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Series Editors’ Foreword

The series Advances in Industrial Control aims to report and encourage technol-
ogy transfer in control engineering. The rapid development of control technology
has an impact on all areas of the control discipline. New theory, new controllers,
actuators, sensors, new industrial processes, computer methods, new applications,
new philosophies. .., new challenges. Much of this development work resides in
industrial reports, feasibility study papers and the reports of advanced collaborative
projects. The series offers an opportunity for researchers to present an extended ex-
position of such new work in all aspects of industrial control for wider and rapid
dissemination.

When assessing the performance of a control system, it is easy to overlook the
fundamental question of whether the actual system configuration and set up has all
the features and hardware that will enable the process to be controlled per se. If the
system can be represented by a reasonable linear model, then the characteristics of
a process that create limitations to achieving various control performance require-
ments can be identified and listed. Such information can be used to produce guide-
lines that give a valuable insight as to what a system can or cannot achieve in terms
of performance. In control systems analysis textbooks, these important properties
are often given under terms such as “input—output controllability” and “dynamic
resilience”.

It is interesting to see similar questions arising in the study of fault detection
and isolation (FDI) systems. At a fundamental level, the first question is not one
of the performance of the fault detection and analysis system, but of whether the
underlying process has the structure and properties to allow faults to be detected,
isolated and identified. As with the analysis of the control case, if the system can
be represented by a linear model then definitions and conditions can be given as to
whether the system is generically fault detectable, fault isolatable and fault identifi-
able. Fault detectability is about whether a system fault would cause changes in the
system outputs independently of the type and size of the fault, fault isolatability is
a matter of whether the changes in the system output caused by different faults are
distinguishable (from for example, system output changes caused by the presence
of a disturbance) and finally fault identifiability is about whether the mapping from
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viii Series Editors’ Foreword

the system output to the fault is unique since if this is so then the fault is identifiable.
With the fundamental conditions verified, the engineer can proceed to designing the
FDI system. All these issues, along with design techniques based on models with
demonstrative case study applications can be found in this comprehensive second
edition of Professor Steven Ding’s book Model-Based Fault Diagnosis Technique:
Design Schemes, Algorithms and Tools that has now entered the Advances in Indus-
trial Control series of monographs.

The key practical issues that complicate the design of a FDI system come from
two sources. Firstly from the process: Many process plants and installations are
often subject to unknown disturbances and it is important to be able to distinguish
these upsets from genuine faults. Similarly process noise, emanating from the mech-
anisms within the process and from the measurements sensors themselves, is usually
present in real systems so it is important that process measurement noise does not
trigger false alarms. The second set of issues arises from FDI design itself where
model uncertainty is present. This may exhibit itself as simply imperfect process-
operational knowledge with the result that the FDI system is either too sensitive or
too insensitive. Alternatively, model uncertainty (model inaccuracy) may well exist
and the designer will be advised to use a robust FDI scheme. Professor Ding pro-
vides solutions, analysis and discussion of many of these technical FDI issues in his
book.

A very valuable feature of the book presentation is the use of five thematic case
study examples used to illuminate the substantial matters of theory, algorithms and
implementation. The case study systems are:

speed control of a dc motor;

an inverted pendulum control system;

a three-tank system;

a vehicle lateral dynamical system; and
a continuous stirred tank heater system.

Further, a useful aspect of these case study systems is that four of them are linked
to laboratory-scale experimental rigs, thus presenting the academic and engineering
reader with the potential to obtain direct applications experience of the FDI tech-
niques described.

The first edition of this book was a successful enterprise and since its publication
in 2008 the model-based FDI field has grown in depth and insight. Professor Ding
has taken the opportunity to update the book by adding more recent research findings
and including a new case study example from the industrial process area. The new
edition is a very welcome addition to the Advances in Industrial Control series.

Industrial Control Centre, M.J. Grimble
Glasgow, Scotland, UK M.A. Johnson



Preface

Model-based fault diagnosis is a vital field in the research and engineering domains.
In the past years since the publication of this book, new diagnostic methods and suc-
cessful applications have been reported. During this time, I have also received many
mails with constructive remarks and valuable comments on this book, and enjoyed
interesting and helpful discussions with students and colleagues during classes, at
conferences and workshops. All these motivated me to work on a new edition.

The second edition retains the original structure of the book. Recent results on the
robust residual generation issues and case studies have been added. Chapter 14 has
been extended to include additional fault identification schemes. In a new chapter,
fault diagnosis in feedback control systems and fault-tolerant control architectures
are addressed. Thanks to the received remarks and comments, numerous revisions
have been made.

A part of this book serves as a textbook for a Master course on Fault Diagno-
sis and Fault Tolerant Systems, which is offered in the Department of Electrical
Engineering and Information Technology at the University of Duisburg-Essen. It is
recommended to include Chaps. 1-3, 5, 7 (partly), 9, 10, 12—15 (partly) in this edi-
tion for such a Master course. It is worth mentioning that this book is so structured
that it can also be used as a self-study book for engineers in the application fields of
automatic control.

I would like to thank my Ph.D. students and co-worker for their valuable con-
tributions to the case study. They are Tim Konings (inverted pendulum), Hao Luo
(three-tank system and CSTH), Jedsada Saijai and Ali Abdo (vehicle lateral dy-
namic system), Ping Liu (DC motor) and Jonas Esch (CSTH).

Finally, I would like to express my gratitude to Oliver Jackson from Springer-
Verlag and the Series Editor for their valuable support.

Duisburg, Germany Steven X. Ding
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Notation

Hﬂ” 2l DCcnm<

> (L)
max (min)
sup (inf)

R and C

C+ and E+
C_andC_

Ciw

C; and C,

Rn

Rn Xm

RHoo, RHEX™

RHa, RHY™

LHoo, LHI™

For all

Belong to

Subset

Union

Intersection
Identically equal
Approximately equal
Defined as

Implies

Equivalent to

Much greater (less) than
Maximum (minimum)
Supremum (infimum)

Field of real and complex numbers

Open and closed right-half plane (RHP)

Open and closed left-half plane (LHP)

Imaginary axis

Open and closed plane outside of the unit circle

Space of real n-dimensional vectors

Space of n by m matrices

Denote the set of n by m stable transfer matrices, see [198]
for definition

Denote the set of n by m stable, strictly proper transfer
matrices, see [198] for definition

Denote the set of n by m transfer matrices, see [198] for
definition

Xix



XT

XJ_

X71

X

rank(X)
trace(X)

det(X)

A(X)

0 (X) (omax(X))
0 (X) (omin(X))
0i (X)

Im(X)

Ker(X)
diag(Xy, ..., X»)

prob(a < b)
N, X)

x~N(a, X)
Ex)

var(x)

G(p)

G*(jo) =G (—jo)

(A,B,C, D)
rank(G(s))

Notation

Transpose of X

Orthogonal complement of X

Inverse of X

Pseudo-inverse of X (including left or right inverse)
Rank of X

Trace of X

Determinant of X

Eigenvalue of X

Largest (maximum) singular value of X

Least (minimum) singular value of X

The ith singular value of X

Image space of X

Null space of X

Block diagonal matrix formed with X ..., X,

Probability that a < b

Gaussian distribution with mean vector a and covariance
matrix X

x is distributed as M (a, X)

Mean of x

Variance of x

Transfer matrix, p is either s for a continuous-time system
or z for a discrete-time system

Conjugate of G(jw)

Shorthand for the state space representation

Normal rank of G (s), see [105] for definition



Part I
Introduction, Basic Concepts
and Preliminaries



Chapter 1
Introduction

Associated with the increasing demands for higher system performance and product
quality on the one hand and more cost efficiency on the other hand, the complexity
and the automation degree of technical processes are continuously growing. This
development calls for more system safety and reliability. Today, one of the most
critical issues surrounding the design of automatic systems is the system reliability
and dependability.

A traditional way to improve the system reliability and dependability is to en-
hance the quality, reliability and robustness of individual system components like
sensors, actuators, controllers or computers. Even so, a fault-free system operation
cannot be guaranteed. Process monitoring and fault diagnosis are hence becoming
an ingredient of a modern automatic control system and often prescribed by legisla-
tive authority.

Initiated in the early 1970s, the model-based fault diagnosis technique has devel-
oped remarkably since then. Its efficiency in detecting faults in a dynamic system
has been demonstrated by a great number of successful applications in industrial
processes and automatic control systems. Today, model-based fault diagnosis sys-
tems are fully integrated into vehicle control systems, robots, transport systems,
power systems, manufacturing processes, process control systems, just to mention
some of the application sectors.

Although developed for different purposes by means of different techniques, all
model-based fault diagnosis systems are common in the explicit use of a process
model, based on which algorithms are implemented for processing data that are
collected on-line and recorded during the system operation.

The major difference between the model-based fault diagnosis schemes lies in
the form of the adopted process model and particular in the applied algorithms.
There exists an intimate relationship between the model-based fault diagnosis tech-
nique and the modern control theory. Furthermore, due to the on-line requirements
on the implementation of the diagnosis algorithms, powerful computer systems are
usually needed for a successful fault diagnosis. Thus, besides the technological and
economic demands, the rapid development of the computer technology and con-
trol theory is another main reason why the model-based fault diagnosis technique is

S.X. Ding, Model-Based Fault Diagnosis Techniques, Advances in Industrial Control, 3
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nowadays accepted as a powerful tool to solve fault diagnose problems in technical
processes.

Among the existing model-based fault diagnosis schemes, the so-called observer-
based technique has received much attention since 1990s. This technique has been
developed in the framework of the well-established advanced control theory, where
powerful tools for designing observers, for efficient and reliable algorithms for data
processing aiming at reconstructing process variables, are available. The focus of
this book is on the observer-based fault diagnosis technique and related topics.

1.1 Basic Concepts of Fault Diagnosis Technique

The overall concept of fault diagnosis consists in the following three essential tasks:

o Fault detection: detection of the occurrence of faults in the functional units of the
process, which lead to undesired or intolerable behavior of the whole system.

o Fault isolation: localization (classification) of different faults.

e Fault analysis or identification: determination of the type, magnitude and cause
of the fault.

FD (fault detection) systems are the simplest form of fault diagnosis systems
which trigger alarm signals to indicate the occurrence of the faults. FDI (fault detec-
tion and isolation) or FDIA (fault detection, isolation and analysis) systems deliver
classified alarm signals to show which fault has occurred or data of defined types
providing the information about the type or magnitude of the occurred fault.

The model-based fault diagnosis technique is a relatively young research field
in the classical engineering domain of technical fault diagnosis, its development
is rapid and currently receiving considerable attention. In Fig. 1.1, a classification
of the technical fault diagnosis technique is given, and based on it, we first briefly
review some traditional fault diagnosis schemes, and explain their relationships to
the model-based technique, which is helpful to understand the essential ideas behind
the model-based fault diagnosis technique.

e Hardware redundancy based fault diagnosis: The core of this scheme, as shown
in Fig. 1.2, consists in the reconstruction of the process components using the
identical (redundant) hardware components. A fault in the process component is
then detected if the output of the process component is different from the one of its
redundant component. The main advantage of this scheme is its high reliability
and the direct fault isolation. The use of redundant hardware results in, on the
other hand, high costs and thus the application of this scheme is only restricted to
a number of key components.

e Signal processing based fault diagnosis: On the assumption that certain process
signals carry information about the faults of interest and this information is pre-
sented in the form of symptoms, a fault diagnosis can be achieved by a suitable
signal processing. Typical symptoms are time domain functions like magnitudes,
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Fig. 1.2 Schematic description of the hardware redundancy scheme

arithmetic or quadratic mean values, limit values, trends, statistical moments of
the amplitude distribution or envelope, or frequency domain functions like spec-
tral power densities, frequency spectral lines, ceptrum, etc. The signal processing
based schemes are mainly used for those processes in the steady state, and their
efficiency for the detection of faults in dynamic systems, which are of a wide
operating range due to the possible variation of input signals, is considerably lim-
ited. Figure 1.3 illustrates the basic idea of the signal processing schemes.

e Plausibility test: As sketched in Fig. 1.4, the plausibility test is based on the check
of some simple physical laws under which a process component works. On the
assumption that a fault will lead to the loss of the plausibility, checking the plau-
sibility will then provide us with the information about the fault. Due to its simple
form, the plausibility test is often limited in its efficiency for detecting faults in a
complex process or for isolating faults.

The intuitive idea of the model-based fault diagnosis technique is to replace the
hardware redundancy by a process model which is implemented in the software
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form on a computer. A process model is a quantitative or a qualitative description
of the process dynamic and steady behavior, which can be obtained using the well-
established process modelling technique. In this way, we are able to reconstruct the
process behavior on-line, which, analogous to the concept of hardware redundancy,
is called software redundancy concept. Software redundancies are also called ana-
lytical redundancies.

Similar to the hardware redundancy schemes, in the framework of the software
redundancy concept the process model will run in parallel to the process and be
driven by the same process inputs. It is reasonable to expect that the reconstructed
process variables delivered by the process model will well follow the corresponding
real process variables in the fault-free operating states and show an evident deviation
by a fault in the process. In order to receive this information, a comparison of the
measured process variables (output signals) with their estimates delivered by the
process model will then be made. The difference between the measured process
variables and their estimates is called a residual. Hence, a residual signal carries the
most important message for a successful fault diagnosis:

if residual # O then fault, otherwise fault-free.

The procedure of creating the estimates of the process outputs and building the dif-
ference between the process outputs and their estimates is called residual genera-
tion. Correspondingly, the process model and the comparison unit form the so-called
residual generator, as shown in Fig. 1.5.
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Residual generation can also be considered as an extended plausibility test, where
the plausibility is understood as the process input-output behavior and modelled
by an input-output process description. As a result, the plausibility check can be
replaced by a comparison of the real process outputs with their estimates.

Since no technical process can be modelled exactly and there often exist un-
known disturbances, in the residual signal the fault message is corrupted with model
uncertainties and unknown disturbances. Moreover, fault isolation and identification
require an additional analysis of the generated residual to distinguish the effects of
different faults. A central problem with the application of the model-based fault di-
agnosis technique can be expressed as filtering/extracting the needed information
about the faults of interests from the residual signals. To this end, two different
strategies have been developed:

e designing the residual generator to achieve a decoupling of the fault of interest
from the other faults, unknown disturbances and model uncertainties

e extracting the information about the fault of interest from the residual signals
by means of post-processing of the residuals. This procedure is called residual
evaluation.

The first strategy has been intensively followed by many of the research groups
working on model-based fault diagnosis techniques. One of the central schemes in
this area is the so-called observer-based fault diagnosis technique, which is also the
focus of this book. The basic idea behind the development of the observer-based
fault diagnosis technique is (i) to replace the process model by an observer which
will deliver reliable estimates of the process outputs (ii) to provide the designer
with the needed design freedom to achieve the desired decoupling using the well-
established observer theory.

In the framework of residual evaluation, the application of the signal processing
schemes is the state of the art. Among a number of evaluation schemes, the sta-
tistical methods and the so-called norm-based evaluation are the most popular ones
which are often applied to achieve optimal post-processing of the residual generated
by an observer. These two evaluation schemes have it in common that both of them
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create a bound, the so-called threshold, regarding to all possible model uncertain-
ties, unknown inputs and the faults of no interest. Exceeding the threshold indicates
a fault in the process and will release an alarm signal.

Integrated application of the both strategies, as shown in Fig. 1.3 as well as in
Fig. 1.5, marks the state of the art of the model and observer-based fault diagnosis
technique.

1.2 Historical Development and Some Relevant Issues

The study of model-based fault diagnosis began in the early 1970s. Strongly stim-
ulated by the newly established observer theory at that time, the first model-based
fault detection method, the so-called failure detection filter, was proposed by Beard
and Jones. Since then, the model-based FDI theory and technique went through a dy-
namic and rapid development and is currently becoming an important field of auto-
matic control theory and engineering. As shown in Fig. 1.6, in the first twenty years,
it was the control community that made the decisive contribution to the model-based
FDI theory, while in the last decade, the trends in the FDI theory are marked by en-
hanced contributions from

e the computer science community with knowledge and qualitative based methods
as well as the computational intelligence techniques

e the applications, mainly driven by the urgent demands for highly reliable and safe
control systems in the automotive industry, in the aerospace area, in robotics as
well as in large scale, networked and distributed plants and processes.

In the first decade of the short history of the model-based FDI technique, vari-
ous methods were developed. During that time the framework of the model-based
FDI technique had been established step by step. In his celebrated survey paper in
Automatica 1990, Frank summarized the major results achieved in the first fifteen
years of the model-based FDI technique, clearly sketched its framework and classi-
fied the studies on model-based fault diagnosis into

e observer-based methods
e parity space methods and
e parameter identification based methods.

In the early 1990s, great efforts have been made to establish relationships be-
tween the observer and parity relation based methods. Several authors from different
research groups, in parallel and from different aspects, have proven that the parity
space methods lead to certain types of observer structures and are therefore struc-
turally equivalent to the observer-based ones, even though the design procedures
differ. From this viewpoint, it is reasonable to include the parity space methodology
in the framework of the observer-based FDI technique. The interconnections be-
tween the observer and parity space based FDI residual generators and their useful
application to the FDI system design and implementation form one of the central
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topics of this book. It is worth to point out that both observer-based and parity space
methods only deal with residual generation problems.

In the framework of the parameter identification based methods, fault decision is
performed by an on-line parameter estimation, as sketched in Fig. 1.7. In the 1990s,
there was an intensive discussion on the relationships between the observer and
parameter estimation FDI schemes. Comparisons between these two schemes have
been made on different benchmark case studies. These efforts led to a now widely
accepted point of view that both schemes have advantages and disadvantages in
different aspects, and there are arguments for and against each scheme.

It is interesting to notice that the discussion at that time was based on the com-
parison between an observer as residual generator and a parameter estimator. In fact,
from the viewpoint of the FDI system structure, observer and parameter estimation
FDI schemes are more or less common in residual generation but significantly differ-
ent in residual evaluation. The residual evaluation integrated into the observer-based
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FDI system is performed by a feedforward computation of the residual signals, as
shown in Fig. 1.5, while a recursive algorithm is used in the parameter estimation
methods to process the residual signals aiming at a parameter identification and the
resulting parameter estimates are further fed back to the residual generator, as illus-
trated in Fig. 1.8. Viewed from this aspect, the parameter identification based fault
diagnosis system is structured in a feedback closed-loop, while the observer-based
FD system is open-loop structured.

The application of the well-developed adaptive observer theory to fault detection
and identification in the recent decade is the result of a reasonable combination of
the observer-based and parameter identification FDI schemes. The major difference
between the adaptive observer-based and parameter identification FDI schemes lies
in the residual generation. In other words, the adaptive observer-based FDI schemes
differ from the regular observer-based ones in residual evaluation.

In this book, our focus is on the residual generation and evaluation issues in the
framework of the observer and parity space based strategies. Besides the introduc-
tion of basic ideas, special attention will be paid to those schemes and algorithms
that are devoted to the analysis, design and synthesis of FDI systems.

1.3 Notes and References

To the author’s knowledge, the first book on the model-based fault diagnosis tech-
nique with a strong focus on the observer and parity space based FDI schemes was
published 1989 by Patton et al. [141]. For a long time, it was the only reference
book in this area and has made a decisive contribution to the early development of
the model-based FDI technique.

The next two monographs, published by Gertler in 1998 [76] and by Chen and
Patton in 1999 [25], address different issues of the model-based FDI technique.
While [76] covers a wide spectrum of the model-based FDI technique, [25] is ded-
icated to the robustness issues in dealing with the observer-based FDI schemes.
There are numerous books that deal with model-based FDI methods in part, for in-
stance [12, 15, 84] or address a special topic in the framework of the model-based
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fault diagnosis technique like [120, 157]. In two recent books by Patton et al. [142]
and Isermann [98], the latest results on model-based FDI technique achieved in the
last decade are well presented.

In the last three decades, numerous survey papers have been published. We divide
them into three groups, corresponding to the different development phases of the
model-based FDI technique, and give some representative ones from each group:

e introduction and establishment of the observer, parity space and parameter iden-
tification based FDI schemes [60, 79, 96, 181]

e robustness issues [61, 62, 65, 139]

e nonlinear, adaptive FDI schemes, application of computational intelligence [63,
108, 167].

Representative studies of the relationships between the observer and parity rela-
tion based methods can be found, for instance, in [35, 74, 90]. For the comparison
study on parameter identification and observer-based FDI schemes the reader is re-
ferred to [1, 32, 75].



Chapter 2
Basic Ideas, Major Issues and Tools
in the Observer-Based FDI Framework

In this chapter, we shall review the historical development of the observer-based
FDI technique, the major issues and tools in its framework and roughly highlight
the topics addressed in this book.

2.1 On the Observer-Based Residual Generator Framework

The core of the model-based fault diagnosis scheme shown in Fig. 1.5 is a pro-
cess model running parallel to the process. Today, it would be quite natural for
anyone equipped with knowledge of the advanced control theory to replace the pro-
cess model by an observer, in order to, for instance, increase the robustness against
the model uncertainties, disturbances, and deliver an optimal estimate of the process
output. But, thirty years ago, the first observer-based FDI system proposed by Beard
and Jones marked a historical milestone in the development of the model-based
fault diagnosis. The importance of their contribution lies not only in the applica-
tion of observer theory, a hot research topic at that time in the area of the advanced
control theory, to the residual generation, but also in the fact that their work cre-
ates the foundations for the observer-based FDI framework and opened the door
for the FDI community to the advanced control theory. Since that time, progress of
the observer-based FDI technique is closely coupled with the development of the
advanced control theory. Nowadays, the observer-based FDI technique is an active
field in the area of control theory and engineering.

Due to the close relation to the observer study, the major topics for the observer-
based residual generator design are quite similar to those concerning the observer
design, including:

e observer/residual generator design approaches
e reduced order observer/residual generator design and
e minimum order observer/residual generator design.

S.X. Ding, Model-Based Fault Diagnosis Techniques, Advances in Industrial Control, 13
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The major tools for the study of these topics are the linear system theory and
linear observer theory. A special research focus is on the solution of the so-called
Luenberger equations. In this book, Chap. 5 will address these topics.

