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1
Introduction and Overview

Plus ça change, plus c’est la meme chose.
—Jean-Baptiste Alphonse Karr (1849)

There’s even exponential growth in the rate of exponential growth.
—Ray Kurzweil (2001)

1.1 Introduction

Services, businesses, analytics, and other types of data services have moved from workstations,
local area networks (LANs), and in-house IT infrastructure to the Internet, mobile devices, and
more recently “the Cloud.” This has broad implications in the privacy, security, versioning, and
ultimately the long-term fate of data. These changes, however, provide a welcome opportunity
for reconsidering the manner in which intelligent systems are designed, built and tested,
deployed, and optimized during deployment. With the advent of powerful machine learning
capabilities in the past two decades, it has become clear to the research community that learning
algorithms, and systems based in all or part on these algorithms, are not only possible but also
essential for modern business. However, the combined impact of mobile devices, ubiquitous
services, and the cloud comprise a fundamental change in how systems themselves can—and
I argue should—be designed. Services themselves can be transformed into learning systems,
adaptive not just in terms of the specific parameters of their applications and algorithms but
also in the repertoire (or set) and relationship (or architecture) between multiple applications
and algorithms in the service.

With the nearly unlimited computing and data hosting possibilities now feasible, hitherto
processor-bound and memory-bound applications, services, and decision-making (actionable
analytics) approaches are now freed from many of their limitations. In fact, the cloud- and
graphical processing unit (GPU)-based computation have made possible parallel processing
on a grand scale. In recognition of this new reality, this book focuses on the algorithmic,
analytic, and system patterns that can be used to better take advantage of this new norm of
parallelism, and will help to move the fields of machine learning, analytics, inference, and
classification to more squarely align with this new norm.

Meta-algorithmics: Patterns for Robust, Low-Cost, High-Quality Systems, First Edition. Steven J. Simske.
C© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.
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In this chapter, I overview at an often high, but thematic, level the broad fields of machine
intelligence, artificial intelligence, data mining, classification, recognition, and systems-based
analysis. Standing on the shoulders of giants who have pioneered these fields before this book,
the intent is to highlight the salient differences in multiple approaches to useful solutions in
each of these arenas. Through this approach, I intend to engage all interested readers—from
the interested newcomer to the field of intelligent systems design to the expert with far deeper
experience than myself in one or more of these arenas—in the central themes of this book. In
short, these themes are:

1. Instead of finding the best possible intelligent algorithm, system, or engine for a task, the
system architect should look for the best combination of algorithms, systems, or engines
to provide the best accuracy, robustness, adaptability, cost, and so on.

2. Parallel approaches to machine-intelligence-driven tasks such as data mining, classifica-
tion, and recognition naturally lead to parallelism by task, parallelism by component, and
eventually parallelism by meta-algorithmics.

3. Meta-algorithmic approaches and patterns provide a toolbox of potential solutions for
intelligent systems design and deployment—accommodating architects of widely varying
domain expertise, widely varying mathematical background, and widely varying experience
with system design.

1.2 Why Is This Book Important?

Jean-Baptiste Alphonse Karr, right after the 1848 Revolutions rocked Europe, made the famous
observation that “the more that things change, the more they stay the same.” This statement
anticipated Darwin’s treatise on the Origin of Species by a decade, and is germane to this day.
In the fast-changing world of the twenty-first century, in which Ray Kurzweil’s musing on
the rapidly increasing growth in the rate of growth is nearly cliché and Luddite musings on
humanity losing control of data are de rigueur, perhaps it may be time to reconsider how large
systems are architected.Designing a system to be robust to change—to anticipate change—may
also be the right path to designing a system that is optimized for accuracy, cost, and other
important performance parameters. One objective of this book is to provide a straightforward
means of designing and building intelligent systems that are optimized for changing system
requirements (adaptability), optimized for changing system input (robustness), and optimized
for one or more other important system parameters (e.g., accuracy, efficiency, and cost). If
such an objective can be achieved, then rather than being insensitive to change, the system
will benefit from change. This is important because more and more, every system of value is
actually an intelligent system.

The vision of this book is to provide a practical, systems-oriented, statistically driven ap-
proach to parallel—and specifically meta-algorithmics-driven—machine intelligence, with a
particular emphasis on classification and recognition. Three primary types of parallelism will
be considered: (1) parallelism by task—that is, the assignment of multiple, usually different
tasks to parallel pipelines that would otherwise be performed sequentially by the same pro-
cessor; (2) parallelism by component—wherein a larger machine intelligence task is assigned
to a set of parallel pipelines, each performing the same task but on a different data set; and
(3) parallelism by meta-algorithmics. This last topic—parallelism by meta-algorithmics—is
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in practice far more open to art as it is still both art and science. In this book, I will show
how meta-algorithmics extend the more traditional forms of parallelism and, as such, can
complement the other forms of parallelism to create better systems.

1.3 Organization of the Book

The book is organized in 11 chapters. In this first chapter, I provide the aims of the book
and connect the material to the long, impressive history of research in other fields salient to
intelligent systems. This is accomplished by reviewing this material in light of the book’s
perspective. In Chapter 2, I provide an overview of parallelism, especially considering the
impact of GPUs, multi-core processors, virtualism, and cloud computing on the fundamental
approaches for intelligent algorithm, system and service design. I complete the overview
chapters of the book in Chapter 3, wherein I review the application domains within which I will
be applying the different forms of parallelism in later chapters. This includes primary domains
of focus selected to illustrate the depth of the approaches, and secondary domains to illustrate
more fully the breadth. The primary domains are (1) document understanding, (2) image
understanding, (3) biometrics, and (4) security printing. The secondary domains are (1) image
segmentation, (2) speech recognition, (3) medical signal processing, (4) medical imaging, (5)
natural language processing (NLP), (6) surveillance, (7) optical character recognition (OCR),
and (8) security analytics. Of these primary and secondary domains, I end in each case with
the security-related topics, as they provide perhaps the broadest, most interdisciplinary needs,
thus affording an excellent opportunity to illustrate the design and development of complex
systems.

In the next three chapters, the three broad types of parallelism are described and applied
to the domains described in Chapter 3. Chapter 4 will address Parallelism by Task, which
focuses on the use of multiple instances of (usually the same) data being analyzed in parallel
by different algorithms, services, or intelligent engines. This chapter will also outline the
advantages that cloud computing brings to this type of parallelism—namely, the ability to
produce actionable output limited by the throughput of the slowest process. Chapter 5 then
addresses Parallelism by Component, in which different partitions of the same data set are
processed in parallel. The advances provided by GPUs will be highlighted in this chapter.
The third and final broad category of parallelism—Parallelism by Meta-algorithm—will be
introduced in Chapter 6. Because of their importance to the rest of the book, these approaches
will be elaborated as belonging to three different classes—first-, second-, and third-order
meta-algorithms—each with a specific set of design patterns for application. These patterns
will be introduced in Chapter 6 before they are then applied to the domains of interest in the
three chapters that follow.

In Chapter 7, the first-order meta-algorithmic patterns are explored. These relatively simple
means of combining two or more sources of knowledge generation—algorithms, engines,
systems, and so on—are shown to be generally applicable even when the combined generators
are known only at the level of black box (input and output only). One pattern, Tessellation
and Recombination, is shown to be especially useful for creating correct results even when
none of the individual generators produces a correct result—a process called emergence. This
pattern bridges us to the potentially more powerful patterns of Chapters 8 and 9. In Chapter
8, the second-order meta-algorithms are described. A very powerful tool for temporal and
series-parallel design of meta-algorithmic systems, the confusion matrix, is explored in full.
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In Chapter 9, third-order meta-algorithmic patterns—generally focused on feedback from the
output to input and system-level machine learning—are overviewed.

The book concludes with Chapter 10—elaborating how parallelism by task, component,
and meta-algorithm lead to more accurate, cost-sensitive, and/or robust systems—and Chapter
11, which looks to the future of intelligent systems design in light of the previous chapters.

It is clear that, in addition to the more straightforward parallel processing approaches (by
task and by component), this book focuses on meta-algorithmics—or pattern-driven means
of combining two or more algorithms, classification engines, or other systems. The value
of specific patterns for meta-algorithmic systems stems from their ability to stand on the
shoulders of the giants of intelligent systems; in particular, the giants in informatics, ma-
chine learning, data mining, and knowledge discovery. This book will cover some new theory
in order to expostulate the meta-algorithmic approaches, but it is intended to be a practical,
engineering-focused book—enough theory will be provided to make the academic reader com-
fortable with the systems eventually crafted using the meta-algorithmics and other parallelism
approaches.

Building big systems for intelligence—knowledge discovery, classification, actionable an-
alytics, and so on—relies on the interplay of many components. Meta-algorithmics position
the system architect squarely in the “post-cloud” era, in which processing, storage, analysis,
and other traditionally limited computing resources are much less scarce.

In the sections that follow, the background science to which this book owes its existence will
be occasionally interpreted in light of meta-algorithmics, which themselves are not introduced
until Section 2.5 or fully developed until Chapter 6. This should not be an impediment to
reading this chapter, but concerned readers may feel free to look ahead at those sections if
they so wish. More importantly, this background science will be reinterpreted in light of the
needs of the so-called parallel forms of parallelism that comprise this book. We start with
informatics.

1.4 Informatics

Informatics, like the term “analytics,” is a broad field of knowledge creation with a plethora
of definitions. In keeping with Dreyfus (1962), I herein consider informatics to include the
study of algorithms, behavior, interactions, and structure of man-made systems that access,
communicate, process, and store/archive information. Informatics is concerned with the timely
delivery of the right information to the right person/people at the right time. Informatics,
therefore, is innately amenable to parallelism. Figure 1.1 illustrates this in simplified form.
Two sets of (one or more) algorithms are provided. The internals of these algorithms are not
important to the overall behavior of the system, which is the function mapping the inputs to
the outputs. The interactions between the two algorithmic subsystems are also a “black box”
to the inputs and outputs, and the overall structure of the system is the set of all inputs, outputs,
algorithms, and interactions.

Informatics, therefore, is the science of useful transformation of information. This implies
that the outputs in Figure 1.1 are more sophisticated than—that is, contain information of in-
creased value in comparison to—the inputs. A simple but still useful example of an informatics
system based on the architecture shown in Figure 1.1 is given in Figure 1.2.

In Figure 1.2, a parallel architecture is used even though the task is simple enough to perform
with a sequential design. The advantage of the parallel design is that subsections of the original
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Input Input

Algorithms Algorithms

Interactions

Interactions

Output Output

Figure 1.1 Simplified informatics system illustrating algorithms, behavior (mapping from input to
output), interactions (data exchange between algorithm blocks), and structure (overall architecture)

Text document:
“My vacation in California”

Los Angeles
San Diego

San Francisco

Dictionary of American cities

Compound place
names

Compound nouns

Compound nouns:
Berkeley University

Lassen Volcano
Los Angeles

Oakland Raiders
Redwood National Park

San Diego
San Francisco

Whale Watching

Dictionary:
Baltimore
Boston
Chicago

Los Angeles
New York City
Philadelphia
San Diego

San Francisco

Figure 1.2 A simple system to pull compound place names from a document. The algorithm box to the
left, “Compound nouns,” extracts compound nouns from the input document. The algorithm box to the
right, “Dictionary,” inputs a dictionary of terms to search for in its input (which happens to be the output
of the compound noun extractor). The terms occurring in each set are returned to the text document
algorithm box and output as the set of compound place nouns: “Los Angeles,” “San Diego,” and “San
Francisco”
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document after being processed by the left (or “Compound nouns”) algorithm, can be input
to the right (or “Dictionary”) algorithm and processed in parallel to the next subsection being
processed by the “Compound nouns” algorithm.

1.5 Ensemble Learning

Informatics-based systems are thus a very general type of intelligent system. In this section, en-
semble learning, which focuses on the handling of the output of two or more intelligent systems
in parallel, is considered. Two reviews of ensemble learning are of particular utility—those
provided by Berk (2004) and Sewell (2007). In Berk (2004), ensemble methods are defined as
“bundled fits produced by a stochastic algorithm, the output of which is some combination of a
large number of passes through the data.” This bundling or combining of the fitted values from
a number of fitting attempts is considered an algorithmic approach (Hothorn, 2003). In Berk
(2004), classification and regression trees (CART), introduced in Breiman et al. (1984), are
used to bridge from traditional modeling (e.g., mixture models, manifold-based systems, and
others) to algorithmic approaches. Partitioning of the input is used to create subclasses of the
input space, which correlate well with one among a plurality of classes. However, partitioning
quickly leads to overfitting of the data and concomitant degradation of performance on test
data when compared to training data.

To avoid this problem, ensemble methods are used. Bagging, random forests, and boosting
are the three primary ensemble methods described in Berk (2004). Bagging, or “bootstrap
aggregation,” is shown to be definable as a simple algorithm: random samples are drawn N
times with replacement and nonpruned classification (decision) trees are created. This process
is repeated many times, after which the classification for each case in the overall data set is
decided by majority voting. Overfitting is avoided by this “averaging” effect, but perhaps even
more importantly by selecting an appropriate margin for the majority voting. This means some
cases will go unclassified, but since multiple trees are created, these samples will likely be
classified through another case. Should any samples be unassigned, they can be assigned by
nearest neighbor or other decisioning approaches. Random forests (Breiman, 2001) further
the randomness introduced by bagging via selecting a random subset of predictors to create
the node splits during tree creation. They are designed to allow trade-off between bias and
variance in the fitted value, with some success (Berk, 2004). Boosting (Schapire, 1999), on
the other hand, is derived from a different learning approach, even though it may result in a
very similar interpretative ability to that of random forests (Berk, 2004). Boosting is, generally
speaking, the process by which the misclassified cases are more highly weighted after each
iteration. It is argued that this approach avoids overfitting, and its famous incarnation, the
AdaBoost (Freund and Schapire, 1996; Schapire, 1999), has certainly proven accurate in a
number of machine learning problems. However, there are some concerns with the approach:
the stopping criterion—usually the error value during training—is not always effective, and
convergence is not guaranteed.

In Jain, Duin, and Mao (2000), 18 classifier combination schemes are overviewed. Among
themare ensemblemethods bagging and boosting, voting, and class set reduction. Interestingly,
this article mentions the possibility of having individual classifiers use different feature sets
and/or operate on different subsets of the input; for example, the random subspace method.
This approach lays some of the groundwork for meta-algorithmics.
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In Sewell (2007), ensemble learning is defined as an approach combining multiple learners.
This review focuses on bagging, boosting, stacked generalization, and the random subset
method. Here, Sewell refers to bootstrap aggregating, or bagging, as a “meta-algorithm,”
which is a special case of model averaging. Viewed this way, the bagging approach can be
seen as an incipient form of the Voting meta-algorithmic pattern described in Section 6.2.3.
It can be applied to classification or regression. However, as opposed to meta-algorithmic
patterns, bagging operates on multiple related algorithms, such as decision stumps, and not
on independently derived algorithms. Boosting is also described as a “meta-algorithm” that
can be viewed directly as a model averaging approach. It, too, can be used for regression or
classification. Boosting’s value is in generating strong classifiers from a set of weak learners.
This approach is an important part of the rationale for meta-algorithmics in general, as we will
see in Chapters 6–9.

Stacked generalization (Wolpert, 1992) extends the training + validation approach to a
plurality of base learners. This is a multiple model approach in that rather than implementing
the base learner with the highest accuracy during validation, the base learners are combined,
often nonlinearly, to create the “meta-learner.” This paves the path for meta-algorithmic
patterns such as Weighted Voting (Section 6.2.3), although stacked generalization is focused
on combining weak learners, whereas meta-algorithmics are focused on combining strong
learners, engines or intelligent systems.

The final ensemble method that introduces some of the conceptual framework for meta-
algorithmics is the random subspace method (Ho, 1998), in which the original training set input
space is partitioned into random subspaces. Separate learning machines are then trained on the
subspaces and the meta-model combines the output of the models, usually through majority
voting. This shares much in common with the mixture of experts approach (Jacobs et al., 1991),
which differs in that it has different components model the distribution in different regions of
the input space and the gating function decides how to use these experts. The random subspace
method leads to a single model—capable of classification or regression analysis—that can
provide high accuracy even in the face of a highly nonlinear input space. Both the random
subspace and mixture of experts approaches are analogous in some ways to the Predictive
Selection meta-algorithmic approach (Section 6.2.4) and related meta-algorithmic patterns.
However, as with the rest of the ensemble methods, these models stop at providing an improved
single model for data analysis. Meta-algorithmics, on the other hand—as we will see in much
of the rest of the book—use the output of ensemble methods, other classifiers, and other
intelligent systems as their starting points. Meta-algorithmics combine multiple models to
make better decisions, meaning that, for example, bagging, boosting, stacked generalization,
and random subspace methods, could all be used together to create a more accurate, more
robust, and/or more cost-effective system.

1.6 Machine Learning/Intelligence

The distinction between machine learning/intelligence and artificial intelligence is somewhat
arbitrary. Here, I have decided to term those approaches that result in a readily interpretable,
visible set of coefficients, equations, procedures, and/or system components as “machine
learning.” Those in which the details of how the system works are hidden are considered
“artificial intelligence” systems. For the former, the intelligence is not “artificial,” but rather
based on an expert system, formula, or algorithm in line with human reasoning; for the latter,
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it simply works with an “intelligence” that is not immediately obvious. The distinction is not
particularly important other than to allow me to collect some thoughts on these broad topics
in a (relatively) structured manner.

For this machine learning overview, I primarily consulted Bishop (2006), Hastie, Tibshirani,
and Friedman (2009), and Marsland (2009). While there are many other texts on machine
learning, the combination of these three was appealingly broad and deep. In providing different
foci, they were just the right balance between rigor and heuristics, and I refer the reader to
these books for a far more in-depth coverage of these topics than I can provide in this section.
Additional background texts consulted, which helped frame the development of machine
and artificial intelligence in the decade leading up to support vector and ensemble methods,
included Fogel (1995), Goldberg (1989), Leondes (1998), and Tveter (1998): these provided
rich context for the more current state of machine intelligence and also highlighted for me the
need for parallel and other hybrid methods.

1.6.1 Regression and Entropy

Regression is perhaps the simplest form of machine intelligence. Linear regression is often
the introduction to least squares error, since this is the most common choice of loss func-
tion in regression (since least squares estimates have the smallest variance among all linear
unbiased estimates). Introductory statistics courses teach the student how to perform linear
regression and in so doing determine a least squares best fit model that is described in its
entirety by the {slope, intercept}, or {β1, β0}. This fits precisely one definition of machine
learning above: a readily interpretable, visible set of coefficients. The machine has learned
that

ŷ = β0 + β1X.

That is, the dependent variable y, as well as its estimate ŷ, is predicted by the independent
variable X using only the model coefficients.

One of the more interesting applications of regression is in determining the complexity of
the overall data. I define complexity here by the combination of the order of the regression,
the residual variability determined by 1.0 − r2, and the entropy of the residual variability.
Table 1.1 illustrates the residual variability as a ratio of the initial variability and the entropy

Table 1.1 Residual variability as a percentage of the original variability and entropy, H(�y), of the
residual variability determined from H(�y) = −∑

p(�y) ln p(�y), where p(�y) are computed on a
histogram of 100 bins (maximum entropy = 4.605)

Input Space A Input Space B
Order of
Regression Residual Variability Residual Entropy Residual Variability Residual Entropy

1 0.432 2.377 0.345 2.561
2 0.167 3.398 0.156 2.856
3 0.055 4.101 0.087 3.019
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of the residuals,�y = |y − y|, for first-, second-, and third-order regression models of two sets
of data, Input Spaces A and B.

The entropy for Table 1.1 is taken for 1% subranges of the overall range of X. The entropy
is computed from

H(�y) = −
∑

p(�y) ln p(�y),

where the maximum entropy is, therefore, − ln(0.01) = 4.605. For Input Space A, the residual
variability decreases as the order of regression increases. The entropy increases significantly,
as well. These data indicate that much of the variability in the data is explained by a third-
order regression: only 5.5% of the variability remains and the remaining error values have
high entropy.

For Input Space B, however, the residual variability drops less, to 8.7% after a third-order fit.
The entropy also does not increase significantly from second- to third-order best fit, indicating
that there is still structure (i.e., a fourth-order or higher fit is appropriate) in the residual error
values. Interpreting the data in Table 1.1 in this way is appropriate, since the simple first-,
second-, or third-order regression models are a linear combination of fixed basis functions.
Since reduced entropy indicates nonrandom structure remains in the data, it indicates that the
regression model does not contain sufficient dimensionality, or else that a different model for
the regression is needed altogether. This latter possibility is important, as it may mean we need
to rethink the approach taken and instead use, for example, a support vector machine (SVM)
with a kernel to transform the input space into one in which simpler regression models suffice.

Regardless, this simple example illustrates an important connection between regression and
other intelligent system operations, such as classification (Section 1.9) or alternative models
(Section 1.7). For example, one may conclude that Input Space A represents a third-order data
set, and so gear its classification model accordingly. Input Space B, on the other hand, will
require a more complicated classification model. This type of upfront data analysis is critical
to any of the three forms of parallelism that are the main topic of this book.

1.6.2 SVMs and Kernels

SVMs are two-class, or “binary,” classifiers that are designed to provide simplified decision
boundaries between the two classes. Support vectors create boundaries for which the margin
between the two classes is maximized, creating what is termed optimal separation. It is obvious
that such an approach is highly sensitive to noise for small- and medium-sized data sets, since
the only relevant subset of input data—the support vectors—are used to define the boundary
and its margin, or spacing to either side of the decision boundary. An example of a support
vector for a two-dimensional (2D), two-class data set is given in Figure 1.3.

SVMs (Cortes and Vapnik, 1995; Vapnik, 1995) focus on transforming the input space into
a higher-order dimensionality, in which a linear decision boundary is crafted. There is art, and
mathematical prowess, involved in creating a decision boundary, analogous to the creation
of classification manifolds, as in Belkin and Niyogi (2003), Grimes and Donoho (2005), and
elsewhere. As noted in Bishop (2006), direct solution of the optimization problem created
by the search for an optimum margin is highly complex, and some classification engineers
may prefer genetic, near-exhaustive, and/or artificial neural network (ANN) approaches to the
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Dimension 2

Dimension 1

Figure 1.3 Example decision boundary (solid line) with margin to either side (dotted lines) as defined
by the support vector (filled circles and diamond). The margin is the maximum width possible for the
given data set in which classification errors are entirely eliminated (all circles at least one margin above
the decision boundary, and all diamonds at least one margin below the decision boundary)

mathematically precise approach. However, some of this complexity is obviated by reducing
the SVM optimization equation to what is known as the canonical representation of the
decision hyperplane. This means the optimization is now recrafted as a familiar quadratic
programming problem—a second-order function is optimized subject to a set of first-order
inequality constraints.

The relationship between an SVM and regression models, such as described in the previous
section, is subtle, as shall be illustrated in the next few paragraphs. The SVM is designed to
maximize the margin of the decision boundary, as shown in Figure 1.3. As the size of the
two populations increases, however, the percentage of points in each population that are being
considered in forming the support vector drops. This is analogous to the much lower surface
area to volume ratio of, say, an elephant in comparison to a mouse. It is clear that the margin
can be optimized, but does that mean that it should? The answer to this somewhat troubling,
but very important, classification question is, of course, “it depends.”

To address this, I will push the SVM ramifications in another direction, trying to connect
the decision boundary to regression and principle component analysis. Let us suppose that the
margins around the decision boundary define a range of acceptable decision boundary slopes.
This is shown in Figure 1.4 for the support vector introduced in Figure 1.3.

Figure 1.4 illustrates one means of using all of the samples in both of the classes to define the
optimal decision boundary, and not just the support vectors. The decision boundary is allowed
to be redefined such that none of the samples defining the support vector are misclassified,
even though the slope of the decision boundary may change. The perpendiculars to the range
limits of this new decision boundary are also shown.

In order to connect the range from line C to line D in Figure 1.4, a linear transformation of
the data in Figures 1.3 and 1.4 is performed. In Figure 1.5, this transformation is performed by
elongating the input space in a direction perpendicular to the original decision boundary. This
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Dimension 2

Dimension 1

A

C D

B

Figure 1.4 Support vector example from Figure 1.3 in which the Dimension 2 margins of the support
vector (the “decision zone,” or space within a margin of the optimal decision boundary) are used to
define the range of slopes for the decision boundary. Line A indicates the minimum slope defined by
the upper left and lower right limits of the decision zone, and line B indicates the maximum slope. The
perpendiculars to lines A and B are lines D and C, respectively, and delimit the allowable range of slopes
for the line of best fit to the overall data set

Dimension 2

Dimension 1

Figure 1.5 Support vector example from Figure 1.3 in which the data for the two classes (represented
by circles and diamonds) are stretched vertically to ensure that the regression line of best fit and the
principal component will both be roughly perpendicular to the decision boundary



12 Meta-algorithmics: Patterns for Robust, Low-Cost, High-Quality Systems

Dimension 1

Dimension 2

Figure 1.6 Redefinition of the decision boundary (dashed line, which passes through the centroid of
the decision zone) based on defining it as perpendicular to the line of best fit to the transformed data
(“dashed” and “dotted” line)

allows us to use regression and/or principal component analysis (PCA) to define the optimal
decision boundary.

In this case, the decision boundary could be defined as the perpendicular to the line of best
fit through the combined data. An illustration of this is given in Figure 1.6; the line of best
fit is illustrated by the “dashed” and “dotted” line. This line of best fit is used to redefine the
decision boundary as a perpendicular to it. In this example, the final system defined by the
decision boundary is likely to be more robust than the original system because it minimizes
the error of regression and yet is still compatible with the support vector decision zone.

Figures 1.3, 1.4, 1.5, and 1.6 provide some possibilities for modestly improving the support
vector. However, it is more important to address less ideal systems in which the support
vector cannot provide error-free classification. As noted in Figure 5.3 of the Marsland (2009)
reference, one approach is to immediately assess each of the candidate margins for their
errors: “If the classifier makes some errors, then the distance by which the points are over
the border should be used to weight each error in order to decide how bad the classifier is.”
The equation for errors is itself turned into a quadratic programming problem, in order to
simplify its computation. The error function to be minimized, however, incorporates an L1,
or Manhattan, absolute difference, which may or may not be appropriate; for example, an L2
or Euclidean distance seems more appropriate based on the properties of least squares fitting
described in Section 1.6.1.

The L2 distance is used in the example of Figures 1.7 and 1.8. In Figure 1.7, a problem
in which the support vector decision boundary does not eliminate all classification errors is
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Dimension 1

Dimension 2

Figure 1.7 Decision boundary (solid line) with margin to either side (dotted lines) as defined by the
support vector (filled circles and diamond). Here, there are six misclassifications

illustrated. In fact, 6 of 41 samples are misclassified. The support vector, however, provides a
decision boundary and maximized margin.

Next, the entire set of data in Figure 1.7 is used in combination with the support vector
decision zone to create a new decision boundary that has minimal squared error for the
misclassified samples as a sum of their L2 values from the boundary. Figure 1.8 provides
the optimum decision boundary that is compatible with the support vector range of allowable
values as introduced in Figure 1.4. This can be compared with the decision boundary that
minimizes the sum of L2 error distances overall in Figure 1.9.

Through this process, a boundary-based approach, the SVM, has been modified to be com-
patible with a population-based, “bottom-up,” data-driven approach. Whether this approach
provides a real advantage to SVM approaches compared to, for example, the kernel trick
described next, remains to be seen. Certainly, it should be an area of research for the machine
learning community. However, it does appear likely that such an approach, in minimizing the

Dimension 1

Decision
boundary of

minimum error

Dimension 2

Figure 1.8 Decision boundary providing least squares error for the six misclassified samples of Fig-
ure 1.7 (dashed line), which does not deviate from the decision zone of the support vector
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Dimension 1

Dimension 2

Decision
boundary of

minimum error,
decision zone

compatibility not
required

Figure 1.9 Decision boundary providing least squares error for the six misclassified samples of Fig-
ure 1.7 (dashed line), where it is allowed to deviated from the decision zone of the support vector

overall squared error and in maximizing the margin around the decision boundary, may be
more robust.

Figures 1.7, 1.8, and 1.9 illustrate a coordinate space in which no linear separation of the
class is possible. For linear separation, the following two equations must hold:

If (y > mx + b), y ∈ ClassA;
If (y < mx + b), y ∈ ClassB.

The kernel trick is introduced to find a linear decision boundary for separation of these two
classes, since in real-world classification problems, the class separation is rarely as clean as
shown in, for example, Figure 1.3. More commonly, the initial class separation, or decision
boundary, is a Gerrymandered curve along the lines of that shown in Figure 1.10a. With the
kernel trick we transform the decision boundary—albeit in a transformed coordinate system
made possible by the increased dimensionality of the kernel—into a linear boundary as shown
in Figure 1.10b.

Why is the transformation to a linear boundary important? My answer here is not based
on SVM theory, as I am unaware of research to date that has addressed, let alone solved, this
question. My interpretation is that, for one thing, it makes the boundary a minimal length
pathway through the new dimension space, which minimizes the “error surface.” For another,
this single pathway boundary—when the right kernel is selected—minimizes overfitting, since
the boundary is described by a surface the same order as the dimensionality of the class space.

In concluding this section on SVMs, I would like to point out their central role in current clas-
sification theory and practice. The kernel trick has, in some ways, allowed a classifier—the
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Dimension 1

(a)

(b)

Dimension 1'

Dimension 2

Dimension 2'

Figure 1.10 Decision boundary for two classes in the original 2D space (a) and in the transformed
space (b) created within the kernel. In (b), the decision boundary is linear, which generally minimizes
overfitting and differences between training and testing error rates

support vector—which might otherwise not be very effective for a given problem to be-
come very effective when one or more kernels are utilized. Among these, determining the
best results among the set of {linear, polynomial, radial basis, Fisher, Gaussian} kernels
provide a good repertoire of choices that will generally result in one or more highly accu-
rate SVM + kernel systems. For more on kernel engineering, please see Shawe-Taylor and
Cristianini (2004).

1.6.3 Probability

Probability methods are important for a wide range of intelligent system tasks, including
clustering, classification, and the determination of variance and covariance. Clustering is
especially important to estimate the relative sizes and distribution of the classes of data,
which in turn can be used to decide what, if any, transformation should be performed on each
distribution before downstream analysis.
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Probabilistic means of clustering data are as simple as the expectation maximization (EM)-
based k-means clustering approach. The k-means clustering approach performs iterations
consisting of two steps: updating the cluster assignment of the samples based on their location
to the nearest cluster center, followed by updating the cluster centers based on the set of
samples now belonging to them. Though simple, this algorithm can be readily modified to
accept constraints, such as (1) having clusters with equal number of samples; (2) weighting
different features used to determine the distances from each cluster center differently based on
their predicted utility for later classification, regression, and so on; and (3) allowing predefined
clusters to be accommodated concomitant to unknown clusters.

Another important set of approaches is based on joint distributions and conditional inde-
pendence of features. In this case, the probability of an event A, given the occurrence of an
event B, is the same as the probability of an event B, given the occurrence of an event A. The
equation describing this is

p(A |B)∗p(B) = p(B |A)∗p(A),

from which the general form of Bayes’ theorem is directly obtained:

p(A |B) = p(B |A)∗p(A)
p(B)

,

where, as noted above, p(A |B) is the probability of event A given that the event B has already
occurred. In many cases, we wish p(A) and p(B) to be very low (rarity of identifying event
or events) but p(A |B) to be very high (specificity of event or events). Rearranging Bayes’
theorem to show the ratio of p(A) and p(B), we can see that the ratio of p(A)/p(B) is equal to
the ratio of p(A |B)/(B |A):

p(A)

p(B)
= p(A |B)

p(B |A) .

In many machine intelligence problems, we are concerned with events that occur with some
probability when one or more of multiple other events occur. In fact, we may wish to find the
probability of event A when considering all of a set of mutually exclusive events, denoted as
B here. We thus rearrange to solve for p(A):

p(A) = p(A |B)∗p(B)
p(B |A) .

Let us now consider the case where B can occur as one of N independent outcomes; that is,
the sum of all p(Bi) = 1.0. We then obtain the following for p(A):

p(A) =

∑
i=1,...,N

p(A |Bi)
∗p(Bi)

∑
i=1,...,N

p(Bi |A) .
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This latter equation also governs the probability of event A for any subset of the outcomes
of B; for example, under constrained situations in which one or more of the Bi is not allowed
to, or cannot, occur. Why is this important? Because in many cases, we may not have a good
estimate for the probability of event A. Event A, meanwhile, may be a triggering event for
a specific downstream task, such as using a specific classifier tuned for the input data when
the triggering event occurs. Thus, the rearranged generalized Bayesian equation allows us
to compare different dependent events, here event A, for their overall probabilities against a
mutually exclusive set of events, B.

1.6.4 Unsupervised Learning

Unsupervised learning techniques are concerned with clustering (aggregating like elements
in a group), input space data distribution, or other operations that can be performed without
training data. Training data is also referred to as ground-truthed data and as labeled data. With
such unlabelled data, we have to rely on the structure of the data itself to infer patterns; that
is, unsupervised learning.

One type of unsupervised learning is the k-means clustering approach described in Sec-
tion 1.6.3. Related to the k-means clustering approach is the Gaussian mixture model (GMM),
in which we know the number of classes that are in a data set, but have no labeled data. The
GMM assumes that the data set is a function comprising the sum of multiple Gaussians, one
each corresponding to the individual classes:

f (x) =
C∑
c=1

wcG(x : μc,Xc),

where x is the set of features, f (x) is the output based on the set of features, C is the number of
classes, wc is the weight assigned to class c, and G(x :μc, χc) is a C-order Gaussian function
with mean μc and covariance matrix χc. The classifier consists, after the model is built (also
using an EM approach, per Section 9.2.2 of Bishop (2006)), of finding the maximum of the
following:

max
k

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
p(xa ∈ k : k = 1, . . . , C) = wkG(xa : μk,Xk)

C∑
c=1

wcG(x : μc,Xc)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
.

Weighting the classes is governed by the constraint

C∑
k=1

wk = 1.0.

For the EM approach to determining the GMM, the weights of the individual classes are
proportional to the number of samples assigned to the individual classes. This is called the
average responsibility approach, since the weighting is proportional to the class’ responsibility
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in explaining the input data set. It should be noted that the individual features in the feature
vector x can also be weighted differentially. There will be much more to say on this in later
sections of the book.

Self-organizing feature maps (SOMs) (Kohonen, 1982) are an unsupervised learning ap-
proach to describe the topology of input data. This machine learning approach can be used
to provide a lower-dimensional representation of the data in addition to its density estimation
value. It should be noted that SOMs can be very useful at the front end of unsupervised cluster-
ing problems, as well. As will be discussed in detail in Chapter 8 and elsewhere in this book,
one of the primary considerations in parallel system design is to decide how best to aggregate
processes to run in parallel. For large intelligence systems, this may include deciding which
aggregate classes to form first and from this determine the structure of a decision tree.

1.6.5 Dimensionality Reduction

SOMs, then, can be used for dimensionality reduction. Nearest neighbor techniques can also be
used to reduce the dimensionality of a data set. This is important to classification problems too,
since it is usually advantageous to eliminate isolated samples or even small clusters to avoid
overtraining, the addition of ectopic classes, and other types of “output noise.” Figure 1.11
illustrates how the 3-nearest neighbor approach is used to assign an unassigned sample to one
of two classes. The process involved is the same as that used for assigning samples when the
trained system is deployed.

The example of Figure 1.11 reduces the number of classifiers. More traditionally, however,
dimensionality reduction is concerned with the removal of features from the feature space. In
order to reduce the number of features, Marsland (2009) outlines three primary approaches:

1. Feature selection
2. Feature derivation
3. Clustering.

Dimension 1

Dimension 2

Figure 1.11 k-nearest neighbor classification applied to a formerly unclassified (square). The dotted
circle has a radius sufficient to incorporate the nearest three neighbors. Based on the results, the square
is assigned to the same class as the diamonds
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Feature selection is a white box means of eliminating features inasmuch as we use our
awareness of the relationship between a feature and the system output—for example, through
correlation, confusion matrices, and so on—to decide whether or not to eliminate a feature.
We can triage features through some relatively simple algorithms, including the following:

1. Select the feature with the lowest correlation with the output (alternatively, select the feature
with the lowest accuracy output).

2. Remove the feature.
3. If system performance improves, drop the feature and return to Step 1.
4. If system performance does not improve, either terminate feature selection or jump to the

next most poorly correlated (or accurate) feature and repeat Steps 1–3.

When employing Step 4 in this algorithm, we may choose to allow the “stack” to only get
to a certain depth (say, 10% of the number of features) before terminating the search. Other
forms of feature selection include the decision tree approaches and linear discriminant analysis
(LDA). LDA is concerned with projecting to a lower-order dimension such that the samples
in the higher-order dimension are optimally separated in the reduced dimension space. The
approach is effectively half of an F-score approach: we wish to maximize the between-class
scatter. The effect is similar to that discussed with regard to Figures 1.5 and 1.6. The “dashed”
and “dotted” line in Figure 1.6, in fact, could be the output of an LDA, allowing the two
dimensions in Figure 1.6 to be reduced to a single projected line.

Harkening back to the previous section, we observe that the LDA is performed on labeled
data. However, there are several methods for dimensionality reduction that do not require
labeled data. The first, PCA, is the process by which a matrix is transformed into its eigen-
vectors and eigenvalues; that is, orthogonal, uncorrelated components comprising a new set of
dimensions in which the principal component is in the direction of maximum variance for the
data set. Independent component analysis (ICA), on the other hand, assumes that the latent
components are independent, and so strives to transform the input data space into a set of
independent dimensions. Dimensionality reduction is readily achieved for PCA by dropping
all of the eigenvectors whose eigenvalues are below a given threshold (Jolliffe, 1986), and
for ICA based on the measurement of the mutual information of the components (Wang and
Chang, 2006).
Feature derivation, a second method for dimensionality reduction, is concerned with trans-

forming a (measured or original) feature set into another (derived or transformed) feature set.
These new features can be combined features from the original space; for example, in imaging
we may wish to combine red, green, and blue channel intensity into a mean intensity feature,
which is simply the mathematical mean of the original three features. Note, however, that
such transformations do not necessarily result in a reduced feature set immediately after trans-
formation: in this example, we may replace the three features (red, green, and blue channel
means) with three new ones (mean intensity, mean saturation, and mean hue) that provide us
with a set better pruned using feature selection.

Both PCA and ICA, described above, perform feature derivation in addition to the feature
selection. Each of them computes a principal component in the direction of maximum variance
and derives the rest of the components based on orthogonality (PCA) or independence (ICA).
Factor analysis (Dempster, Laird, and Rubin, 1977; Liu and Rubin, 1998) is another means
of dimensionality reduction in which latent variables are discovered using an EM approach.
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Multi-dimensional scaling (MDS) (Cox and Cox, 1994) and locally linear embedding (Roweis
and Saul, 2000) are two other feature derivation processes.

The third method for dimensionality reduction, clustering, has been already addressed in
light of k-means clustering, k-nearest neighbor (k-NN) clustering, and GMMs. As will be
shown later in this chapter, a specific criterion, the F-score, can be used to decide whether or
not to cluster.

Dimensionality reduction is important for several reasons. First off, in reducing the set
of features on which regression, classification, and other machine learning tasks are based, it
allows better compression of the data. Secondly, in reducing the correlation and/or dependency
among the features, dimensionality reduction may make the system less sensitive to noise.
Thirdly, dimensional reduction results in improved retrieval efficiency during querying.

1.6.6 Optimization and Search

Optimization is the process whereby, with a certain confidence, the best possible outcome
for a system is obtained. Typically, a function of the output—for example, the cost of the
system components, the cost of the processing, or the cost of correcting system errors—is to
be optimized. For cost, the optimization is usually a minimization. Introductory calculus tells
us that a smooth function can be effectively searched for its local optima using the gradient,
or Jacobian operator. The steepest descent approach updates the vector x as follows:

xk+1 = xk −�k∇ f (xk),

where�k is the distance to travel in the direction from xk to xk+1 in order to reach a minimum.
A related approach, which effectively uses the gradient descent method to create a trust region
for a least squares approach, is the Levenberg–Marquardt algorithm (Levenberg, 1944). The
conjugate gradient method is often a significant improvement on these methods, however,
since it moves in conjugate directions sequentially—thereby avoiding consecutive small steps
in the same direction.

For each of these approaches, one concern is that the gradient cannot move the vector x
from the zone of a local optima. No method for searching other neighborhoods in the output
space is provided. Thus, it is not unreasonable to combine such an optimization approach
with a “location generator” that seeds an appropriate set of points in x to provide statistical
confidence that an overall optimum has been achieved. This is illustrated in Figure 1.12, in
which sufficient starting points exist to allow the finding of the overall optimum.

In later chapters of this book, first derivative approaches will largely focus on sensitivity
analysis problems. However, it should be noted that the same concern applies to sensitivity
analysis problems as do to the more general optimization problems. Namely, the input space
must be seeded with a sufficient number of starting points to allow the overall optima to
be found.

Another important machine intelligence system approach to optimization is search. The
path to search is implicit in the grid pattern of seeded starting points in Figure 1.12. As the
spacings between starting points, or nodes, in the grid become smaller, the odds of missing
the overall optima also become smaller. Only optima with contours having effective radii of
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Dimension 1

Dimension 2

Figure 1.12 Example of an output space with sufficient seeding of starting points {xj}. These are
arranged in the grid (circles). The outer contours of regions for local optimization are shown in ovals.
Half of the starting points belong to one of the local optima contours, and the average contour spans 1.25
of the starting points. It is highly unlikely that none of the starting points will reside inside the contour
of the overall optimum

less than 70.7% of the internode distance could be unseeded. Assuming that the grid of seeded
nodes is sufficient, therefore, the optima (or near-optima) can be found through an exhaustive
search of the output values for all of the nodes. This search can be augmented by gradient
methods as described above to find the optima around each of the nodes.

Another important use for search in machine intelligence is in optimizing pathways. Min-
imum pathways are important in network, traffic, and other multi-step processes. The bench-
mark for optimizing pathways, as for search, is exhaustive search, in which every possible
pathway is attempted. Of course, this is hugely expensive computationally, even for a massive
and massively parallel computing environment. The number of possible pathways, NPP, for an
N-node set of locations is given by

NPP = (N − 1)!

2
.

As N increases to more than a trivial problem space, the number of pathways becomes
unwieldy for the exhaustive search approach. As a consequence, effective means for searching
a subset of the possible pathways must be selected. In Simske and Matthews (2004), several
methods for selecting the next node in a pathway were given. One was termed the “lowest
remaining distance” strategy, which is also known as the greedy search approach (Marsland,
2009). This approach often results in excessive distances for the last few node–node transitions.
Another approach was termed the “centroid + clockwise traversal” method, which rotates
around the centroid of all the nodes to the nearest—by angular value—node from the current
node. This method is readily extended to a hybrid clustering/clockwise traversal approach that
effectively introduces supernodes that are internally sequential. A final method mentioned in
Marsland (2009) is the hill climbing approach, in which pairs of nodes are randomly swapped
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to see if improvements can be made over the best current set of pathways. This approach
naturally leads to genetic algorithm approaches, which are described in Section 1.7.2.

1.7 Artificial Intelligence

In this overview chapter, artificial intelligence approaches are collectively viewed as machine
reasoning systems in which the architecture of the connections is allowed to optimize with-
out regard to a specific guiding formula or expert system rule set. Neural networks, which
trade off architectural complexity with convergence speed, are overviewed first. Next, genetic
algorithms are introduced and shown to be effective for searching a very large input space
with a relatively small number of trials. We conclude this section with an overview of Markov
methods, which are “memoryless” approaches in which the next state depends only on the
current state.

1.7.1 Neural Networks

The term “neural network,” or more correctly, “artificial neural network” (ANN), implies a
system whose architecture is inspired by one or more physiological neural networks. While
this may be the case in some instances, for the general case this is not an accurate representation
of how ANNs are designed.

The human cerebral cortex, for example, is largely comprised six layers of neurons, with
widely different relative layer thicknesses when comparing the different cortical lobes: frontal,
parietal, temporal, and occipital (Kandel, Schwartz, and Jessell, 2000). This relatively struc-
tured architecture, however, is far different from that of the hippocampus—a brain structure
associated with the incorporation of memory—or that of the cerebellum, a three-layered brain
region containing more than half of the brain’s neurons. The modal neuron in the brain makes
thousands of synaptic connections to other neurons. These connections are characterized by
the effects of released neurotransmitters on the postsynaptic neurons. These effects can be
excitatory or inhibitory, synergistic or antagonistic, short-termed or long-termed, persistent or
habituated, and even result in distinct effects on different postsynaptic neurons. Synaptic (and
dendritic) projections can be local, into adjoining layers, or to distant brain regions. In other
words, brain architecture is both complex and diverse.

Learning in the brain is also both complex and diverse. The efficacy of synapses, resulting
in stronger or weaker influence on the postsynaptic neuron, can be altered through changes in
neurotransmitter release, changes in neurotransmitter reuptake or removal from the synapse,
changes in the morphology of the synapses, and changes in the number of synapses, depending
on the strength and length of the reinforcement provided for a given connection. At a more
macroscopic level, brain learning is also complex and diverse. Neural pathways are often
carved rather than assembled—think of Michelangelo’s David and not Picasso’s Baboon and
Young. This carving not only reinforces certain behaviors or preserves certain thoughts but also
removes other behaviors and thoughts. This is in fact termed neural sculpting, and this too is
not a uniform process throughout the brain; for example, it creates longer-lasting information
pathways in the cerebral cortex than those in the hippocampus.

Let us compare these nature-made neural networks (NNN) to the artificial ones. For this
comparison, the ANN of choice will be the multi-layer perceptron, or MLP, of Rumelhart,
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Hinton, and McClelland (1986). This MLP connects an input layer to a hidden layer, and the
hidden layer to the output layer, and comprises a three-layer network. The architecture of the
MLP is far simpler than that of the NNNs described above in the following ways:

1. The ANN has a specific input and output layer. For an NNN, these would be functionally
replaced by sensory (input) and motor (output) neurons, furthering the complexity of the
NNN from that described above.

2. The ANN has only a single hidden layer that connects the input and output layers. The
NNN, on the other hand, consists of three (cerebellum) or six (cerebral cortex) layers, or a
much less structured, more highly interconnected architecture.

3. The number of connections in the MLP is very small. Typically, each input node, IN,
connects to each hidden layer node, HLN, and each HLN in turn to each output node, ON.
If the number of nodes in each of these three layers are NIN, NHLN, and NON, respectively,
then the total number of connections, NC, is

NC = NHLN(NIN + NON),

for which the mean number of connections per node, μC/N is

μC/N = NHLN(NIN + NON)

NIN + NON + NHLN
.

If the number of nodes at each of the three layers are equal, then

μC/N = 0.67NHLN.

If, however, NIN and NON are �NHLN, as may be the case for imaging applications, then

μC/N ≈ NHLN.

In otherwords,μC/N isO(N). Unless the number of hidden nodes is abnormally large—the
range of hidden nodes typically used is from roughly 20 to 100—this is approximately two
orders of magnitude less than the mean number of connections per node in the human brain.
As a better direct comparison, though, we should compare the ANN to a ganglion, that
is, a peripheral nerve center. For this NNN, the mean number of connections per node—I
should say per neuron here—is intermediate to that of the MLP and the human brain regions
described above.

Regardless, we must keep in mind that the relationship between the mean number
of connections and the complexity of a neural network—not to mention its capacity for
learning—is nonlinear. Assuming that all synapses are independent and contribute relatively
equally to learning and neural processing, the relationship between μC/N and ANN or NNN
complexity is geometric.

4. The number of synapses is not equal to the number of connections in a living neural network,
as it is in the ANN MLP. In an NNN, new synapses are grown during learning (Bailey and
Kandel, 2008), allowing the same neuron not only to connect to new postsynaptic neurons
but also to add new connections to existing postsynaptic connections.



24 Meta-algorithmics: Patterns for Robust, Low-Cost, High-Quality Systems

5. Learning in an MLP consists of changing the weights on the connections between nodes.
Learning in an NNN, as described above, is more complex. Here, learning includes the
growth of new neurons, the growth of new synapses, and changes in the morphology
and/or efficacy of synapses—along with the opposite of each of these in the case of neural
sculpting.

6. Short-term and long-term memory also differ greatly when comparing the MLP and NNNs.
In an MLP, the short-term learning is effectively the error feedback changing the weights of
the connections. The long-term memory is the current state of the MLP, which is simply the
set of weights on all of the connections. In an NNN, short-term and long-term memory are
both quite complex. Synaptic plasticity, or the ability of chemical (neurotransmitter-based)
synapses to change their efficacy, includes long-term potentiation (LTP) and increased
synaptic interface surface area (ISISA). LTP is the process by which the amount of neu-
rotransmitter released is altered—for example, greater amounts of excitatory neurotrans-
mitter(s) are released into the synapse or lesser amounts of inhibitory neurotransmitter(s)
are released into the synapse—or else the rate of removal of neurotransmitters from the
synapse is altered. ISISA results in a greater relative postsynaptic potentials, enhancing the
ability of the presynaptic neuron to affect the postsynaptic neuron. Both LTP and ISISA are
associated with short-term learning, although ISISA can also be associated with long-term
memory if the changes are significant—and permanent—enough. Of course, long-term
memory in an NNN is even more complicated, since it includes the growth of new exci-
tatory and/or inhibitory synapses, the projection of neuronal axons or dendrites into new
regions, or even the growth of new neurons.

It is clear that ANNs such as the MLP are not as complex as the biological systems that
(at least in theory) inspired them. It is certain that some ANN architecture will increase in
complexity as their value for cognitive analysis is bettered, and better appreciated by the
machine intelligence field. Even so, the general principles of the MLP are still quite likely to
apply, and the various physiological attributes of NNNs are likely to be adopted slowly, and
only in targeted applications.

The MLP is, in fact, simply an elaborate algorithm that is carried out on the structured sets of
layers defined above. To initialize the MLP, an input vector is put into the INs. These nodes are
arranged as a one-dimensional (1D) array, but 2D and 3D inputs are readily accommodated by
simply mapping them to a 1D vector (e.g., the same way that 2D images are stored sequentially
in memory, one raster line after the other). Weights along the connections are also randomly
initiated, which contributes to the stochastic nature of ANN models. The input signals are fed
forward through the network to the hidden layer and thence to the output layer. The state of the
input signal, the weights along the connections, the sum of the weights at the next node, and
the activation, or threshold, function (usually a sigmoid function) for determining whether the
sum of weights causes firing of the hidden node, determine the set of states at the HLNs. The
outputs of these nodes, the weights of the connections between HLNs and output layer nodes,
and the same summing and activation approaches then determine the ON states.

Ground truthing or “target output” is then used to compute the error in the network. The
expected, or targeted, output vector is compared to the actual output vector (the set of states of
all ONs) and this error is then fed back into the network to update, in order, the hidden layer
weights and then the input layer weights.
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Each of these steps involves choosing certain system coefficients; for example, the activation
function coefficient and the backward feedback coefficient. These coefficients are used to
provide a trade-off between faster convergence time (preferred) and system convergence on
a local optimum (not preferred). Increasing the learning rate (α) typically results in faster
convergence, and also more likely results in the identification of a local optimum. Slower
learning rates force the algorithm to inspect the topology at a higher resolution in exchange
for slower convergence. This trade-off is, of course, problem dependent.

In this text, ANNs will be viewed as black boxes that produce a specific output, which
we then use as input in a larger parallel processing intelligent system. For example, several
neural networks can be run in parallel with different initial conditions to see if there is a
preferred system convergence state or simply to provide multiple optima candidates. In this
way, ANNs can be used in a method somewhat analogous to genetic algorithms, as described
in the Section 1.7.2. Initial conditions based on an expert, or expert system, estimate may also
converge faster and still provide an output that is optimal or very close to optimal. Regardless,
ANNs are a very important type of algorithm to use in combination with other machine
intelligence algorithms because they tend to work differently than many of the other common
machine learning approaches, such as SVMs, boosting, genetic approaches, expert systems,
and Bayesian systems. As such, they are a useful (and easy to implement) means of adding
another intelligent system to a problem space. The advantages of this for the meta-algorithmic
patterns outlined and elaborated in Chapters 6–9 will become obvious. The fact that there are
a plethora of open source neural network software libraries is icing on the cake.

Note that in some ways, if I may reach a bit here, an ANN is analogous to the kernel
method introduced in Section 1.6.2. The ANN—through the use of the hidden layer and a
focus on optimizing connections between layers that are difficult, if not impossible, to map to
any mathematical relationship between input and output—is able to solve problems without
the solution architect having to really understand how the solution has been effected. In effect,
a larger-dimensional solution space is created (the number of connections are much greater
than the number of INs and ONs), which the MLP algorithm efficiently searches to create an
intelligent system. The kernel trick also increases the dimensionality of the search space and in
so doing allows a linear boundary to be found in that space that maps to a more complex—and
more accurate—boundary in the lower-dimensional problem space.

1.7.2 Genetic Algorithms

Genetic algorithms (Goldberg, 1989) are efficient search approaches based on the principles
and kinetics of natural selection and heredity. Specifically, genetic algorithms are based on
the principle of a gene, which comprises a string of DNA or RNA triplets that code for
a polypeptide (protein) chain or an RNA chain. For genetic algorithms, these triplets are
represented with individual bits or loci, meaning that the sequences that can be optimized by
the genetic algorithm can be binary in nature.

Any binary representation of a function to be searched can be handled by a genetic algorithm.
In its simplest form, a genetic algorithm consists of the following elements and operations:

1. A set of strings that comprise a small subset of the possible search strings.
2. A means to populate this subset of search strings.
3. A fitness measurement for the search strings.
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4. A means to select a next iteration of search strings, which includes replication, near-
replication, crossover, mutation, and random selection.

5. A means of terminating the algorithm after a certain number of iterations of Steps 2–4.

These are relatively simple steps, and are well designed for searching over a specific output
function.

As an example, suppose we wish to determine the best set of 10 query terms to include
in a particular search. There are 210 – 1 = 1023 possible query sets (the null term query is
disallowed), and we wish to get an acceptable recommended search query from just a small
set of 50 search query candidates, called genes. We decided to use 10 randomly created genes,
and then proceed from there with four rounds of gene shuffling. The initial set of 10 genes
was determined by using a random number generator (RNG), with returned RNG values in
the range [0.5, 1.0] being made 1s, and RNG values in the range [0.0, 0.5) being made 0s:
example genes include {0001001110}, {1011011011}, and {0100001101}. Next, the fitness
measurement was determined based on the relative success of finding the correct document
using the search query based on each gene. The three genes shown have four, seven, and four
terms, respectively (since the 1s indicate including the term). The fitness of the first and second
queries (based on the genes) are weighted much higher than the third, and so these two are
chosen—whereas the third is not—as the basis for the next set of 10 queries. A mutation rate
of 5% and crossover rate of 90% is chosen. The first sequence {0001001110} is randomly
assigned a crossover at the fourth bit with the second sequence {1011011011}, resulting in
two new genes {0001011011} and {1011001110}. Next, one of these bits is mutated: the
eighth bit of the second new gene, making it {1011001010}. Similar crossover and mutations
led to an additional eight set of genes, for a total of 10 new genes in the second iteration. By
the end of five such iterations, we have exhausted the 50 search query candidates, and the best
quality search is, for example, 98.5% as good as the best single search out of all 1023 possible
searches. Randomly selecting 50 queries would generally give a lower mean percentage of
the best possible value, since the genetic algorithm preferentially reproduces the higher fitness
genes, crossovers of two of them, and minor mutations on them.

Importantly, this set of steps, with only minor modification, can be used for other types of
search, optimization, and classification. In a previous work, a genetic algorithm was used for
a variant of the traveling salesman problem (TSP), in which a path through N locations is to
be minimized (Simske and Matthews, 2004). In this case, the five elements and operations
described above are implemented as follows:

1. A string of loci, numbered consecutively, each of which represents one particular location.
For example, if L locations need to be passed through, then the locations may be listed
alphabetically and assigned the values 1, 2, . . ., L.

2. Five different means of creating initial strings were used. Each of them involved the concept
of next-node probabilities. These probabilities are an array of probabilities, normalized to
sum to 1.0, which combined give the statistical likelihood of selecting each of the remaining
nodes. These probabilities are recomputed each time a node is selected (using an RNG that
is mapped into the probabilities). (a) The first methods used include naı̈ve, in which all of
the next-node probabilities are identical,

pi∈S(unassigned) = 1

Ni∈S(unassigned)
.
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The probabilities are equal for every unassigned node in the particular path being ini-
tialized. The set of unassigned nodes are in the set S(unassigned). (b) The second method
assigns the next-node probabilities by relative distance,

pi∈S(unassigned) = D(nodei − nodecurrent)∑
k∈S(unassigned)

D(nodek − nodecurrent)
,

where D(∗) is the Euclidean distance. (c) The third method assigns the next-node probabili-
ties by cluster. Effectively, this reduces the problem space to a searchwithin a cluster until all
of the locations in a cluster are visited, and then the next cluster is appended. This is in effect
a hybrid approach, and depends on an appropriate clustering algorithm—such as k-means
clustering—to be performed first. The constraint can be relaxed such that the weighting
within the clusters is simply relatively higher than the weighting outside of the clusters in
comparison to what would otherwise be assigned by methods (a), (b), (d), or (e). Speaking
of which, method (d) creates the next-node probabilities based on the direction of travel. If
the current direction of the travel is clockwise (or counterclockwise) around the centroid of
all the locations, then the next nodes in the clockwise (or counterclockwise) direction being
traversed can be weighted more highly relative to its otherwise-assigned weight. The final
method (e) weights the next-node probability based on the inverse of the distance; that is,

pi∈S(unassigned) ∝ 1

D(nodei − nodecurrent)
.

Taking into account all remaining unassigned nodes,

pi∈S(unassigned) =

∑
k∈S(unassigned)

1

D(nodek − nodecurrent)

D(nodei − nodecurrent)
.

3. The fitness measurement for each path is trivial to compute: it is the sum of the distances
from the starting node through all the other nodes and back to the starting node. The
results were not particularly surprising. As reported in Simske and Matthews (2004),
when applying the inverse distance approach to both initialization and crossover (discussed
below), excellent fitness and rapid convergence were observed.

4. The means to select a next iteration of search strings involved crossover, which involves
simple reversal of a length of nodes: for example, if nine cities are visited in order from
{4,2,5,8,3,9,1,7,6} and crossover is dictated to occur from nodes 3 to 7, then the order of
cities visited becomes {4,2,1,9,3,8,5,7,6}. This effectively swaps part of one gene with a
previous version of itself, and leads to generally much more change than a point mutation.
Mutation in such a situation includes substitution, which for the example results in the
swapping of nodes 3 and 7, producing the order {4,2,1,8,3,9,5,7,6}.

5. The algorithm described in points 2–4 is terminated after a certain number of iterations in
which no overall improvement in fitness is observed.

The results of applying these steps to the TSP were immediate. In particular, the inverse
distance approach resulted in much faster convergence and much less residual error after
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convergence than the other methods. However, in the earlier work (Simske and Matthews,
2004), I did not have the opportunity to experiment on all five of the different means of
creating initial strings. With the type of crossover used, it turns out that method (b) sometimes
works, especially with asymmetric systems, since it helps create genes that are exploring
new local optima. This overcomes one of the most common problems in genetic algorithms;
namely, the difficulty of creating new searches that escape from the current local optimum. The
mutation type implemented also helps prevent convergence on what is only a local optimum.
Also, for both symmetric and asymmetric TSPs, the clustering method (c) works quite well
when the clustering is attached to an F-score metric such as described later in this chapter.

The TSP solutions investigated here are a simplification of the real complexities involved in
directing traffic. In real-world applications, the node–node transition costs are based on, among
other things, both the distance and the traffic congestion between nodes. Other pragmatic
considerations include the intelligent clustering of nodes based on similarity in the navigator’s
intents at each destination (e.g., cities to visit may be clustered by language in Europe),
maximum distance preferred between nodes (so the traveler will not have too much driving
for a day), and other pragmatic considerations.

Like neural networks described in the previous section, genetic algorithms are used to
search a very wide space in an efficient manner. Genetic algorithms are not expected to find
the global optima efficiently, but are expected to find something close to the overall optimum
rather quickly. Thus, certain genetic algorithm approaches can provide the types of machine
intelligence plasticity proffered by ANNs. One easy way to see a relationship is to consider
how the initial conditions on the connections in a neural network are set. Suppose we choose
to create a population of MLPs as introduced in Section 1.7.2. We may then initialize the
MLPs using an RNG and score each MLP after just a small number of iterations using a fitness
metric. The genetic “crossover” can then be used on the initial weightings to initialize a new
MLP that can be deployed next, and this will presumably lead to a more optimal MLP more
quickly than running a single MLP for many iterations.

Genetic algorithms have long been a favorite adaptive stochastic optimization algorithm,
with the analogies to biological evolution often touted for robustness and convergence advan-
tages. Another evolutionary analogy has often been overlooked: that of punctuated equilibrium
(Gould and Eldredge, 1977). Punctuated equilibria comprise static periods in the evolution of
a sequence of species that are interrupted by relatively short periods of rapid change. Genetic
algorithms run the risk of remaining in stasis unless there is an impetus sufficient to effect
change. As illustrated herein, this impetus can stem from changes in initialization, crossover,
and/or mutations. It can also, importantly, stem from hybridization of a genetic algorithmic
approach with that of clustering or other techniques.

1.7.3 Markov Models

Markov models are an important form of reinforcement learning (Marsland, 2009). This type
of learning is based on knowing the right answer only, but not the correct means to arrive at
it. This is analogous to many genetic algorithmic and ANN approaches, as described in the
previous two sections. Markov models, however, have a very simple architecture. At each of
the possible states in a Markov process, the conditional probability distribution for all possible
next states is only dependent on the current state.
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If the system state is fully observable, a Markov chain is used. If the system state is only
partially observable, then a hidden Markov model (HMM) is used. The general Markov model
is described by a joint probability model in which the probability of a sequence of S events is
based on the conditional probabilities leading to each of the states {o1, o2, . . ., oS}. Thus, the
probability of obtaining S specific outputs in this order is given by

p(o1, o2, . . . , oS) =
S∏

k=2

p(ok | o1, o2, . . . , ok−1).

In most cases, the output set is too large, the relevancy of the many-termed conditional
distributions is too low, and/or the training set is too small for all of these probabilities to be
calculated. In most applications, a first-, second-, or third-order Markov model suffices. For a
first-order model, the probability for the state sequence {o1, o2, . . ., oS} is, therefore,

p(o1, o2, . . . , oS) = p(o1)

S∏
k=2

p(ok | ok−1).

A first-order Markov model can be applied readily to classifier output. Examples of dif-
ferent states include characters in text recognition problems, phonemes in speech recognition
problems, and different classes in any general classification problem. As an illustration, in
Figure 1.13 the transition diagram associated with a three-state system is given. The condi-
tional probabilities are first-order; that is, the probability of the next state is conditional only
on the current state.

0.2

State B

State A State C0.2

0.2 0.3

0.3
0.5

0.3 0.6

0.4

Figure 1.13 Transition diagram for a three-state Markov model. The model is first-order as all of the
state transition probabilities depend only on the current state. The associated probabilities are indicated
by the numerical values associated with the arrowed arcs. These probabilities are used to create the
transition matrix, T, as described in the text
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Extracting the transition probabilities from Figure 1.13, we obtain the transition matrix, T,
given here:

State n
A B C

State
n − 1

A

B

C

⎡
⎢⎣

0.5 0.3 0.2

0.2 0.2 0.6

0.4 0.3 0.3

⎤
⎥⎦ .

This is a very convenient matrix to use for state probabilities. For the probability equation
above, suppose we wish to compute probability of starting at state A and three transitions later
ending at state C. Then

p(A,X1,X2,C) =
∑

X1∈{A,B,C}

∑
X2∈{A,B,C}

[p(C |X2)p(X2 |X1)p(X1 |A)].

The first of these is p(C |A)p(A |A)p(A |A), or (0.2)(0.5)(0.5) = 0.050. Summing all nine of
these probabilities, we obtain

p(A,X1,X2,C) = 0.050 + 0.090 + 0.030 + 0.012 + 0.036

+ 0.054 + 0.016 + 0.036 + 0.018 = 0.342.

Similarly, we can obtain the following probabilities:

p(B,X1,X2,C) = 0.346,
p(C,X1,X2,C) = 0.343.

Perhaps not surprisingly, these values are all very similar, meaning that the state three cycles
before is more or less unrecoverable for such a first-order Markov process. One would, based
on these results, conclude that the system is in state C roughly 34.4% of the time.

I wrote software to perform millions of iterations on the states in this system, using an RNG
to decide the state transitions. In fact, after 3 × 107 iterations, I found that the system spent
38.4% of its time in state A, 27.3% of its time in state B, and 34.3% of its time in state C. This
result makes sense when we sum the columns in the transition matrix as shown:

State n
A B C

State
n − 1

A

B

C

⎡
⎢⎣

0.5 0.3 0.2

0.2 0.2 0.6

0.4 0.3 0.3

⎤
⎥⎦

1.1 0.8 1.1
.

Based on these sums alone, we expect the system to spend 36.3% of its time in state A,
26.3% of its time in state B, and 36.3% of its time in state C. Further eyeballing, we can see
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that state A is more likely to stay in state A (50%) compared to state C (30%), and thus the
overall 38.4–34.3% results observed, favoring state A over state C, also make sense.

The state sequences described herein are often captured in a lattice or trellis diagram. These
diagrams are especially helpful, in my experience, for understanding the optimal pathways,
such as the max-sum optimum as identified by the Viterbi algorithm (Viterbi, 1967).

Markov models with large output sets, farsighted conditional distributions, and insufficient
training sets are unlikely to have reliable conditional probability values to use. The same
caution should be noted for Bayesian networks, introduced in Section 1.6.3.

1.8 Data Mining/Knowledge Discovery

Data mining, often referred to as “knowledge discovery,” brings together some of the algo-
rithms and system approaches outlined in earlier parts of this chapter; in particular, probability,
statistical NLP, and artificial intelligence. This is an important field to introduce here since
it is so highly dependent not just on the algorithms used, but on how the algorithms inter-
act with the hardware used to house the data. Data mining is tightly coupled to the type
of data to be analyzed as well as the database upon which it performs search and analy-
sis. For example, column-oriented storage organization significantly accelerates sequential
record access within a database. However, this approach does not help for so-called object-
oriented database (OODB) operations: these include commonplace transactional operations
including refresh/update, delete, insert, and single-record search and retrieval. For OODB-
like data mining, linked lists and other modern addressing and indexing approaches are
more relevant.

In the end, data mining is the extraction of data from a data store (usually a database) for the
purpose of upgrading its content: this can mean the creation of meta-data, the creation of new
data structures, or raw analytics (data statistics). After this new data is created, it too should be
represented in such a way as to optimize its downstream search and data mining on the given
database, using the given data management system, and using the salient access protocols and
structures. Thus, an important aspect of data mining is not just the updated content, but how
the updated content will be represented and accessed thereafter.

Whereas genetic algorithms were shown to be associated with search—finding existing
information from a large set of data—data mining is associated with discovery; that is, the
finding of new content. Data mining is therefore analysis of large data sets in order to discover
one or more of the following:

1. Patterns within and between large or multiple data sets. This analysis of content is designed
to uncover relationships within data sets, including temporal relationships, occurrence
frequencies, and other statistics of interest. The patterns can be based on model fitting
(templated data discovery) or can be open-ended (statistical data discovery).

2. Unusual data, data sets, or data structures. This analysis of abnormal content is termed
anomaly detection, and can include analysis of context. Data outside the range normally
associated with a particular event will be tagged as anomalous, and will trigger an associated
response (notification, corrective response, etc.).

3. Data dependencies, wherein terms co-occurring are identified and used to define association
rules. These rules are used extensively in suggestive selling, advertising, promotional
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pricing, and web usage mining. Combined, these rules are used to profile a person, group,
or other user pool, and comprise analysis of context and/or analysis of usage.

Data mining is usually not the end of the analysis of the data. In many case, the analysis of
content, context, and/or usage is the input to secondary, more specific analysis. For example,
the data dependencies can be used to comprise a predictive model for later behavior. This
predictive model may be used in synchrony with other input—for example, business policies,
operational rules, personal knowledge, and business intelligence—to help define a decision
support system that is used in the appropriate business context to more effectively solve
problems and make better-informed decisions.

Knowledge extraction (KE), associated with data mining, is concerned with the repurposing
of the data extracted for use in downstream processes. As such, KE is concerned with mapping
mined data to a particular schema or structure that can be used in other contexts. Both structured
and unstructured data are remapped into an ontology or taxonomy that can be more effectively
incorporated into other decisioning processes. A key point here is that data mining and KE are
more effective when they are part of a bigger, hybrid system comprising two or more machine
intelligence algorithms, systems, and engines.

1.9 Classification

In many ways, classification is the central subject in intelligent systems, including the
most sophisticated one: the human brain. Classification is the systematic placement of
objects—concrete or abstract—into categories. Classification can be performed on struc-
tured data (in which the categories are known beforehand) or on unstructured data that has
previously undergone cluster analysis (in which case clustering is performed first and later
these clusters are associated with categories or otherwise assigned/combined).

SVMs are powerful classifiers, and they are overviewed in Section 1.6.2. SVMs are
boundary-based approaches, which by definition focus on the support vector, or the set of
samples that define the border zone between multiple classes. An example of a boundary-
based classifier is given in Figures 1.14, 1.15, 1.16, and 1.17. In Figure 1.14, the 2D data is
shown, the two dimensions are the two features measured for each sample. There is no clear
linear boundary between the data.

Figure 1.15 shows the results of applying a boundary-based classification on the data in
Figure 1.14. Here the boundary is loosely fit (e.g., a cubic spline fit).

Figure 1.16 shows a tightly fit decision boundary (TFDB) for the same data set. Here the
boundary is able to avoid misclassification of any of the training data. This can be achieved
by several of the methods described earlier in the chapter, including the SVM with the kernel
trick and ANNs.

Figure 1.17 illustrates the samples that are part of the support vector for the boundary in
Figure 1.16. More than half of the samples in the set are used for the definition of the vector
space. As a consequence, the decision boundary in Figure 1.17 is likely fit too closely with
the training data. The decision boundary created in Figure 1.16 will likely perform as well or
better on test data.

Other classification approaches that are focused on decision boundaries are linear
classifiers—which distinguish classes based on linear combination of the features (Simske,
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Figure 1.14 Simple 2D sample set (nX = 20, nO = 15) to be classified

Li, and Aronoff, 2005)—and quadratic classifiers, which separate classes based on a quadric
surface.

All classifiers benefit from the availability of training data. For example, in Figures 1.14,
1.15, 1.16, and 1.17, if the amount of training data were greatly increased, we would have a
better means of comparing the deployment accuracy of the two decision boundaries, shown
in Figures 1.15 and 1.16. Figure 1.18 provides such a comparison through the addition of
55 more samples, which are considered a validation set. After adding the validation set data
samples, the loosely fit decision boundary (LFDB) of Figure 1.15 has 87.8% accuracy on
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Figure 1.15 Data sample set of Figure 1.14 with a loose decision boundary
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Figure 1.16 Data sample of Figure 1.14 with a tightly fit (overfit?) decision boundary

the combined training + validation data, slightly but statistically nonsignificantly greater than
the 86.7% accuracy on the combined training + validation data observed for the TFDB of
Figure 1.16. This is in spite of 100.0% accuracy when using the TFDB on the training set
compared to the lower 91.4% accuracy when using the LFDB. Thus, the LFDB performed
far better (85.5% accuracy) than the TFDB (78.2% accuracy) on the validation data, and is
therefore the boundary of choice for deployment.
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Figure 1.17 Data sample set of Figure 1.14 with the TFDB of Figure 1.16, with the support vector-
relevant samples in light gray. In general, overfit decision boundaries will involve a higher than expected
number of samples in the support vector
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Figure 1.18 Data sample set of Figure 1.14 augmented with 30 more X and 25 more O samples (nX =
50, nO = 40). Here it becomes clear that the decision boundary of Figure 1.15 is most likely as good an
approximation of the optimal decision boundary as is that of Figure 1.16. See text for details

Training data is the basis for the weightings used in boosting and the probabilities used in
Bayesian classification and HMM classification. Both Bayesian- and HMM-based classifiers
select as the assigned class the output with the highest summed probability.

Boosting classifiers such as AdaBoost (Freund and Schapire, 1996; Schapire, 1999) are
ensemble classifiers that effectively used the consensus decisions of a (usually large) set
of relatively inaccurate classifiers to provide a highly accurate decision. The random forest
classifier (Breiman, 2001) is also an ensemble classifier, and it consists of many decision trees.
After a large number of decision trees are formed, the most common output is accepted as the
classification.

Clustering approaches are also used to create “bottom-up” classifiers; that is, classifiers
that are based on aggregating rather than defining boundaries. Figure 1.19 shows a GMM
clustering for the data of Figure 1.14, where five clusters are used to represent the “X” class,
and four clusters are used to represent the “O” class.

The k-NN classifier is also an aggregation-based classification method. This classifier com-
pares the test sample to the k nearest training samples and assigns the class as the modal
neighbor class. Typically, k is in the range {1, . . ., 5}, and is generally higher when the number
of training samples is greater.

A helpful analytical measurement for clustering and for aggregation-based (“bottom-up”)
classifiers such as GMMs or simple linear combinations of Gaussian classifiers (Simske, Li,
and Aronoff, 2005) is the F-score, which I use as the shorthand for the test statistic of an
F-test such as is used in analysis of variance (ANOVA) and other statistical comparisons. The
F-score is defined as

F = MSEb

MSEw
,
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Figure 1.19 Data sample set of Figure 1.14 using a Gaussian mixture model for the classes. Here the
number of Gaussians in the class are overfit, five for the X samples and four for the O samples

where MSEb is the mean-squared error between the clusters and MSEw is the mean-squared
error within the clusters. Since the mean-squared errors are defined by the sum squared errors
(SSE) and the degrees of freedom in the data sets, we rewrite the F-score as

F =
SSEb

/
dfb

SSEw
/
dfw

,

where df are the degrees of freedom, generally 1 less than the members in a group. Next, we
consider the values, V , of the data set. The mean value of cluster c, designated μc, is given by

μc =

n(c)∑
s=1

Vs,c

n(c)
.

Here, Vs,c is sample s in cluster c. The number of samples in cluster c is n(c) and the total
number of clusters is nc. From this, the value of MSEw is given by the following:

MSEw =

nc∑
c=1

n(c)∑
s=1

(
Vs,c − μc

)2

nc∑
c=1

n(c)− nc

.
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The value of MSEb is readily derived as follows:

MSEb =

nc∑
i=1

nc∑
j=i+1

(
μi − μ j

)2

nc(nc − 1)
/
2

.

Using the fact that

n(c)∑
s=1

(
Vs,c − μc

)2 =
n(c)∑
s=1

(
V 2
s,c − 2Vs,cμc + μ2

c

) =
n(c)∑
s=1

V 2
s,c − 2μ2

cn(c)+
n(c)∑
s=1

μ2
c

=
n(c)∑
s=1

V 2
s,c − 2μ2

cn(c)+ n(c)μ2
c,

the value of MSEb is more conveniently written as

MSEb =

nc∑
c=1

(
μc − μμ

)2

nc − 1
.

Here, μμ is the mean of the means, which is the mean of all the samples if all of the clusters
have the same number of samples, but usually not so if they have different numbers of samples.
In terms of reducing computational overhead, then, MSEb is

MSEb =

nc∑
c=1

μ2
c − ncμμ

nc − 1
.

Similarly, the computations for MSEw can be reduced to

MSEw =

nc∑
c=1

n(c)∑
s=1

V 2
s,c −

nc∑
c=1

n(c)μ2
c

nc∑
c=1

n(c)− nc

.

We now consider how the ratio of MSEb/MSEw—that is, the F-score—can be used to
optimize clustering using a simple example. Consider the simple data set in Figure 1.20,
which have two possible clusterings. The dashed lines indicate the three clusters:

A = {(1, 4), (3, 4), (2, 3)},
B = {(3, 1), (4, 2), (5, 1)},
C = {(8, 4), (9, 5), (10, 4)}.

The solid lines indicate two clusters, D = A ∪ B, and C.
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Figure 1.20 Data set for the F-score clustering example (see text). The dashed lines indicate a three-
cluster representation, A, B, and C. The solid lines indicate a two-cluster representation, D = A ∪ B,
and C

It is left to the reader to show that F{A,B,C} = 11.62 and F{D,C} = 7.06. From this, we
determine that the three-cluster representation is optimal.

This example, while relatively trivial, illustrates the value of a simple metric—the F-
score—to provide very important output—the clusters associated with a data set of any size.
The F-score is of huge importance in parallelism by meta-algorithmics, as each of the clusters
of data may be analyzed differently based on their different characteristics.

1.10 Recognition

Pattern recognition (Tveter, 1998) plays an important role in many intelligent systems, partic-
ularly signal processing and image understanding. The brief overview of recognition is placed
here since it builds on many of the technologies introduced in earlier sections of this chapter.

Recognition can be considered in two distinct—both important—ways. The first is absolute
recognition—wherein an item is categorized as being an object of a certain type, or class. This
identification can be performed even if the object has not been observed before; for example, it
can be identified based on rules or an intelligent grammar of rules (expert system). The second
is an awareness that something observed has been observed before. This relative recognition is
often achieved using correlation. Correlation in the broad sense is any measure of dependency
of one set of data on another set(s): this means the k-NN classification method is a correlative
method, since the sample to be classified best correlates, in a positional sense, with the modal
class of its k nearest training samples.

Examples of relative recognition abound in NLP, in which lemmatization, part-of-speech
tagging, summarization, keyword generation, and semantic analysis can be used to describe
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a portion of text. Different text elements can be matched relatively, then, by having similar
keywords or other salient meta-data. Words with matching lemmas are related conceptually
to each other (absolute recognition), whereas words with matching stems may not be (relative
recognition).

In imaging applications, correlation between an image and a distortion-free reference image
is used to provide absolute recognition. Correlation between an image and a nonreference
image is used to provide relative recognition. The differences in correlation can be used
for quality assurance, surveillance alerts, tracking, and other object recognition and image
understanding applications. Not surprisingly, relative differences in correlation can be used as
the input data for clustering.

1.11 System-Based Analysis

This chapter has overviewed many of the core technologies used in machine intelligence
systems. As systems get larger—cloud computing scale and beyond—it will be increasingly
important to be able to treat the individual knowledge generators as black boxes. Though their
internal workings vary significantly, their inputs, outputs, and transfer functions should be
well understood by the would-be system architect, as this will allow them to be combined in
a variety of parallel approaches.

Systems analysis is the study of interacting components that create a system, with the
intent of providing a recommendation, usually related to improvement of the deployed sys-
tem architecture. In this book, system-based analysis is used to further optimize not only
the architecture of the system (interaction of components) but also the system components
themselves. This is achieved by using three different forms of parallelism—the subject of the
next chapter—to optimize the system components. For intelligent systems, these components
range from algorithms to large intelligence engines such as automatic speech recognition and
image understanding systems.

System-based analysis would be overwhelming without a set of tools to help perform the
task. Patterns are essential to direct and even constrain the ways in which to optimize the
intelligence components of the system. Much of this book will, in fact, be focused on these
patterns.

1.12 Summary

This chapter outlined some of the most important technologies used in intelligent systems.
These smart systems include machine intelligence, artificial intelligence, data mining, clas-
sification, and recognition systems. This chapter provided enough background to highlight
the commonalities and differences among the key machine learning approaches; from SVMs
to ensemble methods and from Bayesian to regression methods. Adaptive systems, such as
genetic algorithms and neural networks, were shown to be robust to different input to out-
put maps. Others, such as Bayesian systems, were shown to improve as more training data
and/or successfully completed tasks were available. The wide diversity of machine learning
approaches should be viewed as an opportunity, not a worry. The goal of this book is to show
how this great diversity can be used to our advantage in designing systems.

This book is aimed at allowing one with a moderate understanding of statistics, calculus,
logic, linear systems, and design patterns to be able to architect and deploy more intelligent
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systems than even the best individual intelligent algorithm designer can achieve. The so-
empowered meta-architect must understand both the relative advantages and disadvantages,
and both the flexibility and the limitations, of each of the component systems. The meta-
architect need not understand these individual technologies well enough to improve them as
they are; rather, she must understand how to make them more valuable within a larger system
involving two or more intelligent components. Let us now consider the types of systems that
will require these new system-based analysis skills.
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2
Parallel Forms of Parallelism

Si Dieu n’existait pas, il faudrait l’inventer.
—Voltaire (1768)

2.1 Introduction

If Voltaire were alive today, he might note that “if parallelism did not exist, it would be
necessary to invent it.” Necessary because so many problems worth solving naturally—perhaps
inevitably—lead to parallel approaches. For example, parallelism naturally arises when there
are multiple paths to search. It is obvious that covering two paths at once will, in general, halve
the time necessary to find a lost item—the frustrated cry, “I’ve looked there already!” perhaps
stems from the perceived wasting of this parallelism.

In the twenty-first century, parallelism has become the norm because of the harmony
between the development of advanced graphical processing units (GPUs), multi-core proces-
sors, advanced caching architecture and approaches, and the surge in solid-state devices. This
hardware enabling of parallelism partners with software such as hybrid multi-core parallel
programming (HMPP) and concurrent programming languages to ensure system parallelism
occurs. However, the overwhelming majority of applications and services are based on C,
C++, Java, and related, not explicitly parallel, software languages, necessitating the use of
threading.

Complementing these parallel computing approaches are distributed file system software
frameworks such as Apache Hadoop, based on Java, which provides parallelism of task through
distribution of task. In some ways, this is analogous to threading. Combined, these different
parallel approaches emphasize the natural progression from monolithic, serial processing and
storage to distributed, parallel processing and storage. These trends are not just exciting—they
are also necessary for computer architecture to match the capacity and capabilities of the brain.
In the brain, parallelism is ensured by the mean 104 synaptic connections each of the 1011

neurons makes with other neurons. The brain is an analog computer—a synapse is not just
on or off—so that analogies with digital computers are by definition forced. However, it is
safe to say that this high degree of connectivity is currently unmatched by parallel computing
software.

Meta-algorithmics: Patterns for Robust, Low-Cost, High-Quality Systems, First Edition. Steven J. Simske.
C© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.



Parallel Forms of Parallelism 43

In this chapter, I introduce a different type of parallelism. While this parallelism ultimately
benefits from the myriad hardware and software parallelisms described above, it is also
agnostic to the details of how these hardware and software parallelisms are achieved. System
parallelism is the focus of this book, and system architecture can and should be reconsidered
in light of the new reality of parallelism. To date, much of the focus of cloud computing has
been on distributed data storage. And rightly so. The advantages of having ubiquitous access
to the same data at any time, any place, by any party with sufficient access rights, is obvious.
But this form of cloud computing is more distributed than parallel, more server–client than
peer-to-peer.

System parallelism, instead, is focused on explicitly architecting intelligence-creating sys-
tems that innately benefit from separating tasks, components, and/or algorithms into distinct
threads for downstream processing (e.g., interpretation and execution). In this chapter, I con-
sider three different types of parallelism. It must be noted that there are other, quite likely
equally valid, cladograms for the overall set of parallel processing approaches. I chose this
taxonomy for two reasons: (1) it provides excellent functional distinction between the three
forms of parallelism, and (2) it aligns each form nicely with specific, highly salient topics that
can benefit directly from the science of these forms of parallelism.

In the case of parallelism by task, the system design strategies I discuss herein can be
applied to “function parallelism” or “control parallelism” tasks in which execution processes
are performed in parallel. These execution processes need not be related. Two patterns that
illustrate fundamental differences in parallelism by task are what I term queue-based and
variable-sequence-based task parallelism, as described in Section 2.2.1. Parallel-separable
operations (PSOs) are classified as latent, unexploited, and emergent, and some implications
of the PSOs for data mining, assembly lines, and scheduling are discussed.

In the case of parallelism by component, system design strategies naturally have relevance
to the broad field of software development. Parallelism by component is effectively the same
as data parallelism or “loop-level” parallelism, and has obvious extensions to data mining,
search, and other map-reduce parallel processing approaches.

Finally, in the case of parallelism by meta-algorithmics, there is ready application of the par-
allel processing strategies—herein defined as first-, second-, and third-order meta-algorithmic
patterns—to a wide host of machine intelligence approaches. While these patterns are the
main focus of this book, the nuclei of these patterns will be recognizable in the older parallel
processing and hybrid machine intelligence fields.

2.2 Parallelism by Task

2.2.1 Definition

With parallelism by task, a larger process, sequential (series) or series-parallel in nature, is
reconstructed so that one or more of the sequential set of steps is restructured as one or more
parallel processes. The first pattern is the simplest: the queue-based pattern shown in Figure
2.1 simply breaks up a given process into a set of necessarily sequential tasks—in the example
of Figure 2.1 there are four tasks {A, B, C, D} that must be completed in order. These tasks,
therefore, have built-in dependencies: the input of Task B requires the output of Task A, the
input of Task C requires the output of Task B, and so on. Such a dependency is often referred
to as a pipeline, and the sequence is shorthanded as A | B | C | D. The pipeline A | C | B | D will
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Task A Task B

(a)

(b)

(c)

Task C Task D

Task A1 Task B1 Task C1 Task D1

Task A2 Task B2 Task C2 Task D2

Task A3 Task B3 Task C3 Task D3

Task A1 Task B1 Task C1 Task D1

Task A4 Task B4 Task C4 Task D4

Task A2 Task B2 Task C2 Task D2

Task A3 Task B3 Task C3 Task D3

Task A4 Task B4 Task C4 Task D4

Figure 2.1 Queue-based parallelism by task example. In (a), the four different tasks to be completed for
a single pipeline are labeled A, B, C, and D. These form a pipeline, and so must occur in the given order.
In (b), two parallel processors are available and multiple pipelines are assigned, sequentially, to them.
In (c), four parallel processors are available, and pipelines are assigned to each of them simultaneously.
More complicated sequential architectures are possible, for example, where each processor handles only
a specific task. These scheduling architectures are discussed in Section 2.2.3

produce different, and presumably unusable, results. Pipelines are commonplace in machine
understanding tasks such as image segmentation and optical character recognition. In the
latter, the pipeline may consist of the following steps: binarization (thresholding) | connected
component formation | character tagging | word tagging and correction. If binarization does not
occur before connected component formation, many nonwhite and/or nonuniform backgrounds
will form large, solid connected components, completely obfuscating any associated text.
Tagging likewise has to be performed on connected components. Finally, word formation
without character tagging is much less accurate, since (1) the individual variances associated
with each character add to the overall word variance, and (2) there are many more words than
characters.
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Figure 2.2 Variable-sequence-based parallelism by task example. In (a) the length of the boxes Task
A, Task B, Task C, and Task D are proportional to the processing time required to complete each task. In
(b), a four-processor design is shown. Two of the processors are used to perform Tasks A and C, which
happen to take a similar time to process as the time the other two processors require to perform Tasks B
and D. In this example, our sequential variability is such that Task C requires output from Task A, and
Task D requires output from Task B, with no other dependencies. See text for details

The queue-based parallelism by task shown in Figure 2.1 is very simple. Each processor—
one, two, and four are shown in Figures 2.1a, b, and c, respectively—can perform every task
in the pipeline. This requires either replication of code or multi-processor access to the same
code, and in general is not a poor design choice. However, in some cases, depending on the
overall system architecture, a more complicated processor design, where individual processors
have access to different sets of codes and thus perform different operations, is desirable. This
type of scheduling is discussed in more detail in Section 2.2.3.

A second simple pattern for parallelism by task is the variable-sequence-based pattern as
shown in Figure 2.2. There is sequence variability whenever a larger pipeline can be split into
two or more smaller pipelines—even as individual tasks—that can proceed independently of
each other. An example may be an automatic speech recognition (ASR) system in which A is a
determination of amplitude (loudness), B is an assessment of spectrum peaks in the voice, C is
a determination of mood (e.g., anger), and D is an assessment of gender/nationality/regionality.
A simple ASR engine may determine C based on A but not B, and determine D based on B
but not A. Such a simplified ASR pipeline matches the example of Figure 2.2.

Just because you can do something does not mean you should. Why would we select the
architecture in Figure 2.2 over the architecture in Figure 2.1, even with the reduced number
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of dependencies? Mainly because such a design provides more robust behavior to “job hang,”
the situation when a particular task takes much longer than anticipated. Suppose, for example,
one specific Task A effectively freezes a processor. With the design in Figure 2.2, we can route
the corresponding Tasks B and D to a now freed-up processor, completing those tasks before
the job hang is resolved. With the architecture of Figure 2.1, we would need to wait for the
job to un-hang before performing the corresponding Tasks B and D, compounding the delay.
Such robustness to job hang is an important consideration in all parallelism, and a reason more
complicated scheduling approaches than the relatively simple architectures of Figures 2.1 and
2.2 are generally selected for complex machine knowledge tasks.

2.2.2 Application to Algorithms and Architectures

In addition to the rather straightforward assignment of multiple tasks to multiple parallel paths,
parallelism by task can be used introspectively; that is, to look inside specific algorithms,
systems, or services and identify separable operations. Such PSOs include (1) latent, (2)
unexploited, and (3) emergent operations. All three types of introspective separable operations
are opportunities for parallelism. I will next provide examples of how these operations can be
used.

A latent introspective parallel-separable operation (LI-PSO) is an operation amenable to
parallelism that is not evident in the original operation—for example, algorithm or system—but
can be made evident when the original operation is deconstructed for the purposes of making
it parallel-ready. An LI-PSO can, therefore, be thought of as a PSO that is born of redesign or
rearchitecting. A simple example is the determination of the mean value of an A × B dimension
matrix M. The original code (shown here without the normal error-catching, method variables,
etc., for simplicity) may look like the following:

double mean = 0.0;
for( int j=0; j<B; j++ ) {

for( int i=0; i<A; i++ ) {
mean += M[j*A+i]; } }

mean /= (A+B);

This is an O(AB) or O(N2) operation. It is obvious that this code can be rewritten to provide
B parallel operations, each of O(A) as shown here:

mean[j] = 0.0;
for( int i=0; i<A; i++ ) {

mean[j] += M[j*A+i]; }
mean[j] /= A;

The overall mean is then determined in an O(B) operation, resulting overall in the trans-
formation of an O(N2) operation into an O(2N) operation, assuming the parallel processing
hardware is available. This offers the possibility of an up to (N/2) improvement in throughput
speed. While this is in some ways a trivial example (and is actually an example of paral-
lelism by component—see Section 2.3), note that the same method can be applied directly to
more complicated imaging operations like computing histograms, entropy calculations, and
projection profiles—not to mention less trivial mathematical operations like decryption and
decompression.
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The second type of PSO considered is the unexploited introspective parallel-separable
operation (UI-PSO), which can be thought of as a PSO that is born of deployment. A UI-PSO
is an algorithm already known to be parallel that is currently used in serial form for any of
a number of reasons, including hardware limitations, fear of multi-threading, or simply the
lack of motivation to change legacy code. An example of a UI-PSO may be a factory method
pattern (Gamma et al., 1994) that simultaneously produces many different objects, each with
an interface suitable for subclasses to instantiate the later fully defined object. Since each of
these factory objects is independent, the factory is innately parallel-friendly.

Another example of a UI-PSO is in data mining. When a database is fully data-mined, both
structured and unstructured data sets are analyzed, and usually largely different types of content
are examined. Several levels of parallelism are thus obvious—structured versus unstructured;
text versus image versus video versus audio versus other media; and even distinct passes or
“looks” at the same data set (e.g., extracting key words and indexed words from a text field).
Where possible, each of these independent analyses should be performed using parallelism by
task.

The third type of PSO is the emergent introspective parallel-separable operation (EI-PSO).
Unlike a UI-PSO, the EI-PSO is not obvious in the original system; unlike an LI-PSO, the
EI-PSO does not become obvious in the deconstruction of the original system. Thus, the EI-
PSO can be thought of as a PSO that is born of a change in the system language. Usually, this
is thought of in terms of moving from compiled or interpreted coding techniques to parallel
coding techniques, but I will use a hardware rather than software example for illustration here.

Many traditional manufacturing centers have been designed with a specific set of inputs
and outputs used to define the overall architecture. There are significant advantages to such a
black box approach, which is then recursively applied to different stations within the factory.
Such systems are modular, scalable, and thus very efficient at producing large numbers of the
same, noncustomized products. Production lines are serial, with components added at different
locations, or individualized workstations. This results in standardization of the stations, with
the associated throughput advantages. However, this type of design approach is associated
with a number of assumptions, some of them quite subtle. The first assumption, implicit in the
very name, is that production itself is paramount. The economic implications of this approach
are many: that overproduction and later waste of unsold product is allowable; that differences
in supply and demand are inevitable; and that the degree of customization is relatively small
compared to the commonality among all the products in the overall production run. However,
these implications are not always valid in the digital age. In printing and publishing, for
example, there are strong indications that print-on-demand and customized printing—in which
the customer sets the printing process and increasingly the printing content in motion—will be
the norm for physical and not just electronic publishing. Similarly, rudimentary production-
on-demand has been implemented in industries as complex as the computer and automobile
ones. With the complementary trends in digital mobility, cloud-based services, and location
awareness, there is no reason to believe that other forms of production will not follow this
example, extend it, and move entire industries to a more local, more just-in-time, and thence
more sustainable practice.

The second assumption inherent in the use of assembly-line-inspired sequential, focused-
task station-based production lines that were the signature of twentieth century manufac-
turing, is more subtle. The widespread adoption of assembly lines is indicative of an as-
sumption that there are advantages to production inherent in serial architectures. But is this
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necessarily the case? Most systems of value—be they automotive, electronics, clothing, even
food—involve multiple, efficiently parallelizable systems that argue instead for a more com-
plicated architecture. In the automotive and electronics industries—just as is the case for
the software industry—it has become obvious that modularity of interface for components
creates tremendous advantages. The automobile itself can be considered a system, with re-
cursively smaller systems—electrical, combustion, suspension, passenger comfort, safety, and
so on—themselves comprised even smaller systems—ignition, dashboard, lighting, and so
on—until individual components are the “subsystems.” At this level—the “parts” level—there
is now an entirely different, in some sense orthogonal, ecosystem, with many parts capable
of being used in a wide variety of the largest systems. Nuts, bolts, clamps, and belts are
perhaps the most obvious of these, but gaskets, cams, and even shocks fit into this separately
woven ecosystem. The automotive industry, being large enough, can simultaneously support a
production and parts ecosystem, and so maintain a serial manufacturing architecture for each.
But the modularity of interface, allowing for the same parts to be used in multiple sequential
assembly processes, bespeaks of the underlying—if latent—parallelism.

Modularity of interface therefore enables a parallelism of task more subtle than the queue-
based, variable-sequence-based, and PSO forms described above. It allows a parallelism by
task through intersection of two or more sequential processes. In such large ecosystems like
the automotive industry, the overlap of these two sequential processes—vehicular and parts
manufacturing—is sufficient, and the profits ample enough, that each process can act in a
somewhat sequential manner. However, this brings us to a third assumption innate in the
widespread adoption of assembly lines.

The third assumption is that assembly lines are more efficient than alternative approaches to
product development. While this may be true in terms of raw throughput—for example, max-
imum peak production rate—in most cases, such a measure of efficiency is overly simplistic
and generally shortsighted. Looking at production from a different perspective, the efficiency
is proportional to maximum peak production rate, to be sure, but is also dependent on the
percentage of produced goods that are actually used, the value of the use of all of these goods,
the costs of warehousing and preserving goods produced that may be sold later, the cost of
decommissioning or recycling goods never sold, and the cost of recycling goods once they
have reached the end of their life cycles.

From the perspective of PSOs, it is clear that in many industries, the additional considerations
for costs as outlined above provide at least two opportunities for the application of parallelism
by task. The first is the discovery of LI-PSOs, the acknowledgement of UI-PSOs, and the
creation of EI-PSOs by restructuring the assembly lines to provide better parallelism by task
for the different procurement, assembly, shipment, logistics, and recycling steps in the product
life cycle. The second is to apply parallelism by task to the modeling tasks associated with the
defining, monitoring, evaluating, and redefining of an ecosystem’s return on investment (ROI)
model. It may well turn out that the use of parallelism results not only in more robust systems
but also in more robust system models.

One of the key goals of this book is to provide a set of approaches, usually in the form
of patterns, to effectively implement parallelism. Queue-based and variable-sequence-based
approaches are simple patterns for parallelism by task. A third, more complex pattern is re-
cursively scalable task parallelism, which is based on the ability to create and optimize a cost
function related to the choice between processing a given Task A and a subset of tasks {A1,
A2, . . ., AN} that together comprise A. This cost function is therefore dependent on the
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Figure 2.3 Recursively scalable task parallelism. The Task A (far left) itself may have been extricated
from a larger task. Tasks {A1, A2, . . ., AN} are extricated from Task A. Tasks {A1a, A1b, . . ., A1n} are
extricated from Task A1, and so on, down to Tasks {ANa, ANb, . . ., ANn} being extricated from Task AN.
Note than N is not necessarily equal to n

additional cost, or overhead, of unwrapping Task A into subtasks {A1, A2, . . ., AN} and then
rewrapping {A1, A2, . . ., AN} into A. Further subdivision of subtasks into smaller subtasks,
recursively, can continue as possible/appropriate (see Figure 2.3). The overhead cost in turn de-
pends on the cost of analyzing and deconstructing the code, recoding as necessary—including
translating from compiler code to GPU code, along with associated differences in cost of
hardware—processors, cache, storage, and so on. These comprise fixed system costs, which
are of less concern in this book—I assume that there is an adequate parallel processing “cloud”
available.

The run-time costs are typically bandwidth, processing time, accuracy, and robustness. In
recursively scalable task parallelism, we assume that system accuracy and robustness are
equivalent for all deployment architectures, since the same algorithms are performed. This
simplifies the choice of whether to continue the recursion to a trade-off between bandwidth
and processing time. Bandwidth is associated with the repackaging of information for each
subtask, and so is an added cost every time a task is broken into subtasks. Processing time
is dependent on multiple factors: constructing the task-related data from the subtask-related
data, performing the subtask processing, and performing the task processing. However, task-
specific processing—the assigning of imaging-related tasks to GPUs and random-access tasks
to CPUs, for example—will usually result in significant processing time savings, as illustrated
in Figure 2.4.

