident. Based on this
knowledge, the achieved solution will be used for the comparison study in the next
section. From the computational viewpoint, solution (12.56) is an analytical one and
the major computation is to solve a Riccati equation for the computation of Gfo(s).

12.3.3 The State Space Form

Following Lemmas 7.4 and 7.5, the results given in Theorem 12.7 can also be ex-
pressed in the state space form. To this end, suppose that the minimal state space
realization of system (12.16) is given by

ẋ(t)=Ax(t)+Bu(t)+Edd(t)+Ef f (t) (12.62)

y(t)= Cx(t)+Du(t)+ Fdd(t)+ Ff f (t) (12.63)

where x ∈Rn, A, B , C, D, Ed , Ef , Fd , Ff are known constant matrices of com-
patible dimensions. For the purpose of residual generation, FDF of the form

˙̂x(t)=Ax̂(t)+Bu(t)+L(y(t)− ŷ(t)) (12.64)

ŷ(t)= Cx̂(t)+Du(t), r(t)= V (y(t)− ŷ(t)) (12.65)

can be used, which also represents a state space realization of residual generator
(12.17) with a constant post-filter V . In (12.64)–(12.65), L and V are constant
matrices and can be arbitrarily selected. The dynamics of (12.64)–(12.65) can be
equivalently written as

r(s)= V (M̂u(s)Gd(s)d(s)+ M̂u(s)Gf (s)f (s)
)

= V (N̂d(s)d(s)+ N̂f (s)f (s))
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M̂u(s)= I −C(pI −A+LC)−1L= M̂d(s)= M̂f (s)

N̂d(s)= Fd +C(pI −A+LC)−1(Ed −LFd)
N̂f (s)= Ff +C(pI −A+LC)−1(Ef −LFf )
Gd(s)= M̂−1

d (s)N̂d(s), Gf (s)= M̂−1
f (s)N̂f (s).

The following theorem represents a state space version of optimal solution (12.56)
and so that gives the optimal design for L, V .

Theorem 12.8 Given system (12.62)–(12.63) that is detectable and satisfies, for
continuous-time systems,

∀ω ∈ [0,∞], rank

[
A− jωI Ef

C Ff

]
= n+m

and for discrete-time systems

∀θ ∈ [0,2π], rank

[
A− ejθ I Ef

C Ff

]
= n+m

and residual generator (12.64)–(12.65), then for continuous-time systems

Lopt,FA =
(
EfF

T
f + Yf CT

)(
Ff F

T
f

)−1
, Vopt,FA =

(
Ff F

T
f

)−1/2
(12.66)

with Yf ≥ 0 being the stabilizing solution of the Riccati equation

AYf + YfAT +EfETf −
(
EfF

T
f + Yf CT

)(
Ff F

T
f

)−1(
FfE

T
f +CYf

)= 0

and for discrete-time systems

Lopt =−LTf , Vopt =Wf (12.67)

with Wf being the left inverse of a full column rank matrix Hf satisfying HfHT
f =

CXfC
T + Ff FTf , and (Xf ,Lf ) the stabilizing solution to the DTARS (discrete-

time algebraic Riccati system)

[
AXfA

T −Xf +EfETf AXfC
T +EfFTf

CXfA
T + FfETf CXfC

T + Ff FTf

][
I

Lf

]
= 0

deliver an optimal FDF in the sense of (12.52).

The proof of this theorem follows directly from Lemmas 7.4 and 7.5, and thus
omitted.
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12.3.4 The Extended Form

We are now going to remove assumption (12.53) or (12.54) and assumption
(12.55), and extend the proposed approach so that it can be applied for any sys-
tem described by (12.16). This extension is of practical interest and will enhance
the applicability of the proposed approach considerably. For instance, after this
extension the approach can also be applied to the detection of actuator faults,
which would be otherwise impossible due to the fact that Gf (s) would have ze-
ros at infinity. For the sake of simplicity, we only consider continuous-time sys-
tems.

We first relax (12.55) and consider system (12.16) with m> kf . Note that in this
case ‖�Gf (s)‖− �= 0, which is equivalent to

∀ω ∈ [0,∞], �G∗f (jω)�Gf (jω) > 0. (12.68)

Since �GTf (s) ∈RHkf×m∞ and, due to (12.68), ∀ω ∈ [0,∞],

rank
(�GTf (jω))= kf (12.69)

it follows from the discussion on the CIOF in Sect. 7.1.5 that �GTf (s) can be factor-
ized into

�GTf (s)=Gi(s)Go(s) ⇐⇒ �Gf (s)=Gfo(s)Gf i(s) (12.70)

whereGf i(s) is co-inner andGfo(s) is left invertible in RH∞. As a result, we have
the following theorem.

Theorem 12.9 Given �Gf (s) ∈ RHm×kf∞ , m > kf , satisfying (12.68), �Gd(s) ∈
RH∞, then

Ropt,FA(s)=G−f o(s) ∈RH∞ (12.71)

ensures that ∀R(s)(�= 0) ∈RH∞

ΩFA(Ropt,FA, Jth)⊆ΩFA(R,Jth)

where G−f o(s) is the left inverse of Gfo(s) and Gfo(s) the co-outer of �Gf (s) as
given in (12.70).

The proof of this theorem is similar to the one of Theorem 12.7 and thus omit-
ted.

We now remove assumptions (12.53) and (12.55) and extend the solution. Note
that in this case ‖�Gf (s)‖− = 0, that is, there exists a class of faults which are, in-
dependent of their size, structurally not detectable (see Chap. 4). They can be, for
kf > m, vectors in the right null subspace of �Gf (s), or for rank(�Gf (jω)) < m,
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those vectors corresponding to the zeros �Gf (jω) in Cjω or at infinity. The basic
idea behind the extension study is to exclude these faults and consider only the
structurally detectable faults. For this purpose, an extended CIOF of �Gf (s) intro-
duced in Chap. 7 can be used, which is described by

�Gf (s)=Gfo(s)G∞(s)Gjω(s)Gf i(s) (12.72)

where Gf i(s) is co-inner, Gfo(s) has a left inverse in RH∞, Gjω(s) has the same
zeros on the imaginary axis and G∞(s) the same zeros at infinity as �Gf (s). Con-
sidering that ‖G∞(s)Gjω(s)Gf i(s)‖− = 0, it is reasonable to define

f ∗(s)= G∞(s)Gjω(s)
‖G∞(s)Gjω(s)‖∞Gf i(s)f (s) (12.73)

=⇒ ∥∥f ∗(s)∥∥2 ≤
∥∥Gf i(s)f (s)∥∥2 ≤

∥∥f (s)∥∥2 (12.74)

and reformulate the fault detection problem as finding R(s) such that the residual
generator

r(s)=R(s)(�Gd(s)d(s)+ �Gfo(s)f ∗(s)) (12.75)

�Gfo(s)=Gfo(s)
∥∥G∞(s)Gjω(s)∥∥∞ (12.76)

is optimal in the sense of minimizing FAR under a given FDR, as formulated at the
beginning of this section. This problem can then be solved using Theorem 12.7 and
the optimal solution is given by

Ropt,FA(s)= �G−1
f o(s).

We summarize the introduced approach into the following algorithm.

Algorithm 12.2 (Optimal design of FD systems by given FDR and δf,min)

S1: Bring �Gf (s) into (12.75) using the extended CIOF Algorithm 7.7
S2: Compute �Gfo(s) according to (12.76)
S3: Set Ropt,FA(s) as

Ropt,FA(s)= �G−1
f o(s)

S4: Set threshold Jth according to (12.60).

12.3.5 Interpretation of the Solutions and Discussion

In this subsection, we are going to study the proposed approach from the mathe-
matical viewpoint and compare it with some existing results. To this end, we first
demonstrate that solution (12.56) also solves the optimization problem
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sup
R(s)∈RH∞

J0 = sup
R(s)∈RH∞

‖R(s)�Gf (s)‖−
‖R(s)�Gd(s)‖∞

. (12.77)

Theorem 12.10 Assume that �Gf (s), �Gd(s) and Gfo(s) are the ones given in The-
orem 12.7, then

sup
R(s)∈RH∞

‖R(s)�Gf (s)‖−
‖R(s)�Gd(s)‖∞

= 1

‖G−1
f o(s)

�Gd(s)‖∞

Ropt(s)= arg sup
R(s)∈RH∞

‖R(s)�Gf (s)‖−
‖R(s)�Gd(s)‖∞

=G−1
f o(s).

Proof Let R(s)=Q(s)G−1
f o(s) ∈RH∞. It leads to

J0 =
‖Q(s)G−1

f o(s)Gfo(s)Gf i(s)‖−
‖Q(s)G−1

f o(s)
�Gd(s)‖∞

≤ ‖Q(s)‖−
‖Q(s)G−1

f o(s)
�Gd(s)‖∞

.

Due to the relation

∥∥Q(s)G−1
f o(s)

�Gd(s)
∥∥∞ ≥

∥∥Q(s)∥∥−
∥∥G−1

f o(s)
�Gd(s)

∥∥∞
we get

J0 ≤ 1

‖G−1
f o(s)

�Gd(s)‖∞
and the equality holds when Q(s)= I . Thus, R(s)= Ropt(s)=G−1

f o(s) is the opti-
mal solution to the optimization problem (12.77) and the theorem is proven. �

Theorem 12.10 reveals that the optimization problem (12.77) can be solved an-
alytically and the major involved computation is solving a Riccati equation for
achieving Gfo(s). Remember that the unified solution R(s) =G−1

do (s), under cer-
tain conditions, also solves (12.77). It is thus of interest to check the equivalence
between these two solutions.

Theorem 12.11 Assume that �Gf (s), �Gd(s) can be factorized into

�Gf (s)=Gfo(s)Gf i(s), �Gd(s)=Gdo(s)Gdi(s)

with G−1
f o(s), G

−1
do (s) ∈RH∞, Gf i(s) and Gdi(s) co-inner. Then

‖G−1
f o(s)

�Gf (s)‖−
‖G−1

f o(s)
�Gd(s)‖∞

= ‖G
−1
do (s)

�Gf (s)‖−
‖G−1

do (s)
�Gd(s)‖∞

. (12.78)



12.3 Minimizing False Alarm Number by a Given FDR 395

Proof The left side of (12.78) equals to

‖G−1
f o(s)

�Gf (s)‖−
‖G−1

f o(s)
�Gd(s)‖∞

= 1

‖G−1
f o(s)

�Gd(s)‖∞

= 1

‖G−1
f o(s)Gdo(s)Gdi(s)‖∞

= 1

‖G−1
f o(s)Gdo(s)‖∞

.

Note that

1

‖G−1
f o(s)Gdo(s)‖∞

= ∥∥G−1
do (s)Gfo(s)

∥∥−.
On the right side of (12.78), we have

‖G−1
do (s)

�Gf (s)‖−
‖G−1

do (s)
�Gd(s)‖∞

= ∥∥G−1
do
�Gf
∥∥− =

∥∥G−1
do Gfo

∥∥−.

The theorem is thus proven. �

Although solutionsG−1
f o(s) and G−1

do (s) are equivalent in the sense of optimizing
(12.77), they deliver different results for the following general optimization problem
Hi/H∞,

sup
R(s)∈RH∞

Ji,ω(R) = sup
R(s)∈RH∞

σi(R(jω)�Gf (jω))
‖R(s)�Gd(s)‖∞

as well as (12.79)

sup
R(s)∈RH∞

Ji,θ (R) = sup
R(s)∈RH∞

σi(R(e
jθ )�Gf (ejθ ))

‖R(s)�Gd(s)‖∞
(12.80)

as described in Theorem 12.12.

Theorem 12.12 Assume that �Gf (s), �Gd(s) satisfy the assumptions given in Theo-
rem 12.11, then the following relations hold

J∞
(
G−1
f o

)= Ji,ω(G−1
f o

)= J0
(
G−1
f o

)= 1

‖G−1
f o(s)

�Gd(s)‖∞
= J0
(
G−1
do

)

= sup
R(s)∈RH∞

‖R(s)�Gf (s)‖−
‖R(s)�Gd(s)‖∞

≤ Ji,ω
(
G−1
do

)= σi(G
−1
do (jω)

�Gf (jω))
‖G−1

do (s)
�Gd(s)‖∞

= sup
R(s)∈RH∞

σi(R(jω)�Gf (jω))
‖R(s)�Gd(s)‖∞

≤J∞
(
G−1
do

)= sup
R(s)∈RH∞

‖R(s)�Gf (s)‖∞
‖R(s)�Gd(s)‖∞

(12.81)
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as well as

J∞
(
G−1
f o

)= Ji,θ (G−1
f o

)= J0
(
G−1
f o

)= 1

‖G−1
f o(s)

�Gd(s)‖∞
= J0
(
G−1
do

)

= sup
R(s)∈RH∞

‖R(s)�Gf (s)‖−
‖R(s)�Gd(s)‖∞

≤ Ji,ω
(
G−1
do

)= σi(G
−1
do (e

jθ )�Gf (ejθ ))
‖G−1

do (s)
�Gd(s)‖∞

= sup
R(s)∈RH∞

σi(R(e
jθ )�Gf (ejθ ))

‖R(s)�Gd(s)‖∞
≤J∞

(
G−1
do

)= sup
R(s)∈RH∞

‖R(s)�Gf (s)‖∞
‖R(s)�Gd(s)‖∞

(12.82)

where

sup
R(s)∈RH∞

J∞(R)= sup
R(s)∈RH∞

‖R(s)�Gf (s)‖∞
‖R(s)�Gd(s)‖∞

. (12.83)

Proof We only prove the continuous time case. Noting that

σi
(
G−1
f o(jω)

�Gf (jω)
)= 1

for any ω and i, it turns out ∀ω, i

Ji,ω
(
G−1
f o

)= 1

‖G−1
f o(s)

�Gd(s)‖∞
J∞
(
G−1
f o

)= sup
i,ω

Ji,ω
(
G−1
f o

)= 1

‖G−1
f o(s)

�Gd(s)‖∞
J0
(
G−1
f o

)= inf
i,ω
Ji,ω
(
G−1
f o

)= 1

‖G−1
f o(s)

�Gd(s)‖∞
.

It follows from Theorem 12.11 that

J0
(
G−1
f o

)= J0
(
G−1
do

)= sup
R(s)∈RH∞

‖R(s)�Gf (s)‖−
‖R(s)�Gd(s)‖∞

.

On the other hand, it holds that

σ
(
G−1
do (jω)

�Gf (jω)
)= inf

i
σi
(
G−1
do (jω)

�Gf (jω)
)

≤ σi
(
G−1
do (jω)

�Gf (jω)
)≤ sup

i

σi
(
G−1
do (jω)

�Gf (jω)
)

= σ̄ (G−1
do (jω)

�Gf (jω)
)
.

As a result, ∀ω, i

J0
(
G−1
do

)= inf
i,ω
Ji,ω
(
G−1
do

)≤ Ji,ω(G−1
do

)≤ sup
i,ω

Ji,ω
(
G−1
do

)= J∞(G−1
do

)
.

The theorem is thus proven. �
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From the FDI viewpoint, the result in Theorem 12.12 can be interpreted as the
fact that the FD system designed by the trade-off strategy developed in this paper
is less robust in comparison with the FD system designed by using the unified so-
lution. On the other hand, as mentioned in the former subsection, the new trade-off
strategy delivers a better estimation of the size of the possible faults. In this context,
we would like to emphasize that the decision for a certain optimization approach
should be made based on the design objective not on the mathematical optimization
performance index.

12.3.6 An Example

In this subsection, an example is given to illustrate the results achieved in the last
two sections.

Example 12.3 Consider the FD problem of a system in the form of (12.62)–(12.63)
with matrices

A=

⎡
⎢⎢⎣
−3 −0.5 0.8 1
1 −4 0 −1
2 −3 −1 0.5
0 1 −2 0

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

3
2
1
1

⎤
⎥⎥⎦

C =
[

1 −0.25 −1 0
0 1 0 1

]
, D =

[
0.5
0.3

]

Ed =

⎡
⎢⎢⎣

0.5 −1 1
0.8 0.5 0
0 −1 1

0.2 0 0.5

⎤
⎥⎥⎦ , Ef =

⎡
⎢⎢⎣
−1 0
−0.5 1
0.2 1
−1 0

⎤
⎥⎥⎦

Fd =
[

0.5 1 0
1 0 1

]
, Ff =

[
1 0
0 1.5

]
.

From Theorem 12.8, we get the optimal gain matrix L1, V1

L1 =

⎡
⎢⎢⎣
−0.9735 0.1323
−0.5639 0.5791
−0.2118 0.6198
−0.4837 0.4439

⎤
⎥⎥⎦ , V1 =

[
1 0
0 0.6667

]
. (12.84)

The unified solution that solves (12.79), (12.83) and (12.77) simultaneously is

L2 =

⎡
⎢⎢⎣
−1.0072 1.0029
0.6343 0.2393
−1.1660 0.7751
−0.0563 0.3878

⎤
⎥⎥⎦ , V2 =

[
0.9333 −0.1333
−0.1333 0.7333

]
. (12.85)
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Fig. 12.8 Performance index
J∞(L1,V1)= J0(L1,V1)=
J1,ω(L1,V1)= J2,ω(L1,V1)≡
0.1769 (dashed line),
performance index
J1,ω(L2,V2) (solid line), and
performance index
J2,ω(L2,V2) (dotted line)

The optimal performance indexes, as obtained by solving (12.79), (12.83) and
(12.77) are shown in Fig. 12.8. It can be seen that, ∀ω,

2.1533= J∞(L2,V2)= J1,ω=0(L2,V2)≥ J1,ω(L2,V2)

≥ J2,ω(L2,V2)≥ J2,ω=1.7870(L2,V2)= J0(L2,V2)= J0(L1,V1)

= J1,ω(L1,V1)= J2,ω(L1,V1)= J∞(L1,V1)= 0.1769.

These results verify Theorems 12.10–12.12.
In the simulation study, the simulation time is set to be 2000 seconds and the

control input is a step signal (step time at 0) of amplitude 5. The unknown distur-
bances are, respectively, a continuous signal taking value randomly from a uniform
distribution between [−0.1,0.1], a sine wave 0.1 sin(0.1t), and a chirp signal with
amplitude 0.1 and frequency varying linearly from 0.02 Hz to 0.06 Hz. Fault 1
appears at the 1200th second as a step function of amplitude 0.75. Fault 2 ap-
pears at the 1000th second as a step function of amplitude 0.4. The fault energy
is ‖f ‖2 = 24.71. The residual signals are shown in Fig. 12.9, where r1 denotes the
residual vector generated with L1, V1 and r2 that by L2, V2. As ‖r1‖2 = 25.45,
‖r2‖2 = 21.46, the residual vector obtained by L1, V1 gives a better estimation of
the energy level of the fault signal. On the other hand, we see from the second fig-
ure that the residual vector got by L2, V2 shows a better fault/disturbance ratio in
the sense of (12.79), (12.83) and (12.77). This demonstrates the results in Theo-
rem 12.12.

12.4 On the Application to Stochastic Systems

In the last two sections, two trade-off strategies and the associated design methods
have been developed in the norm-based evaluation framework. It is of practical in-
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Fig. 12.9 Residual signals

terests to know if they are still valid for stochastic systems and in the statistic testing
framework. In this section, we shall briefly discuss the related issues.

12.4.1 Application to Maximizing FDR by a Given FAR

In Sect. 11.1.3, we have introduced a GLR solution to the residual evaluation and
threshold computation for stochastic systems modelled by (11.1)–(11.2). The core
of this approach is the computation of the FAR in the sense of Definition 12.1, which
is given by (see (11.16))

α ≤ 1− prob
(
χ2(mr(s + 1), δ2

rd

)≤ δ2
rd

)
. (12.86)

(12.86) can be equivalently written as

α ≤ 1− prob
(
χ2(mr(s + 1),1

)≤ 1
)

(12.87)

when the residual evaluation function is redefined by

rTk−s,krk−s,k
δ2
rd

.

Now, if we set the residual generator according to Corollary 12.1, then we have
∀R(s) ∈RH∞

ΩDE(R,Jth)⊆ΩDE(Ropt,DE,Jth).

As a result, Ropt,DE delivers the maximal probability

prob

(
rTk−s,krk−s,k

δ2
rd

> 1
∣∣∣ fk−s,k �= 0

)
(12.88)
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while keeping the same FAR as given by (12.87). Remember that the probability
given in (12.88) is exactly the FDR given in Definition 12.2. In this context, we
claim that the solution presented in this section, namely the unified solution, also
solves the FD systems design problem for stochastic systems (11.1)–(11.2), which
is formulated as: given FAR (in the sense of Definition 12.1) find the residual gen-
erator, L and V , so that the FDR (in the sense of Definition 12.2) is maximized.

12.4.2 Application to Minimizing FAR by a Given FDR

The trade-off strategy proposed in Sect. 12.3 requires a threshold setting according
to (12.60), which also fits the FDR in the sense of Definition 12.2,

FDR= prob
(
rTk−s,krk−s,k > Jth

∣∣ fk−s,k �= 0
)
.

For the computation of the associated FAR α as defined in Definition 12.1, we can
again use the estimation

α ≤ 1− prob
(
χ2(mr(s + 1), δ2

rd

)≤ Jth). (12.89)

Remember that the optimal residual generator Ropt,FA ensures that

∀R(s) ∈RH∞, ΩFA(Ropt,FA, Jth)⊆ΩFA(R,Jth).

It results in a maximum probability prob(χ2(mr(s + 1), δ2
rd
) ≤ Jth), which in turn

means Ropt,FA offers the minimum bound for α among all possible residual gener-
ators. In other words, Ropt,FA delivers a minimum FAR by a given FDR.

12.4.3 Equivalence Between the Kalman Filter Scheme
and the Unified Solution

In Sect. 12.4.1, we have demonstrated that the unified solution also solves the op-
timal design problem for stochastic systems. In this subsection, we shall reveal the
equivalence between the unified solution and the Kalman filter scheme, which gives
a control theoretical explanation for the results in Sect. 12.4.1 and a stochastic in-
terpretation of the unified solution as well.

For our purpose, consider system

x(k + 1)=Ax(k)+Bu(k)+Edd(k) (12.90)

y(k)= Cx(k)+Du(k)+ ν(k), ν(k)= Fdd(k). (12.91)
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Suppose that d(k) is a white and normally distributed noise process with zero mean
and identity covariance matrix, i.e. d(k)∼N (0, I ). Note that it holds

E
([
d(i)

ν(i)

][
dT (j)

(
ν(j)
)T ])=

[
I FTd
Fd FdF

T
d

]
δij .

As described in Sect. 7.2, a steady Kalman filter for the above system is given by

x̂(k + 1)=Ax̂(k)+Bu(k)+Lkal
(
y(k)− ŷ(k)) (12.92)

r̄(k)= y(k)− ŷ(k), ŷ(k)= Cx̂(k)+Du(k) (12.93)

where

Lkal =
(
AXCT +EdFTd

)(
CXCT + FdFTd

)−1 (12.94)

and X ≥ 0 is the solution of Riccati equation

AXAT −X+EdETd −Lkal
(
CXCT + FdFTd

)−1
LTkal = 0.

Recall that the Kalman filter delivers an innovation r̄(k) with

E r̄(k)= 0, E
(
r̄(i)r̄T (j)

)= (CXCT + FdFTd )δij .
Thus, adding a post filter

Vkal =
(
CXCT + FdFTd

)−1/2 (12.95)

results in

r(k)= Vkalr̄(k)∼N (0, I ).

Now, we compare (12.94) and (12.95) with the unified solution given in, for in-
stance, Theorem 7.18. It can be evidently seen that both schemes are identical. This
observation gives a stochastic interpretation of the unified solution, which helps us
to get a deeper insight into the unified solution. We claim that

• in case that the disturbance d(k) is a white noise process with d(k) ∼ N (0, I ),
then the FDF designed by means of the unified solution acts like a Kalman filter.
In this case

• the generated residual signal is a white noise and
• the covariance matrix of the residual signal is minimum.

The last feature is essential for detecting faults in a stochastic process. In the
framework of GLR technique [12], the minimum covariance matrix of the residual
signal ensures either a maximum fault detectability for an allowed false alarm rate
or a minimization of false alarm rate for a given fault detectability.



402 12 Integrated Design of Fault Detection Systems

12.5 Notes and References

Although this chapter is less extensive in comparison with the other chapters, it is,
in certain sense, the soul of this book. Different from the current way of solving the
FDI problems in the context of robustness and sensitivity, as introduced in the pre-
vious chapters, the model-based FDI problems have been re-viewed in the context
of FAR vs. FDR. Inspired by the interpretation of the concepts FAR and FDR in the
statistical framework, we have:

• introduced the concepts of FAR and FDR in the norm-based context
• defined SDF and SDFA and, based on them
• formulated two trade-off problems: maximizing fault detectability by a given (al-

lowable) FAR (PMax-SDF) and minimizing false alarm number by a given FDR
(PMin-SDFA).

In this way, we have established a norm-based framework for the analysis and design
of observer-based FDI systems. It is important to notice that in this framework the
four essential components of an observer-based FD system, the residual generator,
residual evaluation function, the threshold and the decision logic, are taken into
account by the problem formulations. This requires and also allows us to deal with
the FDI system in an integrated manner. The integrated design distinguishes the
design procedure proposed in this chapter significantly from the existing strategies,
where residual generation and evaluation are separately addressed.

It has been demonstrated that the unified solution introduced in Chap. 7 also
solves PMax-SDF, while the solution with inversing the magnitude profile of the
fault transfer function matrix is the one for PMin-SDFA. In the established norm-
based framework, a comparison study has further been undertaken. The results have
verified, from the aspect of the trade-off FAR vs. FDR, that

• the unified solution leads to the maximum fault detectability under a given FAR
and

• the ratio between the influences of the fault and the disturbances is the decisive
factor for achieving the optimum performance and thus the influence of the dis-
turbance should be integrated into the reference model by designing a reference
model based FD system.

One question may arise: Why have we undertaken a so extensive study on the
PUIDP in Chap. 6 and on the robustness issues in Chap. 7? To answer this question,
we would like to call reader’s attention to the result that the solution of the PUIDP is
implicitly integrated into the general form of the unified solution (12.30). In fact, the
solution of the PUIDP gives a factorization in the form of (7.286), which leads then
to (12.30). Also, it should be pointed out that in the established norm-based frame-
work, we have only addressed the FDI design problems under the assumption that
the residual signals are evaluated in terms of the L2 norm. As outlined in Chap. 9, in
practice also other kinds of signal norms are used for the purpose of residual eval-
uation. To study the FDI system design under these norms, the methods and tools
introduced in Chap. 7 are very helpful. As additional future work we would like to
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mention that an “LMI version” of the unified solution would help us to transfer the
results achieved in this chapter to solving FDI problems met in dealing with other
types of systems.

In Sect. 12.4, we have demonstrated the equivalence between the unified solu-
tion and the Kalman filter scheme under certain condition, and briefly discussed the
possible application of the proposed approaches to the stochastic systems. It would
be also a promising topic for the future investigation. A useful tool to deal with such
problems efficiently is the optimal selection of parity matrices presented in Sect. 7.4,
which builds a link to the GLR technique.

A part of the results in this chapter has been provisionally reported in [38].



Chapter 13
Fault Isolation Schemes

Fault isolation is one of the central tasks of a fault diagnosis system, a task that can
become, by many practical applications, a real challenge for the system designer.
Generally speaking, fault isolation is a signal processing process aiming at gaining
information about the location of the faults occurred in the process under considera-
tion. Evidently, the complexity of such a signal processing process strongly depends
on:

• the number of the possible faults
• the possible distribution of the faults in the process under consideration,
• the characteristic features of each fault and
• the available information about the possible faults.

Correspondingly, the fault isolation problems will be solved step by step at different
stages of a model-based fault diagnosis system. Depending on the number of the
faults, their distribution and the fault isolation logic adopted in the decision unit, the
residual generator should be so designed that the generated residual vector delivers
the first clustering of the faults, which, in accordance with the fault isolation logic,
divides the faults into a number of sets. At the residual evaluation stage, the charac-
teristic features of the faults are then analyzed by using signal processing techniques
based on the available information about the faults. As results, a further classifica-
tion of the faults is achieved, and on its basis a decision about the location of the
occurred faults is finally made. If the number of the faults is limited and their distri-
bution is well structured, a fault isolation may become possible without a complex
residual evaluation.

The main objective of this chapter is to present a number of widely used ap-
proaches for the purpose of fault isolation. Our focus is on the residual generation,
as shown in Fig. 13.1. We will first describe the basic principle, and then show the
limitation of the fault isolation schemes which only rely on residual generators and
without considering the characteristic features of the faults and thus without the
application of special signal processing techniques for the residual evaluation, and
finally present and compare different observer-based fault isolation approaches.