It is well known that system observability is an important pre-requisite for the
design of a state observer. In the early development stage of the observer-based FDI
technique, system observability was considered as a necessary structural condition
for the observer construction. It has often been overlooked that diagnostic observers
(i.e., observers for the residual generation or diagnostic purpose) are different from
the well-known state observers and therefore deserve particular treatment. The wide
use of the state observers for the diagnostic purpose misled some researchers to the
erroneous opinion that for the application of the observer-based FDI schemes the
state observability and knowledge of the state space theory would be indispensable.
In fact, one of the essential differences between the state observer and diagnostic
observer is that the latter is primarily an output observer rather than a state observer
often used for control purposes.

Another misunderstanding of the observer-based FDI schemes is concerning the
role of the observer. Often, the observer-based FDI system design is understood as
the observer design and the FDI system performance is evaluated by the observer
performance. This leads to an over-weighted research focus on the observer-based
residual generation and less interest in studying the residual evaluation problems. In
fact, the most important role of the observer in an FDI system is to make the gen-
erated residual signals independent of the process input signals and process initial
conditions. The additional degree of design freedom can then be used, for instance,
for the purpose of increasing system robustness.

2.2 Unknown Input Decoupling and Fault Isolation Issues

Several years after the first observer-based FDI schemes were proposed, it was rec-
ognized that such FDI schemes can only work satisfactorily if the model integrated
into the FDI system describes the process perfectly. Motivated by this and cou-
pled with the development of the unknown input decoupling control methods in the
1980s, study on the observer-based generation of the residuals decoupled from un-
known inputs received strong attention in the second half of the 1980s. The idea
behind the unknown input decoupling strategy is simple and clear: if the gener-
ated residual signals are independent of the unknown inputs, then they can be di-
rectly used as a fault indicator. Using the unknown input observer technique, which
was still in its developing phase at that time, Wiinnenberg and Frank proposed the
first unknown input residual generation scheme in 1987. Inspired and driven by this
promising work, unknown input decoupling residual generation became one of the
most addressed topics in the observer-based FDI framework in a very short time.
Since then, a great number of methods have been developed. Even today, this topic
is still receiving considerable research attention. An important aspect of the study
on unknown input decoupling is that it stimulated the study of the robustness issues
in model-based FDI.
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During the study on the unknown input decoupling FDI, it was recognized that
the fault isolation problem can also be formulated as a number of unknown input
decoupling problems. For this purpose, faults are, in different combinations, clus-
tered into the faults of interest and faults of no interest which are then handled as
unknown inputs. If it is possible to design a bank of residual generators that solves
unknown input decoupling FDI for each possible combination, a fault isolation is
then achieved.

Due to its duality to the unknown input decoupling FDI in an extended sense,
the decoupling technique developed in the advanced linear control theory in the
1980s offers one major tool for the FDI study. In this framework, there are numer-
ous approaches, for example, the eigenvalue and eigenstructure assignment scheme,
matrix pencil method, geometric method, just to mention some of them.

In this book, Chap. 6 is dedicated to the unknown input decoupling issues, while
Chap. 13 to the fault isolation study.

Already at this early stage, we would like to call the reader’s attention to the dif-
ference between the unknown input observer scheme and the unknown input resid-
ual generation scheme. As mentioned in the last section, the core of an observer-
based residual generator is an output observer whose existence conditions are dif-
ferent (less strict) from those for a (state) unknown input observer.

We would also like to give a critical comment on the original idea of the un-
known input decoupling scheme. FDI problems deal, in their core, with a trade-
off between the robustness against unknown inputs and the fault detectability. The
unknown input decoupling scheme only focuses on the unknown inputs without
explicitly considering the faults. As a result, the unknown input decoupling is gen-
erally achieved at the cost of the fault detectability. In Chaps. 7 and 12, we shall
discuss this problem and propose an alternative way of applying the unknown in-
put decoupling solutions to achieve an optimal trade-off between the robustness and
detectability.

2.3 Robustness Issues in the Observer-Based FDI Framework

From today’s viewpoint, application of the robust control theory to the observer-
based FDI should be a logical step following the study on the unknown input de-
coupling FDI. Historical development shows however a somewhat different picture.
The first work on the robustness issues was done in the parity space framework. In
their pioneering work, Chow and Willsky as well as Lou et al. proposed a perfor-
mance index for the optimal design of parity vectors if a perfect unknown input de-
coupling is not achievable due to the strict existence conditions. A couple of years
later, in 1989 and 1991, Ding and Frank proposed the application of the H, and
Hoo optimization technique, a central research topic in the area of control theory
between the 80s and early 90s, to the observer-based FDI system design. Preced-
ing to this work, a parametrization of (all) linear time invariant residual generators
was achieved by Ding and Frank 1990, which builds, analogous to the well-known
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Youla-parametrization of all stabilization controllers, the basis of further study in
the H o, framework. Having recognized that the H, norm is not a suitable expres-
sion for the fault sensitivity, Ding and Frank in 1993 and Hou and Patton in 1996
proposed to use the minimum singular value of a transfer matrix to describe the
fault sensitivity and gave the first solutions in the Ho, framework. Study on this
topic builds one of the mainstreams in the robust FDI framework.

Also in the H, framework, transforming the robust FDI problems into the so-
called Model-Matching-Problem (MMP), a standard problem formulation in the
Ho~o framework, provides an alternative FDI system design scheme. This work has
been particularly driven by the so-called integrated design of feedback controller
and (observer-based) FDI system, and the achieved results have also been applied
for the purpose of fault identification, as described in Chap. 14.

Stimulated by the recent research efforts on robust control of uncertain sys-
tems, study on the FDI in uncertain systems is receiving increasing attention in
this decade. Remarkable progress in this study can be observed, since the so-called
LMI (linear matrix inequality) technique is becoming more and more popular in the
FDI community.

For the study on the robustness issues in the observer-based FDI framework,
Hoo technique, the so-called system factorization technique, MMP solutions, and
the LMI techniques are the most important tools.

In this book, Chaps. 7 and 8 are devoted to those topics.

Although the above-mentioned studies lead generally to an optimal design of
a residual generator under a cost function that expresses a trade-off between the
robustness against unknown inputs and the fault detectability, the optimization is
achieved regarding to some norm of the residual generator. In this design proce-
dure, well known in the optimal design of feedback controllers, neither the residual
evaluation nor the threshold computations are taken into account. As a result, the
FDI performance of the overall system, i.e. the residual generator, evaluator and
threshold, might be poor. This problem, which makes the FDI system design differ-
ent from the controller design, will be addressed in Chap. 12.

2.4 On the Parity Space FDI Framework

Although they are based on the state space representation of dynamic systems, the
parity space FDI schemes are significantly different from the observer-based FDI
methods in

e the mathematical description of the FDI system dynamics
e and associated with it, also in the solution tools.

In the parity space FDI framework, residual generation, the dynamics of the
residual signals regarding to the faults and unknown inputs are presented in the
form of algebraic equations. Hence, most of the problem solutions are achieved in
the framework of linear algebra. This brings with the advantages that (a) the FDI
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system designer is not required to have rich knowledge of the advanced control the-
ory for the application of the parity space FDI methods (b) the most computations
can be completed without complex and involved mathematical algorithms. More-
over, it also provides the researchers with a valuable platform, at which new FDI
ideas can be easily realized and tested. In fact, a great number of FDI methods and
ideas have been first presented in the parity space framework and later extended
to the observer-based framework. The performance index based robust design of
residual generators is a representative example.

Motivated by these facts, we devote throughout this book much attention to the
parity space FDI framework. The associated methods will be presented either paral-
lel to or combined with the observer-based FDI methods. Comprehensive compari-
son studies build also a focus.

2.5 Residual Evaluation and Threshold Computation

Despite of the fact that an FDI system consists of a residual generator, a resid-
ual evaluator together with a threshold and a decision maker, in the observer-based
FDI framework, studies on the residual evaluation and threshold computation have
only been occasionally published. There exist two major residual evaluation strate-
gies. The statistic testing is one of them, which is well established in the framework
of statistical methods. Another one is the so-called norm-based residual evaluation.
Besides of less on-line calculation, the norm-based residual evaluation allows a sys-
tematic threshold computation using well-established robust control theory.

The concept of norm-based residual evaluation was initiated by Emami-naeini et
al. in a very early development stage of the model-based fault diagnosis technique.
In their pioneering work, Emami-naeini et al. proposed to use the root-mean-square
(RMS) norm for the residual evaluation purpose and derived, based on the resid-
ual evaluation function, an adaptive threshold, also called threshold selector. This
scheme has been applied to detect faults in dynamic systems with disturbances and
model uncertainties. Encouraged by this promising idea, researchers have applied
this concept to deal with residual evaluation problems in the H, framework, where
the £, norm is adopted as the residual evaluation function.

The original idea behind the residual evaluation is to create such a (physical) fea-
ture of the residual signal that allows a reliable detection of the fault. The £, norm
measures the energy level of a signal and can be used for the evaluation purpose. In
practice, also other kinds of features are used for the same purpose, for instance, the
absolute value in the so-called limit monitoring scheme. In our study, we shall also
consider various kinds of residual evaluation functions, besides of the £, norm, and
establish valuable relationships between those schemes widely used in practice, like
limit monitoring, trends analysis etc.

The mathematical tools for the statistic testing and norm-based evaluation are
different. The former is mainly based on the application of statistical methods, while
for the latter the functional analysis and robust control theory are the mostly used
tools.
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In this book, we shall in Chaps. 9 and 10 address both the statistic testing and
norm-based residual evaluation and threshold computation methods. In addition, a
combination of these two methods will be presented in Chap. 11.

2.6 FDI System Synthesis and Design

In applications, an optimal trade-off between the false alarm rate (FAR) and fault
detection rate (FDR), instead of the one between the robustness and sensitivity, is of
primary interest in designing an FDI system. FAR and FDR are two concepts that
are originally defined in the statistic context. In their work in 2000, Ding et al. have
extended these two concepts to characterize the FDI performance of an observer-
based FDI system in the context of a norm-based residual evaluation.

In Chap. 12, we shall revise the FDI problems from the viewpoint of the trade-off
between FAR and FDR. In this context, the FDI performance of the major residual
generation methods presented in Chaps. 6—8 will be checked. We shall concentrate
ourselves on two design problems: (a) given an allowable FAR, find an FDI system
so that FDR is maximized (b) given an FDR, find an FDI system to achieve the
minimum FAR.

FDI in feedback control systems is, due to the close relationship between the
observer-based residual generation and controller design, is a special thematic field
in the FDI study. In Chap. 15, we shall briefly address this topic.

2.7 Notes and References

As mentioned above, linear algebra and matrix theory, linear system theory, robust
control theory, statistical methods and currently the LMI technique are the major
tools for our study throughout this book. Among the great number of available books
on these topics, we would like to mention the following representative ones:

matrix theory: [68]

linear system theory: [23, 105]
robust control theory: [59, 198]
LMI technique: [16]

statistical methods: [12, 111].

Below are the references for the pioneering works mentioned in this chapter:

o the pioneering contributions by Beard and Jones that initiated the observer-based
FDI study [13, 104]

o the first work of designing unknown input residual generator by Wiinnenberg and
Frank [184]

e the first contributions to the robustness issues in the parity space framework by
Chow and Willsky, Lou et al., [29, 118], and in the observer-based FDI framework
by Ding and Frank [46, 48, 52] as well as Hou and Patton [91]
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e the norm-based residual evaluation initiated by Emami-naeini et al. [58]
o the FDI system synthesis and design in the norm-based residual evaluation frame-
work by Ding et al. [38].



Chapter 3
Modelling of Technical Systems

The objective of this chapter is to introduce typical models for the mathematical
description of dynamic systems. As sketched in Fig. 3.1, we consider systems con-
sisting of a process, also known as plant, actuators and sensors. The systems may
be, at different places, disturbed during their operation.

Our focus is on the system behavior in fault-free and faulty cases. We shall first
give a brief review of different model forms for linear dynamic systems, including:

e input—output description

e state space representation

o models with disturbances and model uncertainties as well as
e models that describe influences of faults.

These model forms are essential for the subsequent studies.

As one of the key tools for our study, coprime factorization will be frequently
used throughout this book. Coprime factorization technique links system modelling
and synthesis. This motivates us to address this topic in a separate section.

We shall moreover deal with modelling of faults in a feedback control system,
which is of a special interest for practical applications.

A further focus of this chapter is on the introduction of five technical and labo-
ratory processes that will be used to illustrate the application of those model forms
for the FDI purpose and serve as benchmark and case study throughout this book.

measurement
disturbances ———»| noises
process
(plant) sensors
actuators | output
input——
% faults % faults % faults
Fig. 3.1 Schematic description of the systems under consideration
S.X. Ding, Model-Based Fault Diagnosis Techniques, Advances in Industrial Control, 21
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3.1 Description of Nominal System Behavior

Depending on its dynamics and the aim of modelling, a dynamic system can be de-
scribed in different ways. The so-called linear time invariant (LTI) system model
offers the simplest from and thus widely used in research and application domains.
We call disturbance-free and fault-free systems nominal and suppose that the nom-
inal systems are LTI. There are two standard mathematical model forms for LTI
systems: the transfer matrix and the state space representation. Below, they will be
briefly introduced.

Roughly speaking, a transfer matrix is an input—output description of the dy-
namic behavior of an LTI system in the frequency domain. Throughout this book,
notation G, (s), Gy, (2) € E?—lgloXk” is used for presenting a transfer matrix from
the input vector u € Rk« to the output vector y € R™, that is,

y(S)=Gyu(S)M(S), Y(Z)szu(Z)u(Z)- (3.1

It is assumed that G, (s) or Gy,(z) is a proper real-rational matrix. We use s to
denote the complex variable of Laplace transform for continuous-time signals or
z the complex variable of z-transform for discrete-time signals.

The standard form of the state space representation of a continuous-time LTI
system is given by

X(t) = Ax(t) + Bu(t),  x(0)=xo 3.2)
y(t) = Cx(t) + Du(t) (3.3)
while for a discrete-time LTI system we use
x(k+1)= Ax(k) + Bu(k),  x(0)=xo (3.4)
y(k) = Cx (k) + Du(k) (3.5)

where x € R" is called the state vector, xo the initial condition of the system,
u € Rk the input vector and y € R™ the output vector. Matrices A, B, C, D are
appropriately dimensioned real constant matrices.

State space models can be either directly achieved by modelling or derived based
on a transfer matrix. The latter is called a state space realization of G, (s) = C(s] —
A)~'B + D and denoted by

Gyu(s)=(A,B,C,D) or G),L,(s)z[é g}. (3.6)

In general, we assume that (A, B, C, D) is a minimal realization of Gy, (s).

Remark 3.1 The results presented in this book hold generally both for continuous
and discrete-time systems. For the sake of simplicity, we shall use continuous-time
models to describe LTI systems except that the type of the system is specified. Also
for the sake of simplifying notation, we shall drop out variable ¢ so far no confusion
is caused.
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3.2 Coprime Factorization Technique

Coprime factorization of a transfer function (matrix) gives a further system rep-
resentation form which will be intensively used in our subsequent study. Roughly
speaking, a coprime factorization over R, is to factorize a transfer matrix into
two stable and coprime transfer matrices.

Definition 3.1 Two transfer matrices M (s), N (s) in RHOO are called left coprime
over R'H o if there exist two transfer matrices X (s) and Y (s) in RH o such that

s s [X®]
[M(s) N(s)] [Y(s)] =1 (3.7)
Similarly, two transfer matrices M (s), N (s) in R Ho are right coprime over R H o
if there exist two matrices Y (s), X (s) such that

[X(s) Y] [%8} =1 (38)

Let G(s) be a proper real-rational transfer matrix. The left coprime factorization
(LCF) of G (s) is a factorization of G (s) into two stable and coprime matrices which
will play a key role in designing the so-called residual generator. To complete the
notation, we also introduce the right coprime factorization (RCF), which is however
only occasionally applied in our study.

Definition 3.2 G(s) = M-! (s)ﬁ (s) with the left coprime pair (1\7 (s), N (s)) over
RHoo is called LCF of G(s). Similarly, RCF of G(s) is defined by G(s) =
N (s)M~'(s) with the right coprime pair (M (s), N(s)) over RHoo.

It follows from (3.7) and (3.8) that transfer matrices

(M) N, [%((f))}

are respectively, right and left invertible in R H .

Below, we present a lemma that provides us with a state space computation al-
gorithm of (M (s), N(s)), (M(s), N(s)) and the associated pairs (X (s), ¥ (s)) and
(X(s), Y (5)).

Lemma 3.1 Suppose G(s) is a proper real-rational transfer matrix with a state
space realization (A, B, C, D), and it is stabilizable and detectable. Let F and L
be so that A+ BF and A — LC are Hurwitz matrix, and define

M(s)=(A—LC,—L,C, 1), N(G)=(A—LC,B—LD,C, D) (3.9)
M(s)= (A+ BF,B,F, 1), N(s)=(A+ BF,B,C + DF, D) (3.10)
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X(s)=(A+BF,L,C+ DF, 1), Y(s)=(A+ BF,—L, F,0) (3.11)
X(s)=(A—LC,—(B—LD),F,I), Y(s)=(A—LC,—L,F,0). (3.12)

Then
G(s) =M '(s)N(s) = N(s)M ' (s) (3.13)
are the LCF and RCF of G(s), respectively. Moreover, the so-called Bezout identity
holds
X(@s) Y [Me) =Y ]_[1 0 (3.14)
—N(s) M(s)||NG@) X6 | |0 I]° ’

In the textbooks on robust control theory, the reader can find the feedback control
interpretation of the RCF. For our purpose, we would like to give an observer inter-
pretation of the LCF and the associated computation algorithm for (M (s), N (5)).

Introduce a state observer

i=Af+Bu+L(y—3%), $=Ci+Du

with an observer gain L that ensures the observer stability. Consider output estima-
tion error r = y — y. It turns out

y(s) = $(s) = (C(sI — A)"'B + D)u(s)
—C(sT = AN (L(y(s) = $(5)) + Bu(s)) — Dus)

= ([I+CGI-A)L)(y(s)—5(s))=0

& y(5)—$(5)=0.
On the other hand,

Y() = $(s) = (I = C(sI —A+LC)"'L)y(s)

—(C(s1 — A+ LC)™" (B — LD) + D)u(s).
It becomes evident that
M)y = N@u@) =0 <= y) =M (5N(s)ul).

In fact, the output estimation error y — ¥ is the so-called residual signal, which will
be addressed in the sequel.
Note that

r(s)=[-N(s) M(s)] Bg;} (3.15)

is a dynamic system with the process input and output vectors u, y as its inputs and
the residual vector r as its output. It is called residual generator. In some literature,
[—N(s) M(s)]is also called kernel representation of system (3.2)—(3.3).
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3.3 Representations of Systems with Disturbances

Disturbances around the process under consideration, unexpected changes within
the technical process as well as measurement and process noises are often modelled
as unknown input vectors. We denote them by d, v or n and integrate them into the
state space model (3.2)—(3.3) or input—output model (3.1) as follows:

e state space representation
x(k+1)= Ax(k) + Bu(k) + Egd (k) + n(k) (3.16)
y(k) = Cx(k) + Du(k) + Fad (k) + v(k) (3.17)

with E;, F; being constant matrices of compatible dimensions, d € Rk is a de-

terministic unknown input vector, € Rkn ,VE Rk are, if no additional remark is

made, white, normal distributed noise vectors with n ~ A/ (0, X)), v~ N, x)).
e input—output model

Y(2) =Gy (Du(z) + Gy (2)d(2) + Gy (2)v(2) (3.18)

where Gy4(z) is known and called disturbance transfer matrix, d € Rka repre-
sents again a deterministic unknown input vector, v ~ N'(0, X).

Remark 3.2 In order to avoid involved mathematical handling, we shall address
stochastic systems in the discrete form.

3.4 Representations of System Models with Model Uncertainties

Model uncertainties refer to the difference between the system model and the reality.
It can be caused, for instance, by changes within the process or in the environment
around the process. Representing model uncertainties is a research topic that is re-
ceiving more and more attention. In this book, we restrict ourselves to the following
standard representations.

Consider an extension of system model (3.1) given by

V) =G ayu($uls) + Gayals)d(s) (3.19)

where the subscript A indicates model uncertainties. The model uncertainties can
be represented either by an additive perturbation

G a,yu(s) = Gyu(s) + Wi(s) AW (s) (3.20)
or in the multiplicative form

G ayu(s) = (I + Wi()AW2(5)) G yu(s) (3.21)
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where Wi(s), W(s) are some known transfer matrices and A is unknown and
bounded by 6 (A) < 4, where o (-) denotes the maximum singular value of a ma-
trix.

Among a number of expressions for model uncertainties in the state space repre-
sentations, we consider an extended form of (3.2)—(3.3) given by

x=Ax+Bu+ Eud, y=Cx+ Du+ Fyd (3.22)
A=A+ AA, B =B+ AB, C=C+AC (3.23)
D=D+ AD, E;=E,+ AE, F;=F;+ AF (3.24)

where the model uncertainties AA, AB, AC, AD, AE and AF belong to one of
the following three types:

e norm bounded type

[AA AB AE}

E
AC AD AF :[F}A(f)[G H J] (3.25)

where E, F, G, H, J are known matrices of appropriate dimensions and A(¢) is
unknown but bounded by
o(A)<éa.

It is worth mentioning that (3.22)—(3.24) with norm bounded uncertainty (3.25)
can also be written as

X =Ax+ Bu+ E;d + Ep, y=Cx+ Du+ Fyd+ Fp (3.26)
g=Gx+Hu+Jd+Kp, p=Aq, A=I+AK)'A (3.27)

on the assumption that (/ + AK) is invertible.
e polytopic type

AA AB AE| C A1 By E; A; By E (3.28)

AC AD AF|="°\|cy by R|"|¢ D F :
where A;, B;, Ci, D;, E;, F;, i =1,...,1, are known matrices of appropriate
dimensions and Co{-} denotes a convex set defined by

Co A1 By E; Ay B E;
Ci D F|'"7|C D F
l 1
_ A; B E; _ , C_
—;ﬂi[a D, F,-]’ Dofi=1 Bz i=l..
1= =

e stochastic type

l
AA AB AE A, B E;
[AC AD AFi|22<|:Ci D; Fl,i|Pi(k)) (3.30)
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with known matrices A;, B;, C;, D;, E;, F;,i =1,...,1, of appropriate dimen-
sions. pT(k) =[pi1(k) --- pi(k)] represents model uncertainties and is expressed
as a stochastic process with

Py =E(pk) =0, E(ptp” (b)) =diag(af,...,d7)

where 0;,i =1, ..., 1, are known. It is assumed that (3.22) is given in the discrete
form and p(0), p(1), ..., are independent and x (0), u(k), d(k) are independent
of p(k).