The general concept of recursively scalable task parallelism is not new. MapReduce (Dean
and Ghemawat, 2004) can be viewed as a simplified form of recursively scalable task
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Figure 2.4 Recursively scalable task parallelism example of Figure 2.3 with cost of unwrap-
ping/rewrapping (numbers on arrows) and processing (numbers in boxes) indicated on each path
and node. The selected nodes are shaded. The total cost is [6+42] + [8+3+3+3+3+6+4+3+5]
+ [7+3+3+3+3+5+6+6+5] + [9+46] = 48 + 38 + 41 + 55 = 182, or a reduction of 21.9% over
the largest Task A (223) or a reduction of 11.6% over the use of the first layer of subtasks A1, A2, A3,
A4, which is [6+42] + [8+34] + [7+54] + [9+46] = 206

parallelism that effectively maps a single, highly parallel representation of a task to many
like subtasks. The greater relative complexity of the pattern shown in Figures 2.3 and 2.4
is provided by the recursion capabilities. The recursive nature of the pattern extends to the
manner in which each task associates with each of its subtasks. The association includes (1)
a list of subtasks; (2) the means to unwrap the data and operations in the invoking task to
create input for each of the subtasks, which includes in some cases the replication of data; (3)
the means to perform the subtasks; and (4) the means to rewrap the output of each subtask to
create the full task output.

These associations are directly related to the costs shown in Figure 2.4. Note that the shaded
boxes in Figure 2.4 are the levels of parallelism by task chosen for the overall deployment.
Turned sideways, it can be seen that Figure 2.4 is actually a tree structure and so the optimal
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costs can be determined using simple tree evaluation methods. The evaluation problem is also
greatly simplified in Figure 2.4 because of the constraints involved. At Stage S, the choice to
unwrap involves a binary decision between choosing S versus choosing the set {S1, S2, . . .,
SN}. Keeping a partial set unwrapped, for example, as {S1, S2, . . ., SM} where M < N and then
unwrapping for parallelism by task the set {SM+1, SM+2, . . ., SN}—along with other partial
unwrappings of this kind—very quickly allows a more exhaustive search that is nevertheless
a reasonable approach in some cases. However, in practice it is likely that in re-examining the
functionality in S, the task owner will create a reasonably atomic set {S1, S2, . . ., SN} such
that no further partial unwrappings require evaluation.

In larger serial systems, however—especially those wherein the original system developer
is no longer available—a complete overhaul of the task structure may be required, resulting
in a set of subtasks {S1, S2, . . ., SN} that may or may not be the optimal set. In this case, it
is possible that another application of parallelism—for example, parallel application of path
evaluation methods such as Dijkstra’s method (Dijkstra, 1959)—may be used to determine
optimal subtask definition. Alternatively, representing the tree chart of Figure 2.4 as a flow
diagram with the costs for unwrapping and rewrapping explicitly designed as flows, and
operations as nodes, may provide amenability to flow network optimization techniques such
as min-cut, max-flow, and others. This is left for future research, but nicely bridges us to the
next section on scheduling.

2.2.3 Application to Scheduling

It is certain that sometimes we will need more complicated designs than shown in Figures
2.1 and 2.2; for example, when we have mixed GPU/CPU architecture, special processors
such as application-specific integrated circuits (ASICs), limited cloud resources, and so on.
In most cases, the decision of how far to go in task parallelization depends on how well the
particular processing resources match the task at hand. Since the overhead for scheduling can
be substantial, the throughput gain must be able to offset the inefficiencies of scheduling.
For example, if scheduling creates a 25% reduction in throughput, then the advantage of the
multiple-processor-type parallel processing must provide a 33.3% improvement (since 0.75 ×
1.333 = 1.0) in processing time. This is because the scheduling costs are upfront. It is analogous
to needing to drive 100 km in an hour, but being slowed to 60 km/h for the first 50 km due to
road construction. Thereafter, one must proceed at 300 km/h to reach the destination in time
(not 140 km/h). Caution must therefore be taken to ensure that the cost of unwrapping is not too
high. Structured data mining, such as performed by MapReduce (Dean and Ghemawat, 2004),
and column-oriented database (Monash, 2007) approaches are very powerful—and widely
deployed—in part because of the low overhead required to “unwrap” the data in preparation
for analysis, or “mining.” Column-oriented storage increases the throughput of sequential
record access through elimination of common transactional operations, and so is well suited
to a number of machine intelligence tasks, so long as these tasks involve a similar type of
processing for large sets of data.

However, in many important areas of machine intelligence, domain expertise is needed.
Domain expertise is certainly needed in order to deconstruct any sizeable chunk of code into
parallelizable parts. Domain expertise is also required in order to determine what method of
parallelization to deploy. For example, should an algorithm be reconstructed for deployment
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on a CPU, a GPU, or wrapped up as services for distribution to a cloud with the cloud service
provider deciding how to handle the data analysis task? The answer to this question depends
on the type of data, the type of task, the type of multi-threading in the code, and the degree of
storage, processing, and transaction coding used.

Scheduling is a broad science concerned with deciding how to commit resources when
there is a plurality of tasks to complete within a given time period. In the example of Figure
2.2, I argue that a more robust scheduling algorithm takes advantage of parallel paths to
break up scheduled sets of (associated) tasks, since the effect of system “hangs” (long-term,
nonterminating jobs) is lessened. The main concerns of any scheduler are (1) throughput
of processes, (2) response time latency, or the time between task submission and system
response (usually a scheduled time to begin and/or complete the task), (3) turnaround latency,
or the time between task submission and completion, and (4) real-time adaptation to provide
fairness when unanticipated strains on resources—from system “hangs” to a large influx of
new tasks—occurs. There are many scheduling algorithms, of which the most familiar may
well be the FIFO (first in, first out, or “queue”), multi-level queue, round robin, fixed priority
pre-emptive, and the shortest remaining time (or “shortest job first”) algorithms. A tremendous
amount has been written on how to select one scheduler versus another based on concerns
such as the four listed earlier in this paragraph. However, it may well be that using multiple
scheduling algorithms in parallel and intelligently combining them may result in a more robust,
more effective scheduling approach. We will revisit this topic later after having considered
parallel processing patterns in more depth in the following chapters.

The discussion above, to be continued—perhaps less explicitly—throughout this book, is
based on the perspective that system design and system architecture are processes, or means
to an end—and not ends in and of themselves. Adaptable, customizable, modular, and thereby
robust architectures must be reconfigurable on the fly in order to merit the upfront investment
in these systems. Parallel architectures, with the increased flexibility in maintaining, evolv-
ing, and deprecating components, offer distinct advantages over more rigid, serial/sequential
systems. This section on parallelism by task highlights some of these advantages, and hope-
fully has helped justify the assertion that system design and system architecture are verbs,
not nouns—for the large, highly efficient, and lithe ecosystems (systems of systems) needed
in the digital age, the fields of system designing and system architecting are paramount. I
use the present progressive tense to indicate both the need for continual upkeep of the de-
sign and architecture, and also to indicate the improvement, or progress. The three major
branches of parallelism—by task, by component, and by meta-algorithm—will help make
these ecosystems a reality. I now turn to the second of these—parallelism by component.

2.3 Parallelism by Component

2.3.1 Definition and Extension to Parallel-Conditional Processing

Parallelism by component involves the reconstruction of a large data set so that two or more
partitions of the data can be processed in parallel. Often, the same processing is used on each
component, making this form of parallelism by component even more amenable to MapReduce
(Dean and Ghemawat, 2004) or column-based (Monash, 2007) analytics than is parallelization
by task. Parallelism by component is effectively the same as data parallelism or “loop-level”
parallelism. Repetitive tasks usually addressed in program “loops” are instead assigned to
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Figure 2.5 Parallel-conditional processing example. In this simplified example, individual components
are zones, or regions, from mixed documents. Each component is processed in parallel to determine its
content type. A conditional decision is then made. Zones classified as “Text” are assigned to a text
pipeline, while zones classified as “Image” are assigned to an image pipeline. All zones are archived in
parallel after one or another of the two parallel pipelines has been performed on the zone

parallel branching codes, as shown in the discussion under LI-PSOs above. These can be
considered uniform split-and-merge processes. The same process or pipeline of processes is
performed on each component, simultaneously in a separate parallel processing apparatus or
thread.

In addition to these uniform split-and-merge processes, parallelism by component is also
amenable to more complicated parallel-conditional processing as shown in Figure 2.5.

Parallel-conditional processing can be viewed as a means of recursively defining opportu-
nities for parallelism by component. In Tables 2.1 and 2.2, I will show the impact of domain
expertise for defining the parallelism through a form of sensitivity analysis. In this example,
we have a fixed number of processors, each of which is allowed to process either text or
image data, but not both. We assume that the licensing costs and the inefficiencies of dynamic
re-allocation of licensed software is not an option in order to illustrate the parallel processing
approach.
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Table 2.1 Sensitivity analysis of parallel-conditional processing when the expected processing time
of each of two conditional tasks closely matches. In this example, the expected value of text and image
processing time are equal at 3 h. With 10 processors available, 5 can be assigned to each of the two
conditional pathways and the separate parallel branches are each expected to complete in 0.6 h. When
an unexpectedly high (95%) proportion of text or image processing becomes necessary, the overall
processing time is increased by as much as 137.5% (1.425 h)

Expected High-Text High-Image
Factor Values Scenario Scenario

% Text content 60 95 5
% Image content 40 5 95
Text processing at 100% usage of a single processor 5 h 5 h 5 h
Image processing at 100% usage of a single processor 7.5 h 7.5 h 7.5 h
# Processors text 5 5 5
# Processors image 5 5 5
Text processing time 0.6 h 0.95 h 0.05 h
Image processing time 0.6 h 0.075 h 1.425 h

In Tables 2.1 and 2.2, there are two different parallel processing applications. The example in
Table 2.1 is a well-balanced parallelism by component situation in which the conditional leads
to two branches with equivalent numbers of processors assigned to each branch. The expected
workload is 60% text, 40% image, but since the image pipeline requires 50% more relative
processing, the two conditional branches can each be assigned half of the available processors.
This is in contrast to Table 2.2, which presents an example of an expected unbalanced workflow.
The expected workload is 86% text, 14% image, for which the optimal assignment of processors
is eight processors for text processing and two for image processing. The expected processing

Table 2.2 Sensitivity analysis of parallel-conditional processing when the expected processing time
of each of two conditional tasks is not closely matched. In this example, the expected value of text and
image processing hours after parallelization are nearly equal at 0.5375 h and 0.525 h—with 8 of the 10
processors available assigned to text processing and 2 to image processing. When an unexpectedly high
(95%) proportion of text or image processing becomes necessary, the overall processing time is
increased by as much as 562.8% (to 3.5625 h from 0.5375 h). This is much more than the 137.5%
increase observed for the same scenario in Table 2.2

Estimated High-Text High-Image
Factor Values Scenario Scenario

% Text content 86 95 5
% Image content 14 5 95
Text processing at 100% usage of a single processor 5 h 5 h 5 h
Image processing at 100% usage of a single processor 7.5 h 7.5 h 7.5 h
# Processors text 8 8 8
# Processors image 2 2 2
Text processing time 0.5375 h 0.5938 h 0.0313 h
Image processing time 0.525 h 0.1875 h 3.5625 h
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time is just over half an hour, 0.5375 h, for the text. Each table also reports on a simple form
of sensitivity analysis. If the workload suddenly moves far from the predicted balance, what
is the impact on the overall processing time? In Table 2.1, the worst results are obtained when
95% of the content is image, in which case the image processing parallel path requires nearly
2 1

2 times as long to complete its work (1.425 h instead of 0.6 h). However, in Table 2.2, the
results are far more drastic. With the same unanticipated “high-image scenario,” the image
processing time now jumps to 3.5625 h, a 560% increase.

The sensitivity analysis data from Tables 2.1 and 2.2 shows that balanced conditional
pathways in a parallelization by component architecture make the design much less sensitive
to unexpected deviations from the predicted workloads. The more effort placed upfront to
design a system to have matching number of processors in each conditional branch, the more
robust the system will be to unexpected changes in workload composition. In the example
of Table 2.2, one approach toward balancing the load would be to include more of the class
text in the image category. If, for example, color text, headline text, and so on, can be
accommodated by the image pipeline, the balance can be tipped in favor of the image pipeline.
More realistically, however, we may not be able to do anything to balance the tasks. In this case,
we may prebalance the conditional pipelines to minimize the downstream effects of extremes
in the workload. If we change, for example, the number of processors deployed to seven for
the text pipeline and three for the imaging pipeline, then under normal conditions the text
processing time will be 0.6143 h (compared to only 0.35 h for image processing time). This is
a 14% decrease in throughput at the expense of greater resilience to unexpected workflows.
Under these new conditions, a sudden change in workflow to a 95% image processing load
balance increases the image processing time to 2.375 h (a 342% increase in time to completion,
but much less than the 560% increase associated with Table 2.2).

These results demonstrate that an optimal parallel-conditional processing architecture must
strike a balance between two concerns. The first is balanced deployment of processing capac-
ity for the expected workload, which provides optimum throughput under normal/expected
conditions. This is the default deployment in Tables 2.1 and 2.2. The second concern is system
robustness to extremes in the composition of the workflow. The balance between these depends
on the variance in the workflow composition as well as the imbalance in the expected workflow
itself. A very balanced expected workflow (Table 2.1) is much more resilient to variability in
the actual workflow.

2.3.2 Application to Data Mining, Search, and Other Algorithms

Data mining and search are tasks well suited to parallelism by component. Text mining al-
gorithms, for example, begin with word counts. Word-forming rules are used to decide, for
example, whether to stem or lemmatize. Lemmatization is the grouping together of the in-
flected forms of a root word for analysis as a single item—for example, the words “running,”
“runs,” and “ran” are all assigned to the same grouping, or token. Stemming is a special
form of lemmatization in which the root of the various forms of the word is extracted—for
example, “running,” “runs,” and “ran” all map to “run.” Tokenization of the words simpli-
fies the parallel pathway to simply counting the occurrences of each token. Tokenization
allows language independence and optimal scheduling across all of the parallel proces-
sors. This is accomplished primarily by converting a language-dependent operation into a
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language-independent operation. Once the words are tokenized, the parallel processing
used to perform word counts—or the complementary operation of searching for specific
words—handles the tokens no differently than it handles any other set of binary patterns. Once
the appropriate preprocessing has been performed, therefore, word count is the same as image
object count, and word search is the same as image feature search. The only difference is in
how the data has been processed prior to the counting or searching.

This is an important point, which follows the parallelization tenet that uniformity of parallel
process allows the most balanced architecture. The implications: this balance provides insen-
sitivity to change in workload composition (along the lines of Table 2.1), but an upfront cost in
preprocessing the data for the parallel processes. However, the preprocessing has an additional
advantage the exploitation of which will be a key concern of this book. Performing preprocess-
ing to allow multiple domain-specific tasks (image search, word search, audio search, etc.) to
be performed with the same (exact) set of parallel processing code constitutes the identification
and elaboration of a specific, reusable pattern. Several parallel processing patterns—relatively
straightforward in conceptualization and presentation—have been described already in this
chapter. But, as the book builds to more and more complex operations, engines (for analysis,
machine intelligence, etc.), systems, and services, I intend to show the value of advanced
patterns for parallel processing, particularly in the field of meta-algorithmics.

Let us return to scheduling here to see further value in specifying parallel processing patterns.
Real-world problem-addressing systems, even when concerned with massive parallelization
by component workflows, gain much from a transactional approach to scheduling. I use the
term transactional here to contrast with the term pipeline as used above. In a transactional
system, such pipelines (1) are not readily identified, (2) are not efficiently assigned to parallel
pathways, or (3) simply do not exist. In Figure 2.5, the pipelines are readily identified, so we
need only be concerned with the second of these three considerations when deconstructing the
architecture. One criticism of the parallel-conditional diagram of Figure 2.5 might be: “Why
include word extraction and document classification in the same parallel branch, and why
include image segmentation and image compression in the same parallel branch? Breaking
them up into atomic parallel pathways should give more scheduling flexibility. Are these really
efficiently assigned to pipelines?” In this case, the answer is yes, since, for example, if there is
an operation hang on any of the pipeline components, no additional amount of parallelization
will speed up throughput since the maximum number of parallel pipelines are still available.
So, for the relatively simple set of operations performed by the system in Figure 2.5, it is
convincing to say that the parallelization is optimized.

Other systems, though, do not have such obvious—and static—pipelines. Consider, for
example, an image processing pipeline in which there are a number of potential branches,
or conditionals, and it is difficult to predict a priori what processing needs to occur down-
stream. This often happens in image processing, since differences in image capture quality
and characteristics—illumination, blur/focus, angle between camera and image surface, albedo
variability based on these other variables, and so on—affect the processing that must take place
downstream. In addition, the content of the image may—or may not—trigger downstream
processing. For example, if a document is captured, it may or may not need to be deskewed.
Depending on the illumination and blur characteristics, an image may or may not need to have
illumination compensation and/or deblurring algorithms applied. Often, these operations may
require significantly more processing resources than the intended processing associated with
the imaging pipeline.
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This type of complex branching makes the application of Amdahl’s law to the parallel pro-
cessing system architecture less straightforward. Much traditional parallel processing system
design trade-off is based on Amdahl’s law (Amdahl, 1967) and the definition of efficiency
so implied. If we identify, for example, that P percent (where 0.0 ≤ P ≤ 1.0) of the image
processing can be made parallel, then using Amdahl’s law the minimum possible time to
complete the overall task, toverall, is proportional to the time to complete the task in a fully
serial fashion, tserial, by the following relationship:

toverall =
(

1 − P + P

N

)
tserial,

where N is the number of parallel processors available.
Branching, however, is among the factors preventing Amdahl’s law from being achieved.

The other factors, as discussed above, include the overhead of scheduling and the overhead
of structurally reframing the components for parallel processing. This introduces, then, the
following relevant modifications to Amdahl’s law:

toverall = kBOkSchOkSRfO

(
1 − P + P

N

)
tserial,

where kBO is the branching overhead factor, kSchO is the scheduling overhead factor, and kSRfO

is the structural reframing overhead factor. For each of these coefficients k,

k ≥ 1.0.

Note that when the task is truly—and efficiently—made parallel, then kBO ≈ 1.0. When the
scheduling overhead is relatively negligible compared to the processing time for the specific
task and component, then kSchO ≈ 1.0. Finally, when the structural reframing overhead is
relatively negligible compared to the processing time for the specific task and component,
then kSRfO ≈ 1.0.

Let us now consider an example applied to breaking up a large crowd surveillance image
into multiple parts and optimizing the number of parts. For this process, P = 0.9, which
means that 90% of the processing time can be made parallel. In this case, the coefficients kBO,
kSchO, and kSRfO are dependent on the number of images, NI, into which the original image is
subdivided. Suppose we obtain the following relationships for 2 ≤ NI ≤ 16:

1. kBO = 1.0 + 0.02 × (NI – 1)
2. kSchO = 1.0 + 0.001 × (NI – 1)
3. kSRfO = 1.0 + 0.05 × (NI – 1).

This makes the equation for Amdahl’s law become

toverall = (1.0 + 0.02 × (NI − 1))(1.0 + 0.001 × (NI − 1))(1.0 + 0.05 × (NI − 1))

×
(

1 − P + P

NI

)
tserial,
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Table 2.3 Values of the salient factors in the modified version of Amdahl’s law. The optimum parallel
processing approach is the one that minimizes the ratio of toverall/tserial. Of the four cases shown, NI = 8
gives the optimal ratio

NI kBO kSchO kSrfO 1– P + (P/NI) toverall/tserial

2 1.02 1.001 1.05 0.55 0.589 6
4 1.06 1.003 1.15 0.325 0.397 4
8 1.14 1.007 1.35 0.212 5 0.329 3

16 1.30 1.015 1.75 0.156 25 0.360 8

which simplifies, should we prefer such a form over the alternate forms above, to

toverall/tserial = (0.98 + 0.02 × NI)(0.999 + 0.001 × NI )(0.95 + 0.05 × NI)

(
1 − P + P

NI

)
,

Assuming the image is divided into 2, 4, 8, or 16 subimages, the values for toverall as
a proportion of tserial are given in Table 2.3. For this configuration and for these relation-
ships between the coefficients and the number of subimages, the optimum configuration uses
NI = 8, as shown in Table 2.3. The importance of Table 2.3 is not in the absolute values we
obtain for this somewhat simplified model of the overall system behavior per se; rather, the
importance is in the fact that in moving from a system architecture implementing NI = 8 to
one implementing NI = 16, we see a deleterious effect on system performance. Within this
context, we can therefore be assured that we have the ability to optimize the system within the
range specified. In fact, if we confine the allowed values of NI to even values, the optimum
value for toverall/tserial, of 0.3280, is obtained for NI = 10. It is left as an exercise for the reader
to show that toverall/tserial = 0.3280, 0.3346, and 0.3460, respectively, for NI = 10, 12, and 14,
respectively.

However, there is another factor in predicting the relative processing time for moving a task
from serial to parallel form that Amdahl’s law as stated above does not address. This is the fact
that, since smaller data sets are often processed much more efficiently than larger data sets, it
is commonplace for component processing to require disproportionately less processing time
than for a larger component. For example, consider the surveillance task above in which M
passes through the image are required. The processing time is thus proportional to M(HW)T,
where H = the height of the image and W = the width of the image, and T is often � 1.0.
Breaking the image into N2 subcomponents (smaller images), the processing time is then
proportional to MN2(HW/N2)T, or M(HW)T/N2T–2. The ratio of processing time is, therefore,
proportional to 1/N2T–2. If N = 4 and T = 2, then the proportion is 1/16, a huge impact on
processing. This will be discussed in more detail in Chapter 5, but should be captured here by
another factor in the updated version of Amdahl’s law as applied to parallel processing system
architecture optimization, as given here:

toverall = kBOkSchOkSRfO(1 − P + P
N )

N2T−2
tserial,

where T is the processing time factor as described above. Note that this effect is herein
considered separately from the impact of structural reframing per se, although it would not
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Table 2.4 Values of the ratio of toverall/tserial for the full parallel processing system architecture
optimization equation, where T has a mean value of approximately 1.5 (the values were determined
experimentally for a single large image for purposes of illustration here). Of the four cases shown,
NI = 12 gives the optimal ratio

NI kBO kSchO kSRfO 1 − P + (P/NI) T 1/N2T–2 toverall/tserial

2 1.02 1.001 1.05 0.55 1.58 0.4475 0.2639
4 1.06 1.003 1.15 0.325 1.51 0.2432 0.0966
6 1.10 1.005 1.25 0.25 1.48 0.1791 0.0619
8 1.14 1.007 1.35 0.2 125 1.45 0.1539 0.0507
10 1.18 1.009 1.45 0.19 1.42 0.1445 0.0474
12 1.22 1.011 1.55 0.175 1.40 0.1370 0.0458
14 1.26 1.013 1.65 0.1 643 1.37 0.1419 0.0491
16 1.30 1.015 1.75 0.15 625 1.35 0.1436 0.0518

be inappropriate to consider this part of structural reframing. In the determination of the
coefficient kSRfO above, only the data access timing improvements incumbent to breaking up
the images is considered.

With the factor T taken into account, the optimum configuration for the surveillance system
described in Table 2.3 changes. The new data, taking into account the factor T , is presented in
Table 2.4. Here, the optimum value of toverall/tserial, of 0.0458, is obtained for NI = 12 (slightly
more than the NI = 10 result above). This implies that no further parallelism—such as, for
example, setting NI > 16—need be considered to further improve the ratio toverall/tserial.

This section, therefore, provides a more accurate predictor for the effect of parallelism on
processing time than does the simple application of Amdahl’s law. As demonstrated here,
there are a considerable number of factors to be considered when moving a serial processing
architecture to a parallel one. To summarize, these factors include the following:

1. Percentage of the serial task that can be made parallel (P).
2. Number and range of parallel processing pipelines allowable (N).
3. Amount of branching necessary in the programming (kBO).
4. Complexity and overhead of scheduling necessary for the processing (kSchO).
5. Structural reframing (kSRfO, T).

Having explored parallel processing optimization for this imaging task, we turn to another
topic amenable to—and necessary for the implementation of—parallelization by component:
software development itself.

2.3.3 Application to Software Development

Parallelism by component readily extends to the world of component formalism; that is, the
world of software development itself. Component-based development (CBD), or component-
based software engineering (CBSE), is an important branch within software engineering that
is concerned with the separation of functionality within a larger software system into soft-
ware modules, packages, or services containing a related set of functions. For the purposes
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of parallelism, I consider CBD to be focused on an optimized component definition; that is,
a component definition that maximizes the F-score as defined in Section 1.9. As discussed
there, the F-score is a relevant measure of the ratio of the variability within each component
to the variability between components. For example, while design patterns such as the Fly-
weight and Composite (Gamma et al., 1994) are efficient at separating related functionality
from nonrelated functionality, other design patterns—such as Strategy, Observer, and Visitor
(Gamma et al., 1994)—are less obviously tightly related.

Beyond software patterns such as described in Gamma et al. (1994), there are many modern
systems in which parallelism by component is an important consideration in the design phase.
Mobile applications are a good exemplar. Suppose you wish to develop mobile applications for
the five primary mobile platforms, requiring development in different languages; for example,
different combinations of Objective C, C, C++, Java, JavaScript, and HTML 5.0. We would
like the codebase to be as small as possible and the choice of coding languages to be best suited
to the task. Finally, we would like to make the decision of where to place the processing such
that it minimizes the use of bandwidth and, simultaneously, processing needs on the mobile
device.

In order to optimize the code architecture, then, we need to provide an optimized plan
for processing, packaging, transmitting, and parallelizing the operations to be performed.
Code architecture optimization before the ubiquity of cloud computing and mobile computing
devices largely focused on the individual device (laptop, workstation, etc.) and so GPU/CPU
and multi-core/multi-thread trade-offs were two of the main design considerations. However,
the combined impact of cloud-based computing and mobile device on-ramp has led to a
new dominant consideration—the trade-off between bandwidth and local (mobile device)
processing. To address this consideration, there are several possible design options to take for
code optimization, each involving different levels and types of parallelism. One power set of
possibilities is the following:

1. Perform all processing on the mobile device.
2. Transmit all data from the mobile device to a server, distributed system, cloud, or other

back end computing.
3. Perform some of the processing on the mobile device and the rest on the back end.
4. Perform no processing. This option is included to complete the power set, but it is a realistic

option if the amount of data to be transmitted exceeds the bandwidth × time limitations
of the system and the amount of processing to be performed in a specific time exceeds the
limitations of the mobile device.

Using this power set of processing options, the design constraints are rather obvious. We
assume that bandwidth is limited and that processing capabilities are effectively infinitely
greater on the back end than the mobile device. Thus, those portions of the processing that
would otherwise be performed on the mobile device but have a high processing to size-after-
compression ratio—that is, require a lot of processing but do not require a lot of bandwidth to
send from the mobile device to the cloud—are more favorably processed off the device. Good
examples of this are the plethora of mobile barcode reading applications and voice recognition
applications that have been adopted by mobile platforms over the years 2008–2012. One
approach—taken by the developers of applications intended, for example, to provide analysis
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of a wide array of bar coding symbologies or to perform potentially processing-intensive
image restoration on the images captured—is to have the image sent over the internet (e.g., by
http or MMS protocols). This approach is bandwidth-intensive. A second approach—taken by
developers wishing to allow off-line functionality, feeling the need to support only a limited
set of barcodes (e.g., usually QR and Data Matrix), or only interested in supporting the
most powerful mobile platforms—is to have all of the image processing done on the device.
Obviously, both solutions have their advantages. However, the former can benefit significantly
from parallel processing, while the latter benefits more from multi-threading.

The processing considerations above are very important for determining the code opti-
mization strategy. Bandwidth versus on-device processing as the main consideration directly
impacts the design strategy for each of the following factors:

1. Code repetition/consolidation
2. Device-specific settings
3. Adaptability (real-time configuration)

We now consider each of these three factors in some depth. Code repetition is minimized
and code consolidation is supported by moving much of the processing off the mobile device
and instead performing it in the cloud or other back end processing system. Here, the amount
of code—that is, in terms of software development metrics like difficulty of code writing,
expense of code support, expense of code testing, and raw lines of code—becomes a third
factor (the other two being processing resources required and bandwidth for transmission
between mobile device and the cloud, as described above) to consider in the design. The
system costs, however, now diverge. The overall cost of creating the code comprises (1)
development costs, (2) testing costs, and (3) support costs. Of these, (1) and (2) are—or should
be—almost wholly associated with the upfront development of the system, while (3) is an
ongoing cost associated with issues such as coding error correction (bug fixes), rolling out
new features, and supporting new services, plug-ins, and add-ons. The costs of (1) and (2)
are therefore relatively fixed, as opposed to the costs of bandwidth—which, if reasonable, are
usually passed on to the mobile device owner. For the software producer, then, if all other
factors are equal, the code development preference is to have a single codebase. This means
either a single (or multiple, compatible, e.g., all Linux-based) mobile platform is supported
(e.g., the most prevalent platform), or else the entire codebase, as possible, is written for the
back end.

Since that is not possible, we next address device-specific settings. If these are absolutely
minimized—thus, maximizing the amount of code residing in the back end that can be used
in common by all platforms—then the mobile devices effectively become thin clients; that is,
conduits of information gathered by the mobile device. The processing on the mobile devices
is therein limited to data capture—for example, taking a picture or collecting audio—and
preparing the data for transmission. This latter cost should not, however, be underestimated.
First, the data must be compressed. Lossless compression, while relatively straightforward,
still requires development of, for example, a variable-length code table for Huffman cod-
ing, or the numbers and subintervals required for arithmetic coding. Next, the information
may need to be encrypted. Since a compressed signal should have roughly the same signal
entropy as an encrypted signal—unless the compression is incomplete or the encryption is
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not cryptographically secure—compression should always occur before encryption for two
reasons:

1. Encryption is an expensive operation from a processing standpoint, so the amount of data
to be encrypted should be minimized.

2. Once data is encrypted, it should not be possible to compress it, unless the encryption is
not secure. This is the worst possible decision from a bandwidth perspective.

If the amount of information to be transmitted is now acceptably small (meaning it can
be reliably transmitted in an amount of time acceptable to the user of the software), then no
additional code is required on the mobile device. If, however, the time to compress, possibly
encrypt, and send is too high, more processing (and relevant code) must now reside on the
mobile device. If all of the costs are perfectly determinable before the programming starts,
then the right trade-off between coding costs, downstream system bandwidth, and processing
costs can be struck. However, this level of foreknowledge is not typical, and so there is always
some estimation involved. It should be noted that there are some provider costs associated with
cloud computing, too. Nevertheless, under most conditions, these costs are far less than the
other costs of bandwidth, consumer time if excessive processing occurs on the mobile device,
and of course the costs of software development, testing, and support throughout the lifetime
of the software application or service.

Regardless, some of the uncertainty in designing the codebase and the system architectures
for mobile imaging applications can be removed when adaptability is built into the design
from the ground up. Adaptability can be provided by a system that has real-time configuration
options. There are two primary types of such options considered here. The first, and less
important, is task-estimation-related adaptability. Here, the processing, bandwidth, and time
for the task to complete are estimated using a subset—for example, on a subimage of a larger
image. This subtask can be used, for example, to determine if the fourth option of the power set
above—namely, perform no processing—should be chosen based on the fact that the amount
of data to be transmitted exceeds the product of the bandwidth and time constraints of the task,
and the amount of processing required exceeds the capabilities of the mobile device over the
same allowed time.

The second, and more important, form of adaptability is real-time system optimization
adaptability. The system architecture should be designed from the bottom up to allow the
deployment architecture settings to adapt as the relative resources change. The primary relative
resources are bandwidth, mobile processing, and code development expense. An adaptability
design can simultaneously address each of these in the following fashion. Firstly, the design
should allow the data (e.g., image, audio clip, etc.) that is to be processed to be variably
partitioned—for example, into a variable number of subimages as discussed for Tables 2.3 and
2.4. Secondly, the design should allow, after the image partitioning, the option of processing
on the device and/or on the back end, depending on the real-time analysis of local processing
capabilities, bandwidth availability, and compressibility of the data to be transmitted to the
back end. This design approach provides a scalable, readily deployed ability to process one
or more partitions of the image on the device, responsive to the current network capabilities
and the estimated time for completion of the task on the device compared to processing only
on the back end. This avoids a one-size-fits-all strategy, and means that whatever parallelism
must occur will be a combination of processing on the device and on the back end. Currently,
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most mobile devices have a single processor, and the back end can be considered to have a
nearly limitless number of processors. This approach is also flexible to changing processing
resources on the mobile device. For example, consider a processing task on a mobile device
with the following design constraints and decisions:

1. The processing needs to be completed within 5 s or it will have unacceptable performance.
2. The available bandwidth allows the transmission of 15% of the data each second, which

includes the compression and encryption.
3. Packaging data up for transmission reduces available processing time by 5%.
4. The back end is able to perform its processing within 0.1 s and return the results, including

a modest amount of data transmission, back to the device in 0.2 s.
5. The mobile device processor is able to analyze 8% of the data per second.

Based on these data, data can be sent to the back end for 4.7 s (in order to receive the
information back before 5.0 s elapse). In 4.7 s, 70.5% of the data can therefore be transmitted
and analyzed. In general, in T seconds, 15% × (T – 0.3 s) of the processing can occur on
the back end. Meanwhile, on the mobile device, in T seconds, 8% × T of the processing can
occur. Thus, in 5 s, 40% of the processing can occur on the device. The relative ratio is thus
70.5%/40% = 1.7625. A close approximation to this ratio can be obtained by dividing the
data in 14 partitions and assigning 9 of these (64.3%) to the back end and 5 of these (35.7%)
to the mobile device itself. The back end processing will complete when 64.3% = 15% ×
(T – 0.3 s); that is, after T = 4.59 s. The mobile device, meanwhile, will complete its processing
when 8% × T = 35.7%; that is, after T = 4.46 s. The safety margin is just over 0.4 s, but the
task can be completed within the specified time.

Interestingly, the effective parallelism of the task described above is 2.8 mobile processors.
That is, 1.8 times as much data is processed on the back end as on the mobile device. This is a
relatively low value considering the back end is capable of nearly limitless parallel processing.
In fact, if the back end can process 4.7 s worth of data in just 0.1 s, the comparative processing
ratio is 1.8 × 4.46/0.1 = 80.3 times as high for the back end. Thus, the bandwidth significantly
reduces the effective parallelism of the back end.

An even lower effective parallelism of the back end results if the processing capability of
the mobile device is increased. Suppose that the mobile device is now updated to have two
processors, each capable of processing 8% of the data in 1 s. The governing equations are now
15% × (T – 0.3 s) of the processing on the back end, as before, and 16% × T of the processing
on the mobile device. Suppose we again divide the data into 14 partitions. Now we assign
eight partitions to the mobile device and six to the back end. Using the approach as above, the
mobile device completes it task in 3.57 s, while the back end completes its task in 3.16 s. The
effective parallelism of the back end is reduced to only 0.75.

Now, suppose, for the original mobile device, bandwidth capacity is doubled. Here, the
governing equation for the back end becomes 30% × (T – 0.3 s), and if we divide the image
into 14 partitions again, we might assign 3 to the mobile device and 11 to the back end. The
mobile device thus completes its 21.4% of the processing in 2.68 s, and the back end completes
its 78.6% of the task in 2.92 s. The effective parallelism of the back end is 3.67 (a more than
100% improvement over the original 1.8), but the task completes in 63.6% of the time (a
36.4% improvement).
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These examples illustrate the advantages of a flexible architecture that allows parallelism
involving both the mobile device processor and the back end. Several factors were omitted for
conciseness—for example, the cost of the back end—but the key design factor was assumed
to be minimizing the time to task completion. Importantly, the design overviewed allows
flexibility in optimization (e.g., to cost, bandwidth use, etc.) beyond simply that of time to
completion.

Having overviewed some considerations of parallelism by task and by component, the next
section introduces parallelism by meta-algorithmics. This will be the main theme of this book,
and will also be shown to incorporate many of the findings of these other two major forms of
parallelism.

2.4 Parallelism by Meta-algorithm

If Voltaire were alive today, well, he would be even older looking than in the famous Dali
painting (“The Slave Market with the Disappearing Bust of Voltaire”). But, more importantly,
if he were both alive and computer literate, he might say that if meta-algorithmics did not
exist, it would be necessary to invent them. There are a number of reasons that we can say
this. First off, the cloud has made—for a wide and growing number of applications—the
old assumptions about processing and storage scarcity irrelevant. Secondly, increased avail-
ability, form factors, and power of parallel processing have made hitherto unthinkable ap-
proaches not only thinkable but also de rigueur. As a consequence, even when bandwidth,
cost, and/or availability limits access to cloud computing, many stand-alone systems—from
workstations to laptops to touch pads—have significant parallel processing capabilities that
obviate this lack of access. Thirdly, years, and in some cases decades, of work on intelligence
engines for content digitization—especially document, text, speech, and image understand-
ing ones—have resulted, in many cases, in highly accurate but relatively inflexible systems.
The amount of increased accuracy that can be derived from further optimization of a sin-
gle algorithm, engine, or system is rather small. Fourthly, it has become clear that when
multiple “intelligence generators”—or algorithms, engines, or systems that perform useful
digitization, analysis, interpretation, classification, and so on—are evaluated, the individ-
ual generators tend to make mistakes on different types of content. These differences are a
legacy of the differences in how those generators were created, tested, deployed, changed,
and upgraded over the years. These differences are often used by their owners to highlight
the advantages of one generator over its competitors, which from a financial standpoint is
both expected and rational. However, from a parallel processing standpoint, these differences
are an opportunity. In fact, they are a huge opportunity. In this book, I argue that being
able to process with multiple intelligence generators in parallel is the most significant op-
portunity offered by the combination of cloud, parallel processing, and intelligence generator
maturity.

This section puts forth the argument for parallelism by meta-algorithm and introduces
some of the meta-algorithmic patterns that will be a core focus of this book. As described in
Chapter 1, meta-algorithmic approaches and their more formal patterns provide a toolbox of
potential solutions for intelligent system design and deployment architectural choices. Meta-
algorithms are related to and extend data fusion, classifier fusion, ensemble methods, and other
hybridizing or combining approaches. Importantly, meta-algorithmics are intuitive, relatively



Parallel Forms of Parallelism 65

easy to apply, and can be readily adapted to domain-specific nuances. That is, while meta-
algorithmic approaches like weighted voting, predictive selection, and confusion-matrix-based
classification are easily understandable as generic patterns, they are also readily made specific
for tasks as different as image segmentation and biometric voice identification.

In this book, meta-algorithmic patterns will be described in Chapter 6. The applications of
meta-algorithmics will focus on the first-order meta-algorithmic patterns in Chapter 7 and
elaborate to the application of more complex—but not necessarily more effective—second-
and third-order meta-algorithmic patterns of Chapters 8 and 9.

First-order meta-algorithmics are characterized by their relative simplicity. Meta-
algorithmics are designed to provide the means of combining two or more sources of knowl-
edge generation—that is, algorithms, engines, or systems—even when, or especially when,
the combined generators are known only at the level of black box (input and output only). Five
primary first-order patterns will be described. These include the (1) Sequential Try, in which
knowledge generators are applied in a specific order until a sufficient accuracy or other spec-
ification is obtained. The second first-order meta-algorithmic pattern is the (2) Constrained
Substitute pattern, which allows the choice of a suitable reduced-expense (in terms of cost,
processing time, bandwidth, a combination thereof, or other metric) algorithm, engine, or
system to—effectively—replace a higher-expense approach. The third of these types of pat-
terns is the (3) Voting pattern, including its often more powerful variant, the (3a) Weighted
Voting pattern. This pattern is the first to include the output of multiple algorithms, services,
or systems in the final output, rather than simply selecting the best knowledge generator. The
fourth pattern, (4) Predictive Selection, is quite powerful, and usually involves choosing the
information generator that has the highest precision in a specific predictor test. The last of
these patterns, (5) Tessellation and Recombination, is shown to be especially useful for creat-
ing correct results even when none of the individual generators produces a correct result—a
process called emergence. It should be noted that voting and weighted voting can also result
in emergence.

The first-order meta-algorithmics provide a relatively broad set of basic patterns that can be
deployed, with some domain expertise, to a wide array of systems of intelligence. More
complicated patterns comprise the second-order meta-algorithms. A new set of analysis
tools—namely, output space transformation, confusion matrices, and expert decisioners—are
required for these second-order meta-algorithmic patterns. In addition, second-order meta-
algorithmics incorporate system thresholding. If a specific degree of certainty (the threshold)
is not reached when using a simple meta-algorithmic pattern, then a second decision approach
is taken. In order to proceed to these combinatorial meta-algorithmic patterns, the confu-
sion matrix—a powerful tool for temporal and series-parallel design of meta-algorithmic
systems—is explored in full first. The first of the second-order meta-algorithmic patterns,
therefore, is the Confusion Matrix pattern—which is useful in, for example, Predictive Se-
lection (a first-order pattern). Its variant, the Weighted Confusion Matrix pattern, is more
generally applicable to the combinatorial second-order patterns. The next second-order meta-
algorithmic pattern is in fact such a combinatorial pattern; namely the Confusion Matrix
with Output Space Transformation pattern. With this pattern, the multiple intelligence gen-
erators can not only work on the same input data and create compatible output data but
also produce well-behaved output data. This means that the output probability curves have
similar behavior across the input set for all of the generators. This pattern is usually de-
ployed in the case where one or more of the engines report probabilities as part of their
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output. Thus, this pattern can also be termed Confusion Matrix with Probability Space
Transformation.

Continuing on second-order meta-algorithmic patterns, other combinatorial patterns are
then considered. Tessellation and Recombination with Expert Decisioner, Predictive Selection
with Secondary Engines, and Single Engine with Required Precision are three such patterns.
All three are built on first-order meta-algorithmics: Tessellation and Recombination, Predic-
tive Selection, and Sequential Try. Two variations on the first-order Voting pattern are then
described: Majority Voting or Weighted Confusion Matrix, and Majority Voting or Best En-
gine. These relatively simple second-order patterns are especially useful when a certain level
of confidence in the output is required. Another such pattern is the Best Engine with Dif-
ferential Confidence or Second Best Engine pattern, which performs a minimized Sequential
Try if and only if the engine with the highest precision provides an output with too low
of a value of confidence to accept. Similarly, the Best Engine with Absolute Confidence or
Weighted Confusion Matrix provides another confidence-dependent combinatorial pattern.
While the names of these patterns may seem a bit arcane at first read, they are relatively simple
in implementation, as they build simply from the pattern building blocks, commonly called
subpatterns.

The third-order meta-algorithmic patterns—generally focused on feedback from the out-
put to input—add a further level of complexity. They also add a higher degree of flexibility
and tunability, since they provide multiple subpatterns joined together. The first third-order
meta-algorithmic pattern is, in fact, the simple Feedback pattern. This is in some ways closely
related to the next third-order meta-algorithmic pattern, the Proof by Task Completion pattern,
which dynamically changes the weighting of the individual knowledge-generating algorithms,
systems, or engines. The confusion matrix repertoire of approaches is used in the next pat-
tern, the Confusion Matrix for Feedback pattern. Similar, but reliant on rules and learned
constraints, is the Expert Feedback pattern. The fifth third-order meta-algorithmic pattern is
termed the Sensitivity Analysis pattern, which is focused on identifying stable points in the
solution space. This includes stable areas within the confusion matrix for intelligent engine
combinations, and stable areas within the correlation matrix for algorithmic combination. The
next pattern is concerned with what could be considered “introspective meta-algorithmics,”
in which individual engines are tuned for subclasses of the overall task. This means that
different meta-algorithmic combinations may be used for subsets of the data—akin to the
Predictive Selection pattern—and in addition the intelligence-generating algorithms, systems,
and engines themselves may be configured differently for each subclass of the overall problem
space. This pattern is termed the Regional Optimization pattern, but could also be termed
the Extended Predictive Selection pattern. The seventh and final third-order meta-algorithmic
pattern is termed the Generalized Hybridization pattern. This pattern is concerned with opti-
mizing the combination and sequence of first- and second-order meta-algorithmic patterns for
a given—generally large—problem space.

2.4.1 Meta-algorithmics and Algorithms

Using a loose definition, an algorithm is a set of tasks that transform data of one type,
termed “input,” into data of another type, termed “output.” Mathematically, then, an algo-
rithm is a function. In meta-algorithmics, we are concerned with multiple functions—each
output is a transformation of the input, and the function (the mathematical description of the
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transformation) is generally different for each algorithm. This is advantageous, however,
because there are two fundamental principles of algorithms as applied to meta-algorithms:

1. No single algorithm encapsulates the complexity of most highly challenging artificial
intelligence tasks, including machine learning, machine vision, and biometrics. A plurality
of algorithms is more likely to be able to provide a correct answer, from at least one of the
algorithms, than a single algorithm is.

2. Given a plurality of algorithms, it makes more sense for a system designer to optimize each
of the algorithms for a partition of the input range, and leave the remainder of the input
range to the other algorithm(s) in the plurality.

With these two principles in mind, algorithm development proceeds differently for
meta-algorithmics than for traditional intelligent systems. A new algorithm may be developed,
not for providing high accuracy across the input domain, but instead for providing high
accuracy where the other algorithms fail. This type of “targeted algorithm,” by standard
measurements of such important metrics as precision, recall, and accuracy, is ineffectual.
But, within the context of cooperating with the other algorithms in the meta-algorithmic set, a
targeted algorithm can be very effective—so long as it is only used—or at least predominantly
used—where it actually is accurate.

2.4.2 Meta-algorithmics and Systems

Meta-algorithmic systems are unique not just in terms of how algorithms are developed;
they are unique in how they can be comprised. The targeted algorithms that comprise the
meta-algorithmic system need not be broadly useful—they simply need to be useful for, at
minimum, the targeted partitions of the input range for which they are brought into the system.
Thus, commercial off-the-shelf (COTS), open source, and custom designed algorithms can be
combined together, as appropriate. If cost is an important factor in the overall system, then
the designer may wish to choose more open source and custom designed systems. Since most
COTS algorithms, being for sale and therefore of differential value, outperform the various
forms of freeware, it is often the case that a meta-algorithmic system without any COTS
algorithms will require more total algorithms for a given level of accuracy (or other measurable
system performance metric). While this system approach may require more storage, more
processing time, and more code maintenance, it can also provide significantly more flexibility.
In general, the more algorithms added to the system, the greater the overall system behavior.
This is because of the following two complementary, yet simultaneous, behaviors:

1. As more algorithms are added, the aggregate behavior is more likely to be highly accurate
by the central limit theorem. As less and less accurate algorithms are added to the repertoire
deployed for the meta-algorithmic system, the overall accuracy of the system continues to
increase so long as there is not a systematic bias away from the correct interpretation.

2. The variance of the system tends to increase, since, in general, variances add, assum-
ing there is no systematic correlation among the distinct algorithms. Thus, in addition
to mean behavior improving, the robustness of the system—in terms of having greater
coverage of the input domain wherein at least one of the algorithms can provide a correct
response—improves.
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2.4.3 Meta-algorithmics and Parallel Processing

A meta-algorithmic system, at the highest level of its architecture, is certainly parallel. This
is because each of the meta-algorithmic system components—whether they are simple al-
gorithms, complicated systems, or feature-rich, highly integrated engines for information
generation—can be performed in parallel upfront. As such, the connection to traditional par-
allel processing is innate. If each meta-algorithm is considered to be performing the same
task—namely, the transformation from a specific input to a specific output type—then meta-
algorithmics are analogous to parallelism by task. If, however, each individual meta-algorithm
is considered to be operating on a different partition or set of partitions of the input domain,
then meta-algorithmics are analogous to parallelism by component.

These analogies are more than just empty comparisons. It should be clear even from the
introductory discussion of meta-algorithmic patterns in this chapter that meta-algorithmic
approaches always involve at least some parallelism. Given sufficient processing and stor-
age resources, then, meta-algorithmic performance is limited by that of the slowest meta-
algorithm.

At another level of complexity, meta-algorithmic parallelism comprises the simultaneous
consideration of two or more meta-algorithmic patterns in parallel. This poses, simultaneously,
the following two types of parallelism:

1. Parallelism of the meta-algorithmic patterns
2. Parallelism within the meta-algorithmic patterns

This may seem obvious, but the consequences of it are trickier than the words above convey.
Suppose, for example, that meta-algorithmic pattern 1 involves using meta-algorithmic engines
A, B, and C, while meta-algorithmic pattern 2 involves using meta-algorithmic engines A, B,
and D. Now suppose that different input and output operations are required for the two distinct
meta-algorithmic patterns. Using identification of the input, processing, and output opera-
tions as small alphabetic letters, then we have the following operations for meta-algorithmic
pattern 1:

1. Aa, Ab, Ac
2. Ba, Bb, Bc
3. Ca, Cb, Cc

Aa, Ba, and Ca are the input operations; Ab, Bb, and Cb are the processing operations;
and Ac, Bc, and Cc are the output operations. Next, for meta-algorithmic pattern 2, let us
suppose the simplest case in which the input and output operations change but the processing
operations remain the same. In this case, we have the following operations for meta-algorithmic
pattern 2:

1. Ad, Ab, Ae
2. Bd, Bb, Be
3. Da, Db, Dc
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Ad, Bd, and Da are the input operations; Ab, Bb, and Db are the processing operations;
and Ae, Be, and Dc are the output operations. From the above, we have the following set of
operations and in parentheses the number of times they are invoked (if more than once):

1. Aa, Ab (2), Ac, Ad, Ae
2. Ba, Bb (2), Bc, Bd, Be
3. Ca, Cb, Cc
4. Da, Db, Dc

From this, it is more clear that these could be run (1) in two parallel paths, meta-algorithmic
pattern 1 and 2; (2) in four parallel paths, {Aa, Ab (2), Ac, Ad, Ae}, {Ba, Bb (2), Bc, Bd,
Be}, {Ca, Cb, Cc}, and {Da, Db, Dc}; and (3) in six parallel paths: {Aa, Ab, Ac}, {Ba,
Bb, Bc}, {Ad, Ab, Ae}, {Bd, Bb, Be}, {Ca, Cb, Cc}, and {Da, Db, Dc}, among other
combinations. Comparing the options here to those in the sections on parallelism by task and
component (Sections 2.2 and 2.3), it is clear that meta-algorithms offer at least as wide a range
of serial/parallel design options as those two types of parallelism.

2.4.4 Meta-algorithmics and Data Collection

Any approach that truly provides a new motif for data analysis must not only affect the way
in which data is processed but must also affect the way in which data is gathered. Meta-
algorithms, indeed, will be shown to significantly impact not just the quantitative analysis
of data but also the qualitative manner in how data is created. In fact, using, for example,
summarization (Section 10.2), I will show that if the data collection model is designed with
later meta-algorithmics in mind, it can lead simultaneously to more scalable, more efficient,
and more valuable data gathering.

Because meta-algorithmics are concerned with differential algorithm, system, or other
intelligence-generating engine response to the same set of input data, it is clear that training
data sufficient to describe the range and variability of the input is necessary. With more training
data come the following advantages:

1. Better statistical behavior of the classes: As more elements in each class are collected,
by the central limit theorem, the behavior of each class will become more Gaussian. This
allows better identification of classes, and thus a better estimate of the number of classes.
This also provides the dimensions for the meta-algorithmic confusion matrix used in many
second- and third-order meta-algorithmic patterns.

2. Better identification of domain/range of input: With extensive training data, areas in the
domain space that contain no data are much more likely to be actual nonrelevant domain
sections. Such gaps in the domain of one or more intelligence-generating systems signifi-
cantly aid in the selection of individual systems for the application of a meta-algorithmic
pattern.

3. Improved data layering: With more data comes better association among the data. That is,
more nuanced data sets afford greater possibilities for multiple meta-algorithmic patterns
to be evaluated on the same data set in order to elucidate an optimum meta-algorithmic
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approach downstream. As more data is collected, higher-confidence relationships among
primitive data elements can be attained, creating composite data elements. This may allow
meta-algorithmics to be performed both on the primitive and the composite data.

4. Repurposability: Data should be collected in light of the fact that the data collector does
not know a priori which meta-algorithmic pattern will be most effective for the task at
hand. Thus, the ground-truthed data should be as broadly useful as possible. In general,
this is achieved by making the data as atomic as possible. That is, tagging should be made
as atomic as is possible without unnecessarily burdening the person providing the tagging.
In text, for example, labeling the key sentences may be of sufficient atomicity to avoid
asking for the keywords to be labeled, since the keywords can be determined using these
key sentences. Labeling only the key paragraphs, however, may be insufficiently atomic to
have future utility for keyword and semantic tagging.

5. Scalability: The data should be collected such that when new algorithms, engines, and/or
systems are built, borrowed, bought, or otherwise brought into the system, the previously
collected training data is still relevant. Thus, training data comparing one algorithm with
another is not scalable, but training data based on ranking the elements within the data is
a scalable approach: it requires no additional training irrespective of the number of meta-
algorithmic approaches—algorithms, engines, systems, or patterns—added after the data
has been created.

6. Nonprovinciality: The training data should not be too closely tied to the specifics of one of
the engines. Another way of saying this is that the engine should be as generic as possible.
One means of helping assure this is to have the training plan architect be a different person
than the system and meta-algorithmic design architect(s).

7. Ground truth is extremely expensive, and so where possible, the collection of ground truthing
data should be “compressively sampled”. This is easier to achieve than it might seem. A
set of potential training cases can be prefiltered, even automatically, so that very obviously
similar samples are not manually ground truthed (assuming that it will not be important
to keep all of them). Some care must be taken here, however, not to—in performing such
compressive sampling—violate the rule (6) about nonprovinciality. For example, such an
approach may tend to favor boundary-based classification approaches (such as support
vector-based methods) over cluster statistics-based methods (such as Gaussian mixture
models and expectation maximization approaches).

Aside from these concerns, somewhat specific to meta-algorithmics, the normal concerns
with data collection are fully applicable. The samples collected should be representative,
updated through time to reflect the currently relevant types of data samples to be analyzed,
and occasionally re-analyzed to make sure that the interpretation of the training data has not
drifted over time.

2.4.5 Meta-algorithmics and Software Development

In concluding this introduction to meta-algorithmics, the heritage of meta-algorithmics should
be acknowledged. While significantly different—and more diverse—than the boosting tech-
niques described in Section 1.5, meta-algorithmics nevertheless share in the common the
means to provide system and algorithmic adaptability to changes in input.
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One recent mention of meta-algorithmics is in the field of software development. While this
use of meta-algorithmics is different in nature than how they are used in this book, it is reviewed
here to provide comparison. Programming by optimization, or PbO, reviewed in Hoos (2012),
is an interesting form of parallelism in which software developers architect a large design
space of programs to complete a specific task. Optimized programs for accomplishing the task
under different context are automatically selected through a given cost function—for example,
speed. Many of the important knowledge generation problems discussed in this book—machine
learning, classification, informatics, artificial intelligence, and so on—are NP-hard problems,
and as such traditional programming methods can result in systems lacking flexibility and
robustness to changes in the context in which the programs operate. A good example of
such a system is a global climate model. Increasing rate of change in climate is resulting in
increasing complexity of climate prediction, making linear models nonrobust (Benestad and
Schmidt, 2009). Similarly, there is increasing complexity in surveillance, web use tracking,
and biometric identification due to increased global on-line consumers. In each of these cases,
more robust systems are almost guaranteed to come from hybrid, or parallel systems, which
can adapt to changes in input without losing relevance.

In Hoos (2012), the term meta-algorithm refers to the optimization procedure. One exam-
ple is the stochastic-optimization procedure (Spall, 2003). In Hoos (2012), three classes of
meta-algorithmic methods are identified: (1) racing procedures, which focus on parameter
optimization; (2) model-free searching procedures including stochastic local search, which in-
clude perturbations that are in some ways analogous to mutations in genetic algorithm-inspired
approaches; and (3) sequential model-based optimization (SMBO), which uses information
gained from parameter configuration—such as garnered from racing procedures—to deter-
mine promising overall configurations for the system. These optimizations, clearly, have more
in common with boosting than they do with first-, second-, and third-order meta-algorithmic
approaches that are the primary focus of this book.

2.5 Summary

This chapter overviewed and provided insights into how the three main forms of parallelism
provided the ability to improve the design of intelligence systems. Parallelism by task defines
the structural blocks of the architecture to be individual processes that are performed on the
data. Parallel designs using tasks allow the definition of parallel pipelines. Parallelism by
component, in contrast, defines the structural blocks of the architecture to be subsets of the
overall data set. Parallel designs using components allow the partitioning of data to closely map
to the processing capabilities throughout the distributed system. Finally, parallelism by meta-
algorithmics was introduced. Meta-algorithmics are the means by which parallel processing
strategies are brought to multiple intelligence generators, each of which acts on the same
data and provides output of the same type. First-, second-, and third-order meta-algorithmic
patterns are introduced, corresponding to increasing complexity (more variable factors in the
design) and in some cases increased tunability. Meta-algorithmics are used for a plethora of
algorithm, system, or other intelligent engine optimizations, and examples in a wide array of
fields will be illustrated. These patterns and their applications, in fact, will be the main focus of
this book, and the nuclei of these patterns will be recognizable in the older parallel processing
and hybrid machine intelligence fields.
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3
Domain Areas: Where Are These
Relevant?

All generous minds have a horror of what are commonly called ‘Facts’. They are the brute beasts
of the intellectual domain.

—Thomas Hobbes

Never question the relevance of truth, but always question the truth of relevance.
—Craig Bruce

3.1 Introduction

The primary focus of this book is on meta-algorithmics, the “third form” of parallelism.
Parallelism by task and parallelism by component, as overviewed in the previous chapter,
are hugely important in systems demanding optimum performance. However, for systems
requiring optimal accuracy, robustness to changing input, or flexibility in terms of system
architecture, meta-algorithmics are the most promising form of parallelism.

In this chapter, the breadth of the application space for meta-algorithmics as elaborated in
the rest of the book is addressed. Turning Hobbes sideways, these “intellectual domains” will
be the brute beasts for carrying forth the facts regarding each of the forms of parallelism: by
task, by component, and by meta-algorithmics. There are four primary domains, which will
be illustrated in each of the chapters on parallelism; that is, Chapters 4–9. In addition, there
are eight secondary domains that will be used more sparingly to illustrate either more subtle
points about parallelism by task and component, or to illustrate one or more of the 21 different
patterns for meta-algorithmics introduced in Chapter 6. Combined, these domains may seem
unrelated, and unnecessarily broad for a single book. However, this book aims to show that the
types of parallelism described are broadly applicable and perhaps more importantly readily
applicable to the architect of any/all intelligent systems. There is no better way to show this
than by example.

Meta-algorithmics: Patterns for Robust, Low-Cost, High-Quality Systems, First Edition. Steven J. Simske.
C© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.
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3.2 Overview of the Domains

The primary domains encompass both text and image content, both one-dimensional (1D) and
two-dimensional (2D) signal processing, both natural and human-crafted content, and various
forms of security. In addition, the primary domains reflect subject areas in which I have some
expertise. Real expertise: as in patents, publications, and product development. In order to
achieve these goals simultaneously, I selected the following four domains (for the reasons in
parenthesis):

1. Document understanding (2D signal processing, human-crafted content).
2. Image understanding (2D signal processing, natural content).
3. Biometrics (1D, 2D, and three-dimensional (3D) signal processing, natural content, au-

thentication security).
4. Security printing (1D and 2D signal processing, natural and human-crafted content, various

forms of security).

From the above, security printing is noticeable for the breadth of analysis challenges it
presents. Indeed, security printing has been a favorite of mine over the years for just that
reason. Combining multiple forms of security, imaging, printing, and system architecture
technologies into a single ecosystem is certainly hard to resist. Importantly, security printing
requires overdesign. If a system can provide variable data printing (VDP), security, and
imaging-based data recovery all in one printed mark, then the associated technologies can
readily be “backed off” to provide other printed data, secure printing, and content decoding
solutions.

Unfortunately, in spite of its great breadth, security printing is the domain least covered
by existing literature. Many of the approaches to security printing that have been used in
recent years are not covered by books or review papers. Document understanding, image
understanding, and biometrics literature is far more mature. For that reason, I will cover
security printing in more depth than the other topics in this chapter.

The fields of document and image understanding are also quite broad, with perhaps greater
depth in addition. Biometrics is also a personal favorite, as I cannot see its importance ever
diminishing with the increasingly difficult CAPTCHA (completely automated public Turing
test to tell computers and humans apart) and other Turing test approaches necessary to differ-
entiate man and machine. Even when biometrics for telling two humans apart is no longer a
challenge, biometrics for disambiguating a real human from a computer-based representation
of that human will be important. Any intelligent system designer in the 2010s and beyond
will have to be able to incorporate biometrics into their architecture, just as any artificial
intelligence student of the 1990s had to know how to build an artificial neural network.

The secondary domains, while less broad than the four primary domains, are used to elabo-
rate further the parallel processing and parallel analysis approaches comprising the following
eight chapters. Image segmentation provides a different, less structured, set of image analysis
techniques than document segmentation. Speech recognition, focused on 1D signal process-
ing, borders the technology of biometrics on one side and the broader field of audio analysis
on the other side. Medical signal processing also requires advanced 1D signal processing in
the case of biopotentials such as electromyograms (EMGs), electroencephalograms (EEGs),
and electrocardiograms (ECGs), while readily bridging to 2D medical imaging in the case of
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vectorcardiograms (VCGs). Other medical imaging applications cover an interesting domain
between that of surveillance and image segmentation/processing. Natural language processing
(NLP), on the other hand, focuses on text-based processing, and as such can be entirely inde-
pendent of signal processing or image processing (though it can be performed on the output
of optical character recognition (OCR)). Surveillance combines 2D signal processing (image
processing) with frame-to-frame analysis, effectively requiring 3D image processing. OCR
is a specialized technology within the broader field of document image processing, used to
convert images of characters into their electronic (e.g., ASCII or Unicode) representations.
The last of the secondary domains is that of security analytics. These analytics are concerned
with providing visibility into the activities, accesses, applications, and agents involved in a
given network. What are the agents, or “personas,” accessing, what are they doing with this
access, and what applications are they using after gaining access? These analytics share some
domain space with NLP, but are more directly concerned with identifying specific patterns of
behavior, which is somewhat analogous to some aspects of surveillance as well.

3.3 Primary Domains

The four primary domains are (1) document understanding, (2) image understanding, (3)
biometrics, and (4) security printing. Roughly, the first two are concerned with understanding
the content other people have created. Biometrics is concerned with understanding content
nature has created. Security printing is concerned with understanding both of those types of
content, along with recovering content created intentionally for downstream decoding and
authentication.

3.3.1 Document Understanding

Document understanding systems are focused on understanding, with equal facility, scanned
documents and electronic documents. This broad field of research includes the subdomains of
NLP (Section 3.4.5) and OCR (Section 3.4.7). Document understanding is primarily concerned
with adding meta-data to document data. This upgrading of content can take many forms,
including the following four important classes of content:

1. File information, or content, meta-data
2. File context meta-data
3. File use meta-data
4. File analytics meta-data

File content meta-data includes structural (syntactic) and semantic (meaning-based) content.
Structural meta-data is a catalog of the content in the document, and includes much of the
important traditional format, presentation, and content information associated with creating
and rendering a document. Format information includes structural relationship between other
sets of data; for example, the relationship between header, footnotes, titles, and paragraphs in
an article or the relationship between legend and image in a figure. Presentation information
includes the number of columns into which a page is flowed, which does not affect the format
information in, say, an article or figure, but it certainly affects the way it looks in the document
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form. Article formats are perhaps unchanged when viewing web content on a laptop or tablet
compared to when viewing content on a mobile device, but the presentation is greatly different.
The structural content itself is the traditional image, text, graphics, tables, links, and so on,
that comprise the “information” in the document.

Semantic, or meaning-based, content is information that changes—it is actually
enriched—when the document participates in an ecosystem of other documents. Semantic
content tagging is related to NLP, and includes diagnosis of the relationships between dif-
ferent words. Absolute semantic tagging is derived from—or used to generate—taxonomies.
The set of all semantic tags for the entire set of potentially related documents is an ontology.
Relative semantic information, however, may prove to be more relevant in the long term, as
changes in meaning associated with specialized usage patterns (slang, trade jargon, etc.) and
differences in semantic content among related articles are highly significant for establishing
authorship, for uncovering plagiarism, for identifying related documents, and for a host of
other linguistic tasks.

Document understanding is also used to produce file context meta-data. In some ways, this
is similar to relative semantic content as described above. However, contextual meta-data is
also concerned with situational awareness: what type of content is especially used in a given
document in comparison to any other document? What class of document is this? Which
of a set of related—or seemingly related, anyway—documents is the most typical, or most
representative, document? These are difficult questions to answer, and often relate to or directly
rely on the analytics meta-data to be described shortly, but are very important for context. A
key element in contextual meta-data is keeping the referent document set clear. For example,
consider a document about Tallahassee in the context of a large set of documents about the state
of Florida. Then, consider the same document in the context of a large set of documents about
different US state capitals. In the first case, a differentiating set of terms might be {capital,
government, legislature, Florida A&M, Florida State University}, while in the second case the
differentiating terms might be {Florida, Leon County, Florida A&M, Florida State University}.
Clearly, there are some overlapping terms—Florida A&M and Florida State University—and
some terms specific to the particular referent. Terms that are shared irrespective of the referent
may be deemed absolutely differentiating terms, while terms unique to a given referent may
be consider relatively differentiating terms.

The third type of document understanding meta-data is that for file usage. File use meta-data
is focused on the events—time, user, device, version, and so on—associated with the stage in
the workflow in which the document is acted upon. This type of meta-data includes the unique
tag to identify the document, tags to associate the document with other documents, timestamps
associated with versioning of the document, salient user authentication information (usually
digitally signed), and identifiers (IDs) associating the document with other, related documents.
Examples of related documents are documents associated with the same workflow, documents
created by or worked on by the same author or team, and documents that are discovered to
contain similar content, context, or use history as the document. For the latter, we require
document analytics, which happens to be our next topic.

File analytics meta-data includes absolute and relative analytics about the document content
(data) and/or meta-data as described in the previous paragraphs. Analytics, for example, can
be used to generate the absolutely and relatively differentiating terms, as described above for
context meta-data. Analytics, however, go beyond the tabulating of term occurrences and their
relative frequencies. Analytics may include document fingerprinting, in which expressions,
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phrases, word co-occurrences, and other style-related metrics are computed. This fingerprint
can be used to identify original author, to uncover plagiarism, and to provide suggestions for
greater readability—for example, by suggesting phrase variation—if so desired/appropriate.

Considering the breadth and depth of meta-data that can be added during document under-
standing processing, it is obvious that document understanding is the broad field of extracting
and defining the content in a document—either during digitization or during analysis of an al-
ready electronic document. The technologies salient primarily to digitization—that is, scanner
or camera capture of a physical document, label, sign, and so on—are reviewed first:

1. Background versus foreground and zoning analysis. Here, the salient foreground content
is separated from the background, so that the text over a colored background, for example,
can be readily recognized using OCR (see Section 3.4.7).

2. Text versus nontext. Next, text areas, which are important for document indexing and clas-
sification, are extracted and converted into electronic form (ASCII or Unicode characters)
using OCR, handwriting recognition, barcode reading software, and/or template matching.
The nontext regions are treated the same as electronic nontext regions (see point 4).
Next, both the now-digitized and the native-electronic documents are processed and their
meta-data upgraded using one or more of the following techniques:

3. Shape recognition and special item recognition is used to identify both general (e.g.,
barcodes) and specific (e.g., slides, negatives, custom logos, etc.) regions for downstream
analysis.

4. Nontext “image” data is further classified as being a photo, line art, graphic/business
graphic, large text (e.g., colored text and headline text), drawing, logo, or map region.
Tabular regions can also have their text fields extracted for table analysis (e.g., to internalize
a table into a spreadsheet).

5. With the set of regions segmented and classified, the document can now be matched against
a set of possible document templates.

6. Compound text regions, such a bibliographical entries, table and figure legends, headers
and footers, and so on, can then be split into their salient fields, such as “author,” “journal
title,” “volume,” “number,” “pages,” and “year.”

7. Different analytical algorithms, such as NLP, text and image entropy calculation, and
correlation with other documents, are then performed.

Note that documents of all types—digitized or native electronic—can have their meta-data
upgraded at any time in their lifecycle; for example, after new analytics technologies become
available. Thus, a wide variety of algorithms can be performed on document content, in
parallel, at different times, on different portions of the document content, and for different
downstream purposes.

3.3.2 Image Understanding

In the previous section, document understanding was discussed in broad terms. One of the tasks
of document understanding was shown to be the extraction of images as separate zones from
the text. Images were then classified as specific classes of content; for example, photo, line
art, graphic, business graphic, colored text, headline text, drawing, logo, map, or specialized
images such as slides or negatives.
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Image understanding starts where this classification leaves off. Typical image understanding
applications include scene recognition, face detection and identification, shape matching and
recognition, product inventory, location detection, object extraction, and intelligent image
processing—for example, to automatically improve the image quality. Inspection systems are
also image understanding applications in which a desired, predefined metric or set of metrics is
automatically generated and compared to a desired range of values, for example, for pass/fail
of the printing quality, captured image quality, or scene readability. Several subdomains of
image understanding are considered separately in later sections: image segmentation (Section
3.4.1), medical imaging (Section 3.4.4), and surveillance (Section 3.4.6).

Technologies used for image understanding are quite broad, and include thresholding and
segmentation approaches not dissimilar from those used for document processing. Object
recognition is performed using pattern matching, which is often based on cross-correlation
between the intended and actual images. Image processing techniques such as image contrast,
exposure, and color balance detection are used to decide on the image restoration approach
for images of unacceptably low quality.

Another important consideration for image understanding is image compression. Functional
image compression is desired, whereby the compression does not prevent effective downstream
use of the document, for example, for document classification, object tracking, or inspection
pass/fail. It is very important during image understanding to consider what the later uses of
the image will be.

In the context of this book, image segmentation is an excellent candidate for parallel
operations. Different images in a video stream and different partitions of a larger image can
be processed in parallel. In addition, parallel image processing approaches can be used to find
the modal image in a series of images and to create 3D images from a set of 2D images.

Since image processing tasks have a high error rate, being able to use multiple parallel image
processing algorithms has great potential for improving accuracy and robustness. Accuracy
can be improved through the intelligent combination of distinct algorithms, while robustness
can be improved by taking advantage of the often large differences between data (input)
observed in training data as opposed to actual deployment data through feedback approaches.
Different algorithms tuned to different subclasses of the possible input, properly cooperating,
provide an optimal analysis for each of the distinguishable subclasses and thus can improve,
often greatly, the overall image understanding. As will be shown in the chapters that follow,
image understanding is especially amenable to performance improvement through traditional
forms of parallelism, with simultaneous improvement in accuracy and/or robustness through
meta-algorithmic parallelism.

3.3.3 Biometrics

A biometric is the measure of an attribute of a living organism for the purpose of uniquely
identifying that organism compared to all other members of its class. Biometrics include 1D
signal processing (e.g., audio for speaker identification) and 2D image processing (e.g., for
fingerprint identification). While largely dissimilar in spectral composition, both 1D and 2D
biometrics can benefit from the same signal normalization processes (Wallace et al., 2012).
Normalization is important since biometrics represent a broad class of problems, involving
a mixture of pattern matching (identification) technologies as well as classification (one vs.
many) technologies.
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Table 3.1 Important physical biometrics and their measured attributes

Physical Biometric Sample Measured Attributes

Face Facial feature location, shape, size, and inter-feature distances
Fingerprint Whorls, points of interest, pores
Hand Size, shape, perimeter, lines
Iris Distribution of high interest features
Retina Vasculature distribution
Vein Location map of earlobe or hand

Biometrics include physical biometrics, behavioral or “continuous” biometrics, and innate
or chemical biometrics (Simske, 2009). These are captured in Tables 3.1, 3.2, and 3.3, re-
spectively. While the physical and behavioral biometrics use image and signal processing
techniques, the innate biometrics are based on biochemical analysis techniques, including
bioinformatics for sequencing.

Biometrics are highly amenable to parallel processing approaches for at least three rea-
sons. The first is that different biometrics, generally, require different techniques for optimal
identification accuracy. Support vector machines (SVMs) are quite useful, as expected, for
image-based biometrics, while bioinformatics are used for genetic innate biometrics. The sec-
ond reason is that multiple sample windows (data streams) may be used to identify a person;
for example, multiple phrases in a conversation, multiple images, multiple fingerprint images
captured, and so on. The third reason is that multiple biometrics can be analyzed in parallel to
provide higher overall identity (authentication) confidence. For this combination of biometrics,
we wish to use the highest accuracy approach on each of the individual biometrics—and we
also wish to use the highest accuracy pattern for combining these biometrics. This is precisely
where meta-algorithmics come in.

3.3.4 Security Printing

Security printing is a broad set of technologies used to add, and later recover, identifying
information to a physical object. As mentioned above, security printing as a domain of

Table 3.2 Important behavioral or “continuous” biometrics and their measured attributes

Behavioral Biometric Sample Measured Attributes

Arm sweep Location and velocity patterns
Fingerwriting Location and velocity patterns, pressure kinetics
Gesture Location, velocity, size, and shape of hand
Handwriting Location and velocity pattern
Heartbeat Electrocardiogram (ECG), vectorcardiogram (VCG), pressure, sound
Keystroke Latencies, pressure kinetics
Voice Cepstrals, formants, accent, timing in idiomatic expressions
Walking Gait analysis (location and velocity patterns)
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Table 3.3 Important innate or chemical biometrics and their measured
attributes

Innate Biometric Sample Measured Attributes

Genetic DNA, RNA, mDNA, HLA
Tissue assay Protein composition, protein expression
Mass spectroscopy Chemical composition

machine intelligence is less well described in the literature than the other domains addressed
in this book, and so it is reviewed in more depth here.

Broadly speaking, security printing consists of (a) determining the manner in which data
will be added to the physical object; (b) associating the data with the object, a process called
encoding; and (c) recovering the data from the object, usually through decoding. As the name
implies, this information is usually associated with printing. However, the technologies to
provide forensic authentication have improved to the point that printing is not always required.
Data creation techniques useful for printing have also proven to be useful in other, nonprinted
physical and electronic-native objects such as RFID and near-field devices, and file-associated
meta-data used for secure access or secure authentication of electronic information.

There are a number of different factors to consider during the planning of a security printing
deployment. In this section, six main factors are considered:

1. Nature of encoded information
2. Level of image analysis
3. Role of person performing the authenticating
4. Utility of the encoded information
5. Extent of print variability
6. Complexity of the encoding

These factors are now considered sequentially.
By the nature of encoded information, we mean whether the information is encoded in

overt, covert, steganographic, or forensic functionality. Overt objects are both visible and
understood to contain readable information by the average person. Barcodes are perhaps the
most obvious example of this, and they have blossomed as the number of mobile devices
capable of capturing images of sufficient quality to be decoded has increased. However, there
is no innate security in reading barcodes. The barcode may redirect your mobile device to
a website that downloads a virus to your device. The barcode may otherwise direct your
device to a honeypot website, which lures you into downloading rogue software. All the data
on your mobile device is therefore at risk. This type of risk is not unique to barcodes: any
other overt mark—serial number, graphical alphanumeric, color data mark, and so on—can
be copied or readily replicated by a fraudulent agent. However, the task of fooling consumers
and retailers is made easier when no variable data is used, and the overt mark is simply
a—supposedly—difficult to reproduce mark such as a hologram or guilloche. Even when
these cannot readily be duplicated, they can be obtained from insiders. Having the overt
feature contain data allows it to be connected to on-line verification, which offers a more
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reasonable degree of protection: the same code cannot be used multiple times and codes that
are nonvalid will be so identified by the on-line service.

Covert printed objects contain information that is hidden in plain sight, and the means of
decoding—perhaps even the very existence—of the content is not conveyed to at least some of
the people having access to the physical item. Digital watermarks are often covert (in addition
to being steganographic) and their location and the secure access rights to decode them are only
provided to certain persons. Other covert marks include copy detection patterns, ultraviolet
(UV) and infrared (IR) inks, MICR inks, and color combinations that depend on specific ink
palettes.

Steganographic security printing objects are marks that contain hidden information, even if
the marks themselves are overt and well understood to contain decodable information. When
a digital watermark is known to be present in an image, the manner in which it contains
information is hidden, or steganographic. However, the mark itself may visibly impact the
image (strong watermark) or be difficult to notice (weak watermark). Strong watermarks are
expected to survive copying, and thus are used for copyrighting material. Weak watermarks
are not expected to survive copying, and are used therefore for authentication. Steganographic
information can be contained by subtle text or logo manipulations, within the halftoning
patterns themselves, or by the tacit addition of hue, intensity, and/or saturation variation to
printed areas.

Forensic security printed information is used to identify with a certain degree of statistical
confidence that a document, label, package, or other surface is authentic. If properly protected
and/or difficult to reproduce, forensic patterns will be reused by fraudulent agents, rather than
reproduced. In this case, the forensic mark must be reuse or tamper evident, as discussed
below. Forensic materials—such as security substrates, security ink or substrate additives,
and secure finishing coatings, laminates, or procedures—must be protected from theft, and so
constitute controlled substances/procedures. Many different forensic materials exist. However,
high-resolution imaging obviates the need for “special” substrates, additives, or finishing
by allowing the item (printed or otherwise) itself to provide forensic authentication. High-
resolution imaging hardware can be used for the forensic identification of a printed document
or label using only a single printed character (Simske and Adams, 2010; Simske, Pollard, and
Adams, 2010). This capability has been extended to other printed content, including small
logos containing steganographic content, as well as significantly improving the statistical
confidence in the forensics. No special forensics are needed; the printing itself is the forensic.
Current work focuses on extending this to a portion of any surface, allowing any object to be
forensically authenticated.

The related factor, level of image analysis, is important in security printing as it defines
the type of applications that can be initiated by the security printed object. Forensic image
analysis is the most difficult to reproduce, with other forms of image authentication providing
acceptable accuracy at the item level and forensic confidence at the cluster level (Simske et al.,
2009). At the low end of statistical confidence for authentication is image inspection, in which
images are graded for quality. Image similarity is often used for quality measurements—the
lower the image variability within a set of legitimate samples, the more likely counterfeit
samples will be correctly classified (Simske et al., 2009).

The level of image analysis required for authentication is therefore dependent on the density
of information contained in the security printing object, the entropy in the information, and
the inter-cluster specificity of the measurement. The greater the density of information, all
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other factors being equal, the greater the statistical confidence and the greater the chance a
printed object can be used for true forensic (e.g., less than 1 in 109 chance of a false positive
identification) confidence. The greater the entropy of the information extracted, the greater the
separability (e.g., Hamming distance) between any two randomly selected samples. However,
low entropy is preferred for samples that should be decoded identically. In summary, then, for
security printing objects we prefer (a) high bit density, (b) high entropy for sets of unrelated
samples, and (c) low entropy for sets of related samples.

The role of person authenticating the security printed object is another means of defining
the downstream applications and services that are initiated by decoding the object. Security
printing is associated with a supply chain, value chain, or other logistics-managed move-
ment of content between different actors. The seven primary actors, generalized across most
domains, are the manufacturer, the warehouse, the distributor, the retailer, the consumer,
the inspector, and the forensic analyst. The manufacturer and forensic analyst, one on each
end of the overall object lifecycle, are generally interested in the highest level (forensic) of
object authentication. It behooves the manufacturer, then, to provide forensic-level inspec-
tion on the packaging, labels, or other product-associated materials. In between, different
motivations—inspection, auditing, track and trace, individual product authentication, supply
chain integrity validation—drive the different actors. Hybrid, VDP allows a single printed
region to be used for many purposes simultaneously, allowing each actor to achieve her goals
without compromising other actors. The fact that multiple actors can use the same printed
regions—or even a single region—for multiple aims shows the high value of parallel process-
ing in security printing.

The utility of the encoded information is an important factor when a hybridized security
printing design is used. This is preferable when using VDP because the amount of effort to craft
multiple variable data regions is only marginally more than the effort required to implement
one VDP feature. For this modest upfront effort, a wide variety of downstream advantages are
garnered. In order to produce a truly secure printed feature, all three of the following utilities
must be provided: (1) unique ID, (2) copy prevention, and (3) tamper-evidence.

A unique ID is readily produced using VDP. The simplest unique ID is a serial number.
Usually, the order of serial numbers is randomized using a random number generator, encryp-
tion, or digital signing. The end result is that each printed item has a unique ID suitable for
look up in a (cloud-accessed) database. The unique ID can be used as an entry field for the
other printed information—overt, covert, steganographic, and/or forensic—associated with
the same object. For example, the descriptor for the forensics of a specific printed character
can be stored in the database and then compared to the descriptor of the same character on the
object tagged with the unique ID. A nonmatch indicates the object has been copied, reprinted,
or otherwise counterfeited.

Copy prevention is important for a minimum of one decodable object. Otherwise, a direct
copy of the image can be made and falsely “authenticated.” Clearly, the forensic character
descriptors associated with the use of high-resolution imagers cannot be copied. However, it
is also difficult to achieve forensic confidence for individual images or clusters of images, if
the images have sufficient complexity (Simske et al., 2009).

The third requirement for a security printing object is tamper-evidence. If an object has
a unique ID and cannot be copied, it can still be reused. Tamper-evident objects, however,
are compromised when they are authenticated, making them single use. Associating a secu-
rity feature with the tear strip means that it will be bisected when the package is opened.
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Scratch-off surfaces that must be rubbed away to access the unique ID underneath are another
rational form of tamper-evidence.

The extent of print variability is used to craft the analytics for a security printing campaign.
The analytics are, of course, the collection and digestion of information associated with the use
of the security printing objects. Static printing, which is generally cheaper, does not provide a
unique ID, and so, mass serialization is usually provided by a low-cost thermal or other in-line
printer. This unique ID is typically of low quality, and thus provides no copy protection and
usually no tamper-evidence. However, static printing can certainly provide cluster-level image
forensics (Simske et al., 2009), making even relatively small-scale counterfeiting stand out in
the analytics: they cluster together and are distinct from the legitimate samples.

As argued above, VDP opens the door for hybridization; that is, using different types of
variable regions for different tasks. These include inspection, point of sale, authentication,
unique ID/mass serialization, forensic authentication, and URL embedding. From a security
standpoint, VDP is very powerful: hybridization means that the relationship between multiple
VDP objects can be varied from one security printing campaign to the next without requiring
a change in the VDP objects used. This is an excellent way to make the counterfeiters spend
more in reverse engineering the system.

The logical extension of VDP is full customization. In full customization, everything printed
can be made variable from one object to the next. This includes the layout, the relative
spacing between text characters, and the amount of steganographic information added, among
others. While full customization requires extensive processing overhead, modern printers
boast massive—and massively parallel—processing capabilities, making this approach far
less daunting than in years past.

The final factor considered is the complexity of the encoding. Here, the changing nature
of printing plays a huge role. With 3D printing promising to replace many manufacturing
processes in the years to come, it is obvious that many aspects of printing—both on the
substrate and finishing ends—may eventually become absorbed into the printing process
itself. From lamination of the substrate to textured finishing, 3D printing technologies stand
on the brink of reducing the length and the complexity of the printing line. The simplest
printing will continue to be “flat”; that is, a matter of printing one type of ink onto one type of
surface. The security of this approach depends entirely on the degree of VDP implemented.

In the case of liquid electrophotography, ink layers can be peeled off one another in a
process called “sandwich printing.” More complex encoding can occur when multiple layers
of ink—for example, combinations of visible, UV, IR, conductive, and other inks—are used
together (Simske et al., 2008).

Further complexity is accommodated by security printing when a thorough understanding
of the printing and downstream imaging processes is applied to optimizing the information
originally printed (Simske et al., 2008). In this process, the printing is “precompensated” for the
expected downstream effects. The two most effective forms of precompensation are structural
(Simske et al., 2008; Vans, Simske, and Aronoff, 2009) and spectral (Simske et al., 2008;
Simske, Sturgill, and Aronoff, 2009). Structural precompensation is largely concerned with
anticipating the manner in which ink will spread on a given substrate. For example, inkjetted
inks will generally spread out more on a plastic or coated substrate than they will on a porous,
cellulose-based substrate unless rapid drying or curing is implemented. Figure 3.1 shows the
benefits of structural precompensation on barcode reading. Here, structural precompensation
was implemented by making the dark (inked) modules in the barcode narrower. When printed,
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Figure 3.1 Minimum size of the individual module, or tile, in a 2D barcode with readability rate of
90% or higher (y-axis) versus the number of print/scan round trips (x-axis) for regular 2D Data Matrix
barcodes (uncompensated values) and 2D Data Matrix barcodes with structural precompensation in the
first printing

the ink spread resulted in black and white modules in the barcodes being equal in size.
Without such structural precompensation, the black modules bled into the surrounding white
tiles, resulting in failed readability at a much larger tile size. Structural precompensation was
found to have as profound an effect as three successive copies of the barcode—in the opposite
direction. To understand this, note that in Figure 3.1, one copy (print/scan cycle) of the barcode
represents one “round trip,” and so the original print is 0.5 round trips. After making a copy of
a copy of this original print, the x-axis is at 2.5 round trips. In Figure 3.1, the precompensated
barcodes read as well after 3.5 round trips as the uncompensated barcodes read after original
printing (0.5 round trips). This means that structural precompensation removes three rounds
of copying from the would-be counterfeiters.

In addition to structural precompensation, spectral precompensation is used to significantly
improve the payload bit density. Spectral precompensation was introduced in Simske et al.
(2008) and consists of reversing the hue-changing effects of printing and then scanning. Those
effects are illustrated in Figure 3.2, in which all 13 dry electrophotographic (“LaserJet”) and
thermal inkjet (“DeskJet”) printer/paper combinations are shown to make the magenta more
“red,” the blue more “cyan,” and the cyan more “blue.” Spectral precompensation for these
printer/paper combinations therefore consists of printing the magenta with a slight blue shift,
the blue with a slight magenta shift, and the cyan with a slight green shift. For the Indigo
printer, spectral precompensation encompasses printing the magenta with a slight blue shift,
the blue with a slight cyan shift, and the green with a slight cyan shift. The actual shifts in
each case are readily determined with a single test sheet containing patches with specific hues,
as described in Simske et al. (2008). Spectral precompensation was shown (Simske, Sturgill,
and Aronoff, 2009) to double payload bit density, and its effect on color barcodes was equal
to the impact of a single copying cycle.

The ability to hybridize security deterrents, as mentioned above, enables many downstream
applications and services. VDP security printing adds conditional patterns to the system
architecture, since the designer has the opportunity to choose (a) what each VDP mark is used
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Figure 3.2 Spectral precompensation as deployed on 15 different printer/paper combinations for a
six-color (red (R), yellow (Y), green (G), cyan (C), blue (B), and magenta (M), in clockwise order
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filled triangles and measured hues after printing and scanning (“hues-as-read”). The results are given for
15 different printers: all were scanned using the same desktop scanner (Simske et al., 2008)
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for, and (b) how the data in the different security marks relate to one another. The implications
for parallel processing are obvious. If multiple VDP marks need to be analyzed, each can be
analyzed in its own thread.

3.4 Secondary Domains

The secondary domains of interest covered in this book include signal processing (speech
recognition, medical signal processing), image processing (image segmentation, medical imag-
ing, surveillance, OCR), text analysis (NLP), and security (security analytics) applications.
As with the primary domains, there is a strong emphasis on image processing applications;
however, there is enough variety in these domains to further illustrate the broad utility of
parallel processing approaches.

3.4.1 Image Segmentation

Image segmentation is a very broad field, and these short paragraphs will not do it justice. Most
of the other domains of interest (document understanding, image understanding, biometrics,
security printing, medical imaging, surveillance, OCR) in this book depend on image segmen-
tation for at least part of their machine intelligence, and so a relatively in-depth overview will
be provided here.

There are many useful approaches to image segmentation. I will, with an admittedly Pro-
crustean flair, attempt to describe these as belonging to either bottom-up or top-down ap-
proaches. Bottom-up approaches are concerned with local, or regional, pixel (or voxel—I
will continue to use the term pixel for both 2D and 3D imaging) behavior that is used to
decide whether to combine neighboring pixels or leave them separate. This is a constructive
approach, and it may result, as is the case for document understanding, in unassigned pixels.
Top-down approaches, on the other hand, impose a condition on the entire image at once,
which then allows the segmentation to proceed based on this condition. Originally, all the
pixels belong to a single segment, but the top-down model is deconstructive inasmuch as it
peels away pixels to create new segments. In overviewing six types of bottom-up and four
types of top-down approaches, this section will provide a flavor of the complexity and diversity
of image segmentation technologies.

The bottom-up approaches I will overview are (a) thresholding, (b) clustering, (c) edge-
based, (d) watershed, (e) histogram-based, and (f) region growing. Thresholding is usually
performed as binarization, resulting in a foreground and background set of pixels. Multi-level
thresholding can be used when there are several backgrounds, or when objects with different
textures are to be identified, but as that approach is similar to the histogram approach, I will
leave off discussion of that for the nonce. Figure 3.3 shows the results of binarization using
two excellent algorithms, those of Kittler and Illingworth (1986) and Otsu (1979). I call these
excellent algorithms because the design of the algorithms is “impedance matched” to the
task: for the Kittler and Illingworth (1986) algorithm, the minimum error from two Gaussian
distributions is minimized, and for the Otsu (1979) algorithm, the two-class intra-class variance
is minimized. Both, therefore, attempt to optimize binarization by optimizing the definition of
two classes. It should be noted that these are both global thresholds: there are many excellent
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(a) (b) (c)

Figure 3.3 Thresholding-based segmentation examples. (a) Original image with multiple background
colors and intensities. (b) Image after thresholding using a modified version of the algorithm in Kittler
and Illingworth (1986). (c) Image after thresholding using the method of Otsu (1979)

adaptive thresholding approaches, as well. These base their binarization on local variability,
and thus provide better robustness to variable backgrounds and to nonuniform illumination.

Figure 3.3 illustrates the benefits provided by using both of the binarizations. The Kittler
and Illingworth (1986) algorithm, with output shown in Figure 3.3b, identifies several areas
of different texture, specifically in the lower left quadrant of the image. The Otsu (1979)
algorithm, with output shown in Figure 3.3c, does not identify as many textured areas, but
does an excellent job of extracting the small, 2D Data Matrix barcode in the right center of the
image. This is readily identified as a specific “region” in the image, and thereafter assigned to
a barcode decoding pipeline.

The bottom-up clustering approach is also quite straightforward. Connected components,
or regions, are created by joining neighboring pixels that are similar enough—in intensity, hue,
saturation, edge direction, texture, and so on—to be considered alike. There are many variables
that can be adjusted for this approach, including the threshold for similarity, the definition of
neighbor (is it the four pixels to the left, right, top, and bottom, or can the four corner diagonal
pixels or an even more distant set of pixels be considered neighbors?), and the number of passes
through the image (larger numbers of passes tend to create larger clusters). Also, do all pixels
have to be assigned to a cluster? The latter is usually true for general image segmentation, but
not so for document images. Usually, the clustering approach continues aggregating clusters
until a predefined or desired number of clusters exist. This benefits tracking systems when the
number of objects of interest is known, but can lead to strange aggregations when the number
of clusters selected is inappropriate.

Edge-based approaches provide segmentation by defining edge boundaries, edge directional
fields, or both. The maps of these edge data are then used to guide the creation and aggregation
of connected components. I consider this approach to be bottom-up on the basis of the
implementation details. The two primary approaches I have used are (a) forming connected
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Figure 3.4 Sample image histogram illustrating three obvious peaks in the luminance channel. These
three peaks are used to create clusters of pixels belonging to only one of the peaks, and thus provides
excellent segmentation by differences in luminosity

components from the nonedge pixel map of the image, and (b) allowing clustering to continue
only when a plurality or majority of neighboring pixels have similar edge directionality
properties. In either of these two cases, connected components are formed from aggregating
neighboring pixels with like properties.

The watershed approach is also a bottom-up algorithm, in which segments are defined based
on where shared water would flow into the topographical representation of the image. The
isobars can be in various spaces—chroma, luminance, and so on—but the principal is the same
for each space. Wherever the rainfall over an area of the image pools with rainfall elsewhere,
these pixels are joined into a single segment. This approach is excellent for identifying optima
in the image, making it highly suitable for tracking and object extraction, but less suitable for
more structured images (like documents).

The histogram-based approach is functionally equivalent to multi-thresholding. The his-
togram of the entire image, as shown in Figure 3.4, is computed, and the peaks in the histogram
are used to define the target values for different clusters in the image. If there are NP peaks in
the histogram, the histogram-based approach proceeds identically to having NP – 1 thresholds.

The last of the bottom-up approaches is the region growing approach. This approach shares
much in common with the clustering method described above. Neighboring pixels are joined
based on some criteria. Unlike the clustering approach, however, region growing approaches
are not tied to a specific number of region types. Generally, region growing approaches benefit
from intelligent postprocessing; for example, similar large regions may be interrupted by
ectopic, narrow boundary regions. Such an error can be overcome through a simple dilation
+ erosion postprocessing pipeline.

Turning now to the top-down approaches, we explore how a simple, functional metric can
be used to drive segmentation. The premise of the compression-based approach is that the
optimal segmentation will result in the minimum compressed file size. This is a reasonable
assumption since compression ratios are higher when like pixels are grouped. Interestingly,
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this approach explicitly encourages parallelism, since more than one segmentation candidate
must be provided in order to ascertain an optimal compression. Thus, this method could, for
example, attempt segmentation using any combination of the bottom-up approaches outlined
above—along with any combination of the top-down approaches still to be introduced—and
select the best segmentation based on compressed file size. As a quick illustration, suppose
we decided to vary the global threshold (see Figure 3.3) over the entire reasonable range; for
example, from the 5% to the 95% cumulative points on the (usually luminance) histogram
used to create the binarized image. It was found that the Otsu (1979) threshold led to the
creation of a smaller (lossless) compressed image than did the Kittler and Illingworth (1986)
threshold.

A second top-down image segmentation approach is the model-based approach. As the
name implies, this method is driven by a model of one or more objects to be segmented.
Segmentation—or multiple candidate segmentations—proceeds and each connected compo-
nent is evaluated in a probabilistic manner for its degree of matching to the model or models.
Shape, palette, and various distribution methods (e.g., for face or other composite shapes)
can be used to employ this method. Another feature of this method is that it is very suit-
able to training. For example, as extracted objects are validated to be correct matches—even
automatically, for example, in tracking problems—then the model itself may be updated to
accommodate the range of, or change in, objects matching the model.

Another top-down method of interest is the split and merge. The “split” part of this algorithm
is the division of the image into four quadrants if the image is not homogeneous. This implies
that there is a threshold for homogeneity, which can be based on a wide variety of image
features such as luminance, chroma, texture, and so on. After being split into quadrants, these
quadrants—by themselves, in any combination, or in any combination of one or more of them
with their neighboring quadrants—can be merged into a single connected component. This
“merge phase” provides the means to form more complex connected component boundaries.
The rectangular splitting process is highly advantageous for downstream compression if the
original (presplit) regions are aligned with the block boundaries.

The final top-down image segmentation approach to be overviewed in this section is the
partial differential equation (PDE)-based approach. PDEs are typically used to define arcs for
connected component boundaries through the definition of contours. Under some conditions,
this can perform like a watershed approach. The PDE approach usually operates on texture or
contrast, and so focuses on the definition of boundaries rather than building regions from the
bottom up. This results, typically, in less region clean-up after the boundary definition than
is required after the watershed approach. Tying this in with the discussion in Chapter 1, the
PDE-based approaches are roughly analogous to the formation of a manifold or support vector
in classification problems, whereas the watershed approach is more analogous to a Gaussian
mixture classification approach.

Is there a single best technique from this dizzying array? That is unlikely, even for a
specialty domain such as, for example, face detection or shape extraction. One reason is that
the technique that will perform best for a given problem is less dependent on the domain
to which it is applied than it is on the specific attributes of the images (quality, contrast,
exposure, camera used, lighting conditions, blur, etc.). Another reason is that each domain
has its own nuances that may favor a given image segmentation approach over another; for
example, bottom-up approaches tend to work better for document segmentation while top-
down approaches tend to work better on shape recognition and object extraction.
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3.4.2 Speech Recognition

Voice recognition, as mentioned above, is a form of biometric. Automatic speech recognition
(ASR), however, is deployed in many circumstances where the voice cannot be recognized with
sufficient confidence for biometrics; for example, for entering commands into a computer or
for selecting options on an automatic voice menu. Speech recognition is extremely important
based on the high value of spoken language in communication, a value that has only risen as we
have moved from a text-based to a multimedia communications society. Speech recognition is
based on 1D signal processing, and it is easy to ground truth for native speakers.

Speech processing is concerned with the relative magnitude of the spectral coefficients.
This includes the mel-frequency cepstral coefficients (MFCCs, described in Vaseghi, Yan, and
Ghorshi (2009) and elsewhere), which represent an audio spectrum with a set of coefficients
that are uniformly distributed over a log scale of the frequency. In other words, the cepstrum
is a sampling of the audio spectrum that provides a “fingerprint” or “signature” of the spec-
trum (useful for classifying or distinguishing different speakers, etc.). Additional frequency
representations include perceptually motivated MFCCs (Davis and Mermelstein, 1980; Krish-
namurthy and Childers, 1986), which open the pathway to task-specific cepstral coefficients
(TSCCs). TSCCs can be crafted to more adequately cover the expected range of response
when completing a specific auditory task. As an example, if an emotive response is measured
(or triggered), a TSCC that better represents maximum and mean of the first derivative of the
pitch contour (Yacoub et al., 2003) will provide better emotion recognition. TSCCs can also
be crafted using transformations of the MFCC, such as through cepstral mean subtraction, to
provide more accurate speaker identification (Rosenberg, Lee, and Soong, 1994).