S.X. Ding, Model-Based Fault Diagnosis Techniques, Advances in Industrial Control,
DOI 10.1007/978-1-4471-4799-2_13, © Springer-Verlag London 2013
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Fig. 13.1 Description of the fault isolation schemes addressed in Chap. 13

13.1 Essentials

In this section, we first study the so-called perfect fault isolation (PFIs) problem
formulated as: given system model

y(s)=Gyu(s)u(s)+Gyf (s)f (s) (13.1)

with the fault vector f (s) ∈Rkf , find a (linear) residual generator such that each
component of the residual vector r(s) ∈ Rkf corresponds to a fault defined by a
component of the fault vector f (s). We do this for two reasons: by solving the PFIs
problem

• the role and, above all, the limitation of a residual generator for the purpose of
fault isolation can be readily demonstrated and

• the reader can get a deep insight into the underlying idea and basic principle of
designing a residual generator for the purpose of fault isolation.

On this basis, we will then present some approaches to the solution of the PFIs
problem.

13.1.1 Existence Conditions for a Perfect Fault Isolation

In order to study the existence conditions for a PFIs, we consider again the general
form of the dynamics of the residual generator derived in Chap. 5
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r(s)=
⎡
⎢⎣
r1(s)
...

rkf (s)

⎤
⎥⎦=R(s)M̂u(s)Gyf (s)f (s)=R(s)M̂u(s)Gyf (s)

⎡
⎢⎣
f1(s)
...

fkf (s)

⎤
⎥⎦ .

The requirement on a PFIs can then be mathematically formulated as: find R(s)
such that

R(s)M̂u(s)Gyf (s)= diag
(
t1(s), . . . , tkf (s)

)
(13.2)

which gives ⎡
⎢⎣
r1(s)
...

rkf (s)

⎤
⎥⎦=
⎡
⎢⎣
t1(s)f1(s)

...

tkf (s)fkf (s)

⎤
⎥⎦ (13.3)

where ti (s), i = 1, . . . , kf , are some RH∞ transfer functions. Thus, the PFIs prob-
lem is in fact a problem of solving (13.2) which is a dual form the well-known
decoupling control problem. In the following of this subsection, we will restrict our
attention to the existence conditions of (13.2) whose solution will be handled in the
next section.

It is evident that (13.2) is solvable if and only if

rank
(
M̂u(s)Gyf (s)

)= kf .
Recall that M̂u(s) ∈Rm×m has a full-rank equal to m, the following theorem be-
comes evident.

Theorem 13.1 The PFIs problem is solvable if and only if

rank
(
Gyf (s)

)= kf . (13.4)

Remember that in Sect. 4.3, we have studied fault isolability. We have learned
from Corollary 4.2 that additive faults are isolable if and only if the rank of the
corresponding fault transfer matrix is equal to the number of the faults. The result in
Theorem 13.1 is identical with the one stated in Corollary 4.2. Hence, we can claim
that the PFIs is solvable if and only if the faults are isolable.

Since M̂u(s) ∈Rm×m, Gyf (s) ∈Rm×kf and

rank
(
M̂u(s)Gyf (s)

)≤min
{
rank
(
M̂u(s)

)
, rank

(
Gyf (s)

)}=min{m,kf }

we have the following.

Corollary 13.1 The PFIs problem is solvable only if

m≥ kf .
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Theorem 13.1 and Corollary 13.1 give some necessary and sufficient conditions
for the solution of the PFIs problem and reveal a physical law that is of impor-
tance for our further study on the fault isolation problem: Suppose that the FDI
system under consideration only consists of a residual generator and furthermore
no assumptions on the faults are made, then a successful fault isolation can only be
achieved if the number of the faults to be isolated is not larger than the number of the
sensors used (i.e., the dimension of the output signals). In other words, we are only
able to isolate as many faults as the sensors used. Surely, this is a hard limitation on
the application of the model-based FDI systems. Nevertheless, this strict condition
is a result of the hard assumptions we made. Removing them, for instance, by in-
troducing a residual evaluation unit which processes the residual signals by taking
into account possible knowledge of faults, or assuming that a simultaneous occur-
rence of faults is impossible, it is possible to achieve a fault isolation, even if the
conditions given in Theorem 13.1 or Corollary 13.1 are not satisfied.

Let the system model be given in the state space representation

Gyu(s)= (A,B,C,D), Gyf (s)= (A,Ef ,C,Ff )
with A ∈ Rn×n, B ∈ Rm×ku , C ∈ Rm×n, D ∈ Rm×ku , Ef ∈ Rn×kf and Ff ∈
Rm×kf . Then, Theorem 13.1 is equivalent with the following theorem.

Theorem 13.2 The PFIs problem is solvable if and only if

rank

[
sI −A Ef
−C Ff

]
= n+ kf .

Theorem 13.2 provides us with a PFIs check condition via the Rosenbrock sys-
tem matrix, whose proof can be found in Corollary 4.3.

13.1.2 PFIs and Unknown Input Decoupling

Taking, for instance, a look at the first row of (13.3), we can immediately recognize
that the residual r1(s) is decoupled from the faults f2(s), . . . , fkf (s) and therefore
only depends on f1(s). In general, the ith residual signal, ri(s), is sensitive to fi(s)
and totally decoupled from the other faults, f1(s), . . . , fi−1(s), fi+1(s), . . . , fkf (s).
Recall the problem formulation of the so-called fault detection with unknown input
decoupling, the selection of the ith row of the transfer function matrix R(s) is in fact
equivalent to the design of a residual generator with unknown input decoupling. In
this sense, the residual generator described by (13.3) can be considered as a bank
of dynamic systems, and each of them is a residual generator with perfect unknown
input decoupling. In other words, we can handle the residual isolation problem as
a special problem of designing residual generators with perfect unknown input de-
coupling formulated as following: Given

y(s) =Gyu(s)u(s)+ gif (s)fi(s)+Gif (s)f̄i (s), i = 1, . . . , kf
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f̄i (s) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1(s)
...

fi−1(s)

fi+1(s)
...

fkf (s)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Gyf (s)=

[
g1f (s) · · · gkf f (s)

]

Gif (s) =
[
g1f (s) · · · gi−1f (s) gi+1f (s) · · · gkf f (s)

]
find Ri(s) ∈RH∞, i = 1, . . . , kf such that

ri(s) = Ri(s)M̂u(s)
(
gif (s)fi(s)+Gif (s)f̄i(s)

)
= Ri(s)M̂u(s)gif (s)fi(s), i = 1, . . . , kf .

This fact allows us to apply the well-developed approaches to the design of residual
generators with perfect unknown input decoupling introduced in Chap. 6 to the fault
isolation. It is indeed also the mostly used way to solve the PFIs problem.

The idea of reducing the fault isolation problem to the design of residual gen-
erators with perfect unknown input decoupling is often adopted to handle the case
where a PFIs is not realizable, which is in fact mostly met in practice. Assume that
kf > m. Taking the fact in mind that for a system with m outputs and m − 1 un-
known inputs there exists a residual generator with a perfect unknown input decou-
pling, let’s define a group of sub-sets, each of which contains kf − (m− 1) faults.
For a system with m outputs and kf faults, there exist

(
kf

m− 1

)
=
(

kf
kf −m+ 1

)
= kf !
(m− 1)!(kf −m+ 1)! := k

such sub-sets. Now, we design k residual generators, each of them is perfectly de-
coupled from m− 1 faults. According to the relationships between the residual sig-
nals and the faults, a logical table is then established, by which a decision on the
location of a fault is made. Of course, in this case a fault isolation generally means
locating the sub-set, to which the fault belongs, instead of indicating exactly which
fault occurred. To demonstrate how this scheme works, we take a look at the fol-
lowing example.

Example 13.1 Suppose that

Gyf (s)= C(sI −A)−1Ef + Ff , C ∈R3×n

Ef =
[
ef 1 ef 2 ef 2 ef 4 ef 5

] ∈Rn×5

Ff =
[
ff 1 ff 2 ff 2 ff 4 ff 5

] ∈R3×5

i.e. the system has three outputs, and five possible faults have to be detected and
isolated. Sincem= 3< 5= kf , a PFIs is not realizable. To the end of fault isolation,
we now use the fault isolation scheme described above. Firstly, we define k = ( 5

2

)=
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10 fault sub-sets:

S1 = {f1, f2, f3}, S2 = {f1, f2, f4}, S3 = {f1, f3, f4}
S4 = {f2, f3, f4}, S5 = {f1, f2, f5}, S6 = {f1, f3, f5}
S7 = {f2, f3, f5}, S8 = {f1, f4, f5}, S9 = {f2, f4, f5}
S10 = {f3, f4, f5}.

Then, correspondingly we can design ten residual generators with perfect unknown
input decoupling on the basis of the following ten unknown input models(

A,
[
ef 4 ef 5

]
,C,
[
ff 4 ff 5

])
,

(
A,
[
ef 3 ef 5

]
,C,
[
ff 3 ff 5

])
(
A,
[
ef 2 ef 5

]
,C,
[
ff 2 ff 5

])
,

(
A,
[
ef 1 ef 5

]
,C,
[
ff 1 ff 5

])
(
A,
[
ef 3 ef 4

]
,C,
[
ff 3 ff 4

])
,

(
A,
[
ef 2 ef 4

]
,C,
[
ff 2 ff 4

])
(
A,
[
ef 1 ef 4

]
,C,
[
ff 1 ff 4

])
,

(
A,
[
ef 2 ef 3

]
,C,
[
ff 2 ff 3

])
(
A,
[
ef 1 ef 3

]
,C,
[
ff 1 ff 3

])
,

(
A,
[
ef 1 ef 2

]
,C,
[
ff 1 ff 2

])
.

As a result, ten residual signals are delivered,

r1(s) = F1
(
f1(s), f2(s), f3(s)

)
, r2(s)= F2

(
f1(s), f2(s), f4(s)

)
r3(s) = F3

(
f1(s), f3(s), f4(s)

)
, r4(s)= F4

(
f2(s), f3(s), f4(s)

)
r5(s) = F5

(
f1(s), f2(s), f5(s)

)
, r6(s)= F6

(
f1(s), f3(s), f5(s)

)
r7(s) = F7

(
f2(s), f3(s), f5(s)

)
, r8(s)= F8

(
f1(s), f4(s), f5(s)

)
r9(s) = F9

(
f2(s), f4(s), f5(s)

)
, r10(s)= F10

(
f3(s), f4(s), f5(s)

)
with ri(s) = Fi(fi1(s), fi2(s), fi3(s)) denoting the ith residual as a function of
faults fi1(s), fi2(s) and fi3(s). Finally, a logic table can be established. Surely,
using the logic

ri(t) �= 0 indicates that a fault is from Si, i = 1, . . . ,10

we are able to locate to which sub-set a fault belongs. The fact that a fault may in-
fluence more than one residual, however, allows to get more information about the
location of faults. To this end, the following table is helpful. In Table 13.1, “1” in
the ith column and the j th row indicates that residual ri is a function of fj and
“0” means that ri is decoupled from fj . Following this table, it becomes clear that
not every type of faults is locatable. For instance, if any three faults simultaneously
occur, then all of the residual signals will differ from zero. That means we cannot,
for instance, distinguish the situation f1 �= 0, f2 �= 0, f3 �= 0 from the one f2 �= 0,
f3 �= 0, f4 �= 0. Nevertheless, under the assumption that no faults occur simultane-
ously the five faults can be isolated. Indeed, in this case, using residual generators
r1, r2, r3, r4 and r5, instead of all ten residual signals, a PFIs can be achieved.

Remark 13.1 The above discussion shows that the strong existence condition for a
PFIs may become weaker when we have additional information about faults.
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Table 13.1 Logic table for
fault isolation r1 r2 r3 r4 r5 r6 r7 r8 r9 r10

f1 1 1 1 0 1 1 0 1 0 0

f2 1 1 0 1 1 0 1 0 1 0

f3 1 0 1 1 0 1 1 0 0 1

f4 0 1 1 1 0 0 0 1 1 1

f5 0 0 0 0 1 1 1 1 1 1

13.1.3 PFIs with Unknown Input Decoupling (PFIUID)

We now extend our discussion to the process with a unknown input vector,

y(s)=Gyu(s)u(s)+Gyf (s)f (s)+Gyd(s)d(s)
and study the problem, under which condition there exists a post-filter R(s) ∈RH∞
such that

R(s)M̂u(s)Gyd(s)= 0, R(s)M̂u(s)Gyf (s)= diag
(
t1(s), . . . , tkf (s)

)
(13.5)

which implies

r(s)=
⎡
⎢⎣
r1(s)
...

rkf (s)

⎤
⎥⎦=R(s)M̂u(s)Gyf (s)f (s)=

⎡
⎢⎣
t1(s)f1(s)

...

tkf (s)fkf (s)

⎤
⎥⎦ .

Below is a theorem which describes a necessary and sufficient condition for the
solution of (13.5).

Theorem 13.3 (13.5) is solvable if and only if

rank
[
Gyf (s) Gyd(s)

] = rank
(
Gyf (s)

)+ rank
(
Gyd(s)

)
(13.6)

= kf + rank
(
Gyd(s)

)
. (13.7)

Proof Sufficiency: From Algebraic Theory we know that (13.6) implies there exists
a R1(s) ∈RH∞ with

rank
(
R1(s)

)=m
such that

R1(s)M̂u(s)
[
Gyf (s) Gd(s)

]=
[
Gf (s) 0

0 Gd(s)

]

rank
(
Gyf (s)

)= kf , rank
(
Gd(s)

)= rank
(
Gyd(s)

)
.



412 13 Fault Isolation Schemes

Let

R(s)= [R2(s) 0
]
R1(s)

with

R2(s)Gf (s)= diag
(
t1(s), . . . , tkf (s)

)
then we have

R(s)M̂u(s)Gyf (s)= diag
(
t1(s), . . . , tkf (s)

)
, R(s)M̂u(s)Gyd(s)= 0.

Necessity: Assume that (13.6) is not true. Then for all R(s) ensuring

R(s)M̂u(s)Gyd(s)= 0

we have

rank
(
R(s)M̂u(s)Gyf (s)

)
< rank

(
Gyf (s)

)
(13.6) is hence a necessary condition for the solvability of (13.5). �

It follows from Theorem 13.3 that the solvability of the PFIUID problem de-
pends on the rank of Gyd(s) and the number of measurable outputs. In fact, such
a problem is solvable if and only if f (s) and d(s) have totally decoupled effects
on the measurement y(s). From the practical viewpoint, this is surely a unrealistic
requirement on the structure of the system under consideration. On the other hand,
however, it reveals an intimate relationship between the problem of fault isolation
and unknown input decoupling.

In the forthcoming sections, we are going to present a number of approaches to
the PFIs problem defined in the last subsection, most of which have been developed
following the decoupling principle. Without loss of generality, we consider only the
situation without unknown inputs.

13.2 Fault Isolation Filter Design

In this section, three approaches to the design of fault detection filters for the purpose
of a PFIs will be presented. For the sake of simplicity, we only deal with continuous-
time systems.

As known, on the assumption that the system model is given by

ẋ(t)=Ax(t)+Bu(t)+Ef f (t), y(t)= Cx(t) (13.8)

we can construct an FDF of the form

˙̂x(t) = Ax̂(t)+Bu(t)+L(y(t)− ŷ(t)), ŷ(t)= Cx̂(t) (13.9)

r(t) = V (y(t)− ŷ(t)) (13.10)
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whose dynamics is governed by

ė(t)= (A−LC)e(t)+Ef f (t), e(t)= x(t)− x̂(t), r(t)= VCe(t).
Remembering our design purpose and the PFIs condition, it is in the following as-
sumed that

dim(y)= rank(C)=m≥ kf = rank(Ef )= dim(f ), V ∈Rkf×m.

We formulate the design problem as follows: Given system model (13.8) and fault
detection filter (13.9)–(13.10), find L and V such that the fault detection filter is
stable and VC(sI −A+LC)−1Ef is diagonal.

Definition 13.1 A fault detection filter solving the above-defined problem is called
fault isolation filter.

13.2.1 A Design Approach Based on the Duality to Decoupling
Control

The basic idea of the approach by Liu and Si for the problem solution is based on the
so-called dual principle, namely the duality between the PFIs and the state feedback
decoupling which is formulated as: Given the system model

ẋ(t)= Āx(t)+Bu(t), y(t)= Cx(t)
and a control law

u(t)=Kx(t)+ Fw(t)
find K and F such that the transfer function matrix

C(sI − Ā−BK)−1B F

is diagonal. Let

AT = Ā, CT = B, ETf = C, LT =−K, V T = F
we obtain

(
VC(sI −A+LC)−1Ef

)T = C(sI − Ā−BK)−1B F.

The duality thus becomes evident.
Considering that the state feedback decoupling is a standard control problem

whose solution can be found in most of textbooks of modern control theory, we
shall below present the results without a detailed proof.
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To begin with, a so-called fault isolability matrix is introduced. Write

Ef =
[
ef 1 · · · ef kf

]

and let

ρi =min
{
j : CAj−1ef i �= 0, j = 1,2, . . .

}
, i = 1, . . . , kf

which are also called fault detectability indices. Then, the fault isolability matrix is
defined as

Fiso =
[
CAρ1−1ef 1 · · · CA

ρkf −1
ef kf

]
With the definition of Fiso, we are now able to state a necessary and sufficient con-
dition for the solvability of the design problem.

Lemma 13.1 The transfer function matrix VC(sI − A+ LC)−1Ef can be diag-
nosed if and only if Fiso is left invertible.

The following theorem is the core of the approach, which provides a means of
designing the fault isolation filter (13.9)–(13.10).

Theorem 13.4 Suppose Fiso be left invertible. Setting

L = ([Aρ1ef 1 · · · A
ρkf ef kf

]−EfΛ)F+iso +Z1
(
I − FisoF

+
iso

)
(13.11)

V =WF+iso +Z2
(
I − FisoF

+
iso

)
(13.12)

gives a diagonal transfer function matrix VC(sI − A+ LC)−1Ef , where Z1 and
Z2 are arbitrary matrices with compatible dimensions, W is any regular diagonal
matrix, F+iso is the Moore–Penrose generalized inverse of Fiso with

F+iso =
(
FTisoFiso

)
FTiso

and Λ is a diagonal matrix with its entries λi , i = 1, . . . , kf , assignable.

It is worth to point out that setting L and V according to Theorem 13.4 only
ensures a diagonal transfer function matrix VC(sI − A + LC)−1Ef but not the
system stability. Hence, before formulas (13.11)–(13.12) are applied for solving the
PFIs problem formulated above, further conditions should be fulfilled.

Lemma 13.2 Let Fiso be left invertible and L be given by (13.11). Then, the char-
acteristic polynomial of the matrix (A−LC) is of the form

π(λ)= (λρ1 − λ1
) · · · (λρm − λm)π1(λ)= π0(λ)π1(λ) (13.13)

where π1(λ) is the invariant polynomial with the degree equal to n−∑m
i=1 ρi and

is uniquely determined once the matrices A, C, Ef are given.
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The following theorem describes a condition, under which a stable PFIs is en-
sured.

Theorem 13.5 Let Fiso be left invertible. Then, fault detection filter (13.9)–(13.10)
with L being given by (13.11) is stable and ensures a fault isolation if and only if ρi ,
i = 1, . . . ,m, is one and the invariant polynomial π1(λ) in (13.13) is Hurwitz.

Remark 13.2 Following the definition of matrix Fiso, the conditions that ρi = 1 and
Fiso is left invertible imply

rank(CEf )= kf .
Furthermore, the following two statements are equivalent:

• the invariant polynomial π1(λ) in (13.13) is Hurwitz
• (A,Ef ,C) has no transmission zeros in the RHP.

We have thus the following corollary.

Corollary 13.2 Fault detection filter (13.9)–(13.10) with L being given by (13.11)
is stable and ensures a fault isolation if and only if

•
rank(CEf )= kf (13.14)

•
rank

[
λI −A Ef
C 0

]
= n+ kf for all λ ∈ C+. (13.15)

It is very interesting to notice the similarity of the existence conditions for a fault
isolation filter, (13.14)–(13.15), with the ones for a UIO stated in Corollary 6.6. This
fact may reveal some useful aspects for the design of fault isolation filter. Recall that
the underlined idea of a UIO is to reconstruct the unknown input vector. Following
this idea, it should also be possible to re-construct the fault vector when conditions
(13.14)–(13.15) are satisfied. The discussion in Sect. 6.5.2 shows for this purpose
we can use system

˙̂x(t) = Ax̂(t)+Bu(t)+Ef f̂ (t)+L
(
y(t)−Cx̂(t)) (13.16)

f̂ (t) = (CEf )−
(
ẏ(t)−CAx̂(t)−Cu(t)). (13.17)

Note that the implementation of the above system requires the knowledge of ẏ(t).

Theorem 13.6 Given system model (13.8) and suppose that ẏ(t) is measurable and
the system satisfies (13.14)–(13.15), then system (13.16)–(13.17) delivers an esti-
mation for the fault vector.
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Surely, the application of this result is limited due to the practical difficulty of
getting ẏ. Nevertheless, it reveals the real idea behind the approach presented here
lies in the re-construction of the faults. We know that the existence conditions for
such kind of systems are stronger than, for instance, the fault isolation systems de-
signed by the frequency domain approach, where the existence condition is

rank
(
Gyf (s)

)= kf
which is obviously weaker than (13.14)–(13.15).

13.2.2 The Geometric Approach

In this subsection, an algorithm of using the geometric approach to the fault isolation
filter design will be presented, whose existence conditions are less strict than the
ones given in Theorem 13.5 and the order is equal to the sum of ρi , i = 1, . . . , kf .
We shall also briefly discuss the relationship between the order and the number of
the invariant zeros of the system under consideration. Without loss of generality, it
is assumed that kf =m.

We begin with the existence conditions of such kind of fault isolation filters.

Theorem 13.7 Suppose for system (13.8) the matrix Fiso is left invertible and the
transmission zeros of (A,Ef ,C) lie in the LHP, then there exist matrices L and V
such that fault detection filter (13.9)–(13.10) ensures a PFIs.

In the following we present an algorithm that serves, on the one hand, as a proof
sketch for Theorem 13.7 and, on the other hand, as a design algorithm for the fault
isolation filters. The theoretical background of this algorithm is the so-called geo-
metric approach that has been introduced and handled in Chap. 6. The interested
reader is referred to the literatures given there.

Algorithm 13.1 (Design of fault isolation filters using the geometric approach)

S1: DetermineLo that makes (A−LoC,Ef ,C)maximally uncontrollable by using
the known geometric approach, for instance Algorithm 6.6, and transform (A−
LoC,Ef ,C) into

A−LoC ∼
[
Ā1 −L1C Ā3

O Ā2

]
, Ef ∼

[
Ef
O

]
, C ∼ [C O

]

by a state transformation To and an output transformation Vo, where (Ā1 −
L1C,Ef ,C) is perfectly controllable, L1 is arbitrary and the eigenvalues of
Ā2 are zeros of transfer function matrix Gfy(s)= C(sI −A)−1Ef
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S2: Set

F iso =
[
CĀ

ρ1−1
1 ē1 · · · CĀ

ρkf −1

1 ēkf

]

where

Ef =
[
ē1 · · · ēkf

]
ρi =min

{
j : CĀj−1

1 ēj �= 0, j = 1,2, . . .
}
, i = 1, . . . , kf

S3: Set

L1 =
([
Ā
ρ1
1 ē1 · · · Ā

ρkf
1 ēkf

]
−M
)
F
−1
iso , V1 =WF−1

iso

with

M =
[
p1−1∑
k=0

αk1Ā
k
1ē1 · · ·

pkf −1∑
k=0

αkkf Ā
k
1ēkf

]

(13.18)
W = diag(μ1, . . . ,μkf ).

The coefficients αki , k = 1, . . . , ρi − 1, i = 1, . . . , kf , are arbitrarily selectable
but should ensure the roots of polynomials

pi−1∑
k=0

αiks
k = 0, i = 1, . . . , kf

lie in the LHP
S4: Construct the residual generator:

ż(t) = (Ā1 −L1C)z(t)+B1u(t)+ (L̄o +L1Vo)y(t)

r(t) = V1
(
Voy(t)−Cz(t)

)
where

Ā1 =
[
I 0

]
To(A−LoC)T −1

o

[
I

0

]
, C = VoCTo

[
I

0

]

L̄o =
[
I 0

]
ToLo, B1 =

[
I 0

]
ToB.

The dynamics of the fault isolation filter designed using the above algorithm is
governed by

ε̇(s) = (Ā1 −L1C)ε(t)+Ef f (t)+ Ā3x̄2(t)

˙̄x2(t) = Ā2x̄2(t), r(t)= V1Cε(t).

Since Ā2 is stable, the influence of x̄2(t) on the residual vector r(t) will vanish as t
approaching infinity, and thus it is reasonable just to consider the part

r(s)= V1C(pI − Ā1 +L1C)
−1Ef f (s)
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which, as will be shown latter, takes the form

ri(s)= μi

αio + αi1p+ · · · + αiρipρi−1 + pρi , i = 1, . . . , kf .

To explain and to get a deep insight into the algorithm we further make following
remarks.

Remark 13.3 The definition of matrix M ensures that condition

rank(CEf )= kf
can be replaced by

rank(Fiso)= kf
that is, ρi can be larger than one. Indeed, the dual form of this result is known in the
decoupling control theory. We shall also give a proof in the next subsection.

Remark 13.4 It is a well-known result of the decoupling control theory that the order
of the transfer matrix between the inputs and outputs after the decoupling is equal
to the difference of the order of the system under consideration and the number of
its invariant zeros. Since the triple (Ā1,Ef ,C) is perfect controllable, that is, it has
no transmission zeros, it becomes evident that

dim(Ā1)=
kf∑
i=1

ρi.

13.2.3 A Generalized Design Approach

The approaches presented in the last two subsections are only applicable for the
purpose of component fault isolation. In order to handle the more general case,
namely isolation of both component and sensor faults, an approach is proposed by
Ding et al., which is established on the duality of the fault isolation problem to the
well-established decoupling control theory. In this subsection, we briefly introduce
this approach with an emphasis on its derivation of the solution, which, we hope,
may give the reader a deep insight into the fault isolation technique.

The fault model considered here is given by

Gyf (s)= Ff +C(pI −A)Ef (13.19)

with (A,Ef ,C,Ff ) as a minimal state space realization of Gyf (s). Without loss of
generality and for the sake of simplicity, it is assumed kd =m.

To begin with, the concepts of fault isolatability matrix and fault detectability
indices introduced in the last subsections are extended to include the case where
Ff �=0.
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Denote

Ef =
[
ef 1 · · · ef kf

]
, Ff =

[
F1 · · · Fkf

]

then the fault detectability indices are defined by

ρi =
{

0, Fi �= 0, i = 1, . . . , kf
min{j : CAj−1ef i �= 0, j = 1,2, . . .}, Fi = 0, i = 1, . . . , kf

and the fault isolatability matrix by

Fiso =
[
Fiso,1 · · · Fiso,kf

]

Fiso,i =
{
Fi, Fi �= 0, i = 1, . . . , kf
CAρi−1ef i, Fi = 0, i = 1, . . . , kf .

In order to simplify the notation, we assume, without loss of generality, that

Fi �= 0, i = 1, . . . , q − 1, and Fi = 0, i = q, . . . , kf
thus, Fiso can be written as

Fiso =
[
F1 · · · Fq−1 CAρq−1ef q · · · CA

ρkf −1
ef kf

]
. (13.20)

On the assumption that Fiso is invertible, we now introduce matrices G, L, T , V
and W :

G=
⎡
⎢⎣
Gq · · · 0
...

. . .
...

0 · · · Gkf

⎤
⎥⎦ , Gi =

⎡
⎢⎢⎢⎣

0 · · · 0 −αi0
1 · · · 0 −αi1
...

. . .
...

...

0 · · · 1 −αiρi−1

⎤
⎥⎥⎥⎦ , i = q, . . . , kf

(13.21)

L= ([ ef 1 · · · ef q−1 Aρq ef q · · · A
ρkf ef kf

]−M)F−1
iso (13.22)

M =
[

0 · · · 0
ρq−1∑
k=0

αqkA
kef q · · ·

ρkf −1∑
k=0

αkf kA
kef kf

]
(13.23)

T =
[
ef q · · · Aρq−1ef q · · · ef kf · · · Aρkf −1

ef kf

]
∈Rn×ρ, ρ =

kf∑
i=q

ρi

(13.24)

V = diag(μ1, . . . ,μkf )F
−1
iso (13.25)

W = VCT . (13.26)
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In the following, we shall study the properties of G, L, T , V and W and how to
make use of these properties to construct a fault isolation filter. To this end, we first
prove that

W2T
− = V2C (13.27)

holds, where T − satisfies

T −T = Iρ×ρ
and will be specified below, and

V =
[
V1
V2

]
, V1 =

⎡
⎢⎣
μ1 · · · 0 0
...