Remark 3.3 Note that model (3.22)—(3.23) with polytopic uncertainty (3.29) can
also be written as

i ! !
X = (Zﬁi(A—i-A,-))x + (Zﬁiw +Bi)>u - (Zﬁi(Ed +Ez-))d

i=1 i=1 i=1
1 1 1

y= (ch + c,-))x + (Zﬂw + Dl-))u + (Z,Bi(Fd + F»)d.
i=1 i=1 i=1

It is a polytopic system.

3.5 Modelling of Faults
There exists a number of ways of modelling faults. Extending model (3.18) to

V() = Gyu($uls) + Gya(s)d(s) + Gy (s) f(s) (3.31)

is a widely adopted one, where f € R¥/ is a unknown vector that represents all
possible faults and will be zero in the fault-free case, Gyr(s) € LH o is a known
transfer matrix. Throughout this book, f is assumed to be a deterministic time func-
tion. No further assumption on it is made, provided that the type of the fault is not
specified.

Suppose that a minimal state space realization of (3.31) is given by

X=Ax+Bu+Eqd+Esf (3.32)
y=Cx+Du+ Fyd+ Fyf (3.33)

with known matrices E ¢, Fy. Then we have
Gy(s)=Fy+C(sI —A) ' Ey. (3.34)

It becomes evident that E s, Fy indicate the place where a fault occurs and its in-
fluence on the system dynamics. As shown in Fig. 3.1, we divide faults into three
categories:
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e sensor faults fg: these are faults that directly act on the process measurement
e actuator faults f4: these faults cause changes in the actuator
e process faults fp: they are used to indicate malfunctions within the process.

A sensor fault is often modelled by setting Fy = I, that is,
y=Cx+ Du+ Fgd + fs (3.35)
while an actuator fault by setting £y = B, Fy = D, which leads to
¥ =Ax 4+ Bu+ fa) + Eqd, y=Cx+D(u+ fa) + Fyd. (3.36)

Depending on their type and location, process faults can be modelled by Ey = Ep
and Fy = Fp for some Ep, Fp. For a system with sensor, actuator and process
faults, we define

fa
f=\|rfp|. Ef=[B Ep 0], Fy=[D Fp I] (3.37)

fs

and apply (3.32)—(3.33) to represent the system dynamics.

Due to the way how they affect the system dynamics, the faults described by
(3.32)—(3.33) are called additive faults. It is very important to note that the occur-
rence of an additive fault will not affect the system stability, independent of the
system configuration. Typical additive faults met in practice are, for instance, an
offset in sensors and actuators or a drift in sensors. The former can be described by
a constant, while the latter by a ramp.

In practice, malfunctions in the process or in the sensors and actuators often cause
changes in the model parameters. They are called multiplicative faults and gener-
ally modelled in terms of parameter changes. They can be described by extending
(3.22)—(3.24) to

1=(A+ AAp)x + (B+ ABp)u+ Eqd (3.38)
y=(C+ ACp)x + (D + ADp)u + Fyd (3.39)

where AAfp, ABr, ACFp, ADF represent the multiplicative faults in the plant, ac-
tuators and sensors, respectively. It is assumed that

N lp

AAp = ZA,'HA,-, ABf = ZBieB,- (3.40)
i=1 i=1
Ic Ip

ACr =) Cifc;, ADp = Difp, (3.41)

i=1 i=1

where
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e Aj,i=1,...,la,B;,i=1,...,lg,C;,i=1,...,lc,and D;,i =1, ...,Ip, are
known and of appropriate dimensions

e 04, i=1,...,14a,0p,i=1,...,1p,0c,,i=1,...,Ic,and Op,, i =1,...,Ip,
are unknown time functions

Multiplicative faults are characterized by their (possible) direct influence on the
system stability. This fact is evident for the faults described by AAF. In case that
state feedback or observer-based state feedback control laws are adopted, we can
also see that ABr, ACr, ADF would affect the system stability.

Introducing

gm = Grx + Hru, fm=Ar()gu (3.42)

_Ian_ [ O ]
I 0
G — nxn , H —
E 0 F I, xk,
L 0 . _IkMXku_
Afp(t) = diag(eAl Lixn, .., GAIA Lixns 931 Ikuxku» B QB/B Ikuxku)
EF=[A1 A, By "'BZB], FF=[C1 - Ci. Dy "'DID]

we can rewrite (3.38)—(3.39) into

% =Ax+ Bu+ Eqd + Er fy (3.43)
y =Cx + Du + Fyd + Fr fy. (3.44)

In this way, the multiplicative faults are modelled as additive faults. Also for this
reason, the major focus of our study in this book will be on the detection and identi-
fication of additive faults. But, the reader should keep in mind that fj, is a function
of the state and input variables of the system and thus will affect the system stabil-

1ty.

3.6 Modelling of Faults in Closed-Loop Feedback Control
Systems

Model-based fault diagnosis systems are often embedded in closed-loop feedback
control systems. Due to the closed-loop structure with an integrated controller that
brings the system in general robustness against changes in the system, special atten-
tion has been paid to the topic of fault detection in feedback control loops. In this
section, we consider modelling issues for a standard control loop with sensor, actua-
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fp ———> — z
pre-filter fA—> process .
w——3| (feedforward u_ | actuators sensors S
controller)
y
\%
controller

Fig. 3.2 Structure of a standard control loop with faults

tor and process faults, as sketched in Fig. 3.2. Suppose that the process with sensors
and actuators is described by (3.16). Denote the control objective by z, reference
signal by w, the prefilter by I"(s) and the control law by v(s) = K (s)y(s). For the
sake of simplifying the problem formulation, we only consider additive faults. The
overall system model with possible sensor, actuator and process faults is then given
by

X=Ax+Bu+ fa)+Eqd+ Ep fp (3.45)
y=Cx+D(u+ fa)+ Fad + fs+ Fp fp (3.46)
u(s) =K(@s)y(s) + I'(s)w(s). (3.47)

Depending on the signal availability and requirements on the realization of the
FDI strategy, there are two different ways of modelling the overall system dynam-
ics.

In the framework of the so-called open-loop FDI, it is assumed that input and
output vectors u and y are available. For the FDI purpose, the so-called open-loop
model (3.45)—(3.46) can be used, which contains all information needed for detect-
ing the faults. Note that this open-loop model is identical with the one introduced in
the last section.

In practice, it is often the case that u is not available. For instance, if the control
loop is a part of a large scaled system and is supervised by a remote central station,
where the higher level controller and FDI unit are located, and the reference signal
w, instead of process input signal u, is usually available for the FDI purpose. In
those cases, the so-called closed-loop FDI strategy can be applied. The closed-loop
FDI strategy is based on the closed-loop model with w and y as input and output
signals respectively. The nominal system behavior of the closed-loop is described
by

¥(5) = Gyu(©w(s), Gyuls)=(I— Gyu(S)K(S))_leu(S)F(S) (3.48)
Gyu(s) =D+ C(s1 — A)"'B.
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The overall system model with the faults and disturbances is given by
¥() = GG (s) + Gy, ($)d(s) + Gy, () fa(s)
+ Gyfp.ci () fP(S) + Gyfpe,ci () fs(s) (3.49)
Gya.a(s) = (I = Gyu()K(5)) ™ (Fa+ C(sT — A7 Ey)
Gyfpat(s) = (I = Gu()K () (D+CsI = A)7'B)
Gofp.ct(s) = (I = Gru(®K ()~ (Fp+C(s1 = A Ep)

Gyfsat($) = (I = Gy K()

From the viewpoint of residual generation, which utilizes the nominal model, it
may be of additional advantage to adopt the closed-loop FDI strategy. It is known
in control theory that, by means of some advanced control strategy, the dynam-
ics of the closed-loop system, Gy, (s), can be in a form easy for further handling.
For instance, using a decoupling controller will result in a diagonal G, (s), which
reduces an MIMO (multiple input, multiple output) system into a number of (de-
coupled) SISO (single input, single output) ones.

3.7 Case Study and Application Examples

In this section, five application examples will be introduced. They are used to il-
lustrate the modelling schemes described in the previous sections and serve subse-
quently as real case systems in the forthcoming chapters.

3.7.1 Speed Control of a DC Motor

DC (Direct Current) motor converts electrical energy into mechanical energy. Be-
low, the laboratory DC motor control system DR300 is briefly described.

Model of DC Motor Figure 3.3 is a schematic description of a DC motor, which
consists of an electrical part and a mechanical part. Define the loop current /4 and

Fig. 3.3 Schematic I R L
description of a DC motor o A :|A m/‘
Machine
U M,
v
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Table 3.1 Parameters of laboratory DC motor DR300

Parameter Symbol Value Unit
Total inertia J 80.45- 1076 kg -m?
Voltage constant Cco 6.27-1073 V/Rpm
Motor constant Ky 0.06 Nm/A
Armature Inductance Ly 0.003 H
Resistance Ry 3.13 Ohm
Tacho output voltage Kr 251073 V/Rpm
Tacho filter time constant Tr 5 ms

the armature frequency 2 as state variables, the terminal voltage U4 as input and
the (unknown) load M, as disturbance, we have the following state space descrip-

AR AN
[Q]_[KTMA e | uat il My (3.50)

as well as the transfer

tion

1
Q(S) = TR TR UA(S)
Co(1+ 7,¢55 + 7icss®)
Ra(1+T L
- A(JI;: 49) JTARA 2 M (s), TA=R—A (3.51)
KMC@(I t+x,ce5 T kycos ) A

where the parameters given in (3.50) and (3.51) are summarized in Table 3.1.

Models of DC Motor Control System For the purpose of speed control, cascade
control scheme is adopted with a speed control loop and a current control loop. As
sketched in Fig. 3.4, the DC motor together with the current control loop will be
considered as the plant that is regulated by a PI speed controller.

The plant dynamics can be approximately described by

V() = Gy ($)u(s) + Gya(s)d(s) (3.52)
8.75 31.07
, Gyi(s) = —————
(14 1.225s)(1 +0.035)(1 + 0.005s) s(140.005s)

Gyu(s) =

with y = Uy,eqs (voltage delivered by the Tacho) as output, the output of the speed
controller as input # and d = M|, as disturbance.
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Q-Controller 1,-Controller M,
Q,q- , U, _, R, | L % M = M, 14 Q
. A e
KW
X,
1+T,s
Tacho

Fig. 3.4 Structure of the DC motor control system

With a PI speed controller set to be

14 1.225
u(s) = K (s)(w(s) — y(s)), K(s)=1.6¥ (3.53)

where w(s) = £2,,7(s), the closed-loop-model is given by

y($) =Gy )w(s) + Gya,c(s)d(s) (3.54)
14.00
s(140.03s)(1 +0.005s) + 14.00

31.07(1 + 0.03s)
s(1+ 0.03s)(1 + 0.005s) + 14.00°

Gyw(s) =

Gyd,cl(s) =

Modelling of Faults Three faults will be considered:

e an additive actuator fault f4
e an additive fault in Tacho fs; and
e a multiplicative fault in Tacho fs2 € [—1,0].

Based on (3.52), we have the open-loop structured overall system model

V() = Gy ($)u(s) + Gya(s)d(s) + Gyr, (5) fa + Gygg (5) fs1 + Ay(s) fs2

(3.55)
Gyry () =Gyu(s),  Ay() = (Gyu(s)u(s) + Gya(s)d(s)).
The closed-loop model can be achieved by extending (3.54) to
V() = Gyu(Sw(s) + Gya,c($)d(s) + Gyryc1(s) fals)
+ Gyfgy,ei(s) fs1(5) + Ayei(s) (3.56)
8.75s
GyfA,cl(S) =
(14 1.2255)(s(1 4+ 0.035)(1 4+ 0.005s) + 14.00)
s(1+0.03s)(1 + 0.005s)
Gyfc1(s) =

5(140.03s)(1 +0.005s) + 14.00
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Fig. 3.5 Schematic y
description of an inverted r(t) 7
pendulum system
9
2 4\ 8
50 6 \/
2 :Z:l 1 ﬁ\ | - x
- £J \J
3 5

Ayer(8) = (14 Gy (K (5) f52) " (Gyu ()W (s) + Gy ca (s)d(s)) fs2
- (Gyw(s)w(s) + Gyd,cl(s)d(s))~

3.7.2 Inverted Pendulum Control System

Inverted pendulum is a classical laboratory system that is widely used in the educa-
tion of control theory and engineering. Below is a brief introduction to the laboratory
pendulum system LIP100 that is schematically sketched in Fig. 3.5.

The inverted pendulum system consists of a cart (pos. 6 in Fig. 3.5) that moves
along a metal guiding bar (pos. 5). An aluminum rod (pos. 9) with a cylindrical
weight (pos. 7) is fixed to the cart by an axis. The cart is connected by a transmission
belt (pos. 4) to a drive wheel (pos. 3). The wheel is driven by a current controlled
direct current motor (pos. 2) that delivers a torque proportional to the acting control
voltage u; such that the cart is accelerated. This system is nonlinear and consists of
four state variables:

the position of the cart » (marked by 6 in Fig. 3.5)
the velocity of the cart

the angle of the pendulum @ as well as

the angle velocity @.

Among the above state variables, r is measured by means of a circular coil poten-
tiometer that is fixed to the driving shaft of the motor, 7 by means of the Tacho
generator that is also fixed to the motor and @ by means of a layer potentiometer
fixed to the pivot of the pendulum. The system input u is the acting control voltage
us that generates force F on the cart.

Nonlinear System Model The following nonlinear model describes the dynamics
of the inverted pendulum:

F = B(®)(az: sin® cos @ + assi + azu® cos ® + azs®*sin® + b3F)  (3.57)

&= ﬂ(¢)(a42 sin @ + ay3r cos @ +a44<13 —|—a45c152005<17 sin® + by F cos d))
(3.58)
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Table 3.2 Parameters of

laboratory pendulum system Constant Numerical value Unit
LIP100
K, 2.6 N/V
ni 14.9 V/m
n» —52.27 V /rad
nis3 —7.64 Vs/m
n44 —52.27 Vs/rad
Mo 3.2 kg
M 0.329 kg
M 3.529 kg
I 0.44 m
@) 0.072 kg m?
N 0.1446 kgm
NG, 0.23315 kg’m
N?/N§, 0.0897
F, 6.2 kg/s
C 0.009 kgm?/s
where

N2, N\
,3(<1§):<1+N—251n <1>)

01
N2 OF, NC ON MN
a32=_N_glg» aSSZ_N—gl, a34=N—§1, a35:N—§1» a42:N_§1g
F.N MC N2 2] N
a43=N—§l, a44=—N—gl, a45=—N—gl, b3=N—gl, b4=_N—§1

The parameters are given in Table 3.2.

Disturbances There are two types of frictions in the system that may consider-
ably affect the system dynamics. Theses are Coulomb friction and static friction,
respectively described by

Coulomb friction: F. = —|F;|sgn(r)
S ) =uF,, =0
static friction: Fyr = { 0. P20,

To include their effects in the system model, F is extended to
Fom=F +d

with d being a unknown input.
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Linear Model After a linearization at the operating point
r=1, =0, &=0, &=0

and a normalization with

X1 nir
x| | nn®
X3 o n33i
X4 n44¢3

we have the following (linear) state space model of the inverted pendulum

X=Ax+ Bu+ E4d, y=Cx+v (3.59)
[0 0 —1.95 0 0

A= 0 0 0 1.0 B_ 0

|0 —0.12864 —1.9148 0.00082 |’ T | —6.1343

| 0 21.4745 26.31 —0.1362 84.303
1 0 0 0

c=|/01 0 0], E; =B, u=KyF, v~N(©, X))
|00 1 0

where v denotes the measurement noise.
It is worth noting that linear model (3.59) is valid under the following condi-
tions:

o |[F|<20N
o |r|<05m
e |0] <10°.

Discrete-Time Model By a discretization of model (3.59) with a sampling time
T =0.03 s, we obtain the following discrete-time model

x(k+1) = Agx (k) + Bqu(k) + Egqd (k), y(k)=Cx(k)+v(k) (3.60)

1.0000  0.0001 —0.0569  0.0000 0.0053

A_] 0 1.0097  0.0116  0.0300 B _p, _| 00373
4= 0 —0.0038 0.9442 —0.0000 |* 4T F4T 1 _0.1789
0 0.6442  0.7688  1.0056 2.4632

LCF of the Nominal Model To illustrate the coprime factorization technique
introduced in Sect. 3.2, we derive below an LCF for model (3.59). It follows from
Lemma 3.1 that for the purpose of an LCF of (3.59) the so-called observer gain
matrix L should be selected that ensures the stability of A — LC. Using the pole
assignment method with the desired poles s; = —6.0, 5o = —6.5, 53 = —7.0, 54 =
—7.5, L is chosen equal to
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6.9994 —0.0019 —-1.9701
—0.2657 13.8231  1.6980
—0.0198 —0.1048 4.1265
—1.8533 68.0712 37.8692

L=

which gives

—6.9994  0.0019 0.0198 0

0.2657 —13.8231 —1.6980  1.0000
0.0198  —0.0241 —6.0413 —0.0008
1.8533  —46.5747 —11.5303 —0.1362

A—-LC=

As a result, the LCF of system (3.59) is given by
Gyu(s)=C(sI — A)"'B=M;'(s)N,(s)
My(s)=1—-C(sI—A+LC)"'L, Nu(s)=C(sI —A+LC)"'B.

Model Uncertainty Recall that linear model (3.59) has been achieved by a lin-
earization at an operating point. The linearization error will cause uncertainties in
the model parameters. Taking it into account, model (3.59) is extended to

Xx=(A+AA)x+ B+ ABu+(Eq+ AE)d, y=Cx+v  (3.6])
[AA AB AE|=EAW[G H H]

0 0
01 0 O
E— 0 0 ’ Ar) = Aazy Aazz Aazg ’ G=lo 01 0
1 0 Aagy Adgqs Adags
0 0 0 1
0 1
0
H=|32], (_T(A(t))§0.38.
0

Modelling of Faults  Additive sensor and actuator faults are considered. To model
them, (3.59) and (3.60) are respectively, extended to

i=Ax+Bu+Eud+Esf. y=Cx+Frf+v (3.62)
x(k+ 1) = Agx (k) + Bgu(k) + Eqad (k) + Eqy f (k) (3.63)
y(k) =Cx(k) + Fy f(s) +v(k)
Ef=[B 0 0 0], Egq=[Bs 0 0 0]
i fa
0 1 0
- ||| fa
Ff_ggll’f_ﬁ_fsz

fa fs3
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Closed-Loop Model An observer-based state feedback controller with a dis-
turbance compensation is integrated into LIP100 control system, which consists
of

e an observer

[2}=[3 %‘1}[2}+[g]u+u(y—c)e) (3.64)
which delivers an estimate for x and d respectively,
o a state feedback controller with a disturbance compensator
u=—-Ki—d+Vw (3.65)
where the observer, feedback gains L., K and the prefilter V are respectively,

6.9965 —0.0050 —1.9564

I3 —0.4120 13.9928 —13.2084
L,= |:L1j| =| —0.4231 0.0436 11.9597
2 2.5859  66.2783 —159.2450

04787 —0.2264 —7.8212
K =[-15298 18544 3.0790 0.4069],  V=-15298.

The overall system dynamics is described by

X A — BK BK E, X 0
ey | = 0 A—L1C Ey4 ex |+10|d
éq 0 —L,C 0 ed 1
B 0 Ey
+ |0 (Vw+| =Ly |v+ | (Ef—Li1Fp) | f (3.66)
0 —L» —LyFy
y=Cx+v+Frf (3.67)

3.7.3 Three-Tank System

Three-tank system sketched in Fig. 3.6 has typical characteristics of tanks, pipelines
and pumps used in chemical industry and thus often serves as a benchmark pro-
cess in laboratories for process control. The three-tank system introduced here is a
laboratory setup DTS200.

Nonlinear Model  Applying the incoming and outgoing mass flows under con-
sideration of Torricellies law, the dynamics of DTS200 is modelled by

Ahy = 01— 013, Ahy = Q2+ 032 — Q2, Ahy = Q13— 03
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Fig. 3.6 DTS200 setup
Table 3.3 Parameters of DTS200
Parameters Symbol Value Unit
cross section area of tanks A 154 cm?
cross section area of pipes Sn 0.5 cm?
max. height of tanks Hinax 62 cm
max. flow rate of pump 1 Ol max 100 em?/s
max. flow rate of pump 2 02,0 100 em3/s
coeff. of flow for pipe 1 aj 0.46
coeff. of flow for pipe 2 a 0.60
coeff. of flow for pipe 3 a3 0.45

013 = ars13sgn(hy — h3)+/2glhy — h3|
032 = azsaz sgn(hs — ha)+/2g|h3 — ha|,

where

$13 = 823 = S0 = Sn-

01, Q> are incoming mass flow (cm3/s)
Q;; is the mass flow (cm?/s) from the ith tank to the jth tank
hi(t),i =1,2,3, are the water level (cm) of each tank and measured

The parameters are given in Table 3.3.

020 = axsov/2gh>

Linear Model After a linearization at operating point #; =45 cm, Ay = 15 cm
and /43 = 30 cm, we have the following linear (nominal) model
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X = Ax + Bu, y=Cx (3.68)
h 0 —0.0085 0 0.0085
x=y=|hy |, u=|:Ql:|, A= 0 —0.0195  0.0084
h3 2 0.0085  0.0084 —0.0169
0.0065 0 1 00
B=|0 0.0065 |, C=|0 1 0
0 0 0 0 1

Model Uncertainty We consider the model uncertainty caused by the lineariza-
tion and model it into

$=(A+AA)x+Bu, y=Cx, AA=AWDH (3.69)
A) 0 0 —0.0085 0 0.0085
A= 0 M@ 0 |, H= 0 —0.0195  0.0084
0 0 As() 0.0085  0.0084 —0.0169

o (A@)) < 1.3620.