Other work on emotion recognition has shown that auditory data streams can be used for
simultaneous establishment of identity and emotion determination (Cowie et al., 2001). Emo-
tion detection is important to allow emotional state to be compensated for during identity
determination. In this case, emotion can be used as another factor in identification of the
speaker. This supports the use of hybridized classifiers (Chaudhuri, Ghosh, and Oja, 2009;
Mohamad, Likforman-Sulem, and Mokbel, 2009), directly in line with the emphasis on par-
allel algorithms throughout this book. There is growing recognition that the combination of
cognition-based, machine intelligence, and NLP approaches are necessary to move voice and
speech recognition forward (Baker et al., 2009). These approaches can be processed using
parallelism by task or component. The output of these approaches may be combined using
parallelism by meta-algorithmics.

3.4.3 Medical Signal Processing

With medical signal processing, we are concerned with 1D signals, usually biorecordings
such as the ECG or EMG, biomechanical recordings (e.g., stress-strain recordings), and a
wide variety of other biosensing recordings such as biochemical, biomagnetic, bioacoustic,
and bioimpedance recordings (Bronzino, 1995; Bankman, 2000; Enderle, Blanchard, and
Bronzino, 2000). These recordings are made to enable downstream diagnoses of tissues, organs,
and organ systems. Diagnoses are, simply, analyses: they enable us to cluster biorecordings by
types, perform classification of the biorecording events, and combine multiple biorecordings
to make a more accurate and systematic diagnosis.
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Table 3.4 Types of medical signal processing and imaging biorecordings

Type of Signal/Image
Characteristics of the
Signal/Image Examples

Internal passive Electrode or sensor is within the
body

Electrochemical DNA probes,
physicochemical property sensors,
fiber optic sensors, catheter and
stent-associated sensors, and so on.

Internal evoked A specific response is elicited
and recorded

Internal bioacoustic, biomagnetic,
bioimpedance sensors, used for gait
analysis, limb motion analysis,
internal heart monitors, and so on.

External passive Electrode or sensor is on the
surface of the body, or not
abutting the body at all

ECGs, EMGs, EEGs, optical sensors,
sphygmomanometers, stethoscopes,
and so on.

External evoked External sensors record a specific
task-based elicited biosignal

Patellar reflex test, lie detector test,
papillary light reflex test, Glasgow
Coma Scale test, and so on.

There are many ways to categorize the biorecordings that underpin medical signal process-
ing, including deterministic versus stochastic (Bronzino, 1995), continuous versus discrete
(Enderle, Blanchard, and Bronzino, 2000), and by frequency range of the biosignal (Bankman,
2000). Another way to categorize these biosignals is by how they are recorded. I find this a
useful way of organizing both medical signal processing and medical imaging (discussed in
Section 3.4.4). The two primary axes are internal versus external biorecording, and passive
versus evoked biorecording, as collected in Table 3.4. Internal biorecordings include in vivo
and in utero measurements, the use of catheters, and internally placed bioamplifiers and other
sensors. Sensors include chemical, pH, thermal, mechanical and impedance, and other detec-
tors. Bioamplifiers are used to ensure that the output signal is in the appropriate range for
either transduction into an electrical signal or for direct use as an electrical signal. Sampling
and filtering of the signals can be performed before or after transduction/amplification.

Generally, internal biorecordings are more accurate, and often more noise-free. However,
they are invasive, and so must meet biocompatibility requirements. They are also more local-
ized, and so may represent a local effect that does not represent a more systemic measurement
that is actually not as clinically relevant. Passive internal biorecordings record physicochemi-
cal processes as they are; for example, blood glucose concentration, local milieu temperature,
or radial/lateral impedance in a myocyte. Evoked, or elicited, internal biorecordings collect
the signal resulting after a particular event or forcing function has been applied to all or
part of the measured system. Mechanical measurements (e.g., localized strain measurements
using implanted strain gages) and electrical measurements (using implanted electrodes, in-
cluding those associated with larger implants such as pacemakers) can be used to measure
the response to volitional movements for gait analysis, muscle health assessment, muscular
dystrophy assessment, and other diagnoses.

Table 3.4 also lists examples of external passive and evoked signals. External passive
biorecordings include the three most significant surface recordings of body electrical activity:
the ECG, the EMG, and the EEG. All such surface recordings are, in reality, measurements
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of coordinated extracellular charge flow. This averaging, along with the shunting of current
flows caused by the high capacitance and impedance of subcutaneous fat, results in some
lowpass filtering of the actual electrical activity. Diagnosis of the surface potentials, however,
is highly clinically relevant, and the relative ease, low cost, and biological relevance of surface
electrical recording—in comparison to invasive or 2D/3D imaging, for example—has made
these measurements very popular for patient monitoring in addition to diagnostic purposes.

The signal processing of these surface potentials consists of both time-series and spectral
analysis. For the ECG, time-series analysis includes determining the times at which the key
waveforms—P, QRS, T, and U—of the cardiac cycle occur. Spectral analysis includes deter-
mining the frequency content of the QRS wave, as its slew rate is indicative of the propagation
velocity of the depolarization event through the ventricles. Importantly, multiple electrodes are
used for the ECG (and for the EEG and many EMGs, including the electrooculogram), which
allows the ready computation of a 2D or 3D image such as the VCG. This, in turn, opens up
opportunities for improving the 1D signal. For example, the VCG is generally smooth, mean-
ing that simple moving average filtering in the VCG space can be used to remove correlated
noise (such as breathing and movement artifacts and 60 Hz noise) and even uncorrelated noise
(due to shunting, electrode deterioration, etc.) from the signal before the VCG is converted
back into the ECG (Simske and Blakley, 2012).

In addition to surface potential recordings, there are an increasing number of optical sensors
that can be used for external biomedical recordings (Bronzino, 1995; Baldini et al., 2008; Soria
et al., 2011), particularly for the partial pressure of gases such as oxygen and carbon dioxide.
However, the “Holy Grail” of transcutaneous optical sensors—an optical transcutaneous blood
glucose concentration sensor—is yet to be perfected.

Evoked potentials can be readily recorded using external sensors and equipment. For exam-
ple, the lie detector test—an evoked response by definition—can incorporate an EEG, a facial
EMG, voice analysis (based on acoustic sensing), and blood pressure recording (sphygmo-
manometer). The ECG can be used along with evoking events such as exercise and changes in
body posture (sitting, standing, etc.) to assess cardiovascular health of people. Auditory and
somatosensory (e.g., pressure or touch) evoked potentials can be tied to the EEG in order to
diagnose the behavior in the corresponding temporal and parietal lobes.

All of the medical imaging (i.e., 2D and 3D signal processing) techniques described in
the next section belong to the external passive or evoked potential categories, even if the
image signal source (X-ray, gamma ray, electrical current, etc.) may have a direct internal
effect. However, it is clear from this section that there is a wide array of medical signal
processing technologies, making this field suitable to parallel processing. When a particular
medical condition needs to be diagnosed, and several signal analysis approaches have been
used, it seems clear that parallel analysis approaches—by component, by task, and by meta-
algorithmics—can be brought to bear to improve the diagnosis accuracy. By task, the different
medical signals can be processed in separate threads. By components, different partitions of
the medical signals can be processed in separate threads. By meta-algorithmic, different means
of interpreting two of more medical signals can be explored.

3.4.4 Medical Imaging

The distinction between medical signal processing and medical imaging is not strict, nor
should it be. Do multiple lead ECGs comprise a set of 1D biosignals or, because they can be
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combined into a VCG, do they comprise a 2D bioimage? The answer, of course, is that they
comprise both. This is an important point. The duality of purpose of multiple biorecordings
emphasizes the value of multiple analysis approaches to be performed, in parallel, in order to
create a more robust, more accurate diagnosis.

In this section, the medical imaging modalities are categorized based on the type of signal
used to create the images. Six primary medical imaging technologies are described: (1) X-rays
and the associated computed tomography (CT); (2) magnetic resonance imaging (MRI); (3)
single-photon emission computed tomography (SPECT); (4) ultrasound; (5) positron emission
tomography (PET); and (6) electrical impedance tomography (EIT). Medical imaging is based
on the transmission (X-rays, CT, EIT), reflection (ultrasound), or induced emission (MRI,
SPECT, PET) modality.

Table 3.5 lists salient information about the six medical imaging technologies. X-rays—both
in 2D and in their 3D form as CT—use electromagnetic waves of high energy as their signal.
The waves are penetrative, and only differentially absorbed by either radiopaque biological
materials or tissues—such as bone—or by intentionally introduced radiopaque contrast media.
The latter, if blood-borne, allows the imaging of the vasculature or specifically targeted tissues.
Digital subtraction angiography and temporal subtraction are techniques used to remove
background tissue from CT images, increasing the contrast of the final images. This in turn
enables better downstream segmentation of diagnostically relevant regions.

MRI is an emissive medical imaging modality. Nuclei release radio frequency (RF) waves
during their relaxation from induced nuclear magnetism. Specific nuclei are aligned in the
magnetic field based on the Larmor frequency of the nucleus, and the spin-spin relaxation
time (to return the nucleus to an unaligned state) is used to determine when the best signal
contrast will be obtained. Functional MRI (fMRI) is tuned to specific nuclei (usually hydrogen)
with specific chemical bonds. Functional (passive and evoked) measurements include cerebral
blood flow, blood volume, blood oxygenation, and various metabolic reactions. Contrast
agents such as gadolinium are used to enhance the images of specific brain structures. It is now
commonplace to use fMRI to measure evoked responses in the brain in order to identify the
brain pathways involved in various thought processes. MRI can also be performed in parallel
with other imaging technologies, such as CT or ultrasound, to provide both anatomical and
functional/physiological imaging.

SPECT imaging is based on the use of standard radionuclides, and has high resolution since
the gamma photons emit directly from the location of the radiopharmaceuticals in the body.
Two types of half-lives are involved in SPECT imaging: the half-lives of the radionuclides
(the commonly used Tc-99 has a half life of only 6 h) and the half-lives of the radioligands
themselves (e.g., radiohalogenated carbohydrates can be used to measure glucose metabolic
rates). These latter “half-lives” are tied to the biokinetics of the radioligands; that is, the rate
at which they are cleared from the body, body compartment, organ, tissue, and so on. Because
radioligand/receptor specificity is tissue dependent, the best contrast may actually be obtained
several hours after the introduction of the radioligand, when it will be cleared from all but the
target tissue in the body.

Ultrasound is the only reflective medical imaging technology overviewed in Table 3.5, and
is based on the partial reflection of acoustic energy at each significant tissue interface; for
example, the boundary of the abdominal cavity smooth muscle with the abdominal cavity
itself or the boundary of the pericardium with the chest wall. At each interface, a signal is
reflected back to the ultrasound imager/recorder that is used to compute the distance from
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Table 3.5 Types of medical imaging, the modality of signal measured, a description of the signal
measured, and example of evoked potentials measured using these imaging technologies

Medical Imaging
Technology

Modality of Signal
Measured

Description of the Signal
Measured

Important Medical
Imaging Considerations

X-ray and CT Transmission Electromagnetic waves Digital subtraction
angiography, temporal
subtraction, radiopaque
contrast media (dyes)

MRI Emission Induced nuclear
magnetism relaxation-
associated radio
frequency waves

Spin–spin relaxation time;
fMRI for cerebral blood
flow, blood volume,
blood oxygenation, and
metabolism; contrast
agents (e.g., Gd)

SPECT Emission Gamma photons Radiopharmaceuticals,
biokinetics,
ligand/receptor pairing

Ultrasound Reflection High-frequency sound Velocity estimation,
compound images

PET Emission Simultaneously emitted
pair of photons

Positron travel distance
before annihilation,
biopharmaceutical,
tracer molecules (C, N,
O, F)

EIT Transmission Electric voltage Inhalation/exhalation,
edema

the interface and the recorder. Ultrasound is useful for both anatomical (interface distances)
and physiological (e.g., Doppler-based velocity estimation, particular for blood velocity in
the heart and major arteries) recordings. Compound images are readily captured in “sweep”
mode, such as the familiar prenatal ultrasound images.

PET is another emissive medical imaging technology. Unlike SPECT, however, it is based
not on the emission of gamma photons, but instead on the emission of a positron from the
nucleus of a commonplace atom such as carbon, nitrogen, oxygen, or fluorine. The positron
travels a short distance—which results in some blurring—whereupon it is annihilated when
it comes in contact with an electron. Two photons are fired in opposite directions and thus
record the location of the annihilation event. Because PET uses biological plentiful atoms, it
can be linked to a wide variety of biopharmaceuticals and other tracer molecules. This means
it is used primarily for functional imaging.

The last imaging technology overviewed in Table 3.5 is EIT. I was fortunate to work on
one of the pioneering systems in EIT, at Rensselaer Polytechnic Institute under the leadership
of Drs. Isaacson and Newell (Simske, 1987; Cheney et al., 1990; Cheng et al., 1990). EIT is
based on the multiplexed use of an array of surface (external) electrodes to (1) apply an array of
currents to the underlying tissue (typically the thorax or abdomen); and (2) read the resulting
voltages on the same surface. Some systems use separate sets of electrodes; ours used the same
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electrodes for both application of current and reading of voltages to improve electrode surface
area. The pattern of currents applied to electrodes is optimized for contrast in the conductivity
image that is obtained using Ohm’s law. Because of the lack of ionizing radiation, this imaging
technique can be used for long-term monitoring of physiological conditions. In fact, its current
clinically approved and deployed usage is in the monitoring of lung function.

In the medical imaging applications illustrated in later chapters, much of the analysis will be
centered on 2D image analysis. In medical imaging, 2D sections through 3D images are called
tomographs. Standard image processing techniques used include mean and median filtering,
which smooth a noisy image; edge enhancement or sharpening, which is used to highlight
structural boundaries in an image; histogram equalization, which can be used to avoid contrast
and exposure errors in the image; contrast enhancement, which is used to provide better
dark and bright features; image averaging, which is used to remove or at least smooth out
noise; image subtraction, which was discussed above for CT imaging; and spectral filtering.
Spectral filtering includes lowpass filtering, which is used to remove high-frequency “salt
and pepper” noise; highpass filtering, including unsharp masking, which is used to highlight
high-frequency features in an image; bandpass filtering, which can eliminate both high- and
low-frequency noise simultaneously; bandgap filtering, which is used to remove unwanted
signals of a specific frequency or frequency range, such as 50 or 60 Hz noise induced by the
electricity used to run equipment; Weiner filtering, which is used to remove a wide variety
of noise through comparing an image to a desired “noiseless” image; and hybrid filters that
incorporate two or more of the previously described filters.

In short, medical imaging is concerned with both the governing physics—for emission,
reflection, and transmission of the image-generating signals—and the mathematics for image-
processing-enabled estimation of anatomical and physiological information from the image
data. This includes tissue recognition; segmentation of different cellular, anatomical, and so on,
structures from the images; quantitative (size, shape, number, distribution, etc.) and qualitative
(color, texture, etc.) evaluation of the structures; and diagnosis of specific pathologies from
the collective set of image data.

This overview of medical imaging should make it clear that parallel approaches—emissive,
transmissive, reflection—of image generation exist, along with parallel types of imaging
(passive, evoked). Other opportunities for parallelism include the multiple types of image
processing and image restoration that are available. Further parallelism is made possible by
the increasing trend for hybridization of two or more medical imaging techniques; for example,
CT and MRI to obtain anatomical and functional image information simultaneously. These
multiple sources of parallelism—along with its close relationship to image understanding and
image segmentation—make medical imaging a suitable domain for this book.

3.4.5 Natural Language Processing

NLP is another way of saying “machine understanding of human language.” More practically,
NLP is concerned with the functional consequence of machine understanding; that is, the
ability to perform useful work based on an understanding of the text. Few, if any, domains
of machine intelligence research offer such a diverse set of challenges for data extraction,
information retrieval, clustering, classification, inference, and tagging as NLP and its closely
related, more mathematically driven statistical NLP (SNLP) (Manning and Schütze, 2000).
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Not surprisingly, information theory (Shannon, 1948, 1951) and Bayesian mathematics
are important for front end data extraction in SNLP. Deviations from expected levels of text
entropy are consistent with topics specific to the reduced entropic parts. Entropy can also
be computed conditionally for comparing two or more documents or corpora. Related is the
concept of mutual information, which indicates how much information one word tells us about
another: this value should be highest for synonyms or words with high co-occurrence, high
for antonyms, and low for randomly paired words or phrases.

Bayesian mathematics, on the other hand, is concerned with the decisions made during
tagging, clustering, and classification. Since Bayesian mathematics is based on conditional
probability, they can be used to provide a set of decisions known to minimize the classifi-
cation error (Duda and Hart, 1973). Conditional probabilities are also the important input
data for Markov models and hidden Markov models (HMMs), which are the predominant
statistical modeling tool for ASR. They are also widely deployed in OCR and in SNLP. In
SNLP, HMMs are used extensively for part-of-speech tagging and sentence parsing. There
is still much left to accomplish in this domain, in spite of the development of powerful
HMM-based methods such as those of Jelinek and Mercer (1985) and Kupiec (1992). This
is understandable based on a consideration of how humans parse speech; that is, estimating
the part-of-speech based on what occurs before the word or phrase under consideration, and
then correcting it based on context—words, phrases, nuances, and even gestures and other
nonspeech cues—after the occurrence. No part-of-speech detector or parsing algorithm has
yet incorporated the type of complexity involved in human language understanding. How-
ever, parallel approaches—especially meta-algorithmics—may help to bring this complexity
to linguistic understanding in the future.

NLP and SNLP output include keyword identification, summarization, part-of-speech tag-
ging, document categorization, and other text analytics. Summarization can be extractive or
abstractive: extractive techniques simply replicate the original text that is algorithmically (or
meta-algorithmically—see Chapter 10) determined to be the most salient for the summary,
and so on (e.g., key clauses, sentences, or paragraphs), while abstraction technique involve
paraphrasing sections of the original content, that is, to condense information and provide
synopsis and semantic/meaning.

In many ways, abstractive summarization is the key to SNLP, since it can be based on so
many different SNLP techniques. For example, extractive summarization sentence weighting
approaches reported in the literature are based on the keywords and key phrases extracted;
capitalization of text; grammatical case of nouns; word co-occurrences; font formats; sentence
position in a paragraph; cue phrases such as “in summary” and “importantly”; correlation of
a sentence or phrase with the title, author reported keywords, and so on; sentence length; and
sentence centrality or redundancy with other sentences.

Once summarization is obtained, there is an implicit—and usually explicit—ranking of
terms, concepts, and loci within the document. This information can be coupled with other
analytics—such as curve plotting the rank of terms against their frequencies and the entropy
of keywords throughout the text—to categorize the document. Curve plotting the rank against
frequency has been the subject of much research, resulting in, for example, Zipf’s law and
Mandelbrot’s formula (Mandelbrot, 1954). Differences in these “power curves” within a
document may be indicative of topic, voice, even author change. Entropy, of course, is a
measure of the randomness of the “bag of words” for a set of text. Entropy drops when a topic
is more focused on a few terms or expressions. Thus, changes in entropy are also potentially
indicative of changes in style, topic, or authorship.
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NLP clustering techniques benefit from the same approaches used in other areas of machine
intelligence (Manning and Schütze, 2000). Expectation-maximization (EM) approaches are
widely used, in spite of their sensitivity to initial conditions: inappropriate initial conditions
often lead to local maxima. EM algorithms also converge more slowly than other methods, such
as gradient methods. Fortunately, however, text categorization approaches are often constraint-
rich, meaning good initial conditions and faster-converging methods are often warranted.

In this brief overview of SNLP, one final technique deserves some mention. The vector
space model (VSM) is used extensively to compute the similarity of documents. The vector
space itself is an N-dimensional space in which the occurrences of each of N terms (e.g., terms
in a query) are the values plotted along each axis for each of D documents. The vector �d is the
line from origin to the term set for document d, while the vector �q is the line from origin to
the term set for query q. The dot product of �d and �q, or �d • �q, is given by

�d • �q =
N∑

w=1

dwqw.

From this, the cosine between the query and the document is given by
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Simple to implement, the cosine measure, or normalized correlation coefficient, is neverthe-
less powerful for information retrieval tasks. Sets of documents—and their subsections—can
also be compared using the cosine measure, affording additional features for document cate-
gorization.

SNLP is highly amenable to parallel processing. Different documents—and different par-
titions of a document—can be analyzed in separate threads. Within these threads, further
parallelism can be implemented; for example, word counts and language identification can be
performed independently.

3.4.6 Surveillance

Borrowing from the previous section, it might be said that surveillance is a topic with a large
normalized correlation coefficient with both the biometrics and image segmentation domains.
While true, this does not limit the utility of exploring surveillance as a topic in its own
right. Surveillance is used in this book in its general sense; that is, for monitoring. In all of
the examples, the focus will be on image-based monitoring. Surveillance relies on multiple
frames; that is, on video. In some ways, this is a 3D imaging approach, but in a different
sense than, for example, 3D medical imaging. For the latter, 3D models of the imaged regions
are obtained. With surveillance imaging, the individual images are usually 2D. The third
dimension for surveillance is time, not the z-axis.

Surveillance consists of image capture, image processing and restoration, object segmen-
tation, object identification, and object tracking. Image capture quality is dependent on the
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lighting environment, the amount of motion blur, the angle between the camera lens and the
subject, and the camera settings. Image processing and restoration is focused on reversing
the effects of uneven illumination, underexposure, overexposure, blur, affine distortion, and/or
lack of focus. Object segmentation is a task tailor-made for parallelism: See Section 3.4.1 on
image segmentation, as the same basic principles apply to much of video object segmentation.

However, the fact that any object under surveillance will appear in multiple—perhaps a very
large set of—image frames gives rise to a different set of image processing techniques, collec-
tively called tracking algorithms. Tracking, like segmentation, boasts a number of powerful
algorithms, including blob and contour tracking—which compare the locations of connected
component centroids and boundaries from image to image, matching the closest location or
size of objects that have moved—as well as mean-shift tracking, which can use dynamic pro-
gramming or other techniques to minimize the overall distance traveled by objects in motion.
This minimization provides excellent tracking if the sampling rate is much greater than the
time it takes an object to move across the field of view. A fourth type of object tracking is visual
feature matching—subsets of which include face recognition and shape recognition—which
can be performed on each video frame in parallel, since there may be no dependency of the
object segmentation on successive frames.

Since the objects can be individuals or their faces, both face recognition and gait recognition
biometric technologies can be part of a surveillance system. Nonbiometric surveillance can
provide gesture recognition, including signing, and location identification. The latter benefits
from identifying multiple objects and performing downstream image analysis; for example,
extracting text from signage that can be used to identify waypoint-narrowing markers such as
business names, highway numbers, street names, and so on.

Surveillance can benefit from parallel processing in several ways. Distinct frames in a video
segment can be analyzed independently for many tasks, including segmentation and face
detection. After segmentation, distinct image analysis tasks—such as facial recognition and
object recognition—can also be performed in separate threads.

3.4.7 Optical Character Recognition

OCR comprises a large set of technologies, which, combined, are focused on the digitization,
or electronic internalization, of tangible representations of text. This includes printed text
associated with documents, magazines, labels, packaging, and so on, as well as various forms of
signage. Traditionally, OCR was designed to provide document digitization associated with the
use of electronic scanners. Before the advent of multimedia, documents were predominantly
text-base, and even the name “OCR” system implies the digitization of text. Documents
have evolved to include more graphics such as logos and backgrounds, more images, and
more links to additional—usually on-line—content, all of which can be digitally associated
with the electronic text. PDF (Adobe’s Portable Document Format) is a familiar electronic
representation of the OCR engine output, readily allowing for embedded multimedia and link
information.

The primary technologies associated with OCR are outlined in Figure 3.5. These technolo-
gies, broadly speaking, consist of identification, recognition, and electronic representation.
Identification processes are required to frame the downstream recognition tasks. Identifica-
tion tasks include warp detection, skew detection, page orientation detection, and language
detection (Spitz, 1997; Hassan et al., 2011; Lin, Guo, and Chang, 2011), each of which can
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Figure 3.5 Simplified OCR system capable of handling widely varied imaging system input. Im-
age correction is generally not required when documents are scanned using a dedicated scanner or a
multi-functional device with a scanning platen. Camera-captured scans will often suffer from warping,
especially when low-quality lenses are used. In addition, hand-held cameras will usually have nonzero
skew (this can also happen on scanning devices). Documents will often require orientation correction.
Once the document is aligned and properly oriented, the text processing pipeline, which converts images
into electronic documents for which both the format and content are understood, is performed
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be performed before (or after) binarization and before any character recognition has been
performed. Warp detection is readily performed, for example, using the following steps:

1. Partition the image into sections, typically 100–400 (e.g., 10–20 rows and columns in the
image).

2. For each partition, or subregion, create a histogram of the intensity values. Determine if the
histograms are indicative of text or other structured content such as tables, by computing
the bimodality of the histogram. Text and tabular regions, which typically have bimodal
intensity histograms and relatively short mean run lengths of dark pixels, can be used
directly to determine warp. Nontabular regions instead must be converted to their edge
maps before determining warp, since the edges of images, logos, and so on, will be used to
determine warp.

3. Hough transform methods are used on the intensity values of the text and tabular regions,
and on the edges of the nontabular regions, to provide the primary orientation angles of the
content. If these are not orthogonal, or if there are not sharp peaks in the angle histograms,
then warp is likely present in the image.

If warp is present, dewarping is performed (Ezaki et al., 2005). Next, document skew and
orientation are detected and, where appropriate, corrected. Orientation detection accuracy is
improved if the language family is understood.

The domain-specific work of OCR is then performed. Language identification is used to
reduce the relevant character set (in ASCII/Unicode), greatly reducing the errors that occur if
the character sets of multiple languages are being simultaneously classified. Font identification
can be used to further reduce character errors. Font identification includes the determining the
font style (e.g., serif vs. sans-serif) and the font family (e.g., Courier, Times Roman, or Arial).
Once this is established, special character (symbol, boldface, italics, underline, superscript,
subscript) identification and tagging can be much more accurately assessed. Symbolic fonts
are identified and with increasing accuracy distinguished from logos, equations, and other
special glyphs.

At this stage, OCR has been successfully performed. However, modern OCR engines have
incorporated significant additional analysis technologies over the past decade. For exam-
ple, OCR engines are increasingly proficient at properly segmenting the text components in
mixed-language documents; for example, extracting Spanish terms from predominantly
German-language text.

OCR engines also incorporate specialized identification technologies, including table recog-
nition and table field extraction, form recognition and indexing, mathematical equation recog-
nition, logo brand identification, and graphics recognition. OCR engines output this data along
with all of the logical zoning information: connected component bounding box and polygon
information, column aggregation, and even article extraction (flowed text identification and
stitching).

Each of the OCR analyses can be performed with varying degrees of parallelism. For exam-
ple, upfront the captured images can be processed as separate pages for multi-page documents,
or different partitions of a single page image. Once text regions have been identified, they can
be morphologically analyzed separately. Tables, document-internal forms, and other special-
ized document zones can be processed in dedicated parallel pipelines. In addition, document
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classification and semantic analyses can be performed by multiple algorithms, even multiple
OCR engines, in parallel.

3.4.8 Security Analytics

In this text, I will use a broad definition for security analytics, also including privacy and identity
analytics. A mistake sometimes made by people concerned with security is to overestimate the
value of security components—such as the encryption, digital signing, or certificate generation
algorithm—at the expense of the overall system security. Security is only as strong as its
weakest link, and so a pragmatic approach to security analytics is to dissect the overall
security analytics into relevant subdomains, and use the most relevant methodologies for each
of these domains. Technology vulnerabilities are addressed through modeling, simulations,
and rugged test scripting. Cryptographic security, for example, can be tested through entropy-
based randomness validation and other methods. Usually, tens of megabytes of data must be
processed for risk assessment of the technologies.

The risk due to process flaws, however, cannot generally be scripted. Instead, these must
be addressed by speculative testing, ethical hacking, and by adapting the litany of known
means of breaking processes. A process such as web-based authentication, for example, can
be broken by relatively simple means such as a distributed denial of service (DDoS) attack
wherein the validity of legitimate mass serialization codes is called into question by the
overuse of legitimate and nonlegitimate codes alike. The authentication service must be built
in such a way as to recognize, respond, and rollback (the three Rs) such a DDoS. With
proper logging, recognition can happen even with a considerable delay. The response is then
to check the log looking backward—with 20/20 hindsight here being quite valuable—and
then rollback any nonlegitimate authentication attempts, thereby resetting the authentication
service to a last known good state and therefore restoring both the utility of, and confidence in,
the system.

The risks due to people are often greater, and more readily manifested, than those due
to technology or processes. Social engineering, or the extracting of security-compromising
information from hapless honest people or from corruptible actors in a system, has long been
the preferred method of fraudulent agents. Organizations that underpay or undervalue their
security people might find out some of them are willing to earn two paychecks.

It is clear that the best security analytics will not be myopic or highly focused, but will
instead consider how multiple vulnerabilities combine to make an environment much weaker
than expected from the individual technological, process, or people vulnerabilities. The goal
of security analytics is to expect the unexpected. In the extremely complicated, multi-agent
systems of today, it is nearly impossible for linear thinking to prevail against the guile, gold,
and gutsiness of the modern, corporate fraud. Parallel approaches, operating independently
but combining results, offer the best security analytics.

3.5 Summary

In this chapter, a wide range of application spaces, or domains, were overviewed. These
primary and secondary domains, while extensive, are shown in this chapter to inter-relate well
enough such that lessons learned in one domain—say, medical image processing—will be
readily understood to be applicable in a related domain such as biometrics, surveillance, or
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image segmentation. Since this book aims to introduce and formalize the patterns for meta-
algorithms, it must provide some breadth of domain so that the reader is not left unconvinced as
to the broad applicability of meta-algorithmics (and parallelism by task or component). I have
tried to select domains such that at least one other domain (e.g., security printing for security
analytics) is related closely enough for the reader to see a continuum of applicability of the
parallel approaches without being unconvinced as to their breadth. The next eight chapters
will show whether I have succeeded. I will start with parallelism by task and component, and
then spend the bulk of the book on parallelism by meta-algorithmics.
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4
Applications of Parallelism by Task

I believe that one can indeed work on two or more tasks at once, but in ways yet to be understood.
—Marilyn vos Savant

4.1 Introduction

In this chapter, the first of three major types of parallelism to be addressed in this
book—parallelism by task—is considered in depth. Parallelism by task is arguably the most
straightforward form of parallelism—a set of N tasks must be completed, and to the extent
that they are independent these tasks can be assigned to one of {2, . . . , N} parallel pipelines.

The use of parallelism by task is illustrated with reference to the four primary, or “core,”
domains of this book: (1) document understanding, (2) image understanding, (3) biometrics,
and (4) security printing. This set is chosen because they are a diverse and broad set of domains,
and so they exercise many of the possibilities in parallelism by task. My intended approach
throughout this book is to favor the pragmatic over the arcane, the general over the specific,
and the applicable over the idiosyncratic. This chapter, therefore, is designed to provide a
practical guide for implementing parallelism by task. The meaning of “parallelism by task”
is, therefore, simple enough: different tasks that would normally be performed in a sequential
pipeline are, where possible, performed in parallel.

Document understanding, introduced in Chapter 3, is a complex set of algorithms, knowl-
edge engines, and systems concerned with upgrading the content associated with a document.
In the broadest sense, a document is any item in any of a wide variety of media that contains
some language content. For example, audio documents require the conversion of speech to text
through the process of automatic speech recognition (ASR). Scanned or camera-captured text,
such as for mobile sign translation, requires the conversion of image to text using the process
of optical character recognition (OCR). In this chapter, OCR-based document understanding
systems will be examined in some depth.

For document understanding, many modern engines—such as OCR packages—provide
an integrated set of tasks that, internally, rely on a sequential or at most hybrid (parallel-
sequential) design. For example, most modern commercial OCR engines provide most or
all of the following in one packaged software system: language detection, page orientation
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determination, page skew detection, character to ASCII/Unicode conversion, font identifica-
tion, table recognition, equation recognition, and special character (symbol, boldface, italics,
underline, superscript, subscript) identification. This means that the internals of such an engine
cannot be “deconstructed” and redesigned for a specific parallelism by task approach. How-
ever, within the context of larger, or more complicated, document understanding workflows,
the OCR engine can be treated as a single—if complex—task. In this chapter, I consider an
integrated document analysis, management, storage, and lifecycle system.

The next topic is image understanding. In this section, the queue-based pattern is applied
to emotion detection. The variable-sequence-based pattern is applied to gesture understanding
to account for multiple camera angles viewing the same subject. Parallel-separable operations
(PSOs) are then considered. The latent introspective PSO (LI-PSO) is discussed in light
of quantitative evaluation of images, for example, for object distance and vanishing point
determination; the unexploited introspective PSO (UI-PSO) is discussed in light of tracking;
and the emergent introspective PSO (EI-PSO) is discussed in light of shape recognition.
Finally, the recursively scalable task parallelism approach is applied to image segmentation
and restoration pipelines.

The third broad field of interest is biometrics. Simple queue-based patterns are used directly
for image-based identification. More complicated queue-based approaches, however, can be
used to generate Bayesian inferences. Variable-sequence-based parallelism by task can be
used to extend Bayesian-based inference to other means of assigning identity probabilistically.
Another probabilistic approach—simultaneous assessment of the likelihood of false positive
identification and false negative identification—can be pursued using an LI-PSO in which
the top candidates are assessed in parallel. A UI-PSO emerges when different elements of
a specific biometric task—for example, gait analysis—are seen to use separable algorithms.
Recursively scalable task parallelism is applied to both one-dimensional (1D) (electrocardio-
gram and speech) and two-dimensional (2D) (iris analysis) biometric signals. The discussion
of parallelism by task for biometrics is concluded with the introduction of scaled-correlation
and task-correlation approaches.

The chapter concludes with a discussion of parallelism by task approaches for security
printing. The queue-based pattern is employed for lot registration and validation. The variable-
sequence-based pattern is used to simultaneously authenticate multiple security printing fea-
tures. Next, the application of an LI-PSO to hybrid security printing features is described. The
discussion on security printing is completed with a consideration of probabilistic authentica-
tion and the use of multiple variable marks and/or multiple forensic approaches to security
printing.

4.2 Primary Domains

In many ways, this chapter presents material that is, conceptually, the most straightforward of
any in the book. At risk of celebrating the obvious in this chapter, however, I hope to introduce
some important ways of deconstructing even simple tasks that will provide useful insights in
later chapters, especially those on meta-algorithmics.

Parallelism by task generally involves the simultaneous parallel usage of multiple instances
of the same data set. In this process, a set of sequential tasks that can be performed indepen-
dently are in fact performed at the same time without respect to the other tasks. A second,
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distinct, form of parallelism by task is when multiple, dependent sequential tasks are performed
in parallel on distinct data sets. This second form is different from parallelism by component
(described in the Chapter 5) insofar as the data sets are not componentized (i.e., they are not
divided into subcomponents). As described in Chapter 2, this form of parallelism is simply
multi-processing where each processor performs the same task.

As a quick recapitulation from Chapter 2, the primary forms of parallelism by task are:

1. queue-based
2. variable-sequence-based
3. LI-PSO
4. UI-PSO
5. EI-PSO
6. recursively scalable task parallelism

The queue-based parallelism by task approach was introduced in Section 2.2.1. This very
simple pattern deconstructs a given process into a set of necessarily sequential tasks. For
description here, let us suppose there are five tasks {A, B, C, D, E}, which must be completed
in a given order. These tasks, therefore, have built-in dependencies: the input of Task B
requires the output of Task A, the input of Task E requires the output of Task D, and so on.
This constitutes a pipeline, shorthanded as A | B | C | D | E. In a queue, any other pipeline, for
example, D | C | A | B | E, will nonpredictably provide different results. Pipeline architects are
skilled in determining the correct order for the individual tasks (algorithms, transformations,
etc.), and this knowledge should not be abrogated by the parallel processing architect. In some
cases, however, the pipeline can be broken into subpipelines that can be performed in variable
order. Domain expertise—often deep domain knowledge—is generally needed to know how
to break up queues into parallel queues. Fortunately, however, for most nontrivial systems,
this form of parallelism is in general a waste of effort.

The effort of breaking queues, or pipelines, into parallel subpipelines is often unnecessary
because, for most high-throughput systems, the increased efficiency of such parallelism by
task is more than made up for by the increased efficiency of assigning (complete) pipelines
to parallel paths. That is, assigning {A1 | B1 | C1 | D1 | E1}, {A2 | B2 | C2 | D2 | E2}, . . . ,
{AN | BN | CN | DN | EN} to parallel paths provides nearly all of the increased throughput that
would be possible in assigning, for example, {A1 | B1 | C1}, {D1 | E1}, {A2 | B2 | C2}, {D2 |
E2}, . . . , {AN | BN | CN}, {DN | EN} to parallel paths. This is because each step, or transform,
in a high-throughput pipeline is completed quickly.

These latter sets—{A1 | B1 | C1}, {D1 | E1}, {A2 | B2 | C2}, {D2 | E2}, . . . , {AN | BN |
CN}, {DN | EN}—are examples of the variable-sequence-based approach introduced in Section
2.2.1. That is, the larger pipeline {A1 | B1 | C1 | D1 | E1} is split into two smaller pipelines
{A1 | B1 | C1} and {D1 | E1}, and so on for each larger pipeline {A | B | C | D | E}. While
scheduling of these individual pipelines may result in improved throughput, the overhead of
splitting and reassembling the pipelines will generally only be warranted when the number of
parallel processors is relatively sparse.

The PSOs include the LI-PSO, which arises when an algorithm or process is deconstructed
and readied for parallelism. As an example, image convolution operations, typically used for
sharpening and other forms of image filtering, are readily amenable to parallel processing
operations. Images can be tessellated into subimages with minimal pixel redundancy that is
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proportional to the ratio of the width of the convolution kernel to the width of the subimage.
After tessellation, each subimage can be sharpened in parallel. Additionally, each sharpening
operation itself can be performed using parallel processing approaches. This is an UI-PSO,
which is born of deployment.

A more complex pattern for parallelism by task is the recursively scalable task parallelism
pattern, as shown in Section 2.2.2 (Figure 2.3). This “Parallelism by Task” pattern is somewhat
blurred with parallelism by component—the main topic of Chapter 5—inasmuch as a task is
reduced to subtasks. It is appropriate to include it here, however, to illustrate how to optimize
a parallel processing approach. The aforementioned example—tessellating an image to run
parallel operations such as convolution or other filtering on subimages—will be explored
further here as the system design for performing this filtering.

First, a simple application using a filtering kernel is introduced. We wish to lowpass filter an
image, which effectively blurs it. A simple operation for blurring an image is to replace each
pixel with a weighted average of the pixel and its surrounding pixels. If the pixel of interest
is labeled p(x,y), then a lowpass filter is used to create an altered, new pixel, pnew(x,y). If we
choose to weight the new pixel 2/3 based on its original value and 1/3 based on its 8-nearest
neighbor pixels, then we obtain the following formula: pnew(x,y) = 2/3p(x,y) + 1/24p(x − 1,y
− 1) + 1/24p(x − 1,y) + 1/24p(x − 1,y + 1) + 1/24p(x,y − 1) + 1/24p(x,y + 1) + 1/24p(x +
1,y – 1) + 1/24p(x + 1,y) + 1/24p(x + 1,y + 1). We can imply this transformation explicitly
with the notation

Inew = Iold × C.

Meaning that Inew is Iold convolved with the filtering matrix C. In this case, C is given by

C =

⎡
⎢⎣

1/24 1/24 1/24

1/24 2/3 1/24

1/24 1/24 1/24

⎤
⎥⎦ .

The effect of this transformation on a mixed (text, photo) image is shown in Figures 4.1
and 4.2.

In order to perform convolution on a subset of the image I, which is delimited by a rectangular
bounding box {xmin, xmax, ymin, ymax}, we need a subimage, S, that is sized (xmax – xmin
+ 2) × (ymax – ymin + 2) with the extra two pixels in the x- and y-directions enabling the
convolution to extend to the pixels immediately surrounding the pixels on the edge of the
subimage. The convolution kernel, C, used in the example is a 3 × 3 kernel. Usually, kernels
are symmetric N × N matrices where N, usually called the kernel size, is an odd integer. This
means that the border around the subimage S will need to be B pixels, where B = (N − 1)/2.
As B increases, the relative size of the subimage together with its necessary boundary pixels
increases in comparison to the subimage, expressed by the equation

subimage convolution overhead ratio = (S + 2B)2

S2
.

On the other hand, as S, the original subimage size, increases, the relative impact of a fixed
value for B decreases. These trade-offs are illustrated in Table 4.1.
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Figure 4.1 Original image with the filter “Lowpass Filter” selected. The image as shown has not been
filtered yet. The lowpass filter is described in the text. Reproduced by permission of Cheyenne Mountain
Zoo

The value (S + 2B)2/S2 in Table 4.1 represents the overhead of preparing the convolution
operation for parallelism. For imaging applications, since the convolution operation is generally
a function of real resolution, B tends to be small when resolution is low, and large when
resolution is high. Thus, larger images, which would tend to have large values of S, are also
the ones with large values of B—as a result the subimage convolution overhead ratio is typical
less than 1.1.

A second type of overhead is associated with the recursively scalable approach to image
filtering—the overhead required to tessellate the original image and then restitch it after per-
forming the parallel operations. This overhead grows as the number of subimages created
increases; that is, as the number of subimages grows. Table 4.2 provides the relative over-
head due to subimage formation and reversal. As is true for all timings reported in this book,
processing times were obtained using built-in timing capabilities (e.g., using the QueryPerfor-
manceCounter() Win32 API function).

These two types of overhead penalize the creation of subimages. However, they can be
offset by the increased throughput provided by performing filtering on the smaller images.
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Figure 4.2 The image of Figure 4.1 after the lowpass filtering has been performed as described in the
text. Reproduced by permission of Cheyenne Mountain Zoo

Table 4.1 Subimage convolution overhead as a function of subimage size (S), which is the same in the
x- and y-directions, and as function of the convolution

Subimage Convolution Overhead Ratio = (S + 2B)2/S2

N B = (N – 1)/2 S = 200 S = 100 S = 50 S = 25

3 1 1.02 1.04 1.08 1.17
5 2 1.04 1.08 1.17 1.35
7 3 1.06 1.12 1.25 1.54
9 4 1.08 1.17 1.35 1.74

11 5 1.10 1.21 1.44 1.96
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Table 4.2 Subimage formation and reversal (splitting and rejoining) impact on throughput for image
filtering applications. Overhead is relative to the timing required for loading and unloading the original
image. Based on the timing data generated, most of the overhead is due to repetitive access to memory

Subimage Formation and Reversal Overhead
(Relative to Using the Original Image in its Entirety)

N B = (N – 1)/2 S = 200 S = 100 S = 50 S = 25

3 1 1.01 1.02 1.06 1.15
5 2 1.01 1.02 1.06 1.15
7 3 1.01 1.02 1.06 1.15
9 4 1.01 1.02 1.06 1.15

11 5 1.01 1.02 1.06 1.15

This improved performance is due to the efficiency, in terms of higher relative throughput, of
processing smaller images (for further illustration of this trend, please see Table 5.6 and the
discussion around it), and is given in Table 4.3.

Table 4.3 accounts for the improved processing time that occurs even if the planned paral-
lelism were not to take place. However, the main purpose in breaking up the task into subtasks
is to perform processing in parallel on each task. The impact of this processing approach is
given in Table 4.4. Here, the processing time is simply divided by the relative number of
parallel tasks that are performed simultaneously. Thus, smaller images (e.g., S = 25) have
substantial gain in throughput—corresponding to reduced relative processing time. This in-
creased throughput is consistent with the modified version of Amdahl’s law introduced in
Section 2.3.2.

Taking into account the performance values of Tables 4.1, 4.2, and 4.4—corresponding
to “subimage convolution overhead ratio,” “subimage formation and reversal overhead,” and
“relative processing time,” respectively—Table 4.5 shows the overall expected performance
for the combinations of (N,S) investigated. The sum of (subimage convolution overhead ratio
– 1.0) + (subimage formation and reversal overhead) + (relative processing time) is used to

Table 4.3 Relative processing time for each image. Times are computed by summing up the
processing time for each subimage multiplied by the number of subimages. Further performance
improvement, of course, is obtained using parallel processing (see Table 4.4) in addition to smaller
subimages. This table illustrates the contribution of structural reframing on the improved throughput

Relative Processing Time for the Entire Image
(Subimage Processing Time) × (Number of Subimages)

N B = (N – 1)/2 S = 200 S = 100 S = 50 S = 25

3 1 0.94 0.87 0.83 0.81
5 2 0.94 0.87 0.83 0.82
7 3 0.94 0.88 0.84 0.82
9 4 0.94 0.88 0.84 0.83

11 5 0.95 0.89 0.85 0.83
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Table 4.4 Relative processing time for each image, accounting for the parallel processing
improvement. Here, the number of parallel processors is relatively limitless, meaning throughput
directly scales from Table 4.3 based on the relative area of the subimages

Relative Processing Time for the Entire Image
(Subimage Processing Time) × (Number of Subimages)

N B = (N − 1)/2 S = 200 S = 100 S = 50 S = 25

3 1 0.94 0.22 0.05 0.02
5 2 0.94 0.22 0.05 0.02
7 3 0.94 0.22 0.05 0.02
9 4 0.94 0.22 0.05 0.02

11 5 0.95 0.22 0.05 0.02

mark performance. The value of subimage convolution overhead ratio has 1.0 subtracted from
it so as not to count the processing of the subimage twice.

Table 4.5 does not account for relative differences in processing time for these three metrics.
However, in performing these experiments on a set of 50 digital camera-captured (mean size
1.6 MB) 3-channel color images of natural scenes, it was found that the relative processing
time of each of these three factors is given by the following:

1. Subimage convolution overhead ratio = 1.01 = k1

2. Subimage formation and reversal overhead = 0.07 = k2

3. Relative processing time =1.00 = k3.

Using these three values {k1, k2, k3}, the overall performance timing (OPT) can be exactly
calculated from OPT = k1 × (subimage convolution overhead ratio – 1.0) + k2 × (subimage
formation and reversal overhead) + k3 × (relative processing time). These values are shown
in Table 4.6.

The relative results for Table 4.6 are very similar to those of Table 4.5. This is an important
point to note, as it is an example of a result that will be observed in many of the (especially

Table 4.5 Overall relative performance for each convolution kernel size (N) and subimage size (S)
combination, where the performance is simply the sum of Tables 4.14.2, and 4.4, or (subimage
convolution overhead ratio – 1.0) + (subimage formation and reversal overhead) + (relative processing
time). The optimal configuration for each value of B is boldfaced in the data cells of the table. For B =
3, the scores are identical for S = 100 and S = 50

Total Performance = Sum of Values in Tables 4.1, 4.2, and 4.4

N B = (N – 1)/2 S = 200 S = 100 S = 50 S = 25

3 1 1.97 1.28 1.19 1.34
5 2 1.99 1.32 1.28 1.52
7 3 2.01 1.36 1.36 1.71
9 4 2.03 1.41 1.46 1.91

11 5 2.06 1.45 1.55 2.13
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Table 4.6 Overall relative performance for each convolution kernel size (N) and subimage size (S)
combination, where the performance is k1 × (subimage convolution overhead ratio – 1.0) + k2 ×
(subimage formation and reversal overhead) + k3 × (relative processing time), where k1, k2, and k3 are
the timing weights for the values in Tables 4.1, 4.2, and 4.4, respectively. The optimal configuration for
each value of B is boldfaced in the data cells of the table

Total Performance = Weighted Sum of Values in Tables 4.1,
4.2, and 4.4 (multiplied by k1, k2, and k3, respectively)

N B = (N − 1)/2 S = 200 S = 100 S = 50 S = 25

3 1 1.03 0.33 0.21 0.27
5 2 1.05 0.37 0.30 0.45
7 3 1.07 0.41 0.38 0.65
9 4 1.09 0.46 0.48 0.85

11 5 1.12 0.50 0.58 1.07

imaging-related) parallel processing systems in this book. The theme is that the preparation
for parallel processing often results in significant improvement in processing efficiency, even
before the parallel processing is performed. The range of subimage sizes is clearly sufficient
to find an optimal strategy: for the most common convolution kernel sizes, S = 50 provides
optimal throughput. For larger kernel sizes, S = 100 provides the optimal throughput.

With this simple introductory example, we now turn our attention to the four primary
domains (document understanding, image understanding, biometrics, and security printing)
considered in this book for further illustration of the features and deployment recommendations
for parallelism by task.

4.2.1 Document Understanding

As noted in the introduction to this chapter, modern document understanding systems are quite
complex, comprising multiple intelligent systems such as (1) OCR, (2) document workflow
management, (3) distributed document storage, and (4) document lifecycle management, as
overviewed in Table 4.7. Different document understanding tasks require different sets of these
engines, and the distinctions between them are not always clearly defined; for example, many
modern enterprise resource management (ERM) systems comprise two or more of these four
systems. In general, however, the integrated ERM systems allow the deployment settings to
be customized at the level of these four large systems (or even more discretely).

Table 4.7 identifies the primary purposes of each of these four systems. The OCR and doc-
ument recognition system is primarily concerned with digitization of text. However, graphics
(logos, business graphics, etc.) and image-based information (photos, drawings, etc.) are also
converted to digital form by OCR systems. PDF is a familiar output format for OCR engines,
and its format allows for embedded images, graphics, and text.

Document workflow management systems provide all read, write, and editing access to all
participants in the document workflow, including reminders or automation for distribution of
the document after each access to the document. For secure documents, the access rights may
include connection to an authentication service.
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Table 4.7 Four large document understanding systems and their primary purposes

Document Understanding System Primary System Purpose

Optical character recognition and
document recognition

Convert image-based information into electronic
information, in particular the digitization of text

Document workflow management Provide/control access to documents, including
read/write/edit access, ensure proper document
distribution among participants

Distributed document storage Determine location and settings (including
compression/encryption, redundancy, and fast look-up)
of all document storage

Document lifecycle Perform important workflows checkpoints, including
authorization, authentication, notification, and validation

In addition to workflow management, document content—data, meta-data, usage, and all
logging information—must be stored. Distributed document storage systems are used to de-
termine where and how to store the documents. This includes specification of storage location
and settings: whether and how to composite the data, compress the information, and how and
where to use encryption.

The fourth document understanding system defined in Table 4.7 is a document lifecycle
system. A document lifecycle is the set of operations governing all stages/checkpoints in the
document’s pathway from creation to completion. A document lifecycle systems is used to per-
form important workflows checkpoints, including authorization, authentication, notification,
and validation.

Given the definition of these document understanding systems, I now consider each in more
depth to prepare the discussion of them in context of parallelism by task.

The first of these systems, OCR, has incorporated many other document understanding
technologies over the years. Modern OCR systems, such as those produced by numerous
commercial OCR vendors such as Nuance, Abbyy, and Iris, provide a wide array of features
focused on the digitization of paper-based (document image) information. In the past, OCR
engines were not particularly adept at automatically determining the language of the scanned
document: users were usually prompted to select the language manually. Now, language
identification is a prominent feature upfront during the OCR process. Increasingly, OCR
engines are also adept at mixed-language documents; for example, extracting French phrases
from English-language documents.

OCR engines have also incorporated many of the technologies formerly associated with
stand-alone page restoration and analysis products. These technologies include page orien-
tation (landscape vs. portrait, left vs. right detection), page skew detection and correction,
contrast enhancement, color detection, and page size determination. Additional capabilities of
OCR and other digitization technologies are listed in Table 4.8. From a text perspective, the
most important function of an OCR engine is the conversion of raster images of text characters
to ASCII/Unicode. To aid in downstream text interpretation, though, OCR engines additionally
perform font identification, including the tagging of special text such as superscript, subscript,
underlining, boldface, and italics. Symbolic fonts are identified and with increasing accuracy
distinguished from logos, equations, and other special glyphs.
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Table 4.8 Four large document understanding systems and sample tasks performed by each system

Document Understanding
System Example System Tasks

Optical character recognition and
document recognition

Language detection, page orientation determination, page skew
detection, portrait/landscape detection, character to
ASCII/Unicode conversion, font identification, table
recognition, equation recognition, special character (symbol,
boldface, italics, underline, superscript, subscript) identification,
page layout extraction, semantic extraction, text tagging, logical
region segmentation, and location extraction.

Document workflow
management

Document version control, document access control, definition of
logical participants at each step of the workflow, definition of
the workflow steps, allowance of different document operations
at each stage of the workflow, including save, send, print, and
archive.

Distributed document storage Map document sensitivity to storage regimen. Perform document
composition and decomposition as necessary to store the
document and/or the document elements with the proper access
rights at each stage of the workflows. Determine where storage
should occur (local file structure, local shared drive, private
cloud, public cloud, secure repository, etc.). Perform
appropriate document compression and/or encryption, including
to the different logical parts, as deemed appropriate by the
document workflow management system.

Document lifecycle Perform all security- and privacy-related tasks. Validate receipt of
the documents at each stage of the workflow by each party in
the workflow. Authorize every participant as they validate, read,
or edit the document. Authenticate the changes using a public
key infrastructure (PKI) or other security infrastructure. Provide
logging, notification, and auditing.

OCR engines also perform advanced region segmentation and identification, including table
recognition, form recognition, mathematical equation recognition, logo identification, and
graphics recognition. OCR engines output this data along with all of the logical segmentation
information: region bounding box and polygon information, page layout description, and text
tagging for downstream text mining and semantic extraction. OCR engines have been sold for
more than two decades, and rely on a substantial amount of legacy code. Therefore, all of the
OCR engines for which I have had the opportunity to view the source code rely on a sequential
or at most hybrid (parallel-sequential) design. Unless one has access to the source code of the
OCR engine (possible for open source OCR packages such as the HP Labs-spawned, Google-
supported Tesseract OCR engine), one cannot “deconstruct” and thereafter redesigned an OCR
engine for a specific parallelism by task approach. Based on the thousandfold improvement in
processing speed, memory access, and storage capacity since the early days of OCR, however,
this “limitation” is of little consequence. Most modern parallel systems—from multi-core
to multi-processor to fully virtualized architectures—provide enough resources in each core,
processor, or virtual machine (VM) to perform OCR on a sizeable document or document
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portion. This means that the three orders of magnitude relative diminution in the scale of
the OCR task over the years has allowed the relative “perspective” of parallelism to move
from, say, the word, sentence, or paragraph level to the level of an image, a page, or a
document. From a document engineering perspective, this difference is simply one of scale.
From a parallelism by task standpoint, however, this difference is highly significant, since the
elements in the parallelism are now more conveniently exactly the familiar storage primitives
such as documents or images, or logical subelements within these primitives, such as pages or
single frames.

Salient document understanding tasks can make use of the primary set of the Parallelism
by Task patterns introduced in Chapter 2. For example, in order to make use of the queue-
based approach originally shown in Figure 2.1, we need to identify sequential document
understanding tasks that must take place in a specific order. One such sequential system (or set
of tasks) using each of the four major systems of Tables 4.7 and 4.8 is the following pipeline:

A. Determine the document identity from a scanned or electronic version of the document.
This uses OCR, if necessary, followed by document recognition technologies such as
described in earlier chapters. This corresponds to the “optical character recognition and
document recognition” block in Tables 4.7 and 4.8.

B. Determine the security level required for the document based on its document type and the
associated policies. This is performed by the “document workflow management” block in
Tables 4.7 and 4.8.

C. Based on the size of the document—including its original content and the additional
content created in Step A—and the storage policies, determine the storage settings for
the document and locate the document accordingly. This is handled by the “distributed
document storage” system.

D. Finally, all relevant security and privacy algorithms are employed for each of the appropriate
authentication, authorization, validation, logging, and/or notification tasks. These tasks
are performed according to the appropriate policies, which are also associated with the
document workflow management system, and together comprise the “document lifecycle”
system tasks for the document. For example, logging of all tasks performed in Steps A,
B, and C above may be required, and completion of certain tasks triggers notification
of salient participants; for example, the document owner/creator/administrator. Based on
policy, authentication—for example, in the form of a digital signature—may be required
for one or more participants/steps in the document lifecycle. Finally, the appropriate tasks
are performed in anticipation of document storage—for example, compression and backup.

Steps A, B, C, and D, in combination, comprise a classic queue-based parallelism by task
approach, where a given (sequential) pipeline can be assigned to each of the documents
processed in a parallel path for each document. The pipeline is simply A | B | C | D, where the
output of A is required as input to B, the output of B is required input for C, and the output of
C is required input for D. There are some shared policies—for example, for the security and
storage protocols—but these policies do not allow task order variance in the order of the steps.

However, there are document understanding tasks for which the steps can be varied in order
or composition. An example of a variable-sequence-based document understanding process is
a document workflow that undergoes a split and merge stage. For example, suppose a particular
document of value is sent to three different participants for their approval. Also suppose that
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Figure 4.3 Variable-sequence-based document understanding example. Here, the Task A is different
for the two types of users, and as such indicated by A and A′, where A results in a changed (edited)
document, but A′ only requires User Z to correctly digitally sign the document. Since User Z does not
change the document, the storage/saving Step C does not occur in User Z’s pipeline. Figure (a) shows
the general pipeline A | B | C | D, which is performed for Users X and Y in the upper path for (b). The
lower path in (b) consists of the pipeline A′ | B | D

two of the participants (X and Y) are allowed to edit the document and the third participant
(Z) is only allowed to view (read) the document. Then the pipeline for X and Y may require
a different set of access right security algorithms, encryption algorithms, notifications, and
logging requirements than is the case for participant Z. These separate types of participants,
therefore, can be assigned to different variable-sequence subpipelines, as illustrated in Figure
4.3 in which the pipelines are A | B | C| D and A′ | B | D.

Next, the PSOs are considered in the context of document understanding systems. These
operations cannot be defined by a single pattern per se. Instead, they depend on domain
knowledge to prepare for parallelism. A LI-PSO is parallelism by task wherein the original
operation is deconstructed for the purposes of preparing it for subsequent parallel processing.
Each of the four large systems described in Table 4.2 are likely highly amenable to LI-PSO if,
in fact, they are not already explicitly designed internally for parallelism by task. In the case
of OCR and Document Recognition, for example, the skew detection task is advantageously
performed before any of the other tasks. Next, portrait/landscape detection is advantageously
performed, meaning a sequential pipeline suffices at the front end of this system. However,
once skew correction and orientation have been performed, the following operations may be
performed in parallel:

1. Table recognition and page layout extraction
2. Character segmentation and language detection
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After these parallel task pipelines are completed, further pipelines can be performed in
parallel:

1. Semantic extraction
2. Special character and font identification

Each of these two parallel sets of pipelines emerges from a reconsideration of the larger
system. There are several benefits of restructuring the system in accordance with this par-
allelism by task. One benefit is that, in many cases, some of the analyses to be performed
by the OCR engine are not required: language detection, for example, if it has already been
determined for the document from which a page is taken. Another benefit is that such flexi-
bility in the OCR and document recognition tasks allows the system designer to leave other-
wise large document elements—such as an entire clip of video or a many-page document—
unpartitioned, and in so reducing the organizational-, logging-, and partitioning-associated
overhead.

As the complexity of system architecture increases in future chapters of this book, feedback
patterns—in which the results of a later step in a sequential or sequential-parallel hybrid
architecture are used to affect the earlier steps in associated or even future jobs performed—will
become very familiar. It is worth pointing out, then, that a PSO becomes far more adaptive
when we do allow parallel branches to operate with schedulers ensuring that certain parallel
processes are completed before others for a given task. In the system considered in this section,
for example, language detection can be used to improve the accuracy of the orientation
detection. This is because there are different language-specific rules that can be used to
improve upside-down versus right-side up classification of text. The character sets for the five
prevalent Western European “EFIGS” (English, French, Italian, German, Spanish) languages,
for example, have a much higher occurrence frequency of ascenders (elements of characters
that extend above the top of the small letter “x”), such as occur in all capital letters and the
common letters “l,” “t,” “h,” and “d,” than the occurrence frequency of descenders such as
occur with the highest probability in the less common letters “p” and “y.” This type of font-
shape difference does not occur in many other languages; for example, Japanese, Mandarin or
Cantonese Chinese, or Korean. For this reason, we may wish to have language detection and
its associated tasks scheduled for completion before orientation detection is scheduled. From
an architectural standpoint, this means that parallel pipelines for processing—one associated
with at least language detection and the other associated with at least orientation detection are
put in the design: the scheduler then ensures that the former task occurs before the latter for
each document.

The second type of PSO, the UI-PSO, is parallelism by task that is born of deployment. An
example of a UI-PSO is taken from performing OCR on multiple pages or sections of a larger
document in parallel. There are a number of valid reasons to not analyze sections of a document
in parallel, two of them being (a) a large enough number of documents are analyzed by the
overall system that even a multi-page document is a reasonably sized atomic element for the
scheduling of the parallel processing; and (b) the OCR engine can “learn” important settings
about later pages or sections, such as language, orientation, fonts used, and so on—from the
first or first few pages. The UI-PSO pattern may be delayed, therefore, when (a) the document
size is large relative to the number of documents analyzed, such that a more refined atomicity
is desired; and/or (b) the document is associated with a known document type—for example,
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it is built from a template, identified as a specific document in a workflow, and so on—such
that most of the “global” document settings such as font families used, boilerplate text, and
so on, can be readily deployed to partitions of the document rather than the entire document
itself without loss of OCR accuracy.

Another example of deploying a UI-PSO for document understanding is when security
algorithms are deployed in parallel to provide different access rights to different parts of the
document. In this case, the otherwise monolithic security policy (applied to all portions of the
document) is replaced with an adaptive, variable security policy appropriate to each portion
of the now-partitioned document.

The third type of PSO is the EI-PSO. As mentioned previously, the EI-PSO, unlike a
UI-PSO, is not obvious in the original system; and unlike an LI-PSO, does not become
obvious in the deconstruction of the original system. It therefore takes even more domain
expertise to uncover an EI-PSO than a UI-PSO. An EI-PSO that may be useful for document
understanding is one in which different features for identifying the font typefaces being used in
a document are broken up into parallel-friendly tasks such as convolution. Then, multiple glyph
recognition can be performed in parallel and the highest match selected as the likely font for
each character.

The last parallelism by task approach, overviewed in depth in Chapter 2, is quite robust:
recursively scalable task parallelism. This parallelism is based on the ability to create and
optimize a cost function to choose between processing a given Task A and a subset of
tasks {A1, A2, . . . , AN} that together comprise A. This cost function is of course dependent
on the overhead involved in the unwrapping of Task A into subtasks {A1, A2, . . . , AN}
and then rewrapping {A1, A2, . . . , AN} into A, and recursively into smaller subtasks, as
possible/appropriate (see Figure 2.3). In document understanding, there is usually a very
small amount of recursion possible for the individual classification and identification tasks.
For example, character recognition usually begins at the connected component level, which
results in primary classification tasks focused on distinguishing two glyphs—for example, two
characters such as “I” and “1” or a character such as “m” from two consecutive characters
such as “r” and “n.” Usually, document classification builds upward—into words, phrases, and
sentences. However, in the case of specific comparisons such as “m” versus “r” and “n,” some
recursive scalability to focus on the image more closely at the end of the first “hump” in the
“m” proves valuable.

4.2.2 Image Understanding

The next domain of interest to us for parallelism by task is image understanding. Many, if not
most, image understanding tasks require sequential operations in a specific (fixed) order. This
type of processing, termed a pipeline, implements queue-based parallelism by task. Queue-
based imaging tasks require a set of image operations to be performed in a specific order. For
example, suppose that we wish to down-sample an image, then sharpen it for better image
quality of the lower-resolution image. To down-sample the image, we wish to perform an
image convolution operation. For image convolution, the convolution kernel is centered on
each pixel in turn, and the value of the center pixel is updated to be the sum of the kernel
multiplied by the image values. Down-sampling kernels, on the other hand, commonly have
even dimensions. A down-sampling kernel that performs well for 2× down-sampling (e.g.,
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reducing a 600 × 600 pixels/in.—or ppi—image to 300 × 300 ppi), is given here:

D =

⎡
⎢⎢⎢⎣

1 3 3 1

3 9 9 3

3 9 9 3

1 3 3 1

⎤
⎥⎥⎥⎦ .

To ensure that uniform areas do not have a change in image intensity or saturation, the D
kernel is normalized so that the coefficients sum to 1.0, as shown here by D′:

D′ =

⎡
⎢⎢⎢⎣

1/64 3/64 3/64 1/64

3/64 9/64 9/64 3/64

3/64 9/64 9/64 3/64

1/64 3/64 3/64 1/64

⎤
⎥⎥⎥⎦ .

The down-sampling kernel is centered over pixel P(x,y) and then multiplied by each of its
neighbors to obtain a new pixel, P′(x,y).

In anticipation of sharpening, however, we also wish to find a down-sampling kernel that is
3 × 3 instead of 4 × 4. One such kernel is

D =

⎡
⎢⎣

1 2 1

2 4 2

1 2 1

⎤
⎥⎦ .

Normalizing, this down-sampling kernel becomes D′ as shown:

D′ =

⎡
⎢⎣

1/16 1/8 1/16

1/8 1/4 1/8

1/16 1/8 1/16

⎤
⎥⎦ .

Note that this D′ kernel provides an equal representation of every pixel in the original image
P in the down-sampled image P′, since the four corners of the kernel have coefficients of (1/16)
and are used in four down-sampled pixels each, the four side coefficients of the kernel have
coefficients of (1/8) and are used in two down-sampled pixels each, and the center coefficient
is (1/4) and is used in only one down-sampled pixel. Thus, exactly one-fourth of the value of
every pixel in P is used in P′, which has exactly one-fourth the pixels of P.

After down-sampling, we wish to sharpen the down-sampled pixels. One 3 × 3 sharpening
kernel is the Laplacian kernel as described in Gonzalez and Woods (2008), defined as

L =

⎡
⎢⎣

−1 −1 −1

−1 8 −1

−1 −1 −1

⎤
⎥⎦ .
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(a) (b)

(c) (d)

Figure 4.4 (a) The original image (2048 × 1536 pixels). (b) The (1024 × 768 pixels) image after
performing convolution using the Laplacian kernel L as described in the text. (c) The (1024 × 768
pixels) image after down-sampling using the modified down-sampling kernel, D′, as described in the
text, followed by convolution using the Laplacian kernel. Note the relatively sharper detail in the edges
caused by reducing the resolution using D′. (d) The sharpened (2048 × 1536 pixels) image obtained by
convolving the original image with the original sharpening kernel, S, as described in the text. Much of
the blur in the original image has been removed

The Laplacian kernel as shown will convert an image into an edge image. If the intensities
are randomly distributed in an image, then half of the pixels in a Laplacian image should be
black. The impact of the Laplacian on the original image (Figure 4.4a) is shown in Figure 4.4b.
The Laplacian creates a black image wherever the centered pixel has a mean intensity below
that of the surrounding pixels, which is important in order to keep the edges from expanding
(only the “bright” side of the edge shows up in the Laplacian-transformed image). The edges
are therefore much more pronounced in Figure 4.4c, which is the Laplacian of the image
after down-sampling (as described below). The reason the down-sampled image has brighter
edges in Figure 4.4c in comparison to Figure 4.4b is that the down-sampling process generally
reduces edges to half their former thickness, meaning the differences between neighboring
pixels along edges wider than one pixel in the original image will be sharper in the Laplacian
of the down-sampled image.
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The next process considered is sharpening. Sharpening is intended to overcome blurring,
and so it is very closely related to edge detection, with the difference being that the expected
(mean intensity) value of the sharpened image is the same as the original image. The simplest
sharpening approach, perhaps, is directly based on the Laplacian kernel. The center coefficient
is simply incremented to obtain the sharpening kernel, S:

S =

⎡
⎢⎣

−1 −1 −1

−1 9 −1

−1 −1 −1

⎤
⎥⎦ .

The sharpened version of the original image is shown in Figure 4.4d. The image is certainly
sharp, but careful evaluation reveals some high-frequency noise in the image. This is expected,
since the sharpening kernel itself has high-magnitude, high-frequency content (transitioning
from nine times a pixel to the negative of all surrounding pixels).

Next, the effects of down-sampling are shown. The first, Figure 4.5a, uses the 3 × 3 D′

kernel described above. A “sharper” down-sampled image is obtained in Figure 4.5b through
a much simpler down-sampling method. Figure 4.5b is created by simply keeping only those
pixels for which the x- and y-locations are both even—for example, P(0,0), P(0,2), . . . , P(2,0),
P(4,0), . . . , P(2n,2n). This down-sampling operation creates a sharper image than does the
D′ kernel for the simple reason that no pixel averaging is performed. A second reason is that
the original image is actually oversampled (i.e., at 2048 × 1536 pixels), and so dropping
three-fourth of the pixels does not significantly drop image information.

The next step is to combine the operations of sharpening and down-sampling. The first
method, a true queue-based approach, follows up convolution with S with convolution with the
3 × 3 D′ (down-sampling). The resulting image is shown in Figure 4.5c, and is characterized
by high-frequency noise that is not reduced by the down-sampling operation (in fact, the
image noise is much more noticeable than for Figure 4.4d). Since this sequential pipeline did
not provide excellent results, another approach, in which down-sampling and sharpening are
combined into a single convolution kernel, is defined. This “pipeline” kernel P is given by

P =

⎡
⎢⎣

−1 −2 −1

−2 13 −2

−1 −2 −1

⎤
⎥⎦ .

P is then normalized to have the same off-center coefficients as the D′ matrix, forcing the
center coefficient to become 1.75:

P′ =

⎡
⎢⎣

−1/16 −1/8 −1/16

−1/8 7/4 −1/8

−1/16 −1/8 −1/16

⎤
⎥⎦ .

The effect of convolving the original image with P′ is shown in Figure 4.5d. This image
is both sharp and ostensibly noise-free—and certainly better than the approach used to create
Figure 4.5c.
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(a) (b)

(c) (d)

Figure 4.5 The two types of down-sampling considered in this example are shown in (a) and (b). In (a),
the D′ kernel is used and so there is some pixel averaging and a slightly greater blur in the down-sampled
image than in (b), which simply drops three-fourths of the pixels from the original image. In (c), the
sharpened image of Figure 4.4d is down-sampled using the D′ kernel. Although convolution with D′

should introduce some blur to the image, the effect of the dramatic sharpening is only exacerbated. The
relatively poor results indicate that sharpening should not occur before down-sampling for the kernels
defined and the particular image. In (d), the P′ kernel, which combines the down-sampling and sharpening
into a single operation, is shown. This high-quality image was created in half the time as (c), with better
results

It should be noted that the results here are not expected to be universal. As noted, the
image tested was likely oversampled, and so down-sampling by dropping pixels (Figure 4.5b)
and combining sharpening with down-sampling using a 3 × 3 kernel both provided excellent
results. The key point to this explanation is one that will be noted throughout this book: the
very act of preparing an imaging task for potential parallel processing leads to a better system
design, irrespective of whether parallel processing is actually performed. This structural
aspect of architecting parallel processing systems will be even more important for parallelism
by component in Chapter 5. However, it is clear that considering a plurality of architectures
results in better final system design. This observation, too, will have tremendous implications
for the later meta-algorithmics-focused chapters.
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Another example of applying queue-based parallel processing by task to image understand-
ing is that of extracting facial information from an image. The set of steps involved are readily
amenable to a pipeline, or sequence:

1. Identify candidate skin color patches.
2. Detect possible faces.
3. Perform face recognition.
4. Perform emotion detection.

In this system, parallelism by task can occur at a number of possible points. The entire set
of {1, 2, 3, 4} can be run in parallel, with the task being “emotion detection in an image”
where each parallel pipeline processes one image at a time. The parallel branches could also
be assigned only Steps {2, 3, 4} if Step 1 is fast and a good “triage” step for scheduling. For
example, if there is a strong correlation between the relative amount of candidate skin pixels
and the processing time required for Steps {2, 3, 4}, then performing Step 1 upstream is a
good architectural decision.

Potential skin pixels are usually identified based on the hue of the pixel. Hue is used since
human skin hue is consistent across human subgroups, even though intensity can be quite
different. The pixel at (x,y) location (i,j) is therefore written as P(�H,i,j), where �H is the hue
angle of the pixel, and 0 ≤ �H ≤ 360. If the target skin hue is �S, and the allowable error to
either side of �S is �S, then the pixel P is assigned to the candidate skin pixel set, S, under
these conditions:

{(θS − �S) ≤ θH ≤ (θS + �S)} ⇒ {(P(θH, i, j) ∈ S)}.

Once all of the candidate skin hue pixels are identified, connected components are formed
using operations familiar to image segmentation proficients: erosion operation(s) first to get rid
of noise; dilation operation next to return legitimate patches to their original sizes; run-length
smearing (Wahl, Wong, and Casey, 1982) and/or convex hull operations to eliminate overly
complex connected component perimeters; and connected component formation consisting of
the following:

1. Bounding box information (xmin, xmax, ymin, ymax). This is predominantly used for
sizing—are the regions the right size for face identification?

2. Polygon vertices, xvertices[] and yvertices[]. These are used to render the image.
3. Scan line segment representation, which includes the set of all pixels in the image by row

in the image. These allow overlapping connected components.

Next, the now-formed connected components are segmented and separately evaluated using
all the relevant downstream image understanding processes: facial feature identification, face
matching, emotion detection, and if sufficient image frames are available, lip reading for the
video sequence.

These two examples—intelligent image down-sampling and face understanding—illustrate
the application of queue-based parallel processing by task to image understanding. We next
consider the other types of parallelism by task for intelligent image analysis tasks.
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Next, variable-sequence-based parallel processing by task is considered. From the above
discussion about face recognition and facial expression interpretation, it is clear that the
queue-based pipeline can be made more complicated. That is, it can elaborate more paral-
lelism by architecture, not just by running the entire pipeline in multiple parallel processors.
For example, as noted above, the initial image segmentation—extracting the potential facial
image areas—can be performed upfront, with the scheduling of this task for different images
maintained independently of a separately scheduled set of parallel processing for the specific
face-understanding tasks. This architecture, a variable-sequence-based approach, is illustrated
in Figure 4.6.

Image set
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understanding

tasks

Perform face
understanding

tasks

Perform face
understanding

tasks

Scheduler A

Scheduler B

Perform downstream actions in
response to imaging output

Perform
segmentation

and region
formation

Perform
segmentation

and region
formation

Perform
segmentation

and region
formation

Figure 4.6 Example of variable-sequence-based image understanding architecture, here used to per-
form a face recognition-related task. Scheduler A assigns different images to one of multiple parallel
processing pipelines used to extract the possible face regions. The relative area of the image face regions
is used to predict the time for secondary processing (as input to Scheduler B). Scheduler B then assigns
the images to the face recognition and information extraction processing tasks in a separate set of parallel
processing pipelines
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An additional example of a variable-sequence-based architecture could be used to interpret
gesture and associate it with a specific individual in a scene. In this image understanding
system, the architecture could be based on that shown in Figure 4.6, with a third parallel
processing step (managed by a Scheduler C) used to interpret gestures. Gesture interpretation
would require the output from several images, making the scheduling task of Scheduler C
more complicated than that of either Scheduler A or B. In this example, the parallel processing
by task is strictly enforced by assigning each of the three main task pipelines to a separate
scheduler.

We now move to applying an LI-PSO to image understanding. Here, we determine the
vanishing point of an image. Without parallel processing, a simple set of steps for this operation
is as follows:

1. Create edge image from the original image using an edge detector such as Canny (1986)
or Haralick (1984), followed by a thresholding algorithm (binarizing algorithm) such as
Kittler and Illingworth (1986) or Otsu (1979).

2. Perform a Hough transform on the edge image to obtain the primary angles of line segments
in the edge image (Duda and Hart, 1972).

3. Perform projection profiles along the primary angle in the Hough transform histogram to
obtain the major line segments in the image.

4. Create line segments and compute the major intersection. One approach to this is outlined
in Gallagher (2002). This is the vanishing point.

5. Determine the distance and/or size of other objects based on relative location with respect
to the vanishing point. This requires one or more calibrating (known-dimension) items, or
fiducials.

We now consider an example of UI-PSO used on an image understanding task: identity
tracking. Traditional tracking is based on mapping key features of images sequentially, but
in tying tracking to a specific model of the item tracked, it can be opened up to massive
parallelism by task: each image can be independently analyzed and the tracking put together
through a best fit to the set of images in the video frames. This approach is also robust to errors
in individual frames.

We next turn to the EI-PSO. Moving an image understanding task such as shape identification
from a model-based approach amenable to CPU processing to a pattern-recognition-based
approach amenable to GPU processing is an example of an image understanding EI-PSO.

Finally, we consider recursively scalable task parallelism, which is readily applied to a wide
variety of image understanding tasks. Compression approaches, including JPEG compression,
are defined by the size of the blocks an image is split into. For JPEG compression, images
are broken into 8 × 8 pixel blocks, or subimages, suitable for the computation of the discrete
cosine transform coefficients that allow subsequent image compression. In a more general
image compression, the block size may be allowed to be variable such that the following
occur: (a) tessellation of the image, or breakdown of the original image into a set of squares
with no overlap between squares and 100% coverage of the original image by the squares;
and (b) the image can be restored with a specified quality, Q, after restoration from the
subimages. This variable-block size approach requires some overhead (as is typical of all
recursively scalable task parallelism) to tessellate and recompose the image, but also provides
huge advantages inasmuch as large areas of spot colors are very efficiently compressed.
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This section showed how each of the task parallelisms can be applied to image understanding
tasks. It is clear that queue-based approaches are the ones most readily applied to imaging,
since they are pipelines.

4.2.3 Biometrics

Biometrics, at first blush, is an application domain in which parallelism by task would seem
to have little benefit, at least in comparison to the benefits of parallelism through scheduling.
Most individual biometrics have been created and remain based on a pipeline, or sequential set
of tasks. Thus, scheduling for large biometric systems is relatively uncomplicated—biometric
pipelines as integral processes (i.e., untessellated) are assigned to the available parallel pro-
cessors by a simple scheduler.

However, as with other processes described in this chapter, a reconsideration of biometric
analysis in light of the increasing availability of parallel processing resources, is certainly
worth pursuing. The queue-based pattern for parallel processing by task is directly applicable
to face recognition. Parallelism occurs at the individual face level, while the recognition itself
is performed using a sequential set of steps such as the following, modified from Nanavati,
Thieme, and Nanavati (2002):

1. Image acquisition: Most cameras suffice for the task—the keys to high-accuracy face
recognition are usually the lighting and having the face of the person to be identified
properly facing the camera.

2. Image processing: As described in the previous section, the primary purpose of the image
processing is to identify possible face regions, and prepare them for later recognition. This
includes cropping to the outline of the face, conversion of the image to grayscale, rotation
of the face to be perfectly upright, and scaling the image for downstream processing.

3. Locating distinctive characteristics on the face: For face recognition, the key distinctive
features are, for example, cheekbone outlines, sides of the mouth, nose outline/shape
defining points, upper ridges of the eye socket, distance between midpoints of the eyes,
and other relative locations and distances between features on the face. This comprises a
generic set of features to evaluate, and is useful for distinguishing an individual versus the
population of all other individuals.

4. Template creation: Templates are created from as many (decent-quality) images as can
be captured and assigned to the same individual. The templates vary depending on the
face recognition system, but the attributes of the templates are typically the distinctive
characteristic features described in Step 3. Templates are typically no less than 100 bytes
and no more than 3 kB in length.

5. Matching: The final stage of the face identification process involves determining the prob-
ability of matching the individual. Since this can be performed on a multiplicity of images,
including, for example, video streams, a statistical model rather than a binary yes/no model
for identification is required.

Thus, in any real-world case, biometrics requires addressing multiple sources of identifi-
cation at a time. Even simple surveillance requires the determination of both identification
(which person is that) and credibility (could that person have actually been at each of these
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points in the timeframe allotted). Hybridization (combining two or more decision streams) is
therefore implicit in any biometric task, meaning biometrics is innately preadapted to paral-
lelism by task. Extending this further, though, we need to consider how multiple biometric
assays, computed in parallel, can be combined to provide improved biometrics.

Generally, biometrics in combination provide higher-accuracy identification, and that is the
focus of this section. However, hybrid biometrics can also be used to provide improved location
and/or interaction history for an individual. One example is where surveillance information is
hybridized with voice information—the former coming from a system of video cameras and
the latter from the mobile phone company to which an individual subscribes.

When two or more biometric data streams are combined, there are at least three different
means in which they may be combined, or three different types of hybridization we need
consider:

1. Latency, or relative timing of the events used for identification: Latency hybridization
is concerned with the relative timing of events; for example, the response time of an
individual to a challenge. Example challenges include lie detector test questions followed
by salient physiological measurements. Latency hybrid temporal parallelism, wherein the
identified events (e.g., sudden change in blood pressure) are tagged temporally, describes
the process of evaluation following such a “challenge-based” biometric. Since multiple
sensors may be used—for example, microphone and sphygmomanometer—this approach
is also termed a multi-sensor approach. In terms of parallelism, the parallel channels may
be multiplexed into the same signal recorder, so that this approach can also be termed
MUX (or “multiplexed”) hybridized parallelization. As with any multiplexed sampling,
these multiple sensor events can be windowed, which allows these signals to be processed
with a single processor. Parallelism by task can be then deployed at the individual (person)
level, with each user assigned to an individual parallel path.

2. Absolute identification: Here, two or more events are either directly correlated (both occur)
or the identification fails. This “absolute hybrid biometric identification” in general requires
two or more signals to be monitored in parallel (not multiplexed). This parallel simultaneous
approach is thus readily amenable to parallelism by task, where each task is one of the
channels being analyzed (audio, video, etc.). The decision on identity is thus binary, and
dependent on the output of the multiple parallel channels: either the two or more events
correlate and are both discovered or they are not/do not. This in general requires overlap in
time, and so is not generally multiplexed.

3. Predictor/predicted event: This is the term for paired events, one of which happens before-
hand or afterward in comparison to a primary (or priming) event. In this type of hybrid
biometric parallelism, one event is the trigger for the other, rather than the two events
simply being correlated. The predictor event can also be termed the “eliciting” event. The
predicted event can also be termed the “elicited” event. One example is when a particular
word is flashed on a screen, followed by the user having to perform a gesture in response.
The elicited event, the gesture, either proceeds as needed for identity, or it does not. Among
the factors used in positively identifying the individual are the latency between the two
events and the similarity between the expected and measured elicited events.

These three classes of hybrid biometrics approaches are outlined in Table 4.9. It is clear
from these examples that parallelism applied to many tasks simultaneously does not benefit
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Table 4.9 Three hybrid biometric approaches and the types of parallelism by task involved

Hybrid Biometric Types of Parallelism Salient

Latency Hybrid temporal, multi-sensor, multiplexed (MUX)
Absolute Parallel simultaneous, nonmultiplexed (non-MUX)
Predictor/predicted Elicitor/elicited, triggered event

from a “one-size-fits-all” solution. Indeed, when we look beyond the hybridization to the
implementation, we see that we can perform parallelism by task by performing all of the
tasks associated with an individual as one parallel pipeline; alternatively, the individual tasks
comprising the hybrid biometric procedure can all be performed in parallel.

Scheduling of these tasks or sets of tasks can get particularly complicated when we do not
know beforehand the number of channels to which we can assign the tasks. One situation
that must be avoided is when the overhead required to keep track of the scheduling and the
multiple channels associated with a hybrid biometric exceeds the overhead of just looking for
an equally relevant set of events in a single channel. If identity is established with equal or
superior statistical significance simply by looking for multiple voice results, for example, in
comparison to searching for specific voice, video, and fingerprint events, then the additional
simplicity engendered by only investigating a single (audio) channel should be considered.

Queue-based parallel processing by task is applied directly to the simple single-channel,
multi-event task described above. The queue-based approach is, additionally, consistent with
the latency and the predictor/predicted approaches outlined in Table 4.9. Simple queue-based
patterns are also used directly for image-based identification.

More complicated queue-based approaches are supported mathematically by the use of
Bayesian inference models. As described in Chapter 1, the general form of Bayes’ theorem is
given by

p(A|B) = p(B|A) × p(A)

p(B)
,

where p(A|B) is the conditional probability of event A given that the event B has already oc-
curred. In many cases, we wish p(A) and p(B) to be very low (rarity of identifying event/events)
but p(A|B) to be very high (specificity of event/events). Rearranging Bayes’ theorem to show
the ratio of p(A) and p(B), we can see that if the probability of events A and B are both low,
p(A|B) and p(B|A) are similar but not necessarily high ratios:

p(A)

p(B)
= p(A|B)

p(B|A)
.

In general hybrid biometrics, however, we are concerned with events that occur with some
probability when one or more of multiple other events occur. In fact, we may wish to find the
probability of event A when considering all of a set of mutually exclusive events, denoted as
B here. We thus rearrange to solve for p(A):

p(A) = p(A|B) × p(B)

p(B|A)
.
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Let us now consider the case where B can occur as one of N outcomes. If the sum of all p(Bi)
= 1.0, which is true by definition for mutually exclusive events, then we obtain the following
for p(A):

p(A) =

∑
i=1,...,N

p(A|Bi) × p(Bi)

∑
i=1,...,N

p(Bi|A)
.

This latter equation also governs the probability of event A for any subset of the outcomes
of B; for example, under constrained situations in which one or more of the Bi is not allowed
to, or cannot, occur. This is important in queue-based approaches in which each of the various
Bi is tested for in a sequence. Additionally, if there are other event sets, say C and D, which
are partially or completely independent from event set B, then we can test for which set results
in a disproportionately high value for p(A). In this way, Bayesian approaches can be used to
identify useful event sets for biometric identification.

Parallelism by task for biometrics using the variable-sequence-based pattern (originally
shown in Figure 2.2) includes cases in which increasingly refined assessment is performed until
identity is established with a certain statistical probability (p-value). This type of parallelism
by task can be used to extend Bayesian-based inference to other means of assigning identity
probabilistically, including but not limited to voting and weighted voting. A series of tests,
for example, event sets B, C, and D as described above, can be performed in sequence until a
given confidence in the outcome is achieved.

Parallelism by task for biometric tasks can use a LI-PSO approach. Consider a retinal scan
in which honing in on specific regions of the retina is valuable for more confidently identifying
the person. Suppose the initial retinal scan, which can use a traditional image analysis pipeline
(a set of sequential operations such as binarization, segmentation, and feature identification),
provides a statistical confidence of 0.92. Now suppose that in subdividing the retinal scan into
three regions of interest (e.g., the optic disk, the macula lutea, and the remainder of the retina),
the three regions, respectively, provide an identification statistical confidence of 0.94, 0.88,
and 0.85. From this, it is clear that the retinal scan can and should be made a parallel operation,
wherein previously combined regions are analyzed in parallel.

Another LI-PSO emerges from a consideration of performing two multiple (in this case
complementary) identity approaches in parallel. The first approach proceeds as outlined above,
where evidence (and statistical confidence) of positive identification is accumulated in one
parallel processing pipeline; in contrast, evidence (and perhaps also statistical confidence)
of negative identification is accumulated in the second parallel processing pipeline. As an
example of the latter, suppose an individual is known to be 6 ft in height, and image analysis
performed in the second parallel processing pipeline establishes with sufficient confidence
that the individual is 5 ft 8 in. in height (and not 6 ft tall!), then the negative identification can
override (and terminate) both itself and the positive identification pipeline. This LI-PSO thus
constitutes a dual probabilistic approach in which simultaneous assessment of the likelihood
of false positive identification and false negative identification can be pursued.

The UI-PSO, or PSO that is born of deployment, can also be applied to biometric identifi-
cation. A UI-PSO emerges when different elements of a specific biometric task—for example,
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gait analysis—are seen to use separable algorithms. There are at least three types of parallelism
by task that can be deployed for biometric gait analysis:

1. Multiple video streams can be analyzed in parallel. This allows different views of each
limb and joint, helping ensure at least one good perspective for every salient joint.

2. The combination of limb/body velocity and joint dynamics can be assessed using compu-
tational techniques known as inverse dynamics. The solution of Newton–Euler equations
of motion are used to combine the analysis of the net forces and the net moments of force
about each salient joint at every stage of the gait cycle. This set of computations can be
performed in parallel for each video stream, as well as for segments of each video stream.

3. Individual metrics of importance to gait analysis—cadence, dynamic base, foot angle,
progression line, speed, step-length, and stride—can be computed for each of the parallel
video streams and for each of the parallel segments extracted from each stream. Task-
specific image analysis techniques can be used for the calculation of each of these metrics.

Recursively scalable task parallelism is applied to both 1D (electrocardiogram and speech)
and 2D (iris analysis) biometric signals. For the 1D signals, relatively long arrays of signal,
or “streams,” can be quickly analyzed for the presence of specific spectral content—or, more
saliently to long-term monitoring, for the presence of specific differential spectral content.
This is especially salient to voice identification. If there is a given level of confidence that
specific spectral content is in the longer stream, it can be subdivided (e.g., split into N equal
length substreams) and then each substream analyzed for this spectral content. In this way,
the longer stream can be quickly analyzed, the task parallelized, and the best substream for
biometric voice characterization identified.

Two final types of approaches to parallelism by task are relevant to biometric parallelism.
The scaled-correlation pattern is similar in nature to the recursively scalable pattern, except
that it generally involves a different “effective sampling” rate. With scaled-correlation, we
are concerned with signal analysis at different scales—for example, sampling frequencies for
1D signals or image resolution for 2D signals—and how well the results can be made to
correlate. For example, consider the voice identification task described above. Suppose the
longer stream comprises 100 s of data with a sampling frequency of 8 kHz. This requires the
analysis of 800 kSB of data, where SB is the bytes in each sample of the signal. If, however,
the effective sampling rate is made 2 kHz using lowpass filtering, compressive sampling
or windowed sampling, then the 800 kSB is scaled to 200 kSB prior to analysis. Then, the
original stream is split into two substreams, for which the effective sampling rate can now
be doubled, for example, to 4 kHz. Each of these substreams therefore uses 50 s of 4 kHz
sampling resulting in the same 200 kSB of data to be analyzed by the two (now parallel)
pipelines. The substream(s) for which the spectral characteristics of interest correlate well
with those of either the original stream or the desired characterizing spectral components
can then be further scaled—for example, to 25 s of 8 kHz sampling, for analysis of the
full spectrum.

In contrast to the scaled-correlation approach, the task-correlation approach is focused on
substituting one task (usually one requiring more resources) with another task (requiring less
resources, often substantially less). As a consequence, task-correlation is often used during
system training and optimization for deployment. Scaled algorithms as just described are one
means of identifying substitute tasks. However, there are others. For example, an algorithm or
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engine can also be scaled back. This means that certain functionality can be omitted (turned
off, not paid for, etc.) because it will not deleteriously affect the outcome of the information
generated. An example in biometrics may be in the substitution of a full fingerprint detection
algorithm with a faster, simpler algorithm that performs a 2D Fourier transform (2DFT) of the
image and uses the spectra of the 2DFT to identify the person. For a large group of people, the
2DFT will be less specific than a full-fledged fingerprinting biometric; however, for a smaller
set of people, it may provide equal or nearly equal accuracy. If the task provides high enough
correlation with the full-fledged system—that is, if there is task-correlation—then it can be
substituted within the context of the application it is being used for.

Task-correlation approaches are related to the meta-algorithmic pattern of Constrained
Substitution (see Section 6.2.2). In that pattern, one algorithm, engine, system, or other means
of knowledge generation is substituted for another. The substitute is constrained by a minimum
accuracy and/or robustness metric, and is approved as a suitable substitute if it both achieves
the minimum constraint and (typically) reduces the cost of the system.

4.2.4 Security Printing

Many of the Parallelism by Task patterns can be deployed for security printing problems.
The queue-based pattern, for example, is employed when a set of variably printed items are
simultaneously registered and validated. For example, suppose a unique barcode is printed on
each of a large set of labels. Then, the inspection process (successful reading of the barcode
after printing and validating that it should be in the database) is a queue-based approach.

In addition, the variable-sequence-based pattern can be used to simultaneously authenticate
multiple security printing features. Suppose that, in addition to the barcode, a variable sequence
of text (e.g., microtext), serialized alphanumerics, graphical alphanumerics, and so on, are
printed, each with a unique representation. The inspection of these two or more printed sets
can be performed in parallel.An LI-PSO pattern can be used to separate multiple layers
of information into a series of operations, each run in parallel. Security printing offers a
parallelism by task possibility not at all obvious at first sight, based on a scalable data
representation possible with three-dimensional (3D) (color 2D) barcode security printing
features. The so-called staggered 3D barcode approach relies on scaled-correlation parallelism,
in which image analysis at different scales—for example, sampling frequencies or image
resolution—are used to provide identification for a wide variety of imaging devices.

The basic 3D barcode consists of a 2D barcode array—like the QR, Aztec, or Data Matrix
barcode—which uses multiple colors. The standard configuration uses the six colors red (R),
green (G), blue (B), cyan (C), yellow (Y), and magenta (M), as exemplified in Table 4.10.
Since log2(6) = 2.585, the third dimension adds 1.585 bits per module by the inclusion of

Table 4.10 Simple 4 × 4 module 3D (or 2D + color) barcode representation, with
the sequence in English reading order being “GMCGRCBYYBMGRRGB”

G M C G
R C B Y
Y B M G
R R G B
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Figure 4.7 Sample 3D (color 2D) barcode that uses a calibrating (nonpayload) indicia approach bor-
rowed from the 2D Data Matrix barcode. All of the perimeter tiles are calibrating. Along the left and
bottom sides (with one additional tile near the lower right), the black tiles are used to set the black point
and determine orientation and skew. Along the top and right, the six colors used in the payload section—R,
G, B, C, M, and Y—are repeated in reading order. The payload consists of 48 color tiles, which in reading
order are MCRMRCMMGYGYGYCYYCMCYYRGYGCYMCGBCRRGMYCRCBCBBMYM

variable colors. Table 4.10 illustrates a simple 4×4 module color tile that holds 16×2.585 =
41.36 bits of information.

The content in a color barcode is therefore dependent on the number of payload tiles. These
are tiles (or modules) that contain data, as opposed to those tiles that are used for calibrating
the overall barcode feature. In Data Matrix barcodes, the perimeter tiles on top, bottom,
left, and right are used to convey calibration information—calibrating black and white point,
orientation, skew, and nonaffine warping. Borrowing from this approach, color tiles use the
perimeter for all of these tasks and, additionally, color calibration. An example is shown in
Figure 4.7.

In Figure 4.7, the left and bottom sides are black and can be used to calibrate for black
point, for tile thickness, for orientation (they identify the left and bottom sides), and for
skew: the pixels along their boundaries can be processed with linear regression and the
slope of the linear regression line of best fit is the skew angle. Along the top and right
sides are tiles whose colors repeat the sequence of the allowable payload tile colors—in this
case R, G, B, C, M, and Y. Collectively, these calibrating or “nonpayload” indicia com-
prise 33 tiles (40.7% of the 81 tiles in the complete barcode). The remaining 48 color tiles,
if read in reading order, comprise the sequence, when shorthanded by the color symbol,
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of MCRMRCMMGYGYGYCYYCMCYYRGYGCYMCGBCRRGMYCRCBCBBMYM.
Since there are six different color possibilities for each of the payload tiles, there are 648 =
2.245 × 1037 possibilities. This represents just over 124 bits of data.

Unlike black and white tiles, color tiles can have intermediate values. They, therefore, can
be used in different aggregations (single tiles, 2 × 2 pairings of tiles, 3 × 3 pairings of tiles,
etc.) to provide data that is readable by a wide array of imaging devices. High-end devices
such as scanners and line cameras will accurately read each individual (small) module, or tile,
in the barcode, while less expensive cameras, such as cameras in mobile phones, will only
be able to accurately read clusters of the tiles (e.g., 2 × 2 module “aggregations”) at a time.
We address this by using a novel type of error-correcting code (ECC), the chroma-enhancing
tile (CET), which reduces the payload density by 25% for a 2 × 2 pairing, but allows 2 ×
2 pairings to reliably map to the same set of colors—usually {RGBCMY}—as the original
(single) modules.

The payload approach described above is based on two assumptions: (1) all individual tiles
can be read, and (2) the colors are consistent across the deterrent (see below). The former is
aided by using predetermined tile dimensions, while the latter is aided by uniform lighting
and relatively compact deterrent size (or high-quality capture, such as with a scanner or vision
system). However, these assumptions often fail in the mobile world.

For the purposes of describing the use of parallelism by task, we need the following
definitions:

1. A tile is a uniformly colored glyph, nominally a square, from which the overall deterrent is
constructed.

2. A cell is the largest set of tiles that can be individually authenticated by any reading device.
In the simple example of Table 4.11, a 2 × 2 set of tiles is this cell.

3. A deterrent, or mark, is the complete set of cells, combined to form the color tile security
feature. For purposes of illustration, we define the deterrent to be an N × N array of cells.
For further illustration, we make N an integral multiple of 2, so that the deterrent can be
entirely tiled by 2 × 2 and 1 × 1 sized clusters of tiles as in Table 4.11.

4. A cluster is any P × P set of tiles from the size of an individual tile (1 × 1 cluster) to the
size of a cell (e.g., 2 × 2 cluster). Power-of-two cluster sets like the ones illustrated here
will line up with the cells such that no clusters overlap more than one cell.

In terms of size, tile ≤ cluster ≤ cell ≤ deterrent. In Table 4.11, the R, G, B, C, M, and Y
labeled tiles are the payload indicia (PI). These PI tiles, when deployed, would contain one
of the allowed sets of colors that convey information, for example, {RGBCMY}. The X =
marked tiles in Table 4.11 represent what we term the CETs. CETs are used to guide the hue at

Table 4.11 Representation of 16 color tiles organized as four 2 × 2 color tile sets

R G B C

M X Y X
R C XX XX
G X XX XX
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which the successively larger clusters will be authenticated. The 2 × 2 tile cluster in the upper
left, for example, consists of three PI tiles and one CET. The three PI tiles are red, green, and
magenta (R, G, M). In terms of the red, green, and blue channels {r,g,b}, R = {255,0,0}, G
= {0,255,0}, and M = {255,0,255}, so the sum is {510,255,255}. To enhance the chroma of
the 2 × 2 cluster, therefore, we set the CET to R = {255,0,0} and so the 2 × 2 cluster comes
to {765,255,255}, which is overwhelmingly red. The same approach is used for the larger
4 × 4 and 8 × 8 clusters (the 2 × 2 and 4 × 4, respectively, CETs, are also a single color).