. . .
...

...

0 0 μq−1 0

⎤
⎥⎦F−1

iso , V2 =
⎡
⎢⎣

0 μq · · · 0
...

...
. . .

...

0 0 · · · μkf

⎤
⎥⎦F−1

iso

(13.28)

W =
[
W1
W2

]
with W1 = V1CT, W2 = V2CT . (13.29)

It is straightforward that

W = VCT = V
[
Cefq · · · CAρq−1ef q · · · Cef kf · · · CA

ρkf −1
ef kf

]

= diag(μ1, . . . ,μkf )

⎡
⎢⎢⎢⎢⎢⎢⎣

0(q−1)×(q−1)
ḡq 0 · · · 0

0 ḡq+1
. . .

...
...

. . .
. . . 0

0 · · · 0 ḡkf

⎤
⎥⎥⎥⎥⎥⎥⎦

with row vectors ḡi , i = q, . . . , kf , whose entries are zero but the last one which
equals one. That implies

W1 = 0, W2 =
⎡
⎢⎣
μq 0

. . .

0 μkf

⎤
⎥⎦
⎡
⎢⎣
ḡq 0

. . .

0 ḡkf

⎤
⎥⎦ (13.30)

rank(W2)= kf − q + 1= the row number of W2.

Now, we solve

V2CT1 = 0 (13.31)

for T1 with [
T T1

] ∈Rn×n, rank
[
T T1

]= n.
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Note that due to (13.30) such a T1 does exist. Let

[
T −
T −1

]
∈Rn×n

with [
T −
T −1

][
T T1

]= [T T1
][T −
T −1

]
= In×n. (13.32)

It turns out

V2C
[
T T1

][T −
T −1

]
= V2C =

[
W2 0

][T −
T −1

]
=W2T

−

which proves (13.27).
Next, we shall prove

[
T −
T −1

]
(A−LC) [T T1

]=
[
G G2
0 G1

]
, G1 = T −1 (A−LC)T1 (13.33)

[
T −
T −1

]
(Ef −LFf )=

[
T −(Ef −LFf )

0

]
. (13.34)

For our purpose, we check (A−LC)T . Since

AT = [Aefq · · · Aρq ef q · · · Aef kf · · · A
ρkf ef kf

]

LCT =
[
LCefq · · · LCAρq−1ef q · · · LCef kf · · · LCA

ρkf −1
ef kf

]

and furthermore we have

CAkef i = 0, k = 0, . . . , ρi − 2, i = q, . . . , kf

LCAρi−1ef i = Aρi ef i −
ρi−1∑
k=0

αikA
kef i, i = q, . . . , kf

where the first equation is due to the definition of fault detectability indices and the
second one the definition of matrix L, it holds

(A−LC)T =
[
Aefq · · ·

ρq−1∑
k=0

αqkA
kef q · · · Aef kf · · ·

ρkf −1∑
k=0

αkf kA
kef kf

]
.

(13.35)
It is of interest to notice that all columns of matrix (A−LC)T can be expressed in
terms of a linear combination of the columns of matrix T , that is,

Im
(
(A−LC)T )⊂ Im(T ). (13.36)
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Hence, it is obvious that

T −1 (A−LC)T = 0.

Let t−i be the ith row of matrix T −, then it follows from (13.35) that for i =
pj−1+1, j = q, . . . , kf , ρq−1 = 0

t−i (A−LC)T =
[

0 · · · 0 αj0 0 · · · 0
]

with αj0 at the βj−1 = (∑j−1
k=q ρk)th entry and otherwise for βj−1 + 1 < i ≤ βj ,

j = q, . . . , kf
t−i (A−LC)T =

[
0 · · · 0 1 0 · · · 0 αjl 0 · · · 0

]
l = i − pj−1 − 1

with “1” at the (i − 1)th entry and αj0 at the βj th entry. As a result, we obtain

T −(A−LC)T =G.

Thus, the proof of (13.33) is completed.
The proof of (13.34) is evident by noting the fact that

LFf =
([
ef 1 · · · ef q−1 Aρq ef q · · · A

ρkf ef kf
]−M)

[
I(q−1)×(q−1)

0

]

= [ ef 1 · · · ef q−1 0 · · · 0
]

=⇒ Ef −LFf =
[

0 · · · 0 ef q · · · ef kf
]

=⇒ Im(Ef −LFf )⊂ Im(T )

which leads to

T −1 (Ef −LFf )= 0.

Now, we are in a position to construct a fault isolation filter based on matri-
ces G, L, T −, V2, W2, respectively defined by (13.21), (13.22), (13.32), (13.28)
and (13.29). Note that during the above study no assumption is made on αij ,
i = q, . . . , kf , j = 0, . . . , ρi − 1, they can be so selected that the dynamic system of
the form

[
ż1(t)

ż2(t)

]
=
[
G G2
0 G1

][
z1(t)

z2(t)

]
+
[
T −
T −1

]
Bu(t)+

[
T −
T −1

]
Ly(t) (13.37)

is stable. Moreover, we define

r(t)=
[
r1(t)

r2(t)

]
=−Wz1(t)− VDu(t)+ Vy(t)− VCT1z2(t). (13.38)
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Now, we check if (13.37)–(13.38) build a fault isolation filter. To this end, we take
a look at the dynamics of the residual generator. Introducing variables

ε(t)= T −x(t)− z1(t), ξ(t)= T −1 x(t)− z2(t)

and noting that

VC
[
T T1

]= [W VCT1
]

=⇒ VCx(t)=W (ε(t)+ z1(t)
)+ VCT1

(
ξ(t)+ z2(t)

)
yield

ε̇(t) =Gε(t)+ T −(Ef −LFf )f (t)+G2ξ(t), ξ̇ (t)=G1ξ(t) (13.39)

r(t) =Wε(t)+ VFf f (t)+ VCT1ξ(t). (13.40)

We now calculate T −(Ef −LFf ) and VFf f (s). Since

(Ef −LFf )=
[

0 · · · 0 ef q · · · ef kf
]

we obtain

T −(Ef −LFf )= T −
[

0 · · · 0 ef q · · · ef kf
]=

⎡
⎢⎢⎢⎢⎣

0 ēq 0 · · · 0

0 0 ēq+1
. . .

...
...

...
. . .

. . . 0
0 0 · · · 0 ēkf

⎤
⎥⎥⎥⎥⎦

where all entries of column vector ēi , i = q, . . . , kf are zero but the first one which
equals one. and

VFf = diag(μ1, . . . ,μkf )

[
I(q−1)×(q−1)

0(kf−q)×(kf−q)

]
.

On the assumption that G1 is stable and thus its influence on r(s) will vanish as t
approaching infinity, we finally have

r(s) =W(sI −G)−1T −(Ef −LFf )f (s)+ VFf f (s)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ1f1(s)
...

μq−1fq−1(s)

μq

pρq
∑ρq−1
k=0 αq−1kp

k
fq(s)

...
μkf

p
ρkf
∑ρkf

−1

k=0 αkf −1kp
k

fkf (s)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (13.41)

It is hence evident that the residual generator (13.37)–(13.38) does deliver a PFIs.
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From (13.41), we see two interesting facts:

• The residual generator can be divided into two independent parts: a static subsys-
tem that delivers an isolation of faults, f1, . . . , fq−1, and a dynamic subsystem
used for isolating faults fq, . . . , fkf

• Setting μi = 1, i = 1, . . . , q − 1, gives

⎡
⎢⎣
r1(s)
...

rq−1(s)

⎤
⎥⎦=
⎡
⎢⎣
f1(s)
...

fq−1(s)

⎤
⎥⎦

thus these faults can be identified. This fact can also be interpreted as: The ap-
proach described above is applicable for sensor fault identification.

In order to get some insight into the construction of the residual generator
(13.37)–(13.38), we shall briefly discuss its structural properties from the viewpoint
of control theory.

We know that the observability is not affected by the output feedback, thus the
subsystem (V CT1,G1) should be observable. On the other hand, the modes of G1
are not controllable by (Ef −LFf ). Indeed, the eigenvalues of G1 are transmission
zeros of the transfer function matrix Gf (s). To demonstrate this claim, we consider
the Smith form of system matrix

P(s)=
[
sI −A Ef
C Ff

]
.

Since the output feedback −Ly(s) and changes of state space and output bases do
not modify the Smith form, we find

P(s)∼
[
sI −A+LC Ef −LFf

VC Ff

]
∼
⎡
⎣ sI −G G2 T −(Ef −LFf )

0 pI −G1 0
W WCT1 Ff

⎤
⎦

∼
⎡
⎣ sI −G T −(Ef −LFf ) 0

W Ff 0
0 0 pI −G1

⎤
⎦ .

It follows from (13.41) that
[
sI −G T −(Ef −LFf )
W Ff

]
∼
[
I

W(pI −G)−1T −(Ef −LFf )+ VFf
]
.

Recall that the transfer function matrix W(sI −G)−1T −(Ef − LFf )+ VFf has
no zeros, we finally have

P(s)∼
[
I 0
0 sI −G1

]
.
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It thus becomes evident that the transmission zeros of P(s) are identical with the
eigenvalues of sI −G1 which are invariant to the output feedback.

Remark 13.5 It is worth noting that if only sensor faults are under consideration, i.e.

rank(Ff )= kf , Ef = 0

then L= 0. That means a fault isolation is only possible based on the system model
instead of an observer. The physical interpretation of this fact is evident. Since all
sensors are corrupted with faults, none of them should be used for the PFIs purpose.
On the other hand, in Sect. 14.1 we shall present an algorithm that allows a perfect
sensor fault identification, which also solves the sensor fault isolation problem.

In summary, we have the following theorem and the algorithm for the fault iso-
lation filter design.

Theorem 13.8 Suppose that for system (13.19) the matrix Fiso is left invertible and
the transmission zeros of (A,Ef ,C,Ff ) lie in the LHP, then system (13.37) and
(13.38) provides a PFIs.

Algorithm 13.2 (Design of fault isolation filters)

S1: Set Fiso according to (13.20) and G, L, T according to (13.21)–(13.24)
S2: Set V , W according to (13.25)–(13.26)
S3: Solve (13.31) and (13.32) for T1, T −, T −1
S4: Compute G1, G2 according to (13.33)
S5: Construct residual generator according to (13.37) and (13.38).

Example 13.2 In this and the next examples, we are going to demonstrate the appli-
cation of Algorithm 13.2 to the solution of fault isolation problem. We first consider
the benchmark system LIP100 given in Sect. 3.7.2. Our intention is to isolate those
three faults: position sensor fault, angular sensor fault as well as the actuator fault.
Checking the transmission zeros of the corresponding fault transfer matrix reveals
that this fault transfer matrix has two RHP zeros (including the origin)

s1 = 4.3791, s2 = 0.

Thus, it follows from Theorem 13.8 that FDF (13.37) and (13.38) cannot guarantee
a stable perfect fault isolation. In order to verify it, Algorithm 13.2 is applied to the
LIP100 model. Below is the design result:

S1: Computation of Fiso, G, L, T

Fiso =
⎡
⎣1.0000 0 0

0 1.0000 0
0 0 −6.1347

⎤
⎦ , L=

⎡
⎢⎢⎣

0 0 −1.9504
0 0 −13.7555
0 0 0.0740
0 0 0.7019

⎤
⎥⎥⎦

G = −2.0000, T = B
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S2: Setting

V =
⎡
⎣1 0 0

0 1 0
0 0 −0.1630

⎤
⎦

S3: Solution of (13.31) and (13.32) for T1, T −

T1 =

⎡
⎢⎢⎣

0 1.0000 0
1.0000 0 0

0 0.0000 0
0 0 1.0000

⎤
⎥⎥⎦ , T − = [0.0000 0 −0.1630 0

]

S4: Computation of G1, G2

[
G G2
0 G1

]
=

⎡
⎢⎢⎣
−2.0000 0.0210 0.0000 0.0001
0.0000 0 0 1.0000
0.0000 0 0 0
−0.0000 19.7236 0 −0.1250

⎤
⎥⎥⎦

which has four eigenvalues:

−2.000, −4.5041, 4.3791, 0.

This result verifies our conclusion.

We now extend Algorithm 13.2 aiming at removing the requirement on the trans-
mission zeros of (A,Ef ,C,Ff ). Let us first express the dynamics of the residual
generator (13.39)–(13.40) in the transfer matrix form

r(s)= (W(pI −G)−1T −(Ef −LFf )+ VFf
)
f (s)

+ (W(pI −G)−1G2 + VCT1
)
(pI −G1)

−1ξ(0). (13.42)

Considering that there exists a diagonal R(s) ∈RH∞ so that

R(s)
(
W(pI −G)−1G2 + VCT1

)
(pI −G1)

−1 ∈RH∞

and R(s)(W(pI −G)−1T −(Ef −LFf )+VFf ) remains diagonal, R(s)r(s) builds
a residual generator which results in a PFIs, that is, satisfies (13.5), and is stable, in-
dependent of the placement of the transmission zeros of (A,Ef ,C,Ff ) in the com-
plex plane. In this way, the requirement on the transmission zeros of (A,Ef ,C,Ff )
can be removed. Note that this extension can considerably increase the order of the
residual generator.

Example 13.3 In this example, we re-study the fault isolation problem for the
benchmark system LIP100 by applying the above-described extension. Remember
that in Example 13.2, we have found out that due to the transmission zeros equal to
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4.3791 and 0 we can achieve a fault isolation using Algorithm 13.2 but the resulted
fault isolation filter is unstable. We now multiply

R(s)= s(s − 4.3791)

(s + 1)(s + 3)
I

to the residual vector described in Example 13.2. It results in

R(s)r(s)=

⎡
⎢⎢⎣

s(s−4.3791)
(s+1)(s+3) f1(s)

s(s−4.3791)
(s+1)(s+3) f2(s)

s(s−4.3791)
(s+1)(s+2)(s+3)f3(s)

⎤
⎥⎥⎦

+ s(s − 4.3791)

(s + 1)(s + 3)

(
W(sI −G)−1G2 + VCT1

)
(sI −G1)

−1ξ(0).

Note that the unstable poles in the second transfer matrix are canceled by the zeros
of R(s) so that the second term in the residual signals will vanish as t approaching
infinity. In this way, a stable fault isolation is achieved. It is worth mentioning that
the on-line implementation of post-filter R(s) should carried out in the observer
form.

13.3 An Algebraic Approach to Fault Isolation

In the last section, we have introduced different approaches whose application to
fault isolation is more or less restricted. For the approach proposed by Liu and Si as
well as the generalized design approach the applicability depends on the structure
of the system model. In this section, we shall present an approach, which is in fact
an extension of the UIDO design approach presented in Sect. 6.5.4. Thus, this ap-
proach can be used both for the parity relation based and the observer-based residual
generator design.

Consider system model

y(z)=Gyu(z)u(z)+Gyf (z)f (z) (13.43)

with (A,B,C,D) and (A,Ef ,C,Ff ) as minimal realization of transfer matrices
Gyu(z) and Gyf (z) respectively. Recall that a residual generator can be constructed
either in a recursive form like

z(k + 1) =Gz(k)+Hu(k)+Ly(k), z(t) ∈Rs

r(k) = vy(k)−wz(k)− vDu(k)
with G, H , L, v and w satisfying the Luenberger conditions, or in a non-recursive
form like

r(z)= vs
(
ys(k)−Ho,sus(k)

)
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with vs denoting the parity vector. For both of them, the system dynamics related to
the fault vector can be described in a unified form

r(z)=wGsz−se(z)+ vsHf,s Īf sfs(z) (13.44)

where e(z) is a vector which, in fault-free case, will be zero as time approaching to
infinity,

G =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 · · · · · · 0 g1
1 0 · · · 0 g2

0 1
. . .

...
...

...
. . .

. . . 0 gs−1
0 · · · 0 1 gs

⎤
⎥⎥⎥⎥⎥⎥⎦
, g =

⎡
⎢⎣
g1
...

gs

⎤
⎥⎦

Hf,s =

⎡
⎢⎢⎢⎢⎣

Ff 0 · · · 0

CEf Ff
. . .

...
...

. . .
. . . 0

CAs−1Ef · · · CEf Ff

⎤
⎥⎥⎥⎥⎦

Īf s =

⎡
⎢⎢⎢⎢⎣

Ikf×kf 0 · · · 0

wgIkf×kf
. . .

. . .
...

...
. . .

. . . 0
wGs−1gIkf×kf · · · wgIkf×kf Ikf×kf

⎤
⎥⎥⎥⎥⎦ , fs(z)=

⎡
⎢⎢⎢⎣
f (z)z−s
f (z)z−s+1

...

f (z)

⎤
⎥⎥⎥⎦

w = [0 · · · 0 1
]
, vs =

[
vs,0 · · · vs,s

]

and g = 0 in case of the parity space approach is used (the non-recursive form) as
well as

L=−

⎡
⎢⎢⎢⎣
vs,0
vs,1
...

vs,s−1

⎤
⎥⎥⎥⎦− gvs,s, v = vs,s

which describes the relationship between these two forms. Starting from (13.44),
we now derive an approach to the design of residual generators for the purpose of
fault isolation.

We first introduce following notations:

H
i

f,s =

⎡
⎢⎢⎢⎢⎣

Ff i 0 · · · 0

Cef i Ff i
. . .

...
...

. . .
. . . 0

CAs−1ef i · · · Cef i Ff i

⎤
⎥⎥⎥⎥⎦ , i = 1, . . . , kf
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f̄ is (z)=

⎡
⎢⎢⎢⎣
fi(z)z

−s
fi(z)z

−s+1

...

fi(z)

⎤
⎥⎥⎥⎦ , Eif =

[
ef 1 · · · ef i−1 ef i+1 · · · ef kf

]

F if =
[
Ff 1 · · · Ff i−1 Ff i+1 · · · Ffkf

]

Hi
f,s =

⎡
⎢⎢⎢⎢⎢⎣

F if O · · · O

CEif F if
. . .

...

...
. . .

. . . O

CAs−1Eif · · · CEif F if

⎤
⎥⎥⎥⎥⎥⎦
, f i(z)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1(z)
...

fi−1(z)

fi+1(z)
...

fkf (z)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

f is (z)=

⎡
⎢⎢⎢⎣
f i(z)z−s
f i(z)z−s+1

...

f i(z)

⎤
⎥⎥⎥⎦

I if s =

⎡
⎢⎢⎢⎢⎣

I(kf−1)×(kf−1) O · · · O

wgI(kf−1)×(kf−1)
. . .

. . .
...

...
. . .

. . . O

wGs−1gI(kf−1)×(kf−1) · · · wgI(kf−1)×(kf−1) I(kf−1)×(kf−1)

⎤
⎥⎥⎥⎥⎦

Ī if s =

⎡
⎢⎢⎢⎢⎣

1 0 · · · 0

wg
. . .

. . .
...

...
. . .

. . . 0
wGs−1g · · · wg 1

⎤
⎥⎥⎥⎥⎦

then (13.44) can equivalently be written as

r(z)=wGsz−se(z)+ vs
(
Hi
f,sI

i
f sf

i
s (z)+Hi

f,s Ī
i
f s f̄

i
s (z)
)
. (13.45)

Remember the claim that a perfect unknown input decoupling is achievable if the
number of the outputs is larger than the number of the unknown inputs. Taking f i(z)
as a unknown input vector, we are able to find kf parity vectors, visi , i = 1, . . . , kf ,
such that

visiH
i
f,si
= 0, i = 1, . . . , kf .

Note that the order of the parity vectors must not be identical, hence we denote
them separately by si . Corresponding to the kf parity vectors, we obtain kf residual
generators
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ri(z) = wiGsii z−si ei(z)+ vis
(
Hi
f,sI

i
f sf

i
s (z)+Hi

f,s Ī
i
f s f̄

i
s (z)
)

= wiGsii z−si ei(z)+ visH
i

f,s Ī
i
f s f̄

i
s (z).

Since ei(z) is independent of f i(z), as a result, we claim that ri(z) only depends
on fi(z). That means the residual generator bank, ri(z), i = 1, . . . , kf , delivers a
perfect fault isolation. Notice that during the above derivation no assumption on the
structure of the system under consideration has been made. The following theorem
is thus proven.

Theorem 13.9 Given system model (13.43) with m ≥ kf , then there exist si ,
i = 1, . . . , kf , and kf residual generators ri(z) with dimension si , i = 1, . . . , kf ,
such that each residual generator is only influenced by one fault. And these residual
generators can either be in a recursive form like

zi(k + 1) =Gizi(k)+Hiu(k)+Liy(k), zi(k) ∈Rsi (13.46)

ri(k) = viy(k)−wizi(k)− viDu(k) (13.47)

or in a non-recursive form like

ri(z)= visi
(
ysi (z)−Ho,si usi (z)

)
. (13.48)

Dynamic systems (13.46)–(13.47) are in fact a bank of residual generators. On
the other hand, they can also be written in a compact form

z(k + 1) =Gz(k)+Hu(k)+Ly(k) (13.49)

r(k) = Vy(k)−Wz(k)− VDu(k) (13.50)

with

z=
⎡
⎢⎣
z1

...

zkf

⎤
⎥⎦ , r =

⎡
⎢⎣
r1

...

rkf

⎤
⎥⎦ , G=

⎡
⎢⎣
G1 0

. . .

0 Gkf

⎤
⎥⎦ , H =

⎡
⎢⎣
H 1

...

Hkf

⎤
⎥⎦

L=
⎡
⎢⎣
L1

...

Lkf

⎤
⎥⎦ , V =

⎡
⎢⎣
v1
...

vkf

⎤
⎥⎦ , W =

⎡
⎢⎣
w1 O

.. .

O wkf

⎤
⎥⎦ .

We now summary the main results achieved above into an algorithm.

Algorithm 13.3 (An algebraic approach to designing fault isolation systems)

S1: Form matrix Hi
f,si

and solve

visi

[
Hi
f,si

H
i

f,si

]
= [0 Δ

]
, i = 1, . . . , kf

for visi . Δ �= 0 is some constant vector and visi is a parity vector
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S2: Construct residual generator in the non-recursive form

ri(z)= visi
(
ysi (z)−Ho,si usi (z)

)

or
S2: Set vector gi ensuring the stability of Gi and let

Gi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · · · · 0 gi1

1 0 · · · 0 gi2

0 1
. . .

...
...

...
. . .

. . . 0 gisi−1

0 · · · 0 1 gisi

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, gi =

⎡
⎢⎣
gi1
...

gisi

⎤
⎥⎦

Hi =

⎡
⎢⎢⎢⎢⎣

visi ,1
visi ,2

· · · visi ,si−1 visi ,si

visi ,2
· · · · · · visi ,si 0

...
...

...

visi ,si 0 · · · · · · 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

CB

CAB
...

CAsi−1B

⎤
⎥⎥⎥⎦

Li = −

⎡
⎢⎢⎢⎢⎣

visi ,0

visi ,1
...

visi ,si−1

⎤
⎥⎥⎥⎥⎦− g

ivisi ,si , vi = visi ,si , wi = [0 · · · 0 1
]

S3: Construct residual generators according to

zi(k + 1)=Gizi(k)+Hiu(k)+Liy(k)
ri(k)= viy(k)−wizi(k)− viDu(k).

13.4 Fault Isolation Using a Bank of Residual Generators

As mentioned at the beginning of this chapter, a fault isolation problem can be in
fact equivalently reformulated as a decoupling problem described by

⎡
⎢⎣
r1(s)
...

rkf (s)

⎤
⎥⎦=R(s)M̂u(s)Gyf (s)f (s)=

⎡
⎢⎣
t1(s)f1(s)

...

tkf (s)fkf (s)

⎤
⎥⎦ .

Denoting the rows of R(s)M̂u(s) with t̂i (s), i = 1, . . . , kf , then the fault isola-
tion problem can be interpreted as a search for a bank of residual generators, t̂i (s),
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i = 1, . . . , kf . In the early development stage of FDI technique, the strategy of us-
ing a bank of fault detection filters was considered as a special concept for solving
the fault isolation problem. The so-called dedicated observer scheme (DOS) and the
generalized observer scheme (GOS), developed in the end of the 1970s and at the
beginning of the 1980s by Clark and Frank with his co-worker respectively, are two
most known fault isolation approaches of using a bank of residual generators.

13.4.1 The Dedicated Observer Scheme (DOS)

The DOS was proposed by Clark originally for the purpose of sensor fault isolation.
The idea behind the DOS is very simple. On the assumption that kf sensor faults
have to be detected and isolated, kf residual generators are then constructed, and
each of them is driven by only one output, that is,

⎡
⎢⎣
r1(s)
...

rkf (s)

⎤
⎥⎦=
⎡
⎢⎣
F1(u(s), y1(s))

...

Fkf (u(s), ykf (s))

⎤
⎥⎦ (13.51)

where Fi(u(s), yi(s)), i = 1, . . . , kf , stands for a function of the inputs and the ith
output yi(t). It is evident that the ith residual, ri(t), will only be influenced by the
ith sensor fault fi , it thus ensures a sensor fault isolation. Below we briefly show
the application of DOS concept for the sensor fault isolation.

Suppose the system model takes the form

y(s)=
⎡
⎢⎣
y1(s)
...

ym(s)

⎤
⎥⎦=Gyu(s)u(s)+ f (s)=

⎡
⎢⎣
G1(s)u(s)+ f1(s)

...

Gm(s)u(s)+ fm(s)

⎤
⎥⎦ (13.52)

with f (s) standing for the sensor fault vector. We now construct m residual genera-
tors as follows

r(s)=
⎡
⎢⎣
r1(s)
...

rm(s)

⎤
⎥⎦=
⎡
⎢⎣
R1(s)(M̂u1(s)y1(s)− N̂u1(s)u(s))

...

Rm(s)(M̂um(s)ym(s)− N̂um(s)u(s))

⎤
⎥⎦ (13.53)

where M̂ui(s), N̂ui(s) denote a left coprime pair of transfer function Gi(s), i =
1, . . . ,m, Ri(s), i = 1, . . . ,m, a parametrization vector. It leads to

ri(s)=Ri(s)M̂ui(s)fi(s), i = 1, . . . ,m

which clearly means a perfect sensor fault isolation.
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Remark 13.6 The original form of DOS approach was presented in the state-space.
Under the assumption

Gyu(s)= (A,B,C,D), C =
⎡
⎢⎣
C1
...

Cm

⎤
⎥⎦ , D =

⎡
⎢⎣
D1
...

Dm

⎤
⎥⎦

the ith residual generator is constructed as follows

˙̂x(t) = Ax̂(t)+Bu(t)+Li
(
yi(t)−Cix̂(t)−Di(t)u(t)

)
ri(t) = yi(t)−Cix̂(t)−Diu(t)

and whose dynamics is governed by

ė(t)= (A−LiCi)e(t)−Lifi(s), ri(t)= Cie(t)+ fi(t).
It is evident that the residual signal ri only depends on the ith fault fi .

Remember the claim that every kind of residual generators can be presented in
the form

r(s)=R(s)(M̂u(s)y(s)− N̂u(s)u(s)
)
. (13.54)

As will be shown below, the bank of residual generators (13.53) is in fact a multi-
dimensional residual generator. Thus, all results achieved in the last chapters are
also available for a bank of residual generators. In order to show it, we first rewrite
(13.53) into
⎡
⎢⎣
r1(s)
...

rm(s)

⎤
⎥⎦=
⎡
⎢⎣
R1(s)(M̂u1(s)y1(s)− N̂u1(s)u(s))

...

Rm(s)(M̂um(s)ym(s)− N̂um(s)u(s))

⎤
⎥⎦

=
⎡
⎢⎣
R1(s) 0

. . .

0 Rm(s)

⎤
⎥⎦

×
⎛
⎜⎝
⎡
⎢⎣
M̂u1(s) 0

. . .

0 M̂um(s)

⎤
⎥⎦
⎡
⎢⎣
y1(s)
...

ym(s)

⎤
⎥⎦−
⎡
⎢⎣
N̂u1(s)
...

N̂um(s)

⎤
⎥⎦u(s)

⎞
⎟⎠ .

Introducing notations:

M̂ui(s)= (A−LiCi,−Li,Ci,1), N̂ui(s)= (A−LiCi,B −LiCi,Ci,Di)
and ei for a vector whose the ith entry is one and the others are zero, then we have

M̂ui(s) = ei
(
I −C(sI −A+LieiC)−1Li

)
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N̂ui(s) = ei
(
D +C(sI −A+LieiC)−1(B −LieiC)

)
.

Note that

[
0 · · · 0 M̂ui(s) 0 · · · 0

]= ei(I−C(sI−A+LieiC)−1Liei
) :=Mui(s)

so setting

L̄i = Liei
gives

⎡
⎢⎣
r1(s)
...

rm(s)

⎤
⎥⎦=
⎡
⎢⎣
R1(s) 0

. . .