Modelling of Faults Three types of faults are considered in this system:

e component faults: leaks in the three tanks, which can be modelled as additional
mass flows out of tanks,

Oa,v28h1, Oayy/28h2, Oa,y/28h3

where 64,, 64, and 64, are unknown and depend on the size of the leaks
e component faults: pluggings between two tanks and in the letout pipe by tank 2,
which cause changes in Q13, Q37 and Q79 and thus can be modelled by

Oa,a1s13sgn(hy — h3)y/2glhy — h3l, Oa¢a3s23 sgn(hs — ha)/2glh3 — ha|,
Oasa250y/28h2

where 0,,, 045,04, € [—1, 0] and are unknown
e sensor faults: three additive faults in the three sensors, denoted by f1, f> and f3
e actuator faults: faults in pumps, denoted by f1 and fs.

They are modelled as follows:

X=(A+AAp)x+Bu+Esf, y=Cx+Fpf (3.70)
6 —0.0214 0 0 0 0 0
AAp =) A, A= 0 0 0|, Ay=|0 —0.0371 0
i=1 0 00 0 0 0

0 0 0 —0.0085 0  0.0085
A3=|0 0 0 . Ag= 0 0 0
0 0 —0.0262 0.0085 0 —0.0085



3.7 Case Study and Application Examples 41

0 0 0 0 0 0 h
As=|0 -00111 0, Ag=|0 -0.0084 0.0084 |, f=]| :
0 0 0 0 0.0084 —0.0084 fs

Ef:[o B]ERsXS, Ff:[[3><3 O]ER3X5.
Closed-Loop Model In DTS200, a nonlinear controller is implemented which
leads to a full decoupling of the three tank system into

e two linear sub-systems of the first order and
e a nonlinear sub-system of the first order.

This controller can be schematically described as follows:
uy =01 =013+ A(aih +vi(wy —hy)) (3.71)
uz = Q2= 020 — Q3 + A(anha + va(wz — hy)) (3.72)

where aj1, ax < 0, v1, vy represent two prefilters and wq, wy are reference signals.
The nominal closed-loop model is

X (a1 —v)x
i | = (az2 — v2)x2 (3.73)
b ays13sgn(x; —xs)mzasm sgN(x3—x2)+/2g[X¥3—x7]
vy O
+1 0 v |:w1 i|
0 o |L"?

while the linearized closed-loop model with the faults is given by

ai] — v 0 0 V1 0
X = 0 a» — vy 0 x4+ 0 v |:w1j|+AAFx+Eff
0.0085  0.0084 —0.0169 0 o |L"?
ai — vy 0 0 0.0065 0
y=Cx+Fyf, Ef= 0 an—vy 0 0 0.0065 |. (3.74)
0 0 0 0 0

3.7.4 Vehicle Lateral Dynamic System

In today’s vehicles, lateral dynamic models are widely integrated into control and
monitoring systems. The so-called one-track model, also called bicycle model, is
the simplest form amongst the existing lateral dynamic models, which is, due to its
low demand for the on-line computation, mostly implemented in personal cars.
One-track model is derived on the assumption that the vehicle is simplified as a
whole mass with the center of gravity on the ground, which can only move in x axis,
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Fig. 3.7 Kinematics of
one-track model

Center of
transient

y axis, and yaw around z axis. The kinematics of one-track model is schematically
sketched in Fig. 3.7. It has been proven that one-track model can describe the vehicle
dynamic behavior very well, when the lateral acceleration under 0.4g on normal dry
asphalt roads. Further assumptions for one-track model are:

o the height of center of gravity is zero, therefore the four wheels can be simplified
as front axle and rear axle

e small longitudinal acceleration, v, = 0, and no pitch and roll motion

e the equations of motion are described according to the force balances and torque
balances at the center of gravity (CG)

e linear tire model,

Fy = Cya (3.75)

where F) is the lateral force, C, is the cornering stiffness, « is the side slip angle
e small angles simplification

{OtH=—,3+1H .

Uref
ay = —,3—}-52 _lV#ef'
The reader is referred to Table 3.4 for all variables and parameters used above and
below.

Nominal Model Let vehicle side slip angle 8 and yaw rate r be the state variables
and steering angle 8} the input variable, the state space presentation of the one-track
model is given by

%= Ax + Bu, x=[’”}=[ﬂ], u=8} (3.76)

X2
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Table 3.4 Parameter of the one-track model

Physical constant Value Unit Explanation
g 9.80665 [m/s?] gravity constant
Vehicle parameters
ir 18.0 [-] steering transmission ratio
mg 1630 [ke] rolling sprung mass
MNR 220 [ke] non-rolling sprung mass
m mp + mng [ke] total mass
ly 1.52931 [m] distance from the CG to the front axle
ly 1.53069 [m] distance from the CG to the rear axle
I, 3870 [kg-mz] moment of inertia about the z-axis
Vref [km/h] vehicle longitude velocity
B [rad] vehicle side slip angle
r [rad/s] vehicle yaw rate
87 [rad] vehicle steering angle
C&V 103600 [N/rad] front tire cornering stiffness
CoH 179000 rear tire cornering stiffness
_C(;le)-caﬂ lHCaH_ZlVC&V _1 C;_V
re mv? . MUy
- zHcaH—zvfc;V _zg,cféﬂg,cw . B= @
I [ oef T.

Typically, a lateral acceleration sensor (ay) and a yaw rate sensor (r) are integrated
in vehicles and available, for instance, in ESP (electric stabilization program). The
sensor model is given by

y = Cx + Du, y=|:yli|=|:ay:| (3.77)
y2 r
C‘;V+Cuy [HCaH*lVCL;V C(;V
C = - m MUypef y D = m .
0 1 0

Below are the one-track model and the sensor model for v,,r = 50

A:[_3'0551 —0.9750] B:[ 1.12 ]

29.8597 —3.4196 40.9397
152.7568 1.2493 56 G719
[y e o)

By a sampling time of 0.1 s, we have the following discrete-time model

x(k+1) = Ayx(k) + Byu(k), y(k) = Cx (k) + Du(k)
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Table 3.5 Typical sensor noise of vehicle lateral dynamic control systems

Sensor Test condition Unit Standard
variation o
Yaw rate Nominal value [°/s] 0.2
Drive on the asphalt, even, dry road surface 0.2
Drive on the uneven road 0.3
Brake (ABS) on the uneven road 0.9
Lateral acceleration Nominal value [m/s?] 0.05
Drive on the asphalt, even, dry road surface 0.2
Drive on the uneven road 1.0
Brake (ABS) on the uneven road 2.4
where
0.6333 —0.0672 —0.0653
2.0570 0.6082 3.4462

Disturbances In model (3.76)—(3.77), the influences of road bank angle ., vehi-
cle body roll angle ¢ and roll rate p. have not been taken into account. Moreover,
sensor noises are inevitable. Generally, sensor noises can be modelled as steady
stochastic process with zero mean Gaussian distribution. But, in vehicle systems,
the variance or standard variance of sensor noises cannot be modelled as constant,
since at different driving situations, the sensor noises are not only caused by the
sensor own physical or electronic characteristic, but also strongly disturbed by the
vibration of vehicle chassis. In Table 3.5, typical sensor data are listed.

To include the influences of the above-mentioned disturbances, model (3.76)—
(3.77) is extended to

x=Ax+ Bu+ E.d, y=Cx+Du+ Fgd+v (3.80)

{1 00 [0 0 1 oa, O
selo Vol melo o o) ([T 2
with unknown input vector d denoting the possible disturbances.

Model Uncertainties Below, major model parameter variations are summarized:

e Vehicle reference velocity vy.r: the variation of longitudinal vehicle velocity is
comparably slow, so it can be considered as a constant during one observation
interval

e Vehicle mass: when the load of vehicle varies, accordingly the vehicle spring
mass and inertia will be changed. Especially the load variation are very large
for the truck, but for the personal car, comparing to large total mass, the change
caused by the number of passengers can be neglected normally
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e Vehicle cornering stiffness C,: Cornering stiffness is the change in lateral force
per unit slip angle change at a specified normal load in the linear range of tire.
Remember that the derivation of one track model is based on (3.75). Actually, the
tire cornering stiffness C, depends on road-tire friction coefficient, wheel load,
camber, toe-in, wheel pressure etc. In some studies, it is assumed, based on the
stiffness of steering mechanism (steering column, gear, etc.), that

Cott =kCly. (3.81)

In our benchmark study, we only consider the parameter changes caused by C, and
assume that

. C(;V = 103600 + ACyy, ACq4y € [—10000, 0] is a random number and
o Con =kCl,,, k=1.7278.

As aresult, we have the following system model:

¥ =(A+ AA)x+ (B+ AB)u+ Eqd

(3.82)
y=(C+ AC)x +(D+ AD)u + Fgd +v
14k klg—ly 1
MVpef m vfg ’ MVUypef
[44 AB]=AC.y Kg=ly _ B+KE 1y
I Iz vpep I
14k KHp=ly 1
[AC  AD]=ACqy momug o om |
0 0 0

Modelling of Faults Three additive faults are considered in the benchmark:

e fault in lateral acceleration sensor, which can also be a constant or a ramp and
denoted by fi

e fault in yaw rate sensor, which can be a constant or a ramp and denoted by f>

e fault in steering angle measurement, which would be a constant and denoted by
f3. Itis worth to remark that in practice a fault in the steering angle measurement
is also called sensor fault.

In Table 3.6, technical data of the above-mentioned faults are given.
Based on (3.80), the one-track model with the above-mentioned sensor faults can
be described by

%=Ax+Bu+Eqd+Es;f, y=Cx+Du+Fid+v+Frf (3.83)

Ji
E;f=[0 B]er>S, Fr=[hxa D], f=1r
/3
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Table 3.6 Typical sensor faults

Sensor Faults
Offset Ramp
Yaw rate +2°/s, £5°/s, £10°/s +10°/s/min
Lateral acceleration +2m/s?, +5 m/s> +4 m/s?/s, £10 m/s?/s
Steering angle +15°, £30° -

3.7.5 Continuous Stirred Tank Heater

In this subsection, we briefly introduce a linear model of a laboratory setup con-
tinuous stirred tank heater (CSTH), which is a typical control system often met in
process industry.

System Dynamics and Nonlinear Model Figure 3.8 gives a schematic descrip-
tion of the laboratory setup CSTH, where water is used as the product and reactant.
Without considering the dynamic behaviors of the heat exchanger, the system dy-
namics can be represented by the tank volume V7, the enthalpy in the tank Hr and
the water temperature in the heating jacket 7j,; and modelled by

Vr . Vi . fout .
Hy | = | Hnjr + Hin — Hour | . (3.84)
0y sy (Po = Hyjr)

The physical meanings of the process variables and parameters used above and in
the sequel are listed in Table 3.7. Considering that

. S . . Vour
Hyjr = f(Thj — Tr),  Hip=mincpTin,  Hour = MousCpTous = Hr ‘;’;‘

Vi,, — Vom :=u1, Py := uj are the input variables, and the water level i r, the temper-
ature of the water in the tank 77 as well as Tj,; are measurement variables satisfying

Vr

hT Ao
TT = Hr
mr-Cp
Ty; Thj
we have
. 0
‘./T T, — AT noco T — H Vour ! 0 u
Hr | = S( hj mT'Cp) +minCplin TV |40 0 1
. 7 1 u
Th] 7f(Th./*ﬁ) O <y 2
B | (3.85)

with f denoting some nonlinear function.
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Fig. 3.8 Laboratory setup CSTH

Linear Model For our purpose, the nonlinear model (3.85) is linearized around
the operating point

Vr 6.219 o
Hr | =|655797 |, Vii="V,u =00369,  uy=>580
Thj 33.44

and on the assumption
H;, = mj,cp Ty & const

which results in the following (nominal) linear model:

Vr hr
x = Ax + Bu, y=Cx, x=|Hr |, y=|Tr (3.86)
Th; Th;
0 0 0
A=| —626.4371 —5.9406-1073 36.55

0 0 —1.2019-1073
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Table 3.7 Technical data of CSTH

Symbol Description Unit
Vr water volume in the tank L
Hr enthalpy in the tank J
Tyj temperature in the heating jacket °C
V,-m Vom water flows in and out of the tank é
H, JT enthalpy flow from the jacket to the tank %
H,-,,, Hom enthalpy flows from in- and out-flowing water %
mpj water mass in the heating jacket kg
Py electrical heater power W= %
hr water level in the tank m
Tr water temperature in the tank °C
mr water mass in the tank kg
Mins Mour mass flows in and out of the tank %
Tin> Tour temperature of the in- and out-flowing water °C
Acr the base area of the tank m?
cp heat capacity of water kg%c

1 0 31.831 0 0

B=|0 0 , C=| 0 3.8578-107° 0
0 30411.5241 0 0 1

Model Uncertainties and Unknown Inputs  With an additional term in the state
equation,

1 0
Ejd=|—-1 0 |d, deR?
0 -1

the influence of unknown inputs is modelled. Together with the uncertainties caused
by the linearization, we have

x=(A+AA)x + (B+ AB)u+ E.d, y=(C+ AC)x (3.87)
0 0
AA = AS, AB=1|0 0 F)
0 30411.5241
31.831 0 0
AC = 0 3.8578-107° 0|38, &e[-0.2,0.2].
0 0 0

Modelling of Faults Different kinds of faults will be considered in the benchmark
study. These include
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o leakage in the tank: A leakage will cause a change in the first equation in (3.84)
as follows
28Vr

VT:‘}in_Vout_eleakvzghT:ul_9A Aﬂ
e

(3.88)

where 6,4 is a coefficient proportional to the size of the leakage. It is evident that
04 is a multiplicative component fault.

e an additive actuator fault in u1, denoted by f;

e additive faults in the temperate enmeshments, respectively denoted by f> and f3.

As a result, we have the following overall model to described the system dynamics
when some of the above-mentioned faults occur:

¥=(A+AA+AAp)x +(B+ ABu+Esf, y=(C+AC)x+Fpf+v

(3.89)
—0.008 0 O 1 0 0
AAF = 0 0 064, EfF={0 0 O
0 0 0 0 0 O
fi 0 0 0
f=1rl, Fp={0 1 0
fi 0 0 1

where v represents the measurement noises.

3.8 Notes and References

In this chapter, we have introduced different model forms for the presentation of lin-
ear dynamic systems, which are fundamental for the subsequent study. We suppose
that the nominal systems considered in this book are LTI. Modelling LTI systems by
means of a state space representation or transfer matrices is standard in the modern
control theory. The reader is referred to [23, 105] for more details.

Modelling disturbances and system uncertainties is essential in the framework
of robust control theory. In [59, 198, 199], the reader can find excellent background
discussion, basic modelling schemes as well as the needed mathematical knowledge
and available tools for this purpose.

In the framework of model-based fault diagnosis, it is the state of the art that
modelling of faults is realized in an analogous way to the modelling of disturbances
and uncertainties.

Coprime factorization technique is a standard tool in the framework of linear
system and robust control theory. In [59, 198, 199], the interested reader can find
well-structured and detailed description about this topic.

To illustrate the application of the introduced system modelling technique, five
laboratory and technical systems have been briefly studied. The first three systems,
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DC motor DR200, inverted pendulum LIP100 and three-tank system DTS200, are
laboratory test beds, which can be found in many laboratories for automatic con-
trol. It is worth mentioning that three-tank system DTS200 and inverted pendulum
LIP100 are two benchmark processes that are widely used in FDI study. There has
been a number of invited sessions dedicated to the benchmark study on these two
systems at some major international conferences. For the technical details of these
three systems, the reader is referred to the practical instructions, [4] for DTS200,
[5] for LIP100 and [6] for DR200. [125] is an excellent textbook for the study on
vehicle lateral dynamics. The one-track model presented in this chapter is an ex-
tension of the standard one given in [125], which has been used for a benchmark
study in the European project IFATIS [119]. The laboratory setup continuous stirred
tank heater is a product of the company G.U.N.T. Geraetebau GmbH [81]. A similar
setup has been introduced in [163] for the purpose of benchmark study.

A further motivation for introducing these five systems is that they will serve
as application examples for illustrating the results of our study in the forthcoming
chapters.



Chapter 4
Fault Detectability, Isolability and Identifiability

Corresponding to the major tasks in the FDI framework, the concepts of fault de-
tectability, isolability and identifiability are introduced to describe the structural
properties of a system from the FDI point of view. Generally speaking, we dis-
tinguish the system fault detectability, isolability and identifiability from the per-
formance based fault detectability, isolability and identifiability. For instance, the
system fault detectability is expressed in terms of the signature of the faults on
the system without any reference to the FDI system used (for the detection pur-
pose), while the performance based one refers to the conditions under which a
fault can be detected using some kind of FDI systems. Study on system fault de-
tectability, isolability and identifiability plays a central role in the structural anal-
ysis for the construction of a technical process and for the design of an FDI sys-
tem.

In this chapter, we shall introduce the concepts of system fault detectability, isola-
bility and identifiability, study their checking criteria and illustrate the major results
using the application examples.

4.1 Fault Detectability

In the literature, one can find a number of definitions of fault detectability, intro-
duced under different aspects. Recall that there are some essential differences be-
tween additive and multiplicative faults. One of these differences is that a mul-
tiplicative fault may cause changes in the system structure. In order to give a
unified definition which is valid both for additive and multiplicative faults, we
first specify our intention of introducing the concept of system fault detectabil-
ity.

First, system fault detectability should be understood as a structural property
of the system under consideration, which describes how a fault affects the system
behavior. It should be expressed independent of the system input variables, distur-
bances as well as model uncertainties. Secondly, system fault detectability should

S.X. Ding, Model-Based Fault Diagnosis Techniques, Advances in Industrial Control, 51
DOI 10.1007/978-1-4471-4799-2_4, © Springer-Verlag London 2013


http://dx.doi.org/10.1007/978-1-4471-4799-2_4

52 4 Fault Detectability, Isolability and Identifiability

indicate if a fault would cause changes in the system output. Finally, it should be
expressed independent of the type and the size of the fault under consideration.
Bearing these in mind, we adopt an intuitive definition of system fault detectability,
which says: a fault is detectable if its occurrence, independent of its size and type,
would cause a change in the nominal behavior of the system output. To define it
more precisely, we assume that

e the following system model is under consideration

X=(A+AAp)x+ B+ ABp)u+E¢f “4.1)
y=(C+ACp)x+(D+ ADp)u+Fy¢f 4.2)
where, as introduced in Chap. 3, Gy, (s) = D + C(sI — A)"'B represents the

nominal system dynamics, [ € RKs the additive fault vector and AAp, ABF,
ACF, ADF the multiplicative faults given by

Ia Ip

AAF=ZAZ-9A[, ABF=ZB,-93,. 4.3)
i=1 i=1
lc Ip

ACr =) Cibc;. ADp =" Difp, 4.4)

i=1 i=1

o afault, either 6; € {64,,0p;,0c;,9p,} or fi,is understood as a scalar variable and
unified denoted by §&;.

Definition 4.1 Given system (4.1)—(4.2). A fault &; is said detectable if for some u

dy
—|  d& #0. 45
% .o & # (4.5)

(4.5) is the mathematical description of a change in the system output caused
by the occurrence of a fault (from zero to a time function different from zero),
independent of its size and type. A fault becomes detectable if this change is not
constantly zero. In other words, it should differ from zero at least at some time
instant and for some system input.

The following theorem provides us with a necessary and sufficient condition for
the detectability of additive and multiplicative faults.

Theorem 4.1 Given system (4.1)-(4.2), then
e an additive fault f; is detectable if and only if

C(sl —A)Es +Ff, #0 (4.6)

with E s, Fy, denoting the ith column of matrices E g, Fy respectively,
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a multiplicative fault 04, is detectable if and only if

C(sI —A)"A;(sI —A)'B#0 4.7)

a multiplicative fault 0p, is detectable if and only if

C(sI—A)'B;#0 (4.8)

a multiplicative fault Oc, is detectable if and only if

Ci(sI —A)'B#£0 (4.9)

a multiplicative fault Op, is detectable if and only if
D; #0. (4.10)

Proof While the proofs of (4.6), (4.8)—(4.10) are straightforward and thus omitted,
we just check (4.7). It turns out

dy ax ox ox
=C , =A + Aix.

004, 004, 004, 004,
It yields

dy _ -1 -1

Ll — =C(sI—A) "A;(sI —A) " Bu(s)

8eAi gAi =0
with L denoting the Laplace transform (z-transform in the discrete time case)
Hence, for some u, 1, Bg—ﬁ lo,, 0% 0 if and only if (4.7) holds. O

It can be easily seen from Theorem 4.1 that

e an additive fault is detectable as far as the transfer function from the fault to the
system output is not zero

e amultiplicative fault 6p, is always detectable

o the detectability of multiplicative faults 0p, and 6, can be interpreted as input
observability and output controllability, respectively

e a multiplicative fault 4, will cause essential changes in the system structure.

Also, it follows from Theorem 4.1 that initial changes in the system output caused
by the different types of the faults can be estimated. To this end, suppose that the
faults occur at time instant 7o and their size is small at beginning, then

e in case of an additive fault f;:

dA
d—tszAx—l—Eﬁ.fi, Ay=CAx+Fpfi,  Ax(t)=0 (411)
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e in case of a multiplicative fault 04,:

d ([ 0x N ox T A | ox (10) =0
— —— — _— X N —_— =
dt\ 90, 30, | lea=00 g, 0

; 5 4.12)
Ay~ 2| gy =C—iy,
aGAl eA =0 89A,
where x |9A,- —o satisfies x = Ax + Bu
o in case of multiplicative fault 0p,:
d ( dx ax 0x
—|— | =A—+Biu, —()=0
d <aeB,. ) 205 T Dt g, 10
(4.13)
sy~ gy =c g
Y7 05 BT a6,
e in case of a multiplicative fault Oc;:
ay .
Ay~ ——0c, = Cix0c;, x=Ax+ Bu 4.14)
90,
e in case of multiplicative fault 6p, :
dy
Ay~ ——0p, = D;ju(t)0p;,. (4.15)
90p,

i

Comparing (4.11) with (4.12)—(4.15) makes it evident that

e detecting additive faults can be realized independent of the system input, and
e multiplicative faults can only be detected if u(z) # 0. In other words, excitation
is needed for a successful detection of a multiplicative fault.

We see that transfer matrices
C(sI — A Ef + Fyi, C(sI —A)'A;sI—A)7'B
C(sI — A7 'B;, Ci(sI — A7 !B, D;

give a structural description of the influences of the faults on the system output. For
this reason and also for our subsequent study on fault isolability and idenfiability,
we introduce the following definition.