In general, when the final deterrent is an N × N deterrent, and N = 2M for some integer M,
then the following are true:

1. The final number of independent tiles when the deterrent has been specified at every power
of 2 from 0 to M is

(3/4)M ∗ 22M.

2. All remaining CETs are the final authority for the cells they monitor. Thus, remaining X
and XX CETs in Table 4.11 enhance the chroma for their respective 2 × 2 and 4 × 4 cells,
irrespective of the presence of the larger CETs added to the deterrent. For the (B, C, Y)
tiles, which sum to {255, 510, 510}, the associated CET (marked “X”) should be C; for the
(R, C, G) tiles, which sum to {255, 510, 255}, the associated CET (marked “X”) should
be G. Finally, the CET tiles marked “XX” are determined by the sum of the other 12 tiles,
which is {1265, 1785, 1265}, and so the “XX” tiles are G, bringing the overall 4 × 4 tile
set to {1265,2805,1265}, or a not fully saturated G.

Parallelism by task enters into the evaluation of these 1 × 1, 2 × 2, and 4 × 4 cells when
image analysis is performed simultaneously for each cell size. If the 1 × 1 cells are correctly
interpreted, they should read “RGBCMRYCRCGGGGGG” in reading order (left to right in
each row, and each row in order top to bottom). If the 2 × 2 cells are correctly read, they
should read “RCGG” in reading order. Finally, the 4 × 4 cell should read “G.” After parallel
processing, each of these sequences can be compared for logical consistency. Any failures
in consistency remove the smaller size (e.g., 2 × 2 compared to 4 × 4) from consideration
for full authentication. In this way, the maximum data density that can be reliably read is
automatically determined.

Having described the parallelism by task associated with the staggered color tile represen-
tation, we conclude the section on security printing with a consideration of one of the simplest
forms of parallelism. From a parallelism-by-task standpoint, the greatest advantage provided
to security printing is the ability to use multiple (hybridized) security printing marks (known as
deterrents) for probabilistic authentication. Suppose, for example, we are using the following
set of security printing marks:

1. A 2D (e.g., QR or Data Matrix) barcode
2. An alphanumeric string of microtext, for example, “L42GJK8D”
3. A graphical alphanumeric, for example, guilloche marks or mixed-color/mixed-symbol

mark, for example, θ4βTfc�d-s⊥
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In general, the amount of information we wish to uniquely print—for example, in a mass
serialized set—is dependent on how many unique variable-data items we are going to print
throughout the lifetime of the set of marks. We must exceed the number of bits needed to
represent every individual item in a related set by the number of bits needed to achieve the
desired statistical improbability of correctly guessing a legitimate data representation.

Let us define BL as the lifetime number of bits required to represent all of the printed items
associated with a plurality of security printing marks, or “deterrents.” There are two factors
involved. The first is the bits required to reach security level SL, which we designate BSL.
Next, there is the number of bits required to reach statistical confidence level SCL, designated
BSCL. From these definitions, it is clear that

BL = BSL × BSCL

Suppose, for example, that we wish to provide security for 100 million (108) printed items,
with less than 1 in 1018 probability of guessing a correct identifier. So, BSL = ceiling(log21018)
= ceiling(59.795) = 60; that is, 60 bits are required to provide the required security level
for an individual item. Since there are 108 printed items, not 1, BSCL.= ceiling(log2108)
= ceiling(26.575) = 27. Thus, another 27 bits are required to provide sufficient additional
variability for all of the items associated with the related set of products. Thus, if we can
embed 87 bits into our one or more security deterrents, we can provide sufficient security for
this large set of printed items. In the above set of deterrents, suppose we have the following
limitations:

1. The 2D barcode can hold between 16 and 64 bits of data in the space allocated.
2. The alphanumeric microtext can hold 5 bits/character and up to 8 characters.
3. The graphical alphanumeric uses 8 colors, 256 different characters, and can be up to 10

characters long. Thus, each character holds 11 bits, since 11 = log2(8×256).

From this, we have a maximum of 64 bits from (1), 40 bits from (2), and 110 bits for (3).
We can see that graphical alphanumerics are especially dense means of embedding data. The
three deterrents can hold up to 214 bits, more than twice the needed bits. A good strategy for
this set of security printed marks, then, may be to encode portions of the payload data (87 bits)
in each of the three deterrents, and relate them to one another in a fashion proprietary to the
specific product. This allows the overall product security printing approach to be changed
without changing the set of deterrents used. For example, for product A, we might choose
to place 12 bits in the (6 × 6 module payload section) 2D barcode with 200% ECC; 20 bits
with 50% ECC in the microtext; and 55 bits with 50% ECC in the graphical alphanumeric.
For product B, however, we may choose to place 32 bits within the (8 × 8 module payload
section) 2D barcode with 100% ECC; 0 bits in the microtext (using them instead as a decoy
for would-be counterfeiters); and 55 bits with 50% ECC in the graphical alphanumeric.

4.3 Summary

In this chapter, we have explored some of the ways in which parallel processing can be used
to break up tasks into sets of tasks. The chapter emphasizes the use of parallel processing
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for serialized tasks (e.g., queue-based parallelism and pipelines) and for further parallel-
ready tasks (recursively scalable task, scaled-correlation parallelism, and task-correlation
parallelism). It is clear that parallelism can be applied to virtually any task. Where the task
itself is able to be restructured into parallel operations, these subtasks can be scheduled in
parallel. Where the task cannot be restructured for parallelism, the task itself is the primitive
for parallel scheduling. Regardless, it is clear that if there are enough tasks in a population,
assigning tasks to parallel processing pipelines is an efficient means of improving throughput.
When a small set of tasks comprise the population, the restructuring and scheduling overhead
may obviate the advantages of parallelism.
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5
Application of Parallelism
by Component

The least flexible component of any system is the user.
—Lowell Jay Arthur

5.1 Introduction

In this chapter, specific applications of parallelism by component are considered in depth.
While the set of “core” domains is in some ways idiosyncratic, they are also broadly different
and so in composite provide an acceptably sweeping perspective of the value of parallelism by
component. This chapter is meant to provide a pragmatic guide to implementing parallelism
by component. The four core domains considered are the same as the previous chapter:
(1) document understanding, (2) image understanding, (3) biometrics, and (4) security printing.

The meaning of “parallelism by component” is, of course, related to the use of different
parts of a particular item, or data set, in parallel. However, as this type of parallelism is applied
to document understanding, I show that much—in the particular example the vast majority,
in fact—of the improved throughput coincident with converting the process to parallelism by
component is due to the structural reframing of the process, and not the parallelism per se.
This emphasizes the importance of domain expertise in each parallelization process.

The next topic is image understanding. As with document processing, image understanding
benefits from efficient preprocessing. This includes the structural reframing benefits observed
in the document understanding parallelism, but extends to a potentially circuitous considera-
tion: knowing what we are looking for in an image helps us look for it more efficiently in at
least three ways I will discuss: (a) model down-sampling, in which an image and the means
to understand specific features within the image are simultaneously and, from the standpoint
of recognition accuracy, uniformly down-sampled; (b) componentization through decompo-
sition, in which, for example, different relative or absolute image planes are separated and
separately processed; and of course (c) structural reframing, the act of intelligently dividing a
large, unwieldy, and potentially inefficiently processed component into a plurality of readily
processed subcomponents.

Meta-algorithmics: Patterns for Robust, Low-Cost, High-Quality Systems, First Edition. Steven J. Simske.
C© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.



138 Meta-algorithmics: Patterns for Robust, Low-Cost, High-Quality Systems

Next, biometric applications are considered. As opposed to the hybrid biometrics described
in Chapter 4, biometric features that are parallelizable by component focus on elements and
subelements of the same biometric measurement. Componentization through decomposition
is an important means of addressing biometrics-related machine intelligence. In this section,
I also address two other means of parallelization by components for biometrics: (1) temporal
parallelism, with obvious extensions to video analysis, surveillance, and motion tracking; and
(2) overlapped parallelism, with obvious extensions forward to meta-algorithmics. Finally,
the “parallelism by component” flavor of the scaled-correlation parallelism first described in
Chapter 4 will be applied to the field of biometrics.

The fourth “core domain” to which parallelism by component is applied is the broad,
interdisciplinary science of security printing. Because security printing itself draws on the
expertise of multiple fields, this topic provides an excellent one to show how an expert in
parallelism by component can utilize her entire bag of tools to solve multiple, related problems
of the highest possible value—serialization, inspection, authentication, forensics, and access
rights validation. In addition to the six patterns of parallelism by component described for
one or more of the other three core areas, security printing introduces two new patterns for
parallelism that naturally arise as a consequence of the modern printing technologies: (a)
variable data printing (VDP) and (b) print on demand (POD). VDP naturally leads to variable
element parallelism. POD, on the other hand, leads to search parallelism, which is simple
conceptually but assuring globally unique identifiers requires prelocking of content. This
means that the globally unique identifiers are adding to a pool of noncolliding numbers before
they are allocated to an item with which they will thence be associated. The interweaving
of these eight patterns of parallelism will be shown to benefit the robustness, accuracy, and
efficiency of security printing ecosystem architecture.

5.2 Primary Domains

The four primary domains are (1) document understanding, (2) image understanding, (3)
biometrics, and (4) security printing. As we progress from one domain to the next, we build
up a repertoire of parallel approaches that comprise a toolset for secondary domains covered
elsewhere in the book.

5.2.1 Document Understanding

In Section 2.3.2, I overviewed an important factor in deciding on how to best perform image
understanding (e.g., image segmentation, object identification, object extraction, and other
image processing) tasks. When an image is broken up into multiple subimages, there may
be improvements in throughput even without performing parallelism by component. That is,
smaller images are often processed more efficiently relative to the size of the image than larger
images, even when using only a single processing resource.

This image-splitting approach is more likely to be advantageous the larger the original
image is. As an example, I consider document image segmentation. In Figure 5.1, the original
scanned document image is shown. This document (Cheyenne Mountain, 1996) is a mixed-
content document, comprised text, line art, and photos. A quick binarization, or thresholding,
operation, such as those described in Kittler and Illingworth (1986) or Otsu (1979), and shown
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Figure 5.1 The original image (the “small image”), an advertisement for Cheyenne Mountain (1996).
The image is 24 bits/pixel (8 bits/channel, RGB (red, green, blue) channels) with dimensions 825 ×
638 pixels. Reproduced by permission of Cheyenne Mountain Zoo

earlier in Figure 3.3, is used to separate foreground (document content) from background.
Projection profiles (Zramdini and Ingold, 1993) in the horizontal and vertical directions are
used to find optimal cuts in the document image—minima in the projection profile generally
correspond to the best locations for dissecting images to create subimages. One such dissection
into two (unequally sized) partitions is shown in Figure 5.2.

In order to explore the effectiveness of the parallelization by component approach to docu-
ment image understanding, I start with the simple document image shown in Figure 5.1. This
image was originally scanned at 75 × 75 pixels/in. (ppi), and the overall image size is thus
825 × 638 pixels. This is an RGB 3-channel, 8 bits/channel image, which when loaded into
memory is just over 1.5 MB of image data. Several operations were then performed on the
image. The first (designated “thresholding”) is the binarization process, examples of which
are shown in Figure 3.3. Thresholding is itself a broad field of science—both global (one
single threshold for the entire image) and local (different threshold for different sections of
the image) thresholds are valuable depending on the nature of the content. For example, in
Figure 5.1, the box in the upper left containing the text “Opening in Summer 1996 – Asian
Highlands!” requires a darker threshold than the overall image threshold in order to extract the
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(a) (b)

Figure 5.2 The original image of Figure 5.1 after quick presegmentation into two parts. Reproduced
by permission of Cheyenne Mountain Zoo

text. A lighter, whole-image threshold results in the text and the spot color background both
being binarized to black.

The whole-image thresholding is based on a modification of Kittler and Illingworth (1986),
designated ModKitt, which uses the image luminosity histogram (as shown in Figure 3.4) and
performs a dual-Gaussian fitting. After generating the histogram for the image, the ModKitt
algorithm assumes a single large peak in the image luminosity histogram corresponding to
the background of the image (typically white) and a less cohesive set of luminosities, distinct
from the background peak and generally separated by a trough in the histogram.

After thresholding, the document skew is determined. The subthreshold black pixels form
a binary threshold image. We then find solid areas of nonuniform hue or intensity, if they are
present in the document. These represent photos. We first remove any black shadows along the
edge of the image (often concomitant with scanning or camera-introduced vignetting), then
adaptively determine the proper amount of run-length smearing (introduced in Wahl, Wong,
and Casey, 1982) to generate a sufficient number of regions to estimate skew correctly, but
not so many that we sacrifice performance. This estimate is based on the number of black
runs rather than using full region formation, and thus is independent of later document image
segmentation. After run-length smearing the threshold image, we form regions from the black
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pixels on the image. Solid (nontext) regions are, for example, greater than 1.0 in2 in area and
contain 70% or more black pixels, among other possible experimentally determined factors.
In general, solid regions have areas with long black runs while “nonsolid” (usually text)
regions do not have a high percentage of long black pixel runs. These solid regions are then
scrubbed from the threshold image, but their boundary information is stored for secondary
skew analysis.

Skew analysis is performed, not surprisingly, using a parallel-architecture approach. Two
sets of points are collected and analyzed for their primary set of skew angles. The first set
of points is the set of centroids of the small connected components, typically individual
characters like “c” or “s” or else parts of characters for ones such as “i” or “:”. The angles
between these centroids are accumulated in a centroid–centroid angle histogram, for example,
a 901-element histogram with bin values of {0.0◦, 0.2◦, 0.4◦, . . ., 180.0◦}. The histogram is
then smoothed with a moving average filter, and peaks are found. The highest peaks—typically
3–5 of them—are kept as candidate skew angles. The second, parallel, set of points are the
boundaries (eroded to a single pixel edge thickness) of any of the “solid” regions uncovered
during the quick segmentation stage described in the previous paragraph. Since the number of
edge pixels is relatively small, the angles between them can be readily computed and used to
create another histogram, the so-called image edge histogram. After that, the procedure is the
same as for the centroid-centroid angle histogram.

After these two sets of skew candidates are compiled, they are weighted based on integrating
under the peak curve in the histogram. Typically, each set’s weight is normalized to sum to 1.0.
The peak sets are then compared. If there are matching skew candidates from the centroid-
centroid and image edge histogram sets, their weights are combined. Regardless, the two sets
are now merged, and if there is no clear individual candidate that stands out as superior to the
rest, then the set of highestweighted candidates are evaluated further. If there are substantial text
areas, then projection profiles—described above—are computed parallel and perpendicular to
the skew angle for each candidate. Text regions will have significantly different projection
profile entropy in comparing the parallel and perpendicular profiles when the parallel profiles
are best aligned with the text. Thus, when sufficient text is present, the actual skew angle is
therefore set to the skew candidate with the maximum entropy difference in comparing the
parallel and perpendicular projection profile histograms.

When there is insufficient text, the boundary pixels themselves are used to compare the skew
candidates. Projection profiles are computed, again parallel to and perpendicular to the angle
of skew. The correct skew will have the minimum overall (sum of parallel and perpendicular)
projection profile entropy, since when the correct skew angle is found, the projection profiles
will feature the sharpest peaks (and thus the lowest entropy).

The third document understanding process is segmentation and classification. Segmentation
and classification begin with the thresholding and skew detection processes described above.
After the skew angle is determined, the image is deskewed using the shear-based rotation
approached shown in Chapter 3. Much of the segmentation is performed as part of skew detec-
tion. The remaining segmentation tasks are associated with compound region segmentation;
for example, extracting text over images, identifying the text regions in line art, drawing, and
table regions, and extracting specific shapes from images. The individual connected compo-
nents, or document regions, are then labeled as text, line art, image/photo, table, business
graphic, and so on. In the final step, clustering of like (e.g., lines of text) or associated (e.g.,
graph labels with the graph) regions to form the relevant composite regions is performed.
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Table 5.1 Processing time for the thresholding (Kittler and Illingworth, 1986), skew detection and
correction (Simske and Baggs, 2004), and segmentation and classification (Simske and Arnabat, 2003)
operations on a large and small image (the large image was not available during the time I owned the
OLD computer). The small image is 825 × 638 pixels; the large image is 2816 × 2112 pixels, or 11.3
times the size of the small image

OLD Computer, NEW Computer, NEW Computer,
Small Image (ms) Small Image (ms) Large Image (ms)

Thresholding 55 31 156
Skew detect 815 406 1 420
Segmentation and classification 1 022 421 39 249
Total document image processing 1 892 858 40 825

The total document image processing time is the sum of the thresholding, skew detect, and
segmentation and classification processing times. Processing times were measured using two
different laptop computers: the first (herein designated “OLD computer”) a vintage Pentium
P-III, 1.13 GHz, 256 MB RAM, Windows 2000 system; the second (herein designated “NEW
computer”) an Intel i7 Q740, 1.73 GHz, 8.00 GB RAM, Windows 7 Enterprise system. All of
the image processing software was written in C++. The software was executed without thread-
ing on a single processor. Table 5.1 gives the processing times for each of the tasks for the image
shown in Figure 5.1 (small image). The NEW computer was also used to process a separate
large image (More in-depth consideration of this larger image is given later in Figure 5.5).

The results of Table 5.1 confirm that the NEW computer processes the image faster than the
OLD computer. The timing ratio (858 ms/1892 ms = 0.453) is less than the inverse ratio of
clock speed (1.13 GHz/1.73 GHz = 0.653), indicating a concomitant improved architecture
in the NEW computer. The nonlinear relationship between image size and total document
image processing time is shown in comparing the large and small images. While the large
image is only 11.3 times the size of the small image, the total document image processing time
(lowermost row) for the large image is 47.6 times the processing time for the small image. The
increase in processing time is not uniform for the image processing tasks. For (1) thresholding,
(2) skew detection, and (3) segmentation and classification, the increase in processing time is
(1) 5.03, (2) 3.50, and (3) 93.23 times for the large image compared to the small image. Since
the latter value is roughly 20 times the first two values, it is clear that the imaging task has a
larger effect on processing time than the image size per se. Thresholding and skew detection
processing improve or are not as adversely affected with increasing image size since only one
pass through the image is required, after which all operations are in common. Segmentation
and classification, however, require multiple passes through the image, and so processing time
is exacerbated by increasing image size.

After splitting the image of Figure 5.1 into two unequally sized subimages (Figures 5.2a
and b), the document image processing tasks were performed on both sections (Table 5.2).
The left image was half the size of the right image, and thresholding (19 ms compared to
38 ms) and skew detection (278 ms compared to 559 ms) processing times were also half as
much for the left image compared to the right image. Segmentation and classification (289
ms compared to 647 ms), however, more than doubled (to 2.24 times as much) when the
image size doubled. These data support the general principle that splitting simple (e.g., single
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Table 5.2 Processing time for the thresholding (Kittler and Illingworth, 1986), skew detection and
correction (Simske and Baggs, 2004), and segmentation and classification (Simske and Arnabat, 2003)
operations on the bisected small image. The processing time of the two images was 1830 ms, slightly
less than the 1892 ms for the entire (unbisected) image

OLD Computer,
Left Image (ms)

OLD Computer,
Right Image (ms)

Thresholding 19 38
Skew detect 278 559
Segmentation and classification 289 647
Total document image processing 586 1244

pass) imaging tasks into subimage tasks does not improve performance. Thresholding time
actually slightly increased from 55 ms for the whole image to 57 ms for the two subimages.
Skew detection time also increased slightly, from 815 to 837 ms, when the image was split
into the two subimages. However, the processing time for the more complicated, multi-pass
image processing task—segmentation and classification—was noticeably reduced (from 1022
to 936 ms) when the image was split into two subimages. This highlights a second general
principle: when a complicated (e.g., multi-pass) imaging task is split into subimage tasks,
there is improved overall performance.

Aside from the image processing times provided in Tables 5.1 and 5.2, there is additional
information of interest we can glean from the document image processing of the images
comprising Figures 5.1 and 5.2. The results of the document processing are shown for the
intact image in Figure 5.3, and for the two subimages in Figure 5.4. These images show the
output of the document image analysis using indicative region boundary polygons: dashed
outlines indicate the boundary polygons of text regions, dotted outlines indicate the boundary
polygons of photo regions, dash–dot lines indicate the boundary polygons of color line art
regions, and solid lines indicate the boundary polygons of binary line art regions (and tables).
Interestingly, the results obtained for the left subimage in Figure 5.4 differ from the results
obtained for the left third of the intact image in Figure 5.3. In Figure 5.3, the black and white
map in the lower left of the image is classified as a black and white line art region. In Figure 5.4
(left), this same region, even though segmented nearly identically (the boundary polygons differ
only slightly, predominantly in the lower left portion of the region), is classified as color line
art. In addition, the two solid text boxes labeled “Winner” in the left center of the images
are classified differently in the two figures. Finally, there are differences in segmentation and
classification of the text regions in the upper right of the left image of Figure 5.4. These
differences illustrate a finding of perhaps even more importance to our purposes than the
differences in performance—the fact that performing image processing tasks on subimages
can produce different results than performing image processing tasks on the intact images. This
means that the same image can be processed by the same algorithm or intelligent system and
yield a plurality of results. The reason for this is that the thresholds and other variables used
in the image processing are based on different data sets—even though the image processing is
deterministic it will form different segmented regions on cropped versions of a larger image.
In effect, this subimage dependency is a form of meta-algorithmic parallel processing, which
is the focus of the next four chapters. It is also a form of sensitivity analysis—if image
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Figure 5.3 The original image of Figure 5.1, with the classified scanned regions indicated. Lightest
outlines indicate text regions, second lightest outlines indicate photo regions, darkest lines indicate
color line art regions, and second darkest indicate binary line art regions. Reproduced by permission of
Cheyenne Mountain Zoo

processing output differs for a subimage in comparison to the original image, then it is likely
that the algorithm or intelligent system has less than full confidence in the output—and perhaps
multiple algorithms should be used. We leave this topic until the next chapter to consider the
right side image of Figure 5.4.

The results obtained for the right subimage in Figure 5.4 are identical to those obtained for
the right two-thirds of the intact image in Figure 5.3. This is likely due to the fact that the
images aremore alike in size than the left subimage and the original image. Regardless, because
the thresholds were the same for both of these images, the results—skew angle detected and
segmentation and classification—are also the same. These identical results allow for a more
direct assessment of the effect of image size on the image processing times—if size has no
impact, the ratios should all be an exactly 2/3, or 0.667. Indeed, for thresholding, the ratio
(comparing the last data column in Table 5.2 to the first data column in Table 5.1) is 0.691. For
skew detection, the ratio is 0.686. These are both approximately 0.667, and thus scale more
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(a) (b)

Figure 5.4 The original image of Figure 5.1, after quick presegmentation into two parts, with the
classified scanned regions indicated. Lightest outlines indicate text regions, second lightest outlines
indicate photo regions, darkest lines indicate color line art regions, and second darkest lines indicate
binary line art regions. Reproduced by permission of Cheyenne Mountain Zoo

or less directly with size. For segmentation and classification, however, the ratio is 0.633, less
than 2/3. This ratio supports the interpretation that when a complicated imaging task is split
into subimaging tasks, there is improved overall performance.

Next, document image processing of bisections of the small image and, separately, the large
image was performed using the NEW computer (Table 5.3). Document image processing time
was not improved for the small image when the two parts were processed. Total thresholding
time did not change (31 ms), but both skew detection (452 ms compared to 406 ms for an
intact small image) and segmentation and classification (499 ms compared to 421 ms for an
intact small image) actually increased when the small image was broken into two parts. These
results indicate that the smaller image was already small enough that multi-pass processes
like region segmentation and classification did not challenge the resources of this particular
processing device. In general, the results obtained will be device dependent.

The results for document image processing of the large image (Table 5.3), however, strongly
justify the bisecting of this image prior to performing document image processing. While the
combined processing time for the thresholding of the left and right subimages (halves) increases
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Table 5.3 Processing time for the thresholding (Kittler and Illingworth, 1986), skew detection and
correction (Simske and Baggs, 2004), and segmentation and classification (Simske and Arnabat, 2003)
operations on the bisected large and small images

NEW Computer, NEW Computer, NEW Computer, NEW Computer,
Left Small
Image (ms)

Right Small
Image (ms)

Left Large
Image (ms)

Right Large
Image (ms)

Thresholding 15 16 93 94
Skew detect 156 296 702 577
Segmentation and

classification
141 358 11 202 14 602

Total document
image processing

312 670 11 997 15 273

slightly (from156 to 187ms), this ismore thanmade up for by the reduced combined processing
time for skew detection (reduced to 1.279 s from 1.420 s). More strikingly, the processing time
for segmentation and classification is reduced by more than 13 s, equating to a proportional
reduction of one-third (to 25.80 s from 39.25 s). Because of the disproportionate processing
time required for segmentation, the total document image processing time is reduced to 27.27 s
from 40.83 s (33.2%), without any consideration of the (additional) benefits of processing the
two subimages in parallel—there, the processing time is reduced to 15.27 s for the slower right
side image, for a 62.6% reduction in overall processing time.

Next, each of the subimages reported on in Table 5.4were segmented into two parts, resulting
in four equally sized (1408 × 1056 pixel) subimages of the original 2816 × 2112 pixel image.
The results for those four subimages vary greatly since, for example, the upper right quadrant
and lower right quadrant of the original image vary significantly in image information (e.g.,
in terms of image entropy), the upper right being mainly sky and the lower right being
information-rich cliffs and foliage. Here, the combined processing time for the thresholding of
the four subimages (quadrants) increased more noticeably (from 156 to 235 ms). The combined
processing time for skew detection also increased significantly from the intact original image
(to 2.450 s from 1.420 s). However, the processing time for segmentation and classification

Table 5.4 Processing time for the thresholding (Kittler and Illingworth, 1986), skew detection and
correction (Simske and Baggs, 2004), and segmentation and classification (Simske and Arnabat, 2003)
operations (and the sum of the three) for the image of Figure 5.5 when divided into four equal-sized
(1408 × 1056 pixel) subimages

Upper Left (ms) Upper Right (ms) Lower Left (ms) Lower Right (ms)

Thresholding 93 47 63 32
Skew detect 359 265 858 968
Segmentation and

classification
1 888 1 123 4 664 9 624

Total document
image processing

2 340 1 435 5 585 10 624
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Figure 5.5 The “large image.” The image is 24 bits/pixel (8 bits/channel, RGB channels) with dimen-
sions 2816 × 2112 pixels. This is the image later broken into two subimages (1408 × 2112 pixels each);
four subimages (1408 × 1056 pixels each); and eight subimages (704 × 1056 pixels each)

is reduced by more than half, and by nearly 22 s (to 17.30 s from 39.25 s). Again, because
of the disproportionate processing time improvement in segmentation and classification, the
total document image processing time is reduced to 19.98 s from 40.83 s (51.1%). If the four
subimages are processed in parallel, the processing time is reduced to 10.62 s for the slowest
quadrant (lower right) subimage, for a 74.0% reduction in overall processing time.

In this and the following related examples, I have ignored the negligible overhead time for
splitting the image into subimages. In these examples, I have in each case locked the complete
image into memory and the pixels are then streamed directly from the locked memory to
the image processing algorithms. Processing time was computed in-code with 1 ms sampling
resolution, and no difference in access time was measured. This is because there was no
overhead for splitting, just the dimensions (xmin, xmax, ymin, ymax) of the memory access
changed for subimages compared to the main image. This access time is anyway included in
the processing time of the thresholding.

As a final illustration in this example, I next bisected each quadrant of the original image into
two equally sized 704 × 1056 pixel subimages. These (now eight) subimages then underwent
document image processing as before, with the results given in Table 5.5. Not unexpectedly
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Table 5.5 Processing time for the thresholding (Kittler and Illingworth, 1986), skew detection and
correction (Simske and Baggs, 2004), and segmentation and classification (Simske and Arnabat, 2003)
operations (and the sum of the three) for the image of Figure 5.5 when divided into eight equal-sized
(704 × 1056 pixel) subimages

Upper Left Upper Right Lower Left Lower Right

Left Right Left Right Left Right Left Right
(ms) (ms) (ms) (ms) (ms) (ms) (ms) (ms)

Thresholding 31 31 31 31 47 31 47 47
Skew detect 250 109 172 94 640 609 780 359
Segmentation and

classification
640 390 686 421 1482 2652 4087 2292

Total document
image processing

921 530 889 546 2169 3292 4914 2698

given the trends reported in the earlier tables, in Table 5.5 the summed processing time for
thresholding rises to 296 ms; the summed processing time for skew detection rises to 3.01 s;
and the summed processing time for segmentation and classification drops even further to just
12.65 s. The total document image processing time decreases from 40.83 to 15.96 s (60.9%),
and if all eight subimages could be processed in parallel, the slowest of the eight subimages
will complete in 4.91 s, an 88.0% reduction in processing time completion.

The results for the large image (Tables 5.1, 5.3, 5.4, and 5.5) are summarized in Table 5.6 and
plotted in Figure 5.6. The total document image processing time closely follows a quadratic
curve that asymptotes to 12.9 s as the number of subimages into which the original image
is dissected increases to a very large number. This is a simple, but nevertheless important,
finding. For the large image shown, these data indicate that the improvement in throughput,
where throughput is inversely proportional to the processing time, is largely due to the act of
converting the process to parallelism by component and not due to the downstream parallelism

Table 5.6 Processing time for the thresholding (Kittler and Illingworth, 1986), skew detection and
correction (Simske and Baggs, 2004), and segmentation and classification (Simske and Arnabat, 2003)
operations (and the sum of the three) for the image of Figure 5.5 on the original image (Table 5.1), the
image bisected into two subimages (Table 5.3), the image broken into quadrants (Table 5.4), and the
image broken into eighths (Table 5.5)

NEW Computer NEW Computer NEW Computer NEW Computer
One Image Two Subimages Four Subimages Eight Subimages

(ms) (ms) (ms) (ms)

Thresholding 156 187 235 296
Skew detect 1 420 1 279 2 450 3 113
Segmentation and

classification
39 249 25 804 17 299 12 650

Total document
image processing

40 825 27 269 19 984 15 959
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Figure 5.6 Plot of the processing time (in ms) versus the number of subimages for the image of
Figure 5.5. Based on the quadratic best fit of the curve, processing time levels off at 12 900 ms as the
number of subimages reaches a very large number

itself. That is, the structural reframing of the process results in a processing time reduction
of more than 60% before any actual parallel process can occur. The advantages of parallel
processing for the large image example thus cannot be more than 40% of the processing time.

The relative additional impact of actually processing the subimages in parallel, of course,
can be as high as 100% × (number of processors − 1)/(number of processors); that is, 50%,
75%, and 87.5%, respectively for two, four, and eight subimages. The variability in processing
time for each of the subimages, however, reduces the actual impact from this ideal value. The
throughput for this simple example is delimited by the maximum subimage processing time.
As shown in Table 5.7, it is this maximum processing time that sets the “effective parallelism,”
or EP, of the parallel processing of the subimage set:

EP = nsubimages

(
tproc(mean)

tproc(max)

)
,

Table 5.7 Relationship between the square root of the number of subcomponents (here subimages), or
Q, and processing time proportionality value, or P, for the data in Tables 5.3, 5.4, and 5.5

Mean Maximum Effective Percent Throughput
Processing Processing Parallelism Improvement
Time (s) Time (s) (EP) (%TI) = [(EP – 1)/EP] × 100% (%)

Two subimages 13.64 15.27 1.786 44.0 (max 50)
Four subimages 5.00 10.62 1.881 46.8 (max 75)
Eight subimages 2.00 4.91 3.248 69.2 (max 87.5)



150 Meta-algorithmics: Patterns for Robust, Low-Cost, High-Quality Systems

where nsubimages is the number of subimages, tproc(mean) is the mean processing time, and
tproc(max) is the maximum processing time.

Table 5.7 shows that this ratio of mean/maximum processing time reduces EP from 2, 4, and
8 to 1.786, 1.881, and 3.241, respectively. This means the percent throughput improvement,
designated %TI, is significantly less than the predicted value for each set of subimages. The
value %TI is defined as

%TI =
(

EP − 1

EP

)
× 100%.

The actual values for %TI are 44.0%, 46.8%, and 69.2%, respectively, for two, four, and
eight subimages. These values are only 10.2% higher, on the mean, than the structural-
reframing-related throughput improvement percentages of 33.2%, 51.1%, and 60.9%, respec-
tively, for two, four, and eight subimages (Tables 5.3, 5.4, and 5.5). Thus, in this example,
structural reframing and actual parallel processing itself have similar relative improvements on
throughput.

I have gone into great detail in this example for another reason. In illustrating the dif-
ferent relative impact of structural reframing on the processing time for different document
image processing tasks—for example, the generally negative effect of subimage processing
on thresholding time versus the highly positive impact of subimage processing on segmen-
tation and classification time—I wish to emphasize the importance of domain expertise in
the parallelization process. The need for domain expertise extends to the decision of how
many subimages to form in order to not affect the accuracy of the important document image
processing output. Applying domain knowledge and the data obtained to the current example,
the following overall design recommendations are made:

1. Thresholding and skewdetectionwill be performed on the entire image before any subimage
formation. When a global threshold is employed, it makes sense to use all of the image
data for the threshold determination, since by the central limit theorem a better estimate
of the means of each of the peaks will be obtained. The same argument holds for skew
determination, and is appropriate since we assume the individual document has only one
skew angle. In addition, performing skew detection on the entire image actually improves
throughput over the four and eight subimage cases.

2. Before segmentation and classification, subdivide the image into eight subimages and
then perform the associated document image processing. We do not further subdivide
(e.g., into 16 subimages) as the data in Table 5.3 indicate that this will not further improve
throughput. Moreover, at some point, the subimages will be small enough that segmentation
and classification will become less accurate.

It should be noted that a global threshold will not always be the right approach. In cases of
nonuniform illumination or image background, a local threshold may be employed. It should
also be noted that the optimum subdivision is in general a function of the computing device’s
capabilities and the image size. For images of approximately the same size processed on the
same device, the optimal subdivision is consistent.

Given these recommendations, the architecture for the document image processing task
is given in Figure 5.7. Using this architecture, all document image processing tasks are
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Perform
thresholding

(156 ms)

Perform skew
detection
(1420 ms)

Split image into eight subimages

Document
segmentation

Document
classification

Document
segmentation

Document
classification

Document
segmentation

Document
classification

Max time for document segmentation + classification = 4087 ms

Figure 5.7 Document image processing architecture chosen. Thresholding and skew detection are
performed on the whole image, which is then subdivided into eight subimages, for each of which seg-
mentation and classification are performed in parallel. The document image processing task is complete
in 5663 ms (compared to 40 825 ms when there is no subimage formation or parallel processing)

complete in 5663 ms, an 86.1% reduction in processing time and a 7.2× improvement in
throughput.

Structural reframing shows that subcomponent processing can take far less processing time
than for a larger component.We can formalize the impact of structural reframing by considering
a document image processing task in which M passes through the image are required. The
processing time is thus proportional to M(HW)P, where H is the height of the image, W is the
width of the image, and P, a coefficient to be determined that describes the relationship, is often
�1.0. Breaking the image into Q2 subcomponents (i.e., Q × Q subimages), the processing
time is then proportional to MQ2(HW/Q2)P, or M(HW)P/Q2P–2. The ratio of processing time
is therefore proportional to 1/Q2P–2. If Q = 4 and P = 2, then the proportion is 1/16, a huge
impact on processing. For the “large image” example illustrated in this section, the values for
Q and P are given in Table 5.8. The data are consistent with the chart shown in Figure 5.6; that
is, as the number of subimages is increased, the relative value of the subdividing the images
further decreases. This means that P is negatively correlated with Q.
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Table 5.8 Relationship between the square root of the number of subcomponents (here subimages), or
Q, and processing time proportionality value, or P, for the data in Tables 5.3, 5.4, 5.5, and 5.6

Image Size (MB) Q P

Original image 17.02 1.0 N/A
Two subimages 8.51 1.414 1.582
Four subimages 4.25 2.0 1.514
Eight subimages 2.13 2.828 1.451

There are a number of assumptions made in this section, mainly for the purpose of providing
a fully transparent worked example. The first is that the data obtained for the large image are
representative of what would be obtained for a large number of images that require document
image processing. That is, the architecture finally deployed in Figure 5.7 is suitable for a large
set of data. Fortunately, that is the case, as I have tested such a system on literally hundreds of
thousands of document page images. The second assumption used in this section is perhaps
more important to note. I have assumed that once the subimages are assigned to parallel
pipelines, the throughput is limited by the maximum processing time required for any of the
subimages. In practice, many images will be parallel processed at a time and so the impact of
EP and %TI will generally be minimal—the more important predictor of system throughput
will be the mean processing time. As such, the relative impact of parallel processing will be
larger than shown in this example.

Given these caveats, then, this example shows that much of the improved throughput
coincident with converting a document image processing serial process to parallelism by
component is due to the structural reframing of the process, and not just the parallelism by
itself. The importance of domain expertise for deciding on the final parallel system architecture
(as in Figure 5.7) is also made apparent.

5.2.2 Image Understanding

5.2.2.1 Introduction

The second “core” application area to be considered in this chapter is image understanding.
As described in Chapter 3, there is a plethora of important image understanding tasks, ranging
from the mundane (image differencing to open automatic entrance doors) to the germane (face
recognition, surveillance) to the arcane (medical image analysis, generalized scene recognition,
augmented reality, etc.). In this section, rather than focus on the specific image understanding
algorithms, I will focus on how parallelism by component can be deployed to simplify the
downstream analysis.

In the example above (Section 5.2.1, document understanding), I showed that image segmen-
tation plays a central role in extracting useful content from the document image. In the same
manner, parallel processing by component for image understanding benefits from efficient
preprocessing. However, unlike documents, which often use a Manhattan layout (meaning
that successive horizontal and vertical “cuts” can break the document into its logical parts, or
“regions”), general images have irregular (nonlinear) boundaries between objects of interest.
As a consequence, the relatively simple, global thresholds such as those described in Kittler
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and Illingworth (1986) and Otsu (1979) will not be as useful. Instead, image segmentation is
often performed using one or more of the following to define segment boundaries:

1. Texture
2. Chroma (hue)
3. Edges
4. Background (areas of low variance)

In the case of texture, significant changes in texture often accompany the transition from an
object in the foreground to an object in the background, due to differences in focus. Chroma
changes significantly when we move from one natural object to the next—for example, a blue
sky to a tan beach, although it is relatively insensitive to sharpness of focus. This allows us to
“regroup” three-dimensional (3D) objects that have been too aggressively segmented using one
of the other methods. Edges are well understood. When we move from one object to another,
edges define the boundaries of both objects. Thus, edges are shared. This has importance
when considering the direction of the edge. Real edges—meaning edges that are not false
positives—should match or blend the edge periphery statistics of two objects they border.
Finally, background-based boundary determination is quite simple, since the background is
defined based on binarization of the image. Wherever the image is “above threshold” we define
it as background. If there are multiple peaks in the histogram above the threshold, we are likely
to have multiple background colors and so this segmentation approach may be less applicable
to that image.

Image understanding benefits from structural reframing along the lines used for document
understanding parallelism by component. Once an image has been segmented, each of the
segments, or regions, are now treated as a separate image. Polygonal boundaries, or even line
segment boundaries, as described in Chapter 3, are used to access only the pixels associated
with each segment. The region bounding box (x-minimum, x-maximum, y-minimum, and
y-maximum) can be used to efficiently lock only this part of the large image in memory. If
the image must be saved as a new (rectangular) image, then the pixels outside of the polygon
or line segment, but inside the bounding box, definition of the region, must be “zero padded”
with the appropriate background value. If the background is white, and the image is a 3-
channel RGB image, then these extra-polygonal pixels will be set to (255,255,255). These
“subimages” are then directly analogous to the subimages explored in Section 5.2.1, and the
image understanding processing can be performed directly on each subimage independently
of the other subimages.

At the highest level, there are two sources of variance in the image: image creation variance
and image capture variance. If an image is man-made, there are differences in how the image
is printed, or displayed on a screen, since different hardcopy (e.g., printers) and softcopy
(e.g., displays) devices have (sometimes widely) different resolution, color, and permanence
characteristics. As printers and displays have become ubiquitous, their manufacturers have in
many casesmoved to simplified engineering in order to retain somenet profit in a commoditized
market. Electronic displays, moreover, have to compete with ambient light since they project
rather than reflect light. Nevertheless, it is still safe to say that the image capture process is more
challenging. The quality of camera and scanner technologies is more widely variable, and in
addition there is extensive variation in illumination and scene framing. These latter variations
cannot be controlled by themanufacturer.What thismeans to the image understanding engineer
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is that she must—for practical, “real-world” applications—build some amount of insensitivity
to such wide variation in captured image quality.

Onemanner inwhich to use parallelismby component to build in this robustness, of course, is
the structural reframing provided by intelligently presegmenting the image. Presegmentation
can be performed at low (often very low) resolution, meaning it can be used in common
across all imaging devices. For scanned documents, I have historically used fixed or variable
resolution input in the range of 30–75 ppi from the preview scan to perform document image
analysis. Carrying this forward, a low-resolution “preview” camera image, such as the LCD
image viewed by the camera user, is almost always sufficient for this segmentation, allowing
subsets of the overall image to be analyzed more quickly as described in Section 5.2.1.

Structural reframing provides the intelligent division of a large, unwieldy, and potentially
inefficiently processed component into a plurality of readily processed subcomponents. The
benefits of this structural reframing, however, are not a given for every type of image under-
standing process, nor is it generally recursive. In addition, it can do nothing about the image
understanding algorithms themselves. In order to aid the parallelism by component approach,
we turn our attention to two approaches that provide real-time predictive insight into how well
an image-understanding task is—or is capable of—proceeding. These approaches can, in fact,
be used to provide feedback to the algorithm designer.

5.2.2.2 Model Down-Sampling

The first of these is model down-sampling, in which an image and the means to understand
specific features within the image may be simultaneously and, from the standpoint of recog-
nition accuracy, uniformly down-sampled. This means, at the highest level, that the model for
analyzing an image is largely independent of the image characteristics—that is, the model is
based on characteristics that can be computed for all input images. For example, suppose im-
ages to be analyzed will have compression sizes from 10% to 100% of the original image size,
include grayscale and color images, and comprise resolutions ranging from 72 to 1200 ppi.
Ideally, then, the model for these images will be based on an image that is (a) compressed to
10% of its original size, (b) grayscale (color information discarded), and (c) 72 ppi resolution.
This is because every image used in the set will meet these minimum requirements. However,
this “down-sampled” model only makes sense if the accuracy of the overall imaging task using
the highest quality, non-down-sampled, images is maintained despite the down-sampling.

The complement of model down-sampling is model up-sampling, which scales every image
to the greatest size, number of channels, and resolution. Model up-sampling, however, has
several disadvantages. Artifacts are introduced by scaling up lossy-compressed images. The
mean size of the images increases, which, as shown in Section 5.2.1, leads to a nonlinear
increase in processing time, which works against the intended processing advantages of
parallelism by component.

In order to test the effect of model down-sampling and model up-sampling on image
understanding tasks, a set of 100 images belonging to one of four classes {nature, city, faces,
documents: n = 25 each} was analyzed separately using each of the three approaches to
image modeling (unchanged, model down-sampling, model up-sampling) followed by image
classification accuracy (Simske, Li, and Aronoff, 2005) determination. A separate set of 100
images (also 25 images in each of the four classes) was used for training. Here, accuracy is
defined as the percent of images assigned to the correct one of the four classes. Processing
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Table 5.9 Task accuracy with different approaches to image modeling. Unprocessed images were a
mean of 260 ppi, and a median of 250 ppi. Down-sampled images were all 150 ppi, and up-sampled
images were all 400 ppi

Unprocessed Images Model Down-Sampling Model Up-Sampling

Image classification 0.71 0.74 0.69
Barcode reading 0.88 0.88 0.88

time was recorded for each image classification. Model down-sampling was simple image
down-sampling, while model up-sampling was simple image up-sampling. Both sampling
approaches used cubic interpolation. Of the 25 images in each set, 5 each were captured
at 150, 200, 250, 300, and 400 ppi. Down-sampled images were all resampled to 150 ppi;
up-sampled images were all resampled to 400 ppi. Unprocessed images were a mean 260 ppi
(median 250 ppi).

A second simple experiment was performed to illustrate the effects of model down-sampling
on functional image processing tasks. In this case, image readability was assessed by looking at
barcode reading success. In this second, separate experiment, a set of 100Aztec barcode images
was created, printed, and then read with an InData Systems LDS-4600 barcode reader. Only
88%of the barcodeswere readable after image noisewas added (coffee spills, abrasion, folding,
etc.), for which the reading times (to the nearest millisecond) were recorded. Readability of
the barcodes was not affected by model down-sampling or up-sampling.

The accuracies of the image classification and barcode reading results are shown in Ta-
ble 5.9. The same 88 barcodes were readable for each approach, yielding an accuracy of
88% for all three image sets (unprocessed, down-sampled, up-sampled). Image classification
was improved by model down-sampling (from 71% to 74% accuracy), likely because down-
sampling applied to the training set resulted in less variable or less noisy training data. Model
up-sampling decreased the accuracy slightly (to 69%), likely a consequence of image scaling
adding noise to the training data.

Processing time, of course, was more noticeably affected by the imaging operations. The
processing times required for image classification and, separately, barcode reading, for each
of the three image sets are shown in Table 5.10. For this simple example, both accuracy and
processing are optimized when the training and later classification use model down-sampling
as opposed to unprocessed (mixed-resolution) or model up-sampled images.

The findings of Table 5.10 are not surprising. The mean image size of the model down-
sampled images is smaller than the mean unprocessed image size, and far smaller than the mean

Table 5.10 Mean processing time with different approaches to image modeling. Both image
classification and barcode reading tasks required the minimum processing time using model
down-sampling. The processing time shown includes the time to down-sample or up-sample the image,
if needed

Unprocessed Images
(ms)

Model
Down-Sampling (ms)

Model Up-Sampling
(ms)

Image classification 1734 567 2941
Barcode reading 226 194 346
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up-sampled image size. The processing time, as shown in the previous section, is proportional
to the mean image size. However, the accuracy results in Figure 5.9 may seem counterintuitive.
Why do smaller images lead to higher classification accuracy? Perhaps it is due to the down-
sampling normalizing—or smoothing out—some of the noise that is present at the higher
initial resolution. Perhaps it is due to the significant content of the image being reliably
represented at lower resolution (i.e., the significant content has an aliasing frequency far
below the higher-resolution sampling frequency). Nevertheless, the results shown in Table 5.9
have their precedence. In previous work, in fact Simske, Sturgill, and Aronoff, (2010), down-
sampling by a factor of as much as 3600 yielded improved classification results for a binary
classification problem.

In this previous work, we obtained packages for a set of authentic and a set of counterfeit HP
inkjet cartridges. The counterfeit cartridges were shipped in counterfeit packaging, from which
the images were taken. Four different types of images I will discuss in this section were each
scanned at 600 × 600 dots/inch (dpi) horizontal × vertical resolution using a desktop scanner
(HP Scanjet 8200). The image types include a set of two barcodes (hereafter “Barcode”), a blue
spot color region (hereafter “Blue”), a set of five branding images separated by white space
(hereafter “Images”) and a single large image (hereafter “Meadow”). The image areas were
approximately 2.7, 2.8, 4.2, and 10.1 in2, respectively. These images were originally scanned
at high resolution (600 ppi) and then down-sampled to as little as 10 ppi (continuous tone ppi).

Ten image processing measurements, comprising the feature set, were computed for each of
these images. All image sets were 50% from scans of authentic, and 50% scans of counterfeit
packaging. Simple binary classification was performed. The individual features were weighted
inversely proportional to their error rates and then combined to create a single binary classifier
(Simske, Sturgill, and Aronoff, 2010).

Table 5.11 summarizes some of the results presented in Simske, Sturgill, and Aronoff
(2010), highlighting the different relative effect of image down-sampling on the classification

Table 5.11 Original and model down-sampled (here as “pure” image down-sampling) images and the
accuracy of classification. Original classification accuracy (top data row) is in italics. Any
down-sampled image sets with higher classification accuracy than the original images are shown in
boldface in the other rows

Down-Sampling Blue Spot Color, Composite Image (Set of Single Meadow
Factor “Barcode” or “Blue” Five Images), or “Images” Image, or “Meadow”

Original (600 ppi) 0.896 0.708 0.816 0.743
4 (2 × 2) 0.832 0.773 0.834 0.801
9 (3 × 3) 0.828 0.674 0.819 0.880
16 (4 × 4) 0.774 0.675 0.954 0.961
36 (6 × 6) 0.739 0.682 0.954 0.893
64 (8 × 8) 0.734 0.669 0.944 0.836
100 (10 × 10) 0.722 0.636 0.917 0.882
144 (12 × 12) 0.710 0.648 0.945 0.880
225 (15 × 15) 0.732 0.642 0.960 0.865
400 (20 × 20) 0.731 0.668 0.896 0.834
900 (30 × 30) 0.740 0.662 0.866 0.768
3600 (60 × 60) N/A N/A 0.718 0.806
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results for four different image types. The first, labeled “Barcode,” is in fact a pair of black
and white, one-dimensional (1D) barcodes segmented as a single image. The barcodes were
classified with 89.6% accuracy at their original scanned resolution (600 ppi), and any level of
down-sampling sharply reduced the classification accuracy. For a blue spot color region, the
so-called Blue image set, down-sampling by a factor of two in both the x- and y-directions
improved the classification accuracy from 70.8% at 600 ppi to 77.3% (at, effectively, 300 ppi).
However, any greater down-sampling resulted in decreased accuracy in comparison to the
original images. Thus, image down-sampling was not in general a good method for model
down-sampling for either of the “Barcode” or the “Blue” image sets.

A completely different set of results was obtained for the continuous tone, or contone,
images used in the study, labeled “Images” and “Meadow.” These images were down-sampled
by as much as 3600: for every down-sampling ratio up to 900, improved classification accuracy
was observed for both images. Indeed, for the “Meadow” image, the classification accuracy
was 80.6% (above the 74.3% on the original image) even when both the x- and y-directions
were down-sampled by a factor of 60–10 ppi. Certainly, some of this is due to the elimination of
noise—at least for the lower down-sampling ratios—but more likely the continued improved
classification accuracy is due to a fundamental difference in the image sets that favors lower
frequency coefficients of the image spectrum.

Regardless, these results add yet another item to the list of reasons for considering parallel
processing. Because the parallel processing of images often does not benefit from the parallel
analysis of a spatial subset of the image—for example, in determining the image skew—the
system algorithm designer may wish to consider resolution down-sampling (which is a very
straightforward example of model down-sampling, as well as perhaps the simplest exemplar
of compressive sampling) by resolution when preparing an image processing task for parallel
processing. Thus, it is possible that preparing an image for parallel processing will not only
improve throughput—as shown for structural reframing in Section 5.2.1—but also improve
the accuracy of the image understanding task, as shown in Table 5.11. A savvy algorithm
architect, therefore, will be interested in exploring both of these forms of preparation for
parallel processing when defining the overall imaging approach.

The results of Table 5.11 illustrate that, for contone images captured with a fixed imaging
device (e.g., a scanner, not a camera), scanning at a resolution higher than 150 ppi is likely
unnecessary for many image understanding tasks. At 4 × 4 down-sampling (resulting in the
same resolution and similar image entropy as scanning at 150 ppi), we see that the mean
accuracy of the two contone images increases from 78.0% to 95.8% (error is reduced by more
than fivefold), while the system additionally benefits from a 16-fold decrease in image size.
Based on the structural reframing results provided in Section 5.2.1, we anticipated a more
than 16-fold improvement in throughput. This means that if overall system performance is
considered a function of the product of the inverse of the error rate multiplied by the inverse of
the image processing time, then we expect a more than 80-fold improvement in overall system
performance for images like these.

This simple form of model down-sampling is part of parallelism by component since each
image component can be treated with model down-sampling prior to applying parallel pro-
cessing. The example shown is extremely simple, but more complex approaches—in which the
images and the models for analysis are not identically down-sampled—can be readily derived
from it. Suppose, for example, that we consider an alternative to performing a single down-
sampling approach for the entire image. Among the alternatives are any of, or any combination
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Figure 5.8 Sample of the authentic “girl with ball” image (left) and counterfeit “girl with ball” image
(right). Note that the counterfeit image, in addition to being lower quality, also has a different halftone
implementation

of, the following: (1) differential down-sampling of image regions based on their frequency,
entropy, and so on, measurements; (2) palettization of different image regions based on their
histograms, chroma variance, entropy, and so on; and (3) filtering (e.g., sharpening, blurring,
unsharp masking, etc.) of different image regions based on their regional characteristics.

It is clear that such approaches naturally lead to meta-algorithmic patterns such as Predictive
Selection (see Section 6.2.4), but I will not follow these possibilities here. Instead, I will focus
on an example of how the components of the model itself vary as the image size is varied.
For this new experiment, several hundred images were scanned from counterfeit packages
that were seized during a raid on a counterfeit printing/manufacturing facility. A sample
original image (scanned at 600 ppi) is shown on the left of Figure 5.8. A sample counterfeit
image (also scanned at 600 ppi) is shown on the right of Figure 5.8. To the human eye, there
are noticeable differences in the image quality. To the trained eye, the completely different
halftoning approach employed by the counterfeiters is striking. To an image understanding
expert, then, it is hardly surprising that a wide array of quantifiable image features will
be effective at disambiguating between authentic images and counterfeit images taken from
legitimate and nonlegitimate packaging.

To illustrate this, 10 features were computed for the images from both authentic and coun-
terfeit packaging when scanned at 600 ppi (“A”), 300 ppi (“B”), and 150 ppi (“C”). The
10 features are relatively straightforward features, and are described in brief here:

1. Entropy is standard image entropy:

−
N∑

x=1

px log2(px),

where px is the percent of image intensities in bin “x” of the histogram, and the histogram
comprises N elements. In this case, the images were captured in 8-bit RGB, so N = 256.
Intensity I is defined as

I = (‖R‖ + ‖G‖ + ‖B‖)/3.
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2. Mean intensity, μI, is defined by

μI =
⎡
⎣ H∑

j=1

W∑
i=1

(‖Ri, j‖ + ‖Gi, j‖ + ‖Bi, j‖)

3

⎤
⎦

/
(WH),

where W is the width of the image in pixels and H is the height of the image in pixels,
‖Ri,j‖ is the magnitude of the red channel for pixel P(i,j), ‖Gi,j‖ is the magnitude of the
green channel for pixel P(i,j), and ‖Bi,j‖ is the magnitude of the blue channel for pixel
P(i,j).

3. Image % edge is determined by computing the edges in an image using an edge detector
(e.g., Laplacian, Sobel, Roberts, etc., method) followed by an edge thresholding operation
(e.g., Otsu (1979) performed on the edge histogram). The percent of the edge histogram
that is above the threshold is considered the “image % edge.”

4. Mean edge magnitude (MEM) is the mean value of the edges left over after thresholding
to compute the image % edge in the previous step. If the threshold T is defined so that 1
≤ T ≤ ME, with ME being the maximum edge value, then the MEM is defined as

MEM =

ME∑
i=T

i × E(i)

ME∑
i=T

E(i)

,

where E(i) is the number of elements in the edge histogram for edge value i.
5. Pixel variance is typically performed in the intensity domain, and is simply a measure of

neighborhood variability in the image.
6. Mean region size, intensity-based segmentation is the mean size of the connected compo-

nents formed after thresholding in the image intensity plane.
7. Region size variance, intensity-based segmentation is the variance in the size of the

connected components formed after thresholding in the image intensity plane.
8. Mean image saturation is mean value of all the pixels for saturation. There are several

definitions for saturation, but all are based on how far from white any of the image
channels—usually red, green, and blue, or RGB—stray. Saturation S is defined as

S = (255 − min(R, G, B))/(R + G + B),

where S = 255, if R = G = B = 0. As a consequence, mean saturation μS is defined as

μS =
⎡
⎣ H∑

j=1

W∑
i=1

(255 − min(‖Ri, j‖ + ‖Gi, j‖ + ‖Bi, j‖))

(‖Ri, j‖ + ‖Gi, j‖ + ‖Bi, j‖)

⎤
⎦ /

(WH).

9. Mean region size, saturation-based segmentation is the mean size of the connected com-
ponents formed after thresholding in the image saturation plane.

10. Region size variance, saturation-based segmentation is the variance in the size of the
connected components formed after thresholding in the image saturation plane.
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Table 5.12 Image features and the accuracy of the classification provided by each for the original
600 ppi scanned images (A), the images when scanned at 300 ppi (B), and the images when scanned at
150 ppi (C)

Image Metric A (600 ppi) B (300 ppi) C (150 ppi)

1. Entropy 0.998 0.936 0.708
2. Mean intensity 0.993 0.930 0.823
3. Image % edges 0.977 1.000 0.927
4. Mean edge magnitude 0.789 0.988 0.999
5. Pixel variance 0.761 0.992 0.694
6. Mean region size, intensity-based segmentation 1.000 0.941 0.877
7. Region size variance, intensity-based segmentation 0.999 1.000 0.790
8. Mean image saturation 0.999 1.000 1.000
9. Mean region size, saturation-based segmentation 1.000 1.000 0.831

10. Region size variance, saturation-based segmentation 1.000 1.000 0.879

Taken together, these 10 metrics comprise a rather eclectic combination of image features,
which are in general useful for comparing printing and/or scanning differences among image
sets. Entropy, pixel variance, mean intensity, and intensity-based region metrics, for example,
are sensitive to changes in image luminosity, both globally and locally. Image%edge andMEM
are highly sensitive to image sharpness and contrast. Mean image saturation and saturation-
based region metrics are sensitive to changes in image contrast and color balance. Table 5.12
provides the classification accuracy using the Simske, Li, and Aronoff (2005) classifier. The
features providing the highest accuracy vary with the scanning resolution. For set A, the
highest accuracy features are {1, 6, 7, 8, 9, 10}; for set B, the highest accuracy features are {3,
7, 8, 9, 10}; and for set C, the highest accuracy features are {4, 8}. Only one feature, mean
image saturation, provides the highest accuracy for each resolution investigated. On the other
hand, entropy is far less useful for image sets B and C than for set A; image % edge is most
useful for set B; and MEM is most useful for set C. This means that the set of features optimal
for classification varies with image size.

Thus, the experiment shows a second, more complex form of model down-sampling. In this
form, the set of features is changed, and thus the model for classification changes with change
in the image size. In effect, the model’s components are varied with resolution. Note that the
example shown here involves selecting an optimal set of global image features to provide image
classification—by analogy, regional image features, such as different approaches to segmenta-
tion, could also be optimized. The application to parallel processing by componentization ar-
chitectures such as shown in Figure 5.7 is strong: model down-sampling can potentially be used
to ensure that structural reframing does not result in decreased accuracy. The data in this section
indicates that this approach will work for some image types—for example, contone images in
this example—but not for others—for example, barcodes and spot colors in this example.

5.2.2.3 Componentization Through Decomposition

We have seen that reducing the size of an image greatly improves image processing throughput
even before parallel processing is deployed, generally possible through structural reframing.
We also saw that model down-sampling provides the means to maintain image understanding
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accuracy, even when significant image compression or down-sampling is employed. In this
section, we investigate another important approach for streamlining image understanding tasks
for later parallel processing. This approach, termed componentization through decomposition,
employs the use of separating an image into different relative or absolute image planes for
separate, usually parallel processing.

There are a number of means of performing componentization through decomposition.
An obvious one is JPEG compression, which decomposes image blocks into their discrete
cosine transform (DCT) coefficients. Certain types of image analysis (e.g., shape matching
and signal processing) can be performed directly on the DCT coefficients. Other examples
include decomposing the image into distinct channels of information, including, for example,
the following:

1. Red, green, and blue (RGB) channels
2. Cyan, magenta, and yellow (CMY) channels
3. Hue, saturation, and lightness (HSL) channels
4. Luma, blue-difference chroma, and red-difference chroma (YCbCr) channels

After decomposing an image into its channels, each channel can be processed separately
(i.e., in parallel) and generally much more rapidly, since each is only one-third the size of the
original image. One such image decomposition is shown in Figure 5.9: 5.9a is the original
image, 5.9b is the hue image, 5.9c is the saturation image, and 5.9d is the intensity, or
luminance, image.

Image decomposition instantly prepares a single image—even an image already prepared
for parallelization by component—for improved parallel processing by trifurcating an im-
age, with an expected disproportionate (i.e., greater than a factor of three) improvement in
image processing throughput. Such an approach can also be used to improve overall image
understanding accuracy. For example, consider separation of foreground from background.
The three maps—for example, hue, saturation, and luminance—can each be binarized (thresh-
olded) upfront to define the background and foreground parts of an image. Only where all three
maps are above their appropriate threshold values do we define the overall image background.
This prevents the determination of false positives for the background.

5.2.2.4 Image Understanding Recapitulation

Image understanding is a very broad field, and this section has only scratched the surface on
a limited set of image analysis approaches—primarily image segmentation. I have omitted
entirely such complex image understanding technologies as face detection and recognition, ob-
ject tracking, scene recognition, and medical imaging. Nevertheless, focusing on simple image
segmentation allowed a more limpid illustration of how to employ model down-sampling and
componentization through decomposition, the two new parallelism-by-component-enabling
approaches introduced in this section.

The discussion on model down-sampling (Section 5.2.2.2) was initially focused on image
down-sampling, since it is clear that reducing the size of an image has disproportionate
improvement on processing throughput. The results of Table 5.11 show, perhaps surprisingly,
that this simplest of model down-sampling approaches can result in increased accuracy even
as it aims for improved throughput. As a second form of model down-sampling, the data in
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(a) (b)

(c) (d)

Figure 5.9 Sample image (a) and its hue (b), saturation (c), and luminance (d) channel. The image (a)
is as large as (b), (c), and (d) combined, since it comprises three channels

Table 5.12 illustrate that certain image features can be used for high accuracy classification
across a wide range of image resolutions. Specifically, the mean image saturation feature
affords 99.9% or higher classification accuracy for image resolutions across the range of
150–600 ppi—it is “robust” to change in image resolution. Thus, mean image saturation
should be part of the classification “model” irrespective of image resolution.

The example for componentization through decomposition involves the decomposition of
an image into its hue, saturation, and intensity channels, each one-third the size in memory of
the original image. These channels-as-images afford different segmentation of the image—by
color and brightness, for example—than simple binarized image segmentation (which corre-
sponds to the intensity image) as described earlier. Effectively, this process of preparing an
image for parallelism by component also enhances the segmentation: two new images are
available to provide salient region extraction.

5.2.3 Biometrics

In Chapter 4, which was focused on parallelism by task, hybrid biometrics were dis-
cussed. Hybrid biometrics rely on multiple input streams to validate identity. In this section,
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component-based biometrics are introduced. As opposed to hybrid biometrics, component-
based biometric features focus on elements and subelements of the same biometric
measurement.

Componentization through decomposition, introduced in Section 5.2.2 for image under-
standing approaches, will be shown to be an important means of addressing biometrics-related
machine intelligence. In this section, I also introduce two other means of parallelization by
components for biometrics: (1) temporal parallelism, with obvious extensions to video analy-
sis, surveillance, and motion tracking; and (2) overlapped parallelism, with obvious extensions
forward to meta-algorithmics—the focus of the next four chapters and this book in general.
Finally, scaled-correlation parallelism—first described in Chapter 4 in relationship to paral-
lelism by task—will be reconsidered for parallelism by component and applied to the field of
biometrics.

5.2.3.1 Componentization Through Decomposition and Biometrics

Image-based biometric analyses—such as face detection and recognition, fingerprint recogni-
tion, iris recognition, and gait analysis—are often performed on a greatly simplified version
of the original image. Fingerprint recognition, for example, is usually performed on a binary
(thresholded) image. Typically the ridges (high points) of the fingerprints are binary black,
and the valleys between the ridges are binary white. As described in Nanavati, Thieme, and
Nanavati (2002), fingerprint image processing usually (for 80% of the fingerprint reading
systems) consists of erosion (thinning) of the ridges to a single pixel in width, followed by
the identification of the finger-scan minutiae such as crossovers, cores, bifurcations, ridge
endings, islands, deltas, and pores. Minutiae matching—which can be assessed using a rules-
based, or expert, system—is a data-parsimonious approach, although it is sensitive to wear
and tear of the fingertips. A second method, pattern matching, generally requires more data
for analysis and is also more sensitive to finger placement during reading (Nanavati, Thieme,
and Nanavati, 2002).

Fingerprint analysis, therefore, seems readily suited to benefit from the application of
componentization through decomposition. The original image can be sent to two parallel
pipelines as shown in Figure 5.10. The left pipeline is used for minutiae matching. The
image is thresholded and the set of minutiae that match for the individual are collected.
A convex hull is formed around these minutiae. This convex hull is shared with the right
parallel pipeline to be described shortly. After the set of matching minutiae are determined,
the confidence value (probability of a match based on the minutiae) is reported as pM. The
right parallel pipeline uses a grayscale (nonbinarized) image, which must be prepared for
analysis in a different fashion. For example, the contrast should be made uniform across the
image and any damaged areas within the convex hull should be excluded. The remaining
pattern within the convex hull can then be matched to the person’s stored fingerprint pattern
using correlation. The matching probability corresponding to the correlation value is then
reported as pC. The pair of probabilities (pM, pC) is then used to determine an overall matching
probability, pC+M.

Generally, the overall probability of matching, pC+M, will be higher than either individual
probability when there is a true match, and lower when either of the two individual metrics
fails or has relatively low accuracy. Table 5.13 shows one such result set, obtained using my
10 fingerprints. In Table 5.13, the values of pC+M are reported for 49 combinations of (pC,pM),
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Capture fingerprint image

Sent to two parallel pathways

Threshold image

Extract minutiae

Form convex hull
of matching

minutiae

Report minutiae
matching probability

Perform image
processing: clean-
up and contrasting

Perform pattern
matching over

convex hull

Report pattern
matching probability

Determine overall probability of match

Figure 5.10 Componentization through decomposition design for fingerprint analysis. The fingerprint
image is binarized (thresholded) and then analyzed using minutiae matching. The convex hull of the
matching minutiae can be used to crop the pattern for matching with the original image. Minutiae
matching and pattern matching pipelines can be assigned to separate parallel hardware optimized for
these two different processes



Application of Parallelism by Component 165

Table 5.13 Probability of a fingerprint biometric match when only minutiae (pM), only pattern
matching correlation (pC), or the combination (pC+M, as shown in the design of Figure 5.10) are
considered. Note the italicized, boldface values in the lower right of the table, wherein the parallel
combination of minutiae and correlation provide higher accuracy than either of the two metrics by
themselves

pC+M pM

pC 0.50 0.80 0.90 0.95 0.975 0.99 0.999
0.50 0.50 0.75 0.82 0.85 0.87 0.89 0.90
0.80 0.72 0.79 0.85 0.90 0.95 0.97 0.99
0.90 0.78 0.86 0.89 0.94 0.98 0.992 0.997
0.95 0.83 0.92 0.95 0.97 0.99 0.994 0.998
0.975 0.86 0.96 0.98 0.99 0.995 0.997 0.9996
0.99 0.88 0.98 0.994 0.9992 0.996 0.998 0.9998
0.999 0.91 0.99 0.9992 0.9994 0.9997 0.9998 0.9999

where pC and pM vary from 0.50 to 0.999. The combinations of (pC,pM) for which pC+M >

max(pC,pM) are shown in italicized boldface. In this example, pC+M > max(pC,pM) as both
pC and pM approach 1.0. In fact, the results from Table 5.13 indicate the following approach
to fingerprint classification, with the assumption being that the two parallel pipelines in
Figure 5.10 each report their confidence values (pM and pC, on the left and right, respectively):

1. When pC + pM ≥ 1.875, choose the classification as provided by the combination of pC

and pM; that is, of pC+M.
2. Otherwise, choose the classification as provided by the minutiae if pM ≥ pC.
3. Otherwise, choose the classification as provided by the pattern matching correlation.

Other means of employing componentization through decomposition for biometrics include
separating signals into distinct frequency bands—for example, for speech or ECG recogni-
tion. These can be nonoverlapping partitions of the spectrum, or different transformations—
for example, linear, logarithmic, log-linear, filtered—to create domain-specific spectrums, or
“cepstrums.” For example, if voice recognition is the biometric in use, then transformations of
the normal mel-frequency cepstral coefficients—namely, cepstral mean subtraction—can be
used to provide speaker identification (Rosenberg, Lee, and Soong, 1994), while correlation
of the untransformed audio spectrum can be used for speaker verification.

5.2.3.2 Temporal Parallelism and Biometrics

Biometric analysis comprises both static and dynamic biometric measurements, as described
in Chapter 3. A simple means of parallelism by component, therefore, is to assign a static
biometric assay to one component of the parallelism, and a dynamic biometric assay to
another component. At first blanch, this would seem to be an unbalanced parallel processing
design, since the static biometric usually requires a single image or signal for analysis, and
the dynamic biometric requires a sequence of images and/or video for analysis. However, the
parallelism is often readily balanced since many of the dynamic biometrics can be computed
using significantly smaller images.
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Consider, for example, a static biometric that requires an image W pixels wide and H pixels
high. Fingerprint recognition, for example, may require an image size of 355 × 390 pixels
for high accuracy (corresponding to 500 dpi). To track the same finger for gesture recognition
may require video analysis of a much smaller image, say 80 × 100 pixels. This is 17.3 times
smaller. If the video frame rate is 24 frames/s, and the biometric gesture is complete within
1 s, then the amount of processing time required for the static and dynamic biometrics are
roughly equivalent. It is feasible to subsample the video stream in time to very closely match
the throughput of these two parallel pipelines.

Temporal parallelism is especially useful when a large signal stream—for examples, an
audio stream or a large video stream from touch screen capture of fingerwriting—is available
and can be streamed to multiple pipelines simultaneously. Face detection, for example, can be
used to determine the minimum cost tracking of a person, while the same stream is used in a
parallel path for scene recognition, or slightly delayed for facial emotion recognition.

Other forms of temporal parallelism are when different aspects of motion are analyzed at
the same time in two or more parallel paths. In the simple surveillance example, one path
can be used for facial detection and recognition, and the other path for walking speed, gait
analysis, and other kinetics calculations.

5.2.3.3 Overlapped Parallelism and Biometrics

Overlapped parallelism is the spatial analog to temporal parallelism. Overlapped parallelism
prevents the loss of context through the use of sharp boundaries, such as those between arbitrary
tessellations of images such as Figure 5.5. The benefits of overlapped parallelism are obvious:
larger images are tessellated intomuch smaller images, which benefit from the disproportionate
improvement in throughput as summarized in Table 5.6. However, the improved throughput
may come at a price—reduced accuracy of segmentation due to the artificial image boundaries
introduced by tessellation cutting through objects that need to be recognized.

The trade-off between throughput and accuracy is illustrated by the example of Tables 5.14
and 5.15. In Table 5.14, a set of surveillance images are analyzed (face detection) and the
overall accuracy is defined as (IP – FP – FN)/TP, where IP is the identified positives, FP is the
false positives, FN is the false negatives, and TP is the true positives. The images are analyzed
using 10 different cases. For Case 1, the images are analyzed without subsegmentation. For
Cases 2–4, the images are subsegmented into 4, 9, or 16 equally sized subimages, respectively,
with no overlap between the subimages. For Cases 5–7, the images are subsegmented into
4, 9, or 16 equally sized subimages with 20% neighboring overlap. Subimages against the
edge of the image must overlap 20% to one side; subimages not against the edge of the image
overlap 10% in each direction. Finally, Cases 8–10 are subsegmented into 4, 9, or 16 equally
sized subimages with 50% neighboring overlap. For each case, the percentage of the image
spanned by the subimage (%Span) and the percent overlapped by the subimages (indicative of
the amount of redundancy of search caused by subimage overlap, designated %Overlap) are
computed. Overall accuracy (A) is defined as described above:

A =
(

IP − FP − FN

TP

)
,
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Table 5.14 Effect of overlapped parallelism on a biometric surveillance process. The images are
analyzed without subsegmentation (Case 1); subsegmented into 4, 9, or 16 equally sized subimages
(Cases 2–4) without overlap; subsegmented into 4, 9, or 16 equally sized subimages with 20%
neighboring overlap (Cases 5–7); or subsegmented into 4, 9, or 16 equally sized subimages with 50%
neighboring overlap (Cases 8–10). The percent image span and area overlap are given by “%Span” and
“%Overlap” columns, respectively. The throughput improvement for each subsegment, overall
accuracy (A) and overall throughput improvement (OTI) are given in the remaining columns. See text
for details

Case Subsegments %Span %Overlap

Throughput
Improvement by

Subsegment A OTI

1 1 100.0 100 1.0× 0.931 1.000
2 4 50.0 100 7.2× 0.857 1.800
3 9 33.3 100 27.4× 0.829 3.044
4 16 25.0 100 54.6× 0.798 3.413
5 4 60.0 144 4.2× 0.907 1.050
6 9 40.0 144 15.6× 0.889 1.733
7 16 30.0 144 35.4× 0.877 2.213
8 4 75.0 225 2.1× 0.926 0.525
9 9 50.0 225 7.2× 0.914 0.800

10 16 37.5 225 19.6× 0.903 1.225

Table 5.15 Optimizing the parallelism by component approach of Table 5.14 through the use of three
different figures of merit (FoMs). The first, A × OTI, is concerned with the product of accuracy and
throughput. The second, (A/OTI) + E, is an estimate of the time to successfully analyze all of the faces
in the image. The third, OTI × (E/Emin), penalizes the system in direct proportion to throughput and to
relative error rate. See text for details

Case
A (Overall
Accuracy) E (Error Rate)

OTI (Overall
Throughput

Improvement)
FoM,

A × OTI
FoM,

(A/OTI) + E
FoM, OTI ×

(E/Emin)

1 0.931 0.069 1.000 0.931 1.000 1.000
2 0.857 0.143 1.800 1.543 0.619 0.869
3 0.829 0.171 3.044 2.524 0.443 1.228
4 0.798 0.202 3.413 2.724 0.436 1.166
5 0.907 0.093 1.050 0.952 0.957 0.779
6 0.889 0.111 1.733 1.541 0.624 1.077
7 0.877 0.123 2.213 1.941 0.519 1.241
8 0.926 0.074 0.525 0.486 1.838 0.490
9 0.914 0.086 0.800 0.728 1.229 0.642

10 0.903 0.097 1.225 1.106 0.834 0.871
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and the overall throughput improvement (OTI) is defined as

OTI = TI(SS)/NSS,

where TI(SS) is the throughput improvement by subsegment and NSS is the number of sub-
segments.

As expected, there is a disproportionate improvement in throughput with decreasing subim-
age size (Table 5.14, fifth column from the left). For example, when the image is divided into
four equally sized subimages, each subimage is processed 7.2 times as quickly. Dividing into
9 and 16 equally sized subimages results in 27.4 and 54.6 times the throughput. Accuracy, as
expected, drops in going from 1–4 to 9–16 subimages (93.1% to 85.7% to 82.9% to 79.8%),
largely due to the splitting up of faces by the tessellation-imposed subimage boundaries. Ac-
curacy is improved with increasing subimage overlap: from 85.7% to 90.7% to 92.6% for the
four subimage cases; from 82.9% to 88.9% to 91.4% for the nine subimage cases; and from
79.8% to 87.7% to 90.3% for the 16 subimage cases.

The OTI improves the most when there is no overlap. For the 9 and 16 subimage cases
without overlap, OTI is greater than 3.0. This is an important input to Table 5.15, which
provides analysis of the accuracy (and its complementary error) and the OTI in three important
figures of merit (FoMs) (effectively, these are cost functions).

Table 5.15 provides the error rate, E, which is defined as 1.0 – A. The minimum error rate,
designated Emin, is the error rate on the original (unsegmented) images, or Case 1. Emin is
therefore 0.069. Three FoMs are then used to compare the nine parallel approaches to Case
1. The First FoM, the simplest, is the product of accuracy and OTI (a higher FoM is better
here). The FoM makes no assumptions about the system’s ability to recognize errors when
they occur, and thus assumes the output of the system will be used “as is.” For this FoM, most
of the parallelism by component approaches outperform the nonparallel Case 1. The best FoM
is obtained for Case 4, followed closely by Cases 3 and 7. In general, the improved throughput
of ever-smaller subimage tessellations outweighs the loss of accuracy for this FoM.

The second FoM, defined by (A/OTI) + E, is an estimate of how much time will be required
to obtain the highest accuracy output (a lower FoM result is better here). It is assumed that if
the correct faces are not found, the same subimages would be analyzed as complete images
(Case 1). The results closely mirror those of the first FoM, with Cases 4, 3, and 7 providing
the best results.

The third FoM assumes that the particular system configuration is penalized by its relative
error rate and rewarded, as usual, by its OTI. The ratio of the error rate, E, to the minimum error
rate, Emin, is multiplied by OTI. For this FoM, Case 7 provided the highest value, followed by
Cases 3 and 4. For this FoM, the relatively low E for the 16-fold tessellation with 20% overlap
outweighs the much higher OTIs of the nonoverlapping tessellation cases.

Which of these three FoMs is the most appropriate for the system depends on how well the
system is able to detect and respond to errors. If a surfeit of images from which to identify
the one or more individuals of interest are available, for example, with video streams, then
the first FoM, rewarding the approach for both accuracy and relative throughput, is very
appropriate. If, on the other, each image is of high value in and of itself—for example, when
only a few frames show the subject(s) of interest—then each image for which a high level of
identification confidence is not obtained may be reanalyzed as a nonsegmented image. For this
situation, the FoM defined as (A/OTI) + E is very appropriate, since it predicts the amount
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of time necessary to perform full image analysis in those cases when the original parallelism
by component approach (e.g., one of Cases 2–10) fails. Finally, in cases where the primary
cost of the system is in responding to errors—for example, when false positives lead to false
arrests—the third FoM, OTI × (Emin/E), is a very appropriate FoM to use comparatively.

5.2.3.4 Scaled-Correlation Parallelism and Biometrics

Scaled-correlation parallelism is somewhat related to model down-sampling. In model down-
sampling, there is the simultaneous scaling of specific data analysis features and of the data
itself. Thus, the “model” for analyzing biometrics data—for example, a signal or image—is
made to be largely independent of the signal or image characteristics. Scaled-correlation
parallelism, on the other hand, can use the down-sampled model to perform analysis at differ-
ent scales—for example, at different sampling frequencies or image resolution—to perform
higher-confidence identification than can be obtained at only a single scale. It is important to
note, however, that scaled-correlation parallelism does not require model down-sampling. The
same (or different default, if preferred) set of features can be analyzed at each scale and the
results processed as seen in the following example.

Having discussed fingerprint identification in the context of componentization through
decomposition, we now look at how fingerprint detection can benefit from scaled-correlation.
In order to address this, however, it must be made clear which form of “correlation” is part of
the “scaled-correlation” approach to parallelism. In this context, correlation of feature behavior
and scale is generally a disadvantage, since it implies that no new interpretation is available
at any scale. What is more important here is the correlation of the relative accuracy (or other
FoM) for each approach for each of the different scales. This is illustrated by the example in
Table 5.16.

Table 5.16 Table distinguishing the feature correlation (“correlation across scale”), which may be
helpful at indicating the best resolution to perform the analysis, from relative accuracy correlation,
indicated by the delta, � = Accuracy(Approach A) – Accuracy(Approach B). The latter is used to
determine the applicability of scaled-correlation parallelism to the task. The individual accuracies of
both approaches at each resolution are indicted, and the cumulative accuracy of all scales at or above
the current resolution is given in parenthesis—for example, “0.867” is the accuracy when the 600 ppi,
400 ppi, and 300 ppi results for Approach A are combined

Fingerprint
Identification
Results

Mean Feature Correlation
with the Results at Highest
Resolution (“Correlation

across Scale”)
Accuracy of the Approach at Each Scale
(Leads to Scaled-Correlation Parallelism)

Resolution
(ppi)

Approach
A

Approach
B

Approach
A

Approach
B

� = Approach
A – Approach B

600 1.000 1.000 0.832 0.735 0.097
400 0.584 0.643 0.761 (0.845) 0.744 (0.789) 0.017 (0.056)
300 0.725 0.711 0.736 (0.867) 0.687 (0.813) 0.049 (0.054)
200 0.583 0.634 0.803 (0.912) 0.756 (0.837) 0.047 (0.075)
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In Table 5.16, fingerprint identification results are shown for original images captured at
600 ppi, and then processed in parallel at 400, 300, and 200 ppi. Two fingerprint identification
algorithms are considered, labeled “Approach A” and “Approach B.” The columns for mean
feature correlation show that the results at the different resolutions correlate with the results at
the highest resolution with values in the range of 0.58–0.73; in other words, not particularly
highly correlated. This implies that there may be extra information obtained by including the
results from two or more resolutions in parallel. The scaled-correlation parallelism values
are given in the last three columns. These results show that the cumulative accuracy of each
approach continues to increase as the lower-resolution results are added—from 0.832 to 0.845
to 0.867 to 0.912 for Approach A, and from 0.735 to 0.789 to 0.813 to 0.837 for Approach
B. The scaled-correlation parallelism, therefore, merits deployment here, as the combination
of results from all four scaled image sizes results in significantly higher accuracy (91.2%
or 83.7%) than the results for the highest accuracy “best” set (83.2% or 73.5%). Further,
Approach A is consistently better than Approach B.

Thus, scaled-correlation parallelism is useful when higher accuracy results can be obtained
by combining the results at multiple scales, rather than simply selecting the optimal scale or
configuration (as is consistent with model down-sampling).

5.2.4 Security Printing

The fourth and final “core domain” in which parallelism by component is considered in this
chapter is that of security printing. As introduced in earlier chapters, security printing is not
a single domain, but rather a broad, interdisciplinary field comprising the important tasks
of serialization, inspection, authentication, forensics, and access rights validation. As such,
the preparation of security printing tasks for parallelism by component is generally quite
straightforward.

The first of two security printing-related approaches benefiting from parallelism by com-
ponentization is a natural consequence of the use of VDP to create multiple variable printed
marks, or “deterrents,” used for one ormore the principle security printing tasks—this approach
is termed variable element parallelism. Figure 5.11 illustrates one such hybrid mark. The hy-
brid mark in Figure 5.11 comprises three independent variable data codes—a two-dimensional
(2D) Data Matrix barcode (black and white barcode in the middle of the image), a larger 3D
(color 2D) barcode, and microtext of the character string “30581D4D025DC3400000002F”
beneath these two nested barcodes. Each of these three components can be analyzed by a
separate pipeline. In this case, each pipeline is custom configured to the particular analysis
task, emphasizing the manner in which preparing the security printing tasks for parallelism by
itself provides system architecture advantages.

Processing these three elements using hybrid parallelism by componentization will also
illustrate how other componentization principles are brought to bear in security printing. The
amount of preprocessing required in this case is minimal—the image is simply sectioned into
two parts between the microtext and the color barcode. Because of the white space surrounding
the 2D barcode—even though it is inside of the color barcode—the 2D barcode is efficiently
and accurate read by commercial barcode reading software, which also conveniently ignores
the surrounding color barcode as “noise.” A separate, custom imaging algorithm is used to
extract the intentional data embedded in the color barcode. Both of the barcodes can be read
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Figure 5.11 Security printing image amenable to componentization through decomposition. The 2D
barcode and the white space surrounding it can be extracted and analyzed by a 2D barcode reading
pipeline; the surrounding color barcode can be analyzed by a second parallel pipeline; and the microtext
below these barcodes can be analyzed by a third parallel pipeline

successfully at relatively low resolution—for example, at 75–150 ppi. This means that the
common image shared by these two barcode pipelines can be down-sampled before sending
the image (and a copy of it) to the two pipelines in parallel—a form of model down-sampling.
The microtext image, however, must be retained at higher resolution or it will be unreadable
to an optical character recognition (OCR) engine. The down-sampling of two pipelines with
the maintenance of full resolution for the third pipeline is thus a form of structural reframing.
Forcing the issue a bit, using the black and white image plane for 2D barcode reading and the
color planes for 3D barcode reading can be loosely considered a form of componentization
through decomposition—truly forcing the issue, having the same image used for two parallel
pipelines can be considered a form of overlapped parallelism. Regardless, in this example,
since the original microtext-bearing image is much smaller in size than the barcode images, af-
ter structural reframing the three parallel pipelines have much more uniform processing times.

The second novel pattern for parallelism that arises from security printing is related to the
POD nature of many variable data printers and presses. Suppose we use the security printing
hybrid image shown in Figure 5.11, and assume that it is associated with a label. Each of the
three variable marks comprising the label—the 2D barcode, the 3D barcode, and the variable
microtext—may provide a unique identifier for each label, a process called mass serialization
of the mark (with the serialization being stochastic, or unpredictable, from one label to the
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next). Each 2D barcode is different from every other 2D barcode in the set; each 3D barcode
is unique; and each microtext string is different from every other microtext string. Thus, the
microtext “30581D4D025DC3400000002F” as shown in Figure 5.11, may on the next label
be “A62BE7DC23905CC2B290DD21,” and so on. It is important to recognize that, during the
creation of these marks, the number of variable elements is also the number of mass serialized
sets that must be created.

When mass serialized sets of identifiers—suitable for writing to any of the marks in Fig-
ure 5.11—are created, they must appropriately make use of random sequence generation
(RSG). Inevitably, such an approach results in some repetition of already existing identifiers, a
phenomena designated “identifier collision.” Every time a new potential identifier is supplied
by the RSG algorithm, then, identifier collision must be avoided. In order to do that, each new
potential identifier must be compared to the existing database of identifiers, and discarded if
they collide. If there are multiple variable elements, then there are multiple databases, each
storing an existing set of identifiers for that variable element. It is, therefore, logical to deploy
a form of search parallelism to this security printing task, wherein each of these identifier sets
is searched in parallel for collisions in preparing the identifiers for the next hybrid mark. This
leads to a parallelism by component that occurs before the next label is printed, so that the
identifiers are already validated for the hybrid mark when it is time to print it.

This form of search parallelism provides what is termed the prelocking of content. The
parallelism by component occurs before the content is actually locked to the specific variable
element in the printed material—that is, before it is printed. Nevertheless, its impact on overall
design is similar to the processing pipeline parallelism architectures featured in much of this
chapter: the throughput is limited by the throughput of the longest data string used for one
of the deterrents. In some ways, then, this search parallelism can be considered a specialized
form of temporal parallelism.

In this brief consideration of parallelism by component for security printing, the final type of
pattern discussed in this chapter but not yet considered is that of scaled-correlation parallelism.
The staggered barcodes described in Chapter 4 illustrate the application of scaled-correlation
parallelism to security printing, and I consider this to be a “parallelism by task” application
more so than a “parallelism by component” task since the same component is used for,
effectively, multiple tasks. The distinction, however, is largely semantic, and so the reader is
referred to Chapter 4 on that topic.

5.3 Summary

In this chapter, eight specific patterns for the application of parallelism by component were
considered. These were explored to exemplify some of the complexities involved in deploying
a parallelism-by-component system, and more importantly to add tools to the toolkit of the
parallel system architect. These eight patterns are:

1. Structural reframing, in which a procedure is prepared for parallelism by component, and
benefits immediately from the restructuring of the analysis (generally through dispropor-
tionate improvement in throughput due to the new structuring).

2. Model down-sampling, in which a model for analysis is able to scale with a reduced data
set without the loss of accuracy.
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3. Componentization through decomposition, in which a data set is parsed into multiple
subsets, or planes, of information, allowing independent parallel analysis with improved
throughput.

4. Temporal parallelism, in which different elements in a sequence can be analyzed in parallel
without loss of analysis accuracy.

5. Overlapped parallelism, in which case a data set—for example, image—is subsegmented
and the subsegments can overlap each other. This can provide improved throughput without
significantly increased error rate since the overlap in general prevents segmentation from
occurring within a feature of interest.

6. Scaled-correlation parallelism, in which analysis at different scales—for example, sampling
frequencies or image resolution—are used to provide higher-confidence identification than
can be obtained at only a single scale.

7. Variable element parallelism, in which two or more variable data elements are analyzed in
parallel. This is pure componentization—each variable data element is, in effect, a separate
component.

8. Search parallelism, in which searching is divided into parallel partitions and then recom-
bined.

Combined, these patterns comprise a useful toolkit for the would-be parallel system ar-
chitect. One of the realities of the new world of computing is that resources, while still not
unlimited, are much more prevalent than in the past. For complex systems, we are still a long
way from being able to consider exhaustive search as a viable means of system optimization.
However, because the complexity of many applications—such as those of document process-
ing, image understanding, biometrics, and security printing outlined in this chapter—has not
increased as quickly as Moore’s law, processing availability, and storage availability over the
past decade, we are in the position of considering the next 1–2 orders of magnitude increase in
the movement toward exhaustive search. It is specifically this opportunity that the patterns in
this chapter exploit. I argue here that it is in general a better use of this plentiful but not unlim-
ited surfeit of processing and storage capability to consider multiple patterns for the parallel
system before using these excess resources to optimize an a priori determined architecture.
Parallel processing patterns such as those outlined in this chapter lead to a large exploration
of the solution space for the overall system, and as such are efficient within the context of the
excess—but not excessive—new incremental resources.

Perhaps more importantly, this varied set of patterns provides a widespread, introspective
search of the solution space. Because such different design approaches as temporal and spatial,
overlapping and down-sampling, are considered, the system designer is not likely to be blind-
sided by missing an obvious approach to improving system accuracy, robustness, performance,
or efficiency. Moreover, in finishing with the hybrid patterns—variable element parallelism
and search parallelism—the approaches to parallelism by componentization naturally lead us
to the consideration of the parallelism-enhancing patterns that comprise the backbone of this
book: meta-algorithmics. We now move our attention to that topic.
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6
Introduction to Meta-algorithmics

Ideally a book would have no order to it, and the reader would have to discover his own.
—Mark Twain

6.1 Introduction

Mark Twain might suggest that the core set of meta-algorithmic patterns—the focus of this
chapter—should be presented randomly, with the reader figuring out her own order to impose
on them. However, in fleshing them out it has become apparent that there is actually a natural
order to these, not necessarily on the complexity of the patterns, but on the way in which the
patterns are constructed from their components. As such, they are presented as first-, second-,
and third-order meta-algorithm patterns, building in complexity—and often on the previous
patterns—as we progress through them. As described in Chapter 2, meta-algorithms are the
pattern-driven means of combining two or more algorithms, classification engines, or other
systems. They are powerful tools for any data scientist or architect of intelligent systems.
Collectively, meta-algorithmics are called intelligence generators, and I will often allude to
them as such, except where I explicitly call out algorithms, systems, or large engines such
as optical character recognition (OCR) or automatic speech recognition (ASR) knowledge
engines. Meta-algorithmic generators are designed to provide the means of combining two or
more sources of knowledge generation even when, or especially when, the combined generators
are known only at the level of black box (input and output only).

The first-order patterns are, naturally, the simplest. But they still provide nuanced, and often
highly flexible, systems for improving—or optimizing—accuracy, robustness, performance,
cost, and/or other factors of interest to the system architect. The first algorithm is the simplest
of all—Sequential Try—and is used to illustrate the ready amenability of meta-algorithmic
patterns to parallelism. In the case of Sequential Try, the parallelized equivalent is the Try
pattern. These are therefore considered together. With the Constrained Substitute pattern, we
explore the approach of obtaining “good enough” performance using meta-algorithmics. This
is very important when system cost is a consideration, and also has implications for parallel
processing. Next, Voting and its fraternal twin, Weighted Voting, are considered together.
Voting approaches are eminently suited to parallel processing, and perhaps the most difficult

Meta-algorithmics: Patterns for Robust, Low-Cost, High-Quality Systems, First Edition. Steven J. Simske.
C© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.
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part for the system architect is in determining the weights. Next, perhaps the most important
of all meta-algorithmic patterns, namely Predictive Selection, is considered. This powerful
pattern allows the system architect to assign different analysis approaches to different parallel
pathways based on a—preferably highly reliable—prediction of how well, relatively, each
pathway will perform on the task at hand. The first-order meta-algorithms conclude with
another broadly applicable pattern: Tessellation and Recombination. This pattern requires the
most domain expertise of any of the first-order meta-algorithmics, but also provides the greatest
amount of reorganization of the information, with higher potential for emergent results and
behavior, under certain conditions, more like that of a genetic algorithm.

The second-order meta-algorithmics, on the other hand, are distinguished from the first-
order meta-algorithmics largely by the two or more stages usually required to perform the
meta-algorithmic task. Here, powerful tools such as confusion matrices, output space transfor-
mation, expert-guided weighting, and thresholding of decision confidence are used to guide
the best selection from a plurality of selections for the output. Second-order patterns begin
with the confusion matrix, which is a succinct and convenient means of conveying both the
absolute and specific system errors. The confusion matrix allows us to differentiate readily
between precision and recall, both important measures of system accuracy, but quite different
in terms of their value for meta-algorithmics. Weighted Confusion Matrix patterns allow us to
evolve the overall system decisions as more data comes in, providing continual, adaptive ma-
chine learning. Next, output space transformation is introduced, which allows us to enforce
more dynamic collaborative behavior amongst the individual generators, which in turn allows
us to use the same generators and the same meta-algorithmic pattern to optimize the system
for different factors; for example, accuracy or robustness or cost. The value of this transforma-
tion tool therefore resides in the high degree of flexibility it provides for the system designer.
This transformation tool is incorporated in the Confusion Matrix with Output Transformation
pattern.

Expert-guided decision-making underpins the Tessellation and Recombination with Expert
Decisioner pattern. Specifically, domain expertise is internalized into the “recombination” step
of the algorithm, dictating how aggregates of the data will be reconstructed from the primitives
resulting from the tessellation step. The Predictive Selection with Secondary Engines pattern
uses the engine with the highest precision for the predicted class unless it does not meet a
certain criteria. If not, then it uses a secondary meta-algorithmic pattern—usually the Weighted
Confusion Matrix pattern. The Single Engine with Required Precision pattern, in contrast, uses
the best single meta-algorithmic engine if it meets a threshold level of precision. If not, in an
analogy to the Sequential Try pattern, it tries the next best single meta-algorithmic pattern: if it
has the required precision, it is selected. This continues until an engine with required precision
for the particular classification is obtained.

Majority Voting or Weighted Confusion Matrix, and Majority Voting or Best Engine, are
two second-order meta-algorithmic patterns based on the Voting pattern. These are relatively
simple composite patterns that are particularly useful when a large number of meta-algorithmic
engines are deployed, but do not reach a majority consensus. Another such “composite” pattern
is the Best Engine with Differential Confidence or Second Best Engine pattern. This pattern
comprises a minimized Sequential Try when and only when the engine with the highest
precision for its proposed output also has a corresponding confidence value that is below a
particular threshold. Lastly, the Best Engine with Absolute Confidence or Weighted Confusion
Matrix provides another confidence-dependent composite pattern: here if the confidence is not



Introduction to Meta-algorithmics 177

acceptable, instead of selecting the best engine, the Weighted Confusion Matrix pattern is
applied.

Like second-order meta-algorithmics, third-order meta-algorithmics generally combine two
or more decision steps. Third-order meta-algorithmics are distinguished from the second-order
patterns, however, in the tight coupling between the multiple steps in the algorithm. As such, the
analysis tools—feedback, sensitivity analysis, regional optimization, and hybridization being
the primary ones—tightly couple not only one step to the next but also connect the downstream
steps back to the earlier steps. Nowhere is this more evident than in the first third-order meta-
algorithmic pattern: the simple Feedback pattern, in which errors in the reconstructed informa-
tion are immediately fed back to change the gain—for example, weights—on the final system.

A longer-viewed third-order meta-algorithmic pattern is the Proof by Task Completion
pattern, which dynamically changes the weighting of the individual knowledge-generating
algorithms, systems, or engines after tasks have successfully completed. This approach allows
infinite scalability (new data does not change the complexity or storage needs of the meta-
algorithmic pattern), and a variable level of flexibility, depending on how heavily weighted
old and new are. This pattern illustrates well the fact that meta-algorithmic system design is
both a craft and an art. The basic patterns provide a structural framework for the application
of meta-algorithmics, which comprises the science of meta-algorithmic patterns. However,
there is a lot of art involved in the form of the application of domain expertise. Applying
specific domain expertise allows the designer to finalize the behavior of the system using a
combination of experience (based on learned rules, constraints, and/or preferences), statistics
collected as part of the processing, and/or forward-looking estimation of current and future
system needs.

The Confusion Matrix for Feedback pattern incorporates the relationship between the intel-
ligence generators elucidated by the confusion matrix. The feedback is therefore directed to
the most salient binary decisions in the problem. The use of expert-driven rules and learned
constraints is incorporated into the next third-order pattern, the Expert Feedback pattern. Then,
gears are shifted as the Sensitivity Analysis pattern is introduced. This powerful pattern is fo-
cused on identifying stable points within the solution space among the top choices, which is
mainly targeted at providing an optimally robust—rather than accurate—system. While the
confusion matrix can definitely be mined for its stable areas, alternatively the sensitivity to
weighting within the plurality of weighting-driven meta-algorithmic patterns may be consid-
ered. Finally, stable areas within the correlation matrix for algorithmic combination can be
considered as part of this pattern.

The Regional Optimization pattern is another intricate pattern, focused on what could be
considered “introspective meta-algorithmics,” wherein individual engines are tuned for sub-
classes of the overall task. This pattern powerfully extends the Predictive Selection pattern
in which different first- or second-order meta-algorithmic patterns (not just meta-algorithmic
algorithms, systems, or engines) are selected based on which has the highest expected pre-
cision for the specific subclass of the overall problem space. Effectively, then, the Regional
Optimization pattern could also be termed the Extended Predictive Selection pattern. The final
meta-algorithmic pattern defined and elaborated in this chapter is the Generalized Hybridiza-
tion pattern. This pattern is concerned with optimizing the combination and sequence of first-
and second-order meta-algorithmic patterns for a given—generally large—problem space. In
this sense, it shares the complexity of the Regional Optimization pattern: it compares more
than one meta-algorithmic pattern for an optimally performing system.
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For each of these 21 meta-algorithmic patterns, this chapter provides a system diagram;
a table of “fast facts” of relevance to the system designer considering more than one meta-
algorithmic approach for her task at hand; and a general discussion of the pattern as an
introduction. The three subsequent chapters will provide more in-depth examples, analysis,
and comparison of and among these 21 patterns.