0 Rm(s)

⎤
⎥⎦
⎛
⎜⎝
⎡
⎢⎣
Mu1(s)

...

Mum(s)

⎤
⎥⎦
⎡
⎢⎣
y1(s)
...

ym(s)

⎤
⎥⎦−
⎡
⎢⎣
N̂u1(s)
...

N̂um(s)

⎤
⎥⎦u(s)

⎞
⎟⎠

with

Mui(s) = ei
(
I −C(sI −A+ L̄iC)−1L̄i

)
N̂ui(s) = ei

(
D+C(sI −A+ L̄iC)−1(B − L̄iC)

)
.

Recalling the coprime factorization of transfer matrices, we are able to rewrite
Mui(s) and N̂ui(s) into

Mui(s)= eiQio(s)M̂o(s), N̂ui(s)= eiQio(s)N̂o(s)

where

M̂o(s) = I −C(sI −A+LoC)−1Lo

N̂o(s) =D +C(sI −A+LoC)−1(B −LoD)
Qio(s) = I +C(sI −A+ L̄iC)−1(Lo − L̄i)

with Lo denoting some matrix ensuring the stability of matrix A−LoC. This leads
finally to

⎡
⎢⎣
r1(s)
...

rm(s)

⎤
⎥⎦=
⎡
⎢⎣
R1(s) 0

. . .

0 Rm(s)

⎤
⎥⎦
⎡
⎢⎣
e1Q1o(s)

...

emQmo(s)

⎤
⎥⎦(M̂o(s)y(s)− N̂o(s)u(s)

)

=
⎡
⎢⎣
R1(s)e1Q1o(s)

...

Rm(s)emQmo(s)

⎤
⎥⎦(M̂o(s)y(s)− N̂o(s)u(s)

)
.
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Thus, setting

R(s)=
⎡
⎢⎣
R1(s)e1Q1o(s)

...

Rm(s)emQmo(s)

⎤
⎥⎦

we obtain the general form of residual generators (13.54). This demonstrates that a
bank of residual generators is in fact a special form of (13.54).

The DOS has also been extended to the solution of actuator fault isolation prob-
lem, where the system inputs are assumed to be

ui(t)= uoi(t)+ fi(t), i = 1, . . . , kf

with fi being the ith fault in the ith input. Analogues to the (13.51), we are able to
use a bank of residual generators

⎡
⎢⎣
r1(s)
...

rkf (s)

⎤
⎥⎦=
⎡
⎢⎣
F1(u1(s), y(s))

...

Fkf (ukf (s), y(s))

⎤
⎥⎦

for the purpose of actuator fault isolation. Note that since y(s)may depend on every
input signal ui(s) the ith residual regenerator Fi should be so designed that it is
decoupled from uj (s), j �= i. This, as shown in the last section, becomes possible
when the number of the outputs is at least equals the number of the inputs (and so
the number of the faults).

The advantage of the DOS is its clear structure and working principle. In against,
the application fields are generally limited to the sensor fault isolation.

Remark 13.7 In literature, the reader may find the statement that less robustness is
an essential disadvantage of the DOS. It is argued as follows: For the construction
of each residual generators only one output signal is used. In this case, as known,
the design freedom is restricted. Remember, however, on the assumption that sensor
fault may occur in every sensor (and so every output) we can only isolate sensor
faults and have in fact no design freedom for the purpose of robustness. Thus, the
above claim is, although it seems reasonable, not correct. Of course, in case that only
a part of sensors may fail, for instance, y1, . . . , ykf , and the rest, ykf+1, . . . , ym, will
fault-freely work, we can modify the DOS as follows

⎡
⎢⎣
r1(s)
...

rkf (s)

⎤
⎥⎦=
⎡
⎢⎣
F1(u(s), y1(s), ykf+1(s), . . . , ym(s))

...

Fkf (u(s), ykf (s), ykf+1(s), . . . , ym(s))

⎤
⎥⎦ .

It becomes evident that the degree of freedom provided by ykf+1(s), . . . , ym(s) can
be utilized for the purpose of enhancing the robustness of the FDI system.
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13.4.2 The Generalized Observer Scheme (GOS)

The GOS was proposed by Frank and his co-worker. The working principle of the
GOS is different from the one of the DOS. Assume again there exist kf ≤m faults to
be isolated. The first step to a fault isolation using the GOS consists in the generation
of a bank of residual signals that fulfill the relation:

⎡
⎢⎣
r1(s)
...

rkf (s)

⎤
⎥⎦=
⎡
⎢⎣

Q1(f2(s), . . . , fkf (s))
...

Qkf (f1(s), . . . , fkf−1(s))

⎤
⎥⎦ . (13.55)

A unique fault isolation then follows the logic

− if all ri �= 0 except r1 then f1 �= 0 (13.56)

− · · ·
− if all ri �= 0 except rkf then fkf �= 0. (13.57)

Although this concept seems quite different from the logic usually used, namely,
⎡
⎢⎣
r1(s)
...

rkf (s)

⎤
⎥⎦=
⎡
⎢⎣
Q1(f1(s))

...

Qkf (fkf (s))

⎤
⎥⎦

with

if ri �= 0 then fi �= 0, i = 1, . . . , kf (13.58)

the existence conditions for a PFIs remains same. To explain this, we only need to
notice the fact that the logic (13.56)–(13.57) is indeed complementary to the logic
(13.58), that is, if a fault is localizable according to (13.56)–(13.57), then we are
also able to locate the fault uniquely using (13.58). To compare with the DOS, we
demonstrate the application of the GOS to the sensor fault isolation. To this end, we
consider again process model (13.52) with kf =m sensor faults to be detected and
isolated.

Under the use of notations

Gi(s)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

G1(s)
...

Gi−1(s)

Gi+1(s)
...

Gm(s)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, ȳi(s)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1(s)
...

yi−1(s)

yi+1(s)
...

ym(s)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, f̄i(s)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1(s)
...

fi−1(s)

fi+1(s)
...

fm(s)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

the system model can be rewritten into

ȳi (s)=Gi(s)u+ f̄i (s), i = 1, . . . ,m
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on account of which, the GOS residual generators are constructed in the following
form

ri(s)=Ri(s)
(
Mi(s)ȳi(s)−Ni(s)u(s)

)
, i = 1, . . . ,m (13.59)

whose dynamics is governed by

ri(s)=Ri(s)Mi(s)f̄i(s), i = 1, . . . ,m (13.60)

where Mi(s), Ni(s) are a left coprime pair of transfer matrix Gi(s). It is evident
that (13.60) fulfills (13.55).

The original version of the GOS was presented in the state space form described
by

˙̂x(t) = Ax̂(t)+Bu(t)+Li
(
ȳi (t)−Cix̂(t)−Di(t)u(t)

)
ri(t) = ȳi (t)−Cix̂(t)−Diu(t)

whose dynamics is then given by

ė(t)= (A−LiCi)e(t)−Lif̄i(t), ri(t)= Cie(t)+ f̄i (t)
where

Gu(s)= (A,B,C,D), C =
⎡
⎢⎣
C1
...

Cm

⎤
⎥⎦ , Ci =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

C1
...

Ci−1
Ci+1
...

Cm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Di =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

D1
...

Di−1
Di+1
...

Dm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Analogues to the discussion about the DOS, we demonstrate next that (13.59) is
equivalent to (13.54), the general form of residual generators.

Denote Mi(s), Ni(s) by

Mi(s)= (A−LiCi,−Li,Ci, I ), Ni(s)= (A−LiCi,B −LiCi,Ci,Di)

and introduce a matrix Īi

Īi =
[
e1 · · · ei−1 0 ei+1 · · · em

]
with ei being a vector whose the ith entry is one and all the others are zero, then
(13.59) can be rewritten as

ri(s)=Ri(s)
(
Mi(s)Īiy(s)−Ni(s)u(s)

)=Ri(s)Īi(M̃i(s)y(s)− Ñi(s)u(s)
)

where

M̃i(s) = I −C(sI −A+ L̃iC)−1L̃i
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Ñi(s) =D +C(sI −A+ L̃iC)−1(B − L̃iD)
with L̃i = LiĪi . By introducing

M̂o(s) = I −C(sI −A+LoC)−1Lo

N̂o(s) =D +C(sI −A+LoC)−1(B −LoD)
Qio(s) = I +C(sI −A+ L̃iC)−1(Lo − L̃i)

it turns out

ri(s)=Ri(s)ĪiQio(s)
(
M̂o(s)y(s)− N̂o(s)u(s)

)
and finally

r(s) =
⎡
⎢⎣
r1(s)
...

rm(s)

⎤
⎥⎦=R(s)(M̂o(s)y(s)− N̂o(s)u(s)

)

=
⎡
⎢⎣
R1(s)Ī1Q1o(s)

...

Rm(s)ĪmQmo(s)

⎤
⎥⎦(M̂o(s)y(s)− N̂o(s)u(s)

)
.

Thus, it is demonstrated that the GOS is also a special form of (13.59).

Remark 13.8 We would like to emphasize that both DOS and GOS have the same
degree of freedom for the purpose of fault isolation or robustness enhancement.
Also, using a bank of residual generators, either the DOS or the GOS, we do not
achieve more degree of design freedom than a multi-dimensional residual generator.

Example 13.4 In this example, the application of the DOS is illustrated via the lat-
eral dynamic system. The design objective is to isolate the sensor faults, which will
be done based on the model (3.78). To this end, two observers are constructed, and
each of them is driven by one sensor:

Residual generator I: ˙̂x(t)=Ax̂(t)+Bu(t)+L1r1(t)

r1(t)= y1(t)−C1x̂(t)−D1u(t)

where y1(t) is the lateral acceleration sensor signal and

L1 =
[−0.0501
−0.1039

]

Residual generator II: ˙̂x(t)=Ax̂(t)+Bu(t)+L2r2(t)

r2(t)= y2(t)−C2x̂(t)
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where y2(t) is the yaw rate sensor signal and

L2 =
[−0.4873

7.5252

]
.

Remark 13.9 We would like to mention that in the case of isolating two faults the
DOS and the GOS are identical, as we can see from the above example.

13.5 Notes and References

During last years, discussions and studies on the PFIs have been carried out from
different viewpoints and using different mathematical and control theoretical tools.
Generally speaking, the existing schemes can be divided into three categories:

• solving the PFIs using the unknown input decoupling strategy
• formulating the PFIs as a dual problem of designing a decoupling controller and

then solving it in this context
• handling the PFIs by means of a bank of residual generators.

All these three schemes have been addressed in this chapter. Attention has also been
paid to the study on the relationships between these schemes.

The discussion about the existence conditions of a PFIs is an extension of the
results by Ding and Frank [47]. Using the matrix pencil approach, Patton and Hou
[143] have published very interesting results on the fault isolation problem viewed
from the point of unknown input decoupling. Considering that the main results of
their work on the existence conditions of a PFIs is similar with the ones given in
Theorem 13.2, it is not included in this chapter.

Since the topic PFIs is one of the central problems of observer-based FDI, much
attention has been paid to it during the last two decades, and as a result, a great num-
ber of approaches have been reported during this time, see for instance the survey
papers by Frank, Gertler and Patton [60, 61, 74, 145]. In this chapter, we have con-
sciously only introduced those approaches, which are representative for introducing
the basic ideas and major schemes for achieving a PFIs. The frequency domain ap-
proach developed by Ding [45] gives a general solution for the fault isolation prob-
lems, while the approach introduced in Sect. 13.2.1, which was proposed by Liu and
Si [115], and the geometric method as well as the general design solution described
in Sect. 13.2.3 provide solutions in the state space form. The solutions using a bank
of residual generators, the DOS and GOS, were respectively derived by Clark [31]
and Frank [60]. It is worth to mention that Alcorta García and Frank [2] reported a
novel approach to the fault isolation system design. The main contribution of this
approach is the construction of a bank residual generators which have a common
dynamic part. As a result, the order of the whole fault detection system may become
low. This approach has an intimate relationship to the approaches proposed by Liu
and Si [115] and the general design solution given in Sect. 13.2.3.



440 13 Fault Isolation Schemes

In conclusion, we would like to make the following remarks:

• In practice, it is not realistic to expect achieving a perfect fault isolation just using
a residual generator, because of the strict conditions on the structure of the system
under monitoring. In most of cases, a stage of residual evaluation and a decision
unit are needed. However, the approaches introduced here provide us with the
possibility for clustering faults into some groups, which may considerably sim-
plify the decision on a fault isolation.

• The concepts like structured residuals or fixed direction residuals have not been
included in this chapter. We refer the interested reader to [15, 74, 76–78, 145, 159]
for excellent references on this topic.

• As mentioned in Chap. 4, the fault isolatability is a concept that is independent
of the FDI system used. In this chapter, we have illustrated how to design an FDI
system to achieve a PFIs if the system is structurally fault isolable. The realization
of a PFIs is decided by the structure of the system under monitoring and by the
available information about the faults. The more information we have, the more
faults become isolable. In the worst case, that is, in case that we have no informa-
tion about faults, the number of the isolable faults is given by the number of the
measurements (sensors), as required by the fault isolability.

• The major focus of this chapter is on the PFIs without taking into account the
unknown inputs, model uncertainties and without addressing the residual evalu-
ation problems. Solving these problems is also a part of a fault isolation process
[113]. On the other hand, if the faults are structurally isolable, then we are able to
accomplish fault isolation in a two-step procedure: (a) first achieve a perfect fault
isolation (b) then detect each (isolated) fault by taking into account the influence
of the unknown inputs and model uncertainties. In this way, after designing a
fault isolation filter for a PFIs, the remaining work in the second step is the stan-
dard fault detection issues, which can be addressed by the schemes and methods
introduced in the previous chapters.



Chapter 14
Fault Identification Schemes

In the fault diagnosis framework, fault identification is often considered as the ulti-
mate design objective. In fact, a successful fault identification also indicates a suc-
cessful fault detection and isolation implicitly. This is a reasonable motivation for
the intensive research in the field of model-based fault identification.

Roughly speaking, there are four types of model-based fault identification strate-
gies:

• the parameter identification technique based fault identification, where the faults
are modelled as system parameters that are then identified by means of the well-
established parameter identification technique

• the augmented observer schemes, in which the faults are addressed as state vari-
ables and an augmented observer is constructed for the estimation of both state
variables and the faults

• the adaptive observer scheme, which can be considered, in some sense, as a com-
bination of the above two schemes, and

• the observer-based fault identification filter (FIF) scheme.

The first strategy is generally applied for the identification of multiplicative
faults, in order to fit the standard model form of the parameter identification tech-
nique, while the second and the fourth ones are dedicated to the additive faults.
A major difference between these four strategies lies in the demand on a priori
knowledge of the faults to be identified. In the framework of the first three strate-
gies, a successful and reliable fault identification is based on certain assumptions on
the faults, for instance they are quasi constant or vary slowly or they are generated
by a dynamic system. In against, no assumption on the faults is needed by applying
the fault identification filter scheme. In this chapter, we concentrate ourselves on
the last fault identification scheme, which is schematically sketched in Fig. 14.1.
A major reason for this focus is, on the one hand, the close relationship of the fault
identification filter scheme to the FDI schemes introduced in the former chapters
and, on the other hand, the fact that few systematic studies have been reported on
this topic, while numerous monographs and significant papers are available for the
first three fault identification schemes. We shall briefly sketch the basic ideas of the

S.X. Ding, Model-Based Fault Diagnosis Techniques, Advances in Industrial Control,
DOI 10.1007/978-1-4471-4799-2_14, © Springer-Verlag London 2013
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Fig. 14.1 Observer-based fault identification filter scheme

second and third schemes. The reader who is interested in these fault identification
schemes is referred to the representative literature given at the end of this chapter.

14.1 Fault Identification Filter Schemes and Perfect Fault
Identification

14.1.1 Fault Detection Filters and Existence Conditions

In order to present the underlying ideas and the core of the fault identification filter
(FIF) scheme clearly, we first consider LTI systems described by

y(s) =Gyu(s)u(s)+Gyf (s)f (s) (14.1)

Gyu(s) = (A,B,C,D), Gyf (s)= (A,Ef ,C,Ff ) (14.2)

without considering the influence of the unknown input.
An FIF is an LTI system that is driven by u and y and its output is an estimation

of f . To ensure that the estimate for f is independent of u and the initial condition
of the state variables, a residual generator is the best candidate for an FIF. Applying
residual generator

r(s)=R(s)(M̂u(s)y(s)− N̂u(s)u(s)
)

(14.3)

to (14.1)–(14.2) gives

r(s)=R(s)Gf (s)f (s) := f̂ (s), Gf (s)= M̂u(s)Gyf (s). (14.4)
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f̂ (s) ∈ Rkf is called an estimate of fault vector f and (14.3) is called FIF. See
Sect. 5.2 for a detailed description of residual generator (14.3).

The primary interest of designing an FIF is to find a fault estimate that is as
close as possible to the fault vector. The ideal case is the so-called perfect fault
identification.

Definition 14.1 Given system (14.1)–(14.2) and FIF (14.3). A perfect fault identi-
fication (PFI) is the case that

f̂ (s)= f (s). (14.5)

Next, we study the existence conditions to achieve a PFI. It follows from (14.4)
that (14.5) holds if and only if

R(s)Gf (s)= I ⇐⇒ R(s)N̂f (s)= I, Gyf (s)= M̂−1
u (s)N̂f (s)

which is equivalent to the statement that Gyf (s) is left invertible in RH∞. The
following Theorem is a reformulation of the above result.

Theorem 14.1 Given system (14.1)–(14.2) and FIF (14.3). Then the following state-
ments are equivalent

S1: the PFI is achievable
S2: Gyf (s) is left invertible in RH∞
S3: the rank of Gyf (s) is equal the column number of Gyf (s) and Gyf (s) has no

transmission zero in C+ for the continuous-time systems and C1 for the discrete-
time systems.

The proof of this theorem is obvious and is thus omitted.
If Gyf (s) is given in the state space presentation with Gyf = (A,Ef ,C,Ff ),

then the statement S3 in Theorem 14.1 can be equivalently reformulated as the fol-
lowing corollary.

Corollary 14.1 Given system (14.1)–(14.2) and FIF (14.3), then the PFI is achiev-
able if and only if for continuous-time systems

∀λ ∈ C+, rank

[
A− λI Ef
C Ff

]
= n+ kf (14.6)

and for discrete-time systems

∀λ ∈ C1, rank

[
A− λI Ef
C Ff

]
= n+ kf . (14.7)

Suppose that the existence condition given in Corollary 14.1 is satisfied. Then,
the following algorithm can be used for the FIF design.
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Algorithm 14.1 (FIF design for a PFI)

S1: Select L such that

˙̂x =Ax̂ +Bu+L(y − ŷ), ŷ = Cx̂ +Du

is stable
S2: Solve

F−f Ff = I
for F−f and set

R(s)=
(
I − F−f C(sI −A+LC −LFf F−f C +EfF−f C)−1·

(Ef −LFf )
)
F−f (14.8)

S3: Construct FIF

f̂ (s)=R(s)(y(s)− ŷ(s)). (14.9)

Remark 14.1 R(s) given in (14.8) is the (left) inverse of N̂f (s).

We would like to point out that Algorithm 14.1 is generally used for the identifi-
cation of sensor faults due to the requirement rank(Ff )= kf . It is very interesting
to note that in this case Algorithm 14.1 can also be used for the purpose of (sensor)
fault isolation, while Algorithm 13.2 for the fault isolation filter design fails, see
Remark 13.5.

Example 14.1 We now design an FIF to identify the sensor faults in the vehicle dy-
namic system. For our purpose, we add a post-filter to the residual signal generated
by an FDF with

L=
[

0.0133 0.0001
0 1.0004

]

which is selected based on model (3.78). This post-filter is given by

R(s)= N̂−1
f (s)=

⎡
⎣ s2+4.2243s+31.3489

s2+6.1623s+37.2062
1.1802s+145.4182
s2+6.1623s+37.2062

−1.55×10−6s+0.3788
s2+6.1623s+37.2062

s2+7.1627s+40.1169
s2+6.1623s+37.2062

⎤
⎦

N̂f (s)= (A−LC,Ef ,C,Ff ).

Assume that Gyf (s) satisfies the conditions given in Corollary 14.1. It follows
from Lemmas 7.4 and 7.5 that there exist an LCF and a CIOF of Gyf (s) so that

Gyf (s)= M̂−1(s)N̂(s)=Gco(s)Gci(s), M̂−1(s)=Gco(s), N̂(s)=Gci(s).
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Since Gyf (s) has no RHP zero, Gci(s) is a regular constant matrix. Without loss of
generality, assume Gci(s)= I , then we have

M̂(s)Gyf (s)= I.
This proves the following theorem.

Theorem 14.2 Given system (14.1)–(14.2) that satisfies (14.6) or (14.7). Then the
FIF

˙̂x =Ax̂ +Bu+L(y −Cx̂ −Du), f̂ = V (y −Cx̂ −Du)
with

V = (Ff FTf )−1/2
, L= (YCT +EfFTf )(Ff FTf )−1

for continuous-time systems or

V = (Ff FTf +CXCT )−1/2
, L= (ATXCT +EfFTf )(Ff FTf +CXCT )−1

for discrete-time systems gives

lim
t→∞ f̂ (t)= f (t) or lim

k→∞ f̂ (k)= f (k)

where Y ≥ 0, X ≥ 0 respectively solve

AY + YAT +EfETf −
(
YCT +EfFTf

)(
Ff F

T
f

)−1(
CY + FfETf

)= 0

ADX
(
I +CT (Ff FTf )−1

CX
)−1

ATD −X+EfFTf⊥Ff⊥D⊥ETf = 0

AD =A−CT
(
Ff F

T
f

)−1
FfE

T
f .

Recall our study on the fault identifiability in Sect. 4.4, it can be concluded that
the PFI is achievable if and only if the system is fault identifiable. We can further
conclude that, referred to the existence condition given in Theorem 13.1 for a suc-
cessful fault isolation, the PFI is achievable if and only if

• the faults are isolable and
• N̂f (s) is a minimal phase system.

We have learned in Chap. 13 how difficult it is to achieve a fault isolation. The
PFI requires in addition that N̂f (s) should not have any zero in the RHP including
zeros at infinity for continuous-time systems. It is a very hard condition which can
often not be satisfied in practice. For instance, we are not able to identify process
component faults, because in this case Ff = 0, which meansGyf (s) will have zeros
at infinity.

In other words, we can claim that the PFI is achievable if only sensor faults are
under consideration. Bearing it in mind, we shall present various schemes in the
next sections, for which the hard existence conditions given in Theorem 14.1 can be
relaxed.
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14.1.2 FIF Design with Measurement Derivatives

A natural way to relax the hard existence conditions is to increase the sensor number
to gain additional information. On the other hand, this solution leads to increase in
costs. In practice, the utilization of the first derivative of y is widely adopted as a
compromise solution for additional information but without additional sensors. In
our following study, we assume that

rank(Ff )= α < kf (14.10)

y(t), ẏ(t), u(t), u̇(t) are available and the system model is given in the state space
representation. For the sake of simplicity, we only study FIF design for continuous-
time systems.

We first check how far the additional information ẏ(t) can help us to relax the
hard conditions given in Theorem 14.1. Since for y(0)= 0

L
(
ẏ(t)
)= sy(s) =⇒ Gẏf (s)= sGyf (s)

it becomes clear that Gẏf (s) has all the finite transmission zeros of Gyf (s). Com-
paring with the existence condition given in Corollary 14.1, it can be concluded that
using ẏ(t) only helps us to remove the zeros at infinity. On account of this result,
we concentrate ourselves below on the zeros at infinity.

We first write ẏ(t) into

ẏ(t)= CAx(t)+CBu(t)+CEf f (t)+Du̇(t)+ Ff ḟ (t). (14.11)

Note that the term Ff ḟ (t) means additional faults on the one hand and does not
lead to removing the transmission zeros at infinity on the other hand. To avoid ḟ (t),
let P solve

PFf = 0, rank(PCEf )=max≤ kf − α.
Denoting

ye(t) =
[
y(t)

P ẏ(t)

]
, ue(t)=

[
u(t)

u̇(t)

]
, Be =

[
B 0

]

Ce =
[

C

PCA

]
, De =

[
D 0

PCB PD

]
, Ff,e =

[
Ff
PCE

]

we have an extended system model

ẋ(t)=Ax(t)+Beue(t)+Ef f (t), ye(t)= Cex(t)+Deue(t)+ Ff,ef (t).
(14.12)

In (14.12), the number of the transmission zeros at infinite, nz,∞, is determined by

nz,∞ = kf − rank(Ff,e).
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Considering that

Gyef (s)=
[
I

sP

]
Gyf (s)

and thus has all the finite transmission zeros of Gyf (s), the following theorem is
proven.

Theorem 14.3 Given system (14.12) and assume that rank(Gyf (s)) = kf . Then,
the PFI is achievable if and only if

C1: rank

[
Ff
CEf

]
= kf (14.13)

C2: ∀λ, 0≤ Re(λ), |λ|<∞, rank

[
A− λI Ef
C Ff

]
= n+ kf . (14.14)

This theorem reveals the role and limitation of the additional information ẏ(t).
For the realization of the idea, we can use the following algorithm.

Algorithm 14.2 (FIF design for a PFI under utilization of ẏ(t))

S0: Check the existence conditions given in Theorem 14.3. If they are satisfied, go
to the next step, otherwise stop

S1: Solve

PFf = 0, rank(PCEf )= kf − α
S2: Apply Algorithm 14.1 to the design of an FIF for system (14.12).

It is interesting to note that for Ff = 0, the existence conditions given in Theo-
rem 14.3 are identical with the ones of Corollary 6.6, which deals with the design of
UIO. This motivates us to construct an FIF using the UIO scheme. Without proof,
we present an algorithm for this purpose. The interested reader is referred to the
discussion in Sect. 6.5.2.

Algorithm 14.3 (FIF design for a PFI using the UIO scheme)

S1: Solve

M

[
Ff
CEf

]
= Ikf×kf , M =

[
M11 0

0 M22

]
, M11 ∈Rα×m

for M
S2: Set

T = I −Ed,2C, Ed,2 =Ed
[

0
M22

]
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S3: Select L so that

TA−
(
Ed

[
M11

0

]
+L
)
C is stable

S4: Construct an observer

ż(t) = (T A− L̃C)z(t)+ (T B − L̃D)u(t)+ ((T A− L̃C)Ed,2 + L̃)y
L̃ = Ed

[
M11

0

]
+L

S5: Set

f̂ (t)=
[

M11((I −Ed,2C)y(t)−Cz(t)−Du(t))
M22(ẏ(t)−CAz(t)−CAEd,2y(t)−CBu(t))

]
.

One question may arise: Can we use the higher order derivatives of y(t) as addi-
tional information to achieve a PFI which is otherwise not achievable based on y(t),
ẏ(t)? The following theorem gives a clear answer to this question.

Theorem 14.4 Given system (14.12) and assume that rank(Gyf (s)) = kf and
y(i)(t), i = 1, . . . , n, are available for the FIF construction. Then, the PFI is achiev-
able if and only if

C1: rank

⎡
⎢⎢⎢⎢⎢⎣

Ff
CEf
CAEf
...

CAn−1Ef

⎤
⎥⎥⎥⎥⎥⎦
= kf (14.15)

C2: ∀λ, 0≤ Re(λ), |λ|<∞, rank

[
A− λI Ef
C Ff

]
= n+ kf . (14.16)

Proof The proof of this theorem is similar to the one of Theorem 14.3. Two facts
are needed to be noticed:

y(i)(t)= CAix(t)+CAi−1Ef f (t)+
i−1∑
j=1

CAj−1Ef f
(i−j)(t)+ Ff f (i)(t)

(14.17)⎡
⎢⎢⎢⎣
y(s)

sy(s)
...

sny(s)

⎤
⎥⎥⎥⎦=
⎡
⎢⎢⎢⎣
I

sI
...

snI

⎤
⎥⎥⎥⎦
(
Gyu(s)u(s)+Gyf (s)f (s)

)
. (14.18)
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From (14.17), we know that the term CAi−1Ef f (t) can contribute to removing the
zeros at infinite, while (14.18) tells us that all the finite transmission zeros ofGyf (s)
cannot be removed. These prove the theorem. �

14.2 On the Optimal FIF Design

14.2.1 Problem Formulation and Solution Study

The results in the previous section make it clear that a PFI is only achievable under
strict conditions. This fact motivates the search for an alternative solution. The H∞
OFIP introduced in Sect. 7.5 has been considered as such a solution. In this section,
we present a key result in the H∞ OFIP framework, which extends the results given
in Sect. 7.5. In the following study, we only consider continuous-time systems.