Definition 4.2 Given system (4.1)—(4.2). Transfer matrices
C(sl —A)Es + Fp, CsI—A)'A;sI—A)7'B
C(sI — A~ 'B;, Ci(sI —A)7'B, D;

are called fault transfer matrices and denoted by G 1, (s), G, (s), G, (s), Goc, (s)
and Gop, (s) respectively, or in general by Gg, (s).
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Example 4.1 To illustrate the results in this section, we consider three-tank system
DTS200 given in Sect. 3.7.3. The fault transfer matrices of the five additive faults

are respectively

—

C(sI—A)"Ep+Fp=

C(sI—A)"Ef,+Fp=|0

0
, C6I—A)Ep+Fp=1|1
0
_ 0.0065540.0002
(524-0.04495+0.0005)
, CGsI—A)"Ef+Fp= 0
___ 00001s
-~ (5240.04495+0.0005)

0
0.00655+0.0002

C(sI —A)"Eg + Fpy= | 7+0.04495-+0.0005)

0.0001s

L (5240.0449540.0005)

It is evident that these five faults are detectable. As to the multiplicative faults, we
have the following fault transfer matrices

C(sI—A)"AsI—A)7'B

_ —0.0214(0.0065s + 0.0002s)

52 +0.036450.003 0
0.0001 0

(s3 +0.0449s2 + 0.0005s)?

C(sI—A) 'Ay(sI —A)7'B

—0.0371(0.006552 + 0.0002s)

| 0.0085s +0.0002 0O

0.0001

(s3 4 0.044952 4 0.00055)?

C(sI —A) 'A3(sI— A7 'B

—0.00000262s

K
0 s2+40.0254s +0.0001
| 0 0.0084s +0.0001

0.0085s + 0.0002 0.0085s + 0.0002

= (53 1 0.044952 1 0.00055)2

C(sI —A) 'Ag(sI — A7 'B

0.0000085

0.0084s +0.0001  0.0084s +0.0001
| 52+ 0.0280s 4 0.0002 2 +0.0280s + 0.0002

[—6.55* — 0.281s% — 0.003s2 0.1s3 + 0.00352
0.005553 4 0.0001s2 —0.001s2

= (53 + 0.044952 1 0.00055)2

C(sI —A) 'As(sI — A)7'B

_ —0.0111 (0.0065s2 + 0.0002s)

6.55% +0.227s% +0.000252  0.1s3 — 0.002s2

0 0.0001
0 s2+0.0254s +0.0001

(s3 +0.0449s2 + 0.0005s)> 0

0.0084s + 0.0001
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C(sI — A 'Ag(sI — A 'B

—0.001s2 0.055s3 + 0.002s2
0.1s% +0.00252 —6.55* —0.21s% — 0.002s2
—0.1s3 = 0.00252  6.55* + 0.227s% + 0.003s

B 0.0000084
T (s34 0.044952 + 0.00055)2

As a result, all these multiplicative faults are detectable.

4.2 Excitations and Detection of Multiplicative Faults

In this section, we briefly address the issues with excitation signals, which are, as
shown above, needed for detecting multiplicative faults. Let G¢ (s) be the fault
transfer (matrix) of a multiplicative fault and satisfy

rank(G;i (s)) =k (>0)
then we can find a «-dimensional subspace Ueyc g, so that for all u € Uy g,
Gg (s)u(s) #0.

From the viewpoint of fault detection, subspace Uey,; contains all possible input
signals that serve as an excitation for fault detection.

Definition 4.3 Let G¢, (s) be the fault transfer matrix of a multiplicative fault &;.
Uexe.t; = {u | G, (s)u(s) # 0} (4.16)

is called excitation subspace with respect to &;.

Mathematically, we can express the fact that detecting an additive fault, say &;, is
independent of exciting signals by defining

uexc,gi = {Li € Rku }

In this way, we generally say the following.

Definition 4.4 System (4.1)—(4.2) is sufficiently excited regarding to a fault &; if

U € Upge,. (4.17)

With this definition, we can reformulate the definition of the fault detectability
more precisely.

Definition 4.5 Given system (4.1)—(4.2). A fault &; is said to be detectable if for
ue uexc,é,-

LAl dg; £0. (4.18)

i lg—o
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Remark 4.1 1In this book, the rank of a transfer matrix is understood as the so-called
normal rank if no additional specification is given.

4.3 Fault Isolability

4.3.1 Concept of System Fault Isolability

For the sake of simplicity, we first study a simplified form of fault isolability prob-
lem, namely distinguishing the influences of two faults. An extension to the isolation
of multiple faults will then be done in a straightforward manner.

Consider system model (4.1)—(4.2) and suppose that the faults under considera-
tion are detectable. We say any two faults, &;, &;, i # j, are isolable if the changes
in the system output caused by these two faults are distinguishable. This fact can
also be equivalently expressed as: any simultaneous occurrence of these two faults
would lead to a change in the system output. Mathematically, we give the following
definition.

Definition 4.6 Given system (4.1)-(4.2). Any two detectable faults, & = [&; §; 17,
i # J, are isolable, when for u € Uexc & MUexc g,

dy
—|  dg#0. 4.19
% | o & # (4.19)

It is worth mentioning that detecting a fault in a disturbed system requires distin-
guishing the fault from the disturbances. This standard fault detection problem can
also be similarly formulated as an isolation problem for two faults.

In a general case, we say that a group of faults are isolable if any simultaneous
occurrence of these faults would lead to a change in the system output. Define a
fault vector

=& - & (4.20)

which includes / structurally detectable faults to be isolated.

Definition 4.7 Given system (4.1)—(4.2). The faults in fault vector £ are isolable,
when for all u € ﬂfz | Uexc.k;

0

D gg£o0. 4.21)
We would like to call reader’s attention on the similarity between the isolability

of additive faults and the so-called input observability which is widely used for the

purpose of input reconstruction. Consider system
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X=Ax+E;f, y=Cx+Fyf, x(0)=0.

It is called input observable, when y(#) = 0 implies f(z) = 0. Except the assumption
on initial condition x(0), the physical meanings of the isolability of additive faults
and input observability are equivalent.

4.3.2 Fault Isolability Conditions

With the aid of the concept of fault transfer matrices, we now derive existence con-
ditions for the structural fault isolability.

Theorem 4.2 Given system (4.1)—(4.2), then any two faults with fault transfer ma-
trices Gg, (s), Gg; (s), i # j, are isolable if and only if

rank [ Ge (s)  Gg;(s) ] = rank(Gg[ (s)) + rank(ng (s)). 4.22)

Proof It follows from (4.11)—(4.15) that changes in the output caused by &;, £; can
be respectively written as

LGy )zi(®),  L7(Ge(9)zj()
where
zi(s) =L(df) for& =f; or zi(s)=L(d&u(r)) for& €{04,.08 . 6c;, 0p,}

with i € Ugye g, N Uexc,g; - Since

0
dgi + -

ay dt = ay
£=0 98

08| 0% 2

£=0

it holds that if £ is not isolable, then

dy

v,

dE =0

dy ay
(2 ag)+o( 2
<asi e g)* (as,-

= [G5() Gg ()] [Zi(s)} =0

Z;(s)

dg,) =0

£=0

<= rank [ Ge (s) ng (s) ] < rank(GSi (s)) + rank(ng (s)).

The theorem is thus proven. d
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An extension of the above theorem to a more general case with a fault vector
E=[& --- & 17 is straightforward and hence its proof is omitted.

Corollary 4.1 Given system (4.1)—(4.2), then & with fault transfer matrix

Ge(s)=[Ge(s) -+ Gy(9]

is isolable if and only if

l
rank(Ge (s)) = ) _rank(Gg, (s)). (4.23)
i=1

In order to get a deeper insight into the results given in Theorem 4.2 and Corol-
lary 4.1, we study some special cases often met in practice.

Suppose that the faults in fault vector £ =[&] --- & 17 are additive faults. Then
the following result is evident.

Corollary 4.2 Given system (4.1)~(4.2) and assume that §;,i =1,...,1 < ky are
additive faults. Then, these [ faults are isolable if and only if

rank(Ge (s)) = 1. (4.24)

This result reveals that, to isolate [ different faults, we need at least an [-
dimensional subspace in the measurement space spanned by the fault transfer ma-
trix. Considering that rank(Gg (s)) < min{m, [} with m as the number of the sensors,
we have the following claim which is easy to check and thus useful for the practical
application.

Claim Additive faults are isolable only if the number of the faults is not larger than
the number of the sensors.

Denote the minimal state space realization of G¢ (s) by
Ge(s) =C(sI — A)""E¢ + F.

Check condition (4.24) can be equivalently expressed in terms of the matrices of the
state space representation.

Corollary 4.3 Given system (4.1)-(4.2) and assume that &;,i =1,...,1 <ky, are
additive faults. Then these | faults are isolable if and only if

A—sl Eg

rank |: c Fe

} —— (4.25)
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Proof The proof becomes evident by noting that

A—sl E:|[(A—=sD™' (s1—A)'E;
C Fe 0 1

1 0
- [C(A —sD)™" C(sI—A)"E;: + FJ

= rank|:A —sl Egi|

C Fg
_ A—sl E¢|[(A—sD™' (sI—A)'Es
=m([ 0 R][ )

=rank ! 0
- CA—sD)™' CA—-sI)'Es+ F;

=n+rank(C(A—sI)_1E§+Fg). O

Recalling that for additive faults the fault isolability introduced in Definition 4.7
is identical with the concept of input observability known and intensively studied in
the literature, we would like to extend our study

e to find out alternative conditions for checking conditions (4.24) or (4.25)

e to compare them with the results known in the literature and

e to gain a deeper insight into the isolability of additive faults, which will be helpful
for some subsequent studies in the latter chapters.

To simplify our study, we first consider G¢ (s) = C(s] — A)~! E¢ . It follows from
Cayley—Hamilton theorem that

1 “ . 1 - 4
CisI—A) 'Ee=—C Sis" | Er = —C (AT E: (426
o1 =75 = e 35 = e (S e o

G (s) =det(s] —A) =s" +as" " +aps" 2+ -+ an_15 +an
Si=S8i_1A+a;_1I, Si=1, i=2,...,n

a1() =" as" TP ap, e a1 () =5 Far, an(s) = 1
which can be rewritten into

CEg
| 1 CAEg
C(sl — A~ Eg:m[oq(s)l ax(s)l -+ ()] ] : . (4.27)

CA";lEg
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It is obvious that if
CEg
CAE:
rank . <
CAn—lEE
then there exists a u which yields
CES
CAE:
, u=0 = C(I—A)"Esu=0.
CAM1 E¢
In other words,

CEg
CAE:
rank . =1 (4.28)

CA”;lEg

builds a necessary condition for the fault isolability. We would like to call reader’s
attention that (4.28) is not a sufficient condition for the fault isolability. To see it, we
consider a special case withm =1, m </ <n and (C, A) being observable, that is,

C

CA
rank . =n.

C A.n -1

It immediately becomes clear that (4.28) is satisfied. But, the system is, due tom </,
not isolable, as can be seen from Corollary 4.2.

Remark 4.2 We would like to point out that (4.28) is, in some publications, claimed
as a necessary and sufficient condition for the input observability, which is, as shown
above, not correct.

Below, we shall derive some sufficient conditions on the assumption that m >/
and (4.28) holds. Note that the orders (highest power) of «;(s),i =1, ..., n, given
in (4.26) are different. If for some j € {1,...,n}

rank(CA/ ™ Eg) =1 (4.29)

then (4.27) can be rewritten into

C(SI_A)_lEgzL aj) + Y «i($)Qi |CATTE;
¢ (s) T
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where Q; e R™*™,i=1,...,n,i # j, are some matrices. Considering that

rank(aj(s)l—i— 2”: ai(s)Qi> =m>1, rank(CAJ'—lEg):l
i=1,i#]
we finally have
rank(C(sI — A) ' E¢) =1.
This proves the following theorem.

Theorem 4.3 Given C(sI — A)_IEE as defined in (4.26) with m > [ and satisfy-
ing (4.28). Assume that for some j € {1, ...,n}, rank(CAf_lEg) =1.Then

rank(C(sI — A)"'E¢) =1.

In the framework of linear system theory, CAiEg, i=20,1,..., are called
Markov matrices. Theorem 4.3 provides us with a sufficient condition for check-
ing the isolability of additive faults by means of Markov matrices.

It is interesting to note that according to (4.26) C(sI — A)_lEg can also be
rewritten into

C(sI—A)'E;
CE 0 .0 I
.. : Is
=lapal - al I CA.ES C% C :
: : i 0 o
CA" 'E; CA"2E; ... CEg|LIs
(4.30)

This form is important in studying various algebraic properties of the so-called par-
ity space methods.

In a similar manner like the proof of Theorem 4.3, we are able to prove the
following theorem that gives an alternative sufficient condition for the isolabil-

1ty.

Theorem 4.4 Given C(sI — A)"'E¢. Let I} = CS;E¢, i = 1,...,n, where S; is
defined in (4.26), and assume that for some j € {1, ...,n}

rank(I;) =1 4.31)

then rank(C (sI — A)_IEE) =1.

The above discussion and the results given in Theorems 4.3 and 4.4 can be easily
extended to the general form of system model C(s] — A)_lEg + F¢. To this end,
we extend the state space description as follows
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O e
v=[c Fg][g]::_f, x:[g]. (4.33)

It is easy to prove that given C(sI — A)_lEg + F¢ condition (4.28) can then be
equivalently written as

CE:
CAE: Fe
CEg
rank T An EE =rank =1 (4.34)
: CA"E;
| CAnti-1 ES i

while conditions (4.29) and (4.31) respectively as

= Ti-1E rank(Fg);l, ifj=1
rank(CA’™ Eg) = {rank(CAf_2Eg) —1, ifjef2,....n+1) (4.35)
0
rank(T) =1, jef{0.....n}, To=[and - al I]|: |=F
0
1
(4.36)
-y -
B 0
sz[anl an_11 - al I] Fe , Jje{l,...,n}. 4.37)
CE:
| CAITVE; |

We now review the conditions for the fault isolability of multiplicative faults.
Although Corollary 4.1 holds for both additive and multiplicative faults, the forms
of the fault matrices of multiplicative faults reveal that isolating multiplicative faults
may demand for more sensors. To illustrate it, we first take a multiplicative process
fault as an example. Remember that in this case the fault transfer matrix is C(s] —
A)~'A;(sT — A)~! B, which can be written as

CGsI—A)'A;s1—A)7'B= <[’3 fﬂ : [g} [c 0],0).
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As a result, this multiplicative process fault can span a subspace with a dimension
equal to

rank(C(sT — A) ' A;(sI — A)~'B) = min{m, k,} :=«.

To isolate such a (single) fault, we need at least « sensors.

As to multiplicative sensor and actuator faults, it seems that their fault transfer
matrices, Cj(sI — A)~'B, C(sI — A)~'B;, would span a lower dimensional sub-
space, for instance in case that

rank(C;) =1, rank(B;) = 1.

On the other hand, if those faulty sensors and actuators are embedded in a feed-
back control loop, for instance with u = Ky, then they will cause change in the
eigendynamics of the closed-loop system. In other words, they will affect the sys-
tem performance like a multiplicative process fault. Again, to isolate these faults,
additional sensors are demanded.

In practice, in particular in systems with integrated feedback control loops, it is
often the case that the system (reference) input keeps constant or changes slowly
over a relatively long time interval. On the assumption of a constant vector u, we
introduce the concept of weak isolability of multiplicative faults.

Definition 4.8 Given system (4.1)—(4.2) and let

0,
=1 :
0
with multiplicative faults 6;, i =1, ..., /. 0 is called weakly isolable, if for all con-
stant vector u € ﬂle Uexe;
0
T dp2o0.
90 |g=o

The theorem given below follows directly from Corollary 4.1 and the definition
of weak isolability of multiplicative faults.

Theorem 4.5 Given system (4.1)—(4.2) and let
01
0=|:
01
be a multiplicative fault vector with fault transfer matrix

Go(s) =[Go(s) - Gg®].
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Then, 6 is weakly isolable if and only if for all constant vector u € ﬂﬁzl Uexc,6;
rank [Gg1 Su -+ Gy (s)u] =1.

Comparing the results given in Corollary 4.1 and the above theorem makes it
evident that the existence condition for a weak isolability of multiplicative faults
can be remarkably relaxed.

Example 4.2 Consider again three-tank system DTS200. It is evident that it is im-
possible to isolate all eleven faults, since we only have three sensors. However, if
we are able to divide the faults into different groups and assume that faults from
only one group can occur simultaneously, then a fault isolation becomes possible.
For instance, if we divide the additive faults into two groups, a group with the sen-
sor faults and a group with the actuator faults, then we have, using the fault transfer
matrices given in the last section,

[A—sI Eg|
rank_ c FES__6
and
[A—sI Eg | _
rank_ c Fga__s
where
1 00
Eg =0, Fe=|0 1 0|, Eg,=[Ep Eg],  Fg,=0.
0 0 1

Thus, it follows from Corollary 4.2 that these additive faults are isolable on the
above assumption. As for the multiplicative faults, it follows from Corollary 4.1
that a group with three faults is generally not isolable. In fact, if it is assumed that
the six multiplicative faults are divided into three groups with (a) group 1: 61, 6>
(b) group 2: 63, 64 (c) group 3: s, b, then using the fault transfer matrices given in
the last section, we are able to prove that these faults are isolable.

4.4 Fault Identifiability

Roughly speaking, the concept of system fault identifiability is understood as a char-
acterization of system structure that is essential to re-construct faults from the sys-
tem output and input. From the mathematical viewpoint, fault identifiability charac-
terizes the mapping from the system output to the faults under consideration. If this
mapping is unique, then the faults are identifiable. Usually, we intend to express
this mapping in terms of the model from the faults to the system output, then the
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fault identifiability is equivalent to the model invertibility. Motivated by this fact,
we introduce the concept of fault identifiability in terms of, different from the fault
detectability and isolability, fault transfer matrices.

Definition 4.9 Given system (4.1)—(4.2) and let
Ge(s) = [Gg1 () -+ Gg (s)]

be the fault transfer matrix of fault vector £ = [£&] --- &]7. & is called identifiable
if G¢ () is invertible and its inverse is stable and causal.

Note that the requirements on the stability and causality of the inverse of G¢ (s) is
an expression for the realizability of inversing G¢ (s). It is evident that without these
two requirements, the fault identifiability would be equivalent to the fault isolability.
In another word, the fault isolability is a necessary condition for the faults to be
identifiable.

To understand the idea behind the definition of the fault identifiability, we now
consider different types of faults respectively. Let f(s) be a vector of additive faults
with fault transfer matrix G 7 (s). As shown in (4.11), the change of y(s) caused by
f(s) can be written as

Ay(s) =G r(s) f ().

If G ¢ (s) is invertible and its inverse is stable and causal, then it is possible to re-
construct f(s) based on the relation

[()=G7 (5)Ay (). (4.38)
Thus, fault vector f is identifiable. For a multiplicative fault fp,, we have
Ay(s) = Goy, ()L (u(1)0p;)

with GGB,- (s)=C(sI —A)"'B;. According to Definition 4.9, the idenfiability of 0,
means it is possible to reconstruct u(¢)6p; based on

L(u(t)0p,) = GgBt () Ay(s) = Boy, (5). (4.39)

Since system input u(¢) is generally on-line available, an identification of the fault
0p, can be achieved using the relation

OB, = (uT(t)u(t))_luT(t)ﬂ(;Bi (t) foru(r)#0. (4.40)
Analog to (4.39) and (4.40), we have the relations
E(u(t)@c,.) = G‘;le (5)Ay(s) := ,39Ci (s) 4.41)

bc, = (u” @u) " u” (1)Bse, (1) foru(t) #0
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E(u (I)OD,-) = Di_lAy(s) = /390,- (s) 4.42)

00, = (u” Ou(®) ™ u” (OBay, (1) for u(e) #0

for multiplicative faults 6c; and 6p, , respectively. Again, we can see that identifying
a multiplicative fault requires not only the invertibility of the fault transfer matrix
but also a sufficient excitation.

As to a multiplicative fault 64,, remember that the change in y caused by 6,4, can
only be approximated by

Ay(s) ~ Gy, ()L(u()0s;), Go, (s)=C(sI —A) ' Ai(sT—A)"'B

in case of a small 84,. In general, we have

TN At a4y 14 9 10y =0
— — ) = iQp.)— i X, — =
dt \ 90, A0, 304

i i

) (4.43)
F=(A+ Aifa)x + Bu, Ay=C-—""p,.
i 89Al i

It is evident that an identification of 6,4, would become very difficult.

Example 4.3 Consider three-tank system DTS200 with the fault transfer matrices
derived in Example 4.1. Since Vs

A—sl 0
k =6
ran |: c I3><3i|

the inverse of the transfer matrix of the sensor faults is stable and causal. According
to Definition 4.9, these faults are identifiable. In against, the additive actuator faults
and the multiplicative process faults are not identifiable.

4.5 Notes and References

Due to their important role in the FDI study, much attention has been devoted to the
concepts of fault detectability and isolability. In the early study, fault detectability
and isolability have often been defined in terms of the performance of the FDI sys-
tems used. Differently, in most of the recent publications on this topic, fault de-
tectability and isolability are expressed in terms of the structural properties of the
system under consideration. In order to distinguish these two different ways of defin-
ing fault detectability and isolability, we have adopted the notation system fault de-
tectability and isolability to underline the original idea behind the introduction of
these two concepts. They are used to indicate the structural properties of the system
under consideration from the FDI viewpoint.

Definitions of fault detectability and isolability can be found in the books pub-
lished recently, for instance [15, 25, 76, 142]. The interested reader may wonder
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about many different definitions of fault detectability and isolability. One may also
notice that most of these definitions are related to the additive faults. It is one of our
motivations to define fault detectability and isolability both for additive and multi-
plicative faults in a unified framework.

Confusion of the definition of fault detectability and isolability is often caused
by the way of defining faults. In some publications, a fault is also understood as
a vector. In this case, fault detectability requires a full (column) rank of the fault
transfer matrix to ensure that the occurrence of any fault would cause changes in
the system output. On the other hand, this definition yields a conflict with the fault
isolability defined on the assumption that a fault is a scalar variable and a fault vector
represents a number of faults. For this reason, in our study a fault is understood as
a scalar variable. This way of addressing faults also allows a unified handling of
additive and multiplicative faults.