6.2 First-Order Meta-algorithmics

First-order meta-algorithmics are characterized by their relative simplicity—most involve
a single transformation of the multiple sources of data output from the meta-algorithmic
intelligence generators to make a decision. But the simplicity belies the power and value
of these algorithms. In addition, these patterns are disproportionately deployed. The Pareto
principle holds for meta-algorithmics as it does for many other systems—the first-order meta-
algorithmic patterns comprise roughly 20% of the patterns in this book, while comprising
80% of the meta-algorithmic deployments used in real systems. We begin our discussion of
meta-algorithmics with the Sequential Try pattern.

6.2.1 Sequential Try

The Sequential Try pattern evaluates multiple knowledge generators in a specific order, con-
tinuing until a sufficient accuracy or other specification is obtained. It is one of the simpler
design patterns to conceptualize—it comprises trying one algorithm at a time in a logically
ordered fashion, for example, by highest likelihood of success, minimum licensing cost, best
performance/throughput, and so on; measuring the output in terms of a specific quality metric,
and continuing until expected quality is achieved. Generally, the quality metric will be a given
confidence in the output, such as is typical for most classification and intelligence-generating
algorithms, systems, and engines.

The basic procedure is simple, as illustrated in Figure 6.1. With this pattern, the system
will try one knowledge generator at a time. The output of the generator is measured, and if
satisfactory according to the output quality metric, then it is selected as the final output, with
no further generators in the list executed. If, however, the output does not meet the required
quality metric, then the next generator in the list is used to analyze the input data. The process
is continued until either a satisfactory output is reached, or the list of generators is exhausted.

As illustrated in Figure 6.1, the Sequential Try pattern is 100% serial, and should not
be made parallel. This is because it is usually deployed when the later generators are more
expensive, slower, require more resources, or are otherwise less preferred than the generators
tried earlier. The system facts and considerations for the Sequential Try pattern, affording
the meta-algorithmic system architect with important information for deciding on whether to
select this or an alternate pattern, are provided in Table 6.1.

Table 6.2 presents data for three meta-algorithmic generators. Table 6.3 illustrates how to
choose the order of a Sequential Try set based only on the expected value (i.e., the mean) of the
processing time and the probability of success. Note that in each case the overall probability
of success, poverall, is given by

poverall = 1.0 − ((1.0 − 0.6) × (1.0 − 0.4) × (1.0 − 0.2)).
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Figure 6.1 Schematic for the Sequential Try (first-order meta-algorithmic) pattern. In this pattern, the
algorithms (or systems or engines) are performed in sequence until acceptable output is obtained. This
pattern is 100% sequential (serial) and usually cannot be made parallel

Thus, poverall = 0.808 (an 80.8% chance of success) irrespective of the order of the Sequential
Try. But, if the order is {3,2,1}—that is, Generator 1 is tried first, Generator 2 is tried next,
and Generator 3 is tried last—the mean time for processing is the lowest, at 5.80 s. Table 6.2
illustrates that this is due to the relative p/t ratios of the generators.

The parallel processing analog to the Sequential Try pattern is the Try pattern (Figure 6.2).
In some applications—for example, document digitization, video processing, or other analysis
of large, relatively uniform media—the Try pattern is used to test, in parallel, a small but
representative sample of the overall content for selection of the best intelligence generator.
Each of the candidate generators is tested on the representative sample set and the results are
evaluated. The generator with the best performance is selected for the overall job.

In the more general case, the Try pattern is used to simultaneously process data with multiple
generators and select the generator that provides the best overall output quality. Unlike the
first case, this instantiation of the Try pattern is not meant to select a single generator for
every sample: it can select a different optimum generator for each sample. This per sample
“customization” of generator selection is seemingly inefficient, but since the Try pattern is
fully parallel the selection processing time is limited only by the processing required for the
slowest generator. As with the Sequential Try pattern, the output of a generator must match or
surpass a prescribed metric for this parallel Try pattern. This general incarnation is effectively
a “try several, keep the best” approach.
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Table 6.1 Meta-algorithmic pattern system facts and considerations for the “Sequential Try”
first-order meta-algorithmic pattern

Topic System Facts and Considerations

Pattern name Sequential Try
Related patterns Try (direct parallel form), Single Engine with Required Precision (Sequential Try

with precision being the deciding factor), Generalized Hybridization
(Sequential Try of multiple meta-algorithmic patterns)

Input
considerations

No special training required

Output
considerations

Output should be generated that is compatible with the quality metric used to
assess pass/fail

Decisioning If the quality of the output is above the threshold level (required minimum
quality), the process completes successfully

Scalability Readily scalable, especially when the sequential algorithms are arranged, where
possible, so that the generator(s) most likely to pass (see “statistical behavior”
below) are tried first

Processing Serial only. Slowest possible arrangement, but memory and storage footprints are
only equal to those of the “worst” generator

Parallelism None
Statistical

behavior
For like generators (e.g., having the same cost), the task completes fastest when

the generators are ordered based on the ratio of processing time to probability
of success ratio (see Tables 6.2 and 6.3)

Repurposability Due to its simplicity, the Sequential Try pattern is easily repurposed. It is directly
repurposable for homologous data sets since they can share the quality metric

Domain expertise Moderate to substantial domain expertise is required to create the quality metric.
The rest of the system is relatively generic

Best used on Images and other data types for which quality metrics are well known

Table 6.2 Probabilities of success (p), processing time (t), and the ratio of p/t for three generators.
This is used to define the optimal ordering for a Sequential Try pattern

Factor Generator 1 Generator 2 Generator 3

p (success) 0.6 0.4 0.2
t (processing time in s) 5.0 3.0 1.0
p/t ratio (in s−1) 0.120 0.133 0.200

Table 6.3 Mean processing time for the six different orderings of the generators presented in
Table 6.2. As is shown here, the optimal ordering {3,2,1} corresponds to ordering by p/t ratio

Ordering Expected Total Processing Time Formula E(t) (s)

{1,2,3} (0.6 × 5.0 s) + (0.16 × 8.0 s) + (0.24 × 9.0 s) 6.44
{1,3,2} (0.6 × 5.0 s) + (0.08 × 6.0 s) + (0.32 × 9.0 s) 6.36
{2,1,3} (0.4 × 3.0 s) + (0.36 × 8.0 s) + (0.24 × 9.0 s) 6.24
{2,3,1} (0.4 × 3.0 s) + (0.12 × 4.0 s) + (0.48 × 9.0 s) 6.00
{3,1,2} (0.2 × 1.0 s) + (0.48 × 6.0 s) + (0.32 × 9.0 s) 5.96
{3,2,1} (0.2 × 1.0 s) + (0.32 × 4.0 s) + (0.48 × 9.0 s) 5.80
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Figure 6.2 Schematic for the Try (first-order meta-algorithmic) pattern. The “Try” pattern is a
parallel—that is, simultaneous attempt of all possible “tries”—instantiation of the Sequential Try pattern

The system facts and considerations for the Try pattern are given in Table 6.4. The primary
difference from the related Sequential Try pattern is the full parallelism by design of the Try
pattern.

6.2.2 Constrained Substitute

The second first-order meta-algorithmic pattern is the Constrained Substitute pattern, which
allows the choice of a suitable reduced-expense (in terms of cost, processing time, bandwidth,
a combination thereof, or other metric) algorithm, engine, or system to—effectively—replace
a higher-expense approach. The Constrained Substitute pattern is applicable when there are
a set of competing intelligence generators that are each, independently, capable of perform-
ing a specific task. In addition, some of these generators are preferable to others based on
constraints such as resources (processing, storage, etc.), licensing and other costs, and/or
digital rights.

One of the principal tenets of meta-algorithmic systems is that relatively simple
“lightweight” systems, alone or in combination with other systems, can perform a function with
similar accuracy, robustness, and so on, as a more expensive and/or extensive “heavyweight”
system. The “lightweight” system consumes less system resources (memory or execution cy-
cles) or provides a simplified analysis for a different purpose. At run-time, if the system is not
constrained, then the heavyweight system is used. However, if the one or more constraints hold
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Table 6.4 Meta-algorithmic pattern system facts and considerations for the “Try” first-order
meta-algorithmic pattern

Topic System Facts and Considerations

Pattern name Try
Related patterns Sequential Try (serial form of “Try”), Single Engine with Required Precision

(selects best engine based on precision)
Input

considerations
No special training required

Output
considerations

Output should be generated that is compatible with the quality metric used to
assess pass/fail

Decisioning If the quality of the output of at least one generator is above the threshold level
(required minimum quality), the process completes successfully (and the
output with highest quality is selected)

Scalability Readily scalable, requires only an additional parallel processor for each
additional generator tried

Processing Fully parallel. Fastest possible processing, assuming processor availability.
Maximum memory and storage requirements

Parallelism Innate
Statistical

behavior
After several iterations, if the same generator continually is chosen, then the Try

pattern is discontinued and the single best generator is used thereafter
Repurposability Due to its simplicity, the Try pattern is easily repurposed. It is directly

repurposable for homologous data sets since they can share the quality metric
Domain expertise Moderate to substantial domain expertise is required to create the quality metric.

The rest of the system is relatively generic
Best used on Images and other data types for which quality metrics are well known

true, then the “lightweight” generator is used to provide the overall system output. Generally,
the output of the lightweight generator will have been shown to historically be correlated with
one or more of the heavyweight generators, and so reasonably be deployed as a substitute for
the original generator.

The heavyweight generators can perform their function in a complex yet accurate manner.
In this discussion, they are designated “full generators” (FGs). We also have one or more
lightweight generators. A lightweight generator performs a similar function and consumes
fewer resources or time. We must have a lightweight generator that performs the same function
(e.g., OCR, ASR, or image understanding) as the FG even though they differ in the technique
and the utilization of the resources. A lightweight generator, herein termed a partial generator
(PG), reduces run-time performance penalties (memory, speed, etc.) of the FG. This can be
useful in the cases where you have similar competing FG systems that do one function and a
partial algorithm, or PG, that does the same thing, but more quickly, without a licensing fee,
and so on. In general, the PG is less accurate than the FG.

To use a PG instead of FG, one has to make sure that the PG correlates with one of the full
algorithms and at the same time correlates with the ground truth data for a set of test data. If
such correlation fails, then the use of partial algorithms is not possible. There are, therefore,
two phases for applying the substitute pattern: the correlation (or “training”) phase and the
run-time (or “deployment”) phase, as illustrated in Figure 6.3.
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Figure 6.3 Constrained Substitute (first-order meta-algorithmic pattern). The schematic for the corre-
lation or “training” phase is shown at the top, and the schematic for the run-time or “deployment” phase
is shown at the bottom

In the correlation phase, we determine whether a PG can be used as a substitute for the
original FG. The PGs and the FGs are executed against a set of ground truth samples. The
output from the application of the PG and the FG is then used to statistically obtain the
following correlations:

1. C(p,f ) correlation between the results of the FGs and PGs
2. C(f ,GT) the correlation between the results of the full algorithm and the ground truth data
3. C(p,GT) the correlation between the results of the partial algorithm and the ground truth

data
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The output of training gives the answers to the questions: (1) can we use a PG instead of
the full competing generators, and (2) which FG is highly correlated with the PG? Figure 6.3
(upper diagram) provides a schematic diagram for the correlation or “training” phase of the
Constrained Substitute pattern. The output of training is the clusters or categories of input
training—which can be used to define input data categories or clusters, each of which may
have a distinct C(p,f ), C(f ,GT), and C(p,GT) calculation. This concept is compatible with
the Predictive Selection pattern to be described in Section 6.2.4, where it will be discussed in
greater depth.

In the deployment phase, the PG is used instead of the FG to which it is highly correlated.
There are two alternatives to consider as output of the pattern. First, one can consider the
output of the PG as the output of the system (or the output of the FG). Though this is not true,
it is a good approximation if the PG and the FG are highly correlated. Second, one can prorate
(transform) the output of the PG to obtain an estimate of the actual output if a transformation
function can be used. The transformation function (and the necessary parameters) is dependent
on the nature of the generator (might require training).

As an example of FGs and PGs, consider document segmentation algorithms, informally
referred to as “zoning engines.” The FG is a full-featured zoning generator that creates regions
with fully polygonal boundaries. The PG is a Manhattan-layout-based zoning generator that
creates regions that are only rectangular in shape. Similarly, for an OCR generator, an FG
could be an OCR generator that recognizes the text of various languages and a PG could be
an OCR engine that only detects English text. The Constrained Substitute pattern can also be
used where the results are presented to a user. In this case, it might be useful to use the PG
to present a quick analysis of the results to the user, while the FG is actually performing the
intensive work behind the scenes. Once the FG has completed its analysis, its results can be
presented to the user, replacing the PG’s results.

The Constrained Substitute pattern is optimal for performance and for run-time utilization
of resources; however, it may be difficult to implement, can be impractical for some generators,
and requires a lot of data to train. Table 6.5 summarizes the key facts and considerations for
the Constrained Substitute pattern.

6.2.3 Voting and Weighted Voting

The third of the first-order meta-algorithmic patterns is the Voting pattern, included here with
its often more powerful variant, the Weighted Voting pattern. This pattern is the first to include
the output of multiple algorithms, services, or systems in the final output, rather than simply
selecting the best knowledge generator.

The Voting pattern is one of the simplest of the meta-algorithmic patterns. Voting is usu-
ally performed on the most atomic level possible. Each of the meta-algorithmic intelligence
generators is run against the content. For OCR, this means voting occurs on the individual
characters. For ASR, this means that the voting occurs on the individual phonemes or words.

The vote itself incorporates the output of two or more intelligence generators. Both majority
and plurality voting can be addressed. Past work (Lin et al., 2003) has shown that when
unweighted voting occurs, in some cases the addition of more algorithms actually prevents a
consensus—typically, three engines works well for “strict voting,” and even numbers of voting
generators perform more poorly. Plurality voting can also provide a good balance of accuracy
with less misclassifications than majority voting when the number of generators gets large.
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Table 6.5 Meta-algorithmic pattern system facts and considerations for the “Constrained Substitute”
first-order meta-algorithmic pattern

Topic System Facts and Considerations

Pattern name Constrained Substitute
Related patterns Proof by Task Completion (can be used to generate a correlation matrix when

similar tasks are completed by different generators)
Input

considerations
The task may have to be partially classified to know which substitutions can be

used
Output

considerations
No special requirements except that the substitute generators must produce the

same type of output as the heavyweight generators
Decisioning If the correlation of the PG and FG is high, the PG can substitute for the FG,

saving system resources
Scalability The correlation data scales as N2, meaning the amount of training increases

geometrically as more generators are added to the system
Processing Same as the generator chosen during run-time. Training processing needs are high
Parallelism Training phase fully parallel. Run-time phase generally requires only a single

generator, so that parallelism does not apply per se
Statistical

behavior
Accuracy of substitution improves (both mean and variance of the correlation) as

more training data is added
Repurposability The correlation data may be reused for other predictive meta-algorithmic

approaches
Domain expertise No special domain knowledge required
Best used on Large, relatively uniform data sets

The simple Voting pattern (Figure 6.4, top), however, has some unsatisfying limitations.
Each of its primary incarnations—namely, majority and plurality voting—assigns the same
weight to each of the Voting patterns. But this is rarely appropriate. Even when such a uniform
weighting seems appropriate, it may only be due to an incomplete understanding of the problem
at hand. That is, the problem space likely needs to be further discretized such that the weights
can be assigned to subspaces of the original problem space. Performing this subspace analysis
leads naturally to the Predictive Selection first-order meta-algorithmic pattern, described in
the next section.

Even without Predictive Selection, however, there is often the possibility to improve perfor-
mance of the system using Weighted Voting. The Weighted Voting form of the Voting pattern
(see Figure 6.4, bottom diagram) results in a different relative confidence coefficient for each
meta-algorithmic intelligence generator. In a previous article (Lin et al., 2003), we showed that
for a simplistic classification problem—wherein there are Nclasses number of classes, to which
the a priori probability of assigning a sample is equal, and wherein there are Nclassifiers number
of classifiers, each with its own accuracy in classification of pj, where j = 1, . . . , Nclassifiers—the
following classifier weights are expected:

Wj = ln

(
1

Nclasses

)
+ ln

(
pj

e j

)
,
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Figure 6.4 Voting and Weighted Voting (first-order meta-algorithmic pattern). The schematic for the
Voting pattern is shown at the top, while the schematic for the Weighted Voting pattern is shown at the
bottom. The “voter” decision block tallies the votes and decides on the winner of the voting

where the weight of Classifier j is Wj and where the term ej is given by

e j = 1 − pj

Nclassifiers − 1
.

However, note that in Lin et al. (2003), the optimal values are mistakenly given for a system
in which there are only two classes (not five as reported erroneously).
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Table 6.6 Weighted Voting weights as predicted, separately, by Lin et al. (2003), by the inverse of the
error rate, and by the square of the accuracy for the 5-class, 3-classifier problem described in the text

Information Classifier 1 Classifier 2 Classifier 3

Accuracy (p) 0.99 0.80 0.90
Weights (Lin et al., 2003) 0.678 0.087 0.236
Weights [1/error] 0.870 0.043 0.087
Weights [accuracy2] 0.404 0.263 0.333
Weights [hybrid] 0.637 0.153 0.210
Weights [1/sqrt(error)] 0.649 0.145 0.205

The weights of a particular classification problem are given in Table 6.6. In this example,
the meta-algorithmic intelligence generators are classifiers, and the three classifiers have
accuracies p1 = 0.99, p2 = 0.8, and p3 = 0.9. Here, we consider a 5-class problem for which
the weights are

W1 = ln(0.2) + ln(0.99/(0.01/2)) = −1.609 + 5.288 = 3.679;
W2 = ln(0.2) + ln(0.8/(0.2/2)) = −1.609 + 2.079 = 0.470;
W3 = ln(0.2) + ln(0.9/(0.1/2)) = −1.609 + 2.890 = 1.281.

Normalizing these weights so that they sum to 1.0, we obtain the {W1, W2, W3} values of
{0.678, 0.087, 0.236} shown in Table 6.6.

Five other weighting schemes are also included in Table 6.6. When the weights are propor-
tional to the inverse of the error, then the weight for Classifier j is given by

Wj =
1.0/

(1.0 − p j)

Nclassifiers∑
i=1

1.0/
(1.0 − pi)

.

From this equation, W1 = 0.870, W2 = 0.043, and W3 = 0.087. The weights derived from
the inverse-error proportionality approach are already normalized—that is, sum to 1.0—by
design.

The next weighting scheme shown in Table 6.6 is one based on proportionality to accuracy
squared. The associated weights are described by the following simple equation:

Wj = p2
j

Nclassifiers∑
i=1

p2
i

.

Looking at Table 6.6, it is clear that these two methods—proportionality to inverse error
and accuracy squared—differ considerably in how they weight the individual classifiers. The
inverse-error-based method heavily favors the more accurate classifiers in comparison to the
“optimal” weighting of Lin et al. (2003), while the accuracy-squared-based method favors



188 Meta-algorithmics: Patterns for Robust, Low-Cost, High-Quality Systems

the less accurate classifiers in comparison to the “optimal” weighting. This implies that a
hybrid method, taking the mean weighting of these two methods, may provide performance
closer to the optimum method. This is definitely the case, as shown by the set of weights {W1,
W2, W3} of {0.637, 0.153, 0.210} shown in Table 6.6. The generalized hybrid scheme is given
by the following equation:

Wj = C1

1.0/
(1.0 − p j)

Nclassifiers∑
i=1

1.0/
(1.0 − pi)

+ C2

p2
j

Nclassifiers∑
i=1

p2
i

,

where C1 + C2 = 1.0. In Table 6.6, C1 = C2 = 0.5. Clearly, varying these coefficients allows
the system designer to tune the output for different considerations—accuracy, robustness, lack
of false positives for a given class, and so on.

The final weighting approach given in Table 6.6 is one based on the inverse of the square
root of the error, for which the weights are defined:

Wj =
1.0/√

1.0 − pj

Nclassifiers∑
i=1

1.0
/√

1.0 − pi

.

The behavior of this weighting approach is similar to the hybrid method and not greatly
dissimilar from that of the optimal method.

So, if there is an “optimal” method, then why would any other weighting approach be
selected? One reason is insufficient training data to be confident about the real mean of the
value for accuracy. For example, p1 = 0.99 in the example. If the real value of p1 should
actually prove to be 0.98, then the optimal method (and certainly the inverse-error method) of
computing the weights would result in {W1, W2, W3} values of {0.630, 0.099, 0.271}, with
absolute value differences of {0.048, 0.012, 0.035} from the original weighting set. On the
other hand, this same change in p1 only changes the weights for the accuracy-squared approach
to {0.398, 0.266, 0.336}, with absolute value differences of only {0.006, 0.003, 0.003}. Using
this as an example of sensitivity analysis, for this change in p1, it is clear that the optimum
approach is eight times as sensitive as the accuracy-squared approach. Thus, the estimates
provided by the accuracy-squared method are more robust to changes in the estimation of
accuracy (or, concomitantly, error).

Another reason to use an alternate weighting approach is to create a system more robust
to changes in the class attributes. Different classes may be more frequently encountered over
time, changing both the a priori classification assumptions and the relative accuracy of the
classifiers. In addition, the attributes of the classes themselves may drift over time, which
can significantly change the relative accuracy of the different classifiers. Thus, methods more
robust to these types of changes—such as the hybrid method provided in Table 6.6—may
be deployed so that the system accuracy does not significantly change with such changes
in input.
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Table 6.7 Meta-algorithmic pattern system facts and considerations for the “Voting”/“Weighted
Voting” first-order meta-algorithmic pattern

Topic System Facts and Considerations

Pattern name Voting (and Weighted Voting)
Related patterns Majority Voting or Weighted Confusion Matrix, Majority Voting or Best Engine

(both of these use a binary voting scheme)
Input

considerations
Accuracy of the individual algorithms, systems, or engines needs to be

determined with relatively low variance, especially for the optimum (Lin et al.,
2003) or inverse-error-based approaches

Output
considerations

Output is very simple: either simple counting (Voting pattern) or linear
combinations of the generators (Weighted Voting pattern)

Decisioning The outcome receiving the greatest number of votes is the output. With all forms
of voting, though, the outcomes can be ranked in order

Scalability Eminently scalable, with only linear increases in processing time
Processing All generators contributing to the vote can be performed in parallel
Parallelism Generators can be run 100% parallel; voting tally and decision is performed in a

single (serial) thread
Statistical

behavior
Multiple statistic models can be used for the weighting

Repurposability Can be used also to test for system robustness using sensitivity analysis
approaches

Domain expertise Very little required, since only output accuracy is required
Best used on Systems with a large number of intelligence generators, especially systems where

the intelligence generators have largely different accuracy

The system facts and considerations for the Voting and Weighted Voting pattern are provided
in Table 6.7. Like the Try pattern, the Voting-based pattern is usually associated with parallel
processing of all the salient knowledge generators simultaneously.

6.2.4 Predictive Selection

The fourth pattern, Predictive Selection, is quite powerful—at least among the meta-
algorithmic patterns that result in the selection of a single intelligence generator from a
plurality of them—and usually involves choosing the information generator that has the high-
est precision in a specific predictor test. Figure 6.5 outlines the two main components of the
Predictive Selection pattern: the statistical learning (training) phase of the pattern (top) and the
run-time phase of the pattern (bottom). Combined, these two processes allow the Predictive
Selection pattern to identify the generator that reports the highest confidence in its output for
the specific sample. This depends on the generators’ performance on training data belonging
to the same category as the specific sample being processed. Since there is a high degree of
confidence that the output of the generator will correlate well with the historical data, the
generator that reports the most confidence in its output is usually the best choice for run-time
input. New input samples must, therefore, be classified by their “category” and the generators
are ranked according to their historical (training) performance on each category. The Predictive
Selection pattern will therefore select the generator to use based on the type of input and will
only execute the one selected generator (algorithm, system, or engine).



190 Meta-algorithmics: Patterns for Robust, Low-Cost, High-Quality Systems

Clustering and 
categorization

Clustering and categorization

Content

Content

Predictive Select: statistical learning phase

Ground truth
(training data)

Generator A Generator B

Generator K

Generator N

Output A

Categories

Categories

Generator category-scoring matrix

Generator category-
scoring matrix

Scoring generator

Select generator

Output B

Scores

Output N

Output

Scores

Predictive Select: run-time phase

…

…

Figure 6.5 Predictive Selection (first-order meta-algorithmic pattern). The statistical learning system
diagram is shown at the top, and the run-time system diagram is shown at the bottom

The selection of the best generator for a specific type of input is based on finding an
algorithm—usually a simple one—for assigning an input sample to a specific category (subset
of the input space), and then selecting the best generator based on which generator provides
the highest accuracy for that category. Obviously, some statistical data gathering must occur
first. This training set data is used to define classification categories and for each category rank
the generators based on their performance. This performance data is collected into a generator-
ranking matrix. This matrix allows us to accurately assign the input to a category (or subset),
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called the categorization process. Thus, when a new input is to be processed, its category is
first determined, and then the best performing meta-algorithmic generator for that category
is selected for execution. This is, in practice, relatively easy to accomplish. The training data
is used to determine the precision of each generator for each category. During the run-time
phase, the generator with the highest precision for its reported category is selected as correct.

Note that in many cases, the categories are relevant not only as the means of comparing
predictive ability of the different generators but also may be the output of the generator. That
is, the categories are the same classes that the generators are supposed to accurately assign
input to. This does not have to be the case, but it often is. This means that all we need do is
compare the precision of the generator for the output, and select the output classification as
the one reported by the generator with the highest precision. In other cases, the categories are
distinct from the output; for example, the categories may be black and white image or color
image, and the classes output by the generators are different image objects. In this case, a best
pairing of {category, generator output} is the accepted output.

The Predictive Selection pattern, therefore, is heavily dependent on the existence of sufficient
ground truth, or “training,” data to define each of the categories, or “classes,” which are later
used to assign the generator. The categories selected, when they are distinct from the output
classification, are generally comprised of one or more—sometimes many more—clusters,
depending on the following factors:

1. Central tendency of the data
2. Ratio of clusters/categories
3. Total amount of training data available
4. Differential predictive capabilities of the categories

Central tendency of the data is an important factor because the better the separation be-
tween the categories, the better the predictive value of the generator category-scoring matrix
(as shown in both diagrams in Figure 6.5). The F-score, as usual, is the key metric defining
this central tendency, and it is the ratio of the mean-squared error within the clusters to the
mean-squared error of the cluster means. The more Gaussian the input clusters, the more reli-
able the F-scores. The ratio of clusters to categories is another important factor in generating
sufficient ground truth for the prediction. In general, the number of clusters/categories should
be substantially less than the number of samples/cluster or the predictive behavior of the
training data will have very limited statistical power. The third factor, total amount of training
data available, seems at first an easy one: the more, the better. However, this is not necessarily
true if in collecting more, multiple behaviors are being modeled as a single behavior. As an
example, if there is some systematic drift to the behavior of the training data over time or
location or with the device(s) used to collect the data, and the differences are not compensated
for (e.g., through calibration and/or normalization), then multiple categories may be arbitrar-
ily lumped together. This will increase overlap between what would otherwise be the true
distinctions between categories, with obvious impact on the F-score and predictive power of
the categorization. The fourth factor to be considered in the definition of the categories is the
differential predictive capabilities of the categories. If all of the categories result in similar
relative predictive capabilities—that is, the relative ranking of the generators is similar for
each of the categories—then the predictive value of the categorization is of limited value. In
such a case, it would be better to explore a new metric for prediction.
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Given these considerations, it is clear that the overall utility of this pattern is entirely
dependent on the quality of the prediction—that is, the definition of the categories. This
definition is associated with the statistical learning phase. As outlined above, this is the phase
of the pattern required to assess which generators work better for different types of input data.
A set of ground truth samples is required as input to the training phase. The output of this
phase is a data structure that we can call the generator-ranking, or generator category-scoring,
matrix. A “category” is a set of inputs that possess some common characteristics (metrics
associated with the input data type). The ranking provided is the set of generators in order of
their correlation, or accuracy, with the ground-truthed data of the training set. Figure 6.5 (top
diagram) illustrates the schematic diagram for the statistical learning (training) phase. A set of
ground truth samples with at least one sample (but generally far more, as discussed above) in
each category is assumed available. These input samples are then processed by a classification
algorithm to assign each to a specific category. These samples are also processed by each of
the generators. The output from each generator is then assessed (compared) to the ground truth
data using a scoring algorithm to determine scores (or correlation factors) for each sample.
The scores and the categories are then processed to produce the algorithm-ranking matrix.

During the run-time (deployment) phase, the input samples will be processed to de-
termine the type (category) they best match. The best performing—for example, highest
accuracy—generator for that category will then be selected by looking up the input category
in the generator category-scoring matrix. The output of this deployment phase, therefore, is
simply the output of the selected generator.

The Predictive Selection pattern (Table 6.8) is certainly not new to machine learning. If the
categories for prediction are different from the classes for the output of the selection process,
then the approach is similar to that of decision-tree-based classification. That is, the categories
comprise the first decision and the classes comprise the second decision. If the categories for
prediction are the same as the classes for the output of the selection process, however, the
approach is more closely related to the confusion matrix meta-algorithmic approaches, as will
be described in Section 6.3 and Chapter 8.

6.2.5 Tessellation and Recombination

The fifth and final first-order meta-algorithmic pattern, Tessellation and Recombination, is
shown to be especially useful for creating correct results even when none of the individual
generators produces a correct result—a process called emergence. This process is perhaps best
introduced through analogy. Suppose three card players have poker hands (five cards each).
Each of them offers to give up one or more cards from their hand and pools their discards
with the other two players. Then, each player selects from the discard pile the cards they most
want, or just selects them randomly, potentially changing their hand for the better. A player
with two aces, two kings, and a queen, for example, may discard the queen and select a king
from the common discard, changing the player’s hand from “two pairs” to a “full house”; in
other words, substantially improving the output.

There are, therefore, two primary parts of the pattern: the tessellation reduces the input
space to atomic units (separates cards from the five card hand, in our analogy), the smallest
identifiable units from the combined output of the set of generators. The output from each
generator is analyzed and decomposed (split) into a set of basic (atomic) primitives. As a result,
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Table 6.8 Meta-algorithmic pattern system facts and considerations for the “Predictive Selection”
first-order meta-algorithmic pattern

Topic System Facts and Considerations

Pattern name Predictive Selection
Related patterns Confusion Matrix and all Confusion Matrix-incorporating patterns; Predictive

Selection with Secondary Engines and other hybridized Predictive Selection
patterns; Regional Optimization (Extended Predictive Selection) and other
extended (e.g., recursive) Predictive-Selection-based patterns

Input
considerations

During run-time phase, categories and algorithm category-scoring information
must be loaded along with the content

Output
considerations

Output is straightforward since only a single generator is selected

Decisioning As opposed to the “Voting” and “Tessellation and Recombination” patterns, the
“Predictive Select” pattern is aimed at using only one generator’s output for
each sample to be analyzed

Scalability Scalability is linear with the number of generators during the training phase, and
limited only by the performance of the generator chosen during the run-time
phase. Under most conditions, no additional ground truthing is needed when
new generators are introduced

Processing Since only one generator is used during the run-time phase, the processing time is
minimized, but it is also more likely to give errors in the output

Parallelism Whatever parallelism can be garnered must come from the parallelism integral to
the generator selected. In terms of processing the algorithm, system, or engine,
the process has no innate parallelism

Statistical
behavior

The scoring algorithm selects the best generator to use. Optimum scoring
algorithms provide different relative rankings among the generators for
different categories

Repurposability The Predictive Selection algorithm is the front end to a number of composite, or
hybrid, meta-algorithm patterns, and so is highly repurposable

Domain expertise Considerable domain expertise is often required to design the predictive scoring
metric(s) and approach

Best used on Problems involving a plurality of quite different generators, one or more of which
is useful on a wide variety of inputs

we obtain a set of data primitives larger than the set produced by an individual algorithm.
For instance, if two segmentation algorithms give two different assessments for a region, the
primitive (atomic) regions in this case will be: the common (overlapped) subregions, additional
subregions from segmenter 1, and additional subregions from segmenter 2. Hence, we end
up with a number of regions greater than that produced by either individual segmentation
algorithm.

The second part of the pattern is the recombination, where a merging algorithm considers the
fully tessellated primitive output data and merges primitive outputs into larger-grained output.
This would be selecting the desired king from the discard pile and creating a better five card
hand, the larger-grained output in our analogy. One challenge in implementing the Tessellation
and Recombination pattern is in defining the atomic elements produced by the tessellation,
and the clusters produced by the recombination. These intermediate data heavily depend on
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Figure 6.6 Tessellation and Recombination (first-order meta-algorithmic pattern). The differences in
the outputs (i.e., the atomic elements created) of the individual algorithms (or other generator) are used
to create the tessellations

the type of the function provided by the algorithms. Therefore, it is most likely that domain
knowledge will be needed for implementing this pattern. The technique by which the atomic
elements are merged is encapsulated in the recombination algorithm. Some of those atoms
represent the common output (agreed upon) by all algorithms. Other atoms could be produced
by one algorithm and an alternative atom is produced by another algorithm. For instance, in a
document analysis system, a segmented region could be detected as “photo” by one algorithm
and “drawing” by another algorithm. Specific examples are provided in Chapter 7.

As in the Voting pattern, each of the algorithms in the set is run against the content. The
recombination step can involve alignment when algorithms produce different output (deletion,
insertion, substitution). Also similar to the Voting pattern, the Tessellation and Recombination
pattern has high processing requirements at run-time, since all of the generators will be
executed. Unlike the Voting pattern, however, the Tessellation and Recombination pattern
requires the additional processing associated with forming and merging atomic elements after
the tessellation (Figure 6.6).

The system facts and considerations for the Tessellation and Recombination pattern are
given in Table 6.9. It should be noted that the Tessellation and Recombination pattern pro-
vides no innate parallelism, and requires the highest relative processing of any first-order
meta-algorithmic pattern. Adding to this, there is a large amount of domain knowledge
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Table 6.9 Meta-algorithmic pattern system facts and considerations for the “Tessellation and
Recombination” first-order meta-algorithmic pattern

Topic System Facts and Considerations

Pattern name Tessellation and Recombination
Related patterns Tessellation and Recombination with Expert Decisioner (expert rules guide the

recombination approach)
Input

considerations
No special requirements

Output
considerations

The rules for recombination for the basic pattern are generally based on voting
(otherwise, please see the addition of the expert decisioner in Section 6.3.3)

Decisioning Domain knowledge is generally required for the recombination portion of the
algorithm

Scalability In theory, the addition of another generator could result in significant additional
tessellation. In practice, there are a diminishing number of new elements
created as more generators are added due to the generally high degree of
correlation for the outputs of the plurality of generators

Processing Since each generator is used in creating the tessellation, processing costs increase
as the number of generators increases

Parallelism Parallelism occurs at the generator level. To the extent that the generators
themselves are crafted to be processed in parallel, further parallel processing
can be used

Statistical
behavior

The recombination can be guided by domain-specific statistics

Repurposability In general, the rules for tessellation and especially recombination are specific to
the domain, and not highly repurposable

Domain expertise The tessellation generally requires little domain expertise. The recombination,
however, often requires a considerable amount of domain expertise

Best used on Complicated problem spaces, especially those in which the number of possible
outputs is similar to or greater than the number of generators. Like the
Confusion Matrix pattern, it can also be used to create results that none of the
individual generators list as their highest ranked result—a process called
emergence

required for the tessellation and recombination, making this the most complicated of the
first-order patterns. And, with this, we move on to the second-order meta-algorithmic patterns.

6.3 Second-Order Meta-algorithmics

More complicated patterns comprise the second-order meta-algorithms. A new set of analysis
tools—namely, output space transformation, confusion matrices, and expert decisioners—is
required for these second-order meta-algorithmic patterns. In addition, second-order patterns
can represent conditional combinations of two simpler, first-order, patterns.

6.3.1 Confusion Matrix and Weighted Confusion Matrix

The first of the second-order meta-algorithmic patterns is the Confusion Matrix pat-
tern (Simske, Wright, and Sturgill, 2006), which is in some ways a combination—and
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Table 6.10 Sample confusion matrix with three classes. 94% of the samples belonging to class A are
classified correctly; 85% of the samples belonging to class B are classified correctly; and 88% of the
samples belonging to class C are classified correctly. The off-diagonal elements indicate the
misclassifications, of which roughly half are misclassified as belonging to class A

Classifier Output (Computed Classification) Prediction

Normalized Confusion Matrix A B C

True class of the
samples (input)

A 0.94 0.03 0.03

B 0.08 0.85 0.07
C 0.08 0.04 0.88

extension—of the Voting and the Predictive Selection patterns. Its variant, the Weighted
Confusion Matrix pattern, is more generally applicable to the combinatorial second-order
patterns, where the different generators have different confidence values (weights).

In spite of its name, this pattern uses individual instances (events) that, when accumulated,
generate a confusion matrix. A confusion matrix is a two-dimensional matrix wherein each
column contains the samples of the classifier output (computed classification) and wherein
each row contains the samples in the true class. The confusion matrix is also known as the
error matrix or the contingency table (Stehman, 1997).

Table 6.10 provides an example of simple confusion matrix. The matrix is normalized so
that each row sums to 1.0, corresponding with 100% of the occurrences of the specific class
of the true samples. The confusion matrix is very useful for diagnosing the types of errors that
occur. In Table 6.10, for example, the overall classification accuracy is 89% (the mean of the
diagonals of the matrix), and 8% of true samples of both classes B and C are identified—that
is, misclassified—as belonging to class A.

The Confusion Matrix pattern, and many of the subsequent complex meta-algorithmic
patterns, are based, at least in part, on the output probabilities matrix (OPM), in which each of
the classifiers (a generator used to produce class membership as its output) reports its estimate
of confidence (usually, but not always, as a probability) for classification for each possible
class. A simple OPM example, where there are three classes of input and four classifiers, and a
single test sample from class C is analyzed, is given in Table 6.11. In this table, the confidence
values, or weights, are indeed probabilities. For some generators, however, only a relative
ranking of outputs is provided, and so the confidence values must be manufactured to sum to
1.0, and will not usually directly relate to probabilities.

In the example of Table 6.11, class C is the correct classification. However, Classifier
1 identifies class B as the classification for the sample considered, since the confidence
weighting for the sample (0.51) is higher than for class A (at 0.08) or class C (at 0.41).
Similarly, Classifiers 2, 3, and 4 identify class A, class A, and class B, respectively, as the
classification for the sample considered. In the example, the overall classification made by the
combination of all the classifiers is for class C, since the sum of partial probabilities for class C
(1.52) is greater than for class A or class B. This is an example of an emergent result, wherein
the output of the OPM—the enabling technology of the Confusion Matrix pattern—provides
the correct result (class C) even though none of the individual classifiers were correct.
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Table 6.11 Example of the output probabilities matrix (OPM) used for the decision in the “Confusion
Matrix” second-order meta-algorithmic pattern, operating on a single sample (which actually is from
class C). While Classifiers 1 and 4 identify class B as the correct class, Classifiers 2 and 3 identify class
A as the correct class. Interestingly, the combination of the four classifiers identifies Class C as the
correct class (the sum for class C is the highest, at 1.52)

Classifier

Output Probabilities Matrix 1 2 3 4 Sum

Classifier confidence
(usually
probability) output
for class

A 0.08 0.48 0.44 0.11 1.11
B 0.51 0.13 0.24 0.49 1.37
C 0.41 0.39 0.32 0.40 1.52

The output of the individual sample OPM (specifically, the “sum” column, furthest right in
Table 6.11) can be used as one input in the generation of a full confusion matrix. Since the
correct class is class C, the sums are entered as follows into the “class C” row of a confusion
matrix such as that shown in Table 6.12.

Two more samples—one each from class A and class B—are analyzed using the OPM in
Tables 6.13 and 6.14. In Table 6.13, the sample is correctly classified as belonging to class A,
while in Table 6.14 the sample is incorrectly identified as belonging to class C. The output
of these three samples—Tables 6.11, 6.13, and 6.14—are collected in the confusion matrix of
Table 6.15.

The information in Table 6.15 shows how a confusion matrix is populated by multiple
OPM. The accuracy (mean of the diagonal elements) is 41%, even though two of the three
classifications were correct. Table 6.16 is the digital summarization of Table 6.15. Here the
accuracy is 67% but none of the probabilities are retained. Either approach—that of Table 6.15
or 6.16—is a legitimate means of converting the OPM into a confusion matrix.

Having provided this introduction to the OPM and showing its relationship with the con-
fusion matrix, we turn to its use in meta-algorithmics. Figure 6.7 outlines how it is deployed.
When new content to be classified is obtained, each classifier produces a ranked set of output
with associated probability values normalized to 1.0. These probability values represent the
classifier output (computed classification) values provided in Tables 6.11, 6.13, and 6.14.
Ideally, they represent the relative confidence the classifier has in each class. If not, they can

Table 6.12 Confusion matrix with one data set, the output of Table 6.11, entered. The entries—1.11,
1.37, and 1.52—are normalized to sum to 1.0 and entered into the row corresponding to the correct
classification (class C)

Classifier Output (Computed Classification)

Confusion Matrix A B C

True class of the
samples (input)

A 0.00 0.00 0.00
B 0.00 0.00 0.00
C 0.28 0.34 0.38
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Table 6.13 Example of the output probabilities matrix (OPM) applied to a sample that comes from
class A. The “sum” correctly identifies the sample as belonging to class A

Classifier

Output Probabilities Matrix 1 2 3 4 Sum

Classifier confidence
output for class

A 0.55 0.29 0.33 0.66 1.83
B 0.31 0.43 0.22 0.14 1.10
C 0.14 0.28 0.45 0.20 1.07

Table 6.14 Example of the output probabilities matrix (OPM) applied to a sample that comes from
class B. The “sum” incorrectly identifies the sample as belonging to class C

Classifier

Output Probabilities Matrix 1 2 3 4 Sum

Classifier confidence
output for class

A 0.11 0.23 0.17 0.20 0.71
B 0.45 0.30 0.48 0.40 1.63
C 0.44 0.47 0.35 0.40 1.66

Table 6.15 Confusion matrix with the three data sets, the output of Tables 6.11, 6.13, and 6.14,
entered. The entries are all normalized to 1.0 across the rows as in Table 6.12, and associated with the
correct classification

Classifier Output (Computed Classification)

Confusion Matrix A B C

True class of the
samples (input)

A 0.45 0.28 0.27
B 0.18 0.41 0.41
C 0.28 0.34 0.38

Table 6.16 Confusion matrix with the three data sets, the output of Tables 6.11, 6.13, and 6.14,
entered as correct or incorrect classifications only. No normalization is required here since only one
sample came from each class. Classes A and C are 100% accurate while class B has 0% accuracy for
this sparsely populated matrix

Classifier Output (Computed Classification)

Confusion Matrix A B C

True class of the
samples (input)

A 1 0 0
B 0 0 1
C 0 0 1
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Figure 6.7 Confusion Matrix (second-order meta-algorithmic pattern)

be transformed to do so: please see Section 6.3.2 on the Confusion Matrix with Output Space
Transformation (Probability Space Transformation) pattern. The output of all the classifiers
is collected in the OPM. Each of the columns should sum to 1.0 (the output of the classifier
should be normalized). The rows are then summed, and the row with the largest sum is the
decision of the meta-algorithmic pattern. This is in some ways similar to weighted voting.

Figure 6.8 illustrates the Weighted Confusion Matrix pattern. Here, the classifiers are
weighted relative to one another (the weights need not sum to 1.0—though in practice
this is often adopted). The weights are then multiplied by the elements in the OPM to
produce the weighted output probabilities matrix (WOPM), as shown in Table 6.17. Be-
cause the weights will favor more accurate classifiers—see, for example, the Voting and
Weighted Voting pattern above for ways in which such weights are derived—if sufficient
ground-truthed (training) data is available, better overall accuracy is expected. An example of
this is provided in Table 6.17, in which a previously incorrect classification is corrected by
weighting.

The system facts and considerations for the Confusion Matrix pattern are given in
Table 6.18.

6.3.2 Confusion Matrix with Output Space Transformation
(Probability Space Transformation)

The second of the second-order meta-algorithmic patterns is the first combinatorial pattern:
it combines the Confusion Matrix pattern with an Output Space Transformation. With this
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Figure 6.8 Weighted Confusion Matrix (second-order meta-algorithmic pattern)

pattern, the multiple intelligence generators (classifiers in the case of the Confusion Matrix
pattern) can not only work on the same input data and create compatible output data but also
produce well-behaved output data. Because of its association with the OPM, this pattern is
also known as Probability Space Transformation.

Figure 6.9 provides the schematic for this pattern, which can be combined with either the
Confusion Matrix or the Weighted Confusion Matrix pattern (see Section 6.3.1). The premise

Table 6.17 Example of the weighted output probabilities matrix (WOPM) applied to the same sample,
from class B, given in Table 6.14. The “sum” now correctly identifies the sample as belonging to class B

Classifier (Weight)

Weighted Output Probabilities Matrix 1 (0.15) 2 (0.2) 3 (0.4) 4 (0.25) Sum

Classifier confidence output
for class

A 0.02 0.05 0.07 0.04 0.18
B 0.07 0.06 0.19 0.10 0.42
C 0.07 0.09 0.14 0.10 0.40
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Table 6.18 Meta-algorithmic pattern system facts and considerations for the “Confusion Matrix”
second-order meta-algorithmic pattern

Topic System Facts and Considerations

Pattern name Confusion Matrix and its associated Weighted Confusion Matrix
Related patterns Confusion Matrix with Output Space Transformation (Probability Space

Transformation), Majority Voting or Weighted Confusion Matrix, Best
Engine with Absolute Confidence or Weighted Confusion Matrix, Confusion
Matrix for Feedback

Input
considerations

The individual classifiers must provide, at minimum, ranked preferences for
their classification. The system architect may need to provide her own set of
probabilities if only a ranking is provided—for example, if N rankings are
provided, the rankings can be given values Np, (N − 1)p, . . . , 2p, p where the
sum of this is 1.0 (e.g., if N = 4, p = 0.1)

Output
considerations

The decision process is unambiguous, making the decision output
straightforward

Decisioning The maximum sum of scores identifies the class
Scalability Adding new classifiers or classes requires classifier-specific

training—complexity increases with the addition of either, meaning that in
general scaling is expensive both in terms of training and run-time processing
costs

Processing Since each classifier is used for the generation of the output probabilities matrix,
the processing costs are high

Parallelism The classifiers may be processed in parallel
Statistical behavior The combination of probability matrix and weighting use provides significant

flexibility to the design. Further flexibility can be added, if needed, using the
related Confusion Matrix with Output Space Transformation pattern

Repurposability The pattern is instantly repurposable if one or more of the classifiers must be
removed (e.g., for cost reasons)

Domain expertise Because of the unambiguous nature of the decision process, significant domain
expertise is generally not required

Best used on Classification systems of all types

of the Probability Space Transformation pattern is to modify the probability curves of one or
more classifiers. This is performed to coordinate the behavior of the probability differences
between consecutively ranked classes among the multiple engines, as introduced in Simske,
Wright, and Sturgill (2006). Under certain circumstances such a transformation of the output
probability space, p, can result in significantly improved classification accuracy. One simple
mapping is given by

p → pα.

This signifies the mapping of an output probability p, where 0.0 ≤ p ≤ 1.0, to pα , where α >

0.0. When there are N classifiers, no more than N − 1 classifiers need to be transformed, since
N − 1 is the number of degrees of freedom in coordinating N outputs. This was validated in
Simske, Wright, and Sturgill (2006), where the value for α was varied over the range 0 to 106,
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Figure 6.9 Confusion Matrix with Output Space Transformation (Probability Space Transformation)
second-order meta-algorithmic pattern. The boxes with dashed outlines may not be present. The “×
Weight” boxes are present only if the Weighted Confusion Matrix pattern is used prior to any output
space transformation. The “transformation” boxes are present wherever the output is transformed

and the optimum value for the Nth classifier was indeed α = 1.0, which effects no change in
p. The general procedure for determining the values of α is as follows:

1. Rank all engines from best to worst as 1, . . . , N.
2. Optimize α1.
3. For all engines k = 1, . . . , N − 1, iteratively hold all α1, . . . , αk − 1 steady, and optimize

αk.
4. Leave αN = 1.0.
5. Perform pattern as shown in Figure 6.9.

This approach may appear to have similarity to boosting; however, the goal is not to
relatively weight one classifier over another, but simply to change the relative output behavior
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of the classifiers so that they can work better together. Thus, many other output transformation
functions are possible. In general, the transformation should be monotonic, so that polynomials,
logistic curves, and staircase functions are other good candidates for the transformation.
These curves are used in other domains, such as perceptrons and boosting, but for another
purpose—learning—than they are used for here. Again, the goal of this pattern is to better
explore the relationship between multiple classifiers by transforming the output curves of
N − 1 of them to allow them to work together better—not to work together better individually.
It should also be noted that there are different ways to determine the value of α; for example,
ranking the engines in order of their mean correlation with the other engines, ranking the
engines in several random orders (trial and error) and selecting the one with the best overall
accuracy on the training data, and so on.

The system facts and considerations for the Confusion Matrix with Output Space Transfor-
mation pattern are given in Table 6.19.

6.3.3 Tessellation and Recombination with Expert Decisioner

Several second-order meta-algorithmic patterns are based on the combination of a first-order
meta-algorithmic pattern with another decision-making process when the system confidence
in the first-order pattern is low. Tessellation and Recombination with Expert Decisioner,
Predictive Selection with Secondary Engines, and Single Engine with Required Precision
are three such patterns. All three are built on first-order meta-algorithmics: Tessellation and
Recombination, Predictive Selection, and Sequential Try, respectively.

The Tessellation and Recombination with Expert Decisioner diagram is shown in
Figure 6.10. Most of the diagram shares its architecture in common with the earlier Tessellation
and Recombination pattern (see Section 6.2.5). The additional elements in the schematic are
outlined with dashed borders, and are the two locations where the expert decisioner elements
may be added. The first of these converts the tessellated elements “A, B, C, D, E, F, G, H” into
partially recombined elements “I, C, J, K” guided by the expert decisioner. A simple example
of such an expert decisioner is as follows. Suppose two OCR engines provide the following
two outputs, representing the words in a particular sentence:

1. Acom monkey stone material
2. A common key stonemate rial.

The tessellation of these two sentence representations involves creating the smallest atomic
units possible, accounting for any and all breaks between words in the set of sentences:

A com mon key stone mate rial.

The expert decisioner may be, in this case, an English language dictionary that looks for
all terms in the tessellated set that are in the dictionary. This set, where proper nouns are
capitalized, is:

A com common monkey key keystone stone Stonemate mate material
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Table 6.19 Meta-algorithmic pattern system facts and considerations for the “Confusion Matrix with
Output Space Transformation (Probability Space Transformation)” second-order meta-algorithmic
pattern

Topic System Facts and Considerations

Pattern name Confusion Matrix with Output Space Transformation (Probability Space
Transformation)

Related patterns Confusion Matrix and Weighted Confusion Matrix, Majority Voting or Weighted
Confusion Matrix, Best Engine with Absolute Confidence or Weighted
Confusion Matrix, Confusion Matrix for Feedback

Input
considerations

The individual classifiers must provide, at minimum, ranked preferences for their
classification, and the system architect may need to provide his own set of
probabilities if only a ranking is provided, as with the Confusion Matrix pattern

Output
considerations

The key to this pattern is transforming the probabilities of one or more classifier
outputs to provide better overall system accuracy (training phase only).
Run-time output as for the Confusion Matrix pattern

Decisioning The maximum sum of scores identifies the class. While the maximum sum of
scores changes with probability space transformation, optimizing this
transformation only affects the training phase

Scalability Adding new classifiers or classes requires classifier-specific training, and
reconsideration of probability space transformation. This is order N2 and thus
scales poorly

Processing Since each classifier is used for the generation of the output probabilities matrix,
the processing costs are high. The transformation costs during run-time are
trivial

Parallelism The classifiers may be processed in parallel
Statistical behavior The base Confusion Matrix approach has high flexibility due to both probability

matrix and weighting generation. The ability to transform probability spaces
adds even further flexibility

Repurposability The pattern is somewhat repurposable if one or more of the classifiers must be
removed (e.g., for cost reasons), although the probability space transformations
may need to be reoptimized

Domain expertise Because of the unambiguous nature of the decision process, significant domain
expertise is generally not required. The final output transformation approach
and coefficients are determined based on maximizing accuracy on the training
data

Best used on Classification systems of all types

The expert decisioner then provides an overall weight for each of the possible recombined
sentences, which are captured in Table 6.20.

As shown in Table 6.20, there are two 100% scores, “A common key stone material” and
“A common keystone material.” The traditional “recombination” then proceeds. Effectively,
this block decides between “key stone” and “keystone,” which is an easy decision since both
OCR engines provide a break (i.e., a “space” character) between “key” and “stone,” making
the final output:

A common key stone material
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Figure 6.10 Tessellation and Recombination with Expert Decisioner pattern. The tessellation proceeds
as for the first-order Tessellation and Recombination pattern (Figure 6.6), but instead of simple recom-
bination (e.g., voting) the expert decisioner either performs some form of recombination before or after
the traditional “recombination” block. See text for detail

Table 6.20 Possible recombined sentences from the tessellated string
“A com mon key stone mate rial”

Recombined Sentence Candidate Weight

A com monkey stone material 95.0
A com monkey Stonemate rial 70.0
A com monkey stone mate rial 78.3
A common key stone material 100.0
A common key Stonemate rial 70.0
A common key stone mate rial 83.3
A common keystone material 100.0
A common keystone mate rial 80.0
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In Figure 6.10, it is shown that the “expert decisioner” may also occur after the traditional
“recombination” operation. If this approach is used, then the expert decisioner will only operate
on the following tessellated set, since the “recombination” block has eliminated “keystone” as
a possible tessellated element:

A com common monkey key stone Stonemate mate material

Following the approach of Table 6.20, then, the only 100.0 score is obtained for “A common
key stone material.”

The system facts and considerations for the Tessellation and Recombination with Expert
Decisioner pattern are given in Table 6.21.

6.3.4 Predictive Selection with Secondary Engines

The second of the combinational second-order meta-algorithmic patterns is the Predictive
Selection with Secondary Engines pattern. For this pattern, the training—or “statistical
learning”—phase is identical to the Predictive Selection pattern (Section 6.2.4), and so is not

Table 6.21 Meta-algorithmic pattern system facts and considerations for the “Tessellation and
Recombination with Expert Decisioner” second-order meta-algorithmic pattern

Topic System Facts and Considerations

Pattern name Tessellation and Recombination with Expert Decisioner
Related patterns Tessellation and Recombination, Expert Feedback (which uses expert rules to

dictate learning through feedback)
Input

considerations
No special requirements

Output
considerations

The rules for recombination can be guided by expertise, for example, intelligent
look-up tables—such as dictionaries for text or speech—and object lists for
images

Decisioning Expert domain knowledge is required for the recombination
Scalability Same as for Tessellation and Recombination (Section 6.2.5)
Processing Processing costs increase as the number of generators increases, since each is

used during tessellation
Parallelism Parallelism can occur at the generator level. It is therefore up to the individual

generator to provide parallelism (the pattern does not)
Statistical

behavior
The recombination can be guided by domain-specific statistics, as shown in

Table 6.20
Repurposability Because the recombination is generally domain-specific, the pattern is not highly

repurposable
Domain expertise The tessellation generally requires little domain expertise. The recombination,

especially the expert decisioner, requires a considerable amount of domain
expertise

Best used on Complicated problem spaces, especially those in which the number of possible
outputs is similar to or greater than the number of generators. Mature problem
spaces are highly amenable to expert decisioning
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Figure 6.11 Predictive Selection with Secondary Engines (second-order meta-algorithmic pattern).
The statistical learning system diagram is not shown, since it is identical to that of the Predictive
Selection pattern (Figure 6.5). If the algorithm (originally Algorithm K in the first pass, and thereafter
the “best remaining algorithm”) does not result in acceptable output (passing a specific criterion), then the
predicted best remaining algorithm is selected until either acceptable output is attained or the maximum
number of iterations have been used up

repeated in Figure 6.11. In Figure 6.11, the run-time diagram is a straightforward extension of
Figure 6.5: if the first generator selected is shown to provide output with unacceptable quality,
then the first generator is marked as unacceptable and the best remaining generator is selected.
This process continues until (a) a suitable generator is found, (b) the number of allowed gener-
ator substitutions has occurred, or (c) there are no generators remaining. In case (c), the output
will generally be that of the original best generator, although system failure will be reported.

Most of the system facts and considerations (Table 6.22) for this pattern are similar to
those of the Predictive Selection pattern. As for the Predictive Selection pattern, when the
meta-algorithmic generators are classifier algorithms, the best classifier algorithm is the one



208 Meta-algorithmics: Patterns for Robust, Low-Cost, High-Quality Systems

Table 6.22 Meta-algorithmic pattern system facts and considerations for the “Predictive Selection
with Secondary Engines” second-order meta-algorithmic pattern

Topic System Facts and Considerations

Pattern name Predictive Selection with Secondary Engines
Related patterns Confusion Matrix and all Confusion-Matrix-incorporating patterns, Predictive

Selection pattern, Regional Optimization (Extended Predictive Selection), and
other extended (e.g., recursive) Predictive-Selection-based patterns

Input
considerations

During run-time phase, categories and algorithm category-scoring information
must be loaded along with the content

Output
considerations

Output is compared to a quality criterion for a pass/fail decision

Decisioning A single best generator is identified in the first pass
Scalability Under most conditions, no additional ground truthing is needed when new

generators are introduced, allowing the pattern to scale to a very large set of
generators

Processing If only one generator—the one predicted to provide the best output accuracy—is
used, and it produces acceptable output quality, the processing time is
minimized. If the output criterion fails, though, additional processing—for
example, using the generator with the next highest predicted accuracy—may be
required

Parallelism The system is serial (no parallelism)
Statistical

behavior
The scoring algorithm selects the best generator to use. Optimum scoring

algorithms provide different relative rankings among the generators for
different categories, allowing the next best generator to be readily identified

Repurposability The Predictive Selection portion of the pattern is highly repurposable
Domain expertise Considerable domain expertise is often required to design the predictive scoring

metric(s) and approach
Best used on Systems where multiple generators are available, and where output quality can be

readily (and hopefully efficiently) computed

for which the classification precision (as opposed to recall or accuracy) is highest for its
reported class.

The difference between this pattern and the earlier Predictive Selection pattern is that some
form of check on the output is provided after the best remaining classification has been assigned
to the sample. In many ways, this is a look ahead to the Feedback (Section 6.4.1) and related
patterns, except that the conditions on quality are less strict for this pattern in that they do not
require comparison of the output to the input. For this pattern, the unacceptable quality can be
based only on the output.

6.3.5 Single Engine with Required Precision

The Single Engine with Required Precision pattern is a second-order meta-algorithmic pattern
that elaborates the first-order Sequential Try (Section 6.2.1). It is also somewhat similar to the
just-introduced Predictive Selection with Secondary Engines pattern. In this relatively simple
pattern (Figure 6.12), the generators are considered in order of a certain criterion. Example
criteria are (a) overall accuracy, (b) cost, (c) mean processing time, (d) availability, and (e)
training maturity/robustness.
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Figure 6.12 Single Engine with Required Precision (second-order meta-algorithmic pattern). The sta-
tistical learning system diagram is not shown, since it is identical to that of the Predictive Selection
pattern (Figure 6.5) where the generator category-scoring matrix is the precision matrix. Generators are
ordered based on a criterion and are checked in order until one reports an output for which the associated
precision on training data meets an expected minimum value

Considering the generators in order, the precision of each generator for its computed output
on the training data is compared to the system requirement. If the output classification reported
is associated with a sufficiently high precision (predicted accuracy) on the training data, then
this output is accepted and the process terminates. If not, the next ordered generator—for
example, the next most cost-sensitive, next most accurate, next best throughput, and so on—is
considered. Unlike the Predictive Selection with Secondary Engines pattern, the output crite-
rion is precision of the generator on its training data (not the generator-ranking criterion). The
system facts and considerations for this pattern are given in Table 6.23.

6.3.6 Majority Voting or Weighted Confusion Matrix

This pattern is the first of two variations on the first-order Voting pattern. This is another
relatively simple second-order pattern. It is especially useful when a certain level of confidence
in the output is required. Since majority voting is required, in general this pattern works best
when there are an odd number of generators. The pattern first determines if a majority of the
generators agree on their decision. If so, that decision is the output of the pattern and there is
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Table 6.23 Meta-algorithmic pattern system facts and considerations for the “Single Engine with
Required Precision” second-order meta-algorithmic pattern

Topic System Facts and Considerations

Pattern name Single Engine with Required Precision
Related patterns Predictive Selection and related patterns, Sequential Try
Input

considerations
(a) Overall accuracy, (b) cost, (c) mean processing time, (d) availability, or (e)

training maturity/robustness are used to order the generators. Precision of each
generator for each category of input must be computed

Output
considerations

No special considerations since precision is computed before the generator is run

Decisioning Precision is the decision criterion
Scalability Readily scalable, since the generators are run sequentially until precision criterion

is met. However, new generators must be trained to provide relative ranking
Processing Processing costs are potentially high, if the highest ranked generator does not

succeed, as each successive generator must be run in sequence
Parallelism The algorithm is sequential, there is no parallelism
Statistical

behavior
On simple input samples, the highest ranked engine will usually be the only one

run (assuming all are sufficient to pass). It is good practice, then, to use the
least expensive and/or minimal processing generators higher in the rank

Repurposability The precision matrix generated during ground truthing is fully repurposable to
other Predictive Selection and related patterns

Domain expertise No special domain expertise is required
Best used on Processes where a large number of different generators (with widely different

costs, accuracy, etc.) are available; processes where ground truthing is
relatively easy

no additional processing. If not, we use the Weighted Confusion Matrix approach outlined in
Section 6.3.1 (Figure 6.13).

An interesting aspect of this combinational pattern is that the majority voting step can,
under many conditions, be completed in less than half the time required to process all of
the generators. This is possible if the generators are ordered based on processing time (with
the least processing time first). Suppose, for example, that 20% of the generators are run in
parallel. The fastest 20% to completion can be run in the first set, the 20% next fastest to
completion in the next set, and so on. If there is an overwhelming consensus after the 60%
fastest to completion are processed (i.e., more than 83.3% of these generators— equating
to more than 50% of the entire set of generators—vote for the same output), then the 40%
slowest to completion need not be processed, and the output will have been determined by this
faster-to-completion set. Often, the 60% fastest to completion will take less processing time
than the 40% slowest to completion, a sort of processing Pareto rule. Regardless, the system
facts and considerations for this pattern are given in Table 6.24.

6.3.7 Majority Voting or Best Engine

This pattern is the second of two variations on the first-order Voting pattern. It is especially
applicable to qualitative (pass/fail) problems. The first step again involves majority voting,
such that this pattern should generally employ an odd number of generators. The pattern first
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Figure 6.13 Majority Voting or Weighted Confusion Matrix (second-order meta-algorithmic pattern).
If, and once, a majority is achieved, the decision output of the majority is accepted. Otherwise, the
Weighted Confusion Matrix pattern is followed. The output blocks of the generators may need to be
recalculated (dashed boxes) if the output in the Majority Voting portion of the pattern has not provided
a weighted output probabilities matrix (WOPM). The output of the WOPM is the decision of the
combinational pattern
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Table 6.24 Meta-algorithmic pattern system facts and considerations for the “Majority Voting or
Weighted Confusion Matrix” second-order meta-algorithmic pattern

Topic System Facts and Considerations

Pattern name Majority Voting or Weighted Confusion Matrix
Related patterns Confusion Matrix, Weighted Confusion Matrix, Majority Voting or Best Engine,

Best Engine with Absolute Confidence or Weighted Confusion Matrix,
Confusion Matrix for Feedback

Input
considerations

No special considerations, except that generally this works better with a relatively
large amount of input, since the voting output is so discrete

Output
considerations

Majority Voting provides only a single output, whereas Weighted Confusion
Matrix provides, and uses for decisioning, the weighted output probabilities
matrix (WOPM). Generators that provide a WOPM automatically are therefore
preferable

Decisioning Majority Voting shows nonparametric consensus, while the Weighted Confusion
Matrix shows parametric consensus

Scalability Readily scalable, although an odd number of generators is preferable
Processing Performing the Majority Voting first can provide reduced processing if not all

generators are processed in parallel. See text for details
Parallelism Processing of all generators can be performed in parallel
Statistical

behavior
The Majority Voting subpattern eschews statistics for raw vote counts. If no

majority is achieved, then the Weighted Confusion Matrix and its
already-described statistical behavior govern the output

Repurposability The Majority Voting approach can be used as a front end to many hybrid systems
Domain expertise Majority Voting and (Weighted) Confusion Matrix operations require no special

domain expertise
Best used on Systems with binary or other simplified output, systems with a large number of

available generators

determines if a majority of the generators agrees on their decision, using the same approaches
described in Section 6.3.6. If a majority is achieved, their decision is the output of the pattern
and there is no additional processing. If not, we use the output of the Best Engine (i.e., the
engine with the overall best accuracy on the training set) (Figure 6.14).

This pattern is well suited to systems in which a large set of generators, each of which can
be processed very quickly, is available. Since both parts of the pattern require simple voting
for only one output among many, each generator may be replaced by a simplified form, akin
to a “constrained substitute” (see Section 6.2.2), of itself. As usual, the introduction of this
pattern concludes with the system facts and considerations (Table 6.25).

6.3.8 Best Engine with Differential Confidence or Second Best Engine

How do we know that we have made the right choice at the end of any meta-algorithmic
pattern? This is a fundamental question, especially inasmuch as meta-algorithmic patterns are
designed with being able to treat generators, especially engines (i.e., generators that produce
both data and a classification), as black boxes. In so doing, the focus of the meta-algorithmic
patterns is on the input and output. One crucial element of the output, as introduced with
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Figure 6.14 Majority Voting or Best Engine (second-order meta-algorithmic pattern). If a majority is
achieved, the decision output of the majority is immediately accepted. Otherwise, the output of the best
engine is selected

the OPM (see Section 6.3.1), is the confidence the engine reports for its output choice. The
confidence is the maximum value in the column corresponding to a given engine (or classifier)
in the OPM. This confidence value is computed for each engine in the overall system. If the best
engine is highly confident in its output classification, it is concomitantly more likely to have
the highest confidence amongst all of the engines. This fact is the basis of the combinatorial
pattern described in this section; namely, the “Best Engine with Differential Confidence or
Second Best Engine” pattern (Figure 6.15).

In this pattern, the counterintuitive notion of selecting the Second Best Engine by default
is employed. Here, the Best Engine is used whenever it has a higher confidence, C1, in its
output than the maximum confidence of any of the other engines, designated Cothers. How
much higher is determined by the value of the threshold, shown in the decision diamond in
Figure 6.15. This threshold value is determined during the training phase, preferably on a set of
(validation) samples distinct from the samples used to compute the engine accuracies. When



Table 6.25 Meta-algorithmic pattern system facts and considerations for the “Majority Voting or Best
Engine” second-order meta-algorithmic pattern

Topic System Facts and Considerations

Pattern name Majority Voting or Best Engine
Related patterns Majority Voting or Weighted Confusion Matrix, Best Engine with Differential

Confidence or Second Best Engine, Best Engine with Absolute Confidence or
Weighted Confusion Matrix

Input
considerations

Majority Voting generally this works better with a relatively large amount of
input, since the voting output is so discrete

Output
considerations

Majority Voting and Best Single Engine provide a single decision

Decisioning Both Majority Voting and Best Single Engine provide nonparametric consensus
Scalability Readily scalable, although an odd number of generators is preferable
Processing Performing the Majority Voting first can provide reduced processing if not all

generators are processed in parallel. See Section 6.3.6 for details
Parallelism Processing of all generators can be performed in parallel
Statistical behavior Simple decisions are involved in this pattern
Repurposability The Majority Voting approach can be used as a front end to many hybrid systems
Domain expertise Majority Voting and selecting the Best Engine operations require no special

domain expertise
Best used on Systems with binary or other simplified output, systems with a large number of

available generators, systems in which consensus is preferred
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Figure 6.15 Best Engine with Differential Confidence or Second Best Engine (second-order meta-
algorithmic pattern). The Best Engine is the engine with the overall highest accuracy (among all classes,
or among all engines for the classification they report). The rest of the engines are ranked using the same
metric. If the best engine is differentially more confident (by a minimum of the threshold value) in its
output than the rest of the engines, it is chosen. If not, the Second Best Engine is chosen
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Table 6.26 Results for different values of (C1 − Cothers) in a test of document classification, related to
the work in Simske, Wright, and Sturgill (2006). Note that the overall accuracy of the Best Engine was
0.877; the overall accuracy of the Second Best Engine was 0.858; and the overall accuracy of the Best
Engine with Differential Confidence or Second Best Engine, when the threshold is 0.10 (column 4) is
0.882. This is a decrease in error rate from 0.123 to 0.118, or 4.1%

[1] Best Engine [2] Second Best Percentage of Samples
(C1 − Cothers) Range Accuracy Engine Accuracy Selection in this Range

≥0.30 0.999 0.843 [1] 0.002
0.25–0.30 0.998 0.845 [1] 0.034
0.20–0.25 0.985 0.877 [1] 0.089
0.15–0.20 0.943 0.908 [1] 0.133
0.10–0.15 0.928 0.909 [1] 0.219
0.05–0.10 0.912 0.915 [2] 0.231
<0.05 0.869 0.887 [2] 0.246

(C1 − Cothers) ≤ threshold, however, we choose the Second Best Engine. Since threshold is
generally greater than 0.0, this means on a number of occasions, we will choose the Second
Best Engine. This approach works if the Best Engine is more accurate when (C1 − Cothers) >

threshold and/or the Second Best Engine performs better than the Best Engine when (C1 −
Cothers) ≤ threshold. This is often the case, as shown for data from a document classification
task in Table 6.26.

As Table 6.26 illustrates, this is a meta-algorithmic pattern that requires direct evaluation
of the OPM before deciding (a) whether to use it, and (b) what threshold to use.

This pattern is well suited to slight variations, based on the nature of the data and the
willingness/ability of the system architect to thoroughly analyze the training data before
recommending deployment settings. In fact, for the same data set as used for Table 6.26
(Simske, Wright, and Sturgill, 2006), we had initially investigated the related “Best Engine
with Absolute Confidence or Second Best Engine” pattern (diagram not provided, but obvious
from context), for which we did not obtain as consistently predictive results as when using
the approach in Table 6.26 (the meta-algorithmic accuracy, of 0.874, was actually less than
that of the Best Engine). There is actually a family of five alternatives to the “Best Engine
with Differential Confidence or Second Best Engine” approach that should be investigated
by the meta-algorithmic system architect before settling on the specifics of this pattern.
They are:

1. Best Engine with Absolute Confidence or Second Best Engine
2. Second Best Engine with Differential Confidence or Best Engine
3. Second Best Engine with Absolute Confidence or Best Engine
4. For N = 1, . . . , Nengines, Nth Best Engine with Absolute Confidence
5. For N = 1, . . . , Nengines, Nth Best Engine with Differential Confidence

For (1), we replace the equation “(C1 – Cothers) > threshold” in Figure 6.15 with the simpler
equation “C1 > threshold.” For (2) and (3) we change out the role of the Best Engine in the
root pattern (Best Engine with Differential Confidence or Second Best Engine) with that of
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the Second Best Engine. The premise is that if the Second Best Engine is highly confident
in its output—either in a relative sense (2) or an absolute sense (3)—it should be seriously
considered to be used instead of the Best Engine, unless these two engines are very highly
correlated. This is because these two engines disagree on some decisions in which the Second
Best Engine is the correct one, and this is most likely to occur in general when the Second
Best Engine is most confident in its output.

Not surprisingly, this approach is often quite successful, especially when the Best and
Second Best Engine have similar overall accuracies. Having considered, then, the exten-
sion of high confidence to all engines, we arrive at the two variants (4) and (5), in which
every engine—from best to worst in terms of accuracy—is compared to a threshold (pos-
sibly a different threshold for each engine!) for its absolute (4) or relative (5) confidence.
Once an engine exceeds its appropriate threshold, its output is accepted and the pattern
is complete. This approach is often useful when the different engines provide a wide
range of confidence values—meaning that when they report high confidence, it is generally
meaningful.

The system facts and considerations for this pattern are given in Table 6.27.

Table 6.27 Meta-algorithmic pattern system facts and considerations for the “Best Engine with
Differential Confidence or Second Best Engine” second-order meta-algorithmic pattern

Topic System Facts and Considerations

Pattern name Best Engine with Differential Confidence or Second Best Engine
Related patterns Best Engine with Absolute Confidence or Weighted Confusion Matrix,

Generalized Hybridization
Input

considerations
A large amount of training data must be generated and analyzed in order to

make the reported confidence values meaningful
Output

considerations
All engines in the system must provide confidence values, preferably in the

form of an output probabilities matrix, or OPM
Decisioning The pattern—and its five main variants outlined—makes a threshold-based

decision. If enough training data is available, this is the only variable in the
design, and it can be determined automatically using data such as shown in
Table 6.26

Scalability Scaling is linear with the number of engines, since each engine is responsible
for reporting its own confidence values

Processing This pattern—and its variants—require a lot of processing time, since each
engine must have reported its confidence values before the pattern can
proceed

Parallelism The individual engines can be processed in parallel
Statistical behavior The confidence values should be closely associated with probability. This will

be further discussed in Chapter 8
Repurposability The information gathered for this pattern can be used for the five variants

described, and the confidences can be used for many other patterns
Domain expertise No special domain expertise is required, and the setting of the threshold can be

easily automated
Best used on Systems with a large number of engines, especially where two or more of the

engines are highly accurate



Introduction to Meta-algorithmics 217

6.3.9 Best Engine with Absolute Confidence or Weighted Confusion Matrix

The final second-order meta-algorithmic pattern is also a combinational pattern in which
the Best Engine is selected with a certain level of confidence or else a secondary pattern
is selected. The secondary pattern in this case is itself a second-order meta-algorithmic: the
Weighted Confusion Matrix pattern. The diagram of the pattern is shown in Figure 6.16.

As with the previous section, this is a meta-algorithmic pattern that requires direct evaluation
of the OPM to decide between selecting the output of the Best Engine and the output of the
WOPM, which makes a decision based on the output of all the engines. This pattern is also

Content

Best engine Second best engine Nth best engine

First output

Determine best engine
confidence = C1

Yes
Use first output
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Decision
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Figure 6.16 Best Engine with Absolute Confidence or Weighted Confusion Matrix (second-order meta-
algorithmic pattern). The Best Engine is the engine with the overall highest accuracy (among all classes,
or among all engines for the classification they report). The rest of the engines are ranked using the same
metric. If the best engine reports a confidence value for its selected output above a given threshold, it is
chosen. If not, the Weighted Confusion Matrix (Section 6.3.1) is used to choose the output
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well suited to slight variations. There is actually a family of five alternatives to the “Best
Engine with Absolute Confidence or Weighted Confusion Matrix” approach that should be
investigated by the meta-algorithmic system architect before settling on the specifics of this
pattern. They are:

1. Best Engine with Differential Confidence or Weighted Confusion Matrix
2. Second Best Engine with Absolute Confidence or Weighted Confusion Matrix
3. Second Best Engine with Differential Confidence or Weighted Confusion Matrix
4. For N = 1, . . . , Nengines, Nth Best Engine with Differential Confidence
5. For N = 1, . . . , Nengines, Nth Best Engine with Absolute Confidence

For (1), we replace the equation “C1 > threshold” in Figure 6.16 with the equation
“(C1 – Cothers) > threshold.” For (2) and (3) we change out the role of the Best Engine
in the root pattern (Best Engine with Absolute Confidence or Weighted Confusion Matrix)
with that of the Second Best Engine. Here, as in Section 6.3.8, the rationale for (2) and (3) is
that if the Second Best Engine is highly confident in its output—either in a relative sense (2) or
an absolute sense (3)—it is used in place of the Best Engine. The same reasoning holds here:
the two engines disagree on some decisions in which the Second Best Engine has the correct
output, and this is most likely as a rule when the Second Best Engine has its highest confidence
in its output. This rationale can be applied to high confidence in any single engine, providing
two more variants on this pattern (4) and (5), in which every engine—from best to worst in
terms of accuracy—is compared to a threshold (again, possibly a different threshold for each
engine). Once any engine exceeds any given threshold, the output of this individual engine is
accepted as the system decision and the pattern terminates. If no threshold is exceeded, the
pattern terminates with the Weighted Confusion Matrix as described in Section 6.3.1. This
family of six approaches is generally useful when there is a multiplicity of engines with widely
different accuracies with an additional characteristic: for one large subset of input, the most
accurate or second most accurate engine will suffice; for the other large subset, the WOPM is
generally the most accurate output generator. One example is an ASR engine being used to
handle customer calls. Many of the callers are native speakers of a language, for which the
best or second best ASR engine will suffice. For nonnative speakers, however, custom engines
(e.g., ASR engines good at handling Eastern European, South Asian, or East Asian accents)
will contribute strongly to the WOPM and therein significantly increase the system accuracy.

The system facts and considerations for this pattern are given in Table 6.28.

6.4 Third-Order Meta-algorithmics

The second-order meta-algorithmic patterns, as we have just seen, added complexity largely
by opening up the system chosen to options and in most cases combinations of two. The third-
order meta-algorithmic patterns—generally focused on feedback from the output to input—add
a further level of complexity. For one thing, it is often harder to predict the behavior of the
patterns. For another, they often require two or more variables to be set. However, these patterns
also add a higher degree of flexibility and tunability, since they provide multiple subpatterns
joined together. We begin this section with the Feedback pattern, which is the first one to
involve the feedback of error signals to improve the real-time output behavior of a system.
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Table 6.28 Meta-algorithmic pattern system facts and considerations for the “Best Engine with
Absolute Confidence or Weighted Confusion Matrix” second-order meta-algorithmic pattern

Topic System Facts and Considerations

Pattern name Best Engine with Absolute Confidence or Weighted Confusion Matrix
Related patterns Best Engine with Differential Confidence or Second Best Engine, Weighted

Confusion Matrix, all combinational and hybridized patterns involving a
weighted confusion matrix

Input
considerations

A significant amount of training data is required in order to make the reported
confidence values meaningful

Output
considerations

All engines in the system must provide confidence values, preferably in the form
of a weighted output probabilities matrix, or WOPM

Decisioning The pattern—and its five main variants outlined—makes a threshold-based
decision upfront. If no confidence value exceeds its threshold, then a Weighted
Confusion Matrix approach is performed

Scalability Scaling is linear with the number of engines, since each engine is responsible for
reporting its own confidence values. Computing weights for each engine
requires negligible additional computation

Processing This pattern—and its variants—require a lot of processing time, since each
engine must have reported its confidence values before the pattern can proceed.
However, the confidence values can be used for both of the two parts of the
pattern

Parallelism The individual engines can be processed in parallel
Statistical

behavior
The confidence values should be closely associated with probability

Repurposability The information gathered for this pattern can be used for the five variants
described, and the confidences can be used for many other patterns (e.g., this
pattern and the pattern in Section 6.3.8 require the same basic data sets)

Domain expertise No special domain expertise is required
Best used on Systems for which there are a large set of engines, with widely different

accuracies. For one large subset of input, the most accurate or second most
accurate engine will suffice. For the other, the WOPM is generally accurate

6.4.1 Feedback

The first third-order meta-algorithmic pattern is, in fact, the simple Feedback pattern. This pat-
tern is important inasmuch as it allows two algorithms—a specific algorithm and its inverse—to
collaborate in the production of highly accurate output. The Feedback system has one algo-
rithm implementing a specific function. This algorithm must be designed to accept error signals
that allow the algorithm to adjust its operation based on errors in the output.

The Feedback pattern relies on the design of an inverse transformation of the algorithm;
apply the inverse algorithm to the output to regenerate a second (regenerated) copy of the
original input. The regenerated output is then compared to the original input document to
check for similarities and differences. An error signal is then fed back to the algorithm (or
system of algorithms) to correct the output. This process can be continued iteratively until
the error signal is reduced to an acceptable level. If the error signal cannot be reduced to
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a sufficiently small value, then a different error correction method may be attempted, as
available.

Since this algorithm is a break from the first- and second-order meta-algorithmic patterns,
it will be beneficial to provide an example of it in operation. Suppose the system is an OCR
system, focused on digitizing paper documents. The text output from the OCR system can be
used—along with the font and connected component information—to create a raster image
representing the document. The original document image is then compared to the regenerated
document image. The comparison, performed after aligning the binarized representation of the
two images and subtracting one from the other, may show that the OCR algorithm incorrectly
recognized a character/word since the difference between the original and the regenerated
image exceeds a specific threshold. Or, the difference image (taken from subtracting one
image from the other) can be used to indicate different salient OCR errors have occurred,
including in order of the magnitude of the differences: (a) insertion of a character, (b) deletion
of a character, (c) transposition of two characters, and (d) substitution of one character for
another.

A simplified version of the Feedback pattern uses the error signal to accept or reject the
output data. In this case, one algorithm is used in the forward path and its inverse is used
in the feedback path. Figure 6.17 illustrates this incarnation. Two additional algorithms are
required: one algorithm is required for regenerating the original via an inverse transformation
and another algorithm is required for comparison. It is likely that for many algorithms the
comparator will not be a simple implementation. For example, for an image-based Feedback
patterns, alignment of the original and regenerated images is a must, and both affine (translation,
rotation, scaling) and nonaffine (warping, bending, blurring) image correction may be required
as part of the alignment process.

The Feedback pattern is especially important when there is only one generator available. It is
the first meta-algorithmic pattern introduced that can operate when there is only one (forward)
generator available. This “forward generator” therefore performs a specific functionality (with

Content

Comparator Pass?

Regenerated content Feedback algorithm
Approved

output

Error signal

Algorithm Output

Figure 6.17 Feedback (third-order meta-algorithmic pattern). The (forward) algorithm provides output
that is then the input to the (inverse) feedback algorithm. The feedback algorithm is used to regenerate
the input (“regenerated content”). Comparing the regenerated content to the original content results in
an error signal. If the error signal is acceptably small, then the output is approved
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no competing/collaborating generators), making it important for us to continually (real-time)
monitor and measure the quality of its output. If this sounds like quality control, that is no
accident, as the Feedback pattern was designed specifically to be useful in quality control of
the output data. For example, we have used the Feedback pattern to check the quality of the
output of a document-remastering engine (Yacoub and Simske, 2002). In that application, the
generator analyzes an input document raster image and produces an information-rich document
(e.g., PDF format). To validate that the PDF output does not contain any flaws related to, for
example, missing content or misclassification of parts of the document during document image
processing, we employed a feedback algorithm that transformed the output PDF into a raster
image format—the same format as the original input image format, in this case TIFF—and
compared the original input image and the regenerated image, in accordance with Figure 6.17.
The error message is then fed to the (forward) algorithm in an iterative process to successfully
improve the document (or, iteratively, sections of the document).

Another, related, example of the Feedback pattern is when it is applied to improve the
quality of the OCR output by regenerating a raster image from the text identified in the
OCR output—along with its location, or bounding box, information—and then comparing
the input image with the regenerated image for inconsistencies or misclassifications (as with
the previous example, this requires excellent registration of the two images).

The Feedback pattern differs from the first- and second-order meta-algorithmic patterns
in that it does not rely on the comparison of the output of two or more collaborating (or
competing) generators, or the combination of the output of multiple generators; instead, it is
self-contained and combines the generator with its inverse and a comparator operator and/or
metrics to determine detectable flaws in the output data. The Feedback pattern, of course,
can only be used for detection and correction of errors in the output of a generator if the
generator accepts—and can act upon—feedback. It should be clear, then, from this section
that the application of the Feedback pattern often requires one or more of the following: (a) a
large amount of processing (as illustrated by the regenerative image creation in the examples);
(b) a high degree of domain expertise (as is often needed to reverse complicated signal
or image transformations); and (c) a high degree of expertise in a related or even unrelated
domain, illustrated by the need for excellent image registration skills when performing inverse-
OCR above.

As usual, this section concludes with the table summarizing the system facts and consider-
ations for the pattern (Table 6.29).

6.4.2 Proof by Task Completion

The next third-order meta-algorithmic pattern is the Proof by Task Completion pattern, which
dynamically changes the relative weighting of the individual generators, or the collaborative
deployment of the individual generators, in response to the successful completion of intended
generator tasks. The “proof” is evidence that the current system configuration is the right
one for its deployment. The Proof by Task Completion pattern allows the overall system
architecture to be switched between the various system deployment patterns (or, more simply,
various system deployment settings) in order to provide a system that is continually redeployed
to meet user performance, accuracy, licensing, and other requirements. The pattern can also
be used to create a system that is tuned to focus on the end user’s desired task. Thus, this
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Table 6.29 Meta-algorithmic pattern system facts and considerations for the “Feedback” third-order
meta-algorithmic pattern

Topic System Facts and Considerations

Pattern name Feedback
Related patterns Proof by Task Completion, Confusion Matrix for Feedback, Expert Feedback
Input

considerations
If possible, the feedback information provided as part of the pattern should be in

the form of some (or even all) of the input to the system. In the case of OCR
above, for example, scanned raster images are the normal input of the OCR
engine, and so feedback in the form of images is readily accommodated by
the OCR engine

Output
considerations

Output should be translatable (or transformable) into the same form as the input.
This transformation is performed by the feedback algorithm, which
regenerates content in the form of the input

Decisioning Decisioning in the pattern is governed by the error signal from the comparison
of the original and regenerated content. This makes the comparator a crucial
design element in the pattern

Scalability There is no innate scalability to the Feedback pattern, since each input instance
requires its own sequential (even if iterative, still sequential) set of operations

Processing Processing costs are often quite high for the Feedback pattern, since inverse
algorithms are often not optimized as readily as forward algorithms

Parallelism There is no innate parallelism to the Feedback algorithm, since all operations
must occur in a given sequence

Statistical
behavior

The comparator embodies all the statistical behavior of the pattern

Repurposability Some of the feedback algorithms may be repurposable to other tasks; for
example, image registration was used in both examples in this section

Domain expertise Relatively high domain expertise is not uncommon with the Feedback pattern
Best used on Problems in which there are not a lot of meta-algorithmic generators available,

especially in cases where there is only one generator available. The Feedback
pattern can be held in “reserve” (since it is generally slower than other
patterns) for when licensing costs or other “right to operate” costs associated
with other generators make deployment of a less costly and/or in-house
developed generator necessary

pattern supports the automatic, adaptive redeployment of the entire information-creating to
self-optimize for its desired, real-time changing, “cost function.” This cost function is based
all or in part on one or more of the following seven factors:

1. Throughput/performance
How many documents need to be processed in a given amount of time, given the resources

of the back end system? One important consideration here is, of course, amenability of the
system components to parallelism. Patterns that are more suited to parallelism—for exam-
ple, Weighted Voting and Tessellation and Recombination—may be chosen over patterns
that are serial only (like Sequential Try and many combinational patterns). If the system
is bottlenecked, for example, the best engine can be used in place of any meta-algorithmic
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pattern, removing the more expensive—in terms of performance, at least—combinational
patterns from consideration.

2. Given a certain amount of processing time, which meta-algorithmic pattern is most likely
to converge on the correct result?

This consideration, designated the “residual error,” gives an indication of how well a
meta-algorithmic pattern succeeds in identifying the correct output as one of a certain
number of top candidates. An equivalent metric is how highly ranked the correct output
is. As shown in Simske, Wright, and Sturgill (2006), several meta-algorithmic patterns are
successful in increasing the accuracy of a document classification system. The maximum
improvement in accuracy was 13%. However, these same meta-algorithmic patterns were
even more successful in reducing residual error, with values as high as 55%.

3. Severity of errors made in generating the output
One of the advantages of meta-algorithmics—when sufficient processing is available—is

that a “committee of experts” is less likely to make truly egregious errors than an individual
algorithm, system, or engine. This is the flip side of the “residual error” described in factor
2 above, but it is an important one. In many systems, certain types of errors result in
significant (and disproportionately expensive) costs. Suppose, for example, that in a large-
scale ASR system, any errors in translation of voice to electronic data result in the need to
forgo the ASR and call in a human operator. This will result in a huge incremental cost,
perhaps 100 times as much as the ASR connection. So, a meta-algorithmic pattern that
best prevents complete misunderstanding of the speech (say, e.g., the Try method) is quite
powerful.

Interestingly, the severity of potential errors can be predicted using a meta-algorithmic
pattern. The Predictive Selection pattern can be deployed to collect indicators of certain
error types, and use the occurrence of these predictors to reconfigure the deployment of
the meta-algorithmics (to avoid the predicted errors). Taking the ASR example, if a set
of voice features derived from the mel-frequency cepstral coefficients are correlated with
an accent (say, Scouse, or the English Merseyside accent) that the current ASR engine or
meta-algorithmic combination of engines has proven to handle poorly, then the system can
be reconfigured (or substituted for in entirety) with an ASR meta-algorithmic capable of
handling this particular accent.

Such a predictive selection approach can also be used to estimate the system resources
to be required downstream for a given class of input. It can, therefore, (a) predict the
importance of the content (from characteristics of the content); (b) assign relative resources
(processing time, number of candidate outputs to investigate during processing, etc.); and
(c) adjust the meta-algorithmic patterns in accord with the available resources.

4. Licensing concerns (trying to minimize licensing costs for generators requiring a by-use,
or “click charge,” license)

This is a different type of cost function than the others, because it will naturally be biased
toward patterns that allow the exclusion of one or more of the generators. If certain en-
gines encumber licensing fees, patterns can be selected to steer around the more expensive
licensed generators. Assuming the licensed generators are more accurate, then, we have
observed that in many cases several nonlicensed generators will be required, along with
the correct meta-algorithmic pattern, to provide the same accuracy and/or system robust-
ness. This means that in order to reduce system licensing costs, usually greater system
performance costs will be incurred.



224 Meta-algorithmics: Patterns for Robust, Low-Cost, High-Quality Systems

5. Differential training (ground truthing) on the multiple generators
Special-purpose generators may be added to the system, in which case the meta-

algorithmic pattern to be used may differ depending on the content type being analyzed.
This selection is related to the “Predictive Select” pattern, and allows the choosing of an
optimal deployment pattern for a given workflow, or a “shorthand for meta-algorithmic
pattern selection” based on a cue from the content. One such decision-making process is as
follows: (a) is the content of a special class?; (b) if yes, then apply the pattern specific to this
special class; and (c) if no, then apply the appropriate pattern, selected after considering
the other cost function attributes.

6. Automatic updating: when additional training (ground truthing) cases are added, the system
is retrained and if indicated redeployed

This is an important aspect of the system adaptability—as new training-augmenting con-
tent is added after workflows using the different meta-algorithmic patterns are successfully
completed, the various patterns are reassessed against this augmented ground truth. From
the previous training data and the augmenting “completed task” data, the relative efficacy
of each pattern under the various conditions is updated. This can change the patterns chosen
even in a system in which the cost function is static, since the overall cost changes as the
ground truth is augmented.

7. Responsiveness to the different needs of the overall system
One example of this cost function element is when the back end system is spending too

much time performing the post-meta-algorithmic system processes, more thorough—that
is, requiring more processing—meta-algorithmic patterns can be deployed on the front end,
and vice versa.

The relative importance of the seven different cost function considerations outlined above
will vary between systems and their associated workflows, and their disparate needs and
preferences are as much a matter of domain expertise as meta-algorithmic patterning expertise.
The Proof by Task Completion system (Figure 6.18) is thus responsive to both changes in end
user expectations (in the form of the cost function) and the changing nature of the training
(ground-truthed) and successfully processed content. The salient facts about this pattern are
accumulated in Table 6.30.

6.4.3 Confusion Matrix for Feedback

The Confusion Matrix for Feedback pattern incorporates the relationship between the intel-
ligence generators elucidated by the confusion matrix. The feedback is therefore directed to
the most salient binary decisions in the problem. In general, these decisions will be classifica-
tions since the classic form of the confusion matrix (see Section 6.3.1) is a two-dimensional
matrix with each column containing the computed classification and each row containing
the samples in the true class. The Confusion Matrix for Feedback pattern is diagrammed
in Figure 6.19.

In-depth illustration of the application of this pattern, along with the Confusion Matrix
mathematics involved, is given in Chapters 8 and 9. But a simple, application-independent
illustration will be given here to show how this pattern is deployed. Suppose we have a simple
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Deploy system with
default configuration

Deploy system with
new configuration
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Figure 6.18 Proof by Task Completion (third-order meta-algorithmic pattern)

3-class system with a confusion matrix defined by

A B C

From

A

B

C

⎡
⎢⎣

0.89 0.07 0.04

0.15 0.76 0.09

0.09 0.07 0.84

⎤
⎥⎦ .

Here the overall accuracy—when each class has the same number of training samples—is
the mean of the elements in the main diagonal, or 0.83. Class A is the most likely class to be
assigned to a sample (37.7%), followed by class C (32.3%) and class B (30.0%). This pattern,
however, relies on the comparison of the binary confusion matrices associated with each pair
of classes. The three pairs that can be separated from the confusion matrix above are

The AB confusion matrix is From

A B
A

B

[
0.89 0.07

0.15 0.76

]
;

The AC confusion matrix is From

A C
A

C

[
0.89 0.04

0.09 0.84

]
;

The BC confusion matrix is From

B C
B

C

[
0.76 0.09

0.07 0.84

]
.



226 Meta-algorithmics: Patterns for Robust, Low-Cost, High-Quality Systems

Table 6.30 Meta-algorithmic pattern system facts and considerations for the “Proof by Task
Completion” third-order meta-algorithmic pattern

Topic System Facts and Considerations

Pattern name Proof by Task Completion
Related patterns Feedback, Confusion Matrix for Feedback, Expert Feedback
Input

considerations
Statistics collected from ground truthing, augmented by the successful

completion of tasks, is used to continually update the configuration of the
system for any/all of input content

Output
considerations

For this pattern, a good portion of the output is downstream from the
meta-algorithmic generator. When the overall task or workflow of which the
generator is a part completes, that output is fed back to the system and
augments the statistics the system uses to decide on its configuration

Decisioning The decision on what current meta-algorithmic configuration to use is based on
a cost function derived from any or all of seven different considerations as
described in the text

Scalability This pattern is infinitely scalable, since new data does not change the
complexity or storage needs of the meta-algorithmic pattern. In fact, scaling
only helps this pattern, since the more data, the better central tendencies in
the statistics enabling the pattern

Processing The amount of processing incurred by the Proof by Task Completion pattern is
dependent on the current pattern chosen as a consequence of the
ever-growing set of training and training-augmenting content

Parallelism There are is no specific parallelism associated with this pattern, although of
course multiple generators, each creating output that can later be used to
update the configuration, can be run in parallel. The actual meta-algorithmic
pattern salient to the current configuration can, of course, use any internal
parallelism it has

Statistical behavior The statistical behavior is relatively simple. When a document successfully
completes its task, it is used to augment the training set for the particular
output

Repurposability The system is repurposable inasmuch as it provides, over time, increasingly
valuable training data for the generator(s) associated with the
meta-algorithmic pattern(s)

Domain expertise Some domain expertise is required to grade (or relatively weight) the
successfully completed output

Best used on Systems intended for a long lifetime, systems in which the cost of an error is
high, and systems in which ground truthing (training) is undesirable due to
difficulty, expense, time constraints, and so on.

The AB confusion matrix accuracy is (0.89 + 0.76)/(0.89 + 0.07 + 0.15 + 0.76) =
0.882. The AC confusion matrix accuracy is 0.930, and the BC confusion matrix accuracy is
0.909. Thus, the Confusion Matrix for Feedback pattern dictates that we, as system architects
concerned with optimizing overall system accuracy, are encouraged most to look for a generator
that can distinguish between classes A and B with good accuracy. The overall accuracy of the
system will then be dependent on the accuracy of the generator for distinguishing A versus B
and the accuracy of the generator for distinguishing between A and B combined versus C. The
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Figure 6.19 Confusion Matrix for Feedback (third-order meta-algorithmic pattern). The training con-
tent is collected for the entire set of N classes, and the sum of off-diagonal pairings (Cab + Cba), where
c �= b, are used to determine which pairs of classes to target with binary generators. As long as further
improvement in behavior can be obtained, iterative (including recursive) binary generators can be added
to the system

latter is derived from the original confusion matrix and is represented by the following binary
confusion matrix:

The (A + B) C confusion matrix is From

A + B C
A + B

C

[
1.87 0.13

0.16 0.84

]
.

Here the accuracy is (1.87 + 0.84)/(1.87 + 0.13 + 0.16 + 0.84) = 0.903. However, since
62.3% of the samples are in the correctly labeled (A + B) class—that is, 1.87 is 62.3% of the
sum of all the elements in the (A + B) C confusion matrix—the overall system accuracy is
0.84/3.00 + 0.623 × a(A + B), where a(A + B) is the accuracy of the (A + B) generator.
Suppose that a domain expert can be found to produce a generator that can distinguish class A
from class B with 95% accuracy. Then the overall system accuracy is 0.28 + 0.623 × 0.95 =
0.872. This new overall system accuracy is thus 87.2%, representing a reduction in error rate
from 17% to 12.8% (a reduction of 24.7%).
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Table 6.31 Meta-algorithmic pattern system facts and considerations for the “Confusion Matrix for
Feedback” third-order meta-algorithmic pattern

Topic System Facts and Considerations

Pattern name Confusion Matrix for Feedback
Related patterns Feedback, Proof by Task Completion, Expert Feedback
Input

considerations
For this algorithm, the more training data, the better, since the differences in error

rates are important
Output

considerations
No special output considerations. Because the pattern results in re-architecting of

the system, the results can easily be combined with another meta-algorithmic
pattern in a hybridized (larger) meta-algorithmic system

Decisioning The primary decision is whether a binary generator (usually a binary classifier)
exists that can improve the system behavior for a given pair of data classes

Scalability Readily scalable, although the number of generator pairs scales geometrically, not
linearly, as more generators are to the system

Processing Processing costs can be quite heavy if the binary generators require similar
processing to the original all-generator processing. In theory, then, up to N – 1
times the processing may be required for an N-generator system

Parallelism Since the flow of the system depends on the output of individual paired generator
decisions, it is not in general parallelizable

Statistical
behavior

Dictated by the off-diagonal confusion matrix elements

Repurposability The binary generators can be reused in other meta-algorithmic systems
Domain expertise Domain expertise is a big benefit for this pattern, but the domain expertise need

not be for the entire set of input—only the subset of the input for where specific
pairs of generators are selected (i.e., pairs of two classes). In this way, multiple
subdomain experts can contribute to the overall system

Best used on Meta-algorithmic systems where two or more sets of generators behave more
similarly to each other than to the rest of the generators

For systems with more than three initial classes, the approach above can be repeated on the
reduced-dimension confusion matrix. Important facts and considerations about the Confusion
Matrix for Feedback pattern are given in Table 6.31.