We assume that

A1:

rank
(
Gf (s)

)= kf
A2: Gf (s) ∈RHm×kf∞ has at least one zero in the RHP including the zeros on the

jω-axis and at infinity, that is, Gf (s) is non-minimum phase in a generalized
sense, in order to avoid the trivial instance of the problem.

On these two assumptions, we first study the following optimization problem

min
R(s)∈RH∞

∥∥I −R(s)Gf (s)∥∥∞. (14.19)

Note that the optimization problem (7.123) with m = kf = 1 is a special case
of (14.19).

Theorem 14.5 Given Gf (s) ∈RHm×kf∞ which is non-minimum phase (having ze-
ros in RHP and at infinity), then we have

min
R

∥∥I −R(s)Gf (s)∥∥∞ = 1. (14.20)

Proof We begin with a co-inner–outer factorization of Gf (s)=Gco(s)Gci(s) with
Gco(s) and Gci(s) denoting co-outer and co-inner of Gf (s), respectively. It re-
sults in ∥∥I −R(s)Gf (s)∥∥∞ =

∥∥I −R(s)Gco(s)Gci(s)∥∥∞
which further leads to

min
R

∥∥I −R(s)Gf (s)∥∥∞ =min
R

∥∥U(s)−R(s)Gco(s)∥∥∞ (14.21)
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with U(s)=G∗ci(s). Note that

min
R

∥∥U(s)−R(s)Gco(s)∥∥∞ ≤
∥∥U(s)∥∥∞ = 1. (14.22)

On the other hand,

min
R

∥∥U(s)−R(s)Gco(s)∥∥∞ ≥ min
Q∈RH∞

∥∥U(s)−Q(s)∥∥∞ ≥ ‖ΓU‖H
where ΓU and ‖ΓU‖H represent the Hankel operator of U(s) and its Hankel norm,
and the last inequality can be found in Francis’s book. SinceGci(s) ∈RH∞,U(s)=
G∗ci(s) is an anti-stable transfer function matrix. Thus, denoting the minimal space
realization of U(s) by (AU ,BU ,CU ,DU), which gives ΓU = (AU ,BU ,CU ,0), we
have, following,

‖ΓU‖H = (λmax)
1/2 (14.23)

where λmax is the maximal eigenvalue of matrix PQ with P and Q solving

AUP + PA�U = BUB�U , A�UQ+QAU = C�UCU .
Moreover, it holds

for U(s)=G∗ci(s), PQ= I. (14.24)

Therefore,

‖ΓU‖H = 1

and so

min
R

∥∥U(s)−R(s)Gco(s)∥∥∞ ≥ 1. (14.25)

Summarizing (14.22)–(14.25) finally yields

min
R

∥∥I −R(s)Gf (s)∥∥∞ =min
R

∥∥U(s)−R(s)Gco(s)∥∥∞ = ‖ΓU‖H = 1. �

Remark 14.2 (14.23) and (14.24) are known in the H∞ optimization framework,
see the literature given at the end of this chapter.

Once again, we would like to call reader’s attention to (14.20) that means

R(s)= 0= arg min
R

∥∥I −R(s)Gf (s)∥∥∞.
The real reason for this more or less surprising result seems to be the fact that a
satisfactory fault identification over the whole frequency domain is not achievable,
provided that the transfer function matrix from f to y is non-minimum phase. If
this interpretation is true, then introducing a suitable weighting matrix W(s) which
is used to limit the frequency interval interested for the fault identification purpose,
could improve the performance. The study in the following sections will demon-
strate it and show different ways to the alternative problem solutions.
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14.2.2 Study on the Role of the Weighting Matrix

In this subsection, we consider residual generators of the form

r(s)=R(s)Gf (s)
and study the generalized optimal fault identification problem (GOFIP) defined by

min
R(s)∈RH∞

∥∥W(s)−R(s)Gf (s)∥∥∞ (14.26)

where W(s) ∈RH∞ is a weighting matrix. Our study focus is on the role of W(s).
Again, the two assumptions A1 and A2 mentioned in the last section are assumed
to be true. Considering that a fault isolation is necessary for a fault identifica-
tion, for our purpose and also for the sake of simplicity, we first re-formulate the
GOFIP (14.26).

Let us choose a R̃(s) ∈RH∞ such that

R̃(s)Gf (s)= diag
(
g1(s), . . . , gkf (s)

)
(14.27)

and introduce Q(s)= diag(q1(s), . . . , qkf (s)) ∈RHkf×kf∞ , which leads to

R(s)Gf (s)=
⎡
⎢⎣
q1(s)g1(s)

...

qkf (s)gkf (s)

⎤
⎥⎦

R(s)=Q(s)R̃(s), gi(s) ∈RH∞, i = 1, . . . , kf

then we have

r(s)=
⎡
⎢⎣
r1(s)
...

rkf (s)

⎤
⎥⎦=
⎡
⎢⎣

q1(s)g1(s)f1(s)
...

qkf (s)gkf (s)fkf (s)

⎤
⎥⎦ . (14.28)

Note that the selection of R̃(s) is a fault isolation problem, which is also the first
step to a successful fault identification. The next step is the solution of the modified
GOFIP: given weighting factors wi(s), gi(s) ∈RH∞, find qi(s) ∈RH∞ such that

sup
fi �=0

‖wi(s)fi(s)− qi(s)gi(s)fi(s)‖2

‖fi(s)‖2
= ∥∥wi(s)− qi(s)gi(s)∥∥∞, i = 1, . . . , kf

(14.29)
is minimized.

Before we begin with solving the GOFIP (14.29), we would like to remind the
reader of Lemma 7.7, which tells us, on the assumption that gi(s) has a single RHP
zero s0,

min
qi∈RH∞

∥∥wi(s)− qi(s)gi(s)∥∥∞ =
∣∣wi(s0)∣∣. (14.30)
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(14.30) reveals that wi(s) should structurally have all RHP zeros with the associated
structure of gi(s), in order to ensure that

min
qi∈RH∞

∥∥wi(s)− qi(s)gi(s)∥∥∞ = 0.

In the following of this section, we focus our attention on the GOFIP (14.29),
which is the standard scalar-valued model-matching problem. On the assumption
that

gi(jω) �= 0 for all 0≤ ω ≤∞
and g−1

i (jω) /∈ RH∞ to avoid the trivial instance, we have a standard algorithm
(see the book by Francis given at the end of this chapter) to compute optimal qi(s)
and the value of

min
qi∈RH∞

∥∥wi(s)− qi(s)gi(s)∥∥∞.

Algorithm 14.4 (Solution of GOFIP (14.29))

S1: Do an inner–outer factorization

gi(s)= gii (s)goi (s)
where gii (s) is inner and goi (s) outer

S2: Define

p(s)= (gii (s))−1
wi(s) := u(s)wi(s)

and find a state-space minimal realization

p(s)= (Ai, bi, ci ,0)+ (a function in RH∞)

where (Ai, bi, ci,0) is strictly proper and analytic in Re s ≤ 0 with antistableAi
S3: Solve the equations

AiLc +LcATi = bibTi , ATi Lo +LoAi = cTi ci (14.31)

for Lc and Lo
S4: Find the maximum eigenvalue λ of LcLo and a corresponding eigenvector ϑ
S5: Define

θ(s)= (Ai,ϑ, ci,0), ϕ(s)= (−ATi , λ−1Loϑ,b
T
i ,0
)

χ(s)= p(s)− λθ(s)/ϕ(s)
S6: Set

qi(s)=
(
goi (s)

)−1
χ(s). (14.32)
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qi(s) given in (14.32) is the solution of GOFIP (14.29), that is,

qi(s)=
(
goi (s)

)−1
χ(s)= arg min

qi∈RH∞

∥∥wi(s)− qi(s)gi(s)∥∥∞.
Moreover,

min
qi∈RH∞

∥∥wi(s)− qi(s)gi(s)∥∥∞ = λ
and wi(s)− qi(s)gi(s) is all-pass, i.e.

∀ω ∣∣wi(jω)− qi(jω)gi(jω)∣∣= λ.
Using the above algorithm we now prove the following theorem. First, for the sake
of simplicity, it is assumed that

u(s)= (gii (s))−1 := (Au, bu, cu, du)
and Au has only κ real and different eigenvalues. Thus, without loss of generality,
we further suppose that

Au = diag(α1, . . . , ακ) =⇒ eAut = diag
(
eα1t , . . . , eακ t

)
.

This is achievable by a regular state transformation.

Theorem 14.6 Given a weighting function wi(s) = (Aw,bw, cw) and gi(s) ∈
RH∞, then

•

min
qi∈RH∞

∥∥wi(s)− qi(s)gi(s)∥∥∞ ≤ α
(∫ ∞

0

(
cwe

Awtbw
)2
dt

)1/2

(14.33)

= α
(

1

2π

∫ ∞
−∞

wi(−jω)wi(jω)dω
)1/2

(14.34)

•

min
qi∈RH∞

∥∥wi(s)− qi(s)gi(s)∥∥∞ ≤ β
∫ ∞

0

∣∣cweAwtbw∣∣dt = β‖wi‖1 (14.35)

where α, β are some positive constants.

Proof Remember that gii (s) is an inner factor, so we have u(s)= (gii (s))−1 = g∗i (s).
Thus, the unstable projection of p(s), (Ai, bi, ci,0), can be described by

(Ai, bi, ci,0)= (Au,−Xbw, cu,0)
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where X is the solution of the equation

AuX−XAw =−bucw. (14.36)

Solving (14.31) and (14.36), respectively, gives

X =−
∫ ∞

0
e−AutbucweAwt dt, Lc =−

∫ ∞
0

e−AitbibTi
(
e−Ait

)T
dt.

Replacing bi by −Xbw leads to

Lc =−
∫ ∞

0
e−AitbibTi

(
e−Ait

)T
dt

=−
∫ ∞

0
e−Aut

(∫ ∞
0

e−AutbucweAwtbw dt
)

×
(∫ ∞

0
e−AutbucweAwtbw dt

)T (
e−Aut

)T
dt.

Let λc be the maximum eigenvalue of −Lc. Since

λc =
∫ ∞

0

(
e−Aut

∫ ∞
0
e−AutbucweAwtbw dt

)T(
e−Aut

∫ ∞
0
e−AutbucweAwtbw dt

)
dt

and

e−Autbu =
⎡
⎢⎣
e−α1t bu1

...

e−ακ t buκ

⎤
⎥⎦

we have

λc =
∫ ∞

0

(
e−Aut

∫ ∞
0
e−AutbucweAwtbw dt

)T(
e−Aut

∫ ∞
0
e−AutbucweAwtbw dt

)
dt

(14.37)

=
∫ ∞

0

κ∑
i=1

(
e−αi t bui

)2(∫ ∞
0

e−αi t cweAwtbw dt
)2

dt (14.38)

≤
∫ ∞

0

κ∑
i=1

((
e−αi t bui

)2 ∫ ∞
0

(
e−αi t

)2
dt

∫ ∞
0

(
cwe

Awtbw
)2
dt

)
dt

= α1

∫ ∞
0

(
cwe

Awtbw
)2
dt. (14.39)
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Note that cweAwtbw is the impulse response function of the weighting factor wi(s),
hence we also have

λc ≤ α1

∫ ∞
−∞

wi(−jω)wi(jω)dω.

Denote the maximum eigenvalue of matrix −Lo by λo and recall that

λ≤√λcλo.
It then turns out

min
qi∈RH∞

∥∥wi(s)− qi(s)gi(s)∥∥∞ = λ≤
√
λoα1

∫ ∞
−∞

wi(−jω)wi(jω)dω

≤ α
(∫ ∞

0

(
cwe

Awtbw
)2
dt

)1/2

= α
(

1

2π

∫ ∞
−∞

wi(−jω)wi(jω)dω
)1/2

.

This proves (14.33). The proof of (14.35) is evident. It follows from

λc =
∫ ∞

0

κ∑
i=1

(
e−αi t bui

)2(∫ ∞
0

e−αi t cweAwtbw dt
)2

dt

≤
∫ ∞

0

κ∑
i=1

(
e−αi t bui

)2(∫ ∞
0

∣∣e−αi t cweAwtbw∣∣dt
)2

dt

≤ β1

(∫ ∞
0

∣∣cweAwtbw∣∣dt
)2

.

Notice that (∫ ∞
0

∣∣cweAwtbw∣∣dt
)
= ‖wi‖1

we finally have

min
qi∈RH∞

∥∥wi(s)− qi(s)gi(s)∥∥∞ = λ≤ β‖wi‖1. �

From this theorem, we evidently see that the performance of a fault identifica-
tion depends on the selection of the weighting factor wi(s). A suitable selection of
wi(s)may strongly improve the estimation accuracy. Although the estimation errors
bounds given by (14.33) and (14.35) are conservative, they may help us to have a
better understanding regarding to selecting a weighting factor. To demonstrate this,
let us observe the following case.
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Suppose that we would like to recover (identify) a fault over a given frequency
interval (ω1,ω2). In order to describe this requirement, we introduce a bandpass as
weighting factor wi(s), which has the following frequency domain behavior

∣∣wi(jω)∣∣2 =
{≤ 1, ω ∈ (ω1,ω2)

# 0, ω /∈ (ω1,ω2).

It follows from (14.33) that in this case

min
qi∈RH∞

∥∥wi(s)− qi(s)gi(s)∥∥∞ ≤ α
(

1

2π

∫ ∞
−∞

wi(−jω)wi(jω)dω
)1/2

# α
(

1

2π
|ω2 −ω1|

)1/2

.

In extreme case, we even have

lim
ω2→ω1

min
qi∈RH∞

∥∥wi(s)− qi(s)gi(s)∥∥∞→ 0

That means we are able to achieve the desired estimation accuracy if the frequency
interval is very narrow. In a similar way, we can also designwi(s) in the time domain
based on (14.35).

14.3 Approaches to the Design of FIF

In this section, we introduce some schemes for the FIF design. For the first three
schemes, we begin with the second step of designing an FIF with the following
model

r(s)=
⎡
⎢⎣
r1(s)
...

rkf (s)

⎤
⎥⎦=
⎡
⎢⎣

q1(s)g1(s)f1(s)+ q1(s)gd,1(s)d(s)
...

qkf (s)gkf (s)fkf (s)+ qkf (s)gd,kf (s)d(s)

⎤
⎥⎦

R̃(s)Gd(s)=
⎡
⎢⎣
gd,1(s)
...

gd,kf (s)

⎤
⎥⎦ , gd,i(s) ∈RH1×kd∞

and try to solve the problem described as: given gi(s), gd,i(s) ∈RH∞ and a con-
stant γ > 0, find a reasonable wi(s) as well as qi(s) ∈RH∞ that is the solution of
the optimization problem

min
qi (s)∈RH∞

∥∥wi(s)− qi(s)gi(s)∥∥∞,
∥∥qi(s)gd,i(s)∥∥∞ < γ, i = 1, . . . , kf .

(14.40)
We would like to emphasize that the selection of wi(s) is also a part of our design
procedures.
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14.3.1 A General Fault Identification Scheme

The underlying idea of this approach is to ensure that wi(s) have all RHP zeros
with the associated structure of gi(s). To this end, we propose a two-step design
procedure.

Algorithm 14.5 (Two-step solution of design problem solution (14.40))

S1: Selection of weighting matrix wi(s)

• do an extended CIOF using Algorithm 7.7

gi(s)= go(s)g̃i (s) (14.41)

with invertible go(s), g̃i (s) having as its zeros all the zeros of gi(s) in the
RHP including on the jω-axis and at infinity. Note that gi(s) is a SISO sys-
tem and thus the computation may become very simple

• set

wi(s)= g̃i (s) (14.42)

S2: Solution of the optimization problem

min
qi (s)∈RH∞

∥∥1− qi(s)go(s)∥∥∞,
∥∥qi(s)gd,i(s)∥∥∞ < γ. (14.43)

It is evident that solution of (14.43) delivers an estimate for

f̄i (s)= g̃i (s)fi(s).
We would like remark that the above algorithm is applicable, independent of the

placement of the zeros of gi(s) in the complex plane.

14.3.2 An Alternative Scheme

The basic idea of the design scheme proposed below is the application of possible
frequency or time domain information of the faults to improve the identification
performance, based on Theorem 14.6. Recall that the algorithm given in the last
section is developed on the assumption that

gi(jω) �= 0 for all 0≤ ω ≤∞ (14.44)

which however may be too hard to be satisfied in practice. For instance, if the sys-
tem is strictly proper then we have a zero at infinity, that is, gi(j∞) = 0. In the
following, we are going to propose a scheme to overcome this difficulty.

We know that if gi(s) has jω-axis zeros, say ω1, . . . ,ωk , then faults with fre-
quencies ω1, . . . ,ωk do not have any influence on the system output and thus on the
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residual signals. In other words, a detection and further identification of these faults
are impossible. For this reason, we propose the following algorithm for the system
design.

Algorithm 14.6 (The alternative FIF design)

S1: Do an extended co-inner–outer factorization of gi(s), i = 1, . . . , kf ,

gi(s)= go(s)ḡi (s)gjω(s)

with invertible go(s), inner ḡi (s) and gjω(s) having as its zeros all the zeros of
gi(s) on the jω-axis and at infinity

S2: Select w̄i(s) according to the frequency domain or the time domain require-
ments

S3: Solve optimization problem

min
q̄i∈RH∞

∥∥w̄i(s)− q̄i (s)ḡi (s)∥∥∞,
∥∥q̄i (s)g−1

o (s)gd,i(s)
∥∥∞ < γ (14.45)

using the known H∞ optimization technique
S4: Set

qi(s)= q̄i,opt(s)g
−1
o (s)

as the solution, where q̄i,opt(s) solves the optimization problem (14.45).

Different from the design scheme introduced in the previous subsection, the gen-
erated residual signal ri(s) delivers an estimate for

f̄ (s)= gjω(s)fi(s)

where gjω(s) is only a part of g̃i (s) given in (14.41). On the other hand, this design
procedure requires frequency or time domain information about the possible fault
fi(s), which is necessary for the selection of w̄i(s) in step S3.

14.3.3 Identification of the Size of a Fault

In practice, identification of the size of a fault, expressed in terms of the energy
level (L2 norm) or the average energy level (RMS), is often of primary interest.
Recall that in Sect. 7.8.6 as well as in Sect. 12.3, we have introduced a method that
provides us with an alternative solution to the H− to H∞ design problem, which
can also be used to estimate the L2 norm of a fault. Based on this result, we propose
the following algorithm for the identification of the energy level (L2 norm) or the
average energy level of a fault.



14.3 Approaches to the Design of FIF 459

Algorithm 14.7 (Identification of the size of a fault)

S1: Do an extended co-inner–outer factorization of gi(s), i = 1, . . . , kf ,

gi(s)= go(s)ḡi (s)gjω(s)
with invertible go(s), inner ḡi (s) and gjω(s) having as its zeros all the zeros of
gi(s) on the jω-axis and at infinity

S2: Solve optimization problem

min
q̄i∈RH∞

α subject to (14.46)

(
1− ∥∥q̄i (s)∥∥∞)2 < α,

∥∥q̄i (s)g−1
o (s)gd,i(s)

∥∥∞ < γ (14.47)

using the known H∞ optimization technique.
S3: Set

qi(s)= q̄i,opt(s)g
−1
o (s) (14.48)

as the solution, where q̄i,opt(s) solves the optimization problem (14.46).

Remember that integrating qi(s) given in (14.48) into the residual generator
yields

ri(s)= q̄i,opt(s)g̃i(s)fi(s)+ q̄i,opt(s)g
−1
o (s)qi(s)gd,i(s)d(s).

As a result, in case of a weak disturbance d , we have
∥∥ri(s)∥∥2 ≈

∥∥q̄i,opt(s)g̃i (s)fi(s)
∥∥

2 = ‖fi‖2 as well as (14.49)∥∥ri(s)∥∥RMS ≈
∥∥q̄i,opt(s)g̃i (s)fi(s)

∥∥
RMS = ‖fi‖RMS. (14.50)

Example 14.2 Remember that in Example 13.3 we have achieved a perfect fault
isolation. Now, based on that result, that is,

r(s)=
⎡
⎣ r1(s)r2(s)

r3(s)

⎤
⎦=
⎡
⎢⎢⎣

s(s−4.3791)
(s+1)(s+3) f1(s)

s(s−4.3791)
(s+1)(s+3) f2(s)

s(s−4.3791)
(s+1)(s+2)(s+3)f3(s)

⎤
⎥⎥⎦

we are going to identify the faults. To simplify the computation and clearly describe
the problem, we only consider the identification of first fault and assume that the
disturbance on the corresponding sensor is very weak. For our purpose, we first
apply Algorithm 14.5. In the first step, we get

g1(s)= g1,0(s)g̃1(s), g̃1(s)= s(s − 4.3791)

(s + 1)(s + 4.3791)
, g1,0(s)= s + 4.3791

(s + 3)
.

Set

w1(s)= g̃1(s)
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we have, after the second step,

q1(s)= s + 3

s + 4.3791
.

Thus, as a result,

f̂ (s)= q1(s)r1(s)

which delivers an exact estimate for

f̄ (s)= g̃1(s)f (s).

We now illustrate the application of Algorithm 14.7. The first step computation
yields

g1(s)= go(s)ḡi (s)gjω(s), ḡ1(s)= s − 4.3791

s + 4.3791

gjω = s

s + 1
, g0(s)= s + 4.3791

s + 3
.

In case that the disturbance is not taken into account, we can set, in the second step,

q̄i (s)= 1

and finally

q1(s)= g−1
0 (s)= s + 3

s + 4.3791

and

f̂ (s)= s + 3

s + 4.3791
r1(s).

14.3.4 Fault Identification in a Finite Frequency Range

The discussion in Sect. 14.2.2 shows that a reasonable fault identification is gener-
ally achieved in a finite frequency range, instead of the whole frequency domain.
Recall that in Sect. 7.1.7 we have introduced the GKYP-Lemma that allows a for-
mulation of certain optimization problems in the finite frequency range in the form
of matrix inequalities. Motivated by these facts, we introduce below an LMI aided
design of FIF in a finite frequency domain. This scheme has been first proposed by
Wang and Yang. For the sake of simplicity, we only outline the basic ideas.

Consider a reformulation of the optimal fault identification problem (14.19): find
R(s) ∈RH∞ such that for a given γ > 0

[
Giden(−jω)

I

]T [
I 0
0 −γ 2I

][
Giden(jω)

I

]
< 0, ∀ω ∈Ω (14.51)
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Giden(s)= I −R(s)Gf (s) (14.52)

where Ω is as given in Lemma 7.10. In order to solve (14.51), let

Gf (s)=Nf (s)= Ff +C(sI − Ā)−1Ef , Ā=A−LC, Ef =Ef −LFf
be given and R(s)= (Ar,Br ,Cr,Dr). It turns out

Giden(s)=
([
Ar BrC

0 Ā

]
,

[
BrFf
Ef

]
,
[−Cr −DrC

]
, I −DrFf

)
.

Then, it follows from Lemma 7.10 that (14.51) can be equivalently expressed by

⎡
⎢⎢⎣
Ar BrC BrFf
0 Ā Ef
I 0 0
0 I 0

⎤
⎥⎥⎦
T

Ξ

⎡
⎢⎢⎣
Ar BrC BrFf
0 Ā Ef
I 0 0
0 I 0

⎤
⎥⎥⎦

+
[−Cr −DrC I −DrFf

0 0 I

]T [
I 0
0 −γ 2I

][−Cr −DrC I −DrFf
0 0 I

]
< 0

(14.53)

where Ξ is as given in Lemma 7.10 and depends on two matrices P , Q to be deter-
mined. We refer the interested reader to the algorithms proposed by Wang and Yang
for dealing with (14.53)

14.4 Fault Identification Using an Augmented Observer

Consider the system model

ẋ =Ax +Bu+Ef f, y = Cx +Du+ Ff f. (14.54)

Assume that

f = const ⇐⇒ ḟ = 0. (14.55)

Let

xaug =
[
x

f

]
∈Rn+kf

be an augmented vector. Then, (14.54)–(14.55) can be written as
[
ẋ

ḟ

]
=
[
A Ef
0 0

][
x

f

]
+
[
B

0

]
u (14.56)

y = [C Ff
][ x
f

]
. (14.57)
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Now, we are able, under certain condition, to design an observer for the augmented
system (14.56)–(14.57) as follows:

[ ˙̂x
˙̂
f

]
=
[
A Ef
0 0

][
x̂

f̂

]
+
[
B

0

]
u+
[
L1
L2

](
y − [C Ff

][ x̂
f̂

])
(14.58)

from which we receive an estimate for the fault vector f .
Although the above scheme is the simplest form of an augmented observer-based

fault identification system, it reveals the basic ideas behind such a fault identification
scheme and its system configuration. A key step in this scheme is the assumption on
fault dynamics and its formulation in the form of a mathematical model like (14.55).
Once a fault model is available, an augmented state vector and associated with it a
state space representation of an augmented system will then be defined. The last step
is the design and construction of an (augmented) observer. For this purpose, there
exist numerous methods. We summarize this procedure in the following schematic
algorithm.

Algorithm 14.8 (Schematic design procedure of augmented observer-based fault
identification)

S1: Establish the fault model
S2: Define the augmented state vector and system
S3: Design an observer.

It is worth to mention that the above introduced observer scheme is also known
as PI-observer. To understand it, suppose that Ff = 0, and consider the estimation
for the state vector

˙̂x =Ax̂ +Bu+L1(y −Cx̂)+Ef f̂ .

Since

˙̂
f = L2(y −Cx̂) =⇒ f̂ =

∫ t

0

˙̂
f dt = L2

∫ t

0
(y −Cx̂) dt

it yields

˙̂x =Ax̂ +Bu+L1(y −Cx̂)+EfL2

∫ t

0
(y −Cx̂) dt (14.59)

that is, the state estimation is driven by both residual vector y −Cx̂ and its integral.
Note that system (14.58) is in fact a high order observer. As will be introduced in

Chap. 15, all LTI observers can be parameterized, and thus the design of augmented
fault estimators can be realized in this context.
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14.5 An Algebraic Fault Identification Scheme

Consider system model

x(k + 1) = Ax(k)+Bu(k)+Ef f (k)+ η(k) (14.60)

y(k) = Cx(k)+Du(k)+ Ff f (k)+ ν(k) (14.61)

where η(k) ∼N (0,Ση), ν(k) ∼N (0,Σν) are independent white noises. Suppose
that by means of a residual generation scheme a residual vector r(k) is generated.
Using the notation introduced in Sect. 10.4, we define

rk−s,k =

⎡
⎢⎢⎢⎣

r(k − s)
r(k − s + 1)

...

r(k)

⎤
⎥⎥⎥⎦

which can be further written into

rk−s,k = rk−s,k,0 + rk−s,k,f (14.62)

where rk−s,k,0 represents the fault-free and stochastic part of the residual signal and
rk−s,k,f is described by

rk−s,k,f =Ase(k− s)+Mf,sfk−s,k, fk−s,k =

⎡
⎢⎢⎢⎢⎣

f (k − s)
...
...

f (k)

⎤
⎥⎥⎥⎥⎦ (14.63)

As =

⎡
⎢⎢⎢⎣

VC

VCĀ
...

V CĀs

⎤
⎥⎥⎥⎦ , Mf,s =

⎡
⎢⎢⎢⎢⎣

VFf 0 · · · 0

VCEf
. . .

. . .
...

...
. . .

. . . 0
VCĀs−1Ef · · · VCEf VFf

⎤
⎥⎥⎥⎥⎦ .

In (14.63), Ā=A−LC, Ef =Ef −LFf , and V , L are (algebraic) post-filter and
observer-gain matrix, respectively, whose setting depends on the applied residual
generation scheme. Note that, according to the discussion in Chap. 5, the residual
model (14.63) also includes the parity space approach.

It follows from (14.62) and (14.63) that

f̂k−s,k =M−
f,srk−s,k,f (14.64)

delivers a least square estimate for fk−s,k , where M−
f,s denotes the pseudo-inverse

of Mf,s .
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We would like to remark that

• under certain condition f̂k−s,k given in (14.64) can be interpreted as a GLR esti-
mation, as described in Sect. 10.4

• f̂k−s,k given in (14.64) can also be used for the processes with (deterministic)
unknown inputs

• the estimation performance becomes poor if the noises or unknown inputs in the
process under consideration are strong.

In summary, we have the following design algorithm.

Algorithm 14.9 (An algebraic approach based fault identification)

S1: Form Mf,s given in (14.63), depending on the residual generation scheme
S2: Compute M−

f,s .

14.6 Adaptive Observer-Based Fault Identification

In this section, we briefly outline the basic ideas of adaptive observer-based fault
identification schemes.