In [92], the concept of input observability has been introduced. It has been, in
its original study, motivated by the input identification problem. Due to its close
relation to the FDI problems, this concept has been lately reformulated as fault de-
tectability for additive faults, see, for instance, [116]. As pointed out above and
shown in Sect. 4.3.2, the input observability is identical with the fault isolability
defined in our study. We would like to call attention of the interested reader that in
Sect. 4.3.2 we have restudied the existence conditions for the input observability.



Part 11
Residual Generation



Chapter 5
Basic Residual Generation Methods

The objective of this chapter is to establish a framework and to lay foundations
for the study on model-based residual generation. We shall address the concepts
of analytical redundancy and residual generation on the assumption of a perfect
system model, as sketched in Fig. 5.1, and introduce a general description form of
model-based redundancy and residual generators. On this basis, tasks of designing
model-based residual generators will be formulated.

Three types of residual generators including:

o fault detection filter (FDF)
e diagnostic observer (DO)
e parity relation based residual generator (PRRG)

will be introduced in this chapter. The main attention is paid to:

e the implementation and design forms of these residual generators,
e characterization of the solutions and
e interconnections among the different types of residual generators.

process

(plant) sensors
actuators > output

input
% faults % faults {;33 faults

model based ~ |redundancy post

redundancy - filter
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Fig. 5.1 Schematic description of model-based residual generation
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5.1 Analytical Redundancy

The concept analytical redundancy stands generally for an analytical re-construction
of quantities or parts of the system under monitoring. For the purpose of residual
generation, known as a comparison between system measurements and their redun-
dancy, the analytical redundancy is understood as a re-construction of the measured
quantities of the system under consideration.

Consider the following nominal model that describes the transfer behavior of the
system or a part of the system under monitoring,

V() =G yu(s)uls) GRY;

where y(s) represents the measured variable, for which a redundancy will be built,
and u(s) a process variable that may be the process input or even a measured vari-
able. A natural and in practice often applied method to re-construct y(s) is an on-line
parallel computation of input—output relationship (5.1)

Y(s) = Gyuls)uls)

where y(s) stands for an estimate of y(s) and is called analytical or software redun-
dancy. Although this kind of redundancy promises an easy on-line implementation,
its application in practice is questionable. In order to explain it, we extend the sys-
tem model (5.1) to

Y(8) = Gyu(s)u(s) + C(sT — A)~'x(0) + Ay(s) (5.2)

which includes the influence of the process initial state x (0) and model uncertainty
Ay(s), where the state space realization of G, (s) is assumed to be (A, B, C, D).
It turns out

r(s) = y(s) — $(s) = C(sT — A)~'x(0) + Ay(s) (5.3)
which means, in other words,

e the variation of r(¢#) from zero caused by x(0) # O disappears only when the
process is stable (i.e., A is stable), and even in this case the convergent rate ex-
clusively depends on the position of the eigenvalues of A in the complex plane

o the influence of the model uncertainty is not suppressed.

As aresult, the reconstructed variable may strongly differ from the original one (the
measured one).

From the viewpoint of control theory, the reason for the above-mentioned prob-
lems is evidently the so-called open-loop structure. A known solution is, therefore,
to modify the structure of the system (5.1) in such a way that a feedback loop is
built. A reasonable and typical form of such a modification is given by

3(5) = Gyu($)uls) + L(s)(y(s) = (). (5.4
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In comparison with the open-loop structured system (5.1), we see that the added
term L (s)( y(s) — y(s)) acts as a correction on y(s) that ensures a limited variation of
y(s) from y(s). This system is closed-loop structured and is of, by a suitable choice
of the feedback matrix L (s), the properties required for a redundancy system:

I. r(s)=y(s)—y(s)=0 forall u(s) (5.5)
1. tlingo (y(t) = $(®)) =0 for all x(0) (5.6)
II. the convergent rate is arbitrarily assignable (5.7)
IV. the influence of Ay(s) is suppressed. (5.8)

We now consider how to choose L(s).
It follows from (5.2) and (5.4) that

Y(5) = $(8) = Gyu()u(s) + C(sT — A)'x(0) + Ay(s)
— Gyu()u(s) — L(s)(y(s) — 3(5)) (5.9)
and furthermore
(14 L) (y() = () =C(sT = A)~'x(0) + Ay (s).
Do an LCF of C(sI — A)~! (see Sect. 3.2),
CsI—-A)'=(I-CsI—-A+ LC)*IL)’IC(sI —A+LC)!

with L ensuring A — LC stable. Recall our task is to select L(s) so that (5.5)—(5.8)
are fulfilled. To this end, we have to, knowing from linear system theory, cancel the
poles of transfer function matrix C(s/ — A)~!, which are obviously the zeros of
matrix / — C(sI — A+ LC)~'L. Setting
I+Ls)=(I—-C(sI—A+LC)™'L)”"

and noting the following equality

"1t cGr—A)7L (5.10)

(I-CGI—A+LO)™'L)”
give
I+L(s)=14+CsI—A)'L = L(s)=C(sI—A)"'L. (5.11)
Substituting (5.11) into (5.9) yields
¥() = 9() =C(sI —A+LO)'x(0)+ (I — C(sT — A+ LC)"'L) Ay(s).

On the assumption that (C, A) is observable, by choosing L suitably we can ar-
bitrarily assign the poles of C(sI — A + LC)~! and simultaneously suppress the
influence of Ay(s).
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It is evident that the system (5.4) with L(s) given by (5.11) satisfies conditions
(5.4)—(5.8). However, a slight modification is needed such that (5.4) is presented in
a suitable form for an on-line implementation. To this end, consider the relation

$(5) =G yu()uls) + C(sI — A" L(y(s) — $(5))
= (I+C6I=A)TL)F(s) =Gyu()uls) + CsI — A" Ly(s)
and thus, by Lemma 3.1 and (5.10),
5(s)=(D+C(sI —A+LC) (B — LD))u(s)
+C(sI —A+LC) 'Ly(s). (5.12)
With the aid of these relations, (5.12) can be brought into a compact form
$(s) = Nu($)u(s) — (My(s) = I)y(s) (5.13)

with M, (s), N, (s) denoting an LCF of G, (s), that is, Gy, (s) = M ' (s)N,,(s).
(5.13) describes a dynamic system whose input is u#(s), y(s) and output an esti-
mate of y(s). This system is stable and will converge to y(s), independent of u(s),
x(0), with an arbitrarily assignable velocity.
Let’s write (5.12) in the state space

% =A%+ Bu+L(y — CZ — Du) (5.14)
$=C% + Du. (5.15)

It becomes evident that it is the well-known state observer. We call therefore sys-
tem (5.13) or equivalently (5.14)—(5.15) output observer. As an estimate for y(s),
$(s) and the associated algorithm are also called soft- or virtual sensor or analytical
redundancy.

We summarize the main results of this section in a theorem.

Theorem 5.1 Given a transfer function matrix Gy, (s) € LR" *ku \with the state
space realization (A, B, C, D), then signal y(s) delivered by system (5.13) or equiv-
alently (5.14)—(5.15) re-constructs y(s) in the sense of (5.5)—(5.8).

The output observer builds the core of a residual generator. As will be shown in
the next section, residual generator design can be reduced to the construction of an
output observer.

Remark 5.1 The original idea of using system model to construct redundancy and
residual signals goes back to the works by Beard and Jones, in which a state ob-
server in a quite similar form to (5.14)—(5.15) was used for the purpose of the out-
put re-construction. Since then, this approach is widely and successfully used in
dealing with FDI problems under the name observer-based approach and has now
become one of most powerful techniques in the field of model-based fault diagnosis.
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Unfortunately, the expression observer-based approach often leads to the misunder-
standing that a state observer is necessary. This is also the reason why we have paid
much attention to the introduction of analytical redundancy construction using pro-
cess input—output relationship.

We would like to conclude this section with the following comments:

e What we need for the residual generation is the input—output behaviors of the
process under consideration.

e The state observer form (5.14)—(5.15) provides us with a numerical solution for
the purpose of creating analytical redundancy. It is not the only solution and, in
some cases, also not the best one.

e The use of the state observer form (5.14)—(5.15) is based on the assumption that
Gyu(s) has the state space realization (A, B, C, D). Known from the linear sys-
tem theory, it means that only observable and controllable parts of the process
are taken into account. From the viewpoint of residual generation, the system ob-
servability and controllability are in fact not necessary for the use of the so-called
observer-based FDI scheme.

5.2 Residuals and Parameterization of Residual Generators

In the context of FDI study, a residual signal is understood as an indicator for the
possible faults. The most important characteristic features of a residual, 7 (s), are

I tl_i)rgor(t) =0 forall u(t),x(0) and Ay(¢t) =0 (5.16)
. r(s)=Grp(s)f(s), Grp(s)#0 (5.17)

where G, (s) denotes a transfer matrix from the fault vector f to the residual vec-
tor . Using the output observer (5.13), we are able to generate a residual by a
comparison of $(s) with y(s):

r(s) = y(s) — $(s) = My (s)y(s) — Ny (s)u(s). (5.18)

On the other hand, we know that a signal constructed by for example, R(s)(y(s) —
y(s)), where R(s) # 0 is some (stable) transfer matrix or vector, is also a residual
in the sense of (5.16)—(5.17). This motivates us to ask: What is the general form of
a residual generator? It is reasonable to assume that all residual generators can be
expressed in terms of

r(s)=F)u(s)+ H(s)y(s), F(s), H(s) € RHoo (5.19)

where F'(s) and H(s) represent two stable systems with appropriate dimension.
Thus, the answer to the above question can be concretely re-formulated as a search
for the existence conditions for F(s) and H (s), under which residual r(s) fulfills
conditions (5.16)—(5.17).
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Substituting (5.1) into (5.19) yields
r(s) = F()u(s) + H($)Gyu(s)u(s) = (F(s) + H($)G yu(5))u(s).
We see that the system (5.19) delivers a residual only if
F(s)+ H(s)Gyu(s)=0
which can be further written into
F(s)My(s) + H(s)Nu(s) =0 (5.20)

with (M, (s), N, (s)) denoting a RCF pair of Gy, (s). The following theorem shows
under which conditions (5.20) holds.

Theorem 5.2 Let

° (ﬁu (s), ﬁu (s)) and (M, (s), Ny (s)) be left and right coprime factorization pair
of transfer function matrix Gy, (s) € LR™ K

e Y(s), X(5), ?(s), X (s) be RHoo-matrices with appropriate dimensions that sat-
isfy the Bezout identity (3.14)

o K(s) be ak, x ky,-dimensional R H ~-matrix.

Then, the set of RH~o-matrices F(s), H(s) satisfying
F()My(s) + H(s)N, () = K (s) (5.21)
is given by
F(5)=K(©)X($) = R6N(s).  H()=K()Y () +R6)M(s) (5.22)

where R(s) belongs to RH~ and is a k, x m-dimensional R H . parameterization
matrix. Furthermore, for every k, x m-dimensional R'H ., parameterization matrix
R(s), F(s), H(s) satisfying (5.22) ensure that (5.21) holds.

Proof Suppose F(s) and H (s) satisfy (5.21) and define

_ —Y(s)
R(s)=[F(s) H(s)] [ 20) }
which, considering that F(s), H(s), X (s) and Y(s) are R H, matrices, belongs to
R Hyo. It results in

My (s) —?(s)}‘

[Fes) H®]=[K® R(S)][N(S) XGs)

from which (5.22) follows. To prove that every F(s), H(s) given by (5.22) satisfy
(5.21) we use the double Bezout identity (3.14). Suppose F(s), H(s) satisfy (5.22).
Then,
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F(s)My(s) + H(s)Ny(s)

B X(s) Y(s) M,(s)
= [K(S) R(S)] |:_1’\7u(s) Mu(g)i| I:Nu(s)]

1
= [K(s) R(s)] |:0:| = K(s).
Hence, they ensure that (5.21) holds. O

Setting K (s) in Theorem 5.2 equal to null-matrix gives all solutions of (5.20)
and thus a parameterization of all residual generators.

Theorem 5.3 GiveiL transfq Sfunction matrix Gy, (s) € LR with a left coprime
factorization pair (M, (s), N, (s)), then

r(s) = R(s)(My(s)y(s) — Nu(s)u(s)) (5.23)

represents a parameterization form of LTI residual generators in the sense that

e for every residual generator we can find a R Ho-matrix R(s) such that the resid-
ual generator is expressed in terms of (5.23)
o for every R(s) € RHoo system (5.23) delivers a residual satisfying (5.16)—(5.17).

A comparison with (5.18) reveals that any residual generator can be considered
as an extension of an output observer-based residual generator. Recall that

M, (5)y(s) — Ny (s)u(s) = y(s) — $(s)

where y is delivered by (5.14)—(5.15). Thus, we can also write any residual generator
in the state space representation form as follows. Let R(s) = (Ar, Bg, Cr, D) and
xg denote the state vector of dynamic system R(s). It holds

x A-LC 01][# B L1Tu
|:)'6Ri|:|:—BRC AR:||:XR:|+|:_BRD BRi||:yi| (5.24)

A

r=[-DgC CR][xxR}+[—DRD DR][H. (5.25)

In this context, any residual generator is a composition of an output observer and a
dynamic system R(s). These two parts may take different functions:

o the output observer builds the core of the residual generator and is used to recon-
struct system behavior so that the preliminary form of residual signal, y(s) — $(s),
provides us with information about the variation of the system operation from its
nominal value

e the dynamic system R(s) acts as a signal filter and can, by a suitable selection,
help us to obtain significant characteristics of faults, as will be discussed in the
forthcoming chapters. Thus, R(s) is also called post-filter.
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Example 5.1 Consider the laboratory system CSTH given in Sect. 3.7.5. We would
like to parameterize all residual generators for CSTH according to Theorem 5.3.
Below are the achieved results:

R Mii(s) Muia(s)  Mis(s) R Nit(s)  Nials)
My(s) = | Mai(s) Ma(s) Mas(s) [, Nu(s)=| Nai(s) Naa(s)
M31(s) Msa(s) Msz(s) N31(s)  N3o(s)
o~ S o~ o~
M =, M =0, M =0
11(s) ST 100 12(5) 13(5)
—~ 626.4s +7.592 x 1074 —~ s + 0.0059
M = M = —-—
21(s) 3512 ) 2(s) )
ii ) —36.55s — 0.04816 ii (5)=0 ii (5)=0
S) = . S)= . S) =
> s2+554+6 ! 2
—~ s +0.0012 ~ 31.83 ~
M = N = —, N =0
33(s) 13 1(5) P 12(5)
ot (5) 1.994 x 10* Fints) —1.111 x 10° Fai(s) = 0
S) = —_, S)= —_—, S) =
21 213542 2 245546 i
sy = AL 10*
() =—""3

The parameterization form of the all residual generators is expressed by

r(s) = R(s)(My(s)y(s) — Nu(s)u(s)), R(s) € RHoo.

5.3 Issues Related to Residual Generator Design
and Implementation

Having addressed the parameterization form of LTI residual generators, we are now
faced with a practical task: how to design a residual generator described by (5.23).
Taking a look at (5.23) and recalling the meaning of R(s), A’/iu (s) and ﬁu (s) make
it clear that there exist indeed two design parameters (parameter matrices): the ob-
server gain matrix L and the post-filter R(s). The question arises: How to choose L
and R(s)?

Remember that the main objective of applying a residual generator is to make
the residual signal as sensitive to faults as possible and simultaneously as robust as
possible against the model uncertainty. For this reason, we first study the dynamics
of residual generator (5.23). Let us consider system model of the form

V() =Gyu($)uls) + Gyr(s) f(s) + Ay(s)
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and substitute it into (5.23). We immediately see that the dynamics of residual gen-
erator (5.23) is governed by

r(s) = R(s)My (s)(Gyr(s) f (5) + Ay (s)). (5.26)

Obviously, the problem of residual generator design can be simply formulated as
finding R(s) € RHoo and L ensuring the stability of matrix A — LC such that

° R(s)[\z,, (s)G f(s) is as large as possible and simultaneously
e R(s)M,(s)Ay(s) is as small as possible.

In fact, the so-called observer-based residual generation approaches reported during
the last three decades serve only for one purpose, i.e. finding R(s) and L, although
different mathematical and control theoretical tools have been applied, the structures
of residual generators are various and the achieved results appear quite different.
These approaches will be described in the subsequent sections of this chapter.

We now have two different forms of residual generators, (5.23) and (5.26). (5.23)
presents an explicit form that describes the structure and the possible algorithm for
the on-line implementation. We call it implementation form of residual generators.
In some references, it is also called computational form. Note that all variables and
transfer matrices used in (5.23) are known or measurable. In against, the variables f,
Ay in (5.26) are unknown. Thus, (5.26) is an internal form that provides us with the
dynamics of the FDI system and used for the purpose of residual generator design.
For this reason, we call it design form of residual generators.

Remark 5.2 There exist a variety of methods for the on-line realization of imple-
mentation form (5.23). We can use, for instance, the state space realization similar
to (5.14)—(5.15) or transfer matrices. It is independent of the method used for the
determination of L and R(s). Our main attention in the following will be paid to
the methods of residual generator design. The reader should keep in mind that the
on-line implementation can be carried out independent of the design form used. One
can use for example, state space scheme for the on-line implementation even if L
and R(s) are calculated by means of a frequency domain approach.

In our subsequent study, (5.23) and (5.26) will play an essential role for the intro-
duction and analysis of residual generation schemes. We call them therefore general
forms of residual generators.

5.4 Fault Detection Filter

Fault detection filter (FDF) is the first type of observer-based residual generators
proposed by Beard and Jones in the early 1970s. Their work marked the beginning
of a stormy development of model-based FDI techniques.

Core of an FDF is a full-order state observer

£=A%+ Bu+L(y— C% — Du) (5.27)
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which is constructed on the basis of the nominal system model Gy, (s) = C(sI —
A)~!'B + D. Built upon (5.27), the residual is simply defined by

Introducing variable e = x — X yields
ée=(A—LCQC)e, r=_Ce.

It is evident that r has the characteristic features of a residual when the observer
gain matrix L is so chosen that A — LC is stable. In this case, X also provides a
unbiased estimation for x, that is,

tlirgo(x(t) — (1) =0.

The advantages of an FDF lie in its simple construction form (5.27)—(5.28) and, for
the reader who is familiar with the modern control theory, in its intimate relationship
with the state observer design and especially with the well-established robust control
theory by designing robust residual generators.

We see that the design of an FDF is in fact the determination of the observer gain
matrix L. To increase the degree of design freedom, we can switch a matrix to the
output estimation error y(s) — y(s), that is,

r(s)=V(y(s) — $(s)). (5.29)

As discussed in the last section, (5.27)—(5.28) can be interpreted as a state space
realization of Mu (s)y(s) — ﬁu (s)u(s). It thus turns out that an FDF is indeed a
special form of residual generator (5.23), namely the post-filter is a unit matrix for
an FDF given by (5.27)—(5.28) or a certain algebraic matrix for an FDF given by
(5.27) and (5.29). A disadvantage of FDF scheme lies in the on-line implementation
due to the full-order state observer, since in many practical cases a reduced order
observer can provide us with the same or similar performance but with less on-line
computation. This is one of the motivations for the development of Luenberger type
residual generators, also called diagnostic observers.

Example 5.2 Given CSTH with model (3.84). For the residual generation purpose,
an FDF of form (5.27)—(5.28) is designed with the same observer gain as used in the
LCEF, that is,

0.0314 0 0
L=1|-16238 x 107 5.1689 x 10* 9.4743 x 10°
0 0 2.9988

which ensures a stable FDF with poles

S1=—3, 522—2, S3=—1.
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5.5 Diagnostic Observer Scheme

The diagnostic observer (DO) is, thanks to its flexible structure and similarity to the
Luenberger type observer, one of mostly investigated model-based residual genera-
tor forms.

5.5.1 Construction of Diagnostic Observer-Based Residual
Generators

The core of a DO is a Luenberger type (output) observer described by
:=Gz+ Hu+ Ly, $=Wz+Vy+ Qu (5.30)

where z € R®, s denotes the observer order and can be equal to or lower or higher
than the system order n. Although most contributions to the Luenberger type ob-
server are focused on the first case aiming at getting a reduced order observer, higher
order observers will play an important role in the optimization of FDI systems.
Assume Gy, (s) = C(sI — A)~"'B + D, then matrices G, H, L, Q, V and W to-
gether with a matrix 7 € R¥*" have to satisfy the so-called Luenberger conditions,

I. G is stable (5.31)
II. TA-—GT=LC, H=TB—LD (5.32)
. C=WT+VcC, Q0=D-VD (5.33)

under which system (5.30) delivers a unbiased estimation for y, that is,
lim (y(r) — 3(t)) =0. (5.34)
11— 00

To show its application to residual generation, we consider a dynamic system with
e = Tx — z as its state vector and y — J as its output. It turns out, according to
(5.31)—(5.33),

é=Ge, y—39=We (5.35)
which ensures (5.34). On account of (5.35),
r=V*(y—-y), V*#0 (5.36)
builds a residual vector, whose dynamics is described by
z=Gz+ Hu+ Ly (5.37)
r=V*—V*Wz—-V*Vy —V*Qu=Vy—Wz— Qu (5.38)
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where
V=V*I-YV), W=V*W, 0=V*Q.

Thus, for the residual generator design condition III given by (5.33) should be re-
placed by

1. vC-WT =0, Q0=VD. (5.39)

Remember that in the last section it has been claimed all residual generator design
schemes can be formulated as the search for an observer gain matrix and a post-filter.
It is therefore of practical and theoretical interest to reveal the relationships between
matrices G, L, T, V and W solving Luenberger equations (5.31), (5.32), (5.39) and
observer gain matrix as well as post-filter.

A comparison with the FDF scheme makes it clear that

e the diagnostic observer scheme may lead to a reduced order residual generator,
which is desirable and useful for on-line implementation

e we have more degree of design freedom but, on the other hand

e more involved design.

Having shown the importance of Luenberger equations (5.31)—(5.32), (5.39) in de-
signing diagnostic observers, we concentrate our attention in the following on their
solutions.