6.4.4 Expert Feedback

The previous pattern, Confusion Matrix for Feedback, introduced the concept of deconstructing
the overall problem space to allow targeted improvement of the overall system behavior.
Classification accuracy is the chief target of confusion matrix manipulations. The Expert
Feedback pattern, introduced in this section, is reliant on rules and learned constraints that are
not derived from the confusion matrix but instead are associated with elements in the confusion
matrix.

Figure 6.20 provides the two diagrams necessary for the Expert Feedback pattern. The
training phase is used to generate the confusion matrix, and more importantly to provide
reasonably large sets of off-diagonal instances (erroneous classifications). Any single generator
or meta-algorithmic pattern for combining generators can be used to derive this confusion
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Figure 6.20 Expert Feedback (third-order meta-algorithmic pattern). There are two phases to the
pattern. During the training phase, a confusion matrix is generated. Training data should be sufficient to
allow the generation of expert rules for the off-diagonal elements Cij, where i �= j. During deployment
(run-time phase), the column of the output (assigned classification) is known, and each element in the
column is checked for rules that are salient to the output. If a salient rule is identified, the classification
output is changed accordingly. If there are one or more conflicting expert rules, the conflict can be
resolved through any number of ways See text for details
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matrix—it is of course the same generator/pattern of generators to be used in the run-time
phase.

After the confusion matrix is generated, the off-diagonal content is probed for the existence
of both positive and negative rules, which will provide a form of expert system rules to be
applied to increase the overall accuracy of the system. In general, these rules belong to one of
three categories:

1. Input ranges
An input range is usually described by the minimum and maximum value of an input

signal. If the training data is sufficient, then this range describes the expected behavior of
the input associated with one or more classes of data. However, since the maximum and
minimum in a range are often noisy (the odds of an anomalous sample being added to a
given class increase with the size of the training set), it makes more sense to describe the
range statistically. The description of the range is

{mean − H × std, mean + H × std},

where std is the standard deviation and H is a parameter that is dependent on a number of
factors—including the number of different input signals measured, the number of training
samples, the error rate of the system, and each input sample’s closeness of fit to a Gaussian
distribution.

This type of content rule can be used on all classes of input simultaneously. If there
are many input signals, then a simple tally of how many in-range and out-of-range signals
occur for each possible classification is accumulated. These data can be used to override the
class computed by the meta-algorithmic pattern. For example, if the classification indicated
by the meta-algorithmic pattern is that of a class that has several out-of-range input signals,
then the classification can be changed to the highest confidence class without out-of-range
signals. This can be considered a “voting” approach to using the range values.

In addition to a voting approach, a “weighted voting” approach assigns weights to the
out-of-range values based on their relative distance from the mean of each range. This is
expressed as a multiple of H, the controlling factor of the range definition. The class with
the lowest weighted voting may be used to replace the meta-algorithmic pattern’s computed
class.

2. Co-occurrences of input
Co-occurrences offer the possibility of higher confidence in overriding the computed

classification. Effectively, a co-occurrence requires two (presumably rare) events to occur
simultaneously. They can be positive (if both occur they absolutely identify a particular
class) or negative (if both occur they absolutely preclude a particular class). An example
from document classification follows. If a document contains both the text “Loan applica-
tion” and the text “34 Riverbed Road” occurring on page 1, then the document is positively
identified as a loan application for the bank at 34 Riverbed Road. If, however, the document
contains both the text “1162 Yerba Buena Boulevard” and the text “art exhibit” on page 1,
then it is negatively identified as a loan application for the bank at 34 Riverbed Road.

Co-occurrences, as can be seen above, are a simple way of using specific events known to
be associated with a particular class to enforce classification when computed classification
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fails to provide the right outcome. Importantly, these types of rules can be used a posteriori;
that is, after a common feature within a certain class has been identified as being a strong
indicator of class membership. This means co-occurrences can be discovered through active
search (data mining) or by the incorporation of new data extraction technologies (e.g., for
images, by the deployment of improved image recognition technologies). Note that a co-
occurrence is deemed valuable even if it is not 100% accurate—it merely needs to improve
the overall system accuracy when applied.

3. Ratios
Ratios are often highly valuable expert rules. Ratios can build on co-occurrences, es-

pecially the extension of co-occurrences to subclasses of information within the larger
classification structure of an intelligent system input space. For example, consider surveil-
lance images. The ratio of changed pixels to unchanged pixels can be used to classify
the type of downstream tracking algorithms to use. Lower ratios can use simple, efficient
tracking approaches such as color histogram back-projection, while higher ratios may re-
quire more sophisticated and more processing intensive approaches such as k-shortest paths
optimization, model-based tracking, and particle filter methods.

These rules can benefit from expert evaluation of the off-diagonal elements of the confusion
matrix. However, in many instances the process can be automated. Events exhibiting notably
different prevalence in the off-diagonals compared to the rest of the columns in the confusion
matrix are in general indicative of a misclassification. These types of “anomalous” events are
rather straightforward to identify with data mining approaches.

In Figure 6.20, the fourth type of content rule listed is “other expert input,” which is meant
to encapsulate other, usually less data-driven, means of overriding the computed classifica-
tion. Examples include meta-data considerations (size of the content, data file characteristics,
who created the content, where was it created, when was it captured, etc.). Another type of
information that can be mined is termed “generator meta-data,” which is information provided
by the individual generators. One example is the confidence information provided, which
can be used in numerous meta-algorithmic patterns, including the Confusion Matrix pattern
(Section 6.3.1). The confidence values, collected in the OPM, can additionally be used in
a “negative” sense to override computed classification. For example, suppose that when an
OPM entry for Generator A is less than a certain threshold value, the accuracy of the overall
system is higher when it accepts the second choice for computed classification in place of the
first choice. In such a case, then, the low confidence value in the OPM leads to overriding the
computed classification, and improvement in system accuracy.

During the run-time, these positive and negative content rules are associated with each
computed classification. If any expert feedback applies, then it may be used to override
the computed classification. If there is conflicting expert feedback, then the conflict may be
resolved in any number of ways, depending on the preferences of the system architect and the
policies (and policy conflict resolution rules) associated with the content.

The system benefits from augmented training data, akin to that used to augment the system-
governing statistics in the Proof by Task Completion pattern (Section 6.4.2). For the Expert
Feedback pattern, it is helpful to augment the off-diagonal (i.e., error) elements of the confusion
matrix. For a system with very low generator error rate, this means a substantial investment
in training. However, in general, this investment in training is highly valuable. Without it, the
content rules generated may be highly noisy and therefore of little actual predictive value.
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Table 6.32 Meta-algorithmic pattern system facts and considerations for the “Expert Feedback”
third-order meta-algorithmic pattern

Topic System Facts and Considerations

Pattern name Expert Feedback
Related patterns Tessellation and Recombination with Expert Decisioner, Feedback, Proof by Task

Completion, Confusion Matrix for Feedback
Input

considerations
Ample training data is very important for the generation of positive and negative

rules, especially inasmuch as they correspond to the (hopefully) rarer error
cases

Output
considerations

No special output considerations are required for the meta-algorithmic system
itself. The content rules, however, may need to be handled with a policy engine
in case of conflicting rules

Decisioning The decisioning proceeds as for an expert system: once rules are generated they
are applied during run-time as salient (assuming conflicting rules do not
override them)

Scalability The system is not easily scalable, as the rules must be regenerated every time the
confusion matrix is changed

Processing The run-time processing is largely dictated by the meta-algorithmic pattern used
to provide the original output. Applying the rules requires only a few lines of
code at run-time

Parallelism There is no innate parallelism in the pattern
Statistical

behavior
The rules, where possible, should be based on statistical descriptions of the

ranges and ratios. Co-occurrences are simply yes/no decisions
Repurposability In general, the rules are not repurposable
Domain expertise Significant domain expertise is a benefit when setting up the data mining to find

the rules. Thereafter, rule finding can be automated
Best used on Systems for which a large amount of training data or augmented training data is

available

Additionally, having sufficient content to prevent “noisy” rule generation will also help offset
the trend for increasing fragility and tight coupling of the system, which is possible unless the
rules are expected to remain unchanged over time. More training data helps ensure that the
rules have more statistical power. Important aspects of the Expert Feedback pattern are tallied
in Table 6.32.

6.4.5 Sensitivity Analysis

When the number of generators increases, several different trends are generally observed. The
first is that the generators themselves become more highly correlated in the mean—since there
is less overall output space to explore as each successive generator is added. The second is
that clusters of generators that are more closely correlated with each other than with the rest
of the generators emerge. The third is that often subsets of the generators are more effectively
combined with different meta-algorithmic patterns. Each of these trends argues for the removal
(or recombination) of one or more generators. The Sensitivity Analysis pattern is focused on the
reduction in the number of generators through one of these three mechanisms: (1) correlation,
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Sensitivity Analysis: training phase

Training content

Sensitivity Analysis: run-time phase

New content

Training data

Make changes

Should the
deployment architecture

be changed?

Deploy as is

Yes

No

Generate training data:
1. Correlation
2. Confusion matrix
3. Weighting

Select sensitivity analysis approach to investigate:
1. Correlation-based
2. Confusion matrix-based
3. Sensitivity to weighting-based

Figure 6.21 Sensitivity Analysis (third-order meta-algorithmic pattern)

(2) confusion matrix behavior, and (3) selection among multiple meta-algorithmic pattern
options (Figure 6.21).

Correlation is often useful: meta-algorithmic patterns such as Voting make use of the
consensus that correlation among generators provides. However, highly correlated generators
do not, as a rule, explore the entire input space much more effectively than one of the
(correlated) generators by itself. Thus, highly correlated generators can be effectively combined
along the lines shown in Section 6.4.3 for the Confusion Matrix for Feedback pattern in order to
reduce the dimensionality of the meta-algorithmic system. Reducing the number of generators
through the combining of highly correlated generators is thus one incarnation of the Sensitivity
Analysis pattern.

As a different means of reducing the number of generators, another Sensitivity Analysis
approach can be used to identify one or more stable points within the solution space. This
approach targets an optimally robust—rather than accurate—system, and as such often reduces
the amount of training data that is required. This aspect of sensitivity analysis investigation
is performed using the confusion matrix. The off-diagonal elements of the confusion matrix,
C, are investigated. When all of the Cij ≈ Cji, where i �= j, this is an indication of generator
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interaction stability. So, one means of reducing the number of generators from N to M is to
select the M most balanced generators; that is, the ones minimizing the quantity | Cij − Cji |.

The confusion-matrix-based approach can be evaluated quantitatively from an overall per-
spective. Measurements of entropy are valuable for determining the overall balance of the
confusion matrix. The confusion matrix entropy, e, is defined by

e =
−

N∑
i=1

N∑
j=1+1

[(
Ci j

Ci j + Cji

)
× ln

(
Ci j

Ci j + Cji

)
+

(
Cji

Ci j + Cji

)
× ln

(
Cji

Ci j + Cji

)]

N(N − 1)
,

where the confusion matrix elements Cij are as described above. The equation explicitly
illustrates the pairings of Cij and Cji, where i �= j. The maximum value for the entropy is not
surprisingly the natural log (ln) of 2.0, or 0.6932, achieved when each and every Cij and Cji is
equivalent. Using the confusion matrix CM shown below, it is left as an exercise for the reader
to show that the paired entropy for classes (A,B) is 0.6255; for classes (A,C) it is 0.6173; and
for classes (B,C) it is 0.6853. These results show that we are more likely to have sufficient
training data for distinguishing classes B and C than for distinguishing either of these classes
from class A. We can thus potentially reduce the order of the classification to differentiating
class A from the combined set of classes B and C upfront.

A B C

CM = From

A

B

C

⎡
⎢⎣

0.89 0.07 0.04

0.15 0.76 0.09

0.09 0.07 0.84

⎤
⎥⎦ .

It is also left for the reader to show that the overall entropy of the example confusion matrix
CM is 0.6427, substantially lower than the maximum entropy of 0.6932.

The third type of sensitivity analysis considered here is the sensitivity to weighting of
one or more candidate weighting-driven meta-algorithmic patterns. Weighted Voting and
Weighted Confusion Matrix patterns (Sections 6.2.3 and 6.3.1) are two such patterns, and
Table 6.6 tabulates some of the more common and/or useful voting schemes. Once de-
fault weights are calculated, the sensitivity analysis approach—as illustrated by example in
Table 6.33—independently alters the weights of each individual classifier and the effect on
overall system accuracy is noted. In Table 6.33, in every circumstance where the relative
weighting of Classifier 3 goes up (the “1−,” “2−,” and “3+” rows), the overall accuracy in-
creases (by 1%, 3%, and 4%, respectively), while in every circumstance in which the relative
weighting of Classifier 3 goes down (the “1+,” “2+,” and “3−” rows), the overall accuracy
drops (by 1%, 2%, and 3%, respectively). Next, comparing Classifiers 1 and 2, when the
weighting for Classifier 1 goes up relative to the weight for Classifier 2 (the “1+” and “2−”
rows), the accuracy goes down by 1% or up by 3%, respectively; and when the weighting for
Classifier 1 goes down relative to the weighting for Classifier 2 (the “1−” and “2+” rows) the
accuracy goes up by 1% or down by 2%, respectively. Overall, this is a mean 1% improvement
when Classifier 1 goes up relative to Classifier 2, mildly indicating that Classifier 1 should
have its weighting relatively improved in comparison to Classifier 2.
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Table 6.33 Sample Sensitivity Analysis pattern, third configuration (sensitivity to weighting) output.
Here, the weighting on each classifier was increased by 25% (the “1+,” “2+,” and “3+” rows) or
decreased by 25% (the “1–,” “2–,” and “3–” rows). Weights are shown nonnormalized except for the
default weights. The data indicate that the weight for Classifier 3 should be increased relative to
Classifiers 1 and 2, and also that the weight of Classifier 1 should be increased relative to that of
Classifier 2

Individual Classifier Weights and Overall Meta-algorithmic Pattern Accuracy

Configuration Classifier 1 Classifier 2 Classifier 3 Overall Classification

Default weights 0.35 0.25 0.40 0.83
1+ Weight 0.44 0.25 0.40 0.82
1− Weight 0.26 0.25 0.40 0.84
2+ Weight 0.35 0.31 0.40 0.81
2− Weight 0.35 0.19 0.40 0.86
3+ Weight 0.35 0.25 0.50 0.87
3− Weight 0.35 0.25 0.30 0.80

Table 6.34 Meta-algorithmic pattern system facts and considerations for the “Sensitivity Analysis”
third-order meta-algorithmic pattern

Topic System Facts and Considerations

Pattern name Sensitivity Analysis
Related patterns Confusion Matrix for Feedback, Weighted Voting
Input

considerations
One or more of the following should be computed: correlation matrix,

confusion matrix, weightings for the generators
Output

considerations
The primary output of this pattern is a recommendation of which generators to

eliminate or combine
Decisioning Decisioning is based on one or more of the following: (a) high degree of

correlation, (b) anomalous behavior in the confusion matrix, and (c) high
sensitivity of the weighting value

Scalability All sensitivity analysis approaches are scalable, but require retraining of the
system each time a new generator is added

Processing As this pattern is generally associated with iterative redefining of the system
architecture, processing costs are high and interrupted by system evaluation

Parallelism Aside from whatever inherent parallelism is in the original meta-algorithmic
patterns, this pattern is iterative and sequential

Statistical behavior Correlation is itself a statistical approach. The Sensitivity Analysis pattern
brings a certain statistical rigor to optimizing the system architecture based
on the confusion matrix and generator weighting, as well

Repurposability The results of this pattern are not, generally, repurposable. However, the pattern
“repurposes” the output of other patterns, such as the Weighted Confusion
Matrix and Weighted Voting patterns. It can also repurpose correlation
statistics that arise from testing new generators when they are considered for
inclusion in other meta-algorithmic approaches

Domain expertise The approaches rely on no specific domain expertise
Best used on Systems with a large amount of available training data and/or a large number of

generators
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Complex combined knowledge can be obtained by considering all of the single dimension
sensitivities simultaneously. From the above set of results, it is recommended to further increase
the weight for Classifier 3 and leave the weight for Classifier 1 nearly steady. This approach
was tested by successively changing the overall weights from (0.35, 0.25, 0.40) to (0.35, 0.20,
0.45), and so on, to (0.35, 0.00, 0.65). Among these, an optimal weighting of (0.35, 0.00, 0.65)
was found for Classifiers (1, 2, 3) with an overall classification accuracy of 0.89.

Important considerations when deploying or considering deploying this pattern are tallied
in Table 6.34.

6.4.6 Regional Optimization (Extended Predictive Selection)

The next pattern is also concerned with “introspective meta-algorithmics,” in which the meta-
algorithmic pattern may be modified based on the statistics of the input. In the Regional
Optimization pattern, however, individual generators are tuned for subclasses of the overall
task. As a consequence, different meta-algorithmic configurations (combinations of generators
and maybe even different patterns altogether) will be deployed for different subsets of the
input. This is related to, and based in part upon, the Predictive Selection (Section 6.2.4)
pattern. However, for this pattern, the classes of input data are not based on human-defined
classes, but are instead defined so as to be separably relevant to two or more meta-algorithmic
patterns.

The Regional Optimization pattern is shown in Figure 6.22. The training and run-time phases
are straightforward. Training content is collected for every generator during the training phase.
Training data is assigned to different classes and the appropriate meta-algorithmic patterns are

Training content Collect generator data

Determine meta-algorithmic pattern
(type and settings) for appropriate

subclasses of the input

Assign to the appropriate meta-algorithmic pattern

Process new content

New content

Regional Optimization: training phase

Regional Optimization: run-time phase

Figure 6.22 Regional Optimization (third-order meta-algorithmic pattern)
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configured for each class. This effectively replaces the selection of individual generators (as
in the Predictive Selection pattern) with individual meta-algorithmic patterns.

How are the individual meta-algorithmic patterns selected? If the previous sections in
this chapter have not already driven home the plurality of choice the system architect has
in selecting from meta-algorithmic patterns, then the multiple examples for several domains
illustrated in the next three chapters will. Needless to say, system architects will usually be able
to find two or more meta-algorithmic patterns that perform differentially well on subsets of
the input. The Regional Optimization pattern provides for a different meta-algorithmic pattern
to be selected on the basis of the input data characteristics. It is important that the input data
be accurately classified so these errors do not propagate to the downstream meta-algorithmic
patterns.

Alternatively, the Regional Optimization pattern allows the selection of a more ger-
mane meta-algorithmic pattern based on the computed classification of an initial meta-
algorithmic pattern. In this case, a meta-algorithmic pattern is used, effectively, as the generator

Table 6.35 “Regional Optimization (Extended Predictive Selection)” third-order meta-algorithmic
pattern system facts and considerations

Topic System Facts and Considerations

Pattern name Regional Optimization (Extended Predictive Selection)
Related patterns Predictive Selection
Input

considerations
The output of a predictive selection generator category-scoring matrix element

(which can itself be a meta-algorithmic pattern) is the input that selects a
particular meta-algorithmic pattern

Output
considerations

The output of the pattern is no different from that of, for example, the Predictive
Selection (first-order) meta-algorithmic pattern

Decisioning The “Predictive Select” portion of this pattern actually chooses a downstream
meta-algorithmic pattern, not simply one generator

Scalability Scalability is linear with the number of generators, since the meta-algorithmic
patterns are based only on the generators added to the system

Processing Sequential processing of two meta-algorithmic patterns means the expected
processing time is twice that of most other meta-algorithmic patterns

Parallelism The only parallelism associated with this pattern is integral to the incorporated
meta-algorithmic patterns. The pattern itself is serial. However, when a larger
data set is partitioned and a different meta-algorithmic pattern is found
optimal for each partition, the door is opened for a form of “meta-algorithmic
parallel processing”

Statistical behavior The scoring algorithm selects the best generator to use. Optimum scoring
algorithms provide different relative rankings among the generators for
different categories

Repurposability Not generally repurposable, since tightly coupled to the problem/input space
Domain expertise Some domain expertise is required in order to simultaneously plan for the types

of meta-algorithmic patterns to use with different classes of input, and for
assigning of data to classes suitable for different meta-algorithmic patterns

Best used on Systems with wide ranges of input, or input belonging to two or more separable
subclasses of content. Especially useful for the processing of mixed task
workflows where the classes of input are readily and accurately ascertained
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category-scoring matrix element in the pattern of Figure 6.5; with the downstream meta-
algorithmic pattern replacing the run-time selected “Generator K.”

The run-time phase is even more straightforward. Input is assigned to the appropriate class
and thence the relevant meta-algorithmic pattern, and output defined using that particular
meta-algorithmic pattern. Salient system considerations are collected in Table 6.35.

As described in Section 5.2.1, performing image processing tasks on sections of images
can produce different results than performing image processing tasks on the intact images.
This means that the same image can be processed by the same algorithm or intelligent system
and yield a plurality of results. Taken one step further, this implies that the optimal intelligent
system for analyzing each partition may vary. In effect, then, this pattern is a form of meta-
algorithmic parallel processing. This type of approach, in another light, can also be viewed
as a form of sensitivity analysis—if the generator output differs for a partition of the image in
comparison to the intact image (or other partitions), then it is likely that the generator has less
than full confidence in the output, and perhaps that a different pattern may be appropriate.

Training content Collect generator data

Determine all support data and data
structures for the salient first- and second-

order meta-algorithmic patterns 

Assess content and assign it to the
appropriate “meta-algorithmic” pipeline

Perform meta-
algorithmic pipeline

Output

New content

Generalized Hybridization: training phase

Generalized Hydridization: run-time phase

Figure 6.23 Generalized Hybridization (third-order meta-algorithmic pattern)
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6.4.7 Generalized Hybridization

The Generalized Hybridization pattern is used to optimize the combination and sequence
of first- and second-order meta-algorithmic patterns for a given—generally large—problem
space. Like the Regional Optimization pattern, it compares more than one meta-algorithmic
pattern for an optimally performing system. Prior to the training phase, the system architect
decides which meta-algorithmic patterns are to be considered for the deployed system. During
the training phase (Figure 6.23), then, the correct data and data structures to support the set
of meta-algorithmic patterns are generated. During deployment, some or all of the content is
assigned to the one or more meta-algorithmic pattern pipelines.

Examples of hybridized meta-algorithmics include many of the second-order patterns:
Predictive Selection with Secondary Engines, Majority Voting or Weighted Confusion Matrix,
Majority Voting or Best Engine, Best Engine with Differential Confidence or Second Best

Table 6.36 “Generalized Hybridization” third-order meta-algorithmic pattern system facts and
considerations

Topic System Facts and Considerations

Pattern name Generalized Hybridization
Related patterns Regional Optimization, Predictive Selection with Secondary Engines, Single

Engine with Required Precision, Majority Voting or Weighted Confusion
Matrix, Majority Voting or Best Engine, Best Engine with Differential
Confidence or Second Best Engine, Best Engine with Absolute Confidence or
Weighted Confusion Matrix

Input
considerations

Input data and data structures for all potential first- and second-order patterns to
be considered must be generated as part of the input

Output
considerations

Output is provided at each stage of the hybridized pattern, affording multiple
opportunities for voting strategies in the pipelines

Decisioning Decisioning is based on whether a logical OR or a logical AND is chosen for
the hybridization. With the logical OR, a certain quality metric must be
achieved. With the logical AND, voting schemes in their variety are used

Scalability A high degree of flexibility and robustness to input is possible with more
complicated hybridized patterns, which offers some advantages for scalability
to changes in input

Processing Processing costs are high for this pattern, typically the highest of any
meta-algorithmic pattern described

Parallelism Individual meta-algorithmic patterns within logical AND patterns can be run in
parallel

Statistical behavior Logical OR approaches are based on comparison with a threshold, while logical
AND patterns are based on voting or weighted voting

Repurposability This pattern tends to provide a deployment architecture tightly coupled to the
input, meaning its architecture is not generally repurposable

Domain expertise A high degree of domain expertise may be required upfront to decide which
meta-algorithmic patterns should be chosen, and when logical OR and logical
AND should be used

Best used on Highly complex systems in which the interactions among the generators is not
accurately captured by a simple meta-algorithmic pattern
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Engine, and Best Engine with Absolute Confidence or Weighted Confusion Matrix. For each
of these patterns, the hybridization is based on a logical OR: either the initial output is
acceptable, or another pattern is tested for acceptability. However, the logical AND may also
be used to create hybridized meta-algorithmic patterns. When multiple patterns are used in
parallel, there must be an unambiguous means of combining their output. Weighted voting is
a flexible and efficient means of combining the output of two or more patterns (each pattern
itself potentially hybridized). In hybridized patterns, internal voting may also be supported,
wherein the output of each stage in the (logical OR) hybridized pattern is voted upon. Later
stages in such a pattern may have higher relative weighting.

Important considerations when deploying the Generalized Hybridization pattern are col-
lected in Table 6.36.

6.5 Summary

From a wide perspective, this is the crucial chapter of this book. In it, the three different
orders of meta-algorithmic patterns have been introduced. A large—but not exhaustive—set
of patterns are provided for each of these three levels. Several of the powerful tools for
meta-algorithmics—confusion matrices, weighting, output space transformation, sensitivity
analysis, and feedback—are explained. Having provided the patterns—which like all patterns
are “templates” for domain-specific implementation—we next turn to application of these
patterns to a wide, but again not exhaustive, set of relevant intelligent systems. Chapter 7 will
focus on the application of first-order meta-algorithmics to both a core and extended set of
domains, followed by Chapter 8 and its focus on second-order meta-algorithmics for the same
core domains and a new set of extended domains. Chapter 9 completes the meta-algorithmic
application overview by illustrating the use of third-order meta-algorithmics on the same core
set and a third extended set of domains. After these chapters, Chapter 10 illustrates some
ways in which meta-algorithmics uniquely change the field of machine intelligence. At the
conclusion of Chapter 10, the principles of meta-algorithmics are summarized.
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7
First-Order Meta-algorithmics
and Their Applications

Just because we don’t understand doesn’t mean that the explanation doesn’t exist.
—Madeleine L’Engle

7.1 Introduction

Chapter 6 introduced the design patterns that form the basis of meta-algorithmic systems. This
chapter provides applications of the first five patterns, collectively called the “first-order meta-
algorithmics.” These patterns include the simplest possible means of combining two or more
generators: using serial application (Sequential Try and Try pattern), using simple substitution
(Constrained Substitute) or using voting (Voting and Weighted Voting pattern). The other two
first-order patterns (Predictive Select and Tessellation and Recombination), however, are more
elaborate, and require at least some domain expertise since one (Predictive Select) requires
de-aggregating the input space into a useful set of classes, and the other (Tessellation and
Recombination) requires de-aggregating the data itself during the tessellation operation. The
Tessellation and Recombination approach also usually requires domain expertise, which will
be discussed in this chapter for the document understanding domain.

The first-order meta-algorithmics are pivotal, as they are the building blocks of many second-
and third-order meta-algorithmics. This chapter provides first-order meta-algorithmic system
architecture examples for the following types of intelligent systems: the four primary domains
of (1) document understanding, (2) image understanding, (3) biometrics, and (4) security
printing; and three additional domains of (1) medical signal processing, (2) medical imaging,
and (3) natural language processing (NLP).

7.2 First-Order Meta-algorithmics and the “Black Box”

One of the primary reasons for adopting a meta-algorithmic approach to intelligent system
architecture is the huge convenience offered by being able to treat a (usually very complicated)
large algorithm, system, or intelligence engine (collectively called generators) as a “black box.”

Meta-algorithmics: Patterns for Robust, Low-Cost, High-Quality Systems, First Edition. Steven J. Simske.
C© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.
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In so doing, the architect needs to be concerned only with the input and output of the system.
This is not a substitute for domain knowledge; rather, with meta-algorithmics the application
of domain knowledge is focused on the treatment of the input and output. This is usually
a less complicated—though not superficial—requirement than having to address the inner
complexities of the generator. The reason is that the complexities of the generator are often
dissociated from the complexities of the domain. For image understanding, for example, the
inner workings of the imaging engine may require advanced knowledge of neural networks,
genetic algorithms, image thresholding, texture analysis, differential equations, and shape
modeling. The meta-algorithmics used to coordinate the output of two or more segmentation
approaches, however, require a completely different set of skills: data analysis, statistical
inference, decision sequencing, and so on. This is a powerful consideration. A domain expert,
instead of dealing with the nuances of a more esoteric set of technologies otherwise necessary
to improve her systems, can instead use her own domain expertise to improve the robustness,
accuracy, cost, or other system deployment metrics. The meta-algorithmic system designer is
therefore able to treat the individual generators as “black boxes.”

In the remainder of this chapter, a nonexhaustive set of examples are provided, intended to
illustrate through example the manner in which first-order meta-algorithmic patterns can be de-
ployed on real-world intelligent system design. The primary domains of this book are discussed
first (Section 7.3). Then, three of the secondary domains are selected for further illustration:
(1) medical signal processing, (2) medical imaging, and (3) NLP (Section 7.4). One or more
examples of deploying each of the first-order meta-algorithmic patterns are thus provided.

7.3 Primary Domains

In this book, the primary domains for intelligent systems are document understanding, image
understanding, biometrics, and security printing. Document understanding, and in particular
zoning analysis, is used to illustrate the application of the Tessellation and Recombination
pattern. Image understanding—in particular scene recognition—is used to demonstrate the
deployment of the Predictive Selection pattern. The Constrained Substitute pattern is employed
for biometric identification of a fingerprint or iris. Finally, the Sequential Try pattern is applied
to several security printing applications.

7.3.1 Document Understanding

One of the most important tasks in document understanding is zoning analysis. Zoning engines
perform segmentation (definition of region boundaries), then classification (typing of the
regions—e.g., as text, image, business graphic, etc.), and then aggregation (clustering of
appropriate sets of regions, e.g., image + caption as a “figure,” multiple rows of text as a
“text column,” etc.). Examples of zoning engines are given in several references (Wahl, Wong,
and Casey, 1982; Revankar and Fan, 1997; Shi and Malik, 2000). The choice as to what
types of zones to identify is generally left to the domain expert and to the types of content
in the documents; for example, “equations,” “business graphics,” “tables,” “figures,” “text
columns,” “paragraphs,” “articles,” and so on, are possible as dictated by the semantics of the
information acquired. Regardless, typical zoning analysis engines find regions corresponding,
minimally, to text and “nontext” areas on the original document. Subsequent treatment of text
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(by optical character recognition, or OCR) and nontext (by image compression, bitmap-to-
vector conversion, image analysis, etc.) is dependent on the accurate zoning of the document.
Representation and storage of the processed file in new formats (PDF, XML, HTML, RTF,
DOC, etc.) is also dependent on the overall accuracy of the zoning engine.

Tessellation and Recombination is an ideal first-order meta-algorithmic pattern for combin-
ing the segmentation outputs of two or more zoning engines. The output of the zoning engines
will typically be a set of normalized probabilities used to identify the relative confidence of
the engine for classifying a given zone. For example, a zoning analysis engine (Engine A)
may provide the following statistics for a particular logo region (small drawing):

Drawing p = 0.54,
Text p = 0.33,
Junk p = 0.10,
Table p = 0.02,
Photo p = 0.01.

Now, suppose Engine B provides the following statistics for the same region:

Drawing p = 0.19,
Text p = 0.70,
Junk p = 0.07,
Table p = 0.02,
Photo p = 0.02.

Suppose now that Engine B was assigned, after evaluation of training data, a confidence
rating of 0.3 relative to Engine A’s 1.0. Then Engine B’s overall (statistical output × confidence
value) statistics for this region are:

Drawing p = 0.06,
Text p = 0.21,
Junk p = 0.02,
Table p = 0.01,
Photo p = 0.01.

The combination of these two—that is, Engine A + 0.3 × Engine B—is, therefore, as
follows:

Drawing p = 0.60,
Text p = 0.54,
Junk p = 0.12,
Table p = 0.03,
Photo p = 0.02.

The classification from this data is “drawing.” It is left as an exercise for the reader to show
that the classification would have been as “text” had the confidence values for Engines A
and B been simply summed. Note also that after the tessellation, the recombination can be
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driven using an even more sophisticated “recombination weighting” (in place of the blanket
1.0 weighting for Engine A and 0.3 weighting for Engine B in the above example) that uses
differential weighting of engines by each region type (e.g., a 0.3 for drawing, a 0.15 for text,
etc., in Engine B above). This need for “weighting” during recombination is not relevant to all
domains, but is highly relevant to zoning analysis.

As discussed in Section 6.2.5, the recombination portion of the pattern can be thought of
as statistically driven aggregation. The primitives, or atomic units, created by the tessellation
process can be aggregated if the statistics from the multiple engines so dictate. However,
emergent zoning classifications are also possible. This stems from the fact that recombination
requires domain expertise. Thus, there are many possible “goodness of recombination” mea-
surements. For zoning analysis, a fully Manhattan layout has a convex hull exactly equal to
each region size, resulting in a very clean (usually entirely rectangular) format. Thus, selecting
a set of zones that is optimally Manhattan is a good choice for optimization. Another metric of
goodness is defining the zones to best match a layout template. A third approach is to compare
the variance in the differential background between the different tessellations, and determine
whether to classify them as true background (favoring keeping more, smaller zones) or to
classify them as foreground (favoring keeping less, larger zones). This trade-off is illustrated
in Figure 7.1, where the darker shaded, rectangular regions are the differential background
zones in comparing the two-zone Segmentation 1 and the four-zone Segmentation 2. If these
two zones have substantially higher histogram entropy, variance, color gamut, or hue than
the white areas that are common background for both segmentations, then they are probably
not background areas, and so Segmentation 1 is a more credible output. If, however, these
darker shaded rectangles have similar histogram and hue characteristics to the white (“known

Segmentation 1 Segmentation 2

Figure 7.1 Figure showing two different segmentation outputs (larger, shaded polygons) and the white
space between the regions that is in common (white) or only visible in Segmentation 2 (polygons with
darker shading). See text for details
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background”) areas, then Segmentation 2 is more credible. Note that Segmentation 2 is also
more credible due to its lower convex hull/area ratio, 1.0, when compared to that of Segmen-
tation 1 (approximately 1.7).

One of the important factors in this design pattern is the selection of the zoning engines
to include in the design. These are generally selected based on one or more of the following:
(1) overall engine accuracy, with the higher-weighted engines generally preferred; (2) perfor-
mance, if, for example, real-time response is required; (3) digital rights, meaning under some
conditions the user may not be allowed to use one or more of the engines; and (4) user intent,
meaning, for example, if the user only intends to use the extracted text, then the systems with
highest weighting for text identification should be chosen.

Once the set of engines has been chosen, each engine is run separately on the document
image and the regions obtained. Each engine will define a large set of data relating to the
region type, which will then be converted to a standardized set of region information that
comprises the minimum data required to combine the engines effectively and also to allow any
region size metrics to be applied. Thus, region bounding box (bbox), polygonal boundaries
(xvertices, yvertices), and size and statistics on region type are required.

The details of the recombination are provided here. First, all regions from all engines are
mapped to a special “image-sized map” and each pixel that is part of a region from a particular
engine is marked with a unique ID for that engine. For example, if there are M engines used, the
unique identifiers for Engines A, B, C, . . ., M are [1, 2, 4, . . ., 2(M–1)]. Now regions are formed
(as connected components from this image-sized map) based on their numerical uniqueness,
not on their existence in any engine. Suppose we employed two segmentation engines, A and
B. Where both engines identify a region, the map is marked “3” (as 1 + 2); where only Engine
A identifies a region, the map is marked “1”; and where only Engine B identifies a region, the
map is marked “2.” Regions are formed by sequentially searching through the map for “1”s,
then “2”s, and then “3”s. In other words, up to three sets of regions are formed in this zoning
analysis. When M segmentation engines are used, up to 2M – 1 sets of regions, corresponding
to different degrees of region identification overlap, are formed.

After regions are classified—for example, as “text” or “drawing” as described above—the
regions of the same type abutting one another are merged (recombined). Figure 7.2 illustrates
the process for the image originally presented as Figure 5.1. In Figure 7.2a, the zoning output
for Engine A is illustrated. In Figure 7.2b, the zoning output for Engine B is presented. Finally,
in Figure 7.2c, the recombination of the regions is provided. One improvement in the output of
Figure 7.2c is that the large text “ALWAYS NEW. . . ALWAYS AN ADVENTURE!” is now
correctly identified as color line art.

The application of the Tessellation and Recombination first-order meta-algorithmic pattern
(originally shown in Figure 6.6) to this two-engine document zoning analysis example provided
the means to generate new region segmentation and classification. This is readily observed
when comparing Figure 7.2c (the output of the Tessellation and Recombination) to the output
of the two individual zoning analysis engines, Figures 7.2a and b.

This example illustrates that domain knowledge is required for implementation of the
Tessellation and Recombination pattern (Figure 7.3). In zoning analysis recombination, both
the weighting and the decision-making on differently labeled regions require domain expertise.
As one example, during the tessellation, often the regions formed do not line up exactly,
resulting in rather narrow regions (similar to the darker shaded regions in Figure 7.1, except
typically on the outer borders of regions) that may end up being classified differently from
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the larger regions they outline. These regions may need to be merged with abutting regions
even though they are classified differently, in order to preserve a reasonable zoning output
for the document. In addition, the merging of like-classified abutting regions also requires
zoning-analysis domain-specific expertise. For example, in some instances text regions will be
merged into columns; in other instances, text regions abutting each other will be left unjoined
since they compose two or more columns.

The example therefore clearly illustrates how the meta-algorithmic pattern allows the system
architect to use document analysis expertise, rather than knowledge of the internal workings
of the individual engines, to improve the output of the overall system.

7.3.2 Image Understanding

Scene recognition is an important type of image understanding task. Recognition includes the
identification of the location (scene identification) and, distinctly, the identification of specific
elements within the scene (object recognition). In this example, we are concerned with the

(a)

Figure 7.2 Tessellation and Recombination for a sample image. (a) Output of Engine A. (b) Output
of Engine B. (c) Recombination of the output of both engines. Lightest outlines indicate text regions,
second lightest outlines indicate photo regions, darkest lines indicate color line art regions, and second
darkest lines indicate binary line art regions. Reproduced by permission of Cheyenne Mountain Zoo



(b)

(c)

Figure 7.2 (Continued)
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Document
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Regions A Regions B

Engine B

Tessellation: generate (A + B) regions, A-only

regions, B-only regions

A AAB ABB B

Merge abutting regions of the same type

Output

regions

Figure 7.3 Tessellation and Recombination first-order meta-algorithmic pattern as applied to the zoning
analysis example described in the text

former, wherein we are trying to deduce a location based on the presence or absence of certain
image characteristics. Interestingly, one such characteristic is the presence or absence of
specific elements. Thus, the set(s) of specific elements (object recognition) that are identifiable
is a predictor for the selected class (scene recognition).

The choice of which objects to use as predictors can be determined in several ways.
In Figure 7.4, which is based on the Predictive Select pattern introduced in Figure 6.5, the
manner of choosing the objects is not specified, but is left to the “clustering and categorization”
block. This block has as input the list of classes along with representative images of each class
that combined comprise the “ground truth,” or training data. Each of the object recognizers
analyzes the ground truth set and tabulates the types and counts of objects in each image. A
representative set of results is shown in Table 7.1.
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Recognizer K Scene

Figure 7.4 Predictive Selection first-order meta-algorithmic pattern as applied to the scene recognition
example described in the text
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Table 7.1 Objects identified (per 100 images) in four classes of images by three different recognizers

Recognizers

Image Type Recognizer A Recognizer B Recognizer C

Indoors, home 134 Chairs, 23 desks,
8 trees, 13 buildings

119 Chairs, 18 desks,
11 trees,
17 buildings

127 Chairs, 14 desks,
15 trees, 16 buildings

Indoors, business 166 Chairs, 143 desks,
14 trees,
37 buildings

177 Chairs, 135 desks,
11 trees,
21 buildings

182 Chairs, 99 desks,
23 trees, 45 buildings

Outdoors, urban 35 Chairs, 24 desks,
278 trees,
366 buildings

15 Chairs, 9 desks,
233 trees,
263 buildings

23 Chairs, 34 desks,
219 trees, 302 buildings

Outdoors, rural 11 Chairs, 7 desks,
456 trees, 103 buildings

6 Chairs, 12 desks,
413 trees, 89 buildings

3 Chairs, 7 desks,
388 trees, 76 buildings

The data provided in Table 7.1 are insufficient to determine the predictions to be used.
However, some strategies are immediately visible from the data:

1. If the number of trees and buildings in the image is greater than some threshold, the image
is likely outdoors.

2. For outdoor images, if the number of trees is relatively higher than the number of buildings,
then the image is likely rural.

3. For indoor images, if the number of chairs is relatively higher than the number of desks,
then the image is likely in a home.

These three strategies are readily incorporated into simple formulas, effectively functional
as expert system rules, as illustrated in Table 7.2. These rules are used in a simple decision
tree classification approach along with the use of Predictive Select at each of the three binary
decisions. The three decisions are:

1. Is it indoors or outdoors? This is decided by the first binary classification step. The predictive
“object rule” for this decision is the sum of the trees and building objects found.

2. For those considered indoors, is it in a home or a business? This is the second and last
binary classification step for the indoors images. The “object rule” for this decision is the
number of chairs minus the number of desks found.

3. For those considered outdoors, is it urban or rural? This is the second and last binary
classification step for the outdoors images. The “object rule” for this decision is the number
of trees minus the number of buildings found.

Table 7.2 summarizes the accuracy of each recognizer for each of the three object rules. Each
object rule range is divided into four subranges, and the accuracy of each of the recognizers
determined for each subrange. In the table, the highest accuracy recognizer for each subrange
is underlined. The percentage of ground truth (or training) images in each subrange is given
in parentheses (“pct =”) in the table.
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Table 7.2 Accuracy of each recognizer for different object rule subranges. The classification accuracy
is either for “outdoors” versus “indoors,” “rural” versus “urban,” or “home” versus “business,” and
errors are classifications as “indoors,” “urban” or “business”

Recognizers

Object Rule Recognizer A Recognizer B Recognizer C

Indoors vs. outdoors

1. Trees + Buildings > 5 (pct = 0.204) 0.993 0.974 0.981
2. Trees + Buildings = 5 (pct = 0.266) 0.988 0.967 0.976
3. Trees + Buildings = 4 (pct = 0.319) 0.967 0.943 0.946
4. Trees + Buildings ≤ 3 (pct = 0.211) 0.898 0.901 0.904

Rural vs. urban

1. Trees – Buildings > 3 (pct = 0.093) 0.945 0.937 0.938
2. Trees – Buildings = 3 (pct = 0.123) 0.933 0.929 0.928
3. Trees – Buildings = 2 (pct = 0.144) 0.887 0.876 0.873
4. Trees – Buildings ≤ 1 (pct = 0.640) 0.767 0.788 0.834

Home vs. business

1. Chairs – Desks > 2 (pct = 0.042) 0.904 0.913 0.921
2. Chairs – Desks = 2 (pct = 0.227) 0.809 0.834 0.844
3. Chairs – Desks = 1 (pct = 0.585) 0.756 0.767 0.804
4. Chairs – Desks < 1 (pct = 0.146) 0.766 0.819 0.754

In Table 7.3, the accuracy of each of the three recognizers is provided for each of the
three classes. The reader can compute the values in Table 7.3 by summing the “pct” values
multiplied by the accuracy values in Table 7.2. The overall accuracy of Recognizers A, B, and
C are 0.769, 0.771, and 0.796, respectively.

The Predictive Select pattern uses the subclass accuracies to select one of the recognizers.
For example, suppose that for a new image to be analyzed, Categorizer A finds 4 trees and 1
building; Categorizer B finds 4 trees and 2 buildings; and Categorizer C finds 3 trees and 2

Table 7.3 Accuracy of each recognizer for different object rule ranges. The overall accuracy is the
mean of the accuracies for the complete “outdoors” (indoors vs. outdoors, followed by rural vs. urban)
and the complete “indoors” (indoors vs. outdoors, followed by home vs. business)

Recognizers

Object Rule Recognizer A Recognizer B Recognizer C

1. Indoors vs. outdoors 0.963 0.947 0.952
2. Rural vs. urban 0.821 0.832 0.861
3. Home vs. business 0.776 0.796 0.811
4. (1) × (2) = outdoors accuracy 0.791 0.788 0.820
5. (1) × (3) = indoors accuracy 0.747 0.754 0.772
6. ((4) + (5))/2 = overall accuracy 0.769 0.771 0.796
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buildings. According to Table 7.2, then, the subrange accuracy for Categorizer A is 0.988; for
Categorizer B it is 0.974; and for Categorizer C it is 0.976. Thus, we select Categorizer A for this
image for the “indoors versus outdoors” decision. We may select a different categorizer for the
next decision based on the number and type of objects each recognizer finds in the same manner
as the “object-based scoring matrix” generated from the data in Table 7.2. Thus, for one image,
we may accept the output of Recognizer B followed by the output of Recognizer A; for the next,
we may accept the output of Recognizer C followed by the output of Recognizer B, and so on.

In order to estimate how much this approach will improve the overall system accuracy when
deployed, we can look at the predicted accuracies under each of the “object rules” with the
simplified assumption that all three recognizers will report the same subclass for the same
image. For example, we assume that when Recognizer A finds exactly 5 “trees + buildings,”
so do the other two recognizers. This is not the case, of course—for example, Recognizer
A may find 4 trees and 1 building when Recognizer B finds 3 trees and 1 building—but
it does provide a (usually) fair way to predict the system behavior given only the data in
Table 7.2. For this estimate of the overall predictive select system accuracy, we simply use
the underlined accuracies in each row, multiplied by the appropriate “pct,” and sum. This
“optimized” predictive selection system is estimated to achieve an overall accuracy of 0.813,
which corresponds to an error rate of 18.7%, a rate 8.3% less than the error rate (20.4%) of
the best overall Recognizer, C. This subrange-based approach is also predicted to be better
than using the best individual categorizers for the three classes of categorization—that is,
Recognizer A for the “indoors versus outdoors” decision and Recognizer C for the other two
decisions, with an accuracy of 0.805 and thus an error rate of 19.5%.

The observed accuracy for the overall system on a data set equal in size to the training
set (500 images) was very similar to that predicted—0.815. This example demonstrates how
predictive selection can be used on multiple categorizations in a decision tree classification
system to improve the overall system accuracy. The approach outlined is generally effective
since Predictive Select (Section 6.2.4) results in the selection of a single intelligence generator
from a multiplicity of generators. In the example provided in Tables 7.2 and 7.3, accuracy
is reported rather than the preferred precision metric. However, choosing the information
generator with the highest accuracy is still a good approach (since we do not know the
precision or recall), as accuracy, a, is derived from precision, p, and recall, r, as

a = 2pr

p + r
.

It is obvious that if precision and recall are highly correlated, then so are accuracy and
precision. Therefore, the selection of the best generator based on which generator provides the
highest accuracy for the subclass identified by the generator is generally valid.

7.3.3 Biometrics

Biometrics comprises an interesting class of machine intelligence problems, which have a
broad range of applications and thus a broad class of possible constraints. Biometric authen-
tication, for example, may need to be established on devices with limited processing and/or
limited connectivity. Authentication may be performed once during sign-on; intermittently
as the security policy dictates when the user changes the tasks he wishes to perform; or
continuously in, for example, a multi-user environment.
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Because of variable and often unpredictable biometric system requirements, biometric au-
thentication systems can benefit from the Constrained Substitute first-order meta-algorithmic
pattern, originally described in Section 6.2.2. This pattern provides a suitable reduced-expense
replacement for a higher-expense generator, where expense is measured in terms of bandwidth,
cost, processing time, or a combination thereof. For deployment, this pattern requires a set
of competing intelligence generators that are each, independently, capable of performing a
specific task. As discussed in Section 6.2.2, the substitute generators are named partial gener-
ators, and they can substitute for a full generator under various conditions. If the correlation
between the results of a partial generator and the full generators is sufficiently high, then the
substitution can take place.

The decision for substitution can be crafted to address the constraints of biometrics. Fig-
ure 7.5 illustrates how the Constrained Substitute pattern (Figure 6.3) is modified to ac-
commodate static, intermittent, and real-time biometrics. During training, the full biometric
algorithm, which provides the highest authentication accuracy and statistical confidence, is
correlated with each of the potential substitutes, which in this case are low-cost biometric
algorithms. The results can be assigned to different clusters or categorizations, as shown.
Additionally, the output of the low-cost biometric algorithms are compared to ground truth
in order to provide a relative ranking among each of the low-cost algorithms for different
clusters/categorizations.

During run-time, the content is assigned to a specific category and the different biometric
algorithms are rated for their ability to perform in place of the full biometric algorithm. As an
example here, suppose we wish to establish and maintain biometric authentication during a
conversation. We have three low-cost biometric algorithms, labeled A, B, and C. In addition,
we have a full biometric algorithm. We wish to determine under what conditions one of the
low-cost biometric algorithms may substitute for this full biometric algorithm.

The first condition is concerned with the probability of a false identification. The data for
this condition is shown in Table 7.4. Three different conditions are presented. One, the high
security case, requires high biometric identification confidence, with less than one chance in
a billion of a false identification; that is, p < 10−9. The next, the security within a potentially
noisy environment case, requires relatively high biometric identification confidence, p < 10−6.
Finally, the lowest security case, p < 10−3, may be used when the system is used mainly for
tracking and not for access control. The biometric confidences are established by analyzed
fixed length strings of speech data. A different number of fixed length strings are required by
the different biometric algorithms. The full algorithm (FA), for example, may have a more
extensive database for comparison, better analysis algorithms, better signal filtering, and so
on, and thus require more processing time. The algorithm processing times vary from 110 to
250 ms, as listed in Table 7.4. The processing time is the amount required to analyze 2.0 s of
voice data. The data presented are mean processing times; in general, variance is a relatively
small percentage of the means for speech-related processing.

In Table 7.4, the low-cost biometric algorithm C cannot provide an equivalent level of
authentication security—measured in terms of statistical confidence—to the confidence that
an FA can provide after an equivalent amount of processing time. However, low-cost bio-
metric algorithm A can provide p < 10−9 and p < 10−3 security after 880 and 220 ms of
processing, improving on FA. Algorithm B can provide p < 10−9 security after 850 ms of
processing, improving on FA. So, if matching or improving on the performance time of the
FA is the constraint, we may effectively substitute for FA under two of the three security
conditions.
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Figure 7.5 Constrained Substitute first-order meta-algorithmic pattern as applied to the scene biometric
example described in the text

A more realistic set of constraints is addressed when we consider the cost of operating each
algorithm along with the cost of bandwidth. The high-level equation describing this model is

Cost = (CA + Cptp + CBtB)np,

where np is the number of times to run the algorithm, CA is the cost (in $) to run the algorithm
once, CB is the cost of the bandwidth for a given time period, tB is the time to send the
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Table 7.4 Relative processing time required for three different probabilities of false biometric
identification, for three low-cost biometric algorithms (A, B, and C) and the full biometric algorithm
(FA). Italicized table entries are those for which a low-cost biometric algorithm can meet or exceed the
confidence of an FA after the same amount of processing time

Biometric Algorithm

Datum Low-Cost A Low-Cost B Low-Cost C Full Algorithm

Processing time, tp (ms) 110 170 140 250
# Times to process 2.0 s of voice data to

obtain p < 10−9
8 5 8 4

# Times to process 2.0 s of voice data to
obtain p < 10−6

5 4 5 2

# Times to process 2.0 s of voice data to
obtain p < 10−3

2 3 3 1

Processing time for p < 10−9 (ms) 880 850 1120 1000
Processing time for p < 10−6 (ms) 550 680 700 500
Processing time for p < 10−3 (ms) 220 510 420 250

information for one run of the algorithm, Cp is the cost of the processing for a given time
period, and tp is the processing time. Note that the governing constraint on the system is that

(
tp + tB

)
np < tmax,

where tmax is the maximum amount of time allowed for processing and data transmission for
the np number of times the algorithm is to be run. Most importantly, this equation is used to
determine np from tmax using

np = (int)

[
tmax

tp + tB

]
.

Thus, np is the integer part of tmax/(tp + tB). Using this set of equations, we can now determine
which constrained substitute, if any, can perform in place of the FA. Table 7.5 collects the data
for one incarnation, where Cp = $0.001/s, CB = $0.01/s, tp are the values from Table 7.4, tB is
$0.04/s, and tmax is set at 1.0 s. The values for CA, which cover development, testing, support,
and licensing costs, are $0.0001, $0.0002, $0.0001, and $0.0005 per use, respectively, for
algorithms A, B, C, and FA. In 1.0 s or less, the algorithms can be performed three to six times,
affording up to p < 10−6 statistical security. Thus, functionally, each of the low-cost algorithms
can provide a constrained substitution for the functionality of the FA when a 1.0 s maximum
task time is allowed. However, only two of the so-called low-cost algorithms substitute for
the FA at a lower overall cost. Low-cost algorithm A reduced the overall cost by 10.7%, and
low-cost algorithm B reduces the overall cost by 7.2%.

Suppose tmax is set so that the FA achieves the highest level of security; that is, p < 10−9.
In order to achieve this, a tmax ≥ 1.16 s is required. In 1.16 s, the low-cost algorithms A, B,
and C process 7, 5, and 6 sets of 2.0 s of audio, respectively, which means that only low-cost
algorithm B can also provide authentication false positive probability of less than p < 10−9 in
the same time frame as the FA. However, the overall system cost for the low-cost algorithm B
is $0.004 88 per event, higher than the overall system cost for the FA, at $0.004 60 per event.
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Table 7.5 Deployment fact comparison for three low-cost biometric algorithms (A, B, C) with a full
algorithm (FA). See text for details

Speech Analysis Biometric Algorithm

Datum Low-Cost A Low-Cost B Low-Cost C Full Algorithm

CA ($) 0.000 1 0.000 2 0.000 1 0.000 5
Cp ($/s) 0.001 0.001 0.001 0.001
CB ($/s)) 0.01 0.01 0.01 0.01
tp (s) 0.110 0.170 0.140 0.250
tB (s) 0.040 0.040 0.040 0.040
tmax (s) 1.0 1.0 1.0 1.0
np 6 4 5 3
Cptp ($) 0.000 11 0.000 17 0.000 14 0.000 25
CBtB ($) 0.000 40 0.000 40 0.000 40 0.000 40
CA +Cptp + CBtB ($) 0.000 61 0.000 77 0.000 64 0.001 15
Cost ($) 0.003 66 0.003 08 0.003 20 0.003 45
Security approaches supportable p < 10−6, p < 10−6, p < 10−6, p < 10−6,

p < 10−3 p < 10−3 p < 10−3 p < 10−3

This example illustrates, therefore, a situation in which the FA provides a very competitive
overall system cost in spite of its greater processing time and algorithm cost. In this case, the
relatively high bandwidth costs are the reason. For mobile, distributed computing, however,
such relative costs for the different parts of the system are realistic.

The same high bandwidth costs provide the rationale for an entirely different use of the
Constrained Substitution pattern for this task. Namely, if one of the low-cost algorithms could
be made to process information locally, its bandwidth cost could be eliminated, although the
effective processing cost would likely rise. Nevertheless, since the bandwidth costs are more
than half the overall costs for the low-cost algorithms, this type of system redesign would
likely be effective.

7.3.4 Security Printing

The final primary domain, security printing, can use the Sequential Try or Try first-order meta-
algorithmic pattern (introduced in Section 6.2.1) to solve several different machine intelligence
problems. The first is based on the chroma-enhancing tile (CET) approach described in Section
4.2.4. The CET approach implements a scaled data embedding approach whereby different-
sized clusters of the barcode tiles—1 × 1, 2 × 2, 4 × 4, and so on—encode related sets of
information. The larger the clusters, the lesser the density of information. However, the larger
clusters are directly related to the smaller clusters. The Sequential Try pattern can be deployed
when the correct sequence is known; for example, it may be included as another printed
mark on the same package, label, or document. In this case, the first “try” is the algorithm that
attempts to read all of the tiles in the color barcode. If successful, and the tile sequence matches
the correct sequence for the printed object, then the analysis is complete. If unsuccessful, then
the next try is for the 2 × 2 tile clusters. This continues until a successful read occurs or no
larger tile clusters for which to attempt decoding exist.
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Table 7.6 Agreement matrix, depicting the percentage of decoded strings that map correctly for
clusters comprised different numbers of tiles. An agreement of 0.167 is equivalent to random guessing,
since there are six colors used in this color barcode—red, green, blue, cyan, magenta, and yellow

Cluster Size 1 × 1 2 × 2 4 × 4 8 × 8

1 × 1 1.000 0.345 0.284 0.247
2 × 2 0.345 1.000 0.997 0.995
4 × 4 0.284 0.997 1.000 1.000
8 × 8 0.247 0.995 1.000 1.000

However, the correct sequence for the color barcode may not be known at the time of
decoding; that is, until it is successfully decoded. In this case, an agreement matrix as depicted
in Table 7.6 should be computed. This matrix contains the agreement percentages when
comparing the output for successively larger clusters to the encoded data of the smaller
clusters in coordination with their CETs. Since six colors are used—red, green, blue, cyan,
magenta, and yellow—a minimum agreement of 0.167 is expected due to randomness alone.
The data for Table 7.6 show 100% agreement between the 4 × 4 and 8 × 8 clusters. The
4 × 4 clusters contain three times the data density as the 8 × 8 clusters, accounting for the fact
they are one-fourth the size but require 25% of their area for CETs. Thus, the 4 × 4 clusters
will be used for authentication, since they provide higher security than the 8 × 8 clusters.

The decoded 4 × 4 and 8 × 8 clusters are 99.5% and 99.7% in agreement with the decoded
2 × 2 clusters in Table 7.6. If a relatively small error rate, such as 0.5% or 0.3%, can be
tolerated or even compensated for using error-correcting code, then the 2 × 2 clusters can
be used for authentication, since their density is three times that of the 4 × 4 clusters and
nine times that of the 8 × 8 clusters. However, no amount of error-correcting code will allow the
1 × 1 clusters to be used for authentication. Their agreement with the 2 × 2, 4 × 4, and 8 ×
8 clusters is only 34.5%, 28.4%, and 24.7%, respectively. This indicates that most of the 1 ×
1 clusters will be decoded incorrectly.

Table 7.6, therefore, provides the means to maximize the amount of data that can be
encoded into a color barcode implementing CETs and the scaled decoding associated with
them. Figure 7.6 illustrates how the Try first-order meta-algorithmic pattern is deployed for
this security printing application.

In addition to this example, there are a number of other security printing applications that can
use the Sequential Try or Try pattern. One reason these patterns are a good match for security
printing is the dependency of security printing on the use of variable data printing technology.
For example, the Try pattern can be used to simultaneously decode multiple variable printed
features when they are encoded independently. If, instead, the variable printed features are
hybridized, or chained, then the output of one variable feature may be used to determine how
or where to extract the information encoded in another security mark. The Sequential Try
pattern is well suited to this hybridized approach.

7.4 Secondary Domains

The secondary domains chosen for this chapter are intended to provide an example implemen-
tation for the last remaining first-order meta-algorithmic pattern (Voting and Weighted Voting).
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Figure 7.6 Try first-order meta-algorithmic pattern as applied to the staggered, chroma-enhancing tile
(CET) technology

This is provided for the NLP task, part-of-speech (POS) analysis. The other two secondary
domains, medical signal processing and medical imaging, illustrate further the Constrained
Substitute and Predictive Select patterns.

7.4.1 Medical Signal Processing

The medical signal processing task of interest in this section is the analysis of the electro-
cardiogram (ECG). The ECG is a recording of the electrical potential on the surface of a
human that can be used to monitor the electrical activity of the heart, and from this determine
important timing events during the cardiac cycle. There are several different electrical lead
configurations. The standard three-lead configuration uses electrodes on the right arm (RA),
left arm (LA), and left leg (LL). Lead I is the difference in electrical potential in the LA with
respect to the RA; that is, LA-RA. Lead II is LL-RA. Lead III is LL-LA. Leads I, II, and III
are at 0◦, 60◦, and 120◦, respectively, by convention. Thus, 0◦ points to the right and 90◦ points
up. A typical recording for Lead II is shown in Figure 7.7. In addition to these leads, there are
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Figure 7.7 A Lead II electrocardiographic recording. The abscissa represents time in centiseconds,
and the ordinate represents voltage in microvolts. The recording includes 23.5 cardiac cycles, with the
24 large peaks corresponding to the R wave. The pulse rate is 69 bpm. Between successive R waves are
the prominent T wave, then the less prominent P wave. Some baseline deviation, due to motion artifact,
is visible between 10 and 12 s of the recording

also three augmented leads, the aVL, aVR, and aVF leads. These leads are at −30◦, −150◦,
and 90◦, respectively. These six bipolar leads define electrical activity along the frontal plane
of the chest. Six more standard leads are unipolar, and help to record surface electrical activity
in a plane perpendicular to the frontal plane. These six leads are simply designated V1–V6.

In this section, we are concerned with the three bipolar leads, I, II, and III, for ECG
diagnosis. ECG diagnosis is used to determine, among other information, (1) the timing of the
P wave, corresponding to atrial contraction, (2) the timing of the QRS complex, corresponding
to ventricular contraction, and (3) the timing of the T wave, corresponding to ventricular
repolarization. The timing and magnitude of these three electrical events, designated P, R, and
T, can be used to determine the following important cardiac cycle events:

1. Heart rate from the frequency of the cardiac cycle. The cardiac cycle is the timing between
two consecutive P, R, or T events. If, for example, the P events occur at 11.3 s and then
12.2 s, heart rate HR = 60/(12.2 – 11.3) beats per minute, or 66.7 bpm.

2. PR interval, the time between successive P and R events, which indicates how long it takes
electrical activation of the atria and ventricles to occur. The PR interval is also used to ensure
that normal cardiac excitation occurs. Anomalies in the PR interval may indicate a wide
variety of cardiac disorders, including atrial fibrillation (two successive P events without an
interposed R event), ventricular fibrillation (two successive R events without an interposed
P event), ventricular escape (longer R-R timing than P-P timing, and unpredictable P-R
timing), and so on.
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Table 7.7 Set of electrocardiographic features to monitor and the corresponding elements in the ECG
necessary to determine these features

Feature
Minimum ECG Elements Necessary to Determine
these Features

Heart rate R wave peak timing
PQ interval R wave peak timing and P wave peak timing
QT interval R wave peak timing and T wave peak timing
TP interval P wave peak timing and T wave peak timing
Vectorcardiogram (VCG) R, P, and T wave peak magnitudes

3. The relative magnitude of the P, R, and T events on the three leads is used to compute the
angle of the mean cardiac vector, which can be used to diagnose a variety of conductive
disorders of the heart, such as ventricular hypertrophy and injury currents; for example,
caused by cardiac ischemia.

We are interested in using the Constrained Substitution pattern for ECG signal analysis. In
order to provide a useful ECG-based system, we require the set of cardiac cycle features listed
in Table 7.7. These are the timing and magnitudes of the peaks of the P, QRS, and T waves
(generally the P, R, and T peaks). From these, a wide host of disorders—including first-degree
atrioventricular (AV) block, Wenckebach periodicity, premature ventricular contraction, atrial
flutter, bradycardia, tachycardia, and sinoatrial node delay—can be identified.

Table 7.8 summarizes 15 approaches to analyzing electrocardiographic content. They are
arranged in hierarchical order, based on the relative compression of data predicted for each
approach. For this particular system the amount of storage required is the cost. Thus, the lowest
cost option among those in Table 7.8 is the approach with the lowest number of bytes per
cardiac cycle that achieves the analysis goal. The total amount of data, D, is determined from

D = Bps × fS × T,

where Bps is the number of bits/sample, f S is the sampling frequency in hertz, and T is the
total amount of signal time in seconds for analysis.

Approach [1] simply counts the number of cardiac cycles, NCC, in time T . Assuming an
integer value requires 4 bytes for storage, this approach requires only 4/NCC bytes/cardiac
cycle. This approach can provide a substitution for a higher-cost algorithm if only the heart
rate is to be monitored. This may be valuable for an exercise machine, for example.

Approach [2] counts the number of normal cardiac cycles, NNCC, and the number of abnormal
cardiac cycles, NACC = NCC − NNCC. This requires only twice the data of Approach [1], but
can identify abnormal cardiac sequences. This may be valuable for alerting hospital staff. It
may also be used to trigger a higher-cost ECG analysis approach, if appropriate.

In Approach [3], the cardiac cycle intervals are collected in a histogram. For example,
a simple histogram may collect the number of cardiac cycles falling in ranges 0.6–0.65 s,
0.65–0.7 s, and so on. If the histogram has a single narrow peak, it is likely that many
arrhythmias such as AV block, atrial flutter, and atrial fibrillation are not occurring. This
approach may therefore serve as a low-cost substitute, requiring only about 100 bytes of data,
for other AV block and atrial arrhythmia detectors.
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Table 7.8 A hierarchical list of ECG representations we can store, in ranked order of expected
compression (i.e., maximum compression is achieved for (1)), which generally corresponds to
simplicity of the final signal

Number in the
Hierarchy Description

Bytes per
Cardiac Cycle

1 Number of cardiac cycles, NCC, over a given time period T 4/NCC

2 Number of normal and abnormal cardiac cycles over a given
period of time

8/NCC

3 Histogram of the cardiac cycle intervals, where the histogram
represents NR different time ranges

4NR/NCC

4 The timing events for P, R, and T waves for each interval 24
5 The timing events of (4), plus Q, S, and U waves 48
6 Tokenized versions of the cardiac cycle, using Bezier curves.

Assuming 9 linear sections and 2 arcs for simplest interval,
linear QRS, and arc P and T waves, this is 4 floating point
values per section—4 × 11 × 8 bytes total

352

7 (6) + tokenizing of the residual ∼352 + 0.001D
8 (6) + lossy compression of the residual ∼352 + 0.01D
9 (6) + lossless compression of the residual ∼352 + 0.1D

10 Average cycle + tokenizing of the residual ∼0.1D + 0.001D
11 Average cycle + lossy compression of the residual ∼0.1D + 0.01D
12 Average cycle + lossless compression of the residual ∼0.1D + 0.1D
13 Previous cycle + tokenizing of the residual ∼0.2D + 0.001D
14 Previous cycle + lossy compression of the residual ∼0.2D + 0.01D
15 Previous cycle + lossless compression of the residual ∼0.2D + 0.1D

NCC is the number of cardiac cycles in the ECG data record of interest. Integer values are assumed to be
stored with 4 bytes of data. Timing values are assumed to be stored with 8 bytes of data. D is the total
amount of data in a cardiac cycle at full sampling frequency and the complete set of bits for the voltage
measurements. Please see the text for details on computing the bytes/cardiac cycle column.

Approach [4] stores the timing events for all P, R, and T wave peaks. Assuming a floating
point value requires 8 bytes, this reduces the data storage requirement to 24 bytes/cardiac
cycle. With the addition of these data, the PR, RT, and TP intervals can be calculated, along
with their histograms. This allows the discovery of additional cardiac arrhythmias, including
SA node block and delayed ventricular repolarization consistent with ischemia or damage due
to myocardial infarction. For an additional 24 bytes/cardiac cycle of data storage, Approach
[5] keeps the timing data for the Q, S, and U waves. The Q and S wave timing information
can help identify left or right axis deviation, bundle branch blockage, and ectopic pacing. The
U wave, if, for example, inverted, may identify myocardial ischemia or even left ventricular
volume overload. As with Approach [4], this provides a low-cost substitute for saving a less
digested ECG signal.

Approach [6] introduces ECG tokenization, in which the ECG signal is represented by a
set of Bezier curves. Bezier curves are typically used to describe typefaces—any published
typeface consists of the Bezier curves describing each of the 256 characters in its set. Most
Bezier curves are lines or arcs on a circle, although in general they are described by any
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quadratic expression. A Bezier curve is a quadratic equation used to describe the slope of a
line or the curve between two points; for example: y = mx + b. Scaling is achieved simply by
bringing a multiplier into the equation: y = M × (mx + b). P waves are typically semicircular
(an arc of 180◦) in shape, and this is a very straightforward Bezier (center point of the circle,
radius, and start/end angles) curve. More complex P waves can be described by, among other
combinations, (a) two linear pieces and one arc, (b) two linear pieces and three arcs, or (c)
three arcs. The T waves and U waves (if present) can be described similar to the P waves. The
PQ, ST, TU (if present), and TP/UP intervals can be described by a single line segment each.
This is also a very simple Bezier curve, described by two points. The remaining portion of the
cardiac cycle is the QRS complex, which in normal conditions can be described with six line
segments, two for each of the three waves. Altogether, the P and T waves, QRS complex, and
PR, RT, and TP segments require 352 bytes/cardiac cycle. More is required if the U wave is
visible. If the ECG is sampled at 1000 Hz and stored in floating point, and the pulse rate is
72 bpm, this still represents a 94.7% reduction in data storage. However, additional diagnostic
information can be gleaned from this information, such as baseline (evident in Figure 7.7)
and lengthened P and/or T waves. Approach [6] thus provides additional information over
Approach [5], while still providing a significantly lower-cost storage solution than storing the
entire ECG waveform.

The next three approaches, [7], [8], and [9], introduce the use of a residual signal. After
the Bezier curve representation of the ECG is formed for Approach [6], the Bezier curve
representation is subtracted from the actual signal. The difference signal, or residual, is then
itself tokenized, usually using straight line segments, for Approach [7]. Approach [8] provides
lossy compression of the residual from [6], and Approach [9] provides lossless compression
of the residual. Each of these requires 352 bytes/cardiac cycle for the Bezier curve, and an
additional percentage of the original data for tokenization (0.1%), lossy compression (1%),
or lossless compression (10%). These three approaches provide successive better approxi-
mations to the actual ECG signal, and so may provide additional diagnostic information,
especially for biometrics or more subtle arrhythmias such as minor ischemias or conductive
path blockages.

The next three approaches, [10], [11], and [12], use the average cardiac cycle in place
of a Bezier curve representation. Since cardiac cycles vary in length, the average cycle
will be time compressed or stretched to fit each successive cycle. The same three residual
representations—tokenization [10], lossy compression [11], or lossless compression [12]—are
used along with the average cardiac cycle starting point. Approaches [13], [14], and [15]
repeat these three residual representations for the previous cycle, which will tend to require
more data since no averaging is used. As with Approaches [7]–[9], Approaches [10]–[15]
represent increasingly higher-cost alternatives to storing the original waveform. Approaches
[9], [12], and [15], in fact, provide the means to reconstruct exactly the original signal, and
thus are equivalent.

The Constrained Substitute pattern is implemented in the form shown in Figure 7.8 to allow
the substitution of a lower-numbered approach in Table 7.8 for a higher-numbered approach.
This version of the Constrained Substitute pattern provides three exact solutions—Approaches
[9], [12], and [15]—and compression percentages ranging from 70% to more than 99%. Since
it generally offers higher compression, Approach [9] is usually the preferred method for
replacing the exact original ECG, although in practice the relative bytes/cardiac cycle are
dependent on Bps, f S, and T .
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Figure 7.8 Constrained Substitute first-order meta-algorithmic pattern as applied to the ECG analysis
as described in this section
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As discussed above, more and more diagnoses are possible as the number increases from [1]
to [9], allowing the lower-cost, lower-numbered storage approaches to effectively substitute
for salient aspects of the full-data storage approaches, [9], [12], and [15]. Because a number
of ECG monitoring applications require only a modest amount of information, these low-cost
approaches are broadly applicable and offer a huge storage cost savings. While the example
focuses on data compression as the system cost, it should be noted that the size of the data after
compression could also directly impact bandwidth costs if the ECG monitoring is remote.

7.4.2 Medical Imaging

Compared to medical signal processing, medical imaging adds one or two dimensions to the
mixture. In this section, we consider the use of the Predictive Select pattern, introduced in Sec-
tion 6.2.4, for classifying biomedical images. The images selected in this case are of craniofa-
cial implant materials, manufactured from TiO2, along with the surrounding craniofacial bone,
which, if biocompatible, grows into the implant (bone ingrowth) and grows directly against the
surface of the implant (bone apposition). Three separate image analyzers were used to classify
each of the biomedical images. Four classes of images were identified: (1) excellent ingrowth
and excellent apposition; (2) poor ingrowth and excellent apposition; (3) excellent ingrowth
and poor apposition; and (4) poor ingrowth and poor apposition. Class [1] corresponds to an
implant with proper pore structure and biocompatibility. Class [2] indicates a biocompatible
implant with nonoptimal porous structure. Class [3] identifies a nonbiocompatible implant with
good pore structure. Finally, class [4] indicates a nonbiocompatible implant with nonoptimal
pore structure. Figure 7.9 illustrates an example belonging to class [1] and to class [4].

In order to determine both an optimal pore architecture—which includes both pore size
and percent porosity of the implant material—and an optimal biocompatibility for the

(a) (b)

Figure 7.9 Sample images analyzed using two-dimensional (2D) medical imaging as described in this
section. The black areas are the implant material, TiO2, into which the bone (red areas) should grow and
against which the bone areas should abut if biocompatibility is achieved. The lighter areas are voids,
or porosities within the bone tissue. (a) An example of poor bone ingrowth and implant apposition,
belonging to class [4], generally implying poor biocompatibility. (b) An example of good bone ingrowth
and implant apposition, belonging to class [1], generally indicative of biocompatibility. See text for
details
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implant, a wide variety of implant porosities, and surface coatings were investigated. For
each (porosity, coating) combination, a minimum of 100 two-dimensional (2D) cross-sections
of implant/craniofacial material were captured. Training was performed on half of the images,
and the remaining 50% were used for the later classifier evaluation. The meta-algorithmic
approach chosen (Figure 7.10) requires the calculation of a predictive set of features, each of
which can be used to determine classifier precision on the training data. These features are
meant to be calculated relatively quickly from the image, and in so doing select one and only
one image analyzer, which in turn provides the image classification.

Six features are computed for each new image during run-time: (1) the percentage of orange
pixels within the convex hull of the implant region (%OrangeWithin), indicative of areas where
porosity rather than bone material is within the implant; (2) the percentage of red pixels within
the convex hull of the implant region (%RedWithin), indicative of areas where bone material
has grown into the implant; (3) the percentage of orange pixels along the implant’s external
and internal boundaries, also known as the percentage of orange pixels apposed (%OrangeAp-
posed), indicative of areas where porosity rather than bone material abuts the implant; (4) the
percentage of red pixels apposed to the implant’s external and internal boundaries (%RedAp-
posed), indicative of areas where bone material abuts the implant; (5) the mean nonblack run
lengths within the convex hull of the implant region (MeanNonBlackRunWithin), correlated
with the mean porosity channel width in the implant; and (6) the mean pore size (MeanPore-
RegionSizeWithin, estimated by created connected component regions from the nonblack
pixels) within the convex hull of the implant region. For each image, each of these features
will have a sample belonging to one of three or four subranges generally corresponding with
different relative ingrowth, apposition, or pore size. The precisions of each of the three image
analyzers for each subrange of each feature are collected in Table 7.9.

In Table 7.9, where possible, the subranges for the six features were designed such that
roughly the same percentages of images belonged to each subrange. However, the distribu-
tions of, for example, the bone apposition values (%OrangeApposed and %RedApposed),
which had three obvious subpopulations of different percentages, precluded this for some
measurements. Nevertheless, using these percentages, it is left as an exercise for the reader to
show that Analyzer A provides overall precision of 0.81, 0.81, 0.76, 0.71, 0.53, and 0.39 for the
features %OrangeWithin, %RedWithin, %OrangeOpposed, %RedOpposed, MeanNonBlack-
RunWithin, and MeanPoreRegionSizeWithin, respectively, by simply computing the sum of
the percentage values in parenthesis multiplied by the subrange precision, for all of the feature
subranges. For Analyzer B, the reader can readily compute the same feature precision values
as 0.88, 0.84, 0.75, 0.56, 0.66, and 0.35, respectively; for Analyzer C, these values are 0.84,
0.70, 0.84, 0.83, 0.46, and 0.39, respectively. We will assume independence among the features
and equal weighting of each feature for the overall predictive value, even though we might
be better served to use an approach summarized in Table 6.6 as a better means of estimating
the relative weights of the six features based on the precisions calculated above. However,
I have left out optimized weighting in this stage to keep the example below focused on the
elements salient to the Predictive Selection pattern. Given this simplification, the estimated
precision of Analyzers A, B, and C are 0.67, 0.67, and 0.68, respectively, when deployed by
themselves. The overall precision of the system (selecting the best of the three analyzers) is
therefore estimated to be 0.68.

However, when Predictive Selection is used, we wish to select the analyzer with the
highest precision for each subrange of each feature. These are the underlined precisions in
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Figure 7.10 Predictive Select first-order meta-algorithmic pattern as applied to the image analysis
problem described in this section. Each of the image analyzer engines produces its specific content,
which is then associated with each of the image classes during training. During run-time, the new image
is analyzed for a predictive set of features, and the analyzer that offers the highest precision for the given
set is selected to make the final classification decision
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Table 7.9 Precision for each of the three image analyzers—A, B, and C—for 20 different image
feature subranges belonging to the six image features analyzed during the predictive portion of the
pattern

Analyzer Precision

Image Feature Subrange Analyzer A Analyzer B Analyzer C

%OrangeWithin I (0.27) 0.78 0.83 0.85
%OrangeWithin II (0.40) 0.81 0.88 0.85
%OrangeWithin III (0.33) 0.83 0.91 0.83
%RedWithin I (0.31) 0.77 0.84 0.64
%RedWithin II (0.39) 0.83 0.86 0.78
%RedWithin III (0.30) 0.82 0.81 0.66
%OrangeApposed I (0.52) 0.67 0.75 0.81
%OrangeApposed II (0.20) 0.84 0.76 0.83
%OrangeApposed III (0.28) 0.88 0.73 0.91
%RedApposed I (0.61) 0.65 0.55 0.85
%RedApposed II (0.19) 0.77 0.61 0.79
%RedApposed III (0.20) 0.84 0.52 0.83
MeanNonBlackRunWithin I (0.24) 0.44 0.58 0.42
MeanNonBlackRunWithin II (0.27) 0.61 0.66 0.46
MeanNonBlackRunWithin III (0.23) 0.57 0.70 0.51
MeanNonBlackRunWithin IV (0.26) 0.49 0.68 0.47
MeanPoreRegionSizeWithin I (0.22) 0.33 0.41 0.40
MeanPoreRegionSizeWithin II (0.31) 0.42 0.29 0.38
MeanPoreRegionSizeWithin III (0.27) 0.40 0.38 0.37
MeanPoreRegionSizeWithin IV (0.20) 0.38 0.33 0.42

The highest precision for each row, representing one feature and one subrange for the feature, is in
italics. The percent of images falling in each subrange for the given features are indicated in
parentheses; for example, (0.34) implies 34% of images map to that subrange for the given feature. The
image analyzer to be used for making the final decision (see Figure 7.10) is determined by selecting the
analyzer with the largest sum of precision values for all image feature subranges associated with the
image to be classified.

Table 7.9. When these are selected, the estimated precision for the features %OrangeWithin,
%RedWithin, %OrangeOpposed, %RedOpposed, MeanNonBlackRunWithin, and Mean-
PoreRegionSizeWithin become 0.88, 0.84, 0.84, 0.84, 0.66, and 0.41, respectively. This rep-
resents an absolute maximum for precision, since in practice the recommended analyzer will
vary for different features, and so we will not achieve this precision. Using the same simpli-
fications as above for weighting the six features while combining, this results in an overall
system precision estimate of 0.75. When deployed against the test set, this system achieved
70% accuracy, as opposed to the 66% accuracy actually observed for the best of the three in-
dividual analyzers (Analyzer C), a reduction in error from 34% to 30%, or a relative reduction
in error rate of 12%. The 70% accuracy is well below the predicted meta-algorithmic accuracy
for reasons cited in this paragraph, but still represents a valuable improvement.

Let us now consider one example of how to deploy the system. Suppose a new im-
age has %OrangeWithin in subrange III, %RedWithin in subrange I, %OrangeApposed in
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subrange III, %RedApposed in subrange II, MeanNonBlackRunWithin in subrange II, and
MeanPoreRegionSizeWithin in subrange III. Summing the appropriate analyzer precisions
from Table 7.9, Analyzers A, B, and C sum to 4.26, 4.13, and 4.00, respectively. Dividing
by the number of features, the expected precisions of Analyzers A, B, and C are 0.71, 0.69,
and 0.67, respectively. We choose, therefore, Analyzer A with an expected improvement in
precision of 0.02 (the difference of 0.71 and the mean of the three analyzers, or 0.69).

It is left as an exercise for the reader to show that, when using weighting based on the
inverse of the error rate (see Table 6.6 and the associated discussion), the estimated precision
of Analyzers A, B, and C are 0.73, 0.76, and 0.76, respectively, and the overall system
precision is estimated to be 0.75. This is a powerful statement for the Weighted Voting meta-
algorithmic approach, separate from the Predictive Selection pattern described above (which,
coincidentally, also improved the overall system precision estimate to 0.75).

When this weighting approach is used in combination with the Predictive Select pattern
(choosing the output from the analyzer with the highest precision for each subrange), the
overall system precision estimate is 0.82 (left as an exercise for the reader, with the hint that
the weights for the features in order presented in Table 7.9 are 0.23, 0.17, 0.17, 0.17, 0.06,
and 0.02, respectively). This is a huge improvement over the 0.67 precision estimated without
meta-algorithmics. When deployed against the test set, this system achieved an actual 76%
accuracy, a reduction in error from 34% (the error rate for the best of the three individual
analyzers) to 24%, or a relative reduction in error rate of 29%. Again, the 76% accuracy is
below the predicted accuracy of 82% due to the simplifications we had to make to predict the
final precision without knowledge of the correlation between features for different images.
The reduction in error rate, nevertheless, is impressive.

This example shows the power of being able to apply knowledge from multiple meta-
algorithmic patterns simultaneously, a topic we will return to in the next two chapters. Addi-
tionally, the severity of the image classification errors made is significantly reduced. In this
section, the focus was on the classification accuracy, where meta-algorithmic approaches were
able to reduce the error rate by 29% during deployment. However, it is important to point
out that the nature of the classification errors also was changed by the meta-algorithmics.
The most severe type of misclassification errors possible for this medical imaging system are
when either (a) class [1] is mistaken for class [4], or (b) class [4] is mistaken for class [1].
This is true because these misclassifications actually represent two errors, one about optimal
porosity of the implant and the other about biocompatibility of the implant. Without the use
of meta-algorithmics, these types of misclassifications occurred on 3–4% of the images for
the three analyzers when used alone. With the use of meta-algorithmics, these types of errors
disappeared completely (on a test set of 100 images).

7.4.3 Natural Language Processing

NLP is the broad field concerned with internalizing human language (spoken and written) for
use in other computer applications, services, and/or workflows. POS tagging is an important
part of NLP. In it, each word in a set of text is tagged, or logically labeled, as a verb, noun,
adverb, article, and so on. These tags are very important, because they identify important
context (usually nouns), sentiment (usually verbs and adverbs), and cardinality.

Because the definition of words is relatively unambiguous in comparison to, for example,
segmenting an object from an image, a simple Voting pattern can be used to decide the output
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of multiple POS tagging engines, commonly referred to as “taggers.” Tagger combination
approaches were introduced many years back—see, for example, Brill and Wu (1998), Tjong
Kim Sang (2000), and Halteren, Zavrel, and Daelemans (2001)—but a detailed study of the
advantages of voting was not provided in these references. In our work on the Voting and
Weighted Voting patterns (introduced in Section 6.2.3), we decided to perform tagging on the
well-known and publicly available Penn Treebank (Marcus, Santorini, and Marcinkiewicz,
1993) data set.

To perform our investigation, we chose three taggers. The first tagger is the transformation-
based learning system commonly referred to as the Brill tagger (Brill, 1992), at the time
(2001) we performed this research, perhaps the best known tagger. It first tags each word with
its highest probability tag and then modifies the tagging according to learned transformation
rules. The second tagger is the Infogistics NLP Processor (www.infogistics.com; accessed
January 25, 2013). According to its Web site at the time, the system implements the traditional
trigram model. The third tagger is the QuickTag from Cogilex R&D Inc. (www.cogilex.com;
accessed January 25, 2013), whose Web site at the time explicitly claimed “tagging is not done
on a statistical basis but on linguistic data (dictionary, derivational and inflectional suffixes,
prefixes, and derivation rules).” These three taggers are hereafter referred to as the Brill,
Infogistics, and Cogilex taggers.

We performed calibration on the three taggers using the University of Pennsylvania tag set
(Marcus, Santorini, and Marcinkiewicz, 1993), and found the Brill tagger provided the highest
accuracy. We therefore employed the simplest form of Weighted Voting (Figure 7.11) wherein

Word

Brill tagger Infogistics tagger Cogilex tagger

X X X

1.1 1.0 1.0

Brill POS
Infogistics

POS
Cogilex POS

Voter POS

Figure 7.11 Figure showing Weighted Voting approach to part-of-speech (POS) tagging. The Brill
tagger is weighted 1.1, and the other two taggers are weighted 1.0. If there is no agreement, then, the
Brill tagger output is the chosen output
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Table 7.10 Part-of-speech (POS) error rates for the individual POS taggers and the weighted voting
of the tagging with three different corpora from the Amalgam project (http://www.comp.leeds.ac.uk/
amalgam/amalgam/amalghome.htm; accessed January 25, 2013) as described in Lin (2002)

Error Rate (percentage)

Corpus Brill Infogistics Cogilex Weighted Voting Error Reduction (%)

A 13.30 13.50 16.09 10.09 24.1
B 8.66 8.86 9.74 6.79 21.6
C 5.03 5.38 13.75 4.29 14.7

the Brill tagger was given the tie-breaking weight of 1.1 and each of the other two taggers was
given the weight of 1.0. In case of complete disagreement, then, the Brill tagger’s output was
chosen. If, and only if, the other two taggers agreed but differed from the Brill tagger, was the
Brill tagger’s output not chosen.

Table 7.10 presents the results of the tagger combination when applied to novel corpora not
associated with the training set (Lin, 2002). Corpus A was quite challenging, resulting in error
rates of 13–16% for the individual taggers. The Brill tagger was again the most accurate, but
only by a slight percentage. The Weighted Voting meta-algorithmics, however, significantly
reduced the error rate, to 10%. The relative effect on error was 24.1% compared to the best
individual classifier. Corpus B, less challenging than Corpus A, nevertheless followed its
trends: the Brill tagger provided the lowest error rate, and Weighed Voting reduced the error
rate by 21.6% compared to the Brill tagger. The least difficult corpus, Corpus C, had very mixed
results, with tagger error rate varying by as much as 275% in comparing the Brill and Cogilex
taggers (with the Brill tagger again providing the highest accuracy). Nevertheless, Weighted
Voting reduced the error rate by 14.7% in comparison to the Brill tagger. These data seem to
indicate that weighted voting provides a larger relative improvement on more challenging data
sets; however, such a broad conclusion is not defensible with only three test sets.

A separate test of challenging data sets, in fact, seems to indicate the opposite. We added
errors to the text (comprising all three Corpora A, B and C) by changing 0.5%, 1%, 2%, 3%,
4%, 6%, 8%, or 12% of the characters randomly. The results are shown in Table 7.11. For
the error-free text, the Brill, Infogistics, and Cogilex taggers have POS error rates of 6.60%,
6.65%, and 10.66%, respectively. The Brill tagger outperformed the other two taggers for
every character error rate. The Weighted Voting meta-algorithmic tagger outperformed the
Brill tagger for character error rates of 0–3%. The Brill tagger, however, outperformed the
Weighted Voting approach for character error rates of 6% or more. At this level of character
error rate, the tagger POS error rates are all more than 1 in 6 words.

Clearly, this is a different trend than for the data in Table 7.10. There, increasingly difficult
to tag text benefits from meta-algorithmics. This may be due to the fact that the POS tagging
errors are relatively small; that is, relatively similar in POS. With the data of Table 7.11,
however, character error rates of 6% or more correspond with the expectation that more than
one-fourth of the words will have one of more character error. At this high of an error rate, the
advantage of the meta-algorithmic approach disappears. This may be due to the POS tagging
errors being more random in nature (in the mean, more distant from the actual tag), obviating
the central tendency advantages of the Weighted Voting pattern.
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Table 7.11 Part-of-speech (POS) error rates for the individual POS taggers and the weighted voting
of the tagging with different percentages of simulated OCR errors occurring in the text (Lin, 2002). The
original (0% error rate) text is the combined Corpora A, B, and C from Table 7.10

Simulated OCR Brill Tagger Infogistics Cogilex Weighted
Character Error Error Tagger Error Tagger Error Voting Error
Rates (%) Rates (%) Rates (%) Rates (%) Rates (%)

0.0 6.60 6.65 10.66 5.05
0.5 7.89 8.07 11.98 6.43
1.0 9.52 10.32 13.77 8.46
2.0 10.41 12.01 14.80 9.72
3.0 12.95 14.75 17.11 12.72
4.0 14.00 17.22 19.07 14.02
6.0 16.80 21.45 21.95 17.45
8.0 21.49 26.26 26.17 21.67

12.0 26.16 33.53 31.25 27.65

7.5 Summary

This chapter provided examples of how to employ first-order meta-algorithmic patterns. A
broad set of domains were addressed, and for each example the improved results obtained
were tabulated. The Tessellation and Recombination pattern was shown valuable for domains
in which repartitioning of output may reduce error. The Predictive Select pattern was shown
valuable for using domain expertise incorporated into rules to improve generator selection.
Constrained Substitution was shown to be valuable for reducing a wide range of operational
costs—both overall system and data storage in its two examples. Simultaneous analysis of
multiple sets of content, such as in security printing applications, is well served by the
Sequential Try/Try pattern. Weighted Voting was shown to be valuable both for combining
features and for combining generators. Together, these five patterns provide a powerful set of
tools to increase overall system accuracy, cost, and/or robustness.
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8
Second-Order Meta-algorithmics
and Their Applications

What is important is to spread confusion, not eliminate it.
—Salvador Dalı́

8.1 Introduction

Salvador Dalı́ apparently understood the central importance of the confusion matrix in the
science of meta-algorithmics. In this chapter, we will see the confusion matrix in action, and
discover how its confusion can indeed be spread to determination of precision, decision tree
classification optimization, targeted classification, and ground truthing optimization.

This chapter provides more in-depth applications of the second-order meta-algorithmic
patterns, introduced in Section 6.3. All nine of the second-order patterns are demonstrated
in this chapter, applied once more to the usual four primary domains: (1) document un-
derstanding, (2) image understanding, (3) biometrics, and (4) security printing. In addi-
tion, second-order patterns are applied to the domains of image segmentation and speech
recognition.

Second-order meta-algorithmics are in general more complicated than the first-order meta-
algorithmics. A greater number of deployment options are available, enabling more tunable
and robust systems to be architected. Most of the patterns employ two or more decisioning
approaches, enabling more design flexibility through trade-off of the parameterization of these
multiple components. These patterns use a new set of analysis tools: confusion matrix, output
space transformation, expert decisioners, and thresholded confidence.

The confusion matrix is a very powerful tool for analysis, and can be used not just as
a component in a variety of second-order meta-algorithmic patterns, but also as a filtering
mechanism for assigning different partitions of an input space to different meta-algorithmic
patterns. This approach will be introduced in the next section.

Output space transformation is an important tool for normalizing the output of multiple
generators. In particular, complicated analysis engines—which are often treated as black
boxes—often provide idiosyncratic confidence values for the set of possible outputs. Some

Meta-algorithmics: Patterns for Robust, Low-Cost, High-Quality Systems, First Edition. Steven J. Simske.
C© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.
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engines may provide only a ranked set with no confidence values, others may provide actual
probabilities, and still others may provide relative confidence values. Output space transforma-
tion may be used to create similar relative behavior among the engines, but more importantly it
is used to create better behavior of the engines in combination for a particular meta-algorithmic
pattern. Thus, output space transformation will typically provide a different approach for each
meta-algorithmic pattern in which it is deployed.

Expert decisioners are used to internalize domain expertise in a pattern. The domain expertise
may be a set of allowed ranges or other constraints, co-occurrences of specific data or patterns
of data, or ratios of data. One important aspect of expert decisioners is that they can be
introduced into a system even when there is no training data available. For example, the
occurrence of the word “Feuerstelle” in an invoice may be used to make the decision that
the document is in German, which then simplifies the downstream task of determining the
company that created the invoice.

Finally, a thresholding approach compares the confidence in a first result to a relevant
minimum or maximum value. If the confidence is sufficient, no further analysis is required
and the output is this first result. Otherwise, additional analysis is performed and an alternate
output is created.

8.2 Second-Order Meta-algorithmics and Targeting the “Fringes”

Why might a system architect decide to use a second-order meta-algorithmic pattern in place
of a first-order pattern? One reason is the data to be analyzed represent two or more relatively
distinct populations—once the input is assigned to the correct population, downstream analysis
is greatly simplified. This means that there must be a good way to identify the existence of these
populations. Typically, the smaller populations are obscured by the larger population(s). One
of the reasons to deploy meta-algorithmics is to be able to identify these smaller populations.
Another reason is to be able to target each smaller population with an additional generator.
Each of these tasks can be assisted by the confusion matrix.

The general form of the confusion matrix is shown here. The “origin class” is also referred
to in the literature as the “actual” or “true” class. The “assigned class” is also referred to as the
“predicted” class. I use the term “origin” class here since it more closely captures the plasticity
of origin of the data—especially in this section where we will see origin classes combined,
thereby changing the “actuality” or “truth” of the original rows. I use the term “assigned” class
since it is more general than “predicted” and as origin classes are recombined the original
predictions are somewhat altered in context:

Assigned class

Origin
class

⎡
⎢⎢⎢⎢⎣

C11 C12 C13 . . . C1N

C21 C22 C23 . . . C2N

C31 C32 C33 . . . C3N

. . . . .

CN1 CN2 CN3 . . . CNN

⎤
⎥⎥⎥⎥⎦

.

For X = 1, . . . , N, the sum CX1 + CX2 + CX3 + · · · + CXN = 1.0, since these values
represent how the origin class X is assigned to all of the classes in the input space. In order to
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use the confusion matrix for evaluation of potential secondary populations, it may need to be
reorganized. One way is to use maximum confusion:

Maximum confusion = argmax ({i, j �= i} ∈ 1 . . . N[Cij + Cji]).

If it then makes sense to organize classes {i,j} as a single aggregate class (which can be
later targeted by a specific binary classifier that can distinguish Class i from Class j), we
have reduced the order of the confusion matrix and identified a smaller population within
the overall population. Thereafter, this class can be treated as an individual class and later
disaggregated with a targeted binary or series of binary classifiers to recover the original
classes. The process continues so long as the aggregation of the two classes (and/or aggregate
classes) with maximum confusion results in a measurable and significant improvement in the
overall predicted system performance.

A simple example is used to introduce these concepts. Suppose we have the following
confusion matrix for a 4-class problem:

Assigned class

Origin
class

⎡
⎢⎢⎣

0.7 0.2 0.1 0.0
0.15 0.8 0.05 0.0
0.05 0.05 0.8 0.1
0.0 0.05 0.05 0.9

⎤
⎥⎥⎦ .

Then, as shown in Table 8.1, the maximum confusion is between class 1 and class 2, for
which it is 0.35. The overall accuracy of the table is 0.8, the percentage of classifications on
the diagonal of the confusion matrix.

If we then combine the original classes 1 and 2 into an aggregated class, we obtain the
following simplified confusion matrix:

Assigned class

Origin
class

⎡
⎣0.925 0.075 0.0

0.1 0.8 0.1
0.05 0.05 0.9

⎤
⎦ .

Table 8.1 Confusion (sum of paired off-diagonal elements {i, j}, with j > i,
which is the error of mistaking class i with class j, or vice versa). The maximum
confusion is for {i = 1, j = 2}, for which the confusion is 0.35

i j (where j > i) Confusion = (Cij + Cji)

1 2 0.15 + 0.2 = 0.35
1 3 0.1 + 0.05 = 0.15
1 4 0.0 + 0.0 = 0.0
2 3 0.05 + 0.05 = 0.1
2 4 0.05 + 0.0 = 0.05
3 4 0.05 + 0.1 = 0.15
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The larger confusion matrix is transformed into this one remembering that each row sums to
1.0. The overall accuracy of the aggregated confusion matrix is now 0.875. The overall system
accuracy can then be improved by focusing on creating a high-accuracy binary classifier for
original classes 1 and 2.

This approach is recursive. Next, the aggregate of original classes 1 and 2 and the original
class 3 can be aggregated, based again on this combination having the maximum confusion,
0.175, of the three confusions in the simplified confusion matrix above—the other two being
0.5 and 0.15. This aggregation is used to create a new 2 × 2 confusion matrix as follows:

Assigned class
Origin
class

[
0.95 0.05
0.1 0.9

]
.

This further simplified confusion matrix has an accuracy of 0.925 for distinguishing class
4 from the aggregation of classes 1, 2, and 3. In order to make this step worthwhile, a highly
accurate classifier for distinguishing class 3 from the aggregate of classes 1 and 2 must be
created.

The equation for maximum confusion, while simple, is quite powerful. The example above
shows how it can be used to aggregate classes into a single cluster of classes, suitable for
a binary-decision-tree-based classification approach. However, it can also be used to create
multiple clusters sequentially. To illustrate this, consider the following 6-class confusion
matrix:

Assigned class

Origin
class

1
2
3
4
5
6

⎡
⎢⎢⎢⎢⎢⎢⎣

0.71 0.07 0.04 0.01 0.15 0.02
0.01 0.82 0.01 0.13 0.01 0.02
0.04 0.03 0.75 0.05 0.02 0.11
0.02 0.07 0.03 0.85 0.01 0.02
0.04 0.01 0.02 0.02 0.90 0.01
0.03 0.04 0.24 0.05 0.03 0.61

⎤
⎥⎥⎥⎥⎥⎥⎦

.