14.6.1 Problem Formulation

Consider a faulty system described by

x(k + 1) = Az(k)+Bu(k)+Q(u(k), y(k))θ̄f ∈Rn (14.65)

y(k) = θ−1
s cx(k) ⇐⇒ θsy(k)= cx(k) ∈R (14.66)

θ =
[
θ̄f
θs

]
∈Rkf (14.67)

where θs denotes a sensor fault which equals to 1 in the fault-free case, θ̄f represents
(constant) process and actuator faults,Q(u(k), y(k)) is some known function matrix
of process input and output vectors. To simplify the description, we only consider
single output system and assume that

A=

⎡
⎢⎢⎢⎣

0 0 · · · −a0
1 0 · · · −a1
...

. . .
. . .

...

0 · · · 1 −an−1

⎤
⎥⎥⎥⎦ , c= [0 · · · 0 1

]
.

Our task is to design an adaptive observer-based fault estimator which delivers an
estimate for the fault vector θ .



14.6 Adaptive Observer-Based Fault Identification 465

14.6.2 The Adaptive Observer Scheme

The adaptive observer-based fault estimator consists of three sub-systems:

Observer

x̂(k + 1)=Ax̂(k)+Q(u(k), y(k)) ˆ̄θf (k)+ lr(k)+ V (k + 1)
(
θ̂ (k + 1)− θ̂ (k))

= Āẑ(k)+Q(u(k), y(k))θ̂ (k)+ V (k + 1)
(
θ̂ (k + 1)− θ̂ (k)) (14.68)

Residual signal: r(k)= θ̂s(k)y(k)− cx̂(k) (14.69)

where l is design parameter vector whose selection ensures that the eigenvalues of
Ā=A−Lc lie in the unit circle,

Q
(
u(k), y(k)

)= [Q(u(k), y(k)) ly(k)
]

θ̂ (k) and V (k+1) are generated by the parameter estimator and auxiliary filter given
below.

Auxiliary Filter

V (k + 1)= ĀV (k)+Q(u(k), y(k)) (14.70)

ϕ(k)= cV (k)− [0 · · · 0 y(k)
]
. (14.71)

Fault Estimator

θ̂ (k + 1)= γ (k)ϕT (k)r(k)+ θ̂ (k) (14.72)

γ (k)= μ

δ + ϕ(k)ϕT (k) , δ ≥ 0, 0<μ< 2. (14.73)

We now analyze the dynamics and the stability of the above adaptive estimator. To
this end, let

η(k) = x̃(k)− V (k)θ̃(k)
x̃(k) = x(k)− x̂(k), θ̃ (k)= θ − θ̂ (k).

Notice that r(k) can be re-written into

r(k)= θsy(k)− cx̂(k)−
(
θs − θ̂s(k)

)
y(k)= cx̃(k)− y(k)θ̃s(k)

which leads to

x̃(k + 1)=Ax(k)+Q(u(k), y(k))θ̄f −Ax̂(k)−Q(u(k), y(k)) ˆ̄θf (k)
− lr(k)− V (k + 1)

(
θ̂ (k + 1)− θ̂ (k))

=⇒ x̃(k + 1)= Āx̃(k)+Q(u(k), y(k))θ̃ (k)− V (k + 1)
(
θ̂ (k + 1)− θ̂ (k)).
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Moreover, it holds

V (k + 1)θ̃(k + 1)= V (k + 1)
(
θ̃ (k + 1)− θ̂ (k + 1)+ θ̂ (k))

θ̃ (k + 1)=−γ (k)ϕT (k)r(k)+ θ̃ (k)
=⇒ θ̃ (k + 1)= θ̃ (k)− γ (k)ϕT (k)(cx̃(k)− θ̃s (k)y(k))
=⇒ θ̃ (k + 1)= (I − γ (k)ϕT (k)ϕ(k))θ̃ (k)+Θ(k)η(k)

with

Θ(k)=−γ (k)ϕT (k)c.
Hence, after a straightforward calculation we have

[
η(k + 1)
θ̃(k + 1)

]
=
[

Ā 0
Θ(k) I − γ (k)ϕT (k)ϕ(k)

][
η(k)

θ̃(k)

]
. (14.74)

Based on (14.74) and the following two lemmas, we are now able to prove the
stability and convergence of the adaptive fault estimator.

Lemma 14.1 Given

y(k)= ϕ(k)θ.
Let

θ̂ (k + 1) = μ

δ + ϕ(k)ϕT (k)ϕ
T (k)e(k)+ θ̂ (k)

e(k) = y(k)− ϕ(k)θ̂(k), δ ≥ 0, 0<μ< 2.

It then follows

lim
k→∞

e(k)√
δ + ϕ(k)ϕT (k) = 0. (14.75)

Lemma 14.2 The difference equation

θ̃ (k + 1)=
(
I − μϕT (k)ϕ(k)

δ + ϕ(k)ϕT (k)
)
θ̃ (k)

is globally exponentially stable if there exist positive constants β1, β2, and integer
Π such that for all k

0< β1I ≤
k+Π−1∑
i=k

ϕT (i)ϕ(i)≤ β2I <∞.
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Theorem 14.7 Given adaptive fault estimator (14.68)–(14.73) and assume that
there exist positive constants β1, β2, and integer Π such that for all k

0< β1I ≤
k+Π−1∑
i=k

ϕT (i)ϕ(i)≤ β2I <∞ (14.76)

then system (14.74) is globally exponentially stable.

Proof It follows from (14.74) that η(k)→ 0 with exponential convergence. Hence,
we only need to consider

θ̃ (k + 1)= (I − γ (k)ϕT (k)ϕ(k))θ̃ (k)
(14.77)

r(k)= cx̃(k)− θ̃s(k)y(k)= ϕ(k)θ̃(k)

which, according to Lemma 14.1, leads to

lim
k→∞

r(k)√
δ + ϕ(k)ϕT (k) = 0.

Considering that the auxiliary filter is exponentially stable and the inputs and outputs
of the system are bounded, it turns out

∣∣ϕ(k)ϕT (k)∣∣<∞, lim
k→∞
∥∥γ (k)ϕT (k)cη(k)∥∥= 0

which finally results in limk→∞ r(k) = 0. Moreover, it follows from Lemma 14.2
that the sub-system (14.77) is exponentially stable. Considering that η(k) exponen-
tially converges to zero andΘ(k) is bounded, it can be finally concluded that system
(14.74) is exponentially stable. �

Condition (14.76) is known as the existence condition for a persistent excita-
tion which is needed for a successful parameter identification. In other words, the
adaptive fault estimator (14.68)–(14.73) is exponentially stable if the system under
consideration is persistently excited. Note that in this case

lim
k→∞ θ̂ (k)= θ

with an exponential converging speed.
We would like to call reader’s attention that both the observer (14.68) and the

fault estimator (14.72) are driven by the residual signal. In this sense, the fault esti-
mator can also be considered as a composite of a residual generator and a post-filter,
which is, in this case, a time-varying and nonlinear sub-system. It is remarkable that
these two dynamic systems are configured in a closed-loop structure.
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Algorithm 14.10 (On-line implementation of the adaptive fault estimator)

S0: Set the initial values k = 0, x̂(0), θ̂ (0), V (0)= 0, ϕ(0)= 0
S1: Compute V (k + 1) according to (14.70)
S2: Compute θ̂ (k + 1) according to (14.72)
S3: Compute x̂(k + 1) according to (14.68)
S4: Increase k by one, receive y(k), u(k)
S5: Compute ϕ(k) according to (14.71), and go to S1.

14.7 Notes and References

Two topics, the PFI and H∞ OFIP, have been treated at the beginning of this chapter.
In this study, no assumption has been made on the faults to be identified. This is a
major difference between the approaches described here and the other fault identifi-
cation strategies. Study on the PFI is strongly related to the topic fault identifiability
introduced in Chap. 4. Since no assumption on the faults is made, this problem
is equivalent to the invertibility of a transfer matrix. Our discussion in Sects. 14.1
and 14.1.2 relies on this idea, and the main results can be found in [45, 47]. Hou and
Patton have investigated this problem in a different way and by means of the matrix
pencil technique [92]. Recalling our discussion about the underlying idea of a UIO
in Sect. 6.5.2, an intimate relationship between the FIF and UIO can be recognized.
In fact, the first FIF towards a PFI has been proposed by Park and Stein using the
UIO scheme [138].

As mentioned in Sect. 7.5, the H∞ OFIP is one of the popular topics in the FDI
research area [130, 133, 149]. Moreover, it is also often adopted in the integrated
design of robust controller and FDI, as proposed in [126, 127, 165]. Extension of
the H∞ OFI strategy to other types of dynamic systems like time delay systems,
nonlinear systems has been recently reported. Theorem 14.5 reveals that solving the
H∞ OFIP in its original form, (14.19), makes less sense, as far as the fault matrix
is non-minimum phase. In this case, integrating a weighting matrix into the system
design, as formulated in the GOFIP (14.26), allows reasonable and realistic solu-
tions. Unfortunately, there are few publications devoted to this topic. Our study in
Sect. 14.2.2 is dedicated to the weighting factors. Based on it, we have developed
in Sect. 14.3 two approaches, which provide us with useful solutions both for the
design of the residual generator and the selection of the weighting factors. Alterna-
tively, Wang and Yang have proposed a fault identification scheme on the basis of
the GKYP-Lemman which offers an LMI solution of the design problem [174, 175].
It is remarkable that in their studies, different types of model uncertainties have also
been taken into account. In this section, a further design approach has been intro-
duced, which solves the fault identification problem in an extended sense. Instead of
identifying the faults in the form of a time or frequency domain function, the energy
level of the fault is identified. This work has been originally motivated and driven
by some real application cases.
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Recently, the application of the augmented observer schemes to fault identifi-
cation has received increasing attention. As briefly introduced in this chapter, the
underlying idea of the augmented observer schemes lies in addressing the faults as
additional state variables, which are then re-constructed by an augmented observer.
The well-known PI-observer is a special kind of such observers [17, 152]. The aug-
mented observer technique is strongly related to the UIO scheme. In this context,
the augmented observer is also called simultaneous state and disturbance estimator
[156]. Often, such observers/estimators are designed based on certain assumption
on the faults, for instance the boundedness on the derivative. We refer the reader to
[69–72, 86] for some recent publications on this topic.

The central idea behind the algebraic fault identification scheme introduced in
Sect. 14.5 is to find a least square estimation of the fault vector over a time interval.
It also allows an integration of any (time domain) information about the faults into
the system model and thus enhance the identification performance. This scheme is
applicable for all residual generation systems and can be extended for the applica-
tion to nonlinear [128, 129] or time-varying systems [195].

Application of the advanced adaptive observer technique to fault identification
and estimation has been initiated in the 1990s [49, 50, 172, 173]. In certain sense,
it can be considered as a combination of the observer-based and parameter iden-
tification based schemes. In this chapter, we have briefly outlined the basic ideas
and steps for an adaptive observer-based fault estimation. Recent research activity
in this field is focused on the application to uncertain systems, nonlinear systems
and time-varying systems [101, 102, 192, 194].

The proof of Theorems 14.5 and 14.6 is based on the known results in [59, 80, 95]
and Algorithm 14.4 can be found in [59]. Lemmas 14.1 and 14.2 are well-known
results in the design of adaptive systems, and are given in [8].

As mentioned at the beginning of this chapter, model-based fault identification is
a vital research area. We have, with the FIF and adaptive observer schemes presented
in this chapter, only touched a sub-area. In comparison, the parameter identification
technique based fault identification builds, parallel to the observer-based strategy,
one of the mainstreams in this research area. The core of this technique consists
in the application of the well-established parameter identification technique to the
identification of the faults that are modelled as system parameters. This technique
is especially efficient in dealing with multiplicative faults. On the other hand, it
requires intensive on-line computation and is generally applicable for those faults,
which are constants or change slowly. We refer the interested reader to [79, 96–98,
157] for a comprehensive study of this technique. Further active fields include for
example, sliding mode observer-based fault detection and estimation [3, 27, 161],
strong tracking filter technique for fault and parameter estimation [197].



Chapter 15
Fault Diagnosis in Feedback Control Systems
and Fault-Tolerant Architecture

In order to meet high requirements on system performance, more and more feedback
control loops with embedded sensors, actuators, controllers as well as microproces-
sors are integrated into the automatic systems. In parallel to this development, a new
trend of integrating model-based FDI into the automatic systems can be observed.
The research activities in this field are strongly driven by the enhanced demands for
system reliability and availability, in particular when the systems are used in safety
relevant processes like aeroplanes, vehicles or robots.

In the previous chapters, we have introduced numerous model-based FDI
schemes, and most of them can be directly applied to the realization of FDI in
feedback control systems without significant modifications. In this chapter, we shall
introduce new FDI schemes with a focus on real-time issues for feedback con-
trol systems. Recall that an observer-based FDI system consists of three units:
residual generation, evaluation and threshold computation with decision making.
Among these units, the on-line implementation of residual generation (often in
the form of an observer or simply the plant model) builds the major part of the
needed on-line computation. In this chapter, we shall address residual genera-
tion without extensive on-line computation. This study is motivated by the facts
that

• the capacity of the ECU (electronic control unit) embedded in a feedback control
system is often limited and thus it is impossible to implement a comprehensive
observer-based residual generation scheme

• a plant model is often embedded in the control algorithms, which can be used for
the residual generation.

We shall also deal with the design of the feedback control loops whose structure
should allow a direct access to the residual signal. From the control theoretical view-
point, such a control configuration is known as fault-tolerant controller architecture,
which has first been proposed by Zhou and Ren.

S.X. Ding, Model-Based Fault Diagnosis Techniques, Advances in Industrial Control,
DOI 10.1007/978-1-4471-4799-2_15, © Springer-Verlag London 2013
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15.1 Plant and Control Loop Models, Controller and Observer
Parameterizations

15.1.1 Plant and Control Loop Models

Consider LTI plant models described by

y(s)=Gyu(s)u(s)+Gyf (s)f (s) (15.1)

and suppose that the minimal state space realization of (15.1) is given by

ẋ(t)=Ax(t)+Bu(t)+Ef f (t), y(t)= Cx(t)+Du(t)+ Ff f (t) (15.2)

where x ∈Rn, y ∈Rm, u ∈Rku stand for the plant state, output and input vectors
respectively. Slightly different from our previous study, f ∈Rkf is a unknown input
vector that represents disturbances or possible faults in the plant or in the sensors and
actuators. A, B , C, D, Ef and Ff are known matrices of appropriate dimensions
and

Gyu(s)= C(sI −A)−1B +D, Gyf (s)= C(sI −A)−1Ef + Ff .

Below, three practical feedback control schemes will be addressed, including

• the standard feedback control loop shown in Fig. 15.1, where w(s) is the vector
of the reference signals and K(s) stands for the feedback controller

• the so-called 2-DOF (two-degree-of-freedom) control structure sketched in
Fig. 15.2, which is receiving more and more attention in designing feedback con-
trol for mechatronic systems. In the 2-DOF structure, in addition to the feedback
controller K1(s), a feedforward controller K2(s) is integrated, which provides
the designer with additional degree of design freedom

• the IMC (internal model control) structure sketched in Fig. 15.3, where Qc(s) ∈
RH∞ is the parameter matrix to be designed.

Fig. 15.1 Standard feedback control loop
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Fig. 15.2 Standard 2-DOF control loop

Fig. 15.3 IMC structure

15.1.2 Parameterization of Stabilizing Controllers, Observers,
and an Alternative Formulation of Controller Design

We now introduce the needed preliminary results and, based on them, present an
alternative form of the parameterization of stabilizing controllers and further a new
controller structure, which build the theoretical basis for our study in the sequel.

Consider the feedback control system sketched in Fig. 15.4. The well-known
Youla parameterization of all stabilizing controllers is described by

K(s) = −(Ŷ (s)+M(s)Qc(s)
)(
X̂(s)−N(s)Qc(s)

)−1 (15.3)

= −(X(s)−Qc(s)N̂(s)
)−1(

Y(s)+Qc(s)M̂(s)
)
, Qc(s) ∈RH∞ (15.4)

where (M(s),N(s)), (M̂(s), N̂(s)) are the RCF and LCF of Gyu(s) respectively,
X(s), Y(s), X̂(s), Ŷ (s) are the stable transfer matrices associated with the Bezout
identity, as introduced in Lemma 3.1, and Qc(s) is a parameter matrix.
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Fig. 15.4 Feedback control
loop

Given system (15.1) with the minimal state space realization (15.2). It has been
demonstrated that system

h(s) = (F(s)X(s)−Qo(s)N̂(s)
)
u(s)+ (F(s)Y (s)+Qo(s)M̂(s)

)
y(s) (15.5)

F(s) = F(sI −AF )−1B, Qo(s) ∈RH∞ (15.6)

describes a parameterization of all observers that deliver an estimation for Fx(t)
satisfying

∀x(0), u(t) and f (t)= 0, lim
t→∞
(
h(t)− Fx(t))= 0. (15.7)

Moreover, (15.5) can be rewritten into

˙̂x = Ax̂ +Bu+L(y − ŷ)=ALx̂ +BLu+Ly, ŷ = Cx̂ +Du (15.8)

h(s) = F x̂(s)+R(s)(y(s)− ŷ(s)), R(s)=Qo(s)− Y(s) ∈RH∞ (15.9)

with y(s)− ŷ(s)= M̂(s)y(s)− N̂(s)u(s). (15.10)

Note that in the above expressions both F,L are the matrices introduced in the
doubly coprime factorization.

(15.8)–(15.9) reveal that any observer for Fx(t) can be written into two parts:
an identity (full order) state observer and a residual generator, that is, R(s)(y(s)−
ŷ(s)), which delivers the information about disturbances and faults in the system and
is essential for a successful fault detection. We would like to call reader’s attention
that the dynamics of the residual signal r(s)= y(s)− ŷ(s) is governed by

ė= (A−LC)e+ (Ef −LFf )f, r = y − ŷ = Ce+ Ff f (15.11)

with e= x− x̂, which is independent of u(s). By an LCF ofGf (s)= M̂−1
f (s)N̂f (s)

with

M̂f (s)= I −C(sI −AL)−1L, N̂f (s)= Ff +C(sI −AL)−1(Ef −LFf )
the residual signal can also be written into

r(s)= y(s)− ŷ(s)= M̂(s)y(s)− N̂(s)u(s)= N̂f (s)f (s). (15.12)
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15.1.3 Observer and Residual Generator Based Realizations
of Youla Parameterization

The results presented in this sub-section play an important role in our study. We first
present an observer-based realization of Youla parameterization (15.3)–(15.4).

Theorem 15.1 Given the feedback control system shown in Fig. 15.4 with plant
model (15.2) and controller K(s) parameterized by (15.3)–(15.4), then

u(s)= F x̂(s)+R(s)(y(s)− ŷ(s)), R(s)=−Qc(s) ∈RH∞ (15.13)

where x̂(t) is an estimate of x(t) delivered by (15.8).

Proof It follows from (15.4) that

(
X(s)−Qc(s)N̂(s)

)
u(s)=−(Y(s)+Qc(s)M̂(s)

)
y(s)

=⇒ X(s)u(s)=−Y(s)y(s)+R(s)(M̂(s)y(s)− N̂(s)u(s)).
Note that X(s)= I − F(sI −AL)−1BL and moreover

F(sI −AL)−1BLu(s)− Y(s)y(s)= F x̂(s), ˙̂x =ALx̂ +BLu+Ly.
It leads to

u(s) = F(sI −AL)−1BLu(s)− Y(s)y(s)+R(s)
(
M̂(s)y(s)− N̂(s)u(s))

= F x̂(s)+R(s)(y(s)− ŷ(s)).
Thus, (15.13) is proven. �

Theorem 15.1 reveals that

• according to the observer parameterization (15.8)–(15.9) the control signal is an
estimation for Fx(t) in the sense of (15.7)

• the controller can also be equivalently realized in the observer form, either in the
parameterization form (15.5) or in the state space form (15.8)–(15.9)

• the residual signal y(s)− ŷ(s) is embedded in the control loop.

Notice that the state observer (15.8) is also driven by the residual signal y(s)−
ŷ(s). This motivates us to prove the following theorem.

Theorem 15.2 Under the same conditions given in Theorem 15.1, we have

u(s)= P(s)(y(s)− ŷ(s)), P (s)=M(s)R(s)− Ŷ (s) ∈RH∞. (15.14)
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Fig. 15.5 An equivalent
realization of the Youla
parameterization: the residual
generator based form

Proof It follows from (15.13) in Theorem 15.1 as well as (15.8) that

u(s)= F(sI −A)−1(Bu(s)+L(y(s)− ŷ(s)))+R(s)(y(s)− ŷ(s))
=⇒ (

I − F(sI −A)−1B
)
u(s)= (F(sI −A)−1L+R(s))(y(s)− ŷ(s)).

The equality (I − F(sI −A)−1B)−1 = I + F(sI −AF )−1B leads to

u(s)= (I + F(sI −AF )−1B
)(
F(sI −A)−1L+R(s))(y(s)− ŷ(s)). (15.15)

Now, let

F(sI −A)−1L

= (I − F (sI −A+ (−B)F )−1
(−B))−1

F
(
sI −A+ (−B)F )−1

L

be an LCF of F(sI − A)−1L, we have F(sI − A)−1L = −M−1(s)Ŷ (s). Thus,
(15.14) is finally proven by applying Lemma 3.1 to (15.15). �

Theorem 15.2 provides a further alternative form for the Youla parameterization,
whose realization is sketched in Fig. 15.5. It reveals that for the control structure
given in Fig. 15.4 the stabilizing controller is also a residual generator and thus the
control signal can also be used as residual signal.

15.1.4 Residual Generation Based Formulation of Controller
Design Problem

Note that Theorems 15.1 and 15.2 have been proven regarding to the control struc-
ture given in Fig. 15.4. We now extend our study to the system model (15.1) and,
based on it, to propose an alternative formulation of the controller design problem.
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Consider controller u(s)=K(s)y(s). Substituting y(s) by the system model (15.1)
yields

u(s)=K(s)(Gyu(s)u(s)+Gf (s)f (s))

=⇒ u(s)= (I −K(s)Gyu(s))−1
K(s)Gyf (s)f (s)

which can be, by noting

(
I −K(s)Gyu(s)

)−1
K(s)=−(Ŷ (s)+M(s)Qc(s)

)
M̂(s)

brought into

u(s)= (−M(s)Qc(s)− Ŷ (s)
)
N̂f (s)f (s).

Recall (15.12) and Theorem 15.2, we have

u(s)= (−M(s)Qc(s)− Ŷ (s)
)
N̂f (s)f (s)= P(s)

(
y(s)− ŷ(s))

as expected. This demonstrates again that the residual signal r(s) = y(s) − ŷ(s)
provides us with full information about f (s).

Now, we apply the stabilizing controller to the control loops shown in Figs. 15.1,
15.2 and 15.3. It is evident that u(s) given by (15.14) in Theorem 15.2 should be
extended to include the influence of the reference signal vector w(s). This motivates
us to define the following new controller structure

u(s)= P1(s)
(
y(s)− ŷ(s))+ P2(s)w(s), P1(s)=M(s)R(s)− Ŷ (s) (15.16)

and formulate the controller design problem as finding P1(s),P2(s) ∈ RH∞ (as
a function of F and L) so that the satisfactory nominal behavior and robust-
ness/tolerance can be achieved, and the residual signal r(s) = y(s) − ŷ(s) is ac-
cessible. Moreover, from the application viewpoint, it would be an ideal situation
when P1(s), P2(s) can be independently designed.

The new structure (15.16) is helpful to understand the role of theresidual signal
in a control loop. It provides us with information about the unknown inputs in the
system, which is not only important for the FDI but also essential for the stability
and robustness.

We would like to emphasize that the concept “residual signal”, y(s) − ŷ(s) is
an “observer-based one”, that is, ŷ(s) is generated by the observer (15.8). It is an
important feature that the residual signal is a function of f which includes possible
faults and unknown disturbances. For the robust controller design, the influence of
f on the plant output will be minimized, while for the FDI purpose, the influence of
faults on y− ŷ should be enhanced. The trade-off design of the residual generator is
a challenging topic in the FDI area. It is well known that, under certain conditions,
by selecting the observer gain matrix L suitably we can achieve a full decoupling of
the residual signal from the disturbances, that is,
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for f =
[
d

f1

]
, N̂f (s)=

[
0 N̂f1(s)

]

where d represents the disturbances and f1 the faults to be detected, or a fault isola-
tion and fault identification. These topics will not be addressed in this chapter. We
refer the reader to the studies in the previous chapters. For the sake of simplicity,
below we often use “disturbance response” to represent the system responses to the
residual signal r , in order to keep the consistence with the standard terminology in
control engineering.

15.2 Residual Extraction in the Standard Feedback Control
Loop and a Fault Detection Scheme

In this section, we study the standard control structure shown in Fig. 15.1 from the
viewpoint of the new realization form of the Youla parameterization given in The-
orem 15.2. The objective is to check if the residual signal embedded in the control
loop is accessible and, based on it, to propose a fault detection scheme.

15.2.1 Signals at the Access Points in the Control Loop

Suppose that the controller K(s) is expressed in the Youla parameterization form. It
is straightforward that the transfer matrices from w to y, e and u are respectively,

Gyw(s) =
(
I +Gu(s)K(s)

)−1
Gu(s)K(s)=N(s)

(
Y(s)+Qc(s)M̂(s)

)
(15.17)

Gew(s) =
(
I +Gu(s)K(s)

)−1 = (X̂(s)−N(s)Qc(s)
)
M̂(s) (15.18)

Guw(s) = K(s)
(
I +Gu(s)K(s)

)−1 = (Ŷ (s)+M(s)Qc(s)
)
M̂(s). (15.19)

As a result, we have

y(s) = (I − (X̂(s)+N(s)R(s))M̂(s))w(s)
+ (X̂(s)+N(s)R(s))(y(s)− ŷ(s))

= w(s)+ (X̂(s)+N(s)R(s))(y(s)− ŷ(s)− M̂(s)w(s)) (15.20)

e(s) = −(X̂(s)+N(s)R(s))(y(s)− ŷ(s)− M̂(s)w(s)), R(s)=−Qc(s)

(15.21)

u(s) = (M(s)R(s)− �Y (s))(y(s)− ŷ(s)− M̂(s)w(s)). (15.22)



15.2 Residual Extraction 479

It is evident from (15.22) that in the new controller structure (15.16)

P2(s)=−P1(s)M̂(s), P1(s)=M(s)R(s)− �Y(s)
and thus the controller design should be done by a trade-off between the nominal
behavior and disturbance response. It is impossible directly to access the residual
signal y(s)− ŷ(s) at the possible access points, e, u, y, in the control loop. For the
latter reason, Zhou and Ren have proposed the GIMC (generalized internal model
control) structure, which can be written as

u(s)= (M(s)R(s)− �Y(s))(y(s)− ŷ(s))−M(s)Ŷ (s)w(s) (15.23)

and allows, thanks to the additional access point r(s) = M̂(s)y(s) − N̂(s)u(s), a
direct access of y(s)− ŷ(s).

15.2.2 A Fault Detection Scheme Based on Extraction of Residual
Signals

In practice, many controllers are implemented in the control configuration shown
in Fig. 15.1 and a reconfiguration of them or integrating a parallel running residual
generator are technically unrealistic. In this sub-section, we briefly discuss how to
extract the residual signals embedded in the control loop without extensive on-line
computation like e.g. the implementation of an observer. It follows from (15.20) and
(15.22) that both y − ŷ and w are signal components of e and u. In order to extract
the residual signal without on-line computation of (M(s)R(s)− Ŷ (s))M̂(s)w(s) or
(X̂(s)+N(s)R(s))M̂(s)w(s), we propose, on the assumption thatw(s) is piecewise
constant, the following practical scheme:

• for u(t) in the steady state with respect to w = const

ru(t) = u(t)−Ku,ww,Ku,w = lim
s→0

[(
Ŷ (s)+M(s)Qc(s)

)
M̂(s)

]

= (FA−1
F L+ (I − FA−1

F B
)
Qc(s)

∣∣
s=0

)(
I +CA−1

L L
)

(15.24)

• for e(t) in the steady state with respect to w = const

re(t) = e(t)−Ke,ww (15.25)

Ke,w = lim
s→0

[(
X̂(s)−N(s)Qc(s)

)
M̂(s)

]

= (I −CFA−1
F L− (D−CFA−1

F B
)
Qc(s)

∣∣
s=0

)(
I +CA−1

L L
)
.