Remark 5.3 On account of its importance in observer design, solution of Luen-
berger equations has received much attention in the 1970s and 1980s, and a large
number of algorithms and studies have been published during this period. On the
other hand, unlike most of observer design approaches, in which the observers are
usually designed for the estimation of unmeasurable variables, the objective of using
a diagnostic observer is to re-construct measured variable. This difference, being ob-
servable by III condition (5.33), also motivated studies on characteristic properties
of the special form of Luenberger conditions given by (5.31)—(5.32), (5.39).

5.5.2 Characterization of Solutions

In this subsection, a characterization of the solutions of Luenberger equations (5.31),
(5.32) and (5.39) will be derived. Some results will be used in the sequel and help
us get an insight into the structure of observer-based residual generators. We shall
concentrate ourselves on the following topics:

e existence conditions
e minimum system order and
e parameterization of solutions.

Without loss of generality, we first make the following assumptions:
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e the pair (C, A) is given in the canonical observer form, that is,

Al o A
A=| Colermr, Cc=[C C|eR™"
_Aml Amm
B 0 0 0 &’i" 7]
1 0 O 0 ay
_ 1 0 -~ 0 ay
Aii=1|. . .o . ) eRO*, i=1,...,m
0 0 1 0 a_
L 0 0 0 1 a |
[0 ... 0 g,if_
A,'j: Do L EeERYY mz=i>j, j=1,....m—1
0 --- 0 ‘_"i’j..f
0 ... 0 5?'
Ay=|: o p RO mzjsii=1 . m—1
L0 -~ 0 sz,{_
Ci=[0 -+ 0 &|eR™%, i=1,..m
& =[0 - 0 1 Gip1 - Gm] €eR™, i=1,....m
where o1,...,0, are the observability indices satisfying oy,...,0, > 1,

> /L, 0i =n. We denote the minimum and maximum observability indices with
Omin = Min; 0; and omax = Max; o; respectively

o the residual is a scalar variable, that is, r € R, and thus Q, V, W will in the
following be replaced by ¢, v, w, respectively

e matrices G, w take the following form

0 0 0
1 0 0 g1
G=[G, g]. G,= S erRETD g=| 1 | RS
0 1 0 8s
0 1
(5.40)
w=[0 -+ 0 1]eR". (5.41)

Note that (5.40)—(5.41) represents the observability canonical normal of the
residual generator

e=Ge, r=we.
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It is well known that by a suitable regular state transformation every observable pair
can be transformed into the form (5.40)—(5.41). Therefore, the last assumption loses
no generality.

To begin with our study, we split A into two parts

A=A,+L,C, A,=diag(A,1,...,Aom) (5.42)
[0 0 0 --- 0
1 0 0 --- 0
Ai=]0 1 0 - Ofepoixa =1 . . m L,CeR™
| 0 0 1 0
0 ... 0 51;1 0O --- 0 5,}2 R ) T ¢ gl%m'
0O --- 0 51(1”1 0O --- 0 551712 R T ¢ &;’1”
L0C: . . . . . . . . . .
0 --- 0 5'1"1 0 --- 0 gl?ﬂ e 0 - 0 apm
0 -~ 0 &Z’ml 0O --- 0 5131”‘2 e 0 e 0 arm

The pair (C, A,) is of an interesting property that is described by Lemma 5.1 and
will play an important role in the following study.

Lemma 5.1 Equation

PoC + p1CAy+ -+ piCAl + p,CAS =0, 5>0 (5.43)
holds if and only if
piCA =0, i=0,...,s. (5.44)
Furthermore, vectors p;,i =0,...,s, satisfy

pi=0, i=0,....0mn—1;  piCA,=0. i=0min.....0max—1 (5.45)
and pji, i > omax, are arbitrarily selectable.
Proof Firstly, note that AZ =0, i > omax, hence we have

ijA£=O, forall p;, j > omax and so
PoC+piCAy+---+ p;CAy =0 = p,C+piCA,+---+ pICA, =0

with / — {Gmax —1 fors > omax

for s < omax.
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We now prove (5.44) as well as (5.45). To this end, we utilize the following fact:
for a row vector ¢g(#£0) =[q1 -+ gm ] € R™ we have

qCAL=[q1 -+ qu]. j=0
with the row vector g; € R satisfying

forj>o;, ¢ =0, and

forj <oi, g=[0 -+ 0 g& 0 --- 0]

where the entry ge; lies in the (o; — j)th place. Thus, the nonzero entries of two row

vectors p;C Aé and p;C A}, i # j, are in different places. This ensures that (5.43)
holds if and only if

p;CAL =0, j=0,...1

Note that rank(CA{;) =rank(C) =m, j =0, ...,omin — 1. Hence, we finally have:
for j =0,...,0min— 1

piCA,=0 < p;=0.
The lemma is thus proven. g
‘We now consider (5.32) and rewrite it into
TA,—GT=LC, L=L-TL, A,=A-L,C

and furthermore

ToAo| 7] _[Ls ToAo] .= [Ls
L]t V][] = [d]-em=[T]ere

(5.46)
where
_ n _ l_l
_ TA  _ . r o L_v roo_
T_I:tvi|, s=1 |, L_|:lé:|, Li=|
ts—1 Iy
Writing G, as
0O --- 0
1 0 --- 0
G, = |:C(;)1 (1)i| Gi=|: . . :|eREDxED
0 1 0
0 0 1



86 5 Basic Residual Generation Methods

and considering the last row of (5.46) result in
tsAg —t1 =L[,C+ gty &= 11 =134, — (I,C + gyty). (5.47)
Repeating this procedure leads to
ts—2 =1 1Ay — (ls_1C + gs_11y)
= 1,45 — (,-1C +1,CAg) — (g5—11s + 85t Ap)

=134, — (I3C + gaty) (5.48)
= 1,452 — (BC+ -+ CAS) — (g3t + -+ + gst,AST)
11 =104, — (LC + gaty)
= 1,AS = (hC + -+ ,CAS?) — (gaty + - - + g51,A572).
Finally, from the first row of (5.46) we have
1A, =10C+ gits. (5.49)

(5.47)—(5.49) give a kind of characterization of all solutions of (5.32), based on
which we are going to derive the existence condition of residual generators.
To this end, we first consider (5.39). Since v # 0, it is evident that the equation

T
wl —vC=0 < [w -] [c] =0
is true if and only if the last row of matrix T linearly depends on the rows of C.
Based on this fact, the following existence condition can be derived.

Remark 5.4 1t is worth pointing out that the above fact is contrary to the existence
condition of a Luenberger type state observer which requires the linear indepen-
dence of the rows of 7' from the ones of C. The reason for this is that state ob-
servers and observer-based residual generators are used for different purposes: state
observers are used for the estimation of unmeasurable state variables, while the
observers for the residual generation are used for the estimation of the output vari-
ables.

Theorem 5.4 (5.32) and (5.39) are solvable if and only if
S > Omin- (5.50)

Proof Here, we only prove the necessity. The sufficiency will be provided below in
form of an algorithm. The fact that the last row of matrix T is linearly dependent on
the rows of C can be expressed by

ts = v, C
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for some v # 0. This leads to

fs—1 =154 — (I_AC + gsts) = V;CAp — (l_sc + 8sls)

1 =0,CAS — (RC+ -+ ,CAS?) — (gaty + -+ + g1, AST2).
Substituting #; into (5.49) gives
5,CAS — (LC+0LCA,+ -+, CAS ) = gity + gats Ap + -+ + gst, AL
and further
U5CAS — (I 4 g195)C — - — (Iy + g5 05)CAS = 0.
Following Lemma 5.1, we know that the above equation holds only if
S = Omin-

Thus, the necessity is proven. O
Based on this theorem, we can immediately claim the following corollary.

Corollary 5.1 Given system G,(s) = C(sI — A)~'B + D, the minimal order of
residual generator (5.37)—(5.38) is Omin-

We now derive an algorithm for the solution of (5.31), (5.32) and (5.39), which
also serves as the proof of the sufficiency of Theorem 5.4.
We begin with the following assumption

ty=v,C, v;#0
and suppose § > opin. According to (5.47)—(5.48) we have

ts_1 = v,CA, — (Iy + g5 05)C (5.51)

t=0,CAS — (L +20,)C — - — (Iy + g 8,)CAS2. (5.52)
Substituting #; into (5.49) yields
U,CAS — (I; 4 g195)C — (I + g20)C Ay — - — (Iy + gs05) CAS™ = 0. (5.53)
Following Lemma 5.1, (5.53) is solvable if and only if

U,CAS =0, 0;,#0 (5.54)
(s + g0)CAS =0, ..., (o t1 + Zopyy1105)CATMn =0 (5.55)

lomin + 8omin0s =0, ..., 114810, =0 (5.56)
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and furthermore, since s > op;p, (5.54)—(5.56) are solvable. In order to simplify the
notation, we introduce vectors v;, i = Omin, --.,S — 1, defined by

i =liy1 + 8105, (ip1 + 8ip105)CAL =0.
With the aid of these results, the following theorem becomes evident.

Theorem 5.5 Given s > omin, then matrices L, T, v, w defined by

0 0 Vo oo Us | [ C 7]
0 e Vg v, 0 CA,
0 by, - By - O C A% Oomin=1
T= o e 0 .. 0 C ASOmin (5.57)
Us—1  Us 0 o --- 0 CAsS2
| Vs 0 0 0 - 0] L CAzfl A
i —81s ]
_g21_)s
L=L+TL, L=| _ ~Somal _ (5.58)
“Vomin — 80min+1Vs
—Us—2 — gs—1Vs
—Vg—1 — &sUs
w:[O - 0 1], V=7 (5.59)
solve (5.32) and (5.33) for all g1, g2, ..., g that ensure the stability of G, where
Vomax—15 - - - » Vo, @F€ the solution of the following equations
Vo1 CAI =t =0 g, CA%min =( (5.60)
Vomax» - - - » Us are arbitrarily selectable and vg # 0.

The proof follows directly from (5.51)—(5.56) as well as Lemma 5.1.

Together with (5.60), Theorem 5.5 provides us with an algorithm for the solution
of Luenberger equations for the residual generator design. We see that the solution of
(5.32) and (5.39) is reduced to the solutions of equations given by (5.60). From oypax
up, increasing the order s does not lead to an increase in computation. In fact, once
(5.60) are solved for Vg, —1, . .., Ugy,,» We are able to design residual generators of
arbitrary order without additional computation.

From the above algorithm, we know that the solution for (5.32) and (5.39) is
usually not unique, since the solutions of equations given by (5.60) is not unique



5.5 Diagnostic Observer Scheme 89

(see also below) and, if s > omax, vectors v;, i = Omax, - - -, S, are also arbitrarily
selectable. It is just this degree of freedom that can be utilized for designing FDI
systems. This also motivates the study on the parameterization of solutions, which
builds the basis of a successful optimization.

For our purpose, we first rearrange the matrix 7' given by (5.57) as a row vector:

n
T _ : new arrﬂgement [ | ts ] = i\
tg
then we have, following Theorem 5.5,
f = [l_)o'min ‘l_)o-min‘F1 e l_)s ] Q
CAgmn—t ... C 0 .0
0= C Agmin e CA, C
: g : . 0
CA;V)—I . CA‘:')*Umin CA;*‘Tmin*1 C

Let us introduce the notation

Nbasis = diag(Nami,,, cees Ncrmax—l, Imxm, ) Imxm)

where N; € R(m—mi)xm s 1 = Omin, - -, Omax — 1, stands for the basis matrix of left
null space of matrix C A} with

m; =rank(CA)).
It is evident that any vector [ Vs, ;, Vopm,4+1 - Us] can be written as
[ﬁomin ﬁamjn+1 t ﬁs ] = 1_)Nbasis
where v # 0 is a vector of appropriate dimension. This gives the following theorem.

Theorem 5.6 Given s > omin, then matrix T that solves (5.32) can be parameter-
ized by

CAgmn=1 ... C 0 e 0
Omin . .
f = UNpasis CAo CAo ¢ (5.61)
: " : " 0
CAS™' ... cAyomn cAyomnT! c

The proof is evident and therefore omitted.
It follows from Theorems 5.5 and 5.6 that

e for every solution of (5.32), we are able to find a vector v # O such that this
solution can be brought into the form given by (5.61)
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e on the other hand, given a vector v # 0 we have a T and further a solution
for (5.32).

In this sense, the vector v # 0 is called the parameterization vector. Note that

rank(Npqsis) = number of the rows of Npggis

Omax—1
=m(s — Omax + 1) + Z (m —m;)
i=0min
<m(s + 1 — omin) = number of the columns of Npgis (5.62)
and moreover
CAgmn=1 .. C 0 e 0
Omin .
rank CA, CA, C
: . : : 0
cas~t ... cAy o cayomn! c
=m(s + 1 — omin) = number of the rows. (5.63)

Thus, we have the following corollary.

Corollary 5.2 (5.32) has m(s —omax + 1) + Z?’:“?m_ml (m —m;) linearly independent
solutions.

Remark 5.5 If s < omax, the number of the linearly independent solutions is given
by 2:A;‘:Umin (m - mi).

Remember that at the beginning of this sub-section we have made the assumption
that the observable pair (C, A) is presented in the canonical form. This assumption
can be removed by noting the fact that the results given Theorems 5.5 and 5.6 are
all expressed in terms of the observability indices, matrices A,, CAZ. It is known
from the linear control theory that the observability indices, matrix A, are structural
characteristics of a system under consideration that are invariant to a regular state
transformation. Moreover, for any regular state transformation, say Ts;, we have

TA-GT=LC <= TT,T,;'ATy;—GTTy;=LCTy
WC—wT =0 <«<— vCTy —wlTy=0
H=TB—-LD <<= H=TT,T;'B-LD
that is, the solutions G, H, L, ¢, v, w and so that the construction of the residual
generator are invariant to the state transformation T;. This implies that the achieved

results hold for every observable pair. In the next sub-section, we are going to dis-
cuss this point in more details.
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5.5.3 A Numerical Approach

Based on the result achieved in the last sub-section, we now present an approach to
solving Luenberger equations (5.31)—(5.32) and (5.39).

We first consider Theorem 5.5, in which a solution is provided on the assumption
of available A, and L,,. Although A, and L, can be determined by (a) transforming
(C, A) into observer canonical form (b) solving equation L,C = A — A, for L,,
the required calculation is involved and in many cases too difficult to be managed
without a suitable CAD program. For this reason, further study is, on account of
Theorem 5.5, carried out aiming at deriving an explicit solution similar to the one
given by Theorem 5.5 but expressed in terms of system matrices A, C.

For our purpose, the following lemma is needed.

Lemma 5.2 Given matrices A,, B, C, E, F and L, with appropriate dimensions,
then we have fori =1,...,s

F T B I 0 0 e 0 F
CE —CLy 1 0 0 CE
CALE | _ | —CA,Ly —CLy 1 0] CAE | (5.64)
CAIE| | -CAiLy —CA"'Ly .-+ —CLy I||CALE
E=E—-L,F,Ay=A,+L,C
Cc B I 0 . 0 c
C,.AO _ _cL, It : C(A(,i|—L0C) 5:65)
. . : .. .. 0 . )
1 . L
CAO_ __CAZ_ILU —CLU I C(A0+L0C)
The proof is straightforward and thus omitted.
Let us introduce matrix H; defined by
—CAJm L, .. —CL, I 0 - 0
—CAg™L, --- —CA,L, —CL, I
H| =
—CAS 'L, - —CAY O™ L, —CAY ™ 'L, ... —CL, 1
Note that
C CAgmin
CA CAgmin"rl
H, . =

CA CAS
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whose proof can readily be obtained by using equality (5.65). It turns out

oo
CAOmm C
Omin+1
_ B B CAomm _ CA
[Ugmin UO’min"l‘1 o Uy ] . = Vs H] . = O
CA} CA*
where Vg, Voin+1, - - - » Us satisfy (5.60) and v, is some nonzero vector. We now
define a new vector
Vs = [vs,() Us,1 =+ Usgs ] = U5 Hj

and then apply (5.65) to (5.57)—(5.58). As a result, we obtain

_ - Cc
Us,1 VUs2 +++ Usgs—1 VUss CA Us,0
Vg2 =00 e Vs, s 0 Vs, 1
T = , L=- . — 8Vs,s
. . . . . CAS_Z .
vy 0 e e 0 | g Vss1
_ - c 7 _
Us,1 VUs2 ++ Usgs—1 Uss CA Vs,0
Vs,2 Us,s 0 Vs, 1
H= . . . . . B+ ) D+ gvs D
. . . . . CAS_2 .
v 0 ... ... 0 Ve o
L Us,s a _CAS_I i L Us,s—1
_ D _
Vs,0 + &1Vs,s Us,1 VUs2 +++ Uss—1 VUss CB
Vs, 1+ 82Vs,s Us2 =00 ot Us,s 0 CAB
| Uss—1+8sUss Uss 0 oo e 0 | CA™’B
| CASTIB |

V= U, q=vD =v,D.

We are now in a position to remove the assumption, on which Theorem 5.5 is de-
rived. To this end, we suppose that (C, A) is given in the observer canonical form
and the system under consideration is given by PAP~!, CP~!, PB with P denot-
ing any regular state transformation. Note that

TA-GT=LC <<= TP 'PAP'—GTP '=LCP™! (5.66)
H=TB—LD <<= H=TP 'PB—LD (5.67)

WC—wl =0 <= vCP '—wTP'=0 (5.68)
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cpl
Us, 1 Us2 0 VUss—1  Usys cPlpap-!
vS,Z “e. e US,X 0 1
) =7P7 ! (5.69)
v O 0 :
cpP~'(pAp~ly~1p~!
C cp!
CA cplpap!
| L =0 = . =0. (5.70)
CA’ CP(PAP™)

We finally have the following theorem.

Theorem 5.7 Given system model Gy, (s) = C(sI — A)~'B + D and suppose that
§ > Omin and

Us . =0, v = [Us,() Us,1 =+ Usys ] (5.71)
CA*

then matrices L, T, H, q, v, w defined by

C
Vg1 Vg2 -+ VUsgs—1 VUss CA
U‘Y,Z vS,S O :
T = . ) ) . . ) (5.72)
Us,s 0 0 CA's72
CAs—l
Us,0
Us,1
L=— . — 8Us.s» w:[O - 0 1], v=u55 (5.73)
Vs, s—1
_ D _
Vg0t &1Vs,s Us,1 VUs2 -+ Usgs—1 Uss CB
H Vs, 1 +.g2vs,s US',Z e Us;,s O CAB
q = : : IR : . . (5.74)
Us,s—1 + 8sVs,s  Us,s 0 T 0 0 CAs.—ZB
Vs, s 0 0 0 0 _CASilB_
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solve the Luenberger equations (5.31)—(5.32) and (5.39), where vector g should be
so chosen that the matrix G is stable.

It is clear that once the system matrices are given we are able to calculate the
solution of Luenberger equations (5.31)—(5.32) and (5.39) using (5.72)-(5.73). To
this end, we provide the following algorithm.

Algorithm 5.1 (Solution of Luenberger equations (5.31)—(5.32) and (5.39))

S1: Set s > omin

S2: Solve (5.71) for vs,0, ..., Vs,s

S3: Select g such that G given in (5.40) is stable

S4: Calculate L, T, H, q, v, w according to (5.72)—(5.74).

We see that the major computation of the above approach consists in solving
(5.71). It reminds us of the so-called parity space approach. In fact, the main ad-
vantage of this approach is, as will be shown in the next sections, its intimate con-
nections to the parity space approach and to parameterization form presented in the
last sub-section, which are useful for such applications like robust FDI, analysis and
optimization of FDI systems.

Example 5.3 Given CSTH with model (3.84). We now design a diagnostic observer
based residual generator using Algorithm 5.1. Below is the design procedure with
the achieved result:

S1: Sets =3
S2: Solve (5.71), which results in

vy =[7.5920 x 107 0.0059 —0.0014 0 1 8.473x1077 0
1.1363 x 1077 —1.0183 x 1072 0 —6.7648 x 10710
1.2239 x 10712 ]

S3: Set
—13.125 0 0 -—13.125
g=| —17.75 = G=|1 0 -=17.75
-7.5 0 1 -7.5

which results in three poles at —1.5, —2.5 and —3.5, respectively
S4: Calculate L, T, H, q, v, w, which gives

—2.7462 x 1077 0.0258
H=| 1.6348 x 1071 —3.0998 x 107
0 3.722 x 1078
—7.592 x 1074 —0.0059 0.0014
L= 0 -1 —8.4728 x 1077

0 —1.1871 x 1077 1.0275 x 10~?
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—2.7462 x 1072 3.8577 x 107 8.4746 x 1077
T=| 1.6348 x 10~ 43839 x 10712 —1.0193 x 10~°
0 —2.6097 x 10~ 1.2239 x 10712

v=[0 —6.7648 x 10710 1.2239 x 107'?]
w= [O 0 1 ] , q=0.
Example 5.4 We now design a minimum order diagnostic observer for the inverted
pendulum system LIP100 that is described in Sect. 3.7.2. It follows from Corol-
lary 5.1 that the minimum order of a DO is the minimum observability index of the
system under consideration. For LIP100 whose model can be found in (3.59), the

minimum observability index is 1. Below is the design procedure for a minimum
order DO:

S1: Sets =1
S2: Solve (5.71), which results in
USI[O 0.0870 0.6552 —0.3272 —0.0006 0.6754]

S3: Select g = —3. Note thatfors =1,G =g = -3

S4: Calculate L, T, H, q, v, w, which gives
H=-4.1433,  L=[-09815 —0.0887 1.3710], ¢=0
w=1, T = [—0.3272 —0.0006 0.6754 O]
v= [—0.3272 —0.0006 0.6754] .

To make an impression on the reader how a residual signal responds to the occur-

rence of a fault, we show in Fig. 5.2 the response of the generated residual signal to
a unit step fault occurred in the sensor measuring the angular position of the inverted

Fig. 5.2 Response of the 0.03
residual signal to a sensor
fault 0.0251

0.02
0.015f

0.01

residual signal

0.005[

_0.005 . . . . .
0 5 10 15 20 25 30
time [s]
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pendulum at 20 s. We can see that due to the initial condition the residual generator
needs two seconds before delivering a zero residual signal in the fault-free situation.
Mathematically, it is described by the requirement (5.16), that is,

lim r(t) =0 forall u(t), x(0).
—>00

In practice, such a time interval is considered as the calibration time and is a part of
a measurement or monitoring process. In this context, in our subsequent study, we
do not take the influence of the initial conditions into account. From Fig. 5.2, we
can further see that the residual signal has a strong response to the fault.