In this confusion matrix, the mean of the diagonal elements is 0.773, which is the overall
accuracy of the 6-class classification. The sum of each individual row is 1.0, corresponding
to 100% of the samples of eachorigin class. Since this is a normalized confusion matrix, the
accuracy is also equal to the recall. The sum of the columns, however, shows that some classes
act as attractors and others as repellers. Attractors have sums greater than 1.0, meaning that
they are more likely to be false positives, but also in general more likely to have higher recall,
than repellers if their accuracies are equal. Attractors could also be interpreted in terms of
classifier bias.

Repellers, meanwhile, have sums less than 1.0, meaning that they are more precise than
attractors if their accuracies are equal. In practice, the accuracies are not equal, but these are
the expected trends. To that end, Table 8.2 shows that, for the 6-class confusion matrix above,
the two repellers have higher relative precision and much lower relative recall than the four
attractors.

In Table 8.3, the confusion values for all pairs of classifiers are shown. The maximum is
for i = 3, j = 6. Thus, the obvious first choice is to combine classes 3 and 6 into an aggregate
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Table 8.2 Classification statistics extracted from the 6-class confusion matrix. Since the confusion
matrix is normalized (all classes equally probable, and each row sums to 1.0), the recall is the same as
the accuracy. Precision is the ratio of the on-diagonal element to the sum of the column to which it
belongs. The recall of the repellers (66%) is much lower than that of the attractors (83%), while the
precision of the repellers (81%) is slightly higher than the precision of the attractors (77%)

Class Column Sum Accuracy Precision Recall Type of Class

1 0.85 0.71 0.84 0.71 Repeller
2 1.04 0.82 0.80 0.82 Attractor
3 1.09 0.75 0.69 0.75 Attractor
4 1.11 0.85 0.77 0.85 Attractor
5 1.12 0.90 0.80 0.90 Attractor
6 0.79 0.61 0.77 0.61 Repeller

class. After combining these two classes, the maximum confusion is for the original classes 2
and 4, and then the original classes 1 and 5.

Each of these seems to be an obvious combination, based on the relative confusion within
these aggregates compared to the confusion between classes of different aggregates (see, e.g.,
the F-score discussion in Section 1.9), and so we redefine the set of six classes to be a set of
three aggregate classes as follows:

Aggregate class A = Original class 1 + Original class 5;
Aggregate class B = Original class 2 + Original class 4;
Aggregate class C = Original class 3 + Original class 6.

Table 8.3 Confusion (sum of paired off-diagonal elements {i, j}, with j > i,
which is the error of mistaking class i with class j). The maximum confusion is
for {i = 1, j = 2}, for which the confusion is 0.35

i j (where j > i) Confusion = (Cij + Cji)

1 2 0.08
1 3 0.08
1 4 0.03
1 5 0.19
1 6 0.05
2 3 0.04
2 4 0.20
2 5 0.02
2 6 0.06
3 4 0.08
3 5 0.04
3 6 0.35
4 5 0.03
4 6 0.07
5 6 0.04



Second-Order Meta-algorithmics and Their Applications 277

The confusion matrix for the new aggregate-class-based, or simplified, confusion matrix is
constructed from the elements of the original 6-class confusion by combining the appropriate
elements. For example, the new aggregate class A, comprised original classes 1 and 5, thus
collects original confusion matrix elements (1,1), (1,5), (5,1), and (5,5) into the appropriate
element. The intersection of aggregate classes A and B, which becomes the new (1,2) element
of the simplified matrix, collects original elements (1,2), (1,4), (5,2), and (5,4), while the
intersection of aggregate classes B and A collects original elements (2,1), (2,5), (4,1), and
(4.5). Proceeding along these lines, we collect nine new elements for the simplified confusion
matrix as follows:

Assigned class

Aggregate
class

A

B

C

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
0.71 0.15
0.04 0.90

) (
0.07 0.01
0.01 0.02

) (
0.04 0.02
0.02 0.01

)

(
0.01 0.01
0.02 0.01

) (
0.82 0.13
0.07 0.85

) (
0.01 0.02
0.03 0.02

)

(
0.04 0.02
0.03 0.03

) (
0.03 0.05
0.04 0.05

) (
0.75 0.11
0.24 0.61

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

When these elements are added, the simplified confusion matrix now becomes

Assigned class

Aggregate
class

A
B
C

⎡
⎣ 0.90 0.055 0.045

0.025 0.935 0.04
0.06 0.085 0.855

⎤
⎦ .

The accuracy of this simplified confusion matrix is once again the mean of the elements
in the diagonal, which is 0.897. This means that the error rate for distinguishing aggregate
classes A, B, and C is now only 10.3%, as opposed to 22.7% for the original 6-class case.
However, this is not the complete story, as we now have to follow this 3-class problem with
three separate binary classifications: class 1 versus class 5, class 2 versus class 4, and class
3 versus class 6. But, there are some significant advantages to this aggregation. Firstly, it is
usually much easier to create an effective binary classifier than a higher-order classifier, since
statistical interaction does not occur with only two variables. Secondly, the primary sources
of error have been isolated through aggregation, improving the probability of reducing the
overall error rate.

The subsections of the confusion matrix corresponding to the aggregations are used to
determine the binary classification accuracy that must be achieved to improve the overall
system accuracy. If this accuracy cannot be obtained, then the original classification system,
with more classes and less aggregate classes, should be used to make this secondary binary
classification. This original, more simply aggregated, system would provide the same or better
accuracy with almost certain improvement in processing time.
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Table 8.4 Classification statistics extracted from the 3-class simplified confusion matrix. As before,
the attractor has higher recall, and the repellers have higher precision

Aggregate Class Column Sum Accuracy Precision Recall Type of Class

A 0.985 0.90 0.91 0.90 Repeller
B 1.075 0.935 0.87 0.935 Attractor
C 0.940 0.855 0.91 0.855 Repeller

For the example shown, the aggregate class accuracies are determined directly from their
confusion matrices. For the example, these reduced-order confusion matrices are all 2 × 2:

A

[
0.71 0.15
0.04 0.90

]
B

[
0.82 0.13
0.07 0.85

]
C

[
0.75 0.11
0.24 0.61

]
.

For aggregate A, the accuracy is (0.71 + 0.90)/(0.71 + 0.15 + 0.04 + 0.90) = 0.894. For
aggregates B and C, the accuracies are 0.893 and 0.795, respectively. Thus, if a binary classifier
for distinguishing the original two classes in A, B, or C with better than 89.4%, 89.3%, or
79.5% accuracy, respectively, can be crafted, the overall system accuracy will be improved.
Note that if no binary classifier can be found for aggregate A, B, or C, then the overall system
accuracy is determined from

Accuracy = (0.90)(0.894) + (0.935)(0.893) + (0.855)(0.795)

3
= 0.773.

This is of course the same accuracy as for the original 6-class problem. Table 8.4 shows
classification results for the simplified confusion matrix. Here again, the two repellers have
higher relative precision and lower relative recall than the attractor.

In comparing the precision values in Tables 8.2 and 8.4, we see that as the aggregate classes
were formed, the mean precision (μp) rises from 0.776 to 0.898 and the standard deviation
(σ p) of the precision values decreases from 0.050 to 0.024. The ratio of σ p/μp decreases from
0.064 to 0.027. With perfect accuracy classification, the ratio σ p/μp moves to 0.0, since all
of the groups will have perfect precision. However, as the number of classes or aggregate
classes becomes smaller, this ratio may become very small coincidentally. For example, let us
consider further aggregation of the problem above. There are three cases: (1) aggregating B
and C; (2) aggregating A and C; and (3) aggregating A and B. The further simplified confusion
matrices are

A
B + C

[
0.90 0.10

0.0425 0.9575

]
A + C

B

[
0.935 0.065
0.07 0.93

]
A + B

C

[
0.9575 0.0425
0.145 0.855

]
.

For case (1), the precisions are 0.955 and 0.905, for which σ p/μp is 0.038. For case (2),
the precisions are 0.930 and 0.935, for which σ p/μp is a much lower 0.004. For case (3), the
precisions are 0.868 and 0.953, for which σ p/μp is 0.066. Assuming that we reject aggregations
where σ p/μp increases from the previous confusion matrix, this means that only case (2) would
be an allowable step forward.
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However, another heuristic for further aggregation of classes using the confusion matrix
data has proven useful. This metric is the ratio of the required accuracy for the downstream
binary classification to the accuracy of the classification of the aggregation itself. This ratio,
designated Raggregate, is simply computed once the two classes to aggregate—that is, classes
i and j—are identified from the maximum confusion equation and the appropriate matrix
element of the aggregate class:

Raggregate = Cii + Cjj

Cii + Cij + Cji + Cjj

/
Ci+ j,i+ j,

where Cii, Cij, Cji, and Cjj are the matrix elements from the original ith and jth classes, and
Ci+j,i+j is the matrix element from the reduced-order aggregate class. In general, if Raggregate

< 1.0, the aggregation is promising and so it should be carried out. For the aggregation of
classes 1–6 into aggregates A, B, C, these values are

Raggregate(A) = ((0.71 + 0.90)/(0.71 + 0.90 + 0.04 + 0.15))/0.90 = 0.8944/0.90 = 0.994;
Raggregate(B) = 0.893/0.935 = 0.955;
Raggregate(C) = 0.7953/0.855 = 0.930.

Since each of these values of Raggregate < 1.0, and the ratio σ p/μp becomes smaller, the
heuristics suggest that these are aggregations worth performing. However, for the new cases,
the same values are

Raggregate(case 1) = (1.79/1.915)/0.9575 = 0.977;
Raggregate(case 2) = (1.755/1.860)/0.93 = 1.015;
Raggregate(case 3) = (1.865/1.945)/0.9575 = 1.002.

The heuristic for the metric Raggregate fails for case (2)—and again for case (3)—meaning
that none of the three possible aggregations of A, B, and C should occur.

This section, therefore, has introduced some of the manipulations of the confusion matrix
that can be used to partition an input space. The combined use of maximum confusion, the
ratio σ p/μp, and the metric Raggregate provides an effective approach to deciding whether or
not to partition, and if so which partition(s) to make. After the partitioning has occurred, the
aggregates formed can be analyzed together or individually using whatever algorithm or meta-
algorithm is appropriate. Importantly, this allows the “fringes” of an input set to be identified,
and so thereafter be separately analyzed, as appropriate.

8.3 Primary Domains

The primary domains of this book are now used to demonstrate the second-order meta-
algorithmics.
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8.3.1 Document Understanding

The first domain used to exemplify the second-order meta-algorithmics is document under-
standing (Simske, Wright, and Sturgill, 2006). In this previously reported set of research, first-
and second-order meta-algorithmic patterns were used to overcome some of the limitations
of three individual document classification engines using meta-algorithmic design patterns.
These patterns, collectively, were shown to explore the error space of three different document
analysis engines, and to provide improved and in some cases “emergent” results in comparison
to the use of voting schemes or to the output of any of the individual engines. A variety of first-
and second-order meta-algorithmic patterns were used to reduce the document classification
error rates by up to 13% and to reduce system error rates by up to 38%.

A broad range of the meta-algorithmic design patterns introduced in Chapter 6 can improve
the document classification. However, in our earlier research, we were also able to show some
that did not. Because a large and publicly available data set was used for these studies, it makes
a good starting point for considering how to select the right meta-algorithmic pattern for a
problem space.

In Simske, Wright, and Sturgill (2006), the primary measure of improvement was a decrease
in the classification error rate, that is, improving the precision, recall, and accuracy of document
classification. This results in significant reduction of overall system costs, since mistakes in
document classification as part of a document management system incur significant expense. If
the document is not indexed correctly, it cannot be retrieved from the electronic file system or
a loan is denied because incorrect salary information was extracted from financial documents.
Common current approaches to this indexing/extraction process are primarily manual and
highly error-prone: PC-based indexing stations are staffed with a cadre of users who view the
scanned image and type in the corrected index or workflow data.

In addition to reducing the overall indexing system error rate, meta-algorithmics were used
to decrease the mean number of indexing attempts required to obtain a correct classification
and thus avoid human intervention. In order to achieve the best possible classification, we
needed to increase the likelihood of obtaining the best initial classification, and to increase the
relative rank of the actual (correct) classification when this initial classification is wrong.

A document understanding system was developed comprising three different classifier tech-
nologies (one neural-net-based, one Bayesian-based, and one natural-language-processing-
based) to identify which meta-algorithmic design patterns provide the desired improve-
ments. We chose a commercially available neural-net document classifier (Mohomine text
classifier, subsequently purchased by Kofax (www.kofax.com; accessed January 28, 2013)
and integrated into Indicius (http://www.kofax.com/support/products/indicius/6.0/index.php;
accessed February 1, 2013)), an open source Bayesian classifier (Divmod Reverend;
http://www.ohloh.net/p/divmod-reverend; accessed February 1, 2013), and our own classifier
that uses basic TF∗IDF (term frequency multiplied by inverse document frequency; Salton,
Fox, and Wu, 1983) calculations to classify documents. These are designated the Mohomine,
Bayesian, and TF∗IDF engines. The set of documents used for training and testing was the “20
Newsgroups” data set collected on the University of California, Irvine Knowledge Discovery
in Databases Archive (http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html; ac-
cessed January 28, 2013), which provides automatic author-specified classification. The clas-
sifiers were trained and tested with 2.5%, 5%, . . . , 17.5%, and 20% of the corpus used as
training data, and the remaining 97.5%, 95%, . . . , 82.5%, 80% as test data. There were 1000



Second-Order Meta-algorithmics and Their Applications 281

Table 8.5 Document classification statistics for each of the classification engines. Eight different
training percentages, varying from 2.5% to 20% of each class, were investigated. The Mohomine
engine was the most accurate for every training set, followed by the TF∗IDF engine for every training
set except for the 2.5% set

Number of Training
Documents Per
Class (and %)

Mohomine Engine
Accuracy

Bayesian Engine
Accuracy

TF∗IDF Engine
Accuracy

25 (2.5%) 0.611 0.494 0.470
50 (5.0%) 0.681 0.547 0.564
75 (7.5%) 0.721 0.582 0.618
100 (10.0%) 0.734 0.603 0.649
125 (12.5%) 0.751 0.615 0.674
150 (15.0%) 0.764 0.627 0.698
175 (17.5%) 0.774 0.642 0.716
200 (20.0%) 0.782 0.637 0.723

documents per newsgroup, so that training took place on 500–4000 documents, and testing on
the residual 16 000–19 500 documents. Classifier output confidence values, or probabilities,
were normalized to a range of 0.0–1.0.

Document classification accuracy was separately determined for each of the eight different
training percentages for each of the three classification engines (Table 8.5). The Mohomine
engine is the most accurate engine, and the TF∗IDF engine has the greatest improvement in
accuracy with increasing amounts of training.

If the three engines were mutually independent, then two or more of the engines would
provide the correct classification with the following probability:

MBT + MB × (1.0 − T ) + MT × (1.0 − B) + BT × (1.0 − M),

where M is the Mohomine accuracy, B is the Bayesian accuracy, and T is the TF∗IDF accuracy.
For the 20% training set, this value is

0.360 + 0.138 + 0.205 + 0.100 = 0.803.

Since this 80.3% value is above that of any individual engine—the highest being 78.2%
as shown in Table 8.5—the combination of these three engines appeared to provide a good
opportunity for the application of meta-algorithmics. However, Voting and Weighted Voting
patterns did not improve the accuracy of the system above that of the best engine (Mohomine).
This may have been due to the fact that the three engines were not, in fact, independent. In
fact, the correlation coefficients (r2 values) for the three engines were calculated, providing
the following:

Bayesian/Mohomine : r2 = 0.4522, 45% correlated, p < 0.05;
Bayesian/HP1 : r2 = 0.6434, 64% correlated, p < 0.005;
Mohomine/HP1 : r2 = 0.2514, 25% correlated, p > 0.10, not statistically significant.
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Table 8.6 Document classification statistics for each of the three classification engines and the six
different second-order meta-algorithmic patterns investigated. The test set comprised 15 997
newsletters, with all header information removed. The values shown are for the 20% training set.
Meta-algorithmic pattern accuracies outperforming the best engine’s accuracy are highlighted in
boldface

Engine/Meta-algorithmic Pattern Deployed # Correct # Incorrect Accuracy (%)

Mohomine engine 12 436 3 561 77.7
Bayesian engine 9 983 6 014 62.4
TF∗IDF engine 11 408 4 589 71.3
1. Confusion Matrix and Weighted Confusion

Matrix (0.56, 1.28, 0.96) (Section 6.3.1)
12 724
12 777

3 273
3 220

79.5
79.9

2. Confusion Matrix with Output Space
Transformation (Section 6.3.2)

12 839 3 158 80.3

3. Majority Voting or Weighted Confusion
(Section 6.3.6)

12 299 3 698 76.9

4. Majority Voting or Best Engine (Section 6.3.7) 12 265 3 732 76.7
5. Best Engine with Absolute Confidence (0.75)

or Weighted Confusion Matrix (threshold
confidence) (Section 6.3.9)

12 725 3 272 79.5

6. Best Engine with Differential Confidence
(0.25) or Weighted Confusion Matrix

12 767 3 230 79.8

Thus, more sophisticated meta-algorithmic approaches were required to better explore the
input space for the engines. The following set of second-order meta-algorithmic patterns were
deployed:

1. Confusion Matrix and Weighted Confusion Matrix (Section 6.3.1).
2. Confusion Matrix with Output Space Transformation (Section 6.3.2).
3. Majority Voting or Weighted Confusion (Section 6.3.6).
4. Majority Voting or Best Engine (Section 6.3.7).
5. Best Engine with Absolute Confidence or Weighted Confusion Matrix (threshold confi-

dence) (Section 6.3.9).
In addition, a variation on the pattern introduced in Section 6.3.9 was deployed:

6. Best Engine with Differential Confidence or Weighted Confusion Matrix.

These are now discussed in more depth. For purposes of comparison, we use the 20%
training results, summarized in Table 8.6.

1. The Confusion Matrix pattern was generated using the output probabilities matrix (OPM)
as shown in Section 6.3.1 (Figure 8.1). This approach was found to provide better overall
accuracy than the best engine under virtually all training/testing combinations. In Table 8.6,
the Confusion Matrix pattern outperformed the best classifier by 1.8%, for a reduction in
error 8.1%. The Weighted Confusion Matrix pattern (Figure 8.2) performed even better.
The weights used in Table 8.6—0.56 for the Bayesian engine, 1.28 for the Mohomine
engine, and 0.96 for the TF∗IDF engine—are derived using the results in Lin et al. (2003).
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Figure 8.1 Confusion Matrix second-order meta-algorithmic pattern as applied to the document clas-
sification problem described in the text

However, nearly identical results were obtained at each training level when the weights
used were the engine accuracies: at 20%, these are 0.62, 0.78, and 0.71, respectively.
The Weighted Confusion Matrix accuracy was 79.9%, fully 2.2% higher than the best
engine. This reduced the overall error rate—which is directly correlated with system cost
as described above—by 9.6%.

2. Since the Confusion Matrix patterns were so promising, the Confusion Matrix with Output
Space Transformation pattern (Figure 8.3) was applied next. The transformation investi-
gated, as described in Section 6.3.2, mapped an output probability p, to a new probability,
pα , prior to applying the Weighted Confusion Matrix meta-algorithmic pattern to the trans-
formed Mohomine engine in combination with the untransformed Bayesian and TF∗IDF
engines. For the 20% training set, transforming p to p0.208, where p is the Mohomine engine
probability output, removes 43 additional errors. When the TF∗IDF engine is then indepen-
dently transformed, the square root operator (α = 0.5) removed the most (14) additional
errors. Next, we evaluated simultaneously αMohomine and αTF∗IDF. The iterative procedure to
determine these coefficients (and the fact that optimizing αMohomine affected the error count
much more so than optimizing αTF∗IDF) indicates that the transformation power (i.e., α)
should be set for the Mohomine engine first, then for the TF∗IDF engine. In so doing, the
following transformation powers were identified: αMohomine = 0.208, αTF∗IDF = 0.185. We
found that the optimum α for the Bayesian engine when αMohomine = 0.208 and αTF∗IDF =
0.185 was 1.0. The procedure for determining these powers was exactly in keeping with
Section 6.3.2. Deploying these two transformations (with the output of the Bayesian engine
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Figure 8.2 Weighted Confusion Matrix second-order meta-algorithmic pattern as applied to the docu-
ment classification problem described in the text

left untransformed) provided an optimal 12 839 correct answers, 62 more than the Weighted
Confusion Matrix pattern. The error rate was reduced by 11.3%.

3. No improvement in accuracy was observed when the Majority Voting or Weighted Confu-
sion Matrix pattern (Figure 8.4) was employed. The accuracy rate was 0.8% lower than the
accuracy of the best engine, and 3.0% lower than the Weighted Confusion Matrix pattern
when used by itself. Thus, the Majority Voting portion of the pipelined pattern (originally
presented in Section 6.3.6) was responsible for this 3.0% drop in accuracy. This implies
that two or more engines were often correlated with each other on the wrong classification.

4. A similar result was observed for the Majority Voting or Best Engine pattern (Figure 8.5),
originally described in Section 6.3.7. The accuracy was 1.0% less than the accuracy of
the best engine. This result establishes the fact that the Majority Voting pattern failed to
improve overall system accuracy because of the behavior of the Bayesian and TF∗IDF
engines in combination: when they disagreed with the Mohomine engine, they were more
often wrong than correct.

5. The fifth of the second-order meta-algorithmic patterns implemented was the Best Engine
with Absolute Confidence or Weighted Confusion Matrix pattern (Figure 8.6), introduced
in Section 6.3.9. Absolute confidence was varied from 0.50 to 1.00 over the training set, and
the best results were observed for absolute confidence equal to 0.75. During later testing,
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Figure 8.3 Weighted Confusion Matrix with Output Space Transformation second-order meta-
algorithmic pattern as applied to the document classification problem described in the text

when the Mohomine engine reported a confidence value of 0.75 or higher, its output was
accepted. Otherwise, the Weighted Confusion Matrix pattern was employed. This threshold
confidence approach improved the system accuracy by 1.8%, the same as for the Confusion
Matrix approach, but 0.4% less than the Weighted Confusion Matrix pattern by itself. These
results indicated that the absolute confidence pattern was not an effective means of selecting
the output.

6. The final second-order meta-algorithmic pattern deployed was the Best Engine with Differ-
ential Confidence or Weighted Confusion Matrix pattern (Figure 8.7). Here, the thresholded
confidence was a relative threshold: when the Mohomine engine reported a confidence
value 0.25 or more higher than both the Bayesian and TF∗IDF engines, its output was
accepted; otherwise, the Weighted Confusion Matrix pattern was selected. A small im-
provement (0.3% greater accuracy) was observed over the Confusion Matrix pattern. The
results were essentially the same (0.1% less accuracy) as the Weighted Confusion Ma-
trix. The differential confidence, by itself, was not an effective means of selecting the
output.
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Figure 8.4 Majority Voting or Weighted Confusion Matrix second-order meta-algorithmic pattern as
applied to the document classification problem described in the text

After considering the different patterns used for this problem, it is clear that the Confusion
Matrix and Weighted Confusion Matrix were effective in reducing document classification
error. However, the overall most effective second-order meta-algorithmic pattern deployed was
the Weighted Confusion Matrix with Output Space Transformation. These results illustrate
the value of considering multiple meta-algorithmic patterns at the same time. First off, some
patterns will be useful, while others may be less so or even deleterious. Secondly, since
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Figure 8.5 Majority Voting or Best Engine second-order meta-algorithmic pattern as applied to the
document classification problem described in the text

second-order patterns are generally combinations of two simpler (usually first-order) patterns,
the relative impact of different components can be compared as above. Third, the relative
effect of the best second-order patterns can be used to guide both the decision to investigate
third-order meta-algorithmics, and perhaps even which third-order meta-algorithmic patterns
to implement.

Classification accuracy is, of course, only one reason to use meta-algorithmics. In terms
of the overall system costs, we also wish to increase the relative classification rank of the
true classification even when the initial classification is incorrect. This is termed improving
the central tendency of the classification, and can be very important for a number of real-
world systems in which a human editor is used to make final corrections. It is also important
in systems in which different, more expensive downstream applications are set in motion
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Figure 8.6 Best Engine with Absolute Confidence (of 0.75) or Weighted Confusion Matrix second-
order meta-algorithmic pattern as applied to the document classification problem described in the text

by the classification decision—these downstream applications will eventually flag upstream
classification errors, but only after further processing. Face recognition following face detection
is one example of this type of downstream processing.

Given these considerations, the optimal settings for the meta-algorithmic patterns—for
example, the power, α, used in output space transformation or the weights used in the Weighted
Confusion Matrix pattern—may be slightly different since this is a different goal than classifier
accuracy in and of itself. The rank of the correct document classification is a prediction of the
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Figure 8.7 Best Engine with Differential Confidence (of 0.25) or Weighted Confusion Matrix second-
order meta-algorithmic pattern as applied to the document classification problem described in the text
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Table 8.7 Mean number of classifications to evaluate before finding correct classification for different
document classification engines or meta-algorithmic patterns. Note that the TF∗IDF engine is actually
slightly better than the Mohomine engine, and both of these are significantly better than the Bayesian
engine. The top meta-algorithmic patterns are significantly better than any single engine. The Weighted
Confusion Matrix pattern provides the best overall results of any meta-algorithmic pattern, and a 18.9%
reduction in mean rank of correct classification compared to the best individual engine, TF∗IDF

Approach
Mean Number of Classifications

Attempted until the Correct One Is Obtained

100% “perfect” classifier 1.000
Bayesian 2.877
Mohomine 1.904
TF∗IDF 1.891
Weighted Confusion Matrix (0.56, 1.28, 0.96) 1.533
Weighted Confusion Matrix with Output Space
Transformation (1.0, 0.208, 0.185)

1.554

amount of processing time a downstream document processing task will take: for example, the
identification and extraction of indices associated with a particular form (name, address, loan
amount, patient ID, etc.). If we assume that the incorrect classifications can be automatically
detected during the processing, then the amount of processing is directly proportional to the
mean rank of the correct classification. This value is presented in Table 8.7 for each of the
three engines and for the two most effective meta-algorithmic patterns investigated.

Table 8.7 illustrates the central tendency, or mean rank of the correct classification, results.
The best results for any system are those for the Weighted Confusion Matrix pattern with
optimal engine weighting: 0.56 for Bayesian, 1.28 for Mohomine, and 0.96 for TF∗IDF. For
this pattern, the correct classifier had a mean ranking of 1.533, only 53.3% higher than a
perfect classifier. The second-order meta-algorithmic pattern with the highest classification
accuracy—the Weighted Confusion Matrix with Output Space Transformation where αBayesian

= 1.0, αMohomine = 0.208, and αTF∗IDF = 0.185—did not, however, provide a better mean rank
of classification than the Weighted Confusion Matrix pattern. Its value, 1.554, was nevertheless
also significantly better than that of any individual engine.

Another way of looking at the mean ranking of the correct classification of data is to
determine what percentage of incorrect classifications remains after the first M (where M ≤ N,
the total number of classes) ranked classes have been considered. This is shown in Tables 8.8
and 8.9 for the two top meta-algorithmic patterns. The best results, in agreement with Table 8.7,
are obtained for the Weighted Confusion Matrix pattern as summarized in Table 8.8. The results
describe what percentage of classification errors remain after the first M classes, when M =
1–8. The total number of classes, N, is 20. Thus, when M = 8, a full 40% of the possible
classes have been evaluated. Nevertheless, almost 10% of the correct classifications are not
in the set of eight highest confidence outputs of the Bayesian engine. This value is smaller
for the Mohomine engine (3.8%) and still smaller for the TF∗IDF engine (2.6%). However,
applying the weighted confusion matrix approach reduces this error to less than 1.2%, a huge
improvement over even the TF∗IDF pattern.

In Table 8.9, the meta-algorithmic pattern considered is the Weighted Confusion Ma-
trix with Output Space Transformation. For this pattern, the optimum Bayesian, Mohomine,
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Table 8.8 Remaining classification errors after the first M classes have been considered for the
Weighted Confusion Matrix pattern and each of the three individual document classification engines.
The last column provides the percent improvement for the meta-algorithmic pattern over the best
single engine (which is Mohomine for M = 1–5 and TF∗IDF for M = 6–8). The meta-algorithmic
pattern is always significantly better than any single engine, and its relative improvement increases
with M

M

Weighted
Confusion

Matrix Pattern
(%)

Bayesian
(%)

Mohomine
(%)

TF∗IDF
(%)

Improvement,
Meta-algorithm (%)

1 20.13 37.59 22.69 28.69 11.3
2 9.61 27.12 12.00 16.16 19.9
3 6.13 21.70 8.21 10.98 25.3
4 4.28 18.07 6.60 7.63 35.2
5 3.08 15.70 5.44 5.70 43.4
6 2.28 13.61 4.58 4.56 50.0
7 1.73 11.73 4.19 3.59 51.8
8 1.19 9.85 3.81 2.63 54.8

Table 8.9 Remaining classification errors after the first M classes have been considered for the
Weighted Confusion Matrix with Output Space Transformation pattern and each of the three individual
document classification engines. The last column provides the percent improvement for the
meta-algorithmic pattern over the best single engine (which is Mohomine for M = 1–5 and TF∗IDF for
M = 6–8). This meta-algorithmic pattern is always significantly better than any single engine, but lesser
so than the Weighted Confusion Matrix pattern of Table 8.8. The relative improvement of the
meta-algorithmic pattern compared to the best single engine is maximum for M = 6 (46.9%), also
unlike for the Weighted Confusion Matrix pattern (which continues to rise with M, reaching 54.8% by
M = 8 in Table 8.8)

M

Weighted Confusion
Matrix with Output

Space Transformation
pattern (%) Bayesian (%) Mohomine (%) TF∗IDF (%)

Improvement,
Meta-algorithm

(%)

1 19.74 37.59 22.69 28.69 13.0
2 9.36 27.12 12.00 16.16 21.9
3 5.78 21.70 8.21 10.98 29.6
4 4.10 18.07 6.60 7.63 37.9
5 3.13 15.70 5.44 5.70 42.5
6 2.42 13.61 4.58 4.56 46.9
7 1.97 11.73 4.19 3.59 45.1
8 1.56 9.85 3.81 2.63 40.7
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and TF∗IDF alpha values are 1.0, 0.208, and 0.185, respectively. For M = 1–4, this meta-
algorithmic pattern outperforms any of the three individual engines, and also the Weighted
Confusion Matrix. However, for M = 5–8 (as in the mean), it is outperformed by the Weighted
Confusion Matrix pattern. The Weighted Confusion Matrix with Output Space Transforma-
tion pattern, in fact, provides its maximum percent improvement over the single best engine
for M = 6.

Clearly, the two meta-algorithmic patterns tested that provided the best overall classification
results, as shown in Tables 8.8 and 8.9, significantly increase the likelihood of providing the
correct classification (thus enabling the automatic extraction of correct index values) for a
given value of M. The improvement percentages provided in the last column of these tables,
however, is if anything an underestimate of the system value. As Table 8.7 shows, a “perfect”
classifier requires 1.0 mean attempts at classification before finding the correct classification.
The Bayesian engine takes an extra 1.877 classification attempts, in the mean, before providing
the correct class and thereby leading to the correct extraction of document information.
The Mohomine engine, however, requires only an extra 0.904 classification attempts before
providing the correct classification. This is less than half as many as the Bayesian engine.
The TF∗IDF engine, with a mean value of 0.891 extra classifications, is still better. However,
in comparison, the Weighted Confusion Matrix pattern, requiring a mean of just 0.533 extra
classification attempts, thus requires 40.2% less than the TF∗IDF engine, 41.0% less than the
Mohomine engine, and 71.6% less than the Bayesian engine. In many real-world systems,
this metric—mean number of extra classifications expected before determining the correct
class—is more important than simple accuracy (the percent of highest ranked classifications
that are correct).

Another interesting aspect of the results in this study was the fact that many emergent
correct results occurred due to the application of the meta-algorithmic patterns. Since the
number of classes is large (N = 20) relative to the number of classification engines (NE =
3), it is not surprising that, for many difficult-to-classify samples, none of the three engines
provides the correct class as its highest confidence classification. However, there is no guarantee
that the combination of these three engines will provide the correct classification under this
circumstance—in other words, lead to an “emergent” correct result. Table 8.10, however, shows
that, on average, approximately one-ninth of the errors removed by the meta-algorithmic

Table 8.10 Number and percentage of errors removed by emergence for the three best meta-
algorithmic patterns (20% training condition). Note that 18 of the 62 additional errors removed by
output space transformation when coupled with the weighted confusion matrix approach (29%) are due
to emergence

Meta-algorithmic Pattern

Number of
Errors Less than

Mohomine
Engine by Itself

Number of
Errors Removed
by “Emergence”

Percentage of
Errors Removed
by “Emergence”

Confusion Matrix 288 39 13.5%
Weighted Confusion Matrix 341 29 8.5%
Weighted Confusion Matrix with Output

Space Transformation
403 47 11.7%
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patterns are due in fact to emergence. A disproportionately large fraction—approximately
two-seventh—of the additional errors removed by adding output space transformation to the
Weighted Confusion Matrix pattern are due to emergence.

The results of this section show that, for given classification problems, not all meta-
algorithmic algorithms provide improvement over the best individual engine. This does not
preclude the use of meta-algorithmics; rather, it argues for the investigation of several meta-
algorithmic patterns at the same time. Many commercial document classification systems, how-
ever, currently make no overt use of meta-algorithmics. Past research has, however, shown
the effectiveness of voting schemes (Ruta and Gabrys, 2000; Sebastiani, 2002; Lin et al.,
2003) for combining the output of several classifiers. Classifier fusion techniques, including
Bayesian/fuzzy integral classifier combinations (Ruta and Gabrys, 2000), are also reported
in the literature. Decision profiles and “product of experts” approaches share much with the
Confusion Matrix approach described herein (Ruta and Gabrys, 2000). Thus, where previous
work has deployed meta-algorithmic approximations, improved classification accuracy has
been reported.

8.3.2 Image Understanding

We next turn to image understanding and in particular object extraction using the Tessellation
and Recombination with Expert Decisioner pattern, introduced in Section 6.3.3. In the template
for this pattern (Figure 6.10), the expertise is injected during the tessellation step and again
just after the recombination step. In the example provided in this section, I modify the pattern
through the addition of an information pathway to the template pattern, allowing an expert
decisioner to operate upstream from the tessellation step. As Figure 8.8 illustrates, for the
object extraction problem I am addressing, expert decisioning is incorporated into the meta-
algorithmic pattern in two places: (1) the post-recombination step as originally introduced
in Figure 6.10, and (2) upstream from the actual tessellation, as a means of communication
between the two object segmentation algorithms.

The application of the meta-algorithmic pattern described in Figure 8.8 will be explained
through example: Figure 8.9 illustrates the application of the pattern for a specific object
extraction. In this example, the object to be segmented from the original image (Figure 8.9a)
is a red toy ladder. Figure 8.9b provides the output of the “red finder,” which is one of the
two segmentation engines incorporated into the system. This segmentation engine is used
to perform specific color segmentation. The image is a 24-bit color image with three 8-bit
channels: red, green, and blue. By analyzing the peaks in the red channel for the training
set of images (N = 10 images in the training set), the expert decisioner found a peak with
red channel values from 200 to 255. Thus, a red threshold of 200 was chosen first. The
green and blue histograms of these red pixels were then computed, and large green and blue
peaks in the range of 0–120 were identified for each of these two color channels. Pixels were
then classified as belonging to red objects if their (red, green, blue) values, or (r,g,b) values
belonged, simultaneously, to the following three ranges:

200 ≤ r ≤ 255 ;
0 ≤ g ≤ 120 ;
0 ≤ b ≤ 120 .
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ladder regions by color
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Recombination: perform run-length smearing, erosion, dilation operations to
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Ladder-like
objects
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Red objects

Create ladder and red regions

Figure 8.8 Tessellation and Recombination with Expert Decisioner second-order meta-algorithmic
pattern as applied to the object segmentation problem as described in the text

These red pixels are shown in Figure 8.9b as light gray. Both ladders, another red toy
object, and several smaller pieces are so identified. Importantly, these three ranges (the expert
input) are passed to the “ladder finder” segmentation algorithm and used to prune the original
sets of regions found by the ladder finder, which included not only the red ladders but also
the train tracks and the rooftop. This is because the ladder finder searched for structured sets
of perpendicular edges that combined are used to identify rectangular regions. These object
defining criteria are consistent with the logs of the roof and building and of course the railroad
tracks; however, they are inconsistent with the obstructed ladder lying on the ground in the
right center of the image. Regardless, the expert decisioner ranges readily removed these track
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(a)

(b)

Figure 8.9 Tessellation and Recombination with Expert Decisioner second-order meta-algorithmic
pattern as applied to the object extraction problem described in the text. (a) The original image, including
mixed objects against a complex textured background. (b) The red finder output pixels are shown in
light gray. The red finder is also used to create an expert decisioner that incorporates three thresholds,
one for each of the red, green, and blue color channels, to winnow all but the red objects from the other
segmentation algorithm, the ladder finder. (c) The extracted objects so matching the “ladder” object
definition after expert decisioner pruning are shown. (d) The results of the recombination step are shown,
resulting in two ladder-like objects
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(c)

(d)

Figure 8.9 (Continued)

and rooftop false positives, as shown in Figure 8.9c, and only a single, unobstructed ladder
region is identified. It is clear that the set of red finder regions is a superset of the ladder-like
regions. When the regions are combined, then, there are two types of regions:

1. Ladder regions
2. Red regions not identified as ladder regions.

The regions in set (1) are then used as templates for comparison for the remaining regions
in set (2) during the recombination step of the algorithm. Only one intact ladder object is
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identified as a possible ladder candidate by this algorithm, but a lot of information on size and
structure of this region can be gained. Specifically, the ladder length and width, rung length
and width, and number of rungs can be identified. The partially obstructed ladder, even without
any depth or perspective, is a close match (within 30%, 15%, 15%, 10%, and 0%, respectively)
for this set of five structural features. It is therefore declared a match and added to the set of
ladder regions during the recombination. This serves as the second expert decisioner in this
example, and results in the correct identification of two ladder regions as shown in Figure 8.9d.

For conciseness, I have left out some further considerations for this image understanding
application. As one example, further expert decisioning may be required if there are no
unobstructed ladder regions. Regardless, this section highlights the interplay between expert
domain knowledge and the first-order Tessellation and Recombination pattern in the second-
order meta-algorithmic pattern, Tessellation and Recombination with Expert Decisioner.

8.3.3 Biometrics

The field of biometrics is used to exemplify the deployment of the Single Engine with Required
Precision second-order meta-algorithmic pattern, introduced in Section 6.3.5 and Figure 6.12.
In this example, we desire to periodically establish the identity of a person using a computing
system that includes at least one of the following: keyboard, microphone/audio input, and
camera/video input. The system will also have one or more traditional “static” biometric
systems—such as a fingerprint reader, voice prompt, or camera prompt—that can be used
when the automatic biometric authentication fails.

The proposed system is shown in Figure 8.10. The required precision—that is, probability
that the identity of the person is who the system identifies—is a function of a number of
factors, including the following:

1. The effective sampling rate of the authentication. For example, if the system is authenticat-
ing the person every 5 s, the precision can be much lower than if authentication is performed
every minute.

2. The desired statistical level of security. The higher the statistical security required, the
more the precision required, and the more likely the higher accuracy (and usually higher
processing cost) biometrics must be performed.

3. The difficulty of replicating or spoofing the measured behavior. If only timing between
consecutive keyboard entries is used, for example, the odds of successfully imitating the
behavior of another person are much higher than for voice imitation, which in turn is higher
than facial appearance imitation.

4. The odds of events corresponding to the behavior occurring during the sampling window.
Smaller sampling windows, for example, are much less likely to have audio information.

In Figure 8.10, the generators are the engines for computing the following three dynamic
biometrics: (1) keyboard kinetics, (2) voice recognition, and (3) facial recognition. For this
meta-algorithmic pattern, the generators are considered in order of a certain criterion. The
order of (1), (2), and (3) above is consistent with scaling by cost and mean processing time.
The order would be inverted if, for example, overall accuracy or training maturity/robustness
were the criterion.
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Figure 8.10 Single Engine with Required Precision second-order meta-algorithmic pattern as applied
to the biometric system described in the text

In Figure 8.10, our computing system monitors the timing and forces associated with
the typing. Biometrics can be based on the timing between consecutive letters in common
words such as “the,” “and,” and “some”; the time between pressing and releasing the haptic
pad/keyboard; and the peak force measured during typing. If the user has performed enough
typing during the sampling interval, it is possible that these features alone will identify the
user with sufficient statistical certainty. However, if the authentication confidence is below
that required by the application, then the voice recognition generator will be used as a second
biometric. Here, specific phonemes can be matched to the templates generated during training
and/or previous sampling for the user. If the match is of sufficient statistical certainty, either
alone or in combination with the keyboard kinetics, then no further processing is required. If,
however, further authentication is needed to achieve the desired level of statistical certainty,
then the facial recognition generator is invoked. This requires additional processing for video
recording, face detection, and face recognition. Face recognition relies on the identification and
measurement of several dozen landmarks, or nodal points, on the face, including nose width,
eye socket depth, cheekbone shape descriptors, jaw line length, and intraocular distance. The
numerical code, or faceprint, of the person can be compared to a template generated during
training or prior sampling, and a modified Hamming distance can be used to provide a precision
value for biometric authentication.
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If there is still insufficient statistical certainty for the security requirements of the task even
after all three biometrics in the system of Figure 8.10 are computed, the user may be prompted
for manual biometric input. The manual biometrics include using a fingerprint reader, saying
a particular word or phrase, or posing for the device video camera. Presumably, the manually
entered biometric will provide sufficient statistical confidence: if not, a nonbiometric means
of authentication will need to be performed.

8.3.4 Security Printing

For the security printing example, the Weighted Confusion Matrix pattern, originally described
in Section 6.3.1, is modified and used to determine an optimal authentication strategy for a
printed item with multiple variable data regions. We wish, in this case, to be able to determine
which of four print service providers (PSPs) produced a label, which is a separate means
to validate a supply chain. In addition, low-confidence classifications can be indicative of a
quality problem with a PSP or even counterfeiting within the supply chain.

In the example illustrated in this section, a set of security labels are printed with three
different variable data features, each of which is a potential means of classifying the label.
These three features are a 2D Data Matrix barcode, a 3D color tile barcode, and a guilloche
pattern—referred to hereafter as “barcode,” “3D color tile,” and “guilloche,” respectively.
Specific image feature sets of each of these three printed regions are used for the classification.
Section 5.2.2.2 describes the set of 10 features used for the experiment in this section: entropy,
mean intensity, image percent edges, mean edge magnitude, pixel variance, mean image
saturation, and so on. A simple weighted binary classifier, as described in Simske, Li, and
Aronoff (2005), was used to perform the classifications.

The simpler examples for deploying the Weighted Confusion Matrix given in Sections
6.3.1 and 8.3.1 use only a single data source for the classification. However, in this security
printing example, we have the three separate variable data printed (VDP) regions as data
sources. This allows us to produce seven different, partially uncorrelated, classifiers based on
the feature set from the three individual regions separately, the three combinations of features
from exactly two of the regions, and the one combination of features from all three regions. The
training phase of Figure 8.11 illustrates this process, which generates these separate, partially
uncorrelated classifiers. These classifiers are described not by their OPMs, as introduced in
Section 6.3.1, but by their true confusion matrices.

In our experiment, 100 labels from each PSP were used to generate the confusion matrices.
These are described next. The first confusion matrix for class assignment is for when only the
barcodes are analyzed:

Assigned class
A B C D

Barcodes:
Origin
class

A
B
C
D

⎡
⎢⎢⎣

0.84 0.05 0.07 0.04
0.13 0.76 0.07 0.04
0.11 0.09 0.68 0.12
0.15 0.08 0.06 0.71

⎤
⎥⎥⎦

.

For this confusion matrix, there are two sets of important data: the precisions of classes {A,
B, C, D}, which are {0.683, 0.776, 0.773, 0.780}, and the weighting of the classifier itself. The
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Figure 8.11 Weighted Confusion Matrix second-order meta-algorithmic pattern in context of the larger
security printing authentication system described in the text. The complexity of this pattern is significantly
increased over the template Weighed Confusion Matrix pattern as introduced in Figure 6.8. See text for
details
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accuracy of the classifier is the mean of the diagonal elements in the confusion matrix; that
is, 0.748. We will use that value to determine the overall weighting after all of the confusion
matrices are introduced. The second confusion matrix for class assignment is when only the
3D color tiles are used:

Assigned class
A B C D

3D color tiles:
Origin
class

A
B
C
D

⎡
⎢⎢⎣

0.89 0.03 0.05 0.03
0.02 0.92 0.03 0.03
0.02 0.05 0.91 0.02
0.02 0.05 0.06 0.87

⎤
⎥⎥⎦

.

For this confusion matrix, the precisions of classes {A, B, C, D} are {0.937, 0.876, 0.867,
0.916}, and the accuracy of the classifier is 0.898. The third confusion matrix for class
assignment is shown next. This confusion matrix is computed for the classifier that only
incorporates the features for the guilloche regions:

Assigned class
A B C D

Guilloche:
Origin
class

A
B
C
D

⎡
⎢⎢⎣

0.93 0.01 0.02 0.04
0.05 0.90 0.01 0.04
0.07 0.04 0.86 0.03
0.03 0.02 0.03 0.92

⎤
⎥⎥⎦

.

For this confusion matrix, the precisions of classes {A, B, C, D} are {0.861, 0.928,
0.935, 0.893}, while the classifier accuracy is 0.903. The relative accuracy of these
individual—barcode, 3D color tile, and guilloche—classifiers is accounted for when gen-
erating the four combinational classifiers and their respective confusion matrices, as will be
shown next. For these three classifiers, two types of relative weights were considered, as in-
troduced in Section 6.2.3. The weights for the barcode, 3D color tile, and guilloche classifiers
as determined using the optimized method introduced in Lin et al. (2003) and, separately,
weighting proportional to the inverse of the error rate, are collected in Table 8.11. The latter
are chosen since they do not lead to any negative values.

The last four confusion matrices are computed using the weights for barcode (WBarcode),
3D color tile (WColorTile), and guilloche (WGuilloche) provided in the last row of Table 8.11.
The fourth confusion matrix is obtained when we analyze both the barcode and 3D color tile
regions. Pooling their features and performing the classification on the training set, we get the
following confusion matrix:

Assigned class
A B C D

Barcodes + 3D color tiles:
Origin
class

A
B
C
D

⎡
⎢⎢⎣

0.93 0.02 0.04 0.01
0.02 0.94 0.03 0.01
0.04 0.03 0.90 0.03
0.03 0.04 0.05 0.88

⎤
⎥⎥⎦

.
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Table 8.11 Weights (normalized to sum to 1.0) obtained using the optimized weighting scheme (Lin
et al., 2003) and the proportionality to inverse of the error rate scheme, both introduced in Section
6.2.3. The inverse-error rate proportionality method was adopted since the barcode weight was
otherwise less than 0.0 for the seventh classifier

(Confusion Matrix Number) Classifiers Combined

Weighting
Scheme

(4) Barcode + 3D
Color Tile

(5) Barcode +
Guilloche

(6) 3D Color
Tile + Guilloche

(7) Barcode +
3D Color Tile +
Guilloche

Optimized
weighting
(Lin et al.,
2003)

WBarcode = 0.210
WColorTile = 0.790

WBarcode = 0.204
WGuilloche = 0.796

WColorTile = 0.491
WGuilloche = 0.509

WBarcode = −0.005
WColorTile = 0.490
WGuilloche = 0.515

Weighting α

inverse of
error rate

WBarcode = 0.288
WColorTile = 0.712

WBarcode = 0.278
WGuilloche = 0.722

WColorTile = 0.487
WGuilloche = 0.513

WBarcode = 0.165
WColorTile = 0.407
WGuilloche = 0.428

This confusion matrix has an accuracy of 0.913 and precisions of {0.912, 0.913, 0.882,
0.946}. When we analyze both the barcodes and the guilloche regions, pooling their features,
we get the fifth confusion matrix:

Assigned class
A B C D

Barcodes + guilloche:
Origin
class

A
B
C
D

⎡
⎢⎢⎣

0.98 0.01 0.00 0.01
0.04 0.91 0.02 0.03
0.07 0.06 0.79 0.08
0.04 0.08 0.02 0.86

⎤
⎥⎥⎦

.

For the barcode + guilloche confusion matrix, the accuracy is 0.885 and the precisions are
{0.867, 0.858, 0.952, 0.878}. Next, we analyze the pooled features from both the 3D color
tile and guilloche regions, obtaining another confusion matrix:

Assigned class
A B C D

3D color tiles + guilloche:
Origin
class

A
B
C
D

⎡
⎢⎢⎣

0.94 0.02 0.02 0.02
0.01 0.91 0.03 0.05
0.02 0.03 0.93 0.02
0.02 0.01 0.01 0.96

⎤
⎥⎥⎦

.

The confusion matrix has an accuracy of 0.935 and precisions of {0.949,0.938,0.939, 0.914}
for classes {A, B, C, D}. The final confusion matrix was generated when the features of all
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three of the regions—barcode, 3D color tile, and guilloche —were considered together:

Assigned class
A B C D

Barcodes + 3D color tiles + guilloche:
Origin
class

A
B
C
D

⎡
⎢⎢⎣

0.93 0.02 0.03 0.02
0.03 0.90 0.03 0.04
0.02 0.01 0.94 0.03
0.01 0.03 0.01 0.95

⎤
⎥⎥⎦

.

The accuracy is 0.930 and the precisions are {0.939, 0.938, 0.931, 0.913}.
The computation of these seven confusion matrices completes the training phase of

the Weighted-Confusion-Matrix-based second-order meta-algorithmic pattern shown in Fig-
ure 8.11. Note that any of these seven confusion matrices corresponds to a single classifier.
Of the seven, the 3D color tile + guilloche combination (the sixth confusion matrix) resulted in
the highest overall accuracy on the training set, and so if we are only concerned with deploying
the best classifier we would simply use this combination and deploy the system.

The testing accuracies are, as expected, somewhat lower than the training accuracies, since
the training data was also used for model validation. However, the relative order of the
classifiers is unchanged, and the accuracies are a maximum of 0.023 lower in the test set.
These data are collected in Table 8.12.

In Table 8.12, overall classification accuracy of 92.3% was observed for the test set when
the 3D color tile and guilloche features were used. This is 4.0% better than the best individual
classifier, that based on the guilloche features alone, and a corresponding 34.2% reduction in
error rate.

However, a plurality of classifiers creates the possibility to use a different classifier (from the
seven) or different means of combining classifiers for each sample. In this case, we can use one
or more of the confusion matrices in place of the single confusion matrix. This is effectively
a form of boosting, or overloading, in which the same classifier can be used multiple times
depending on which matrices are chosen. A simple means of incorporating all seven classifiers
at once is outlined in the run-time phase portion of Figure 8.11. Here, each classifier reports
its confidence in each class, collecting this in an OPM. Next, these values are multiplied by the

Table 8.12 Accuracy of each of the seven classifiers on the training and test sets (N = 400 each, 100
from each of the four classes)

Classifier (or Classifier
Combination) Accuracy, Training Accuracy, Test Set

1. Barcode 0.748 0.733
2. 3D color tile 0.898 0.875
3. Guilloche 0.903 0.883
4. Barcode + 3D color tile 0.913 0.890
5. Barcode + guilloche 0.885 0.868
6. 3D color tile + guilloche 0.935 0.923
7. Barcode + 3D color tile +

guilloche
0.930 0.915
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weight of the classifier, which is determined for the final set of seven classifiers in the same
manner as shown in Table 8.11. Again, using the inverse-error rate proportionality method to
avoid negative weights, the weights for the seven classifiers named in Table 8.12 are 0.054,
0.133, 0.139, 0.155, 0.118, 0.208, and 0.193, respectively. Finally, these values are multiplied
by the appropriate precision value for the particular class and classifier.

An example illustrates this approach. Suppose that the barcode + 3D color tile classifier
reports confidences in classes {A, B, C, D} of {0.21, 0.43, 0.19, 0.17}. Then, these values
are multiplied by the weight of this classifier, which is 0.155, to produce the values {0.033,
0.067, 0.029, 0.026}. Finally, these values are multiplied by the appropriate precision values
of {0.912, 0.913, 0.882, 0.946} to yield the final set of classification confidences of {0.030,
0.061, 0.026, 0.025}. Similarly, the other six classifiers will produce a confidence for each of
the four classes. These confidences are not normalized since they reflect the weighting of the
individual classifiers. Summing over the set of classifiers produces a new meta-classifier that
assigns the class based on the argmax of the final classification confidences. This is the “select
highest weighted class” block in Figure 8.11.

When this meta-pattern was deployed, its accuracy on the test set was 93.3%, a modest
improvement over the best Weighted Confusion Matrix pattern at 92.3%. This reduced the
error rate by 13.0%. No improvement over this accuracy was observed when leaving out one
or more of the classifiers and performing the same procedure, although leaving out classifiers
(1) and (5), individually or together, resulted in the same 93.3% accuracy.

There are additional approaches that can be taken after the seven weighted confusion
matrices are computed. These approaches can use one or more of the following variations on
the pattern:

1. The weighting of the individual classifiers. For example, four other methods for weighting
not considered here are summarized in Table 6.6.

2. The manner in which to treat the classification confidence values. For example, only the
top one, two, or three values can be kept.

3. Thresholding the precision values. For example, if precision is below a threshold value, it
is assigned a value of 0.0 and so does not contribute to the final weighting.

4. Leaving out one or more of the combinational classifiers, as described above.

For the problem set in this section, applying classifier (3) and ignoring the classification
confidence values when the precision was below 90% modestly increased (one more result
was correct out of 400) the test accuracy to 93.5% (and also increased the training accuracy).
This was the highest overall test accuracy achieved.

In summary, this section highlights the power of the Weighted Confusion Matrix approach. It
also shows that hybridization of classifiers offers new opportunities to deploy meta-algorithmic
expertise garnered from more than one pattern to create a more accurate overall system. In
this case, Weighted Voting and Predictive Selection pattern principles were used to improve
the overall accuracy of the classification system.

8.4 Secondary Domains

The two remaining second-order meta-algorithmic patterns are illustrated for image seg-
mentation and speech recognition applications. As opposed to the relatively complicated
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meta-algorithmic application described in Section 8.3.4, these represent relatively straightfor-
ward, unaltered use of the pattern templates defined in Section 6.3.

8.4.1 Image Segmentation

An image segmentation application is used to illustrate the implementation of the Predictive
Selection with Secondary Engines pattern introduced in Section 6.3.4. The schematic for the
application is given in Figure 8.12, which is a straightforward implementation of Figure 6.11,
with no modification in the architecture of the components (note that the training phase is
omitted).

Image

Segmenter K

Yes

No

Accept output

Associated image objects
inconsistent with output

OutputBest remaining
segmenter

Select next best
segmenter

Select segmenter
Segmenter category-

scoring matrix

Image
catagories

Association of image with a
catagory

Figure 8.12 Predictive Selection with Secondary Engines second-order meta-algorithmic pattern as
applied to the image segmentation task described in the text
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For the Predictive Selection with Secondary Engines pattern, the image is immediately
associated with a given image category. In this case, medical images comprising the su-
perset of those shown in Figure 7.9 were used. This set included three different types of
implants—Ti/TiO2, NiTi aka nitinol, and Ca3(PO4)2 that is also designated tricalcium phos-
phate or TCP. The latter, being a light colored ceramic, is readily distinguishable from the
first two. The first two, however, both being metals largely based on titanium, are much more
difficult to distinguish. A simple decision tree algorithm, involving only two binary decisions,
is used for the predictive assignment of the image to the category:

1. Determine if a (Ca3(PO4)2) or a {(Ti/TiO2),(nitinol)} implant.
2. If a {(Ti/TiO2),(nitinol)} implant, determine if (Ti/TiO2) or (nitinol) implant.

The first decision is easily performed using a threshold operation on the histogram of the
image, and had an accuracy of 100% for the images tested (approximately 150/implant type).
If the implant type was determined to be Ca3(PO4)2, then segmenter A was chosen to identify
Ca3(PO4)2 regions distinct from bone and non-bone (e.g., intracortical void) regions of the
image. Performing image analysis with segmenter A requires roughly 80 times the processing
of the predictive step of the process.

If, however, the implant was found to have a Ti/TiO2 or nitinol implant, then the images are
analyzed separately to distinguish the two types of metals. Differences in intensity—nitinol
was much lighter than the Ti/TiO2—and differences in porosity—the nitinol had more pores
within the metallic areas—were used together, again affording 100% accuracy for the images
tested. This step required roughly 20 times the processing of the predictive step of the process.
This step, which identified metallic implant regions, is segmenter B. Conveniently, it provided
all of the metallic regions as output, obviating the need to identify them in the downstream
step, described next.

If the implant material was Ti/TiO2 or nitinol, then all that remained was to find the bone
and nonbone regions, a process that required roughly 30 times the processing of the predictive
step of the process (segmenter C). The overall relative processing requirements using this
approach are as follows:

1. Ca3(PO4)2: 1× + segmenter A = 1× + 80× = 81×
2. Ti/TiO2: 1× + segmenter B + segmenter C = 1× + 20× + 30× = 51×
3. Nitinol: 1× + segmenter B + segmenter C = 1× + 20× + 30× = 51×.

If the image classes each represent one-third of the input, then the mean processing time is
61× the processing of the predictive step of the process.

Originally, the image segmentation software was written without the benefit of meta-
algorithmics. The original software thus had to identify and segment all five potential region
types at once. This added complexity resulted in a mean processing time of approximately
135× the processing of the predictive step of the meta-algorithmic process.

Unlike many of the other examples in this chapter, this pattern is focused on reducing the
processing time. Accuracy is not a consideration, since 100% accuracy during segmentation
was obtained both with and without applying the meta-algorithmic pattern (Figure 8.12).
Robustness, also, was not an explicit consideration, although it is clear that the decision tree
approach used for the predictive selection portion of the pattern does make the system more
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robust for the segmentation of additional implant types, should they be added in the future. The
processing time, however, as the main design consideration, was in fact reduced by 54.8%.

8.4.2 Speech Recognition

The final example uses the Best Engine with Differential Confidence or Second Best Engine
pattern originally introduced in Section 6.3.8 for an automatic speech recognition (ASR) task.
The schematic of the system is provided in Figure 8.13.

For this problem, three commercially available ASR engines were fed voice data associated
with call center tasks: predominantly numbers, menu options, names, and addresses. The
first and second most accurate engines were two well-known ASR engines in optimized
configuration, while the third most accurate engine was the first of these two engines used in
a high-speed configuration. Accuracy was determined simply from the ratio of ASR errors

Voice data

Determine highest confidence of
second and third best ASR engines = Cothers

Best ASR engine

Yes
Is (C1 – Cothers ) > 0.19?

No

Use second output

Use first output

Determine best ASR
engine confidence = C1

First ASR
output

Second ASR
output

Third ASR
output

Second
best ASR engine

Third
best ASR engine

Figure 8.13 Best Engine with Differential Confidence or Second Best Engine second-order meta-
algorithmic pattern, run-time phase only. The training phase—omitted from the diagram—was used
to determine the threshold value of 0.19. The Best Engine is the ASR engine with the overall highest
accuracy in the call system task
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to ASR voice tasks attempted. The three ASR engines were ranked in order of accuracy on
the training set. As for most of the illustrative examples in this chapter, the data was assigned
equally to training and test sets. The three main purposes of the training set were to (1) rank
the ASR engines in order of accuracy; (2) validate—and normalize to the range [0,1]—the
confidence settings of the engines; and (3) determine the optimum setting of the threshold to
use as shown in Figure 8.13. On the training set, the threshold value was varied in increments
of 0.01 from 0.00 to 0.50. The values from 0.17 to 0.21 provided the same peak accuracy, and
so the threshold value chosen was the mean of this range, 0.19, assuming this would make it
the most insensitive to variability in input data.

For the test set, each ASR engine provided its output and its confidence value. If the best
engine reported a confidence value, C1, satisfying the following requirement, its output was
accepted:

(C1 − 0.19) ≥ C2 ‖C3

Here C2 and C3 are the confidence values reported by the second and third best ASR engines.
Note that if either C2 or C3 is within 0.19 of C1, the output of the second best engine is chosen.
The third best engine, of course, does not directly provide the system output, but it can serve to
select the second best engine’s output in lieu of the best engine’s output. Applying this pattern
resulted in higher accuracy (85.6%) than that of the best engine (83.4%), reducing the error
rate by 13.3%.

8.5 Summary

This chapter began with an in-depth consideration of how confusion matrices can be used
powerfully to aid in classification, especially for converting many-class classification problems
into more manageable and more targeted decision tree classification problems. Confusion
matrices can be used to determine an optimum system architecture, since the output of the
attractor/repeller approach discussed in depth in the chapter are a set of aggregate classes that
can be treated with independent meta-algorithmic approaches.

Next, this chapter cataloged a large range of applications incorporating both relatively
straightforward (Confusion Matrix and Weighted Confusion Matrix, Predictive Selection with
Secondary Engines, Single Engine with Required Precision, Majority Voting or Weighted
Confusion, Majority Voting or Best Engine, Best Engine with Differential Confidence or
Second Best Engine, Best Engine with Absolute Confidence or Weighted Confusion Matrix)
and more complicated (Confusion Matrix with Output Space Transformation, Tessellation
and Recombination with Expert Decisioner) second-order meta-algorithmic patterns. For a
security printing application, it was shown how elements of several meta-algorithmic patterns
could be brought to bear on a single intelligent system problem. This type of complexity
naturally leads to the third-order meta-algorithmic patterns, which is the topic of the next
chapter.
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9
Third-Order Meta-algorithmics
and Their Applications

There is no such thing as failure, only feedback.
—Michael J. Gelb

The sensitivity of men to small matters, and their indifference to great ones, indicates a strange
inversion.

—Blaise Pascal

An algorithm must be seen to be believed.
—Donald Knuth

9.1 Introduction

Third-order meta-algorithmic patterns are distinguished from first- and second-order meta-
algorithmic patterns by their complexity in both architecture and time. Unlike the meta-
algorithmic patterns described in Chapters 7 and 8, these patterns can adapt to changing
input sets—culminating with the Generalized Hybridization pattern, in which the set of meta-
algorithmic patterns used may change over time. To call this a meta-meta-algorithmic may be
self-indulgent, but not necessarily hyperbolic.

Since there are 16 first- and second-order meta-algorithmic patterns provided in the past two
chapters, along with guidelines for generalized hybridization, one might ask why third-order
meta-algorithmic patterns are needed at all. First off, first- and second-order meta-algorithmic
patterns tend to be most valuable for optimizing system accuracy and/or cost, whereas the
adaptability of third-order patterns allows them to optimize system robustness. Secondly,
meta-algorithmic patterns do not always improve the system accuracy, cost, or robustness.
This was exemplified in Section 8.3.1, wherein several meta-algorithmic patterns based on the
confusion matrix were shown to significantly improve system accuracy, while others—based
on voting or differential confidence, for example—did not improve system accuracy. It can
be said that, for a given system, a meta-algorithmic pattern is not guaranteed to work, but
meta-algorithmics can be made to work. The third-order patterns are not just adaptable—they
are reconfigurable. Thus, they can be configured to make the meta-algorithmics work.

Meta-algorithmics: Patterns for Robust, Low-Cost, High-Quality Systems, First Edition. Steven J. Simske.
C© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.



Third-Order Meta-algorithmics and Their Applications 311

Two of the most important tools for enabling this adaptability are feedback and sensitivity
analysis. In keeping with Gelb’s quote, when the meta-algorithmic pattern fails, its error signal
can be fed back to the meta-algorithmic pattern, ultimately providing an optimized meta-
algorithmic configuration and improved system behavior. Feedback, therefore, is a powerful
method to prevent failure of a meta-algorithmic approach. Sensitivity analysis, meanwhile,
is used to obviate the type of inappropriate attention to irrelevant details that Blaise Pascal
bemoaned. With sensitivity analysis coupled to adaptive meta-algorithmics, an appropriate
focus on the most important factors in system optimization will be provided.

As Knuth astutely noted, however, “an algorithm must be seen to be believed.” I would
extend that to say that “a meta-algorithm must be seen to be believed.” Let us therefore make
these third-order meta-algorithmic patterns visible.

9.2 Third-Order Meta-algorithmic Patterns

Third-order meta-algorithmic patterns indeed provide three levels of adaptation: (1) the meta-
algorithmic components, often first order, comprising the pattern; (2) the sequence of these
components; and (3) the manner in which output, especially errors, are fed back to the input,
altering the architecture of the pattern.

9.2.1 Examples Covered

As in Chapters 7 and 8, the examples herein will include ones for the primary four domains: (1)
document understanding, (2) image understanding, (3) biometrics, and (4) security printing.
The additional domains for applying the patterns, as shown in Section 6.4, are surveillance,
optical character recognition (OCR), and security analytics. As in previous chapters, the
decision on which pattern to use for which domain was somewhat arbitrary: I tried to match
them based on what I thought would provide the widest range of exposure to third-order
pattern deployment considerations.

The Confusion Matrix for Feedback pattern is the first deployed, since it builds on the
pattern originally described in Section 6.4.3 and the confusion matrix techniques elaborated in
Section 8.2. Next, the Regional Optimization pattern, which is an intelligent extension of the
Predictive Selection pattern, is applied to image understanding. The Expert Feedback pattern
of Section 6.4.4 is then applied to biometrics. Next, the Generalized Hybridization pattern is
used to further extend the authentication and aggregation capabilities of security printing. The
power of Sensitivity Analysis for optimizing a meta-algorithmic-based system is then shown
for a surveillance system. The last two examples focus on feedback. Ecosystem feedback
is provided by the Proof by Task Completion pattern, and its value in an OCR system is
illustrated. Finally, training-gap-targeted feedback is used in the domain of security analytics.
This exemplifies the ability to identify specific subsets of the overall domain to use the meta-
algorithmic patterns, and as such deserves a brief overview. This is provided in the next section.

9.2.2 Training-Gap-Targeted Feedback

One of the key aspects of meta-algorithmic system design is adventitious parallelism. This is
the art of meta-algorithmics: finding the decisions and intelligent processes that can be broken



312 Meta-algorithmics: Patterns for Robust, Low-Cost, High-Quality Systems

down into relatively clean separate subprocesses. Usually the system architect designs for task
parallelism, spatial or component-based parallelism, and other forms of structural parallelism.
However, feedback systems—in feeding back with a delay the output of the system—provide
the means for temporal parallelism. Training gap targeting is using the output to better assess
how the system should handle input it is less familiar with and in effect close any gaps in
its learning.

The Feedback pattern, originally overviewed in Section 6.4.1, provides the means for
two algorithms—usually a specific algorithm and its inverse/converse—to collaborate in the
production of highly accurate output. As with any feedback system, the primary components
of the feedback system are:

1. Input: This is the content to be analyzed, which can contain its own noise, separate from
the disturbances to the system in point (4) below.

2. Comparator and associated error: This is the difference between the input signal and its
transformation into output after being analyzed and after being fed back to the comparator.

3. Control element: This is the generator (algorithm, system, engine) used to analyze the
content and convert it into output.

4. Disturbances to the system: This is error introduced at any point along the pathway from
input to output.

5. Output: This is the transformed input produced by the generator.

In Figure 6.17, the Feedback third-order meta-algorithmic pattern was introduced in a
simple, single-pass system in which the content analyzed was restructured into its components,
allowing semantics to be associated with the input content. This results in a better compression
ratio for the content, along with the identification and filtering of noise.

This pattern template was therefore reliant on the design and development of an inverse
transformation of the algorithm (an OCR system was used as an exemplar), which can be used
to reconstruct the input from the compressed, semantically- or context-tagged, transformed
output. This “inverse” or feedback algorithm can be directly applied to regenerate a second,
preferably highly accurate, copy of the original input. The comparator is then used to compare
the regenerated output to the original input document to determine the differences. An error
signal is generally then fed back to the algorithm to correct the output, if possible. However,
the Feedback pattern shown in Figure 6.17 can be simplified as follows: the error signal,
instead of being fed back to the input, is simply compared to a threshold. If the error exceeds
a given threshold, then the analysis is deemed to provide insufficient quality, and fails. Instead
of affecting the algorithm, this failure requires a separate algorithm to be performed. Because
of this, the Feedback pattern of Section 6.4.1 is considered only partially closed-loop.

More generally, however, feedback is fully closed-loop. One important application for
closed-loop feedback in meta-algorithmics is when one or more partitions of the training set
data, or input space, is/are poorly analyzed by an existing pool of generators. This “gap”
in the training data can be targeted—if not identified in the first place—by deploying the
Feedback pattern. An example of how this can be implemented is given for security analytics
in Section 9.4.3.

More broadly, the training-gap-targeted feedback approach is based on feedback over time,
meaning that the training gap itself can change. Changes in the training gap are noted, thus
providing feedback on the feedback.
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9.3 Primary Domains

The primary domains will be used to show how to customize four of the third-order meta-
algorithmic patterns to solve intelligent system problems. We begin, as usual, with document
understanding.

9.3.1 Document Understanding

The Confusion Matrix for Feedback pattern was introduced in Section 6.4.3, and important
manipulations of the confusion matrices are described in Section 8.2. In this example, we
work in the opposite direction—finding the best confusion matrix reduction based on the
binary classifiers. The binary classifier results are then incorporated into the reduction of the
confusion matrix originally obtained when three different document indexing engines are used
to extract keywords from a set of documents. This 3-class system has its confusion matrix
defined by

A B C

Origin

A

B

C

⎡
⎢⎣

0.65 0.19 0.16

0.13 0.70 0.17

0.11 0.20 0.69

⎤
⎥⎦ .

An equal number of documents from each set (200) were used to create the confusion matrix.
The overall accuracy, then, is the mean of the elements in the main diagonal, or 0.68. Class B
is the most likely class to be assigned to a sample (36.3%), followed by class C (34.0%) and
class B (29.7%). As described in Section 6.4.3, this pattern assesses the set of reduced-order
(thus binary) confusion matrices associated when each pair of classes is aggregated.

The three reduced-order confusion matrices are given here:

1. The AB confusion matrix is

A B

Origin
A

B

[
0.65 0.19

0.13 0.70

]
.

2. The AC confusion matrix is

A C

Origin
A

C

[
0.65 0.16

0.11 0.69

]
.

3. The BC confusion matrix is

B C

Origin
B

C

[
0.70 0.17

0.20 0.69

]
.
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The AB confusion matrix accuracy is (0.65 + 0.70)/(0.65 + 0.19 + 0.13 + 0.70) = 0.808.
The AC confusion matrix accuracy is 0.832, and the BC confusion matrix accuracy is 0.790.
The relative accuracies of these three 2-class subsystems are relatively similar for this “throw-
away” prototyped example (and the classification accuracies in general are not very high).
This allows the meta-algorithmic system architect to target any of the three possible binary
classifications to improve the overall system accuracy. The overall accuracy of the system
therefore depends on the accuracy of the classifier for distinguishing either A versus B, A
versus C, or B versus C in comparison to the accuracy of determining the accuracy between
these pairs of classes and the appropriate third class. In order to prepare for these comparisons,
we produce the following set of reduced-dimension confusion matrices:

1. The (A + B) C confusion matrix is

A + B C

Origin
A + B

C

[
1.67 0.33

0.31 0.69

]
.

2. The (A + C) B confusion matrix is

A + C B

Origin
A + C

B

[
1.61 0.39

0.30 0.70

]
.

3. The (B + C) A confusion matrix is

B + C A

Origin
B + C

A

[
1.76 0.24

0.35 0.65

]
.

The accuracies of these three confusion matrices are 0.787, 0.770, and 0.803, respectively.
The aggregated classes (A + B), (A + C), and (B + C) have 55.7%, 53.7%, and 58.7%,
respectively, of the samples. Thus, the overall system accuracies of the three above confusion
matrices are

1. 0.69/3.00 + 0.557 × a(A + B)
2. 0.70/3.00 + 0.537 × a(A + C)
3. 0.65/3.00 + 0.587 × a(B + C).

Here and in the following, the notation a(*) denotes the accuracy of the aggregate class *.
The above equations reduce to

1. 0.230 + 0.557 × a(A + B)
2. 0.233 + 0.537 × a(A + C)
3. 0.217 + 0.587 × a(B + C).
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The next step in optimizing the deployment is to determine the minimum values of the
accuracies for a(A + B), a(A + C), and a(B + C) to improve the overall system accuracy. The
governing equations for this are

1. 0.230 + 0.557 × a(A + B) ≥ 0.680
2. 0.233 + 0.537 × a(A + C) ≥ 0.680
3. 0.217 + 0.587 × a(B + C) ≥ 0.680.

Here, 0.680 is taken from the overall system accuracy. These reduce to

1. 0.557 × a(A + B) ≥ 0.450
2. 0.537 × a(A + C) ≥ 0.447
3. 0.587 × a(B + C) ≥ 0.463.

And, thus

1. a(A + B) ≥ 0.808
2. a(A + C) ≥ 0.832
3. a(B + C) ≥ 0.789.

This final set of inequalities describes the minimum binary classification accuracies required
to warrant the initial aggregations. The results indicate that creating a good binary classifier
for the original classes B and C is the likely best path forward. This is borne out by the
following, which show the overall system accuracy when binary classifiers with 90% accuracy
are created:

1. 0.230 + 0.557 × 0.90 = 0.731
2. 0.233 + 0.537 × 0.90 = 0.716
3. 0.217 + 0.587 × 0.90 = 0.745.

More pragmatically, once the accuracies of all available binary classifiers are determined,
the highest predicted system accuracy, obtained from one of these three equations: (1) 0.230 +
0.557 × a(A + B); (2) 0.233 + 0.537 × a(A + C); and (3) 0.217 + 0.587 × a(B + C), is used
to dictate which binary classifier, if any, to deploy.

In the example above, the three best binary classifiers found were a(A + B) = 0.881, a(A +
C) = 0.904, and a(B + C) = 0.877. For these, the overall system accuracies are 0.721, 0.718,
and 0.732, respectively. Thus, the binary classifier for distinguishing between classes B and C
is deployed after the original classifier is used to distinguish class A from the combined set of
classes B + C. This system has a 5.2% higher accuracy than the initial classifier and a 16.2%
reduction in the error rate. The system schematic is shown in Figure 9.1.

9.3.2 Image Understanding

In order to illustrate the application of the Regional Optimization third-order meta-algorithmic
pattern introduced in Section 6.4.6, a traffic image segmentation and object identification
system was built. Three different segmentation engines (differentiated largely by the
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Figure 9.1 Schematic for deploying the Confusion Matrix for Feedback third-order meta-algorithmic
pattern for document classification as described in the text

thresholding they employed for object segmentation) were used to extract objects associ-
ated with movement during a short (1.0 s burst) video of 5 frames/s. The first and last frames
were then used to assess moving objects. The traffic objects, all moving, belonged to five
classes that were roughly equally represented in the videos: pets, people, bicycles, cars, and
trucks. Half of the 100 burst video samples were assigned to training and half were assigned
to testing. The average burst video featured approximately two moving objects.

The Regional Optimization pattern was originally described in Figure 6.22, and its deploy-
ment in this example is illustrated in Figure 9.2. As in Chapter 6, the training and run-time
phases are straightforward. Training content is collected for every “region” of input space to
be optimized during the training phase, and assigned to the appropriate region from among a
plurality of regions. The appropriate meta-algorithmic patterns are then configured for each
region, or subclass or input. Rather than selecting a single classifier for each subclass when
deployed for the test data, however, this pattern selects the best individual meta-algorithmic
pattern from the possible set.

The “regions” for which the output-determining meta-algorithmic pattern was selected
were specific subranges in the range of movement artifact. Motion artifact was determined
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Figure 9.2 Schematic for deploying the Regional Optimization third-order meta-algorithmic pattern
for traffic image segmentation and object identification as described in the text

by aligning the first and the last frame of the burst video, subtracting one from the other,
and then thresholding the resulting “difference” image. For this “throw-away” example, a set
threshold—differences of more than 24 in intensity, which varied from 0 to 255—was used
for all of the images. Roughly 20% of all the frames reported percent suprathreshold pixels in
each of the following five ranges: 0–1%, 1–5%, 5–10%, 10–25%, and 25% or more. For each
range, six different meta-algorithmic approaches were then deployed to determine which of
these provided the highest accuracy object identification on the training set. The algorithms
chosen were the Voting (Section 6.2.3), Weighted Voting (Section 6.2.3), Tessellation and
Recombination (Section 6.2.5), Confusion Matrix (Section 6.3.1), Weighted Confusion Matrix
(Section 6.3.1) and Single Engine with Required Precision (Section 6.3.5) patterns.

The results for each of the six meta-algorithmic patterns on each of the five regions of the
input space are given in Table 9.1. For the 0–1% region, the Single Engine with Required
Precision pattern provided the highest accuracy (54%); for the 1–5% region, the Weighted
Voting pattern provided the highest accuracy (60%); for the 5–10% region, the Tessellation
and Recombination pattern provided the highest accuracy (62%); and for both the 10–25% and
25% or more ranges, the Weighted Confusion Matrix pattern provided the highest accuracies,
at 78% and 68%, respectively. Using these optimum meta-algorithmic patterns for each of the
five regions results in 64.4% overall object identification accuracy.
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Table 9.1 Accuracy results of the six different meta-algorithmic patterns for each of the five regions
of input space. The highest accuracy meta-algorithmic pattern is generally different for each of the
regions. Selecting the optimum meta-algorithmic pattern for each region results in an overall accuracy
of 64.4%, higher than the best single meta-algorithmic pattern, Weighted Confusion Matrix, which
provides 61.2% accuracy. This is an 8.2% reduction in the relative error rate

Region (Range of Percent Motion in the Image) of Input

Meta-algorithmic Pattern Deployed 0–1% 1–5% 5–10% 10–25% 25% or more

Voting 0.34 0.42 0.46 0.48 0.46
Weighted Voting 0.46 0.60 0.58 0.66 0.64
Tessellation and Recombination 0.44 0.46 0.62 0.68 0.62
Confusion Matrix 0.50 0.54 0.56 0.74 0.66
Weighted Confusion Matrix 0.48 0.54 0.58 0.78 0.68
Single Engine with Required

Precision
0.54 0.54 0.56 0.58 0.62

Had we simply used a single meta-algorithmic pattern for object identification for each of
the five regions of the input space, the accuracies would have been lower—often substantially
lower. The single-pattern accuracies are 43.2% for Voting, 58.8% for Weighted Voting, 56.4%
for Tessellation and Recombination, 60.0% for the Confusion Matrix approach, 61.2% for
the Weighted Confusion Matrix approach, and 56.8% for the Single Engine with Required
Precision approach. The improvement of 3.2% in accuracy over the best individual meta-
algorithmic equates to an 8.2% reduction in relative error rate.

Interestingly, in this example, an even greater (though not statistically significant) improve-
ment was observed for the test data: 63.8% for the combined approach, 42.2% for Voting,
54.6% for Weighted Voting, 55.8% for Tessellation and Recombination, 59.2% for the Con-
fusion Matrix approach, 60.4% for the Weighted Confusion Matrix approach, and 55.6%
for the Single Engine with Required Precision approach. Here, the accuracy improved by
3.4% over that of the best individual meta-algorithmic pattern, and the error rate was reduced
by 8.6%.

These results, given for a small set of burst video clips all taken within a city block of one
another, are unlikely to be indicative of the best meta-algorithmic pattern to generally employ
for such an object recognition task. However, the approach is illustrative of how the Regional
Optimization pattern is deployed, and the relative improvement in error, while modest, may
still be useful in a number of tracking, surveillance, and object recognition tasks.

9.3.3 Biometrics

The biometrics example illustrating the implementation of the Expert Feedback third-order
meta-algorithmic pattern, as introduced in Section 6.4.4, is voice recognition. In this example,
the metrics I am using are quite simple to compute—and are certainly not the best set of
metrics to use to identify a speaker. I am using them to expedite the set-up of another “throw-
away” example meant primarily to illustrate how the Expert Feedback pattern can be used.
Each speaker is asked to read aloud a particular sentence 200 times. The noise level is varied
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by having the person move one step further away from a fan after each 10 readings of the
sentences, and then to reverse the pattern by repeating the sentence 10 times at the farthest
distance and then take one step closer for each of the remaining sets of 10 readings. Bandgap
filtering of the fan noise is performed, resulting in differences in the amount of speaker signal
lost. One vocalization at each of the 10 distances from the fan is added to the training and,
separately, the test set. Seven individuals were tested and four of them were assigned to the
“other people” class, with data for this composite individual created from the adding together
of all four voice Fourier transforms (FTs). Thus, the system was designed to recognize three
people, presumably who are authorized to access a system or other privileges, and not confuse
them with each other or with a composite of some other potential users of the system. It is hoped
that unanticipated users of the system will be more like the composited voice information,
though this was not explicitly tested for or guaranteed. Thus, at worst, this can be considered
a 4-class voice recognition classification problem.

The signal is then processed quite simply as follows. An FT of the voice data is performed,
and the spectral content is assigned to 10 bands, each containing 10% of the energy spectral
density of the FT. The first 10% and last 10% band are ignored, since they are usually the
noisiest and the most variable bands. The middle eight bands are then represented as their
sequential percentages of the log-frequency range from the 10% to the 90% point of the FT.
These are the first eight features recorded. For example, if a signal is evenly distributed across
the log-frequency range, these eight values are {0.125, 0.125, . . . , 0.125}. These are types
of input range measurements that are one of the types of data rules we deploy for the Expert
Feedback pattern. Co-occurrences of two bands having a high percentage of the log-frequency
range are then tested for. For example, if an individual’s eight values for input range are {0.2,
0.1, 0.1, 0.2, 0.1, 0.1, 0.1, 0.1}, then this person has abnormally high first and fourth band
values, or a (1,4)-band co-occurrence. For L bands, there are L(L − 1)/2 such co-occurrence
comparisons. For eight bands, this results in a total of 28 features.

The third type of expert feedback rule used in this meta-algorithmic pattern is ratios. Band
ratios also require the pairing of two bands, providing another 28 features. This brings the
total to 64 features. In the example of the previous paragraph, the ratios are {2.0, 2.0, 1.0, 2.0,
2.0, 2.0, 2.0} for the first band when divided by the values for the other bands. The schematic
for the application of this pattern to this task is shown in Figure 9.3.

A trained classifier (Simske, Li, and Aronoff, 2005) is used to generate a confusion matrix,
as shown here. The three individuals are classes A, B, and C, whilst the composite individual
is class D. The precisions of each class, computed by the columns, are 0.684, 0.688, 0.720,
and 0.714, respectively, for A, B, C, and D:

Assigned class
A B C D

Origin
class

A

B

C

D

⎡
⎢⎢⎢⎣

0.80 0.06 0.08 0.06

0.11 0.66 0.07 0.16

0.20 0.13 0.59 0.08

0.06 0.11 0.08 0.75

⎤
⎥⎥⎥⎦

.

The overall accuracy of the classification system is 0.70. We then target the off-diagonal
content in the columns in order of the overall precision. Based on previous experience, I have
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Figure 9.3 Schematic for the Expert Feedback pattern as applied to the voice identification problem
described in the text
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found it efficient to target columns in the confusion matrix starting with the lowest precision.
That column is shown here:

A
A

B

C

D

⎡
⎢⎢⎢⎣

0.80

0.11

0.20

0.06

⎤
⎥⎥⎥⎦

.

Of the three off-diagonal elements in this column, the [A,C] element—corresponding to
the misassignment of an element from class C to class A—was considered first since it had
the greatest probability of any of the misclassifications. An expert feedback rule about one
of the 64 features (the ratio of bands 2 and 7, in this case) was found to correctly reclassify
0.05 of the [A,C] elements to the correct [C,C] element, with lesser collateral reclassifi-
cation. Collateral reclassification is the process by which other elements in the column are
also, in this case incorrectly, reassigned to the column associated with the correct reclassi-
fication. In this case, 0.01 of each of the elements [A,A], [A,B], and [A,D] is reassigned
based on the rules. The “A” and “C” columns are thus altered to the following after this rule
is applied:

A
A

B

C

D

⎡
⎢⎢⎢⎣

0.79

0.10

0.15

0.05

⎤
⎥⎥⎥⎦

and

C
A

B

C

D

⎡
⎢⎢⎢⎣

0.09

0.08

0.64

0.09

⎤
⎥⎥⎥⎦

.

As can be seen from these columns, some reclassifications—in this case of [A,B] to [C,B]
and [A,D] to [C,D]—do not affect the overall system accuracy. They do, however, assign a new
set of inputs to column “C” and thus will change the nature of that column. This is important
to note since a different set of expert rules may now prove relevant to that column. Regardless,
incorporating these new columns, the overall confusion matrix now becomes

Assigned class
A B C D

Origin
class

A

B

C

D

⎡
⎢⎢⎢⎣

0.79 0.06 0.09 0.06

0.10 0.66 0.08 0.16

0.15 0.13 0.64 0.08

0.05 0.11 0.09 0.75

⎤
⎥⎥⎥⎦

.

The precisions of the columns are now 0.725, 0.688, 0.711, and 0.714, respectively. The
overall accuracy has improved to 0.710. Column “B,” with the lowest current precision, is next
probed for expert rules using the 64 metrics collected. We continue along these lines until no
further improvement in the overall accuracy of the confusion matrix is obtained after searching
all four columns in order of increasing precision. Experience has shown that improvements
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in overall accuracy must be greater than a certain threshold, to prevent overtraining. For this
simple voice classification system, we chose a threshold of 0.004: if applying the rule does
not result in an overall accuracy improvement of 0.004 or more, then it is not applied. This
heuristic is based on validation experiments that showed values below 0.004 were unlikely to
represent an actual improvement as opposed to focusing on a local minimum.

With this process and threshold, a total of seven rules—two each for columns “A,” “B,” and
“C” and one for column “D”—were applied and the final confusion matrix obtained was

Assigned class
A B C D

Origin
class

A

B

C

D

⎡
⎢⎢⎢⎣

0.82 0.06 0.07 0.05

0.09 0.68 0.09 0.14

0.15 0.10 0.66 0.09

0.05 0.10 0.07 0.78

⎤
⎥⎥⎥⎦

.

For this final confusion matrix, the column precisions are 0.739, 0.723, 0.742, and 0.736,
respectively. The overall accuracy is now 0.735, an improvement of 3.5% and a reduction in
the error rate of 11.7%. This result is promising, and indeed held up for the test data, in which
the original classification accuracy was 68.8% and the post-Expert Feedback classification
rate was 73.0%.

This 13.5% reduction in error rate for test data was only 6.7% if the thresholding requirement
(accuracy must increase by 0.004 or more, or do not apply the rule) was not employed. That
is, with the threshold set at 0.000 for rules based on training data, several more rules were
employed, which in combination reduced the improvement in error rate on test data.

Some other results of the Expert Feedback approach employed are also worth noting. First
off, after applying the expert rules, the variability of the column precisions drops significantly.
Before applying the expert rules, column precisions (mean ± standard deviation) are 0.702 ±
0.018. After applying the expert rules, column precisions are 0.735 ± 0.008. There is clearly
an effect of applying the rules to homogenize the column precisions. This can be viewed,
in some ways, as the rules “exploring” the interclass space and thus making decisions more
balanced across the classes. This interpretation is also supported by the decrease in variance of
the off-diagonal elements (from 0.044 to 0.039) and the decrease in variance of the diagonal
elements (from 0.093 to 0.077).

Finally, it should be noted that, while this pattern certainly improved the biometric voice
recognition accuracy, it is almost certain to have created a less flexible system. In addition
to adding a set of seven rules that must be evaluated, these rules must be evaluated in order.
Thus, not only are the variances between training and test data added for all the rules but also
for the relative importance, or order, of all of the rules. This means that differences between
training and test sets, and changes in input over time, are almost certain to result in obviating
the values of the expert rules. As a consequence, this system is nonrobust to change. It is
not recommended, therefore, to deploy this pattern to systems in which there is a paucity of
training data or in which the system input consistently changes. The good results shown in
this section are the exception that proves the rule: the training and test sets were very highly
correlated by design.
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9.3.4 Security Printing

The Generalized Hybridization pattern, introduced in Section 6.4.7, will be illustrated for
the field of security printing. As opposed to the Regional Optimization pattern illustrated
Section 9.3.2—which compares a plurality of meta-algorithmic patterns for different partitions
of input—the Generalized Hybridization pattern is used to optimize the combination and
sequence of first- and second-order meta-algorithmic patterns used for all partitions of a
given—generally large—problem space.

Few domains are as broad as security printing in terms of machine intelligence applications.
Virtually any digitally printed item can be engineered to carry an explicit set of data. In addition,
printed regions contain implicit information related to the printing process—from halftoning
to ink/substrate interaction—which can be used for inspection, authentication, and/or forensic
purposes. For this section, we address generalized hybridization as it applies to a wide plethora
of security printing analysis, and show how it can be generalized to incorporate both explicit
and implicit data embedded marks.

The generalized approach is shown in Figure 9.4. Before the training phase, the set of
meta-algorithmic pipelines to be considered must be determined. Typically, these are second-
order meta-algorithmics: if they are all first-order meta-algorithmics, for example, the system
will often become, after training, one of the second-order meta-algorithmic systems (Majority
Voting or Weighted Confusion Matrix, Majority Voting or Best Engine, etc.). Regardless,
Generalized Hybridization obviously is intended to provide a broad pattern that can be used
to catch any and all combinations and/or sequences of lower-order meta-algorithmic patterns
as possible deployment candidates.

For each meta-algorithmic pipeline to be considered, the correct data and data structures
to support them during the run-time must be collected. This includes generator confidence
values, error rates, classes and alternative settings, among others, appropriate for each of the
meta-algorithmic pipelines.

In order to illustrate the generalized hybridization, both explicit and implicit data carrying
regions are considered. However, as opposed to classification accuracy, we are targeting overall
system robustness. This means that the configuration of the overall system includes both a
default pipeline and one or more pipelines customized to specific data input. As described in
Section 8.3.4, hybridized security printing approaches may use more than one type of security
printing feature, or deterrent, to provide authentication. If multiple features are used, then
each feature can be processed as shown in Figure 9.4 with, potentially, entirely distinct sets of
meta-algorithmic pipelines.

In Figure 9.4, the training phase involves collecting image data for the security printing
feature. This data will later be used during the run-time phase to correlate with the cor-
rect meta-algorithmic pipeline. Ten features are calculated for this simple experiment: (1)
mean image hue, (2) mean image intensity, (3) mean image saturation, (4) median red region
size, (4) median blue region size, (5) median green region size, (6) percent black pixels af-
ter thresholding using (Otsu, 1979), (7) median red pixel run length, (8) median blue pixel
run length, and (10) median green pixel run length. The values for each of these features
are normalized for the whole training set by subtracting the mean and then dividing by
the standard deviation (so each feature was μ ± σ = 0.0 ± 1.0). For each image, a distance
measurement was computed with respect to the set of feature means for each class. The dis-
tance of an image sample, S, from the mean feature values of the cluster C is the sum of the
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Figure 9.4 Generalized Hybridization third-order meta-algorithmic pattern as deployed for the security
printing application described in this section

σ -normalized absolute differences for all Nfeatures of the features F used to assign the sample to
a cluster:

DS(C) =
Nfeatures∑

i=1

FS(i) − FC(i)

σC(i)
.
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So far, this approach is similar to the Regional Optimization pattern elaborated in Sec-
tion 9.3.2. In this case, however, there is incomplete regionalization of the input domain
because the run-time phase is not concerned with subranges of the input space. Rather, it is
concerned with image data matching between the new security printing image content and each
of the clusters created, separately, by the ten features above. If there is no good match—that
is, if DS(C) is greater than an appropriate threshold for each cluster C, then the default meta-
algorithmic pipeline is chosen during run-time. The summed distance (over the 10 features)
corresponding to a good match is dependent on the training data and the type of authentication
being performed.

In general, only well-behaved clusters are likely to prove useful for selecting different meta-
algorithmic patterns, so relatively small distance thresholds are chosen to create the clusters.
The mean distance value is simply DS(C), as computed above, divided by the number of
features nfeatures. Past experience with images suggests using a value near 0.1 and varying
these values in the range 0.05–0.20 to determine an optimal configuration. However, past
research was also performed only for a single meta-algorithmic pattern, not for the more
complicated Generalized Hybridization approach. For this example, I chose to select a value
of DS(C)/nfeatures such that the resulting clusters were of sufficient size (10 or more images)
and so that the ratio of the standard deviation within the cluster, σ within, to the value of
DS(C)/nfeatures over the range was a minimum. Note that these values are different, and the
ratio of σ within to DS(C)/nfeatures is minimized when the value of DS(C)/nfeatures is just below
a value that results in the inclusion of a new set of samples belonging to another distribution.
For this type of optimal clustering, a value of 0.10 for DS(C)/nfeatures was identified.

These 10 simple features were used to create a set of clusters for the training set (Table 9.2).
The set of samples belonging to each of these clusters was then evaluated using, separately, four
different meta-algorithmic patterns. Samples not belonging to a cluster were evaluated using
a default meta-algorithmic pattern, the Weighted Confusion Matrix pattern. A key point for
understanding this hybridized pattern is that the clusters formed by the 10 image features above
do not correspond with clusters associated with the three actual classes of security printing
images, the 3D color tiles described in Section 8.3.4. They are used, instead, to cluster images
that are similar for a small, readily computed set of features, and then perform a more powerful
classification on each cluster, independently, using a set of 420 image features (Simske et al.,
2009). The rationale for this approach is straightforward: by aggregating images that are

Table 9.2 Percent of the samples belonging to the four clusters defined by the 10 simple features
during the training set (and later during testing). Classification accuracy using only these clusters, for
later comparison, is 61.7% for the training set and 59.4% for the test set. See text for details

Cluster Number
Samples in Cluster,

Training Set (%)
Samples in Cluster,

Test Set (%)
Primary Printing Technology
Associated with the Cluster

1 19 17 Liquid electrophotography
2 23 20 Dry electrophotography
3 18 19 Inkjet (set 1)
4 17 15 Inkjet (set 2)
5 (The “noncluster”) 23 29 Liquid electrophotography,

inkjet (set 2)
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more alike before the full classification, the hardest challenge—that of finding classification
differences within these clusters—is facilitated. In some ways, this is similar to a multi-branch
decision tree classification approach, with the 10 features used upfront performing an initial
classification and the later, full set of 420 features providing more precise classification.
However, complexity is supported through (a) variable number of branches, and (b) variation
of the classification approach (different meta-algorithmic patterns) after the initial branching.
This means that some of the branches rejoin after the secondary classification, making this
unlike a decision tree, and a more robust overall classification system.

The secondary classification in this case is focused on differentiating the printing of 3D
color tiles by three different printer technologies: (1) inkjet, (2) dry electrophotography,
and (3) liquid electrophotography. In total, 360 images were used: 120 images for one dry
electrophotography (dry toner) printer, 120 images for one liquid electrophotographic (liquid
toner) printer, and 60 images each from two inkjet printers. Half of the images in each set were
used for training, and half for testing (ntraining = ntest = 180).

In order to perform the secondary, and final, classification of the printer technology used to
create the then-scanned images, three different simple clustering approaches—(1) L1-distance-
based classification, (2) L2-distance-based classification, and (3) Gaussian-distribution-based
binary classification (Simske, Li, and Aronoff, 2005)—were used in conjunction with the
image classification approach described in Simske et al. (2009) as the three generators for
several meta-algorithmic patterns, each of which in turn looked to determine the correct
classification among the three printing technologies described above. The four nondefault
meta-algorithmic patterns used were as follows:

1. Best Engine with Required Precision (Section 6.3.5) or Voting (Section 6.2.3).
2. Best Engine with Required Precision (Section 6.3.5) or Weighted Voting (Section 6.2.3).
3. Best Engine with Required Precision (Section 6.3.5) or Confusion Matrix (Section 6.3.1).
4. Best Engine with Required Precision (Section 6.3.5) or Weighted Confusion Matrix (Sec-

tion 6.3.1).

The default pattern, deployed when a sample was not within the desired distance of one
of the clusters, was the Weighted Confusion Matrix. Since there are several steps in this
implementation, the overall process is outlined here:

Step 1: Precluster the images using the set of 10 simple features. For samples not joining a
cluster of at least 10 images, assign them to a separate “cluster,” which must use a default
meta-algorithmic pattern (since required precision for the cluster cannot be achieved).

Step 2: Perform all meta-algorithmic patterns on each cluster. For the nondefault patterns,
the required precision is the output confidence of the classifiers for the Best Engine (i.e.,
“liquid electrophotography” for cluster 1, “dry electrophotography” for cluster 2, etc.).
When precision is above a threshold (in this example, 0.75), then use the Best Engine,
which is the “primary printing technology associated with the cluster” in Table 9.2. When
precision is not above that threshold, then use Voting, Weighted Voting, Confusion Matrix,
or Weighted Confusion Matrix for the four nondefault patterns.

Step 3: For images not assigned to one of the clusters (i.e., assigned to the “noncluster” row)
in Table 9.2, use the Weighted Confusion Matrix pattern.

Step 4: Compare the mixed approach described in Steps 2 and 3 to the approaches using the
same meta-algorithmic pattern throughout.
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Table 9.3 Accuracy results (3-class printer technology classification) for the default and four custom
meta-algorithmic patterns, along with the results for the use of the optimum meta-algorithmic pattern
for each cluster. Results for both the training and test set are shown. The highest classification accuracy
rate is observed when the mixed (generalized hybridization) approach is used. Note, however, that the
test accuracy (87.2%) was significantly lower than the training accuracy (95.0%)

Meta-algorithmic Approach
Accuracy

(Training Set) (%)
Accuracy

(Test Set) (%)

(I) Best Engine with Required Precision or Voting 82.2 77.8
(II) Best Engine with Required Precision or Weighted Voting 88.9 82.8
(III) Best Engine with Required Precision or Confusion Matrix 87.2 81.1
(IV) Best Engine with Required Precision or Weighted

Confusion Matrix
90.0 83.9

(V) Default (Weighted Confusion Matrix) 85.0 82.2
(VI) Mixed: optimum meta-algorithmic pattern for each cluster 95.0 87.2

The results of the six different classification approaches outlined in Steps 1–4 are given in
Table 9.3. The four “Best Engine with Required Precision” patterns are labeled (I) to (IV), the
default Weighted Confusion Matrix pattern is labeled (V), and the Generalized Hybridization,
or mixed, pattern, is labeled (VI). Pattern (VI) ended up being a combination of patterns (II),
(III), (IV), (IV), and (V). No cluster performed best for the meta-algorithmic pattern (I).