Both ru(t), re(t) are residual signal under the condition that u(t) and e(t) are in the
steady state with respect to w = const. In practice, for the fault diagnosis purpose
ru(t) or re(t) can be used in the following fault detection algorithm:
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Algorithm 15.1 (Fault detection in feedback control loop with the embedded resid-
ual signals)

S1: Check if w = const and u(t), e(t) are in the steady state
S2: If yes,

∥∥ru(t)∥∥ > Jth,u,L or
∥∥re(t)∥∥> Jth,e,L =⇒ fault (15.26)∥∥ru(t)∥∥ ≤ Jth,u,L or
∥∥re(t)∥∥≤ Jth,e,L =⇒ fault-free (15.27)

otherwise
∥∥u(t)∥∥ > Jth,u,H or

∥∥e(t)∥∥> Jth,e,H =⇒ fault (15.28)∥∥u(t)∥∥ ≤ Jth,u,H or
∥∥e(t)∥∥≤ Jth,e,H =⇒ fault-free. (15.29)

In the above fault detection algorithm, ‖ · ‖ stands for a norm for the evaluation
of ru, re and u, e. Typically, RMS (root mean square) value or L2-norm or peak
value are applied for this purpose, as introduced in Chap. 9. Jth,u,L and Jth,e,L are
lower thresholds that are set depending on the influence of the possible noises in the
control loops. Jth,u,H and Jth,e,H are the so-called adaptive thresholds that take into
account the influence of w on u and e respectively, and can be computed as follows:

• in case that the RMS value or L2-norm are used for the evaluation, i.e.

∥∥u(t)∥∥RMS =
√

1

T

∫ t+T

t

uT (τ )u(τ)dτ ,
∥∥e(t)∥∥RMS =

√
1

T

∫ t+T

t

eT (τ )e(τ )dτ

∥∥u(t)∥∥2 =
√∫ ∞

0
uT (τ)u(τ)dτ ,

∥∥e(t)∥∥2 =
√∫ ∞

0
eT (τ )e(τ )dτ

Jth,u,H and Jth,e,H are set as: for the RMS based evaluation

Jth,u,H = γ∞,u
∥∥w(t)∥∥RMS, γ∞,u =

∥∥(M(s)R(s)− Ŷ (s))M̂(s)∥∥∞
Jth,e,H = γ∞,e

∥∥w(t)∥∥RMS, γ∞,e =
∥∥(X̂(s)+N(s)R(s))M̂(s)∥∥∞

and for the L2-norm based evaluation

Jth,u,H = γ∞,u
∥∥w(t)∥∥2, Jth,e,H = γ∞,e

∥∥w(t)∥∥2.

• in case that the peak value is used for the evaluation, that is,

∥∥u(t)∥∥peak = sup
t≥0

√
uT (t)u(t),

∥∥e(t)∥∥peak = sup
t≥0

√
eT (t)e(t)

Jth,u,H and Jth,e,H are set as

Jth,u,H = γpeak,u
∥∥w(t)∥∥peak, γpeak,u =

∥∥(M(s)R(s)− Ŷ (s))M̂(s)∥∥peak
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Jth,e,H = γpeak,e
∥∥w(t)∥∥peak, γpeak,e =

∥∥(X̂(s)+N(s)R(s))M̂(s)∥∥peak

with ‖ · ‖peak denotes the so-called peak-norm.

The computation of the H∞-norm or peak-norm can be found in Chap. 9.
It is worth remarking that if the nominal behavior is set optimum in the sense

that y(s)≈w(s) or (X̂(s)+N(s)R(s))M̂(s) is very weak, e(t) can be directly used
as a residual signal. We would also like to mention that in many practical cases
some controller settings may lead to a simple form of (X̂(s) + N(s)R(s))M̂(s)
or (M(s)R(s) − Ŷ (s))M̂(s), which can be used for the purpose of extracting the
residual signal.

15.3 2-DOF Control Structures and Residual Access

In this section, we study 2-DOF structures aiming at a direct access of residual
signal. We shall reveal relationships between the control structures and a direct
residual access. It is assumed that the plant model is given by (15.1) and the feed-
back controller (denoted by K1(s)) by (15.3) or (15.4). Since the control structures
shown in Figs. 15.1 and 15.2 have the same behavior regarding to the residual signal
y(s)− ŷ(s), we shall next focus on the nominal behavior.

15.3.1 The Standard 2-DOF Control Structures

It is straightforward by means of Youla parameterization that for the standard 2-DOF
control loop shown in Fig. 15.2 the transfer matrices from w to y, u are respectively,

Gyw(s)=Gu(s)
(
I +K1(s)Gyu(s)

)−1
K2(s)

= (X̂(s)−N(s)Qc(s)
)
N̂(s)K2(s) (15.30)

Guw(s)=
(
I +K1(s)Gyu(s)

)−1
K2(s)=M(s)

(
X(s)−Qc(s)N̂(s)

)
K2(s).

(15.31)

It follows from (15.30) that we are able to find K2(s) ∈RH∞ so that Gyw(s)= I
only if Gu(s), K1(s) are RH∞ invertible, that is,

K2(s)= N̂−1(s)
(
X(s)−N(s)Qc(s)

)−1
.

Moreover, the control input signal u, consisting of both w and y − ŷ as shown in
Theorem 15.2, satisfies (15.16) with

P1(s)=M(s)R(s)− Ŷ (s), P2(s)= P1(s)N̂(s)K2(s)+K2(s).
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Fig. 15.6 An alternative realization of 2-DOF control structure

Note that only for Gyw(s)= I we are able to access the residual signal by checking
the control error

e(s)=w(s)− y(s)=−(X̂(s)−N(s)Qc(s)
)(
y(s)− ŷ(s)).

In other words, the design of P1(s) and P2(s) given in the new controller structure
(15.16) is generally coupled and we are not able to access the residual signal directly.

We now consider a different realization of the 2-DOF control structure, which is
shown in Fig. 15.6. A straightforward computation results in

Gyw(s)= I −
(
X(ŝ)−N(s)Qc(s)

)(
M̂(s)− N̂(s)K2(s)

)
=⇒ Gew(s)=

(
X̂(s)−N(s)Qc(s)

)(
M̂(s)− N̂(s)K2(s)

)
(15.32)

u(s)= P1(s)
(
y(s)− ŷ(s))+ P2(s)w(s) (15.33)

P1(s)=M(s)R(s)− Ŷ (s)
(15.34)

P2(s)=K2(s)− P1(s)
(
M̂(s)− N̂(s)K2(s)

)
.

Form (15.32) and (15.33), we can see

• if Gew(s) �= 0 the feedback controller K1(s) has influence on the nominal behav-
ior and both e(s), K1(s)e(s) are composed of w and y − ŷ

• Gew(s)= 0 only if there exists K2(s) ∈RH∞ so that

M̂(s)− N̂(s)K2(s)= 0 ⇐⇒ Gyu(s) is RH∞ invertible (15.35)

• P1(s), P2(s) can be independently designed only if Gew(s)= 0 and
• if Gew(s) = 0, then at the access points e(s),K1(s)e(s) residual signals e(s),
K1(s)e(s) are accessible with

e(s)=−(X̂(s)−N(s)Qc(s)
)(
y(s)− ŷ(s))

K1(s)e(s)= P1(s)
(
y(s)− ŷ(s)).

The above discussion reveals that the following two statements are equivalent:
(a) decoupled design of nominal behavior and disturbance response is possible
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(b) the residual signals are direct accessible. It is worth mentioning that the residual
extracting and fault detection schemes proposed in last section can also be used to
generate the residual signals, if they are not directly accessible, in the above 2-DOF
control structures under the steady state assumption.

15.3.2 An Alternative 2-DOF Control Structure with Residual
Access

For the 2-DOF structures shown in Fig. 15.2 or in Fig. 15.6, condition (15.35) is
necessary for a direct access to the residual signal or a decoupled design of nominal
behavior and disturbance response, which is unfortunately too hard to be satisfied
in many practical cases. To solve this problem, it is proposed to use the following
alternative 2-DOF structure. We know that the real problem with condition (15.35)
is those zeros of Gyu(s) that lie in the RHP and they are invariant to the feedback
controller. For our purpose, we now factorize Gyu(s) into Gyu(s) = Gi(s)Go(s),
whereGo(s) is RH∞ right invertible,Gi(s) is co-inner and has as its zeros all zeros
ofGu(s) in the RHP, on the jω-axis including the infinity. This EIOF, as introduced
in Chap. 7, results in a decomposition ofGyu(s) into two parts: the RH∞ invertible
part with Go(s) and not invertible part expressed by Gi(s). Let us now set

K21(s)=G−1
o (s)T (s), K22(s)=Gi(s)T (s) (15.36)

where T (s) ∈RH∞ is arbitrarily selectable and used to generate the desired nom-
inal response, and realize the 2-DOF control loop using the structure sketched in
Fig. 15.7. It turns out

Gyw(s)=
(
I +Gyu(s)K1(s)

)−1
Gyu(s)

(
K1(s)K22(s)+K21(s)

)
(15.37)

= (I − (X̂(s)−N(s)Qc(s)
)
M̂(s)

)
K22(s)

= + (X̂(s)−N(s)Qc(s)
)
N̂(s)K21(s) (15.38)

=⇒ Gew(s)=
(
X̂(s)−N(s)Qc(s)

)(
M̂(s)K22(s)− N̂(s)K21(s)

)
. (15.39)

Thus, setting K21(s) and K22(s) according to (15.36) leads to

M̂(s)K22(s)− N̂(s)K21(s)= M̂(s)
(
K22(s)−Gu(s)K21(s)

)
= M̂(s)(Gi(s)−Gu(s)G−1

o (s)
)
T (s)= 0

=⇒ Gew(s)= 0, Gyw(s)=K22(s)=Gi(s)T (s). (15.40)

The fact Gew(s)= 0 ensures that

• the nominal behavior and disturbance response can be independently designed,
that is,
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Fig. 15.7 Realization of 2-DOF control structure

u(s) = P1(s)
(
y(s)− ŷ(s))+ P2(s)w(s)

P1(s) = Y(s)+M(s)R(s), P2(s)=K21(s)

K21(s),P1(s) are independent
• and equivalently the nominal behavior is independent of K1(s)

• both e(t), ū(t) are decoupled from w and thus are residual signals.

As a result of the above discussion, we have

ū(s)= (M(s)R(s)− Ŷ (s))(y(s)− ŷ(s))= (Y(s)+M(s)R(s))N̂f (s)f (s)
(15.41)

e(s)= (X̂(s)+N(s)R(s))(y(s)− ŷ(s))= (X̂(s)+N(s)R(s))N̂f (s)f (s).
(15.42)

For the realization of this 2-DOF control structure, we propose the following algo-
rithm.

Algorithm 15.2 (Design algorithm for the 2-DOF controller with the structure given
in Fig. 15.8)

S1: Do an EIOF: Gyu(s)=Gi(s)Go(s)
S2: Define the desired nominal behavior by setting T (s) ∈RH∞
S3: Set K21(s),K22(s) according to (15.36)
S4: Design K1(s) to satisfy the required control or FDI performance.

We would like to emphasize that in real applications the residual signal r = y− ŷ
is generally corrupted with noises and unknown inputs. The standard robust con-
troller design may lead to the limited sensitivity of ū(s), e(s) to the possible faults.
To solve this problem, the existing integrated design schemes can be used. More-
over, residual evaluation and threshold computation are further important steps for
a successful FDI.
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Fig. 15.8 The EIMC structure

15.4 On Residual Access in the IMC and Residual Generator
Based Control Structures

15.4.1 An Extended IMC Structure with an Integrated Residual
Access

It is well known that the standard control loop sketched in Fig. 15.1 can be equiva-
lently realized in the form of the IMC structure given in Fig. 15.3 if Gyu(s) is sta-
ble. It is remarkable that y(s)−Gyu(s)u(s) builds the so-called consistency resid-
ual which is accessible. Motivated by this structure, we propose an extended IMC
(EIMC) structure which is sketched in Fig. 15.8 and also applicable for unstable
plants.

Let K1(s) be a stabilizing controller, which is, using the Youla parameterization,
written as

K1(s) = −
(
Ŷ (s)+M(s)Q1(s)

)(
X̂(s)−N(s)Q1(s)

)−1 (15.43)

= −(X(s)−Q1(s)N̂(s)
)−1(

Y(s)+Q1(s)M̂(s)
)
, Q1(s) ∈RH∞.

(15.44)

It turns out

y(s) = (I −Gu(s)K1(s)
)−1

(
(
Gyu(s)ū(s)+Gyf (s)f (s)

)
= (X̂(s)−N(s)Q1(s)

)(
N̂(s)ū(s)+ N̂f (s)f (s)

)
.

Considering that Gyū(s) = (X̂(s) − N(s)Q1(s))N̂(s) ∈ RH∞, it is evident that
the EIMC structure is equivalent with the IMC given in Fig. 15.3, when Gyu(s) is
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replaced by Gyū(s) and Q2(s) ∈RH∞. Note that at the access point r(s) it holds

r(s) = y(s)− (X̂(s)−N(s)Q1(s)
)
N̂(s)ū(s)

= y(s)−N(s)(X(s)−Q1(s)N̂(s)
)(
u(s)−K1(s)y(s)

)
= (I −N(s)(Y(s)+Q1(s)M̂(s)

))
y(s)−N(s)(X(s)−Q1(s)N̂(s)

)
u(s)

= (X̂(s)−N(s)Q1(s)
)(
M̂(s)y(s)− N̂(s)u(s))

= (X̂(s)−N(s)Q1(s)
)(
y(s)− ŷ(s)). (15.45)

Thus, at the access point r residual signal is available, which can also be written as

r(s)= (X̂(s)−N(s)Q1(s)
)
N̂f (s)f (s). (15.46)

It is interesting to notice that

u(s)= ū(s)+K1(s)y(s)

= ū(s)− (M(s)Q1(s)+ Ŷ (s)
)(
N̂(s)ū(s)+ y(s)− ŷ(s))

ū(s)=Q2(s)
(
w(s)− (X̂(s)−N(s)Q1(s)

)(
y(s)− ŷ(s)))

=⇒ y(s)= (X̂(s)−N(s)Q1(s)
)
N̂(s)Q2(s)w(s)

+ (I − (X̂(s)−N(s)Q1(s)
)
N̂(s)Q2(s)

)
× (X̂(s)−N(s)Q1(s)

)(
y(s)− ŷ(s))

u(s)= P1(s)
(
y(s)− ŷ(s))+ P2(s)w(s), (15.47)

P1(s)=M(s)R(s)− Ŷ (s)
R(s)=−Q1(s)−

(
X(s)−Q1(s)N̂(s)

)
Q2(s)

(
X̂(s)−N(s)Q1(s)

)
P2(s)=M(s)

(
X(s)−Q1(s)N̂(s)

)
Q2(s). (15.48)

(15.47)–(15.48) reveal that

• the nominal behavior and disturbance response (robustness) can be consistently
designed by selecting Q2(s) such that

(
X̂(s)−N(s)Q1(s)

)
N̂(s)Q2(s)−→ I

⇐⇒ I − (X̂(s)−N(s)Q1(s)
)
N̂(s)Q2(s)→ 0

• residual signal is accessible at access point r and
• u(s) satisfies (15.16) and is a function of the residual signal, as described in The-

orem 15.2.
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Fig. 15.9 Residual generator based feedback control loop

15.4.2 A Residual Generator Based Feedback Control Loop

The core of the IMC and EIMC structures is the integration of a parallel running
model into the control loop. In an extended sense, it can be considered as a special
form of an observer-based residual generator. Moreover, according to Theorem 15.2
the Youla parameterization can be presented in the form of a residual generator.
These results motivate us to propose a residual generator based feedback control
loop, which is sketched in Fig. 15.9. The controller is described by

u(s)= P1(s)
(
y(s)− ŷ(s))+ P2(s)w(s) (15.49)

P1(s)=M(s)R(s)− Ŷ (s), P2(s) ∈RH∞. (15.50)

It is evident that

• by selecting P2(s) suitably, that is,
– for the control structure given in Fig. 15.1:

P2(s)=−P1(s)M̂(s)

– for the GIMC structure:

P2(s)=M(s)Y (s)
– for the EIMC structure given in Fig. 15.8:

P2(s)=M(s)
(
X(s)−Q1(s)N̂(s)

)
Q2(s)

– for the standard 2-DOF given in Fig. 15.2:

P2(s)= P1(s)N̂(s)K2(s)+K2(s)

– for the 2-DOF given in Fig. 15.6:

P2(s)=K2(s)− P1(s)
(
M̂(s)− N̂(s)K2(s)

)
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– for the 2-DOF given in Fig. 15.7:

P2(s)=K21(s)

all feedback control schemes addressed above can be equivalently realized in
form of the control loop given in Fig. 15.9

• the design of P1(s), P2(s) can be carried out independently and
• at the access points y(s)− ŷ(s), P1(s)(y(s)− ŷ(s)) residual signals are available.

15.5 Notes and References

In this chapter, we have studied the issues of residual generation and fault detection
embedded in feedback control loops. In this context, fault-tolerant control archi-
tectures have also been addressed. This study is motivated by the strong industrial
demands for the real-time integration of model-based fault diagnosis into the ECU’s
with limited capacity.

The theoretical basis of this study is the Youla parameterization of stabilization
controllers [198] and the parameterization of LTI observers [53], while the factoriza-
tion technique [59, 199] introduced in Chap. 3 is applied as the major mathematical
tool for the problem formulations and solutions.

From the control theoretical viewpoint, the major (theoretical) result in this chap-
ter consists in the observer-based and the residual generator realizations of the Youla
parameterization presented in Sect. 15.1.3, which has also been reported in [40]. It
is revealed that a control signal consists of two signal components: the residual
and reference signals. From this point of view, we have then analyzed the differ-
ent (standard) feedback control schemes, including the standard feedback control,
2-DOF and IMC structures, aiming at extracting residual signals from the signals
available at the access points in the control loop. The reader is referred, for instance,
to [168, 169, 198] for a detailed description of those standard control schemes.

Two main applications of these theoretical results have been included in this
chapter,

• residual generation and fault detection embedded in a feedback control loop
• construction of fault-tolerant control architectures.

The residual generation and fault detection schemes introduced in Sect. 15.2 allow
the real-time implementation of observer-based FDI schemes without an observer
running on-line and parallel to the plant, and thus can be realized on an ECU with
limited capacity. Successful tests of these schemes on engine management systems
in vehicles have been reported in [40, 180].

The first result on the construction of fault-tolerant control architectures, the so-
called GIMC, has been published by Zhou and Ren [200]. The schemes presented
in this chapter have extended this result.

The design schemes presented in this chapter is related to the integrated design
of control and diagnostic systems, which has been initiated by Nett et al. in 1988
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[127] and extensively studied in the recent decade [122, 131, 132]. A review report
on this topic can be found in [33]. The main idea of the integrated design scheme
is to formulate the design of the controller and FDI unit unifiedly as a standard
optimization problem, e.g. an H∞ optimization problem, and then to solve it using
the available tools and methods. Different to it, the study in this chapter is focused
on the structures of the feedback control loops and on the analysis of the possible
degree of the design freedom.

For the application of the results presented in this paper, we would like to give
the following remarks:

• To achieve desired FDI performance like for example, a full decoupling of the
residual signal from the disturbances, a perfect fault isolation or identification, an
integrated design of the controller and residual dynamics is needed. That means,
by the controller design, we should make use of the available design freedom
provided by for example, L or Qc(s) for the FDI purpose. To this end, existing
FDI methods can be used.

• On the other hand, the above-mentioned integrated design is only possible if
advanced control design methods like for example, the Youla parameterization
are applied. In practice, the controller design is often realized in a very simple
way. From this viewpoint, a simple residual evaluation and threshold computa-
tion, based on the residual signals extracted from the control loops, could be very
efficient for a successful fault detection, as reported in [40, 180].

• The future work can be dedicated to the extension of the introduced schemes to
the feedback control systems with strong model uncertainties, to the nonlinear
control systems, and to the study on fault-tolerant control problems.



References

1. Alcorta-Garcia, E., Frank, P.M.: On the relationship between observer and parameter iden-
tification based approaches to fault detection. In: Proc. of the 14th IFAC World Congress,
vol. N, pp. 25–29 (1996)

2. Alcorta-Garcia, E., Frank, P.M.: A novel design of structured observer-based residuals for
FDI. In: Proc. ACC 99 (1999)

3. Alwi, H., Edwards, C., Tan, C.P.: Fault Detection and Fault-Tolerant Control Using Sliding
Modes. Springer, Berlin (2011)

4. AMIRA: Three-Tank-System DTS200, Practical Instructions. AMIRA (1996)
5. AMIRA: Inverted Pendulum LIP 100. AMIRA (2006)
6. AMIRA: Speed Control System DR200, Practical Instructions. AMIRA (2006)
7. Anderson, B.D.O., Moore, J.B.: Optimal Filtering. Prentice-Hall, Englewood Cliffs (1979)
8. Aström, K.J., Wittenmark, B.: Adaptive Control. Addison-Wesley, Reading (1995)
9. Basseville, M.: Detecting changes in signals and systems – A survey. Automatica 24(3),

309–326 (1988)
10. Basseville, M.: Model-based statistical signal processing and decision theoretical approaches

to monitoring. In: Proc. of IFAC Symp. SAFEPROCESS ’03 (2003)
11. Basseville, M., Abdelghani, M., Benveniste, A.: Subspace-based fault detection algorithms

for vibration monitoring. Automatica 36, 101–109 (2000)
12. Basseville, M., Nikiforov, I.: Detection of Abrupt Changes – Theory and Application.

Prentice-Hall, Englewood Cliffs (1993)
13. Beard, R.: Failure accommodation in linear systems through self-reorganization. PhD disser-

tation, MIT (1971)
14. Bhattacharyya, S.P.: Observer design for linear system with unknown inputs. IEEE Trans.

Automat. Control 23, 483–484 (1978)
15. Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M.: Diagnosis and Fault-Tolerant Control.

Springer, Berlin (2003)
16. Boyd, S., Ghaoui, L., Feron, E.: Linear Matrix Inequalities in Systems and Control Theory.

SIAM, Philadelphia (1994)
17. Busawon, K., Kabore, P.: Disturbance attenuation using proportional integral observers. In-

ternat. J. Control 74, 618–627 (2001)
18. Calafiore, G., Dabbene, F.: A probabilistic framework for problems with real structured un-

certainty in systems and control. Automatica 38, 1265–1276 (2002)
19. Calafiore, G., Dabbene, F.: Control design with hard/soft performance specifications:

A q-parameter randomization approach. Internat. J. Control 77, 461–471 (2004)
20. Calafiore, G., Polyak, B.: Randomized algorithms for probabilistic robustness with real and

complex structured uncertainty. IEEE Trans. Automat. Control 45(12), 2218–2235 (2001)

S.X. Ding, Model-Based Fault Diagnosis Techniques, Advances in Industrial Control,
DOI 10.1007/978-1-4471-4799-2, © Springer-Verlag London 2013

491

http://dx.doi.org/10.1007/978-1-4471-4799-2


492 References

21. Casavola, A., Famularo, D., Fraze, G.: A robust deconvolution scheme for fault detection and
isolation of uncertain linear systems: An LMI approach. Automatica 41, 1463–1472 (2005)

22. Casavola, A., Famularo, D., Franze, G.: Robust fault detection of uncertain linear systems
via quasi-LMIs. Automatica 44, 289–295 (2008)

23. Chen, C.T.: Linear System Theory and Design. Holt Rinehart, Winston (1984)
24. Chen, G., Chen, G., Hsu, S.-H.: Linear Stochastic Control Systems. CRC Press, Boca Raton

(1995)
25. Chen, J., Patton, R.J.: Robust Model-Based Fault Diagnosis for Dynamic Systems. Kluwer

Academic, Boston (1999)
26. Chen, J., Patton, R.J.: Standard H∞ formulation of robust fault detection. In: Proc. of the 4th

IFAC Symp. SAFEPROCESS, pp. 256–261 (2000)
27. Chen, W., Saif, M.: A sliding mode observer-based strategy for fault detection, isolation, and

estimation in a class of Lipschitz nonlinear systems. Internat. J. Systems Sci. 38, 943–955
(2007)

28. Choudhury, M., Shah, S.L., Thornhill, N.F.: Diagnosis of Process Nonlinearities and Valve
Stiction. Springer, Berlin (2008)

29. Chow, E.Y., Willsky, A.S.: Analytical redundancy and the design of robust failure detection
systems. IEEE Trans. Automat. Control 29, 603–614 (1984)

30. Chung, W.H., Speyer, J.L.: A game theoretic fault detection filter. IEEE Trans. Automat.
Control 43, 143–161 (1998)

31. Clark, R.N.: Instrument fault detection. IEEE Trans. Aerosp. Electron. Syst. 14, 456–465
(1978)

32. Delmaire, G., Cassar, J.P., Starroswiekci, M.: Identification and parity space approaches for
fault detection in SISO systems including modelling errors. In: Proc. of the 33rd IEEE CDC,
pp. 1767–1772 (1994)

33. Ding, S.X.: Integrated design of feedback controllers and fault detectors. Annu. Rev. Control
33, 124–135 (2009)

34. Ding, S.X., Ding, E.L., Jeinsch, T.: A numerical approach to optimization of FDI systems.
In: Proc. of the 37th IEEE CDC, Tampa, USA, pp. 1137–1142 (1998)

35. Ding, S.X., Ding, E.L., Jeinsch, T.: An approach to analysis and design of observer and parity
relation based FDI systems. In: Proc. 14th IFAC World Congress, pp. 37–42 (1999)

36. Ding, S.X., Ding, E.L., Jeinsch, T.: A new approach to the design of fault detection filters.
In: Proceedings of the IFAC Symposium SAFEPROCESS (2000)

37. Ding, S.X., Ding, E.L., Jeinsch, T., Zhang, P.: An approach to a unified design of FDI sys-
tems. In: Proc. of the 3rd Asian Control Conference, Shanghai, pp. 2812–2817 (2000)

38. Ding, S.X., Frank, P.M., Ding, E.L., Jeinsch, T.: Fault detection system design based on a
new trade-off strategy. In: Proceedings of the 39th IEEE CD, pp. 4144–4149 (2000)

39. Ding, S.X., Jeinsch, T., Frank, P.M., Ding, E.L.: A unified approach to the optimization of
fault detection systems. Internat. J. Adapt. Control Signal Process. 14, 725–745 (2000)

40. Ding, S.X., Yang, G., Zhang, P., Ding, E., Jeinsch, T., Weinhold, N., Schulalbers, M.: Feed-
back control structures, embedded residual signals and feedback control schemes with an
integrated residual access. IEEE Trans. Control Syst. Technol. 18, 352–367 (2010)

41. Ding, S.X., Zhang, P., Frank, P.M., Ding, E.L.: Application of probabilistic robustness tech-
nique to the fault detection system design. In: Proceedings of the 42nd IEEE Conference on
Decision and Control, Maui, Hawaii, USA, pp. 972–977 (2003)

42. Ding, S.X., Zhang, P., Frank, P.M., Ding, E.L.: Threshold calculation using LMI-technique
and its integration in the design of fault detection systems. In: Proceedings of the 42nd IEEE
Conference on Decision and Control, Maui, Hawaii, USA, pp. 469–474 (2003)

43. Ding, S.X., Zhang, P., Huang, B., Ding, E.L., Frank, P.M.: An approach to norm and statis-
tical methods based residual evaluation. In: Prof. of the 10th IEEE International Conference
on Methods and Models in Automation and Robotics, pp. 777–780 (2004)

44. Ding, S.X., Zhang, P., Naik, A., Ding, E., Huang, B.: Subspace method aided data-driven
design of fault detection and isolation systems. J. Process Control 19, 1496–1510 (2009)



References 493

45. Ding, X.: Frequency Domain Methods for Observer Based Fault Detection (in German).
VDI Verlag, Düsseldorf (1992)

46. Ding, X., Frank, P.M.: Fault detection via optimally robust detection filters. In: Proc. of the
28th IEEE CDC, pp. 1767–1772 (1989)

47. Ding, X., Frank, P.M.: Fault detection via factorization approach. Syst. Control Lett. 14,
431–436 (1990)

48. Ding, X., Frank, P.M.: Frequency domain approach and threshold selector for robust model-
based fault detection and isolation. In: Proc. of the 1st IFAC Symp. SAFEPROCESS (1991)

49. Ding, X., Frank, P.M.: An adaptive observer-based fault detection scheme for nonlinear sys-
tems. In: Proceedings of the 12th IFAC World Congress, Sydney, pp. 307–312 (1993)

50. Ding, X., Frank, P., Guo, L.: Fault detection via adaptive observer based on orthogonal func-
tions. In: Proceedings of the IFAC Symposium AIPAC89, Nancy (1989)

51. Ding, X., Guo, L.: An approach to time domain optimization of observer-based fault detec-
tion systems. Internat. J. Control 69(3), 419–442 (1998)

52. Ding, X., Guo, L., Frank, P.M.: A frequency domain approach to fault detection of uncertain
dynamic systems. In: Proc. of the 32nd Conference on Decision and Control, Texas, USA,
pp. 1722–1727 (1993)

53. Ding, X., Guo, L., Frank, P.M.: Parametrization of linear observers and its application to
observer design. IEEE Trans. Automat. Control 39, 1648–1652 (1994)

54. Ding, X., Guo, L., Jeinsch, T.: A characterization of parity space and its application to robust
fault detection. IEEE Trans. Automat. Control 44(2), 337–343 (1999)

55. Dooren, P.V.: The computation of Kronecker’s canonical form of a singular pencil. Linear
Algebra Appl. 27, 103–140 (1979)

56. Doyle, J.C., Francis, B.A., Tannenbaum, L.T.: Feedback Control Theory. Macmillan Co.,
New York (1992)

57. Edelmayer, A., Bokor, J.: Optimal H∞ scaling for sensitivity optimization of detection filters.
Internat. J. Robust Nonlinear Control 12, 749–760 (2002)

58. Emami-Naeini, A., Akhter, M., Rock, S.: Effect of model uncertainty on failure detection:
The threshold selector. IEEE Trans. Automat. Control 33, 1106–1115 (1988)

59. Francis, B.A.: A Course in H∞ Control Theory. Springer, Berlin (1987)
60. Frank, P.M.: Fault diagnosis in dynamic systems using analytical and knowledge-based re-

dundancy – A survey. Automatica 26, 459–474 (1990)
61. Frank, P.M.: Enhancement of robustness in observer-based fault detection. Internat. J. Con-

trol 59, 955–981 (1994)
62. Frank, P.M.: Analytical and qualitative model-based fault diagnosis – A survey and some

new results. Eur. J. Control 2, 6–28 (1996)
63. Frank, P.M., Ding, S.X., Marcu, T.: Model-based fault diagnosis in technical processes.