5.5.4 An Algebraic Approach

The original version of the approach presented in this sub-section was published by
Ge and Fang in their pioneering work in the late 1980s. In a modified form, the key
points of this approach are summarized in the following theorem.

Theorem 5.8 Given system model Gy, (s) = C(sI — A" 'B+ D ands > omin, then
matrices L, T, V, W defined by

L=-cG)X, T=YJ (5.75)
v=wrcT(cch), wrch=0 (5.76)

solve the Luenberger equations (5.31)—(5.32) and (5.39), where matrix G should be
chosen stable, X € R**™ is an arbitrary matrix, and

Cy € RUT™MX gnd rank[gv} =n, ccl =0 (5.77)

Y=[X GX - G"'X] (5.78)
c(s) =det(s] — A) =a,s" + an_ls"_1 + - +ais +ag
1 (5.79)
c(G)=a,G" +a,_1G" '+ 4+a1G +apl
anCA" ' +a, |CA" 24+ ...+ a,CA+aC
ayCA" 24+ q, |CA" 3 +... 4+ arC
J = . (5.80)

a,C
Proof Substituting (5.75) into the left side of (5.32) yields

n n
TA—GT =YJA—GYJ = XZa,CA" - Zainxc.

i=1 i=1
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Since
n .
aoC + Za,'CAl =0
i=1

we obtain

n
TA—GT =-aXC— Y a;G'XC=—c(G)XC=LC.

i=1

That (5.75) solves (5.32) is proven. Note VC = WT given by (5.39) means WT
belongs to the range of C, which, considering CK, spans the null-space of C, equiv-
alently implies WT' C 1(, = 0. Furthermore, multiplying the both sides of VC = WT
by CT gives

vecT =wrc?  «— v=wrcT(ccT)
Hence, the theorem is proven. O

It is evident that the design freedom is provided by the arbitrary selection of
matrix X, possible solutions of equation WT C ,{, = 0 that are generally not unique.
We summarize the main results in the following algorithm.

Algorithm 5.2 (Solution of Luenberger Equations by Ge and Fang)

SO: Set X, G

S1: Calculate c(s) =det(sI — A) for ag, ay, ..., a
S2: Calculate L, T according to (5.75)

S3: Solve WT'Cl, =0 for W

S4: Set V subject to (5.76).

Example 5.5 We now design a DO for LIP100 using Algorithm 5.2. To this end,
model (3.59) is used. Below is the design procedure for s = 3:

S0: Set

0.0800 0.0100 0.0600 0 0 —0.0600
X = 0.0300 0.0500 0.0700 |, G=|1 0 -0.1100
0.0400 0.0900 0.0200 0 1 —0.6000

S1: Calculate c(s) =det(sI — A) for ag, ..., as, which results in

as = 1.0, az =2.0510, a, = —21.2571
ay) = —37.7665, ag = 0
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S2: Calculate L, T according to (5.75):

[ —3.0167 —0.0001 3.3422  0.0191
T =] -2.7498 0.0194 —0.0042 0.0001
| —1.5346  0.0011 0.1656  —0.0026

[ —0.0092 —0.0199 —0.0118
L= 28479 0.0020  2.0485
| 1.8291 —-0.0954 2.7117

S3: Solve WT'CY, =0 for W:

0.1000 —33.5522 0
W= 0 10.0000  0.2216
1.0000 0 7.4350

S4: Set V subject to (5.76):

91.9611 —0.6512 0.4766
V=] -27.8384 0.1943 —0.0056
—14.4267 0.0082  4.5736

5.6 Parity Space Approach

In this section, we describe the parity space approach, initiated by Chow and Willsky
in their pioneering work in the early 1980s. Although a state space model is used
for the purpose of residual generation, the so-called parity relation, instead of an
observer, builds the core of this approach. The parity space approach is generally
recognized as one of the important model-based residual generation approaches,
parallel to the observer-based and the parameter estimation schemes.

5.6.1 Construction of Parity Relation Based Residual Generators

A number of different forms of parity space approach have, since the work by Chow
and Willsky, been introduced. We consider in the following only the original one
with a state space model of a linear discrete-time system described by

x(k+1) =Ax(k) + Bu(k) + Eqd(k) + E¢ f (k) (5.81)
y(k) = Cx(k) + Du(k) + Fqd (k) + Fy f (k). (5.82)
Without loss of generality, we also assume that rank(C) = m.

For the purpose of constructing residual generator, we first suppose f (k) =0,
d(k) = 0. Following (5.81)—(5.82), y(k — s), s > 0, can be expressed in terms of
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x(tk—5),u(k—s),and y(k —s + 1) interms of x(k —s), u(k —s + 1), u(k —s) as
follows

vk —s)=Cx(k—s)+ Du(k —s)
yk—s+1)=Cx(k—s+1)+ Dutk—s+1) (5.83)
=CAx(k—s)+ CBu(k—s)+ Du(k —s+1).
Repeating this procedure yields
y(k—s+2)=CA%x(k —s)+ CABu(k —s) + CBu(k —s + 1)
+Dutk—s+2), ..., (5.84)
y(k)=CA*x(k —s) + CA* 'Bu(k — s) + - -- + CBu(k + 1) + Du(k).

Introducing the notations

y(k—s) uk —s)
ylk—s+1) utk —s+1)
yol) = : C k)= : (5.85)
y(k) u(k)
CA cB D .
Ho,s = . 5 Hu,s = . (5‘86)
. : - .. 0
L cA CA*“'B ... CB D
allows us to re-write (5.83)—(5.84) into the following compact form
ys(k) = Ho,sx(k —5)+ Hu,s”s(k)~ (5.87)

Note that (5.87), the so-called parity relation, describes the input and output rela-
tionship in dependence on the past state vector x (k —s). It is expressed in an explicit
form, in which

e y,(k) and u, (k) consist of the temporal and past outputs and inputs, respectively
and are known

e matrices H, s and H), ; are composite of system matrices A, B, C, D and also
known

o the only unknown variable is x (k — s).

The underlying idea of the parity relation based residual generation lies in the
utilization of the fact, known from the linear control theory, that for s > n the fol-
lowing rank condition holds:

rank(H, s) < n < the row number of matrix H, ; = (s + 1)m.
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This ensures that for s > n there exists at least a (row) vector vs (£ 0) € RG+Dm
such that

vsH, s =0. (5.88)
Hence, a parity relation based residual generator is constructed by
r(k) = vy (ys (k) — Hy suy(k)) (5.89)
whose dynamics is governed by, in case of f(k) =0, d(k) =0,
rk) = vy (ys(k) — Hu,sus(k)) =vsH, sx(k—s)=0.
Vectors satisfying (5.88) are called parity vectors, the set of which,
Py ={vs | vsH, s =0} (5.90)

is called the parity space of the sth order.

In order to study the influence of f, d on residual generator (5.89), the as-
sumption that is now removed. Let us repeat procedure (5.83)—(5.84) for f (k) # 0,
d(k) # 0, which gives

ys(k) = Hy sx(k — ) + Hy sus (k) + Hf,sfs(k) + Hy sd; (k)

where
flk—s) Fy o - 0
£ = fk —:s+ 1) o oH, = CEf  Fp : (5.91)
f) CAE, . CEy P
d(k —s) Fy 0O --- 0
dy (k) = a* _:s H) . Hy,= CF”’ .F" a (5.92)
a) CASIE; - CEq I?d
Constructing a residual generator according to (5.89) finally results in
re(k) = vg(Hys fs (k) + Hy sds(K)),  vs € Py. (5.93)

We see that the design parameter of the parity relation based residual generator is the
parity vector whose selection has decisive impact on the performance of the residual
generator.

Remark 5.6 One of the significant properties of parity relation based residual gen-
erators, also widely viewed as the main advantage over the observer-based ap-
proaches, is that the design can be carried out in a straightforward manner. In fact,
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it only deals with solutions of linear equations or linear optimization problems. In
against, the implementation form (5.89) is surely not ideal for an on-line realization,
since it is presented in an explicit form, and thus not only the temporal but also the
past measurement and input data are needed and have to be recorded.

Remark 5.7 The requirement on the past measurement and input data is one of
the reasons why the parity space approach is mainly applied to the discrete-time
dynamic systems.

5.6.2 Characterization of Parity Space

Due to its simple form as a solution of (5.88) a characterization of the parity space
seems unnecessary. However, some essential questions are open:

e What is the minimum order of a parity space?
Remember that s > n presents a sufficient condition for (5.88). This implies that
the order of the designed residual generator is at least as high as the one of the
system under consideration. Should it be? Dose there exist a lower order residual
generator?

e How to parameterize the parity space for a given s?
As will be shown in the forthcoming chapters, parameterization of the parity
space plays an important role in optimization of parity relation based FDI sys-
tems.

e How to select the order of the parity space?

o Are there relationships between the parity space approach and the observer-based
approaches?

Finding out suitable answers to these questions motivates a study on the characteri-
zation of parity space.
To begin with, we introduce the following notation for vy

mo
vs=[vos vis o ves]. vig€R™, i=0,....s.

Notice that (5.88) is identical with (5.71) given in Theorem 5.7, which is neces-
sary and sufficient for solving Luenberger equations (5.31)—(5.32) and (5.39). This
relationship reveals the following theorems.

Theorem 5.9 The minimum order of the parity space is omin.

Theorem 5.10 Given s > oy, then vy =[vos -+ Vs—15 Vss] € Py can be writ-
ten as

Vg = l_}Hl’ l_} = [ﬁgmin ﬁo’min"‘1 e l_)s_l EY]
where

i, €Qj, 0;={q1qCA} =0}, omn<j<s (5.94)
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—cagm'L, .. —CL, 1 0o - 0
—~CAJ™L, -+ —CAoL, ~CL, I
H| =
: : : . . 0
—CAS 'L, - —CA ™ML, —CA ™ 'L, ... —CL, I

Ao is defined in (5.42).
Theorem 5.11 Assume that s > omin and let

rank(CA(j;):mj, NjCA£=0, J = Omin,---»S-
Then the base matrix Qpase.s 0f the parity space Py can be described by

Obase,s = abase,s‘Hla abase,s =diag(Noypins - - - » Nomax—15 Nogaxs -+ +» Ns)
Namax =N5m3x+1 ==N? =Im><m (595)

and the dimension of the parity space Py is given by

Zf:gmm (m —m;), Omin <5 < Omax

dim(P.) = -
im(Ps) m(s —omax + 1) + Zfi‘?fminl (m—m;), §> Omax.

(5.96)

Theorem 5.10 gives another way to express the parity vectors defined by (5.88). It
shows that all parity vectors vy can be characterized by vectors v}, j = omin, - .-, 8,
which belong to the subspaces Q ; defined by (5.94). In other words, the selection of

parity vectors only depends on the solution of equations v;C A} =0, omin < j <s.
Theorem 5.11 shows that the degree of freedom for the selection of a parity vector
is the sum of the dimensions of subspaces Q;, j = Omin, - .., S.
The results presented in Theorems 5.9-5.11 have not only answered the questions
concerning the structure of the parity space but also shown an intimate relationships
between the observer-based and the parity relation based approaches.

5.6.3 Examples

Example 5.6 Consider nominal system model

b+ by_1z" " 4 bz +bou

2)- 5.97
't ap 12" aiz+ag © 697

(@) =

A trivial way to construct a parity space based residual generator for (5.97) is (a) to
rewrite the system into its minimum state space realization form and (b) to solve
(5.88) for vy design the residual generator and finally (c) to construct the residual
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generator according to (5.89). On the other side, it follows from Cayley—Hamilton
theorem that

A" +ay A bajAtagl =0 = [ag - ap-y 1] .| =0
CA"
where A, c¢ denote the system matrices of the minimum state space realization of
Gy, (s). That means
vs=[a0 -+ a1 1] (5.98)

is a parity space vector of system (5.97). To construct the residual generator based
on vy given by (5.98), (5.89) is used, which yields

r(k) = vsys (k) — vs Hy sus (k)
=yk)+---+arytk—s+1)+aoytk —s) — v Hy sus (k).
It follows from (5.97) that vy H,, ; should satisty
vsHys=[bo -+ ba-1 bn].
As a result, the residual generator is given by
r(ky=[ao -+ an-1 1]ysk)—=[bo -+ but bn]us(k). (5.99)

It is interesting to note that residual generator (5.99) can be directly derived from
the nominal transfer function without a state space realization. In fact, (5.99) can
be instinctively achieved by moving the characteristic polynomial z" + a,_1z" ' +
-+ 4+ a1z + ap to the left side of (5.97). Study on this example will be continued in
the next section, which will show an interesting application of this result.

Example 5.7 We now design a PRRG for the inverted pendulum system LIP100.
For our purpose, we set s =4 and compute a parity vector using matrices A and C
given in discrete time model (3.60), which leads to

vS:[vS’o Us,1 VUs2 Us3 v5’4], vs’():[—o.3717 0.0606 —0.0423]
vs,1 =[0.7175 0.1338 0.0038], vs2=[—0.1150 —0.1324 0.0034 ]
vs3=[—0.1152 —0.3999 0.0040], vy =[—-0.1155 03260 0.0056].

5.7 Interconnections, Comparison and Some Remarks

In the 1990s, study on interconnections among the residual generation approaches
has increasingly received attention. In this section, we focus our study on the inter-
connections between the design parameters as well as the comparison of dynamics
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of the different types of residual generators presented in the last sections. We shall
also make some remarks on the implementation and design forms of these residual
generation approaches.

5.7.1 Parity Space Approach and Diagnostic Observer

We first study the interconnections between the design parameters of the parity
space and diagnostic observer approaches, that is, interconnections between L, T,
H, g, v, w and parity vector vg. The following two theorems give an explicit ex-
pression for these connections.

Theorem 5.12 Given system model (5.81)—(5.82) and a parity vector vy =

[vs.0 vs,1 -+ Vs, then matrices L, T, H, q, v, w defined by
- C7
Us,1 VUs2 -+ Usgs—1 Uss cA
Us,2 e e Us,s 0 :
o | e . (5.100)
ey 0 e e 0 CA'S_Z
CAX71
_ D -
Us,0 + g1Vs,s Us,1 VUs2 -+ Ugs—1 Uz),s CB
H Us,1 + &2Vs,s Vg2 =0 -r¢ Vg, s CAB
|:qi|: : Do : : . (5.101)
Vs s—1 + &sVs,s  Us,s 0 ce 0 0 CAS.—ZB
vy N ity
V5,0
Vs, 1
L=-— . — 8Vs.s, w:[O - 0 1], V=g (5.102)
Us,s—1

solve the Luenberger equations (5.31)—(5.32), (5.39), where matrix G is given in the
form of (5.40) with g ensuring the stability of matrix G.

Theorem 5.13 Given system model (5.81)—(5.82) and observer-based residual gen-
erator (5.37)—(5.38) with matrices L, T, v, w solving the Luenberger equations
(5.31)—(5.32), (5.39) and G satisfying (5.40), then vector vy =[Vs,0 Vs,1 *** Us,s]
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with

V5,0
Vs, 1
Us,s =V, . =—L—gv

Vg, s—1

belongs to the parity space P;.

These two theorems are in fact a reformulation of Theorem 5.7 and the proof is
thus omitted.

It is interesting to notice the relationship between vy H, s and H, g as defined in
(5.89) and in (5.37)—(5.38), respectively. Suppose that g = 0, then

CB D :
vsHu,S:[vs,O Vs, 1 - Us,s] .
: . 0
cAS~'B ... CB D
= [hv,O hv,l hv,s]

Us,0 UVUs,1 -+  Uss D hv,O
H| |TB—-LD| _ Us, 1 =0 Usgs 0 CB B Ry
q N Us,sD N : . : : N
Vs 0 - 0 cAS~'B hy.s

(5.103)
That means we can determine H, ¢, as far as vg H, s is known, by just rearranging
row vector vgH, s into a column vector without any additional computation, and
vice versa.

Theorems 5.12-5.13 reveal a one-to-one mapping between the design parame-
ters of observer and parity relation based residual generators. While Theorem 5.12
implies that for a given parity vector there exists a set of corresponding observer-
based residual generators with g being a parameter vector, Theorem 5.13 shows
how to calculate the corresponding parity vector when an observer-based residual
generator is provided.

Now, questions may arise: Is there a difference between the residuals delivered
respectively, by a diagnostic observer and its corresponding parity relation based
residual generator? Under which conditions can we get two identical residuals de-
livered respectively by these two types of residual generators? To answer these ques-
tions, we bring the DO

2(k+1)=Gz(k) + Hu(k) + Ly(k), r(k) =vy(k) — wz(k) — qu(k)
into a similar form like the parity relation based residual generator given by (5.89)

r(k) = vy(k) — qu(k) — wz(k)
= vy (k) — qu(k) — w(Gz(k — 1) + Hu(k — 1) + Ly(k — 1))
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=vy(k) — qu(k) —wG*z(k —s) —wHu(k — 1) — - -+
—wG*  "Huk —s) —wLytk—1) — --- —wG* 'Ly(k — 5).

Recalling (5.72)—(5.73) in Theorem 5.7 and noting that

wG'=[0 -~ 0 1 wg - wGlg]
it turns out
Us,0
. i1 Us, 1
wG'L=—[0 -+ 0 1 wg -+ wGlg] . + gUs s
Vg, s—1
_ 0 _
0
Z[UYO Us,1 =+ Usis—1 UYY] s
o ’ ’ o wWg I xm
wGi_lgImxm
| wG'glnyxm |
wG'H=wG(TB-LD)=[0 --- 0 1 wg --- wG~lg]
- -
Us,1 Us2 -+ Uss—1 Uss caA Us,0
Vg e Us.s 0 Us,1
B+ . D+ gvs s D
UA‘,S O e e O CAS—Z vS,S*l
cAs!
_ 0 _
D 0O ... 0 :

. 0
=[vs0 vs1 -+ v Vs,s | cB D . T, xke,
= 5,0 s,1 s,5—1 S, : . 0 wglkuxku

CA*'B ... CB D o
wG”lgIkuxku
L wG' gl xk, |

which finally results in

r(k) = —wGz(k — 5) 4 vs(Iysys (k) — Hp 5 Lysus (k)) (5.104)
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where
B Luxm 0 ... 0
I_vv — wg L xm :
: 0
_wcs_lglmxm o wWglhnxm  Imxm
i, xk, 0 .. 0
I_MY = wg[kuXku . .
: : : 0
L wG ek, welkyxky Ik xk

Comparing (5.104) with (5.89) evidently shows the differences between these two
types of residual generators:

e in against to the parity relation based residual generators, the DO does not
possess the s-step dead-beat property, that is, the residual r(k) depends on
2tk —s),...,2(0),if g #0

e the construction of the DO depends on the selection g, and in this sense, we can
also say that the DO possesses more degree of design freedom.

On the other hand, setting g = 0 leads to

wG* =0, Lys = In(s+ 1) xm(s+1)s Tus = T, (s41) xhy (s4-1) -

Thus, under condition g = 0 the both types of residual generators are identical. It is
interesting to note that in this case

Us,0

I Us,1

[v}= | (5.105)
Vg, s—1
Vs, s

Remember that a residual signal is originally defined as the difference between the
measurement or a combination of the measurements and its estimation. This can,
however, not be directly recognized from the definition of the parity relation based
residual signal, (5.89). The above comparison study reveals that

r(k) = vy (ys(k) - Hu,s“s(k))
can be equivalently written as
2(k+1)=Gz(k) + Hu(k) + Ly(k), r(k) =vy(k) — wz(k) — qu(k).

It is straightforward to demonstrate that wz(k) + qu(k) is in fact an estimate for
vy (k). Thus, a parity relation based residual signal can also be interpreted as a com-
parison between vy(k) = v, sy (k) and its estimation.
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5.7.2 Diagnostic Observer and Residual Generator of General
Form

Our next task is to find out the relationships between the design parameters of the
diagnostic observer and the ones given by the general residual generator

r(s) = R(s)(My(5)y(s) — Nu(s)u(s)) (5.106)

whose design parameters are observer matrix L and post-filter R(s). We study two
cases: s <nand s > n.

Firstly, s <n:

We only need to demonstrate that for s < n the diagnostic observer (5.37)—(5.38)
satisfying (5.31)—(5.32), (5.39) can be equivalently written into form (5.106). Let us
define

T* = [TT] } e RV, T, € R=9xn, rank(7*) =n (5.107)

TA—GTi=LC., G eR"*0™ sstable,  G*= [g GOI}
(5.108)

H*=T*B—L*D e R"*, L*:[li}, Wr=[W 0]eR™"
(5.109)

and extend (5.32) and (5.39) as follows

TA-GT=LC = T*A-G*T*=L*C (5.110)
VC-WT =0 = VC-W*T*"=0 (5.111)
H=TB—-LD = H*=T*B-L*D. (5.112)

Note that choosing, for instance, 77 as a composite of the eigenvectors of A — L,C
and L| = T1 L, guarantees the existence of (5.108), where L, denotes some matrix
that ensures the stability of matrix A — L,C. Since

W(sI —G)~ ' (Hu(s) + Ly(s))
=W*(sI = G*) ™' (H*u(s) + L*y(s))
= WAT*(sI — A+ T*7'L*C) ' T (H*u(s) + L*y(5))
=VC(sI —A+T*'L*C) " ((B = T* 'L*D)u(s) + T* ' L*y(5))
the residual generator

r(s) = Vy(s) + Qu(s) = W(sI — G) ™} (Hu(s) + Ly(s))
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can be equivalently written as
r(s) = V(Mu()y(s) = Nu(9)u(s))
with
My(s)=1-C(sI —A+T*'L*C)~'7*" 'L~ (5.113)
Nu$)=D+C(s —A+T*'L*C) " (B—T*7'L*D).  (5.114)
We thus have the following theorem.

Theorem 5.14 Every diagnostic observer (5.37)—(5.38) of order s < n can be con-
sidered as a composite of a fault detection filter and post-filter V .

Remark 5.8 Theorem 5.14 implies that the performance of any diagnostic observer
(5.37)—(5.38) of order s < n can be delivered by an FDF together with an algebraic
post-filter.

Now s > n:

We first demonstrate that for s > n the diag