As Table 9.3 illustrates, the individual meta-algorithmic patterns provided differing levels of
accuracy across the entire set of images. For the training data, the individual meta-algorithmic
approaches provided a minimum of 82.2% accuracy and a maximum of 90.0% accuracy.
Adding the upfront decision to accept the output of the Best Engine generally improved the
accuracy, as the top three meta-algorithmic patterns were (IV), (II), and (III). Specifically,
the “Best Engine with Required Precision” reduced the error rate of the Weighted Confusion
Matrix pattern by 33.3%.

Substantial reduction in error rate—50.0% in comparison to meta-algorithmic pattern
(IV)—was obtained for the training data using the Generalized Hybridization approach. As
shown in Table 9.2, 29% of the test samples are not assigned to the four main clusters defined
by the training set—a 6% increase over the training data. In Table 9.3, the test set results are
presented. Here, the accuracy obtained by the six meta-algorithmic approaches dropped by
4.4%, 6.1%, 6.1%, 6.1%, 2.8%, and 7.8%, respectively, in terms of absolute accuracy. If the ac-
curacy drop for test data compared to training data is due to overfitting or “overtraining,” these
results suggest that the mixed approach—pattern (VI)—was the most overtrained, followed
by the three best individual meta-algorithmic patterns—(II), (III), and (IV). Nevertheless, the
benefit of the Generalized Hybridization approach was clear. The test accuracy improved to
87.2% from a maximum of 83.9% for the individual meta-algorithmic approaches. This is still
an impressive 20.5% reduction in relative error rate.

The utility of the image preclustering using the set of 10 simple features (Step 1 in the
process description above) dictates the overall advantage gained by selecting one pattern
versus another. If these features result in a set of clusters that behave similarly, then a single
meta-algorithmic pattern is likely to provide accuracy as high as that provided herein by
Generalized Hybridization. In order for Generalized Hybridization to provide high value, the
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preclustering step must act to “mix” the input space so that the different meta-algorithmic
patterns can explore the input space more efficiently. In so doing, Generalized Hybridization
prevents a solution that is focused on a local, rather than global, optimum, much like genetic
and stochastic approaches.

It is also important to note that the simplified feature set used for preclustering will not by
itself comprise a highly accurate classifier. Using those 10 features in place of the later 420
features, the meta-algorithmic approaches (I)–(VI) provided a maximum 61.7% accuracy on
the training set and a maximum 59.4% accuracy for the test set. This is more than three times
the error rate of the 420-feature classification. There is likely a relationship, perhaps even
a useful predictive relationship, between the number of features in and the accuracy of the
simple clustering and later full classification algorithms. Although this relationship was not
explored here, it would likely make useful future work.

In summary, then, the Generalized Hybridization approach was shown to be advantageous
for the security printing application posed. The use of a different meta-algorithmic approach
for different sets of the input data, moreover, provides no significant effect on performance.
Computing the 420 image features is required for each meta-algorithmic pattern (not to mention
any of the classifiers), so that the overhead of extra classifiers and meta-algorithmics is less
than a 1% increase in processing time.

9.4 Secondary Domains

We now apply third-order meta-algorithmics to three of the “secondary domains.” Sensitivity
analysis offers broad possibilities, of which only the surface is scratched here. It is applied here
to surveillance; in particular, to the matched identification of an object in two different images.
Proof by task completion is then applied to OCR, particularly in terms of defining the mapping
of a character before printing to the character after printing and scanning. Finally, the Feedback
pattern is used for a security analytics application; namely, the anonymization of content.

9.4.1 Surveillance

The Sensitivity Analysis pattern was introduced in Section 6.4.5. Here it is applied to an
important component in a surveillance system; namely, to the matched identification of an
object in two different images. The strategy for moving the right object higher to the top
of the list in classification is not a classification problem per se. Rather, it is a problem for
minimizing the mean number of classifications attempted until the correct one is obtained, as
was introduced in Table 8.7.

In surveillance problems, there may be a number of objects that need to be tracked across
a large set of images. There may, therefore, be a relatively large set of object extraction
algorithms, each capable of identifying and tracking, potentially, a different set of object
possibilities. This means that each of the extraction algorithms may provide confidence in
only a subset of the total set of objects that could be tracked. Even if the tracking algorithm is
capable of identifying each of the object type, it may only report output confidence values for
only a subset at a time.

Suppose, for example, that 15 objects of interest are to be tracked, but the tracking en-
gine provides confidence values for only its top four choices. This means that if the correct
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object is not in the top four choices, it is not selected—or given any weighting at all—by
this engine.

This is an unsatisfactory situation for several reasons. First, let us consider the trends that
are observed when the number of generators in a meta-algorithmic system increases:

1. The generators themselves become more highly correlated in the mean.
2. Clusters of generators that are more closely correlated with each other than with the rest of

the generators emerge.
3. Subsets of the generators are often more effectively combined with different meta-

algorithmic patterns.

In Section 6.4.5, these observations were used to argue for the removal (or recombination)
of some of the generators through one or more of the following mechanisms: correlation,
confusion matrix behavior, and selection among multiple meta-algorithmic pattern options.
The latter would, in fact, have much in common with the Generalized Hybridization approach
just described in Section 9.3.4.

In this section, however, sensitivity analysis will be used in a different way. Here, sensitivity
analysis will be used to “repopulate” the confidence values reported in order to give better
overall accuracy, as well as tracking robustness, to the surveillance system.

Suppose we have a set of images, each of which is analyzed by one or more surveillance
engines. The surveillance engine is tracking Q objects but providing confidence values for
only P objects at a time, where P < Q. Often, P � Q. Table 9.4 provides sample output for
P = 4 and Q = 15.

It is not immediately obvious from Table 9.4 which, if any, of the 15 object classes
is actually being tracked. The output for the first classifier is particularly unsatisfactory:

Table 9.4 Example of the output probabilities matrix (OPM) when P � Q. Here P = 4 and Q = 15.
Several images in a stream of video can be used as input to generate these confidence values

Output Probabilities Matrix Classifier

1 2 3 4 Sum

Classifier confidence
output for object class

1 0.90 0.13 1.03
2 0.6 0.6
3 0.1 0.5 0.6
4 0.45 0.45
5 0.06 0.06
6 0.16 0.16
7 0.25 0.25
8 0.03 0.03
9 0.14 0.14

10 0.01 0.36 0.37
11 0.14 0.14
12 0.11 0.11
13 0.00
14 0.06 0.06
15 0.00
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probability(1,1) = 0.9, probability(1,5) = 0.06, probability(1,8) = 0.03, and probability(1,10)
= 0.01. Only four objects receive any confidence (probability > 0.0) at all, and based on
the overwhelming differential confidence for object class 1, we would expect to see further
support for this decision in the next three images. But, we do not. Therefore, it is hard to feel
confident about the classification provided by the output probabilities matrix (OPM) of Ta-
ble 9.4: even though one classification will receive a higher overall weight, there is clearly no
“majority” winner.

Having identified a potential flaw in the confidence output, we need to find a way to improve
upon it. We are interested in how to change the OPM associated with the given assigned class
to one that both (a) ranks all Q objects, not just a smaller set of P objects, and (b) is more
likely to rank the correct classification high in the rank from P + 1 to Q. In simple terms,
when P < Q and the correct classification is not assigned a nonzero confidence value, then
by randomly selecting the object classification for these Q – P zero confidence objects, our
expected value for ranking the correct classification, E(Rank), is the mean of P + 1 and Q;
that is,

E(Rank) = P + Q + 1

2
.

For P = 4 and Q = 15, we then expect the rank of a “no-confidence” correct classification
to improve on the E(Rank) of 10. We next show how this is done.

The 15-element column corresponding to the output probabilities provided by one of the
classifiers will be used to illustrate the approach. For example, this is the salient column for
Classifier 1 in Table 9.4:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.90
0.00
0.00
0.00
0.06
0.00
0.00
0.03
0.00
0.01
0.00
0.00
0.00
0.00
0.00

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

From this column, we need to find a way to distribute the full weight (1.00) across the Q ele-
ments, such that (a) the current confidence ranking where Rank[1,1] > Rank[1,5] > Rank[1,8]
> Rank [1,10] > (Rank[1,2]=Rank[1,3]=. . .=Rank[1,15]=0.00), and (b) we change the no-
confidence elements {[1,2], [1,3], [1,4], [1,6], . . . , [1,15]} such that the correct classification
is relatively highly ranked within this set. This is accomplished in a relatively simple manner
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using the confusion matrix obtained after the training phase. To begin with, the general form
of the confusion matrix for this system is

Assigned class

Origin
class

⎡
⎢⎢⎢⎢⎣

C11 C12 C13 . . . C1P

C21 C22 C23 . . . C2P

C31 C32 C33 . . . C3P

. . . . .

CP1 CP2 CP3 . . . CPP

⎤
⎥⎥⎥⎥⎦

.

Zero weightings (i.e., the OPM element = 0.0) may prevent certain correct classifications
from being made, depending on the meta-algorithmic pattern employed. One way to han-
dle zero weightings, of course, is to randomly rank the classifications that were given zero
confidence. However, this results in the random ordering of the correct classification, with
an expected ranking of (P + Q + 1)/2, as described above. As described in Section 6.3.1,
though, there is a direct relationship between the OPM and the confusion matrix. It makes
sense, then, to use the appropriate column in the confusion matrix to reweight the sparsely
populated column in the OPM. In this example, the OPM column (left below) is sparse but the
corresponding column in the confusion matrix (right below) is not:

OPM column

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.90
0.00
0.00
0.00
0.06
0.00
0.00
0.03
0.00
0.01
0.00
0.00
0.00
0.00
0.00

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Confusion Matrix column

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.532
0.054
0.022
0.068
0.057
0.033
0.018
0.053
0.004
0.031
0.066
0.020
0.017
0.009
0.016

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Note that I have normalized the salient column of the confusion matrix to sum to 1.0:
the actual column in this case summed to 1.108. It is normalized to make later scaling
of the weighting easier to follow, and in no way affects the approach taken. Regardless,
because the OPM column identifies object class 1 as the correct classification, the appropriate
column in the confusion matrix is

⎡
⎢⎢⎣

C11

C12

. . .

C1P

⎤
⎥⎥⎦ .
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Table 9.5 Salient values in the sensitivity analysis approach described in the text. Column A provides
the original confidence weightings from the OPM; here, P = 4 and Q = 15. Column B provides the
corresponding confusion matrix column when the assigned class is object class 1. Column C provides
the corrective weighting scheme: the manner in which nonzero confidence will be assigned to all object
classes and in which the relative ranking of the object classes will not be compromised. Column D
provides the corrective weights (summing to 0.33) and the scaled original weights (summing to 1.0 –
0.33 = 0.67). Column E provides the overall combined weights for the object classes. Column F
provides the relative ranking of the object classes after performing columns C, D, and E

Object
Class
Number

Column
A: OPM
Column

Column B:
Confusion

Matrix
Column

Column C:
Corrective
Weighting
Scheme

Column D: Scaled
Original +
Corrective
Weighting

Column E:
Overall

(Combined)
Weighting

Column F:
Overall
Rank

1 0.900 0.532 11X 0.033 + 0.603 0.636 Rank = 1
2 0.000 0.054 9X 0.027 0.027 Rank = 7
3 0.000 0.022 7X 0.021 0.021 Rank = 9
4 0.000 0.068 11X 0.033 0.033 Rank = 5
5 0.060 0.057 11X 0.033 + 0.040 0.073 Rank = 2
6 0.000 0.033 8X 0.024 0.024 Rank = 8
7 0.000 0.018 5X 0.024 0.015 Rank = 11
8 0.030 0.053 11X 0.015 0.053 Rank = 3
9 0.000 0.004 1X 0.003 0.003 Rank = 15

10 0.010 0.031 11X 0.033 + 0.007 0.040 Rank = 4
11 0.000 0.066 10X 0.030 0.030 Rank = 6
12 0.000 0.020 6X 0.018 0.018 Rank = 10
13 0.000 0.017 4X 0.012 0.012 Rank = 12
14 0.000 0.009 2X 0.006 0.006 Rank = 14
15 0.000 0.016 3X 0.009 0.009 Rank = 13

This column is shown to the right of the OPM column above. Any number of strategies
can be used to reweight the OPM column from the confusion matrix column. Suppose we
wish to preserve the relative ratios of the weighted elements—0.90, 0.06, 0.03, and 0.01 in
the example. Then, we wish to relatively rank the unweighted elements based on their relative
values in the confusion matrix column. This is accomplished with reference to columns A–F
shown in Table 9.5.

In Table 9.5, the column A repeats the OPM, and the column B repeats the corresponding
column in the confusion matrix associated with all of the training data. Column C represents
the weighting to be added to every element in order to rank the nonweighted elements. This is
designated the corrective weighting scheme. Since there are 11 nonweighted elements, these
elements are given 1X, 2X, 3X, . . . , 11X weightings relative to their rankings in the confusion
matrix column. Thus, element [1,4] is given a weighting of 11X since the value for [1,4] in
the confusion matrix is 0.068, making class 4 the most likely misclassification not receiving
a weighting. The same 11X weighting is also given to the elements that have a weight in the
OPM—namely, OPM elements [1,1], [1,5], [1,8], and [1,10]. This ensures that the original
weighted classifications will not be reordered. The sum of column C is 110X, and X was set to
0.003 so that 1/3 (0.330) of the overall weighting is due to the sensitivity analysis weighting.
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The other 0.670 of weighting was used to scale the original weightings of {0.90, 0.06, 0.03,
0.01} to {0.603, 0.040, 0.020, 0.007}. These weights were added to 0.033 for the appropriate
elements, as shown in column D, resulting in column E. The ranks of the 15 object classes are
then given in column F. Notice that element [1,4] now has a ranking of 5.

With the approach taken here, there is the potential for a modest impact on the accuracy of
the meta-algorithmic pattern’s primary classification, since effectively the approach is a form
of output space transformation. To that end, a more comprehensive sensitivity analysis can be
performed. This sensitivity analysis can explore, at least, the following:

1. The relative weightings in the corrective weighting scheme.
2. The relative weighting for the corrective weighting scheme and the scaled original weighting

in the OPM column.
3. The approach taken for scaling the original weightings in the OPM.

For (1), Table 9.5 scales these weights linearly with ranking, but another method would be
to scale the weightings for the object classes with confidences of 0.000 proportionally to their
confusion matrix values. In this case, for the example above, the corrective weighting scheme
could be based on the confusion matrix elements of the 11 no-confidence classes. Since these
sum to 0.327 and since the weighting of 1X + 2X + 3X + . . . + 11X = 66X, we obtain X =
0.005, and so the relative weights vary from 0.8X to 13.6X as shown below in the “corrective
weighting” column to the left. Assuming we sum all of the corrective weights to 0.330 again,
we obtain the actual weights as in the column below to the right:

Corrective weighting

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

13.6X
10.8X
4.4X
13.6X
13.6X
6.6X
3.6X
13.6X
0.8X
13.6X
13.2X

4X
3.4X
1.8X
3.2X

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Actual weights

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.037
0.030
0.012
0.037
0.037
0.018
0.010
0.037
0.002
0.037
0.036
0.011
0.009
0.005
0.009

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Note that we can also vary the relative weighting of the previously weighted object classes
to be more than (or even less than!) the relative weighting of the most promising no-confidence
object class. This can be done when, for example, we find a given engine overreports a given
class at the expense of the others, or when because Q � P, often the second, third, and so on,
most likely classifications are not included in the set of Q possible classifications.

This point leads us to (2); that is, the relative weighting for the corrective weighting scheme
and the scaled original weighting in the OPM column. In the example provided here, I have
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matched the total weight in the corrective weighting scheme (0.330) to the total weight in the
(normalized) confusion matrix column (0.327). That, in general, is a good approach, but other
approaches may work better depending on the nature of the confidence values, the values of
Q and P, and the relative grouping of object classes in the confusion matrix.

The effect of the approaches taken determines the relative distribution of weights in the
final OPM compared to the original OPM and the corresponding confusion matrix column. In
the example of Table 9.5, the weights of all no-confidence OPM elements increased, as did
those of the second, third, and fourth highest weighted classes’ OPM elements. This came
at the expense of the highest weighted class 1, which nevertheless still has an OPM value
above its confusion matrix value. However, its confidence value is now only 0.636, which is
significantly less than its reported confidence of 0.900. This will weaken its relative confidence
in object class 1 within any larger meta-algorithmic approach, which will generally lead to
reduced accuracy, especially in confusion matrix incorporating meta-algorithmic patterns, if
the 0.900 value is reliable. However, the approach outlined definitely reduces the expected
number of classifications to be evaluated before the correct one is found.

The expected number of classifications to be evaluated before finding the correct one is
computed from a column in Table 9.5 by summing the products of the rank and the weight
in eachobject class number. For the original sparse OPM, this value is 4.20; for the modified
OPM of Table 9.5, column F, it is 3.50. This reduces the mean processing time by 16.7% for
the classifier. The confusion matrix itself—Table 9.5, column B—has a value of 3.36, which
is only 4.0% less than the modified OPM. Thus, the modified OPM can be seen as moving the
correct classification closer to the top with, hopefully, a relatively minor effect on accuracy
(correctness of Rank = 1 choice).

Finally, with regard to (3) above, the scaling of the original weightings in the OPM need not
be directly proportional, but can accommodate any reasonable transformation, as described, for
example, in Section 6.3.2 for confusion matrices. For example, filtering of an unsmooth OPM
similar to the one illustrated in this example may also lead to better behavior—especially when
the object classes are rearranged to have the classes with the highest interclass confusion next
to each other. Methods for performing this task were described in Section 8.2 and elsewhere.

When all four classifiers in Table 9.4 are used together with Confusion Matrix and Weighted
Confusion Matrix patterns, the approach outlined here—and diagrammed in Figure 9.5—was
found to provide a good trade-off of preserving accuracy while reducing the expected number
of classifications to be investigated before the correct one was found. Testing accuracy (the
correctness of the highest ranked class) dropped by only 0.7–2.3% while the number of
classifications until the correct one was found decreased by 13.3–29.1%. For determining
these values, the data sets were split into three equal parts—one-third each for training, model
validation, and testing. The validation stage was used to optimize the percent of the weighting
to use for the corrective weighting schema and to decide whether to use a ranked or confusion
matrix element proportional approach to assigning the corrective weights. In general, this
type of Sensitivity Analysis approach will benefit from the additional validation step, since by
definition it is exploring the sensitivity of the deployed solution to multiple system factors.

9.4.2 Optical Character Recognition

The Proof by Task Completion meta-algorithmic pattern introduced in Section 6.4.2 is here
applied toward a content scanning system that includes a mixture of purchased/licensed and
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Sensitivity analysis for object recognition: validation phase

Sensitivity analysis for object recognition: run-time phase

Image validation data

New image data

Optimize using training data confusion matrix:

1. Relative weightings in the corrective

weighting schema

2. Ranked or confusion matrix element

proportional approach to assigning the

corrective weights.

1. Apply OPM transformation (weightings from

validation phase)

2. Select classification until the correct one is

determined by downstream processing.

Figure 9.5 Sensitivity Analysis third-order meta-algorithmic pattern as deployed for the surveillance
object recognition example described in the text. Note that the correct class can be determined in the
deployment phase by downstream processing

open source OCR engines. This pattern is used to dynamically change the weighting of the
individual generators, which in this case are the individual OCR engines.

The Proof by Task Completion pattern allows the overall system architecture to be switched
between a variety of system deployment patterns as schematically depicted in Figure 9.6.
Usually, this pattern is accompanied by a return-on-investment (ROI) model that provides an
overall system cost, or cost equivalent, based on the system performance, accuracy, licensing
costs, and other requirements.

For a document processing system that includes scanning of paper-based versions of a doc-
ument workflow, an important ROI consideration is the relative cost of error versus the relative
cost of the document analysis technologies, including OCR. In the simplest example, the cost
of document analysis error is simply extra processing time. In this case, the expected number
of classifications to be evaluated before the correct one is found (also described in the previous
section), or E(classifications), is the governing factor in the TotalCost(processing) equation:

TotalCost(processing) = C(proc) × E(classifications).

Here, C(proc) is the cost of processing. The other factor in the ROI for this system is the cost
of the document analysis engine, which here is confined to the cost of the OCR engine:

TotalCost(OCR) = C(OCR)/ndocuments.

Here, the cost of the OCR engine, C(OCR), is prorated over the number of documents,
ndocuments, that are processed. The total cost of the system is, for this simple model,

TotalCost(system) = C(proc) × E(classifications) + C(OCR)/ndocuments.
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Deploy system with

default OCR

configuration

Database of document types and

ground truth (training) information

Run variety of OCR engine meta-

algorithmic patterns against ground

truth set, select new configuration as

appropriate

Deploy system with

new configuration if

appropriate

Determine cost

function based on

cost model

Process new

documents with

current system

configuration

Newly scanned

documents

Figure 9.6 Proof by Task Completion third-order meta-algorithmic pattern as deployed for the OCR
example described in the text. The architecture of the system is the same as that introduced in Figure 6.18

Three different system configurations are considered for their costs:

1. A commercial OCR engine that costs $4 million/y that leads to an E(classifications) of 1.1.
All 100 million documents processed by the client are processed by this OCR engine.

2. A commercial OCR engine that costs $1 million/y but is only allowed to process 25 million
documents. These 25 million documents are selected using a Predictive Selection meta-
algorithmic pattern, and are in theory the hardest 25 million to process. This leads to an
E(classifications) of 1.15. The other 75 million documents are processed using an open
source OCR engine with an E(classifications) of 1.4.

3. An open source OCR engine that leads to an E(classifications) of 1.6.

For (1), TotalCost(system) = C(proc) × 1.1 + $4 million. For (2), TotalCost(system) =
C(proc) × (1.15 × 0.25 + 1.4 × 0.75) + $1 million. For (3), TotalCost(system) = C(proc)
× 1.6. Suppose that the cost of processing 1 million documents is $25 000. The cost of
processing 100 million documents is thus $2.5 million. Thus, for (1), TotalCost(system) =
$6.75 million/y; for (2), TotalCost(system) = $4.344 million/y; and for (3), TotalCost(system)
= $4.0 million/y. For this system, then, the most cost-effective route is to use the open source
OCR engine.

The Proof by Task Completion pattern requires that these costs be monitored over time.
Should the cost of processing rise, for example, to $40 000 per million documents, then the
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TotalCost(system) values rise to (1) $8.4 million/y, (2) $6.35 million/y, and (3) $6.4 million/y.
With this rise in processing power, the mixed open source/commercial OCR solution becomes
the most cost-effective option.

9.4.3 Security Analytics

In this section, a simplified type of security analytic is introduced. The training-gap-targeted
meta-algorithmic pattern (Section 9.2.2), a fully closed-loop elaboration of the Feedback
pattern introduced in Section 6.4.1, is especially useful in one type of security analytic,
anonymization. Anonymization is typically defined as the process of obscuring the source and
perhaps also the destination of network traffic. In the example here, I define anonymization
differently for use in a privacy application. Most internet browsers collect information on a
user’s browsing behavior (see Figure 9.7 for an example of how to collect both the URL and
the content of the URL browsed by a user, using a simple set of Java code), and then can
use this information as input for settings when they visit another website. This type of data
mining can be useful, but it can also be inappropriate, irritating, or even spooky. For example,
I recently downloaded some images to create a slide set, and when I next visited an on-line
retailer, the “recommendations” included books, movies, and other items associated with the
images I had downloaded from the other sites. Clearly, this implies a privacy risk, and a
potential identity-related security risk if, for example, the pattern of behavior associated with
the individual is stored and analyzed by the cloud provider—for example, Google, Microsoft,
Yahoo!, and so on—and can be used to identify the user by third parties.

Figure 9.7 Simplified Java code for collecting the information from a URL (universal resource locator)
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In order to address this potential risk to privacy, one approach is to anonymize the browsing
experience of the user. For simplicity, suppose that all web browsing consists of just six
classes of information, as given in this set: [entertainment, news, on-line shopping, sports,
travel, weather], abbreviated [E, N, O, S, T, W]. We represent the relative browsing behavior
of the user as

[p(E), p(N), p(O), p(S), p(T), p(W)],

where p(E) + p(N) + p(O) + p(S) + p(T) + p(W) = 1.0 represents the user’s actual on-line
interaction (AOI). Suppose the following “mean,” or μ, user is profiled, which represents the
average behavior of a large set (e.g., “training set”) of users:

[pμ(E) = 0.1, pμ(N) = 0.3, pμ(O) = 0.25, pμ(S) = 0.1, pμ(T) = 0.05, pμ(W) = 0.2].

Now suppose we have two different users, A and B. User A browses primarily to shop
on-line and read entertainment news, so User A has the profile:

[pA(E) = 0.4, pA(N) = 0.1, pA(O) = 0.4, pA(S) = 0.0, pA(T) = 0.0, pA(W) = 0.1].

User B, on the other hand, prefers news, sports, and travel, and so has the profile:

[pB(E) = 0.0, pB(N) = 0.35, pB(O) = 0.05, pB(S) = 0.3, pB(T) = 0.2, pB(W) = 0.1].

In order to anonymize each user, we need to add the appropriate amount of obfuscating
on-line interaction (OOI) for each. To do this, we rewrite the user profiles as ratios of the
on-line browsing profiles for the mean user. Thus, for User A, the new ratio-based profile
(RBP) becomes:

[pA(E)/pμ(E), pA(N)/pμ(N), pA(O)/pμ(O), pA(S)/pμ(S), pA(T)/pμ(T), pA(W)/pμ(W)].

The relative amount of OOI to add, R = (OOI/AOI), is given by

R = OOI

AOI
= max

(
pA(∗)
pμ(∗)

)
− 1.0.

For the User A above, the RBP is [4.0, 0.333, 1.6, 0.0, 0.0, 0.5], and so R = 4.0 – 1.0 =
3.0. We therefore need to add three times as much OOI as AOI itself. This additional content
must contain no information from the highest ratio class in the RBP:

RBP[] = [pA(E)/pμ(E), . . . , pA(W)/pμ(W)].

The OOI values are readily obtained using the following equation:

OOIA(∗) = rmax pμ(∗) − pA(∗),
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which for the samples shown are

OOIA(E) = 4.0∗(0.1) − 0.4 = 0.0;
OOIA(N) = 4.0 × (0.3) − 0.1 = 1.1;
OOIA(O) = 4.0 × (0.25) − 0.4 = 0.6;
OOIA(S) = 4.0 × (0.1) − 0.0 = 0.4;
OOIA(T) = 4.0 × (0.05) − 0.0 = 0.2;
OOIA(W) = 4.0 × (0.2) − 0.1 = 0.7.

Thus, in terms of content, AOIA[] = [0.4, 0.1, 0.4, 0.0, 0.0, 0.1] and OOIA[] = [0.0, 1.1, 0.6,
0.4, 0.2, 0.7], and the sum AOIA[] + OOIA[] = [0.4, 1.2, 1.0, 0.4, 0.2, 0.8], which is exactly
equal to rmax × pμ[].

To summarize, then, the steps involved in computing the type and amount of OOI to add to
the AOI, we have the following:

1. Determine the training set, in this case the mean on-line user profile, [pμ(*)], where the
sum of all of the pμ(*) is 1.0.

2. Determine the user on-line profile, [pA(*)], where again the sum of all of the pA(*) is 1.0.
3. Compute the ratio-based, or relative, profile of the user, RBP, given by [pA(*)/pμ(*)].

4. Determine the largest ratio in the RBP profile from: rmax = max
(

pA(∗ )

pμ(∗ )

)
.

5. Determine the amount of OOI from the equation OOIA(*) = rmaxpμ(*) − pA(*).

It is left as an exercise for the reader to show that AOIB[] = [0.0, 0.35, 0.05, 0.3, 0.2, 0.1]
and OOIB[] = [0.4, 0.85, 0.95, 0.1, 0.0, 0.7].

The schematic of the process is given in Figure 9.8. Browsing content appropriate to the
task (period of time, number of users, etc.) of anonymization is collected, then classified. The
classification output is compared to that of the mean user, and the difference is the error signal.
If the error signal is above a threshold, the browsing behavior is considered distinguishable

Browsing content Classify browsing
content

Classification output

Determine error-
related browsing

Determine error
signal

Indistinguishable
from mean

user?

Approved
output

No

Yes

Figure 9.8 Schematic of the closed-loop version of the Feedback third-order meta-algorithmic pattern
used for training gap targeting of browsing behavior, as described in the text
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from the mean user, and the needed error-related browsing is calculated and thereafter added
to the browsing behavior. Otherwise, the output is approved unchanged.

The application of the training-gap-targeted meta-algorithmic pattern to the web browsing
anonymization task is, in effect, an inverse analytic. The OOI is specifically targeted toward
the gaps in the user’s normal on-line behavior, designated as AOI. When AOI is considered the
“training set,” we see that the difference in behavior between the mean, and thus anonymized,
on-line user, [pμ(E), . . . , pμ(W)] and the behavior of the individual user, [pA(E), . . . , pA(W)],
must be corrected for to make the user’s behavior more anonymous.

The example above is considerably oversimplified from what is required for a robust,
deployable, privacy-protecting solution. For example, many more classes of behavior would
be considered, and thus the user’s on-line behavior—described in AOI above—will likely differ
considerably from the mean user behavior for at least one class of browsing. The value of
rmax will therefore tend to be large, meaning the amount of OOI will significantly overshadow
the user’s actual on-line behavior. This would obviously require considerable additional usage
of potentially valuable Internet bandwidth (assuming browsing behavior the user wishes to
anonymize is a considerable amount of internet usage). In addition, regardless of how much
OOI is added, the user’s behavior will still likely stand out for a few items—for example, a
preference for a given sports team or for a specific blog, news site, and so on.

Thus, the method described in this section will benefit from further parallelism; for example,
from the use of an additional approach. One such approach is random emphasis, in which
ectopic browsing behavior on a parallel topic (e.g., browsing behavior for another sports team)
is used to obfuscate a specific hard-to-mask browsing behavior. Considering User A above,
such a strategy may be used for pA(E), meaning that an rmax of only 1.6 is required to obfuscate
the other five classes of browsing behavior. Other parallel strategies are, of course, possible.
Regardless of the approach taken, however, this section shows how the training-gap-targeted
meta-algorithmic pattern can be useful for privacy analytics. In this case, the training set is the
“typical user” whose on-line behavior is our user’s target—matching some mean user provides
a level of anonymity, and lesser so privacy.

9.5 Summary

This chapter, while not terse, only scratched the surface of possibilities for third-order meta-
algorithmic patterns. Rather than implement the patterns exactly as templated in Chapter
6, in each of the examples illustrated herein there was an attempt to combine the science
of the meta-algorithmic pattern with the art of actually deploying it. The Feedback pattern
of Section 6.4.1 was used to create an inverse analytics system based on targeting gaps in
the input, or training set. This provides the means for one form of security analytics. The
Proof by Task Completion pattern described in Section 6.4.2 was tied to an ROI model for
a large document analysis system. The Confusion Matrix for Feedback pattern templated in
Section 6.4.3 (and elaborated, in part, in Section 8.2) was used to improve document region
typing by creating appropriate aggregate subclassifications. Expert Feedback (Section 6.4.4)
was used to define a set of rules to improve biometric classification. Sensitivity Analysis, as
introduced in Section 6.4.5, incorporated the results of the confusion matrix to provide a form of
output space transformation. Regional Optimization, defined in Section 6.4.6, improved image
understanding accuracy by deploying a modified predictive selection to select among multiple
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meta-algorithmic patterns. Finally, the Generalized Hybridization approach (see Section 6.4.7)
was applied to security printing. A small set of metrics was used to precluster the input space,
after which a larger set was used to finalize the classification.

These examples illustrate the breadth of third-order meta-algorithmics. They also show
how, in many cases, a relatively large set of patterns can be compared for efficacy, with no
compromise on run-time performance. This is because the cost of meta-algorithmic pattern
processing is usually far less than the processing time required by the individual generators
used in the patterns. With this in mind, the next chapter focuses on how meta-algorithmic
principles can be used to create more robust systems.
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10
Building More Robust Systems

When one has finished building one’s house, one suddenly realizes that in the process one has
learned something that one really needed to know in the worst way – before one began.

—Friedrich Nietzsche

10.1 Introduction

The four previous chapters have outlined 21 meta-algorithmic patterns, which are meant to
provide a system architect with a set of tools to use on any suitable intelligent system problem.
These patterns are mapped against the background of four primary and eight secondary
domains. If all 21 × 12 = 252 combinations of {meta-algorithmic pattern, domain} were
described in this book, it would not only exceed the book’s targeted length several times
over but also miss the point entirely. Building more robust systems is—and likely always will
be—a combination of skill and art. The purpose of Chapter 6 was to provide the raw skills
for the task; that is, the fundamental meta-algorithmic patterns. Chapters 7–9 were meant to
provide examples of the art: how meta-algorithmic patterns may be deployed for specific tasks.
Hopefully, these comprise Nietzsche’s “something” that needed to be known before we began
building the system.

In this chapter, the three forms of parallelism—by task, by component, and especially by
meta-algorithm—are used to build more robust systems. Here, as in previous sections, there
is no attempt to cover all of the possible ground. Rather, this chapter is meant to show how
a “sense” for knowing which parallel approaches are likely to improve system metrics—cost,
performance, accuracy, and/or robustness, for example—can be learned through practice. Five
different example topics are considered here: (1) summarization, (2) cloud systems, (3) mobile
systems, (4) scheduling, and (5) classification.

10.2 Summarization

10.2.1 Ground Truthing for Meta-algorithmics

As the previous chapters have made clear, the application of meta-algorithmics to informa-
tion extracting tasks often relies on the existence of proper ground truthing (training) data.

Meta-algorithmics: Patterns for Robust, Low-Cost, High-Quality Systems, First Edition. Steven J. Simske.
C© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.
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Collecting this training data, however, is often expensive. Additionally, in many cases, the
ground truth may be collected with a specific type of intelligent system design in mind. This
may render the collected ground truth less valuable than other types of ground truth.

Meta-algorithmics are more than just powerful tools for improving overall system accuracy,
performance, robustness, and/or cost: they can also be used to influence how data is collected.
In this section, the advantages of redesigning how ground truth data is collected are shown in
the context of providing a more accurate text summarization system.

In bringing together a set of two or more summarization engines (with no upper limit on the
number chosen), we wish to find the means of ranking the individual engines. One means of
achieving this, having each summarization engine provide a summary and then having humans
evaluate each summary and ranking them relatively, is both time-consuming and provides only
a binary datum. This “binary” approach is unsatisfying, as we cannot act on the decision other
than to select one summarizer over (an)other summarizer(s). We therefore wish instead to
use a meta-algorithmic-enabling approach, wherein the summarizers provide the same type of
output (in this case the same number of sentences, N = 10). Summarization can be extractive
or abstractive (see Section 3.4.5): we are using the more common extractive technique—which
simply replicates the original text that is determined to be the most salient for the summary.
Thus, the extracted sentences, in order, are the summarization. Table 10.1 illustrates the
ranked order of sentences for three summarizers for a sample document comprised 35 sen-
tences. Summarizer 1 selected sentence 4 as its most salient sentence, followed by sentence 7,
and so on.

The original text (an article) contains 35 sentences, and the three individual summarizers
evaluated each select the 10 most salient sentences and they are assigned weights in inverse
order to the ranking (the highest ranked sentence receives weight = 10.0, the second highest
ranked sentence receives weight = 9.0, and so forth). Next, human volunteer evaluators are
presented with the original text (all 35 sentences) along with the complete set (union) of all
sentences ranked by all summarizers. The volunteers then select what they think are the most
relevant 10 sentences and order them from 1 to 10. A score of 1 indicates what to them is the
most important sentence in the article.

In the example, this set of all significant sentences includes only the 15 sentences {1, 3, 4,
5, 6, 7, 9, 14, 19, 24, 25, 29, 30, 33, 35}. We can see from this that there is a tendency to select

Table 10.1 Sentences selected by three different summarization engines and their relative ranking

Rank Summarizer 1 Summarizer 2 Summarizer 3 Weighting

1 4 7 1 10.0
2 7 1 14 9.0
3 3 6 4 8.0
4 14 29 3 7.0
5 25 19 7 6.0
6 9 4 19 5.0
7 1 5 25 4.0
8 33 3 30 3.0
9 19 33 9 2.0

10 35 14 24 1.0
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Table 10.2 Sentences in ranked order as selected by the human
evaluators, and their corresponding relative human weighting (RHW)

Sentence Number Relative Human Ranking

1 15.0
7 14.0
3 13.0

14 12.0
4 11.0
6 10.0
9 9.0

19 8.0
33 7.0
35 6.0

5 5.0
25 4.0
29 3.0
24 2.0
30 1.0

sentences from near the beginning and the ending of the article. Table 10.2 provides the ranked
ordering of these 15 sentences as judged by the human evaluators. The highest score was given
to sentence 1, the next highest score to sentence 7, and so on. The lowest score (1.0) was given
to sentence 30, which was deemed the least significant of any of the 15 selected sentences.

Using this approach, we obtain human feedback on the best engine—this is by the way the
entirety of what we receive for the “binary” approach described above. A second, quantitative,
means of evaluating the summarizers is obtained by this approach—and this cannot be achieved
using the binary approach. This is illustrated in Table 10.3, where we find the total weight for
each Summarizer j, where j = 1, . . ., S, and S = number of summarizers, by simply performing
the following operation:

TW j =
NS∑

i=1

W (i) × RHW(S(i, j)),

where TWj = total weight for Summarizer j, NS is the number of sentences in each summary;
W(i) is the weight associated with rank i (in our example, this is simply the quantity NS +
1 – i, as shown in the “weighting” column of Table 10.1); S(i,j) is the sentence number
associated with rank i for Summarizer j (e.g., S(3,5) = 7 and S(8,1) = 33 in Table 10.1);
and RHW(S(i,j)) is the relative human weighting (RHW) of the sentence identified by S(i,j).
For example, RHW(S(3,5)) = 14.0 and RHW(S(8,1)) = 7.0 as shown in Table 10.2, in which
the left column are the values of S(i,j) and the right column are the values of RHW(S(i,j)).
Table 10.3 is therefore populated with the products of the relevant RHW and W rankings. The
sum shows that the overall weight of Summarizer 3—that is, 600.0—is slightly greater than
that of Summarizer 1—that is, 596.0. The lowest weight is for Summarizer 2, at 564.0. This
indicates that, for this document, Summarizer 3 is the best of the three, but Summarizer 1 is
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Table 10.3 Weight (weighting of rank multiplied by the relative human ranking) of each individual
sentence selected by each summarizer, and total weight of the summarizer (sum of all weights). The
overall weight of Summarizer 3, at 600.0, is slightly higher than that of Summarizer 1, at 596.0. The
lowest weight is for Summarizer 2, at 564.0

(Weighting of Rank) × (Relative Human Ranking)

Rank of the Sentence Summarizer 1 Summarizer 2 Summarizer 3

1 110.0 140.0 150.0
2 126.0 135.0 108.0
3 104.0 80.0 88.0
4 84.0 21.0 91.0
5 24.0 48.0 84.0
6 45.0 55.0 40.0
7 60.0 20.0 16.0
8 21.0 39.0 3.0
9 16.0 14.0 18.0

10 6.0 12.0 2.0

Total weight 596.0 564.0 600.0

not much different. If the use of one of these summarizers is much less expensive than the use
of the other (e.g., it is open source software as opposed to commercial off-the-shelf software),
then, that one would be selected.

Clearly, the RHW approach outlined here offers a second level of comparison among sum-
marization engines. It also ensures a blind evaluation, since the person providing the sentence
order does not know which sentences have been selected by the summarizers. Importantly, the
approach gives relative, quantitative comparative data. In the simple example shown above,
Summarizers 1 and 3 are shown to be very similar in overall weighting, and relatively speaking
more highly weighted than Summarizer 2. For a much larger sample set, such relative differ-
ences would be very important—they would indicate that Summarizers 1 and 3 are more or less
interchangeable in quality and value. These differences would also indicate that Summarizer
2 should not be used in place of Summarizers 1 and 3.

The third level of value provided by this approach is more subtle. In providing a full ranking
to all of the sentences in all of the combined set of summarizations, this method allows us
to explore many different combinations of two or more summarizers (i.e., meta-algorithmic
patterns). One of the simplest meta-algorithmic patterns is the Voting pattern, which is made
possible by the RHW approach. This pattern, when applied to summarization, consists of
adding the relative weighting for the ranking of each individual summarizer for each sentence.
These values are tabulated in the second column of Table 10.4. To illustrate how this proceeds,
consider sentence 7 in the original article. For Summarizer 1, sentence 7 is ranked second
(9.0 weighting); for Summarizer 2, it is ranked first (10.0 weighting); and for Summarizer 3,
it is ranked fifth (6.0 weighting). The combined weighting, 9.0 + 10.0 + 6.0, is 25.0, and
is the highest of any sentence. Similarly, sentence 1 (23.0) and sentence 4 (23.0, with the
tie-breaker being the second ranking value) are the next two highest weighted sentences by
the combination of summarizers. This {7, 1, 4} is different from the ranking provided by the
human evaluators; namely {1, 7, 3} (Table 10.2). If the ranked order of a given summarizer



346 Meta-algorithmics: Patterns for Robust, Low-Cost, High-Quality Systems

Table 10.4 Weight (weighting of rank multiplied by the relative human ranking) of each individual
sentence selected by the combination of Summarizers 1, 2, and 3, and the total weight of the
summarizer (sum of all weights). The combined summarizer substantially outperformed any of the
individual summarizers, with a total weight of 627.0, compared to 600.0 or less for each of the
individual summarizers

Rank
Sentence (Sum

of Ranks)
(Weighting of Rank) × (Relative Human Ranking) of
the Nonweighted Combination of Summarizers 1–3

1 7 (25.0) 140.0
2 1 (23.0) 135.0
3 4 (23.0) 88.0
4 3 (18.0) 91.0
5 14 (17.0) 72.0
6 19 (13.0) 40.0
7 25 (10.0) 16.0
8 6 (8.0) 30.0
9 29 (7.0) 6.0

10 9 (7.0) 9.0

Total weight 627.0

were the same as the ranked order of the human evaluators, the maximum total weight, TWmax,
is obtained. This weight is

TWmax =
NS∑

i=1

W (i) × RHW(i).

For the given example, TWmax = 660.0. As shown in Table 10.4, the (equal) voting combina-
tion of Summarizers 1–3 results in a much improved summarizer, for which the total weight is
627.0. This is 45% closer to the ideal score of 660.0 than the best individual summarizer—that
is, Summarizer 3 with a score of 600.0.

Importantly, other meta-algorithmic patterns can also be readily applied to the relatively
ranked human evaluation data. For example, the Weighted Voting pattern (Section 6.2.3) uses
a weighted combination of Summarizers 1–3. If the weights for the individual summarizers in
the combination are determined, for example, proportionate to the inverse of the error, e, then
the weight of the jth summarizer, Wj, is determined from

Wj =
1
e j

NSUMM∑
i=1

1

ei

,

where NSUMM is the number of summarizers and error is defined as

ei = TWmax − TWi.

For the specific problem at hand, error e = 660.0 – TW.
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Table 10.5 Weight (weighting of rank multiplied by the relative human ranking) of each individual
sentence selected by the weighted combination of Summarizers 1, 2, and 3, and the total weight of the
summarizer (sum of all weights). This combined summarizer also substantially outperformed any of the
individual summarizers, with total weight of 628.0, compared to 600.0 or less for each of the individual
summarizers

Rank
Sentence (Sum

of Ranks)
(Weighting of Rank) × (Relative Human Ranking) of

the Weighted Combination of Summarizers 1–3

1 7 (8.074) 140.0
2 4 (8.000) 99.0
3 1 (7.560) 120.0
4 3 (6.390) 91.0
5 14 (6.316) 72.0
6 19 (4.146) 40.0
7 25 (3.756) 16.0
8 9 (2.610) 27.0
9 6 (1.952) 20.0

10 29 (1.708) 3.0

Total weight 628.0

For simplicity here, let us assume that the error, e, of each of the three summarizers on the
training data is the same as we observed in this example. Then, using the equation above, the
weighting of the three summarizers are {0.366, 0.244, 0.390} for Summarizers {1, 2, 3}. The
effect of weighting the combination of the summarizers is described as

SumOfRanksi =
NSUMM∑

j=1

Wj × W (i).

These values are shown in the parentheses in the second column of Table 10.5. This Weighted
Voting approach results in a total weight of 628.0, which is 46.7% closer to the best possible
score of 660.0 than the best of the individual summarizers.

In this example, the meta-algorithmic approaches were shown to improve the agreement
between the automated extractive summarization and that provided by human ground truthing.
Moreover, the meta-algorithmic approach was shown to be consistent with a different type
of ground truthing. Here, the appropriate ground truth is also extractive, meaning that the
sentences are ranked for saliency. This is advantageous to the normal ranking of individual
summarizations approach because (1) it is scalable to any number of summarizers, (2) it is
innately performed with the human expert blind to the output of the individual summarizers,
and (3) it supports the advantageous meta-algorithmic patterns illustrated herein.

10.2.2 Meta-algorithmics for Keyword Generation

Weighted Voting provides an excellent means to combine summarizers, as the above example
illustrated. In many cases, however, we want the text processing to proceed without the
availability of ground truth. Using the Expert Feedback pattern in combination with the output
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of a summarizer (or meta-algorithmic combination of summarizers as used in Section 10.2.1),
we can readily derive an effective set of keywords. These keywords are used for many important
text processing applications, including document clustering and categorization, indexing, and
search. The basic premise is to use the sentences associated with the extractive summarization
differently from the sentences not included as part of the extractive summarization.

Figure 10.1 illustrates this system. The Weighted Voting pattern is used as described in
the previous section to generate an extractive summary of the document(s), which consist
of the most salient sentences in order of saliency. This output is fed back to the appropriate
original document, from which two sets of text are extracted: (a) the set of nonextracted
sentences—that is, those not in the summary; and (b) the set of extracted sentences. Next, the
words in these two sets are treated; for example, they can be lemmatized/stemmed, weighted
based on the weight during the summarization, and filtered if desired. However, for all but

Documents

Weight sentences

Non extracted
sentences

Extracted
sentences

Summary/
summaries

A B

Compute ratio (B/A)

Keyword list
from max(B/A)

Compute (count, %)
occurrences of terms in

these sentences

Compute (count, %)
occurrences of terms in

these sentences

Weighted
Voting

Expert
Feedback

Figure 10.1 System diagram for the keyword generation described in the text. Here, two meta-
algorithmic patterns are deployed for different components of the system. The Weighted Voting (Section
6.2.3) pattern is used for the summarization, and the Expert Feedback (Section 6.4.4) pattern is used to
select the keywords
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Table 10.6 Simple paragraph used to illustrate the Expert-Feedback-driven
keyword generation. See text for details

Sentence Text

1 Kevin has anger control issues
2 He does a lot of great work
3 He sees, however, idiocy in others
4 He sees idiocy rewarded through promotions and bonuses
5 Rewarding idiots makes Kevin angry
6 We are all lucky Kevin believes in gun control

trivial applications, stop words need not be removed as they will generally be automatically
filtered by the Expert-Feedback-based keyword selection step, described next.

The absolute word counts and normalized counts (percentages) are computed for both sets of
text. The ratio of these two word count statistics for the extracted compared to the nonextracted
text is then used to identify the keywords. Table 10.6 provides an example for a very small set
of text (a six sentence paragraph). Table 10.7 shows the sentences comprising the extracted
summary set.

The words in Table 10.6 are lemmatized, and after this operation there are only eight
words that occur more than once. Their statistics are compiled in Table 10.8. The number of
occurrences in the extracted and nonextracted sets are labeled NES and NNES, respectively,
and the number of sentences in the entire text is NES + NNES. The ratio (NES/NNES) for a
word should be much greater than expected (1.0) for the word to be a keyword. In the simple
example shown, the three keywords are thus “Kevin,” “anger,” and “control.” This simple
example, of course, represents far too small of a set of text to provide a reasonable summary
(there are only 39 words in the text!), let alone select keywords. But, it does illustrate the
power of building an intelligent system from multiple meta-algorithmic patterns.

It is worth noting that the system outlined in Figure 10.1 is distinctly different in archi-
tecture from the Generalized Hybridization pattern introduced in Section 6.4.7. There, the
hybridization is typically focused on the optimization of a sequence or parallel combination
of promising first- and second-order meta-algorithmic patterns for a generally large prob-
lem space. In this section, however, the meta-algorithmic patterns are deployed for different
parts of the system. For the Generalized Hybridization pattern to be deployed in the current

Table 10.7 The paragraph illustrated in Table 10.6 with the extracted
sentences indicated by boldface

Sentence Text

1 Kevin has anger control issues
2 He does a lot of great work
3 He sees, however, idiocy in others
4 He sees idiocy rewarded through promotions and bonuses
5 Rewarding idiots makes Kevin angry
6 We are all lucky Kevin believes in gun control
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Table 10.8 The lemmatized words that occur more than once in the example paragraph, along with
the salient occurrences NES and NNES, along with the ratio (NES/NNES)

Lemma/Word
NES = # Occurrences in

Extracted Set
NNES = # Occurrences

in Nonextracted Set
Ratio of

NES/NNES

Kevin 3 0 ∞
Anger 2 0 ∞
Control 2 0 ∞
In 1 1 1.0
Reward 1 1 1.0
Idiot 1 2 0.333
See 0 2 0.000
He 0 3 0.000

example, for instance, we may substitute the Weighted Voting pattern in Section 10.2.1 with
the Weighted Voting or Best Engine pattern.

10.3 Cloud Systems

The movement of so many software applications and services to the cloud has created many
more opportunities for the use of parallel algorithms, since the intelligent system designer
can take advantage of near-infinite computing resources to make the systems more robust. In
addition, applications and services are now largely created to be cloud-native. This requires
rethinking how parallelism is to be built into these systems from the ground up. This “native-
cloud” movement affects all aspects of architecture: hardware, software, networking, security,
and information management. In this short section, I mean only to highlight the huge opportu-
nity for meta-algorithmic approaches to aid in the development of cloud-native applications.

Suppose, for purpose of illustration, that we have an application—such as scene analysis—
for which the processing requirements are highly variable. The processing time is a
function of

1. image complexity;
2. presence or absence of objects of interest;
3. meta-data (location, time of day, image size, user device capabilities).

Image complexity measurements should be selected based on their degree of correlation with
processing time. This can, if necessary, be a multi-staged decision, as shown in Figure 10.2.
Here, the images are collected on a personal system; for example, a smart phone, a laptop,
a workstation, even an intranet. The personal system has more limited resources—cache,
processing, storage, and so on—than the cloud, such that the cloud is viewed to have effectively
unlimited resources. For each image captured, the image entropy is computed as shown in
Figure 10.2. Images with sufficiently low entropy are processed locally, while images with
high entropy are sent to the cloud system for the next stage.

Not shown in the figure is the training that has been performed on the images beforehand.
This training included the assessment of which image complexity measurements could be
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Figure 10.2 System diagram for the cloud system example. Images created local to a personal system
are to be processed (scene analysis) locally or packaged for processing on the cloud system, depending
the amount of image entropy and, if appropriate, image complexity as defined by a simple image
segmentation procedure

performed quickly—this included image histogram entropy as shown, image histogram
variance, image contrast, and image chroma variance—and the correlation of these with the
actual processing time that is required for the scene analysis. The three measurements {image
histogram entropy, image histogram variance, image contrast}, each being computed from
the image histogram, have very similar performance requirements. Image chroma variance,
however, requires significantly more processing, and does not provide better predictive
accuracy. Image histogram entropy was selected as it had the best correlation (r2 > 0.90) with
actual processing time.

If the image is not processed locally, it is compressed and/or encrypted and sent to the
cloud-based system. There, a second, also relatively simple (requiring modest processing
time and resources) image complexity measurement is computed. This measurement (raw
number of connected components formed after binarization is performed) was found to be
highly correlated (r2 > 0.99) with the processing time required for the scene analysis. This
binarization step is performed on the cloud system, since (a) it requires a lot more processing
than the computation of entropy, (b) it is unlikely to push the processing back to the personal
system, and (c) it is useful as a part of the downstream scene analysis.

Once a scene has been analyzed, the output of the analysis can be used to guide the processing
decisions for a length of time afterwards. If, for example, no objects of interest are extracted
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from a scene, then simple monitoring of image histogram entropy (looking for changes in
image entropy) can be used to identify when the system settings need to be reviewed.

The third consideration for processing time, as listed above, is meta-data. There are a
number of conditions under which we may choose not to send the data to the cloud—and
in so deciding, we have to perform the processing on the personal system with more limited
resources. These conditions include the following:

1. Security: The data associated with the images may not be allowed to leave the intranet.
2. Image size/resolution: The images may be small enough such that they can be readily sent

to the cloud system, and thus be logged, processed, and archived there. Alternatively, they
may be too large to be effectively transmitted, and so they must be processed locally. In this
case, data associated with the images (objects identified, meta-data, etc.) can be transmitted.

3. Time of image capture: If the images are captured during times of peak bandwidth usage,
and they can be batch processed at a later time, then their transmission can be delayed.

4. Poor compressibility: Image measurements such as entropy, variance, and complexity
described above can also be used to predict the compressibility of an image. Images that
can be highly compressed are more likely to meet the size constraints for transmission to
the cloud system.

5. Bandwidth of connection: All other factors being equal, the greater the transmission rate,
the larger the size of image that can be processed by the cloud system.

6. Personal system capabilities: Can the personal system compress the data, encrypt the data,
or analyze the data locally most efficiently?

The diagram of Figure 10.2 is relatively straightforward, but it does illustrate that the
processing decisions in a cloud environment can be branching, rather than simple binary
ones. In this system and other similar cloud connection intelligent systems, a number of
the meta-algorithmic approaches can be considered for use in optimizing the overall system
performance. Here, let us consider briefly seven of the most salient meta-algorithmic patterns
and their potential utility for system architectures related to the one described above.

The Sequential Try pattern (Section 6.2.1) is used to try one algorithm after another until a
desired task can be accomplished or specific decision made. The architecture in Figure 10.2
could be replaced with a sequential decision-making approach as follows: instead of making
the decision for one image at a time, the decision is made for a sizable set (e.g., a video stream)
of images all at one. If the image histogram entropies (try #1) of the images are insufficient
to merit sending the image to the cloud, then segmentation may be performed on the image
in the set with the median value of entropy. If the segmentation complexity measurement
indicates that processing on the cloud is appropriate (try #2), then all of the images are
transmitted to the cloud system. If, however, the complexity of the segmentation is low
enough, the scene analysis is performed locally. If, at any time, the scene analysis processing
time exceeds the limits of the personal system (try #3), then images can be transmitted to the
cloud system.

The Constrained Substitute pattern introduced in Section 6.2.2 can be used to find a scene
analysis substitute algorithm—a so-called partial generator—that can perform the required
elements of the full scene analysis algorithm (the so-called full generator of the pattern) that is
present on the cloud system. One example is defining objects of interest by a simple descriptor
(color content, object texture, etc.). The constrained substitute performs these simplified
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analyses, and if the object of interest is not identified (with a given probability), no further
analysis is required (and so no transmission to the cloud system is needed).

The Predictive Selection pattern (Section 6.2.4) uses a decisioning process similar to that
illustrated in Figure 10.2. The comparison of image histogram entropy and, separately, image
segmentation complexity, to an appropriate threshold is a simplified form of predictive selec-
tion. The decision is predicting that images with low entropy should be selected for processing
locally, while images with high entropy should be selected for processing on the cloud system.

Building on the previous paragraph, the Predictive Selection with Secondary Engine pattern
introduced in Section 6.3.4 may be applied to the same image histogram entropy-based
decisioning. Here, however, there may be two thresholds for comparison. If the entropy is
greater than the higher threshold, the image is sent to the cloud system for scene analysis
processing. If the entropy is less than the lower threshold, it is processed locally. If, however,
the entropy is intermediate to the two thresholds, then a second pattern—for example, the
Constrained Substitution pattern—is used to make the decision.

The third-order meta-algorithmic pattern, Feedback (Section 6.4.1), can also be considered
in this system. Here, the difference between expected processing time on either the local or
cloud-based system (or both) is used to change the threshold for the decision. This can be ap-
plied to the image histogram entropy value, the image segmentation complexity value, or both.

Related to the Feedback approach, the Proof by Task Completion pattern of Section 6.4.2
can be readily applied to the scene analysis problem. As described above for the Constrained
Substitution pattern, a simplified scene analysis approach can be used to speed up the pro-
cessing and/or reduce the use of bandwidth under some circumstances. If this approach is
deployed, and some bandwidth is available, then from time to time an image will be trans-
mitted and the “full generator” used to verify that the Constrained Substitute algorithm is in
fact working properly. The successful match of these two generators—full and “partial”—will
be fed back to the personal system as proof by task completion that the partial generator is
working appropriately.

Finally, the Regional Optimization pattern introduced in Section 6.4.6 can be used to partially
segment an image in the input set and then process the distinct parts of the image with different
meta-algorithmic approaches. As but one example among many, low-entropy partitions may be
processed locally using a Constrained Substitution pattern while high-entropy partitions may
be transmitted to the cloud system and there processed using a Best Engine with Differential
Confidence or Second Best Engine (Section 6.3.8) pattern.

This section shows, in abbreviated fashion, how multiple meta-algorithmic approaches
can be considered, in parallel or in synchrony, when architecting an intelligent system. In the
actual system design (Figure 10.2), an architecture largely based on a Predictive-Selection-like
approach was chosen. More than half a dozen other reasonable architectures based on different
meta-algorithmic patterns were also outlined. In the end, each of these architectures should
be benchmarked against a healthy set of training data, and the best overall architecture—as
deduced from the associated cost function—chosen.

10.4 Mobile Systems

In Section 10.3, our concern was whether to move processing to the cloud or process lo-
cally, largely as a consequence of transmission bandwidth being the limiting factor in the
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architecture. In this section, however, one of our considerations is that the resources of the
device itself may be the limiting factor. This is more consistent with the mobile systems of
today, in which small, multi-threaded devices with limited battery life must decide how best
to deploy intelligent systems to accommodate responsiveness, accuracy, battery life, and user
data contracts. Essentially, this section is the flip side of the Section 10.3, in which we look
at the problem in terms of the device—or the personal system in Figure 10.2—rather than the
cloud system.

In so doing, however, our approach to architecture must be revisited. Mobile devices have
redefined not only how the vast majority of people access the internet but also have created
a security threat surface unimaginable even as recently as the year 2000, when smart phones
emerged. Because of the relentless drive of Moore’s law and electronics miniaturization in
general, the data storage, processing, and networking capabilities of smart phones continue to
lag those of workstations, let alone laptops, by only a few years. This means that smaller and
smaller devices are capable of holding more applications, more services, and less obviously
more ways to compromise data, access rights, and identity. Some security threats can be rela-
tively well contained; for example, physical biometrics (see Section 3.3.3) such as fingerprints
are, in theory, only stored locally and only in encrypted form. However, there is an increased
use of location-based services by smart phone owners: the overwhelming majority use one
or more GPS services, and in so doing share their information. Combine the convenience
of these services with the narcissism of social networking, add in the complicated world of
forgotten-password retrieval, and you have created a huge new set of threats.

Taken together, these new and pervasive risks to security mean that the return-on-investment
models for the use of mobile devices in conjunction with a cloud system need rethinking in
light of (a) the costs of synchronization, (b) the use of multiple passwords, and (c) the greater
possibility for direct and indirect social engineering to break down a device’s security. This
sort of reconsideration is a good opportunity for the application of meta-algorithmics and other
forms of parallelism. The fundamental question to ask here is “What should be processed on
the mobile device and what should be transmitted off-device for processing, performing of
location-based services, and so on?” For example, password federation services can address
some of the risks of multiple password systems, but they may also increase the damage should
they be compromised, since all of the user’s passwords are then lost.

Hence, the security risks, including the long-term risks of allowing the mobile service
provider(s) to aggregate too much behavioral, social, and other identity-salient content, must
be weighted appropriately. This can alter considerably the decision as to where to process
information. In Section 7.3.3, a biometric example was given in which the first-order meta-
algorithmic pattern, Constrained Substitute (introduced in Section 6.2.2), was used. This
approach has immediacy for mobile systems, where biometric identification applications may
be preferably confined to the mobile device itself.

In Section 7.3.3, the equation used to determine whether the costs are higher for processing
on the mobile device versus the cloud system is

COST = (
CA + Cptp + CBtB

)
np,

where np is the number of times to run the algorithm, CA is the cost (in $) to run the algorithm
once, CB is the cost of the bandwidth for a given time period, tB is the time to send the
information for one run of the algorithm, Cp is the cost of the processing for a given time
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period, and tp is the processing time. When we take into account the cost of a security breach,
the equation becomes

COST = pBreachCBreach + (
CA + Cptp + CBtB

)
np,

where pBreach is the probability of a security breach and CBreach is the cost of the breach. Using
this modified equation, then, we can apply the Constrained Substitute pattern as before.

10.5 Scheduling

Scheduling was considered earlier (Section 2.2.3), where it was noted that the most important
concerns of a scheduler are (1) throughput of processes, (2) response time latency, or the
time between task submission and system response, (3) turnaround latency, or the time be-
tween task submission and completion, and (4) real-time adaptation to provide fairness when
unanticipated strains on resources—from system “hangs” to a large influx of new tasks—occur.

In Section 2.2.3, scheduling is considered in light of parallelism by task. As stated in
that section, among the many scheduling approaches, there is (1) FIFO (first in, first out, or
“queue”), (2) multi-level queue, (3) round robin, (4) fixed priority preemptive, and (5) shortest
remaining time (or “shortest job first”). It was also noted that it may well be that using multiple
scheduling algorithms in parallel and intelligently combining them may result in a more robust,
more effective scheduling approach.

That last comment segues to the use of parallelism by meta-algorithmics for optimizing
the deployment of scheduling. It is clear that many of the first-order meta-algorithmic pat-
terns can be directly applied to selecting the scheduler from the list of five above, among
others. For example, the Sequential Try pattern of Section 6.2.1 is analogous to the fixed
priority preemptive scheduler, where the “try” is the attempt to finish the scheduled task in
a given time window. In a looser, more trivial analogy, the Sequential Try pattern is anal-
ogous to the FIFO queue where each task is tried sequentially. The Constrained Substitute
pattern (Section 6.2.2) has much in common with the multi-level queue scheduler, where a
task that has a relatively relaxed completion time target can be assigned to a lower-priority
queue that substitutes for the higher-priority queue(s) with the constraint being the required
completion-by time. The Voting and Weighted Voting patterns of Section 6.2.3 are analogous
to the shortest job first queue in which the voting is the expected processing time of the
task. The Predictive Selection pattern (Section 6.2.4) is an excellent analog for the shortest
job first queue wherein the job is interrupted if the predicted time for completion that was
used to select its location in the queue is disproven during run-time, and the new expected
run-time exceeds that of another task waiting in the queue. Finally, the round-robin queue,
which incorporates multiple FIFO queues, can also use a form of predictive selection for
assignment of tasks to queues. From these simple analogs, then, we can see that parallelism
by meta-algorithmic has much in common with traditional parallelism by task as incorporated
by queues.

Given the similarity between parallelism by meta-algorithmic and by task with regard
to many commonplace queues, it is logical to ask if other forms of parallelism by meta-
algorithmic can be used to create new types of queues. Indeed, the implications are that they
can. For example, let us consider the Confusion Matrix and the concept of maximum confusion
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as introduced in Section 8.2, which is the foundation of many second-order meta-algorithmic
patterns. We define the maximum confusion as

Maximum confusion = argmax ({i, j �= i} ∈ 1, . . . , N[Ci j + Cji]).

In this equation, the set of paired off-diagonal elements of the confusion matrix, Cij and Cji,
with the highest summed weight, can be targeted for organization of their two classes {i,j} as
a single aggregate class, which allows the reduction of the order of the confusion matrix. As
applied to queues, the classes with maximum confusion can be pooled for scheduling consider-
ations with, presumably, the minimum impact on actual versus expected throughput statistics.

The same type of approach can be taken using the Sensitivity Analysis third-order meta-
algorithmic pattern introduced in Section 6.4.5. Here, the correlation between classes of the
data can be used to dictate the pooling of classes for scheduling. Like maximum confusion,
this approach is used to create a pooled version of any of the traditional queues, which allows
us to match the number of classes to the specific aspects of the queue—for example, number
of processors or number of queues—required for optimization.

10.6 Classification

Many of the examples in this book have focused on the application of meta-algorithmics
to classification problems. With only a few exceptions, these examples highlighted an
improvement—often a very significant improvement—in overall classification accuracy after
meta-algorithmics are applied. However, there are circumstances in which meta-algorithmics
do not improve classification accuracy. One circumstance is when the pattern applied does not
take advantage of the proper partitions of the input data space, such that there are differential
results for the individual classifiers for these subclasses of input data. Improper, or simply
unfortunate, partitioning can significantly reduce the otherwise almost assured efficacy of the
several Predictive Selection and the several Confusion Matrix patterns. Another circumstance
in which meta-algorithmics can be ineffectual is when there is not a sufficient plurality of
classifiers. Applying meta-algorithmic patterns such as Voting and Weighted Voting to a set of
only two classifiers, for example, will result in classification accuracy intermediate to that of
the two classifiers without differential partitioning. Finally, when the amount of training data
is small, the meta-algorithmic patterns will generally not be able to improve accuracy reliably.

In this section, an example suffering from all of these deficiencies is illustrated. The input
data set is tiny, comprising the high temperatures in degrees Fahrenheit for Fort Collins,
Colorado, USA, for the first 28 days of both January and February, 2012, assigned randomly
to four groups {A,B,C,D} of 7 days out of the 28. The goal is to correctly classify the day as
belonging to either class [January] or class [February] based only on the single temperature
metric. Table 10.9 provides the input data set along with the days in the month corresponding
to these sets.

Next, we define our experimental set-up. Since the data set is very small, we decide to use
a 2:1:1 ratio of training:validation:test data. We perform training on all three combinations of
two of the sets from {A,B,C} whilst using the third set for validation. Two simple classifiers
are used for the problem. The first assumes that each of the two classes represents a Gaussian
distribution and determines the critical point (CPt) between the two means as the point that
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Table 10.9 High temperatures in Fort Collins, Colorado, USA, for the first 28 days of January and
February, 2012, assigned randomly to four groups {A,B,C,D} as described in text

Group Days of the Month High Temperatures (January) High Temperatures (February)

A 1, 7, 10, 16, 19, 22, 26 36, 40, 55, 39, 61, 47, 53 48, 27, 36, 41, 43, 59, 39
B 2, 6, 12, 13, 17, 23, 28 44, 51, 43, 52, 29, 44, 43 47, 39, 23, 39, 41, 46, 44
C 3, 8, 11, 14, 20, 21, 25 55, 54, 41, 55, 57, 52, 64 30, 28, 19, 43, 43, 51, 63
D 4, 5, 9, 15, 18, 24, 27 52, 59, 50, 54, 49, 41, 45 32, 31, 39, 34, 39, 43, 50

is the same number of standard deviations of the two populations from the corresponding
pair of means. This method, designated the Gaussian model, is described in Simske, Li, and
Aronoff (2005). The second classifier is even simpler. Here, the nearest integer or mean of
two successive integers is found that classifies the maximum number of correct classifications
of the training data. As such, this CPt is termed the value of best separation (VBS), and the
method designated the VBS classifier. On the training data, the VBS is guaranteed to have
the maximum accuracy of any single CPt-based classifier. The CPt of the Gaussian and VBS
classifiers are given in Table 10.10, along with the mean and standard deviations of the high
temperature values in each of the three sets of 14 days used for training sets.

In Table 10.11, the two classifiers are validated against the third, left-out, set of 7 days
of high temperatures. Here, it observed that the Gaussian model significantly outperforms
the VBS model, correctly classifying 28 of 42 days (66.7%) compared to 24 of 42 (57.1%)
days for the VBS model. As expected, both the Voting and Weighted Voting meta-algorithmic
patterns—having no input data partitions, only two classifiers, and sparsely populated train-
ing sets—provided intermediate accuracy to that of the two individual classifiers, correctly
classifying 26 of 42 (61.9%) days.

The validation step (Table 10.11) therefore identifies the Gaussian classifier approach to
be superior to that of the VBS or the two, in this case both handicapped and hapless, meta-
algorithmic approaches. Indeed, when the three training and validation sets are then used to
define the CPt for the Gaussian classifier, the January data is 48 ± 9, the February data is
40 ± 11, the CPt is 44.8, and the samples in set {D} are correctly classified 12 out of 14
times (85.7%). This higher value of accuracy is arguably obtained because the training and
validation sets have been combined, providing a better estimate of the Gaussian distributions
underlying the two populations. Of course, a more modest interpretation is that we are using

Table 10.10 Critical point (CPt) of the binary classification using the Gaussian model outlined in
Simske, Li, and Aronoff (2005) and the value of best separation (VBS) as described in the text. Two of
the four temperature sets are used for training, as identified. The January and February temperature
statistics for the training sets are given in the last two columns (mean ± standard deviation)

Training Sets CPt, Gaussian CPt, VBS January (μ ± σ ) February (μ ± σ )

A, B 43.24 42 46 ± 8 41 ± 9
A, C 46.54 45 51 ± 9 41 ± 12
B, C 44.93 40 49 ± 9 40 ± 12
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Table 10.11 Classification accuracy of the validation sets for the three training sets of Table 10.10.
Four classifiers are chosen: Gaussian, VBS, Voting of Gaussian + VBS, and Weighted Voting of
Gaussian + VBS, as described in the text

Validation Set Gaussian VBS Voting Weighted Voting

C 0.786 0.643 0.786 0.786
B 0.571 0.500 0.500 0.500
A 0.643 0.571 0.571 0.571

75% of the overall data sets for training, so accuracy is expected to be higher than when using
50% as in Table 10.11.

As expected, then, meta-algorithmics did not help in this simple, small classification prob-
lem. Does this mean that there is no meta-algorithmic pattern that could further improve the
accuracy of the classification? For a CPt-based classifier using only the high temperature data,
this is indeed the case. The VBS for the test data, which gives the best possible performance
on the test data (but is of course a cheat), has a CPt of 44 and also has an accuracy of 85.7%.
So, we are required to analyze the data in Table 10.9 a little differently in order to improve the
classification accuracy. One meta-algorithmic pattern that can be used is the Expert Feedback
pattern (Section 6.4.4). The expert feedback can be in the form of input range, co-occurrences
of data, and ratios. In the case of the monthly temperature data, suppose we associate each
temperature with the most recent peak high temperature and the next low, or vice versa. That
is, we keep the temperature along with the co-occurrence of the previous and subsequent local
optima. In this way, we can readily reassign one of the two misclassifications and obtain an
overall 92.9% accuracy for the data set {D}. Again, this is a cheat (and such co-occurrences are
usually unreliable for such small data sets) but one that illustrates how meta-algorithmic pat-
terns of higher complexity can be deployed when the classification problem itself is otherwise
compromised by the types of deficiencies described in this section.

10.7 Summary

This chapter, in abbreviated form, considered the way in which having the set of system
architecture tools comprising parallelism by meta-algorithmics leads to the possibility of
more robust systems. A relatively deep consideration of summarization shows how meta-
algorithmics can lead to a change in how ground truth is collected in the first place, and how
the output of one meta-algorithmic system can be fed back into another system. Section 10.3
showed how meta-algorithmic patterns can be used in coordination with a hybrid personal
system/cloud architecture to create an overall architecture that can be more robust and/or
accurate. Section 10.4 included revisiting the cost model for processing information using a
Constrained Substitution pattern, now accounting for the impact of a security breach. Schedul-
ing, normally associated with parallelism by task, was shown to align well with first-order
meta-algorithmic patterns. Higher-order meta-algorithmic patterns were considered for their
ability to create simplified queues for problems involving a surfeit of input classes. Finally, a
very simple classification problem was exhaustingly elaborated in order to show some of the
considerations that must be traded off when deploying meta-algorithmics.
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Combined, then, the approaches outlined in this chapter are intended to give the reader some
perspective on how to connect meta-algorithmics to bigger system architecture issues than the
more algorithm-specific examples of Chapters 7–9. Combined with those previous chapters,
however, these examples should provide credible support for the following eight principles of
meta-algorithmics:

Principle 1: No single generator—algorithm, system, or engine—encapsulates the complexity
of the most challenging problems in artificial intelligence, such as advanced machine
learning, machine vision and intelligence, and dynamic biometric tasks.

Principle 2: It makes sense for a system designer to optimize an algorithm for a portion of the
input range and then leave the rest of the range to another algorithm.

Principle 3: Patterns of usage are often more powerful—more accurate, more robust, more
trainable, more reusable, and less costly—than a single, highly trained algorithm, system,
or engine.

Principle 4: Ground truthing, or the labeling of training data, is extremely expensive—in
general, we have to assume that there will be a relative sparseness of training data.

Principle 5: First-, second-, and third-order meta-algorithmics are used to create a highly
trainable system with minimum cost of on-ramp. Commercial off-the-shelf, open source,
and targeted generators can be deployed together in these patterns. The targeted generators
are designed to provide good results for partitions of the input space on which the existing
generators do not perform acceptably.

Principle 6: The juxtaposition of bottom-up and top-down algorithms, and the combination of
targeted and broad algorithms can be used to generate systems that are resilient to changes
in the input data, and highly adaptable to subsystem deployment.

Principle 7: Weighting and confidence values must be built throughout the system in order
to provide the means to use meta-algorithmics on multiple classifiers at a time; hybridize
the multiple classifiers in a plurality of ways; and/or as an alternate to parallelism by
task and parallelism by component. Meta-algorithmics, in this way, provide the means for
simultaneously combining, learning, and parallel processing.

Principle 8: The goals of modern algorithm designers will be, increasingly, indistinguishable
from the goals of modern system designers. Architecting for intelligence is becoming a
primary need for architecting any system, with the increasing pervasiveness of big data,
analytics, voice search, and other machine-to-machine intelligent systems.

Combined, these principles lead to a different way of approaching design. This may have
relevance to fields other than intelligent systems, as will be addressed in the final chapter next.
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11
The Future

There are only two truly infinite things, the universe and stupidity. And I am unsure about the
universe.

—Albert Einstein

The future is uncertain but the end is always near.
—Jim Morrison

11.1 Recapitulation

Is it stupid to assume that one can architect, implement, and deploy an intelligent system
in which one treats some of the world’s most powerful intelligence generators—algorithms,
systems, and engines—as black boxes? Perhaps so. But, as stupidity is truly infinite, somewhere
in its limitless capacity this stupidity may achieve results that are of unexpectedly high quality.
The unprecedented processing, parallelism, and analytics capabilities of the modern computing
world have changed the way in which intelligent systems can be optimized. The relentless
simultaneous improvements in storage, caching, data processing algorithms and architecture,
and parallel processing are providing an exponential corollary to Moore’s law in which the
movement towards full-scale exhaustive search is proceeding even for the largest scale machine
intelligence problems.

Exhaustive search will never be practical for many problems—for example, a 100-node
“single visit” path search, termed a traveling salesman problem, requires (99!)/2, or 4.7 ×
10155, pathways to be searched, a problem likely to be unwieldy for a long, long time.
However, intelligent reduction of next-state to a mean of just three options quickly reduces
the number of pathways to be explored to no more than 398, or 5.7 × 1046, which is more
likely to be achieved in our lifetimes. This can be viewed as a form of near-exhaustive search,
which is extremely inefficient but could, understandably, be important for extremely valuable
optimization problems such as remote sensing, space travel, and the like. Such an approach,
incorporating a form of expert input, is readily amenable to parallelism, wherein the number
of queues is a multiple of the number of allowed next-states.
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Such a near-exhaustive search, however, should be the last resort. The various forms of
parallelism outlined in this book provide a large set of possible approaches, with considerable
overlap, to perform a much more efficient near-exhaustive search.

For parallelism by task, six primary patterns were described: (1) queue-based, (2) variable
sequence-based, (3) latent introspective parallel-separable operation (PSO), (4) unexploited
introspective PSO, (5) emergent introspective PSO, and (6) recursively scalable task paral-
lelism. These patterns can be used to expedite throughput of different parts of a problem space.
Queues are simple sequential schedulers, or pipelines. Variable-sequence-based parallelism
allows a pipeline to be broken up into parallelizable parts where the order of operations is
not important. The three types of PSOs look inside specific generators (algorithms, systems,
services, engines) and identify separable operations that are either initially hidden, not taken
advantage of, or not possible until the generator itself is restructured. Finally, the recursively
scalable task parallelism approach connects the final architecture chosen for parallelism with
a cost function that allows the deployed architecture to be optimal for the specific concerns of
the system designer.

For parallelism by component, eight approaches were overviewed: (1) structural reframing,
(2) model down-sampling, (3) componentization through decomposition, (4) temporal par-
allelism, (5) overlapped parallelism, (6) scaled-correlation parallelism, (7) variable element
parallelism, and (8) search parallelism. The most general is that of structural reframing: the
preparation of a task for parallelism and the incumbent advantages obtained just by this re-
structuring. Even when downstream parallelism is not employed, the reframing itself leads
to significant increase in throughput for a serial pipeline. Model down-sampling is used to
improve processing through, effectively, compressing the data. Componentization through de-
composition allows us to separate information into separate data sets, smaller than the original,
and process these independently. Temporal parallelism deconstructs a task into two or more
parallel processing branches, each sampling the same data but with distinct sampling rates.
Overlapped parallelism, on the other hand, provides spatial parallelism through partial overlap
of adjacent data sets; for example, subregions of images. Scaled-correlation parallelism uses
multiple scales of the input data in parallel. Variable element parallelism and search parallelism
are more traditional forms of parallelism in which operations such as image interpretation or
database look-up are performed in parallel.

All fourteen of these approaches, or patterns of design, for parallelism by task or parallelism
by component share in common (a) their ability to speed up the overall processing, reducing
a wide variety of system costs, and (b) their general inability to improve the overall accuracy,
robustness, resiliency, or convergence efficiency of the system. One exception to this might be
the scaled-correlation parallelism, under certain conditions. Regardless, the field of parallel
processing, I hope, will benefit from the elaboration of a large set of useful design patterns for
system optimization for accuracy, convergence efficiency, and adaptability to changes in the
input space.

To address these needs, a third form of parallelism—meta-algorithmics—was introduced,
and subsequently became the main theme of this book. The main goal in this book was to
provide a relatively exhaustive set of patterns, along with practical examples of their usage,
for developing intelligent systems. The 21 main meta-algorithmic patterns were assigned
to three categories: first, second, and third order. The first-order patterns are the primitive
statistical algorithms, related in several cases to ensemble methods (Zhou, 2012), which use
an algorithm to incorporate the output of two or more generators into a single, improved
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output. The second-order algorithms include those based on the confusion matrix, which often
is used to simplify the input space; first-order patterns that meet certain criteria; and the
conditional combinations of two of the first-order patterns. These meta-algorithmics introduce
decision pipelines, and the set of nine patterns described in Chapters 6 and 8 are certainly
nonexhaustive. The generalized pipelining of meta-algorithmic patterns is instead left for the
final third-order meta-algorithmic pattern, that of Generalized Hybridization (Section 6.4.7).
The other third-order meta-algorithmic patterns are different from the second-order patterns in
that they usually involve feedback, explicit optimization over time, and/or sensitivity analysis.

A large, but certainly nonexhaustive, set of examples were then provided in Chapters 7–10.
Some of these were trivial, in order to show how to incorporate meta-algorithmic parallelism
into a system architecture. Others were more complicated, emphasizing that the use of meta-
algorithms is both an art and a science. Finally, several examples incorporated the comparison
among many different meta-algorithmic patterns. It is these that are the norm for the intelligent
system architect, since the optimal meta-algorithmic pattern to incorporate cannot always be
deduced before experimentation.

The meta-algorithmic pattern that will perform best on a given problem is dependent on many
factors, including the nature of the input data. If the input data consists of several Gaussian
distributions, for example, a clustering-based algorithm will generally perform best. When the
input data is less well behaved, a boundary-based approach such as a support vector may be
more useful. However, for the huge input sets that modern intelligence systems typically must
accommodate, it is unlikely that a single approach will optimally handle all of the various
subclasses of data. This is where meta-algorithmics come in. If the system designer does
not know where to start, perhaps the easiest way is to use the Predictive Selection algorithm
(Section 6.2.4) to determine the extent to which the relative performance of the individual
generators varies with the partitions of the input space. If the variance is high, then the
Predictive Selection pattern will be used to select the configuration for each partition as part
of the system architecture.

11.2 The Pattern of All Patience

More generally, however, the system designer can investigate several meta-algorithmic patterns
simultaneously for consideration in the final deployment of the system. The choice is dependent
on more than just the behavior of the input data. It can also be based on organizational exper-
tise, licensing and anticipated licensing arrangements, future availability of the components,
and so on.

This is a novel approach to system design. It requires open-mindedness as to which in-
telligence generators will be implemented in the final system. As new intelligent algorithms,
systems, and engines are created or prepared for deployment, each of the meta-algorithmic pat-
terns already considered for the solution architecture can be reconsidered for the incorporation
of the new generator. As was shown in many of the patterns—Weighed Voting and Confusion
Matrix being prominent among them—the addition of a new generator may provide statistical
support to omit one or more of the previously implemented generators. The voting weight,
for example, may become negative for one or more of the generators (see, e.g., Table 8.11).
Overall accuracy, deduced from the sum of the diagonals of the confusion matrix, may be
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improved when one or more generators are removed, as illustrated in Section 8.3.4. Other
meta-algorithmic patterns, such as the Constrained Substitute and Proof by Task Completion,
can suggest the removal of a generator on one or more cost bases. This does not prove that the
generator left out is inferior in some way to the other generators that are incorporated in the
final deployed system. It shows, rather, that for the given input set and the given population of
collaborating generators, this generator is simply not required.

What happens to make an otherwise valuable generator superfluous? The easiest answer
is that other generators in the system simply outperform this generator. However, experience
with meta-algorithmic patterns—including examples shown in Chapters 7–9—highlights the
manner in which far less accurate generators can still improve the system performance. For
example, the results presented in Section 8.3.1, originally presented in Simske, Wright, and
Sturgill (2006), show the substantial reduction in error contributed by the Bayesian engine,
even though it is highly correlated with the other two, more accurate engines. The easiest
answer, therefore, does not always hold. Instead, it makes more sense for us to explore several
patterns of parallelism and deploy the pattern providing the best overall system results.

Thus, like Shakespeare’s Lear, we will be the pattern of all patience, and unweary-
ingly evaluate multiple patterns to identify those that perform optimally for the variety
of intelligent systems. The argument is relatively simple. The primary costs involved in
meta-algorithmics are in creating the input and output structures and—for a distributed or
cloud-based architecture—transmitting the salient data and meta-data from the sensing loca-
tion to the processing location. Once the data and meta-data are transmitted, there is effectively
unlimited processing capability “in the cloud” and thus every parallel processing pattern that
is potentially useful should be explored.

As a general rule, selecting a few meta-algorithmic patterns that a priori are expected to cover
the input space differently—and in combination completely or nearly completely—should be
deployed. A major focus of this book has been parallel processing, with more traditional forms
shown as belonging to two broad classes: parallelism by task and parallelism by component.
Parallelism by meta-algorithmics underpins a third form of parallelism, supported by the
following:

1. Partitioning of the input space: Meta-algorithmics tuned to specific subdomains of the
input space can be used to provide parallel means of analyzing each subdomain. Predictive-
Selection-, Regional-Optimization-, and Confusion-Matrix-based patterns are excellent
choices for this partitioning.

2. Generator independence: A set of algorithms, intelligent systems, or intelligence engines
that are poorly correlated are often excellent candidates for using such multiple generators
for a collective decision. The meta-algorithmic patterns based on Voting or Tessellation
and Recombination are excellent choices for enabling such collective decisioning, as they
allow different—parallel—approaches to analysis to be effectively used together.

3. Combination of learning approaches: Meta-algorithmic patterns such as Feedback, Ex-
pert Feedback, Sensitivity Analysis, and Generalized Hybridization provide different ap-
proaches to learning. Feedback-related patterns provide learning by changing the weight of
connections between output and input. The Sensitivity Analysis pattern can provide the fine-
tuning of the weighting among multiple learning generators. Generalized Hybridization,
finally, allows different learning engines to be combined in useful ways.
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4. Selection of suitable engine: Meta-algorithmics can be used to provide an advanced form
of parallelism by task. The Sequential Try and Constrained Substitute patterns can be
significantly sped up when each of the generators to be investigated is run in a separate
parallel branch.

Overall, meta-algorithmics provide a different, often substantially more complicated, form
of parallelism than parallel processing by task or by component. Because of the ability to
perform Generalized Hybridization, in fact, meta-algorithmics can be used to create a type of
machine intelligence analogous in architecture to that of human consciousness as proposed
by Gerald Edelman (Edelman, 1992). Edelman’s theory of Neural Darwinism rests on three
tenets: (1) developmental selection, (2) experiential selection, and (3) reentry.

Development selection can be viewed as analogous to the first-order meta-algorithmics,
since the more efficient generators are selectively tried, voted for, allowed to substitute for
other generators, and so on. More importantly, however—and akin to an important element of
how the human nervous system develops—poorly performing generators or meta-algorithmic
patterns are selected against. The Sequential Try pattern, for example, can be used to elim-
inate ineffective generators, while the Weighted Voting pattern can be used to differentially
emphasize one generator over another.

Experiential selection can be viewed as analogous to the second-order meta-algorithmics.
Here, two or more first-order generators can be used in a cooperative pattern. There are many
options for combinations—far more than the nine patterns introduced in Section 6.3. But, there
is a commonality among all of these patterns. This commonality is analogous to experiential
selection, in which past events have reduced the plasticity while simultaneously increasing
the speed of decision-making in a conscious neural system. From experience, we may know
when one or more factors in a decision need to be calibrated relative to the other factors. In
Section 6.3.2 this is the role of the output space transformation. From experience, we may have
learned some rules or other expertise that can be used to guide a decision. This is the role of
the expert decisioner in Section 6.3.3. Experience may also guide us to readily identify when
a decision has been made incorrectly. This is the analog of the secondary engines described in
Section 6.3.4. We also can judge the likelihood of a correct decision from past experience: this
is the required precision of Section 6.3.5. Experience also leads us to have more confidence in
a decision when multiple experts agree—this is the role of majority voting in Sections 6.3.6
and 6.3.7—or more confidence in a decision when the decision-making generators themselves
have more confidence (Sections 6.3.8 and 6.3.9). Physiologically, higher-confidence neuronal
paths are carved through reinforcement and the concomitant improved synaptic efficiencies
in the decision-making path. Meta-algorithmically, this reinforcement is achieved through a
variety of weights assigned to the decision.

Reentry is a powerful concept (Edelman, 1992) that describes how thoughts progress through
time through the remapping of intact and altered sets of neuronal activity to the same neu-
ronal tissue. This concept has strong ideological commonality with the third-order meta-
algorithmic patterns. Feedback patterns provide revisiting of the input after an output has been
computed—reentry through inputting anew. Proof by Task Completion (Section 6.4.2) is also
a form of reentry. Sensitivity Analysis (Section 6.4.5), meanwhile, is a means of remapping
the system with slight alteration. Each of these patterns addresses the temporal aspect of reen-
trancy. Regional Optimization (Section 6.4.6), on the other hand, addresses the spatial aspect
of reentrancy, allowing for independent remapping of each of the distinct regions.
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These are powerful analogies. Taken together, the implication is that a system designed
from the ground up using meta-algorithmics is an intelligent—though not yet anyway a
conscious—system. The flip side of this analogy, of course, is that the system must be intel-
ligently designed. The need to perform pattern selection during system design is familiar to
security system architects. The upfront investment will be more than recuperated downstream,
when the whole system does not need to be rearchitected. The fundamentals of system architec-
ture through meta-algorithmics are relatively straightforward. Each knowledge generator must
be configured to provide the same output type—data, meta-data, and statistics—as its peers.
With this done, the system has a high degree of flexibility in terms of later meta-algorithmic
pattern deployment.

11.3 Beyond the Pale

This book already reaches into a large number of domains for its relatively modest length. At
the risk of overstretching, I would like to comment on how opening up system architecture
to a meta-algorithmics-centered approach may have relevance in other domains outside of the
machine intelligence area.

I hope to have shown how meta-algorithmics require a different mind-set for system archi-
tecture than traditional systems. Meta-algorithmics is intended to provide a set of patterns for
making systems innately as combinations of other systems—system that work together without
compromise, but rather collaboration. Meta-algorithmics do not, generally, simply combine
systems—although some of the simplest examples, for example, using the Voting pattern,
may be argued to provide no more than this. In general, however, meta-algorithmics allow
multiple generators to participate as partners equal to their ability to improve the common lot.
The relative ability of each meta-algorithmic participant—that is, pattern—to contribute to
the overall decision-making will usually change through time. This makes the system robust,
flexible, and collaborative. Today, the most reasonable task might be simply to select the sin-
gle best engine, since it provides both high accuracy and confidence. Tomorrow, however, the
input data may drift substantially, making a Confusion-Matrix- and/or Sensitivity-Analysis-
based pattern outperform the best engine. This means that every reasonable generator can
and should be kept in the system architecture—especially in a cloud environment where the
storage and processing requirements of using extra generators and the associated plethora of
meta-algorithmic patterns is relatively irrelevant.

This is a collaborative, “blue ocean,” approach to intelligent system design. The implications
are simple, but nevertheless powerful. A blue ocean approach to product innovation has been
shown to offer significant short- and long-term advantages to a company (Kim and Mauborgne,
2005). Surely, a meta-algorithmic blue ocean approach can be applied to other fields.

Many other fields require intelligent analysis of a large set of possible decisions. Consider,
for example, politics. Multiple parties bring their set of concerns to the bargaining table, each
with a different relative importance, or weighting, assigned to the decisions. These are typical
input for meta-algorithmic patterns. As the sets of needs change over time, different patterns
of behavior, comprising the political decisions, may be needed. I am not implying that a set of
patterns will ever replace the complexity of negotiation, since interpersonal communication
results in a fluid weighting of the decisions due to the powers of persuasion, eloquence, and
reason. However, meta-algorithmic approaches to negotiation may be useful in showing parties
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how far they are from the overall optimum consensus. In this way, meta-algorithmics may
prove useful in the area of game theory. It is certain that meta-algorithmic patterns different
from the ones described in this book will be required for politics. That being said, a Tessellation
and Recombination (Section 6.2.5) approach, wherein the broader needs are broken into their
composite needs and then recombined to provide an optimal overall set, is of potential value.

Another interesting area for the application of meta-algorithmic approaches is education.
There are several different end goals in education, including fact retention, general reasoning
ability, linguistic abilities, ability to abstract, and so on. Many different approaches to learning
have been discovered that provide excellent results, but often at the emphasis of one type of
learning over another. In order to become a true proficient in an area, all of these learned
skills must be garnered. What is the best way to combine multiple learning approaches to
achieve the overall best education? The answer here is constrained by the amount of time a
person can devote to the learning, by the relative amount of time each of the learning ap-
proaches requires, and by the minimum amount of time required for each approach to have a
positive effect, among other factors. A variety of meta-algorithmic patterns—including Tessel-
lation and Recombination with Expert Decisioner (Section 6.3.3.), Proof by Task Completion
(Section 6.4.2), Confusion Matrix for Feedback (Section 6.4.3), Expert Feedback (Section
6.4.4), and Sensitivity Analysis (Section 6.4.5)—are potentially useful patterns for addressing
educational optimization. There may be other, education-specific, meta-algorithmic patterns
awaiting discovery as well.

A final area for the potential application of meta-algorithmics also deserves mention. The
general area of hypothesis testing—especially for relatively comparing two or more theories on
the basis of relevant experimental data. Depending on the complexity of the theories, the basic
precepts can be tessellated and then recombined (complex theories) or simply incorporate a
Weighted Voting approach to decide which theory has the highest score based on the relative
importance of each of the precepts. This application of meta-algorithmics is nothing more than
an extension of how they are already used, since of course clustering, classification, signal and
image understanding, text understanding, and most of the other examples in this book are in
fact testing hypotheses.

As an alternative perspective to the blue ocean described above, meta-algorithmics can
be viewed as providing the means for Architectural Darwinism. In a complex, high-value,
distributed and/or multi-user system, the use of meta-algorithmic patterns provide a dynamic
means of generating an architecture that adapts with changes in its environment. With such
a system, what thrives survives; that is, what has utility in the overall problem space is used
more often. If the creators of the meta-algorithmic generators are paid by use, then indeed the
measure of fitness is the money the generator makes. The truly unfit generator, in never being
used, will be selected against and perish. It is that simple, that infinite in its stupidity. As with
all survival of the fittest, it is a bit of a tautology. Nevertheless, we arrive at this Architectural
Darwinism by two routes: (a) the analogy to Edelman’s Neural Darwinism and (b) the relative
utility of generators in a meta-algorithmic system.

In one way, then, meta-algorithmic architectures can be viewed as collaborative; in another,
competitive. In my opinion, the competitive perspective is less compelling, since it ignores
the potential value of less effectual generators. It is important to note that some generators
that are not effectual on their own are nevertheless effectual when participating in one or
more meta-algorithmic patterns. These generators may work together with their more accurate
and/or robust counterparts to optimize the system response to the overall set of inputs. The
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meta-algorithmic pattern, and not the performance of the individual generators, decides the
overall system value of each generator. This results in a collaborative architecture, since the
way the generators work together is more important than how they work alone.

11.4 Coming Soon

I doubt many authors come to the end of their books and feel that they have nothing left to
say. Indeed, in my case, I feel that in many ways I have only scratched the surface on meta-
algorithmics. I felt it would be relatively painless to show how meta-algorithmics borrowed
from the great foundation produced by the last several decades of intelligent system design.
The fact that I had already built some rather large meta-algorithmic systems using the first-
order, several of the second-order, and two of the third-order patterns also contributed to my
underestimating the scope and scale of the possibilities for a meta-algorithmic approach to
system design.

In fact, I have not—and could not—properly acknowledge all of the great research in the
many fields touched on by this book. I quite likely have missed critical meta-algorithmic pat-
terns that would further benefit the reader. I have used simplified examples in order to keep the
flow of the book at a reasonable pace. This book has not sufficiently broken out the generic ver-
sus specific aspects of the meta-algorithmic patterns, except perhaps by example—illustrating
their utility across a dozen domains should at least allow the reader to get a good appreciation
for the difference in the art and science of meta-algorithmic architecture design. The appli-
cations of meta-algorithmics to mobile system architecture, cloud system architecture, and
scheduling have also much future work to be done.

Given these limitations, what are the primary contributions of this book? I have hoped to
provide the following:

1. An exhaustive—or at least relatively exhaustive—collection of the primary patterns for
meta-algorithmics, affording a superset to ensemble and other combinatorial patterns.

2. A well-structured, detailed set of design patterns that are organized by their complexity.
3. No-frills, no-obfuscation mathematical description of the patterns, their application, and

examples. The focus was on linear systems and statistics, and where additional mathematical
complexity would not add to the value, it was eschewed.

4. Detailed instructions on how to use the meta-algorithmic patterns together, and how to
build out rather complicated overall systems with as simple of building blocks as possible.

5. A broad set of examples, exploring enough different research fields to make the methods
accessible to most computer science, mathematics, science, and engineering professionals;
but, not exploring so many different fields that the book was a medley of disconnected
examples. Chapter 3 illustrated the great breadth in the fields covered, while Chapters 7–9
illustrated the commonality of meta-algorithmic approach that can be used across these
fields.

6. A path forward. I have hopefully conveyed to any reader who has made it this far that they
can begin exploring and deploying meta-algorithmics immediately. In some cases, they will
not find a huge advantage to do so; for example, with certain expensive image, text, and
speech recognition engines the cost of using two or more such engines may not merit the
increase in accuracy, robustness, or system architecture flexibility. In other cases, however,
the reader is likely to find them highly valuable.



368 Meta-algorithmics: Patterns for Robust, Low-Cost, High-Quality Systems

7. The impetus for further research on the patterns and applications of meta-algorithmics. In
addition to the fields addressed in this book, there are many other intelligent systems that
I believe will benefit from such a patterned, collaborative approach. I hope readers will
advance those fields in some way using the information in this book.

In addition to these specific goals, I had several other forward-looking goals for the book. One
of the critical areas for intelligent system design and analysis is—by definition—sensitivity
analysis. However, in some ways, this field is still in its adolescence, if not infancy. Through
the Sensitivity Analysis pattern (Section 6.4.5) and the Confusion Matrix theory (Section 8.2)
presented herein, I hoped to stimulate further, more sophisticated work on sensitivity analysis.

I also hoped to stimulate the development of more work on dynamic system architectures.
With the explosion of parallel processing and mobile access to cloud computing resources, it is
clear to me that dynamic system architecture is the future. As such, the collaborative approach
enabled by meta-algorithmics seems a very reasonable means of supporting this dynamism.

11.5 Summary

The future is uncertain, but the end is definitely near. The end of this book, that is. This is,
therefore, an appropriate time to look back and make sure that I have written what I promised
to write. Hopefully, this book has helped connect the broad set of technologies and design
patterns comprising meta-algorithmics to the larger world of parallel processing, algorithms,
intelligent systems, and knowledge engines. As an interdisciplinary field, meta-algorithmics
owes so much to so many that it is certain salient previous work has been left out in these
brief 11 chapters. While unintentional, it is also hopefully not a barrier to further elaboration
of the field of meta-algorithmics, which I feel can be a universal acid, helping to eat away
preconceived concepts of finding a single best algorithm, system, or engine for a task. Instead,
we wish to find the single best generator or pattern of generator collaboration for the specific
task, fully knowing it may not be the best collaboration on another day. The readiness is all.
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