Trans. Inst. Meas. Control 22, 57–101 (2000)
64. Frank, P.M., Ding, X.: Frequency domain approach to optimally robust residual generation

and evaluation for model-based fault diagnosis. Automatica 30, 789–904 (1994)
65. Frank, P.M., Ding, X.: Survey of robust residual generation and evaluation methods in

observer-based fault detection systems. J. Process Control 7(6), 403–424 (1997)
66. Frisk, E., Nielsen, L.: Robust residual generation for diagnosis including a reference model

for residual behavior. Automatica 42, 437–445 (2006)
67. Frisk, E., Nyberg, M.: A minimal polynomial basis solution to residual generation for fault

diagnosis in linear systems. Automatica 37, 1417–1424 (2001)
68. Gantmacher, F.R.: The Theory of Matrices. Chelsea, New York (1959)
69. Gao, Z., Ding, S.X.: Actuator fault robust estimation and fault-tolerant control for a class of

nonlinear descriptor systems. Automatica 43, 912–920 (2007)
70. Gao, Z., Ho, D.W.C.: State/noise estimator for descriptor systems with application to sensor

fault diagnosis. IEEE Trans. Signal Process. 54, 1316–1326 (2006)
71. Gao, Z., Ho, D.: Proportional multiple-integral observer design for descriptor systems with

measurement output disturbances. IEE Proc., Control Theory Appl. 151(3), 279–288 (2004)



494 References

72. Gao, Z., Shi, X., Ding, S.: Fuzzy state/disturbance observer design for t–s fuzzy systems with
application to sensor fault estimation. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 38,
875–880 (2008)

73. Ge, W., Fang, C.: Detection of faulty components via robust observation. Internat. J. Control
47, 581–599 (1988)

74. Gertler, J.J.: Analytical redundancy methods in fault detection and isolation. In: Proc. the 1st
IFAC/IMACS Symp. SAFEPROCESS ’91 (1991)

75. Gertler, J.J.: Diagnosing parametric faults: From parameter estimation to parity relation.
In: Proc. of ACC 95, pp. 1615–1620 (1995)

76. Gertler, J.J.: Fault Detection and Diagnosis in Engineering Systems. Dekker, New York
(1998)

77. Gertler, J.J.: Residual generation from principle component models for fault diagnosis in
linear systems. In: Proceedings of the 2005 IEEE International Symposium on Intelligent
Control, Limassol, Cyprus, pp. 628–639 (2005)

78. Gertler, J.J., Singer, D.: A new structural framework for parity equation-based failure detec-
tion and isolation. Automatica 26, 381–388 (1990)

79. Gertler, J.: Survey of model-based failure detection and isolation in complex plants. IEEE
Control Syst. Mag. 3, 3–11 (1988)

80. Glover, K.: All optimal Hankel-norm approximations of linear multivariable systems and
their L∞ error bounds. Internat. J. Control 39, 1115–1193 (1984)

81. GmbH, G.G.: Experiment Instructions RT682. G.U.N.T. Gerätebau GmbH, Barsbuettel
(2011)

82. Gu, G.: Inner–outer factorization for strictly proper transfer matrices. IEEE Trans. Automat.
Control 47, 1915–1919 (2002)

83. Gu, G., Cao, X.-R., Badr, H.: Generalized LQR control and Kalman filtering with relations
to computations of inner–outer and spectral factorizations. IEEE Trans. Automat. Control
51, 595–605 (2006)

84. Gustafsson, F.: Adaptive Filtering and Change Detection. Wiley, New York (2000)
85. Gustafsson, F.: Stochastic fault diagnosability in parity spaces. In: Proc. of IFAC World

Congress ’02 (2002)
86. Ha, Q.P., Trinh, H.: State and input simultaneous estimation for a class of nonlinear systems.

Automatica 40, 1779–1785 (2004)
87. Hara, S., Sugie, T.: Inner–outer factorization for strictly proper functions with jw-axis zeros.

Systems Control Lett. 16, 179–185 (1991)
88. Henry, D., Zolghadri, A.: Design and analysis of robust residual generators for systems under

feedback control. Automatica 41, 251–264 (2005)
89. Hou, M., Mueller, P.C.: Disturbance decoupled observer design: A unified viewpoint. IEEE

Trans. Automat. Control 39(6), 1338–1341 (1994)
90. Hou, M., Mueller, P.: Fault detection and isolation observers. Internat. J. Control 60, 827–846

(1994)
91. Hou, M., Patton, R.J.: An LMI approach to infinity fault detection observers. In: Proceedings

of the UKACC International Conference on Control, pp. 305–310 (1996)
92. Hou, M., Patton, R.J.: Input observability and input reconstruction. Automatica 34, 789–794

(1998)
93. Hsiao, T., Tomizuka, M.: Threshold selection for timely fault detection in feedback control

systems. In: Proc. of ACC, pp. 3303–3308 (2005)
94. Huang, B.: Bayesian methods for control loop monitoring and diagnosis. J. Process Control

18, 829–838 (2008)
95. Hung, Y.S.: H∞ interpolation of rational matrices. Internat. J. Control 48, 1659–1713 (1988)
96. Isermann, R.: Process fault detection based on modeling and estimation methods – A survey.

Automatica 20, 387–404 (1984)
97. Isermann, R.: Supervision, fault-detection and fault-diagnosis methods – An introduction.

Control Eng. Pract. 5(5), 639–652 (1997)
98. Isermann, R.: Fault Diagnosis Systems. Springer, Berlin (2006)



References 495

99. Iwasaki, T., Hara, S.: Generalized KYP lemma: Unified frequency domain inequalities with
design applications. IEEE Trans. Automat. Control 50, 41–59 (2005)

100. Jaimoukha, I.M., Li, Z., Papakos, V.: A matrix factorization solution to the H−/H∞ fault
detection problem. Automatica 42, 1907–1912 (2006)

101. Jiang, B., Staroswiecki, M.: Adaptive observer design for robust fault estimation. Internat.
J. Systems Sci. 33, 767–775 (2002)

102. Jiang, B., Staroswiecki, M., Cocquempot, V.: Fault diagnosis based on adaptive observer for
a class of non-linear systems with unknown parameters. Internat. J. Control 77, 415–426
(2004)

103. Johansson, A., Bask, M., Norlander, T.: Dynamic threshold generators for robust fault detec-
tion in linear systems with parameter uncertainty. Automatica 42, 1095–1106 (2006)

104. Jones, H.: Failure detection in linear systems. PhD dissertation, MIT (1973)
105. Kailath, T.: Linear Systems. Prentice-Hall, Englewood Cliffs (1980)
106. Khosrowjerdi, M.J., Nikoukhah, R., Safari-Shad, N.: A mixed H2/H∞ approach to simulta-

neous fault detection and control. Automatica 40, 261–267 (2004)
107. Khosrowjerdi, M., Nikoukhah, R., Safari-Shad, N.: Fault detection in a mixed H2/H∞ set-

ting. IEEE Trans. Automat. Control 50(7), 1063–1068 (2005)
108. Kinnaert, M.: Fault diagnosis based on analytical models for linear and nonlinear systems –

A tutorial. In: Proc. of IFAC SAFEPROCESS, pp. 37–50 (2003)
109. Lai, T.L., Shan, J.Z.: Efficient recursive algorithms for detection of abrupt changes in signals

and control systems. IEEE Trans. Automat. Control 44, 952–966 (1999)
110. Lapin, L.L.: Probability and Statistics for Modern Engineering. 2nd edn. Duxbury, N. Scitu-

ate (1990)
111. Lehmann, E.: Testing Statistical Hypotheses. Wadsworth, Belmont (1991)
112. Li, W., Zhang, P., Ding, S.X., Bredtmann, O.: Fault detection over noisy wireless channels.

In: Proc. of the 46th IEEE CDC (2007)
113. Li, Z., Jaimoukha, I.M.: Observer-based fault detection and isolation filter design for linear

time-invariant systems. Internat. J. Control 82, 171–182 (2009)
114. Li, Z., Mazars, E., Zhang, Z., Jaimoukha, I.M.: State-space solution to the H−/H∞ fault

detection problem. Int. J. Robust Nonlinear Control 22, 282–299 (2012)
115. Liu, B., Si, J.: Fault isolation filter design for linear time-invariant systems. IEEE Trans.

Automat. Control 42, 704–707 (1997)
116. Liu, J., Wang, J.L., Yang, G.H.: An LMI approach to minimum sensitivity analysis with

application to fault detection. Automatica 41, 1995–2004 (2005)
117. Liu, N., Zhou, K.: Optimal robust fault detection for linear discrete time systems. In: Proc.

the 46th IEEE CDC, pp. 989–994 (2007)
118. Lou, X., Willsky, A., Verghese, G.: Optimally robust redundancy relations for failure detec-

tion in uncertain system. Automatica 22, 333–344 (1986)
119. Ma, Y.: Integrated Design of Observer Based Fault Diagnosis Systems and Its Application to

Vehicle Lateral Dynamic Control Systems. VDI Verlag, Düsseldorf (2007)
120. Mangoubi, R.: Robust Estimation and Failure Detection. Springer, New York (1998)
121. Mangoubi, R., Edelmayer, A.: Model based fault detection: The optimal past, the robust

present and a few thoughts on the future. In: Proc. of the IFAC Symp. SAFEPROCESS,
pp. 64–75 (2000)

122. Marcos, A., Balas, G.J.: A robust integrated controller/diagnosis aircraft application. Internat.
J. Robust Nonlinear Control 15, 531–551 (2005)

123. Massoumnia, M.A.: A geometric approach to the synthesis of failure detection filters. IEEE
Trans. Automat. Control 31, 839–846 (1986)

124. McDonough, R.N., Whalen, A.: Detection of Signals in Noise. Academic Press, San Diego
(1995)

125. Mitschke, M.: Dynamik der Kraftfahrzeuge. Springer, Berlin (1990)
126. Murad, G., Postlethwaite, I., Gu, D.-W.: A robust design approach to integrated control and

diagnostics. In: Proc. of the 13th IFAC Word Congress, vol. 7, pp. 199–204 (1996)



496 References

127. Nett, C.N., Jacobson, C., Miller, A.T.: An integrated approach to controls and diagnostics.
In: Proc. of ACC, pp. 824–835 (1988)

128. Nguang, S.K., Shi, P., Ding, S.X.: Delay-dependent fault estimation for uncertain nonlinear
systems: An LMI approach. Internat. J. Robust Nonlinear Control 16, 913–933 (2006)

129. Nguang, S.K., Zhang, P., Ding, S.X.: Parity relation based fault estimation for nonlinear
systems: An LMI approach. Int. J. Autom. Comput. 4, 189–194 (2007)

130. Niemann, H., Saberi, A., Stoovogel, A., Sannuti, P.: Optimal fault estimation. In: Proc. of the
4th IFAC Symp. SAFEPROCESS, vol. 1, pp. 262–267 (2000)

131. Niemann, H., Stoustrup, J.: Integration of control and fault detection: Nominal and robust
design. In: Proc. of the 3rd IFAC Symp. SAFEPROCESS, vol. 1, pp. 341–346 (1997)

132. Niemann, H., Stoustrup, J.: Fault tolerant control based on LTR design. In: Proc. of the IEEE
CDC, pp. 2453–2458 (2003)

133. Niemann, H., Stoustrup, J.J.: Design of fault detectors using H∞ optimization. In: Proc. of
the 39th IEEE CDC (2000)

134. Nobrega, E.G., Abdalla, M.O., Grigoriadis, K.M.: LMI based filter design to fault detection
and isolation. In: Proc. of the 24nd IEEE CDC (2000)

135. Oara, C., Varga, A.: Computation of general inner–outer and spectral factorizations. IEEE
Trans. Automat. Control 45, 2307–2325 (2000)

136. O’Reilly, J.: Observers for Linear Systems. Academic Press, London (1983)
137. Papoulis, A.: Probability, Random Variables and Stochastic Process. McGraw-Hill, New

York (1991)
138. Park, Y., Stein, J.L.: Closed-loop, state and inputs observer for systems with unknown inputs.

Internat. J. Control 48, 1121–1136 (1988)
139. Patton, R.J.: Robust model-based fault diagnosis: The state of the art. In: Proc. of IFAC

Symp. SAFEPROCESS, pp. 1–27 (1994)
140. Patton, R.J., Chen, J.: Optimal unknown input distribution matrix selection in robust fault

diagnosis. Automatica 29, 837–841 (1993)
141. Patton, R.J., Frank R, P.M. (eds.): Fault Diagnosis in Dynamic Systems, Theory and Appli-

cations. Prentice-Hall, Englewood Cliffs (1989)
142. Patton, R.J., Frank R, P.M. (eds.): Issues of Fault Diagnosis for Dynamic Systems. Springer,

London (2000)
143. Patton, R.J., Hou, M.: A matrix pencil approach to fault detection and isolation observers.

In: Proc. of the 13th IFAC World Congress (1996)
144. Patton, R.J., Kangethe, S.: Robust fault diagnosis using eigenstructure assignment of ob-

servers. In: Patton, R.J., Frank, P.M., Clark, R.N. (eds.) Fault Diagnosis in Dynamic Systems:
Theory and Applications. Prentice Hall, Englewood Cliffs (1989)

145. Patton, R., Chen, J.: A review of parity space approaches to fault diagnosis. In: Proc.
IFAC/IMACS Symposium SAFEPROCESS ’91, pp. 239–255 (1991)

146. Qiu, Z., Gertler, J.J.: Robust FDI systems and H∞ optimization. In: Proc. of ACC 93,
pp. 1710–1715 (1993)

147. Rambeaux, F., Hamelin, F., Sauter, D.: Robust residual generation via LMI. In: Proceedings
of the 14th IFAC World Congress, Beijing, China, pp. 240–246 (1999)

148. Rank, M.L., Niemann, H.: Norm based design of fault detectors. Internat. J. Control 72(9),
773–783 (1999)

149. Saberi, A., Stoovogel, P.S.A.A., Niemann, H.: Fundamental problems in fault detection and
identification. Internat. J. Robust Nonlinear Control 10, 1209–1236 (2000)

150. Sader, M., Noack, R., Zhang, P., Ding, S.X., Jeinsch, T.: Fault detection based on proba-
bilistic robustness technique for belt conveyor systems. In: Proc. of the 16th IFAC World
Congress (2005)

151. Sadrnia, M., Patton, R., Chen, J.: Robust H∞/Hμ fault diagnosis observer design. In: Proc.
of ECC’ 97 (1997)

152. Saif, M.: Reduced-order proportional integral observer with application. J. Guid. Control
Dyn. 16, 985–988 (1993)



References 497

153. Sauter, D., Hamelin, F.: Frequency-domain optimization for robust fault detection and isola-
tion in dynamic systems. IEEE Trans. Automat. Control 44, 878–882 (1999)

154. Scherer, C., Gahinet, P., Chilali, M.: Multiobjective output-feedback control via LMI opti-
mization. IEEE Trans. Automat. Control 42(7), 896–911 (1997)

155. Schneider, S., Weinhold, N., Ding, S.X., Rehm, A.: Parity space based FDI-scheme for vehi-
cle lateral dynamics. In: Proc. of the IEEE International Conference on Control Applications,
Toronto (2005)

156. Shafai, B., Pi, C.T., Nork, S.: Simultaneous disturbance attenuation and fault detection using
proportional integral observers. In: Proc. ACC, pp. 1647–1649 (2002)

157. Simani, S., Fantuzzi, S., Patton, R.J.: Model-Based Fault Diagnosis in Dynamic Systems
Using Identification Techniques. Springer, London (2003)

158. Skelton, R., Iwasaki, T., Grigoriadis, K.: A Unified Algebraic Approach to Linear Control
Design. Taylor & Francis, London (1998)

159. Starroswiecki, M., Cassar, J.P., Declerck, P.: A structural framework for the design of FDI
in large scale industrial plants. In: Patton, R.J., et al. (eds.) Issues of Fault Diagnosis for
Dynamic Systems (1999)

160. Stoustrup, J., Grimble, M., Niemann, H.: Design of integrated systems for the control and
detection of actuator/sensor faults. Sens. Rev. 17, 138–149 (1997)

161. Tan, C., Edwards, C.: Sliding mode observers for detection and reconstruction of sensor
faults. Automatica 38, 1815–1821 (2002)

162. Tempo, R., Calafiro, G., Dabbene, F.: Randomized Algorithms for Analysis and Control of
Uncertain Systems. Springer, London (2005)

163. Thornhill, N., Patwardhan, S., Shah, S.: A continuous stirred tank heater simulation model
with applications. J. Process Control 18 (2008)

164. Tsai, M., Chen, L.: A numerical algorithm for inner–outer factorization of real-rational ma-
trices. Syst. Control Lett. 209–217 (1993)

165. Tyler, M.L., Morari, M.: Optimal and robust design of integrated control and diagnostic
modules. In: Proc. of ACC, pp. 2060–2064 (1994)

166. Varga, A.: Computational issues in fault detection filter design. In: Proc. of the 41st IEEE
CDC (2002)

167. Venkatasubramanian, V., Rengaswamy, R., Yin, K., Kavuri, S.: Review of process fault de-
tection and diagnosis part I: Quantitative model-based methods. Comput. Chem. Eng. 27,
293–311 (2003)

168. Vidyasagar, M.: Control System Synthesis: A Factorization Approach. MIT Press, Cam-
bridge (1985)

169. Vilanova, R., Serra, I.: Realisation of two-degree-of-freedom compensators. IEE Proc., Con-
trol Theory Appl. 144, 589–595 (1997)

170. Viswanadham, N., Srichander, R.: Fault detection using unknown input observers. Control
Theory Adv. Technol. 3, 91–101 (1987)

171. Viswanadham, N., Taylor, J., Luce, E.: A frequency-domain approach to failure detection
and isolation with application to GE-21 turbine engine control systems. Control Theory Adv.
Technol. 3, 45–72 (1987)

172. Wang, H., Daley, S.: Actuator fault diagnosis: An adaptive observer-based technique. IEEE
Trans. Automat. Control 41, 1073–1078 (1996)

173. Wang, H., Huang, Z.J., Daley, S.: On the use of adaptive updating rules for actuator and
sensor fault diagnosis. Automatica 33, 217–225 (1997)

174. Wang, H., Yang, G.-H.: Fault estimations for uncertain linear discrete-time systems in low
frequency domain. In: Proc. of the 2007 ACC, pp. 1124–1129 (2007)

175. Wang, H., Yang, G.-H.: Fault estimations for linear systems with polytopic uncertainties. Int.
J. Syst. Control Commun. 1, 53–71 (2008)

176. Wang, H., Yang, G.-H.: A finite frequency approach to filter design for uncertain discrete-
time systems. Internat. J. Adapt. Control Signal Process. 22, 533–550 (2008)

177. Wang, H., Yang, G.-H.: A finite frequency domain approach to fault detection observer de-
sign for linear continuous-time systems. Asian J. Control 10, 1–10 (2008)



498 References

178. Wang, J.L., Yang, G.-H., Liu, J.: An LMI approach to H -index and mixed H−/H∞ fault
detection observer design. Automatica 43, 1656–1665 (2007)

179. Wang, Y., Xie, L., de Souza, C.E.: Robust control of a class of uncertain nonlinear systems.
Systems Control Lett. 19, 139–149 (1992)

180. Weinhold, N., Ding, S., Jeinsch, T., Schultalbers, M.: Embedded model-based fault diagnosis
for on-board diagnosis of engine management systems. In: Proc. of the IEEE CCA, pp. 1206–
1211 (2005)

181. Willsky, A.S.: A survey of design methods for failure detection in dynamic systems. Auto-
matica 12, 601–611 (1976)

182. Wonham, W.M.: Linear Multivariable Control – A Geometric Approach. Springer, Berlin
(1979)

183. Wünnenberg, J.: Observer-based fault detection in dynamic systems. PhD dissertation, Uni-
versity of Duisburg (1990)

184. Wünnenberg, J., Frank, P.M.: Sensor fault detection via robust observers. In: Tsafestas, S.,
Singh, M., Schmidt, G. (eds.) System Fault Diagnostics, Reliability and Related Knowledge-
Based Approaches, pp. 147–160. Reidel, Dordrecht (1987)

185. Ye, H., Ding, S., Wang, G.: Integrated design of fault detection systems in time-frequency
domain. IEEE Trans. Automat. Control 47(2), 384–390 (2002)

186. Ye, H., Wang, G.Z., Ding, S.X.: A new parity space approach for fault detection based on
stationary wavelet transform. IEEE Trans. Automat. Control 49(2), 281–287 (2004)

187. Zhang, P., Ding, S.X.: On fault sensitivity analysis. Technical report of the institute AKS
(AKS-ITR-07-ZD-01) (2007)

188. Zhang, P., Ding, S.X.: An integrated trade-off design of observer based fault detection sys-
tems. Automatica 44, 1886–1894 (2008)

189. Zhang, P., Ding, S.X.: On fault detection in linear discrete-time, periodic, and sampled-data
systems (survey). J. Control Sci. Eng. 1–18 (2008)

190. Zhang, P., Ding, S.X., Sader, M., Noack, R.: Fault detection of uncertain systems based on
probabilistic robustness theory. In: Proc. of American Control Conference (2005)

191. Zhang, P., Ye, H., Ding, S., Wang, G., Zhou, D.: On the relationship between parity space
and H2 approaches to fault detection. Syst. Control Lett. (2006)

192. Zhang, Q.: Adaptive observer for multiple-input-multiple-output (MIMO) linear time-
varying systems. IEEE Trans. Automat. Control 47, 525–529 (2002)

193. Zhang, Q., Basseville, M., Benveniste, A.: Early waring of slight changes in systems. Auto-
matica 30, 95–114 (1994)

194. Zhang, X.D., Polycarpou, M.M., Parisini, T.: A robust detection and isolation scheme for
abrupt and incipient faults in nonlinear systems. IEEE Trans. Automat. Control 47, 576–593
(2002)

195. Zhong, M., Ding, S.X., Han, Q., Ding, Q.: Parity space-based fault estimation for linear
discrete time-varying systems. IEEE Trans. Automat. Control 55, 1726–1731 (2010)

196. Zhong, M., Ding, S., Lam, J., Wang, H.: An LMI approach to design robust fault detection
filter for uncertain LTI systems. Automatica 39, 543–550 (2003)

197. Zhou, D.H., Frank, P.M.: Strong tracking filtering of nonlinear time-varying stochastic sys-
tems with coloured noise: Application to parameter estimation and empirical robustness anal-
ysis. Internat. J. Control 65, 295–307 (1996)

198. Zhou, K.: Essential of Robust Control. Prentice-Hall, Englewood Cliffs (1998)
199. Zhou, K., Doyle, J., Glover, K.: Robust and Optimal Control. Prentice-Hall, New Jersey

(1996)
200. Zhou, K., Ren, Z.: A new controller architecture for high performance, robust, and fault-

tolerant control. IEEE Trans. Automat. Control 46, 1613–1618 (2001)



Index

A
Adaptive threshold, 310
Analytical redundancy, 6, 72

output observer based generation, 74
parity relation based generation, 107

B
Bezout identity, 24
Bounded Real Lemma, 170, 175

C
Case study

CSTH, 46, 78, 80, 94, 122, 125, 152, 213,
264, 301

DC motor, 31, 114, 298, 311
inverted pendulum, 34, 95, 97, 103, 120,

139, 156, 234, 261, 425, 427, 459
three-tank system, 38, 55, 65, 67, 336, 345
vehicle lateral dynamic system, 41, 146,

180, 229, 277, 363, 438, 444
Co-inner–outer factorization (CIOF), 171

extended CIOF, 239
Coprime factorization

left coprime factorization (LCF), 23
right coprime factorization (RCF), 23

D
Design form of residual generators, 79
Diagnostic observer (DO), 81

E
Excitation subspace, 56
Extended IMC (EIMC), 485

F
False alarm rate (FAR)

in the norm-based framework, 372

in the statistical framework, 359, 371
Fault detectability

definition, 52, 56
existence conditions, 52

Fault detectability in the norm-based
framework, 372

Fault detectability indices, 414
Fault detection, 4
Fault detection filter (FDF), 79
Fault detection rate (FDR)

in the norm-based framework, 373
in the statistical framework, 371

Fault identifiability
definition, 66

Fault identification, 4
Fault identification filter (FIF), 443
Fault isolability

check conditions, 58
definition, 57

Fault isolability matrix, 414
Fault isolation, 4
Fault transfer matrix, 54
FD (fault detection), 4
FDI (fault detection and isolation), 4
FDIA (fault detection, isolation and analysis),

4

G
Generalized internal model control (GIMC),

479
Generalized likelihood ratio (GLR), 319
Generalized optimal fault identification

problem (GOFIP), 451
GKYP-Lemma, 176

H
Hardware redundancy, 4

S.X. Ding, Model-Based Fault Diagnosis Techniques, Advances in Industrial Control,
DOI 10.1007/978-1-4471-4799-2, © Springer-Verlag London 2013

499

http://dx.doi.org/10.1007/978-1-4471-4799-2


500 Index

I
Implementation form of residual generators, 79
Inner–outer factorization (IOF), 171

K
Kalman filter scheme, 178, 329

L
Least square estimate, 463
Likelihood ratio (LR), 318
Luenberger equations, 81

a numerical solution, 93
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solution, 231
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H∞ to H− design – an alternative solution,
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Parameterization of all observers, 474
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solutions, 443
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definition, 407
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Perfect unknown input decoupling problem
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Performance indices
H− index, 214
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index with inequalities, 182
JS−R index, 182
JS/R index, 182
Sf,+ index, 181
Sf,− index, 181

PI-observer, 462
Plausibility test, 5
Post-filter, 77

R
Residual evaluation, 7
Residual evaluation functions

average value, 290
peak value, 289
RMS value, 291

Residual generation, 6
Residual generator, 6
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generalized observer scheme (GOS), 436

Residual signal
observer-based, 75
parity relation based, 100
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Sensor fault identification, 424, 444
Sensor fault isolation, 432, 444
Set of detectable faults (SDF), 372
Set of disturbances that cause false alarms

(SDFA), 371
Signal norms

L2 (l2) norm, 165
L∞ (l∞) norm, 166
peak norm, 166
root mean square (RMS), 165, 291

Signal processing based fault diagnosis, 4
Simultaneous state and disturbance estimator,

469
Soft- or virtual sensor, 74
Software redundancy, 6, 72
SVD, 171
System norm

generalized H2 norm, 168
H2 norm, 169
H∞ norm, 168
induced norm, 167
peak-to-peak gain, 168

T
Tchebycheff inequality, 352
The unified solution

a generalized interpretation, 236
discrete-time version, 234
general form, 242, 378
standard form, 232, 376

Thresholds
Jth,peak,2, 294
Jth,peak,peak , 294
Jth,RMS,2, 295

U
Unified solution of parity matrix, 191
Unknown input decoupling

an algebraic check condition, 122
check condition via Rosenbrock system

matrix, 121
frequency domain approach, 126
minimum order residual generator, 154
null matrix, 153
unknown input diagnostic observer

(UIDO), 141
unknown input fault detection filter

(UIFDF), 128
unknown input observer (UIO), 142
unknown input parity space approach, 152

W
Weighting matrix, 451

Y
Youla parameterization

observer-based realization, 475
original form, 473
residual generation based realization, 476
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